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1 Introduction

Structural models in corporate finance allow an integrated analysis of firm, debt and equity
values, optimal capital structure and strategic default decisions. Particular attention has
been devoted to the case where bankruptcy is endogenously triggered by limited liability
equity holders who set the default time so as to maximize the value of their claim. The
pioneering paper, Leland [18], solves the problem when the debt is modeled as a consol
bond, meaning a commitment to pay coupons indefinitely at some constant coupon rate. In
Leland [18], posing an infinite maturity for the debt guarantees a simple time homogenous
setting in which the equity holders’ problem takes the form of a standard perpetual Ameri-
can put option whose underlying asset is the value of the firm’s asset, and the exercise price
the present value of all coupon payments, net of tax shields. The optimal capital structure
emerges from the tradeoff between bankruptcy costs and tax shields. Computations are ex-
plicit and the solution can be fully studied in an analytical setting. Structural models with
infinite debt maturity have been extended in a number of contributions. Some important
examples are Mella-Barral and Perraudin [24], Fan and Sundaresan [9], Goldstein, Ju and
Leland [11], or Duffie and Lando [5] that extend Leland [18] in various thoughtful directions
while maintaining the perpetual debt assumption.

To focus only on infinitely lived debt is clearly restrictive. Considering debt with finite
maturity is, however, not a simple task as it breaks the stationary debt structure and pre-
cludes closed form solutions. In two influential papers, Leland [19] and Leland and Toft
[22] circumvent this difficulty and propose a dynamic capital structure model with roll-over
debt. The purpose is to study debt with arbitrary finite maturity and endogenous default
in a time-homogenous environment that allows closed form solutions for the pricing of debt,
firm and equity values. Specifically, in a capital structure model with roll-over debt, the
firm’s management pre-commits to retire debt of finite maturity continually and to replace
it with a like amount of new debt in order to keep total coupon payments and principal con-
stant at any instant of time. Because of this pre-commitment the literature agrees that firm,
debt and equity cash flows must be time-independent. Then, resting on standard results
on stopping theory within a time-homogenous setting, it is argued that a constant barrier
strategy characterizes the optimal default policy. That is, default is triggered by the first
time that the value of the firm’s asset reaches a sufficiently low positive constant threshold.
The optimal constant threshold is then derived by invoking the smooth pasting condition.
This way of modeling the debt maturity has been widely used in the recent literature1 and is
now presented in textbooks such as those of Lando [17] or Bielecki and Rutkowski [1]. How-
ever, and very surprisingly, the strategic default decision problem faced by equity holders
in a capital structure model with roll-over debt has never been formulated properly and the

1Leland [20] extends Leland [18] and studies the role of debt maturity on the incentives of equity holders
to increase the volatility of the firm’s asset. Mauer and Ott [23] study in a setting à la Leland [18] the
equity holders’ decision to invest in a growth opportunity. Eom, Helwege and Huang [7] and Leland [21]
examine yields spreads and default probabilities predictions across several structural models including Leland
and Toft [22]. Hackbarth, Miao and Morellec [12] use Leland [18] to study the impact of macroeconomic
conditions on credit risk and dynamic capital structure choice. Ericsson and Renault [8] rely on Leland and
Toft [22] to develop a structural model with liquidity and credit risk. Hilberink and Rogers [14], Kyprianou
and Surya [16], Chen and Kou [2] extend the Leland and Leland and Toft methodology to Lévy processes.
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proposed optimal default policy is always presented as ‘natural’ and ‘clear’ from previous
results derived in the setting of time-homogenous models with infinite debt maturity. Given
its large audience, we think it is important to correct some previous inaccuracies in this
literature and therefore to allow academics to build on corporate models with roll-over debt
with lucidity.

To clarify the issue, let us consider the seminal Leland and Toft [22] paper. In Leland
and Toft [22], at any time the firm repays a nominal amount of f dt and issues new debt
with face value f dt, coupon c dt and maturity T . At any instant of time the total amount of
principal outstanding is therefore constant equal to F ≡ fT and the total coupon to be paid
continuously is C ≡ cT . The firm therefore maintains up to the default time a constant debt
both in face value and coupon payments. The aggregate firm’s debt structure is character-
ized by the triplet (C,F, T ). The total debt cash flow due to roll-over is (C+f−d) dt where
d is the market price of the newly issued debt with face value f dt, coupon c dt and maturity
T . What can make the problem nonstationary? A first crucial observation is that each new
debt is issued at market value and its price d depends on the default policy. If the law of the
default policy is time-dependent, then the market price of the newly issued debt will depend
both on the current time and on the current value of the firm’s asset and so will be the total
cash raised through debt. It follows from this simple observation that the debt cash flow is
not time-homogenous for any default policy as it is the case when the debt is a consol bond
with cash flow simply equal to C dt. Keeping in mind this remark let us now turn to the
equity holders’ problem. Here is the second crucial observation. Equity holders, who have
pre-committed to a debt structure characterized by the triplet (C,F, T ), choose a default
policy and roll-over the debt until the default time. The actual equity cash flow is the sum
of the payment flow generated from the firm’s asset and the tax benefits minus the payment
flow due to roll-over (C+f−d) dt. The key point is that, in this perfect information setting,
by issuing debt in a current time interval (0, dt) equity holders pin down the default time of
the firm. Debt holders perfectly anticipate future equity holders’ actions and will rationally
refuse to buy the newly issued debt in time interval (0, dt) if they recognize that equity hold-
ers have incentives to deviate at future dates from the default policy chosen at date 0. The
resulting rational expectations equilibrium problem requires a definition and a characteri-
zation of equilibrium default policies. Then the equity holders’ decision problem is to select
an equilibrium default policy that maximizes at date 0 the sum of the expected discounted
equity cash flow. The main source of confusion in the literature is that this equilibrium
problem, although clearly suggested by Leland and Toft [22]2, has surprisingly never been
written and studied. On the contrary, when focusing on the equity value, the literature does
not consider the actual equity cash flow but writes the equity value as the difference between
the firm value and the currently outstanding debt. The value of the currently outstanding
debt, by definition, takes into account all the cash flow due to roll-over up to the current
date but does not take into account that new debt will be issued and withdrawn beyond that
current date. It is therefore not clear whether or not the expression for the equity value used
in the literature accounts for all the cash flows due to roll-over up to the default. In addition,

2Leland and Toft [22] write page 989 “ (the default triggering) VB will be determined endogenously and
shown to be constant in a rational expectations equilibrium.” This important point is not explained and
the equilibrium problem is not written.
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as already said, the previous studies restrict the set of default policies to constant barrier
strategies. Thus, the following questions drive our analysis: What is the precise formula-
tion of the equity holders’ problem in a dynamic capital structure model with roll-over debt?
What does a full characterization of equilibria look like? Is a dominant equilibrium existing?

Addressing these issues allow us to provide a general and rigorous presentation of capital
structure models with roll-over debt. Our main results are as follows. We justify the par-
ticular representation of the equity value used in the previous studies. Our results hold for
any capital structure model with roll-over debt and do not involve any ad hoc restrictions
on the default policies. We formulate for the first time the equity holders’ problem. It aims
at selecting a payoff dominant equilibrium in the sense of Harsanyi and Selten [13]. We spell
out the linkage between constant barrier policies in a rational expectations equilibrium and
optimal stopping theory. We prove that there exists a unique equilibrium in constant barrier
strategies, which coincides with that derived in the literature. Furthermore, that equilib-
rium is the unique equilibrium when the firm loses all its value at default time. Whether
the result holds when there is a recovery at default remains a conjecture.

The outline of the paper is as follows. Section 2 reviews the literature on debt structure
and optimal default and poses the questions raised by the treatment of these models in the
existing studies. Section 3 formulates the equity holders’ problem. Section 4 explains the
results posed in the literature and establish the existence and uniqueness of equilibrium in
barrier strategies. Section 5 discusses our results and investigates extensions of our study.
Section 6 concludes.

2 Debt structure and optimal default

Following standard exposition of structural models, we consider that equity and debt can
be viewed as contingent claims on the asset of the firm. The price dynamics under the risk
neutral probability measure Q evolves as

dVs = (r − δ)Vsds+ σVsdBs. (1)

The process (Bs)s≥0 is a standard Brownian motion with respect to its own filtration (Fs)s≥0

that models the flow of information. The firm generates cash flow at the rate δVs at time
s for some constant δ ∈ (0,∞). The constant r denotes the riskless interest rate and the
discounted value e−(r−δ)sVs of the firm’s asset process is a martingale under Q, that is

E
[
e−(r−δ)(u−s)Vu|Fs

]
= Vs,

for all 0 ≤ s ≤ u. We use throughout the paper the following remarks and notations. The
strong solution of (1) with Vt = x is

Vt+s = x exp

[
(r − δ − σ2

2
)s+ σWs

]
, (2)

where (Ws
def
= Bt+s − Bt)s≥0 is a standard Brownian motion (Ft+s)s≥0 adapted. We denote

by Tt,∞ the set of (Ft+s)-stopping times with values in [t,∞]. Using Equation (2), we note
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that every τt ∈ Tt,∞ can be expressed as τt = t + τ ◦ Θt where τ ∈ T0,∞ and Θt is the shift
operator3. Moreover, for all t ≥ 0, we note Qt,x the probability measure on (Ω, (Ft+s)s≥0)
under which Vt = x. We have for any φ bounded measurable function

E(φ(Vτt)|Ft) = Et,x(φ(Vτ )).

