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How do upstream competition and supply shocks
affect investment decisions?

We study the effect of upstream competition and supply shocks on a buyer’s investment decisions, under
demand uncertainty. Imperfect upstream competition leads to double marginalization. This effect is mitigated
if the supplier pool is larger (when production costs are linear or in case of diseconomies of scale): The
resulting lower equilibrium input price ultimately benefits the buyer and makes it more likely to invest
sooner. A supply shock—that shrinks the supplier base—may increase the market power of the remaining
suppliers and exacerbate double marginalization. Such a shock may arise either exogenously (due to a sudden
external event) or endogenously (when profitability upstream is reduced). An exogenous shock, which leads
to higher input prices and lower order quantities, reduces the profitability of the buyer, which is then less
inclined to invest if more suppliers are affected by it. When the shock arises endogenously, the buyer may be

better off and invest sooner if it subsidizes its supplier base as a way to maintain more competition upstream.
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1. Introduction

There are instances where demand materializes, but investments are delayed, not due to the
uncertainty inherent to the end market, but due to inefficiencies in how the supplier market
is organized. Within the agribusiness, the overall adoption of alternative proteins is affected
by such upstream inefficiencies: While the market for alternative proteins is expected to
grow an annual 3.7% compound rate from 2022 to 2027, producers face challenges “securing
enough high-quality raw materials at competitive prices” and mitigating “shortages [...]
caused by extreme weather conditions and soil degradations as well as more recently by
COVID-19 and war-related supply chain disruptions.”[[] More generally, global supply chains
face new challenges due to climate change and other major developments such as rising
protectionism, the weaponization of trade, regional conflicts, sanctions, and the erosion of
global institutions. Understanding the functioning of these supply chains and anticipating
changes that affect them are essential, also from an investment perspective.

We propose a stylized modeling framework to study these issues expanding the classical
real options theory (e.g., |Dixit and Pindyck|[1994] Trigeorgis/(1996) by microfounding firm
profits that reflect imperfect upstream competition and by considering the impact of supply
shocks—besides end demand uncertainty—on a firm’s investment decisions. Our framework
contributes to the literature at the interface of finance, operations, and risk management
(iFORM) and explains how supply uncertainties lead to delayed investments. We stress two
key mechanisms at play. First, reduced upstream competition can lead to increased input
prices for buyers and eventually to higher prices for finished goods, which depresses the
demand of the end customers and consequently affects the entire supply chain. As a conse-
quence, downstream companies may face lower profitability and reconsider their investment
decisions altogether. These effects are expected to be particularly severe for inputs that are
already in limited supply. For instance, the current fertilizer shortage has strongly affected
the alternative protein marketﬂ Second, firms may be subject to supply shocks—that may
arise exogenously due to operational contingencies, natural hazards (e.g. lockdowns during
Covid 19, 2021 Suez canal obstruction, Panama canal drought), terrorism (e.g., Houthi
attacks on commercial vessels in Nov. 2023) and political instability (Kleindorfer and Saad

1www.ey.com/en_gl/insights/strategy/how—alternative—proteins—are—reshaping—meat—industries
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2005) or endogenously if certain suppliers face financial distress and become unreliable. As
firms face challenges in adjusting their sourcing strategy after supply shocks (Cohen et al.
2018), the upstream market becomes less competitive and the remaining suppliers exploit
the new circumstances to wield more market power.

Our framework helps us articulate key, novel managerial insights based on a set of stylized
models, all solved analytically (with proofs provided in an e-companion).
We first study how the degree of imperfect upstream competition affects the equilibrium
profit of a monopsonic buyer, assuming uncertainty about end demand. If suppliers and
buyers make pricing or quantity decisions in a decentralized supply chain, they pursue
their own interests to achieve higher margins, typically leading to double marginalization
(Spengler| 1950, Tirole|[1988)). In our setting, the effects brought about by more upstream
competition (understood as an increase in the number of suppliers) critically depend on
the degree of (dis)economies the suppliers can achieve. In the cases where the suppliers
(i) have linear production costs or (ii) face scale diseconomies, more upstream competition
improves the buyer’s profitability (see Propositions |1| and . Intuitively, as upstream com-
petition intensifies, the effect of double marginalization is mitigated as suppliers collectively
lose market power, to the buyer’s benefit. In contrast, if (iii) economies of scale can be
achieved, one supplier monopolizes the input market (see Proposition . If (ii) there are
diseconomies of scale, the buyer may actually prefer to source from a large set of suppliers,
despite reduced but still significant double marginalization, than to vertically integrate (see
Proposition . Essentially, despite the markups charged by the suppliers onto the buyer,
dispatching production among a large set of suppliers makes it possible for the buyer to
avoid the diseconomies of scale that would arise if the buyer were vertically integrated.
For (i) linear costs or (ii) scale diseconomies, more upstream competition makes the buyer
invest earlier (see Propositions |5 and @, while the buyer is effectively indifferent about the
(potential) size of the supplier base if there are (iii) economies of scale, investing above a
cutoff demand level corresponding to a setting with a monopolistic supplier.
If the input market is not already monopolized (i.e., if there are no economies of scale), a
supply shock may exacerbate double marginalization, as the suppliers who remain after the
event wield more market power and charge a higher markup. We consider and model two

cases: A supply shock can either result from some exogenous event affecting a subset of one’s
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supplier base (e.g., a disease affecting crops) or be the outcome of an endogenous decision by
some suppliers to temporarily cease operations should the changing economic environment
invalidate current operations (e.g., farmers deciding to stop operations in view of current low
produce prices and high fixed costs). The buyer develops rational expectations about these
shocks, internalizes the fragility of supply, and revises its investment strategy accordingly.
If more suppliers may be affected by the exogenous supply shock, the value of operating
in this market decreases for the buyer (see Proposition . The buyer will decide based on
whether the shock has or will arrive and how many suppliers have been or are likely to be
impacted (see Proposition . The buyer will invest if the end demand exceeds a cutoff level
(see Proposition E[), sufficiently large to compensate for the additional supply risk. If more
suppliers may be affected by the exogenous disruption, the buyer will increase this cutoff
level (see Proposition. Again, a supply shock can have endogenous roots when a supplier
faces a profitability challenge. In this case, regardless of any fair trade considerations,
the downstream firm may have an incentive to financially support weaker suppliers (see
Proposition: It does so under certain circumstances but not at all times—to sustain more
competition upstream and to mitigate double marginalization. This potential intervention

generates value and makes the buyer invest earlier (see Proposition .

2. Literature review

The optimal time at which to make (partly) irreversible decisions is at the core of real
options theory (Dixit and Pindyck |1994, Trigeorgis||1996). Following |Chevalier-Roignant
et al.| (2011, Sect. 3.2) and |Trigeorgis and Tsekrekos| (2018, Theme D), supply-chain inter-
actions are, however, often ignored in this literature. Exceptions include Moon et al.| (2011))
(who determine the times at which to sell and buy in a supply chain subject to uncertain
revenues and costs), Billette De Villemeur et al.| (2014)) (who study the timing decision
of the buyer who purchases a key equipment from a supplier at its investment time), and
Chevalier-Roignant et al.| (2025 (who study the mechanism through which a supplier and
a buyer reach a time at which to invest concomitantly). Contributing to this literature, our
paper provides a microfoundation to the equilibrium profits across the supply chain and
studies the impact of more intense horizontal competition at the suppliers’ echelon and of
supply shocks on a buyer’s investment decision.

Our manuscript also relates to two streams of the literature on operations management:
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Supplier-buyer relationships. Spengler| (1950) introduced a simple model of supply chain

relationship with “double marginalization,” which has become seminal. |Greenhut and Ohtal

(1979), |Salinger| (1988), |Corbett and Karmarkar| (2001)), and |[Huang et al. (2016)) (to name a

few) have generalized this supply chain model, modeling successive Cournot oligopolies with

deterministic demand, while Huberts et al.| (2025) consider double marginalization arising in

an investment context with a financier wielding market power. De Wolf and Smeers| (1997

and |[DeMiguel and Xu| (2009)) consider variants in which the inverse demand function in the

downstream market is subject to randomness and in which firms taking the role of Stack-

elberg leader or follower compete over quantities. In a related spirit, |Gurnani and Gerchak|

(2007)) consider the downstream firm as a Stackelberg leader, while multiple component

suppliers act as Stackelberg followers and compete among themselves in a Cournot fashion.
We consider a Cournot-Nash game among suppliers nested in a two-echelon supply chain
game (with suppliers as leaders and a monopsonic buyer as follower). We leverage tractable
demand and cost specifications and study the impact of a change in the size of the supplier
base on the buyer’s equilibrium profit, an impact which critically depends on the degree of
(dis)economies of scale of the suppliers’ production technology. We allow for uncertainty
in demand in the output market and focus on the impact of changes in the supplier chain
configurations (e.g., in terms of numbers of suppliers and supply shock) on a buyer’s invest-
ment timing decision. We also briefly discuss the buyer’s incentive to vertically integrate,
in that respect modestly contributing to the rich literature on vertical integration (e.g.,

|Salinger||1988| |Corbett and Karmarkar| 2001, Fang et al.|2023| Jullien et al.|2023).

