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Introduction

Over the last 20 years, the predictability of excess stock returns has attracted a great deal

of attention. Recent empirical work reports evidence suggesting that excess returns are

at least partially predictable. The initial piece of evidence in favor of predictability was

obtained by examining univariate time series properties (see e.g. Poterba and Summers

[1988]). The literature has also reported convincing evidence that financial and accounting

variables have predictive power for stock returns (See Fama and French [1988], Fama and

French [1989], Campbell and Shiller [1988], Hodrick [1992], Campbell, Lo and MacKinlay

[1997], Cochrane [1997,2001], Lamont [1998], Lettau and Ludvigson [2001] and Campbell

[2003]). This work has spread to the macroeconomic literature that has shown that excess

returns can be predicted by macroeconomic variables that describe the business cycle. The

equity premium is found to be correlated with the business cycle, expected excess returns

and conditional returns volatility are time–varying and move countercyclically. It was

therefore natural for the macroeconomic literature to gauge the ability of the standard

consumption based capital asset pricing model to account for this predictability. But the

model — in its basic time separable version — fails to account for this set of stylized

facts, giving rise to a predictability puzzle. This paper explicitly investigates this issue,

and gauge the ability of a “catching up with the Joneses” model augmented for habit

stock to solve the puzzle.

As aforementioned the standard consumption based capital asset pricing model (CCAPM)

fails to account for the predictability puzzle. This finding is now well established in the

literature and essentially stems from the inability of the model with time separable util-

ity to generate enough persistence. Excess return essentially behave as iid stochastic

processes, unless strong persistence is added to the shocks initiating fluctuations on the

asset market. Therefore, neither do they exhibit serial correlation nor are they strongly

related to other variables. Not to say that the CCAPM is useless for explaining asset

prices. Recent theoretical work has shown that the CCAPM can generate predictability

of excess returns providing the basic model is amended (see Campbell [2003] for a survey).

This work includes models with heterogenous investors (see Chan and Kogan [2001]) or

models with time varying risk aversion generated by habit formation (see Campbell and

Cochrane [1999], Menzly, Santos and Veronesi [2004]). This paper will partially pursue

this latter route and consider a habit formation model. It should be noted that the lit-

erature dealing with habit formation falls into two broad categories. On the one hand,
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internal habit formation captures the influence of individual’s own past consumption on

the individual current consumption choice (see Boldrin, Christiano and Fisher [1997]).

On the other hand, external habit formation captures the influence of the aggregate past

consumption choices on the current individual consumption choices (Abel [1990]). This

latter case is denoted “catching up with the Joneses”. Two specifications of habit forma-

tion are usually used in the literature. The first one (see Campbell and Cochrane [1999])

considers that the agent cares about the difference between his/her current consumption

and a consumption standard. The second (see Abel [1990]) assumes that the agent cares

about the ratio between these two quantities. One important difference between the two

approaches is that the coefficient of risk aversion is time varying in the first case, while

it remains constant in the second specification. This has strong consequences for the

ability of the model to account for the predictability puzzle, as a time–varying coefficient

is thought to be required to solve the puzzle. This therefore seems to preclude the use of

a ratio specification to tackle the predictability of stock returns. One of the main contri-

bution of this paper will be to show that, despite the constant risk aversion coefficient,

habit formation in ratio can replicate the long horizon returns predictability. Hence, the

model is by no means designed to solve neither the equity premium puzzle nor the risk free

rate puzzle, since it is well known that time varying risk aversion is necessary to replicate

the data.1 Our aim is rather to highlight the role of persistence generated by habits in

accounting for the predictability puzzle, leaving the equity premium puzzle aside.

We develop a simple consumption based capital asset pricing model à la Lucas [1978].

We however depart from the standard setting in that we allow preferences to be non

time separable. The model has the attractive feature of introducing tractable and par-

simonious time non separability in a general equilibrium framework. More precisely, we

consider that preferences are characterized by a “catching up with the Joneses” phenom-

enon. Preferences depend on lagged aggregate consumption. In a second step, we allow

preferences to depend not only on lagged aggregate consumption but also on the whole

history of aggregate consumption, therefore reinforcing both the time non–separability

and persistence. We follow Abel [1990] and specify habit persistence in terms of ratio.

This particular feature together with a CRRA utility function implies that preferences are

homothetic with regard to consumption. As in Burnside [1998], we assume that endow-

ments grow at an exogenous stochastic rate and we keep with the Gaussian assumption.

1Habit formation in ratio is known to fails to account for both puzzles. See Campbell et al. [1997] p.
328–329 and Campbell [2003].
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These features enable us to obtain a closed form solution to the asset pricing problem and

give conditions that guarantee that the solution is bounded. This analytical treatment

of the model enable us to provide with a more transparent understanding of the main

mechanisms at work. We then investigate the dynamic properties of the model and its

implications in terms of moment matching and predictability over long horizons. We find

that, as expected, the time separable model fails to account for most of asset pricing

properties. The “catching up with the Joneses” model enhances the properties of the

CCAPM to match the stylized facts but its persistence properties are too weak to solve

the predictability puzzle. In contrast, the model with habit stock is found to generate

much stronger persistence, which enables it to solve, to a large extent, the predictability

puzzle.

The remaining of the paper is organized as follows. Section 1 develops the model with

catching up with the Joneses preferences. We derive the analytical form of the equilibrium

solution and the conditions that guarantee the existence of bounded solutions, assuming

that dividend growth is Gaussian and serially correlated. In section 2, we extend the

model to a more general setting in which preferences depend on the whole history of the

past aggregate consumptions. We provide again a closed form solution for price–dividend

ratio and the conditions that guarantee bounded solutions. In section 3, we investigate

the ability of the model to match a set of moments characterizing financial markets. In

particular, we assess the ability of the model to account for the predictability puzzle. A

last section offers some concluding remarks.

1 Catching–up with the Joneses

In this section, we develop a consumption based asset pricing model in which preferences

exhibit a “Catching up with the Joneses” phenomenon. We provide the closed–form

solution for the price–dividend ratio and conditions that guarantee the existence of a

stationary bounded equilibrium.

1.1 The Model

We consider a pure exchange economy à la Lucas [1978]. The economy is populated by a

single infinitely–lived representative agent. The agent has preferences over consumption,
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represented by the following intertemporal expected utility function

Et

∞∑

s=0

βsut+s (1)

where β > 0 is a constant discount factor, and ut denotes the instantaneous utility

function, that will be defined later. Expectations are conditional on information available

at the beginning of period t.

The agent enters period t with a number of shares, St —measured in terms of consumption

goods— carried over the previous period as a means to transfer wealth intertemporally.

Each share is valuated at price Pt. At the beginning of the period, she receives dividends,

DtSt where Dt is the dividend per share. These revenues are then used to purchase

consumption and new shares, St+1, at price Pt. The budget constraint therefore writes

PtSt+1 + Ct 6 (Pt + Dt)St (2)

Following Abel [1990,1999], we assume that the instantaneous utility function, ut, takes

the form

ut ≡ u(Ct, Vt) =





(Ct/Vt)
1−θ

−1
1−θ

if θ ∈ R+\{1}

log(Ct) − log(Vt) if θ = 1

(3)

where θ measures the degree of relative risk aversion and Vt denotes the habit level.

We assume Vt is a function of lagged aggregate consumption, Ct−1, and is therefore exter-

nal to the agent. This assumption amounts to assume that preferences are characterized

by a “Catching up with the Joneses” phenomenon.2 More precisely, we assume that3

Vt = C
ϕ

t−1 (4)

where ϕ > 0 rules the sensitivity of household’s preferences to past aggregate consump-

tion, Ct−1, and therefore measures the degree of “Catching up with the Joneses”. It is

worth noting that habit persistence is specified in terms of the ratio of current consump-

tion to a function of lagged consumption. We hereby follow Abel [1990] and depart from

a strand of the literature which follows Campbell and Cochrane [1999] and specifies habit

2Note that had Vt been a function of current aggregate consumption, we would have recovered Gaĺı’s
[1989] “Keeping up with the Jones”. As it will be clear later, in such a case the model admits that same
analytical solution as in Burnside [1998].

3Note that this specification of the preference parameter can be understood as a particular case of

Abel [1990] specification which is, in our notations, given by Vt = [CD
t−1C

1−D

t−1 ]γ with 0 6 D 6 1 and
γ > 0.
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persistence in terms of the difference between current and past aggregate consumption.

This particular feature of the model will enable us to obtain a closed form solution to the

asset pricing problem while keeping the main properties of habit persistence. Indeed, as

shown by Burnside [1998], one of the keys to a closed form solution is that the marginal

rate of substitution between consumption at two dates is an exponential function of the

growth rate of consumption between these two dates. This is indeed the case with this

particular form of catching up. Another implication of this specification is that, just alike

the standard CRRA utility function, the individual risk aversion remains time–invariant

and is unambiguously given by θ.