Structural models with endogenous default are discussed in many textbooks. We refer
to Lando [17] page 60 and also to Section 2.1 of Duffie and Lando [5] for a review of this
approach initiated by Leland [18]. In these models, the firm, say the owner of the firm’s
asset at date 0, issues debt so as to take advantage of tax shields offered for interest expense.
The debt is sold and the proceeds from the sale are paid at date 0 as a cash distribution to
initial equity holders. Equity holders select strategically the default policy at date 0 after
debt being in place in order to maximize the value of their claim. The primary concern
of this paper is the determination of the strategic default when the firm pre-commits to
roll-over its debt as in the seminal paper of Leland and Toft [22].

2.1 Debt with infinite maturity

We start with the strategic default policy when the firm is partly financed by debt with
infinite maturity. We refer to Duffie [4] page 264 or again to section 2.1 of Duffie and
Lando [5] for a detailed presentation. In this standard setting, debt with infinite maturity
pays continuously a tax deductible coupon C. The firm generates an income stream of
(δVs + θC) ds until default where θ denotes the corporate tax. At default time τ , a fraction
α ∈ [0, 1] of the assets are lost as a frictional cost and debt holders get the rest of the value
(1 − α)Vτ . Therefore, at time 0, for a given default policy τ , the firm and debt values are
respectively

v(0; τ) = E
[∫ τ

0

e−rs (δVs + θC) ds + (1− α)e−rτVτ

]
(3)

and

D(0; τ) = E
[∫ τ

0

e−rsC ds + (1− α)e−rτVτ

]
. (4)

Note that the difference of values between the firm and the firm’s asset is only due to taxation
and losses at default. The equity cash flow is time-independent and formed by the difference
between the firm cash flow and the debt cash flow up to default time. The value of equity
at time 0 is

E(0; τ) = E
[∫ τ

0

e−rs(δVs − (1− θ)C) ds

]
. (5)

It is important to stress that no assumptions are made on stopping time τ . In particular it
is not assumed that the equity value is a simple function of the current value of the firm’s
asset V0. This property however holds and is part of the solution to the equity holders’
problem that we now describe.

3See for instance Revuz and Yor [26] page 36 for the definition of the shift operator.
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The equity holders’ only decision is to select the default policy that maximizes the value
of their claim. Equity holders take this decision strategically after debt being in place and
therefore chose the default time τ that solves the stopping problem

sup
τ∈T0,∞

(v(0; τ)−D(0; τ))

or equivalently

sup
τ∈T0,∞

E
[∫ τ

0

e−rs(δVs − (1− θ)C) ds

]
. (6)

Note that, for any default policy τ ∈ T0,∞, the equity cash flow (δVs− (1− θ)C) ds does not
change as a function of s but simply varies with the current value of the firm’s asset Vs. It
can be shown from this time-homogenous property that the optimal stopping time solution
to (6) is unsurprisingly a barrier strategy τB = inf{s : Vs ≤ B} where B is a positive
constant. It then follows that the equity value solution to (6) is indeed a function of the
current value of the firm’s asset V0. Furthermore, the optimal barrier B∞ is determined by
the classical smooth-pasting condition

∂

∂V
(v(V, τB)−D(V, τB))|V=B = 0 (7)

that says that the value function associated with stopping problem (6) is of class C1 across
the optimal boundary.4 We show thereafter that the problem of the endogenous default
timing is very different in a model with roll-over debt and that the above reasoning cannot
be applied. A crucial reason is that, in a dynamic capital structure model with roll-over
debt, the equity cash flow is not time-homogenous for any default policy τ ∈ T0,∞.

2.2 Capital structure models with roll-over debt: summary and
questions

We now present capital structure models with roll-over debt. The seminal papers are those
of Leland [19] and Leland and Toft [22]. We draw on Hilberink and Rogers [14] who propose
a very clear and unified setting for these models.

In corporate models with roll-over debt, the firm pre-commits to retire and issue debt at
any time according to a so called maturity profile defined by a probability measure µ whose
tail function will be denoted by

Φ(x) =

∫ +∞

x

µ(dy).

The rule with which the firm repays and renews debt is as follows. In any time interval
(t, t+dt), the firm issues new debt with face value f dt. In any time interval (t+s, t+s+ds)

4Remark that in Equation (7), the firm and debt values (3) and (4) are written as functions of the current
value of the firm’s asset V . This holds because the stopping time τB considered in (7) is a constant barrier
strategy.
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the firm pays back fdt (Φ(s) − Φ(s + ds)) ≡ −fdtdΦ(s). This implies that the amount of
money the firm has to pay back in (t, t+ dt) due to all debt issued up to current time 0 is(∫ 0

−∞
−f dv dΦ(t− v)

)
= −d

(∫ 0

−∞
f dvΦ(t− v)

)
= −d

(∫ ∞
t

fΦ(u) du

)
= fΦ(t) dt. (8)

Taking t = 0 in (8), we see that the amount to be paid back in time interval (0, dt) due to
all pending debt at time t = 0 is f dt, the same as the face value of the newly-issued debt in
(0, dt). Thus, at each instant of time, the face value of all pending debt is constant, equal
to

F = f

∫ ∞
0

Φ(t) dt.

Now, each newly issued debt (with principal f dt) pays coupons at rate c until default. In
any time interval (t, t+ dt) the market value of newly issued debt is d(t; τ) dt with

d(t; τ) = f

∫ ∞
0

b(t, t+ u; τ)[−dΦ(u)] (9)

where b(t, t + u; τ) is the value of a bond issued at time t with coupon rate c, face value 1,
maturity t+ u and default time τ . That is we have

b(t, t+ u; τ) = E

[∫ (t+u)∧τ

t

c e−r(s−t) ds | Ft

]
+ E

[
e−ru11τ≥t+u | Ft

]
+

1

F
(1− α)E

[
Vτe

−r(τ−t)11τ<t+u | Ft
]
. (10)

The first term on the right of (10) is interpreted as the net present value of all coupons
paid up to date t + u or default time τ , whichever is sooner. The second term is the net
present value of the principal repayment, if it occurs before bankruptcy. The final term is the
net present value of what is recovered upon default, if this happens before maturity. In line
with the literature, the fraction of firm asset value lost in bankruptcy is α and the remaining
value (1 − α)Vτ is distributed to debt holders. Of this, the debt holder with face value 1
gets the fraction 1

F
, since his debt represents this fraction of the total debt outstanding.

Note that, taking into account all previously issued debt, the aggregate coupon paid in
(t, t+ dt) is ∫ 0

−∞
−fcdvdΦ(t− v) = fcΦ(t) dt.

It follows that the total coupon C paid at any time is

C =

∫ ∞
0

fcΦ(t) dt = cF.
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Finally, remark that the expected maturity of each newly issued debt satisfies the relation∫ ∞
0

tµ(dt) =

∫ ∞
0

Φ(u)du.

We shall assume thereafter that the maturity profile µ is such that Φ(0) ≡
∫∞

0
Φ(u)du <∞.

In words, the debt profile has a finite expected maturity.

To summarize, the aggregate debt structure on which the firm pre-commits is fully
characterized by the triplet (C,F, µ). By rolling-over the debt according to the matu-
rity profile µ, the firm maintains at any time before default a constant debt level both
in face value and coupon payments. The concept of maturity profile has been introduced
by Hilberink and Rogers [14] and allows a general presentation of models with roll-over
debt. Specifically, the case µ(ds) = δT (ds) where δT is the Dirac measure at T corre-
sponds to the Leland and Toft [22] model where each new debt is issued with maturity
Φ(0) =

∫∞
0
sµ(ds) =

∫∞
0
sδT (ds) = T . The case µ(ds) = me−ms ds with m > 0 corresponds

to the exponential model of Leland [18] where the maturity of each new debt is chosen ran-
domly according to an exponentially distributed random variable with mean Φ(0) = 1

m
.

Always following this well established literature, we now write D(0; τ), the value of all
outstanding debt at time 0:

D(0; τ) =

∫ ∞
0

fb(0, t; τ)Φ(t) dt

= fcE
[∫ τ

0

e−rs
∫ ∞
s

Φ(u)duds

]
+ f E

[∫ τ

0

e−rsΦ(s)ds

]
(11)

+
(1− α)f

F
E
[
Vτe

−rτ
∫ ∞
τ

Φ(u) du

]
which simplifies to

D(0; τ) = E
[∫ τ

0

e−rsf
(
cΦ(s) + Φ(s)

)
ds +

(1− α)f

F
Vτe

−rτΦ(τ)

]
= E

[∫ τ

0

e−rs
1

Φ(0)

(
CΦ(s) + FΦ(s)

)
ds+ (1− α)Vτe

−rτ Φ(τ)

Φ(0)

]
(12)

where Φ(s) ≡
∫∞
s

Φ(u) du.

Equation (12) accounts for the future debt cash flow that is extant at time 0. Accord-
ingly, in Equation (12), the coupon and the remaining principal of currently-extant debt
decline with time. The same remark applies to the total payment at bankruptcy time τ .
Formally, the maturity profile of the existing debt at any moment is described by Φ(t)

Φ(0)
dt.

There is a corporate tax rate θ, and the total coupon C paid at any time can be offset
against tax. The corporate tax θ does not lead to a riskless debt and we consider thereafter
that ∫ ∞

0

e−rs
1

Φ(0)
(CΦ(s) + FΦ(s)) ds >

∫ ∞
0

e−rsθC ds =
θC

r
, (13)
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where the left hand side of Equation (13) is deduced from Equation (12) and represents
the value of a riskless roll-over debt.5 Therefore, for any default policy τ , the firm cash
flow is time-homogenous and is equal to (δVs + θC) ds. The firm value has thus a similar
representation to the one derived when the debt has an infinite maturity, that is

v(0; τ) = E
[∫ τ

0

e−rs (δVs + θC) ds + (1− α)e−rτVτ

]
. (14)

Based on the results obtained when the debt maturity is infinite, the literature agrees6

to restrict the set of default policies to constant barrier strategies τB = inf{s : Vs ≤ B}; to
define the value at time 0 of the firm’s equity as

E(0; τB) = v(0; τB)−D(0; τB) (15)

and to invoke the smooth-pasting condition (7) to determine the optimal bankruptcy thresh-
old B∗. This treatment of models with roll-over debt raises several questions. Let us closely
examine the above statements that are taken for granted by the literature. Three inter-
related remarks drive our analysis.

