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Abstract

This paper examines if an energy price shock should be compensated by a reduction in

energy taxes to mitigate its impact on consumer prices. Such an adjustment is often

debated and advocated for redistributive reasons. Our investigation is based on a model

that characterizes second-best optimal taxes in the presence of an externality generated

by energy consumption. Energy is used by households as a consumption good and by

the productive sector as an input. We calibrate this model on US data and proceed

to simulations of this empirical model. We assume that energy prices are subject to

an exogenous shock. For different levels of this shock, we calculate the optimal tax mix

including income, commodity and energy taxes. We show that optimal energy taxes

are affected by redistributive consideration and that optimal energy tax is less than

the Pigouvian tax (marginal social damage). The difference is an implicit subsidy rep-

resenting roughly 10% of the Pigouvian price. Interestingly, the simulations show that

an variation in the energy price only has an almost negligible effect on this percentage.

In other words, even a very large oil price increase will only have a small effect on the

optimal tax on energy. Nevertheless, it appears that the energy tax is used to mitigate

the impact of the energy shock. However, this result is not explained by redistribu-

tive consideration but by the fact that the Pigouvian tax (rate) decreases as the price

of energy increases. This is a purely arithmetic adjustment due to the fact that the

marginal social dammage does not change. Consequently, the marginal dammage as a

percentage of the energy price (which defines the Pigouvian tax rate) decreases as the

price increases.

JEL classification: H21; H23

Keywords: Second-best; environmental taxes; optimal taxation; nonlinear taxes; welfare

gains



1 Introduction

As energy is heavily taxed in most industrialized countries, an “oil shock” (a sudden

and significant increase in energy prices) often leads to political pressure, with various

interest groups asking for tax reductions. This issue has been debated during that 2008

presidential campaign in the US, where both candidates made proposals for reducing

the impact of the crude oil price increase on consumer prices. In France there has been

a similar debate, with many interest groups (truck and fishery industry, agriculture,

etc.) asking for an energy tax relief to mitigate the impact of the price increase.

Among the possible justifications of energy tax reductions is the idea that con-

sumers have difficulties to adjust to strong and sudden price shocks. This is because

existing technologies and equipment limit the substitution possibilities in the short run.

However, this argument would at best lead to a temporary reduction to smooth the

transition. Another argument is based on the alleged regressive character of energy

consumption and taxes. The share of energy consumption in total spending tends to

decrease with income. Consequently, low income individuals are affected more heavily

by an oil price shock than the high income people and redistributive concern may then

plead for an energy tax reduction.

This paper studies the validity of this redistributive argument. Our investigation

is based on the model of optimal emission taxation developed by Cremer et al. (1998,

2003 and 2010). It allows us to derive second-best optimal taxes in the presence of

an externality generated by energy consumption. Energy is used by households as a

consumption good and by the productive sector as an input. With some modification

this model can be adapted to study the impact of an exogenous shock in the before

tax price of energy. We calibrate this model on US data and proceed to simulations of

this empirical model. We assume that energy prices are subject to an exogenous shock.

For different levels of this shock, we calculate the optimal tax mix including income,

commodity and energy taxes. We show that optimal energy taxes are indeed affected
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by redistributive consideration and that optimal energy tax is less than the Pigouvian

tax (marginal social damage). The difference is an implicit subsidy representing roughly

10% of the Pigouvian price. Interestingly, the simulations show that an variation in the

energy price only has an almost negligible effect on this percentage. In other words,

even a very large oil price increase will only have a small effect on the optimal tax on

energy. Nevertheless, it appears that the energy tax is used to mitigate the impact of

the energy shock. However, this result is not explained by redistributive consideration

but by the fact that the Pigouvian tax (rate) decreases as the price of energy increases.

This is a purely arithmetic adjustment due to the fact that the marginal social damage

does not change. Consequently, the marginal damage as a percentage of the energy

price (which defines the Pigouvian tax rate) decreases as the price increases.