Another attractive feature of this specification is that is nests several standard specifica-

tions. For instance, setting θ = 1 leads to the standard time separable case, as in this

case the instantaneous utility function reduces to log(Ct) − ϕ log(Ct−1). As aggregate

consumption, Ct−1, is not internalized by the agents when taking their consumption de-

cisions, the (maximized) utility function actually reduces to Et

∑
∞

s=0 βs log(Ct+s). The

intertemporal utility function is time separable and the solution for the price–dividend

ratio is given by Pt/Dt = β/(1 − β).

Setting ϕ = 0, we recover a standard time separable CRRA utility function of the form

Et

∑
∞

s=0 βs(C1−θ
t+s − 1)/(1 − θ). In such a case, Burnside [1998] showed that as long as

dividend growth is log–normally distributed, the model admits a closed form solution.4

Setting ϕ = 1 we retrieve Abel’s [1990] relative consumption case (case B in Table 1,

p.41) when shocks to endowments are iid. In this case, the household values increases

in her individual consumption vis à vis lagged aggregate consumption. In equilibrium,

Ct−1 = Ct−1 and it turns out that utility is a function of consumption growth.

At this stage, no further restriction will be placed on either β, θ or ϕ.

The household determines her contingent consumption {Ct}
∞

t=0 and contingent asset hold-

ings {St+1}
∞

t=0 plans by maximizing (1) subject to the budget constraint (2), taking exoge-

nous shocks distribution as given, and (3) and (4) given. Agents’ consumption decisions

are then governed by the following Euler equation

PtC
−θ
t C

ϕ(θ−1)

t−1 = βEt

[
(Pt+1 + Dt+1)C

−θ
t+1C

ϕ(θ−1)

t

]
(5)

4And therefore so does the “Keeping up with the Joneses” case.
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which may be rewritten as

Pt

Dt

= Et

[(
1 +

Pt+1

Dt+1

)
× Wt+1 × Φt+1

]
× Ct (6)

where Wt+1 ≡ Dt+1/Dt captures the wealth effect of dividend, Φt+1 ≡ β[(Ct+1/Ct)
−θ] is

the standard stochastic discount factor arising in the time separable model. This Euler

equation has an additional stochastic factor Ct ≡
(
Ct/Ct−1

)ϕ(θ−1)
which measures the ef-

fect of “catching up with the Joneses”. These two latter effects capture the intertemporal

substitution motives in consumption decisions. Note that Ct is known with certainty in

period t as it only depends on current and past aggregate consumption. This new com-

ponent distorts the standard intertemporal consumption decisions arising in a standard

time separable model. Note that our specification of the utility function implies that ϕ

essentially governs the size of the catching up effect, while risk aversion, θ, governs its di-

rection. For instance, when risk aversion is high — θ > 1 — catching–up exerts a positive

effect on the time separable intertemporal rate of substitution. Hence, in this case, for a

given rate of consumption growth, catching up reduces the expected return.

Since we assumed the economy is populated by a single representative agent, we have

St = 1 and Ct = Ct = Dt in equilibrium. Hence, both the stochastic discount factor in

the time separable model and the “‘catching up with the Joneses” term are functions of

dividend growth Dt+1/Dt

Φt+1 ≡ β[(Dt+1/Dt)
−θ] and Ct ≡ (Dt/Dt−1)

ϕ(θ−1)

Any persistent increase in future dividends, Dt+1, leads to two main effects in the standard

time separable model. First, a standard wealth effect, stemming from the increase in

wealth it triggers (Wt+1), leads the household to consume more and purchase more assets.

This puts upward pressure on asset prices. Second, there is an effect on the stochastic

discount factor (Φt+1). Larger future dividends lead to greater future consumption and

therefore lower future marginal utility of consumption. The household is willing to transfer

t + 1 consumption toward period t, which can be achieved by selling shares therefore

putting downward pressure on prices. When θ > 1, the latter effect dominates and prices

are a decreasing function of dividend. In the “catching up” model, a third effect, stemming

from habit persistence (Ct), comes into play. Habit standards limit the willingness of the

household to transfer consumption intertemporally. Indeed, when the household brings

future consumption back to period t, she hereby raises the consumption standards for

the next period. This raises future marginal utility of consumption and therefore plays
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against the stochastic discount factor effect. Henceforth, this limits the decrease in asset

prices and can even reverse the effect when ϕ is large enough.

Defining the price–dividend ratio as vt = Pt/Dt, it is convenient to rewrite the Euler

equation, evaluated at the equilibrium as

vt = βEt

[
(1 + vt+1)

(
Dt+1

Dt

)1−θ (
Dt

Dt−1

)ϕ(θ−1)
]

(7)

1.2 Solution and Existence

In this section, we provide a closed form solution for the price–dividend ratio and give

conditions that guarantee the existence of a stationary bounded equilibrium.

Note that up to now, no restrictions have been placed on the stochastic process governing

dividends. Most of the literature attempting to obtain an analytical solution to the

problem assumes that the rate of growth of dividends is an iid gaussian process (see Abel

[1990,1999] among others). We depart from the iid case and follow Burnside [1998]. We

assume that dividends grow at rate γt ≡ log(Dt/Dt−1), and that γt follows an AR(1)

process of the form

γt = ργt−1 + (1 − ρ)γ + εt (8)

where εt ; N (0, σ2) and |ρ| < 1. Setting ρ = 0, we retrieve the iid case. In the AR(1)

case, the Euler equation rewrites

vt = βEt [(1 + vt+1) exp ((1 − θ)γt+1 − ϕ(1 − θ)γt)] (9)

We can then establish the following proposition.

Proposition 1 The Solution to Equation (9) is given by

vt =
∞∑

i=1

βi exp(ai + bi(γt − γ)) (10)

where

ai = (1 − θ)(1 − ϕ)γi +

(
1 − θ

1 − ρ

)2
σ2

2

[
(1 − ϕ)2i − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi) +

(ρ − ϕ)2

1 − ρ2
(1 − ρ2i)

]

bi =
(1 − θ)(ρ − ϕ)

1 − ρ
(1 − ρi)
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First of all it is worth noting that this pricing formula resembles that exhibited in Burnside

[1998]. We actually recover Burnside’s formulation by setting ϕ = 0 — i.e imposing time

separability in preferences. Second, when the rate of growth of endowments is iid over

time (γt = γ + εt), and ϕ is set to 1, we recover the solution used by Abel [1990] to

compute unconditional expected returns:

zt = β exp

(
(1 − θ)2σ2

2
+ (1 − θ)(γt − γ)

)
(11)

In this latter case, the price–dividend ratio is an increasing (resp. decreasing) and convex

function of the consumption growth if θ > 1 (resp. θ < 1). Things are more complicated

when we consider the general model. Indeed, as shown in proposition 1 (see coefficient

bi), both the position of the curvature parameter, θ, around 1 and the position of the

persistence of dividend growth, ρ, around the parameter of habit persistence, ϕ, matter.

The behavior of an agent in face a positive shock on dividend growth essentially depends

on the persistence of the process of endowments. This is illustrated in Figure 1 which

reports the behavior of the price–dividend ratio as a function of the rate of growth of

dividends for θ below and above 1.

Figure 1: Decision Rules

log
(

Pt

Dt

)

γt

log
(

Pt

Dt

)

γt

θ < 1 θ > 1

ϕ = ρ

ϕ < ρ

ϕ > ρ

Let us consider the case θ > 1 (see right panel of Figure 1). As we established in

the previous section, a shock on dividends exerts three effects: (i) a standard wealth

effect, (ii) a stochastic discount factor effect and (iii) a habit persistence effect. The

two latter effects play in opposite direction on intertemporal substitution. When ϕ > ρ,
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the stochastic discount factor effect is dominated by the force of habits, as the shock on

dividend growth exhibits less persistence than habits. Therefore, the second and the third

effects partially offset each other and the wealth effect plays a greater role. The price–

dividend ratio increases. Conversely, when ϕ < ρ habit persistence cannot counter the

effects of expected stochastic discounting, and intertemporal substitution motives take the

upper hand. The price–dividends ratio decreases. Note that in the limiting case where

ρ = ϕ (plain dark line in Figure 1) the persistence of dividend growth exactly offsets the

effects of “catching up” and all three effects cancel out. Therefore, just alike the case

of a logarithmic utility function, the price–dividend ratio is constant. The reasoning is

reversed when θ < 1 (see left panel of Figure 1).

It is worth noting that Proposition 1 only establishes the existence of a solution, and does

not guarantee that this solution is bounded. Indeed, the solution for the price–dividend

ratio involves a series which may or may not converge. The next proposition reports

conditions that that guarantee the existence of a stationary bounded equilibrium.