1. Does Equation (15) account for all the cash flow due to roll-over? The firm value (14)
clearly accounts for all the firm’s cash flow up to the default time τ . This is however
not the case for the debt value (12) that only accounts for the future debt cash flow
that is extant at time 0. Precisely, D(0; τ) is the debt value at current time 0 and does
not take into account that new debt will be issued and withdrawn beyond that date.
In a model with roll-over debt, the net cash flow rate to debt at any future time s is
on the set {τ > s} the sum of the total coupon C, plus the retirement of principal f ,
and less d(s; τ), the instantaneous market value of the newly issued bond. Therefore,
taking into account all cash inflow and cash outflow due to roll-over, the value at date
0 of the total debt for a given default policy τ is

Dtot(0; τ) = E
[∫ τ

0

e−rs(C + f − d(s; τ)) ds + (1− α)e−rτVτ

]
(16)

where (1−α)Vτ is the payment generated by the total debt at default. It follows that
the actual cash flow to equity on time interval [s, s+ ds] is

(δVs − (1− θ)C − f + d(s; τ)) ds

yielding the equity value

E
[∫ τ

0

e−rs(δVs − (1− θ)C − f + d(s; τ)) ds

]
. (17)

5Using an integration by parts, it is easy to show that the condition F > θC
r implies the inequality (13)

for any maturity profile µ.
6See for instance Leland and Toft [22], Equations (7)-(10) or Hilberink and Rogers [14], Equations (2.7)-

(2.10).
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Equation (17) is therefore the correct equity value at time 0 when the debt is rolled-over
until the default time τ . The literature however considers expression

v(0; τ)−D(0; τ) (18)

to study the equity value. Thus the following questions: Is (18) a correct expression
for the equity value? What is the link between the debt values D(0; τ) and Dtot(0; τ)?
How to formulate the equity holders’ problem within a dynamic capital structure model
with roll-over debt?

2. As we saw, the commitment to roll-over the debt according to a maturity profile µ
yields a capital structure in which the total debt has a constant face value F and pays
a constant total coupon C. This capital structure is maintained until default because
at any time the firm retires the amount f ds and replaces it with a like amount of new
debt. From this the literature argues that the asset value Vs is a sufficient statistics for
the newly issued debt. The overall conclusion is that corporate models with roll-over
debt are time-homogenous meaning that the firm, debt and equity cash flows do not
change as a function of s but simply vary with Vs and that, consequently, the optimal
default policy must be characterized by a constant barrier strategy exactly as in the
case of a debt with infinite maturity. Things are actually more complex than that.
As a matter of fact consider a default policy τa(.) defined by the first time such that
the firm’s asset value crosses a deterministic time-dependent function a(s). Clearly,
the law of τa(.) given the available information at s is time-dependent, so also will be
the bond with coupon c and face value 1 which price is given in (10) and in turn the
instantaneous market value of newly issued bond d(s; τa(.)). Without any restrictions7

on the default policy τ , there is no reason to believe that the newly issued debt is
time-independent. In models with roll-over debt, the debt and equity cash flows are
not time-homogenous for any default policy τ as it is the case when debt is a consol
bond. This in turn raises questions about the assumed optimality of a constant barrier
strategy for the equity holders’ problem.

3. The literature invokes the so called “smooth-pasting condition” for solving the equity
holders’ problem. The smooth pasting condition relies on stopping theory and reflects
the C1 nature of the value function associated with a stopping problem across the
optimal boundary. When debt is a consol bond stopping problem (6) defines the
equity value and the smooth-pasting condition can be correctly invoked.8 Things are
different in a model with roll-over debt. Using Equations (12) and (14) together with
the Ito’s formula, expression (18) can be written as

v(0; τ)−D(0, τ) = E
[∫ τ

0

e−rsh(s, Vs) ds

]
(19)

7If the default policy is a constant barrier strategy then the cash flow to equity is time-independent.
8For a recent contribution on threshold strategies and smooth pasting condition, we refer to Dayanik

and Karatzas [3] or to Villeneuve [27] whose Theorem 4.2 and Proposition 4.6 give simple conditions under
which an optimal stopping time is given by a constant barrier strategy.

9



where the time-dependent function h(s, x) is defined by the relation

h(s, x) ≡ x

(
αδ + (1− α)

1

Φ(0)
(δΦ(s) + Φ(s))

)
+Cθ− 1

Φ(0)

(
CΦ(s) + FΦ(s)

)
. (20)

All the previous articles restrict the study to constant barrier strategies τB = inf{s :
Vs ≤ B} and use Equation (19) to derive closed form formula for the equity value.
Under the assumption that the default policy is a constant barrier strategy the right
hand side of (19) is a function of the current value of the firm’s asset and the smooth-
pasting condition (7) posed in the literature can be written as

∂

∂V

(
EV
[∫ τB

0

e−rsh(s, Vs) ds

])
|V=B

= 0. (21)

Assuming that Equation (18) is a correct representation for the equity value (which
again must be proven), is condition (21) really a smooth-pasting condition? What is
the stopping problem associated with condition (21)? Is the equity holders’ problem
a standard stopping problem with solution characterized by the smooth-pasting prin-
ciple?

Our clarification work goes through several steps that we develop in sections 3,4 and 5.
Section 3 presents the equity holders’ problem in a model with roll-over debt. Section 4
confronts the existing literature with the equity holders’ problem and answers to all the
above questions. Section 5 discusses our results and investigates research directions for
future work.

3 Capital structure models with roll-over debt: The

equity holders’ problem.

We show that the equity holders’ problem involves a rational expectations equilibrium prob-
lem that requires to define and to characterize equilibrium default policies. We shall proceed
as follows. First, we focus on the value process of equity in a model with roll-over debt in
which equity holders do not take any strategic default decision. Thereby, we highlight a
property of inter-temporal consistency that any model with roll-over debt must satisfy. Sec-
ond, we introduce into the analysis the strategic behavior of equity holders and we develop
our equilibrium concept. Third, we present the equity holders’ problem. We shall see that
it aims at selecting a payoff dominant equilibrium.

3.1 Coherent default policies

Let us consider an environment in which equity holders pre-commit at date 0 to roll over the
debt and cannot take any strategic decision ex-post. The characteristics of the collection
of debts that are continuously rolled over are the coupon rate c, the principal f dt, and the
default policy of each newly issued debt. This yields a firm’s default policy defined by a
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collection of stopping times τ̂ = (τ̂t)t≥0 with τ̂t ∈ Tt,∞. Thus, the cash flow to equity on
time interval [t, t+ dt] is

(δVt − (1− θ)C − f + d(t; τ̂t)) dt, (22)

where d(t; τ̂t) is the instantaneous market value of the newly issued debt at time t ≥ 0
with default at time τ̂t. What conditions must satisfy a default policy τ̂ = (τ̂t)t≥0? Since
all newly issued debts pay the same coupon rate c, have the same principal f dt and the
same maturity profile µ, they must carry the same market price. Specifically, d(t, τ̂s) =
f
∫∞

0
b(t, t+u; τ̂s)[−dΦ(u)], the instantaneous market price at date t of the debt of generation

s (that is the debt issued at time s < t with default at time τ̂s) must coincide with d(t, τ̂t) =
f
∫∞

0
b(t, t+u; τ̂t)[−dΦ(u)], the instantaneous market price at date t of the debt of generation

t (that is the debt issued at time t with default at time τ̂t). This requires that τ̂t and τ̂s
coincide on the set {τ̂s > t}. This leads to the concept of coherent default policy:

Definition 1 We shall say that a default policy τ̂ = (τ̂t)t≥0 is coherent if for every stopping
time S ≤ T in T0,∞, τ̂S = τ̂T almost surely on the set {τ̂S ≥ T}.

Example 1 Let D be an open set of (0,∞)2 and let us consider the stopping time

τ tD = inf{u ≥ 0 : (t+ u, Vt+u) /∈ D} ∈ T0,∞. (23)

It results from the Strong Markov Property that the strategy τD = (τDt )t≥0 with

τDt = t+ τ tD ◦Θt ∈ Tt,∞

is a coherent strategy. Observe that the constant barrier strategy strategies used in the
literature are coherent. There are defined by relation (23) with D = (0,∞) × (B,∞) and
B > 0.

The coherence property relies on the fact that each new debt is issued at market value.
Although not formalized, the coherence property is fully recognized in the seminal paper of
Leland [19].9 The coherence property guarantees that a dynamic capital structure model
with roll-over debt is coherent with a well functioning market.10 It implies that all issued
debts must default simultaneously. Thus, the default time τ̂0 of the debt of generation zero
pins down the default policy of the firm. Consequently, the default policy τ̂t of the debt
of generation t satisfies τ̂t = τ̂0 on {τ̂0 > t} and we can write (Et)t≥0, the value process of
equity, under the form Et = E

[∫ τ̂0

t

e−r(s−t) (δVs − (1− θ)C − f + d(s; τ̂0)) ds | Ft
]

on {τ̂0 > t},

Et = 0 on {τ̂0 ≤ t}.
(24)

We now turn to the strategic behavior of equity holders.

