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1 Introduction

Research on optimal dividend payouts for a cash constrained firm is based on the premise

that the firm wants to pay some of its surplus to the shareholders as dividends and there-

fore follows a dividend policy that maximizes expected present value of all payouts until

bankruptcy. This approach has been in particular used to determine the market value of a

firm which, in line with Modigliani and Miller [19], is defined as the present value of the sum

of future dividends. In diffusions models, the optimal dividend policy can be determined as

the solution of a singular stochastic control problem. For instance, Jeanblanc and Shiryaev

[15] and Radner and Shepp [22], assume that the firm exploit a technology defined by a cash

generating process that follows a drifted Brownian motion. They show that the optimal

dividend policy is characterized by a threshold so that whenever the cash reserve goes above

this threshold, the excess is paid out as dividends.

A now large literature on optimal dividend payouts uses controlled diffusion techniques

emphasizing for example, solvency restrictions imposed by a regulatory agency (Paulsen

[21]), the interplay between dividend and risk policies (Højgaard and Taksar [14], Asmussen,

Højgaard and Taksar [1], Choulli, Taksar and Zhou [3]), or the analysis of hedging and

insurance decisions (Rochet and Villeneuve [23]).

Here, we consider a firm with a technology in place and a growth option. The growth

option offers the firm the opportunity to invest in a new technology that increases its profit

rate. The firm has no access to external funding and therefore finances the opportunity cost

of the growth option on its cash reserve. Our objective is then to study the interactions

between dividend policy and investment decisions. Such an objective leads us to consider a

mixed singular control/optimal stopping problem that we solve quasi-explicitly.

Optimal stopping, singular stochastic controls or mixed singular/regular stochastic con-

trols have been widely used in Mathematical Finance. Problems focusing both on singular

control and optimal stopping are less usual and, to the best of our knowledge, only Guo and

Pham [13] deal with such an issue. In Guo and Pham [13] a firm chooses the optimal time

to activate production and then control it by buying or selling capital. This leads the au-

thors to solve in a two-stage procedure, first a singular control problem and then an optimal

stopping problem. In our setting the optimal dividend/investment policy cannot be stated

as a two-step formulation of a singular stochastic control problem and an optimal stop-

ping problem. However, we succeed in solving our mixed singular control/optimal stopping

problem by establishing connections with two auxiliary stopping problems. The first one,

that permits to characterize situations where it is optimal to postpone dividend distribution

before investing, corresponds to the option value to invest in the growth opportunity when

the manager decides to pay no dividend before exercising the growth option. The second

one corresponds to the option value to choose among two alternative investment policies: (i)

never invest in the growth option (and follow the associated optimal dividend policy), (ii)

invest immediately in the growth option (and follow the associated optimal dividend policy).

Our main theorem, founded on a verification procedure for singular control, proves that this
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latter optimal stopping problem is equivalent to our mixed singular control/optimal stopping

problem. We show that the associated value function, that we compute quasi-explicitly, is

piecewise C2 and not necessarily concave as it is the case in standard singular control prob-

lems. Furthermore, from a detailed analysis based on properties of local time, we construct

explicitly the optimal dividend/investment policy.

Our work bridges the gap between the literature on optimal dividend payouts and the

now well established real option literature. The real option literature analyses optimal

investment policy that can be mathematically determined as the solution of an optimal

stopping problem. The original model is due to McDonald and Siegel [18] and has been

extended in various ways by many authors1. An important assumption of these models

is that the investment decision can be made independently of the financing decision. In

contrast, in our paper, two inter-related features drive our investment problem. First, the

firm is cash constrained and must finance the investment using its cash reserve. Second,

the firm must decide its dividend distribution policy in view of its growth opportunity.

From that perspective our paper can be related to Boyle and Guthrie [2] who analyse, in a

numerical model, dynamic investment decision of a firm submitted to cash constraints. Two

state variables drive their model: the cash process and a project value process for which the

decision maker has to pay a fixed amount I. Boyle and Guthrie [2] do not consider dividend

distribution policy.

Our model allows us therefore to study the following set of questions: When is it optimal

to postpone dividend distribution, to accumulate cash and to invest at a subsequent date

in the growth option? What are the effects of cash flow and uncertainty shocks on dividend

policy and investment decision? What is the effect of financing constraints on dividend

policy and investment decision with respect to a situation where the firm has unlimited

cash?

The outline of the paper is as follows. Section 2 describes the model, analyses some useful

benchmarks, provides a formulation of our problem based on the dynamic programming

principle, and derives a sufficient condition for the growth option being worthless. Section

3 introduces two auxiliary stopping time problems that we solve quasi-explicitly. Section

4 contains our main result. We prove that our mixed singular control/optimal stopping

problem can be reduced to an auxiliary optimal stopping problem studied in section 3 and

we give an explicit construction of the optimal dividend/investment control. Section 5

interprets our mathematical results, proposes answers to the financial questions we raised

in the introduction and concludes.

1See for instance Dixit and Pindyck [9] for an overview of this literature. Recent developments include
for example the impact of asymmetric information in a duopoly model (see Lambrecht and Perraudin [17],
Décamps and Mariotti [5]), regime switchs (Guo, Miao and Morellec [12]), learning ( Décamps, Mariotti and
Villeneuve [6]) or investment in alternative projects (Décamps, Mariotti and Villeneuve [7]).
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2 The model

2.1 Formulation of the problem

We consider a firm whose activities generate a cash process. The firm faces liquidity con-

straints that cause bankruptcy as soon as the cash process reaches the threshold 0. The

manager of the firm acts in the best interest of its shareholders and maximizes the expected

present value of dividends up to bankruptcy. At any time the firm has the option to in-

vest in a new technology that increases the drift of the cash generating process from µ0

to µ1 > µ0 without affecting its volatility σ. This growth opportunity requires a fixed in-

vestment cost I that must be financed using the cash reserve. Our purpose is to study the

optimal dividend/investment policy of such a firm.

The mathematical formulation of our problem is as follows. We start with a probability

space (Ω,F , P), a filtration (Ft)t≥0 and a Brownian Motion W = (Wt)t≥0 with respect to

Ft. In the sequel, Z denotes the set of positive non-decreasing right continuous processes

and T , the set of Ft-adapted stopping times. A control policy π = (Zπ
t , τπ; t ≥ 0) modelizes

a dividend/investment policy and is said to be admissible if Zπ
t belongs to Z and if τπ

belongs to T . We denote the set of all admissible controls by Π. The control component

Zπ
t therefore corresponds to the total amount of dividends paid out by the firm up to time

t and the control component τπ represents the investment time in the growth opportunity.