2 The model

Consider an open economy which uses “energy” both as a consumption good and as

input. Whether used as a consumption good or as a factor input, energy, which is

imported from overseas, is polluting. Apart from energy, consumers consume a nonpol-

luting good as well. This latter good is produced in the economy using capital and

labor (in addition to energy). Capital services are also rented from outside. Labor is

the only factor of production which is supplied domestically. Labor is heterogeneous

with different groups of individuals having different productivity levels and different

tastes. Denote a person’s type by , his productivity factor by  , and the proportion of

people of type  in the economy by  (where the population size is normalized at one).

Preferences of a -type person depend on his consumption of non-polluting goods,  

consumption of polluting goods,  , labor supply,  , and the total level of emissions in

the atmosphere, .

This construct is a slight variation of Cremer et al.’s (2010) model. To make this
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paper self-contained, we first review its main features.1

2.1 Preferences

Consumers’ preferences are nested CES, first in goods and labor supply and then in

the two categories of consumer goods. All consumer types have identical elasticities of

substitution between leisure and non-leisure goods, , and between polluting and non-

polluting goods, . Differences in tastes are captured by differences in other parameter

values of the posited utility function ( and  in equations (2)—(3) below). Assume

further that emissions enter the utility function linearly. The preferences for a person

of type  can then be represented by

f = U(   ; )−   = 1 2 3 4 (1)

where  reflects the “taste parameter” and

U(    ) =

µ


−1
 + (1− )(1− )

−1


¶ 
−1

 (2)

 =
³


−1
 + (1− )

−1


´ 
−1

 (3)

Consumers choose their consumption bundles by maximizing (1)—(3) subject to their

budget constraints. These will be nonlinear functions when the income tax schedule is

nonlinear. However, for the purpose of uniformity in exposition, we characterize the

consumers’ choices, as the solution to an optimization problem in which each person

faces a (type-specific) linearized and possibly truncated budget constraint. To do this,

introduce a “virtual income,”  , into each type’s budget constraint. Denote the -

type’s net of tax wage by 

. We can then write ’s budget constraint as

 +  =  +  + 


  (4)

where  and  are the consumer prices of  and ,  is the income adjustment term

(virtual income) needed for linearizing the budget constraint (or the lump-sum rebate if

1For more details, see Cremer et al. (1998, 2003 and 2010).
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the tax function is linear), and  is the individual’s exogenous income. The first-order

conditions for a -type’s optimization problem are

1− 



¡


¢ 1
 =




 (5)

(1− )
¡
(1− )

¢ 1



h
 + (1− )()

1−


i −
(1−)

=





 (6)

Equations (4)—(6) determine    and  as functions of   

 and  +  .

2.2 Production technology

The production process uses three inputs: capital, , labor,  and energy, . The

technology of production is represented by a nested CES,

 = O () = 
h
(1− )

−1
 + Γ

−1


i 
−1

 (7)

Γ = 
h


−1
 + (1− )

−1


i 
−1

 (8)

where  and  are constants,  and  represent the elasticities of substitution between

 and Γ and between  and  (given Γ) respectively. Substituting (8) in (7) yields,

 = 

"
(1− )

−1
 + 

−1


h


−1
 + (1− )

−1


i (−1)
(−1)

# 
−1

 (9)

Aggregate output, , is the numeraire and the units of  and  are chosen such that

their producer prices are equal to one.

Capital services and energy inputs are imported at constant world prices of  and

 where the units of  is chosen such that initially  = 1. Let  denotes the price of

one unit of effective labor,  denotes the tax on energy input, and assume that there

are no producer taxes on labor and capital.2 The first-order conditions for the firms’

2Taxation of capital in a setting like ours will serve no purpose except to violate production efficiency.
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input-hiring decisions are, assuming competitive markets,

O() =  (10)

O() =  (11)

O() = (1 + ) (12)

Equations (9)—(12) determine the equilibrium values of  and  as functions of

  and (1 + ) [where  and  are determined according to world prices].