Proposition 2 The series in (10) converges if and only if

r ≡ β

[
(1 − θ)(1 − ϕ)γ +

σ2

2

(
(1 − θ)(1 − ϕ)

1 − ρ

)2
]

< 1

As in Burnside [1998], this proposition shows that, given a 4–uplet (θ, ϕ, ρ, σ), β < 1 is

neither necessary nor sufficient to insure finite asset prices. In particular, the solution may

converge even for β > 1 when agents are highly risk adverse. Furthermore, the greater

the “catching up”, the easier it is for the series to converge. Conversely, β should be lower

as ρ approaches unity.

Related to the convergence of the series is the convergence of the moments of the price–

dividend ratio. The next proposition establishes a condition for the first two moments of

the price–dividend ratio to converge.

Proposition 3 The average and autocovariances of the price–dividend ratio converge to

a finite constant if and only if r < 1.

Proposition 3 extends previous results obtained by Burnside [1998] to the case of “catching

up with the Joneses”. However, the literature has shown that this representation of pref-
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erences fails to account for the persistence of the price–dividend ratio and the dynamics

of asset returns. In the next section we therefore enrich the dynamics of the model.

2 Catching–up with the Joneses and Habit Stock

In this section, we extend the previous framework to a more general habit formation

process. In particular, we allow habits to react only gradually to changes in aggregate

consumption. We provide the closed–form solution for the price–dividend ratio and con-

ditions that guarantee the existence of a stationary bounded equilibrium.

2.1 The Model

We depart from the previous model in that preferences are affected by the entire history

of aggregate consumption per capita rather that the lagged aggregate consumption (see

e.g. Sundaresan [1989], Constantidines [1990], Heaton [1995] or Campbell and Cochrane

[1999] among others). More precisely, the habit level, Vt, takes the form

Vt = Xϕ
t

where Xt is the consumption standard. We assume that the effect of aggregate consump-

tion on the consumption standard vanishes over time at the constant rate δ ∈ (0, 1). More

precisely, the consumption standard, Xt, evolves according to

Xt+1 = C
δ

tX
1−δ
t (12)

Note that this specification departs from the standard habit formation formula usually

encountered in the literature. Nevertheless, in order to provide with some economic

intuition, the evolution of habits (12) may be rewritten as

xt ≡ log(Xt) = δ
∞∑

i=0

(1 − δ)i log(Ct−i−1) (13)

The reference consumption index, Xt, can be viewed as a weighted geometric average of

past realizations of aggregate consumption. Equation (13) shows that (1− δ) governs the

rate at which the influence of past consumption vanishes over time, or, otherwise states

δ governs the persistence of the state variable Xt. Note that in the special case of δ = 1,

we recover the “Catching up with the Joneses” preferences specification studied in the
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previous section. Conversely, setting δ = 0, we retrieve the standard time separable utility

function as habit stock does not respond to changes in consumption anymore.

The representative agent then determines her contingent consumption {Ct}
∞

t=0 and con-

tingent asset holdings {St+1}
∞

t=0 plans by maximizing her intertemporal expected utility

function (1) subject to the budget constraint (2) and taking the law of habit formation

(12) as given.

Agent’s consumption decisions are governed by the following Euler equation:

PtC
−θ
t X

−ϕ(1−θ)
t = βEt(Pt+1 + Dt+1)C

−θ
t+1X

−ϕ(1−θ)
t+1 (14)

which may actually be rewritten in the form of equation (6) as

Et

[
Pt+1 + Dt+1

Pt

× Φt+1

]
× Xt+1 = 1 (15)

where Φt+1 is the stochastic discount factor defined in section 1.1 and Xt+1 ≡ (Xt+1/Xt)
ϕ(θ−1)

accounts for the effect of the persistent “catching up with the Joneses” phenomenon. Note

that as in the previous model, the predetermined variable Xt+1 distorts intertemporal

consumption decisions in a standard time separable model.

2.2 Solution and existence

In equilibrium, we have St = 1 and Ct = Ct = Dt, implying that Xt+1 = Dδ
t X

1−δ
t . As

in the previous section, we assume that the growth rate of dividends follows an AR(1)

process of the form (8). It is then convenient to rewrite equation (14) as

yt = βEt [exp((1 − θ)(1 − ϕ)γt+1 − ϕ(1 − θ)zt+1) + exp((1 − θ)(1 − ϕ)γt+1)yt+1] (16)

where zt = log(Xt/Dt) denotes the (log) habit–dividend ratio and yt = vt exp(−ϕ(1−θ)zt).

This forward looking equation admits the closed form solution reported in the next propo-

sition.

Proposition 4 The equilibrium price-dividend ratio is given by:

vt =
∞∑

i=1

βi exp (ai + bi(γt − γ) + cizt) (17)
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where

ai =(1 − θ)γ
[
(1 − ϕ)i +

ϕ

δ
(1 − (1 − δ)i)

]
+

V

2

bi =(1 − θ)

[
ρ(1 − ϕ)

1 − ρ
(1 − ρi) +

ϕρ

1 − δ − ρ
((1 − δ)i − ρi)

]

ci =ϕ(1 − θ)(1 − (1 − δ)i)

and

V =(1 − θ)2σ2

{(
1 − ϕ

1 − ρ

)2(
i − 2

ρ

1 − ρ
(1 − ρi) +

ρ2

1 − ρ2
(1 − ρ2i)

)

+ 2
ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)

(
(1 − δ)

δ
(1 − (1 − δ)i) −

ρ

1 − ρ
(1 − ρi) −

ρ(1 − δ)

1 − ρ(1 − δ)
(1 − (ρ(1 − δ))i)

+
ρ2

1 − ρ2
(1 − ρ2i)

)
+

ϕ2

(1 − δ − ρ)2

(
(1 − δ)2

1 − (1 − δ)2
(1 − (1 − δ)2i) − 2

ρ(1 − δ)

1 − ρ(1 − δ)
(1 − (ρ(1 − δ))i)

+
ρ2

1 − ρ2
(1 − ρ2i)

)}

This solution obviously nests the pricing formula obtained in the previous model. Indeed,

setting δ = 1, we recover the solution reported in proposition 1. As shown in section 1.2,

the form of the solution essentially depends on the position of the curvature parameter, θ,

around 1 and the position of the habit persistence parameter, ϕ, around the persistence of

the shock, ρ. In the generalized model, things are more complicated as the position of the

persistence of habits, 1−δ, around ϕ and ρ is also key to determine the form of the solution

as reflected in the form of the coefficient bi. Nevertheless, expression (17) illustrates two

important properties of our model. First, the price–dividend ratio is function of two state

variables: the growth rate of dividends γt and the habit–dividend ratio zt. This feature

is of particular interest as the law of motion of zt is given by

zt+1 = (1 − δ)zt − γt+1 (18)

Therefore, zt is highly serially correlated for low values of δ, and the price–dividend ratio

inherits part of this persistence. A second feature of this solution is that any change in

the rate of growth of dividend exerts two effects on the price–dividend ratio. A first direct

effect transits through its standard effect on the capital income of the household and is

reflected in the term bi. A second effect transits through its effect on the habit–dividend

ratio. This second effect may be either negative or positive depending on the position

of θ with regard to 1 and the form of ci. This implies that there is room for pro– or
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counter–cyclical variations in the dividend–price ratio. This is critical for the analysis of

predictability in stock returns as section 3.3 will make clear. Finally, note that as soon as

δ < 1, the price–dividend ratio will be persistent even in the case when the rate of growth

of dividends is iid (ρ = 0) (see the expression for ci).

As the solution for the price–dividend ratio involves a series, the next proposition deter-

mines conditions that guarantee the existence of a stationary bounded equilibrium.

Proposition 5 The series in (17) converges if and only if

r ≡ β exp

[
(1 − θ)(1 − ϕ)γ +

σ2

2

(
(1 − θ)(1 − ϕ)

1 − ρ

)2
]

< 1

It is worth noting that the result reported in proposition 5 is the same as in proposition

2. Hence, the conditions for the existence of a stationary bounded equilibrium are not

altered by this more general specification of habit formation. From a technical point of

view, this result stems from the geometrical lag structure of habit stock, which implies

strict homotheticity of the utility function with respect to habit. From an economic point

of view this reflects that habit formation essentially affects the transition dynamics of the

model while leaving unaffected the long run properties of the economy.

Just like in the previous model, it is possible to establish the convergence of the first two

moments of the price–dividend ratio.

Proposition 6 The average and the autocovariances of the price–dividend ratio converge

to a constant if and only if r < 1.

Propositions 5 and 6 provide us with a set of restrictions on the deep and forcing para-

meters of the economy, which can be used to guarantee the relevance of our quantitative

evaluation of the models.

3 Quantitative Evaluation

This section investigates the ability of the model to account for the high positive auto-

correlation of the price–dividend ratio we usually find on aggregate data. We then gauge

the ability of the model to account for predictability of stock returns.
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3.1 Parametrization

The model is parameterized on US postwar annual data running from 1947 to 1995. Data

are borrowed from Campbell [1999].5 The values of the parameters are reported in Table

1.