A given control policy (Zπ
t , τπ; t ≥ 0) fully characterizes the associated investment process

(Iπ
t )t≥0 which belongs to Z and is defined by relation It = I11t≥τπ . We denote by Xπ

t the

cash reserve of the firm at time t under a control policy π = (Zπ
t , τπ; t ≥ 0). The dynamic

of the cash process Xπ
t satisfies

dXπ
t = (µ011t<τπ + µ111t≥τπ)dt + σdWt − dZπ

t − dIπ
t , Xπ

0− = x.

Remark that, at the investment time τπ, the cash process jumps for an amount of (∆Xπ)τπ ≡
Xπ

τπ − Xπ
τπ− = −I − (Zπ

τπ − Zπ
τπ−). This reflects the fact that we do not exclude a priori

strategies that distribute some dividend at the investment time τπ. For a given control π,

the time of bankruptcy is defined as

τπ
0 = inf{t ≥ 0 : Xπ

t ≤ 0}.

The firm value Vπ associated with a control π is therefore

Vπ(x) = Ex

[∫ τπ
0

0

e−rsdZπ
s

]
.

The objective is to find the optimal return function which is defined as

V (x) = sup
π∈Π

Vπ(x) (2.1)

and the optimal policy π? such that

Vπ?(x) = V (x).
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The problem we consider is thus a mixed singular control/optimal stopping problem that

we are going to solve quasi explicitly using its connection with two auxiliary stopping time

problems. We first study two useful benchmarks.

2.2 Benchmarks

As a first benchmark, it is helpful to consider the case where the manager decides never to

invest in the new technology. Under such a scenario, everything happens as if the growth

opportunity did not exist and we are brought back to the standard model of optimal dividend

policy developed in Jeanblanc and Shiryaev [15] or Radner and Shepp [22]. The cash process

X satisfies

dXt = µ0dt + σdWt − dZt,

and the firm value Vt at time t is defined by the standard singular control problem:

Vt = ess sup
Z∈Z

Ex

[∫ τ0

t∧τ0

e−r(s−t∧τ0)dZs|Ft∧τ0

]
,

where τ0 = inf{t : Xt ≤ 0} is the bankruptcy time. It is well known that the current value

Xt∧τ0 is a sufficient statistic to compute the value of the firm. More precisely, it follows from

Jeanblanc and Shiryaev [15]

Proposition 2.1 The firm value satisfies Vt = V0(Xt∧τ0) where

V0(x) = sup
Z∈Z

Ex

[∫ τ0

0

e−rtdZt

]
. (2.2)

Moreover, the value function V0 can be characterized in terms of the free boundary problem:{
L0V0(x)− rV0(x) = 0, 0 ≤ x ≤ x0,

V0(0) = 0, V
′
0 (x0) = 1, V

′′
0 (x0) = 0,

(2.3)

where L0 is the infinitesimal generator of the drifted Brownian motion µ0t + σWt.

In order to define the optimal dividend policy solution to (2.2), let consider the process

(µ0t + σWt − Lx0
t (µ0, W ))t≥0 (2.4)

where

Lx0
t (µ0, W ) = max

[
0, max

0≤s≤t
(µ0s + σWs − x0)

]
.

It is well known2 that (2.4) is the reflected drifted Brownian Motion at the boundary x0.

Furthermore, again following Jeanblanc and Shiryaev [15], the process (2.4) characterizes the

optimal cash reserve process solution to problem (2.2). Equivalently, the optimal dividend

2See for instance Karatzas and Shreve [16], Proposition 3.6.16 page 211
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policy solution of problem (2.2) is defined by the local time Lx0(µ0, W ) determined by the

process (2.4) at the boundary x0. In words, whenever the cash reserve process goes above

the threshold x0, the excess is immediately paid out as dividends. Computations are explicit

and give

V0(x) = Ex

[∫ τ0

0

e−rsdLx0
s (µ0, W )

]
=

f0(x)

f ′0(x0)
0 ≤ x ≤ x0, (2.5)

with

f0(x) = eα+
0 x − eα−0 x and x0 =

1

α+
0 − α−0

ln

(
α−0

)2(
α+

0

)2 , (2.6)

where α−0 < 0 < α+
0 are the roots of the characteristic equation

µ0x +
1

2
σ2x2 − r = 0.

Note that, if the firm starts with cash reserves x above x0, the optimal dividend policy

distributes immediately the amount (x − x0) as exceptional dividend and then follows the

dividend policy characterized by the local time Lx0(µ0, W ). Thus, for x ≥ x0 we have that

V0(x) = x− x0 + V0(x0), (2.7)

where

V0(x0) = Ex0

[∫ τ0

0

e−rsdLx0
s (µ0, W )

]
=

µ0

r
.

To sum up, we have that, for all positive x, V0(x) = Vπ0(x) ≤ V (x) where the control policy

π0 is defined by

π0 = ((x− x0)+11t=0 + Lx0
t (µ0, W )11t>0 , ∞) .

Remark 2.1 The function f0 defined on [0,∞) is non negative, increasing, concave on

[0, x0], convex on [x0,∞) and satisfies f
′
0 ≥ 1 on [0,∞) together with L0f0 − rf0 = 0 on

[0, x0]. Remark also that V0 is concave on [0, x0] and linear above x0. We shall use repeatedly

theses properties in the next sections.

As a second benchmark, consider now that the manager invests immediately at date

t = 0 in the new technology. The cash reserve process X therefore satisfies

dXt = µ1dt + σdWt − dZt, with X0− = x and X0 = x− I.

Considering that x−I ≤ 0 leads to immediate bankruptcy, it easily follows from the previous

results that the firm value V1(x− I) is defined by: V1(x− I) = max

(
0,

f1(x− I)

f
′
1(x1)

)
, 0 ≤ x ≤ x1 + I,

V1(x− I) = x− I − x1 + µ1

r
x ≥ x1 + I,

(2.8)
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with

f1(x) = eα+
1 x − eα−1 x and x1 =

1

α+
1 − α−1

ln

(
α−1

)2(
α+

1

)2 , (2.9)

and where α−1 < 0 < α+
1 are the roots of the characteristic equation

µ1x +
1

2
σ2x2 − r = 0. (2.10)

In line with Remark 2.1, note that, V1(. − I) is concave on [I, x1 + I], linear above x1 + I,

satisfies V
′
1 (. − I) ≥ 1 on [I,∞) and L1V1(. − I) − rV1(. − I) = 0 on [I, x1 + I], where L1

is the infinitesimal generator of the drifted Brownian motion µ1t + σWt. Note also that, for

all positive x, V1(x− I) = Vπ1(x) ≤ V (x) where the control policy π1 is defined by

π1 = ((x− I)− x1)+11t=0 + Lx1
t (µ1, W )11t>0 , 0)

with

Lx1
t (µ1, W ) = max

[
0, max

0≤s≤t
(µ1s + σWs − x)

]
.