As different types of people have different productivities, labor is an heterogeneous

factor of production. When a -type person with productivity  works for  hours,

his effective labor is  resulting in aggregate supply
4P

=1

 . Equating this with

aggregate demand gives,

 =

4X
=1



Total emissions are given by,

 =

4X
=1

 +

where  is the proportion of people of type  in the economy.3

2.3 Optimal tax policy

The optimal tax policy maximizes an iso-elastic social welfare function

 =
1

1− 

4X
=1

(f)1−  6= 1 and 0 ≤  ∞ (13)

where  is the “inequality aversion index”. The value of  dictates the desired degree of

redistribution in the economy: The higher is  the more the society cares about equality,

3The population size is normalized to 1, consequently

4
=1

 represents total households’ energy

consumption.
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here we retain a relatively low value,  = 01.4

The feasibility of tax instruments depends on information available to the tax admin-

istration. Generally, this information allows for linear commodity taxes and non-linear

income tax. This is why we restrict our analysis to this case even if other possibilities

could be considered.5 Under linear commodity taxation, all consumers face the same

commodity prices. The social welfare function (13) must thus be written as a function

of the prices of goods.

Denote  the after-tax income (outlay) of a -type household. Maximizing, the

utility function (1) with respect to the budget constraint

 +  =  

we obtain the demand functions for  and  as  = x
¡
   ; 

¢
and  = y

¡
   ; 

¢
.

Substituting these equations in the -type person utility function (1), we have

V

µ
   




; 
¶
= U

µ
x
¡
   ; 

¢
y
¡
   ; 

¢




 
¶

where

 ≡ 

We have four feasible tax instruments in our model: two commodity taxes, an input

tax and an income tax. As the demand functions for goods and the labor supply function

are all homogeneous of degree zero, there is no loss of generality when setting one tax

rate to zero. Since energy consumption creates an externality we choose to impose a

zero tax on non-energy goods.

4As is well-known,  = 0 implies a utilitarian social welfare function and  → ∞ a Rawlsian. The

value we use is chosen according to the observed degree of redistribution of existing tax systems; see

Bourguignon and Spadaro (2000).
5 In Cremer and al. (2008) differents possibilities are examined including the case all taxes are

non-linear.
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The optimal tax structure is derived as the solution to

max
  

1

1− 

4X
=1



⎡⎣V µ    


; 
¶
− 

4X
=1

y
¡
   ; 

¢− 

⎤⎦1−
(14)

under the resource constraint,

O ()−
4X

=1


¡
x   ; 

¢− −
⎡⎣ 4X
=1

y
¡
   ; 

¢
+

⎤⎦− ̄ ≥ 0 (15)
the incentive compatibility constraints,

V

µ
   




; 
¶
≥ V

µ
  




; 
¶

(16)

the endogeneity of wage condition,

 −O () = 0 (17)

with

 =

4X
=1

 =

4X
=1






The analytical results of Cremer et al. (2010) can easily be extended to show that

the optimal tax on energy inputs () is Pigouvian and equal to its marginal social

damage of emissions. The optimal tax on the consumption of energy, on the other

hand, is generally different from its Pigouvian level. See the Appendix

3 Data and calibration

To solve our model numerically, one must know the values of the parameters of the

utility functions (, ,  ,  ,  , ), and the values of the parameters of the production

function (, , , , , ). The data sources are the PSID (Panel Study of Income

Dynamics, web site: http://psidonline.isr.umich.edu), US Bureau of Labor Statistics

(web site: http://www.bls.gov/) and the US Bureau of Economic Analysis. The two
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Managers

&

professionals

Technical sales

&

clerical workers

Service workers,

operators,

fabricators & laborers

Construction

workers

& mechanics

(Type 1) (Type 2) (Type 3) (Type 4)

