eprintid: 50406 rev_number: 6 eprint_status: archive userid: 1482 importid: 105 dir: disk0/00/05/04/06 datestamp: 2025-02-07 13:36:44 lastmod: 2025-02-07 16:31:05 status_changed: 2025-02-07 13:36:44 type: article succeeds: 48208 metadata_visibility: show creators_name: Beyhum, Jad creators_name: Lapenta, Elia creators_name: Lavergne, Pascal creators_idrefppn: 255581564 creators_idrefppn: 255142803 creators_idrefppn: 177855533 creators_halaffid: 1002422 creators_halaffid: 1002422 creators_halaffid: 1002422 title: One-step smoothing splines instrumental regression ispublished: pub subjects: subjects_ECO abstract: We extend nonparametric regression smoothing splines to a context where there is endogeneity and instrumental variables are available. Unlike popular existing estimators, the resulting estimator is one-step and relies on a unique regularization parameter. We derive rates of the convergence for the estimator and its first derivative, which are uniform in the support of the endogenous variable. We also address the issue of imposing monotonicity in estimation and extend the approach to a partly linear model. Simulations confirm the good performances of our estimator compared to two-step procedures. Our method yields economically sensible results when used to estimate Engel curves. date: 2024 date_type: published publisher: Elsevier id_number: 10.1093/ectj/utae024 official_url: http://tse-fr.eu/pub/130306 faculty: tse divisions: tse language: en has_fulltext: FALSE doi: 10.1093/ectj/utae024 view_date_year: 2024 full_text_status: none publication: The Econometrics Journal place_of_pub: Amsterdam refereed: TRUE issn: 0304-4076 oai_identifier: oai:tse-fr.eu:130306 harvester_local_overwrite: issn harvester_local_overwrite: pending harvester_local_overwrite: creators_idrefppn harvester_local_overwrite: creators_halaffid harvester_local_overwrite: publication harvester_local_overwrite: publisher harvester_local_overwrite: place_of_pub harvester_local_overwrite: ispublished harvester_local_overwrite: hal_id harvester_local_overwrite: hal_version harvester_local_overwrite: hal_url harvester_local_overwrite: hal_passwd oai_lastmod: 2025-02-05T13:40:19Z oai_set: tse site: ut1 hal_id: hal-04935697 hal_passwd: 5#qvc9 hal_version: 1 hal_url: https://hal.science/hal-04935697 citation: Beyhum, Jad , Lapenta, Elia and Lavergne, Pascal (2024) One-step smoothing splines instrumental regression. The Econometrics Journal.