Supply shocks. Supply shocks have dramatically affected global trade and have become

topical in scholarly research of late (see the reviews by Gurnani et al.|2013|and |[Liicker et al.|

2024). This research theme has been understood and studied from various perspectives

(Sodhi et al.|2012)). For example, the literature has studied the incentive to diversify one’s

supplier base in the context of a newsvendor problem subject to “yield risk,” i.e., when the

buyer is likely to experience a default by at least one supplier during lead time. This issue

has been investigated in the context of a two-tier supply chain (Dada et al.[2007, Babich|
et al. 2007, |Swinney and Netessine| 2009, Federgruen and Yang| 2009, Tang et al.2014) or
multiple-tier supply networks (Osadchiy et al|2016, Ang et al.|2017, Bimpikis et al.|2018,

2019, Birge et al. 2023). Multisourcing helps diversify away upstream (e.g., 2006
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Allon and Van Mieghem! 2010) or downstream risk (e.g., Chod et al.2019). Our baseline
model differs from a newsvendor problem, specifically (i) the product prices adjust to ensure
that the input and output markets clear (as in Wadecki et al.|[2013, |Bimpikis et al.|2019))
and (ii) lead times are assumed away, the suppliers being able to satisfy current orders but
possibly disappearing from the input market in subsequent periods, which is another form
of supply shock, relevant in a dynamic setup. Our model views multisourcing differently, as
a way to allow more competition upstream and mitigate double marginalization. Supplier
shocks in our case lead to more market power being wielded at an earlier echelon, with
consequences across the supply chain. [Yang et al.| (2015) and Huang et al.| (2016]) also look
at the effect of firm defaults (due to exogenous factors) on supply chains, with Huang et al.
(2016)) and Yang et al.| (2015) focusing on defaults upstream and downstream, respectively.
As in Wadecki et al.| (2013) and Tang et al.| (2014)), we discuss the incentive of a buyer to

subsidize suppliers to mitigate supply shocks.

3. Does a larger supplier base make buyers better off?

We consider an imperfect upstream market in which the price set by suppliers for a homo-
geneous nonstorable good depends on the purchase order of a monoposonic buyer, with
monopoly market power downstream. This buyer’s purchase order reflects the current level
of demand in the output market, which may change over time due to demand uncertainty.
This modeling framework is motivated by the current state of the agribusiness, for instance
(i) the US poultry sector, where an integrator like Tyson Foods wields quasi-monopsony
control over numerous small-scale contract growers raising perishable chickens, (ii) coffee
cooperatives in Ethiopia that supply a dominant multinational, Nestlé, or (iii) the UK
dairy industry, where hundreds of independent farms provide raw milk to a limited number
of purchasers, which are either major supermarket chains (Tesco, Sainsbury’s, Morrisons,

etc.) or processors (Arla Foods, Miiller, etc.).

3.1. Baseline supply chain model

As in Babich et al. (2007)), Demirel et al.|(2018) and Bimpikis et al.| (2019), the suppliers
compete against each other. Here, the suppliers infer the downstream demand and collec-
tively converge (in a Cournot-equilibrium fashion) to a market-clearing price (see Spengler),

1950| or pp. 174-175 in [Tirole, [1988).
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Upstream demand. The monopsonic downstream firm faces a produce price P(q,y) > 0,
which decreases with respect to the supply quantity ¢ and depends on a state of demand
y > 0 observable at each time ¢t > 0. For instance, we may consider—as |Chod and Rudi

(2006), Section 3)—isoelastic demand, with
g+ P(g,y) =yq~* for 6 € (0,1), (1a)

where y is the realization of the (multiplicative) random demand shock and the constant
0 is the reciprocal of the price elasticity of demand \% / ‘%’\. Up to a renormalization, we
assume that the buyer needs ¢ units of input to produce g units of output. The buyer buys
each unit at a price w > 0, determined endogenously by the suppliers.

Production cost upstream. Suppliers face symmetric costs driven by a monotone increas-
ing cost function C(-), which may be nonlinear in the output to account for (dis)economies

of scale. For instance, the function
C(q)= Eq” where ¢ >0 and v > 0, (1b)
v

which increases from 0 to oo, fits these specifications. If v =1, it is linear and ¢ corresponds
to a unit production cost. Because C”(q) = ¢(v—1)¢"~!, the marginal cost decreases (resp.,
increases) with the output ¢ € (0,00) and each supplier benefits from economies of scale
(resp., faces scale diseconomies) if 0 < v <1 (resp., v > 1). Diseconomies of scale are a com-
mon feature across various agricultural commodities (Alizamir et al.2019)), often explaining
the relative small sizes of farms depending on nature of the crops.

FEquilibrium conditions. Many markets are not vertically integrated, which may be well
justified (cf. Section . We consider n symmetric suppliers (e.g., farmers) deciding on
their output levels. To determine the Cournot-Nash equilibrium price w, > 0, we first
build the buyer’s demand for an arbitrary input price w. Rationally, the buyer selects an
output level ¢(y,w) that maximizes its profit 7(q;y,w) := q¢P(q,y) — qu| For suitable model

specifications, the buyer’s optimal output is determined from a first-order condition:

74 (y,4(y, w)) =0. (2)

8 We use 7, Ty, and mqq to denote the partial derivatives.
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From the suppliers’ perspective, w +— G(y,w) can be interpreted as the demand function.
Under standard specifications, the order quantity q(y,w) in eq. (2) increases with demand
(as @, = —myy/myeq > 0) and decreases with the input price.

To determine a symmetric Cournot-Nash equilibrium upstream, we use the inverse
demand function @ — q(y,-)~*(Q), which maps the total demand by the buyer @ to a price.

We then compute the supplier i’s best-reply function:

2 €R, o R(2) i=argmax { 4.0y, ) (e +2)~ Cla) J€Ry, 3)
q; >0 —_— N——"
Inverse demand supplier’s
function=input price cost

individual supplier’s
revenues

where the term z is understood as the aggregate output of rivals, z =5 i G-
We consider a symmetric equilibrium for which each upstream firm ¢ supplies an amount

¢; = Gn(y) > 0. In equilibrium, this amount solves the fixed-point equation

@.(0) =R((n-1)2.()). 4)

with the total output given by

and prices in the upstream and downstream markets are
and P, (y) :=P(Q.(v),y), (7)

respectively. Clearly, these prices are not decoupled, with changes in the end demand (driven
by y) also affecting the equilibrium price w, (y) in the upstream market. The buyer’s equi-

librium profit is given by
wuly) =7 (Qu)iv wa (), y>0, ®)
for @, (-) and w,(-) given in egs. and @ respectively, while a supplier’s profit reads
T (y) = 0 (y)Gn (y) — C (@ (y))- (9)
The proposition below specifies equilibrium firm proﬁtsﬂ

4 Propositionpresumes one buyer and multiple suppliers. Our e-companion also considers a setup with two
successive Cournot oligopolies.
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Proposition 1 (Supply-chain equilibrium with n suppliers) For the specifications
m eq. with v > 1, there exists a symmetric Cournot-Nash equilibrium upstream, with

each supplier providing the quantity
1
Gu(y) =0 701 (L0 [1— 2]) 70T (10)

In this equilibrium, the input and output prices in egs. @ and (7)) satisfy P, > w,(y), while
the buyer’s and suppliers’ profits in egs. and @ are given by

) =ay, an=0 (@ 1) 20

n

7'[71,(2/) :Vnyev Un ::ni‘s‘ki’#*lv(l_(S [1—é])5iv%17_6 [’U—l—i—%] ,

respectively, with € :=v/[d +v —1].

This proposition helps us derive numerous managerial insights, some of which are dis-

cussed in the following section. Proposition [I| embeds the linear-cost benchmark obtained

by setting v =1. In this case, each supplier charges an input price w,(y) = =% T and the

_ 1 c
T 1-6 é/n”

buyer charges to the end customer a unit output price P,(y) - Classically, the
vertical relationship features double marginalization, with P, (y) > w,,(y) > c¢. The supplier’s

and buyer’s profits are given by

M) =2 (1= 4) T and m )= (1) v,

respectively. Proposition |1| goes beyond the linear-cost benchmark. If v > 1 in eq. , the

suppliers face diseconomies of scale as common for farms. Following Proposition [I] suppliers

collectively receives a fixed share of the downstream equilibrium price. The profit functions
are proportional to y¢. Furthermore, if v > 1, the buyer and suppliers are risk seeking with
respect to the level of demand in the output market: They can expand (resp., contract)
production if demand builds up (resp., shrinks).

Proposition [1| disregards the strategic interactions that take place in the case where

suppliers face economies of scale (with 1 —§ < v < 1). This case is more involved. In par-

ticular, under such circumstances, symmetric suppliers may end up playing an asymmetric

equilibrium among themselves:
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Proposition 2 (Economies of scale) In case of economies of scale (1—0<v<1), for
n suppliers and one buyer, there is no symmetric pure-strateqgy Cournot-Nash equilibrium.
The n asymmetric strategy profiles {G:(y),0,...,0},{0,q1(y),...,0},...and {0,...,0,q:(y)},
for qi(y) given in eq. (10), are pure-strategy Cournot-Nash equilibria. For each of these
equilibria, the input and output markets clear respectively at the prices wy(y) given in eq. @

and P\(y) given in eq. , while the buyer’s profit is 71 (y) = a1y¢, given in Proposition .

3.2. Benefits of a large supply base?

For the linear-cost benchmark (obtained by setting v = 1), more upstream competition

1 c

and = 1=5/n

(n>1) leads to lower equilibrium input and output prices respectively.

’ 1—§/n
However, this development causes the buyer to buy and sell more, with its order quan-
tity /output Q,(y) = (2y (1 - (S/n))l/(S increasing with n. The buyer earns more (7, < 7y <

...), while each supplier earns less (71; > 7, > ...). This result suggests a “shift in market
power” to the benefit of the buyer, at the expense of the suppliers. The buyer’s purchase
order increases with end demand (as 9Q,, /0y > 0), but decreases with the suppliers’ unit
cost (as 0Q,,/0c < O) The double-marginalization effect vanishes if competition in the
input market becomes perfect, with the input price now corresponding to the marginal cost
(w,, — ¢ as n — o0) and the suppliers making no profit (7, — 0).