 35.18 % 28.90 % 28.86 % 7.06 %

 68712 40147 31887 44111

 51134 34742 29155 37498

 3051 2612 2520 3100

 1.33620 0.90094 0.71472 0.88815

 0.50731 0.43961 0.44015 0.48998

 28.0 % 15.0 % 15.0 % 15.0 %

 9797 2195 2280 2363

 -5085 1034 2290 741

 0.99997 0.99993 0.99989 0.99991

 0.53201 0.39970 0.39438 0.46747

Type-independent figuresP
 

 = 0.47446  = 3169954  = 490364  = 1

 = 1.0  = 101364  = 4.2 %  = 1.0

 = 1.00000  = 1.00000  = 0.8  = 0.42141

 = 0.66490  = 0.26892  = 0.98662  = 0.54242

 = 1.28395  = 0.74215

Table 1: Calibration: main parameters. Monetary figures are in USD

first one gives data on households’ consumption, income and labor. The latter reports

macroeconomic data from the EUKLEMS data base on capital, labor and energy. The

calibration process follows the one we have used in our previous paper (see Cremer and

al. (2008)). The data allows us to identify four types of households, “managers and

professionals” (type 1), “technical sales and clerical workers” (type 2), “service workers,

operators, fabricators and laborers” (type 3) and “construction workers and mechanics”

(type 4),

Table 1 provides a summary of the data and parameter values. Finally, our op-

timal tax calculations are based on the assumption that the government’s external

revenue requirement (share in GDP of expenditures on non-transfer payments) remains

8



unchanged.

4 Results I

Optimal energy taxes/subsidies in different scenarios are determined by solving the

calibrated version of the model. There are two forces at work. One is Pigouvian in

nature. To correct for the marginal social damage of emissions, one wants to impose a

correcting tax on energy. In case of energy inputs, this is the only force at work. Another

reason comes into play in case of energy consumption goods. This arises because of

the distributional considerations. Because the share of energy expenditures tends to

decrease with one’s income, one may want to subsidize energy consumption goods to

offset this regressive bias. It is true that an optimally designed income tax mitigates

this regressive bias, but in a world of asymmetric information (where first best lump-

sum taxes are unavailable), it cannot eliminate it completely (as long as Atkinson and

Stiglitz Theorem does not apply). There still remains a role for energy subsidies; see

Cremer et al. (1998), (2003) and (2010).

For the time being, we assume that the environmental damage (cost of carbon emis-

sions) is represented by  = 024. This is the level used by Cremer et al. (2003) and

corresponds to a Pigouvian tax of 50%.

In the case of inputs, the optimal energy tax, expressed in units of the numeraire

output, is equal to

 =

⎡⎣V µ    


; 
¶
− 

4X
=1

y
¡
   ; 

¢− 

⎤⎦− 



where the term on the right hand side of equation (18) is the Pigouvian tax (the marginal

social damage of emission).6 When expressed as a percentage of the energy price, this

tax rate decreases with the price of energy. Specifically, we have

6This is an implicit expression. Setting the tax at its Pigouvian level affects all the other taxes and

the entire allocation. To deal with this in a consistent way we calculate the Pigouvian tax by solving

our general problem to which we add (18) as a constraint.
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  



1.0 0.4823 48,23%

1.1 0.4769 43,35%

1.2 0.4718 39,32%

1.3 0.4668 35,91%

1.4 0.4622 33,01%

1.5 0.4577 30,51%

1.6 0.4534 28,34%

1.7 0.4493 26,43%

1.8 0.4454 24,74%

1.9 0.4416 23,24%

2.0 0.4380 21,90%

Table 2: Energy input tax as a percentage of the world price of energy ( = 024)

In the case of energy consumption goods, both forces are at work. To measure the

relative importance of Pigouvian and redistributive considerations in the calculation

of optimal energy taxes/subsidies, as the world price of energy changes, we start by

defining the “Pigouvian” price. Using Cremer et al.’s (1998) definition of the Pigouvian

tax, this is defined by

 =  +  (18)