Finally remark that, following Proposition 2.1, a given admissible policy π = (Zπ
t , τπ) leads

to firm value Vτπ at date τπ that satisfies

Vτπ = V1(X
π
(τπ∧τπ

0 )− − I) = V1(X
π
τπ∧τπ

0
) = ess sup

Z∈Z
E

[∫ τπ
0

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs|Fτπ∧τπ

0

]
. (2.11)

2.3 Dynamic programming principle and first result

As a first use of our two previous benchmarks we now prove that the value function V

satisfies the dynamic programming principle.

Proposition 2.2 The following holds.

V (x) = sup
π∈Π

Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
. (2.12)

Proof: Let us define

W (x) = sup
π∈Π

Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
.

We start by proving the inequality V (x) ≤ W (x). For a given control policy π, we deduce

from equation (2.11):

Vπ(x) = Ex

[∫ τπ
0

0

e−rsdZπ
s

]
= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + E

[∫ τπ
0

τπ∧τπ
0

e−rsdZπ
s |Fτπ∧τπ

0

]]

≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )ess sup
Z∈Z

E

[∫ τ0

τπ∧τπ
0

e−r(s−τπ∧τπ
0 )dZs|Fτπ∧τπ

0

]]

≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
. (2.13)
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Taking the supremun over π ∈ Π on both sides gives the desired inequality. The converse

inequality relies on the fact that there is an optimal dividend policy solution to problem

(2.11). Let us denote by Z1 this optimal policy and consider the control π = (Zπ
t 11t<τπ +

Z1
t 11t≥τπ , τπ) where Zπ

t and τπ are arbitrarily chosen in Z and T . We get

V (x) ≥ Vπ(x)

= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )ess sup
Z∈Z

E

[∫ τπ
0

τπ
0 ∧τπ

e−r(s−τπ∧τπ
0 )dZπ

s |Fτπ∧τπ
0

]]

= Ex

[∫ (τπ∧τπ
0 )−

0

e−rsdZπ
s + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]
.

Taking the supremum over (Zπ, τπ) on the right-hand side gives the result. �

We now turn to our first result, namely a sufficient condition under which the growth

opportunity is worthless. We show the following.

Proposition 2.3 If

(
µ1 − µ0

r

)
≤ (x1 + I)− x0, then for all x ≥ 0, V (x) = V0(x).

Remark 2.2 Note that, under the assumption of Proposition 2.3, we have x1 + I ≥ x0.

We also recall that there is no obvious comparison between x0 and x1 (see for instance [23]

Proposition 2).

Proposition 2.3 relies on the lemma:

Lemma 2.1 The following holds.

V0(x) ≥ V1(x− I) for allx ≥ 0 if and only if

(
µ1 − µ0

r

)
≤ (x1 + I)− x0.

Proof of Lemma 2.1. The necessary condition is obvious since V0(x) ≥ V1(x− I) clearly

implies for x ≥ max{x0, x1 + I} the desired inequality.

Let us turn to the sufficient condition. First, if x ∈ [0, I] then, V0(x) ≥ 0 = V1(x − I).

Second, if x ≥ x0 then,

V1(x− I) < x− x1 +
µ1

r
< x− x0 +

µ0

r
= V0(x),

where the first inequality comes from the concavity of V1, the second inequality is our

assumption and the last equality follows from definition of V0 for x ≥ x0. Finally, fix x ∈
[I, x0] and consider the function k defined on [I, x0] by the relation k(x) = V0(x)−V1(x−I).

We have already proved that k(I) > 0 and k(x0) > 0. Note also that k′(x0) = 1−V
′
1 (x0−I) ≤

0 and k
′′
(x0) ≥ 0. Now, suppose there exists y ∈ (I, x0) such that k(y) = 0. Since k is

decreasing convex in a left neighbourhood of x0, this implies that there exists z ∈ (y, x0)

such that k′(z) = 0 with k concave in a neighbourhood centered in z. We thus deduce that

L0k(z)− rk(z) =
σ2

2
k
′′
(z)− rk(z) < 0 (2.14)
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However, for all x ∈ (I, x0), we have that L0V0(x)− rV0(x) = 0, which implies that

L0k(x)− rk(x) = −L0V1(x− I) + rV1(x− I). (2.15)

Taking advantage of the equality L1V1(x−I)−rV1(x−I) = 0 for x ∈ (I, x0) since x0 ≤ x1+I

by Remark 2.2, we deduce that for all x ∈ (I, x0),

L0V1(x− I)− rV1(x− I) = (L0 − L1)V1(x− I) = (µ0 − µ1)V
′
1(x− I) < 0

where the inequality comes from µ1 > µ0 and from the increasness of V1(. − I). We thus

have from (2.15) that L0k(z)−rk(z) > 0 which contradicts (2.14). This concludes the proof

of lemma 2.1.

Proof of Proposition 2.3 By equation (2.13), for all fixed π = (Zπ
t , τπ; t ≥ 0) ∈ Π

Vπ(x) ≤ Ex

[∫ (τπ∧τπ
0 )−

0

e−rtdZπ
t + e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)

]

≤ Ex

[∫ (τπ∧τπ
0 )

0

e−rtdZπ
t + e−r(τπ∧τπ

0 )V0(X
π
(τπ∧τπ

0 )−)

]
≤ V0(x),

where the second inequality comes from lemma 2.1 and the third from the dynamic pro-

gramming principle applied to the value function V0. It thus follows that V (x) ≤ V0(x)

which implies our result since the the converse inequality is always true.

Thereafter we rule out the relative uninteresting case where the growth option is worth-

less and we thus work under the condition

(H1)
µ1 − µ0

r
> (x1 + I)− x0.

Note that assumption (H1) ensures the existence and the uniqueness of a positive real

number x̃ such that V0(x) ≥ (resp. ≤) V1(x− I) for x ≤ (resp. ≥) x̃. This property will play

a crucial role in the next section.