9See the last paragraph of page 9 and footnote 10 in Leland [19].
10In absence of the coherence property an arbitrage opportunity at date t would consist in selling (buying)

the debt of generation t and buying (selling) the debt of generation s.
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3.2 Equilibrium default policies with commitment on the part of
the firm.

The timing of bankruptcy is determined by the decision of the firm (i.e equity holders) to
cease rolling-over the debt. This strategic decision is taken after the roll-over debt being in
place, that is after the default time τ̂0 of the debt of generation 0 being announced. Intu-
itively, a default time τ̂0 is an equilibrium default policy if and only if rational debt holders
anticipate that default will indeed occur at τ̂0. We develop our equilibrium concept under
the assumption that the firm commit not to roll-over the debt beyond the announced date
τ̂0. In this setting the only strategic decision to be taken by equity holders is to decide
whether or not to trigger bankruptcy before the announced default time τ̂0. Rational debt
holders anticipate that strategic behavior and accept to buy at every time newly issued debt
only if they anticipate that equity holders will indeed roll over the debt until time τ̂0. We
prove below that the limited liability characterizes our equilibrium concept. We shall relax
in section 4.2 our assumption of commitment on the part of the firm.

Thus, rational debt holders accept to buy the debt of generation 0 (issued in time in-
terval [0, ds]) if and only if they anticipate that equity holders will never deviate from the
announced default time τ̂0. This will be the case if and only if the announced default time
τ̂0 is the smallest optimal stopping time solution to problem

Ut ≡ ess sup
τt∈Tt,∞

E
[∫ τt∧τ̂0

t

e−r(s−t) (δVs − (1− θ)C − f + d(s; τ̂0)) ds | Ft
]
. (25)

The upper bound τt ∧ τ̂0 in the integral reflects the commitment that debt is not rolled-over
beyond time τ̂0. Note that if there is an other stopping time τ solution to problem (25) with
P(τ < τ̂0) > 0, then equity holders can profitably deviate by triggering default sooner at
time τ on the set {τ < τ̂0}. This is the reason why we require τ̂0 to be the smallest stopping
time solution to (25). Therefore, for every t, an equilibrium default time τ̂0 satisfies on
{τ̂0 > t} the equality τ̂0 = inf{s ≥ t , Us = 0} a.s.

Definition 2 We shall say that a default time τ̂0 is an equilibrium default policy if and only
if τ̂0 is the smallest optimal stopping time for (25).

Definition 2 implies that a default time τ̂0 is an equilibrium default policy if and only if
for every t ≥ 0 Et = Ut almost surely where Et and Ut are defined in (24) and (25). Thus, if
τ̂0 is an equilibrium default policy and Et = 0, then τ̂0 = t almost surely. It is worth noting
that any equilibrium default policy is clearly compatible with the limited liability condition
that says that the value of equity remains non-negative at all times. Indeed, taking τt = t
in (25) yields the value 0 from which we deduce that for any equilibrium default policy τ̂0

the value of equity remains non-negative at all times as it must be. The next Proposition
goes further and shows that the limited liability condition fully characterizes the equilibrium
strategies.

Proposition 1 A default time τ̂0 is an equilibrium default policy if and only if, for every
t ≥ 0, we have Et ≥ 0.

12



Proof: We simply have to show the sufficient condition, that is, for every t ≥ 0, Ut = Et.
Without loss of generality we write the proof for t = 0. For any stopping time τ ∈ T0,∞, we
have

E0 = E
[∫ τ∧τ̂0

0

e−rs(δVs − (1− θ)C − f + d(s; τ̂0)) ds

]
+ E

[
E
[∫ τ̂0

τ∧τ̂0
e−rs(δVs − (1− θ)C − f + d(s; τ̂0)) ds | Fτ∧τ̂0

]]
= E

[∫ τ∧τ̂0

0

e−rs(δVs − (1− θ)C − f + d(s; τ̂0)) ds

]
+ E

[
e−r(τ∧τ̂0)Eτ∧τ̂0

]
≥ E

[∫ τ∧τ̂0

0

e−rs(δVs − (1− θ)C − f + d(s; τ̂0)) ds

]
,

where the second equality comes from the Strong Markov property and the last inequality
comes from the assumption that Et is positive on [0,∞) for every t ≥ 0. Taking the
supremum over all stopping times, we obtain that

E0 ≥ sup
τ∈T0,∞

E
[∫ τ∧τ̂0

0

e−rs(δVs − (1− θ)C − f + d(s; τ̂0)) ds

]
= U0.

This ends the proof because the reverse inequality holds by definition. �

In the previous literature the limited liability is often introduced as a necessary additional
constraint to the equity holders’ problem. The limited liability condition appears here
naturally and is proven to characterize our equilibrium concept. The next section formulates
the equity holders’ problem.

3.3 The equity holders’ problem.

We denote by E ⊂ T0,∞ the set of equilibrium default policies. We write the equity holders’
problem as follows:

The equity holders’ problem. In a dynamic capital structure model with roll-over debt
equity holders select the default time τ in the set E in order to maximize at date 0 the value
of equity. Formally, they solve the constrained optimal stopping problem

sup
τ∈E

E
[∫ τ

0

e−rs(δVs − (1− θ)C − f + d(s; τ)) ds

]
. (26)

We shall say that a solution to problem (26) is a payoff dominant equilibrium.11

Our formulation of the equity holders’ problem deserves some comments.

11This vocabulary refers to Harsanyi and Selten [13].
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First, our formulation shows that the equity holders’ problem is one of equilibrium se-
lection. Describing the set E and ranking its elements is not an easy task. The question
of existence and multiplicity of equilibria arises naturally. In the next section we study
equilibrium policies that are hitting times of constant boundaries.

Second, our equilibrium concept and stopping problem (26) rationalize the key idea
stated in Leland (1994) that the equity holders’ objective is to maximize the present value
of their claim while preserving the limited liability of equity. Indeed, a default time τ ∗

solution to problem (26) maximizes the present value of equity among default policies that
yield a positive value of equity at any time before default.

Third, it is very intuitive that, at a stopping time solution to (26) the net cash flow rate
to equity, δVs − (1− θ)C − f + d(s; τ), must be negative (otherwise it would be optimal to
continue the firm’s activity at least for a short period of time). That is, at a stopping time
solution to (26), net debt service requirements ((1−θ)C−f) must exceed the available cash
flow (δVs + d(s; τ)). As emphasized in the literature, the firm survives to this time because
equity holders will issue new shares to absorb current losses.12 Default policies that generate
a positive cash flow to equity at any time before default satisfy clearly the limited liability
condition but are not solution to the equity holders’ problem (26).

Finally, it is fair and important to say that Leland and Toft [22] have clearly in mind
the question of default policies in a rational expectations equilibrium when they write page
992 “To determine the equilibrium bankruptcy-triggering asset value VB endogenously, we
invoke the smooth pasting condition”. However, Leland and Toft [22] as well as the rest
of the literature did not define equilibrium default policies neither formulate the equity
holders’ problem nor justify representation (18) for the equity value. In addition, invoking
the smooth pasting condition is questionable. To the best of our knowledge, its connection
to the determination of a default policy in a rational expectations equilibrium has never
been explained.

4 Solving the equity holders’ problem.

We are now in a position to study the solution proposed in the literature and to answer
the questions we raised in section 2. In section 4.1, we justify the representation (18)
for the equity value used in the previous studies and we derive a new formulation for the
equity holders’ problem. In section 4.2, we study default policies defined by constant barrier
strategies. We relax our assumption of equilibrium with commitment and we establish the
existence and the uniqueness of equilibrium in barrier strategies which coincides with that
derived in the literature. Thereby we provide a rationale for the seminal Leland [19] and
Leland and Toft [22] papers.

12See for instance Leland and Toft [22] page 994.
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4.1 An equivalent formulation for the equity holders’ problem

We prove below that the representation (18) of the equity value accounts for all the cash flow
due to roll-over and thus coincides with expression (17) or equivalently that the value of all
outstanding debt (12) and the total debt value (16) are the same.13 The underlying intuition
is as follows: In corporate models with roll-over debt market frictions only come from interest
tax shield and bankruptcy costs. It implies that the current value of the firm equals the
current value of the firm without leverage plus the present value of the tax savings from
debt, less the present value of bankruptcy costs (Equation (14)). In addition, the current
value of the firm must agree with the sum of current values of equity and debt. The current
value of equity equals the present value of the future cash flows to equity (Equation (17)).
The current value of debt equals the present value of cash flows due to the existing debts
(that is, due to rolling-over the debt up to the current time, Equation (12)). Thus, in a
model with roll-over debt, the current value of the firm equals the sum of current values of
equity and debt if and only if the value of all outstanding debt (12) equals the total debt
value (16). The next Proposition, proven in Appendix A, confirms this intuition.

Proposition 2 For every stopping time τ ∈ T0,∞, we have D(0, τ) = Dtot(0, τ).

Proposition 2 implies that the equity value (17) has also the representation (18) and that
we have for every stopping time τ ∈ T0,∞

E
[∫ τ

0

e−rs (δVs − (1− θ)C − f + d(s; τ)) ds

]
= E

[∫ τ

0

e−rsh(s, Vs) ds

]
(27)

where Equation (20) defines the function h. Therefore, the right hand side of (27) is a
correct representation for the equity value. Interestingly, the function h under the integral
does not depend on the default policy τ . This allows to derive closed form formula for the
equity value once the maturity profile has been fixed. This is actually what the literature
did assuming that τ is defined by a constant barrier strategy.