As shown in the Appendix, the optimal energy tax is then given by

 =  +

4P
=1

P
 6=


n
V

³
   


; 
´ £
y
¡
  ; 

¢− y ¡  ; ¢¤o


4P
=1

ey ¡  ; ¢ 

We have

Finally, we have

 − 


=

¡
 − 

¢
+
¡
 − 

¢


=
 − 


+






with the following calculations for ( − ) 
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    −  ( − )
1.0 1.4823 1.3359 -0.1464 -14.64%

1.1 1.5769 1.4210 -0.1559 -14.17%

1.2 1.6718 1.5064 -0.1654 -13.78%

1.3 1.7668 1.5920 -0.1748 -13.45%

1.4 1.8622 1.6777 -0.1845 -13.18%

1.5 1.9577 1.7637 -0.1940 -12.93%

1.6 2.0534 1.8499 -0.2035 -12.72%

1.7 2.1493 1.9362 -0.2131 -12.54%

1.8 2.2454 2.0226 -0.2228 -12.38%

1.9 2.3416 2.1092 -0.2324 -12.23%

2.0 2.4380 2.1960 -0.2420 -12.10%

Table 3: Redistributive subsidy on households’ energy price when  = 024

5 Results II

In the absence of redistributive considerations, the energy tax should be Pigouvian. The

difference between the Pigouvian tax and the optimal tax is thus the implicit subsidy

needed when consumers have heterogeneous preferences and productivities. Table 2,

gives the optimal consumer price for energy () when there is no externality ( = 0)

so that the Pigouvian tax is zero. This price is calculated for different values of the

world price of energy (), with the benchmark price normalized at one so that a price

of 2 corresponds to an oil price shock of 100%. The difference between  and  is the

implicit subsidy on energy. These results are also represented in Figure 1.

The difference between these two prices is the implicit subsidy allowed by the gov-

ernment for redistributive purposes. This subsidy is shown to be (roughly) equal to

10% of  whatever the level of this price. In other words, redistributive considerations

call for a subsidy that is not increasing at the same rate as the world price of energy.

Consequently an exogenous shock on the international price of energy, let us say an oil

shock, is not compensated by an increase of the implicit subsidy (see also figure 1).

Table 3 presents the result with a positive externality ( = 005). As Figure 2 shows,
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   − 
Implicit

subsidy

1.0 0.8993 0.1007 10.07 %

1.1 0.9892 0.1108 10.07 %

1.2 1.0791 0.1209 10.07 %

1.3 1.1690 0.1310 10.07 %

1.4 1.2589 0.1411 10.08 %

1.5 1.3488 0.1512 10.08 %

1.6 1.4387 0.1613 10.08 %

1.7 1.5287 0.1713 10.08 %

1.8 1.6186 0.1814 10.08 %

1.9 1.7085 0.1915 10.08 %

2.0 1.7984 0.2016 10.08 %

Table 4: Implicit subsidy on households’ energy price when  = 0
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Figure 1: Prices and subsidy when  = 0
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     − 
−


∆
0

Implicit

subsidy

1.0 1.4823 1.3359 0.4823 0.3359 33.59 % 9.88%

1.1 1.5769 1.4210 0.4769 0.3210 29.19 % 6,37% 9.88%

1.2 1.6718 1.5064 0.4718 0.3064 25.53 % 12,76% 9.89%

1.3 1.7668 1.5920 0.4668 0.2920 22.46 % 19,17% 9.90%

1.4 1.8622 1.6777 0.4622 0.2777 19.84 % 25,59% 9.90%

1.5 1.9577 1.7637 0.4577 0.2637 17.58 % 32,02% 9.91%

1.6 2.0534 1.8499 0.4534 0.2499 15.62 % 38,48% 9.91%

1.7 2.1493 1.9362 0.4493 0.2362 13.89 % 44,94% 9.92%

1.8 2.2454 2.0226 0.4454 0.2226 12.37 % 51,40% 9.92%

1.9 2.3416 2.1092 0.4416 0.2092 11.01 % 57,89% 9.92%

2.0 2.4380 2.1960 0.4380 0.1960 9.80 % 64,38% 9.93%

Table 5: Implicit subsidy on households’ energy price when  = 005

we have a very similar result regarding the implicit subsidy which remains at a level of

about 10% of the Pigouvian price .