3 Auxiliary optimal stopping problems.

The main purpose of this paper is to examine the interactions between dividend policy and

investment decision. We solve quasi explicitly the optimization problem (2.1) by exploiting

its connections with two auxiliary optimal stopping problems that we now describe.

Let denote by R = (Rt)t≥0 the cash reserve process generated by the activity in place in

absence of dividend distribution:

dRt = µ0dt + σdWt,
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with initial condition

R0 = x.

We consider the two auxiliary optimal stopping time problems with value functions

θ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0 − I)

]
, (3.16)

and

φ(x) = sup
τ∈T

Ex

[
e−r(τ∧τ0) max(V0(Rτ∧τ0), V1(Rτ∧τ0 − I))

]
(3.17)

where τ0 = inf{t ≥ 0 : Rt ≤ 0}.

In this section we (quasi) explicitly determine the value function φ and explain its rela-

tion with value function θ. In the next section it will be proved that the value functions φ

and V coincides.

We start the analysis with problem Θ. It follows from Dayanik and Karatzas [4] (Corol-

lary 7.1) that the optimal value function θ is C1 on [0,∞) furthermore, from Villeneuve

[25] (Theorem 4.2. and Proposition 4.6) a threshold strategy is optimal and thus θ can be

written in terms of the free boundary problem:{
L0θ(x)− rθ(x) = 0, 0 ≤ x ≤ b, and L0θ(x)− rθ(x) ≤ 0, x ≥ b,

θ(b) = V1(b− I), θ′(b) = V
′
1 (b− I).

(3.18)

Standard computations lead to θ(x) =
f0(x)

f0(b)
V1(b− I) x ≤ b,

θ(x) = V1(x− I), x ≥ b,
(3.19)

where f0 is defined in (2.6) and where b > I is defined by the smooth-fit principle

V
′
1 (b− I)

f
′
0(b)

=
V1(b− I)

f0(b)
. (3.20)

Remark 3.3 The value function θ therefore represents the value of investing in the new

project when the manager decides to pay no dividends before exercising the growth option.

Note that, for all x, we have the following inequalities

V1(x− I) ≤ θ(x) = Vπθ(x) ≤ V (x) ≤ V0(x) + θ(x),

where the control πθ is defined by

πθ = (((Rτb
− I)− x1)+11t=τb

+ Lx1
t (µ1, W )11t>τb

, τb) ,

with τb = inf{t : Rt ≥ b}. The inequality V (x) ≤ V0(x) + θ(x), which follows from proposi-

tion 2.2, ensures that problem (2.1) is indeed well defined.
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The study of the optimal stopping problem Φ is more involved. We show the following.

Theorem 3.1 Assume condition (H1) holds then,

(i) If θ(x0) > V0(x0) then, the value function φ satisfies for all x, φ(x) = θ(x).

(ii) If θ(x0) ≤ V0(x0) then, the value function φ has the following structure.

φ(x) =


V0(x) x ≤ a,

V0(a)Ex[e
−rτa11τa<τc ] + V1(c− I)Ex[e

−rτc11τa>τc ] = Aeα+
0 x + Beα−0 x a ≤ x ≤ c,

V1(x− I) x ≥ c,

where τa = inf{t ≥ 0 : Rt ≤ a} and τc = inf{t ≥ 0 : Rt ≥ c} and where A, B, a, c

are determined by the continuity and smooth-fit C1 conditions at a and c:

φ(a) = V0(a),

φ(c) = V1(c− I),

φ′(a) = V
′
0 (a),

φ′(c) = V
′
1 (c− I).

Proof of Theorem 3.1 According to Optimal Stopping Theory (see El Karoui [10], The-

orems 10.1.9 and 10.1.12 in Øksendal [20]), we introduce the stopping region

S = {x > 0 |φ(x) = max(V0(x), V1(x− I))}.

Now, from Proposition 5.13 and Corollary 7.1 by Dayanik-Karatzas [4], the hitting time

τS = inf{t : Rt ∈ S} is optimal and the optimal value function is C1 on [0,∞). Moreover,

it follows from Lemma 4.3 from Villeneuve [25] that x̃, defined as the unique crossing point

of the value functions V0(.) and V1(x− .), does not belong to S. Hence, the stopping region

can be decomposed into two subregions S = S0 ∪ S1 with

S0 = {0 < x < x̃ |φ(x) = V0(x)},

and

S1 = {x > x̃ |φ(x) = V1(x− I)}.

Assertion (i) of Theorem 3.1 is then obtained as a byproduct of the next Proposition.

Proposition 3.4 The following assertions are equivalent:

(i) θ(x0) > V0(x0).

(ii) θ(x) > V0(x) for all x > 0.

(iii) S0 = ∅.
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Proof of Proposition 3.4.

(i) =⇒ (ii). We start with x ∈ (0, x0). Let us define τx0 = inf{t : Rt < x0} ∈ T . The

inequality θ(x0) > V0(x0) together with the initial conditions θ(0) = V0(0) = 0 implies

Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)− V0(Rτx0∧τ0)

)]
> 0.

Itô’s formula gives

0 < Ex

[
e−r(τx0∧τ0)

(
θ(Rτx0∧τ0)− V0(Rτx0∧τ0)

)]
= θ(x)− V0(x) + Ex

[∫ τx0∧τ0

0

e−rt (L0θ(Rt)− rθ(Rt)) dt

]
≤ θ(x)− V0(x),

where the last inequality follows from (3.18). Thus, θ(x) > V0(x) for all 0 < x ≤ x0. Assume

now that x > x0. Two cases have to be considered. If b > x0, it follows from (2.5) and

(3.19) that, θ(x) > V0(x) for x ≤ x0 is equivalent to θ
′
(x0) > 1. Then, Remark 2.1 about

the convexity properties of f0 yields to θ
′
(x) > 1, for all x > 0. If, on the contrary, b ≤ x0

then θ(x) = V1(x− I) for all x ≥ x0. Since V
′
1 (x− I) ≥ 1 for all x ∈ [I,∞), the smooth fit

principle implies θ
′
(x) ≥ 1 for all x ≥ x0. Therefore, the function θ − V0 is increasing for

x ≥ x0 which ends the proof.

(ii) =⇒ (iii). Simply remark that equations (3.16) and (3.17) give φ ≥ θ. Therefore, we

have φ(x) ≥ θ(x) > V0(x) for all x > 0 which implies the emptyness of S0.

