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Abstract

This dissertation explores how the design of information and incentives can mitigate ineffi-
ciencies in financial markets. It consists of three essays at the intersection of Financial and
Information Economics. The first chapter studies the optimal transparency of credit scoring
algorithms, showing that opacity can improve data sharing and credit access by reducing
borrowers’ strategic behavior. The second chapter analyzes the design of bank stress tests
when market discipline complements supervision, demonstrating that coarse and lenient
tests optimally leverage private information embedded in market prices. The third chapter
examines risk governance under preemptive competition among financial firms, proposing
incentive schemes that align firms’ trading and compliance activities with efficient risk man-
agement. Methodologically, the first two chapters employ tools from information design
and Bayesian persuasion, while the third draws on mechanism design and contract theory.
Together, these essays highlight the central role of information structures and incentive
mechanisms in shaping financial market outcomes and provide policy-relevant insights for
the regulation of credit markets, banking supervision, and financial risk management.
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CHAPTER 1

Introduction

Financial markets are often plagued by inefficiencies driven by information asymmetries
and distorted incentives. Unequal access to information often results in suboptimal out-
comes, either because uninformed participants misjudge economic conditions or because
better-informed agents alter their behavior to preserve or exploit their informational ad-
vantage. Similarly, when individual incentives diverge from social welfare and actions
cannot be effectively monitored, market participants may prioritize private gains at the
expense of collective efficiency. These frictions can disrupt price discovery, misallocate
capital, encourage excessive risk-taking, and ultimately lead to welfare losses, market fail-
ures, and systemic instability. In such contexts, the structure of information flows and
incentive schemes plays a central role in shaping individual behavior and, by extension,
overall market performance. Understanding how regulators and institutions can correct
these distortions without creating new ones remains one of the central challenges in finan-
cial economics.

This dissertation investigates how the strategic design of disclosure policies and in-
centive schemes can address key frictions in financial markets and better align individual
behavior with socially optimal outcomes. The research employs both modern and classi-
cal tools from information economics to tackle three topical questions in finance: Should
credit scoring algorithms be ezplainable? How transparent should stress tests be? How
should traders be compensated? Recent developments in information design and Bayesian
persuasion provide a natural framework for the first two questions, while classical mecha-
nism design and contract theory inform the third. As Bergemann and Morris (2016, 2019)
highlight, mechanism design selects the rules of the game based on a given information
structure to achieve desired outcomes, while information design optimizes the information
structure while keeping the rules fixed. This unified approach to economic design is es-
pecially relevant to finance, where regulators have the ability to shape both information
flows and incentive structures, influencing the behavior of strategic agents and enhancing
market efficiency.



The thesis comprises three independent papers, each addressing one of the questions
outlined above. Chapter 2, titled Black-Box Credit Scoring and Data Sharing, in-
vestigates the optimal level of transparency in algorithmic credit markets. Advances in
digital technology have the potential to mitigate adverse selection by enabling lenders to
process vast amounts of personal data using complex machine learning models. However,
the opaque, black-box nature of these algorithms has sparked significant public concerns
about privacy and fairness, prompting regulatory scrutiny. This paper explores whether
lenders should disclose their predictive algorithms or keep them opaque, taking into account
borrowers’ strategic data-sharing behavior. It finds that opacity can induce borrowers to
withhold information as a safeguard against unpredictable algorithmic decisions, thereby
depriving the technology of its vital fuel and weakening its ability to address asymmetric
information problems. Conversely, transparency incentivizes borrowers to game the sys-
tem by selectively hiding negative information, potentially impairing the screening process
and the resulting credit allocation. The paper characterizes conditions under which either
regime is optimal for lenders and socially efficient, identifying a wedge between the two.
Contrary to conventional wisdom, algorithmic opacity can improve welfare by mitigating
negative externalities on creditworthy yet privacy-conscious borrowers, typically operating
through the lender’s equilibrium inference. Methodologically, the analysis models the al-
gorithmic disclosure problem as a Bayesian persuasion game, where the lender commits to
either revealing or concealing the algorithm’s parameters, and the borrower strategically
decides whether to share data. Conceptually, the paper’s main contribution is to show how
information design, through algorithmic opacity, can mitigate adverse selection in credit
markets.

Chapter 3, titled Market Information in Banking Supervision: the Role of
Stress Test Design, is coauthored with Haina Ding and Alexander Guembel, and re-
cently received a revise-and-resubmit decision from the The Review of Financial Studies.
The paper examines bank stress tests and market discipline — the monitoring of financial
institutions by financial markets. Since the 2008 financial crisis, stress tests have become a
central supervisory tool for evaluating banks’ resilience under adverse financial scenarios.
At the same time, the Basel Committee on Banking Supervision acknowledges that finan-
cial markets can generate information that regulators do not have. This chapter explores
how a supervisor should design and disclose stress-test results when banks’ security prices
provide additional market feedback, jointly influencing the bank creditors’ rollover deci-
sions. The analysis adopts an information design framework in which the regulator selects
what to reveal about banks’ stress resilience from a broad class of possible disclosure mech-
anisms. The key finding is that the optimal stress test is deliberately coarse and lenient,
often taking the form of a simple pass/fail test. Introducing ambiguity generates profit op-
portunities for private investors to acquire information and identify institutions that may
have been misclassified by the test. Thus, as residual market uncertainty increases, both
trading profits and the accuracy of market signals improve, thereby justifying the optimal-
ity of a coarse test. We also show that stock markets are better at reducing Type II errors
(failing to identify weak banks) but less effective at Type I errors (flagging healthy banks).
Failing banks are less likely to receive funding and remain small, limiting trading incen-
tives. In contrast, passing banks attract funding and grow larger, increasing the value of



market scrutiny. This endogenously creates a motive for supervisory leniency, deliberately
allowing some weak banks to pass in order to spur market scrutiny. The chapter makes two
main contributions. First, it offers a tractable stress test design framework emphasizing
the complementarity between public supervision and private market monitoring, treating
both banks’ values and market prices as endogenous to the information revealed by both
sources. Second, it enriches the literature on stress testing by showing — paradoxically —
that regulatory opacity can enhance market outcomes and capital allocation by optimally
harnessing market discipline.

Chapter 4, Agents under Pressure: Risk Governance in a Rat Race coauthored
with Matthieu Bouvard and Samuel Lee, examines incentive structures for risk governance
in financial intermediaries. While efficient risk-taking is vital for effective prudential reg-
ulation, poorly designed compensation schemes within firms can undermine sound risk
management. In addition, in today’s fast-paced financial markets, preemptive competition
tends to reward speed over caution, further eroding incentives for deliberate, prudent risk
assessment. This chapter frames compensation design for financial traders as a systemic
issue, where competitive pressure influences firm-level risk governance, and vice versa. It
develops a principal-agent model in which traders, employed by competing firms, exert
costly effort along two dimensions: searching for trading opportunities and assessing their
risk. Importantly, the latter task involves delays, introducing an endogenous cost of (in-
centivizing) risk management, stemming from non-execution risk due to preemption by
competitors. In the partial equilibrium analysis, we show that incentivizing both tasks
creates countervailing demands on the contract shape: rewarding search requires linking
pay to trading profits to encourage execution, whereas incentivizing compliance calls for
decoupling pay from profits to dampen the urge to execute discovered opportunities. The
optimal contract must balance these conflicting forces via pay-for-performance bonuses
paired with claw-backs contingent on detected cheating. Crucially, preemption risk in-
creases the firm’s agency cost of incentivizing risk management, leading firms to weaken
risk governance as competition intensifies. In general equilibrium, this dynamic creates a
contractual externality: as some firms relax controls, the resulting increase in time pres-
sure raises the cost of risk governance for others, triggering a race to the bottom that can
trap the industry in a low-control regime, even when robust risk assessment is collectively
optimal. The chapter thus uncovers a novel self-reinforcing channel through which agency
frictions and competition jointly erode risk management, offering insights for the regulation
of traders’ compensations and their calibration on firms’ trading environment.
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Black Box Credit Scoring and Data Sharing

Alessio Ozanne

Abstract

Should credit scoring algorithms be transparent or opaque? I study this question
in a model in which a lender uses data shared by borrowers for allocating and pricing
credit, and is privately informed about how the algorithm maps data to allocations.
I show that revealing the algorithm’s parameters exposes it to gaming in the form of
strategic withholding of unfavorable information. Under opacity, data withholding
emerges as a prudent strategy against the unpredictability of the black box and
the risk of credit rationing. The lender’s optimal transparency regime maximizes
data collection and is socially inefficient as it results in excessive credit rationing.
Algorithmic opacity can be welfare-improving as it reduces the stigma around data
withholding, thereby expanding credit access for privacy-concerned borrowers. I
analyze the distributional impacts of recent algorithmic transparency regulations
and offer policy recommendations.

Keywords: FinTechs, Data, Disclosure, Algorithms, Opacity.
JEL Classification: D82, G14, G21, G38.

2.1 Introduction

Motivation Recent advances in digital technology transformed how firms store, trans-
mit, and analyze information. Notably, a growing number of financial institutions have
embraced automated machine learning (ML) algorithms for the task of credit scoring and
underwriting,! leveraging vast datasets that encompass both traditional financial metrics
and alternative data sources.” ML algorithms, particularly when fed with alternative data,
often reveal surprising relations between credit risk and seemingly unrelated variables,
making it challenging to understand which specific factors influence algorithmic decisions,

!A prominent example is FinTech’s “3-1-0 model”: three minutes to apply, one second to approve,
and zero human intervention. Traditional banks — such as J.P. Morgan and Bank of America — and
credit scoring systems — such as the FICO and Vantage Score — also started to employ automated
algorithms. Automated credit underwriting is mainly applied to (unsecured) consumer and small business
loans, instead of mortgages.

2 Alternative sources of data include, but are not limited to, social media data, digital footprints,
web searches, mobile phone usage patterns, e-commerce transactions, payment information, gig economy
income, utility bill payments, childcare payments, and data from IoT devices. To put it in the industry’s
words, “all data is credit data” (Douglas Mirrell, CEO of ZestCash to the New York Times). Alternative
data have demonstrated superior performance compared to conventional FICO scores (see Iyer et al. (2016),
Bazarbash (2019), and Berg et al. (2020)).



and how. This phenomenon is known as the “black box” problem of artificial intelligence

(AI).?

Algorithmic opacity has raised significant public concern, fostering uncertainty and
mistrust in the lending process even with accusations of discriminatory practices,* and
prompted individuals to conceal their online and offline behaviors, thereby restricting the
information available to lenders.” On the other hand, making the algorithms’ inner work-
ing transparent could undermine their predictive ability, enabling borrowers to game the
system through strategic information sharing.® Both regimes impact borrowers’ willing-
ness to share data — a crucial asset in a market plagued by asymmetric information —
and may have a first-order impact on the allocative efficiency of credit markets. Should
credit risk algorithms be transparent or opaque when we account for strategic information
sharing” Regulators around the globe have decided to unpack the black box mandating
transparency,’ citing principles of truth, fairness, and equity, but possibly overlooking the
importance of market efficiency.

Overview This paper explores the lender-optimal and the socially efficient level of trans-
parency for credit risk algorithms in light of the information that borrowers are willing to
share with a financial institution. The model features a lender and a continuum of borrow-
ers in need of cash to finance a project. Borrowers are, on average, creditworthy but differ
in credit risk, with some having negative NPV projects. Additionally, borrowers possess
data that can predict their probability of default. According to recent data regulations

such as Open Banking initiatives, the General Data Protection Regulation (GDPR),
and the Payment Services Directives (PSD, PSD2) this data remains private unless
borrowers voluntarily share it with the lender. Furthermore, some borrowers are assumed
to prioritize privacy and consistently withhold information, regardless of what it might
reveal about them.

The black box nature of the screening process arises from how the lender infers credit
risk from data. The data-generating process (DGP) is unknown, while the lender can
estimate its parameters from a previously collected training dataset, leveraging proprietary
statistical technology. The allocation algorithm is calibrated on these privately known
estimates, so the lender has exclusive knowledge of the mapping from disclosed data to

3See Pasquale (2015) for an investigation into our “Black Box Society”.

1See Bartlett et al. (2022) for empirical evidence on discriminatory lending practices by FinTech lenders,
and for a recent controversy see Neil Vigdor, “Apple Card Investigated After Gender Discrimination
Complaints”, The New York Times, November 11, 2019. See Glikson and Woolley (2020) for a study on
human trust in Al

5Sebastian Siemiatkowski, CEO of Klarna AB, once said: “Facebook is only as valuable as the infor-
mation a consumer is willing to share and whether that consumer is willing to connect the financial service
to their Facebook data”. (See Evelyn M. Rusli, “Bad Credit? Start Tweeting”, Wall Street Journal, April
1, 2013.))

In a 2014 letter to the Consumer Financial Protection Bureau (CFPB), Freddie Mac raised concerns
that disclosing their automated decision-making algorithm could make it vulnerable to being reverse-
engineered (letter available here). See also Suzanne Woolley, “How More Americans Are Getting a Perfect
Credit Score”, Bloomberg, August 14, 2017.

"See the AI Act, Digital Services Act, Digital Markets Act of the European Commission; the Fair
Credit Reporting Act and Equal Credit Opportunity Act of the Federal Trade Commission.



allocations. The DGP is assumed to be characterized by a single parameter, representing
the correlation between credit risk and an explanatory variable. Hence, evidence can be
represented on a normalized interval of the real line, and while borrowers may not discern
good from bad news, they can identify extreme evidence based on its distance to the mean.®
Within this framework, the paper investigates borrowers’ voluntary data-sharing decisions
under two scenarios: when the algorithm’s parameter is kept secret (opacity) and publicly
known (transparency). Additionally, it explores the welfare and redistributive implications
of algorithmic opacity and transparency, including the regime that maximizes the lender’s
profits, borrowers’ surplus, and overall social welfare.

Preview of the Results The algorithm allocates credit in an intuitive way: high-risk
borrowers are denied credit, while interest rates rise with credit risk. These rates reflect
the competitive market rate, with an additional markup that grows with the lender’s
bargaining power. Still, the algorithm also converts evidence in credit risk estimates, and
thus, the map from data to allocations depends on the correlation between data and credit
risk. If a borrower’s characteristics positively correlate with credit quality, higher values of
that variable lead to lower interest rates, while values below a certain threshold are denied
credit. A symmetric reasoning applies when correlation is negative: higher values of the
explanatory variable are progressively stronger signals of credit risk, and may lead to credit
rationing. The algorithm is influenced by the strength of the correlation, not just its sign.
As the correlation decreases in absolute value, the algorithm rations credit to a narrower
range of data realizations, and the interest rate schedule flattens.

When the algorithm is transparent, borrowers understand the correlation between data
and credit risk, allowing them to withhold bad news while selectively sharing good news.
This behavior, enabled by transparency, will be referred to as gaming. Gaming occurs
when privacy-concerned borrowers are sufficiently numerous. In this case, high-risk bor-
rowers can mimic their behavior and withhold data to obtain more favorable contractual
terms. This phenomenon happens because the stigma associated with data withholding is
slight, as withholding is most likely non-strategic and, therefore, not a strong indicator of
poor credit quality. As a result, credit-unworthy borrowers obtain credit by withholding
information, while marginally creditworthy borrowers can secure lower interest rates. Con-
versely, borrowers share positive evidence, because understanding the lender’s statistical
technology, they anticipate being classified as low risks. The number of privacy-concerned
borrowers reflects the extent of strategic borrowers’” gaming ability: as this number in-
creases, more borrowers can secure better contractual terms by withholding information.
Gaming does not occur if borrowers are primarily strategic and data sufficiently informa-
tive. In this case, data withholding becomes a strong indicator of credit risk and leads
to credit denial. As a result, only (strategic) observationally creditworthy borrowers are
funded and interest rates reflect their observable credit risk.

8Examples of alternative data that exhibit these characteristics include the number of social media
connections, number of posts and their frequency, engagement rates, total hours spent online per day,
browsing diversity, average call duration, text message volume, evening vs daytime call ratio, number
of apps used regularly, percentage of purchases made at unusual times, frequency of brand loyalty in
purchases, travel frequency (see, e.g. the FICO or the EagleAlpha websites).



When the algorithm is opaque, borrowers do not know the correlation between data and
credit risk, and data-withholding emerges as a prudent strategy against the algorithm’s
unpredictability. Although borrowers are risk-neutral, I term this strategic behavior as
hedging, because it reflects their attempt to minimize exposure to uncertainty. Hedging is
complete — meaning that all evidence is withheld — when the lender’s bargaining power is
sufficiently strong. In this scenario, the lender offers loans to all borrowers at a uniform rate,
as the overall pool of borrowers is, on average, creditworthy. If data were shared, borrowers
would expose themselves to the risk of credit rationing — with extreme borrowers being
the most exposed — and conditionally on providing credit, the lender would capture most
of their surplus through high personalized interest rates. Conversely, when borrowers have
greater bargaining power, extreme evidence is disclosed in equilibrium, with the extent of
disclosure increasing in the borrower’s bargaining power. Although extreme borrowers are
most at risk of credit rationing, they also stand to gain the most from favorable interest
rates if they manage to secure credit — a benefit that grows with their bargaining power.
Consequently, extreme borrowers take the risk of sharing information. Borrowers with
less conclusive evidence lack this upside potential and thus stick with the hedge of no
disclosure. Overall, the borrowers’ relative bargaining power modulates their risk-taking
behavior when sharing data with the black box, shifting their decisions from withholding
all information to disclosing the most conclusive evidence.

Interestingly, privacy-concerned borrowers receive markedly different treatment depend-
ing on whether the algorithm is transparent or opaque. Under transparency, they expe-
rience negative externalities due to the disclosure decisions of strategic borrowers. When
strategic borrowers are numerous, privacy-concerned borrowers are excluded from credit
due to the stigma surrounding data withholding, despite being, on average, creditworthy.
This situation does not occur when the algorithm is opaque, as no stigma is associated
with data withholding. Since borrowers lack insight into what signals good or bad news,
the lender cannot make adverse inferences based on a borrower’s choice to withhold in-
formation. As a result, privacy-concerned borrowers, along with strategic non-disclosing
borrowers, can secure credit.

Both transparency regimes lead to a data loss — either through strategic gaming or
hedging behavior — which can undermine the algorithm’s predictive accuracy and lead
to misallocations of credit. Consequently, the transparency regime significantly influences
welfare measures, including the lender’s profits, borrowers’ welfare, and overall social sur-
plus. The lender’s transparency choices maximize data collection, enhancing the algo-
rithm’s ability to ration credit effectively.” Credit misallocations increase with the data
loss and thus amplify with borrowers’ gaming ability under transparency (measured by the
fraction of privacy-concerned users) and their hedging motives under opacity (captured by
the lender’s bargaining power). Therefore, the model suggests that in competitive credit
markets where privacy concerns are intense, financial institutions should favor opaque algo-
rithms,; as hedging motives are limited while the likelihood of gaming is higher. Conversely,

9The potential benefits of personalized risk pricing are neglected. This effect is due to the lender’s risk
neutrality: detailed credit quality information reduces variance but does not impact the expected profits
the lender gains from creditworthy borrowers.



transparency should be the optimal choice for lenders in concentrated credit markets with
mild privacy concerns.

The lender’s transparency choices are socially inefficient and opacity can lead to wel-
fare improvements. Private and social preferences over credit inclusion differ as the lender
only partially internalizes the surplus generated by credit provision, resulting in excessive
rationing from a social perspective (even with complete information). When the misalign-
ment between the lender’s and planner’s preferences is moderate, data collection enhances
welfare by helping exclude strategic borrowers with negative surplus projects. Still, opacity
provides a social benefit that is only partially internalized by the lender: credit inclusion of
privacy-concerned yet credit-worthy borrowers. By suppressing the stigma typically associ-
ated with data withholding, opacity allows these borrowers to obtain credit and, therefore,
is socially efficient. When the misalignment of preferences over credit provision increases,
data collection starts to undermine welfare, as the borrowers that the lender seeks to ration
hold positive-surplus projects. In this scenario, the welfare-optimal regime minimizes data
extraction, making the lender’s choices entirely inefficient.

Contrary to common beliefs, algorithmic opacity can be desirable from a societal per-
spective. This insight challenges the prevailing views in the ongoing policy debate on
algorithmic transparency — e.g., the EU’s AI Act — by highlighting a social benefit of
opacity that regulators may have overlooked. By mitigating the stigma associated with
data withholding, algorithmic opacity can promote regulatory goals such as financial inclu-
sion. In contrast, algorithmic transparency regulations may unintentionally harm privacy-
concerned borrowers, undermining the privacy protections regulators seek to uphold (e.g.,
in the EU’s GDPR). The model points to allocative efficiency as a critical social objective
regulators should pursue alongside ethical and safety considerations.

Outline The remainder of the paper proceeds as follows. Section 2.2 discusses the related
literature. Section 2.3 describes the model. Section 2.4 derives the lender’s allocation rule.
Sections 2.5.1 and 2.5.2 present the data-sharing equilibrium under transparent and opaque
algorithms. Section 2.6 compares welfare across transparency regimes. Sections 2.7 and
2.8 discuss respectively empirical and policy implications. All the proofs are relegated to
Appendix A.

2.2 Related Literature

FinTech This paper connects to the literature on digital disruption in banking (see
Vives (2019) for a review). Studies show that alternative data can outperform traditional
metrics in predicting loan defaults (see Lyer et al. (2016), Bazarbash (2019), and Berg et al.
(2020)), and expand credit access to individuals without a credit history (see Agarwal et al.
(2019) and Gambacorta et al. (2022)). However, the ML methods that process these data
can produce unintended distributional effects by capturing structural relationships among
variables such as race, income, and gender (see Fuster et al. (2022)). I contribute to this
literature by identifying a new channel through which these statistical technologies affect
distribution and welfare: the transparency regime they adopt. While some studies have



theoretically explored the optimal design of these technologies (see, e.g., Huang (2023), or
He et al. (2024), or Blickle et al. (2024)), I examine whether they should be transparent
or opaque.

Voluntary Disclosure The paper is related to the extensive literature on voluntary
information disclosure. The classical “unraveling argument” put forward by Grossman
(1981) and Milgrom (1981) shows that, in equilibrium, a privately informed sender will
disclose all the available information to avoid the receiver’s averse equilibrium inference.
The subsequent literature tried to explain the commonly observed lack of disclosure by
introducing disclosure frictions.!? Disclosure frictions in my model resemble those in Dye
(1985) (uncertainty about evidence, or privacy cost in my model) and Bond and Zeng (2022)
(uncertainty about audience, or statistical technology in my model). My paper contributes
to the literature by comparing these frictions in the specific context of the credit market
and conducting a comprehensive welfare analysis. In Bond and Zeng (2022), hedging
behavior stems from the sender’s risk aversion. In my model, the sender is risk-neutral,
while risk-averse or risk-loving behaviors arise endogenously due to the specific market
context considered. Unlike Bond and Zeng (2022), T also explore the welfare implications
of hedging behavior.

Economics of Data and Privacy This work belongs to a growing literature on data,
privacy, and their implications for markets (see Acquisti et al. (2016) and Bergemann and
Bonatti (2019) for surveys). A portion of this literature explores the welfare impact of
data regulations granting customers rights over sharing personal data, such as the GDPR
and Open Banking initiatives. For instance, Ali et al. (2023) study price discrimination
under the GDPR, while He et al. (2023) study competition in the lending market under
Open Banking, both yielding contrasting results regarding consumer welfare. My work
complements these studies by highlighting how data regulation interacts with algorithm
transparency regulation, suggesting that regulators should assess both jointly.

Gaming and Opacity The paper is related to the machine learning, economics, and
finance literature studying the manipulation of transparent scoring systems.'' This lit-
erature typically considers types of data that can be distorted by agents at some cost.
In contrast, I consider data as hard information that can be shared or withheld but not
misreported. A common finding in this literature is that an optimal scoring rule should
underutilize data to deter manipulation. I show that opacity can emerge as an alternative
strategy to data under-utilization.

A different strand of the literature has studied the role of opacity in softening strategic

10T hese frictions include disclosure costs (Verrecchia (1983)), uncertainty about the evidence available
to the sender (Dye (1985) and Jung and Kwon (1988)), information processing costs (Fishman and Hagerty
(2003)), receiver’s outside information (Harbaugh and To (2020) and Quigley and Walther (2024)) and
uncertainty about audience’s preferences (Bond and Zeng (2022)).

HSee Hardt et al. (2016) for a classic paper in machine learning, Frankel and Kartik (2019), Frankel and
Kartik (2021), Bjorkegren and Knight (2021), Ball (2025), Perez-Richet and Skreta (2022), and Ekmekci
et al. (2022) for recent papers in economics, and Cohn et al. (2024) and Gamba and Hennessy (2024) for
recent finance applications.

10



agents’ gaming behavior in various contexts, including incentives schemes (Ederer et al.
(2018)), stress testing (Leitner and Williams (2023)), and algorithmic decision-making
(Wang et al. (2023) and Sun (2021)). The paper closest to mine is Sun (2021), which
examines efficient algorithmic disclosure in a competitive lending market where borrowers
can modify a binary feature at a cost. My paper is different in several aspects. First, I
include interest rates and show that data-driven pricing exacerbates borrowers’ gaming be-
havior. Second, I introduce the lender’s bargaining power, leading to new hedging behavior
in borrowers’ data provision and enabling an analysis of the lender-optimal transparency
regime. Third, I consider voluntary data-sharing, in line with current open banking regu-
lations. Finally, while Sun (2021) indicates that transparency harms the credit market, I
highlight its potential benefits in certain contexts, aligning with the current policy debate.

Economics of Algorithms A nascent literature in economics studies how to regulate
algorithmic decision-making when private and social objectives diverge (see Korinek and
Balwit (2022) for a study of incentives misalignments in Al). A common scenario involves
the algorithm aiming to maximize predictive accuracy, while the regulator seeks to balance
accuracy with fairness,'? typically by imposing restrictions on inputs or the prediction
function (see, e.g., Kleinberg et al. (2018), Carleton Athey et al. (2020), Rambachan et al.
(2021), Blattner et al. (2024), Liang et al. (2024)). My work contributes to this literature by
considering a scenario in which the regulator prioritizes both accuracy and credit inclusion,
placing a greater weight on the latter than the lender does. I consider the algorithm’s
transparency regime to be the only policy tool available to the regulator, in light of recent
regulation on algorithmic transparency.

2.3 The Model

Economy The economy is composed of a lender and a continuum of penniless borrowers
in need of cash to finance a project. All players are risk-neutral, and the borrowers are
protected by limited liability. Each borrower has a project that requires a unit of cash and
generates a return X € R with probability 6 € [0, 1] and generates nothing otherwise. The
projects’ probability of success is heterogeneous across borrowers and uniformly distributed,
0 ~ UJ[0,1]. T sometimes refer to 6 as the borrower’s credit quality and to 1 — 6 as the
borrower’s credit risk. If financed, the project generates a private benefit b € R, to the
borrower, regardless of whether the project succeeds. One can think of b as being cash
flows that cannot be pledged to the lender, for example, because of agency frictions, and
are thus non-contractible (see Holmstrom and Tirole (1997a)).

Assumption 2.1 (Positive NPV). E(6)X —1 > 0.
Assumption 1 posits that the pool of borrowers is, on average, creditworthy (even excluding

their private benefit, b). This implies that an uninformed lender finds it optimal to provide
credit. However, since the return in the case of success, X, is finite, the lender aims to

128ee Cowgill and Tucker (2020) for an economic perspective on algorithmic fairness.
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exclude from credit a subset of borrowers with high credit risk. This, in turn, implies that
information is valuable for the lender, as it allows for more effective borrower screening.

Data The borrower’s quality 6 is unknown to both the lender and the borrower at the
time of contracting and can be predicted using data z € [0, 1]. The data-generating process
(DGP) is an extension of the truth-or-noise information structure in Lewis and Sappington
(1994), allowing for a negative correlation between the signal z and the state 6. Specifically,
the DGP is such that

60  with pr. A
e with pr. 1=\

(2.1)

1 —60 with pr. ||
z = if A <0,

e with pr. 1— [}

where € ~ U0, 1] is independent of # and X\ € [—1, 1]. Data perfectly reveals the borrower’s
credit quality with probability |A| and is noise, unrelated to quality, with the residual
probability. Moreover, when A > 0 (resp., A < 0), data is positively (resp., negatively)
correlated with credit quality. Hence, || will be referred to as the predictive power of
data, while A\ will be referred to as the correlation between data and credit quality. The
predicted credit quality conditional on data z is a weighted average of signal and noise
with weights proportional to A (see the proof of Lemma 1 for details):

pa(z) =Xz + (1= X) 2 =E(9)z). (2.2)

Importantly, T assume that A ~ U[—1, 1] and the lender privately knows its realization. In
other words, the lender, having access to statistical technology, has superior knowledge of
the DGP and thus privately knows how to convert data into credit risk estimates. This, in
turn, implies that the lender is privately informed about the map from data to allocations
(see below). Note also that knowing a data realization z, without knowing the actual credit
quality #, does not convey any information about A to the borrower, as the unconditional
distribution of z is independent of A.

Data Sharing To capture current policies mandating consumers and borrowers control
over their data,'® the data realization z is assumed to be private information of the borrower
unless disclosed to the lender. Specifically, knowing z, the borrower chooses a message m €
{2, z}, where m = z means sharing data with the lender, while m = @ means withholding
data (as in He et al. (2023) or Ali et al. (2023) and following the voluntary disclosure
literature, e.g. Milgrom (1981), Grossman (1981)). The binary nature of the data-sharing
technology captures the fact that data is hard information: it can be transferred or withheld

13Such policies include European Union’s General Data Protection Regulation (GDPR) and Payment
Service Directives (PSD, PSD2), California’s Consumer Privacy Act (CCPA), China’s Personal Information
Protection Law (PIPL), and other globally adopted Open Banking Initiatives.
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but not modified or manipulated.”* Building on Dye (1985) and Jung and Kwon (1988), a
fraction € (0, 1) of borrowers is assumed to withhold data for privacy-related reasons, ¢
and the lender cannot distinguish privacy-concerned from strategic borrowers.!”

Credit Allocation Given the knowledge of the DGP, i.e. A, and the borrower’s disclo-
sure decision m € {z, @}, the lender estimates the borrower’s credit quality py(m). Given
this estimate, the lender decides whether to provide credit or not, and conditional on pro-
viding credit, the lender also requires an interest rate from the borrower. Let ¢ € {0,1}
denote the credit rationing decision, with ¢ = 1 denoting credit provision, and x € R de-
note the gross interest payment. To capture the automated nature of credit underwriting,
the credit allocation process is rule-based and data-driven.

Definition 2.1 (Algorithm). A credit allocation algorithm is ax(m) = ({x(m), z\(m))

me{z,2}’
where
¢ 1-¢
xx(m) = argmax [,U,/\(?’n) x — 1} [/L)\(m) (X - T)i| :
z€R

(2.3)
(m) = ]l{/ub,\(m)x,\(m) 1> o},
where ¢ € (0,1) is the lender’s bargaining power.
Akin to Nash bargaining, the interest rate x is set to maximize the Nash product in
the first line of Equation (2.3), a weighted geometric average of the lender’s and borrower’s

contractible surplus with weights proportional to their bargaining power, ¢ and (1 — ¢),
respectively.'® Moreover, the algorithm provides credit only if the lender’s participation

14This assumption differentiates this paper from previous studies (see Section 2, Gaming and Opacity),
where data can be manipulated at some cost, and is more in line with current Open Banking initiatives
where information is usually stored in a relationship bank (Sharpe (1990) and Rajan (1992)), and can be
transferred to a competitor at the customer’s will, through an API, at no monetary cost. Similarly, the
GDPR empowers individuals to choose whether to share their cookies or digital footprints with an online
firm (possibly a lender) or to keep them private.

15 Alternatively, these agents can be thought of withholding information for other non-strategic reasons:
lacking a credit history, being unbanked, technology-averse, or not possessing a device. Studies show that
agents’ unwillingness to share information online depends on cultural factors (attitudes towards privacy,
trust in institutions), demographic factors (age, education level, income level), comfort with technology,
user experience (ease of sharing data), trust in the lender/firm (reputation, credibility, brand recognition),
types of data shared (breadth, depth, sensitivity), etc. See, e.g., Acquisti et al. (2016) for a general
discussion and Morey et al. (2015) for a survey.

161in (2022) empirically separate two components of consumers’ privacy preferences: an intrinsic com-
ponent (an exogenous taste for privacy, i.e., privacy concerns strictly speaking) and an instrumental com-
ponent (an endogenous economic loss from revealing private information, i.e., strategic concerns). Goldfarb
and Tucker (2012) show that intrinsic privacy concerns in digital markets have increased in recent years.

1"0One way of microfounding this is by assuming that borrowers are privately informed about their
disclosure cost, ¢ € {0, 00}, while the lender believes that Pr(c = co) = 7. The main insight of the paper
extends to the case where c is finite.

18This axiomatic (or cooperative) solution has a strategic microfoundation under symmetric informa-
tion, as it coincides with the sequential equilibrium of a (non-cooperative) bargaining game with alternating
offers (see Rubinstein (1985) and Binmore (1987)). I abstract from the specific microfoundations of bar-
gaining to focus on the central research question of the paper: how algorithmic transparency impacts data
sharing.
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constraint at that interest rate is satisfied.!” The parameter ¢ can be interpreted as
reflecting the lender’s market power,?’ arising from a more concentrated or segmented
market structure.?! Note that the borrower’s private benefit b does not enter the Nash
product, as these cash flows cannot be pledged to the lender and are thus not contractible.

I refer to a = (¢, z) as a credit allocation algorithm as it maps data (or the lack of it) to
allocations and is tailored to the specific DGP (described by A). Hence, A can be broadly
interpreted as a parameter that governs the lender’s algorithm and is privately known to
the lender.

Algorithmic Transparency and Opacity In line with the Bayesian persuasion litera-
ture (see, e.g., Kamenica and Gentzkow (2011), Bergemann and Morris (2019), or Dworczak
and Martini (2019)), the lender commits to a disclosure policy about the parameters that
govern the allocation algorithm. Specifically, before learning A, the lender commits to
reveal it or to conceal it.??

Definition 2.2 (Transparency and Opacity). The lender’s algorithm ay(m) is:
e transparent, if A is public information,
e opaque, if \ is the lender’s private information.

Payoffs When the borrower’s probability of success is 6 and the lender employs an algo-
rithm a, the lender’s and the borrower’s payoffs are, respectively:

va@):e@LX—x)+4, o

Y

v%awzfpx—q

9T implicitly assume that when the lender makes nil profits, she does not provide credit. This assump-
tion allows me to conveniently write the no disclosure set (analyzed in Section 5) as a closed set, thus
improving readability. The assumption is otherwise inconsequential.

20More broadly, ¢ can also encompass other factors, independent of credit risk, that influence the
lender’s ability to charge higher interest rates, such as macroeconomic conditions (e.g., tight monetary
policy) and regulations (e.g., looser capital requirements or consumer protection laws).

21As ¢ — 1 the market structure approaches a monopoly, while as ¢ — 0 it approaches perfect competi-
tion. This reduced-form approach to competition enables a focus on the effects of algorithmic disclosure on
borrowers’ data-sharing decisions while abstracting from its potential strategic implications within firms.
Moreover, modeling imperfect competition in the credit market with endogenous information acquisition
is challenging, and the literature often focuses on simple algorithms with binary signal realizations (see,
e.g., Broecker (1990)), with few exceptions (such as Blickle et al. (2024)). The reduced-form approach
facilitates the study of more complex algorithms, aligning with advancements in ML technologies.

22The Bayesian persuasion literature typically studies optimal disclosure among the set of all the possible
disclosure policies (i.e., state-contingent distributions over signal realizations). Here, I focus on a fully
revealing and a fully concealing policy, in line with the ongoing debate regarding algorithmic transparency
and opacity. It can be shown that among symmetric monotone disclosure policies (i.e., symmetric convex
partitions of the state space [—1,1]) it is without loss to restrict attention to policies that fully reveal
extreme values A € [—1,—A°) U (A°,1] and pool intermediate ones A € [-A°, \°] for some 0 < A° < 1. I
study the cases A\° € {0, 1}, deferring a formal treatment of general disclosure policies to future work.

14



while the social surplus (or the egalitarian social welfare) is:

W(0,a) = ¢ [QX 1+ b} . (2.5)

Timing and Equilibrium Concept The timing of the game is as follows:

t = 0 the lender commits to transparency or opacity, i.e., to reveal or conceal A;

t =1 (A, 0,z) realizes, A is observed by the lender (resp., everyone) under opacity (resp.
transparency), z is observed by the borrower;

t = 2 the borrower shares or withholds data, i.e. he chooses m(z) € {z,o};

t =3 the lender allocates credit according to ax(m) = (£x(m), x,\(m))me{z oy

t = 4 if the project is financed, the project’s returns are realized.
The equilibrium concept is Perfect Bayesian Equilibrium.

Discussion of Model Assumptions A few comments about the model are in order.

e Positive NPV The lender extends credit based on prior beliefs, reflecting the com-
mon practice of incorporating alternative data sources in a secondary round of the
screening process (see, e.g., Nam (2024)), a practice referred to as multistage screen-
ing. Typically, borrowers who initially qualify for credit by submitting compulsory
traditional metrics - such as credit scores and financial history - are then given the
option to share additional information - such as payment data, social media activity,
utility payments, or online behavior. This voluntary sharing can potentially enhance
or impair their credit terms.

e Unknown Credit Risk Borrowers are often unaware of their credit risk, a common
assumption in the literature. In addition, this excludes the lender’s ability to extract
the borrower’s private information through contractual terms, particularly collateral
requirements.”® In fintech credit, alternative data sources and advanced statistical
technologies typically substitute traditional collateral.”* Given that this paper fo-
cuses on the latter topic, I abstract from the possibility of designing truth-telling
contracts.

23 An established body of literature has extensively examined the optimal design of screening contracts.
See, e.g., Bester (1985), Freixas and Laffont (1990), and Besanko and Thakor (1987).

24Recent studies have explored the effectiveness of these alternative practices in addressing agency
problems and expanding access to finance. See, e.g., Agarwal et al. (2019) and Gambacorta et al. (2022).
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e Opaque Statistical Technology The framework links algorithmic opacity to the
underlying statistical technology. One can think of the DGP as being a priori un-
known to everyone, while the lender, having access to a statistical technology and a
training dataset, can obtain an estimate A of the DGP. Based on this estimate, the
lender can tailor an algorithm, which can be described by the parameter A. Private
knowledge of the estimate of the DGP then coincides with private knowledge of the
algorithm’s parameters. The model assumes that such an estimate is unbiased, i.e.,
A = \. Essential to my model is the borrowers’ uncertainty over the estimate \, while
the underlying A can be known or unknown to borrowers and may even differ from
A. Such uncertainty reflects public mistrust in opaque ML technologies, originating,
for example, from concerns about algorithmic fairness and bias.

e Uniform Beliefs Borrowers have uniform and symmetric beliefs over the employed
statistical technology. This assumption captures the black-box nature of ML algo-
rithms that utilize alternative data sources, as borrowers typically do not understand
how these data points influence the lender’s assessment of their credit quality. How-
ever, the assumption is mainly made to streamline results and can be relaxed, for
instance, assuming A ~ [r, %] where —1 < k < 0 < & < 1. Essential to borrow-
ers’ equilibrium hedging behavior against opacity is that they face some uncertainty
about whether the algorithm treats data as good or bad news.

¢ Commitment to Disclosure Policy Committing to opacity is straightforward:
the lender keeps the algorithm secret, regardless of its complexity. Commitment
to transparency is more nuanced and may depend on the algorithm’s interpretabil-
ity. When using interpretable algorithms, such as logistic regression, the lender can
directly disclose model parameters — akin to the A in my model. However, when em-
ploying more complex ML techniques — such as support vector machines, tree-based
models, gradient boosting machines, or deep learning methods — the lender can be,
at least, explainable. In practice, this might include disclosing feature importance
metrics, SHAP values, LIME explanations, partial dependence plots, and permuta-
tion importance to provide borrowers insights into how different features influence
predictions (see, e.g., Molnar (2023)).

e Single-Dimensional Data The model considers a single explanatory variable, sim-
plifying interpretation and algebra, and facilitating welfare analysis. This framework
can be extended to include multidimensional characteristics with an all-or-nothing
disclosure technology. In this setup, the probability of success 0 is a weighted average
of n latent characteristics t = (t1,...,t,), i.e. 6 = > | a;t; where t; ~ U0, 1] and
o; € [0,1] with > 7 ;o = 1. Each latent characteristic ¢; can be estimated from
an observable z; generated by a DGP analogous to Equation (2.1), resulting in pre-
dicted credit quality being equal to the hyperplane py(z) = Y0, iy, (2;), where
A= (A,...,\,) and z = (21, ..., 2,). The disclosure technology allows borrowers to
share all observables or none, i.e., m(z) € {z,@}. Intuitively, under transparency,
borrowers can identify which direction of the hyperplane constitutes bad news, al-
lowing them to selectively withhold such information (gaming). Conversely, under
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opacity, borrowers know that evidence near the boundaries of the z space constitutes
an extreme outcome, enabling them to withhold this evidence (hedging).

2.4 Data-Driven Credit Underwriting

This section describes the credit allocation algorithm when the lender has access to the
borrower’s data z. This is also the allocation the borrower receives when choosing to share
data voluntarily.

Lemma 2.1 (Data-Driven Credit Underwriting). If the lender observes the borrower’s data
z, the credit allocation algorithm ay(z) is:

=) = u%(z) +9 (X N uxl(z)> ’

U\(z) =1 4 ur(z) > %} .

(2.6)

Proof. See Appendix A. [ |

The allocation rule is rather intuitive and depends on predicted credit quality as follows.
First, the interest rate is decreasing in expected quality 1) (2): less risky borrowers get lower
interest rates. Moreover, the interest rate equals the competitive rate 1/p,(z) plus a mark-
up that is increasing in the lender’s bargaining power ¢, the return of the project X and
expected quality py(z). Second, the credit rationing decision is a cutoff rule: borrowers
with credit quality below the threshold 1/X are credit rationed.

Importantly, the algorithm depends on the correlation A between data and credit quality
through the lender’s forecast of quality py(z). When A is positive (negative), higher data
realizations are good news (bad news), and the interest rate decreases (increases) in z,
while it is flat and independent of data when A = 0. Moreover, the interest rate is steeper
the higher the predictive power of data |A|. Similarly, the allocation rule rations credit
to different sets of data points depending on the value of \. One can rewrite the credit
rationing rule in Equation (2.6) as

Hz>r(N)} it Ae [A1]
0h(2) = 1 if Ae(AN) (2.7)
H{z<r(N)} if xe[-11],

w-3-1G-3)

will be refereed to as the rationing threshold, while X = 1 —2/X € (0,1) and A = —X.
Note that when the correlation is sufficiently high, A\ € [)\, 1}, the rationing threshold is
positive, r(A) € [0,1/X], and some borrowers with low data points are credit rationed.

where
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Conversely, borrowers with high data points do not get credit when the correlation is
sufficiently negative, \ € [— 173] so that r(A) € [1 —1/X,1]. Finally, when the predictive
power of data is low |A| < A, there is no data-driven credit ratio; still, data will be optimally
used to price credit (as long as |A| > 0).

Given the allocation rule, the lender’s and the borrowers’ expected profits given a data
realization z are, respectively:

VHE) = 66 (m=)X - 1)),
VE(2) = bh(2) [(1 — $) (M(z)x - 1) + b].

Conditional on credit provision, the lender and the borrower obtain a fraction of the (con-
tractible) social surplus equal to their bargaining power, while the borrower also enjoys
the private benefit. Moreover, greater statistical accuracy (higher |A|) has a redistributive
impact, creating winners and losers (as in Fuster et al. (2022)). Better-than-average bor-
rowers enjoy lower interest rates and are thus better off due to greater predictive power.
In contrast, riskier borrowers are worse off, facing higher interest rates and potential credit
rationing due to increased precision.

(2.9)

2.5 Voluntary Data Sharing

This section studies borrowers’ voluntary data-sharing behavior. In this framework, the
lender draws inferences from the data provided and the borrower’s disclosure decisions.
The analysis considers, in turn, transparent and opaque allocation algorithms, as defined
in Definition 2.

Before studying the borrowers’ data-sharing decision, consider the lender’s equilibrium
inference following data withholding. Let @ = {z € [0,1] : m(z) = @} be the set of
borrowers that strategically withhold data, the lender’s inference of the borrower’s credit
quality is px (D) = pa(z(7, Q)) where py(2) is defined in Equation (2.2), while

2(m,Q) = w(m, Q)5 + (1 —w(m, Q))E0]0 € Q),

- : (2.10)
w(m, Q) = T+ (1—m)Pr(z € Q)

Data withholding can either be strategic, stemming from a borrower with data realization
z € @, or be non-strategic. Thus, following withholding, the lender assigns an inferred
data realization z(w, @), a weighted average of the expected data realization withheld by
strategic and non-strategic borrowers. The weight w(m, Q) is the posterior probability of
non-strategic withholding. It increases with 7, the fraction of non-strategic users, and
decreases with the mass of strategically withheld data realizations. Note that the inferred
data realization z(m, Q) is also weighted by A, reflecting the likelihood of data being in-
formative rather than noise. Following withholding, the algorithm maps the inferred data
quality to allocations as in Lemma 2.1 replacing z(7, Q) to z (see Lemma A.1 in Appendix
A for a formal treatment).
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2.5.1 Gaming under Transparency

This section shows that transparency makes the algorithm vulnerable to gaming in the form
of strategic withholding of unfavorable information. When the algorithm’s parameters are
publicly known, the borrower’s data-sharing strategy depends on this knowledge and is
formalized in the following proposition.