However, the Table also points to a number of new and very interesting results.

First, the consumer price of energy increase at a significantly slower speed than the

producer price (64% vs. 100%). Consequently, we do get the result that the tax is used

to mitigate the impact of the energy price increase on consumers. Second, the per-unit

tax decreases only very slightly. Third, and most interestingly the driving force in the

adjustment appears to be the decrease in the Pigouvian tax

 =
 − 


=
( + 0)− 


=

0




This makes a lot of sense. The marginal social damage of the externality 0 does not

directly depend on the price of energy. Consequently, as  increase the Pigouvian tax

rate quite naturally decreases.

To sum up, we find support for the argument that energy taxes should be used

to alleviate the impact of an oil shock on consumers. However, the underlying reason

is not of redistributive nature (the redistributive term remain more or less constant).
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Figure 2: Prices and subsidy when  = 024
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The crucial element is an essentially purely arithmetic adjustment of the Pigouvian tax

rate. Still, at the end of the day it remains that energy taxes ought to be adjusted so

that consumers do not face the full impact of the world price increase in energy prices.

Observe that producers who face a Pigouvian tax rate benefit from a similar relief.

6 Conclusion

This paper examines if an energy price shock should be compensated by a reduction in

energy taxes to mitigate its impact on consumer prices. Such an adjustment is often

debated and advocated for redistributive reasons. Our investigation is based on a model

on the model of optimal emission taxation developed by Cremer et al. (1998, 2003 and

2010). It characterizes second-best optimal taxes in the presence of an externality

generated by energy consumption. Energy is used by households as a consumption good

and by the productive sector as an input. We have shown that with some modification

this model can be adapted to study the impact of an exogenous shock in the before

tax price of energy. We have calibrated this model on US data and proceed with

simulations of this empirical model. We have assumed that energy prices are subject to

an exogenous shock. For different levels of this shock, we have calculated the optimal

tax mix including income, commodity and energy taxes. We show that optimal energy

taxes are indeed affected by redistributive consideration and that optimal energy tax

is less than the Pigouvian tax (marginal social damage). The difference is an implicit

subsidy representing roughly 10% of the Pigouvian price. Interestingly, the simulations

show that an variation in the energy price only has an almost negligible effect on this

percentage. In other words, even a very large oil price increase will only have a small

effect on the optimal tax on energy and the consumer price ought to increase (roughly)

at the same rate as the world market producer price. Nevertheless, it appears that the

energy tax is used to mitigate the impact of the energy shock. Specifically, when the

world price of energy doubles, the consumer price (including taxes) only increases by
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64%. However, this result is not explained by redistributive consideration but by the

fact that the Pigouvian tax (rate) decreases as the price of energy increases. This is a

purely arithmetic adjustment due to the fact that the marginal social damage does not

change. Consequently, the marginal damage as a percentage of the energy price (which

defines the Pigouvian tax rate) decreases as the price increases.
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Appendix

A1 General income plus linear commodity taxes

The Lagrangian for the second-best problem is (where  is set equal to 1),

£ =
1

1− 

4X
=1



⎡⎣Vµ   


; 
¶
− 

4X
=1

y
¡
  ; 

¢− 

⎤⎦1−+


⎧⎨⎩O ()−
4X

=1

x
¡
  ; 

¢−  − 

⎡⎣ 4X
=1

y
¡
  ; 

¢
+

⎤⎦−

⎫⎬⎭+X


X
 6=


∙
V

µ
  




; 
¶
−V

µ
 




; 
¶¸
+  [ −O ()] 

(A1)

where   and  are the multipliers associated respectively with the resource con-

straints, the incentive constraint and the endogenous wage condition. The first-order
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conditions are, for  = 1 2 3 4,
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We now show that whereas the optimal tax on the polluting good is non-Pigouvian,

the optimal tax on polluting input is Pigouvian. Consider first the polluting good tax.

