eprintid: 50299 rev_number: 6 eprint_status: archive userid: 1482 importid: 105 dir: disk0/00/05/02/99 datestamp: 2025-01-31 10:06:22 lastmod: 2025-02-26 08:48:40 status_changed: 2025-01-31 10:06:22 type: article metadata_visibility: show creators_name: Higgins, Ayden creators_name: Jochmans, Koen creators_id: koen.jochmans@tse-fr.eu creators_idrefppn: 175871108 creators_affiliation: University of Exeter Business School creators_affiliation: Toulouse School of Economics; Université Toulouse Capitole creators_halaffid: 1002422 title: Learning Markov Processes with Latent Variables ispublished: inpress subjects: subjects_ECO abstract: We consider the problem of identifying the parameters of a time-homogeneous bivariate Markov chain when only one of the two variables is observable. We show that, subject to conditions that we spell out, the transition kernel and the distribution of the initial condition are uniquely recoverable (up to an arbitrary relabelling of the state space of the latent variable) from the joint distribution of four (or more) consecutive time-series observations. The result is, therefore, applicable to (short) panel data as well as to (stationary) time series data. date: 2024-12 date_type: published publisher: Cambridge University press official_url: http://tse-fr.eu/pub/130200 faculty: tse divisions: tse keywords: dynamic discrete choice keywords: finite mixture keywords: Markov process keywords: regime switching keywords: state dependence language: en has_fulltext: TRUE subjectsJEL: JEL_C32 subjectsJEL: JEL_C33 view_date_year: 2024 full_text_status: public publication: Econometric Theory place_of_pub: Cambridge refereed: TRUE issn: 0266-4666 oai_identifier: oai:tse-fr.eu:130200 harvester_local_overwrite: pending harvester_local_overwrite: subjectsJEL harvester_local_overwrite: creators_idrefppn harvester_local_overwrite: creators_halaffid harvester_local_overwrite: abstract harvester_local_overwrite: publisher harvester_local_overwrite: creators_id harvester_local_overwrite: place_of_pub harvester_local_overwrite: id_number oai_lastmod: 2025-01-30T16:57:51Z oai_set: tse site: ut1 citation: Higgins, Ayden and Jochmans, Koen (2024) Learning Markov Processes with Latent Variables. Econometric Theory. (In Press) document_url: https://publications.ut-capitole.fr/id/eprint/50299/1/wp_tse_1366.pdf