When considering nonlinear production costs, two effects must be acknowledged. First, as

in the linear-cost benchmark, each supplier has a natural tendency to respond strategically
to more intense rivalry (indexed by n > 1) by reducing output. Second, if the production
costs are nonlinear, an output reduction affects marginal costs, an effect that feeds back into
the equilibrium price-setting mechanism. Specifically, a lower output leads to a lower (resp.,
larger) marginal production cost when a supplier faces diseconomies of scale (resp., benefits
from scale economies). So, if suppliers benefit from scale economies (1 —0 < v < 1), the
(monopsonic) buyer faces a tradeoff: Spreading production among a larger set of suppliers
leads to a larger marginal cost. Again, according to our Proposition 2], in this case, the
production is not equally split among suppliers, with either supplying the buyer as if it
were a monopolistic supplier, while the other supplier leaves out the game altogether. If

suppliers face diseconomies of scale, then there is no tradeoff for the buyer: Because of

5 For the setup with m buyers of Proposition in the appendix, we also have 7Tm,1 < Tm,2 < ..., again
implying that buyers are better off if the supplier base is larger.
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competitive pressures, the suppliers reduce their outputs, each being less subject to scale

diseconomies. Proposition [3| summarizes the net effect on the buyer’s profit (m =1):

Proposition 3 (Effect of supplier base size) In case of linear cost (v = 1) or of

scale diseconomies (v>1), a buyer that can source from a larger set of suppliers orders and

sells more items (i.e., Qui1 > Qn), items which it purchases at a lower input price (i.e.,
Wni1 < W, ). This buyer is better off (with a,.1 > a,) despite offering a lower price to the

end customers (with P,y < P,). In case of scale economies (1 —6 <v <1), a larger set of

potential suppliers (n+1>n>1) does not affect the equilibrium conditions for the buyer.

We focus on the cases where suppliers have linear costs (v =1) or where they face scale
problems (v > 1). Following Proposition [3| the buyer can then source its input at a lower
price w,(y) if the supplier base is more competitive, as indexed by n. In the case with
diseconomies of scale (v > 1), sourcing from a larger set of suppliers has two benefits. First,
suppliers compete with one another, which tends to depress the equilibrium price upstream
(due to strategic substitution among the suppliers’ strategic choices). However, each of
them also produces less, so the marginal production cost decreases, which has a positive
feedback effect on the equilibrium input price. Because the input cost decreases for the
buyer, it produces more (Q,.; > @,) and earns more (a,,; > a,). Another consequence
is that end customers benefit from more upstream competition, with P,,; < P,. This last
result is consistent with the general property (see|Tirole||1988, p. 67) that a monopoly price
(here, set by the buyer and charged to the end customers) increases in the marginal cost

(here, the equilibrium input price).

3.3. Vertical integration
Proposition briefly discusses the benefit of upstream competition (despite double

marginalization) compared to being vertically integrated:

Proposition 4 (Vertical integration) We take the specifications in eq. (1)).
For linear costs (v = 1), the buyer’s profit given wvertical integration Il(y) :=
max,>o{qP(y,q) —C(q)} exceeds the profit the buyer would achieve given upstream
competition, T, in Proposition[1], independently of the number n of suppliers. However, in
the case with diseconomies of scale (v > 1), there exists a unique finite integer i > 1 such

that TI(y) > 7, (y) for 1 <n<n and I(y) < 7,(y) otherwise.
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A particular supply chain setup, covered by Proposition [ is when the buyer purchases
from a single supplier (n =1). In this case, we recover the classical double marginalization
result (Spengler|1950)): After both the supplier and the buyer charged a markup onto the
next echelon of the chain, the end price ends up larger than the price the centralized supply
chain would optimally set. This inefficiency arises because the upstream firms do not take
into account the externality exerted on the upstream firm by changing the wholesale price.

Under linear costs (v =1), spreading production over a larger set of suppliers mitigates

double marginalization, but a certain degree always remains. However, if v > 1 the buyer

faces diseconomies of scale when it is vertically integrated, an additional cost that can offset
the benefit of avoiding double marginalization, especially if the suppliers are numerous

(n>n) and collectively wield limited market power.

4. Buyer’s investment if there are no supply shocks
We first study the effect of upstream competition on a buyer’s investment decision.

Buyer’s long-term value (after investment). As|Chod and Rudi| (2006), we assume that
the demand shock in eq. is lognormal:

Yo=y>0 and dY;=pY,dt+oY,dW,, witho>0. (11)

These dynamics model demand shifts due to changes in consumer tastes and the arrival of
substitute products over time (see, e.g., [Li and Kouvelis |1999).

We assume the buyer’s discount rate, r > 0, to be constant over time (Dixit and Pindyck
1994, Li and Kouvelis/|[1999) and let EV = IE[ ‘YO = y] denote the conditional expectation.
If there are n firms that supply at all times (“reliable suppliers”), the buyer’s present value
(PV) is given by .

() = B / e (Y, (12)
0

where 7,(-) denotes the buyer’s equilibrium profit in eq. . Proposition || expresses this
PV in closed form for the specifications of eq. ﬁ To state the result, we introduce v, the

positive solution of equation Q(x) =0, where
1
Qz):= 50'256(1‘ —1)+pz—r. (13)

6 Proposition [5| can be generalized to accommodate for m buyers based on the equilibrium profit expression
of Proposition [13|in the e-companion.
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A classical assumption for linear payoffs is r > p (e.g. Dixit and Pindyck [1994), which is
not sufficient here. More restrictively, we assume € <, throughout the manuscript, which
is equivalent to Q(e) < 0. If this is not satisfied, then the PV explodes (u,,(y) — oo) because
the profits grow exponentially but at a rate too strong compared to the discount rate.
Buyer’s optimal investment time. Given the PV in eq. , we study the buyer’s propen-

sity to invest by solving the real-options problem:
Guly) i=sup B e {an (V) — 1}] (14)

where the investment time 7 is selected by the buyer and the parameter I >0 is a known

investment cost. Proposition [5| solves this problem:

Proposition 5 (Buyer’s real-options problem) For the specifications in eq. , the

PVin eq. 18

Qp,
Q(e)’
for a,, given in Proposition . The buyer’s investment problem in eq. has a solution:

U, (y) =y, where «,:=— (15)

1
Y+ <
- T Y goe— (-t I
at = om0 () <= (553)
a,y—1, >q

Its optimal investment time is T, := inf {t > O‘Yt > gjn}.

In line with our earlier results about the impact of upstream competition on the buyer’s
profit in Proposition [3] we find that the buyer is better off if upstream competition is more
intense in case of (i) linear costs (v=1) or (ii) if these suppliers face diseconomies of scale
(v>1). If (iii) there are economies of scale to be achieved (1 —¢ < v < 1), having the ability
to source from more suppliers effectively is of no value to the buyer because the market is
monopolized (see Proposition . In all cases, the buyer invests if the price exceeds a level
(obtained by smooth fit), higher than the NPV and Marshallian thresholds (see Dixit and
Pindyck||1994, Ch. 5). The buyer thus requires extra profitability from its project before
undertaking investment.

The next proposition summarizes a main managerial insight on the impact of upstream

competition on the buyer’s investment decision:
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Proposition 6 (Impact of upstream competition on investment) Assume v > 1.
We have a, < apyq and t, < U,y1. Furthermore, the buyer’s value function increases with
the intensity of upstream competition (Y, < 1,41 for n>1), while the optimal investment
time decreases (T, > Tni1). Moreover, the value of delay flexibility decreases with the inten-

sity of upstream competition (1, — (U —I) > iy —(Tpss —1I)).

From Proposition |3, we know that, in case of linear costs and diseconomies of scale (v > 1),
more upstream competition makes the buyer earn more. Proposition [] establishes that,
under these circumstances, the buyer is also more prone to invest (earlier) because it can

extract more value from its operations.

5. Buyer’s investment under exogenous supply shock

Supply shocks may be caused by exogenous events, including natural disasters, the COVID-
19 pandemic, strikes crippling economies, nuclear incidents (Fukushima), terrorist attacks,
or embargoes (e.g., Iran, Russia) (Kleindorfer and Saad 2005, Babich et al.|[2007} [Liicker
et al.|[2024)). In particular, the agribusiness is subject to such supply shocks. For instance,
in 2023/2024, Brazil, the world’s largest Arabica coffee producer and exporter, experienced
dry weather conditions and frost events in Mina Gerais, which caused a production short-
fall, while Vietnam and Indonesia were afflicted by prolonged dry weather conditions and
excessive rainfalls, respectivelyﬂ These supply shocks may have temporary effects (e.g.,
droughts, floods, frosts), while others (e.g., coffee leaf rust, coffee wilt disease, coffee berry
disease) have a long-term impact causing some suppliers to drop out.

If the buyer has n suppliers when demand is y, it receives a profit 7,(y) = a,y° given
in Proposition (1] If the state of upstream competition remains unchanged with n reliable
suppliers, the buyer’s present value of eq. is given by @, (y) = @,y in eq. . How-
ever, supply chains may be subject to major shocks, a stylized fact that challenges our
previous assumption (used in Proposition [5) that the supplier base remains constant over
time. In contrast to the literature, which often considers a shock occurring between the
times of ordering and receiving goods, we consider repeated relationships with some sup-
pliers disappearing permanently at some future time. Specifically, at time 0, the buyer has

"lopenknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/
content
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identified a set of n potential suppliers it can source from. Yet, when a sudden shock arises
at a random time, some suppliers disappear altogether, while a subset survives. In line with
Proposition [3| the shock that occurs at that time leads to an upward jump in the equilib-
rium input price (because fewer upstream rivals ultimately harm the buyer), a sudden drop
in the order quantity and sales volume, as well as a significant drop in the buyer’s profit.
End customers are also affected as the equilibrium output price increases abruptlyﬁ In our
model, exogenous supply shocks are assumed to be independent of demand uncertainty. For
simplicity, we model one shock, not a sequence. Furthermore, as we consider nonstorable
goods, the buyer cannot stock up inventory to mitigate supply shocks. At any rate, inven-
tory buildup can help mitigate the effect of supply shocks in the short to mid term at best,
but not in the long term.