Thus, a consequence of Proposition 2 is that the equity holders’ problem (26) can be
written under the form

sup
τ∈E

E
[∫ τ

0

e−rsh(s, Vs) ds

]
. (28)

A natural question is then to determine the stopping time solution to the unconstrained
problem

sup
τ∈T0,∞

E
[∫ τ

0

e−rsh(s, Vs) ds

]
(29)

and to study whether or not it is an equilibrium default policy. We prove in Appendix B
the following.

Proposition 3 There exists a non constant boundary a∗(.) defined on [0,∞) such that
τa∗(.) = inf{s : Vs ≤ a∗(s)} is an optimal stopping time for the problem

sup
τ∈T0,∞

E
[∫ τ

0

e−rsh(s, Vs) ds

]
. (30)

13We thank a referee for suggesting us this result.
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The coherent strategy (t+ τa∗(t+.) ◦Θt)t≥0 with τa∗(t+.) = inf{u ≥ 0 : Vt+u ≤ a∗(t+ u)} does
not belong to the set E of equilibrium default policies.

In words, optimal stopping time τa∗(.) would indeed maximize the value of equity right after
the firm has issued its debt initially. However, debt holders anticipate that rolling over the
debt until τa∗(.) will not remain optimal as the time goes by. That is t+ τa∗(t+.)◦Θt does not
solve Problem (25). Consequently debt holders refuse to buy the newly issued debt on time
interval [0, ds] at price d(0, τa∗(.)) and thus the coherent policy (t+ τa∗(t+.) ◦Θt)t≥0 is not an
equilibrium.

4.2 Time-homogenous default policies.

Let us characterize the constant barrier strategies τB ≡ inf{s ≥ 0 : Vs ≤ B} that are
equilibrium default policies.

When the default policy is a hitting time τB of a constant barrier B, the market value of
the newly issued debt in every time interval (s, s+ ds) only depends on the current value of
the firm’s asset. Using the Strong Markov Property we write Equation (24) under the form EB(x) = Ex

[∫ τB

0

e−rs (δVs − (1− θ)C − f + dB(Vs)) ds

]
if x > B,

EB(x) = 0 if x ≤ B.
(31)

where the mapping x −→ dB(x) follows from Equation (9) with τ = τB. That is, dB(x) = f

∫ ∞
0

Ex
[∫ u∧τB

0

ce−rvdv + e−ru11τB>u

]
[−dΦ(u)] if x > B,

dB(x) = f
F

(1− α)x if x ≤ B.
(32)

The next corollary is a direct consequence of our previous results.

Corollary 1 The following assertions are equivalent.

(i) τB is an equilibrium default policy.

(ii) τB is an optimal stopping time for stopping problem

sup
τ∈T0,∞

Ex
[∫ τ∧τB

0

e−rs(δVs − (1− θ)C − f + dB(Vs)) ds

]
. (33)

(iii) For every positive x, EB(x) = JB(x) where JB is the value function associated with
optimal stopping problem (33).

(iv) For every positive x,

Ex
[∫ τB

0

e−rs(δVs − (1− θ)C − f + dB(Vs)) ds

]
≥ 0. (34)
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(v) For every positive x, vB(x) − DB(x) = Ex
[∫ τB

0

e−rsh(s, Vs) ds

]
≥ 0 where vB and

DB are obtained from Equations (11) and (14) with τ = τB.

We focus thereafter on constant barriers B such that B(1 − α) ≤ F . That is, the net
value of the firm’s assets in default is lower than the face value of debt. We shall also assume
that B∞(1 − α) ≤ F where B∞ is the optimal default boundary when debt has an infinite
maturity.14 The next proposition shows that the study of the right derivative of the function
EB evaluated at B leads to a simple characterization of equilibrium default policies τB.

Proposition 4 For any maturity profile µ, there is a unique threshold B∗ < F
1−α such that

EB∗ is of class C1. Moreover, for any B ∈ [B∗, F
1−α ], τB is an equilibrium default policy.

Proof: The proof relies on the following lemmas.

Lemma 1 Let us consider B ≤ F
1−α . The policy τB is an equilibrium default policy if and

only if E ′B(B+) = lim
x↓B

E ′B(x) is nonnegative.

Proof of Lemma 1 The necessary condition is easy to establish. Indeed, if E ′B(B+) <
0 then the equality EB(B) = 0 implies that the equity-value EB is negative on a right
neighborhood of B and therefore (34) is not satisfied and τB cannot be an equilibrium
default policy. Let us now assume that E ′B(B+) ≥ 0. It follows from Equation (31) that
the function EB satisfies the ordinary differential equation

σ2x2

2
E ′′B(x) + (r − δ)xE ′B(x)− rEB(x) + gB(x) = 0 for x ≥ B,

with EB(x) = 0 for x < B and where gB(x) ≡ δx − (1 − θ)C − f + dB(x) is the cash
flow to equity. We prove in Appendix C that the cash flow to equity gB is increasing over
(0,∞) for B ≤ F

1−α . We now show that E ′B(B+) ≥ 0 implies EB positive for every x.
Assume the contrary, since EB is smooth for x > B with lim

x↑∞
EB(x) > 0, the function

EB can only be negative if there exists at least two real numbers B < x0 < x1 such that
EB(x0) > 0, E ′B(x0) = 0, E ′′B(x0) ≤ 0 and EB(x1) < 0, E ′B(x1) = 0, E ′′B(x1) ≥ 0. This in
turn implies that gB(x0) ≥ 0 and gB(x1) ≤ 0 which contradicts the fact that gB is increasing.
The function EB is thus positive, Equation (34) holds for every positive x and therefore τB
is an equilibrium default policy. This ends the proof of Lemma 1. Proposition 4 is then a
consequence of the next lemma

Lemma 2 The following equality holds

BE ′B(B+) = k1 + k2B, (35)

where k2 > 0 and k1 < 0.

14Equation (7) defines the barrier B∞.
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We develop in Appendix C the proof of Lemma 2. It relies on equality

EB(x) = vB(x)−DB(x) = Ex
[∫ τB

0

e−rsh(s, Vs) ds

]
and on standard properties of Geometric Brownian Motion. We also show in Appendix C
that the inequality (1 − α)B∞ < F implies that B∗ ≡ −k1

k2
< F

1−α . Then, it follows from

Lemma 1 and Lemma 2 that τB with B ∈ [B∗, F
1−α ] is an equilibrium default policy and that

EB∗ is of class C1. �

Note that, from the proof of Lemma 2, B∗ is the unique real number that satisfies the
smooth pasting condition (21) and corresponds to the default threshold considered in the
literature. We fully explain the role of the smooth pasting condition (21) in the next para-
graphs where we relax our assumption of equilibrium with commitment.

Let us assume that the market (that is debt holders) anticipate that the firm will use
hitting times of constant barriers. Under these market’s anticipations, we relax our assump-
tion of commitment on the part of the firm and establish that the policy τB∗ sustains the
unique rational expectations equilibrium in barrier strategies. To relax the assumption of
commitment and to take into account equity holders’ deviation after the announced date
of default we need to specify off-equilibrium debt prices for any time s > τ̂0. That is we
must define d(s; τ̂0) for s > τ̂0. When debt holders anticipate that the firm will use hitting
times of constant barriers, a consistent way of formalizing off-equilibrium prices is to assume
that debt holders believe that default is imminent whenever the current value of the firm’s
asset is below the announced barrier B. Thus, under that assumption, the market value
of each new debt when Vs ≤ B is f

F
(1 − α)Vs. Therefore, off-equilibrium debt prices are

time-independent and are defined by Equation (32). This leads us to restate the definition
of an equilibrium as follows

Definition 3 We shall say that a stopping time τB ≡ inf{s ≥ 0 : Vs ≤ B} is an equilibrium
default policy if and only if τB is an optimal stopping time for problem

ĴB(x) = sup
τ∈T0,∞

Ex
[∫ τ

0

e−rs(δVs − (1− θ)C − f + dB(Vs)) ds

]
. (36)

We obtain:

Proposition 5 According to Definition 3, the policy τB∗ is the unique equilibrium default
policy in constant barrier strategies and we have EB∗(x) = ĴB∗(x) for all x ≥ 0.

Proof: According to Theorem 4.2 in [27], a threshold strategy B̂(B) is optimal for Problem
(36), the function ĴB is of class C1 and can be written in terms of the free boundary problem

σ2x2

2
Ĵ
′′
B(x) + (r − δ)xĴ ′B(x)− rĴB(x) + gB(x) = 0, x ≥ B̂(B),

ĴB(x) = 0, 0 ≤ x ≤ B̂(B),

Ĵ ′B(B̂(B)) = 0.

(37)
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However, we know from Proposition 4 that the pair (EB∗ , B
∗) is also a C1 solution to the free

boundary problem (37) written with B = B∗. This implies that ĴB∗ = EB∗ and B̂(B∗) = B∗.
It also implies that B∗ is the unique fixed point of the mapping B̂. Indeed any other fixed
point B∗∗ 6= B∗ would satisfy ĴB∗∗ = EB∗∗ which contradicts the fact that B∗ is the unique
threshold such that EB∗ is of class C1. It follows that τB∗ is the unique equilibrium according
to Definition 3. �

We knew from section 3 that limited liability characterizes equilibrium default policies
with commitment. Defining off-equilibrium beliefs allows us to pin down the lowest con-
stant barrier compatible with limited liability as the unique equilibrium default policy. It
follows that τB∗ sustains the unique rational expectations equilibrium in barrier strategies.
Specifically, if the market anticipates that the firm will use the default policy τB∗ , then it
is optimal for the firm to use the policy τB∗ given that it could have use any other policy.
Therefore, the firm fulfills the market’s anticipation and Proposition 5, which holds for any
maturity profile, provides a rationale for the Leland [19] and Leland and Toft [22] papers.

5 Discussion

In this section, we discuss our results and address challenging questions for future work.