(iii) =⇒ (i). Suppose S0 = ∅ and let us show that θ = φ. This will clearly im-

plies θ(x0) = φ(x0) > V0(x0) and thus (i). From Optimal Stopping theory, the pro-

cess (e−r(t∧τ0∧τS)φ(Xt∧τ0∧τS
)t≥0 is a martingale. Moreover on the event {τS < t}, we have

φ(RτS
) = V1(RτS

− I) a.s. It results that

φ(x) = Ex

[
e−r(t∧τS)φ(Rt∧τS

)
]

= Ex

[
e−rτSV1(RτS

− I)11τS<t

]
+ Ex

[
e−rtφ(Rt)11t<τS

]
≤ θ(x) + Ex

[
e−rtφ(Rt)

]
.

Now, it follows from (2.7), (2.8) that φ(x) ≤ Cx for some positive constant C. This implies

Ex [e−rtφ(Rt)] converges to 0 as t goes to infinity. We therefore deduce that φ ≤ θ and thus

that φ = θ.

We now turn to Assertion (ii) of Theorem 3.1. We show the following.

Proposition 3.5 Assume θ(x0) ≤ V0(x0) then, there are two positive real numbers a ≥ x0

and c ≤ x1 + I such that

S0 =]0, a] and S1 = [c, +∞[.

11



Proof of Proposition 3.5.

From the previous Proposition we know that the inequality θ(x0) ≤ V0(x0) implies S0 6= ∅.
We start the proof with the shape of the subregion S0. Take x ∈ S0, we have to prove that

any y ≤ x belongs to S0. As a result, we will define a = sup{x < x̃ |x ∈ S0}. Now, according

to Proposition 5.13 by Dayanik and Karatzas [4], we have

φ(y) = Ey

[
e−r(τS∧τ0) max(V0(RτS∧τ0), V1(RτS∧τ0 − I))

]
.

Since x ∈ S0, x < x̃ and thus τS = τS0 Py a.s. for all y ≤ x. Hence,

φ(y) = Ey

[
e−r(τS0

∧τ0)V0(RτS0
∧τ0)

]
≤ V0(y),

where the last inequality follows from the supermartingale property of the process (e−rt∧τ0V0(Rt∧τ0))t≥0.

Now, assuming that a < x0, (i.e. φ(x0) > V0(x0)) yields the contradiction

φ(a) = V0(a)

= Ea

[
e−rτx011τx0<τ0V0(Rτx0

)
]

≤ Ea

[
e−rτx0V0(Rτx0

)
]

< Ea

[
e−rτx0φ(Rτx0

)
]

≤ φ(a),

where the second equality follows from the martingale property of the process

(e−r(t∧τx0∧τ0)V0(Rt∧τx0∧τ0))t≥0 under Pa and the last inequality follows from the supermartin-

gale property of the process (e−rt∧τ0φ(Rt∧τ0))t≥0.

The shape of the subregion S1 is a direct consequence of Lemma 4.4 by Villeneuve [25].

The only difficulty is to prove that c ≤ x1+I. Let us consider x ∈ (a, c), and let us introduce

the stopping times τa = inf{t : Rt = a}, and τc = inf{t : Rt = c}, we have:

φ(x) = Ex

[
e−r(τa∧τc) max(V0(Rτa∧τc), V1(Rτa∧τc − I))

]
≤ Ex

[
e−r(τa∧τc)(Rτa∧τc − (x1 + I) +

µ1

r
)
]

= x− (x1 + I) +
µ1

r
+ Ex

[∫ τa∧τc

0

e−rs(µ0 − r(Rs − (x1 + I))− µ1) ds

]
.

Remark that, on the stochastic interval [0, τa ∧ τc], Rs ≥ a ≥ x0 Px a.s. and thus

µ0 − r(Rs − (x1 + I))− µ1 ≤ µ0 − r(x0 − (x1 + I))− µ1 < 0,

by assumption (H1). Therefore, φ(x) ≤ x − (x1 + I) + µ1

r
for x ∈ (a, c). We conclude

remarking that the inequality c > x1 + I yields to the contradiction

µ1

r
= V1(x1) < φ(x1 + I) ≤ µ1

r
.

The structure of the value function φ in Theorem 3.1 is then a straightforward con-

sequence of continuity and smooth-fit C1 properties. Figures 1 and 2 illustrate Theorem

3.1.
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Remark 3.4 If θ(x0) = V0(x0) then, we have that a = x0, c = b and the value functions φ

and θ coincide. Indeed, using same argument than in the first part of the proof of Proposition

3.4, we easily deduce from θ(x0) = V0(x0) that θ(x) = V0(x) = φ(x) for x ≤ x0. Further-

more, (2.5) and (3.19) imply that, θ(x0) = V0(x0) is equivalent to θ′(x0) = V ′(x0) = 1,

which implies that a = x0. The equality c = b follows then from relation (3.19) and

(3.20). To summarize, if θ(x0) = V0(x0) then, θ is the lowest supermartingale that ma-

jorizes e−r(τ∧τ0) max(V0(Rτ∧τ0), V1(Rτ∧τ0 − I)) from which it results that θ = φ.

Remark 3.5 Problem 3.1 corresponds to the option value to choose among two alternative

investment policies: (i) never invest in the growth option (and follow the associated optimal

dividend policy) or (ii), invest immediately in the growth option (and follow the associated

optimal dividend policy). At this stage, the question to know whether or not there exists a

dividend/investment policy that attains the value function φ is still unanswered. We show

in the next section that such a policy exists and is actually the optimal policy solution to

problem 2.1.

4 Main Theorem

We are now in a position to state and prove the main Theorem of our paper:

Theorem 4.2 Assume that (H1) holds then, V = φ.

We thus show in Theorem 4.2 that our mixed singular control/optimal stopping problem

can be reduced to the optimal stopping problem Φ. The proof is based on a slightly modified

standard verification procedure for singular control. One indeed expects from Proposition

2.2 that the value function V being solution of the Hamilton-Jacobi-Bellman (HJB) equation

max(1− v′, L0v − rv, V1(.− I)− v) = 0. (4.21)

This leads us to show in a first step that any piecewise function C2 which is a supersolution

to the HJB (4.21) is a majorant of the value functions V and φ. Second, we show that

the value function φ is itself a supersolution to the HJB (4.21). Last we prove a verifica-

tion Proposition, which shows that φ coincides with V . This proof constructs the optimal

dividend/investment policy π? solution to problem (2.1).