Present value. The present value received if the buyer invests at time 0,

i, (y) :=E UOT e " (Ys)ds+e Tuy(Yr) |, (16)

embeds the effect of a supply shock at time T, after which the buyer can only source from
N suppliers. This shock occurs at a time 7' believed by the buyer to be exponentially
distributed with parameter A (e.g., Kouvelis and Xu/[2021), while the random variable N
takes values in the set {0,...,n—1}. We recall the definition of the parameter «,, in eq.
and set ag =0 by convention. The proposition below expresses the PV of eq. in closed
form and provides comparative statics on the impact of the supply shock characteristics
on this value. To state these comparative statics, we use the notation N, < N; to mean
that the random variable N, is stochastically dominated by N, in the first-order sense.
In our context, N, < N; implies that more suppliers are likely to disappear following the
supply shock at time T if we consider the random variable N, instead of N;. For instance,
the random variable N, may reflect a situation where the supplier base is concentrated
around ‘patient zero’ of a disease affecting crops permanently, while N; captures a more

geographically diversified supplier base. We have:

8 openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/
content
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Proposition 7 (Present value for exogenous supply disruption) Take v > 1. At

time 0, prior to the shock, the present value of the buyer in eq. s given by

A
Un(y) =n,y¢, where n, =™ :=a, + ———{Eay — a, }. 17
(y) =1y N =1 - Q(e){ N } (17)

A supply shock destroys value with 0, < av,. Furthermore, if the disruption is likely to occur

sooner or affect more suppliers, then value is also destroyed (with Ay > Ay and Ny < N;

implying 2N <N and V2 <nhN ] respectively).

Under rational expectations, the buyer anticipates the supply shock. When it happens,
the remaining suppliers will exercise greater collective market power. As a consequence,
the equilibrium price upstream will increase, at the buyer’s expense. A likely supply shock
then leads to a downward adjustment of the buyer’s present value, from 7,y¢ in eq.
in the case with n reliable suppliers to 7,y¢ in case of a supplier base prone to downward
change. The factor 7" in eq. depends on the arrival of a supply shock, through the
parameter A, as well as on the impact of this disruption on the supplier base through the
distribution of N. In the absence of supply shock (i.e., A =0), the factor n%" in eq. ,
which drives the buyer’s present value, simplifies to the factor «,, obtained in eq. . As
the factor V'Y decreases with respect to \, a higher arrival rate for the disruption depresses
the present value of a buyer with rational expectations. The sensitivity of the supplier base
to the disruptive event at time 7" is another metric the buyer may want to consider. If the
buyer expects more suppliers to be affected by the disruption (in the sense that Ny < Ny),
then its present value will again be negatively affected.

The investment problem sup, Ee™""{a,(Y;) — I}, for @,(-) in eq. has a closed-form
solution similar in form to 1, (y) in Proposition [5| Yet, this investment problem is not
time consistent because the investment decision is made solely in view of shifts in demand,
ignoring the dynamics of the supply shock; It essentially presupposes that the shock can
only occur after the buyer’s investment decision. A time-consistent formulation of the prob-
lem (which can be solved using dynamic programming) involves three state processes: (i)
demand (Y}); in eq. (11]) as before, (ii) the state (H;), of the supplier base, which takes the
value 1 if the shock took place and 0 otherwise, and (iii) the number (N,), of suppliers,

which drops from the initial number of identified suppliers n to N following the shock.
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The buyer may face two situations. If the shock already happened (Hy = h =1), the
buyer observes which suppliers survived, i.e., the realization of the random variable N, k €
{0,...,n—1}, and receives the present value @ (-) in eq. (12]) upon investing. Alternatively,
if no shock took place (Hy = h =0), the buyer forms rational expectations and anticipates
a future shock, thus receiving the present value of eq. . The time-consistent formulation
of the buyer’s real-options problem if’]

TZJ(yv h’n) = SupE [6—7‘7 {an(YT)(l - H‘r) +/ELN(YT)HT - I} D/O =y, Ho= thO = n] ) (18)

>0

for the ‘state of disruption’ h € {0,1} and the number of surviving suppliers N. We denote
by j(-) the distribution of the random variable N over the set {0,...,n—1}. We first rewrite

the investment problem in eq. in a more classical form:

Proposition 8 (Problem under exogenous supply shock) If the shock took place
(h=1) and k suppliers have survived, the buyer’s investment problem in eq. reduces
to 1/;(, 1,k) =y (+) solved in Proposition@for k=1,...,n—1. If the disruption did not yet
take place (h=0), the value function takes the form

¥(y,0,n) =ERy(y) +supEe™ "V {n, YV — T — Ry(Y;)}, (19)
T€T

for m,, defined by eq. and Ry (y) :=Ee~ )T (Y)dt > 0.

Proposition [§| rewrites the real-options problem in eq. , which depends on three state
variables, into a usual optimal stopping problem with one state variable y. Compared to
the problem in eq. , we consider a new problem (the second RHS term in eq. ) with
(i) a higher discount rate r + A accounting for the risk of arrival of a supply shock and (ii)
an extra term accounting for the consequence of that arrival on the buyer’s supplier basem

We want to determine the solution of that new investment problem:

°In eq. 1D the buyer’s investment 7 is assumed to be adapted to an augmented filtration that accounts
for the additional source of uncertainty with respect to the supplier base.

10 Ri(y) can be interpreted as the value of a compound option, specifically the value of a European option
written on an American call, with an exponentially distributed maturity date T' for the European option.
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Proposition 9 (Buyer’s real-options problem under exogenous disruption) If
the shock did not yet occur (h=0), it is optimal for the buyer to wait for demand to exceed

a threshold 4, with its value function given by

7 my —11(4)Y +é(y), 0<y<y,
D(y,0,n) = [ : J(£)Y +o(y) y
TIny _Ia yZ?/v

where

(- 10%) + \/(u %(72)2 +202(A+7)

Y= 0_2 > Y4, (20)
and ¢(-) is positive and solves
$(0) =0
20°Y°0"(y) + 1y (y) — (r + No(y) + A 4o 5 () ¥e(y) =0, 0n (0,9),  (21)
¢(y) =0, fory=>17.

We now study how a greater sensitivity of the supplier base to the supply shock affects
the buyer’s investment decision. Again, N, < N; signifies that more suppliers are likely to
disappear after the shock if we consider the random variable N, in lieu of IV;. The following
comparison result articulates that the buyer will invest later (and have a lower option value)

if it expects more suppliers to disappear following the shock at time T

Proposition 10 (Larger supplier-base impact) Assume v >1 and Ny < N;. Further-
more, let 152 and y; denote the value function and optimal investment threshold in Proposi-
tion @ for the case with N;, i € {1,2}. A larger likely negative impact on the supplier base
(N2 =< Ny ) destroys value for the buyer (152 < 1;1) and delays its investment (g2 > ).

6. Buyer’s investment under endogenous supply shock

The reliability of all n suppliers at all times may be challenged if fixed costs are significant.
For instance, while owning harvesting machines is prohibitive for small or medium-sized
coffee farms, renting them may be more affordable and overcome sunking large investment
costs[T] Other common fixed costs include shipping costs, which have been material from

2020 to 2022 and had a documented impact on coffee pricesE] To sustain more upstream

11revistacultivar.com/news/characteristics-and—benefits—of—mechanized—coffee—harvesting

12lopenknowledge . fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-abac5b02230a/
content
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competition and mitigate double marginalization, the (monopsonic) buyer may use different
schemes to keep (weaker) suppliers afloat. For instance, the buyer may subsidize a supplier

that may disappear if its profit in Proposition [I] is not sufficient to cover its fixed cost.

6.1. Buyer’s investment decision
Consider that one (unreliable) supplier rents the productive equipment (e.g., harvesters)
at a cost K >0 and intermittently supplies the buyer if its gross profit exceeds this rental

cost. The other (reliable) supplier, e.g., because it made a sunk investment in this equip-

ment, can supply the buyer at all times. In the case with economies of scale (1—0 <v < 1),
which is less relevant in the context of agriculture, the buyer is indifferent if one supplier
temporarily drops because the upstream market is effectively monopolized (see Proposi-

tion . This, however, is not the case for linear production costs (v = 1) or if there are

diseconomies of scale (v > 1), which we consider now.

The factors v,, and a,, in Proposition [I| characterize the firms’ gross profits, depending
on the intensity of upstream competition (via the state variable n). From Proposition |§|,
we know that as > a; for linear costs (v =1) or in case of diseconomies of scale (v > 1).
Unless the buyer intervenes, the unreliable supplier trades if and only if its gross profit voy©

1

exceeds the rental cost K >0, i.e., if demand y exceeds (K/vy)<. The buyer thus earns a

state-dependent profit,

’ﬁ'o(y) = Qlyel{y2ye,}<<0} + agyel{yﬂle,[{zo} s (22)

sourcing from 1 supplier sourcing from 2 suppliers

and has a PV given by

(23)

2 [V 7o(2) > 7o(2)
:(%r—“Y—)UQ {yﬁy /o z7+1dz+y7+/y zv++1dz >0,

for v, (resp., y_) again denoting the positive (resp., negative) root of Q(-) in eq. (13).

6.2. Mitigating double marginalization by subsidizing the supply chain

The support a buyer can provide can take various other forms such as cash or investment
subsidies (Babich!2010, Wadecki et al.[2013, |Tang et al.[[2014), buyer direct financing (Tang
et al.[[2017), and purchase-order financing (Tang et al. 2017, Jain et al. 2023]). Cargill,
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a US-based multinational food corporation, recognizes that sustainability is essential to
feed a rising global population: It financially supports its farmers for adopting regenera-
tive agricultural practices and partners with technology firms to develop wind-propulsed
bulk carriers meant to reduce shipping costsE In the same vein, Nescafé supports cof-
fee growers through the Nescafé Plan 2030 by providing agronomic training, distributing
disease-resistant plantlets, incentivizing regenerative farming, and offering other financial
tools to enhance productivity, build climate resilience, and stabilize farmers’ incomesﬁ

If v > 1, the presence of an unreliable supplier is detrimental to the buyer in the sense
that a1y < 7o(y) < agy® and ayy© < Up(y) < apy® for ay and ay given in Proposition
This result is similar in spirit to the result obtained when considering an exogenous shock
affecting the structure of the supplier base. To mitigate the effect of an (endogenous) supply
shock, the buyer can intervene to maintain more upstream competition. For instance, the
buyer may choose to subsidize the unreliable supplier by paying a share n € [0,1] of the
rental cost K. Given this intervention, this supplier trades if and only if v,y — (1 —n)K > 0.
This share is considered herein a decision variable in each period. This string of decisions

by the buyer leads to a PV given by

u(y) ::E/ e "r(YY)dt
0

N} ; c (24)
where 7(y) := Sl[lp] {aly Lvgye—(1—m)K <0} + [agy - "7K] Livoye—1—mx >0} }
ne€lo,1

sourcing from 1 supplier sourcing from 2 suppliers

The following proposition provides key results:

Proposition 11 (Subsidizing unreliable suppliers?) The buyer’s profit in eq. 18
given by ™ =Ty + (, where Ty is as in eq. (22)) and ¢ is given by

C(y)::{(Vﬁaz—al)ye—K}l (y) >0, Vy>0.