Table 1: Calibration

Parameter Value
Forcing Variable (γt)

Mean of dividend growth γ 0.022
Standard deviation of dividend growth σ2 0.122
Persistent parameter of dividend process ρ -0.219

Stochastic Discount Factor (Φt+1)
Curvature θ 1.500
Constant discount factor β 0.950

Habit Formation (Ct,Xt+1)
Habit persistence parameter ϕ [0,1]
Depreciation rate of habits δ [0.05,1]

The parameters characterizing the exogenous stochastic process for real dividend growth

are obtained by fitting an AR(1) process to the data.6 The estimated value for the

persistence parameter, ρ, is -0.219, and the standard deviation of the innovations is 0.122.

The average annual rate of growth of dividend, γ, is estimated to 2.23%.

The two parameters defining the properties of the stochastic discount factor, β and θ, are

set in reference to previous studies. The parameter of risk aversion, θ, is set to 1.5. The

household is assumed to discount the future with a psychological interest rate of 5% per

year, implying β = 0.95.

The parameters defining habit persistence remain to be set. The habit persistence para-

meter, ϕ, takes on values ranging from 0 to 1. We first investigate the standard case of

time separable utility function, which corresponds to ϕ = 0. We also investigate Abel’s

[1990] case where ϕ is set to 1, implying that utility is determined in equilibrium by

aggregate consumption growth. Likewise, we consider several situations regarding the

value of the depreciation rate, δ, of the consumption standard. We first set its value to 1,

5Data can be downloaded from http://kuznets.fas.harvard.edu/ campbell/data.html.
6Whenever nominal quantities have to be converted into real ones, we use the consumption deflator

defined in Grossman and Shiller [1981].
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therefore focusing on the simple “catching up with the Joneses” model. We then explic-

itly consider the situation of a habit stock, by allowing δ to take on values below unity.

In particular, we will set δ = 0.05, which implies that the effect of current consumption

on the consumption standard vanishes at an annual rate of 5%. We will also consider

intermediate situations.

The model is simulated using the closed form solution. Since it involves an infinite series,

we truncated the infinite sum at a long enough horizon (5000 periods) to guarantee that

adding additional terms would not improve convergence. For each simulation, 1000 draws

are generated.

3.2 A preliminary investigation

This section assesses the quantitative ability of the model to account for a set of standard

unconditional moments characterizing the dynamics of the risk free rate, stock returns,

excess returns and the price–dividend ratio. In order to provide with an understanding

of the main results, we begin by reporting the impulse response analysis of the model in

face a positive shock on dividend growth. Figure 2 reports the impulse response function

(IRF) of aggregate consumption, habits, excess returns and the price–dividend ratio to

a standard deviation shock on dividend growth. The upper panel reports IRFs when

dividend growth is iid while the lower panel reports them imposing the estimated process.

Three cases are under investigation: (i) the time separable utility function (TS), (ii) the

“catching up with the Joneses” (CJ) and (iii) habit stock (HS).

Let us first consider the time separable case (TS). In order to provide a better understand-

ing of the internal mechanisms of the model, it is useful to first investigate the iid case.

In this situation, a one standard deviation positive shock on dividend growth translates

in an increase in the permanent income of the agent. Therefore, the permanent income

hypothesis underlying this model implies that consumption jumps to its new steady state

value on impact. Since the utility function is time separable and dividend growth is iid,

the discount factor Φt+1 is left unaffected by the shock. Therefore, asset prices react one

for one with dividends. The price/dividend ratio is left unaffected. Likewise, since the

excess return is a function of the discount factor, the shock exerts no effect on its dy-

namics. As soon as the iid hypothesis is relaxed (see lower panel), stock returns and the

price–dividend ratio do react. Indeed, when ρ is set at its empirical value (ρ = −0.219),

a current increase in dividend growth is followed by a decrease in the next period. This
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Figure 2: Impulse response functions
(a) iid case (ρ = 0)
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(b) estimated case (ρ = −0.219)
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Note: TS: time separable preferences (ϕ = 0), CJ: Catching up with the Joneses prefer-
ences (ϕ = 1 and δ = 1), HS: habit stock specifications (ϕ = 1 and δ = 0.05)
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implies that the initial rise in consumption is followed by a relative drop. Hence, the mar-

ginal utility of future consumption increases and so does the discount factor. Therefore, as

θ > 1, this effect takes the upper hand over the wealth effect and the price/dividend ratio

raises. Note however that this effect reverses in the next period and so on. Therefore,

given the value for ρ the price–dividend ratio quickly goes back to its steady state level.

Since the risk free rate is solely determined by the expected stochastic discount factor, it

reacts to a larger extent than the risky rate which includes a wealth effect that counters

the stochastic discount factor. Hence, the excess return drops on impact.

Bringing the “Catching up with the Joneses” phenomenon into the story barely affects the

main conclusions. Indeed, the behavior of the price–dividend ratio and excess return differ

very little on impact. Note that the consumption path is not affected by this assumption

since it is exogenous. The only major difference arises on utility and asset prices which

are affected in equilibrium by force of habit. Consider once again the iid case. The main

mechanisms at work in the aftermaths of the shock on dividends are the same as in the

TS version of the model. The only difference arises on impact because the habit term, Ct,

shift at the time of the shock and goes back to its steady state level in the next period.

Therefore, the price dividend ratio jumps on impact and goes back to its steady state

level in the second period. When the shock is not iid, the negative serial correlation of

the shock shows up in the dynamics of asset prices and excess return, just as in the TS

case.

In the habit stock version of the model asset prices and stock returns are largely affected.

The sign of the effect is the same as in the previous versions but both its size and persis-

tence is magnified. Indeed, as shown in Figure 2, the initial increase in dividends leads to

a very persistent increase in habits even when dividend growth is iid.7 A direct implica-

tion of this is that the effects of habits (Xt+1) on the Euler equation is long lasting. This

long lasting effect shows up in the evolution of the price–dividend ratio that essentially

inherits the persistence of habits in the iid case and is much more responsive. Henceforth

stock returns are also more persistent. Simulating the model using the estimated process

essentially calls for similar comments to the two previous versions of the model.

The preceding discussion has important consequences for the quantitative properties of

the model in terms of unconditional moments. Table 2 reports the mean and the standard

deviation of the risk free rate, stock return, risk premium and the price–dividend ratio

7This persistence originates in the low depreciation rate of habits, δ = 0.05.
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for the data for the three versions of the model. As expected, the return on risky assets

Table 2: Unconditional Moments

Variables Data TS CJ HS
Mean St Dev Mean St Dev Mean St Dev Mean St Dev

rf 1.45 2.63 6.82 4.08 5.71 10.30 5.75 4.56
r 9.34 16.60 8.33 13.80 7.35 20.74 7.36 16.37
r − rf 7.89 16.08 1.51 17.87 1.63 30.74 1.60 20.55
p − d 3.20 0.28 2.76 0.01 2.95 0.06 2.96 0.15

Note: TS: time separable preferences (ϕ = 0), CJ: Catching up with the Joneses preferences
(ϕ = 1 and δ = 1), HS: habit stock specifications (ϕ = 1 and δ = 0.05)

(r) is larger return than the return on risk free assets (rf ), implying the existence of an

equity premium (r − rf ) of about 7.9% per year. As well–known and expected (in the

case of habit ratio), the model is not capable to deliver a satisfactory equity premium.

For instance, the average equity premium is low in the time separable model, 1.5%, and

only rises to 1.6% for each version of the habit persistence model. It is however worth

noting that the habit stock version of the model is able to match the volatility of risky

returns. The habit stock model essentially outperforms the other models in terms of price

dividend ratio. First of all, the model can deliver a large average of the price–dividend

ratio (2.96%) compared to the time separable model (2.76%). Second, the model can

account for the high volatility of the price dividend ratio. The time separable version of

the model generates very low volatility (0.01) as the IRF analysis has suggested. The

catching up with the Joneses model delivers a slightly higher volatility (0.06). The habit

stock model generates a volatility of about 0.15, 15 times that in the time separable model

(see IRFs).