Geometric Brownian motion. Up to section 4.2 our study does not rely on the assump-
tion that the state variable follows a Geometric Brownian Motion. This is no more the
case for Proposition 4 and Proposition 5 that crucially rely on the property of the density
function of the first passage time of a Geometric Brownian Motion to a barrier B. In par-
ticular, it is unlikely that BE ′B(B+) being a linear function of B for any diffusion process.
Clearly it will be interesting to study the connection between default policy in a rational
expectations equilibrium and optimal stopping theory when the state variable follows more
general Lévy processes. Such a study will draw on Hilberink and Rogers [14], Kyprianou
and Surya [16] and Chen and Kou [2] who have already introduced Lévy processes in capital
structure models with roll-over debt.

Bankruptcy allocation. Following the literature, we have assumed that, in default, debt
holders receive all assets remaining after paying bankruptcy costs. Assume now that equity
holders get at bankruptcy max ((1− α)Vτ − F, 0) (and debt holders min((1−α)Vτ , F )). How
do these payoffs impact our results? Proceeding analogously as in the proof of Proposition
1, we obtain the following characterization.

Proposition 6 A constant barrier strategy τB is an equilibrium default policy if and only
if, for every x ≥ 0, we have EB(x) ≥ ((1− α)x− F )+.

Whether the constant barrier strategy τB∗ remains an equilibrium default policy according
to Definition 2 depends on the value of the parameters of the model. For instance, in the
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framework of the exponential model15, we get

EB∗(x) ≥ Ex
[∫ ∞

0

e−rs(δVs − (1− θ)C −mF + dB∗(Vs) ds

]
≥ x+

θC

r
− C +mF

r
> x− F

for F ≥ (1 − θ)C
r

and m small enough. Therefore, within this set of parameters, EB∗(x)
dominates ((1 − α)x − F )+ for every x ≥ 0 and τB∗ is still an equilibrium default policy.
On the contrary, the policy τB∗ is no more an equilibrium default policy if F < (1 − θ)C

r
,

α = 0 and m sufficiently small. Indeed, α = 0 implies16 EB∗(x) ∼
∞
x +

θC

r
− C +mF

r +m
and

F < (1− θ)C
r

yields F < C+mF
r+m

− θC

r
for m small. It follows that EB∗(x) cannot dominate

(x − F )+ for x large which means that τB∗ is not an equilibrium default policy. Thus, de-
pending on the parameter values, the bankruptcy allocation can have a dramatic impact on
the equilibrium outcomes and remains an important issue for future work.

Beyond time-homogenous default policies. We show below that, when the firm loses all
its value at bankruptcy, the barrier strategy τB∗ is a payoff dominant equilibrium. That is,
according to (26), for any τ ∗ ∈ E and for any current value x of the firm’s asset we have

E(0; τ ∗) = E
[∫ τ∗

0

e−rs(δVs − (1− θ)C − f + d(s; τ ∗)) ds

]
≤ EB∗(x).

It follows that, when the firm loses all its value at bankruptcy, the equity holder’s problem
admits a unique equilibrium which coincides with that derived in the literature.

The reason why bankruptcy costs play a central role is as follows. In corporate models
where debt is not rolled-over equity holders do not care about bankruptcy costs α, which
are borne at default by debt holders and the optimal stopping rule solution to the equity
holders’ problem is invariant to α. In corporate models with roll-over debt equity holders
care about bankruptcy costs because each newly issued debt is issued at market value. Other
things equal, the equity cash flow increases with the market value of the newly issued debt.
When there is no recovery at default, an increase of the length of time before bankruptcy
always increases the market value of the newly issued debt and consequently also increases
the equity-cash flow. We prove that this monotonicity property implies that the constant
barrier strategy τB∗ is the unique solution to the equity holders’ problem (26), precisely:

Proposition 7 If there is no recovery at default, for any current value x of the firm’s asset,
any stopping time τ ∗ solution to (26) satisfies τ ∗ = τB∗ Qx-a.s.

Proof: Suppose there is no recovery at default, that is, α = 1. A direct computation shows

15In the exponential model, µ(ds) = me−ms ds with m > 0 and Φ(s) = mΦ(s) = e−ms which yields the
relation f = mF

16The computation is straightforward. See for instance Leland [19] for explicit formula in the exponential
model.
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that the instantaneous market value of a newly issued debt d(s; τ) satisfies the monotonicity
property: if τ ≤ τ̃ then d(s; τ) ≤ d(s; τ̃). In words, the larger the length of time before
default, the larger the market debt value issued at s is. Let us consider an equilibrium
default policy τ ∗. Using the mapping B̂ and the monotonicity property, we prove below
that τ ∗ ≤ τB∗ Qx-a.s. This latter inequality and again the monotonicity property will imply
Proposition 7.

Let us consider Ĵ0, the value function associated with optimal stopping problem (36) for
the boundary B = 0. That is,

Ĵ0(x) = sup
τ∈T0,∞

Ex
[∫ τ

0

e−rs(δVs − (1− θ)C − f + d0) ds

]
where, with a slight abuse of notation, d0 denotes the market value of the roll-over riskless
debt.17 Let us denote by τB̂(0) an optimal stopping time for the above problem and let us
show that τ ∗ ≤ τB̂(0) Qx-a.s. Suppose by way of contradiction that Qx(τ

∗ > τB̂(0)) > 0. On
the set {τ ∗ > τB̂(0)}, Proposition 1 implies that

EτB̂(0)
= E

[∫ τ∗

τB̂(0)

e−r(s−τB̂(0))(δVs − (1− θ)C − f + d(s; τ ∗)) ds | FτB̂(0)

]
> 0. (38)

On the other hand the monotonicity property yields

EτB̂(0)
≤ E

[∫ τ∗

τB̂(0)

e−r(s−τB̂(0))(δVs − (1− θ)C − f + d0) ds | FτB̂(0)

]

≤ ess sup
τ∈T0,∞

E

[∫ τB̂(0)+τ◦θτB̂(0)

τB̂(0)

e−r(s−τB̂(0))(δVs − (1− θ)C − f + d0) ds | FτB̂(0)

]
= Ĵ0(B̂(0)) (39)

= 0 (40)

where (39) comes from the Strong Markov Property. Inequalities (38) and (40) contradict
inequality Qx(τ

∗ > τB̂(0)) > 0, thus τ ∗ ≤ τB̂(0) Qx-a.s. Proceeding recursively, we construct

an increasing sequence (bn)n≥0 with b0 = B̂(0) such that bn+1 = B̂(bn) and τ ∗ ≤ τbn Qx-a.s.
for any n. Two cases have to be considered. Either there exists n such that bn ≥ B∗, or
for every n we have bn ≤ B∗. The first case clearly yields the result. In the second case
the sequence (bn)n≥0 is increasing and bounded and converges to B∗, the fixed point of the

mapping B̂. This again yields the result. Thus, in any case we have that τ ∗ ≤ τB∗ Qx-a.s.
Now, using for the last time the monotonicity property one gets

E(0; τ ∗) ≤ Ex
[∫ τ∗

0

e−rs(δVs − (1− θ)C − f + dB∗(Vs)) ds

]
≤ ĴB∗(x)

= EB∗(x).

17We have d0 = f

∫ ∞
0

( c
r

(1− e−ru) + e−ru
)

[−dΦ(u)].
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which proves that any stopping time τ ∗ solution to (26) satisfies τ ∗ = τB∗ Qx-a.s. �

The fact that τB∗ is a payoff dominant equilibrium relies on the monotonicity property
of the equity cash flow. An easy computation shows that, when there is a strictly positive
recovery at default, postponing default and paying to debt holders the payment flow c dt
for some additional period of time does not necessarily increase the value of the newly
issued debt. The monotonicity property of the equity cash flow does not hold anymore and,
unfortunately, we lose our argument for proving that τB∗ is solution to (26). In that case
there are actually no clear reasons why τB∗ should be again a payoff dominant equilibrium
policy and, to the best of our knowledge, solving the equity holders’ problem (26) still
remains an open question.

6 Conclusion.

Roll-over debt structure models are much more involved than what academics were thinking
and require to solve a difficult rational expectations equilibrium problem. This paper studies
this equilibrium problem. Beyond the various results proven in the paper, we summarize our
message as follows. If the market anticipates that the firm will use default policies defined by
constant barrier strategies and believes that default is imminent whenever the current level
of firm’s asset is below the announced default barrier, then there exists a unique equilibrium
in constant barrier strategies which coincides with that derived in the literature. Solving
the equity-holders’ problem under more general hypothesis remains a challenging question.
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7 Appendix A

Appendix A develops the proof of Proposition 2. Proceeding analogously as in Equation
(12), we write d(s; τ) under the form:

d(s; τ) = fcE
[∫ τ

s

e−r(u−s)Φ(u− s) du|Fs
]

+ fE
[∫ τ

s

e−r(u−s)(−dΦ(u− s)) du|Fs
]

+
(1− α)f

F
E
[
e−r(τ−s)VτΦ(τ − s)|Fs

]
.

We then develop Equation (16) as follows:

Dtot(0; τ) = E
[∫ τ

0

e−rs(C + f) ds

]
− cfE

[∫ τ

0

e−rsE
[∫ τ

s

e−r(u−s)Φ(u− s) du|Fs
]
ds

]
− fE

[∫ τ

0

e−rsE
[∫ τ

s

e−r(u−s)(−dΦ(u− s)) du|Fs
]
ds

]
− (1− α)f

F
E
[∫ τ

0

e−rsE
[
e−r(τ−s)VτΦ(τ − s)|Fs

]
ds

]
+ (1− α)E(e−rτVτ )

= A1 + A2 + A3 + A4 + A5.