(=) € () €)

The PV in eq. 1§ U4 =1ug+ Z, for ugy in eq. and
2 {y7 Y ((2)
0

(v —7-)o? 2=t

= <)
Z(y) = dz+y7+/y mdz >0, Vy>0.

13limpact . economist . com/sustainability/decarbonising-agriculture-and-transportation/

building-a-sustainable-resilient-global-food-system

14www.nestle.com/media/news/nescafe—plan—2030-progress—report-2024-regenerative—agriculture
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Following Proposition if both suppliers are reliable (K — 0), then the buyer’s profit
7(y) simplifies to the profit a,y® in Proposition |1 For a larger fixed cost K, the buyer
will not subsidize the unreliable supplier if the demand state y exceeds the level (K /vs)*¢,
above which each party in the supply chain generates a net profit. For low demand (i.e.
O<y< (ﬁ)%), subsidizing ensures more upstream competition, but there is no net
benefit from doing so and the buyer effectively prefers to source from one supplier only.
Between these two threshold levels, the buyer will subsidize a share 7j(y) :=1 — v5/ Ky® of
the rental cost K. This share decreases in the demand state y, reflecting the buyer’s desire
to subsidize more if the reliable supplier is less profitable. With this contribution from the
buyer, the reliable supplier barely breaks even but supplies. This intervention is sufficient to
maintain more upstream competition. The buyer’s subsidizing effort essentially boils down
to consolidating (in the sense of its accounting treatment) the profit of the reliable supplier,
as also reflected in the buyer’s profit (as + 1)y — K. However, from an economic point
of view, this is not tantamount to a vertical integration which would help the buyer avoid
a double marginalization. Vertical integration is a commitment in all demand states. The
profit decomposition 7 = 7y + ( stresses the benefit for the buyer to subsidize the unreliable
supplier in times of need, as a way to maintain more upstream competition.

The NPV decomposition in Proposition stresses the option-like feature of subsidiz-
ing the upstream market. Depending on the demand level, the buyer will optimally take
over a share 77(y) > 0 of the unreliable supplier’s fixed cost, a strategy that generates
an additional benefit Z > 0. The presence of an unreliable supplier upstream is unfortu-
nate for the buyer, as u(y) < ayy®. However, subsidizing this firm is advised, as u(y) >
to(y):=E [ e "7o(Y;")dt > any*, but should be conditional on the current market circum-
stances (as 77(y) Z1 and u(y) > apy® — K).

In relation to the present values ty(y) and u(y) in egs. and , respectively, we

can consider (time-consistent) investment problems of the form

v

Yo(y) = supEe™"[iio(Y?) 1] and  (y) = supEe™""[ii(Y;") — 1]. (25)

These option values arguably differ from the benchmarks for the symmetric supplier base,

given in eq. (14) and solved in Proposition [5| We establish:
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Proposition 12 (Ranking for option values and optimal investment thresholds)
Assume v > 1. The real options problems in eq. have (closed-form) threshold solutions
o and § obtained by smooth fit. Compared to the benchmarks v; and 7; that characterize

the case with a symmetric, reliable supplier base, solved in Proposition [3, we have

Yy <o < <1y and Gy > Go > Y > Po.

Here again, the buyer will invest if the state of demand is sufficiently large, that is, above
a demand value j, or § that depends on whether the buyer can subsidize the unreliable
supplier or not (the latter being indicated with the underscript 0). Following Proposition
the intermittent presence of an unreliable firm in the supplier base destroys option value for
the buyer, as J} <)y, but this presence is still useful compared to the extreme case where
the supplier base consists of a unique reliable firm, as 150 > ;. Subsidizing the unreliable
supplier is also useful, as it generates more option value compared to the case where the
buyer does not intervene (1[1 > 150). In this case, intermittent supply from an unreliable firm
is not ideal for the buyer as it leads to a late investment (with ¢ > ¥2), but is still better
than sourcing from a monopolistic supplier base (with §; > ¥,). Subsidizing the unreliable

supplier leads to earlier investment (as ¢ > o).

7. Conclusion

We study the effect of upstream competition and supply shocks on a firm’s investment
decision. We analytically prove several key insights. If suppliers have linear costs or face dis-
economies of scale, more upstream competition mitigates double marginalization, reduces
equilibrium prices, improves a buyer’s profitability, and hastens its investment. If there
are economies of scale, the input market remains monopolized. If the upstream market is
not already monopolized, supply shocks—whether due to exogenous events or to a lack of
profitability for some suppliers who decide to cease operations—depress market conditions
for the buyer ex post as the remaining suppliers wield more market power and double
marginalization is exacerbated. A buyer anticipates such effects and postpones its invest-
ment: If more suppliers are likely to disappear following the shock, the buyer will delay its
investment even further. The buyer may subsidize suppliers for them to remain afloat, while

sustaining more competition upstream, which leads to earlier investment by the buyer.
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Like any model, ours has limitations. First, it surmises complete information, with sup-
pliers able to infer demand from the buyer and their rivals’ best-reply functions (see, e.g.,
Simchi-Levi and Zhao|[2003], |Shen et al.[|2019) on the role of information asymmetries on the
terms of supply contracts). Second, we ignore the use of inventory which can serve opera-
tional (e.g., to circumvent backlogs due to, say, the Suez Canal Blockage, War in Ukraine,
and Panama Canal drought) or strategic purposes (see, e.g., Guan et al.[2019). Third, we
also ignored the possibility for suppliers to sell directly to end customers, which has become
easier through online stores (see, e.g., Guan et al. 2019, Liu et al.[[2021}, on the notion of
supplier encroachment). Fourth, a supply chain may involve more than two echelons (see,

e.g.,|Ang et al|2017, Birge et al.|2023]). We leave these and other topics for future research.
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Mathematical proofs

A. Proof of Proposition

We show the existence of a symmetric equilibrium below, when v > 1. For the inverse
demand function in eq. and an arbitrary input price w, we get the buyer’s profit
7(q;y, w) =yq'~° —wgq. It follows from the definition in eq. that (1 —98)yq(y,w)™° =w.
The supplier i’s optimization problem in eq. now reads

max J(g:,2), where J(q,2)=q(1=0)y(q+2) " ~q" (26)

q;20

market price

The map from a z > 0 to the solution(s) of that parametrized optimization problem is called
“best-reply correspondence” (resp., “best-reply function” if the solution is unique for each
z). We recall that ¢ € [0,1]. The partial derivatives of ¢ — J(g,2) in eq. (26) with respect

to q are:

0J

9q
02
g

(¢,2) =y(1=8)(g+2) "' [(1=8)g+2] —ecg" ",
(27)
(¢,2) = —y(1=0)d(q+2)"*[(1 = 0)qg+22] —c(v—1)g" 2.

Under the condition v > 1 and 0 < § <1, the function g — J(q,z) is concave on R, and
attains its maximum value at g(z) solution of g—‘;(cj(z),z) = 0. We conjecture the existence

of a symmetric equilibrium, that is, a quantity level ¢,, such that
zp = (n—1)g, and q(z,) = gy

If this conjecture holds, then the individual supplier’s output ¢, solves g—;’(q(zn), z,) =0 or

equivalently,

y(1=0)[ng,] "' (n—8)gn — cqy " =0. (28)

This gives eq.eq. the result for v > 1.
From eq. , we get the aggregate quantity:

Qu(y) =ngu(y) =nsi1 (=ty[1— %])6-&—71—1 '
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It follows that the equilibrium price in the input market in eq. @ is given by

Wn(y) =(1=0)yQu(y) ™

v—1 1 19
—(1-4)y [nm (1zy [1 - 8]) 7]
:[(1_5) ]5+v Tn~ S5to 1(%[ %]) SFu—1 1’
:(1—5)3/51”%1171 5+v i ( [ %]) 6+v T (29>

while the equilibrium price in the output market in eq. is
61}—11 651) 11 1-§ 5 _WS_I
=yFroTn et (221 2 :

Clearly, w,, = (1 —-9)P, < The buyer’s equilibrium profit in eq. . now reads

=oyQ)°
gy stz 12ty 1 4)) 7]
_ (nu—u;& [1 i})sigflyﬂv,l (30)

The profit of one supplier in eq. @ is here given by

nn(y) :wnqn(y) - C(qn)

:(1—5)y8%n‘55% (176 [1_% )—m « " FFO=T (%éy [1_ g})m

v

|
—¢ [ st - )]
—(1 — §)yFFtn sFo=T (=8 [1 - 2]

e (12 [1 - £])

—yFEmIn Ty (18 [ 8])FeT 128 [y 1 4 8], (31)

This completes the proof of Proposition [T}
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Successive Cournot oligopolies with m buyers. Take v > 1. In the case with m € N buy-

29
ers, the demand function in the input market obtains from a symmetric Cournot-Nash
equilibrium in the output market, i.e., from solving the fixed-point equation

q=R((m—1)q), where R(z):=argmax{qP(¢+2,y) - wa},
qiZ
where m € N denotes the number of buyers and z = Z;n:l q; > 0.

