relation: https://publications.ut-capitole.fr/id/eprint/18725/ title: A hybrid variational principle for the Keller–Segel system in R2 creator: Blanchet, Adrien creator: Carrillo, José creator: Kinderlehrer, David creator: Kowalczyk, Michal creator: Laurençot, Philippe creator: Lisini, Stefano subject: B- ECONOMIE ET FINANCE description: We construct weak global in time solutions to the classical Keller–Segel system describing cell movement by chemotaxis in two dimensions when the total mass is below the established critical value. Our construction takes advantage of the fact that the Keller–Segel system can be realized as a gradient flow in a suitable functional product space. This allows us to employ a hybrid variational principle which is a generalisation of the minimizing implicit scheme for Wasserstein distances introduced by [R. Jordan, D. Kinderlehrer and F. Otto, SIAM J. Math. Anal. 29 (1998) 1–17]. publisher: EDP Sciences date: 2015-11-12 type: Article type: PeerReviewed format: text language: en identifier: https://publications.ut-capitole.fr/id/eprint/18725/1/hybrid_variation.pdf identifier: Blanchet, Adrien , Carrillo, José , Kinderlehrer, David , Kowalczyk, Michal, Laurençot, Philippe and Lisini, Stefano (2015) A hybrid variational principle for the Keller–Segel system in R2. ESAIM: Mathematical Modelling and Numerical Analysis, vol. 49 (n° 6). pp. 1553-1576. relation: http://tse-fr.eu/pub/29909 relation: 10.1051/m2an/2015021 identifier: 10.1051/m2an/2015021 doi: 10.1051/m2an/2015021 language: en