Proposition 2.1 (Data-Sharing to a Transparent Algorithm). When the lender uses a
transparent algorithm, the set of strategic borrowers that optimally withhold data is:

[O,max {r()\);v(w)}] if Ae(0,1],
G\, ) = [0,1] if A=0, (2.11)

[min {r(A);1=~(m)}, 1} if Ae[-1,0),

where | |
y(m) = M e (0_/ _) (2.12)
11— 2
1S INCreasing.
Proof. See Appendix A. [ |

Consider the case where the correlation is positive and low, such that the algorithm
uses data for pricing but not to ration credit, i.e. A € (0,A) (see Equation (2.7) and the
discussion that follows). The algorithm is known to assign lower interest rates to borrowers
with higher z. Risky borrowers — with low z — would get pretty high interest rates by
sharing information and thus opt to withhold data as this grants them better contractual
terms. Suppose the set of borrowers withholding data is ¢ = [0, ¢] for some ¢ € (0,1). By
pooling with non-strategic borrowers with an average credit quality of 1/2, borrowers with
z € () are perceived as having lower credit risks than they actually are and thus receive
lower interest rates. However, data withholding is perceived by the lender as a signal of
credit risk, and better borrowers prefer to separate from the risky no-disclosure pool by
sharing information.

The threshold ¢ can be identified as the borrower that receives the same interest rates
by sharing and withholding data. For this to occur, the inferred data realization following
data withholding must match the borrower’s actual data realization. The indifference
condition can be expressed as

q=2(m,q),

where z(7, q) is determined by substituting ) = [0, ¢] into both lines of Equation (2.10). Its
unique (positive) solution is ¢ = y(m) given by Equation (2.12). Note that this threshold
is independent of the predictive power of data A. This is because the lender’s equilibrium
inference, (), scales by the same weight A both the disclosed data realization z and
the data realization z(m, q) inferred from data withholding. Hence, A is irrelevant to the
borrower’s indifference condition; all that matters is the comparison between the borrower’s
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actual data realization and the inferred data realization when data is withheld. On the
other hand, the indifference condition depends on the fraction of non-strategic borrowers
7. The indifference threshold ~(m) is increasing and strictly between 0 and 1/2. When
borrowers are primarily strategic (m — 0), data withholding is a strong indicator of low
credit quality. Consequently, the algorithm significantly penalizes withholding by assigning
very high interest rates. As a result, even the riskiest borrowers choose to separate, causing
the no-disclosure set to shrink, and (7)) approaches zero. This essentially aligns with the
unraveling result of by Grossman (1981) and Milgrom (1981), which states that all available
information is disclosed to prevent an adverse equilibrium inference by the receiver. When
the fraction of privacy-concerned borrowers increases, unraveling forces are milder because
withholding data becomes a less reliable indicator of low credit quality. Consequently, a
growing number of risky borrowers prefer to withhold information, as this strategy yields
increasingly favorable interest rates as 7 rises. In the opposite limit, where borrowers
are primarily non-strategic (7 — 1), withholding data provides no information, and the
algorithm’s equilibrium inference aligns with the prior. As a result, only above-average
borrowers choose to separate, and () approaches 1/2.

Consider now more data-intensive allocation rules such that A > \. Disclosed data
is used not only for pricing but also for rationing credit. In particular, borrowers with
z € [0,7(N\)], with (X) > 0 given by Equation (2.8), do not receive credit if they share their
data. However, withholding information may allow them to obtain credit if the inferred
data realization z(m,y(m)) = ~(m) exceeds the rationing threshold r(\). This happens
when unraveling forces are sufficiently mild that the lender’s equilibrium inference is not
too averse. Specifically, this occurs when non-strategic borrowers are relatively numerous,
Le, m >y Hr(\) = (r(V)/(1 - r()\)))Z € (0,1) or, equivalently, when the predictive
power of data is sufficiently low, ie. A < r7}(y(m)) = (3—2%) /(3 —~(m) € (A1)
The equilibrium is depicted in Figure 2.1, Panel (a). When these conditions are not met,
unraveling forces are stronger, and the lender’s equilibrium inference is so averse that
withholding data induces credit rationing. Consequently, borrowers with data below the
rationing threshold r(\) are indifferent between sharing and withholding as they do not
receive credit anyway. Only observationally credit-worthy borrowers share information
and get funded at an interest rate reflecting their expected credit risk. The equilibrium is
depicted in Figure 2.1, Panel (b).

When A\ < 0, symmetric reasoning applies, and the right tail of the data distribution
is withheld in equilibrium. When A = 0, data is uncorrelated with quality, and the algo-
rithm extends credit, ignoring any disclosed information. As a consequence, borrowers are
indifferent between sharing and withholding data.

The equilibrium withholding of information can be considered a form of gaming —
enabled by transparent allocation rules — by which strategic borrowers secure better con-
tractual terms by selectively concealing bad news while sharing good news. The misalloca-
tion of credit resulting from gaming has welfare consequences for both the lender and the
borrowers and will be analyzed in Section 6. Gaming can lower interest rates for risky but
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Figure 2.1: Gaming under Transparency. The figure depicts the borrower’s surplus
from data sharing, V,®(z) (in black), and from data withholding, V;¥(&) (in red), when
A > X > 0. The red dot corresponds to the borrower’s data realization inferred from data
withholding and equals y(7) defined in Equation (2.12). r(\) denotes the rationing thresh-
old and is defined in Equation (2.8). Panel (a) shows the case where privacy-concerned
borrowers are sufficiently numerous, i.e., 7 > v~ (r())), and gaming occurs in equilibrium.
Panel (b) shows the case where privacy-concerned borrowers are few, i.e., 7 < v~ H(r(\)),

and gaming does not occur in equilibrium.

credit-worthy borrowers and even induce credit provision to credit-unworthy borrowers. In
both cases, the extent of gaming increases with the fraction of non-strategic users, which
thus can be seen as a measure of gaming ability. Moreover, gaming is more pronounced
when data is more informative, and the allocation rule relies more strongly on it.?° This
result is related to several papers examining the allocation rules manipulation by strategic
users, finding that gaming incentives increase when the rule heavily relies on data (see the
paragraph on Gaming and Opacity in Section 2). These papers suggest that an optimal
scoring rule should underutilize data to mitigate gaming. Section 5.2 explores an alter-
native strategy lenders might employ to deter gaming: making the rule opaque without
reducing its data sensitivity.

2.5.2 Hedging under Opacity

This section examines borrowers’ data-sharing behavior when the algorithm is opaque,
meaning the parameters governing it are kept secret from borrowers. While opacity can
sometimes mitigate gaming, it also induces borrowers to hedge against the unpredictability
of the algorithm by withholding information. The equilibrium data-sharing strategy is
described in the following proposition.

ZWhen \ € |), X(’y(w))), the mass of credit-unworthy borrowers that get credit by withholding infor-
mation increases with the predictive power of data.
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Proposition 2.2 (Data-Sharing to an Opaque Algorithm). When the lender uses an
opaque algorithm, the set of strategic borrowers that optimally withhold data is:

H(b, @) = [n(b, ), 1 —n(b, d)] (2.13)

b =macfo L (1= 2V} o 1) -

18 weakly decreasing in ¢ and b.

where

Proof. See Appendix A. [ |

Before providing the intuition behind this result, it is helpful to understand why data-
withholding constitutes a safe hedging strategy against algorithmic opacity. Consider any
symmetric data-withholding set .?° For any of these sets, the lender’s inference of credit
quality following data-withholding is

(@) = (3) = 3

and is thus independent of i) the lender’s statistical technology, and ii) the actual data-
withholding set (see Equation (2.10)). No matter the true link between data and credit
quality (i.e., A\) and the size of the no-disclosure pool, the data-withholding set contains
borrowers with mixed positive and negative evidence, so the lender does not infer much
from data withholding. Consequently, as long as the no-disclosure pool is symmetric, there
is no stigma attached to data withholding, and disclosing borrowers impose no externalities
on withholding borrowers. Moreover, since the overall pool of borrowers is credit-worthy,
the lender provides credit following no-disclosure. Similarly, the ex-post interest rate a
borrower gets from withholding is independent of \. It follows that if the data-withholding
set is symmetric, data-withholding is a safe strategy against algorithmic opacity: it insures
the borrower against the risk of credit rationing and the variability in interest rates.

Consider now what the borrowers expect from data sharing. We can distinguish two
types of borrowers depending on their data realizations:

e Borrowers with extreme data realizations z € [0,1/X] U [1 — 1/X, 1] face a positive
probability of being denied credit when they share information, and this probability
increases as their data realization becomes more extreme — i.e., when z moves further
from the center of the distribution. This is intuitive, as increasingly extreme data
realizations are deemed credit-unworthy for progressively weaker correlation values
A, resulting in a denial of credit by a wider range of allocation rules that the lender

26A set @ C [0,1] is symmetric about % ifVze @, 1—z € Q. Some examples are: the entire interval
@ = [0,1], a subinterval of the form @ = [¢,1 — ¢] with ¢ € [0,1/2), disjoint subintervals of the form
Q =10,q]U[1l —q,1] with ¢ € (0,1/2], etc.
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may employ.?’

Conditional on getting credit, the interest rates are also uncertain — as these depend
on A through the lender’s opaque statistical inference from data — and the expected
interest rate decreases as data becomes more extreme. This is also intuitive, as,
conditional on receiving credit, increasingly extreme data realizations are seen as
progressively stronger signals of credit quality.?®

e Borrowers with central data realizations z € (1/X,1 — 1/X) face no risk of credit

rationing, and they always obtain credit by sharing information. Their data realiza-
tions are close to average and represent a weak indicator of credit risk regardless of
whether the data is positively or negatively correlated with credit quality. Since the
average borrower is creditworthy, they are granted credit by every allocation rule the
lender might employ.
However, these borrowers still face algorithmic opacity because the interest rate they
receive is uncertain. Given the borrowers’ risk neutrality and the symmetric treat-
ment of data across rules, this uncertainty perfectly balances out, and the expected
interest rate is independent of z.

The equilibrium data-sharing behavior can now be better understood. When the
lender’s bargaining power is relatively high (i.e., ¢ > 1 — 2b) or, equivalently, when the
borrower’s private benefit is substantial (i.e., b > (1 — ¢)/2), the equilibrium involves no
data-sharing, i.e., @ = [0,1]. In this scenario, borrowers prioritize securing credit and
enjoying their private benefits b over obtaining marginally lower interest rates, as interest
rates extract most of their surplus once the credit is extended. Consequently, the utility
of data sharing exhibits a symmetric inverted U-shape: borrowers with more extreme data
realizations face an increasing risk of credit rationing and would like to appear closer to
the average than they truly are to mitigate this risk. This can be achieved by withholding
information. The strategy labels them as average borrowers, fully insulates them against
the risk of credit rationing, and is, therefore, strictly optimal. In contrast, borrowers with
central data realizations are indifferent between the two strategies, as they obtain credit
anyway and are risk-neutral conditional on receiving credit. No borrower has an incentive
to separate from the no-disclosure pool. Hence, data-withholding emerges as a safe hedging
strategy against the unpredictability of the algorithm: it insures the borrower against the

27Consider z € [0,1/X]. From Equation (2.7) and Equation (2.8), a data realization in this set is denied
credit when z < r(\), or equivalently when the correlation between data and credit quality is sufficiently
high, i.e., when

A>rtz) = X(z) = 2

where r~1(+) denotes the inverse function of 7(-). The probability of getting credit is thus p(z) = Pr(\ <
X(z)) = (X(z) +1)/2, so that the probability of credit rationing, 1 —p(2), is decreasing in z for z € [0,1/X].
Symmetric reasoning applies for z € [1 — 1/X,1].

ZConsider z € [0,1/X]. The inferred credit quality across all the allocation rules that provide the
borrower credit is p_(z) = E(ux(2)|A < X(z)) and is decreasing in z for z € [0,1/X]. This is because the
borrow receives credit when A < X(z), i.e. when data is predominately negatively correlated with credit
quality, so when lower data realizations are viewed as more favorable. Therefore, conditional on receiving

credit, the expected interest rate increases with z. Symmetric reasoning applies for z € [1 — 1/X, 1].
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risk of credit rationing and the variability in interest rates.?” The equilibrium is depicted
in Figure 2.2, Panel (a).

Conversely, when the borrower has relatively more bargaining power (i.e. ¢ < 1 — 2b)
or a lower private benefit (b < (1 — ¢)/2), the most extreme evidence is disclosed in
equilibrium, i.e. @ = [n(b, ¢), 1 —n(b, »)] with (b, ») € (0,1/X). In this case, the potential
for better interest rates drives extreme borrowers’ decision to share information. These
are still the most likely to face credit rationing if they disclose, but they also stand to
gain the best rates if they obtain credit. Consequently, when the potential upside reward
outweighs the guaranteed benefit of obtaining credit, these borrowers forgo the safety of
non-disclosure and take the risk of sharing information. However, less extreme borrowers
have less exposure to the potential upside and stick to the safe hedge. We can thus write
the no-disclosure set as @) = [¢, 1 —¢| and identify the threshold ¢ as the borrower for whom
these forces perfectly balance out, being indifferent between sharing and withholding data.

The indifferent borrower is given by ¢ = + < — %) € (0,1/X). This threshold increases

when ¢ and b decrease: as borrowers gain bargaining power or derive lower benefits from
securing credit, hedging motives decrease, and they share more information in equilibrium.
In the limit when b approaches 0, hedging motives are absent: no matter the lender’s
bargaining power, every borrower facing the threat of credit rationing strictly prefers to
disclose information, hoping for a better interest rate. The equilibrium is depicted in Figure
2.2, Panel (b).

In summary, algorithmic opacity prompts some borrowers to hedge against its unpre-
dictability by withholding information. Hedging motives are amplified when the lender
can extract borrowers’ surplus more effectively, potentially preventing data sharing from
occurring in equilibrium. However, leveraging borrowers’ risk-taking behavior, opacity may
also lead to the extraction of extreme and highly conclusive evidence when borrowers pos-
sess greater bargaining power. Thus, algorithmic opacity presents both benefits and costs
in terms of data collection and the resulting reduction of misallocation of credit. These
factors will be studied in Section 2.6.

Since the value from data-sharing is symmetric around z = 1/2, the set of borrowers withholding
data, @, is also symmetric in equilibrium. Note that the hedge is perfect because of the symmetry of
@, but is only partial when the conjectured @) is asymmetric. Still, the intuition extends to asymmetric
no-disclosure sets, and perfect hedging will be optimal in equilibrium. Similarly, a symmetric equilibrium
data-withholding set is due to the symmetry in algorithmic uncertainty, which drives the symmetry of the
value from data-sharing around z = 1/2. One can show that hedging type of behavior (i.e. pooling at the
extremes) emerges in equilibrium when A ~ [k, %] where —1 <k < 0 <% < 1 and & is sufficiently low.
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Figure 2.2: Hedging under Opacity. The figure depicts the borrower’s expected surplus
from data sharing, VZ(z) (in black), and from data withholding, V(&) (in red). The
red dot corresponds to the borrower’s data realization inferred from data withholding and
equals % n(b, ¢) denotes the indifferent borrower and is defined in Equation (2.14). Panel
(a) shows the case where the lender’s bargaining power is sufficiently high, and hedging is
complete in equilibrium. Panel (b) shows the case where the lender’s bargaining power is
sufficiently low, and hedging is only partial in equilibrium.

2.5.3 Externalities and Privacy Concerns

Interestingly, privacy-concerned borrowers are affected differently depending on whether
the lender’s algorithm is transparent or opaque.

Corollary 2.1 (Externalities). When the lender uses a transparent algorithm, non-strategic
borrowers are denied credit when they are few, i.e., when © < y~*(r(\)) € (0,1). Instead,
when the lender uses an opaque algorithm, non-strategic borrowers always obtain credit.

Under transparency, when privacy-concerned borrowers are few, no disclosure is a strong
signal of low credit quality and leads to credit denial. Hence, strategic borrowers impose a
negative externality on privacy-concerned borrowers through their data-sharing decisions,
ultimately pushing them out of the market despite being creditworthy on average. This
operates through the classic unraveling logic and stems from the lender’s inability to differ-
entiate between strategic and non-strategic borrowers. On the contrary, unraveling forces
are absent under opacity. The no-disclosure pool contains both observationally good and
bad borrowers; hence, no stigma is attached to no-disclosure, regardless of the actual statis-
tical link between data and credit quality. As a result, borrowers who disclose information
impose no externalities on privacy-concerned borrowers, allowing them to always receive
credit.®’

30Note that similar effects would arise in a smoother specification where privacy-concerned borrowers
face a finite disclosure cost. Under transparency, when unraveling forces come into play, privacy-concerned
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2.6 Welfare Analysis

The previous discussion highlighted that both transparency and opacity lead to infor-
mation losses through either gaming or hedging behavior of strategic borrowers. This
section studies the resulting misallocation of credit and mispricings. It demonstrates that
transparency regimes have significant welfare implications, affecting the lender’s profits,
borrowers’ welfare, and overall social surplus.

2.6.1 Lender’s Profits

We begin by analyzing the transparency regime that maximizes the lender’s ex-ante prof-
its. Since data is valuable for the lender, the optimal regime minimizes the information
loss resulting from borrowers’ strategic behavior. The lender’s transparency choices are
described in the following proposition and illustrated in Figure 2.3.

Proposition 2.3 (Lender-Optimal Transparency Regime). Let
m1(b,¢) = min {7(b, ¢), 7(X) } € (0,7(XY), (2.15)

where T(X) = (%/(1 — %))2 while (b, @) is defined in Equation (A.27) and is increasing
in b and ¢. If the fraction of non-strategic borrowers is sufficiently high, i.e., @ > (b, @)
(resp. sufficiently low, i.e., m1 < wp(b,¢)), an opaque (resp. transparent) algorithm maxi-

mizes the lender’s profits.

Proof. See Appendix A. [ |
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¢ (Lender’s Bargaining Power)

Figure 2.3: Lender-Optimal Transparency Regime. The figure depicts the lender’s
preferences between a transparent (T') and an opaque (O) algorithm as defined in Definition
2. The symbol > denotes a strict preference, while ~ denotes indifference. The red line
represents 7y (b, ¢) as defined in Equation (2.15).

borrowers are compelled to incur the disclosure cost to distinguish themselves from the no-disclosure pool
and secure credit. In contrast, under opacity, unraveling forces are absent, allowing privacy-concerned
borrowers to avoid the disclosure cost while still obtaining credit.

26



The lender’s optimal transparency regime maximizes the algorithm’s efficacy in ra-
tioning credit, foregoing the potential benefits of price discrimination. This happens be-
cause the Blackwell (1951) value of information is nil above the rationing threshold, as the
lender is risk-neutral in this region. While detailed credit quality information can reduce
the variance of the lender’s returns from credit-worthy borrowers, it does not affect their
expected value since potential mispricings offset each other. Therefore, from an ex-ante
perspective, the lender gains no additional profits from acquiring more granular information
than necessary for optimal credit rationing. It follows that the algorithm’s transparency
regime is irrelevant in the region where the algorithm prescribes no credit rationing, i.e.,

when A € (), \).

Building on this result, we can examine credit misallocations resulting from gaming
when A > X (the analysis is symmetric when A < )). Under transparency, when \ €
[X,/X(y(w))), strategic high-risk borrowers (with z € [0,7()\)]) evade credit rationing by
withholding bad news. These borrowers represent a negative NPV investment for the
lender and thus induce a loss in expectation. The magnitude of this loss increases with A
as a greater number of high-risk borrowers slip through the lender’s screening process and
obtain credit. In addition, some marginally credit-worthy borrowers (with z € (r(X),y(7)))
receive more favorable interest rates than what their actual credit risk would suggest.
Because of risk neutrality, this second group of borrowers does not impact the lender’s
expected profits. For higher correlation levels, A € [A(y(w)), 1}, gaming does not occur.
Only observationally credit-worthy borrowers receive credit, while non-disclosing borrowers
are credit rationed. Within the group of strategic borrowers, the lender achieves profits
comparable to those with full data observability. However, the lender suboptimally refuses
credit to non-strategic borrowers who are, on average, credit-worthy.

Overall, the profits the lender yields employing a transparent algorithm weakly decrease
in the number of behavioral borrowers 7. This happens for two reasons. First, as w
increases, gaming behavior spreads across a broader range of allocation rules, exacerbating
misallocations and resultant losses. Second, in the region where gaming is absent due to
effective unraveling forces, an increasing number of non-strategic credit-worthy borrowers
are erroneously denied credit. At a certain point, when 7 > 7(X) € (0,1) i.e. A(y(7)) > 1,
gaming extends throughout the entire range of A and the lender’s profits equal the no-
information level.

Consider now credit misallocations resulting from an opaque algorithm. When the
lender’s bargaining power is sufficiently high (i.e., ¢ > 1 — 2b), causing borrowers’ hedging
motives to be strong enough to prevent any data sharing in equilibrium, the lender is unable
to perform either credit rationing or price discrimination, regardless of the true predictive
power of the data. Consequently, the lender earns the lowest possible profits, equivalent to
the no-information profits. Instead, when borrowers have relatively more bargaining power
(i.e., ¢ < 1 —2b), they share extreme evidence hoping for favorable interest rates but may
be excluded from credit ex-post. When correlation is mild, i.e. when \ € [X, X(n(b, (b))}
or equivalently r(\) < n(b, ¢), high-risk borrowers with z < r(\) < (b, ¢) share data,
hoping to be classified as low risks, instead the algorithm uses the disclosed information to
ration credit. Hence, only observationally credit-worthy borrowers obtain funding, and the
lender achieves profits comparable to those with full data observability. When correlation
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is higher, \ € (X(n(b, ?)), 1} or equivalently 7(b, ¢) < r(\), rationing occurs ex-post but is
only partially optimal. In fact, hedging behavior precludes the lender from rationing credit
to those high risks that withhold information, i.e., those with z € [n(b, ¢),7()\)]. Finally,
non-strategic borrowers always obtain credit, and this is optimal as they are, on average,
creditworthy.

In summary, the lender’s bargaining power ¢ and the borrower’s private benefit, b,
strengthen the borrower’s hedging behavior, limiting the data available to the lender. As
a result, credit rationing occurs for a narrower range of allocation rules, thereby reducing
the lender’s profits.

Transparency regimes can now be easily compared. When the borrower’s hedging mo-
tives are strong, and gaming ability is high (i.e., ¢ > 1 —2b and m > 7(X)), the lender is
unable to implement credit rationing, regardless of the chosen transparency regime. As a re-
sult, the lender is indifferent between the two regimes. For the remaining parameter values,
the lender faces a trade-off. When gaming ability outweighs hedging motives, an opaque
algorithm maximizes the lender’s profits by extracting more information, thus enabling
credit rationing for those high-risk borrowers who would otherwise game a transparent
system. Conversely, when gaming ability is weaker than hedging motives, transparency
becomes optimal by leveraging unraveling forces while eliminating hedging behavior. The
threshold (b, ¢) € 7(X)) at which the lender switches from transparency to opacity is
increasing in the lender’s bargaining power ¢ and the borrower’s private benefit b: as
hedging motives strengthen, transparency becomes optimal for a broader range of param-
eters. When the borrower’s private benefit exceeds %, hedging motives are so strong that
an opaque algorithm results in no data-sharing irrespectively of the lender’s bargaining
power. Consequently, transparency benefits the lender by enhancing data extraction and
the algorithm’s credit rationing capabilities.

2.6.2 Social Welfare

We now examine the socially optimal transparency regime — the one that maximizes
egalitarian social welfare (or total surplus) — and show that the lender’s transparency
choices are often socially inefficient.

It is useful to first consider a benchmark in which the social planner can segment the
data available to the lender, who then optimally allocates credit based on this segmentation
(the approach is similar to Bergemann et al. (2015)). In this benchmark, the planner
observes the lender’s statistical technology, A\, and commits to a segmentation of observable
credit risk, i.e., a monotone partition of the borrower’s characteristics. Specifically, a credit

risk segmentation is a partition Z = {2, 21, . .., Zn_1, 2o} of the borrower’s data space [0, 1]
with 0 = 29 < 21 < --- < z,_1 < z, = 1, where the lender only observes in which risk
bucket 7; a borrower belongs, where r; = {2z € 2,1, %)} for i € {1,...,n}.

Every risk bucket r; induces a lender-optimal allocation, that is, a credit provision
decision ay(r;) and an interest rate x,(r;), and thus can be seen as a recommendation
about credit allocations from the planner to the lender. Hence, the welfare-optimal credit
risk segmentation — the set of all these recommendations — has to i) maximize social
welfare and ii) be incentive-compatible (or obedient) for the lender.
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Lemma 2.2 (Welfare-Optimal Credit Risk Segmentation). The welfare-optimal credit risk
segmentation contains at most two risk buckets (n < 1) with cutoff

=) = { max {r(\) — %,0} if A€ [0,1], (216)
min {r(\) — 5&,1} if A €[-1,0),

where r(\) is defined in Equation (2.8).
Proof. See Appendix A. [ |

The lemma shows that the market solution entails excessive rationing from a social per-
spective, and the misalignment of incentives between the lender and the planner increases
with the borrower’s private benefit, b. To see this, note that the credit provision induced
by the welfare-optimal segmentation (as a function of the underlying characteristic z) is

1{z>r(\) -3 if  Xe [A(b),1]

(3(2) = 1 if  xe (A(D),A(D)) (2.17)
{z<r(\) — % if xe[-1A0b)],

where A(b) = A+ 2 and A(b) = —A(b). Comparing this with the lender-optimal credit al-
location in Equation (2.7), we find that the market solution results in insufficient provision
of credit, as £)(2) < £5(z). Specifically, when A > \(b), there exists a subset of borrowers
with z € (r(\) — 2%, 7(\)] that the lender would ration despite having a positive surplus
project. The size of this set increases with b, as a higher private benefit for the borrower
increases the overall surplus without changing the lender’s profits. Nevertheless, in this re-
gion, the planner would deny credit to certain high-risk borrowers seeking to fund negative
surplus projects. When A € [X, A(b)), the planner would extend credit to all borrowers,
while the lender would still ration some with sufficiently low realizations z < r(A). The
range of allocation rules for which this happens also increases with b. Only when b tends

to 0 does the lender implement the socially efficient level of credit provision.

Note also that the welfare-optimal segmentation entails, at most, two coarse risk buck-
ets. This happens for two reasons. First, interest rates determine how the surplus is
divided between the lender and the borrower without altering the total surplus created.
Therefore, the planner’s only concern is to ensure welfare-optimal credit provision. Since
credit provision is a binary decision, the segmentation contains at most two buckets, as all
the potential sub-buckets inducing the same decision can be pooled in a unique category.
This is due to the revelation principle, for which messages (risk buckets) can be thought
of as incentive-compatible action recommendations. Second, the risk buckets have to be
sufficiently coarse to be incentive-compatible. All the borrowers for which there is a mis-
alignment of incentives between the lender and the planner have to be lumped in a unique
risk category that the lender is willing to fund. For this to occur, the bucket has to contain
a sufficient number of low-risk borrowers alongside high-risk borrowers, and thus has to be
sufficiently coarse.

The following proposition and Figure 2.4 describe the transparency regime that maxi-
mizes social welfare.
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Proposition 2.4 (Welfare-Optimal Transparency Regime). Let

mw (b, ) = max {0, min {7°(b, ¢), Wo(b)}} < 7r(b, ), (2.18)

where (b, ¢) and w°(b) are defined in Equation (A.45) and Equation (A.46), respectively,
and min {7°(b, ¢),7°(b)} is decreasing in b and weakly increasing in ¢. If the fraction of
non-strategic borrowers is sufficiently high, i.e., 1 > my (b, ¢) (resp. sufficiently low, i.e.,
m < mw(b,¢)), an opaque (resp. transparent) algorithm mazimizes social welfare.

Proof. See Appendix A. [ |
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Figure 2.4: Welfare-Optimal Transparency Regime. The figure depicts the social
planner’s preferences between a transparent (T') and an opaque (O) algorithm as defined
in Definition 2. The symbol > denotes a strict preference, while ~ denotes indifference.
The red line represents 7y (b, ¢) as defined in Equation (2.18), ¢°(b) is defined in Equation

(A.39), while 7(X) = (&/(1 - £))*.

The welfare-optimal transparency regime depends on the borrower’s private benefit
through two key channels. First, as established in Lemma 2, the private benefit b creates a
gap between socially efficient and lender-optimal credit provision. Second, combined with
the lender’s bargaining power ¢, the private benefit reinforces the borrower’s hedging mo-
tives under an opaque algorithm. This, in turn, impacts the extent of information available
to the lender and the resulting — potentially inefficient — credit rationing decisions.

When credit provision is socially efficient (i.e., when b approaches 0), the lender’s
transparency choices also are. In this case, an opaque algorithm is efficient (and optimal)
for two reasons. First, opacity allows non-strategic credit-worthy borrowers to withhold
data without being denied credit. Second, it maximizes data extraction from strategic
borrowers — since hedging motives are absent and every credit-unworthy borrower shares
data — and the lender uses the disclosed information efficiently. On the other hand, under
transparency, some negative-surplus projects would be funded because of gaming, while
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non-strategic borrowers would occasionally face rationing. It follows that no matter the
lender’s bargaining power and the mass of non-strategic borrowers, opacity is welfare-
improving.

However, the lender’s transparency decisions are socially inefficient when preferences
for credit inclusion deviate, even slightly, from those of the social planner. Moreover, the
welfare-optimal regime favors more opacity than the market-driven solution, i.e., my (b, ¢) <
(b, ¢). The social benefit of opacity arises because it eliminates the stigma associated
with no disclosure in a transparent regime, thereby enabling privacy-concerned borrowers
to fund positive-surplus projects. This benefit is only partially internalized by the lender,
who captures just part of the surplus generated by these projects, as b is privately enjoyed
by the borrower. As a result, transparency in the credit market is excessive. This high-
lights a social benefit of opacity often overlooked by algorithmic transparency advocates,
who usually focus on equity, fairness, and truth as the primary social objectives. When
the goal is improving credit market allocative efficiency, algorithmic opacity can perform
surprisingly well and promote important values such as financial inclusion and borrowers’
privacy. Section 2.8 provides further insights into the policy implications of these findings.

To delve deeper into this mechanism, consider the case where the misalignment of
preferences over credit inclusion is moderate, i.e. b € (0,6°(X)) where v°(X) € (3,3),
meaning that data collection holds some social value by excluding strategic borrowers with
negative-surplus projects. For simplicity, also suppose that opacity results in full hedging
and no credit rationing (¢ > 1 — 2b) while transparency induces some credit rationing (7 <
7(X)).?" In this scenario, the planner faces a trade-off. On the one hand, transparency
maximizes the lender’s ability to extract information from strategic borrowers, allowing
the exclusion of negative surplus projects. On the other hand, transparency comes with a
stigma around data-withholding and leads to the exclusion of those privacy-concerned but
creditworthy borrowers, who would secure credit under opacity. Transparency is socially
efficient when the first effect dominates, that is, when strategic borrowers are numerous
enough, i.e., when 7 < 7°(b). When © > 7°(b), opacity is socially efficient. In this
region, algorithms are overly transparent from a social standpoint, since the lender opts
for transparency despite opacity being the welfare-maximizing choice (cfr. Figure 2.3).
The inefficiency arises because the lender is more inclined to ration credit compared to
the planner and thus only partially internalizes the benefits of expanded credit access that
comes with opacity.

The lender’s decisions become increasingly inefficient as the misalignment over credit
provision preferences widens. When b exceeds the threshold 6°(X), the cutoff 7°(b) ap-
proaches 0 and opacity unambiguously maximizes welfare. Beyond this point, projects
that are rationed under transparency generate a positive social surplus from an ex-ante
perspective, so transparency has no social benefit. When b > %, the misalignment between
the lender and the planner reaches its peak, leading to complete disagreement on the ap-
propriate transparency regime to implement. Beyond this point, data extraction destroys

31Gimilar effects are at play when both regimes induce some credit rationing (¢ < 1 — 2b and 7 <

(L/(1—+0)).
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surplus, and the welfare optimal regime is the one that minimizes data-sharing, that is,
opacity.

2.6.3 Borrower’s Surplus and Redistributive Effects

We now analyze borrowers’ surplus across different transparency regimes, distinguishing
between privacy-concerned and strategic borrowers. Strategic borrowers’ surplus depends
on their observable credit risk, which influences their allocations through their data-sharing
decisions. In contrast, the surplus of privacy-concerned borrowers is independent of data
as they consistently withhold information.

Proposition 2.5 (Redistributive Effects). The surplus of privacy-concerned borrowers is
strictly lower when the lender employs a transparent algorithm. The surplus of strategic
borrowers is strictly higher when the lender employs a transparent algorithm only if their

data realization is extreme, i.e., z € [0, 2*(m)) U (1 — 2*(m), 1] where z*(7) € [0, 3) is weakly
increasing in m and defined in Equation (A.68).
Proof. See Appendix A. [ |
L

- X

3

z

0

@ T~ O

g -

£ T(X)

>

=

Q

@)

5.

%

; ™ (b, )

a |O-T O>-T ’

&

z (Data)

Figure 2.5: Transparency Regime Preferred by Strategic Borrowers. The figure
depicts the strategic borrowers’ preferences between a transparent (T) and an opaque (O)
algorithm as defined in Definition 2, when ¢ > 1 — 2b. The symbol > denotes a strict
preference, while ~ denotes indifference. The red lines represent z*(7) and 1 — 2*(7) where
z*(m) is defined in Equation (A.68), while 7(X) and 7*(b, ¢) are defined in Equations
(A.55) and (A.62), respectively. The white dashed lines represent y(7) and 1 —y(7) where
v(7) is defined in Equation (2.12).

Privacy-concerned borrowers are better off under opacity. As noted in Corollary 1, a
transparent algorithm imposes a negative externality on them through the stigma associ-
ated with no disclosure. Under transparency, they face higher interest rates compared to
opacity and may even be excluded from credit.
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Strategic borrowers favor transparency when their data is extreme and privacy-concerned
borrowers sufficiently numerous. This is because transparency provides borrowers the op-
tion to withhold bad news while sharing good news, and this option value is the greatest for
extreme borrowers if bad news can be easily concealed. When they share good news, they
stand to gain the most, as their data provides a strong, highly indicative signal of credit
quality due to its extreme nature. When they withhold bad news (and still obtain credit),
they achieve the most remarkable improvement in contractual terms by being grouped with
borrowers of significantly higher credit quality than their actual, observable risk level.

To elaborate on this further, consider the case where opacity leads to complete data
withholding — i.e., when the lender’s bargaining power is sufficiently high, ¢ > 1—2b — and
the lender offers credit to all borrowers at a single interest rate.*? This situation is reported
in Figure 2.5. When privacy-concerned borrowers are sufficiently numerous, i.e., 7 > 7(X),
the stigma around data-withholding is mild, and every borrower gets credit even under
transparency. Central borrowers — those with z € (2*(7),1 — 2*(7)) = (y(7),1 — (7))
— always share information, and because data is treated symmetrically across allocation
rules, the average interest rate they receive is the same under both transparent and opaque
regimes, leaving them indifferent between the two. In contrast, by withholding data,
extreme borrowers obtain rates significantly lower than their observable risk would suggest,
resulting in lower average rates under transparency. The improvement in interest rates
grows as the gap between true and inferred credit risk widens, hence when data is more
extreme and privacy-concerned borrowers are more numerous. When the stigma of no-
disclosure is moderate, i.e. 7™ < [7%(b,¢),7(X)), withholding data may lead to credit
denial. The option value of data withholding reduces and central borrowers — those with
z € (2*(m),1 — z*(m)) with z*(7) < y(m) — weakly prefer the security of credit provided
by opacity. When unraveling forces increase even further, i.e., 7 < 7%(b, ¢), every borrower
prefers the safe hedge of opacity.

Aggregating over credit risk and privacy types, we obtain the aggregate borrower’s
surplus and the following result.

Proposition 2.6 (Borrower-Optimal Transparency Regime). An opaque algorithm maxi-
mizes the ex-ante borrower’s surplus.

Proof. See Appendix A. [ |

Although strategic borrowers may sometimes prefer a transparent algorithm, the overall
borrower’s surplus is higher when the lender employs an opaque algorithm. This happens
because strategic borrowers favor transparency precisely when they are few and thus have a
smaller weight in aggregate surplus. Ultimately, the security of credit provision offered by
opacity outweighs the advantages of selective disclosure enabled by transparency, increasing
aggregate borrower surplus.

32Gimilar effects are at play when ¢ < 1 — 2b. See the proof of Proposition 2.5 for a formal treatment.
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2.7 Empirical Implications

The above analysis offers several testable implications, with some findings supported by
recent studies and others presenting opportunities for further research.

Recent papers show that information has distributional effects in credit markets (see,
e.g., Liberman et al. (2019), Dobbie et al. (2020), Nelson (2023), and Jansen et al. (2024)).
My paper suggests that this holds even when borrowers have control over information
sharing - regardless of the algorithm’s transparency regime - and data sharing may reduce
credit provision compared to a scenario where no information is shared.** While some
studies find that Open Banking enhances credit provision (see, e.g., Nam (2024)), others
observe that the policy creates both winners and losers, in line with my findings. For
instance, Doerr et al. (2023) show that the California Consumer Privacy Act — giving
borrowers more control over their data — led to increased data-sharing with FinTech
lenders, which in turn resulted in higher denial rates and greater dispersion in interest
rates, despite an overall reduction in the average interest rate. Babina et al. (2025) find
that borrowers their relationship banks denied credit did not see improved access to credit
after the implementation of the Commercial Credit Data Sharing in the UK, as the shared
data marked them as high credit risk and reduced their ability to establish new lending
relationships. Similarly, Rishabh (2024) find that payment data, central to Open Banking
initiatives, benefits most borrowers but disadvantages high credit risks.

In line with my differentiation between non-strategic and strategic agents, Lin (2022)
empirically separates two components of consumers’ privacy preferences: an intrinsic com-
ponent (an exogenous taste for privacy) and an instrumental component (an endogenous
economic loss from revealing private information). Critically, the study was conducted
in a controlled experimental setting, where “how the instrumental incentive depends on
a consumer’s type is straightforward and explicitly explained” to participants, akin to a
transparent regime in my model. The paper’s empirical findings are consistent with my
model. In particular, consumers self select into data sharing depending on the respective
magnitude of the two components and exhibit gaming type of behavior: high-type con-
sumers are more willing to share data, while low- types tend to withhold data, as intrinsic
motives attenuate the receiver’s equilibrium inference following no disclosure. The study
could be extended to an opaque regime to investigate whether the receiver’s equilibrium in-
ference is less averse compared to a transparent setting and whether senders adopt hedging
behaviors in response to opacity.

Some research has shown that intrinsic motives for privacy are particularly pronounced
in credit markets. Tang (2019) studies loan applications to a Chinese Fintech lender where
the disclosure of personal data is a pre-condition for loans, thus allowing her to isolate
borrowers’ intrinsic preferences for privacy.** The paper shows that stricter disclosure
requirements reduce loan application completion rates, suggesting that borrowers’ intrin-

33Note that in my model, by Assumption 2.1, the lender extends credit to the entire pool of borrowers
in the absence of information.

34The paper shows that the disclosure group is not statistically less risky than the no-disclosure group,
supporting the causal impact of intrinsic (rather than instrumental) motive for privacy on application
withdrawal.
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sic privacy concerns are strong enough to outweigh the potential benefits of obtaining a
loan.*> This finding aligns with my model’s assumption that privacy-concerned borrow-
ers consistently withhold information. It also suggests that unraveling forces may drive
such borrowers out of the market in a transparent regime. Whether the data support this
finding remains an open question for future empirical investigation.

My analysis provides fresh insights into earlier studies on borrowers’ data-sharing be-
havior. Notably, Nam (2024) examines borrowers’ voluntary data-sharing decisions with a
major German FinTech lender. The study takes place under a relatively opaque regime,
as the platform discloses that shared information (”behavioral data, web data, and expe-
rience data”) could potentially lead to credit denial or higher interest rates but offers little
explanation of the underlying decision logic. First, the study finds that the average rate of
data sharing was relatively low, at 8% across the entire sample period. Second, it finds no
evidence of lender’s equilibrium inference in response to data withholding, as an increase in
data sharing results in a negligible negative impact on loan approval for those who choose
not to disclose. While these findings are inconsistent with the standard unraveling logic
(e.g., Grossman (1981) and Milgrom (1981)), they align with the equilibrium proposed in
Proposition 2, where borrowers hedge against opacity by withholding information, and the
lender does not penalize the absence of disclosure.

Recent papers provide suggestive evidence for the primary mechanism in my model,
which is that firms leverage their transparency regime to maximize data collection (Propo-
sition 3). First, in light of my theory, firms with greater bargaining power should be more
transparent to mitigate borrowers’ hedging motives. Relatedly, Ramadorai et al. (2021)
show that larger firms are more likely to have a privacy policy, to display it visibly, and
to write longer and more sophisticated policies (conditional on having one). These firms
also engage in more extensive data extraction, utilizing a greater number of cookies to
track consumer behavior. These findings support the notion that transparency is a strate-
gic tool to reassure users and enhance data extraction. Second, my model suggests that
firms facing more privacy-concerned borrowers should be more opaque. Relatedly, Bian
et al. (2021) show that mandated disclosure of privacy labels in the AppStore negatively
impacted firms’ profits, with this effect being more pronounced in countries with stronger
privacy concerns. In other words, the lack of transparency in firm data collection practices
led consumers to share excessive data. This suggests that firms have stronger incentives
to be opaque in markets with stronger privacy concerns. Although these findings cen-
ter on input data transparency rather than model transparency, they indicate that firms
strategically optimize transparency to maximize data collection.

My model could inform further empirical investigation on this mechanism. According to
it, financial institutions with greater bargaining power should reveal finer details about the
inner workings of their algorithm — not only about the input data they use — to mitigate
mistrust and foster information sharing. Conversely, financial institutions facing borrowers
with stronger privacy concerns should reveal less about their algorithm’s operating logic

35 As the author acknowledges, all Chinese platforms commonly ask for non-standard personal informa-
tion from borrowers, as there is no official credit score system and there are limited resources available to
verify borrower credentials and documents. Hence, Chinese borrowers have limited ability to substitute
for other, less privacy-intrusive platforms.
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to prevent gaming behavior. In addition, my theory offers several testable implications on
the link between algorithmic transparency, data sharing, and credit market outcomes that
have not yet been explored by empirical literature. In Appendix A, I present closed-form
computations of key observables in my model (such as the amount of data shared, levels
of credit provision, and interest rates) to guide hypothesis testing.

The above discussion raises the question of how to measure primitive variables in my
model, particularly an algorithm’s transparency regime. Computer scientists have devel-
oped quantitative indicators of Al transparency based on publicly available information.
For example, the Foundation Model Transparency Index (see Bommasani et al. (2023))
codifies Al transparency by incorporating various aspects, including data sources, model
development, and decision-making processes, and reveals significant variation across firms.
A similar index could be tailored specifically for credit scoring models. More qualitative
measures of transparency could include explainability scores, which assess how well the
algorithm’s decisions can be understood, combined with disclosure levels, that is, the ex-
tent to which information about the algorithm — including data used, methodologies, and
underlying logic — is made publicly available on a lender’s website. The staggered imple-
mentation of the AI Act (see Section 2.8) could introduce an additional source of variation.
The second variable of interest is borrowers’ privacy concerns, for which the literature pro-
vides various proxies. Research has demonstrated that consumers’ privacy concerns in
online environments correlate with several factors, including cultural influences (such as
trust in institutions), demographic variables (like age, education level, and income), trust
in the firm (encompassing reputation, credibility, and brand recognition), and the nature
of the data shared (including breadth, depth, and sensitivity).”® In the credit market,
privacy concerns vary across countries, types of data, demographic and income groups (see
Tang (2019), Babina et al. (2025), Doerr et al. (2023) and Nam (2024)). Lastly, a lender’s
bargaining power can be effectively measured using traditional indicators of market power
and concentration, such as market share or the Herfindahl-Hirschman Index.

2.8 Policy Discussion

The EU Artificial Intelligence (AI) Act leads global efforts to regulate the development,
deployment, and use of artificial intelligence technologies. The regulation entered into force
on August 1 2024 and shall apply from August 2°¢ 2026 (see Article 113). According to
the Act, credit scoring and credit underwriting models are classified as high-risk Al systems
(see Article 6(2) and Annex III, 5(b)). As such, they are subject to various transparency
requirements aimed at ensuring accountability and clarity in their operations. In addition
to mandating transparency towards deployers and the Commission,*” the Act imposes both

36See Acquisti et al. (2016) for a general discussion and Morey et al. (2015), or Armantier et al. (2021),
or Prince and Wallsten (2022) for surveys.

37Credit scoring models should be explainable, that is, they “should be designed and developed in
such a way as to ensure that their operation is sufficiently transparent to enable deployers to interpret
a system’s output and use it appropriately” (see Article 13). Moreover, models should be auditable, as
the Commission can require firms to provide technical documentation, as well as a general description of
the AI model - including the architecture, the number of parameters, the modality and format of inputs
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ex-post (Article 86) and ex-ante (Article 71) disclosure requirements towards the general
public. Article 71 specifies that the Commission will collect information from developers
to set up and maintain a database containing, among other things, a “description of the
information used by the system (data, inputs) and its operating logic” (see Annex VIII,
Section A(6)). This information should “accessible and publicly available in a user-friendly
manner”.

My model suggests that the transparency requirements of the AI Act may impair the
credit market’s allocative efficiency in some cases, enabling gaming behavior and dispro-
portionately harming privacy-concerned borrowers, somehow at odds with the regulator’s
stated commitment to privacy in frameworks like the GDPR. This finding enriches the cur-
rent policy debate surrounding the AI Act by offering some high-level insights. First, it sug-
gests that the allocative efficiency of the impacted markets should not be overlooked. Cur-
rently, the regulation’s core guiding principles — human oversight, accountability, safety,
fairness, and non-discrimination — focus primarily on ethical and safety considerations,
ignoring implications for market efficiency. Second, an industry-based approach should
complement the existing risk-based, technology-neutral framework. In the finance indus-
try, lenders’ preferences for financial inclusion often conflict with social efficiency, leading
to inefficient transparency choices by financial institutions. The gap between social and
private goals may be narrower in other industries, so an industry-based approach could help
regulators better allocate limited resources for more effective regulation. Third, regulations
on algorithmic transparency should be implemented in tandem with data privacy regula-
tions, such as the GDPR. Algorithmic transparency directly influences individuals’ privacy
choices, making it essential to coordinate both areas to ensure comprehensive protection
for users.