The major improvements are found in the ability of the model to match serial correla-

tion of the price–dividend ratio (see Table 3). Historical data show large positive serial

correlation. For instance, the first order autocorrelation is 0.88 in the data. The time

separable model totally fails to account for such large and positive persistence, as the

autocorrelation is negative at order 1 (-0.23) and is essentially 0 at higher orders. This

in fact reflects the persistence of the exogenous forcing variable as it possesses very weak

internal propagation mechanism. The “catching up with the Joneses” model partially

corrects this failure at the first order, as this autocorrelation is almost 0. The habit stock

model performs remarkably well at the first order as it generates the exact autocorrela-
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Table 3: Serial Correlation in Price–Dividend ratio

Order 1 2 3 5 7
Data 0.88 0.76 0.71 0.40 0.05
TS -0.24 0.03 -0.02 -0.01 -0.01
CJ -0.02 -0.02 -0.02 -0.01 -0.02
HS 0.88 0.85 0.80 0.72 0.65

Note: TS: time separable preferences (ϕ = 0), CJ:
Catching up with the Joneses preferences (ϕ = 1
and δ = 1), HS: habit stock specifications (ϕ = 1
and δ = 0.05)

tion. The model actually generates very high persistence, as it remains above 0.70 at the

fifth order. This ability to generate high serial correlation in the price–dividend ratio is an

important feature, as it reveals the ability of the model to account for the predictability

of excess return. We now examine this issue.

3.3 Long horizon predictability

Over the last 20 years the empirical literature on asset prices has reported evidence

suggesting that stock returns are indeed predictable. For instance, Campbell and Shiller

[1987] or Fama and French [1988], among others, have shown that excess returns can be

predicted by financial indicators including the price–dividend ratio or earnings to dividend

ratios. The empirical evidence also shows that the predictive power of these financial

indicators is greater when excess returns are measured over long horizons. This finding

suggests that predictability is strongly related to the persistence problem. Therefore, it

is not surprising to find that asset pricing models generating low persistence, such as the

time separable CPAM model, cannot account for this stylized fact. In this section we

investigate the ability of the model with habit stock to replicate predictability.

Table 4 is adapted from Fama and French [1988] and reports predictability tests on both

historical and theoretical data. More precisely, we ran regressions of the (log) excess

return on the (log) price–dividend ratio evaluated at several lags (up to 7 lags)

log(Rt/Rft) = ak + bk log(Pt−k/Dt−k) + uk
t

The table reports the coefficient, bk, of the regression measuring the relationship between

excess return and lagged price–dividend ratio and the R2 of the regression measuring
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Table 4: Predictability

Horizon (Years) 1 2 3 5 7
Data b -0.25 -0.42 -0.54 -0.92 -1.31

R2 0.18 0.28 0.38 0.55 0.66
Time–separable

b -4.63 -3.82 -4.30 -4.53 -5.00
R2 0.01 0.06 0.06 0.05 0.05

ϕ Catching up with the Joneses
0.1 b -1.51 -1.99 -2.53 -3.25 -4.32

R2 0.02 0.02 0.02 0.02 0.03
0.5 b -1.13 -1.25 -1.38 -1.54 -1.80

R2 0.05 0.04 0.04 0.04 0.05
0.9 b -1.09 -1.16 -1.25 -1.35 -1.52

R2 0.08 0.07 0.06 0.06 0.06
1 b -1.09 -1.15 -1.23 -1.33 -1.48

R2 0.08 0.07 0.07 0.06 0.07
(ϕ, δ) Habit Stock

(0.1,0.9) b -3.67 -3.05 -3.42 -3.59 -3.95
R2 0.11 0.07 0.07 0.06 0.06

(0.1,0.5) b -3.59 -3.09 -3.52 -3.80 -4.26
R2 0.11 0.07 0.07 0.06 0.07

(0.1,0.05) b -3.13 -3.01 -3.61 -4.30 -5.08
R2 0.09 0.07 0.08 0.10 0.12

(0.5,0.9) b -2.39 -2.01 -2.23 -2.32 -2.52
R2 0.14 0.09 0.09 0.08 0.08

(0.5,0.5) b -1.80 -1.77 -2.04 -2.26 -2.56
R2 0.10 0.08 0.08 0.08 0.09

(0.5,0.05) b -0.99 -1.17 -1.51 -1.99 -2.48
R2 0.05 0.07 0.09 0.13 0.18

(1,0.9) b -1.95 -1.66 -1.82 -1.88 -2.02
R2 0.17 0.11 0.11 0.09 0.09

(1,0.5) b -1.29 -1.28 -1.48 -1.65 -1.87
R2 0.10 0.08 0.09 0.09 0.11

(1,0.05) b -0.46 -0.60 -0.79 -1.09 -1.37
R2 0.04 0.06 0.09 0.14 0.19
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the predictability of excess returns. The first line of the table reports empirical results

obtained from historical data. Excess returns are negatively related to the price–dividend

ratio whatever the horizon. The data also suggest that the larger the horizon, the larger

the magnitude of this relationship. For instance, when the lagged price–dividend ratio is

used to predict excess returns, the coefficient is -0.25, while the coefficient is multiplied by

around 5 and rises to -1.31 when 7 lags are considered. In other words, the price–dividend

ratio accounts for greater volatility at longer horizons. A second worth noting fact is that

the foreseeability of the price–dividend ratio is increasing with horizon as the R2 of the

regression increases with the lag horizon. For instance, the 1 year predictability regression

indicates that the price–dividend ratio accounts for 18% of the overall volatility of the

excess return. This share rises to 65% at the 7 years horizon.

The time separable model (TS) fails to account for predictability. The regression coeffi-

cient, b, remains almost constant with lags and the R2 is essentially 0 whatever the hori-

zon. This should come as no surprise as the impulse response analysis showed that while

the price–dividend ratio responds very little and monotonically to a shock on dividend

growth, excess returns are more responsive and display oscillations. A first implication of

the little responsiveness of the price–dividend ratio is that the model largely overestimates

the coefficient b in the regression (around -5). A second implication is its tiny predictive

power, as the R2 is 0.

As the IRF analysis has shown the “catching up with the Joneses” model possesses slightly

stronger propagation mechanisms that may enhance its ability to account for predictabil-

ity. In the third set of results of Table 4, we report predictability tests for this version of

the model for several values of the habit persistence parameter ϕ. The first striking result

is that allowing for “catching up” indeed improves the predictive power of the model, as

the b coefficient of the regression is much closer to that found in the data, at least at low

horizon. For instance, when ϕ = 0.1 — low habit persistence — the coefficient b at horizon

1 drops to -1.51, to be compared with -4.63 in the time separable model. But it should

be noted that as the horizon increases b increases dramatically in absolute value, reaching

a value close to the TS model at the 7 years horizon. Hence, although the “catching up”

model generates greater persistence, it is not enough to account for predictability for low

values of ϕ. In other words, predictability comes with persistence. As the habit parameter

increases the results get better. Setting ϕ = 1 as in Abel [1990], the model generates a b

coefficient much closer to empirical evidence. For instance, for an horizon of 1 year, the

model generates b = −1.09, which remains too large relative to the empirical evidence. As
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the horizon increases, b comes closer to the data. For instance, at the 7 years horizon, the

model leads to a value for b of -1.48 when the data suggest a value of -1.31. But it should

be noted that the associated R2 of the regression is, once again, essentially 0. In other

words, while adding “catching up with the Joneses” magnifies the persistence properties

of the CCAPM, it is not sufficient to solve the predictability puzzle. In the last series

Figure 3: IRF and Predictability
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of results, we consider the habit stock version of the model and report results for several

pairs of (ϕ, δ). These results clearly show that combining a “catching up” model with

habit stock enhances the ability of the CCAPM to account for predictability, therefore

highlighting the role of persistence in generating the results. For instance, setting ϕ to

a low value (0.1), a decrease in the depreciation rate of habits (δ) leads to a decrease in

the magnitude of b in absolute value and magnifies the gap between the b at short and

long horizons. Likewise it increases the R2 of the regression at longer horizons. Setting

ϕ = 1 as in Abel [1990] and δ = 0.05, we almost recover the predictability found in the

data. For example, b at horizon 1 is -0.46 in the model to be compared with -0.25 in
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the data (recall that the corresponding value in the TS model was -4.63). At the 7 years

horizon b is -1.38 in the model and -1.31 in the data. The model therefore successfully

matches the predictability results as far as b is concerned. These results are not surpris-

ing and could have been inferred from the IRF analysis. For instance, in Figure 3, we

plot the IRF of excess return versus that of lagged price/dividend ratio. Following an

increase in dividends, the price dividend ratio rises while excess return drops on impact.

The internal persistence generated by the model then makes the negative relationship

persistent at various lags, therefore replicating predictability. Also note that neither the

time separable nor the simple “catching up” model produce persistent enough negative

relationship between the two prices. Results are less satisfactory although encouraging in

terms of R2. Indeed, the model can capture the evolution of R2 with the horizon but its

values remains much too low. For instance, the predictive power of the price/dividend

ratio at the 7 years horizons amounts to 20% in the model when it reaches 66% in the

data.

These predictability results establish that the habit stock model does a pretty good job

in explaining stock returns. But they also highlight that this success is largely related to

the stronger propagation mechanisms at work in this model — in particular in terms of

persistence.