Fubini-Tonelli Theorem yields

A4 = −(1− α)f

F
E
[∫ τ

0

e−rτVτΦ(τ − s) ds
]

= −(1− α)f

F
E
[
e−rτVτ

∫ τ

0

Φ(u) du

]
= −(1− α)f

F
E
[
e−rτVτ (Φ(0)− Φ(τ))

]
.

Because F = fΦ(0), we get

A4 + A5 = (1− α)E
[
e−rτVτ

Φ(τ)

Φ(0)
)

]
.

We also have that,

A2 = −cfE
[∫ τ

0

∫ τ

s

e−ruΦ(u− s) du ds
]

= −cfE
[∫ τ

0

e−ru
∫ u

0

Φ(u− s) ds du
]

= −cfE
[∫ τ

0

e−ru
∫ u

0

Φ(t) dt du

]
= −cfE

[∫ τ

0

e−ru(Φ(0)− Φ(u)) du

]
.
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In the same manner,

A3 = −fE
[∫ τ

0

e−ru
∫ u

0

(−dΦ(u− s)) du
]

= −fE
[∫ τ

0

e−ru(1− Φ(u)) du

]
.

Because C = cF , we get

A1 + A2 + A3 = E
[∫ τ

0

e−rs
(
C + f − cf(Φ(0)− Φ(s))− f(1− Φ(s))

)
ds

]
= E

[∫ τ

0

e−rs
(
CΦ(s) + FΦ(s)

Φ(0)

)
ds

]
from which, we deduce the result.

8 Appendix B

Appendix B is devoted to the proof of Proposition 3. We first prove that for every x > 0
and t > 0,

Et,x
[∫ ∞

0

e−rs|h(t+ s, Vt+s)| ds
]
< +∞.

Relation (20) gives |h(t + s, x)| ≤ K0x + K1 where K0, K1 are two positive constants.
Therefore, it suffices to prove that

∫∞
0
e−rsVt+s ds is integrable under Qt,x. This comes from

Fubini-Tonelli Theorem which yields

Et,x
[∫ ∞

0

e−rsVt+s ds

]
=

∫ ∞
0

Et,x(e−rsVt+s) ds

=

∫ ∞
0

xe−δs ds

=
x

δ
.

Let us denote

H(t, x) = Et,x
[∫ ∞

0

e−rsh(t+ s, Vt+s) ds

]
.
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Assuming that V0 = x, we deduce from Equations (12) and (14) that

v(0; τ)−D(0; τ) = Ex
[∫ τ

0

e−rsh(s, Vs) ds

]
= H(0, x)− Ex

[∫ ∞
τ

e−rsh(s, Vs) ds

]
= H(0, x)− Ex

[
E
[∫ ∞

τ

e−rsh(s, Vs) ds|Fτ
]]

= H(0, x)− Ex
[
e−rτH(τ, Vτ )

]
= x−

∫ ∞
0

e−rs
(
C

Φ(s)

Φ(0)
+ F

Φ(s)

Φ(0)
− θC

)
ds

+ Ex
[
e−rτ (β(τ)− γ(τ)Vτ )

]
,

with

β(t) =

∫ ∞
0

e−rs
(
C

Φ(t+ s)

Φ(0)
+ F

Φ(t+ s)

Φ(0)
− θC

)
ds,

and

γ(t) = α + (1− α)
Φ(t)

Φ(0)
.

Note that the functions β and γ are bounded. Therefore,

sup
τ∈T0,∞

(v(0; τ)−D(0; τ)) = x−
∫ ∞

0

e−rs
(
C

Φ(s)

Φ(0)
+ F

Φ(s)

Φ(0)
− θC

)
ds

+ sup
τ∈T0,∞

Ex
[
e−rτ (β(τ)− γ(τ)Vτ )

]
.

To prove Proposition 3 we have to study the stopping problem

P (x) ≡ sup
τ∈T0,∞

Ex
[
e−rτ (β(τ)− γ(τ)Vτ )

]
, (41)

with the convention that β(τ)− γ(τ)Vτ = 0 on {τ =∞}. Four lemmas drive the proof.

Lemma 3 Let P : [0,∞)× (0,∞) −→ R be the value function associated with the Markov
bi-dimensional optimal stopping problem in the (t, x) space

P(t, x) = sup
τ∈T0,∞

Ex
[
e−rτg(t+ τ, Vτ )

]
, (42)

where g(t, u) ≡ β(t) − γ(t)u. Then the value function P associated with stopping problem
(41) satisfies

P (x) = P(0, x).

Furthermore, the stopping time

τ ∗ ≡ inf{s ≥ 0 | P(t+ s, Vs) = g(t+ s, Vs)} (43)

is optimal for problem (42).
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Proof of Lemma 3 We follow the optimal stopping theory (see [15]) and consider the Snell
envelope process

(Pt)t≥0 ≡

(
ess sup

τ∈Tt,∞
E
[
e−rτg(τ, Vτ ) | Ft

])
t≥0

.

Because β is bounded, we have supt≥0 E[e−rtPt] < +∞. Thus, Pt is the smallest super-
martingale that dominates

(
e−rtg(t, Vt)

)
t≥0

. We have that

Pt = e−rtess sup
τ∈T0,∞

E[e−rτg(t+ τ, Vt+τ )|Ft]

= e−rt sup
τ∈T0,∞

EVt [e−rτg(t+ τ, Vτ )]

= e−rtP(t, Vt),

where the second equality comes from the Markov property. It therefore results that, as
announced,

P (x) ≡ sup
τ∈T0,∞

Ex[e−rτg(τ, Vτ )] = P(0, x). (44)

Moreover, according to the optimal stopping theory, the process
(
Pu∧τ∗t

)
u≥t is an

(Fu)-martingale with
τ ∗t ≡ inf{u ≥ t | Pu = e−rug(u, Vu)}.

Therefore, Optional Sampling Theorem gives for every integer n,

Pt = E
[
Pτ∗t 11{τ∗t <n}|Ft

]
+ E

[
Pn11{τ∗t ≥n}|Ft

]
≤ E

[
e−rτ

∗
t g(τ ∗t , Vτ∗t )11{τ∗t <n}|Ft

]
+ e−rn

∫ ∞
0

e−ru
(
C

Φ(u)

Φ(0)
+ F

Φ(u)

Φ(0)

)
du, (45)

where the last inequality results from the relation

E
[
Pn11{τ∗t ≥n}|Ft

]
≤ e−rnE

[
β(n)11{τ∗t ≥n}|Ft

]
≤ e−rnβ(n)

≤ e−rn
∫ ∞

0

e−ru
(
C

Φ(u)

Φ(0)
+ F

Φ(u)

Φ(0)

)
du.

Letting n tend to infinity in (45), we obtain

Pt ≤ E
[
e−rτ

∗
t g(τ ∗t , Vτ∗t )11{τ∗t <∞}|Ft

]
.

Using the convention on the set {τ ∗t =∞}, we have

Pt ≤ E
[
e−rτ

∗
t g(τ ∗t , Vτ∗t )|Ft

]
.

Because the reverse inequality always holds, we get

Pt = E
[
e−rτ

∗
t g(τ ∗t , Vτ∗t )|Ft

]
.
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Using the Markov Property and the equality Pt = e−rtP(t, Vt), we get

P(t, Vt) = E
[
e−r(τ

∗
t −t)g(τ ∗t , Vτ∗t )|Ft

]
= EVt

[
e−rτ

∗
g(t+ τ ∗, Vτ∗)

]
with τ ∗ defined by Equation (43). This ends the proof of Lemma 2.

Let us now consider the stopping region of problem (42):

S ≡ {(t, x) ∈ [0,∞[2 | P(t, x) = g(t, x)}

and its t-sections
St ≡ {V ∈ [0,∞[ | P(t, x) = g(t, x)}.

Remark that the stopping region S can be written as S = ∪t≥0{t}×St and that the optimal
stopping time τ ∗ is the first time when the process (t, Vt) hits the stopping region S. We
show the following.

Lemma 4 The t-sections St are left-connected. That is, there is a function a∗ defined on
(0,∞) such that, for every t ≥ 0, St = (0, a∗(t)].

Proof of Lemma 4 We have to prove that, if P(t, y) = g(t, y) then P(t, x) = g(t, x) for all
x ≤ y. According to (2), we obtain that

Ex
[
e−rτ (β(t+ τ)− γ(t+ τ)Vτ )

]
≤ Ey

[
e−rτ (β(t+ τ)− γ(t+ τ)Vτ )

]
+Ey−x

[
e−rτγ(t+ τ)Vτ

]
.

(46)
The positive supermartingale (e−rtVt)0≤t≤∞ admits zero as a last element and thus Optional
Sampling Theorem yields Ex(e−rτVτ ) ≤ x for every τ and every x > 0. Using the fact that
the positive function γ is decreasing, we get

Ey−x
[
e−rτγ(t+ τ)Vτ

]
≤ γ(t)(y − x). (47)

Now, using (47) and taking the supremum over τ in (46) yields

P(t, x) ≤ P(t, y) + γ(t)(y − x).

Since y ∈ St, we obtain P(t, y) = β(t)− γ(t)y and thus the inequality

P(t, x) ≤ β(t)− γ(t)x.

We then deduce that x ∈ St since, by definition, P(t, x) ≥ β(t) − γ(t)x. Therefore, it
follows that St is an interval (0, a∗(t)] where a∗(t) is defined as sup{x ∈ (0,∞) : (t, x) ∈ S}.
Moreover, the optimal stopping time τ ∗ can be expressed as

τ ∗ = inf{s ≥ 0 : Vs ≤ a∗(t+ s)}. (48)

We now show that the function a∗ is not constant.