My model also offers concrete recommendations for regulators, helping them establish
more explicit guidance on compliance expectations within the financial services industry.

e Selective Transparency Algorithmic transparency should only be mandated when
a lender’s market power is significant enough to prompt borrowers’ hedging behavior
against opacity (e.g., for BigTechs) and for information for which borrowers have
minimal privacy concerns (e.g., basic demographic information). When a lender’s
market power is limited or privacy concerns are heightened, preserving opacity en-
hances market efficiency.

e Operating Logic Regulators should clarify what is meant by an algorithm’s op-
erating logic in Article 71. My model suggests that disclosing the direction in which
data influences predictions is an effective and practical approach to transparency.
It can be shown that revealing only the sign of A to borrowers results in the same
credit allocation as disclosing its exact value. Intuitively, knowing whether a vari-
able’s higher values are seen as good or bad news is sufficient to create a stigma

and outputs - and a detailed description of the elements of the model - including the design specifications,
training process, training methodologies, training techniques, design choices, assumptions made, what
the model is designed to optimize for, training, testing and validation datasets, their scope and main
characteristics (see Article 91, Article 53, and Annex XI).
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around non-disclosure, triggering unraveling forces. Providing more granular infor-
mation about A is sometimes impractical, especially with complex machine learning
models, while direction-based disclosure is feasible thanks to recent explainable Al
techniques. This laxer requirement would enable financial institutions to use high-
performing algorithms without compromising their screening ability. On the other
hand, direction-based disclosure is essential for achieving transparency. Leaving un-
certainty about whether data signals good or bad news prevents unraveling forces
and activates hedging behavior, ultimately preserving opacity.

Access to the Database Regulators should require financial institutions to provide
borrowers direct access to the database mentioned in Article 71 during loan appli-
cations or, ideally, have lenders disclose the necessary information on their websites.
In light of my model, transparency can be more effectively achieved when borrowers
understand the algorithm’s operating logic at the time of the data-sharing decision
and when lenders are aware that borrowers possess this information. Establishing the
database without ensuring borrowers are informed about it could lead to situations
where only some borrowers are aware of its existence or where only a few are willing
to bear the costs to access the information. This would potentially create unequal
access to the database, leading some borrowers to operate under transparency while
others under opacity and complicating the lender’s equilibrium inference.

Price for Data In addition to promoting transparency, regulators should encourage
financial institutions to implement measures for screening borrowers’ privacy types.
This perspective aligns with the ongoing debate about introducing a price for per-
sonal data (see, e.g., Acquisti et al. (2016)). In my model, within the transparency
regime, identifying whether a borrower is privacy-concerned or strategic would enable
the lender to extend credit to creditworthy privacy-concerned borrowers who might
otherwise be excluded from the market due to negative externalities (see Corollary
1). On the other hand, unraveling forces would induce optimal, but sometimes in-
efficient, credit rationing of strategic users. Hence, screening always enhances the
lenders’ profits (net of agency rents) and, when the first effect dominates, also im-
proves social welfare. Some financial institutions are already taking steps in this
direction. For instance, Auxmoney, a prominent German FinTech lender, features
what appears to be a menu of contractual terms on its website designed to encourage
disclosure from borrowers who are less concerned about privacy. The lender show-
cases that sharing personal data with the platform may result in an average discount
of €390 on a €5.000 loan, even though interest rates could increase or applications
might still be declined (see Nam (2024)).

2.9 Conclusion

This paper studies whether credit risk algorithms should be transparent or opaque, consid-
ering their impact on borrowers’ data-sharing decisions. Transparency exposes the lender’s
model to gaming through strategic withholding of unfavorable information. Opacity mit-
igates gaming but leads borrowers to withhold information as a hedge against the unpre-
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dictability of the black box. The lender’s transparency choices are aimed at data extraction
and are thus influenced by the lender’s bargaining power, which affects borrowers’ hedging
motives, as well as borrowers’ privacy concerns that enhance their ability to game the
system. These choices often lead to inefficiencies due to the lender’s excessive inclination
toward credit rationing. Surprisingly, algorithmic opacity is often socially efficient because
it removes the stigma associated with non-disclosure, thereby promoting credit access for
privacy-concerned, creditworthy borrowers.

Several questions remain open for further research. First, the optimal transparency
regime may lie between full transparency and full opacity. Second, the analysis may be
extended to data used in the monitoring process — rather than screening — or to more
complex financial contracts. Third, competition may influence the lender’s strategic choices
of opacity. Lastly, algorithmic opacity could be examined in other financial contexts, such
as algorithmic trading and portfolio management, as well as in other markets, including
online ranking, targeted marketing, health care, demand forecasting, and fraud detection.
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Market Information in Banking Supervision:
the Role of Stress Test Design
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Market Information in Banking Supervision:
the Role of Stress Test Design

Haina Ding, Alexander Guembel, Alessio Ozanne

Abstract

The Basel committee views market discipline as complementing banking super-
vision. This paper studies how supervisors should design stress tests when markets
discipline banks via price signals their traded securities provide to bank creditors. We
show that the optimal stress test is coarse and lenient. Speculators have incentives
to identify bad banks that erroneously passed the test, which makes markets useful
at reducing the type-2, but not the type-1, error of a stress test. Our results hold
even when the supervisor can intervene directly based on private information. In the
limit of costless supervisory interventions, the optimal stress test is uninformative.

Keywords: Feedback, Market Discipline, Information Design.
JEL Classification: G14, G28.

3.1 Introduction

The Basel Committee on Banking Supervision elevates market discipline to one of its three
pillars of the prudential regulation of banks.! In this lies an acknowledgement that mar-
kets may achieve things that regulators cannot. Market discipline is often thought of as
having two broad roles (see, e.g., Kwan (2002)): a direct role by restricting undeserving
banks’ ability to access capital, and an indirect, informational role.? In both cases, super-
visors can presumably not easily replicate what markets achieve. A supervisor may find
it costly to impose directly the penalties corresponding to the cost of modified funding
conditions, and markets can provide information that supervisors cannot.® Market prices

!The other two pillars are, loosely speaking, capital requirements (see Flannery (2014) and Ngam-
bou Djatche (2022) for overviews) and supervisory monitoring (see, among others, Colliard (2019), and
Carletti et al. (2021)).

2The distinction between direct and indirect market discipline is related to the monitoring and influence
functions of markets, identified by Bliss and Flannery (2002). Market discipline can affect banks in a variety
of other ways. See Flannery and Bliss (2019) for a detailed discussion and overview of research on market
discipline.

3Acharya et al. (2014) and Haldane (2011) provide evidence that simple market capitalization based
measures of bank health were better than regulatory measures at identifying banks that eventually ex-
perienced distress. Berger et al. (2000) show that both stock and bond prices are more accurate than
supervisory assessments. As Flannery and Bliss (2019) argue: “We believe that market discipline can,
potentially, complement and support official oversight of risky financial institutions, [...] by providing
market signals that supervisors can use to motivate their own actions...”
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are free and forward-looking, generated by speculators with monetary incentives that are
hard to replicate by supervisors facing up to increasingly complex banks (see Goldstein
(2023), and the citations therein, e.g., Stern (2001)). Unfortunately, the Basel Framework
provides little help in identifying how supervision can be designed to leverage whatever
it is that markets are good at. Pillar 3 largely reduces to a recommendation to improve
disclosure, so as to facilitate direct market discipline. By this logic, more disclosure of su-
pervisory information, including the disclosure of stress test results, fosters direct market
discipline.* This leaves open the question of how the design and disclosure of stress test
results affects jointly the direct and indirect role of market discipline. This paper explores
the informational spillovers from supervisory information production, notably in the form
of stress tests, to market discipline in its direct and indirect roles.

We provide a model in which banks can be of two, privately known types. Both types
try to raise funds to invest in a risky loan portfolio, but it is only efficient for a high-type
bank to do so. The supervisor is concerned not to allow low-type banks to engage in
wasteful risk taking.” A supervisor can generate noisy information about the bank type by
studying its resilience to a stress test. The supervisor commits to a set of stress scenarios to
which the bank is subjected and then publicly discloses the test results. This is followed by
direct and indirect market discipline. Indirect market discipline, operating via informative
price signals, is arguably most effectively exercised by traded claims, such as equity due
to the ready availability of data and the liquidity of the underlying markets.® We model
this by having a speculator decide how much costly information to produce, after having
observed the stress test result. He then trades in the bank’s shares which generates noisy
price signals. Direct market discipline is mostly exercised by capital providers, such as
short-term creditors, who need to renew their funding commitment frequently (see Kwan
(2002)). We assume that the supervisor finds it too costly to intervene directly in funding
or shutting down banks, an assumption we relax in an extension. She therefore relies
on capital providers, such as uninsured depositors, to deny funding to low-type banks
and provide funding to high type ones. Capital providers decide on the funding terms
based on the information contained in the stress test result and the subsequent stock price
signals. To summarize, we allow markets to complement banking supervision in two ways:
indirectly, by producing information about banks and directly, by withdrawing funding
from potentially undeserving banks, conditional on the available information.

We first study a setting in which the supervisor’s cost of intervention is high, so she
relies exclusively on market discipline to avoid low-type banks from getting access to funds
that would then be squandered. We show that the optimal stress test design is a coarse pass

4For example, Bernanke (2013) argues “[...] the disclosure of stress test results and assessments pro-
vides valuable information to market participants and the public [...] and promotes market discipline.”
As Flannery and Bliss (2019), however, point out “The appropriate relationship between market and
regulatory discipline has never been fully developed - at least not in official documents.”

5This way of modelling a low-type bank is consistent with regulators’ fear that some banks will engage
in zombie lending if they can raise funds. See Acharya et al. (2019) for empirical evidence on the prevalence
of zombie lending.

5The literature has also highlighted the potential role of sub-ordinated bonds (for an excellent discussion
of this point, see Flannery and Bliss (2019). Our model is sufficiently stylized to make this distinction
moot.
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/ fail test that exhibits leniency. We demonstrate that stock markets are not equally good
at identifying type-1 and type-2 errors of the stress test. Markets are better at identifying
bad banks that were erroneously classified as good by the stress test (type-2 error), but
they are less useful at identifying good banks that the stress test has mistakenly classified
as bad (type-1 error). This asymmetric reaction is the result of the speculator’s financial
incentives to acquire and trade on information, depending on whether a bank did well or
poorly in the stress test. Banks that fail a test are less likely to obtain funding, which
reduces the scale of their operations, making information production less valuable. The
opposite is true for banks that do well in the stress test: they are likely to get funding and
have relatively larger operations, increasing the speculator’s potential trading profits. A
lenient stress test design makes it more likely that a bank passes the test. This has the
advantage of improving the quality of the price signal upon which direct market discipline
is based. However, distorting the test towards leniency also has a cost. Since the price
signal is noisy, the positive stress test outcome will sometimes allow undeserving banks to
obtain funding. Due to this trade-off, the optimal design features leniency, but not to the
point of rendering the test uninformative. Other papers, discussed in more detail below,
have shown that supervisors may employ lenient stress tests, either because they suffer
from ex post forbearance, or are driven by a concern about inefficient bank runs. Our set-
up features neither of these elements and is instead based on the interaction between the
supervisor’s direct information supply and the information environment in which market
discipline operates.

We also show that a pass/fail structure of the test is optimal, although the supervisor
could have chosen an arbitrarily granular test design. First, the optimal test, by virtue of
being lenient, must be somewhat coarse. That is, for a pass test to be credible, banks with
low(ish) resilience that would correspond to a marginal fail need to be lumped into the same
test outcome as significantly more resilient banks. Second, a more granular information
design reduces the average amount of information produced. Suppose the stress test had,
in addition to a fail outcome, two pass levels, a moderate and a strong pass. Following a
moderate pass, uninsured depositors would demand a fairly high interest rate. This dilutes
equity, reduces trading profits and thereby dulls the speculator’s information production
incentives. It is therefore better to enlarge the moderate pass to include more resilient
banks, which reduces the expected interest rate that banks in that category have to pay,
thereby improving information production incentives.

Some papers have argued that stress tests should be lenient or kept confidential so
as to prevent runs on banks (see Williams (2017) and Bouvard et al. (2015)).” At the
same time, recent crisis episodes have shown that supervisors are also worried that sharp
declines in a bank’s stock price may itself trigger a run. Regulators have therefore at times
prohibited short sales of bank stocks during crisis periods, somewhat in contradiction to
their stated commitment to market discipline.® The question of how to design a stress test

"In these papers the supervisor’s objective is for all banks to be funded, i.e., there is no role for market
discipline.

8The Securities and Exchange Commission (SEC) imposed restrictions on short sales of bank stocks
during the 2007-09 financial crisis, as did several European regulators during the 2011 sovereign debt
crisis. Beber and Pagano (2013) show that short-sales bans slowed down price discovery in these markets.
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remains open, when the supervisor must, on the one hand, worry about potential crises in
which fundamentally sound banks risk not being able to roll over their debt, and, on the
other hand, wish to allow market discipline to operate. We extend our model to capture
the possibility of a bank run or debt overhang. We do so by making creditors potentially
deny funding to banks that the supervisor would like to see funded. In other words, for
banks to obtain funding, creditors must have more positive beliefs about its type than the
belief threshold the supervisor would apply. We show that, in a benchmark where there is
no scope for information production by the speculator, debt overhang makes the optimal
stress test more lenient.

Compared to this benchmark, the optimal stress test can be more lenient or more
conservative when endogenous speculator information production is introduced. The ar-
gument for more leniency remains the same as before: it increases the likelihood of a pass
with a resulting positive effect on information production. However, there is now also a
counter-veiling effect. Since the benchmark pass grade is already quite lenient, and funds
are provided by the market, the funding cost of a bank that passes the test is quite high.
This dilutes equity holders and reduces information production, as mentioned above. In
order to encourage information production, the supervisor may optimally apply a test that
is more conservative than the benchmark to ensure that banks’ funding costs are moderate
with a correspondingly positive impact on market information and discipline. We show
that the supervisor optimally sets a test more conservative than the benchmark when the
gulf between social preferences and creditor preferences is particularly wide.”

We also extend our model to allow for direct intervention by the supervisor, when the
latter has noisy private information beyond the stress test result. A direct intervention can
take two forms. Either the supervisor shuts down a bank, even though markets would be
willing to fund it, or the supervisor provides public funding to a bank that is denied access
to funding from private markets. We assume that intervention is costly so that, for a high
enough cost, our extension nests the baseline model in which the supervisor never intervenes
directly. When the cost of intervention is zero, direct market discipline loses its purpose and
the optimal stress test degenerates to become completely uninformative. However, indirect
market discipline remains useful: The supervisor, whose private information is noisy, can
still learn from price signals. Since the supervisor’s intervention decision is no longer
directly related to the stress test outcome, passing the test ceases to be a pre-condition
for stimulating information production by a speculator. In this case, the supervisor wants
to make as little information available as possible, since any public information merely
crowds out the speculator’s private information. When the banking system is in good
shape, such that creditors are willing to roll over debt in the absence of any information,
the optimal stress test is informative and lenient for any strictly positive intervention cost,
no matter how small. Intuitively, the supervisor wishes to enlist market discipline to save

A ban on short sales can be justified by their potentially manipulative nature, as shown by Goldstein
and Guembel (2008), Brunnermeier and Oehmke (2014) or Gao et al. (2024). We do not analyse this
possibility here. See also Acharya et al. (2011) for a detailed discussion of how rollover risks can lead to
market breakdown.

9Tt is conceivable that the supervisor would like to apply a harsher funding rule than credtiors, for

example if there are default externalities. We analyse this case in Section 3.7.
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on her intervention cost. Since price signals are noisy, having some information from the
stress test allows for more effective market discipline. When the banking system is in
worse shape, such that creditors’ default decision would be not to roll over debt in the
absence of any information, a completely uninformative stress test is optimal for small,
but strictly positive intervention costs and becomes lenient for higher intervention costs.
The supervisor is more reluctant to design a highly lenient stress test, because under such
a test, and given the poor health of the banking system, a pass grade is not sufficient for a
bank to roll over its debt. To make it useful, the supervisor would have to raise the stress
test’s pass threshold to a high level. A pass is then so informative that it leaves little scope
for an informational advantage to the speculator. At the same time, an uninformative
test induces speculator information production at low levels of intervention costs, since the
supervisor will often intervene and fund the bank. Hence, when the intervention cost is low,
it is better to induce speculator information production with a completely uninformative
test, while an informative and lenient design becomes optimal when the intervention cost
increases.

The remainder of the paper proceeds as follows. We provide a review of the literature
in Section 3.2. Section 3.3 provides the description of the model, which is solved in Section
3.4 for the benchmark case without informational feedback from the stock market. Section
3.5 presents the main results on stress test design with market feedback. We extend the
model to allow for debt overhang and default externalities, respectively, in Section 3.6
and Section 3.7, and introduce supervisor private information in Section 3.8. Section 3.9
concludes. All the proofs are relegated to Appendix B

3.2 Related Literature

There has been considerable interest in recent years in the question how information con-
veyed by prices in secondary financial markets feeds back into real decisions (see Bond
et al. (2012a) and Goldstein (2023) for surveys). One application of that literature points
to the importance of stock price information in guiding intervention decisions of regula-
tors, for example, a supervisor who needs to decide whether to intervene in a troubled
bank (Bond et al. (2010), and Bond and Goldstein (2015)). The papers closest to ours are
Bond and Goldstein (2015) and Siemroth (2019) who study the interaction of a regulator’s
information (including a decision to disclose such information) with information revealed
by share prices, when that information is in turn used by the regulator. They show that
more public information may crowd out private information as it reduces the informational
advantage of speculators.'’ This effect is balanced by a crowding-in effect, as public infor-
mation reduces the riskiness of speculators’ trades, inducing them to take larger positions.
Also related is Goldstein and Yang (2019) who study the interaction between public dis-
closure and market-based information in a context where the decision maker learns from
both the public signal and market prices (unlike in Bond and Goldstein (2015) where the
regulator has information regardless of whether or not it is made public). Goldstein and

0Recent empirical evidence by Heitz and Wheeler (2023) supports the notion that the information
contained in stress tests does indeed crowd out information production by financial markets.
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Yang (2019) focus on two dimensions of uncertainty and explore how disclosure affects
the weight that traders put on one of the two private signals they possess. They show
that when information is disclosed about the dimension of uncertainty that is relevant for
the real decision, then this will reduce the weight that traders put on that dimension of
their private signals. By crowding out information aggregation on the “useful” dimension,
more public disclosure may reduce the overall amount of information relevant to the real
decision.

Our focus is different in several respects. First, we focus on endogenous information
production and not on the aggregation of an exogenous information endowment by spec-
ulators. Second, we model feedback from prices via a bank’s access to funding. This is
important because the bank’s expected funding cost affects incentives for information pro-
duction. Finally, we study information design in a way that allows us to identify leniency
and coarseness as decision variables. The papers by Bond and Goldstein (2015), Gold-
stein and Yang (2019) and Siemroth (2019), share their focus on the intensity with which
speculators trade on their private information. They, like many others, use variants of the
Grossman-Stiglitz framework that assume normal distributions and thereby preserve the
quasi-linearity of trades, which is a key property for tractability. That framework, however,
has a very specific property: Residual uncertainty from the speculator’s perspective is inde-
pendent of the realization of the public signal. In this context, information design reduces
to choosing the standard deviation of signal noise. This property makes the framework
arguably less well suited to studying trade in non-linear claims such as highly leveraged
bank equity. Quite plausibly, residual uncertainty is smaller for lower signal realizations,
i.e., when the expected equity payoff is nearer the default region. This induces very differ-
ent incentives to acquire information, depending on which part of the payoff distribution a
speculator expects to navigate.'! In our paper, the information production decision there-
fore depends sensitively on the realization of the public signal, with less information being
produced following a negative public signal than following a positive one.

The effect that trading profits differ, depending on whether the outlook is positive or
negative, is related to Dow et al. (2017) who show that speculators’ information production
may break down when firms’ investment prospects are unfavorable. Such firms are unlikely
to invest, which therefore undermines the incentive for speculators to produce information
about those prospects. Deng and Shapiro (2024) identify feedback via consumer learning
as a further channel that can affect the information sensitivity of a firm’s shares, including
a degenerate case where firm profits become independent of the underlying state of the
world. In this paper we focus on the ex ante information design problem when informa-
tion production in financial markets depends on the trader’s belief about fundamentals.
Moreover, the information environment is designed by a planner who cares about ez ante
bank value, while market information is produced by stock traders. Since equity claims
are protected by limited liability and diluted by the bank’s fund-raising, this introduces a
wedge between the payoffs that are relevant for the planner and the information producer.
As such, stock traders have little incentive to produce information about banks with re-
silience levels close to and below the threshold where they can obtain funding. Those are,

HThe cost of moving away from the normal, quasi-linear framework, is that we cannot study the
speculator’s trading intensity, which is the main focus of the above papers.
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however, precisely the banks that the planner would most like to learn about. While we
are by no means the first to point out that private incentives for information production
differ from social value (see Paul (1992), or Lenkey and Song (2017), for a more recent
example), we identify a new wedge between the two.

Davis and Gondhi (2024) analyse risk shifting with informational feedback from the
stock market. Their focus is different from ours in that they explore how an agency conflict
between debt and equity holders interacts with the endogenous information available in the
stock market. They show that the relationship depends crucially on whether investment
distortions are of a risk shifting or a debt-overhang type. As risk shifting in their model
increases speculators’ incentives to produce information, the feedback mechanism mitigates
the inefficiency caused by the agency problem.

There are a number of papers that have studied whether stress test results should be
disclosed, e.g., Bouvard et al. (2015), and Leitner and Williams (2023) (see also Goldstein
and Sapra (2014) and Goldstein and Yang (2017) for a more general discussion and review).
Disclosure matters, as it may affect market discipline, the functioning of the inter-bank
market, financial stability, bank lending behaviour and risk sharing. Our model can be re-
interpreted as a disclosure choice: Since the supervisor relies on markets to discipline banks,
all that matters is publicly available information. Our results thus suggest that partial
disclosure dominates full disclosure of stress test results. In an extension we allow the
supervisor to act, at a cost, on private information. This explicitly introduces a meaningful
difference between what the supervisor knows (a bank’s precise resilience level) and what
she discloses (a stress test result which corresponds to a region in which the resilience level
lies).

Some papers have modelled the disclosure choice as a Bayesian persuasion problem, that
is, a supervisor chooses an information design to which she commits. One common theme
among those papers is a supervisor’s concern to design a stress test in a way to prevent
bank runs (see Faria-e Castro et al. (2017), or Williams (2017)). In line with Kamenica and
Gentzkow (2011), this pushes the optimal experiment to be of a pass/fail nature, featuring
a maximum of pass grades consistent with avoiding a run. The optimal stress test is
lenient, in the sense that it admits type-2 errors (some low-type banks passing the test),
but no type-1 errors (no high-type banks failing the test). Some papers extend the basic
Bayesian-persuasion-cum-global-games approach, while remaining in relatively abstract
settings that are not specifically geared towards modelling bank stress tests. Quigley and
Walther (2023) study how a publicly disclosed stress test affects a bank’s incentives to
privately disclose verifiable information at a cost. They show that private disclosure may
lead to unravelling, which the stress test can preempt by applying a richer message space
than a simple pass/fail. Inostroza and Pavan (2023) look into robust information design in
a global games framework with privately informed agents. The optimal policy coordinates
all market participants on the same course of action, but without fully revealing the state.
Under some conditions, the optimal policy is a pass/fail stress test.

Other papers add flesh to the Bayesian persuasion approach by modelling the details
of financial frictions faced by banks. Faria-e Castro et al. (2017) show that the opacity
implied by the test can generate an adverse selection cost at the fundraising stage. They
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investigate the optimal test design as a function of a country’s fiscal capacity, when the
regulator can trade off more transparency against the fiscal costs of guarantees that prevent
bank runs. Goldstein and Leitner (2018) show that a more informative stress test may
destroy insurance opportunities among banks. This potentially renders no disclosure of
stress test results optimal. Inostroza (2023) studies stress testing with multiple audiences,
such as short-term creditors and shareholders. He shows that the optimal policy is opaque
when the bank has high-quality assets, and transparent when the bank has poor-quality
assets. Full transparency is optimal because the complementarity in incentives to provide
funds between the two types of capital providers generates a convexity in bank value
as a function of the underlying fundamentals. Orlov et al. (2023) show the optimality of
pass/fail tests failing all weak and some strong banks in order to limit the stigma of failure.
The optimal test is not fully informative, because banks are subject to a convex cost of
distress, which renders bank value concave in its initial wealth. Fuchs et al. (2024) study
the interaction between ex ante rules and ex post disclosure. They show that regulation
helps ex ante incentive provision, while ex post disclosure serves to provide insurance.
Overall, the conclusions from these papers are quite nuanced as optimal stress test design
depends sensitively on the precise financing frictions faced by banks.

Although we share with the above papers the feature that a supervisor chooses an
information design and then commits to it, our focus is on optimal learning. As such, we
assume that the supervisor is limited to noisy experiments, as in Parlatore and Philippon
(2022). The choice of scenario adversity then affects the trade-off between type-1 and 2
errors of the experiment. A more adverse scenario increases the probability of a type-1 error
(mistakenly classifying a good bank as bad) and reduces that of a type-2 error (mistakenly
classifying a bad bank as good).

Shapiro and Zeng (2024) study the reputational implications of stress test design for
a supervisor. A supervisor may design either a lenient or a tough stress test, depending
on whether she wishes to build a reputation for being soft or tough. This approach is
closer in spirit to Bouvard et al. (2015) and Parlasca (2024) where, in contrast to Bayesian
persuasion, the supervisor chooses information revelation strategically, after having become
privately informed herself.

Our paper is also related to the literature on banking regulation which regards a moral
hazard problem at the bank level as a central friction to address by regulation, for example,
Bhattacharya (1982), Rochet (1992), Hellmann et al. (2000a), Gorton and Huang (2004),
Morrison and White (2005), Calzolari and Loranth (2011), Calzolari et al. (2019) or Fecht
et al. (2022). In Carletti et al. (2021) banks take too much risk in a laissez-faire equilibrium
and supervision is designed to reduce their risk exposure. The supervisor monitors and
learns about the amount of a bank’s capital (and its portfolio) and can then intervene so as
to reduce risk exposure. When an intervention occurs, shareholders are expropriated. Our
model is similar in spirit, except that the supervisor finds it costly to intervene directly
and therefore wishes to enlist market discipline. High leverage associated with a poorly
capitalized bank could also lead to debt overhang, a problem addressed by Philippon and
Schnabl (2013) who analyze the efficient design of a recapitalization when the regulator
does not know the bank’s type. We extend our model to analyse the possibility of debt
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overhang. Our central point on designing the supervisor’s information and its interaction
with market-based information and discipline is new to this literature.

Also somewhat related are models on the design of credit rating agencies’ evaluation
scheme. Goldstein and Huang (2020) predict that CRAs inflate ratings in a model where
creditors’ heterogeneous beliefs affect credit market conditions, which in turn generates a
feedback loop from the CRA to the firm’s actual investment decisions.'?> Apart from the
difference in focus, Goldstein and Huang (2020) have in mind a CRA without commitment
power over its rating announcements, so ratings are subject to ex-post opportunism by the
CRA. Moreover, in their paper the issue of information production by speculators or other
market participants does not arise, as creditors have an exogenous information endowment.
Piccolo and Shapiro (2022) look at a CRA who is subject to a moral hazard problem in
information production. Informative stock prices serve to mitigate the agency problem.
Higher ratings precision reduces information production.'?

3.3 The Model

We begin with a brief overview of the model. There are five dates t = 0, ..., 4. At the initial
date t = 0, a banking supervisor designs a stress test. The outcome of the stress test is
publicly observable at date t = 1. Afterwards, a speculator decides how much effort to
expend on information acquisition. At date ¢ = 2 the speculator can trade in the bank’s
shares and prices are publicly observed. Then, at t = 3, providers of capital, such as
uninsured depositors, choose whether and at what terms to roll over credit to the bank. If
the bank can roll over the credit, it invests in a risky loan portfolio. Payoffs are realized
at the final date ¢ = 4.

We now describe the full model. There is a state of the world w, which can take the
values [ and h with equal probability. The state w realizes at ¢ = 0, is unobservable and
determines whether the bank is worth funding (w = h) or not (w = ). We can think
of the model as applying to a single bank, or to many ex-ante identical banks. In the
latter case, w should be interpreted as specific to banks, i.e., we do not model learning
about an aggregate shock from conducting stress tests across many banks (see Parlatore
and Philippon (2022), or Parlasca (2024), for learning about aggregate shocks). Although
the bank’s true type w is not directly observed, there is a learnable characteristic that
is correlated with the bank’s type w, which we call the bank’s resilience s € [0,1]. For
analytical tractability, we assume

f(slw=h)=2s,
[(slo = 1) = 2(1 = s).
12Terovitis (2020) models a similar feedback loop from credit rating to project financing where managers
have private information about the project quality.
BNote that private information in the loan market may also be transmitted through interest rates,
which act to coordinate banks’ actions in supplying credit to the real economy (see Shen (2021)).

(3.1)
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with corresponding cumulative distributions F,(s) = F(s|w). The supervisor designs a
stress test at ¢ = 0, which reveals information about the bank’s resilience s.'* Both the
test design and its outcome are publicly observed. A stress test is formally defined as
follows.

Definition 3.1 (Stress Test and Outcome). A stress test is a partition S = {sg, S1,...,Sn}
of the stress resilience space [0,1] with 0 = s9 < $1 < --- < 8, = 1. An outcome of the
stress test S is a public signal m; for s € [s;_1,8;), i € {1,...,n}.

Suppose, for example, that the supervisor chooses a partition {0, s1, s9, 1} where 0 <
1 < S < 1. This stress test can be interpreted as consisting of two scenarios s; and
s9. The supervisor can first apply the more benign stress scenario s; which will result in
either a pass or a fail.'"> If the bank fails scenario s; the supervisor knows that the bank’s
underlying resilience is quite weak (s < sq). If the bank passes scenario s; the supervisor
can apply the more adverse scenario s; > s;. If the bank passes scenario s; but fails
scenario sg the supervisor knows that the bank’s resilience s is in the interval [sq, s9). If,
however, the bank passes both scenarios, the supervisor knows that resilience is s > ss.
Note that from (3.1) it follows that all banks, even w = [ types, pass the most lenient stress
scenario 0 and all banks, including the w = h types, fail the most adverse scenario, given
by 1.

Note that our definition of stress test S is quite flexible. In particular, since the super-
visor can run as many scenarios as she wishes at no cost, we allow for complete learning
of s, i.e. fully granular grades (n — o0). Alternatively, the stress test may provide no
information about s (n = 1), or learning s noisily (n finite).' Nevertheless, we impose
two notable restrictions. First, we require the stress test to be monotone, i.e. two disjoint
intervals cannot produce the same test outcome. This assumption is motivated by the fact
that the stress test consists of a sequential application of stress scenarios. This way of
learning is plausible and rules out that an observer may believe that resilience can be high
or low, but not in the middle. Second, in some of the Bayesian persuasion literature, the
supervisor can condition the public signal m; directly on the state of the world w, such
that the full revelation of the true state is possible. We rule this out by assuming that a
bank’s resilience s is itself only a noisy signal of w. This is intended to capture real world
limitations to how informative stress tests can be.'”

Gince the supervisor does not intervene directly, it does not matter whether she observes s or learns
about s from the stress test. In Section 3.8 we allow the supervisor to intervene at a cost and observe s
independently of the stress test design.

15The pass/fail nature of the response to an individual scenario is only for illustrative purposes. Since
a stress test is an arbitrarily granular partition, the overall stress test can be much more nuanced than a
simple pass/fail.

16G¢trictly speaking, with n being an integer, the stress test cannot fully reveal s which is a real num-
ber. However, since the limiting case is not materially affected by this distinction, we prefer to avoid
complicating the notation in a way that would be required to formally take on board this point.

17As Leitner and Yilmaz (2019) argue, more intense monitoring by the supervisor may lead to a reduc-
tion in the informativeness of the bank’s internal model. This puts a limit on how much a supervisor can
learn, even if the supervisor’s monitoring technology could be arbitrarily precise. Parlatore and Philippon
(2022) study the design of stress test scenarios as an optimal learning problem when a supervisor receives
noisy signals from multiple banks in response to the application of a stress scenario.
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Using (3.1) it is easy to show that a stress test S induces a distribution of posterior

beliefs

v; = Pr(m;) = s; — si_1,

Si—1+ 8 (3.2)
5

satisfying Bayes-plausibility, i.e. Y1 vjp; = Pr(w = h) = 1/2, with Y, v; = 1.

p; = Pr(w = him;) =

At date 1 the outcome of the stress test m; is publicly observed. The speculator
then chooses how much private information to acquire about the underlying state w.'®
Information acquisition generates a signal z € {l,h,@}. The signal is fully informative
(z = w) with probability ¢ and uninformative (z = &) otherwise. The speculator can
choose o, i.e., how much information to acquire, subject to a cost %7'02 (with 7 > 0) this
incurs. We assume throughout that 7 is large enough to ensure that the optimal ¢ < 1.

At t = 2 the speculator can trade. His order is denoted x; € R. In addition to the
speculator, there is a noise trader who either buys or sells with equal probability a number
of units that we normalize to one. The noise trader’s order is denoted zy € {—1,1}. The
speculator and the noise trader both submit their market order to a market maker, who
can observe each order, but not its originator, i.e., orders are anonymous. Formally, we
let order flow X be random, taking either the value X = (x;,zy) or X = (zy,x;) with
equal probability. The market maker sets a price that allows him to make zero profits
in expectation on any trades he makes out of his inventory. That is, like in a standard
Kyle (1985) model, the market maker sets the price equal to the expected value of a share,
conditional on the information contained in the order flow.

At date 3 the bank can make an investment of 1 in a risky loan portfolio. For a type
w = h bank the loan portfolio returns, at date 4, R with probability p and 0 otherwise.
Assume pR > 1. A type [ bank has returns R with probability p, and zero otherwise.
For simplicity, we set p; = 0. Suppose investing generates a (small) private benefit for the
banker and the social planner does not care about the banker’s private benefit. The bank
thus invests whenever it can, regardless of its type.'” If the bank does not invest, it has a
value that we normalize to 0.2

In order to capture capital market discipline, assume that the bank has internal funds
normalized to 1 and short-term creditors who have a total claim of 1 coming to maturity
at date 3. If the creditors do not roll over their loans, the bank has to pay out its internal
funds and cannot invest. If the creditors roll over their loans, the bank can use its internal
funds for investment in risky lending. Note that it would make no difference if we assumed

18 Although we do not explicitly endogenize the timing of information acquisition, it is clearly optimal
for the speculator to wait until after he observes the stress test result. Doing so allows him to condition
the amount of costly information acquisition on the information contained in the stress test.

19This is a simple way of modeling excessive risk taking or over-investment. For our purposes it does
not matter whether the bank knows its own type as long as the low type banker cannot be prevented
contractually from engaging in excessive risk-taking.

20An alternative interpretation is that all banks have a brick-and-mortar line of activities which has
zero net present value, but only high type banks have access to an additional, positive NPV project. Under
this interpretation, even low type banks deserve to operate the brick-and-mortar business, but they should
be prevented from expanding into further activities.
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instead that the bank does not have any of its own funds and needs to raise 1 from outside
providers of capital. The two are equivalent, because the bank could pay off the old
creditors using internal funds and then raise funds from fresh creditors for the investment.
Assume that the bank can invest if and only if it secures private funding. Hence, we rule
out any direct capital injections by the supervisor. We relax this assumption in Section
3.8.

After the stress test and the bank’s share price have been observed, the bank can make
a take-it-or-leave-it offer asking creditors to roll over their loans at a gross interest rate r.!
If creditors do not roll over their loans, the bank is forced to pay out 1 to creditors and
does not invest.

The timing is summarized in Figure 3.1.

Supervisor chooses .S, Share trading, .
w and s realize stock price realized Payoffs realize
I ] ] ! |
I T T T 1
t=20 t=1 t=2 t=23 t—4
m; publicly observed, Creditors choose
Speculator chooses o, debt rollover a € {0,1}

z privately observed

Figure 3.1: Timing

The supervisor cares about the total value created from the bank’s activity. We denote
by V the bank’s expected payoffs at date 4, net of any amount invested at date 3.2 This
payoff depends on both the state of the world w and an action a € {0,1}, denoting the
creditors’ rollover decision. We set a = 1 if creditors roll over their debt and a = 0 if they
do not. We can therefore write the supervisor’s payoft V. as follows:

Vil =pR —1,
‘/ll = _17 (33)
VY=V=0.

Since V;! > V2 and V,° > V}!, it is socially optimal to allow a high type bank to invest,
while it is optimal not to provide funds to a low type bank. The same two inequalities
imply that V;} — V2 > 0 > V! — V}® which in turn implies V;} — V' > V¥ — V)°. That is,
the action @ = 0 reduces the variability of bank value compared to a = 1. As such, we
can think of @ = 0 more broadly as an action that leads to the reduction in risk, be it
downsizing / failing to expand the bank’s operations, or a direct intervention to reduce the
bank’s risk exposure (see also Carletti et al. (2021) or the discussion of market influence
in Flannery and Bliss (2019)).

21'We do not introduce any frictions in negotiations with multiple creditors, so we can think of the bank
rolling over debt with a single creditor who is subject to a break-even constraint.

22Gince capital providers break even in expectation, the supervisor’s objective is the same as when
maximizing the joint payoffs of the bank and its providers of capital.
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3.4 Optimal Stress Test without Price Signals

This section develops the benchmark in which stock markets provide no information, so the
capital providers can only condition their roll-over decision on the stress test result. Denote
by p the belief that the state is w = h, conditional on all publicly available information. In
this section, public information is limited to the stress test result, while the next section
allows for an additional endogenous signal stemming from noisy stock prices. It will be
useful to define belief thresholds for which the supervisor prefers for the bank to be able
to invest. The supervisor prefers the bank to continue if

PV + (L= Vit > pVy) + (1= )V (3.4)

Defining AVj, = V! — V2 and AV, = V}? — V}!, this can be re-written as

AV,
| > . 3.5
or, using the definitions of AV}, and AV}, as
> o= L (3.6)
>t = . .

Consider next the bank’s funding problem. Good and bad banks will try to roll over
debt and invest, but only good banks repay with probability p. Creditors’ participation
constraint therefore depends on their belief ;1 as follows:

wpr > 1. (3.7)
Since the bank can make a take-it-or-leave-it offer, the interest rate is set at
1
r=—. (3.8)
Hp

For a debt roll-over to be feasible, we also require
r<R. (3.9)
The constraints (3.8) and (3.9) together imply that a debt roll-over is only feasible if
creditors are sufficiently optimistic they are lending to a high-type bank:
1

e (3.10)

p>

Note that u* = fi. Hence, the supervisor’s preferred action is also the one implemented via
market discipline. We relax this assumption in Section 3.6 and Section 3.7.%%

23In Section 3.6 we allow for debt overhang, so that some bank types are unable to raise funds, although
it would be socially optimal to do so, i.e., u* < fi. In Section 3.7 we allow for default externalities, which
implies that the supervisor would prefer to apply a harsher continuation threshold than that of capital
providers (u* > fi). In both cases, we show the robustness of our main result, namely an optimal distortion
toward leniency.
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The supervisor’s stress test design problem is potentially quite complex as the partition
describing the test can be arbitrarily granular. In the benchmark, the problem simplifies
considerably, because the stress test induces a single action a which can take only two
values, 0 or 1. From the second line of (3.2) we know that beliefs 1;, induced by stress test
outcome m; are increasing in ¢. We can thus collect all partitions that induce action a = 0
into one message, and all those that induce a = 1 into another message. The stress test
can thus be described by a single cut-off s; such that for a test result my (i.e., s < s1), we

have p; < 71 and a = 0. If the test result is my (i.e., s > 1), then puy > i and a = 1.**
The supervisor’s objective function is thus given by
1
v(s1) = 5(Fh(sl)v,f +F(s)VR 4+ (1= Fu(s)) Vi + (1 — Fl(sl))Vll>
3.11)
1 (
= (S o =DV (L =DV + (20— s1) - (L= D))V,
and the stress test design problem is
max v(sy)
S1
s.t.oup < ZL (312)

M22ﬁ7

where from (3.2), 1 = % and pp = £, Denote by sy the solution to (3.12), that is, the

optimal cut-off in the no-feedback benchmark.

Lemma 3.1 (Benchmark). Without information acquisition by the speculator, the optimal

*

stress test is a binary partition with a passing threshold sy = u*.
Proof. See Appendix B. [ |

The optimal stress test simplifies to a pass/fail experiment. Failing the test (message
my), shows that the bank’s resilience level s is below sy = @ = p*, which means that
market discipline bites and the bank cannot roll over its debt. The opposite happens if
the bank passes the test (message ms). Note that the optimal cut-off sy depends on the
relative costs of making type-1 and type-2 errors. Define a type-1 error as denying funds to
a good bank. The benefit of avoiding this error is AV},.? Under a type-2 error a bad bank
can roll over debt and invest. Avoiding a type-2 error has a benefit of AV}, If a type-2
error is relatively more costly, then p* increases (see (3.5)). This in turn corresponds to
an increase in the optimal pass threshold sy: The test becomes more conservative.

In what follows we will use sy = p* as the reference level of how lenient / conservative
a stress test should be and we will be interested in how the possibility of generating
informative price signals affects the optimal stress test design compared to this benchmark.

24Gince p; tends to zero for s; close to 0 and sy tends to 1 for s; close to 1, it is always possible to
choose an sy that induces actions that are contingent on the stress test result. It is also optimal to do so
because a stress test that never affects a would throw away useful information.

ZDenying funding to a high type bank leads to a reduction in credit supply to the real economy. See
Acharya et al. (2018) for the declined lending by stress-tested banks in the US and Ahmed and Calice
(2023) for the UK banks that failed the stress tests.
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3.5 Optimal Stress Test with Feedback from Stock
Prices

Before fully characterizing the stress test design problem with an active speculator, we
need to calculate the profits the speculator can reap from acquiring and trading on private
information. For this, we need to determine the fundamental value of the shares, which
depends on the underlying state w and on the bank’s access to capital, captured by a. If
the bank rolls over its debt, equity value will depend on the interest rate r, which is a
function of beliefs ;. We denote the underlying equity value by E2(u).

If the bank raises funds (a = 1) the required repayment is r = ﬁ (see (3.8)). The
expected equity value of a high type bank which can roll over its debt is therefore

11 (3.13)
oo

Note that E}(u) is increasing in u, because equity is more valuable when the bank can
roll over debt at a lower interest rate. This in turn happens when the creditors have more
positive beliefs (higher p) about the bank’s type. The equity value is zero in all other
states, either because the bank fails to roll over its debt (E}) = Ef = 0), or because the
bank rolls over debt but wastes the funds on a bad investment (E} = 0).?° We can now
state the speculator’s trading strategy and resulting profits, 7(u), conditional on the belief
i induced by a stress test.

Ep(u) =p(R—71) =

Lemma 3.2 (Trading Strategy and Profits). The speculator’s optimal trading strategy is

1 if z=h
x(z) = 0 if z2=0
-1 if z=1.

For a given amount o of information produced, the speculator’s trading profits w(u) are

11
o pu(l—p) (: - —> if pn>p
ioop

0 if p< .

() = (3.14)

Proof. See Appendix B. [ |

26The assumption that equity is wiped out following a bank’s failure to secure funding is stronger than
strictly necessary, but significantly simplifies the exposition. What is crucial for our mechanism to work, is
that the traded claim (be it equity or subordinated bonds) becomes less responsive to the true state of the
world when the bank fails to raise funds (a = 0). Note that this property may hold more generally since
a = 0 is defined as a risk-reducing action (Vh1 — Vl1 > V,? — Vlo). Here we make the simplifying assumption
that security payoffs following ¢ = 0 do not depend on w at all. Note that this can be the case in practice,
even if equity retains a positive value. For example, if a = 0 corresponded to a liquidation or a forced
takeover by another bank one could have EY = Elo > 0. In that case, security payoffs do not depend on w
following a = 0 and a speculator cannot benefit from acquiring private information about w.
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Note that the speculator’s trading profits are zero if the stress test induces a belief
i < . To see why, consider possible order flows and associated trading profits. If the
speculator acquires information and trades on it, order flow can either reveal or hide his
direction of trade. When order flow is (—1,—1) or (1,1), the speculator’s direction of
trade is fully revealed. Since the speculator only buys if w = h and only sells when
w = [, these orders fully reveal w. The market maker then sets a price that fully reflects
w and the speculator therefore cannot make a trading profit. An order flow of (—1,1) or
(1, —1) does not reveal the speculator’s order. The market maker learns nothing and sets a
correspondingly uninformative price. Hence, the roll-over creditors do not learn anything
from market prices, and stick to the belief i induced by the outcome of the stress test.
When that outcome is so negative as to deny the bank access to funds (u < j1), the bank’s
equity value drops to zero, regardless of the bank’s true type. Since the equity valuations
no longer depend on the true state w, the speculator cannot benefit from learning and
trading on knowledge of w.

When the belief 1 induced by the stress test is high enough to allow the bank to roll over
its debt (u > fi), trading profits are hump-shaped. As p becomes very large, everyone,
including the market maker, is confident that the bank is of a high type. This leaves
little scope for the speculator to benefit from acquiring private information, which, with a
high likelihood, will simply confirm the public belief. The speculator can benefit most from
acquiring private information, when doing so confers a significant informational advantage.
This is the case when the stress test is least conclusive, i.e., when possible resilience levels
are intermediate (u close to %) Moreover, as u drops, the bank will have to roll over debt
at less favorable terms, leaving less value for equity holders. This makes it less attractive
to speculate on the bank’s stock. When u = J1, trading profits drop to zero, because rolling
over debt is so expensive as to reduce equity value to zero. Overall, trading profits are
maximized at p = # € (%, 1).

From the expression for trading profits (3.14) we can take the first-order condition with
respect to o to find the optimal amount of information acquired by the speculator:

1 1 . ~
(L —p) (:——) if p>7n
o(p) = I (3.15)
0 if p<p.
In what follows, we assume
1(1-7a\
> (—“) , (3.16)
I 2

which ensures that information acquisition in (3.15) is a non degenerate probability.

We can now express the supervisor’s problem in a simplified manner.