(32)
We solve the fixed-point for the specifications in eq. and readily obtain that the
suppliers face the inverse demand function

6|
gy {1 - ] q°.
m
Following the same methodology as earlier, we get that the output of one of the buyers is
given by

v—1
_ n6+v71

Qm,n =
That buyer’s profit is given by

Tm,n

v—1
n5+v—1

1

1— 9 5 SFu—1

(= -2))
m c n
1-29 5 T 5 L /1S 5 -5
S S e St it G et )
m c n m c n

margin
1-6

_i v—1 _% 1_§ o 3Fo=T
2\ c n ye
We note that

) -
o [ T
which confirms results in Proposition
We have

aﬁm,n

_ 5 v—ll_% 5
om _2m3<n [
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Proposition 13 (Supply-chain equilibrium with n suppliers and m buyers)
Given the specifications of eq. with v > 1, where there are m buyers sourcing from n
suppliers, the profit of each buyer, T, ,, satisfies

1)y

y5o-1 <7, (y), VYmeN.

m 2 c n

0 < Fpn(y) 1= 25 (n' 122 [1 - 2

As expected, horizontal competition among buyers depresses the individual profit of each
buyer compared to the monopsonic benchmark of Proposition Il Our paper focuses on
the strategic interactions along the supply chain, not at one specific echelon. From that
perspective, we leverage the supply chain model with 1 buyer in Proposition [l rather than

a setup with m buyers.

B. Proof of Proposition

For notational simplicity, the dependence on the variable y is suppressed hereafter. First,
using the notation of Proposition |1} a supplier, who anticipates that its competitors will

not produce, faces the following problem:
max .J(g,0).
q

By computing the derivatives of this function up to the third order, we show that J(-,0) is
concave and attains its maximum at ¢, which corresponds to the best reply of 0.

Take a z > 0. It thus remains to check that ¢ — Ji(q) :=J(q,2) = (1 —0)y(z+q) °q— ¢"
in eq. (26 attains a maximum on [0,00) at 0. Similarly, as in the proof of Proposition

we have
Ji(@) =" [A =0yl + )" (2 + (1= 8)q)g" ™ —c].
Thus, the function J] has the same sign as the function

00) = (1= )z +0) 0+ (L= k'~ —c.

Because 1 —v >0 and a =v— (1 —¢) > 0 under the economies of scale assumption, we have

lim 0(q) = lim 6(q) = —c.

q—0+ q— 00
A straightforward but tedious computation shows that the function 6’ has the same sign

as the polynomial function of degree 2 given by

pol(q) = (1 —=6)ag® + (2a+6(1 —v))zqg — (1 —v)2>.
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Because pol(0) < 0, ¢’ changes sign only once on (0, 00) which implies that 6 and thus J; are
nonpositive. As a consequence, the function J; decreases attaining its maximum on [0, c0)
at 0. A strategy profile where more than one supplier produces a nonzero quantity thus
cannot be a Nash equilibrium.

The results for the equilibrium input and output prices, as well as for the buyer’s profit,

are immediate.

C. Proof of Proposition
Case 1 —0 <v < 1. The result is immediate from Proposition
Case v >1. We note that n+— 1 —¢§/n is increasing. We get from Proposition (1] that

)., Inssty 11— 0\ i
Qn = (1 + ) o ( ntl ) i > 1 (both exponents are positive),

Qn n 1- %
>1 N
) 1 56—1&}-vi1 1— SN\ +371
ntl <1 + > < e ) <1 (both exponents are negative)
Wy, n 1-=
P, 1\ e (1 FiT
Jg = <1 + > N "j{l <1 (both exponents are negative)
1-6
a 1 v—1 1— [ d+v—1
ntl (1 + > X ”:1 >1 (both exponents are positive).
an, n -2
n

This concludes the proposition.

D. Proof of Proposition

We first consider the case of a vertically integrated firm where the buyer profit is given by

M(y) :i=max {aP(y,q) - C(q) } €R.. (33)

4>0
Given the specifications in eq. , we want to maximize q +— J(q) := yq' = — %ﬂ over [0, 00).
For v > 1, we have J"(q) = —(1—8)dyq ° ' —c(v—1)¢""2<0 for all ¢ >0. So g— J'(q) =
(1 —98)yq=° — cq"~! decreases on (0,00) from oo to —c (if v =1) and —oo (if v > 1). The
maximizer obtains from the first-order condition and is explicitly given by (%y)““’é‘1

After simplifications, we obtain

1-6
_ _ S+v—1
(i) A (1)

v C
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which gives the following expression for II(y)

1-§
11—\
II == €
(y) ; ( . y
We introduce
II
- 1w (34)
T (y)

which captures whether the buyer is better off vertically integrating (if x > 1) or not (if
X <1). Given the expressions for II(y) in Proposition 4| and 7, (y) in Proposition |1} we get

After simplifications,

ox 1-0 , 5/ , 4 51\ " vFe=T
SX(n,v) == =0 (01— 2)) {n(v—l)—5(v—2)}.

In the case with v =1, we have

a—X(n,l) =—(1-0)n"? (1—é)‘% <0

on "
1
lim y(n,1) = lim [1—2]"7% =1.
n—oo n—oo

Hence x(1,1) > x(2,1) >---> 1.

In the case with v > 1,

8X v—11— v— v— _'u% v—
SX(nyv) == i (T L= 2)) T T g
>0

d+v—1 5-1
Lo)=2"0" (1 )5t > 1
x(Lo)=T Tl g gyt
lim x(n,v)=0.

n—o0

Define n, := inf{n € N|n > §*=2}. It follows from the above that n+ x(n,v) is above 1 for
any n € {1,...,n,}. Furthermore, there exists a finite n € {n,,...} such that 1 > x(n,v) >0

for all n > n. This completes the proof. O
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E. Proof of Proposition
Step 0 — Present value. The term @, (y) in eq. then becomes

U, (y) = a,,LEy/ e Y dt.
0
We now consider the stochastic process (Y;°);. By the It6-D6blin formula,

AV =[10%Ye(e— 1)Y, 7> + pY,eY, '] dt + oYieY, ' Z,
=m(e)Y, dt + oeY, dZ,,
where
m(e) :=s0%e(e — 1) + pue. (35)

So (Y;°), follows a GBM. It follows by standard properties of GBMs that
EYYS = ye™©t and Ey/ e Y dt = ye/ ey, (36)
0 0

for Q(+) given in eq. (13]), converges to

EY [ e tYedt=——2—
/0 ' QA(e)

Step 1 — Dynamic programming equation. Equation describes the classical prob-

€

iff O(e) < 0.

lem of McDonald and Siegel (1986)). We drop the index n in the notation «,, and introduce
the differential operator
L= tory o + 0 1 (37)
=0y — —-r

with I denoting the identity operator. The dynamic programming equation for the problem

in eq. (14) is a variational inequality (VI), namely

max {ay — I G L0} =0, ae.y>0,

Al =0 (38)
tm =t
We have
Lo =1)(y)=—[r—m(e)]ay +rI (39)

for m(-) given in eq. (35). If r > m(e), y+— L(a-* —I)(y) is monotone decreasing on (0, cc)

from 71 > 0 to —o0, so it has a unique root, denoted y*. We conjecture that {¢) > a-¢ —I} =
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(0,%) € (0,y*), where 7 obtains by smooth fit. If this conjecture holds, then ¥ (-) solves the
free-boundary problem (FBP)

Y(0+) =0,

LY(y) =0, VYye(0,9),
b(F) =ay —1,
P (5) = aey .

1,2
The function Q(+) in eq. 1) is convex, attains its minimum at the point v, := =227 and

o

satisfies Q(400) = co. Further, because Q(1) =m(e) —r < 0, the minimum is necessarily
a negative minimum and Q(-) has a positive root 7., which is unique because Q(-) is
monotone increasing on (max{1;~,},00). Standard computations lead us to conclude that
the function 1(-) given in Proposition [5| solves the FBP.
It remains to verify that this 1(-) solves the variational ineq. . We look at the two

intervals.

(y,00). For 1 to solve the VI in this interval, we must have £ = L(a-¢ —1)(y) < 0. From
eq. (39) and the expression for 7,

1 1

Ll D@ ==1r ~m(@)[ ;== - 5

Y+ r

:—I[r—m(e)]ﬁ:(; #dg.

N—— ) = (1_C)2
<0 T N ——

>0

But, it follows from eq. after simplifications that

TE _ ]‘ r—m(e) 2
Q (m(e)> ot Too(e— 1)]27"0 > 0 because r > m(e).

Because Q(+) is monotone increasing on (max{1;, },00) and Q(o0) = oo, the root ~y satisfies

Y < mg- It immediately follows 5> @ Hence, L(a-“ —I)(y) < 0. So the FBP’s solution

¥(+) verifies the VI in the interval (g, 00).
(0,7). We want to verify that ¢(y) > ay® — I. We note that ¢(-) also reads

P(y) = %gﬂg“” in the interval (0,7).
Y
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We define
U(y):=P(y) —ay +1, (40)

In the interval (0,7),

We note that

Q(e) = %U%(ﬁ )4 pe—r=—[r—m(e)],

for m(-) given in eq. (35)). Given the assumption r >m(e), it follows that Q(e) < 0 and, so,

given the behavior of Q(-), we have v, > €. It follows that

U'(-)<0on (0,7). (41)
Further, ¥(y) = 0 by value matching. Hence, ¥(-) necessarily decreases on (0,%) from a
positive value and vanishes at the right boundary. It follows that 1 (y) > ay® — I and, so,
that the FBP’s solution 1)(-) solves the VI in this interval as well.
Step 2 — Verification theorem. We conclude with the verification theorem. Let ¢ be a
supersolution of the variational ineq. . For an arbitrary stopping time 7, it follows from
Dynkin’s formula that
o) =B [ G(v) — [ e piviyde
0 N~——

——
>aYe—I <0

> Eyefw{aY: - I}.

Then, a supersolution of the VI exceeds the value function. Let v(-) denote the classical
solution of the VI and take 7 := inf {t > OWJ(Yt) >aY,—1 } Proceeding similarly, we obtain
that the solution of the VI is the smallest supersolution and coincides with the value function
in eq. .