Proposition 4.6 Suppose we can find a positive function Ṽ piecewise C2 on (0, +∞) with

bounded first derivatives3 and such that for all x > 0,

(i) L0Ṽ − rṼ ≤ 0 in the sense of distributions,

(ii) Ṽ (x) ≥ V1(x− I),

(iii) Ṽ ′(x) ≥ 1,

3in the sense of Definition 4.8 page 271 in Karatzas and Schreve [16].
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with the initial condition Ṽ (0) = 0 then, Ṽ (x) ≥ V (x) for all x ∈ [0,∞).

Proof of Proposition 4.6 We have to prove that for any control policy π = (Zπ
t , τπ; t ≥ 0),

Ṽ (x) ≥ Vπ(x) for all x > 0. Let us write the process Zπ
t = Zπ,c

t + Zπ,d
t where Zπ,c

t is the

continuous part of Zπ
t and Zπ,d

t is the pure discontinuous part of Zπ
t . Using a generalized

Itô’s formula (see Dellacherie and Meyer [8], Theorem VIII-25 and Remark c page 349), we

can write

e−r(τπ∧τπ
0 )Ṽ (Xπ

(τπ∧τπ
0 )−) = Ṽ (x) +

∫ (τπ∧τπ
0 )−

0

e−rs(L0Ṽ (Xπ
s )− rṼ (Xπ

s )) ds

+

∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) σdWt −
∫ (τπ∧τπ

0 )−

0

e−rsṼ
′
(Xπ

s ) dZc
s

+
∑

s<τπ∧τπ
0

e−rs(Ṽ (Xπ
s )− Ṽ (Xπ

s−)).

Since Ṽ satisfies (i), the second term of the right hand side is negative. On the other hand,

the first derivative of Ṽ being bounded, the third term is a square integrable martingale.

Taking expectations, we get

Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ
(τπ∧τπ

0 )−)
]

≤ Ṽ (x)− Ex

[∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) dZπ,c
s

]

+ Ex

[ ∑
s<τ∧τ0

e−rs(Ṽ (Xπ
s )− Ṽ (Xπ

s−))

]
.

Since Ṽ ′(x) ≥ 1 for all x > 0, we have Ṽ (Xπ
s )− Ṽ (Xπ

s−) ≤ Xπ
s −Xπ

s−. Therefore, using the

equality Xπ
s −Xπ

s− = −(Zπ
s − Zπ

s−) for s < τπ ∧ τπ
0 , we finally get

Ṽ (x) ≥ Ex

[
e−r(τπ∧τπ

0 )Ṽ (Xπ
(τπ∧τπ

0 )−)
]

+ Ex

[∫ (τπ∧τπ
0 )−

0

e−rsṼ
′
(Xπ

s ) dZπ,c
s

]

+Ex

[ ∑
s<τ∧τ0

e−rs(Zπ
s − Zπ

s−)

]

≥ Ex

[
e−r(τπ∧τπ

0 )V1(X
π
(τπ∧τπ

0 )− − I)
]

+ Ex

[∫ (τπ∧τπ
0 )−

0

e−rs dZπ
s

]
= Vπ(x),

where assumptions (ii) and (iii) have been used for the second inequality.

We call thereafter supersolution to HJB (4.21) any solution Ṽ satisfying Proposition 4.6.

It follows from proposition 4.6 that the process (e−rt∧τπ
0 Ṽ (Xπ

t∧τπ
0
))t≥0 is a supermartingale

which dominates max(V0, V1(. − I)). Therefore, according to optimal stopping theory, any

supersolution Ṽ satisfies Ṽ ≥ φ. We now turn to the second step of our proof and prove

that φ is a supersolution.
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Proposition 4.7 φ is a supersolution.

Proof of Proposition 4.7 Two cases have to be considered.

i) θ(x0) > V0(x0).

In this case, φ = θ according to part (i) of Theorem 3.1. It remains to check that

the function θ satisfies the assumptions of Proposition 4.6. But according to optimal

stopping theory, θ ∈ C2[(0,∞) \ b)], L0θ − rθ ≤ 0 and obviously θ ≥ V1(. − I).

Moreover, it is shown in the first part of the proof of Proposition 3.4 that θ
′
(x) ≥ 1

for all x > 0. It remains to check that θ
′
is bounded above in the neightborhood of

zero. Clearly,

θ(x) ≤ sup
τ∈T

Ex

[
e−r(τ∧τ0)V1(Rτ∧τ0)

]
.

On the other hand, the process (e−r(t∧τ0)V1(Rt∧τ0))t≥0 is a supermartingale since µ1 >

µ0. Therefore, θ ≤ V1 which gives the boundedness of the first derivative of θ by

Equation (2.8).

ii) θ(x0) ≤ V0(x0).

In this case, the function φ is characterized by part (ii) of Theorem 3.1. Thus, φ = V0

on (0, a), φ = V (.− I) on (c, +∞) and φ(x) = Aeα+
0 x + Beα−0 x on (a, c). Hence, φ will

be a supersolution if we prove that φ
′
(x) ≥ 1 for all x > 0. In fact, it is enough to

prove that φ
′
(x) ≥ 1 for x ∈ (a, c) since V

′
0 ≥ 1 and V

′
1 (. − I) ≥ 1. The smooth fit

principle gives φ
′
(a) = V

′
0 (a) ≥ 1 and φ

′
(c) = V

′
1 (c − I) ≥ 1. Clearly, φ is convex in

a right neightbourhood of a. Therefore, if φ is convex on (a, c), the proof is over. If

not, the second derivative of φ given by A(α+
0 )2eα+

0 x + B(α−0 )2eα−0 x vanishes at most

one time on (a, c), say in d. Therefore,

1 ≤ φ
′
(a) ≤ φ

′
(x) ≤ φ

′
(d) for x ∈ (a, d),

and

1 ≤ φ
′
(c) ≤ φ

′
(x) ≤ φ

′
(d) for x ∈ (d, c),

which completes the proof.

Remark 4.6 It follows from Theorem 3.1 and Proposition 4.7 that the supersolution φ is

indeed a solution of HJB equation (4.21).

To prove Theorem 4.2 it remains to show that φ is attainable, that is, there exist π ∈ Π

such that φ = Vπ. We show the following

Proposition 4.8 Assume condition (H1) holds then,

(i) If θ(x0) > V0(x0) then, the policy π∗ = ((Zπ?

t ), τπ?
) defined by the increasing right-

continuous process

Zπ?

t = ((Rτb
− I)− x1)+11t=τb

+ Lx1
t (µ1, W )11t>τb

,
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and by the stopping time

τπ?

= τb

satisfies the relation φ(x) = Vπ∗(x) for x > 0.