Lemma 3.3 (Stress Test Design Problem). The supervisor solves the following stress test
design problem.:
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max V(S) = v(s1) + 2(9)
st < pn (3.17)
2 Z ﬁa
where v(sy) is defined in (3.11) and

(S = % Z vi (1 — p1)? (% - i) . (3.18)

Hi
Proof. See Appendix B. [ |

Lemma 3.3 states that the supervisor’s objective function can be decomposed into
two parts. The first part, v(s;) consists of the supervisor’s expected payoff, when the
only source of information is the stress test. This corresponds to the payoff under the
benchmark in Section 3.4. The second part, ¥(.5), consists of the additional payoff from
an improved allocation of capital when the stock market provides useful information. Note
that the choice of s; also enters this second part via its effect on vo and py (see 3.2)).

We can now state one of our key results.
Proposition 3.1 (Optimal Stress Test). With information acquisition by the speculator,

the optimal stress test is a binary partition with a single passing threshold, sg, where sp is
the unique s, that solves

1 3t —1
51 :u*—z(l—sl)Q (51— ,u2 ) ) (3.19)
The test is lenient (sp < p*) and informative (sp > 0).
Proof. See Appendix B. [ |

When market information matters, the stress test is optimally distorted toward leniency
(sp < sy = p*). That is, it awards pass grades to some banks that would have failed the
test in the benchmark without market feedback.

Why does the supervisor wish to apply a more lenient pass threshold? The answer
is that, by virtue of being lenient, the stress test generates more pass grades. Since a
pass grade is a precondition for the speculator to acquire information, leniency encourages
the production of market information. This information helps creditors in their roll-over
decision. In particular, some banks that would be marginal fail under the benchmark
(banks with resilience levels s € [sp, 1)) are worth investigating further before denying
them access to capital. That way, some of them will be identified as high type banks who
were unlucky to have a marginally sub-standard resilience level. When their stock price
holds up after the stress test announcement, creditors will be willing to roll over their debt,
which is efficient. Of course, some of them will see their stock price drop and be denied
funding. While this is also efficient, it does not constitute an improvement compared to
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the situation where the stress test was not distorted towards leniency: those banks would
have failed the benchmark stress test and thus also have been denied funding.

But leniency also has a cost: it allows some banks to roll over debt and invest, although
this is socially inefficient. This is the case of a low type bank that marginally passes the
lenient test, for which the stock price fails to adjust downwards. This allows such a bank
to inefficiently roll over debt, which would have been prevented under a less lenient stress
test. The trade-off between the direct information value of the stress test, and its role in
encouraging information production by the speculator implies that the optimal cut-off is
determined as an internal solution, sp € (0, u*).

Note that our model encompasses the corner solutions of a completely uninformative
stress test (s; € {0,1}), which is just like not conducting a stress test at all. If the test
was uninformative and ji > %, there would never be any information production by the
speculator. An informative test then leads to crowding-in of speculator information. In
this case it is obviously optimal to have an informative test. When i < %, and the stress
test is uninformative, the speculator would always produce some information. This is,
however, not efficient, because costly information gets produced even about banks that
have a resilience level that pins down their type with high precision. Instead, it is better
to have the speculator produce a lot of information about some banks and little (or no)
information about others, rather than an intermediate amount of information about all
banks. By rendering the stress test informative, the supervisor can boost the speculator’s
information production for the banks that pass the test. This is because the bank’s debt
roll-over is less dilutive when creditors are more optimistic about the bank’s type. An
informative stress test changes the allocation of information production incentives across
bank types, but in general does not neatly map into crowding out (or crowding in) as in
some of the literature (see Goldstein and Yang (2017)).

As a thought experiment it is instructive to consider a modification of our model
whereby it is easy to induce speculator information production. Suppose 7 was very small,
but positive such that the speculator would always produce the maximum amount of in-
formation (¢ = 1) as long as he anticipates the bank to roll over its debt following an
uninformative stock price. An informative test would then clearly lead to crowding out
when p* < %: with an uninformative test, the speculator would produce a maximum
amount of information on all banks. Following an informative test, the speculator would
produce no information for banks that failed the test, and (still) produce the maximum
amount for those that pass it. That is, there is an overall reduction in information pro-
duction. An uninformative test, however, would not be optimal even in this case. That is
because the speculator’s information gets impounded into the price with noise. Even if an
uninformative test were to lead to maximum information production about all banks, the
capital providers will roll over debt for many undeserving banks: When the stock price is
uninformative and the bank has a low resilience level, which remains unknown since the
stress test is uninformative, a bank gets funded, but should not. It is therefore optimal
to reveal very low resilience levels, i.e., make the test informative and lenient, even if it is
very easy to induce information production by speculators.

Another result from Proposition 3.1 is that the optimal test retains its pass/fail na-
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ture. This no longer follows immediately from the binary nature of the capital providers’
decision (a € {0,1}), because the stress test also affects information production which is
a continuous choice variable. The mechanism described before points to a robust reason
why the test must be coarse on a sub-interval around p*: Leniency aims to encourage
information production for some banks with resilience levels below p*. But for the capital
market to fund such banks, they must be lumped into the same category as banks with a
resilience level s > i = p*. In other words, for a pass category to contain sub-standard
banks (s < 1) and be credible, it must also contain a sufficient number of above-standard
banks.

Note also that it is sub-optimal to introduce further sub-categories of a pass test. With
a single pass category and a lenient cut-off sp < u*, the induced belief ul is below that
which generates maximum information production (uf < i = “TH) Suppose now that sp
was kept unchanged, but a second pass grade with a cut-off s, € (u*, 1) was introduced.
There would thus be two possible pass grades mo and ms with corresponding induced
beliefs which we denote by g, and pj, respectively. By construction, we have uy < pl" < fi,
and p5 > fi. As a result, information production following either pass grade ms or msg
would drop. Intuitively, after a moderate pass (msg) the interest rate of roll-over debt
increases, which dulls information production incentives. After a strong pass mgs there
is little uncertainty over the bank’s true type. This reduces the speculator’s potential
advantage from becoming privately informed, decreasing information acquisition. Hence,
splitting a single pass grade in two will reduce information production and is therefore

sub-optimal.

Going back to the broader question of the role of market discipline in supporting bank-
ing supervision, our analysis reveals the following insight. Markets, via the information
they provide, can help reduce type-2 errors. That is, if a bad bank slips through the su-
pervisor’s net (by passing a stress test), it will be subject to market scrutiny and possibly
“disciplined” by being denied funding. This provides a reason to allow more banks to slip
through the net, i.e., to be lenient. On the other hand, markets are not good at reducing
type-1 errors. Banks that are caught in the supervisor’s net (by failing the stress test),
will not be subject to market scrutiny. Any mistake made in the supervisory process will
thus not be corrected. Given the asymmetry in the way that (indirect) market discipline
operates, a lenient stress test design is optimal. This contrasts with the literature, which
has mainly associated leniency with a misalignment of the supervisor’s objective and the
objective of the recipients of the stress test result. For example, in Bouvard et al. (2015),
Williams (2017), Goldstein and Leitner (2018), Parlasca (2024) and Shapiro and Zeng
(2024), the supervisor may wish to hide information from markets to avoid a bank run.

In addition to identifying a new channel via which stress tests matter, our theory also
provides new policy implications. The improvement in the information environment from
stress test leniency only accrues to banks whose shares are publicly traded. Our theory
therefore implies that publicly listed banks should be subject to more lenient stress tests
than otherwise equivalent privately held banks. To the extent that regulation does not
explicitly distinguish between publicly listed and privately held banks in the stress test
design, this would lead to sub-optimal supervision. Ignoring the impact of stress test
design on the quality of price signals, would lead to stress tests that are too adverse,
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reducing the information in the price signals available to creditors in banks who do poorly
in the test.

The following proposition describes how the optimal degree of leniency is affected by
model parameters.

Proposition 3.2 (Degree of Leniency). At the optimum, the stress test is more lenient,
i.e. Sp decreases, when:

e the high type bank’s expected returns are higher (p or R increase),

e information acquisition is less expensive (T decreases).
Proof. See Appendix B. [ |

In general, the optimal pass threshold sp is directly affected by changes in p* and
indirectly by the optimal extent of distorting s; away from p*. In developing the intuition
for the comparative statics, we will make use of this distinction.

Consider a reduction in the cost of information acquisition, 7. Note that 7 has no direct
effect on p*. It does, however, have an effect on sp: When financial markets can cheaply
acquire information about the bank’s fundamentals, private information becomes more
precise, and the supervisor obtains more benefit from distorting the stress test towards
more leniency.

By contrast, changes in p and R have a direct effect on the relative costs of type-1
and type-2 errors and thereby on p*. In addition, they have an indirect effect on the
optimal extent of distorting s; away from p*. As p and R increase, the cost of a type-1
error increases, as denying funds to a good bank becomes more costly. A bank is therefore
allowed to continue for a lower resilience level, i.e., u* decreases and so does sp. In
addition, there is an indirect effect. Higher financial returns of the good bank increase the
information sensitivity of the equity claim and thus the speculator’s incentives to acquire
information. As a consequence, market information becomes more precise, increasing the
benefit of distorting the stress test towards more leniency. The direct effect of an increase
in p and R on p* and the indirect effect thus work in the same direction towards more
leniency.

3.5.1 Social versus Private Value of Information

It is instructive to ask how much information the supervisor would acquire if she had access
to the speculator’s information technology and could make the collected information public
so as to allow market discipline to be based on it. We do not consider this possibility
throughout the paper, because we want to capture the notion, advanced by regulators,
that financial markets can generate information that supervisors cannot. However, since
the speculator’s incentives are not aligned with the supervisor’s, this raises the question of
what distortion the misalignment may create. In particular, one may ask how the belief
i affects the supervisor’s value of producing additional information. This depends on
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whether a bank can roll over its debt when z = &, which in turn depends on whether p
is above or below p*. When p < p*, and z = @, creditors do not roll over debt (a = 0).
Hence, the supervisor’s expected payoff is

E(V) = p(oVil+ (1 - o)V0) + (1 — )V, — %(72. (3.20)

When p > p*, the expected payoff is instead
E(V) = uVi! + (L= p)(@V + (1 = o)Vj! = 50> (3.21)

Taking the first-order condition in each of the two regions gives us the supervisor’s optimal
amount of information production, as a function of belief 1, denoted by og(p):

L1 - AV, if p>p*
os(p) = { %MAVh if < p*.

In the above expression, og(p) is continuous and maximized at g = p*. This is intuitive.
At p*, the expected cost of making a type-1 or a type-2 error is the same. That is precisely
when additional information is most valuable. In sharp contrast, the speculator’s incentives
to acquire information are zero at the belief = p*. This is because at the corner pu = u*
the bank needs to raise funds at the least favorable conditions: creditors only roll over their
debt at such a high interest rate that nothing is left for equity holders. The speculator
therefore cannot make a trading profit, even if the bank can roll over its debt. There is
therefore a wedge between the social and the private value of information. Viewing the
problem from this angle gives us a further understanding of the main result on the optimal
leniency of the stress test: The social value of information is highest for banks with levels
of resilience around the threshold p*. However, these are precisely the banks for which
the speculator’s private value of information is particularly low. The supervisor therefore
induces information production about these banks by lumping them into the same stress
test result as those banks for which the speculator has a strong information production
incentive.

(3.22)

3.5.2 Empirical Implications

While our analysis is largely normative in nature, our theory has a number of empirical
implications. In particular, our theory predicts that the amount of informed trading in a
bank’s shares depends on how a bank performs in the stress test. We would expect there
to be less informed trading following the announcement that a bank failed a stress test,
compared to when it passes it. Some papers have shown that there is abnormal trading
volume after the announcement of stress test results (see Flannery et al. (2017) among
others). This is indicative of informed trading activity, although not proof of it. More
direct measures of informed trading have been developed in the market micro-structure
literature, for example, bid-ask spreads, the probability of informed trading (PIN) (see
Easley et al. (1997)) or Multimarket Information Asymmetry (MIA) (see Johnson and
So (2018)). It would thus be possible to estimate such microstucture-based measures for
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banks after the announcement of stress tests and check whether they are lower for banks
that did poorly in the test compared to those that did well. There is no empirical research
to date that conducts such an analysis.

A few papers have looked into abnormal returns following stress test announcements.
If the stress test conveys information, one would expect prices to increase if the stress
test result is better than expected and decrease if the opposite is true. Petrella and
Resti (2013) and Morgan et al. (2014) provide evidence supporting this hypothesis using
stock price reactions to the first stress tests after the 2008-09 crisis. The findings remain
similar for the more recent, regular stress tests implemented by both the ECB and the US
Federal Bank (See Ahnert et al. (2020), for example). Since the event date (announcement
of stress test results) is known in advance, one would, however, expect there to be no
abnormal returns on average after the announcement. As pointed out by Flannery et al.
(2017), this is a direct implication of market efficiency. It should thus be true in our
model, but is not specific to it. As Flannery et al. (2017) argue, a more relevant metric
is |CAR|, the absolute value of cumulative abnormal returns, which should be higher after
the announcement date for banks that are subject to a stress test compared to banks that
are not. Flannery et al. (2017) do not condition specifically on the stress test outcome and
find that |CAR]| is indeed higher for the sample of tested banks compared to non-tested
banks.?” We can compute a comparable metric implied by our model, by calculating the
ex-ante expected |CAR| as a function of the stress test design. One can think of the
banks that were not stress tested as the limit case in our model where the stress test is
uninformative. Figure 3.2 depicts the difference between |CAR| for tested and non-tested
institutions, x (7, ©*), using the optimal design for tested institutions and an uninformative
design for non-tested institutions (see Appendix B for detailed computations). This speaks
directly to the additional price changes induced by information production following the
stress test announcement, which is positive for reasonable parameter values, as found by
Flannery et al. (2017).

3.6 Recapitalization under Debt Overhang (u* < 1)

So far, we have analysed the case where the supervisor’s preferred course of action coincided
with that implemented by capital providers (p* = z). In practice, supervisors often worry
about disclosing negative news for fear of tightening financial constraints for sound banks,
including the extreme case of provoking a bank run. Similarly, banks may be unable to
access private funding due to a debt overhang problem (see Philippon and Schnabl (2013)).
In our framework, this corresponds to the case p* < . Banks with observed resilience
levels s € [p*, 1) will not be able to fund their activities, although the supervisor would
like them to.

2TNote that from a theoretical perspective it is not entirely clear whether |CAR| should increase for
tested banks. The test has two implications for |[CAR|. First, the information contained in the an-
nouncement has a direct effect on prices. Second, information production and trade depend on the public
information revealed (or not) through the test. Hence, non-tested banks could have a higher |CAR| if
markets produced significantly more private information about them.
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Figure 3.2: Difference between |CAR| for Tested and Non-Tested Institutions: (7, 1)

One way, among others, to illustrate this case is by modifying our micro-foundation
to allow for debt overhang, which drives a wedge between the efficient investment choice
and that actually implemented by the capital market.?® To adapt our model, suppose
banks have an existing ¢ = 1 level of senior debt D < R outstanding, which cannot be
renegotiated. D could capture the amount of insured deposits, for example. The level of
pre-existing debt does not affect the desirability of investing, so p* remains unchanged.
In order to abstract away from complications arising with multiple classes of pre-existing
creditors, we no longer interpret the funding stage as a roll-over of existing debt. Suppose
instead that the bank needs to raise 1 from new providers of capital who are junior to
depositors.?? The participation constraint of capital providers, such as uninsured creditors,
changes to

up(r — D) > 1. (3.23)

Together with the feasibility constraint » < R this pins down a new belief threshold given
by

1
h=——->u". 3.24
= m—D) " (3.24)
28 An alternative would be to micro-found the belief threshold based on a coordination problem among
multiple uninsured depositors who may run on the bank, as in Bouvard et al. (2015). Applying a global
game refinement generates a unique belief cut-off, much like what we have. One shortcoming of the bank-
run approach as typically implemented is that uninsured depositors’ claims are assumed to be fixed. Hence,
equityholders’ payoffs depend only on whether a run occurs, but not on the beliefs when a run does not
occur. In our setting creditors demand a higher interest rate when they extend credit at more pessimistic
beliefs.
29With debt overhang, a junior creditor who needs to roll over debt faces a different outside option
than an outside provider of capital, since the former depends on the bank’s liquidation value. In order to
keep the treatment simple, we do not introduce this complication here. In general, if the bank has a large
liquidation value, it may be the case that markets are willing to fund it, even though the planner would
prefer a liquidation, i.e., u* > i. We provide an analysis of this case in Section 3.7.
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In order not to burden the notation, we continue to refer to the threshold defined in (3.24)
simply as zi. Taking the special case D = 0 gets us back to the definition of iz from Section
3.4. We begin by clarifying how the benchmark is affected by debt overhang.

Lemma 3.4. Without information acquisition by the speculator, the optimal stress test is
a binary partition with passing threshold s% = max{21 — 1, u*}.

Proof. See Appendix B. [ |

Lemma 3.4 shows that the stress test has a cut-off at p*, just like before. Since p* <
this test is lenient from the capital provider’s point of view: The supervisor labels banks as
a pass when she thinks they should have access to capital, not when capital markets would
like them to. From the perspective of capital providers, the supervisor is too generous with
pass grades. Note that a cut-off at s§ = pu* only implements the supervisor’s preferred
outcome, if it induces a sufficiently positive belief such that the capital market is willing
to provide funds. When p* is too low, a pass grade may no longer allow the bank to raise
funds. In this case, the supervisor chooses a threshold s¥ at the lowest level that still
ensures that a pass grade allows the corresponding banks to access capital markets.>

Proposition 3.3. With information acquisition by the speculator, the optimal stress test
1$ a binary partition with passing threshold

sP =max{2 — 1,5} (3.25)

where s is the unique s1 that solves

*

1 3 —1
s = u* — %E (1—51)° (31 - NQ > . (3.26)

The stress test 1s:

e neutral, i.e. s2 = sK, when u* € (0, p°] or p* = 3p—1

. . P
e conservative, i.e. s? > sﬁ, when p* € (MO7 3“7)7

e lenient, i.e. s2 < sN, when u* € (%,ﬁ)

where R
2u—1

1+ % (1—ﬁﬁ)3 )

o

I

(3.27)

Proof. See Appendix B. [ |
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Figure 3.3: Passing Threshold of the Optimal Stress when p* < Ju.
Benchmark s% (in black) and Model with Feedback from Stock Prices s (in red).

Figure 3.3 summarizes Proposition 3.3 by depicting the cutoff of the optimal stress test
with feedback from stock prices and in the benchmark without such feedback. The key
takeaways from Proposition 3.3 are as follows. When p* is close to i, the optimal stress test
is distorted towards leniency (s2 < p*). This is just an extension of the result in Proposi-
tion 3.1, where we have already shown the optimality of leniency. As p* drops, distorting
towards leniency becomes increasingly unattractive as the cut-off s; moves further and
further below the cut-off 1z, making the recapitalization ever more expensive. This in turn
reduces the trading profits a speculator can make. In order to provide sufficient incentives
for the speculator to acquire information, the recapitalization must not be too expensive,
requiring a high enough threshold s¥ to make the pass grade convey sufficiently good news.
Hence, as p* drops, the supervisor lowers s less than one for one and eventually the test
becomes conservative (s§ < s2). In other words, conservatism serves to make the financ-
ing terms at the recapitalization stage adequately attractive to preserve incentives for the
speculator to acquire information about stock values. This result is reminiscent of Orlov
et al. (2023) who show that the optimal stress test admits false-negatives. In their paper,
banks that fail the test must recapitalize. By making the test more conservative, failing
it conveys less negative information, allowing such banks to recapitalize at more favorable
terms. In our case, a more conservative test conveys more positive information for a bank
that passes it, allowing the latter to raise funds at a lower cost. One key difference is that
in Orlov et al. (2023) a more dilutive recapitalization constitutes an inefficient allocation

30This observation is akin to the finding in Williams (2017), or Bouvard et al. (2015). In their model,
the supervisor would like all banks to be able to access capital markets, corresponding to the case u* = 0.
When o < %7 then sg = p* =0, is optimal as a completely uninformative test allows all banks to access
capital markets. An uninformative test is like no information disclosure in Bouvard et al. (2015). When
> %, an uninformative test would result in no bank being able to access capital markets. In that case,
it is better to raise the threshold just enough to allow the banks that receive a pass grade to get funding.
That threshold is given by s; such that i = %
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of capital and thus reduces welfare. In contrast, in our model, any dilution at the capital-
raising stage redistributes wealth from high to low type banks, but is not inefficient per se.
Nevertheless, dilution matters because it affects the quality of the price signal.

Finally, as p* drops even further, s£ will reach the lower bound given by 277 — 1. At
this point, passing the test becomes such a weak signal that the recapitalization will be so
expensive as to undermine the speculator’s information acquisition incentives. Although
the market signal disappears at this point, the stress test still generates market discipline
by directly providing information to capital providers. This improves resource allocation
just like in the benchmark of Lemma 3.4.

The following comparative statics hold.

Proposition 3.4. At the optimum, the passing threshold s¥ decreases, when:

e the high type bank’s financial returns are higher (p and R increase),

o the level of outstanding debt is lower (D decreases).

When the stress test is lenient (conservative) the optimal passing threshold s¥ increases
(decreases) in 7. When the stress test is neutral the passing threshold s& is independent of
T.

Proof. See Appendix B. [ |

First, consider the case where a pass grade conveys sufficiently positive news to render
the debt rollover constraint non-binding (s2 > 27i—1). An increase in p and R reduces the
optimal pass threshold as in the model without debt overhang (see Proposition 1): higher
financial returns for the good bank increase the cost of a type-1 error (direct effect) and
increase the speculator’s incentives to acquire information (indirect effect). By contrast,
an increase in the debt exposure of the bank, D, has no direct effect on p* but reduces
the optimal pass threshold s£ through its indirect effect on the speculator’s incentives to
acquire information. A higher level of outstanding debt destroys value to equity holders
only in the state where the bank is able to repay such debt (w = h). As a consequence, the
equity claim becomes less information sensitive, depressing the speculator’s profits. This
reduces information acquisition and the information content of the price signal, which
weakens the supervisor’s motive to distort the stress test towards leniency. Interestingly,
a reduction in the cost of information acquisition, 7, affects the optimal pass threshold
differently, depending on whether the test is lenient or conservative. This happens because
a reduction in 7 makes market information more precise, and thus amplifies the supervisor’s
motives toward leniency/conservatism.

Finally, consider the case where u* and therefore s£ are so low that any further reduc-

tion in the cut-off would undermine the possibility to recapitalize the bank. In this case,
the pass threshold is pinned down by the belief threshold that induces funding provision,
1. Nevertheless, the qualitative effects of changes in p, R, and D remain the same: higher
financial returns of the good bank and lower debt exposure relax the funding constraint
reducing 7i and hence s?. Since the speculator makes no profits and does not acquire

information, the pass threshold is independent of the cost of information acquisition, 7.
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3.7 Default Externalities (u* > 1)

So far, we considered the case where the supervisor would finance more banks than the
capital providers are inclined to support (1* < jz). In principle, it could be the case that the
social value of liquidating a bank is higher than internalized by the bank’s capital providers
and the supervisor is more inclined than the market to cease the bank’s operations. This
might be the case, for example, if a bank’s default generates negative externalities, either
on other banks or the real economy. This corresponds to the case p* > fi: banks with
resilience levels s € [f1, u*) would be able to raise funds, although the supervisor would like
to prevent that.

To capture this situation, we modify our baseline micro-foundation in Section 3.4 by
introducing a social cost ¢ of defaulting. A default occurs when the bank raises funds and
invests, but then generates a zero cash flow from the investment. Capital providers do not
internalize the default externality so that f remains unchanged. For a given belief i the
supervisor prefers for a bank to invest (a = 1) if

pp(R—1) + (1= p)(~1— ) + (1 — p)(~1 = ) > 0. (3.28)
Hence, the supervisor prefers a = 1 for beliefs
I1+c¢ ~

>pr=—" S 7 3.29
HZW =S (3.29)

We start by providing the optimal stress test in the absence of stock market signals.

Lemma 3.5. Without information acquisition by the speculator, the optimal stress test is
a binary partition with passing threshold sy = min{2p, pu*}.

Proof. See Appendix B. [ |

The test is a pass/fail experiment just like in previous cases. Whenever the market
implements the supervisor’s preferred course of action, the optimal cut-off is set at s% = u*
to minimize type-1 and type-2 errors. When p* is too high, even a fail grade conveys
sufficiently positive news for capital providers to extend credit to the bank. Therefore, the
pass threshold is optimally adjusted downward to s% = 2Ji, ensuring the credibility of the
fail grade and dissuading the market from extending credit.

The following proposition describes the optimal stress test design with feedback from
stock prices.

Proposition 3.5. With information acquisition by the speculator, the optimal stress test
15 as follows:

o if u* € (j1, ), where p is defined in (B.21), it is a binary partition with passing
threshold sk =3, where 5 is the unique sy that solves (5.26);
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o if u* € [p, 1) and [ < 2/5 it contains two coarse buckets followed by granular grades
for resilience levels above the buckets, where the threshold that separates the two
buckets is

st p = min {271, s}, (3.30)

where st is the unique s; that solves (B.23), while the threshold that separates the
upper bucket from the granular grades is

1 .
Sy p = 1—§(sf’F—u); (3.31)

e if u* € [p, 1) and [i > 2/5, there exists a threshold 1t (defined in (B.25)) such that if
W < 1 the optimal stress test is as described above and if p* > i the test contains
only one coarse bucket followed by granular grades, where the threshold that separates

the coarse bucket from the granular grades is
Sty = min {271, s}, (3.32)
where st is the unique sy that solves (B.26).

Proof. See Appendix B. [ |

The stress test is a lenient binary partition when the supervisor’s and the capital
providers’ preferences about debt roll-over decisions are sufficiently aligned, i.e. when p* is
close to 1. The advantages of leniency are once again rooted in the additional information
generated by the speculator, which in turn guides funding decisions more effectively. As
w* rises, the optimal passing threshold follows suit to minimize the test’s statistical er-
rors, but remains lenient to incentivize information production by the speculator. As the
passing threshold rises, the pass grade progressively conveys better news to speculators by
encompassing banks of increasingly superior quality. Consequently, residual uncertainty
following a pass diminishes, reaching a point where speculators’ incentives to acquire in-
formation begin to decline. This happens when s; surpasses ji, as the pass grade induces
beliefs py = 312—+1 while information acquisition is maximized at p = % At this point, it
is optimal to exclude highly sound banks from the pass grade by setting s, below 1. This
maintains residual uncertainty following a pass without the need to lower s; far below the
benchmark s%. By doing so, the supervisor improves both direct and indirect market dis-
cipline by maintaining the speculator’s incentives to gather information while optimizing
resource allocation in the absence of market signals. Surprisingly, resilience levels above
s9 are fully disclosed. Why does the supervisor not lump them into a unique, coarse grade
mg3? Refining the coarse grade ms by splitting it into two grades ml; and mg increases
information production following m; and reduces it following mg, as the latter message
constitutes more conclusive news. Since information production has value only when a
poorly capitalized bank passes the test, an event that is less and less likely for higher
resilience levels, refining the grade increases the ex-ante level of information acquisition.

As p* continues to increase, the passing threshold will eventually reach its upper bound
defined by 2. At this point, the fail grade represents excessively positive news, to the
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extent that any further increase in the passing threshold would prompt capital providers
to finance the bank after a fail. To ensure direct market discipline and efficient resource
allocation, it is optimal to maintain the passing threshold at a constant level. Figure 3.4
depicts the cutoffs of the optimal stress test with feedback from stock prices and in the
benchmark.

*

1

0 Looop Lo 1

Figure 3.4: Thresholds of the Optimal Stress when p* > i, and 11 < 2/5.
Benchmark (sf, 1) (in black), and Model with Feedback from Stock Prices (s p, s55) (in
red).

3.8 Supervisor Private Information

So far, we have assumed that the supervisor does not directly intervene in banks, be it to
fund those unable to roll over their debt, or to restrict the activities of banks that have
access to private funding. Whether banks are able to invest in a risky project depends
entirely on their ability to roll over their debt, i.e., on market discipline. Going back to
the baseline model without debt overhang (u* = 1i), the lack of direct intervention by the
supervisor can be justified in several ways. First, when p* = 1, creditors implement the
supervisor’s preferred action. If they have the same information as the supervisor, there is
no need for the latter to intervene. Second, even if the supervisor had private information,
she might not intervene if there is a sufficiently high cost of doing so. The appeal to
market discipline as a pillar in the Basel framework is an implicit acknowledgement of the
practical relevance of such costs. For example, a supervisor may find it costly to inject
public funds into banks that are unable to roll over their debt, because of tax distortions
(e.g., White and Yorulmazer (2014), Faria-e Castro et al. (2017), or Shapiro and Zeng
(2024)). Moreover, the supervisor may suffer from forbearance or be reluctant to restrict
the activities of banks that can access credit markets (Martynova et al. (2022)).
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In this section we extend our analysis to the case where the supervisor has private
information and can intervene at a cost, including the corner of a zero cost. Suppose
parameter values are such that u* = i, i.e., we are back to the base-line model.** The
timing is as follows. Like before, assume that the supervisor designs a stress test at date
0. Subsequently, the stress test result is publicly observed. The supervisor simultaneously
and privately observes the bank’s true resilience level s. Since the supervisor’s information
is independent of the stress test design, the latter is just a disclosure strategy to which
the supervisor commits.®?> At date 1, after having observed the stress test result, the
speculator decides whether to become informed and trade. After a trade has taken place
and prices are observed, the supervisor can take an action as € {@,0,1}. If the supervisor
does nothing (a; = @), the bank approaches creditors and tries to roll over its debt.
Assume that creditors observe a;. When the supervisor chooses not to intervene, creditors
update their beliefs and funding conditions are set accordingly. If the supervisor intervenes
(as € {0,1}), she incurs a cost 6 > 0 and can either provide public funding to the bank
(as = 1),** or shut it down (as, = 0). As before, the intervention a, = 0 should be thought
of more broadly as an action that reduces the bank’s risk exposure, but for simplicity we
just refer to it as shutting down of the bank. If the supervisor provides public funding
(as = 1), we assume that she does so at an interest rate that allows her to break even,
conditional on her private signal s.** To keep the treatment simpler, we restrict the stress
test design problem to a pass/fail test, i.e., there is a single cut-off s; € [0, 1].

The bank’s expected value depends on the cut-off s; via the beliefs and actions that the
stress test induces. The speculator needs to form beliefs about the likelihood and direction
of the supervisor’s future direct interventions. In particular, it may happen that under
a lenient test design, the supervisor chooses to unwind a bank, even though it passed a
test. Conversely, under a conservative test, the supervisor may fund a bank that failed the
test. For which resilience levels s a supervisor intervenes depends on the cost § of such an
action. We can thus distinguish the following regions.

Region a(i): s; < 2u* — 1. The cut-off is so low, i.e., the stress test so lenient, that in
the absence of a price signal, creditors are not willing to roll over debt, even if the bank

31Studying the case p* = i allows us to focus on what we view as the core focus of this paper, namely
the information spillovers from stress tests to market discipline. If we had p* < ji, the supervisor might
want to intervene even without private information, simply because market discipline is too tough. This
case (without stock price feedback) has been studied by Faria-e Castro et al. (2017) among others. For
analytical clarity and tractability, we focus only on the first mechanism.

32This distinguishes our approach from Bouvard et al. (2015) and Parlasca (2024) who analyze the
signalling game where the supervisor has private information before deciding a disclosure strategy or stress
test design.

330ne may associate this to the practice of the Emergency Liquidity Assistance (ELA) that the ECB
may offer to a financially distressed bank, such as in the case of Greek banks in 2014.

34Tn principle the supervisor could provide funding at a subsidized rate. This may be undesirable if the
cost of public funds is high. Moreover, a supervisor may be reluctant, for political reasons, to undercut
private providers of capital for the benefit of leaving a rent to the bank. Finally, the assumption enables a
clearer comparison to the main model since the only margin is when a bank can raise funds, but not whether
the funding is subsidized. The supervisor cannot provide funds at a higher rate than the competitive one,
since her willingness to do so signals to the market that s > 7, in which case creditors will choose to roll
over debt at competitive terms.
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passes the test. This happens when py = % < ¥, i.e., when s; < 2p* — 1. This region is
empty if p* < % The bank can roll over its debt following a positive signal from the stock
price. Following an uninformative stock price, creditors would not roll over their claims,

but the supervisor would intervene and provide funding if

sVE+ (1 =8V =0 >sV2+ (1 —s)V°,

i.e., when

A

§>35= ﬁ =p*(1+9). (3.33)
Region a(ii): s1 € [2pu* — 1, u*(1 —§)). In this region, the stress test is sufficiently
informative to allow a bank to roll over debt (in the absence of a price signal) if it passes
the test, but not if it fails it, i.e., g3 < p* < po. Since sy < p*, the supervisor never wants
to fund a bank that failed the stress test. However, the supervisor may wish to intervene
by shutting down the bank, even though it passed the test. Following message mo, and an
uninformative stock price, the creditors would roll over their debt, while, the supervisor,

knowing s, would prefer to intervene by shutting down the bank (as; = 0), if

sVP+(1—s)V" =6 > sV, + (1—s)V".
The supervisor would thus intervene and shut down the bank when

N
AV, + AV,

s<s pr(1—9). (3.34)
Region p: s1 € [p*(1 =), p*(1 4 6)]. In this region, the supervisor is always passive
since the intervention cost is higher than the expected benefit of intervening.

Region b(i): sy € (u*(1+0),2u*). The test is conservative. Absent a price signal, the
creditors are willing to roll over debt for a bank that passed the test, but not for a bank
that failed it, i.e., uy < p* < po. The supervisor is willing to intervene and fund a bank
that has failed the test if the resilience level is s > 5. The supervisor never shuts down a
bank that passed the test since s; > p*.

Region b(ii): s; € [2u*,1]. In this region sy is so high, i.e., the test so conservative,
that even a bank that failed the test would be able to roll over its debt. This region is
empty if p* > % The supervisor intervenes to unwind a bank if s < s.

Note that the regions a(ii) and b(i), in which the supervisor intervenes with a positive
probability, are non-empty only if § < min{1, ui —1}. For higher values of 4 the supervisor
never intervenes and the analysis of Section 3.5 is directly applicable.

The supervisor’s objective function depends on the region in which s; is located. Lemma
B.1 in Appendix B provides the full details and Figure B.1, also in Appendix B, depicts
the objective function for some parameter values. We denote by st the optimal cut-off in
the supervisor private-information case, when there is feedback from stock prices.
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Proposition 3.6. When the supervisor can intervene according to her private information
s, the optimal stress test is uninformative (i.e. sk = 0) when intervention is costless
(6 = 0). When intervention is costly (5 > 0) and p* < L, the optimal stress test is

27
informative and lenient with passing threshold
a(it)  .p a(ii) ®(1
sho= s s <ir(1=0) (3.35)
spoif sy > pr(l =),
where s = 0_21(;71%7:) with oy defined in (B.33), and sg solves (3.19). When p* > 1 and
2

0 is high enough, the optimal stress test is informative and lenient with passing threshold
S1 = SF.

Proof. See Appendix B. [ |

Proposition 3.6 shows robustness of leniency when a privately informed supervisor can
directly intervene in banks. Leniency only breaks down in the limit case when the su-
pervisor’s intervention cost is § = 0, in which case the optimal stress test is completely
uninformative. When § = 0, the supervisor always intervenes, based on her private in-
formation, and direct market discipline becomes superfluous. Effectively, feedback from
prices to real decisions now only acts via direct learning by the supervisor (as in Bond
and Goldstein (2015)). The bank’s ability to continue and its funding conditions therefore
do not depend on the stress test outcome and a negative test result no longer undermines
the speculator’s information production incentives.?” These are now maximized when the
market maker remains completely in the dark about the bank’s type, that is, when the
stress test is uninformative (s; = 0).

Consider now what happens when the intervention cost is positive but very small. We
need to distinguish between the cases p* < % and pu* > % When p* < % the default is
for banks about which nothing is known to be funded by the market. In this case, it is
optimal to set s; > 0 for any > 0. For a small positive sy, banks with very low resilience
will fail the stress test and not get funded by the market. This allows the supervisor to
save on the intervention cost for banks with very low resilience levels, i.e., those for which
the supervisor is in any case very confident that they should be shut down.?® For the large
majority of banks that pass the test, there will be market information available. In those
cases where the market price is uninformative, but the supervisor observes a resilience
level s € (s1,s), she can intervene by shutting down the bank. In setting the stress test
cut-off s; the supervisor trades off the cost of direct interventions against the loss of market
information. The optimum is thus a lenient yet informative test for any 6 > 0.

When p* > % banks do not get funded in the absence of further information. The
supervisor thus needs to intervene by funding banks. When moving from s; = 0 to a small

35Note that § = 0 also eliminates the dilution effect that a more lenient test may have at the roll-over
stage. This is because the bank is recapitalized by the supervisor at conditions that entirely depend on
her private observation of the bank’s resilience, decoupling funding conditions from the stress test result.
36Note that a bank with resilience level s = 0 is certain to be a low type.
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s1 > 0 the market still does not fund a bank even if it passes the test. The supervisor
therefore does not benefit from a reduction in intervention costs. Setting s; close to 1 would
achieve that as banks that pass the test would now get funded, even in the absence of a price
signal. It would, however, undermine the speculator’s information production incentives:
for the few banks that pass the test, the speculator stands to gain little informational
advantage, while most of the banks that fail will end up being shut down (only those
with s € (5,s1) will be rescued by the supervisor). It is therefore better to leave the
test uninformative for small but positive values of d, and then jump to the usual lenient
test, once 0 becomes large enough so that the supervisor prefers to refrain from direct
interventions.

To summarize, by allowing the supervisor to learn from stock prices and intervene at
a cost, we bridge the gap between two sets of models. First, there are papers that focus
on a supervisor learning from stock prices (e.g., Bond and Goldstein (2015) and Siemroth
(2019)). Others study the implication of information design on access to capital (e.g.,
Inostroza (2023), Orlov et al. (2023) or Fuchs et al. (2024)). In this extension we allow
for an interplay between these mechanisms: stress tests directly affect funding conditions,
but to the extent that the supervisor can intervene at a cost, supervisory learning from
stock prices becomes a more important determinant of the information design problem.
While the precise stress test design depends on model parameters, we identify leniency as
a robust feature.

3.9 Conclusion

This paper models the link between bank stress test design and market discipline. It allows
markets to play an indirect role by generating useful price signals about bank fundamentals,
and a direct role by providing funding at terms that are sensitive to the stress test results as
well as stock price signals. We show that markets are useful at reducing type-2 errors, that
is, identifying bad banks that did well in a stress test. Markets are less good at reducing
type-1 errors, i.e., providing funds to good banks that did poorly in the stress test. The
supervisor optimally distorts the test to be lenient, because this improves market discipline.
We extend the model to allow for non-trivial interplay between direct intervention by the
supervisor and market discipline. The supervisor prefers to save on direct interventions
as they are costly, and therefore enlists market discipline. The optimal stress test is still
distorted towards leniency, and it may degenerate into a completely uninformative test
when the intervention cost becomes negligible.

Although our model is set up to address the design of bank stress tests, we believe
the underlying information design problem is pertinent in other contexts. For example, a
credit rating agency needs to decide on a rating system, keeping in mind that this may
have an impact on the information that speculators subsequently produce about the issuing
firm. Similarly, there is a degree of freedom in setting up accounting rules so that a firm’s
financial health can appear better or worse (e.g., marking to market versus historical value
rules, loan-loss accounting rules etc.). Little is understood about how such rules interact
with other sources of information, particularly those contained in stock prices. Our paper
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proposes a tractable model that can be used in future research to address these questions.

Finally, our model makes empirical predictions concerning the information content of
bank stock prices, depending on the stress test design and outcome. These remain to be
tested in future research.
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CHAPTER 4

Agents under Pressure:
Risk Governance in a Rat Race
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Matthieu Bouvard, Samuel Lee, Alessio Ozanne

Abstract

We study agency problems in a financial market with preemptive competition.
Firms hire agents who search for rival trading opportunities that can, but need
not, be beneficial for their respective firms. In each firm, there is tension between
incentivizing initiative and compliance with risk governance rules that create latency
in trading. Time pressure not only increases the opportunity cost of risk management
(that is lost opportunities) but also amplifies the agency rent required to maintain
governance. Because each firm’s contract choice affects market-wide time pressure,
these “contractual externalities” can trigger a race to the bottom culminating in a
constrained-inefficient market equilibrium with low risk controls. As a result, there is
scope for regulation that i) targets both firms and individual traders, and ii) blends
mandates on controls and incentive compensation.

Keywords: Risk Management, Preemptive Competition, Incentive Contracts.
JEL Classification: G20, G32, G01, D86.

4.1 Introduction

There is growing recognition among regulators and financial institutions that the efficacy of
risk management cannot be separated from the broader risk culture of the finance industry.
The view is that risk-control protocols have limited impact in an environment that does
not support and incentivize their effective implementation. The ‘London Whale’ scandal
is one of many rogue trading incidents demonstrating that the controls can be circum-
vented even in institutions that devote significant resources to risk management systems
(McConnell, 2014). In the aftermath of the Great Financial Crisis, the Financial Stability
Board published guidance to supervisors on how to assess risk culture in financial insti-
tutions.? Moving beyond risk modeling and information systems, its approach includes
indicators for the commitment from top management to promoting risk management prac-
tices, employee accountability, and both explicit and implicit incentives. In addition, it has
been argued that risk cultures in finance are shaped not just by firm-level factors but, more

"https://www.fsb.org/2014/04/guidance-on-supervisory-interaction-with-financial-
institutions-on-risk-culture-a-framework-for-assessing-risk-culture-2/. See also the spe-
cial issue of the Economic Policy Review (volume 22, issue 1) edited by the New York Fed for an academic
treatment of the role of culture, governance and reporting on risk management in financial firms.

76



broadly, by industry-wide norms or market pressures (Power et al., 2013). This supports
an approach in which risk culture is treated as a systemic phenomenon.

In this paper, we propose that one force that shapes financial institutions’ attitudes
toward risk is time competition. In a number of markets, preemption is a crucial aspect of
competition due to first-mover advantages.? While there is a large literature that analyzes
how this affects strategic interactions between firms (e.g., Bouvard and Lee, 2020 for an
application to financial firms), less attention has been paid to the impact on governance
processes inside those firms. It stands to reason that time pressure puts a strain on the
governance of decisions and activities that are vital to preempting competitors: finding
opportunities before others do and deciding whether to seize opportunities early, even if
the risks are not yet fully understood. We formalize this idea to show that time pressure in
the market makes it more difficult for firms to incentivize prudent behavior. That is, such
market forces create an agency cost of risk management within firms. Moreover, because
market forces are endogenous to the behavior of market participants, it holds in turn that
firms’ risk management incentive structures determine the time pressure in the market.
This two-way feedback implies that firms’ risk culture—the way incentives within firms
shape risk-taking—cannot be separated from their effect and dependence on market-wide
forces. The associated externalities also highlight that a “front office culture” equilibrium
may not only harm social welfare but also the profitability of the financial industry; a
system-wide shift in the risk culture can be Pareto-improving. We discuss merits and
drawbacks of various regulatory instruments.

In our model, firms compete for latent and fleeting trade opportunities in a stylized
financial market. Identifying these opportunities requires search effort which is delegated to
traders and unobservable to the firms’ management. A second dimension of moral hazard is
that the traders choose to what extent to comply with risk management protocols that can
improve the private assessment of a trade value to the firm, but delays execution (pre-trade
controls). Firms design compensation contracts that specify wages contingent on trading
profits and periodical reviews of trading activity that imperfectly detect non-compliance
(post-trade controls).

The optimal contract can be implemented with bonuses and clawbacks. To motivate
search, firms must pay bonuses tied to trading profits. To elicit compliance, they must
claw back wages if noncompliance is detected. There is an endogenous conflict between
these two tasks: While necessary for search, bonuses create a preference for trading that
endogenously inclines traders against complying with risk management. Hence, raising
search incentives renders compliance more costly to incentivize.

At the firm level, this multi-task conflict generates agency costs. This “partial equilib-
rium” effect, all else equal, already discourages risk management. In addition, there is an
equilibrium effect at the market level. When the speed at which trading opportunities are
preempted rises, traders are more strongly tempted to breach risk management protocols
to boost trading profit. The tension between search and compliance incentives thus causes
the agency rents to increase with time pressure, making it optimal for each firm to incen-

2Lieberman and Montgomery (1988) identify three types of first-mover advantages: technological lead-
ership, preemption of assets or switching costs of customers.
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tivize less compliance under higher time pressure. The firms disregard that, through this
channel, the contractual incentives they implement for their own traders—which govern
their trading speed—affect the agency cost of risk management and hence the (shape of
the) optimal contract used by other firms.

These contractual externalities reinforce the strategic complementarities and thus the
scope for a race to the bottom already present in a model of preemptive competition
without agency. In the model with agency, time pressure undermines risk management
along two dimensions: an “opportunity cost” effect decreases its value to a firm as a whole,
while the “agency rent” effect shifts its value increasingly to the firm’s traders. Because
both of these effects feed back into time pressure and thereby reinforce each other, it is
moot to debate in this setting whether risk management failures are to be blamed on the
(deliberate) negligence of firms or the moral hazard of its traders—the answer is both.?
Consequently, legal and regulatory penalties aimed at deterring such failures should target
firms and individuals to address both effects.

However, the agency problem is not merely an amplification mechanism. The contrac-
tual externalities can create coordination failures among firms even if the time delay caused
by risk management processes goes to zero in which case the opportunity cost effect disap-
pears. Time pressure in the market depends on compliance even in the absence of the time
delay because risk management makes firms trade more selectively. Less selective trad-
ing strategies cause trade opportunities to disappear faster and so increase time pressure
in the market. Since the agency cost of incentivizing compliance rises with time pressure,
this selectivity channel alone can render the emergence of “front office cultures”—incentive
structures which prioritize trade execution over risk management—a self-enforcing market
outcome.

Moreover, the agency problem could cause the outcome to be inefficient even if firms
were able to coordinate their incentive contracts. Agency rents amount to a redistribution
of surplus from the firms’ principals to the traders, and in sufficiently fast or competitive
markets, could make risk management too costly for each principal irrespective of the
other principals’ choices. These different sources and types of inefficiencies, and their
interactions, suggest that multiple policy levers may be needed for effective regulation.