4 Concluding Remarks

This paper investigates the persistence and predictability properties of the standard con-

sumption based asset pricing model à la Lucas [1978], when the model takes “catching

up with the Joneses” and habit stock formation into account. Providing we keep with

the assumption of first order Gaussian endowment growth and formulate habit formation

in terms of ratio, we are able to provide a closed form solution for the price–dividend

ratio. We also provide conditions that guarantee the existence of bounded solutions. We

then assess the performance of the model in terms of moment matching. In particular,

we study the ability of the model to generate persistence and explain the predictability

puzzle. We then show that because it possesses strong persistence properties, the habit

stock model can solve the puzzle. In contrast, the standard time separable model and the

simple “catching up” model fail to account for predictability of asset prices.
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A Proof of Propositions

Proposition 1: See proof of Proposition 4

Proposition 2: See proof of Proposition 5

Proposition 3: See proof of Proposition 6

Proposition 4: First of all note that setting δ = 1 in this proof, we obtain a proof for Proposition
1. Let us denote vt = Pt/Dt the price–dividend ratio, and zt = log(Xt/Dt) the habit to dividend ratio.
Finally, letting yt = vt exp(−ϕ(1 − θ)zt), the agent’s Euler equation rewrites

yt = βEt [exp((1 − θ)(1 − ϕ)γt+1 − ϕ(1 − θ)zt+1) + exp((1 − θ)(1 − ϕ)γt+1)yt+1]

Iterating forward, and imposing the transversality condition, a solution to this forward looking stochastic
difference equation is given by

yt = Et

∞∑

i=1

βi exp


(1 − θ)(1 − ϕ)

i∑

j=1

γt+j − ϕ(1 − θ)zt+i


 (19)

Note that, the definition of zt and the law of motion of habits imply that zt evolves as

zt+1 = (1 − δ)zt − γt+1 (20)

which implies that

zt+i = (1 − δ)izt −

i−1∑

j=0

(1 − δ)jγt+i−j (21)

Plugging the latter result in (19), we get

yt = Et

∞∑

i=1

βi exp


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

)
γt+j − ϕ(1 − θ)(1 − δ)izt




Let us focus on the particular component of the solution

G ≡ Et exp


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

)
γt+j




Since we assumed that dividend growth is normally distributed, making use of standard results on log–
normal distributions, we have that

G = exp

(
E +

V

2

)

where

E = Et


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

)
γt+j




and

V = Vart


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

)
γt+j
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Since γt follows an AR(1) process, we have

γt+j = γ + ρj(γt − γ) +

j−1∑

k=0

ρkεt+j−k

such that

E =Et


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

)
(

γ + ρj(γt − γ) +

j−1∑

k=0

ρkεt+j−k

)


=


(1 − θ)

i∑

j=1

(
(1 − ϕ) + ϕ(1 − δ)i−j

) (
γ + ρj(γt − γ)

)



=(1 − θ)(1 − ϕ)

i∑

j=1

(
γ + ρj(γt − γ)

)
+ (1 − θ)ϕ

i∑

j=1

(1 − δ)i−j
(
γ + ρj(γt − γ)

)

=(1 − θ)γ
[
(1 − ϕ)i +

ϕ

δ
(1 − (1 − δ)i)

]
+ (1 − θ)

[
ρ(1 − ϕ)

1 − ρ
(1 − ρi) +

ϕρ

1 − δ − ρ
((1 − δ)i − ρi)

]
(γt − γ)

The calculation of the conditional variance is a bit more tedious.

V =Vart


(1 − θ)

i∑

j=1

(
1 − ϕ + ϕ(1 − δ)i−j

) j−1∑

k=0

ρkεt+j−k




which after some accounting rewrites as

=Vart


(1 − θ)

i−1∑

j=0

(
1 − ϕ

1 − ρ
(1 − ρi−j) +

ϕ

1 − δ − ρ
((1 − δ)i−j − ρi−j)

)
εt+j+1




=(1 − θ)2σ2
i−1∑

j=0

(
1 − ϕ

1 − ρ
(1 − ρi−j) +

ϕ

1 − δ − ρ
((1 − δ)i−j − ρi−j)

)2

=(1 − θ)2σ2

[(
1 − ϕ

1 − ρ

)2 i∑

k=1

(1 − ρk)2 + 2
ϕ(1 − δ)

(1 − ρ)(1 − δ − ρ)

i∑

k=1

(1 − ρk)((1 − δ)k − ρk)

+

(
ϕ

1 − δ − ρ

)2 i∑

k=1

((1 − δ)k − ρk)2

]

Calculating all the infinite series, we end–up with

V =(1 − θ)2σ2

{(
1 − ϕ

1 − ρ

)2(
i − 2

ρ

1 − ρ
(1 − ρi) +

ρ2

1 − ρ2
(1 − ρ2i)

)

+ 2
ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)

(
(1 − δ)

δ
(1 − (1 − δ)i) −

ρ

1 − ρ
(1 − ρi) −

ρ(1 − δ)

1 − ρ(1 − δ)
(1 − (ρ(1 − δ))i)

+
ρ2

1 − ρ2
(1 − ρ2i)

)
+

ϕ2

(1 − δ − ρ)2

(
(1 − δ)2

1 − (1 − δ)2
(1 − (1 − δ)2i) − 2

ρ(1 − δ)

1 − ρ(1 − δ)
(1 − (ρ(1 − δ))i)

+
ρ2

1 − ρ2
(1 − ρ2i)

)}

Therefore, the solution is given by

yt =

∞∑

i=1

βi exp (ai + bi(γt − γ) + c̃izt)
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where

ai =(1 − θ)γ
[
(1 − ϕ)i +

ϕ

δ
(1 − (1 − δ)i)

]
+

V

2

bi =(1 − θ)

[
ρ(1 − ϕ)

1 − ρ
(1 − ρi) +

ϕρ

1 − δ − ρ
((1 − δ)i − ρi)

]

c̃i = − ϕ(1 − θ)(1 − δ)i

recall that yt = vt exp(−ϕ(1 − θ)zt), such that the price–dividend ratio is finally given by

vt = exp(ϕ(1 − θ)zt)

∞∑

i=1

βi exp (ai + bi(γt − γ) + c̃izt)

or

vt =
∞∑

i=1

βi exp (ai + bi(γt − γ) + cizt)

where ci = ϕ(1 − θ)(1 − (1 − δ)i).

Proposition 5: First of all note that setting δ = 1 in this proof, we obtain a proof for Proposition
2. Let us define

wi = βi exp(ai + bi(γt − γ) + cizt)

where ai, bi and ci are obtained from the previous proposition. Then, the price–dividend ratio rewrites

vt =
∞∑

i=1

wi

It follows that ∣∣∣∣
wi+1

wi

∣∣∣∣ = β exp(∆ai+1 + ∆bi+1(γt − γ) + ∆ci+1zt)

where

∆ai+1 =(1 − θ)γ
[
(1 − ϕ) + ϕ(1 − δ)i

]
+ (1 − θ)2

σ2

2

{(
1 − ϕ

1 − ρ

)2 (
1 − 2ρi+1 + ρ2(i+1))

)

+ 2
ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)

(
(1 − δ)i+1 − ρi+1 − (ρ(1 − δ))i+1 + ρ2(i+1)

)

+
ϕ2

(1 − δ − ρ)2

(
(1 − δ)2(i+1) − 2(ρ(1 − δ))i+1 + ρ2(i+1)

)}

∆bi+1 =(1 − θ)

[
(1 − ϕ)ρi+1 −

ϕρ

1 − δ − ρ
((1 − ρ)ρi − δ(1 − δ)i)

]

∆ci+1 =ϕ(1 − θ)δ(1 − δ)i

Also note that provided |ρ| < 1 and δ ∈ (0, 1), we have

lim
i→∞

∆ai+1 = (1 − θ)γ(1 − ϕ) + (1 − θ)2
σ2

2

(
1 − ϕ

1 − ρ

)2

lim
i→∞

∆bi+1(γt − γ) = 0

lim
i→∞

∆ci+1zt = 0

Therefore

lim
i→∞

∣∣∣∣
wi+1

wi

∣∣∣∣ = r ≡ β exp

(
(1 − θ)γ(1 − ϕ) + (1 − θ)2

σ2

2

(
1 − ϕ

1 − ρ

)2
)

Using the ratio test, we now face three situations:
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i) When r < 1, then limi→∞

∣∣∣wi+1

wi

∣∣∣ < 1 and the ratio test implies that
∑

∞

i=1 wi converges.

ii) When r > 1, the ratio test implies that
∑

∞

i=1 wi diverges.

iii) When r = 1, the ratio test is inconclusive. But, if r = 1, we know that

exp

(
(1 − θ)(1 − ϕ)γ +

(
(1 − θ)(1 − ϕ)

1 − ρ

)2
σ2

2

)
=

1

β

and the parameter ai rewrites

ai =

(
(1 − θ)(1 − ϕ)γ +

(
(1 − θ)(1 − ϕ)

1 − ρ

)2
σ2

2

)
i

+

(
1 − θ

1 − ρ

)2
σ2

2

[
(ρ − ϕ)2

1 − ρ2
(1 − ρ2i) − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi)

]

= − log(β)i +

(
1 − θ

1 − ρ

)2
σ2

2

[
(ρ − ϕ)2

1 − ρ2
(1 − ρ2i) − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi)

]

After replacement in wi, we get:

wi = exp(ãi + bi(γt − γ) + cizt)

where

ãi =

(
1 − θ

1 − ρ

)2
σ2

2

[
(ρ − ϕ)2

1 − ρ2
(1 − ρ2i) − 2

(1 − ϕ)(ρ − ϕ)

1 − ρ
(1 − ρi)

]

Since limi→∞ |ãi| =

∣∣∣∣
(

1−θ
1−ρ

)2
σ2

2

[
(ρ−ϕ)2

1−ρ2 − 2 (1−ϕ)(ρ−ϕ)
1−ρ

]∣∣∣∣ > 0, then the series vt =
∑

∞

i=1 wi di-

verges.