(ii) If θ(x0) ≤ V0(x0) then, the policy π∗ = ((Zπ?

t ), τπ?
) defined by the increasing right-

continuous process

Zπ?

t =
[
(Rτa − x0)+11t=τa + (Lx0

t (µ0, W )− Lx0
τa

(µ0, W ))11t>τa

]
11τa<τc

+ [((Rτc − I)− x1)+11t=τc + Lx1
t (µ1, W )11t>τc ] 11τc<τa ,

and by the stopping time

τπ?

=

{
τc if τc < τa

∞ if τc > τa

satisfies the relation φ(x) = Vπ∗(x) for x > 0.

Proof of Proposition 4.8 Part (i) is immediate from Theorem 3.1 and Remark 3.3.

We start the proof of part (ii) by some helpful remarks on the considered policy π?. On the

event {τa < τc}, the investment time τπ?
is infinite a.s. Moreover, denoting by Xπ?

the cash

process generated by the policy π∗, we have that Xπ?

τa
= x0 a.s and for t ≥ 0, we have

Xπ?

τa+t = x0 + µ0t + σ(Wτa+t −Wτa)− (Lx0
τa+t(µ0, W )− Lx0

τa
(µ0, W )). (4.22)

Now, introduce the process B
(a)
t = Wτa+t −Wτa . We know that B(a) is a Brownian motion

independent of Fτa (Theorem 6.16 in Karatzas and Shreve [16]) and from the unicity of the

Skorohod equation (Ch IX, Exercise 2.14 in Revuz and Yor [24]) it follows from (4.22) the

identity in law

Lx0
τa+t(µ0, W )− Lx0

τa
(µ0, W )

law
= Lx0

t (µ0, B
(a)). (4.23)

We now turn to the proof of (ii). According to the structure of value function φ in Theorem

3.1, three cases have to be considered.

α) If x ≤ a then, τa = 0, τπ?
= ∞ a.s and

Zπ?

t = (x− x0)+11t=0 + Lx0
t (µ0, W )11t>0.

We get

Vπ?(x) = Ex

[∫ τπ?

0

0

e−rsdZ?
s

]
= (x− x0)+ + Emin(x,x0)

[∫ τπ?

0

0

e−rsdLx0
s (µ0, W )

]
= V0(x)

= φ(x).

β) If x ≥ c then τπ?
= τc = 0 a.s, Zπ?

t = ((x− I)− x1))+ 11t=0 + Lx1
t (µ1, W )11t>0 and

Xπ?

τc
= x− I a.s. Thus, Vπ?(x) = V1(x− I) = φ(x).
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γ) Last, assume that a < x < c. We have

Vπ?(x) = Ex

[
11τa<τc

∫ τπ?

0

0

e−rsdZπ?

s

]
+ Ex

[
11τa>τce

−rτcV1(c− I)
]
.

Now,

Ex

[
11τa<τc

∫ τ0π?

0

e−rsdZ?
s

]
= Ex

[
11τa<τc

(
e−rτa(a− x0) +

∫
11]τa,τπ?

0 ](s)e
−rsdLx0

s (µ0, W )

)]
= Ex

[
11τa<τce

−rτa(a− x0)
]
+ A (4.24)

On the other hand, note that we have on the event τa < τc,

τπ?

0 ≡ inf{s : Xπ?

s ≤ 0} = τa + inf{s : Xπ?

s+τa
≤ 0} a.s

It then follows from (4.22) and (4.23) that

τπ?

0 − τa
law
= T0 ≡ inf{s ≥ 0 : x0 + µ0s + σB(a)

s − Lx0
s (µ0, B

(a)) ≤ 0}.

Coming back to (4.24) we thus obtain,

A = Ex

[
11τa<τcE

(∫
11]τa,τπ?

0 ](s)e
−rsdLx0

s (µ0, W )|Fτa

)]
= Ex

[
11τa<τcE

(∫
11]0,τπ?

0 −τa](u)e−r(u+τa)dLx0
u+τa

(µ0, W )|Fτa

)]
= Ex

[
11τa<τce

−rτaEx0

[∫
11]0,T0](u)e−rudLx0

u (µ0, B
(a))

]]
= Ex

[
11τa<τce

−rτaV0(x0)
]

where the third equality follows from the independence of B(a) with respect to Fτa ,

(4.23) together with the fact that Lx0(µ0, B
(a)) is an additive functional.

Hence,

Ex

[
11τa<τc

∫ τπ?

0

0

e−rsdZπ?

s

]
= Ex

[
11τa<τce

−rτaV0(a)
]

Finally,

Vπ?(x) = Ex

[
11τa<τce

−rτaV0(a)
]
+ Ex

[
11τa>τce

−rτcV1(c− I)
]

= φ(x).

5 Discussion and concluding remarks.

Our Mathematical analysis is rich enough to address several important questions and we

describe in this section how dividend and investment policies interact. We start by charac-

terizing situations where it is optimal to postpone dividend distribution in order to invest
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later in the growth opportunity. We then investigate the effect of liquidity shock on the

optimal dividend/investment policy. In particular, we show that it can result from a liquid-

ity shock an inaction region in which the manager waits to see whether or not the growth

opportunity is valuable. In a third step we analyse the effect of positive uncertainty shock.

In stark difference with the standard real option literature, we explain why a sufficiently

large positive uncertainty shock can make worthless the option value to invest in a growth

opportunity. Last we identify situations where a cash constrained firm may want to accu-

mulate cash in order to invest in the growth opportunity whereas an unconstrained firm will

definitively decide not to invest.

When to postpone dividend distribution? A natural intuition is that delaying dividend

distribution is optimal when the growth option is “sufficiently” valuable. Our model allows

to precise this point. Assume that the current value x of the cash reserve is lower than

the threshold level x0 that triggers distribution of dividends when the firm is run under the

initial technology then, the optimal dividend/investment policy is as follows. If, evaluated

at the threshold x0, the net expected discounted profit of investing in the new project is

larger than the value of the firm run under the technology in place (that is θ(x0) > V0(x0))

then, the manager postpones dividend distribution in order to accumulate cash and to in-

vest in the new technology at threshold b. Any surplus above x1 will be then distributed

as dividends. If, on the contrary, θ(x0) < V0(x0) then, the manager optimally ignores the

growth option, runs the firm under the technology in place and pays out any surplus above

x0 as dividends.