If incentive contracts play a central role in the effective implementation of risk man-
agement, compensation regulation is a salient policy instrument. Regulation that jointly
addresses risk management processes and trader compensation can in principle achieve the
first-best outcome in our model. However, the information demands for identifying the
optimal rule are daunting. In practice, it has been suggested that caps on salary-incentive
ratios—to make compensation less “high-powered” —would promote compliance. But our
results caution against the inference that high-powered contracts (with low base wage
relative to bonuses) indicate weak compliance incentives. We show that the equilibrium

3This is invariably the main point of contention when rogue traders stand trial. The trader at the
heart of the 2008 Société Générale trading scandal, Jerome Kerviel, insisted that his superiors had been
intentionally negligent and tacitly supportive. An audit report revealed that the bank had failed to follow
through on more than 74 internal alerts about his trading activities dating back to 2006 (Bennhold and
Clark, 2008).
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relationship between salary-incentive ratios and risk management quality is ambiguous.
Because the severity of the agency problem is endogenous to overall compliance (via time
pressure), traders’ compensation can become higher or lower-powered when shocks to the
trading environment decrease the equilibrium level of compliance. Therefore one can-
not infer from high-powered contracts whether a firm finds it too expensive or, on the
contrary, cheap to induce compliance, at least not without information about other pa-
rameters that determine the degree of time pressure in the market. Indiscriminate limits
on salary-incentive ratios across the board can overshoot the target and even backfire.

Risk management failures in our model are rooted not in the capital structures of finan-
cial firms but in the markets they operate in. Unlike risk shifting or black swans, this type
of risk management failure is impervious to capital and liquidity requirements. Some alter-
native policies have ambiguous effects as they deter valuable as well as excessive trades, but
the following two-pronged approach seems reasonable: The first prong views deficient risk
management as a governance problem and makes both firms and individual traders liable
for violations to counteract both opportunity costs and agency rents of risk management.
The second prong views it as a public goods problem, subsidizes risk management infor-
mation systems, and integrates risk controls into market processes and trading platforms
to alleviate the coordination failure.

The rest of the paper is organized as follows. Section 4.2 discusses the related literature.
Section 4.3 presents the model of delegated trading and risk management, while Section
4.4 derives equilibrium predictions. Section 4.5 contains a regulatory discussion. Section
4.6 concludes. All the proofs are relegated to Appendix C.

4.2 Related Literature

Smith and Stulz (1985) and Froot et al. (1993) were first to formalize why and how firms
should hedge exposures to idiosyncratic risk in the presence of external financing frictions.*
Rampini and Viswanathan (2010) refine this theory qualifying when risk management
is optimal if hedging is subject to the same frictions as financing. In their model, risk
management incurs opportunity costs in that collateral committed to hedging contracts
reduces a firm’s capacity to enter such commitments to finance current investment. We do
not (explicitly) model hedging decisions; instead, we focus on firms’ choices to establish
governance systems for risk monitoring. In our model, the resource firms commit to risk
management is time and opportunity costs of risk management arise from preemption
in financial markets (as in Bouvard and Lee, 2020). Crucially, we also account for the
additional agency costs firms incur to ensure traders’ compliance with established risk
governance systems.

Preemption is similar to the first-come-first-served rule in bank run models (Bryant,

4In reduced form, the benefit of risk management is a private value (firm-specific benefit of hedging
idiosyncratic risk) of entering a financial contract that is traded at a common value (market price of
hedging contract). In earlier work, Stulz (1984) analyzes optimal hedging policies from the perspective of
a risk-averse manager (employee).
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1980; Diamond and Dybvig, 1983), from which our model departs in two noteworthy ways.”
First, absent agency frictions, risk management design is the outcome of long-run decisions
that do not coincide with on-the-spot preemptive actions: such organizational choices pre-
cede individual trades. Yet since we model trade as randomly staggered through time as a
result of independent search processes, preemption motives pass via “time pressure” to risk
management choices, which through this medium inherit the strategic complementarities
known from bank runs.

Second, we further introduce agency problems that firms must address to implement
their chosen risk management protocols. This allows us to study the interaction of agency
problems across firms subject to “bank run” externalities. Costly monitoring theories are
common in financial intermediation, internal capital markets, and corporate governance
(Diamond, 1984; Gertner et al., 1994; Holmstrom and Tirole, 1997b; Burkart et al., 1997).
We are, however, unaware of existing work where the cost of monitoring is time, or depends
on competition or on others’ monitoring choices.

Our theory provides a rationale for risk management regulation — as distinct from capi-
tal or liquidity regulation — similar to theories that justify corporate governance regulation
based on externalities. This literature has focused on pecuniary externalities (Acharya and
Volpin, 2010; Dicks, 2012) and learning externalities (Raff, 2011; Cheng, 2011; Acharya
et al., 2016) in the context of managerial labor markets, we highlight contractual external-
ities that arise from the impact of competitive pressure on agency rents.

Links between competition and risk taking have been studied in the banking literature
with a focus on the effect of competition on bank franchise values (Keeley, 1990; Hellmann
et al., 2000b; Boyd and De Nicolo, 2005; Martinez-Miera and Repullo, 2010) and the returns
to screening (Ruckes, 2004; Dell’ Ariccia and Marquez, 2004).° The key mechanism in our
paper is that competition raises the (opportunity and agency) costs of screening. Our
analysis of agency is reminiscent of Heider and Inderst (2012), who examine a multi-task
conflict between screening and loan “prospecting,” which, despite lacking an explicit time
dimension, bears similarity to preemptive competition.

A literature in industrial organization studies more broadly how competition interacts
with agency and has identified a variety of effects operating through information revela-
tion, marginal returns to managerial effort, and total firm income.” The overall effect is
generally ambiguous, qualifying the “Hicks conjecture” that product market competition
curbs managerial slack. These papers typically study one-dimensional moral hazard in
oligopolistic models. Our results rely on multi-dimensional moral hazard, and in this re-
spect, are closer to Benabou and Tirole (2014) who study how labor market competition
skews contractual incentives across different types of tasks.

5See also Postlewaite and Vives (1987), Chari and Jagannathan (1988), Jacklin and Bhattacharya
(1988), Allen and Gale (1998), Chen (1999), Peck and Shell (2003), and additional references in the survey
by Gorton and Winton (2003).

6A different perspective is taken in Parlour and Rajan (2001) where lenders to the same borrower exert
negative externalities on each other by raising the borrower’s overall default incentives.

"See, e.g., Nalebuff and Stiglitz (1983); Scharfstein (1988); Hermalin (1992); Martin (1993); Schmidt
(1997); Raith (2003); Golan et al. (2014).
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Time-based competition is essential to the sizable literature on innovation and patent
races. Most of this literature uses sequential games or real options models in which strategic
choices coincide with the acts of preemption.® As mentioned earlier, the strategic choice in
our model — whether to run risk management — is made ex ante. Our model is hence more
similar to the one in Askenazy et al. (2006) in which firms that compete on innovation
choose ex ante between “mechanistic” and “organistic” organizational designs that differ
in production efficiency and “time-to-market.”

Recently, time-based competition has become the focus of research on high-frequency
(low latency) trading in financial markets. Apart from showing that the race to reduce
latency spurs overinvestment in technology, these papers trace out the impact on market
liquidity, asset prices, and trading volume (Budish et al., 2015; Biais et al., 2015; Dugast
and Foucault, 2018).7 Our analysis is not specific to high-frequency trading but shares a
similar view, and adds to the list of concerns that competing on speed may impair the risk
allocation in financial markets by undermining governance processes inside firms. This con-
nects our paper to the literature on the allocative role of secondary capital markets. Most
existing results in this literature revolve around (efficient) prices as a source of information
that can destroy risk-sharing opportunities, guide investment decisions, enhance incentive
contracts, and frustrate takeovers.'” In our model, allocation is driven not by information
revealed through market prices but by processes inside firms, which are, however, affected
by the market’s speed.

Our focus on a risk management link between markets and organizations combines the
perspectives of two earlier papers. Garleanu and Pedersen (2007) study the role of risk
management protocols in creating liquidity feedback loops in the market, whereas Landier
et al. (2013) focus on the “dissent” function of risk management inside an organization
and when this function may be compromised. In our model, market interactions and
organizational choices are jointly determined by a trade-off between immediacy in the
market and “dissent” in organizations.

4.3 The Model

4.3.1 Model Description

We present a model in which firms face preemptive competition over trading opportunities,
delegate the search for trading opportunities to agents, rely on agents’ compliance to
conduct risk management, and can use compensation and ex-post monitoring to incentivize
the agents. We will derive our results in a setting where infinitely many atomistic traders
can continuously adjust their actions. To properly specify that model, we present it here as

8For work on real options in competitive environments, see, e.g., Leahy (1993), Caballero and Pindyck
(1996), Grenadier (2002), and Aguerrevere (2009), who examine how strategic interactions affect firms’
payoffs from exercising their options.

9A notable exception is Pagnotta and Philippon (2018) who, instead of focusing on preemption among
traders, study the incentives of securities exchanges to offer trading platforms of different speed to het-
erogenous traders.

108ee, e.g., Bond et al. (2012b) for a survey of this literature.
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the limit of a model where n traders of size s(n) = 1/n can adjust their action at discrete
time intervals.

Trading Time is continuous but divided into periods of length A each indexed by the
time ¢ at which it starts, i.e., period ¢ represents the interval of time [t, ¢+ A). Exogenous
shocks create trade opportunities that cannot be exploited immediately due to informa-
tional frictions.'? A number iA of these opportunities are born at the beginning of each
period, and each stays alive until a trade has been executed with respect to it.

Traders are employed in different firms and seek to exploit trading opportunities. At the
beginning of each period ¢, trader k € {1,...,n} chooses his search intensity ey € [0, \™}]
for the period. A trader who searches with intensity ey, in period [¢,t + A) bears a cost
cerrs(n)A but, in return, finds each live trading opportunity with a probability exs(n)A
over the period. Note that through its dependence on size s(n), the probability a trader
finds a given opportunity in a given period tends to 0 as n increases. This is the sense in
which traders become atomistic as n — +00.

Two intuitive properties of this model are that search exhibits a scale effect and oppor-
tunities grow stale: the more opportunities are alive, the more are found for given effort,
and opportunities of any given vintage become rarer over time as more of them will have
been exploited. The scale effect is similar to the constant-returns-to-scale property often
assumed for the matching function in search-matching models.

Risk Management Trading on an opportunity yields 7, which is a common value for
all firms, and a firm-specific private value ay,.'> We view 7 as the direct dollar profit from
a trade. By contrast, ay, does not represent a trait of the trade per se but the “fit” of the
trade with the risk profile of firm k.'*

There is uncertainty about the private value of a discovered trade opportunity. At the
time of discovery, trader k knows only that

G Lo with probability p
M7 a_ with probability 1 — p.

" The shocks could change fundamental asset values, create discrepancies in the prices of correlated
assets, or shift (latent) demand and supply for liquidity. Thus, trade opportunities could be based on in-
formation about fundamental values, identifying (discrepancies between) affected assets, locating potential
counterparties, or conceiving of creative ways to overcome limits to arbitrage.

12If the instantaneous probability of discovering a live trading opportunity was not going to 0 as
n — 400, then opportunities would be instantaneously found as n — oo. This assumption captures
the idea that trading opportunities are latent.

13We index the private values only by trader identity & and discovery time ¢, even though it could also
depend directly on the trading opportunity. Since trading opportunities are found sequentially and all oy,
are independently distributed, indexing by trading opportunity would be redundant.

MFor example, the trade may exacerbate imbalances in the firm’s risk profile that raise potential distress
costs or lower collateral pledgeability (See Froot et al., 1993 and Rampini and Viswanathan, 2010). Such
changes in shadow costs are reflected in ay;. Viewing ay; as a private value is consistent with canonical
theory (e.g. Froot et al., 1993), where the rationale for risk management is a private value (firm-specific
benefits of hedging idiosyncratic risks) of writing financial contracts traded at common value (market
prices of hedging contracts).
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Private value realizations are independent across firms and trade opportunities (and time),
and have mean zero. We assume —a_ > m > —a, and 7 > 0, that is, a trade is desirable
for firm k if and only if ay; = ay. Together with the zero mean assumption, this implies
that

p
O<m<
TS

ag. (A.0)

Firms can produce information on ay; in order to condition trading decisions on it; we
refer to this process of managing trade positions based on assessed risk “fits” as risk man-
agement. Risk management has the information benefit that a requested trade is executed
only if oy = ay. However, the process has two limitations. First, it requires a determin-
istic time ¢ > 0, and hence delays trade execution. Second, it requires the cooperation of
the trader who discovered the opportunity. Specifically, at the beginning of each period
t, the trader can choose a probability m,; € [0, 1] with which trade opportunities found in
[t,t + A) bypass risk management. We interpret this as violating pre-trade protocols or
deceiving a “back office,” and in this spirit, refer to m; as the manipulation rate.

Risk Governance The trader’s tasks are subject to moral hazard. The first task is to
search. Instead of exerting costly effort to search for trade opportunities with common
value 7, a trader can submit frivolous trade ideas, which require no effort and generate
zero profit. Search effort and thus the (ex ante) nature of a trade idea are unobservable.
The scope for frivolous trading makes it suboptimal to reward trade volume.*® Firms hence
incentivize search based on trade performance. Direct trading profits, i.e., realized common
values 7 are publicly observed and contractible. By contrast, private values ay; are not
publicly observed and non-contractible.

The second task is to comply with pre-trade protocol. However, manipulation is unob-
servable. Without contractible signals about the private values, incentivizing compliance
requires a contractible signal about manipulation. We assume that firms address this
problem through post-trade reviews. Specifically, if a trader’s average manipulation rate
over some history is m, a review detects verifiable evidence of manipulation, which con-
tracts can be conditioned on, with probability ym where 0 < v < 1. The assumption
that this probability is linear in m is not crucial; our results hold for 4/(m) > 0 and
Y'(m) = =[y'(m)]?/[1 — ~v(m)].

While the firms have infinite lives, traders are employed for a finite number D/A of
periods, i.e., for a time D, and are replaced at no cost. We assume, for simplicity, that
every trader undergoes post-trade reviews once, after their employment ends. Under this
assumption, the length of employment D is immaterial for our equilibrium analysis; it can
be arbitrarily long or short, or differ across firms and traders.

5The reason is not that agents can engage in limitless frivolous trading; the mass of trades that
could credibly be requested is bounded from above by the maximum rate at which one can find valuable
opportunities in equilibrium. The reason is that offering any reward for trade volume—and thereby for
frivolous trades—makes it more expensive for the firm to incentivize genuine search effort.
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In sum, to incentivize a trader’s two tasks, a firm has as many governance instruments
at its disposal. It can condition a trader’s wage on his realized trading profits, denoted
{Ilx:}, and on a binary signal indicating whether there is evidence of manipulation. In
Section 4.3.2, we motivate these assumptions and discuss which ones are crucial for our
results.

Additional Assumptions We exclude certain parameter constellations to condense the
analysis. To ensure preemptive competition, we assume that the mass of firms p for whom
a given trade is a good “fit” exceeds the size i of any vintage (of trade opportunities), i.e.,

?

- <1 Al
P (A1)

We also bound the marginal cost of search from above:
c < i (A.2)

This ensures that firms find it worthwhile to incentivize some search effort. It also implies
that, in the absence of agency problems, search intensity would be set to its upper bound
A~L. These restrictions suppress cases in which time is not a concern or firms are inactive
in the market. Last, we assume that everyone is risk-neutral and has a discount factor of
1.

4.3.2 Discussion of Model Assumptions

Firms in our model firms acquire information about investment opportunities. We model
this as a two-stage process for the following reasons. First, once information gathered
up to a point suggests that a trade opportunity is attractive (“search”), there is still a
choice between trading immediately and waiting for more information (“risk assessment”).
Second, we think of traders searching in market data while risk management also aggregates
firm data. A trader has some knowledge about the quality of his trades but less about
how his trades interact with other exposures of the firm. It is also unlikely that there are
publicly verifiable ex-post signals of “fit” assessments across time-varying risk exposures
from decentralized trades across a firm. This motivates our assumption that the private
values are hidden information for which there are no contractible signals; we treat them
like “private benefits”—to the principal.

Third, this goes hand in hand with the assumption that the firms use pre-trade ap-
proval to make trade decisions contingent on information about ay,; and rely on post-trade
monitoring to punish non-compliance with that requirement. This dual control process
has a role to play to the extent that compensation cannot make traders condition on ;.
If firms could condition traders’ wages on the realized sums 7 + «y, the controls would
be redundant, and information acquisition would de facto become a one-stage process (of
evaluating the sum).'

6The complete absence of contractible signals for the private values ay; is not crucial. As long as the
firms use control processes in addition to noisy signals of ay:, our results remain qualitatively robust.
There is limited value in expanding the model in this direction, while economizing on this aspect seems
realistic.
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In practice, pre-trade approvals are implicit in risk limits that require traders or business
units to stay below preset risk thresholds. Examples of risk metrics used in setting limits
include notional value (“position limits”), market risk measures (e.g., volatility, duration,
or convexity), correlations (“concentration limits”), losses (“stop-loss”), and value-at-risk.
The purpose of these limits is to provide a check on traders’ performance and to trigger
reviews of any positions that breach the limit because of concerns about the increased
exposure of the firm. Risk management sets these limits and handles exceptions. Suppose
a trader requires approval to trade more than [ units of an asset since it would breach a
limit. Pre-trade approval in our model proxies for such exceptions, with [ normalized to 0.
Managing exceptions and monitoring compliance depends in part on information provided
by traders. Because this leaves room for manipulation, firms conduct ex post reviews of
their traders’ valuation assumptions, a process known as wvaluation control.'” But this
process is imperfect, as reflected in the model assumption that manipulation sometimes
goes undetected.'®

Finally, the constant birth of trading opportunities serves to allow for steady states,
where calendar time is uninformative about latent market conditions, improving the tractabil-
ity of the model.

4.4 Analysis

4.4.1 Continuous Time and Atomistic Traders Limit

A key feature of our model is that it provides analytical tractability when the time in-
crement A tends to 0 and the number of traders n tends to oc. In that limit, we can
characterize a steady state of the model where search effort ¢, and manipulation rate m;
are time invariant.

To see this, suppose that all traders expend effort e in period ¢t. The probability that a
trading opportunity alive at ¢ is found in that period is 1 — (1 — £A)". Therefore, in the
continuous-time limit, the probability that a specific trade opportunity, still alive, is found
instantaneously is then

Nl Clntriad A i1
A% A - C (4.1)

In other words, if all traders search at intensity e, discoveries of a trading opportunity
follow a Poisson process with rate e. Hence, continuous-time decision-making generates a

1T«Rogue traders” are the most infamous examples of traders manipulating data to undercut risk
controls, if only because their actions culminated in spectacular losses for the affected banks. A short list
includes Jerome Kerviel (Societe Generale), Kweku Adoboli (UBS), Nick Leeson (Barings Bank), John
Rusnack (Allied Irish Bank), Yasuo Hamanaka (Sumitomo Corporation), and Toshihide Iguchi (Daiwa
Bank).

8Valuation controls are also known as post-trade audits, and especially relevant for complex trades,
derivatives and structured products, over-the-counter or illiquid markets, and generally all settings where
publicly observable market prices are unavailable, unreliable, or imprecise. In its settlement with the
Securities Exchange Commission over the London Whale trading scandal, J.P. Morgan Chase acknowledged

that the valuation control unit failed to properly oversee those trading activities (Trindle, 2013).
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simple and analytically convenient discovery process, in addition to avoiding some cases of
limited economic interest.'

In addition, as discussed already, when the number of traders n tends to oo, the proba-
bility that a trader finds a given opportunity becomes negligible. The continuum of traders
along with the i.i.d.random variables implies that, in effect, there is only strategic uncer-
tainty: for traders (and firms) to infer the state of the market in every instant merely
requires conjectures about each other’s governance choices.

4.4.2 Steady-State Market Conditions

Suppose now that all traders use the same constant search intensity e and manipulation
rate m and consider the distribution of the lifetime of a trade opportunity. Precisely, what
is the probability that an opportunity born at ¢ is alive at ¢ +T7 If T < ¢, this requires
that all discoveries of the opportunity between ¢ and ¢+ 7" are run through risk assessment.
The probability of this is the cumulative Poisson probability over all the possible numbers
of times j € N the opportunity is found in a time interval of length 7', each multiplied with
the probability that every discovery is referred to risk assessment:

+
exp [—eT|

8

(cT)’

Vi

(1 —m)’ = exp[—eT)|exp [eT(1 —m)] = exp [—emT]. (4.2)

<
Il
o

If T"> ¢, an opportunity born at ¢ is alive at ¢t + T if (a) all discoveries between ¢t and
t + T — ¢ are assessed and found to be of negative private value and (b) all discoveries
between t +71'— ¢ and t + 71 are assessed. The probability of the intersection of these events
is

Part a Part b

A A
7 N\ 7 ~\

L4 )1 = ) xexp (e 31— mp

exp (—e(T—1)) Y

= 7 — J!
= exp(—e(T —1))exp (e(T —t)(1 —=m)(1 — p)) x exp (—et) exp (et(1 —m))
= exp|—(em)T —e(T —1)p(1 —m)]. (4.3)

It follows that
Zem(T) = min{exp [—(em)T] ,exp [—(em)T — e(T — ¢)p(1 —m)]}

is the probability that the survival time of a trade opportunity exceeds the span T

The total mass of trade opportunities that are alive at ¢ and were born after ¢t — 7' is
the sum of all the opportunities with a birth date 7 € [t — T',¢] times the probability that
such an opportunity survives for a time span t — 7.

t T
/ i Zem(t —T)dT = / i Zem(T)dT. (4.4)
=T 0

For instance, in continuous time, the probability that multiple traders find the same opportunity at
the same time is zero, which avoids devising tie-breaker rules.
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Now letting T tend to oo yields the total mass of trading opportunities alive at ¢:
+o0o
I(e,m) = / 0 Zem(T)dT
0

At ( ) 1 1
=-|——exp(—emm) | —— —— || .
e|m P m  m+p(l—m)

The probability that an opportunity randomly picked at ¢t was born after ¢t — T is the ratio
of (4.4) to (4.5),

(4.5)

fOT Zem(T)dT
em(T) = : .
g , ( ) f0+oo Ze’m(T)dT

Gem(T) defines the cumulative distribution function of the age of trade opportunities. It is
time-invariant if traders play a time-invariant strategy (e,m). In that case, if G, (7)) de-
scribes the age distribution of trade opportunities at ¢, it also describes the age distribution
of trade opportunities at all ¢’ > ¢.

(4.6)

When G, ,,(T) is stationary, the preemption risk for a trader who submits a trade to
risk assessment is stationary. Consider the probability that a trade idea referred to risk
assessment will no longer be available once the assessment is completed. By stationarity,
the mass of trade opportunities alive at ¢ that disappears between ¢ and t + ¢ is equal to
the mass of opportunities born between ¢ and ¢ + ¢+ and still alive at ¢t + ¢. The latter is

t+e i
 Zem(t+1—T)dr = —[1 — - .
/L i Zem(t+1—T)dr em[ exp (—emu)]

Dividing this by the total stationary mass of trading opportunities alive defined in (4.5)
yields the probability that a trade opportunity referred to risk assessment in ¢ disappears

by t + ¢:
_ m exp (—evm) !
ple,m) = (1 PRy p—— <—ebm>) | 47

We will refer to p(e,m) as the preemption risk and to I(e,m) as the opportunity stock in
steady state.

Note that the market asymptotically tends to the steady-state distribution G, ,,(T) as
time passes and traders’ strategies are kept fixed. If at time t the distribution of trading
opportunities is exactly G, ,,,(T") and traders play the strategy (e, m), then the distribution
Gem(T) is stationary. In what follows we focus on steady-state equilibria, that is equilibria
such that the equilibrium strategy (e,m) is constant over time and optimal given the
distribution G, ,,,(T"). A full characterization of trade opportunities in the market requires
the age distribution G, ,,(7), but the market conditions I (e, m) and p(e, m) will be sufficient
statistics for firms’ and traders’ decisions in a steady state.?’

2ONote that p is not conditional on the age a (time since birth) of a trade opportunity. Under the
assumption that the manipulation rate for [¢,¢ 4 dt) is set “ex ante” at ¢, traders only care about average
preemption probabilities. This assumption is not innocuous, even though the Poisson process is memory-
less, because risk management delays make the depletion rate of an opportunity dependent on its age. In
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Lemma 4.1 (Steady-State Market Conditions). For any time-invariant strategy (e, m),
there exists a stationary distribution of trading opportunities age distribution Ge ,,(T'). This
distribution is characterized by an opportunity stock I and preemption risk p, such that, if
e >0 and m < 1, we have that

e opportunity stock I decreases in e, m, and p, and increases in ¢ and i;

e preemption risk p increases in e, m, p, and t.
Proof. See Appendix C. |

The comparative statics are intuitive: (i) Any increase in the speed or frequency of
trading—be it due to more search e, more manipulation m, higher trade approval rates
p, or shorter risk management delays (—raises the exit rate of opportunities, which, for
a given birth rate, lowers the steady-state opportunity stock; (ii) a higher exit rate also
raises preemption risk, except when it is caused by shorter delays ¢: faster risk management
leads to fewer foregone opportunities.

4.4.3 Steady-State Optimal Contracts

We now study a single firm-trader pair and derive an optimal contract taking market
conditions as given. We focus on contracts where incentive-compatibility constraints are
binding (as usual in principal-agent models) by giving all bargaining power to the firm and
assuming limited liability for the trader.

4.4.3.1 Path-Independent Contracts

To construct a steady-state equilibrium, we must show that, under stationary market con-
ditions, there exists an optimal contract that implements a time-invariant trader strategy.
The firm offers a contract to hire a trader for the period [to, {9 + D]. We normalize the
trader’s reservation wage to 0, and without loss of generality, set t5 = 0. A generic contract
is a pair of functions

W = {W({IL}p), W({IL}n)}

which specify the trader’s wage as a function of the entire profit path {II;} p, respectively,
when manipulation is detected ex post and when none is detected. Subscript D is short for
t € [0, D]. 11, is the total common-value profit from all opportunities discovered in ¢ and
eventually executed (with or without risk assessment). Under stationary market conditions
(I,p), this is

I, = Teg [my + (1 — my) (1 — p)p] m = T(ey, my). (4.8)

fact, with deterministic delay ¢, the preemption probability as a function of age has a kink at a = ¢. These
features make the analysis considerably more complex. However, it should still be possible to construct a
steady state, in which m(a) is time-independent and uniform across traders and the distribution of a is
stationary.
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Recall that this is not equal to the value of trading to the firm, which includes the private
values. Gross of wages, that value is

Vi = Tegmym + (L —my)(1 — p)p(m + ag )] = Ve, my). (4.9)

Given that each trader is infinitesimal and there is no aggregate exogenous uncertainty, no
trader directly conditions actions on those of other traders and the market evolves deter-
ministically. A trader’s strategy can hence be written as {é;,m;}p, with tildes indicating
possible randomization, and the trader’s strategy choice can be formulated as the ex-ante
problem
D
maximize [E {w({ét,mt}D,W) —/ cétdt] (4.10)
{é:,mt}p 0

where w({e;, m}p, V) is his wage given a contract W and an ex-post realized strategy
{er,mi}p, and the expectation is taken at the time of hire. The firm’s contracting problem
is then

D
max&vmize E {/ Vidt — w({ét,mt}D,W)}
0

subject to W({IL;}p), W({IL,}p) >0,
and {e;, m;}p solves (4.10).

(4.11)

The key insight in the construction of the stationary equilibrium is that, in solving the con-
tracting problem in a stationary market environment, i.e., (4.11), firms can limit attention
to contracts that are contingent on a trader’s average common-value profit

= %/0 Mdt = Il + (1 — m)(1 — p)plr = T1(Z, ™), (4.12)

or total profit I1D, instead of the entire profit path {II;}p, where

D
1 [P myedt

€= —/ edt and  m = fo})#; (4.13)
D 0 fO etdt

are a trader’s average search intensity and manipulation rate. In turn, given a stationary

market environment and given contracts only contingent on average profit, agents can limit

attention to time-invariant strategies to produce whichever average profit they choose to

achieve.

Lemma 4.2 (Path-Independent Contracts). Under stationary market conditions (I,p),
there exists an optimal contract such that

1. if the trader generates average profit I, he is paid W (I1) when no manipulation is

detected, and W (I1) when manipulation is detected,

2. the trader exerts constant search and manipulation, i.e. for every t, e, = e and
m; =m.
Proof. See Appendix C. |
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To sketch the intuition for the result, note first that the total value of a given path of
trading to a firm is V D where

V=1 / Vidt = T1(&,m) + (1 — m)(1 - p)pas, (1.14)

comprises the average common-value profit plus the average gain from (partly manipulated)
risk management. We see in (4.14) that, in a stationary market environment and gross
of wages, the firm only cares about a trader’s average search intensity and manipulation
rate (&,m). The question is whether incentivizing some average strategy (€,m) is more
effectively achieved by contracting on the entire profit path {II;}p than by contracting
merely on the average profit II. The basic issue is that, in the trader’s strategy choice,
search and manipulation are partial substitutes in generating trades and thereby common-
value profits. But, crucially, because this substitutability applies just as much at the level
of instantaneous profits I, as at the level of average profits II, it turns out that contracting
on the former restricts the trader’s strategy no more than contracting on the latter.

For a cursory illustration, let Q = {{II;}p : IT = 1T} denote the set of all feasible profit
paths that generate average profit I1. Seeing in (4.13) that average profits only depend on
average search and manipulation, let ¥4 = {(e,m) : II(e,m) = II} denote the set of all
feasible combinations of & and 7 that generate IT. Arbitrarily pair any {II}}, € Qg with
any (€',m') € ¥y. Construct the dynamic trader strategy

H/
e, =—¢ and m,=m (4.15)
I1
By (4.8), this strategy generates the instantaneous common-value profits
1T H’
I, = Ltre'[m + (1 —m)(1—p = =11,
a [’ + ( )1 =pplm == ‘

where the second equality uses (4.12). By (4.13), the average search intensity and manip-
ulation rate under this strategy are

~ D _
E=— / Wiogr— e o and mzwzm/.
D II fO €tdt

That is, the strategy constructed in (4.15) generates the chosen profit path {II}}, with
the chosen average search intensity and manipulation rate (¢’,7m’). This argument can be
applied to any pair of elements from 0y and X4, which means that any path {II,} that
yields some average profit IT can be implemented with any pair (€,m) that yields that
average profit. Hence, conditioning the contract on elements in €y restricts the trader’s
choice of elements from ¥4 no more than merely conditioning the contract on L.

By Lemma 4.2, the program (4.10)-(4.11) can be reduced to a quasi-static problem: We
can analyze it as if contracts can only be contingent on average (or total) common-value
profits and the post-trade review,

W = {W(II), W(ID)}.
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and as if a trader chooses a single search effort e and manipulation rate m for her whole
tenure to maximize

(1 —ym)W (Il(e,m)) + ymW (Il(e, m)) — ceD. (4.16)

Here e and m carry no time index ¢ to indicate that they are time-invariant.

4.4.3.2 Cost-Minimal Contracts

Suppose the firm designs the contract W to incentivize the trader to choose a specific pair
(e,m). A contract that achieves this while minimizing payments to the trader takes the
following form.

Lemma 4.3 (Cost-Minimal Contract). A cost-minimal contract that incentivizes search
effort e and manipulation m exhibits the following two features:

e a bonus: W(II) > 0 and W (II) > 0 if I > Il(e,m) and W (II) = 0 otherwise;

e a clawback: if m < 1, W(II) < W(II) for I1 > M(e,m); moreover, if m < mo(p),
W(II) = 0 for any 11, where

iz nn 3152

Under a cost-minimal contract, the expected payment to the trader per unit of time is

E(w,) = { ce if m > my,

ce +r(e,m) if m <my,

where
2(1-(1-p)p)

(I=pp+ (1 —(1—p)p)m

r(e,m) = (mo(p) —m)ce

represents an agency rent.

Proof. See Appendix C. [ |

The bonus provision specifies that the trader receives a strictly positive payment if and
only if the average (common-value) trading profit meets (or exceeds) the threshold Il(e, m).
The clawback provision specifies that part—or if the firm implements a manipulation rate
m below mg, all—of the trader’s wage is clawed back if the post-trade reviews detect
manipulation. If the firm is willing to tolerate a manipulation rate above mg, the trader
merely recoups her effort costs. By contrast, if the firm wants to incentivize a manipulation
rate below my, it must pay the trader an agency rent (e, m)D over and above compensating
her for search effort.

The agency rent reflects an endogenous tension between the two tasks, search and
compliance. To see this, consider either task in isolation. Suppose m is fixed. The firm can
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implement any e with a contract under which E(w) = (1 — ym)W (1) + ymW (II) equals
ceD for all I > TI(e,m) and zero otherwise.?’ Since m is fixed, the simplest contract sets
W = W and hence —regardless of post-trade reviews—simply pays the trader a bonus ceD
if her performance reaches the target profit II(e,m); the trader just breaks even. Now
suppose e is fixed, so the contract only affects m. We write the difference quotient for the
trader’s objective (4.16) with respect to changes in m as

PO —w). (1.17)

Setting W — W > 0 makes manipulation costly. Since manipulation boosts trade profit,
ot

o > 0, the trader may still be inclined to manipulate if his expected wage increases
with trade profit. But the firm can shut this down by decoupling wages from trade profit:
% = 0. A simple contract is W = ceD and W = 0: the firm pays a fixed wage
that covers the trader’s effort cost, but claws back the wage if evidence of manipulation is
found. Under this contract, (4.17) collapses to —vyceD, so the trader chooses m = 0 and
breaks even. In fact, if e is fixed, the firm can also elicit m = 0 by paying a fized wage
W = W = ceD such that the trader is indifferent regarding m. Thus neither task per
se generates agency rents in our model,?> but incentivizing both imposes countervailing
demands on contract shape: Incentivizing search requires that pay be sensitive to trading
profit, inducing an incentive to trade. In direct contrast, compliance is best incentivized by
decoupling pay from trade profit to mute the incentive to (convert a discovered opportunity

to a) trade.

However, the key aspect of the model is not merely that search and compliance create
countervailing incentives — a feature common to multitasking problems (see, e.g., Holm-
strom and Milgrom (1991)) — but rather that the intensity of the resulting agency problem
depends on time pressure in the market. To see this, derive from (4.8) the iso-profits curve
for a target profit level of II:

That is, m(e) is the level of manipulation required to reach common-value profit II given
a search effort e. The marginal rate of substitution between search e and compliance m is
then how much manipulation needs to increase (at the margin) to make up for a marginal
decrease in effort and keep the profit on target II. This is given by the negative of the
slope of m(e):

MRS,,, = — 0_m = I .
’ de (1= (1—p)p)lmre?
2IThe trader is then indifferent between effort e and no effort; any other effort level is strictly dominated.
22Tn the case of search effort, this is because, conditional on a manipulation rate m, average trade profit
perfectly reveals average search intensity. Given our continuum and i.i.d. assumptions, this would hold
even if the profit from each trade were random. Adding exogenous shocks that render average profit IT
a noisy signal of search effort exacerbates agency costs. As is, our model abstracts from agency costs of
search, conveniently isolating those that arise purely from risk governance.
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Note that this marginal rate of substitution is decreasing in the preemption risk p,

OMRSe,n Ip 0
o (- (A-pp)ine
So, as time pressure intensifies and given fixed costs of effort and manipulation, it becomes
increasingly tempting for the agent to substitute manipulation for search effort. Intuitively,
when preemption risk intensifies, an increase in manipulation has a larger impact on prof-
its because an increasingly high fraction of the discovered opportunities are lost during
risk assessment due to competition. This, in turn, implies that the cost for the firm of
maintaining a given level of search and compliance, (e, m), increases with time pressure p.
We formally state this partial equilibrium result in the following proposition.

Proposition 4.1 (Cost of Risk Management). If m < mq, the firm’s marginal cost of

. Lo . . or(eym) - - . . . .
incentivizing risk management, i.e. —==== is increasing in the preemption risk p.
m

Proof. See Appendix C. [ |

Note also that the highest level of compliance that can be induced without leaving the
trader a rent, myg, is itself increasing with preemption risk. In other words, heightened
time pressure not only causes the agency rent to increase for compliance levels where it
is already strictly positive, but it also widens the range of compliance levels requiring a
strictly positive agency rent.

4.4.4 Equilibrium Risk Management

The previous section treats preemption risk p as a parameter that affects firms’ cost of
incentivizing search and risk management. We move now from this partial equilibrium
within a firm to the analysis of the general equilibrium where p becomes the endogenous
product of firms’ collective decisions to set up incentive structures for traders.

We start the analysis with a result that simplifies one dimension of firms’ best responses.

Lemma 4.4 (Optimal Search). In an optimal contract, the firm implements mazimal
effort, i.e. e* = A7

Proof. See Appendix C. [ |

To understand this result, note that given Assumption A.2, incentivizing search with
no risk management generates strictly positive profits. It follows that at the optimal level
of compliance m* the marginal benefit of incentivizing search is strictly positive. Then
given that effort cost is linear, firms choose the maximal level e* = A~!. The linearity
of the effort cost provides tractability because the corner solution we obtain for search
reduces the analysis of firms’ best response to the single-dimensional choice of (induced)
compliance m. This also implies that firms respond to increased time pressure by reducing
risk management, when a more convex specification of the search cost would generate a
reduction in both risk management and search effort. To the extent that the source of
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inefficiency in the model comes from the level of risk management, this specification also
focuses the analysis on the main friction.

To isolate the effect of the agency problem, it is useful to start from a benchmark
equilibrium where this friction vanishes, i.e., the case where each firm can directly choose
a level of search effort and of risk management.

Proposition 4.2 (No Agency Benchmark). In the setting with no agency, search effort is
mazximal, (i.e., ¢ = X"') and there exist two thresholds 0 < 1 < T such that:

o for 1 <y, there is full risk management (i.e. m* =0);
o for 1>, there is no risk management (i.e. m* =1);

o for . € [1,1], both equilibria coexist.
Proof. See Appendix C. [ |

An analogous result is shown in Bouvard and Lee (2020) where coordination failures
can lead to inefficiently low levels of risk management, even absent agency frictions. In-
tuitively, the latency introduced by risk management in the trading process creates an
opportunity cost that is sensitive to time pressure. As preemption risk increases, the
probability that a trading opportunity assessed by risk management is lost to competitors
increases. Conversely, as firms give up risk management, preemption risk increases both
because firms act more quickly when bypassing risk controls but also because they trade
more indiscriminately, that is, any time they find a trading opportunity, rather than only
when the private value « is high. When the risk management latency ¢ is large enough,
this feedback loop supports equilibria where risk management is inefficiently low. Indeed,
there is no social benefit to speed in this model, therefore running every trading opportu-
nity through risk management maximizes total surplus. Absent agency frictions, equilibria
with risk management Pareto-dominate equilibria without risk management when both
exist. Furthermore, when only no risk management can be sustained in equilibrium (when
v > 1), firms would be strictly better off if they could commit to full risk management.

Turn now to the model where firms need to incentivize traders to understand how
agency frictions affect the equilibrium level of risk management relative to the benchmark
in Proposition 4.2. The first observation is that the agency rent distorts firms’ response to
time pressure.

Lemma 4.5 (Optimal Manipulation). There exists three ordered thresholds (p(I),p(I),p")
where 0 < p(I) <p(I) < p* <1, such that the best response manipulation level is:

( 0 if p<p()
m®(p, 1) if p(I) <p<b()
m*(p,I)=1q molp) if P(I)<p<p (4.18)
[mo(p*), 1] if p=p"
\ 1 o Pt <p,
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and 1s weakly increasing in p and weakly decreasing in I.
Proof. See Appendix C. |

Time pressure now affects firms’ choice of risk management through two channels.
As in the benchmark without agency, time pressure increases the opportunity cost of
risk management (the preemption risk). In addition, time pressure increases the cost of
incentivizing risk management (the agency rent), as stated in Proposition 4.1. When time
pressure is high (p > p*), firms choose to forgo risk management and would do the same
absent agency friction for the same reason as in the no agency case. However, in that
benchmark, firms would switch to full risk management (m* = 0) as p falls below p*. This
does not happen with agency frictions because an agency cost of incentivizing compliance
has to be paid as soon as m falls below mg(p). As a result, when time pressure eases
just below p*, the firm implements mg(p), the highest level of risk management that can
be implemented for free. Note that in the region (p(/),p*), as preemption risk decreases,
risk management improves because mg(p) decreases with p. As preemption risk diminishes
further, it becomes worthwhile to offer the trader a rent. This occurs both because the
opportunity cost of risk management declines with p (as in the benchmark), and because
incentivizing a given level of risk management becomes cheaper as p falls. Eventually,
compliance reaches its upper bound, m* = 0, once preemption risk falls below p(I).

Given this discussion, we should expect the level of risk management to decrease in the
model with agency relative to the no-agency benchmark, which is confirmed in our next
result.

Proposition 4.3. For any given set of parameters, the highest and lowest risk management
quality that can be supported as an equilibrium outcome is weakly, and sometimes strictly,
lower in the setting with agency than in the setting without agency.

Proof. See Appendix C. [ |

While the result in Proposition 4.3 — that agency frictions lead to a deterioration of
risk management — is generally intuitive, this effect combines two distinct sources of in-
efficiencies with different implications. The first one is that agency frictions create an
additional cost of risk management beyond its opportunity cost, directly depressing the
extent to which firms engage in it. Although agency rents represent a private cost to the
firm rather than a social cost — being mere transfers — they lead to insufficient levels of risk
management, thereby generating a social inefficiency. The second, more subtle effect is a
contractual externality operating through time pressure and its impact on agency rents.
As more firms give up (incentivizing) risk management, preemption risk increases, making
it more expensive for others to sustain such incentives. Unlike the direct cost of agency
rents, which results from partial equilibrium frictions within a single firm, this externality
emerges from strategic interactions among firms, constituting a general equilibrium phe-
nomenon that further exacerbates inefficient coordination failures. If firms could jointly
commit to stronger risk management practices, they would reduce the cost of doing so for
each other. Note also that this feedback loop is distinct from the one in the benchmark
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without agency, as it operates through a contractual channel instead of an opportunity
cost channel. Because both externalities are at play here, we focus below on a particular
case that shuts down the latter.

Proposition 4.4 (Contractual Externalities). Even for . = 0, the equilibrium level of risk
management is weakly lower than under full coordination, and when © € (w,7) # & this
inequality is strict.

Proof. See Appendix C. |

Setting the risk management latency to zero shuts down the opportunity cost of risk
management, as the risk of preemption vanishes. This implies, in particular, that in the
benchmark without agency risk management is maximal (m* = 0) and any coordination
issue between firms disappears. However, and perhaps surprisingly, coordination failures
can still arise in the setting with agency, even when risk management latency disappears.
This happens for two reasons. The first reason is that even if + = 0, risk management
affects the speed at which an opportunity disappears from the market. This is because
risk management not only affects how fast firms can execute (when « > 0) but also the
selectivity of their trade. Absent risk management, firms execute any trade they identify,
while they only act on those with a high private value (ag; = ay) when risk management
is in place. This, in turn, affects the steady state stock I of latent trading opportunities
that traders can discover at each instant ¢. The second ingredient is that the agency’s cost
of risk management is instead independent of I, that is, it is fixed relative to the size of the
pool of trading opportunities. This is because the benefit of search scales (one for one) with
I: as the number of latent opportunities grows, the rewards from search efforts become
more substantial. Furthermore, the probability of detecting manipulation v depends on the
relative mass of trades that bypass risk management. This implies that the agency problem
is invariant to I. Suppose now risk management is strict; then the equilibrium stock of
trading opportunity is high, and so is the benefit of risk management (relative to its cost).
In contrast, firms can be trapped in an efficient equilibrium where fast execution with little
risk control makes the trading pool shallow, which in turn discourages risk management.
Overall, Proposition 4.4 shows that agency frictions are not only an additional cost of
risk management but also an additional channel through which (contractual) externalities
cause coordination failures between firms.

4.5 Traders Compensation and Regulation

One motivation for introducing agency in a model of risk management is that it speaks to
one observable key dimension of financial intermediaries’ organization that is compensation
design. Efficient risk-taking is the central issue of prudential regulation and incentive
structures have attracted regulators’ attention. Consider for example, the view taken by

the U.S. Fed:??

Z3“Guidance on Sound Incentive Compensation Policies,” Federal Register, Vol. 75, No. 122, Friday,
June 25, 2010, Notices.
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[S|trong and effective risk management and internal control functions are crit-
ical to the safety and soundness of banking organizations. However,... poorly
designed or managed incentive compensation arrangements can themselves be
a source of risk to banking organizations and undermine the controls in place.
Unbalanced incentive compensation arrangements can place substantial strain
on the risk management and internal control functions of even well-managed or-
ganizations... [and] encourage employees to take affirmative actions to weaken
the organization’s risk management or internal control functions. (36401)

The guidelines recommend supervising compensation practices (e.g., deferred pay and claw-
backs) and associated risk control and governance processes together (36397).%

Our approach is consistent at a basic level with the view that incentives are essential
to the implementation of risk management. Our model also links compensation structures
that can be observed, the equilibrium level of risk management, and fundamental features of
financial intermediaries’ competitive environment. These linkages can be useful to address
one frequent criticism of pay structure in financial intermediaries, namely that the “bonus
culture” inherently leads to excessive risk-taking.?” In the aftermath of the 2008 financial
crisis, the European Parliament introduced a limitation of the ratio between the variable
and fixed components of remuneration to 100% with the explicit objective of limiting
incentives for risk-taking induced by profit-sensitive remunerations within banks.?°

In the model, when the trader perceives a rent (m* < mg), the binding incentive
constraint is the one that governs the level of compliance. The incentive constraint that
governs search and imposes that pay be sensitive to profit is then slack so that part of
the trader’s remuneration could be paid as a fixed wage.?” In the optimal contract with
the highest fixed component, we derive the ratio of fixed pay to total pay (i.e., fixed pay
plus bonus). In practice, this measure is sometimes referred to as the “pay mix” or the
“salary/incentive ratio,” and is higher if the contract is lower-powered (less sensitive to
profit). It takes a simple analytical form in our model:

S/I-ratio = 2y max {mo(p*) — m*,0}. (4.19)
From a casual inspection of Equation (4.19), one might conclude that high risk man-
agement (low m*) is indeed associated with a high S/I-ratio (low-powered incentives).

However, we show next that equilibrium effects make the mapping between incentives and
risk management quality difficult to interpret.