Therefore, r < 1 is the only situation where a stationary bounded equilibrium exists.

Proposition 6: First of all note that setting δ = 1 in this proof, we obtain a proof for Proposition
3. We first deal with the average of the price/dividend ratio. We want to compute

E(vt) = E

(
∞∑

i=1

βi exp(ai + bi(γt − γ) + cizt

)
=

∞∑

i=1

βiE (exp(ai + bi(γt − γ) + cizt)

By the log–normality of γt, we know that

E (exp(ai + bi(γt − γ) + cizt) = exp

(
Ei +

Vi

2

)

where

Ei = E(ai + bi(γt − γ) + cizt) = ai + ciE(zt)

and

Vi = V ar(ai + bi(γt − γ) + cizt) = b2
i

σ2

1 − ρ2
+ c2

i Var(zt) + 2cibiCov(zt, γt)

Recall that zt = (1 − δ)zt−1 − γt, therefore

E(zt) = −
γ

δ
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and
Cov(zt, γt) = Cov((1 − δ)zt−1 − γt, γt) = (1 − δ)ρCov(zt−1, γt−1) − Var(γt)

Hence

Cov(zt, γt) = −
σ2

(1 − ρ(1 − δ))(1 − ρ2)

Furthermore, we know that

Var(zt) = (1 − δ)2Var(zt) + Var(γt) − 2(1 − δ)Cov(zt−1, γt)

=
σ2

(1 − ρ2)(1 − (1 − δ)2)

[
1 + ρ(1 − δ)

1 − ρ(1 − δ)

]

Therefore

Vi = b2
i

σ2

1 − ρ2
+ c2

i

σ2

(1 − ρ2)(1 − (1 − δ)2)

[
1 + ρ(1 − δ)

1 − ρ(1 − δ)

]
− 2cibi

σ2

(1 − ρ(1 − δ))(1 − ρ2)

Hence we have to study the convergence of the series

∞∑

i=1

βi exp

(
ai − ci

γ

δ
+

σ2

2(1 − ρ2)

(
b2
i +

1 + ρ(1 − δ)

(1 − ρ(1 − δ))(1 − (1 − δ)2)
c2
i −

2bici

1 − ρ(1 − δ)

))

Defining

wi = βi exp

(
ai − ci

γ

δ
+

σ2

2(1 − ρ2)

(
b2
i +

1 + ρ(1 − δ)

(1 − ρ(1 − δ))(1 − (1 − δ)2)
c2
i −

2bici

1 − ρ(1 − δ)

))

the series rewrites
∑

∞

i=1 wi, whose convergence properties can be studied relying on the ratio test.
∣∣∣∣
wi+1

wi

∣∣∣∣ = β exp

(
∆ai+1 − ∆ci+1

γ

δ
+

σ2

2(1 − ρ2)

(
∆b2

i+1 +
1 + ρ(1 − δ)

(1 − ρ(1 − δ))(1 − (1 − δ)2)
∆c2

i+1 −
2∆(bi+1ci+1)

1 − ρ(1 − δ)

))

Given the previously given definition of ai, bi and ci, we have

∆ai+1 =(1 − θ)γ
[
(1 − ϕ) + ϕ(1 − δ)i

]
+ (1 − θ)2

σ2

2

{(
1 − ϕ

1 − ρ

)2 (
1 − 2ρi+1 + ρ2(i+1)

)

+ 2
ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)

(
(1 − δ)i+1 − ρi+1 − (ρ(1 − δ))i+1 + ρ2(i+1)

)

+
ϕ2

(1 − δ − ρ)2

(
(1 − δ)2(i+1) − 2(ρ(1 − δ))i+1 + ρ2(i+1)

)}

∆b2
i+1 =(1 − θ)2

[(
ρ(1 − ϕ)

1 − ρ

)2

(2ρi(1 − ρ) − ρ2i(1 − ρ2))

+

(
ϕρ

1 − δ − ρ

)2 (
2(ρ(1 − δ))i(1 − ρ(1 − δ)) − (1 − δ)2(1 − (1 − δ)2) − ρ2i(1 − ρ2)

)

+
2ρ2ϕ(1 − δ)

(1 − ρ)(1 − δ − ρ)

(
ρi(1 − ρ) − δ(1 − δ)i + (ρ(1 − δ))i(1 − ρ(1 − δ)) − ρ2i(1 − ρ2)

)
]

∆c2
i+1 =(ϕ(1 − θ))2(2δ(1 − δ)i − (1 − δ)2i(1 − (1 − δ)2))

∆(bici) =ϕ(1 − θ)2

[
(1 − ϕ)ρi+1 +

ϕρ

1 − δ − ρ

(
ρi(1 − ρ) − δ(1 − δ)i

)

−
ρ(1 − ϕ)

1 − ρ

(
ρi(1 − ρ) + δ(1 − δ)i − (ρ(1 − δ))i(1 − ρ(1 − δ))

)

−
ϕρ

1 − δ − ρ

(
(ρ(1 − δ))i(1 − ρ(1 − δ)) − (1 − δ)2i(1 − (1 − δ)2)

)
]
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Then note that

lim
i→∞

∆ai+1 = (1 − θ)γ(1 − ϕ) + (1 − θ)2
σ2

2

(
1 − ϕ

1 − ρ

)2

lim
i→∞

∆ci+1 = 0

lim
i→∞

∆b2
i+1 = 0

lim
i→∞

∆c2
i+1 = 0

lim
i→∞

∆(bi+1ci+1) = 0

This implies that

lim
i→∞

∣∣∣∣
wi+1

wi

∣∣∣∣ = (1 − θ)γ(1 − ϕ) + (1 − θ)2
σ2

2

(
1 − δ

1 − ρ

)2

≡ r

Therefore, following proposition 5, the average of the price–dividend ratio converges to a constant if and
only if r < 1.

We now examine the autocovariances of the ratio. As just proven, the price–dividend ratio is finite for
r < 1. Therefore, it is sufficient to show that E(vtvt−k) is finite for all k. The idea here is to provide an
upper bound for this quantity. If the process is stationary it has to be the case that E(vtvt−k) 6 E(v2

t ).

We want to compute

E(v2
t ) = E




∞∑

i=1

∞∑

j=1

βi+j exp((ai + aj) + (bi + bj)(γt − γ) + (ci + cj)zt




=
∞∑

i=1

∞∑

j=1

βi+j
E (exp((ai + aj) + (bi + bj)(γt − γ) + (ci + cj)zt)

By the log–normality of γt, we know that

E (exp((ai + aj) + (bi + bj)(γt − γ) + (ci + cj)zt) = exp

(
Ei,j +

Vi,j

2

)

where

Ei,j = E(ai + aj + (bi + bj)(γt − γ) + (ci + cj)zt) = ai + aj + (ci + cj)E(zt)

and

Vi = Var(ai + aj + (bi + bj)(γt − γ) + (ci + cj)zt)

= (bi + bj)
σ2

1 − ρ2
+ (ci + cj)Var(zt) + 2(bi + bj)(ci + cj)Cov(zt, γt)

From the first part of the proof, we know that

E(zt) = −
γ

δ

Cov(zt, γt) = −
σ2

(1 − ρ(1 − δ))(1 − ρ2)

Var(zt) =
σ2

(1 − ρ2)(1 − (1 − δ)2)

[
1 + ρ(1 − δ)

1 − ρ(1 − δ)

]
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Using the definition of ak, bk and ck, k = i, j, it is straightforward — although tedious — to show that