The result for ¢, (-) follows from standard results on first-stopping times and GBMs. This
concludes the proof of Proposition [5
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F. Proof of Proposition [6]
Assume that the conditions in Proposition [5| are met. If a,, 1 > a,, it follows from eq.
that ap 1Y, — 1> a,Y*— I and, so, that

G () 2 Bre ™ (a1 Ye, — 1| 2 BVe ™ [0y, — 1| = (),

where the last equality comes from the optimality of the stopping time 7, for the value

_ 1
function v,,. Furthermore, 95 < #, by monotonicity of the map a (%é) ‘

On the other hand, let us define ¥, (y) =, (y) — (i, (y) — I). Clearly, ¥, (y) > V¥, ,(y)
for y > 4,41 because .1 < . If we define A=W, — ¥, ., we thus have A(y,1) >0 and
A(0) = 0. Moreover, we have for y € [0, §,41]

LA(y) = L(Tnt1 — Un)

=— [r - m(e)] [Oén+1 - ozn]y6 from eq.
<0 from Proposition (3| and eq. .

Applying Dynkin’s formula, we obtain upon defining 7, (resp. 73, ,,) the hitting times of 0
(resp. Yni1),

O<k [eiT(TOAT@nH)A(YTU/\T%H )}

— A(y)+E { /0 T s e A(Y) ds}
<A(y).

This completes the proof.

G. Proof of Proposition
Present value. We will show that the term 4, () in eq. has an explicit expression.
First, upon recalling the definition of m(e) in eq. (35)) and using independence,

T oo t
E / e "0a,Yeds = / ( / e’”anE[Y:}ds))\e”\tdt
0 0 0

:anyg/ e_("_m(s))s/ e *dtds by Fubini’s theorem
0

S

_ anye/ ef(rJr)\fm(e))st
0

— L €

r+A—m(e) v
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We note the distribution of N by j(k) :=P(N = k) € [0,1] with 37—, j(k) = 1. For the

second term, we have by independence again,

TanYs = Z/ "ag( EYtE)\e_Mdt

7“—1—)\ m(e Zak] ]

Combining the two terms yields

U (y) an, A
= E f; (1 d
) By from eqs. (1) and (B3
an A A
_)\—Q(e)+)\—Q(e)a"+)\ {EaN—an}

(67

=56 { ~ 20} + 5 g (Bax —n) trom 0. @)
=, given in eq. (L7).

Comparative statics with respect to A. It is immediate that dn,/0OX <0. Hence, Ay > A\,
implies ni2: ¥ <priN,

Comparative statics with respect to N. Consider two random variables N; and N, mod-
eling the number of surviving suppliers after the exogenous disruption. In the case indexed
by 2, we expect more suppliers to disappear after the disruption, in the sense that N, is

stochastically dominated by N; (noted N, < N; and understood in the first-order sense).
We note that

A
>\N2 >\N1 — E _ .
nn nn )\ _ Q(E) [aNz aNl]

Because it holds from Proposition (3| and eq. that o411 > «a,, and because we assume

Ny < Ny, it follows that n}V2 <n)N1. This completes the proof.

H. Proof of Proposition

Step 0 — Problem setting. At time 0, the buyer would source from a (known) set
of n homogeneous suppliers. A disruption will affect the set of suppliers the buyer can
source from. The profit at the time of investment 7 depends on whether the disruption

occurred before or after the investment. Let T" denote the disruption date, which we assume
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exponentially distributed with parameter A > 0 and independent of the Brownian filtration

[F. We define the process H = (H;); by
Ht = 1{T§t}7 t> 07 (42>

a process which takes the value 1 is the disruption already occurred and 0 otherwise. At

time ¢ > 0, the number of remaining, potentially operating suppliers is given by
N,=n(1-H;)+ NH,, (43)

where N is a random variable with a distribution j(-) over {0,...,n—1}, i.e., j(k) =P(N =
k)€ (0,1) with Y7~ Oj( ) = 1. It follows that, at the time 7" of disruption, at least one
potential supplier disappears.

The progressive enlargement of F with 7" is defined as G := (G;);>o with

Gi=((FVo(TAs).

s>t
The filtration G is the smallest right-continuous filtration such F C G and T is a G-stopping
time. According to (Aksamit and Jeanblanc/ 2017, Remark 4.41), the o-algebra G, coincides
with F; Vo (T') on [T,00). Because the random variable T is independent of the Brownian
motion B = (B;);>0, B is a Brownian motion with respect to the enlarged filtration G.
Hereafter, we denote 7g the set of G-stopping times. The processes (H;); and (IV;); are
G-adapted.
If the buyer decides to invest at the stopping time 7 € 7g, he receives the amount
u(Y;, H,;, N,) where
u(y, h, k) :==1,(y) x (1 —h)+a(y) X h, (44a)

where u(+) is given in eq. —With a closed-form expression in Proposition and Un(y),

given the strong Markov property, reads

ﬂn(y)::E[/oT 7Y, ds+e‘7T{Z] Vi (Yr) }] (44b)

which is a rewriting the expression in eq. , where the expectation operator in the latter

expression also account for distribution of the random variable K. By convention, we set

uo(+) =0.
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Step 1 — Value process and principle of optimality. We introduce the value process
(¥); given by

\I]t = ess sup E [G_T(T_t){u(y‘m HT) NT) - I}|gt] ) (45)
TETg(t)

where Tg(t) is the set of G-stopping times with values in [¢,00). We denote Tg = T5(0).
According to optimal stopping theory (El Karoui||[1981, Peskir and Shiryaev| 2006), the
process (e ""W,); is the smallest G-supermartingale that dominates the payoff process

(e7"{u,(Y;, H;, N¢) — I});. Furthermore, ¥, can be written as U, = (Y;, H;, N;), where

P(y, 1, k) =ty (y) in eq. (T4),
_ nfl 46
w(yaovn)zsupE [6TT(’EL”(YT)—I)(]_—HT)—I—HT(ZTT(Zj(k){uk(YT)—I}>] : ( )

TETG k=0

We are in a position to establish the following lemma:

Lemma 1 (Principle of optimality) The value function in eq. can be written as

$(y,0,m) = sup E {e—““” (0 (V) —I) + Hye Zﬂkm(m] . (47)

TETR

Furthermore,

Y 4 o
Y(y,0,n) > {77,1(3/\/3;*)E —I} (yvyy*) with y, 1= (%nin) and 'y given in eq. . (48)

Proof of Lemma We write the objective functional of the value function @Z;(y,(),n) in

eq. valued at a G-stopping time 7, in two parts,
Ji(7) ==Ee " (@, (Y;) - I)(1 - H,)
n—1

Jo(7) ::JEHTe‘”( (k) { e (Y;) — 1})

k=0

and factorize the stopping time 7 as
T= O-]-{cr<T} + G(Ta N7 ')1{0'2T}7

where o and the family (o(u,k,-))u>0k<n—1 are F-stopping times. Using independence

between T and the Brownian motion, we first have
Ji(1) =E [e7" (@, (Ys) — I) L{o<r}]

=E [/OO e Mdte " (@, (Ys) — 1)
=E [e "N (@,(Ys) —1)].



: Supply chain tensions
40 00(0), pp. —, © 0000 INFORMS

For the second part, it follows from the variational ineq. characterizing 1)), that

e—”ij(km(n)m

TTZJ ¢kYT T

Jo(T) <E as >, — I

because L1, <0 a.e.

We thus deduce from eq. that

$(y,0,n) < sup E [ T (1, (Yr) 1) +H're_rTZj(k)¢k(YT)] : (49)

TETG
To show the reverse inequality, let us consider the G-stopping time
7=0l(o<ry + (T, N, )65y,

where

o(u, k,-) =inf {s >u

((,u — %(72)(5 —u)+ JWS,U) > gjk}

is optimal for the optimal stopping value 1, (see Proposition . We thus have

n—1

To(r) =) _j(k)E [e_r&mkf) {an(Yo(r) — I}Hr}
k=0
n—1
= Z J(k)E [efrTle (YT)HT] by Proposition
k=0

This proves the expression in eq. .

Finally, similarly to the proof of Proposition we can establish that
T, :=inf {t Zt‘Yt Zy*} is the optimal stopping time for the optimal stopping problem
sup, Ee~("+M7{pn y¢ — I'}. Setting 7, on the right-hand side of eq. and noticing that
P >0, we get ineq. . O
Step 2 — Formulation as a classical optimal stopping problem. We introduce the

functions .
Ry(y) :=E / eV (V) dE
S (50)
Ry.(y) ::E/ e_(””\)t)\(ak —u,) (Y,)dt,
0
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which can be rewritten as in Proposition |8} It follows from eq. and the strong Markov
property that

) =u,(y +z] [ Uy, —un)(YT)},
=i, (y +Zg ) from eq. (50). (51)

Furthermore, we have

E[e"“T@Z_)k(YT)HT] :IE/ e " (Y;)Ae *dt by independence of T and B and eq. ,
0

=Ry (y) —Ee "tV7R,(Y,) by the strong Markov property. (52)

It then follows from Lemma, |1{ and egs. and that

Py, 0,m) Zﬂ G(y), (53)

where

G(y) :==supEe "N g(Y,) for g(y) := i, (y) — I + Z] )Ry — Ri)(y). (54)
TET

Step 3 — Reformulation. We now want to express J}(y,O,n) in a way more amenable to

an economic interpretation. We have
E/ )\e_(rﬂ)tak(Yt)dt :ak)\/ e_(r“)tE)Tdt from Proposition
0 0

—ak)\ye/ e IrA=mOl Q¢ from eq.
0

€ A by int tion
B mtegratio
ky )\ (6) g

)\ Q( )y from eq. .

This allows us to write Ry (y) in eq. (50) as

A
:{ng — an}my

€
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For the function ¢(-) in eq. (54)), we get from Proposition [5[ that

n—1 n—1

A ) )
9) =any — T+ ~—=—~y" Y i) {ax—an} = j(k)Ri(y)
A=Q(e) k=0 k=0
n—1
=n.y°— 1 — Z](k‘)Rk(y) for n,, defined by eq. .
k=0

This completes the proof.