Proposition 4.5. In the Pareto-superior equilibrium,

24Gee also SR letter 12-17, “Consolidated Supervision Framework for Large Financial Institutions,”
released by the Fed in 2012.

25“The bonus system, which focused on short-term profits made over the course of the year, encouraged
risk taking and excessive leverage on a massive scale.” Nouriel Roubini in Crisis Economics: A Crash
Course in the Future of Finance (2011).

Z6Directive 2010/76/EU of the European Parliament and the Council of 24 November 2010.

27See the proof of Proposition 4.5 in the Appendix.
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e when competition intensifies (i decreases), risk management deteriorates while the
traders’ expected compensation and the S/I-ratio decrease;

e when search becomes more effective (X decreases), risk management deteriorates while
the traders’ expected compensation (per unit of search effort) and the S/I-ratio first
increase and then decrease.

Proof. See Appendix C. |

Going back to Equation (4.19), the reason the S/I-ratio may be difficult to interpret is
because it is driven by the level of risk management m* and by the cost of incentivizing
risk management that is captured by mo(p*). When time pressure goes up, either because
competition intensifies (fewer opportunities are born per trader) or because search becomes
more efficient, time pressure goes up which creates opposing forces. Time pressure makes
risk management more costly for the firm so that m* goes up and the S/I-ratio goes down
(the incentive structure looks lower-powered). Time pressure also increases the rent that
needs to be paid to the trader for a given level of risk management, so that mg(p*) increases,
driving up the S/I-ratio goes (the incentive structure looks higher-powered). Proposition
4.5 shows that the ability of the S/I-ratio to proxy, even directionally, for the level or risk
management depends on the sources of time pressure. For example, when comparing two
markets with different search frictions, it could be that the market with higher-powered
incentives has a lower m, that is, better risk management.

Overall, Equation (4.19) suggests that properly calibrating the regulatory constraint on
traders’ bonuses to achieve proper risk management requires a careful evaluation of firms’
trading environment. Our model supports deferred pay and clawbacks but provides a more
nuanced view on “bonus cultures.” In particular, it suggests that an exclusive reliance on
bonuses in trader compensation need not imply weak compliance incentives, provided the
bonuses are deferred and can be clawed back. One concern is that a blanket requirement to
use lower-powered contracts would then impose unnecessary agency costs on those trading
activities with unintended side effects (such as discouraging the activity or investment
in other risk controls). Instead, our analysis suggests confining regulatory intervention
to “problem areas” that display high-powered compensation in conjunction with other
characteristics, such as a high degree of time pressure, reliance on soft information, slow
pre-trade controls, and weak post-trade controls. In October 2023, the Bank of England
and the Financial Conduct Authority announced they were scrapping the banker bonus
cap introduced by the EU a decade earlier. Among the reasons mentioned by the UK
regulators was that the rule made it more difficult for UK banks to compete for talent with
financial intermediaries outside of Europe.?®

Our approach also speaks to the different functions that prudential regulation can play
and to the political economy of that regulation. As discussed in the previous section, agency
frictions introduce two sources of inefficiency, an agency cost of regulation and (through
that agency cost) a contractual externality. Depending on which of these two inefficiencies

28See for example “UK financial regulators scrap cap on bankers’ bonuses,” The Guardian, October 24,
2023.
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are affected by regulatory intervention, the financial sector may profit or lose from stricter
risk management requirements. To the extent that the risk management mandate reduces
the externality that firms impose on each other, it can be in the collective interest of inter-
mediaries to see that such regulations are implemented (Proposition 4.4). In that scenario
the role of regulation is to help firms coordinate on a higher level of risk management
when individual incentives to reach this level may not be sufficient in an unconstrained
equilibrium. On the other hand, a regulator may want to push risk management up to
levels where the required agency rents hurt the financial sector’s profitability, even though
it still creates social value, in that case captured by traders. Note that from Proposition
4.5, higher trader compensation may be required to obtain stricter risk management. We
should then expect the financial sector to push against such requirements. While our model
shows that risk regulation can have these conflicting effects on the profits of the financial
sector, it also highlights that disentangling these forces and identifying the degree to which
the interests of financial intermediaries and social welfare coincide should be challenging
in practice. The model also suggests that a regulator who aligns itself with the interests
of the financial industry may still want to regulate risk-taking, although to a lesser extent
than if it maximizes total welfare.

4.6 Conclusion

This paper has shown that time pressure in financial markets does far more than accelerate
trading—it fundamentally reshapes firms’ internal governance by raising the agency cost
of risk compliance. As fleeting opportunities heighten the premium on speed, traders’
bonus-driven incentives clash ever more sharply with pre-trade controls. The result is a
self-reinforcing cycle: greater time pressure makes it more expensive for firms to induce
compliance, which in turn erodes risk governance and further intensifies the race to preempt
competitors. This mechanism explains why even the most well-resourced institutions can
slide into a “front office culture” that prioritizes execution over prudence. It also suggests
that there may be scope for risk management regulation not warranted by the capital
structure of financial firms but rather the type of markets they compete in.

Financial markets are a natural context for the speed-information trade-off in our model,
and there are several avenues we have left unexplored. We have expressed the private
value of risk management in reduced form. A micro-foundation of the source of this value
in multi-divisional firms could link risk management to questions about the boundaries
of the firm. To focus our attention on risk management, we have also abstracted from
learning about the common value of traded assets. It would be of interest to study how
the strategic complementarities in our framework affect information aggregation. One
could also examine the speed-information tradeoff from the perspective of other market
participants, such as managers that disclose information or learn from prices, or securities
exchanges that can affect the speed at which trading unfolds.

Our framework could also be extended to other contexts. First, our formalization of
“time pressure” lends itself to the analysis of strategic complementarities akin to those
in bank runs or financial panics without the connotation of frenzy. It may be useful in
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modeling long-term organizational choices in a variety of settings with time-based compe-
tition other than financial markets, thereby expanding the applicability of the theoretical
apparatus that has been developed for models of panics.

Second, costly monitoring or state verification models are common in principal-agent
theory. The notion that the relevant cost of such information processes is time, and that
this may determine optimal contracts in environments where time is of the essence, is more
generally applicable beyond risk management. In particular, as we have shown, it naturally
creates a tension between monitoring (by the principal) and initiative (by the agent), akin
to those analyzed in the literature on delegation, but dependent on time pressure.
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CHAPTER A

Appendix for Chapter 2

A.1 Proofs

Proof of Lemma 2.1. We proceed in 2 steps: Step 1 derives the lender’s estimate of the
borrower’s quality given data z, while Step 2 finds the credit allocation given the lender’s

estimate.

Step 1. Given the DGP in Equation (2.1), the conditional pdf is

1A (0]z) :{

where

5t )A oo UHt—2=0
—2z) =
0 if t—2#0,

is the Dirac’s delta function, satisfying the following property:

/iﬂ FO)6(t—2)dt = f(2) Va>o0.

When A > 0 we have

1 1
:A/ 06(0—z)d0+(1—)\)/ 00
0 0

=Xz+(1-)\)1.
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When A < 0, performing similar computations, we get

E(f]z,A) = A1 —2)+ (1 —|A])3
=-A1-2)+(1+A)3
=Az+(1-X)3.

Step 2. The first order conditions of the problem in the first line of Equation (2.3) are

1-¢ —¢

¢—1 ¢
olm@e=1]" @) | mE (X -0)| = [mEe-1] (1-6) [m() (X=2)] paz) = 0.
Moving the second addend on the right-hand side and dividing both sides by

1-9¢

(1= )i = 1] ae) i) (X — )]
we get
¢ _ pa(z)xr —1
1—¢ () (X —x)

or equivalently
pa(z)r —1

¢= pun(z)X —1°

Solving for = we get the interest rate

nE) = o <X - m1<z>> |

The lender provides credit only if her expected profits are strictly positive, i.e. only if

pa(z)xp(z) — 1= gzﬁ(,u,\(z)X — 1) > 0,

so the credit rationing rule is
1
O(2) =1 ua(z) > <[

For future reference, I compute the lender’s expected profits, the borrower’s expected
profits and expected social surplus (plugging the allocation in Equation (2.4) and Equation
(2.5) and taking expectation)

VE() = 05(2) :qﬁ(,u,\(z)X - 1)}
VE(2) = 60(2) (1= 9) (m(2)X = 1) +1], (A.3)
Wa(z) = 0r(2) :MA(Z)X - 1} .
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Lemma A.1 (Credit Allocation following Data Withholding). Let Q@ = {z € [0,1] :
m(z) = @} be the set of borrowers that withhold data, the credit allocation algorithm is

1 1
(@) = pA(2) e <X - MA(@)) ’

(A.4)
E}X@) =1 {/L)\(@) > %} )
where
(@) £ A z(m, Q) + (1= N3,
2m,Q) 2 w(m Q) + (1 —w(m, Q))E@]0 € Q), (A.5)

Proof of Lemma A.1. We proceed in 2 steps: Step 1 derives the lender’s inference of the
borrower’s quality following data-withholding, Step 2 finds the optimal credit allocation.

Step 1. Let Q = {z € [0,1] : m(z) = @} be the set of borrowers that withhold data.
Consider A > 0, and let

7+ (1—7)Pr(z€Q)’

be the posterior probability that data-withholding is non-strategic. The lender’s posterior
beliefs over 6 given m = @ are:

012) = w(m, Q) f(0) + (1 — w(m,Q)) [r(0]z € Q)
where f(0) =1 is the prior distribution of #, while

w(m, Q) =

0]z € Q) = br ;ZFTZ%QCé{(@)?
/QA5<9—2>+(1—A> dz
Pr(zeQ) ’
= )\% +(1=2X)

is the posterior distribution given that data withholding is strategic (6(6 — z) is the Dirac’s
delta function defined in Equation (A.1) and satisfying property in Equation (A.2)). The
expected 0 given data withholding is

Ex(0|2) = /01 0f\(0|2)de,

:w(W,Q)/OIQdHJr(l—w(W,Q)) {A/Qemouﬂ(l—A) /Olede},

—w(m QE() + (1 — w(r,Q)) [AE(@\& Q)+ (1- A)E(@)},

=A\[w(m, Q) + (1 - w(r, Q)E(OI6 € Q)] + (1 - N} 2 un(2).
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Consider now A < 0. For some @ C [0, 1] and some y € Q, let Q, = {1 — y|y € Q} be the
reflection of ) over the axis y = % The lender’s posterior beliefs over 6 given m = & are:

A012) = w(m, Q) f(0) + (1 - w(m, Q) fr(0]z € Q)
where
H{1-0€ @}
Pr(z € Q)
- TPr(@eQ,)
so that the expected 6 given data withholding is

0]z € @) =[] + (1= A,

+ (1= A,

E(0]2) = Al [w(r, Q)% + (1 - w(x, Q))E®I0 € Q)] + (1 - |AD3,
= A fw(m Qb+ (1-w(m Q) (1-E@I0 € Q)| + (1+ 1)},
— ) [w(w, Q)2 + (1—w(r, Q))EW®) € Q)} +(1= )1 = (2).

Step 2. Suppose that after data withholding the lender provides credit, the interest
rate solves:

ny [m@)a -1 @ -0]

Proceeding as in the proof of Lemma 2.1 we get the optimal interest rate:

m(@)éﬁm(x—ﬁ).

The lender provides credit only if her expected profits are strictly positive, i.e. only if:

0H\(2)=1 {m(g) > %} .

For future reference, I compute the lender’s and borrower’s expected profits and expected
social welfare, conditioning on m = &,

V(@) = () [o (i (@)X 1),
VE(2) = 6(2)[(1 - 6) (m(2)X = 1) +1], (A.6)

W(2) = £4(2) }u(@)X _ 1},

as well as the borrower’s expected profits conditional on z

VE(@,2) = 0,(2) {(1 — @)ur(z) (X — uiﬁ)) + b] : (A7)
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Proof of Proposition 2.1. Let Q = {z € [0,1] : m(z) = @} be the set of borrowers that
withhold data, the borrower’s utility from data sharing and withholding are respectively
VE(z) and V#(2, 2) from Equation (A.3) and Equation (A.7).

Consider first the case where A = 0 and the allocation rule is independent of data.
No matter the data sharing strategy of the borrower there is credit provision at a flat
interest rate, so that borrowers are indifferent between data sharing and withholding.
Assuming that indifferent borrowers withholds data, the set of borrowers that withhold
data is @ = [0, 1].

Consider now A > 0 and suppose that the set of borrowers that withhold data is
Q = [0,q] with ¢ € (0,1). From Lemma A.1 we can compute the lender’s estimate of the
borrower’s quality after data-withholding, uy(z(7,q)), where

o 1. T \g
Z<W=Q)—w+(1_w>q2+(1 7r+<1—7r>q)2’

as well as the optimal credit allocation. We want to find the borrower ¢ that is indifferent
between sharing and withholding data. Suppose that ¢ is such that the lender provides
credit both after data sharing and data withholding. If A € (0,\) with A = 1 — 2/X,
this is the case for every z and z(m,q) (see Lemma 1 and the discussion that follows). If
A € [\, 1], this requires that ¢ > 7()\) and z(7,q) > r(\) (see Lemma 1 and Lemma A.1)
where 7(\) is defined in Equation (2.8). Suppose that these conditions are satisfied, the

indifferent borrower has to get the same surplus, i.e.

(1= 0) (i@ X — 1) += (1= o) (X = )+

pA(9)

which simplifies to
q=z(m.q), (A.8)
and whose unique positive solution is

q= V7l = v7) £ q(m) € (0,3). (A.9)

l—m 2
Hence, when ~(7) > r()) the set of borrowers that withhold data is @ = [0,v(7)]. When
v(m) < r(A), withholding data leads to credit rationing, so that all the borrowers with z €

[0,7(\)] are indifferent between data sharing and withholding. Assuming that indifferent
borrowers withhold data, the set of borrowers that withhold data is @ = [0, r())].

When A € [—1,0), by a symmetric argument we have that when 1 — y(7m) < r(A) the
set of borrowers that withhold is @ = [1 — v(n),1], while when 1 — v(7) > r()) it is

Q= r(V. 1]
In summary, the equilibrium is described by the following data withholding set:
[0, max {7“()\);’}/(71')}} if A € (0,1],
Q=362 [0,1] if A\=0,

[min {r(A);1—=~(m)}, 1} if A e[-1,0),
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where v(7) and () are given respectively by Equation (A.9) and Equation (2.8). [

Proof of Proposition 2.2. We proceed in 2 steps. Step 1 builds the borrower’s expected
utilities from data sharing and data withholding. Step 2 finds the equilibrium disclosure
strategy.

Step 1. The A-lender’s allocation rule is described by Lemma 2.1, so the borrower’s
expected utility form data sharing is

VEB(z) = /_ V,\B(z)%d)\

1

where VP (z) is defined in Equation (A.3). Let

Nz) & r(z) = 2—X (A.10)

be the inverse function of the rationing threshold defined in Equation (2.8). From Equation
(2.7), we can distinguish 3 sets of borrowers: i) borrowers with z € [0,1/X] are credit
rationed whenever A\ > /):(z) ii) borrowers with z € (1/X,1 — 1/X) get credit for every
A € [—1,1]; and iii) borrowers with z € [1 —1/X, 1] are credit rationed whenever A < X(z)
Thus, the borrower’s expected surplus from data sharing can be rewritten as

( /j(z) [(1 —9) (,u)\(Z)X - 1) + b} %dA if 2 e {0, %}

1 1 1

VE(z) = 4 /l [(1 —¢) (MZ)X - 1) + b} %d/\ if > e <Y’ - }) (A.11)

/x; [(1 —¢) (m(Z)X - 1) + b} %d)\ if z € [1 - % 1} :

or, equivalently, as

\

( p(2) [(1 — ) (u_(z)X - 1) + b} if z € [0, %}
VPz)=¢ (1-¢)(3X —1)+0 if 2 € (%1-%) (A.12)
(1= p(2)) [(1—¢)<u+(z)X—1> +b} if > € {1—%,1},

where




Let Q £ {z € [0,1] : m(z) =
the A-lender’s estimate of the borrower’s quality p)(2) and the optimal allocation rule

@} be the set of borrowers that withhold data,
(ﬁ A (9), .m(@)) is given by Lemma A.1. The borrower’s expected utility form data with-

1

holding is
vi(e.s) = [
where V,?(2, 2) is defined in Equation (A.7). Proceeding as above we get the borrower’s
( [AETQ) 1 1 1
1-— 2) [ X — +b| =dX\  if z2(7,Q) € |0, =
[ oo (x-gg) o a0 oy
/l{(l o) ()<X ! )er} 1d)\
— z — —
~1 o 1A (2) 2
/1 {(1 5) ()(X ! >+b]1cu if 2 Q)e{l 11]
— d)pa(z - = if z(, - =, 1].
\JSera) m(9) 2 X
Step 2. First, consider the case ¢ > 1 — 2b. Suppose @ = [0,1], from Lemma A.1
(Equation (A.5)) we can compute the A-lender’s estimate of the borrower’s quality following

1
V)\B(ga Z) 5 d)\u

1

expected surplus from data withholding

if 2(7,0) € (%1 _ %)

VB(2,2) =

data withholding to get
1 1 1
=5€ ( ) (A.13)

pA(2) = 2(m, Q) vl %
for all A € [—1,1]. It follows that the borrower’s utility from data withholding simplifies

to (suppressing the dependency of z)
VB(@)=(1-¢)3X —1)+b (A.14)

for all z € [0, 1].

We want to show that V(@) > VB(z) for all z € [0,1]. Note that V(z) is continuous,
symmetric around z = 1/2, constant and equal to VZ(@) for z € (1/X,1 — 1/X), and
convex for z € [0,1/X]U[1 — 1/X,1]. To show the convexity of VZ(z) over z € [0,1/X]

note that its first derivative in this region is
oVE(z) 1 1 [
—= =X(2) [(1 — 9 (;%)(z)x - 1) + b} 5+ (1-9)X3 /_1 AdA,

ek 1 @
b5+ (1- @)X Ad,
—1

where the first line uses Leibnitz integral rule, and the second line follows from the fact

—x (L _1\_ 1
2) X

—Z

N[

that

1
H3(2) = 5

[N
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while the second derivative is

TVE) _ Sreppt + (1= )X SN (A(:) > 0.

022 2
since R

Az) >0
1_ 1 1 ~

N(z) = f X2:l_ Az) >0,
(3-2)7 277
1_ 1 1 ~

X’(z)zQi X =25 N(z)>0

because every z € [0, %} is strictly below % since by Assumption 2.1 we have % < % By
symmetry, V5(z) is also convex over [1 — +,1].
It follows that @ = [0, 1] is the equilibrium data-withholding set if borrowers with extreme

z € 0,1 weakly prefers to withhold data. By symmetry of VZ(z) it is sufficient that

VEB(@)=(1-9¢) <%X—1>+b> (1—%) {(1—¢)(<1+%) %X—1>+b] = V5(0).

This inequality simplifies to ¢ > 1 — 2b, the parameters space we are considering.

Note also that any other putative equilibrium data withholding set of the form @ =
[0,¢q|U[1—gq, 1] with ¢ € (0,1/2) would lead to the estimated borrower’s quality in Equation
(A.13) and yield the profits in Equation (A.14) to a borrower withholding data, so that
every borrower with z € (¢, 1 — ¢) would deviate to data withholding.

Consider now ¢ < 1 — 2b and suppose @@ = [¢,1 — ¢q] with ¢ € (0,1/X). From Lemma
A.1 (Equation (A.5)) the A-lender’s estimate of the borrower’s quality and the borrower’s
profits following data withholding are still given by Equation (A.13) and Equation (A.14),
but for ¢ < 1 — 2b the borrower with z = 0 (and z = 1) strictly prefers to share data, as
Equation (A.1) is not satisfied. The indifferent borrower ¢ has to obtain the same expected
surplus from both strategies, i.e.

VE(@)=(1-9) (%X - 1) +0=p(q) [(1 —9) (/L((J)X - 1) + b} =V"(q),
whose unique solution lower than 1/X is
qg= % (1 — %) € (0,4). (A.15)

By the symmetry of V?(z), we also have VZ(2) = VB(1 — q).

Since ¢ > 0 if and only if ¢ < 1 — 2b, the equilibrium can be compactly described by
the data withholding set:

where

n(b, ¢) = max {0, % (1 — %) } . (A.16)
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Proof of Proposition 2.3. We proceed in 4 steps: Step 1 and Step 2 derive the lender’s
expected profits when the lender employs a transparent and an opaque algorithm, respec-
tively; Step 3 studies the graph of the lender’s profits as a function of m; Step 4 compares
the graphs.

Preliminaries. Consider a data sharing strategy of the form

g if z€eQ
ma(z) = z if 2¢Q

where Q € {G(\, 7), H(b, ¢)} is the data-withholding set induced by a specific transparency

regime, and where G(\, ) and H (b, ¢) are defined in Equation (2.12) and Equation (2.13),
respectively. The lender’s equilibrium profits from a transparency regime 7 € {T,0}
inducing a data-withholding set ) are:

1
Vi 25 [ Vi
-1 (A.17)

1
/0 Vg (m, ) dA,

where

VE(r,\) £ 7VEH (@) + (1 —7) /0 Vi (mo(2))dz, (A.18)

ViE(2) and VE (@) are defined in Equation (A.3) and Equation (A.6), while the second
line of Equation (A.17) follows from the lender’s profit function being even in A.

Step 1. Consider the lender’s profits with a transparent algorithm.
If A = 0 data is not used by the allocation rule and borrowers withhold data, i.e.

G(\, ) = [0, 1], thus the lender’s expected profits are equal to

Vg (m,0)=¢(3Xx —1).

Now consider \ € (O,X(v(w))) where /):() is defined in Equation (A.10). For these
parameter values we either have that the allocation rule does not use data to ration credit
(when A € (0, 1)), or the allocation rule rations credit but borrowers escape rationing by
withholding data since r(\) < () (i.e. A € [X,X(’y(ﬂ'))). In both cases G(A, m) = [0, y(7)]
(see Proposition 2.1). The lender’s profits are:

1

Vi (m, ) = (w +(1- w)v(w))cb(m(z)x - 1) (- /W)
- (” +{- W)W(W))ﬁb(m(@)X - 1>+

+ (1= w1 =)o (m (152) X — 1),
=0 (3X 1),

6 (i (2)X — 1)z,
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where the last line follows from the fact that, in equilibrium, p\(@) = Ay(7) + (1 — A)2
(see Proposition 2.1, Equation (A.8) and Equation (A.9)), and

(r+ (L= w1y + (- w1 =) L = L

Lastly, consider A € [/):(’}/(71')), 1]. We have r(X) > ~y(r) and G(\,7) = [r(}), 1], since
borrowers that withhold data are credit rationed ¢,(@) = 0. The lender’s profits are:

1

VgL(ﬂ',/\) =(1- 7r)/

r(\)

gzﬁ(uk(z)X - 1) dz.

~ 1 2
Note that A(y()) < 1 if and only if y(7) < 1/X , ie. if 7 < (;l) € (0,1), hence
X
letting

A(7) £ min {X(fy(w)), 1} :

and integrating Vg(m, A) over A we get the ex-ante expected profits from a transparent
algorithm:

VE(m) = Ar) ¢ (AX —1) + (1 — ) /X ;) / ;) ¢(M(2)X - 1) dzdA. (A.19)

Step 2. Consider the lender’s profits when with an opaque algorithm when ¢ < 1 — 20,
ie. n(b, o) > 0.

If A € [0,)), where A = 1 — 2/X, data is not used to ration credit, hence the lender’s
profits conditional on A are:

Vi(m,\) = (7‘( + (1 =) (1= 2n(b, ¢)))¢<M>\(®)X — 1)—i—

1

f-m) [/On(b,¢) (b(m(z)X — 1>dz + /1—n(b . gb(m(z)X - 1>dz] :

= (r+ (1= m) (1~ 20(6.)) )6 (ur(@)X — 1)+
(=m0, 0)0 [ (142) X — 14 gy (2209 x 1],
=0 (3X 1),

where the last line follows from the fact that in equilibrium 1) (&) = 3 (see Proposition
2.2, Equation (A.13)) and

M/\<77(172,¢)>X_1+u/\<2—"TW>X—1:2(%X—1).

Consider next A € |
parameters we have r(\

X,/):(n(b, ®))] where /):() is defined in Equation (A.10). For these
)

< n(b, ¢), so that some of the borrowers sharing data are credit
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rationed. The lender’s profits conditional on A are:
V() = 7o (m(2)X — 1) +

Y (1—7) /On(b’(b) 1z > r(A)}¢(m(2)X - 1>dz+

- [/77(11);(&@5) ¢<,u/\(@)X — 1>dz + /1;(177@ gﬁ(uA(z)X — 1) dz]/

1

_ m(%x - 1) Y (1—7) /Tm qb(,u)\(z)X - 1>dz,

where the fourth line follows from the fact that:

1—n(b,¢) 1—=n(b,¢)
/ qﬁ(uA(@)X - 1)dz = / ¢(3X —1)dz
ﬂ(bﬂf’) Ti(b@) <A20)

= /l_n(b@) (b(uA(z)X - 1>dz.

n(b,9)

Lastly, consider \ € (X(n(b, $)), 1], that is parameters such that r(\) > (b, ¢) and all
the borrowers that share data z < n(b, ¢) are credit rationed. The lender’s profits are:

Vi((m,\) = 7T¢<,M,\(@)X — 1> +

1) [/n(lb:;(b,qﬁ) ¢(/LA(®)X — 1>dz + /I;(M) q5</1,,\(z)X — 1) dz}7

1
o (AX —1) +(1- 7r)/ QS(,u,\(z)X - 1>dz,

1(b:¢)
where the third line follows from Equation (A.20).

Integrating V37 (b, ¢) over A, we get the lender’s ex-ante expected profits from an opaque
algorithm are:

A (X —1)+
n(b:9))
+ 7r¢>(§X—1)+(1—7r)/

f L mx e [ o(mEx 1) aa

X1 (b,6)) 1(b,¢)

qb(u,\(z)X - 1> dz dA+ (A.21)

Note that when ¢ > 1 — 2b we have n(b,¢) = 0 and X(n(b, ¢)) = A, hence the lender’s
profits from Equation (A.21) simplifies to V& (r) = ¢ (X — 1).

Step 3. We now study the graph of the lender’s profits in Equation (A.19) and Equation
(A.21). For an arbitrary function y : (0,1) — R, we will use the simplified notation
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y(0) = lim,oy(m) and y(1) = lim,; y(7) to denote the limiting values of y(mw) as 7
approaches 0 and 1, respectively.

First, since A(1) = 1 and A(0) = X, we have that
Vo) =Vr(l) = ¢ (3X - 1),

and

1 r(A)
VE(0) — VE(0) = —/A / ¢(M(2)X - 1) dzd\ >0,
Rn(b)) Jn.0)

n(b,@
where this uses the fact that

(3X-1) = /01 (M/\(Z)X - 1) dz, (A.22)

and the inequality follows from the fact that the integrand is negative for z < r(\).

Second, VZ(m) is flat and equal to ¢ (3X —1) = VP(1) if ¢ > 1 —2b (i.e. when
n(b, ) = 0 and X(n(b./ $)) = A) and is strictly decreasing if ¢ < 1—2b (i.e. when n(b, ¢) > 0
and A(n(b, )) > ), since

avé /X(n(b,aﬁ)) ) 1
Y% _ <;S—X—1—/ o pn(z)X — 1) dzdr+
(971‘ by (2 ) T()\) ( A( ) )

+/1 ¢(1X_1)—/n1 gb(u)\(z)X—l) dzdA,

An(b,9)) (b,9)

L o

where the third line follows from Equation (A.22) and the fact that r(\) > (b, ¢) if and
only if A > A(n(b, ¢)), while the inequality follows from the integrand being negative for

z <r(A).

Third, V#(r) is flat and equal to ¢ (3X — 1) = VF(1) if = (%/(1 — %))2 € (0,1
))” (i.e. when \(m) =

(v(m)) < 1). To prove that V() is decreasing for 7 < (+/(1 — + )2, rewrite it as

(Ai.e. when A(m) = 1) and is strictly decreasing for 7 < (+/(1 — %
A

1

VE(m) = A(y(m) ¢ (3X = 1) + (1 = 7) K(\)dA

where

Koy | ;) s(mx ~1) dz,

= (=6 (i (B2) X - 1),

(A.23)
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and g, (+) is defined in Equation (2.2). The first derivative of V() is

P 3@ ) [o (X 1)~ (1= mKQAA@)] - [ Ko

1
_ _ﬁ K(\)dx < 0,
A(y(m))

where the first line uses Leibnitz integral rule, the second line follows from the term in
square brackets being nil, while the inequality follows from the fact that the integrand
Equation (A.23) is strictly positive for z > r(\). To see that the term in square brackets
in the first line of Equation (A.24) is nil, substitute X(’y(ﬂ')) in Equation (A.23) and note

that R
r(A(y(7))) = y(m), (A.25)
since A(-) = r~1(-) by definition (see Equation (A.10)), implying that

X () (M) X-1= </):(7(7r))% +(1- X(v(ﬂ)ﬁ) X -1,

2
= (43X — 1) + PGEH@X, (A.26)
_ (1 ﬁ 1 .
= (x- )  (x 1) >0

hence the term in square brackets in Equation (A.24) simplifies to

IX—1)—(1-m(1—~(r 1X - v
o @ -1 - a-ma -2 (@x -1+ = @x -] -0
since (1 —m)(1 —(mw)) =1 — /7.

Step 4. Let

(b, ¢) 2 {w € (o, (1 _1)2)

be the 7 that solves VE(m) = V& (m) where VE () is given by Equation (A.19) with
M) = A(y(x)), while VA () is given by Equation (A.21) with 7(b,¢) > 0. From the
shapes of Vi (m) and VZ(m) described in Step 3, it follows that:

Vi () = V& (r) whenop < 1 — Qb} (A.27)

o if » > 1 — 2b, we have
— VE(r) > VE(r) for m < (%/(
— V() = V() for m > (2/(1 -

o if » < 1—2b, we have
— VE(m) > VE(x) for m < 7 (b, ¢),
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Proof of Lemma 2.2. Given a risk bucket r;, the lender allocates credit as described in
Lemma 2.1. In particular, expected credit quality is

Zio1+ %
T (L= N3 E (),

E(0]r;) = A2

while the allocation rule is:

1 1
no = o(x 1,
alri) pa(ri) pia(ri)
1
5,\(7‘1) =1 {IU)\(TZ) > }} .
Suppose A > 0, the welfare-optimal data segmentation solves:

max Z (zi — ziz1) €a(14) [u,\ (r) X — 1+ b].

Z .
=1

By the revelation principle, we can pool all the potential risk buckets r; inducing the same
credit provision decision in a unique signal and interpret signals as incentive-compatible
action recommendations. The planner’s problem simplifies to:

Jgoax - (1—z1) [ (257) X — 1+ 0]

s.t. (21;1) >

o (552) <

The objective function is concave and the first order condition is solved for

1 o/t o1y b (A)_i
A7y 3T x) T w7 X

which is positive as long as b < 1 — %(1 — A)X. One can easily show that the constraints

are satisfied for )
Z1 = max {7"()\) - W,O} ,

hence this is the solution of the problem in Equation (A.28) for A > 0.

(A.28)

ST

For A\ < 0, relabeling action recommendations, we get

b
2z = min {7"()\) ~ 3 1} .

When A\ = 0, data segmentation is irrelevant for both the social planner and the lender.
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Proof of Proposition 2.4. We proceed in 3 steps: Step 1 derives the social welfare when
the lender employs a transparent and an opaque algorithm; Step 2 studies the graph of
social welfare in the two regimes as a function of 7; Step 3 compares the graphs.

Preliminaries. Consider a data sharing strategy of the form

g if z€eQ
ma(z) = z if 2¢Q

where @ € {G(\, 7), H(b, ¢)} is the data-withholding set induced by a specific transparency
regime, and where G(\, ) and H (b, ¢) are defined in Equation (2.12) and Equation (2.13),
respectively. The equilibrium social welfare from a transparency regime 7 € {7, O} induc-
ing a data-withholding set (@ is:

W.(r) & 1 1 WQ(W A)d,
(A.29)
/ WQ , )\
where )
Wo(m, A) = 7aWi(2) + (1 — 7r)/0 Wi (mg(z))dz, (A.30)

Wy (2) and W, (@) are defined in Equation (A.3) and Equation (A.6), while the second
line of Equation (A.29) follows from the social surplus function being even in A.

Step 1. Proceeding as in Step 1 and Step 2 of Proposition 2.3, we get the social welfare
from a transparent and an opaque algorithm. These are, respectively

W (r) = () (%X 1+ b) +(1—7) /X;) /T;) (u)\(z)X 14 b) dzd),  (A.31)

_ ( —1+b>

/: n(6:6)) [w (%X 1 b) Y (1—7) /r;) (IIL)\(Z)X 1 b) dz } A\t (A.32)

1 1 1
+/A {ﬂ(—X—l—i—b)—i—(l—w)/ <,u,\(z)X—1+b)dz]d)\.
Xn(b,6)) 2 )

Step 2. We now study the graph of the lender’s profits in Equation (A.31) and Equation
(A.32).

Step 2a. We first evaluate Wr(7) and Wy (m) when 7w approaches 0 and 1. For an
arbitrary function y : (0,1) — R, we will use the simplified notation y(0) = lim,_ y(m)

and

+
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and y(1) = lim,_; y(7) to denote the limiting values of y(m) as m approaches 0 and 1,
respectively.

First, since A(1) = 1 and A(0) = X, we have that

Wo(1) = Wr(1) = 21X — 1+ b,

— 2

and, using Equation (A.22)

1 r(X\)
Wo(0) — Wr(0) = /A / pr(2)X —14+b dzd\ = Z(b, ¢). (A.33)
A(nw.0)) nv.0)
The sign of Z(b, ») depends on its arguments. Rewrite this function as

1
20.0)= [ Yo
A(n(v.6))

where
r(\)

Y(b, ¢, \) = / ua(2)X —1+b dz. (A.34)
n(b,9)

Note that Z(b, ¢) is continuous, constant in ¢ for ¢ > 1 — 2b (i.e. when n(b,¢) = 0 and
A(n(b, ¢)) = A) and equal to

1 pr())
Z_(b) & / / pa(2)X —1+bdzdA, (A.35)
X Jo
while it is strictly decreasing in ¢ for ¢ < 1 — 20b, since

Loy
(n(b@)) 99

0z __0Aon )
55 = ~aya5Y (00 X(00.0)) + A

! oY
- 7 an,
/X(nuw)) 09

2b !
= —— b — b dA
X(l _ ¢)2 /X(n(b@)) J25) (77( 7¢>)X 1+ )

% - ; ] .
— X047 (1= Xn(b, 0))) [(A(n(bf))ﬂn(b’ &) + (1 _ /\(n(b.,2¢))+1> 5) X1+ b] 7
1 b

= X zgp (000 | (5 - g ) X -1 <0
(A.36)

where the first line uses the Leibnitz integral rule, the second lines follows from the fact
that Y(b, 0, )\(n(b, ¢))) = 0 since r()\(n(b, ¢))) = 1(b, ¢) because of Equation (A.25), while
the inequality follows from the fact that the term in square brackets is strictly negative.

),
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Moreover, Z(b,¢) is strictly increasing in b. This is obvious when ¢ > 1 — 2b and
Z(b,¢) = Z_(b), while for ¢ < 1 — 2b we have

1 r(\)

0Z  ONOn

~ o
O Dy 4.0 5000) + [

—%(m(b, X -1+t + [

A(n(b,)) n(b,9)

9 1 T(A)
T X(1-9) /me)) [M(W)’ X =1+ b e X(n(6,8)) /n(b,¢) dedd
- Y= [( A, 0))) ( 1y MO+, qs))

1 r(A)
+ [ / dzdA > 0,
A(M(b,8)) Y n(b,¢)
(A.37)

where the first lines uses Leibnitz integral rule, the second lines follows from Y (gzﬁ7 /)\\(n(b, qb)))

0 since T(X(n(b, ¢))) = n(b, ¢) because of Equation (A.25), while the inequality in the last
line follows from the following facts: i) the term in square brackets is positive because
Xn(b,¢)) € (0,1) and X —1 > 0 by Assumption 2.1; and ii) the double integral is
positive since for A > X(n(b, ®)) we have r(A) > n(b, ¢).

Moreover, note that Z(0, ¢) = 0 since /)\\(77(0, ¢)) =1, and that Z_(b) > 0 if and only if

b > b°(X) where
/ / [L)\ —1dzdA
)& — c (

/ / dzdA

¢°(b) = {¢> € (0,1-20)

dZ] ),

+

). (A.38)

[SV

Y

N

Let

Z(b, o) = O} (A.39)
be the ¢ that solves Z(b, ¢) = 0 where Z(b, ¢) is given by Equation (A.33) with n(b, ¢) > 0.
It follows that:
o if b > b°(X), then Z(b, ¢) > 0 for every ¢ € (0,1);
o if b =0b°(X), then Z(b,¢) > 0 for ¢ € (0,1 —2b) and Z (b, ) =0 for ¢ € [1 — 2b,1);

o if b < b°(X), then Z(b,¢) > 0 if ¢ € (0,¢°(b)), Z(b,¢) = 0 if ¢ = ¢°(b), and
Z(b,¢) <0if ¢ € (¢°(b), 1).

Step 2b. We now study the graph of Wp(7) and Wo(7) over the interior of the interval
(0,1).
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First, note that Wo(r) is flat and equal to £X — 1 +b = Wo(1) if ¢ > 1 —2b (ie.
when (b, ¢) = 0 and A(n(b,¢)) = A) and is strictly decreasing if ¢ < 1 — 2b (i.e. when
n(b, ¢) > 0 and A(n(b, ¢)) > \) since

A(b:6)) L
8;[/0_/ {(%X—l—i—b)—/ pa(z) X —1+0b dz} dA\+
T X (M)

+/: {(1X—1+b) /1 ,uA(z)X—lerdz]d)\,

(n(b,9)) n(b,9)
min{r(A\),n(b,®
/ / /u( )X -1+ b} dzd), (A.40)

b¢)
/ / —1+b} dz d,

= (1= X)n(b,¢) K%@jt (1—%) %)X—ler] <0

where the third line follows from Equation (A.22) and the fact that r(\) > n(b, ¢) if and
only if A > X(n(b, ¢)), while the last inequality follows from the fact that the term in square
brackets is strictly negative. To see this note that the term in square brackets is linear in
b; it is increasing in b for ¢ < 1/X and equal to —1/2+ (1 —¢)/2 < 0 for the highest value
of b among the parameters considered, i.e. b = (1 — ¢)/2; it is decreasing in b for ¢ > 1/X
and equal to —1/(2X) for the lowest value of b, i.e. b = 0; it is constant in b for ¢ = 1/X
and equal to —1/(2X) < 0.

Second, note that Wr(r) is flat and equal to 2 X —14+b = Wr(1) if 7 > (+/(1 — —))2 €
(0,1) (i.e. when A(m) = 1) and is strictly convex for 7 < (%/(1— Y))2 (i.e. when
A7) = A(y(m)) < 1) approaching the flat part from below. To prove that Wr(7) is convex

/

for T < (% (1-— %))2 and approaches the flat part from below, rewrite it as

Wr(r) = X(y(n)) [1X —1+b] + (1 —7) /m . H(M\)dA

where

H\) 2 /T;) [M(z)X—Hb} dz,

— (1= r(\) [m (’“%)X—Hb} .
The first derivative of Wp(m) is

OWr  ~ ~ !
= N(v(m)Y (r) (X — b) — (1 —m) H(X~y(m - H(\) d,
o = XN @) [(3X 108~ (Gae)] - [ H)

(AA1)




where the first line uses the Leibnitz integral rule, the second line follows from plugging
A(y(7)) in Equation (A.41) and using Equation (A.25) and Equation (A.26) and the fact
that (1 —7)(1 — (7)) = 1 — v/, while the last line follows from the fact that

NG () = <= >0, )
(1= m)(1 = A(m) =1 - V7.
Note that the left derivative of Wy (m) at 7 = (%/(1 — %))2 is
OWr A
1 \N2 = ﬁb > 0, A
T E) (- ) A
since X(’}/(ﬂ')) =1form=(%/(1- %))2
The second derivative of Wy () is
82WT X kY ! 3
= =t N0 () H (G ()
B A 1 o o (1 N
= FIV {b(l_ﬁ+l ( ))+(1 v(m) (3X — 1) (1+1\/(%A>J4)>0,

where the first line follows from the Leibnitz integral rule, the second line follows from
plugging A(y(7)) in Equation (A.41) and using Equation (A.25), Equation (A.26) and
Equation (A.42), while the inequality follows from the fact that each of the term within
the square brackets is strictly positive.

Step 3. Let

1 2
(b, ¢) = {7? S (0, ( = ) ) |WT(7T) = Wo(m) whenop <1 — 2b} (A.45)
X

be the 7 that solves Wr(m) = Wo(m) where Wr(m) is given by Equation (A.31) with
M) = A(y(m)), while Wo(m) is given by Equation (A.32) with n(b,¢) > 0. 7w°(b,¢) is
increasing in ¢ and decreasing in b.

Let

1 2
7 (b) = {7r € (0, <1_%) ) ‘WT(’/T) = Wo(r) when¢ > 1 — Qb} (A.46)
X
be the 7 that solves Wr(m) = Wo(m) where Wr(m) is given by Equation (A.31) with

M) = X(y(w)), while Wo(m) is given by Equation (A.32) with n(b,¢) = 0. =°(b) is
decreasing in b.

From the shapes of Wr(7) and Wy (m) described in Step 2, it follows that:
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e if b < b°(X) where b°(X) is defined in Equation (A.38), we have that
— if ¢ € (0,¢°(b)) with ¢°(b) defined in Equation (A.39), we have Wo () > Wrp(m)
for every m € (0,1),

— if ¢ € [¢°(b),1 — 2b), we have that

x Wo(m) > Wrp(m) for m € (7°(b, ¢), 1), where 7°(b, ¢) is defined in Equation
(A.45),

x Wo(m) < Wrp(m) for m € (0, 7°(b, ¢)],

— if ¢ € [1 —2b,1), we have that

s+ Woln) = Wa(x) if 7 € [(%/(1 —1))*, 1),

* Wo(ﬂ') > WT(T") if ™€ (Wo(b)v (%/(1 -
Equation (A.46),
* Wo(r) < Wr(r) if € (0,7°(0)(b)],

o if b > b°(X), we have that

))2), where 7°(b) is defined in

L
X

— if ¢ € (0,1 — 2b) we have Wy(m) > Wrp(m) for every 7 € (0, 1),
— if ¢ € [1 —2b,1) we have that

s Wo(r) = Wa(n) if 7 € [(%/(1 — 1)), 1),
x« Wo(m) > Wr(n) if m e (0, (%/(1— %))2)

Proof of Proposition 2.5. We proceed in 4 steps: Step 1 derives the privacy-concerned
borrowers’ ex-ante surplus when the lender employs a transparent and an opaque algorithm,
Step 2 compares their surplus across regimes, Step 3 derives the strategic borrowers’ ex-ante
surplus when the lender employs a transparent and an opaque algorithm, Step 4 compares
their surplus across regimes.

Preliminaries. Consider the strategic borrower’s data sharing strategy of the form

| @ if z€e@
mo(z) = z if 2 ¢ Q,

where Q € {G(\, 7), H(b, ¢)} is the data-withholding set induced by a specific transparency
regime, and where G(\, ) and H (b, ¢) are defined in Equation (2.12) and Equation (2.13),
respectively.

The privacy-concerned borrower’s ex-ante equilibrium surplus from a transparency regime
7 € {T,0} inducing a data-withholding set @ is:

1
VEP(z) & 3 /IV/\B(Q,z)d/\,
- (A.47)

1
= / VB (@, 2)d),
0
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where V,2(2, 2) is defined in Equation (A.7), while the second line of Equation (A.47)
follows from the borrower’s profit function being even in .

The strategic borrower’s ex-ante equilibrium surplus from a transparency regime 7 €
{T, O} inducing a data-withholding set @ is:

1 1

V) 25 [ VPme(a). 2 (A18)
-1

VB(z,z) = VB(2) is defined in Equation (A.3) while V{?(2, 2) is defined in Equation (A.7).

Step 1. Proceeding as in Step 1 and Step 2 of Proposition 2.3, we get the privacy-
concerned borrowers’ surpluses from a transparent and an opaque algorithm. These are,
respectively:

Am)
ViP(z) = /0 (1 —9)ua(z) <X - M) +b dA (A.49)
and
Vo' (2) =/0 (1= ¢)ua(2) <X - Ml(l)) +bdx (A.50)

Step 2. Note that the integrand in Equation (A.50) is strictly bigger than the integrand
in Equation (A.49) since when A > 0 we have 5 (3) > pa(y(m)) as y(7w) < 5. Moreover,

both integrands are strictly positive and A(r) < 1. It follows that VIP(2) > VEP(2).
Step 3. We now compute the ex-ante surplus of strategic borrowers, conditional on z.