Ei,j =

[
(1 − θ)(1 − ϕ)γ +

(
1 − θ

1 − ρ

)2
σ2

2
(1 − ϕ)2

]
(i + j) + (1 − θ)2

σ2

2
Ψij

where

Ψij ≡
ρ2

1 − ρ2

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)2 (
2 − ρ2i − ρ2j

)
+

ϕ2(1 − δ)2

(1 − δ − ρ)(1 − (1 − δ)2)
(2 − (1 − δ)2i − (1 − δ)2j)

−
2ρϕ(1 − δ)

(1 − ρ(1 − δ))(1 − δ − ρ)

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)
(2 − (ρ(1 − δ))i − (ρ(1 − δ))j)

− 2
ρ

1 − ρ

1 − ϕ

1 − ρ

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)
(2 − ρi − ρj) + 2

1 − δ

δ

ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)
(2 − (1 − δ)i − (1 − δ)j)

and

Vi,j =(1 − θ)2σ2 ρ2

1 − ρ2
V

1
i,j +

ϕ2(1 − θ)2σ2

(1 − ρ2)(1 − (1 − δ)2)

[
1 + ρ(1 − δ)

1 − ρ(1 − δ)

]
V

2
i,j −

ϕ(1 − θ)2σ2

(1 − ρ(1 − δ))(1 − ρ2)
V

3
i,j

where

V
1

i,j ≡ 4

(
1 − ϕ

1 − ρ

)2

+

(
ϕ

1 − δ − ρ

)2 (
(1 − δ)2i + 2(1 − δ)i+j + (1 − δ)2j

)

+

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)2

(ρ2i + 2ρi+j + ρ2j) − 4
1 − ϕ

1 − ρ

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)
(ρi + ρj)

+ 4
ϕ(1 − ϕ)

(1 − ρ)(1 − δ − ρ)

(
(1 − δ)i + (1 − δ)j

)

− 2
ϕ

1 − δ − ρ

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)(
(ρ(1 − δ))i + (ρ(1 − δ))j + ρi(1 − δ)j + ρj(1 − δ)i

)

and

V
2

i,j ≡ 4 + (1 − δ)2i + (1 − δ)2j − 4
(
(1 − δ)i + (1 − δ)j

)
+ 2(1 − δ)i+j

and

V
3

i,j ≡ 4
1 − ϕ

1 − ρ
+ 2

ϕ

1 − δ − ρ

(
(1 − δ)i + (1 − δ)j

)
− 2

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)
(ρi + ρj)

− 2
1 − ϕ

1 − ρ
((1 − δ)i + (1 − δ)j) −

ϕ

1 − δ − ρ

(
(1 − δ)2i + 2(1 − δ)i+j + (1 − δ)j

)

(
1 − ϕ

1 − ρ
+

ϕ

1 − δ − ρ

)(
(ρ(1 − δ))i + (ρ(1 − δ))j + ρi(1 − δ)j + ρj(1 − δ)i

)

Using the triangular inequality, we have Ψij 6 Ψ where

Ψ ≡4
ρ2

1 − ρ2

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)2

+ 4
ϕ2(1 − δ)2

|1 − δ − ρ|(1 − (1 − δ)2)

+
8ρϕ(1 − δ)

(1 − ρ(1 − δ))|1 − δ − ρ|

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

+ 8
ρ

1 − ρ

1 − ϕ

1 − ρ

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)
+ 8

1 − δ

δ

ϕ(1 − ϕ)

(1 − ρ)|1 − δ − ρ|
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Likewise, the triangular inequality implies that

V
1

i,j 6 4

(
1 − ϕ

1 − ρ

)2

+ 4

(
ϕ

|1 − δ − ρ|

)2

+ 4

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)2

+ 8
1 − ϕ

1 − ρ

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

+ 8
ϕ(1 − ϕ)

(1 − ρ)(|1 − δ − ρ|)
+ 8

ϕ

|1 − δ − ρ|

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

616

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)2

similarly

V
2

i,j 616

and

V
3

i,j 6 4
1 − ϕ

1 − ρ
+ 4

ϕ

|1 − δ − ρ|
+ 4

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)
+ 4

1 − ϕ

1 − ρ
+ 4

ϕ

|1 − δ − ρ|
+ 4

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

616

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

Therefore, we have Vi,j 6 V , where

V ≡16(1 − θ)2σ2 ρ2

1 − ρ2

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)2

+ 16
ϕ2(1 − θ)2σ2

(1 − ρ2)(1 − (1 − δ)2)

[
1 + ρ(1 − δ)

1 − ρ(1 − δ)

]

+ 16
ϕ(1 − θ)2σ2

(1 − ρ(1 − δ))(1 − ρ2)

(
1 − ϕ

1 − ρ
+

ϕ

|1 − δ − ρ|

)

Hence, we have that

E(v2
t ) 6

∞∑

i=1

∞∑

j=1

βi+j exp

([
(1 − θ)(1 − ϕ)γ +

(
1 − θ

1 − ρ

)2
σ2

2
(1 − ϕ)2

]
(i + j)

)
exp

(
(1 − θ)2

σ2

2
Ψ +

V

2

)

6 exp

(
(1 − θ)2

σ2

2
Ψ +

V

2

) ∞∑

i=1

∞∑

j=1

ri+j

6 exp

(
(1 − θ)2

σ2

2
Ψ +

V

2

)
r

∞∑

k=1

nrn

As long as r < 1, the series

∞∑

k=1

nrn converges, such that in this case Ev2
t < ∞.

We can now consider the autocovariance terms

E(vtvt−k) =

∞∑

i=1

∞∑

j=1

βi+j exp

[
ai + aj − (ci + cj)

γ

δ
+

1

2

(
b2
i Var(γt) + b2

jVar(γt−k) + c2
i Var(zt)

+ c2
jVar(zt−k) + 2bibjCov(γt, γt−k) + 2biciCov(γt, zt) + 2bicjCov(γt, zt−k)

+ 2bjciCov(γt−k, zt) + 2bjcjCov(γt−k, zt−k) + 2cicjCov(zt, zt−k)

)]
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where8

Cov(γt, γt−k) = ρk σ2

1 − ρ2
= ρkVar(γt)

Cov(zt, zt−k) =
σ2

1 − δ − ρ

(
(1 − ρ2)(1 − δ)k+1 − (1 − (1 − δ)2)ρk+1

(1 − ρ(1 − δ))(1 − ρ2)(1 − (1 − δ)2)

)
Φzz,kVar(zt)

Cov(zt, γt−k) =
σ2

1 − δ − ρ

(
ρk+1

1 − ρ2
−

(1 − δ)k+1

1 − ρ(1 − δ)

)
= Φzγ,kCov(zt, γt)

Cov(γt, zt−k) = −
σ2

(1 − ρ2)(1 − δ(1 − δ))
ρk = ρkCov(γt, zt)

with

Φzz,k =
(1 − δ)(1 − ρ2)(1 − δ)k − ρ(1 − (1 − δ)2)ρk

(1 − ρ2)(1 − δ) − (1 − (1 − δ)2)ρ

Φzγ,k =
(1 − δ)(1 − ρ2)(1 − δ)k − ρ(1 − ρ(1 − δ))ρk

(1 − ρ2)(1 − δ) − ρ(1 − ρ(1 − δ))

Note that, by construction, we have |Φzz,k| < 1 and |Φzγ,k| < 1.

E(vtvt−k) can then be rewritten as

E(vtvt−k) =

∞∑

i=1

∞∑

j=1

βi+j exp

[
ai + aj − (ci + cj)

γ

δ
+

1

2
Vi,j,k

]

where

Vi,j,k ≡
(
b2
i + b2

j + 2bibjρ
k
)
Var(γt) +

(
c2
i + c2

j + 2cicjΦzz,k

)
Var(zt)

+ 2
(
bici + bjcj + bicjρ

k + cjciΦzγ,k

)
Cov(γt, zt)

Since bibj > 0 and |ρ| < 1, we have b2
i + b2

j + 2bibjρ
k 6 (bi + bj)

2. Likewise cicj > 0 and |Φzz,k| < 1, so

that
(
c2
i + c2

j + 2cicjΦzz,k

)
6 (ci + cj)

2. Finally, we have bncℓ > 0, (n, ℓ) ∈ {i, j}×{i, j} and both |ρ| < 1

and |Φzγ,k| < 1, such that
(
bici + bjcj + bicjρ

k + cjciΦzγ,k

)
6 (bi + bj)(ci + cj). This implies that

|Vi,j,k| 6 (bi + bj)
2Var(γt) + (ci + cj)

2Var(zt) + (bi + bj)(ci + cj)|Cov(zt, γt)|

Hence Ev2
t is un upper bound for E(vtvt−k). Therefore, as Ev2

t is finite for r < 1, so is E(vtvt−k).

8These quantities can be straightforwardly obtained from the Wold representations of γt and zt:

γt = γ +
∞∑

i=0

ρiεt−i and zt =
∞∑

i=0

ρi+1 − (1 − δ)i+1

1 − δ − ρ
εt−i