We have:

Proposition A1 The optimal tax on the polluting good is non-Pigouvian.

Proof. Multiply equation (A3) by y
¡
  ; 

¢
 sum over , and add the resulting
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equation to (A2). Simplifying, using Roy’s identity, results in
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To simplify equation (A8), partially differentiate the -type individual’s budget con-
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Substituting from equation (A11) into (A8), the latter equation is rewritten as
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Next, rewrite the last term on the left-hand side of equation (A12) as
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where in going from the second to the last expression, we have made use of Roy’s

identity. Now substituting from (A13) into (A12) results in

4X
=1


£
y
¡
  ; 

¢
+ y

¡
  ; 

¢
y
¡
  ; 

¢¤×
⎧⎨⎩ ( − )− 

4X
=1



⎡⎣Vµ   


; 
¶
− 

4X
=1

y
¡
  ; 

¢− 

⎤⎦−⎫⎬⎭
−

4X
=1

X
 6=


½
V

µ
  




; 
¶h
y
¡
  ; 

¢− y ³  ; ´i¾ = 0
Denote the compensated demand function for  by ey ¡  ; ¢  Substituting ey ¡  ; ¢
for y

¡
  ; 

¢
+ y

¡
  ; 

¢
y
¡
  ; 

¢
in above, dividing the resulting equation by


4P

=1

ey ¡  ; ¢  and rearranging yields
 −  =





4X
=1



⎡⎣Vµ   


; 
¶
− 

4X
=1

y
¡
  ; 

¢− 

⎤⎦− +
4P

=1

P
 6=


n
V

³
   


; 
´ £
y
¡
  ; 

¢− y ¡  ; ¢¤o


4P
=1

ey ¡  ; ¢  (A14)

This proves that − is non-Pigouvian unless the polluting good demand depends only
on one’s income but not on his taste so that the second expression on the right-hand

side of (A14) will be zero.

Second, we prove that the input tax is Pigouvian regardless of individuals’ tastes.

The proof is facilitated through the following lemma.
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Lemma A1 In the optimal income tax problem (A1), and characterized by the first-

order conditions (A2)—(A7), the Lagrange multiplier associated with the constraint  =

 (),  is equal to zero.

Proof. Multiply equation (A4) through by , sum over  and simplify to get

1

2

4X
=1





⎡⎣Vµ   


; 
¶
− 

4X
=1

y
¡
  ; 

¢− 

⎤⎦−


V

µ
  




; 
¶
+

+
1

2

X


X
 6=

∙
(



)


 V

µ
  




; 
¶
− ( 




)


 V

µ
  




; 
¶¸
−

1

2
O()() = 0 (A15)

Substituting (A15) into (A7) and simplifying, we getX


X
 6=
(



)


 V

µ
  




; 
¶
= 2 +

X


X
 6=
(



)


 V

µ
 




; 
¶


(A16)

Then rewrite the left-hand side of (A16) asX


X
 6=
(



)


 V

µ
  




; 
¶
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X


X
 6=
(



)
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 V

µ
 




; 
¶
 (A17)

Substituting from (A17) into (A16) implies

 = 0

Observe that Lemma A1 is in fact an application of the production efficiency result

as it tells us that  = O () imposes no constraint on our second-best problem.

Using this lemma, we can easily show:

Proposition A2 The optimal tax on energy input is Pigouvian.

Proof. Using the result that  = 0 in the first-order conditions (A4)—(A7), simplifies

them to

£


=
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X
 6=
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1
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V
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(A18)
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£


=−

4X
=1



⎡⎣Vµ   
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 [O()− ] = 0 (A19)

£


= [O()− ] = 0 (A20)
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 (A21)

That the input tax is Pigouvian follows immediately from equation (A19).
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