When the lender uses a transparent algorithm, the set of borrowers that withhold data
is @ = G(\, ), given in Proposition 1. We can distinguish three types of borrowers:

e Borrowers with z € [0,v(m)] withhold information when A > 0 and obtain credit
only if r(\) < y(n), ie. if A < A(y(r)), while they are denied credit when A >
X(v(w)) If y(7) > + they always obtain credit, i.e. /)\\(’y(w)) > 1. Moreover, they
disclose information and obtain credit whenever A < 0. It follows that their surplus
conditional on A is

Vi’ (me(2), 2) = Um0

]1{)\<X(7r)} (1 —o)ur(z) (X—m) —i—b] if A € [0,1],

>+b if A € [-1,0)

where A(7) = min{\(y(r)), 1}.

e Borrowers with z € [1 — ~(7), 1] withhold information when A < 0 and obtain credit
only if 1 —~(m) < r(A), i.e. if A > —A(y(m)), while they are denied credit when
A< =A(y(m)). If 1 —~(m) < 1 — + they always obtain credit and —A(y(7)) < —1.
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Moreover, they disclose information and obtain credit whenever A > 0. It follows
that their surplus conditional on A is

1A > —A(m)} {(1 — ) pa(2) (X - m> + b] if A €[-1,0)

VB (mo(), 2) =
(1= Bhun2) (X -

MA(Z)>+b if A € [0, 1].

e Borrowers with z € (y(7),1 — (7)) disclose information and obtain credit only if
z > r(\) when A > 0 and when z < (\) when A < 0, that is when A € (A_(2), A\+(2)),

where
)
—1 if z€ |0 1—i
A ’ X
A(z) = .
A if 1— =1
R itee (15
(A.51)
([~ 1
AMz) ifze [O,—)
N X
A(z) = 1
1 if —,1].
IIrze [X’ ]

It follows that their surplus conditional on A is

Vi’ (mq(2),2) = 1{X € (\-(2), A (2))} {(1 — @) (z) (X - ﬁ@) + b} :

Integrating over A as in Equation (A.48), we can write the strategic borrowers’ ex-ante
surplus under transparency as

( /01 {ui(z)(l—qﬁ) (X-@) +b] %d)\ +
+/OW) {M(z)(l—gb) (X-M) +b] %d)\

R o -0 (x- =) ] s it 2 € (4(m), 1 - (m)

if z € [0,7(m)]

(A.52)
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where VP(2) is the expected borrower’s surplus from full disclosure and is defined in
Equation (A.11) while

;

[ mEa=e (55~ ) 3

+/x:(:) [MA(Z)(l —9) <X - m> + b} %d)\

if z € [0,7(m)]

OB (z,m) 2 0 if z € (y(m),1—~(m))

/_1(:) =0 (X ) e s

0 1 1 1
\ +/x<z>““z>(1_¢)(m<z>‘ml—v(w)))5(“ .
.53

with OF(z,7) > 0 for 2 € [0,7(m)) U (1 — (), 1] since every integrand is positive as
we have that i) px(y(7m)) > pa(z) for A > 0, which also implies that gy (y(7))X —1 >
pa(2)X —1> 0 for A > X(z), and ii) pa(1 — (7)) > pa(z) for A < 1, which also implies
that (1 — (7)) X — 1> ux(2)X — 1> 0 for A < —A(2).

When the lender uses an opaque algorithm, the set of borrowers that withhold data
is Q@ = H(bo), given in Proposition 2.2. Borrowers with z € [0,7(b, ¢)) share data and
obtain credit only if A < A(z), borrowers with z € (1 — (b, ), 1] share data and obtain
credit only if A > X(z), instead borrowers with z € [n(b, ¢),1 — n(b, ¢)| withhold data and
always obtain credit. Integrating over A as in Equation (A.48), we can write the strategic
borrowers’ surplus under opacity as

;

/jZ) LM )(1 - ¢) (X - 1<z>> “’} %dA e e

;
@@= [ men-o(x-1) e g e oo - i0.0)

1

\ /x:> [MA(Z)(l —9) (X - @) +b] A ifze (1-n(b,9).1],
=max {V"(2),V"(2)}

(A.54)
where VB(z) is the expected borrower’s surplus from full disclosure defined in Equation

(A.11) while V(@) is the expected borrower’s surplus from no disclosure defined in Equa-
tion (A.14).

Step 4. Let
AP (2) VP (2) = VI (2)

if z € [1—~(m),1],



be the difference between the strategic borrower’s surplus with a transparent and an opaque
algorithm. We now study the sign of AP#(z), for z < % The analysis is symmetric for
z > % We distinguish 2 cases.

Case 1 (¢ > 1 —2b). For ¢ > 1 — 2b we have n(b, ¢) = 0.
Consider first 7 > 7(X) where

1 2
T(X) = (1 fi> € (0,1). (A.55)
X
For these parameter values we have (m) > +, so X)) =1and A_(z) = —1 for all z > ()

and A\ (z) =1 for all z < 1 —~(7). Noting that the second piece of Equation (A.54) can
be rewritten as

/11 [,ux(z)(l — ) (X— é) +b] %d/\ = /11 {m(z)(l — ) (X— M%@) +b] %d)\
(A.56)

we have

1 1 1 1 .
AB(z) = [ men-9 (ux(z)_m(v(W))>§dA e 0@l a5

0 if z € (y(m), 3.

This is weakly positive and strictly so for z € [0,7v(7)) since px(v(7)) > pr(z) for A > 0.

Consider now m < 7(X), that is 7(7) < + so that M) = Ay(7) < 1and A\ (2) < 1
and A\_(z) > —1. Using again Equation (A.56) we get

/o%(ﬂ)) @Mz)(l ~9) <X - m> ! b} %dA " if z € [0,7(n)]
o [ meu-o (x- )+ jo
- /X(lz) {m(z)(l ~9) <X - u,\l(z)) + b] %d)‘ if 2 € (v(7), %)
[0 itz e [24].
(A.58)

The sign of AP#(z) depends on the value of 7 and 2.

First, for z € (y(), &) we have A?*(z) < 0. To see this note that for z € (y(r), &) we
have V7 *(z) = VB(z) where V(z) is the borrowers’ expected utility from data sharing
under an opaque algorithm and is defined in Equation (A.11) while V"*(2) = V(@) where
VB(@) is the borrowers’ utility from data withholding under an opaque algorithm defined
in Equation (A.14). It follows that AP#(z) = VB(2) — VB(@) < 0 since for ¢ > 1 — 2b it

is strictly optimal to withhold data for z € [0, +) as shown in Proposition 2.2.
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Second, for z € [0,v(7)] we have that AP=#(2) is strictly decreasing in z since its first-
order derivative on that interval is

ABs 1 X(v(m) 1 o) 1
0 =-(1-¢)X / )\dA—/ AdA —/ A—————dA| <0,
0z 2 0 0 0 X pa(y(m))

(A.59)

since the term in brackets is negative as A(v(r)) < 1 while the integrand in the second
addend is strictly positive.

Third, for z € [0,v(7)] we have that AP#(z) is strictly increasing in 7 since

OABs , 1 1
o N (y(m))A () [NX(«,(W))(Z>(1 —¢) (X - NX@(@)) +0 5"
() ;
o) a-apkgEes o
N / 1 X(V(ﬂ)) /J,)\(Z) /
= \N(y(m mT)=b 1—o¢)—————= Ay (m)d\ > 0,
G @+ [ -0 IR

where the first and second lines use Leibnitz integral rule, the last line follows from the
fact that

1
vy = 5
while the inequality follows from Equation (A.42) and the fact that the integrand is positive
since +/(m) > 0.

Forth, since we are considering 7 € (0,7(X)) we can evaluate AP#(0) at its extreme
values of 7 to get

lim AP#(0) = — /; [(1 — ) (1 (0)X — 1) + b} % dA <0

T—0

1 (A.61)
im 850 = [ 010 (-

11
0 m(x)

1
—dA\ )
)2 >0

Since AP#(0) is strictly increasing in 7 (see Equation (A.60)), there exists a threshold
(b, ) € (0,7(X)) such that AP#(0) < 0 if and only if 7 < 7*(b,¢). Let this threshold
be defined as

(b, ¢) & {7? € (0,7(X))

AP5(0) = 0}. (A.62)

Since AP#(z) is strictly decreasing in z (see Equation (A.59)), if 7 < 7*(b,¢) then
AB5(z) < 0 for every z € [0,7(m)]. Instead, since AP#(z) is strictly decreasing in z

140



for z € [0,7v(m)] and strictly increasing in 7, when 7 > 7%(b, ¢), there exists an increasing
threshold z*(7) such that AP#(z) < 0 if and only if 2 > z*(m). Let this threshold be
defined as

2(m) £ {Z € (0,7(7))

ABS(2) =0 forz € [O,W(W)]}. (A.63)

In summary, by symmetry of AP#(z) around z = %, when ¢ > 1 — 2b we have that:

o if 1 € (0,7%(b, ¢)), where 7*(b, ¢) is defined in Equation (A.62), we have

,1], and

N
SN—
S
=
N
m
=)
— =
SN—
C
—~
—_
|
>

N VTB,S(Z) > VOB7S(Z) for z e [O,Z*(’T(‘)) U (]_ — Z*(’Tf), 1}7 where Z*(ﬂ') is defined in

) > V5 (2) for z € [0,v(m)) U (1 — v(m), 1], and
— VB (2) = VE(2) for 5 € [y(m), 1 — ().

Case 2 (¢ < 1—2b). For ¢ <1 —2b we have n(b, ¢) > 0.

Consider 7 > 7(X) where 7(X) is defined in Equation (A.55), so that we have () > +
and A(m) = 1 and A_(z) = —1 for all z > y(7) and Ay(z) =1 for all z < 1 — (7). Using
Equation (A.56), we have

;

A@) 1 1 1
[ me0-0 (55 - mwy) 170+ e o)
AT(z) = 5 pa((m)) 2
! 1 1 1 .
=0 (55~ ) 2 et
( 0 if 2 € (y(7), 3).
(A.64)

This is weakly positive and strictly so for z € [0,v(7)). To see this note that this AP#(z) is
the same as in Equation (A.57) for z > n(b, ¢), and we already prove that A%*(z) > 0 for
z € [n(b, ¢),y(m)) after Equation (A.57). For z € [0,7(b, ¢)) note that AP#(2) = OP#(z) >
0, where OP(z2) is defined in Equation (A.53).
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Consider now 7 € [7*(b, ¢), (X)) where
109 N gz
T ¢)) € (0,7(X)). (A.65)

For these parameter values we have (b, ¢) < v(7) < + so that ) = /)\\(v(w)) < 1 and
Ai(2) <1 and A_(z) > —1. Using again Equation (A.56) we get

| /OM i)l = 9) <m1<z> - mlw)) FA+

" /(:) [m<z><1 ~ ) (X - m) " b] Lo

| o -0 (x- )] Jars
[ -0 (x-—5) 1] joa

[ oo (x- ) w1 o f2e (o 1)

0 itz e [L,1].

(A.66)
Note that this AP#(2) is the same as in Equation (A.58) for z > n(b, ¢). We already proved
that AP#(z) < 0 for z € (y(m), ) (see the discussion following Equation (A.58)). For
z € [0,n(b, ) we have AB#(z) = OB*(2) > 0 where OP(2) is defined in Equation (A.53).
Since AB#(z) is continuous (as it is the difference of two continuous functions), decreasing
in z for z € [n(b,d),v(m)] (see Equation (A.59) for z € [0,~(n)]) and increasing in 7 for
z € [n(b,¢),y(m)] (see Equation (A.60)) there exists an increasing z*(m) € [n(b, @), vy(m)]
defined in Equation (A.63) such that AP#(2) < 0 if and only if z > z*(7).

Consider now m < (b, ¢) so that v(m) < n(b, ¢). Using again Equation (A.56) we get

| /OM i)l = 9) (m1<z> - mlw)) FA+

" /(()) [mz)(l ~ ) (X - m) " b] Lo

T (b, §) = (

if 2 € [0,1(b, ¢))

if z € [n(b, @), ()]

if z € [0, y(m)]

0 if = € (v(v), n(b. 6))
1 . X | |
_ /X(Z) {MA(Z)(l - QZ)) (X — ,uA(z)) + b} §d)\ if 2 € [77(57 gb), Y)
- if2 e [4,1].
(A67)

Once again AP#(z) = OP*(2) > 0 for z € [0, v(7)], where OP#(2) is defined in Equation
(A.53). Moreover, AP#(z) < 0 for z € [n(b, ¢), &), since in this interval we have VPS(2) =
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VB(z) where VP(2) is the borrowers’ expected utility from data sharing under an opaque
algorithm and is defined in Equation (A.11) while V2**(2) = V(@) where VP (@) is the
borrowers’ utility from data withholding under an opaque algorithm defined in Equation
(A.14). It follows that AP#(2) = VE(z) = VE(2) < 0 since for z € [n(b, ¢), ) it is strictly
optimal to withhold data as shown in Proposition 2.2.

In summary, by symmetry of AB#(z) around z = %, when ¢ < 1 — 2b we have that:

o if m € (0,7*(b, ¢)), where 7*(b, ¢) is defined in Equation (A.65), we have
— VP(2) > VEE) for 2 € [0,2(m)) U (1 - 4(m), 1], and
— VP (z) = VIR () for 2 € [y(m)n(b,6) U [£,1 = 2] U (1= (b, 6),1 = 5(m)],

and
— Vit(2) < V5 (2) for z € [n(b, ¢), %) U (1 — %1 — (b, 0)];
o if m € [ (b, ), T(X

)

— VP%(2) > VI*(2) for z € [0,z*(m)) U (1 — z*(m), 1], where z*(7) is defined in
Equation (A.63), an

— VP (2) < V3P (2) for z € (2*(7), £) U (1 — 2*(7), 1 — &), and

_ Vf’s(z _ VOBS(Z) for z € [%7 1— %] U {Z*<7T), 1-— Z*(TF)},

), where 7(X) is defined in Equation (A.55), we have

o if 7 € [7(X),1) we have

— V25 (2) > V55 (2) for z € [0,~(m)) U (1 — y(n), 1], and
—VE(2) = VB2 for 2 € [y(m), 1 — ().

Considering both Case 1 (¢ > 1 — 2b) and Case 2 (¢ < 1 — 2b) we can determine a
threshold z*(7) such that the surplus of a strategic borrower with data z is strictly higher
under transparency if and only if z € [0, z2*(7)) U (1 — z*(7), 1]. This threshold is

( (0 if 7€ (0,7(b,9))
2(m) if we [7%(b, ¢), 7(X)) if ¢ >1—2b,
R y(m if e [7(X),1)
2¥(m) = . (A.68)
() it (0,7*(b,¢))
Z(m) i [7(b,¢), 7T(X)) if ¢ <1—2b,
L L i R0

where 7%(b, ¢), 7(X) and 7*(b, ¢) are defined in Equations (A.62), (A.55) and (A.65),
respectively, while z*(7) and ~(7) are defined in Equations (A.63) and (2.12). |

Proof of Proposition 2.6. We proceed in 3 steps: Step 1 derives the borrower’s surplus
when the lender employs a transparent and an opaque algorithm, Step 2 studies the graph
of the borrower’s surplus as a function of m; Step 3 compares the graphs.
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Preliminaries. Consider a data sharing strategy of the form

o if z€Q
z if 2 ¢ Q,

where Q € {G(\, 7), H(b, ¢)} is the data-withholding set induced by a specific transparency
regime, and where G(\, ) and H (b, ¢) are defined in Equation (2.12) and Equation (2.13),
respectively. The borrower’s equilibrium surplus from a transparency regime 7 € {T, O}
inducing a data-withholding set @) is:

mq(z) =

1 1
vim 25 [ vEm
- (A.69)

1
= /O VG (m, A) dA,

where

VE(m,\) £ 2VE (@) + (1 — ) /0 VE (mof(2))dz, (A.70)

VB(z) and V,B(@) are defined in Equation (A.3) and Equation (A.6), while the second
line of Equation (A.69) follows from the borrower’s profit function being even in A.

Step 1. Proceeding as in Step 1 and Step 2 of Proposition 2.3, we get the borrower’s
surpluses from a transparent and an opaque algorithm. These are, respectively:

VE(m) = Am) [1—¢) (3X —1) +b] +
+ (1 — w)/~ / (1—¢)(pa(2)X — 1) +b dzdx (A7)

Xy S
and
=2 [1=0) X —1) +0] +
A b¢) 1
/ —0) (X = 1)+t +(1—7) /m(l —0)(n(2)X — 1) +b dzdA+
+/A 7 [(1— ) (AX —1) +8] + (1—m) /1 (1—6)(ur(=)X — 1) +b dzd.
A(n(b,9)) n(b,9)

(A.72)

Step 2. We now study the graphs of the borrower’s surplus in Equation (A.71) and
Equation (A.72). For an arbitrary function y : (0,1) — R, we will use the simplified
notation y(0) = lim,_,o y(7) and y(1) = lim,_; y(7) to denote the limiting values of y(r)
as m approaches 0 and 1, respectively.

First, since A(1) = 1 and A(0) = X, we have that

Ve =VE1) =(1-9¢) (3X —1) +b,
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and

1 r(\)
VB (0) - VE(0) = /x (00) /77 » [(1—¢) (ur(2)X — 1) +b] dzdA,

B /X(n%) (r(\) = (b, ¢)) [(1 - ) (m (W) X — 1) + b} d\ > 0,
(A.73)

where g, (+) is defined in Equation (2.2) and the first lines uses Equation (A.22). To prove
the inequality in Equation (A.73), notice that A(n(b,¢)) < 1 for b > 0 and the integrand
in the last line is positive since r(\) > n(b, ¢) for A\ > X(n(b./ ¢)) and the term in square
brackets is positive if
nbo)+r() 1 11 1\ 11 b _ 11 b
2 —2 A\2 X

which reduces to A < 1 when 7(b,¢) > 0 (i.e. when +(1 —2b/(1 — ¢)) > 0) and to
A<1-21 ( - %) when n(b, ¢) = 0 (i.e. when L(1—2b/(1 — ¢)) < 0), and are both
satisfied.

Second, notice that V() is flat and equal to (1—¢) (3 X — 1)+b=VF(1)if ¢ > 1-2b
(i.e. when n(b,¢) = 0 and X(n(b, ¢)) = A) and is strictly decreasing if ¢ < 1—2b (i.e. when
n(b, @) > 0 and A(n(b, ¢)) > )), since

oV B An(b,9)) 1
%o - /X (1= ¢) (AX —1) +8] /rm(l — ) (ma(2)X — 1) +b dzdrt

P (e Gx -yt [ - mEx 1) o dza

X1 (b,$)) n(b,¢)
1 pmin{r(A),n(b,¢)}

- (1= 6) (ua(:)X — 1)+ B] dzd,
A 0

L rn(bé)
<[ [T 0 om@x -+
— (1= R0 [(1- 0 ((A;M (12 ) x1) ] <o

(A.74)
where the third line follows from Equation (A.22) and the fact that r(\) > n(b, ¢) if and

only if A > X(n(b, ®)), while the last inequality reduces to ¢ < 1 —2b, the parameter values
considered.

Third, V#(r) is flat and equal to (1 —¢) (21X —1) +b=VF(1) if 7 > (%/(1 — —)) €
(0,1) (Le. when X(7) = 1) and is strictly convex for 7 < (%/(1— %))2 when

) = ;\\(7(71')) < 1) approaching the flat part from below. To prove that V2 (7 ) is convex
and approaches the flat part from below, rewrite it as

dzdA,

VE(m) = Ay(m) [(1—¢) (AX —1) +0] + (1 —7) /X( . G(\)dA
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where

G()) 2 /m(l =) ((x)X —1) +b dz, (A.75)

= (=) [(1 =) (m () X —1) +8].

The first derivative of V2 () is :

ovp
om

I
>)

A(v()

@@ [1-6) (X - 1) +b-1-m6(R0m)] - [ cmax

GEY@[1-0-na-a@e- [ Goar

I
>)

A(y(m))
A /1
A - G(N) d),
(1—/m)? A ()

where the first line uses the Leibnitz integral rule, the second line follows from plugging
A(y(m)) in Equation (A.75) and using Equation (A.25) and Equation (A.26), while the last
line follows from the fact that

N (y(m) () = NGO >0, (A.76)
(1= —y(m) =1 - V7
Note that the left derivative of VZ () at 7 = (+/(1 — %))2 is
ovp A
—L 1 N\2 — ﬁb > 0, A
m=(E) (- ) A
since A(y(m)) = 1 for 7 = (£/(1— %))2
The second derivative of VF(7) is
o*vVp A -, ) ~
871'2 - ﬁ(l . ﬁ)gb + )‘ (7(71—))’7 (7T> G()‘(W(W»)v
— X 1 _ T _ 1 . \/7_T
~ /r(l— a2 [b(l—ﬁ—f_l 7( )) +(1—-¢)(3X-1) (1+ 1\/;)](1(;78)

where the first line follows from Leibnitz integral rule, while the second line follows from
plugging A(y(7)) in Equation (A.75) and using Equation (A.25), (A.26) and Equation
(A.76).

Step 3. From the shapes of V#(7r) and V (7) described above, it follows that:

o if » > 1— 2b, we have
— VE(r) > V() for m < (£/(1 = 1))*,
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~ VEm) = VE(x) for m > (/(1 - 1)),

o if » < 1—2b we have VF(rr) > VB (x) for every ¢ € (0,1).

A.2 Computation of Observables

This section provides closed-form expressions for variables observable to econometricians,
as relevant to Section 2.7, such as the amount of data shared and overall credit provision.

Proposition A.1 (Observables). The amount of data shared in equilibrium with a trans-
parent and an opaque algorithm are, respectively:

1

517 ) = (1= 1) A=) + [ (=)

() (A.79)
So(m, X, b,¢) = (1 —m)2n(b, ¢);
while the levels of credit provision under transparency and opacity are, respectively:
_ 1 1
In(m, X) = M)+ (1 — m/~ / dzd),
A(m) Jr(X) (A.80)

1 1
Io(m, X,b,¢) =7+ (1 —7) [X+/ / dzd)| .
A Jmin{r(N),n(b.9)}

Proof of Proposition A.1. Consider a data sharing strategy of the form

| @ if z€Q,
mo(z) = z if 2 ¢ Q,

where Q € {G(\, 7), H(b, @)} is the data-withholding set induced by a specific transparency
regime, and where G(\, 7) and H(b, ¢) are defined in Proposition 1 and Proposition 2,
respectively.

The ex-ante level of equilibrium data-sharing from a transparency regime 7 € {T',0}
inducing a data-withholding set @ is:

1

1
S.(m) == [ So(m,A)dA,
2 1/—1 ’ (A.81)
= / So(m, ) dA,
where .
So(m,A) = (1 — W)/O 1{mg(z) = z} dz, (A.82)
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where the second line of Equation (A.81) follows from Sg(m, A) being even in . Pro-
ceeding as in Proposition 3, after simple algebra we obtain the expression in Equation

(A.79).

The ex-ante equilibrium level of credit provision from a transparency regime 7 € {T', 0}
inducing a data-withholding set @ is:

b L [ e
-1 (A.83)

1
_ / To(m A) ),
0

where

Io(m, \) 2 70\(2) + (1 — 7) /0 (x(me(2))dz, (A.84)

where £)(z) and /(@) are defined in Equation (2.6) and Equation (A.4), while the
second line of Equation (A.83) follows from Ig(m, A\) being even in A. Proceeding as in
Proposition 3, after simple algebra we obtain the expression in Equation (A.80). [ |
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CHAPTER B

Appendix for Chapter 3

B.1 Proofs

Proof of Lemma 3.1. Ignoring the constraints in problem (3.12), the FOC for s is :

s
V(s)=1-— —1 =0,
0
and is solved for s; = p*. Since = p* the constraints are satisfied at the unconstrained
optimum. [

Proof of Lemma 3.2. Consider the trading game at date 2 and let ¢ be the public poste-
rior beliefs (that w = h) after a generic stress test result. Consider the following speculator’s
equilibrium trading strategy:

1 it z=h
xi(z) = 0 if z=0
-1 if z=1L

First, we determine the price p(X) chosen by the market maker as a function of the order X.
Notice that any order x; ¢ {—1,1} fully reveals the speculator’s order who can therefore
not make a trading profit. When the speculator is active, we can restrict attention to
orders of size x; € {—1,1}. When X = (1,1) the market maker infers that the informed
speculator submitted a buy order and hence must have received a private signal z = h. It
follows that the market will fund the bank (@ = 1) at date 3. The market maker sets a price
that reflects the speculator’s private information and the supervisor’s intervention decision,
ie. P(1,1) = Ej(1). Similarly, when X = (=1, —1) the low state is revealed, the market
maker sets P(—1,—1) = E = 0. When X € {(1,-1),(—1,1)} the order flow allows no
inference over the speculator’s private information and the market maker’s posterior belief
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therefore remains equal to the prior, p. When X € {(1,0),(—1,0)} the market maker
understands that the speculator received an uninformative signal z = @ and abstained
from trading. Again, the market maker does not update from the prior. It follows that, for
X e{(1,-1),(-1,1),(1,0),(—=1,0)} = Xy, i) at date 3, the market will make the funding
decision contingent on the outcome of the stress test alone, as the equity price reveals no
additional information; and ii) the market maker sets a price P(X) = pmax{E}(u),0}
(since when F}(u) < 0 the capital providers will not fund the bank). Thus, the price
schedule is

Bl (1) it X =(1,1)
P(X) =< pmax{E}(un),0} if X € X,
0 if X = (—1,-1).

Next, we compute the speculator’s profits from the proposed trading strategy. If z = h, the
speculator submits a buy order (z; = 1). With probability 1/2 the liquidity trader trades
in the same direction (zy = 1 and X = (1,1)) and the speculator’s private information
is revealed to the market maker (and the investors) who then sets a price equal to E}(1).
The speculator’s trading profits are nil, E}(1) — P(1,1) = 0. With probability 1/2 the
liquidity trader trades in the opposite direction (z; = —1 and X = (—1, 1)), the speculator
retains his private information and makes profits equal to max{E}(u),0} — P(=1,1) =
(1 — p)max{E}(n),0}. Tt follows that, given z = h the speculator’s expected trading
profits are (1 — p) max{Ej (), 0}. If z = [, the speculator submits a sell order (z; = —1)
and, by the same reasoning trading profits are pumax{E}(u),0}. If z = @ the speculator
abstains from trading and makes profits equal to 0. In summary, the expected trading
profits are

- L(1 — p)max{EL(s),0} if z=h
= ) = 0 if z=9
Lpmax{E}(n), 0} i 2=

Taking expectations over z, we get the expected equilibrium trading profits after the real-
ization of the stress test result:

) =0 (50— iy max(B40).0}) + (1= o ( Gumax(E4 0.0

= op(1l — p) max{E, (u), 0}.

We show that the proposed trading strategy is indeed optimal. Consider trading after
a test result inducing a belief 1 > . Given z = h it is optimal to buy: abstaining from
trading yields profits equal to 0 < (1 — p)E} () and selling yields profits $(uEj (i) —
El(p)+3(0—0) = —2(1— p)E}(p) < 0. Given z = [ it is optimal to sell: abstaining from
trading yields profits equal to 0 < % pE} (). If the speculator buys instead, the order flow
will be either X = (1,1) or X = (—1,1). In either case, the bank gets funded and expected
trading profits are 1(0— E} (1)) +5(0—pE} (n)) < 0. If 2 = & and the speculator buys, the
bank will be funded and trading profits will be £ (uE}(1)—E} (1)) 43 (B (1) —pEf (1)) < 0.
If the speculator sells instead, the order flow can be X = (—1,1), in which case the bank
obtains funding and has equity value pFj}(u). Since this is equal to the price paid in this
state, profits are zero. Instead, order flow may be X = (—1,—1). The price will now be
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zero, the bank will not be funded and its equity value zero, yielding again zero trading
profits.

Consider trading after a test result inducing a belief p < . If the speculator sells, he
always gets a price of zero, and there will never be funding so the equity value will also
be zero. Hence, selling yields zero profits. If the speculator buys, with probability % order
flow will be X = (—1,1) in which case the price is zero, there will be no funding, and
equity value will also be zero. With equal probability, the order flow will be X = (1,1),
and the price equals E}(1) while the equity value would be lower and equal to uFE}(1).
If the speculator deviated to purchasing information and learned w = h, he makes zero
trading profits. Hence, the deviation generated a loss, net of the information acquisition
cost. If the speculator deviated to buying without a positive signal, the expected value of
equity is below Fj}(p) so the speculator makes a loss. [ |

Proof of Lemma 3.3. Consider all the outcomes m; that induce beliefs p; < p. All
these m; result in no information production by the speculator (¢(u;) = 0) and no funding
provision by the market (a(y;) = 0). Hence, we can pool all these potential signals in a
unique signal my for all s € [0, s1) with gy < . The corresponding expected value for the
supervisor generated by the outcome m; is

1
gls1) = i(Pr(mﬂw = W)VO + Pr(my|w = l)Vlo)

= %(5?1/}? + (281 — s%)Vf’).

Now, consider all the outcomes m; for 7 € {2,3,...,n}. These outcomes induce poste-
rior beliefs u; > 11 (otherwise we could have pooled the signal m; with my). If, at date 2,
the order flow is uninformative the market invests (a(y;) = 1) at date 3. However, since
the outcome induces a positive level o(u;) of information production by the speculator, if
the order flow reveals that w = [, the market does not invest at date 3 and chooses a = 0.
If the state is w = [, order flow reveals it with probability 1o (u;). The corresponding
expected bank value generated by some outcome m; is

f(sic1, 8:) —% <Pr(mi|w = h)V! + Pr(mi|lw = 1) <V21 + %0(;@-)AV}>)

- <(33 — LV 4 (205 — si1) — (87— 52)) (Vll " %"(“")Ml» |

The ex-ante expected value of the bank for a given stress test S can be written as
V(S) =g(s1) + Z f(si-1,8i). (B.1)
=2

Note that, the second term in (B.1) is a telescoping sum where

n

> (57— si) = (1—s)),

1=2

(2(si = sim1) = (57 = s574)) = 2(1 = s1) = (1 = s7).

1=2

n
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It follows that the objective function can be written as

V(S) = l(sm) + 251 = sHVP+ (L= sV, + (21— s1) — (1 - 33))w1)+

2
BN 2 2 1
+ 9 ; (2(52' — 8i-1) — (87 — 51’—1)) 50(/%)AV1
1 - Si—1+ S;
SN TR (R P

=2

where v(sy) is defined in (3.11). By applying the definitions in equation (3.2) and (3.15)
we obtain the objective function in (3.18). [

Proof of Proposition 3.1. We first introduce some notation. Let
S(a,b) ={a = 80,51, 80-1,5, = b}

be a partition of the interval [a,b] C R such that a = sy < s1 < $3--- < s,.1 <8, =0b. In
our application we will have 0 < a < b < 1 so that S(a,b) can be thought of as a partition
of a subspace of [0,1]. Let S(a,b) be the set of all possible partitions S(a,b) over the
interval [a,b]. Let S(a,b) be the finest partition in Sa,b], i.e. such that n — oo; and let
S(a,b) be the coarsest partition in Sa, b], i.e. such that n = 1. Lastly, for some function
f:]a,b] = R, we define

A(s50.0) = 30 s (252)

=1

as the midpoint Riemann sum of f with respect to the partition S(a,b). In what follows,
we will use the following properties of the midpoint Riemann sum (see, e.g., Davis and
Rabinowitz (1984) p. 54):

e if f is convex over [a, b] then R(f,S(a,b)) > R(f,S(a,b)), ¥ S(a,b) € S(a,b);
e if f is concave over [a,b] then R(f,S(a,b)) > R(f,S(a,b)), ¥V S(a,b) € S(a,b).

We proceed in 3 steps. Step 1 establishes the general structure of the stress test. Step
2 simplifies the objective function in problem (3.17) and writes it as a function of two
thresholds (si, s2). Finally, Step 3 determines the optimal thresholds.

Step 1 (General Structure). Fix the optimal s; and assume it is interior, i.e. s; € (0, $2)
(this will be true at the optimum), consider a subset [s1, 1] C [0, 1] and define the function
Y(s) : [s1,1] > R as



Consider a partition S(s1,1) = {s1,$2,53,...,Sn—2, Sp—1, 1} and note that the stress test
design problem (3.17), with 7 = p*, is equivalent to

5 1
dnax R(X, S(s1,1))

81+82 %

s.t. >l

(B.2)

0+81< «
L.
2 /

The first and second derivative of i(s) are, respectively:

S (s) = % [—2(1 — ) (Mi - 1) +(1- s)zﬂ ,

01 ) 0-oh)

so that i(s) attains its maximum at s = % + %u* and it is concave over [51, % + gu*}
and convex over (% + £p%,1]. For some j, we have S(s,1) = S(s1,s;) U S(s;, 1) and
R(i, S(s1,1)) = R(i, S(s1,s5)) + R(i, S(sj,1)). For the properties of the midpoint Rie-
mann sum introduced above, the partition that maximizes R(S,S(s1,1)) is S(sy,1) =
S(s1,87) U S(sj,1) for some optimally chosen s;, that is the partition that solves problem
(B.2) has a unique coarse sub-interval s, s;] with s; < s; and a collection of infinitesimally
small sub-intervals over the interval [s;, 1]. Relabelling s; = s, we have that the optimal
stress test has two coarse messages (mg = s € [0,s1) and m; = s € [s1,52)) and a set of

granular grades for s € [sq, 1].

Step 2 (Simplifying the Objective Function). Step 1 allows us to write the objective V' (.5)
as a function of the thresholds (s, s2) only. Note that if the stress test S has fully granular
grades for s € [sy, 1] we have v; = ds and p; = s for i € {3,...,n} where n — oco. It
follows that the objective function in problem (3.17) reduces to:

Vist, ) = v(s1) + % (ymu ~ )? <Mi _ i) 4 /S: s(1— s)? (Mi - é) ds) |

Adding and subtracting [ s(1 — s)° (ui - %) ds on the right-hand side we get

Vis1, 82) = v(s1) + % (/1 s(1— s)2 (ﬂi _ é) ds + As. 32))
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where

Als1, 53) = vain(1 — jia)? (Hi - H%) - / s(1— s)? (Hi - %) ds,
b () (-
-/ [Mi (a1 = pa)? = 51— )?) = (1= ) — (1 - s>2)] ds,

~ (o= s =30 ) - (— g5t - ).

It follows that the objective function simplifies to:

V(s1,s9) = v(s1) + % (/1 s(1— )2 (Mi _ é) ds + %(@3 <%(2 3y + 1)) ,

(B.3)
where v(s) is defined in (3.11), while 15 = s5 — 51 and pp = 2522, as defined in (3.2), and
the stress test design problem in (3.17) simplifies to:

max V' (sy, $2)
51,582

S.topy < pt (B.4)
flo > .

Step 3 (Optimal Thresholds). Neglecting the constraints in problem (B.4), the FOCs are:

Vs s (L 1) B e (L Bl
T (o) + g [~ s (= ) = S (2 -3+ 1) - S| 0

oV 1[3, (1 3. 411
95 or [E(V2) (E(2_3M2)+1) - ﬂ(’h) E} =0,

and after simple algebra they simplify to:

8—51 2T
ov 1 L—3(s1—p*) — 59

1—2(sg — u*) —
ov =v'(s1) + L [—(1 —51)? <ﬂ _ 1) — (1)? 2(s2 —p") — 51 0,
1
gr _ 2
652 2T 2lu*

First, we show that when the constraints in problem (B.4) are slack the optimal stress
test is a binary partition, sy = 1; we show that the partition features leniency, s; < u*;
and we provide the equation that implicitly defines the optimal s;. Note that the second
equation in (B.5) has two solutions: s, = sy and s, = 1 — 3(s; — p*). The first solution
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. . . 2 . . .
is a stationary point where g—x = %T‘Q/ = 0 but is not a maximum. The second solution,
1

Sg=1— %(31 — p*), is greater than 1, if s; < p*.

Suppose the optimal s; < p* and therefore the optimal s = 1. If s = 1, the first-order
condition with respect to s; becomes:

_8V 1 b 1— 1 1—u*) —s
631 = 27 M* 2,[,6*
- 3 —1 (B.6)
51 1 2" 3 T S1
,U* + 27'( 61) 2,LL* )

which is equivalent to (3.19). The first-order condition (B.6) has a unique solution in $; €
[0, 1], since the left-hand side of (the second line of) equation (B.6) is strictly decreasing.
To see this differentiate it with respect to s; to get:

1 3

pro AT

(1 —s1)(p" = s1)

which is strictly negative if

T > %(1 —51)(s1 — ).

This inequality is satisfied even when the right-hand side takes the highest possible value,
. 3 1_/J* 2 . L * .
ie. 3 (=) (attained at s; = (1 + p*)/2), since we have

4\ 2
1 (1—p\> 3 [/1—p\°
> — > —
() )

by assumption (3.16). Finally, using (B.6) and substituting s; = p* it is immediate that
the resulting expression is negative, hence the solution to (B.6) features s; < p*. Similarly,
substituting s; = 0 yields a positive expression, implying that the solution to (B.6) features
s1 > 0.

To rule out a maximum where p* < s; < s < 1, substitute the candidate interior
optimum s, = 1 — £(s; — p*) into the first expression of (B.5) to get

ov
881

—(1 - 51)? (5_1 _ 1) _ (1 B %(31 - 51>2 11— %(812/:*”*) ) — 51]
(B.7)

Note that v'(sy) < 0 for s; > p*. It is therefore sufficient to show that the expression
in square brackets is negative. We have

1 21—l —Lg - ) —pu)—s
—(1—31)2<%—1>—(1—5(81—,&*)—51) 2 2(12 *M) w) L <0,
K %
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if and only if

1 1 ’
2(1 — 81)2(51 — ,[L*) + 5 <1 — 81 — 5(81 — ,U*)> > 0.
By our hypothesis that s; > p* it follows that 2(1 — s1)%(s; — p*) > 0. We now show
that the second addend is also positive. The term is decreasing in s;, so showing that it is
positive for the highest admissible value for s; is sufficient. Note that the constraint s; > s;

with s =1 — %(31 — p*) implies s1 < %T“ For s; = %, the term (1 — 5] — %(51 — ,u*))
is equal to
24 p 12+ p"
1- — = — ) =o.

3 2 ( 3 M )
Hence, we have Vs; € (p*,1 — 1(s; — p*)),

ov

— 0

831 s1>p* <5

so=1—3(s1—p*)
hence the optimal s; must be below p*.

Lastly, we show that the constraints in problem (3.17) are satisfied at the unconstrained
optimum. The first constraint p; = (0 + s1)/2 < p* is satisfied since we know s; < p*.
The second constraint, ps = (s1 4+ 1)/2 > u*, is satisfied if s; > 2p* — 1. Consider the
following derivative:

o

2u* —1 1 (1= p*)3
It S N Gt i
881

-1 =
s1=2u*—1 w 2r  p*
so=1

Note that gTV
1

o1 0 (and so s; > 2u* — 1) since p* < 1. Thus, we have pus > p* and
so=1

all the constraints are satisfied at the optimum.
It follows that the optimal stress test is a binary partition with s; < p*. |

Proof of Proposition 3.2. The optimal cutoff sz is implicitly defined as the solution to
equation (3.19), which can be rearranged as

k 1 *
W= sp+ EK(SFML ) =0, (B.8)
where o
K(sp,p*) = (1 — sp)? ( ,u2 —3F> .

3u*—1

—, 11*) we have that K (sp, p*) <

Since the sy that solves equation (B.8) is in the interval (
0. In what follows, we will also use the fact that

k(sp,p*) = oK =2(1—sp)(—1) (

8SF

3 — 1
a — - 5F> (1= sp)?(=1)

=-=3(1—=sp)(p" —sp) <O.
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Employing the implicit function theorem, we totally differentiate equation (B.8) with re-

spect to 7 and p* to get:
85F . ﬁK@;Fa,U/*)

= >0
or  k(sp,pr) —1
Osp L+ ﬁgf*
. 1 * > 07
o — =k(sp, p*)
where the last line follows from the fact that gﬁi =(1-sp)?2>0. [

Proof of Lemma 3.4. Neglecting the constraints in problem (3.12), the FOC for s; is :

V(s) =1— =2 =0,
1
and is solved for s; = p*. The constraint py = s1/2 < i is satisfied for s; = p* since p* < [i.
The constraint g > J1 is satisfied at the unconstrained optimum when (p*+1)/2 > 11 and
is binding otherwise. When the constraint is slack, the optimum is s; = p*. When it is
binding, s; is chosen to satisfy the constraint, i.e. s; = 2z — 1. Thus, the optimal stress
test is a binary partition with cutoff s; = max{2p — 1, u*}. [ |

Proof of Proposition 3.3. The proof proceeds as in Proposition 3.1 until Step 3, and
the stress test design problem can be written as:

max V' (sy, $2)
51,52

sty < Ji (B.9)
,MQ Z ﬁ)
where
1 ! 1 1 1 1
V(Sl, 82) = U(Sl) + E (/51 8(1 — 8)2 (ﬁ — g> ds + E(Vg)g (ﬁ(Q — 3,[112) + 1)) ,

(B.10)

and v(s1) is defined in (3.11), while 1, = 55 — 51 and pp = 2422 as defined in (3.2).

Neglecting the constraints in problem (B.9), the FOCS, after some algebra, simplify to:

8V_ , 1 9 [ S1 21-%(52—[/;)—81 .
5. =v'(s1) + o [ (1—s1) <ﬁ 1) (v2) o =0,

R T
dsy 27" ° 211

(B.11)
= 0.

First, we show that when the constraints in problem (B.9) are slack the optimal stress
test is a binary partition, s = 1, and we provide the equation that implicitly defines the

AN

optimal s;. Note that the second equation has two solutions: s, = s; and s = 1— %(sl — ).

. . . . 2
The first solution is a stationary point where X = 2V —
Js1 0s7

second solution, s, = 1 — %(sl — 1), is greater than 1, since at the optimum we have s; < [i.

0 but is not a maximum. The
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Suppose the optimal s; < i and therefore the optimal s, = 1. If so = 1, the first-order
condition with respect to s; becomes:

ov 1 1—-l1_-0) =5
— = (s1) +— |—(1—57)° o) - (1—s)? 2 AN) -
0s1|. _ 27 m 210
s2=1 - (B.12)
: 1 =5
ST S T - oy}
w27 20

which is equivalent to (3.26). The first-order condition (B.12) has a unique solution in sy €
[0, 1], since the left-hand side of (the second line of) equation (B.12) is strictly decreasing.
To see this differentiate it with respect to s; to get:

1 3
. C (1= 7 —
e 4/77( s1)(1t — s1)
which is strictly negative if
3 —~
> Z%“ — s1)(s1 — ).

This inequality is satisfied even when the right-hand side takes the highest possible value,
. N2
ie 3L (1_—“> (attained at s; = (1 + 1)/2), since we have

10 2
1/1-=a\" 3u [(1-0a\"
o L(LZEY 3 (17
W 2 4 2

by assumption (3.16). Finally, using (B.12) and substituting s; = g it is immediate to
show that the resulting expression is negative, hence the solution to (B.12) features s; < [i.
Similarly, substituting s; = 0 yields a positive expression, implying that the solution to
(B.12) features s; > 0.

To rule out a maximum where I < s; < s < 1, substitute the candidate interior
optimum s, = 1 — £(s; — [1) into the first expression of (B.12) to get

o,
—851 —U(81)+
1 2 [ 51 1 ~ 21_%(1_%(51—@_@—51
Z[*“””(ﬁ‘Q‘(“ﬁ@_m_*) o7

(B.13)
This expression is similar to (B.7) with the exception that i replaces p* in the expression
in square brackets. Hence, the proof proceeds as in Proposition 3.1, and this yields that
the optimal s; must be below /.

Second, we show that the constraints in problem (B.9) are satisfied at the unconstrained
optimum when p* > u® where R
2u—1

14+ L0

o

1 (B.14)
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The first constraint p; = (0 4 s1)/2 < i is satisfied since we know s; < fi. The second
constraint, o = (s1+1)/2 > [, is satisfied if s; > 21— 1. Consider the following derivative:

ov|  _moi 1i0-p
0s1 |s1=2—1 w* )
so=1
Note that g—svl o251 >0 (and so s; > 2i1 — 1) if and only if p* > p°. Thus, we have that

so=1
the constraint ps > i is satisfied when p* > 1° and binding otherwise.
Lastly, we show that when the constraint s > p is binding the optimal stress test
is a binary partition with cutoff s; = 21 — 1. When the constraint is binding we have
s1 = 2J1 — So. Plugging this in the first-order derivative of sy we get

oV 1 92—l — ~
. - 2—(32—@2#20 forsy <2 — 1.
52 $1=2[1—S$2 T K

Hence the objective function V' (2/1— s9, s9) is weakly increasing in s, over the entire domain
so that the optimum is so = 1.

It follows that the optimal stress test is a binary partition with cutoff given by (3.25).
[ |

Proof of Proposition 3.4. When the constraint is not binding, the optimal cutoff is
sP = §and is implicitly defined as the solution to equation (3.26), which can be rearranged

as
- 1 -
W= S+ HGE ) =0, (B.15)

where

SO o (3 —1
H(s,p*, p) = (1-5) T (T—S) ~
The sign of H (s, p*, i) depends on whether the stress test is lenient or conservative, in
particular, H (s, u*, ) > 0 if and only if p* < % To see this note that from Proposition
3 we have that p* < % implies that § > p*, hence the § that solves (B.15) has to be
such that H (s, u*, ) > 0. Similarly, p* > % implies that s < p* and H (s, u*, 1) < 0.
In what follows, we make use of the fact that:

OH w*

h(E i) = 5= = 2(1 = 5}(—1)f <3ﬁ— 1

- s) +(1— 5)2%(_1)

(B.16)

*

= 31-9)5@E-9 <0,
o

since we have § < i from Proposition 3.3.
To do comparative statics, we express equation (B.15) in terms of the primitives (p, R, D)

to get:
1 1
— —Ss+—H(s,p,R,D) =0 .
R é+47_ (s,p, R, D) , (B.17)
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where

HG,p. R, D) = (1 - 3)? (g}%— <%+:§) (1—%»,

and 5
—_— = — J— 2_—
P T
OH 31 1 \D
_ = — 1— _— _—
on ~ 2 < ot < +S> R2> <0 (B.18)

oOH 1\ 1
1— = —>0.
op = (1= (2 * S) R
Employing the implicit function theorem, we totally differentiate equation (B.17) with
respect to (p, R, D) to get:

1 0H 1

8 _E5F
Op 1 —3=h(s,p*, 1)

. 1 9H 1
5 _wh—gm
OR ~ 1- LhGur )
a’v IBH

S 4r 0D >07

8—D N 1— Eh(svﬂ aﬁ)
where the inequalities follow from (B.16) and (B.18). Doing the same for 7 we get:

05 _ H(s, p*, 1)
or 4Th(3,,u )

where £% < 0 if and only if y* < 3“ L (as this implies H (3, u*, 1) > 0), since h(s, u*, i) < 0
by (B. 16)

When the constraint is binding, so that s = 2ji — 1, the comparative statics are driven
by it = 1/p(R — D), and are thus the same as above. [

Proof of Lemma 3.5. The stress test design problem is given by (3.12) but, to ensure
that an optimum exists, the constrained set changes to 1 < iz and uo > i, that is we want
to solve:

max v(sy)
S1

sty <, (B.19)

M2 > //L
where v(sy) is defined in (3.11). Neglecting the constraints in problem (B.19), the FOC
for sy is :



and is solved for s; = p*. The constraint ps = (s1 + 1)/2 > i is satisfied for s; = p* since
i < p*. The constraint pu; = s1/2 < p is satisfied at the unconstrained optimum when
p* /2 < i and is binding otherwise. When the constraint is slack the optimum is s; = p*,
when it is binding, s; is chosen to satisfy the constraint, i.e. s; = 2. Thus, the optimal
stress test is a binary partition with cutoff s; = min{2z, p*}. |

Proof of Proposition 3.5. When p* > i, the stress test design problem is given by
(3.17) but, to ensure that an optimum exists, the constrain set changes to p; < ji and
p2 > . Hence, the stress test design problem is

max V (s, $2)
1,52

sty < [

H2 > ﬁa

where V(s1,s9) is defined in (B.10), v(s;) is defined in (3.11), while v, = s9 — s; and
py = 2522 as defined in (3.2).