I. Proof of Proposition 9

We consider the optimal stopping problem in eq. . We introduce the differential operator
A= %ﬁgﬁ% + ,uya% and study the differentiable function y— ([A— (r+ A)I]g)(y) for g
given in eq. (54). By the Feynman-Kac theorem, the resolvents in eq. solve

[A = (r+ NI Ry (y) = =M (y), Vy >0, 55)
[A— (r+ NI Ry.(y) = —A(a — 4,) (y), Vy>0.
Hence,
[-’4 —(r+ A)H] [Rk - Rk] (y)=A (@Zk - ﬂk) (y) + A (y).
It follows that
[A—(r+M1]g(y) = [A—rT]a,(y) + (r+ M) + Aij(k) (1. — ) (y)
:—anye—i—rl—l-)\i:j(k)\ilk(y), (56)

because of Zz;éj(k}) =1 and the definition of ¥}, in eq. . Hence,

n—1

([A= 0+ M19) (1) = —eany ™ + A3 J(R) T (o).

k=0
But we know from eq. that W) <0 on (0,%) and =0 on (i, 00). So, the function y —
([A=(r+MI]g)(y) decreases on (0,00). It follows from Proposition 1| that 7, (-) vanishes
at 0 and diverges to oo at co. Furthermore, it follows from Propositionthat U, vanishes at
0 and co. Hence, y — ([A— (r+ A)I]g)(y) is strictly positive at 0 and goes to —oo at co. As
it is continuous and monotone, there exists a unique y; such that ([A— (r+A)I]g)(y;) =0.
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Because of the behavior of y — ([A — (r + A)I]g)(y), it follows from |Villeneuve (2007)
that the optimal stopping strategy is a threshold strategy. We now introduce the parameter
v in eq. (20)). We obtain, as usual, that the function y+ H(y, ) := g(y, \)y Y™ attains a
local maximum at the free boundary () € (ys,00). The value function in eq. is thus

of the form

¢(y,0,n) Z] ) +9(yVi) (yvy)y, (57)

for g(-) defined in eq. (H4) and § the argmax of y— g(y)y™ in (y;,00).
It also follows from eq. that

1/~1(y,0,n):{77”(3;\/@6 } <y€y) +Z] { Rk(yvy)<y\/y>y}'

We define 7(y) := inf {t > O‘Yt > g}. The second right-hand term has the probabilistic

representation

Ri(y) — Ri(y VvV 9) <y€g)Y = Ry.(y) —Ee "V R, (Y3)

= —IE/ e~V A — (r+ M) Ry, (Y;)dt by Dynkin’s formula
0

F

=4AE [ e PV, (Y;)dt from eq.

0

=: ¢r(y).

The function ¢(-) := 3270 j(k)¢x(-) solves the second-order, linear ordinary differential
eq. . Because 1), > 0, it follows from the maximum principle that ¢;(-) >0 and so ¢ > 0.

We can thus write the value function as

(9 = 1(2)Y +¢(y), 0<y<y,

P(y,0,n) =4 -7 i’
My —1, Yy >,

This completes the proof.

J. Proof of Proposition
Step 0 - Case without intervention by the buyer. The derivatives of () in eq. .

are

] 2 Y R(2)  o(2)
UB(Q)ZW {7—9% 1/0 2 +1d2+7+y7+ 1/ 23++1dz ;
- Y
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2 Y 7o(2) < To(2)
11 _ _ y_—2 _ V4 —2
iy (y) BCAETEr {v(v Ly /0 o +1dz+%( Ly™* /y el
2 mo(y)
- o

The function )(-) is continuous. However, because #o(-) in eq. (22)) has a positive jump
at (K /o)<, the function #/(-) and consequently Liiy have negative jumps at (K/vs)¢. By
substitution, we have Lug+ 79 = 0 almost everywhere. The probabilistic representation in
eq. (23) obtains by the Feymann-Kac theorem.
Step 1 - Profit. We can rewrite the profit expression in eq. as

(y) = s {alyﬁl{m,ﬂ} + [azy” — nK] 1{@11%6}}

= max aly, sup {azye—nK}}

(=228 )ni0,1]

{
o~ (1-) 1)
i

=max a1y ay — (2y° —K)*}

_ {max{aly i (ag + 1)y — K}7

0< K
max { a1y azy‘}, y>

y<(£)s,
(£

)e

But we know from Proposition |1| that a; > a;. Hence, max {alye; agys} = max {al; ag}ys =

m\)—l

a»y°. Consequently,

. max{alyf;(ag—i—yg)yf—K}, 0
T(y) =
Yy

a2@/€,

o=

This function 7(-) is continuous everywhere including at <ﬁ> and at (%)% Now,

using eq. (22)), we write

=

+
(V2+a2—a1)y€—K} , 0
Yy

y<(5,)%,
0, (5

)e

Hence, the expression for 7(y) in Proposition We note that 7(-) is continuous, while

m\»—l

AVARVAN

both 7ty and ¢ are discontinuous at (%)% Indeed, ¢ vanishes at (%)% and is strictly positive
at the left of (%)% This is a negative jump for Z, so by differentiating the closed-form

expression for Z, we get that Z” (and hence £Z) has a negative jump at (%) ‘)
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Step 2 - Profit estimates. There are several estimates. First, taking n =1 arbitrarily
in the optimization problem of eq. is suboptimal, whence 7(y) > ayy® — K. Second,
taking 1 =1, where 1} is the level at which the supremum is attained, and using the result
in Proposition [1| that a; > a;, we get that
T(Y) = a1y L uoye—-nyx <oy + [2y° — 1K | Lyye— x>0}

< a1y Lyye—(1—i) K <0} + @2y Livoye—(1—i) K >0}

< a2y Lippye—(1-iK <0y T @2y Ly —1-i)K >0}

= ayy°.
Third, setting n =0 arbitrarily in eq. yields 7 > g for 7y defined in eq. . Because

as > ay, we clearly have 79 > a;y¢. In summary,
a1y <o(y) <7 (y) <agy®, Vy>0. (58)

Step 3 - Net present value & estimates. Using classical arguments, @ = iy + Z, where

oy and Z solve the ordinary second-order differential equation:
Lig(y) +7o(y) =0 and  LZ(y)+((y) =0, Vy>0, (59)

respectively. From the general theory of linear ODEs, iy and Z are not C%(R,) but only
C'(R,) and have an explicit solutions, with Z given in Proposition

From the results in Step 2, we get the estimates for @ in Proposition

K. Proof of Proposition
Step 1 — Ranking of value functions. From (i) the profit ranking in eq. (58), (ii) the
definition of 4, in eq. , and (iii) the probabilistic representations of 1, and @ in egs.
and , respectively, we get u; < 4y < U < uy. We then get from (iv) the definition of
P; in eq. and (v) of Vo and ¢ in eq. and (vi) Theorem ) in Appendix [L| that
Py < QZO < 1[1 < ). We note that this ranking is consistent with Proposition |§|, which proved
that ¥, <,41.
Step 2 — Ranking of optimal stopping times. For the benchmark cases, we get from
eqs. and that
Loy — 1) =rl+ Q(e)aiy =1l — a;y",
L(to(y) —I) =rl — 7o (y), (60)
and L(u(y) —I) =rl —7(y),
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respectively. To sum up, we have

a1y < 7o(y) <7 (y) < agy from ineq.
S rl—awy >rl—mwy(y) >rl —a(y) >rl —axy*
— Ly —1)>L(ug(y) —I) > L(u(y) —I) > L(azy® — I) from ineq.

= %1 > Yo > § > o from Theorem [I) in Appendix

Y

a result consistent with Proposition [] where we already proved that g, > §ny1.
We also get from eq. and Theorem ) closed-form expressions for 120 and zZ in
Proposition This completes the proof. O

L. Abstract comparison theorem

Previous results relied on a comparison theorem, which we provide and prove below. For a
payoff function u, : R, — R with 7 € {1,2}, consider the optimal stopping problem 1;(y) :=
sup. Ee ""u; (YY), where (e""'Y;), denotes a GBM with the infinitesimal operator L. Let
S; := {1 = u;} denote the stopping set and 7; be the first entrance time in S; for the GBM
(Y;):. We make

Assumption 1 The functions u; € C*(Ry) satisfy:
i. The function Lu; € C°(R.) is nonincreasing with lim,;oLu;(y) > 0 and
lim, o Lu;(y) <O0.

it. The relationship Luy > Luy is satisfied everywhere.

We have:

Theorem 1 (Abstract comparison theorem for stopping times) The following
relationships hold:

a) If uy > uy everywhere, then 1y > 1 (y).

b) Under Assumption , the stopping set S; is of the form (y;,00) with y; satisfying
smooth fit—that is, ¥;(y;) = w;(y;) and ¥.(y;) = u(y;). Furthermore,
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c¢) Under Assumption i, it holds that So CS,. Consequently, if Assumption |Ifi is also
satisfied, then the optimal thresholds satisfy yo > 1.

We now provide a proof. For Theorem ), we assume that us > u; everywhere, then

Yo (y) :=Ee "uy(Y,,) by definition
>Ee " uy(Y;,) by optimality of 7
>Ee " u; (Y;,) because ug > uy
=1 (y) by definition.
To obtain Theorem ), we make Assumption . The optimality of a threshold policy is
proven in |Villeneuve, (2007). The regularity of u; is sufficient for the smooth-fit principle to

hold.
For Theorem [Ik), we note that

(12 —u2)(y) 2 Be™ M ua(Y7)) — ua(y) by optimality of 7,

71
=E / e " Luy(Y?)ds by Dynkin’s formula
0

T1
> IE/ e " Luy(YY)ds by Assumption [Tfi
0
=11(y) — u1(y) by Dynkin’s formula and optimality of 7
> 0 because 1; exceeds the obstacle u;.

Consequently, if a y is in {y > 0[(2 — uz)(y) =0} =:S,, it is also in {y>0|(¢y —u1)(y) =
0} =:S; or S, CS;. If, in addition, S; is of the form (y;,00), then y; < ys. O
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