Lemma 5 The optimal boundary function a∗ is not constant.
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Proof of Lemma 5 Because Φ(t) and Φ(t) are decreasing and tend to 0 when t goes to
infinity, we have β(t) ≤ 0, for all t ≥ t, where t is implicitly defined by the equation

C
Φ(t)

Φ(0)
+ F

Φ(t)

Φ(0)
− Cθ = 0. (49)

Thus, for all t ≥ t, g(t, x) = β(t) − γ(t)x ≤ 0, for all x > 0. Therefore, for all t ≥ t,
P(t, x) ≤ 0 as the supremum of non positive real numbers. Now, for s ≥ 0, we have

P(t, x) ≥ e−rsβ(s+ t)− γ(s+ t)Ex[e−rsVs]
= e−rsβ(s+ t)− γ(s+ t)xe−δs.

Letting s tend to infinity yields P(t, x) ≥ 0. Therefore, P(t, x) = 0 for all t ≥ t which
implies that St = ∅ for all t ≥ t (τ ∗ =∞), or, equivalently, that a∗(t) = 0 for all t ≥ t.

We now show that S 6= ∅, from which it will result that there exists t ∈ [0, t) such that
a∗(t) > 0. This will end the proof of Lemma 5. We proceed by way of contradiction. Assume
S = ∅, then τ =∞ is optimal for problem (41) such that we have P(t, x) = 0 for all t ≥ 0
and for all x > 0. This implies in particular that, for all x > 0,

P(0, x) = P (x) = 0 ≥ β(0)− γ(0)x =

∫ ∞
0

e−rs
(
C

Φ(s)

Φ(0)
+ F

Φ(s)

Φ(0)
− θC

)
ds− x, (50)

where the right hand side of (50) is the payoff function of problem (42) according to the
stopping strategy τ = 0. Now, it follows from assumption (13) that Equation (50) cannot
be satisfied for all x > 0. This yields a contradiction. Therefore, S 6= ∅ and a∗(t) > 0 for
some t ∈ [0, t).

Lemma 6 The strategy τa∗(.) is not an equilibrium default policy.

Proof of Lemma 6 Let us assume that equity holders follow the strategy τa∗(.). Then, on
the set {τa∗(.) > t} the equity value is

E
[∫ τa∗(.)

t

e−r(s−t)
(
δVs − (1− θ)C − f + d(s, τa∗(.))

)
ds | Ft

]
.

Now, from Lemma 5, we know that a∗(t) = 0 for all t ≥ t. We then deduce that τa∗(t+.) =∞
for all t ≥ t and thus equity holders issue riskless debt yielding a value of newly issued debt
equal to18

f ds

∫ ∞
0

(c
r

(1− e−ru) + e−ru
)

[−dΦ(u)].

However, never going default for t ≥ t is clearly sub-optimal since the associated equity
value

E
[∫ ∞

0

e−rs
(
δVs − (1− θ)C − f + f

∫ ∞
0

(c
r

(1− e−ru) + e−ru
)

[−dΦ(u)]

)
ds

]
18This is easily deduced from (9)
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would be negative for a current value of the firm’s asset sufficiently small19. The strategy
τa∗(.) does not satisfy Proposition 1. It is not an equilibrium default policy. This concludes
the proof of Proposition 3.

9 Appendix C

The following lemma completes the proof of Lemma 1

Lemma 7 The cash flow to equity gB(x) = δx − (1 − θ)C − f + dB(x) is increasing over
(0,∞).

To show that the function x −→ dB(x) is increasing over (B,∞) we prove that the value
bB(x) of a bond with face value 1, maturity u and default time τB increases with the current
value of the firm’s asset x. When the default policy is a constant barrier strategy τB, we
have

bB(x) =
c

r
+ (1− c

r
)e−ru(1−KB(u, x)) + (

1

F
(1− α)B − c

r
)GB(u, x) (51)

where

KB(u, x) =

∫ u

0

kB(s, x) ds, GB(u, x) =

∫ u

0

e−rskB(s, x) ds

and where kB(s, x) is the density function of the first passage time of the process Vs to the
barrier B. A standard computation shows that the density kB decreases with the current
value of the firm’s asset x. Then, the computation of the derivative of bB yields the relations

b′B(x) = −(1− c

r
)e−ru

∂KB

∂x
(u, x)− (

c

r
− 1

F
(1− α)B)

∂GB

∂x
(u, x)

≥ (1− c

r
)(−e−ru∂KB

∂x
(u, x) +

∂GB

∂x
(u, x)) (52)

≥ 0,

where Equation (52) comes from the inequality B ≤ F
1−α and the last inequality from the

relation20 1 < c
r

together with the fact that

−e−ru∂KB

∂x
(u, x) +

∂GB

∂x
(u, x)

= −e−ru
∫ u

0

∂kB
∂x

(s, x) ds+

∫ u

0

e−rs
∂kB
∂x

(s, x) ds < 0

Proof of Lemma 2.

We use the relation

EB(x) = Ex
[∫ τB

0

e−rsh(s, Vs) ds

]
= vB(x)−DB(x)

19An easy computation shows that the inequality
∫∞
0
e−ru[−dΦ(u)] > 1−rΦ(0) and the condition F > θC

r

imply that −(1− θ)C − f + f
∫∞
0

(
c
r (1− e−ru) + e−ru

)
[−dΦ(u)] < 0.

20Following the literature, we consider that the total debt is issued at par. At issuance its value F is lower
than a risk-less bond with infinite maturity and coupon payment C. This yields the inequality F < C

r or
equivalently 1 < c

r .
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where the expressions for vB(x) and DB(x) are deduced from Equations (14) and (11) when
the default policy is a constant barrier strategy τB. We have

vB(x) = x+
θC

r

(
1−

∫ ∞
0

e−rskB(s, x) ds

)
− αB

∫ ∞
0

e−rskB(s, x) ds

and

DB(x) =

∫ ∞
0

fΦ(s)
(c
r

+ (1− c

r
)e−rs

)
ds −

∫ ∞
0

fΦ(s)(1− c

r
)e−rsKB(s, x) ds

+

∫ ∞
0

fΦ(s)

(
1

F
(1− α)B − c

r

)
GB(s, x) ds

where functions kB, KB and GB were introduced in Lemma 7. The expressions for K(s, x)
and for G(s, x) are standard and can be found for instance in Leland and Toft [22] page 990.
We have

KB(s, x) = N(h1(s, x;B)) +
( x
B

)−2a

N(h2(s, x;B))

GB(s, x) =
( x
B

)−a+z

N(q1(s, x;B)) +
( x
B

)−a−z
N(q2(s, x;B))

where

q1(s, x;B) = − 1

σ
√
s

ln
( x
B

)
− zσ

√
s, q2(s, x;B) = q1(s, x;B) + 2zσ

√
s,

h1(s, x;B) = − 1

σ
√
s

ln
( x
B

)
− aσ

√
s, h2(s, x;B) = h1(s, x;B) + 2aσ

√
s,

a =
r − δ − σ2

2

σ2
< z =

(a2σ4 + 2rσ2)
1
2

σ2

and where N is the cumulative distribution function of a standard normal law. Then, taking
the derivative of expression EB(x) = vB(x)−DB(x) one gets, BE ′(B+) = k1 + k2B where

k2 = 1 + α(a+ z)− (1− α)

∫ ∞
0

f

F
Φ(s) ((−a+ z)− Γz(s)) ds (53)

where Γz(s) = 2zN(zσ
√
s) + 2

σ
√
s
n(zσ

√
s) and n(x) = 1√

2π
e−

1
2
x2 , and

k1 =
θC

r
(a+ z) +

∫ ∞
0

fΦ(s)
c

r
(−a+ z − Γz(s)) ds+

∫ ∞
0

fΦ(s)(
c

r
− 1)e−rsΓa(s) ds.

Because Γz(s) ≥ 2z, the real number k2 is clearly positive and more precisely, k2 ≥ 1 + (a+
z) ≥ 0.

It remains to check that k1 < 0. Using equalities e−rsn(aσ
√
s) = n(zσ

√
s) and C =∫∞

0
fcΦ(s) ds = cF we obtain that

k1 =
C

r
(θ(a+ z) + z − a) + (

c

r
− 1)

∫ ∞
0

fΦ(s)
(
2ae−rsN(aσ

√
s)− 2zN(zσ

√
s)
)
ds

−
∫ ∞

0

fΦ(s)Γz(s) ds. (54)
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The function s→ 2ae−rsN(aσ
√
s)− 2zN(zσ

√
s) is decreasing and thus bounded by a− z.

Therefore, using Γz(s) ≥ 2z for all s ≥ 0 together with the condition F > θC
r

, we deduce
from (54) that k1 < 0.

Finally, we show that the inequality B∞ < F
1−α implies B∗ ≡ −k1

k2
< F

1−α . Note that the

threshold B∞ is solution to Equation (7) and satisfies B∞ = (1− θ)C
r

a+z
1+a+z

. Using (53) and
(54) one obtains

k2F + (1− α)k1 = F (1 + α(a+ z)) + (1− α)
θC

r
(a+ z) + (1− α)(

c

r
− 1)(−a+ z)F

−(1− α)(
c

r
− 1)

∫ ∞
0

fΦ(s)(2zN(zσ
√
s)− 2ae−rsN(aσ

√
s)) ds

> F (1 + α(a+ z)) + (1− α)
θC

r
(a+ z) + (1− α)(

c

r
− 1)(−a+ z)F

−2z(1− α)(
c

r
− 1)F

= (1 + a+ z)F − (1− α)(a+ z)(1− θ)C
r
.

The result follows.
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