The effect of liquidity shock. Our model emphasizes the value of cash for optimal div-

idend/investment timing. Consider indeed the case where the current value of the cash

reserve x is lower than the threshold x0 and where θ(x0) ≤ V0(x0). Assume that an ex-

ogenous positive shock on the cash reserve occurs so that the current value x is now larger

than x0. Three cases must be considered. First, if x > c, then, according to theorem 4.2,

the manager optimally invests immediately in the new project (and pays out any surplus

above I + x1 as dividends). Second, if x lies in (x0, a), then the manager pays out x − x0

as “exceptional dividends”, never invest in the new technology and pays out any surplus

above x0 as dividends. Last, if x lies in (a, c), then two scenarii can occur. If the cash

reserve raises to c before hitting a, the manager invests in the new project (and pays out

any surplus above x1 as dividends). By contrast, if the cash reserve falls to a, before hitting

c, the manager pays a − x0 as “exceptional dividends”, never invest in the new technology

and pays out any surplus above x0 as dividends. The region (a, c) is therefore an inaction

region where the manager has no enough information to decide whether or not the growth

option is valuable. He therefore chooses neither to distribute dividends nor to invest in the

new technology. His final decision depends on which bounds a or c will be first reached by

the cash flow process. As a result, our model suggest that, a given cash injection does not

always provokes or accelerates investment decision.
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The effect of uncertainty shock. In the standard real option literature as well as in

the optimal dividend policy literature, increasing the volatility of the cash process has an

unambiguous effect: Greater uncertainty increases both the option value to invest (see Mc-

Donald and Siegel [18]), and the threshold that triggers distribution of dividends (see Rochet

and Villeneuve [23]). In our setting, because the dividend and the investment policies are

inter-related, the effect of uncertainty shock is ambiguous.

Consider for instance a situation where, initially, θ(x0) < V (x0) with a current value x of

the cash reserve lower than x0 and assume that a positive shock on the volatility of the cash

process occurs. The volatility shock increases the trigger x0 but does not affect V (x0) which

is by construction equal to µ0

r
. A volatility shock however increases θ(x0), the option value

to invest in the new project, and therefore it can happen that the inequality θ(x0) < V (x0)

being reversed. In this case, the manager who initially ignores the growth opportunity, will

decide, after a positive shock on uncertainty, to accumulate cash and to exercise the growth

opportunity at threshold b. Here, in line with standard literature, a positive volatility shock

makes worthy the growth option. An interesting feature of our model is that the opposite

can also occur, precisely a sudden increase of the volatility can kill the growth option. The

crucial remark is that the difference x1−x0 considered as a function of the volatility σ tends

to µ1−µ0

r
when σ tends to infinity. This implies that for large volatility, condition (H1) is

never satisfied and thus that the growth opportunity is worthless. As a matter of fact, think

to an initial situation where θ(x0) > V (x0) (and thus condition (H1) holds) and consider a

shock on the volatility such that (H1) is no more satisfied. In such a scenario, before the

shock, the optimal strategy is to postpone dividends and to invest in the new technology at

threshold b whereas after the uncertainty shock, the growth option is worthless and will be

thus no more considered by the manager.

The effect of liquidity constraints. As a last implication of our model, we now investigate

the role of liquidity constraints. In absence of liquidity constraints, the manager has unlim-

ited cash holdings. The firm is never in bankruptcy, the manager injects money whenever

needed and distribute any cash surplus in the form of dividends. In this setting, for a current

cash reserve x, we thus have that V0(x) = x + µ0

r
while V1(x − I) = x + µ1

r
− I. It follows

that the manager invests in the growth option if and only if µ1−µ0

r
> I, furthermore this

decision is immediate. We point out here that liquidity constraints have an ambiguous effect

on the decision to exercise the growth opportunity. Indeed it can happen that, in absence

of liquidity constraints exercising the growth option is optimal (that is µ1−µ0

r
> I), whereas

it is never the case when there are liquidity constraints because condition (H1) does not

hold. On the contrary, the growth opportunity can be worthless in absence of liquidity con-

straints whereas this is not the case with liquidity constraints. Such a situation occurs when
µ1−µ0

r
< I, Condition (H1) holds and θ(x0) > V0(x0) (that is4 r(x1 + I −x0) < µ1−µ0 < rI

4These conditions are indeed compatible. Keeping in mind that the threshold x0 is a single peaked
function of µ0 (see Rochet and Villeneuve [23]), consider µ0 large, I small and µ1 in a left neighbourhood
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and θ(x0) > µ0

r
). This surprising result highlights the fact that, under liquidity constraints,

the investment decision in our model is dynamic and reflects the value of cash on the value

of the growth option to invest.

In this paper, we consider the implications of liquidity for the dividend/investment pol-

icy of a firm that owns the perpetual right to invest in a new technology that increases

its profit rate. The mathematical formulation of our problem leads to a mixed singular

control/optimal stopping problem that we solve quasi explicitly using connections with two

auxiliary stopping problems. A detailed analysis based on the properties of local time gives

the precise optimal dividend/investment policy. This type of problem is non standard and

does not seem to have attracted much attention in the Mathematical Finance literature.

Our analysis follows the line of stochastic control and relies on the choice of a drifted Brow-

nian motion for the cash reserve process in absence of dividend distribution. This modelling

assumption guarantees the quasi explicit nature of value function φ. We use for instance

this feature in Proposition 4.7 where we show that φ is a supersolution. Furthermore, the

property of independent increments for Brownian motion plays a central role for proving

that φ is attainable (Proposition 4.8). Clearly, the robustness of our results to more gen-

eral diffusions than a drifted Brownian motion remains an open question. This and related

questions must await for future work.
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gales,Hermann, Paris.

[9] Dixit, A.K., Pindyck, R.S.: Investment Under Uncertainty. Princeton Univ.

Press.(1994)

[10] El Karoui, N.: Les aspects probabilistes du contrôle stochastique. Lecture Notes in

Mathematics 876,74-239 (1981) Springer, Berlin.

[11] Fleming W.H., Soner M. (1993). Controlled markov processes and viscosity solutions,

Springer-Verlag.

[12] Guo X., Miao J., Morellec, E.: Irreversible investment with regime switchs. Journal of

Economic Theory.122 37-59 (2005)

[13] Guo X., Pham H. : Optimal partially reversible investment with entry decision and

general production function. Stochastics Proc. and their Appli. (2005)

[14] Højgaard, B., Taksar, M.: Controlling risk exposure and dividends payout schemes:

insurance company example. Math. Fin., 9,153-182 (1999)
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Figure 1: θ(x0) > V0(x0)
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Figure 2: θ(x0) < V0(x0)
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