(B.20)

The proof proceeds as in Proposition 3.1 until Step 3, and the FOCs are the ones in
(B.11). We replicate the FOCs here for ease of exposition:

o=t g [0 () -t R

Ds1 2 [i 27
a_vzi(y )21—%(31—@—52 —0
dsy 21 ° 211

First, we show that when p* < p, where

~

1
= =, B.21
T 2
the optimal stress test is a binary partition, s = 1, and we provide the equation

that implicitly defines the optimal s;. Suppose ss > s1, the second equation is solved for
S9=1— %(sl — 11). If at the optimum we have s; < j, then it is optimal to set s; = 1. To
determine when this is the case, we evaluate the sign of the following derivative:

oV A _ 10—
Osy |s1=n N wro2r Ap

sa=1—4(s1—11)
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We have that 2%

5 < 0 when p* < p. It follows that for these parameter values,
S1 =

s1=H
so=1—3(s1—1l)
we have s; < 11 and s3 = 1. The optimal s; solves:

ov 1 1-i1-p)-s
95, :1—%4-?{_(1—81)2 (%—1)—(1—81)2 2( 2ﬁﬂ) -
1] gy—
=1 ) P (B.22)
51 272 1
=1-—+ —(1- =0
,u*+27'( 51) 211 ’

and thus is equal to s, the unique solution to (3.26). The constraints are satisfied. The
constraint g1 = (0 4+ s1)/2 < i is satisfied since at the optimum we have s; < 1. The
constraint ps = (s1 + s2) > p is also satisfied since at the optimum we have s; > 211 — 1.
To see this note that:

ov :1—2“_1+i(11m3>0,
081 |s1=2fi—1 w* 21 1

so=1

since we have that 1—(2u—1)/p* > 0 as u* > 1 > 211—1, and the other term is also positive.

We now distinguish two cases when p* > pu: Case A, where u < 2/5, and Case B,
> 2/5. B
Consider Case A. We show that when p* > p the optimal stress test contains two buckets
with fully granular grades for resilience levels above the buckets, i.e. s, < 1. From the
discussion above we already know that for these parameter values, we have s; > 1 and

A~

_ 1
SS9 = 1-— 5(81 —u)
When the constraints are satisfied, the optimal optimal s; solves:

oV 1 L— 951+ 50)°
v -2 e (2-0) + T o )
051 52:1—%(31—/7) w* 2T H 4:“

The constraints are indeed satisfied when

; 2p

"= gy "
1— & ((1—2p)2 + —2—

To see this note that the constraint s = ($1 + s2)/2 > [1 is satisfied since sy > s1 > [i,

while the constraint p; = s1/2 < [ is satisfied if s; < 2 and this is the case when

oV 2ﬁ 1 ~\2 (1 _ gﬁ)g
Al - (-2 AL I
Jsy|s1=20 * + 27 <( iy

s2=1—35(s1—0)

(B.24)

which is equivalent to (B.24).
We can also verify that at the optimum s, = 1 — 5(sy — 1) > s1. This happens when
s1 < 2+ 511, which is the case when
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ov i 120-p
Osy |s1=3+350 * 2727  n
s2=1- L (s1-7)

or equivalently, when

< 33 5 = [I. (B.25)

()
2 )
as by assumption (3.16).

When the constraint gy < i is binding, i.e. (B.24) is not satisfied, it is optimal to choose
s1 to satisfy the constraint, s; = 2, and s; = 1 — %ﬁ Note that, once again, sy > sy if
p<2/5.

One can show that this condition is milder than (B.24) when 7 < 2/5 and 7 >

=)=

Consider now Case B. From the discussion above, we have that s; < s; when (B.25) is
satisfied and the optimal stress test is as discussed above. When (B.25) is not satisfied, a
coarse pass grade is not optimal anymore and thus we have s, = s;. Plugging s; = s; in
the FOC for s; we get the equation that implicitly defines the optimal s;:

oV s 1 s
— =1- " — —(1—s) (é—1) = 0. (B.26)
051 | 4y—s, w27 1
The constraint py = s1/2 < pi is satisfied when
21
p < — (B.27)
[ L(—2p
since this implies that
ov 2n 1
v — 1L _—n-mr<o (B.28)
881 so=81=21 1% 27
When the constraint is binding, it is optimal to choose s; and sy to satisfy the constraint,
S§1 = S9 = Qﬁ [ |

Lemma B.1. When the supervisor can intervene according to her private information s,
she solves the following stress test design problem:

max V' (s1)
516[0,1]

where
Vaiy(s1) if s1€ (0,2p" — 1)7
Vo (s1) if sy € [2p" =1, p*(1 — 5)),
V(s1) =< Vp(s1) if s1€ [u*( —9),p*(1 —1—5)], (B.29)
Viay(s1) if s1 € (M*<1 +0),2p )7
Vi (s1) if s1 € [2ﬂ*7 1]
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and Vaay, Vagiys Vo Vi) Ve are defined in (B.30)-(B.41).

Proof of Lemma B.1. The supervisor’s value function depends on i) the default action
taken by the market without a stock market signal, and, ii) whether the supervisor in-
tervenes or not to revert the market’s action. Accordingly, we distinguish several cases

and first state the relevant functions V(s;) for each region. The proof of the expression
(B.30)-(B.41) follows further below.

e region a(i), s; € [0,2u* — 1). Note that this region is non-empty only if p* > L.

2
Expected bank value is

Vit vt
Vay (51) ==+ L, (@5% + (1 - @> 52)
12 02 20 2 i (B.30)
Lo (3 (- 5) a5 ) -3 (- )0
where o9 is the information produced by the speculator if the bank passes the test,
given by
1 5 1
The speculator does not produce information if the bank fails the test.
e region a(ii), sy € [2p* — 1, u*(1 —§)).
vivvt o1
Vain (51) It LAy (233 " (1 _ _2) 52)
2 2 2 2 (B.32)

A (Z +(1-5) e ) -5 (1-F) -

There is no information acquisition following a fail result, and information acquisition
following a pass is given by

oy = % (1-5%) <pR - %) : (B.33)

2

Note that oy from (B.33) and (B.31) are the same. This can be shown using the
expressions for s,5 and p* = [%.

e region p, s1 € [u*(1 =), p*(140));

1 1
Vi (s1) :u — ESQAV;L
’ 2 2™ B.34
+1AV <0'2+<1 UQ) (2 2)) ( ' )
2 l 2 2 S1 81 .

There is no information acquisition following a fail result, and information acquisition
following a pass is given by

1 1

T 2
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e region b(i), s1 € [ (14 6),2u").

L |
SRS PO AR
2 2

b oAV (s -+ (1-2) 25— ) + 5AUZ (1 - s

2
—5(L—5)@1—@.
(B.36)

Since the bank is sometimes funded even when it fails the test, the speculator acquires
information o following m; (and o9 following ms):

Vi (s1)

1 — i 1
o1 = 2— (8% - 82) . (pR - 51+S> ) (B37)
T 2

R <pR : j) | (B.39)

e region b(ii), s; € [2u*,1]. Note that this region is non-empty only if p* < % We
again get information acquisition following both a fail and a pass result.

vi+vt o1 o
) <L (122 2
_ T 25— ) 4 SAV T2 (1 )2
+ AV( (251 S)—l—(l 2)(2§ §))—1—2AV2(1 s1)
—(1-5)s
(B.39)
where
1 - 1
0125(3%_5) 512 <pR_slT+§)7 (B.40)
—i(l 1) | PR - ! B.41
or=—(1—s1) (P 1+251 : (B.41)

Note that oy from (B.40) and (B.37) are identical. This can be seen by using the
expressions for s,§ and p*. Moreover, oy in (B.41) and (B.38) are also identical. Finally,
note also that on the interval s; € [5,1], 0y is maximized at s; = 1, 0y is maximized at
s1 = § and that o1(s; = 1) = 02(s; = §). We define o = 01(s; = 1), given by

1 1+5
o= —(1—s(—2_1). (B.42)
2T 2u*

It is straightforward to verify that V' (s1) is continuous over the entire interval s, € [0, 1]

and that V(s; =0) =V (s; = 1).
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—> S1 S1
0 s 1 0 I 1

(a) §=0and p* =1 (b) 6 =0 and p* = 2
V<31) V(Sl)

S1

»
—

0 2u =18 u*

(c) 6=%and p* =} (d) 6 = 55 and p* = 2

1
Figure B.1: Objective Function V' (s;) and max,, V' (s1) (in red).

Figure B.1 depicts the objective function V(s;) for some parameter values. We now
prove the expressions (B.30)-(B.41).

Region a(i): s; € [0,2u* — 1), non-empty only if 2u* — 1 > 0. Since 53 < 2u* — 1,
we have p; < po < p*. Without information from the share price, neither the regulator
nor the capital provider will act to fund the bank if the stress test generates message m;.
There is hence no information production by the speculator. Creditors do not roll over
their debt even after a pass result, unless the stock price reveals w = h. Following a test
outcome ms, the supervisor funds the bank if the stock price is uninformative and s > s.
This then provides incentives to the speculator to acquire information and trade following
M.

Given the funding rate r = L the equity value given w = h and a = 1 is
ps

1
E}(s) = pR — x
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We have Pr(w = h, s|ms) = Pr(w = h|s) f(s|m2) = 1%~ and hence, the market maker sets
the price when the order flow is uninformative following mo at

! 1 S
P(mo) —/ (pR— g) 1—731(157

115,

T2l _s M
where 1

Eilz_pR_ 5+1

The trading profit is therefore

ﬂﬂ=gzU“ S<E%>f%m»m+3§‘*emm»+lglﬂﬁmwﬂ—gﬁ,

2 1—s5 21— 2 1—s
11— 15— s? 1(1—s)2
= E} - P - L—p - P — —o?
2 {2 1— ) ( (mQ)) + 21— 51 ( (m2>> 21— s (mQ):| 09,
which can be simplified to
E(r) = %(1 — Bl - 57

Taking the first order condition, we get the amount of information acquisition at the
optimum, following message mg, given by (B.31). The supervisor’s expected payoff is thus

[ (-3 00 -al oo (G (1-3) 0 -a)
52~ 5) s~ s W+ 57— (2 + (1= 2) W)

1
+ 3 [(231 — 9%) VO + S’th}

Va@(s1) = (
1
3l

After some calculations, we get (B.30).

Region a(ii): s; € [max{0,2u* — 1}, s), where s = p*(1 — §). We have puy < p* < po
so that, in the absence of an informative stock price, creditors roll over their debt following
a pass but not a fail result. If s < s; there is no information production and the bank
will fail to raise funds from private markets or the supervisor. Following a pass result,
capital providers are willing to fund the bank, unless the stock price signal reveals w = [.
The supervisor does not intervene, unless the bank passes the test, the stock price is
uninformative and s € [s1,s). In that case, the supervisor shuts down the bank (as = 0).
Overall, this yields the following expected payoff to the supervisor:

Vig(s0) = 5 [(1 = W+ (2 = D) [ 2V + (1= Z)00 - )] + s3]
b3 [-@s- )] [2v0+ - Zm])

(25— = @s1 = D)) [ZV0+ (1= D)1 = 9)] + @si - D]

N | —

_|_
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After some calculations, we get the expression in (B.32).

Next, we need to determine prices and trading profits in order to determine the relation
between s; and the amount of information oo produced by the speculator. When my is
observed and the order is uninformative, the market maker does not know whether the
bank will be able to continue. This depends on whether s is above or below s. Denote by
pl(my) = Pr(w,a|lms). Here a denotes whether the firm is able to continue (a = 1) or not
(a = 0). To ease the exposition we do not introduce extra notation to distinguish between
the case where the supervisor is decisive (unwinds before the bank can try to raise capital),
or the providers of capital are not willing to fund the bank. For the sake of brevity, we
drop the function argument ms from pf(ms). Beliefs following m; do not require a similar
distinction since the supervisor and capital providers agree that the optimal action in this
case is @ = 0 and the speculator produces no information.

1 11—s2

by, = —

P =51 "4
0:1§2_5%

Hn 21—51’
p_11-(2s5-5%)
M= 2
M0=12§_§2_(251_82)
D) 1—s '

The speculator’s expected trading profits, after having observed my and acquired in-
formation o, are

02 T
E(r) = 5 [m(By = P) + ip(=P) + (p + ) P] = 503,
Since the market maker learns nothing if the order flow is uninformative, and since E) =
E} = EP =0, the price is
P(ny) = ph 5}

where E} is computed below. The expression for trading profits can be simplified to
E(r) = o2 By, (1 — g, — p1) — 503

To calculate E} note that the bank only gets to approach capital markets if the super-
visor has allowed it to go ahead. This reveals to the capital providers that s > s. Hence,
at this point, the capital providers believe Pr(w = h) = % Since the interest rate is set
as a function of the belief p at r = #, we get

1 2
2

From this, we can calculate overall trading profits as

2 1— 4
B(r) = % (pR— ) (1-8) —2 — 203,




which can be simplified to

o 2 T
Blw) =2 (ph- - ) (1- ) - 3ok

Taking the first order condition with respect to oo we get the expression in (B.33).

Region p: s; € [s,5), where s = p*(1 —9)),5 = p*(1 + 9). We have py < p* < pg so
that creditors roll over their debt following a pass but not a fail result. The supervisor is
always passive: Following a pass result, s > s so the supervisor does not want to intervene
with a, = 0. Following a fail result, we always have s < § and hence the supervisor does
not want to fund the bank. Since the supervisor is completely passive, the game proceeds
as in the baseline model, and the supervisor’s value function is given by Lemma 3. By
setting so = 1 and after some simplifications we get the value function in (B.34) and the
amount of information acquisition in (B.35).

Region b(i): s; € [s,min{2u*,1}). We have p; < p* < po. If the bank fails the test,
but the supervisor observes s € [§, s1], she funds the bank at rate r = is Since the bank
gets funded with positive probability following a test outcome my, the speculator may now
acquire information even after such a comparatively unfavorable test result, i.e., in spite
of an induced belief p; < p*. Denote by oy, the amount of information produced by the
speculator, following m+, and similarly, oo denotes the information acquired following m..

We proceed to calculate trading profits following m;. As before, the equity value is
only non-zero when w = h and a = 1. Given the funding costs r = pis, the equity value is

1

We have Pr(w = h,s|my) = f(s|mi) Pr(w = h|s) = = and hence, the market maker

S1
sets the price when order flow is uninformative following m; at

5 1\ s
P(m) :[ (pR— Z) ;dS,

_ 1st - §2E1
2) 1 hs
where .
E} =pR — ST
2
From this we can calculate trading profits:
E( ) 01 /S] S (El() P( ))d +1§2( P( >>+181(2—51)P( ) T 9
T) = — — s) — P(m s+ =——(—P(m ———P(my)| — =0
2 [)s s o " ! 2 51 CE RPN Voot
o [1s1—5, 15? 151(2—s1) T ,
=—|= E, —P ——(=P ———P — —o7.
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After some simplifications and taking the first-order condition with respect to oy, we find
the expression in (B.37).

Trading profits and therefore information acquisition following ms can be calculated as
in the baseline model. Using the function (3.14) derived previously and setting p = us =

H—;l we get the expression in (B.38). The supervisor’s expected payoff is given by

%m@g:%[u—ﬁnﬁ+@ﬁ—§)0g—(y-%m)+§<%ﬂf+(1—%)m$}
by [=si@ =) (B0 + - 2]
b3 (@552 -9) (20 + 1 - D) -9) +52- 7]

and after some simplification, this can be written as the expression in (B.36).

Region b(ii): s; € [2p*, 1], non-empty only if 2p* < 1. In this region p* < puy < g so
that capital providers are willing to fund the bank even if it fails the test (unless the stock
price reveals w = [). The supervisor intervenes and sets a5 = 0 if she observes s < s. After
the message ms the game proceeds as in the baseline model: the speculator’s information
acquisition after my is given by (B.41) and in the absence of a revealing stock price the
market invests.

Following the message m;, if the stock price reveals nothing, the supervisor may in-
tervene depending on the realization of her private signal. When the market sees no
intervention it realizes that s € [s, s1) and chooses the interest rate accordingly, leading to
an equity value of

1
2
We can determine the speculator’s and market maker’s beliefs over the state and the

expected supervisor’s decision, p% = Pr(w, as/my) = Pr(w|as) Pr(as|my). These are:

1 St+818—S8

Hp, = 9 st
%Z%i

= (1_§251> S1S:§
1-(-9%

The market maker chooses a price

P = By,
and the speculator’s expected profits are
g1 1
E(r) = 5 [m(Ey = P) + pp(=P) + (g + 1) P| = 5707

1
= (1= py, = 1) By = 5707
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By taking the first-order condition with respect to oy we get the expression in (B.40).
The supervisor’s objective function is:

Vi (s1) :% [ (FVi+(1-F) W =0)+ (- +0-s )) Vi
s (34 (-3) 09-9)]
(- ) (3 (1-2) )]
Hlon-m-0-0) (4 (-2) )]
This can be simplified to get (B.39). [

Lemma B.2. The function V (s1) defined in (B.29) attains a local mazimum on the interval
s1 € [0,5] at

a(it)  .p a(ii) _
% B A S (W (B.43)
spoif s7 7 > pr(l=9),

”—21(;;72_1) with oy defined in (B.33), and sp solves (3.19).

where s2" = §

Proof of Lemma B.2. When p* < %, region a(i) is empty. For s; in region a(ii), the

supervisor’s objective is given by (B.32). It is straightforward to show that

a‘/a(zz 02 02
—5 1——)—(—A . B.44
s, ( 5 ) Al (B.44)

Note that “(”) is strictly positive at s; = 0 and § > 0. Moreover, V;(0) = Vi) (1).
Hence, for any d > 0 the optimal s; € (0,1). If s; increases so that we are in region p, we
know from Proposition 3.1 that V,(s;) attains a maximum at s; < p*, as we have 72 aV <0
at s; = p*. Hence, V(s1) must attain a local maximum between 0 and p*.

The following can be said about whether the local maximum lies in region a(ii) or region
p. The maximum of V,;(s1) is reached at

1@ 3
§1=0——=>2 _ = sa(“), B.45
0GR - (B.45)

where oy is defined in (B.33). If 3‘11(“) < s = p*(1—9), then V(s;) reaches a local maximum

in region a(ii). Moreover, using the expressions for V,;)(s1) and V,(s1), it can be shown
avp

that at the point s; = s we have o “(“) < Hence, if gTVf < 0 at the corner s; = s of

S
region p, then the local maximum is in reglon a(ii). If scf(“) > s we have that Vi) s,) 18
strictly increasing on the entire region a(ii) and the local maximum lies in region p. There
can be cases where 6‘5;;1) < 0 for the corner s; = s in region a(ii), but av”(sl > 0 for the

corner s; = s in region p. In that case, V(s;) has two local maxima on [O u *].
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When p* > 1, the relevant regions are a(i) to b(i). Vy)(s1) is decreasing on the entire
region a(i), as can be seen by calculating its derivative:

Vi (s1)

)
=—s51—A B.4
881 S1 9 Vha ( 6)

which is negative. Moreover, we know from before that for s; in regions a(ii)-p, the local
maximum is below p*. It then follows that the local maximum over regions a(i)-p is either
at the corner s; = 0, or is interior and given by s&.

Lemma B.3. For p* < %, sg 18 a global mazimum.

Proof of Lemma B.3. The proof of the lemma follows from the following two claims.

Claim 1. On regions b(i)-b(ii), the objective function V(s1) attains a mazimum at one of
its corners s; € {5, 1}.

Claim 2. For ¢ > 0 we have V(s§) > max {V(5),V(1)}. For § = 0 we have si =0 and
V(0) = V(1) > V(u).

Proof of Claim 1: The proof proceeds by constructing a straight line connecting the
extreme points (5, V(5)) and (1,V(1)) of the value function V'(s;) and then showing that
V(s1) lies below that line for all s; € (5,1). First, consider region b(i), i.e. s1 € [5,2u%).
We want to show that the straight line connecting (5, Vi;)(5)) to (1, Vyui)(1)) lies above
Viy(s1) for all sy € [5,2p%). Note that Vii)(s1) > Viuiy(s1) if and only if s; < 2u* so
that the line connecting (3, Vy(;)(5)) to (1, Vaui (1)) lies above the line \//\}7(1-)(81) connecting
(5, Viiy(5)) to (1, Vyi(1)). We prove the stronger claim that the line YA/b(i)(sl) lies above
Vigy(s1) for all s; € [5,21*). The line 171,(2»)(31) is defined as

N Vi) (1) = Vi) (3)
1—5

‘7?;(1')(51) = Vi) (5)

(Sl — 5).

This can be re-written as

~ _ ST — S8
Vagiy (81) = - Vo) (8) + 13 Vi) (1)

We then get 17})(1-)(31) > Vi (s1) if

AV, (ﬁf_‘j - (Il(sl)> 52+ 20(0 — 01(s1))(s1 — 5) — AVioa(s1)(1 — 51)?
+ AV (0(1 = 5) + o1(s1)(1 — s1)> — o1(s1)(1 = 5)*) >0,

where o is given by (B.42) and o;(s1) and o3(s1) by (B.37) and (B.38), respectively.
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Using
(=52 = (152 —(1—s)2+(1—s)2,

this can be re-written as

S1— S

AV, (0 1= 01(31)) 52+ 25(0 — 01(51))(51 — 3)
+ AV ((0 = o1(s1)) [(1 = 8)% = (1 = 51)%] + (6 — 0a(s1))(1 — 51)?) > 0. (B.47)

We then make use of AV, =1, AV}, = Mi — 1 and

11—-s1 (s1(1—s
o — 0'1(31) = Z 81 1 ( 1(2M* 1) + 51 _M*<1 — 52)) ,
-5 1 —35)(1— —2u (1 =96
P Sk P 8 Skl V. ek ) (B.48)
1—35 27 $1 21
1 . [(Ss1+ S
o —o03(s1) = E(Sl —3) ( ;M* - 1) :

Since s; > 5 and 0 > oy(s1) and 0 > 0y(s1), the last line of (B.47) is positive. A
sufficient condition then is that the first line is also positive.

Using (B.48) the first line is positive if

(81 — §)<1 — 81)

—J)—s
2u*

Ly 95 {731(12: #)

(= a2 -

+ 51— p(1 —52)]) > 0.

The factor W > 0. The remainder of the expression is a negative quadratic func-
tion. It is therefore sufficient to check that at its borders s; = 5 and s; = 2u*, the terms

in brackets is positive. At s; = 3, the expression becomes

1

S (L= ) (L 81— 8) = (L= )51+ 6 + 6(1+) = (1 = 52),
which can also be written as

S (= )14 62— 8) 4 (14 0) [1 = (1= )1 +6) — (1= 5)]. (BAY)

Since p* < % we have p*(1 — p*) <
4

Moreover, p*(1 — §) < 3 and hence (B.49

and 1+ 6 < 2 so that p*(1 — p*)(1 +6) < L.
is positive.

no
I,

~—

At s1 = 2" we get
0(2 =207 (1 = %) — p* (1 = p*) (1 +6)%),

which is also positive. It follows that the line connecting Vj;)(5) to Vi (1), lies above
Vigy(s1) for all s; € [5,2p*], implying that the line connecting Vj;)(5) to Vyii)(1), also lies
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above Vi) (s1) for all s; € [5,2p].

Now, consider region b(ii), i.e. s; € [2u*,1]. We want to show that Vi (1) > Vi (s1)
for all sy € [2p*,1]. Since, V(s;) is continuous across regions, this is enough to conclude
the proof of the claim.

Using (B.39) we can write
vi+ vt o 1 o 1 o o
oo = 5 () L (1 D) s b (D (12 9) ).
(i) (1) 5 5) 5=5AVh 5 ) 8 H5AV (5 + (25 — %)
We can then write the condition Vi) (1) — Vi (s1) > 0 as follows:

1., 1 1 ,
ZAV}L§ (U - 01(81)) + 55§(0’ - 0'1(81)) — ZAWOQ(Sl)(l — 81)
+ %AV} (c(1=8)*+o1(s1) [(1—s1)> = (1 —8)%]) >0,

where o is given by (B.42) and oy(s;1) and o3(s1) by (B.40) and (B.41), respectively.
Using (1 —s)? = (1 —5)*>— (1 — s1)? + (1 — s1)?, this can be re-written as

(AVh§2 + 25§) (0 — 01(81))+AVi(c—09(s1))+AV (c—01(51)) ((1 — 5 —(1— 81)2) > 0.

Note that o > 01(s1) and 0 > 05(s1). Moreover, (1 — s5)? > (1 — s1)? since s; > 2u* > s.
Hence, the inequality holds. It follows that on regions b(i)-b(ii), V'(s1) attains a maximum
at one of its corners.

Proof of Claim 2: For § > 0, we have that V(s£) > V/(0) since we know from Lemma
7 that V(s;) is increasing at s; = 0. Since V(0) = V/(1), it follows that V(s£) > V(1).
Moreover, we know that V(sf) > V(u*) > V(u*(1 4 4)), where the last inequality follows
from V),(s1) being decreasing for s; > p*. Hence, for 6 > 0, s¥ is the global maximum. For
6 = 0, we have s& = 0, region p disappears, and V(0) > V(u*) since V() (s1) is decreasing
over region a(ii) (see (B.44)). Hence, st = 0 is the global maximum when § = 0. |

Lemma B.4. For p* > 1, when § = 0 the global mazimum is s, = 0 and there exist a 5

27
such that s, = st is a global mazimum for § > 4.

Proof of Lemma B.4. The following two claims establish that the local maximum is also
the global maximum.

Claim 3. On region b(i), the objective function V(s1) attains a maximum at one of its
corners s; € {5,1}.

Claim 4. There exists a 6, such that V(u*) > V(1) for § > &. For § = 0, we have
V(0) > V(u*).
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Since arg max V,(s1) < p*, and V(s%) > V(u*) claims 3 and 4 imply that for § > 5, sk
is the global maximum.

Proof of Claim 3: We want to show that the straight line passing from Vj)(p*(149)) =
Vi) (5) and Vi) (1) lies above Vi) (s1) for all s; € [5, 1]. Define the straight line by Vb(i)(sl).
The maximum of \7};(2-)(31) is obviously attained at either of the two corners s; = 5 or
sy = 1. Moreover, if 17},@)(31) > Viuy(s1) for s; € [5,1], knowing that by construction
\A/b(i)(sl) = V(s1) at the corners s; = 5 and s; = 1, then Vj;)(s1) must also attain its
maximum at either of the two corners.

First, construct the function %(i)(sl). Denoting by

ViV 52Avh N 5(2 —3)

T _ 2
2 2 2

AV,

we can write

01(81)
4

Viy(s1) =T + (2AV, + (1 — 8)°AV)

L o2(s1) —au(sy) (1—51)?AV; =6 <1 - ”1(;1)) (51— %),

4

where oy (s1) and o5(s1) are defined in (B.37) and(B.38), respectively. The linear function

is given by

Vi (1) = Vi (5)
1—35

It is useful to note that oy(s; = 5) = 0 and o3(s; = §) = o, where o is given by (B.42).

Moreover, o1(s; = 1) = 0 and oy(s; = 1) = 0. We can then write

‘7?;(1')(31) = Vi) (5) + (s1 — 3).

52
=5 o g S
Vi (s1) =T+ (1= 8)2AV; + {Zl —

AVi, — § (1 - %)} (51— 5).

The inequality \7,;@)(51) > Viiy(s1) can be written as:

We can re-write the first line as follows

(0 —01(51)) (1 = 5)°AVi = (0a(s1) — 01(51)) (1 = 51)?AV,;
— (0 — oa(51))(1 — $1)2AVi + (0 — 01 (51)) (51 — 5) (2(1 — 1) + (81 — 5)) AV].
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Substituting this expression into (B.50) and simplifying yields

1 (1—s1)(s1—3) {sl—u*(l—é) ]

—_— 81(1 — 81)

2T S1 2u*
1 (1_81>(51_§) * * 251 _QIU*(l_(S)
=D e ey a2

+ % (1= 512551 —9) {2(1 —51) (‘91(12—/;51) s — (1l — 52)”

1 (1—s))(s1—5 a(1—s
L A=s)=8) fo o anBl =) L o asys -t — 02| >0
2T 51 2u*
This can be re-written as
—u(1=9 1 - 1-—
81(1—81)L()+2(1—81) {u + 51— pt(1 — 52)] +Sl(—81)(81—§—|—25)
2p* 2u* 2u*

+ %(1 — 1) (1 +0)* (21" (1 = 6) — s1) + (51— 5+ 20) (51 — (1 = 6%)) > 0.

Since in region b(i), s1 > p*(1 +J) = 5, we know that the first line is non-negative. A
sufficient condition is thus that the second line is also non-negative. Re-writing the second
line, this reduces to the quadratic equation

(51 —3)*+b(sy —5) +¢>0,

where

=
Il

(1" (14 6)(1 4 35) — (1 — )%

N~ N~

c=—p(1+0) (1 —0)? +p*(1+0)(36 — 1)),

which is always non-negative if b*> — 4c < 0. This last inequality, after simple algebra, can
be re-written as:

(1—9)*

A(p) = <(3(1 + 5)u*)2 — (1+6)(10 4+ 66)" + (1 — 5)2) <0. (B.51)

Note that A(p*) is convex so that if (B.51) is satisfied at either extremes of p*, then it
also holds for any interior p*. We know that p* € [1/2,1/(1 4+ ¢)) since for region b(ii) to
exists we also need 5 = p*(1 4 6) < 1. Consider first the lower bound and note that:

A G) _a —45)2 (%(H(gy — (14 0)(5+30) + (1 —5)2>

_d _45)2 <—(1+5)Z oy U _5)2> <0,

149
since (1 —§)?/(1+6) < 1 < 2. Consider next the upper bound:

A(1i5> = (1_45> (9 — (104 60) + (1 — 6)?)

(1-9)?

=—7 (60 -8)) <0,
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since § < 1. It follows that (B.51) is satisfied, implying that 171,(1-)(81) > Vi) (s1) for every
s1 € [p*(1+9),1], i.e. that on region b(i), the objective V(s;) attains a maximum at one
of its corners.

Proof of Claim 4: Using the corresponding expressions, the condition V,,(1*) > Vi)(1)
can be written as

~ ~

1 1 o 1 1ol ol
—§AWWW+§A%U—%W+—AWC3+U—§N%“%MV0

_ EAVI <E +(1— g)(2§— 52)) + (1 — %)(1 —35)>0,

where 0 = 01(s; = 1) given in (B.42) and 69 = 03(s1 = p*) > 0. The inequality can be
rewritten as

(1 . %) h(8) > %AVh%

| —

<wf+§Awa—mf(r—%>, (B.52)

where
h(0) = AV, (8% — (1*)?) + AVi(1 — 5)* +25(1 — 5).

Note that o is a decreasing function of § while &5 is independent of . Hence the right-hand
side of inequality (B.52) is decreasing in §. Moreover, h(d) can be simplified to yield

h(0) =1 — p*(1 — p*) + 20 — p*(1 + 9)*.

Note that h(d) reaches its maximum at § = - — 1 and is increasing for lower values of §.
Furthermore, since we require § = p*(149) < 1, the maximum admissible value of § when
pr > %, s just § = Mi — 1. Hence, the left-hand side of inequality (B.52) is increasing in d.

For the special case 0 = 0, we have ¢ = &9 and inequality (B.52) reduces to

1 & , 1 Gy 1 & )
S1=2 )0 =) > -2+ (12 ) —p

which is violated. At the upper bound of § we have § = 1 or, equivalently § = “% — 1.
Using the observation that o(s = 1) = 0, inequality (B.52) can be written as

1 1 1 1 o
(1=l =p)+2(——1) == >=(1—-p)|(1-=),
2( w=w) (u* ) u*) 5! u)( 2>/

or, equivalently, as

1 T4+p* 1 P
- 1 AV S - 1 o %\2 1 _ e
which always holds as 1;? "> 1>1— "—22 Hence, there is a threshold value of 9, denoted

8, such that for any & above the threshold V (u*) > V(1).
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Hence, for & above & we have V(sh) > V(p*) > V(1) = V(0), where the first inequality
follows from Lemma 7. Moreover, we have that V(s%) > V(u*) > V(p*(1 + §)) where the
second inequality follows from V,,(s;) being decreasing for s; > p*. For § = 0, region p
disappears, and V/(0) > V (u*) since Vo ;)(s1) is decreasing over region a(i) (see B.46). W

Proof of Proposition 3.6. The proof of the proposition follows from Lemma B.1, Lemma
B.2, Lemma B.3 and Lemma B.4. [ |

B.2 Computation of |[CAR|

In this section, we derive the absolute value of the cumulative abnormal returns implied

by our model, for use in Section 3.5.2. Denote by r,,1 the returns around the stress test,

and by p, and p,;1 the bank’s equity prices before and after the stress test. The bank’s

absolute cumulative abnormal returns when the bank is subject to an informative stress
pir1 — E(piia)

test with passing threshold s; is:
=K S
)= (e

where the last equality follows from the efficient-market hypothesis, i.e. the pre-test price
incorporates future information, p; = E(p;41).

Pi+1 — E(pt+1)
D

|CAR|(s1) = E(|ri31 — E(ri41)|) = E (

For a bank subject to a stress test with passing threshold s; the bank’s expected equity
price is:

B(ed) = (1 - 1) [maoea)y B2 + (1= o)) mBlGua)| = pio). (B39

With probability s; the bank fails the test, there is no information acquisition and no
funding provision, so that the price is equal to 0. With the residual probability (1 — s;),
the bank passes the test. The realized price is Fj(1) whenever the bank is financially
sound and the speculator’s positive signal is revealed to the market maker. Conversely,
when the bank is insolvent and a negative signal is revealed to the market maker, the
price is equal to 0. Finally, when the order flow is uninformative, or when the speculator
observes no signal, the price is po E} (112). Note that if the stress test is informative (uy > 1),
information acquisition o (uy) and the expected price p(s;) are positive numbers. Following
a similar reasoning we can compute |[CAR|(s1):

ICAR|(sy) = (1 — sl),m(,j,z% ‘% .
+ (1 —s9) (1 — %U(Nz)) ‘MQEh(g221; p(s1) N (B.54)

For institutions that are subject to a stress test, we compute the [CAR| at the optimal
passing threshold sp(7, 1*) derived in Proposition 1 (equation (3.19)), while for non-tested
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institutions, we consider the [CAR| implied by an uninformative stress test. In the latter
case, the price and its expectation differ depending on whether the speculator acquires
information at the prior beliefs (in which case the expected price is E(p;11) = p(0)), or not
(E(pi4+1) = 0). The difference between the |[CAR| for tested and non-tested institution is:

{ |CAR|(sp(r, ")) = 0 if
|CAR|(sp(7, 1*)) — |CAR|(0) if

< p*

[N

X(7, 1) = (B.55)

>t

N [—=
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CHAPTER C

Appendix for Chapter 4

C.1 Proofs

Proof of Lemma 4.1. The opportunity stock in (4.5) can be rewritten as

I(e,m) =i [ /0 exp[—emr]dr + / " expleemr — e(r — )p(1 — m>]d7] |

By Leibniz integral rule, for m € [0, 1), we have

o =i [ explennrlnryir + [ esplemr — etz = )ptt = mlfmr + (= 0l — mar] <o,
o /0 expl—emr](er)dr + /LOO expl—emr — e(r — p(1 — m)ler — e(r — L)p]dT] <0,

g_f) - / " explemt — e(r — D)p(1 — m)]e(r — 1)(1 — m)]dT] <0,

Ny { / " expl—emr — e(r = )p(1 = m)]ep(l — m)}dT] >0,

where the inequalities follow from the fact that the integrands are strictly positive for
m € [0,1). The preemption risk in (4.7) can be rewritten as

ple,m) = [1+ k(m)] ™

where
m exp (—ewm)

km) = p+m(l—p)l—exp(—em)

180



For m € (0,1) we have

Op 9 tm

— = k 0

de p(e,m)"k(m) 1 — exp(—etm) -

P ple.m)k(m) | ——2 ’ >0
— =p(e,m)’k(m -
om ~ D\© 1 —exp(—evm)  m[p+m(l — p)] ’
Jp 2 (1-—m)

— =ple,m)*k(m)——— >0,

dp p+m(l—p)

Op 9 em

- = k 0

oL ple;m)"k(m) 1 — exp(—evm) =5

where the second inequality follows from the fact that % > 1 > mh for

m > 0, while the other inequalities are trivial. The same inequalities are satistied when m
tends to 0, since by L’Hopital’s rule we have

1
lim k(m) = —,
m—0 eLp
. m 1
lim = —,
m—0 1 —exp(—etm) ev
) el p l—p e
1 - = —
mb | 1= exp(—eum) mm+ma—mJ )
so that 5
_Op Lp
lim — = ——— >
mo0 De (14 ewp)? ’
. Op eLp l—p e
lim — = — ] >0,
m0 Om (14 ewp)? < p + 2 ’
0
lim & = — >,

m=00p (14 ep)?

. Op ep
lim —=——"—-=>0
a0 91 (14 ewp)?

Proof of Lemma 4.2. We showed in the main text that the firm’s total profit only de-
pends on average search e and average manipulation m. To complete the proof, we show
now that for any contract contingent on specific profit paths {II;}:co,p), there exists an
equivalent contract that is contingent on average profit II only: Under both contracts, the
trader’s average search and manipulation, and payments are the same in equilibrium.

The gist of the proof relies on the following argument: if two profit paths have the same
average profit, then any average search and manipulation that the trader can produce while
generating the first path, can also be produced while generating the second path.
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Assume contracting takes place at ¢ = 0. A generic contract is a pair of functions

W = {W({Ht}te[o,D])7E({Ht}te[O,D})}

that specify the trader’s payment as a function of the entire profit path {IL;},cp,p), when,
respectively, no manipulation is detected ex post, and manipulation is detected. As in the
main text, average effort and average manipulation are defined as

fOD my €tdt

D
e({ethd) = D—l/ edt  and  m({e,,mi}) = 5 _
0 fO €tdt

Average profit is

1({11,},) = D! /D I, dt.

0

Consider an arbitrary contract W. The trader’s expected utility, given the contract W and
a strategy {e;, m;}; is

U({ew, mi}e, W) = [L—ym({es, mt}t)]W({H(et, my o) +ym{en, me ) W ({T(er, my b)) —cDe({e; }1)

Suppose there exist two profit paths, {IIf }; and {Hﬁ»t that generate the same average profit,
[({I17},) = T({I12},), but different pagments, W({II¢}) # WY, or W({IIf},) #
W ({11%},). Let {e?, m¢}; and {e?, mb}, maximize the trader’s utility under the constraint
of generating, respectively, {11}, and {I1?}, i.e.,

{er,mit = o argmax. U(eéy,my, W)
{é, My} o VL IL(E,, y) = 11T

and
{ef, mi’}t = argmax U({ér, mt, W).
{&y,my ), - VL TL(E,, ) = 118

Suppose {e;, m; }; is an optimal strategy under W, and without loss of generality, suppose
{er,m;}, # {eb,mbl},. Consider an alternative contract W’ that only differs from W for a

specific profit path {I1},. Specifically, for any {IL}, # {I1?},, W ({IL;},) = W({IL;};) and
W'({IL;},) = W({IL;};), and

W' ({I}},) = W({IIt},) and W/({I17},) = W ({11} },).

We claim that {e;, m;}; is an optimal strategy under W"’.

Notice first that {e?, m?}, # {e}, m}}; implies

U({GI'/ m:}t’ W) = U({CI’ m:}t’ Wl)'

Next, suppose {e;, m}}; is not optimal under W’, Since W and W’ only differ for {I1?},,
there exists {e}, m}}; such that

U({e,,m;}i, W) > U({ef,m;}, W) and for any t, Il(e}, m}) = I1°.
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Consider the strategy
¢ = e({e}}) =——7— and m{" = m({e}, mi}) = 11
({117}

By construction (and using (4.12))

e({eP)lm({er, miy) + (1 = m({eiymi}))pphng e

I (e;", my™) = T({11t},)

and
TI({11¢} ) _
i = e

It follows that {e;*,m;*}; generates profit path {II¢}, and the same average search and
manipulation as {e}, m}},. Hence,

U({ezvm’:}h W) = U({er’ m':}t’ WI) < U({e;, miﬁ}tv W ) ({Pt vmt ts /) = U({e:*'/ m:tk* ts W)

Hence, {e;, m}}: is not optimal under W, a contradiction.

e({ei"}) = e(fet}) = ===

It follows that W and W’ are equivalent: they generate the same optimal strategy and
the same payments to the trader. By iterating the process, we can construct a contract
W", equivalent to W, such that if any two sequences {I1¢}; and {II’}, generate the same
average profit, II({I1%},) = II({II’},), then they generate the same payments: W ({II¢},) =

W({I17},) and W({II¢},) = W({II}};). W" is then by definition conditional on average
profit II only.

Now consider a trader’s strategy choice when contracts are made contingent only on
average profits and post-trade reviews, that is,

W = {W(ID), TW(ID)}.

Given such a contract, a trader chooses a trading strategy that maximizes

(1 — ym)W (I ({er, mi}p)) + ymW (I1({e;, mi}p) — /0 ceydt.

where II({e,,m,}p) denotes the average profit generated by the dynamic trading strategy
{er,mi}p. Recall from (4.12) that average profit ultimately depends only on average search
and manipulation (€,m), so the above objective function be rewritten as

(1 —ym)W (Il(e,m) + ymW (I1(e,m) — Dce,

which depends solely on the average search intensity and average manipulation rate. Hence,
there exists a (weakly) optimal time-invariant trader strategy. [ |

Proof of Lemma 4.3. Consider a contract {W(.), W(.)}. The trader chooses a search
effort e and a manipulation level m to maximize

(1 —ym)W[Il(e,m)] + ymW[II(e,m)] — ceD.
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Let e and m* be search effort and manipulation levels that jointly maximize the above
. . . 5/
function, and consider an alternative contract {W (.), W'(.)} defined as follows:

— W(II) if IT = II(e*, m"),
W (1l) = (C.1)
0 otherwise.
and
, W(IT) if TT = TI(e*, m*),
W(Im) = (€.2)
0 otherwise.

Since conditional on delivering IT = II(e*,m*), the agent receives the same payoff in the
new contract as in the original contract, he must weekly prefer (e*, m*) to any other couple
(e,m) such that II(e,m) = TI(e*,m*). Note also that any couple (e,m) that delivers a
strictly positive profit I1(e, m) different from II(e*,m*) is strictly dominated as it requires
a strictly positive amount of costly effort and generates no payment. Finally, since the
(e*, m*) was weekly preferred to exerting no effort under the original contract,

(1 —ym*)WIL(e*, m™)] +ym* W [Il(e*,m")] — ce*D > 0,
which implies

(1 — ym* W' [II(e*, m*)] + ym* W'[II(e*,m*)] — ce*D > 0,
and hence, (e*, m*) weakly dominates no effort. As the two contracts elicit the same effort
and manipulation levels for the same equilibrium payment, they are equivalent from the

point of view of the firm, and we therefore restrict attention to contracts that have the
form described in (C.1) and (C.2).

The effort level necessary to reach profit II(e*, m*) for a given manipulation m is
II(e*, m*)

elm, II{e”, m”")] Ifm+ (1 =m)(L = p)plm

Note that e[.,II(e*, m")] is a strictly decreasing and convex function. It follows that nec-
essary and sufficient conditions for a contract to incentivize effort ¢* and manipulation m*
are

(1 —ym*)W[IL(e*, m*)] +ym W [II(e*,m")] > cDe", (C.3)
3 {WII(E )] — WL )]} > D2 (e )], (c4)

where (C.4) holds with equality if m* € (0,1). (C.3) states that the trader has to be
compensated at minimum for his cost of effort. (C.4) states that within the set of effort-
manipulation couples (e, m) that generate the same profit II(e*, m*), (e*, m*) has to be
optimal.

We start by deriving levels of compliance that can be achieved “for free”, that is,
without leaving a rent to the trader. If the trader has no rent then (C.3) must hold with
equality, so that the expected payment to the trader per unit of time is

E(wi) = 5 [(1— A I, )] + e W m*)]| = ce”
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Note that this leaves us with one degree freedom to set W(II(e*, m*)] relative to
W]II(e*, m*)]. We use (C.3) to make substitutions in (C.4), we also use

5e 0
5m[m H(et, m™)] = m*+ (1 —m*)(1 —p)p’

and obtain, after rearranging,

g 1-(—-pp . v -
— -De* — ——WIl(e",m")] > 0. C.5
L—ym* m*+(1—m*)(1—-pp cre 1—7m*_[ (e?,m7)] > (C5)
Maximum manipulation m* = 1 can be obtained by setting W[II(e*, m*)] = W]II(e*, m")].

The lowest m* that can be obtained with no agency rent obtalns from (C.5) taklng
W]II(e*, m*)] = 0. This lower bound was defined in the main text as

=3 E 1 El@ f)zfo))p} '

Note that this does not depend on the level of effort e*.

mo

It follows from the above analysis that any contract that incentivizes a level of ma-
nipulation m™* strictly lower than my must leave the trader with a rent. In that case,
(C.3) is slack, and in the cost-minimal contract, (C.4) must hold with equality. In addi-
tion, W[II(e*,m*)] = 0. Indeed, if W[II(e*,m*)] was strictly positive, decreasing it while
keeping W[IL(e*, m*)] — W[II(e*, m*)] constant would not affect (C.4), but would reduce
payments to the trader. (Since (C.3) is slack, there exists some room to lower payments
while keeping the search constraint satisfied.) (C.4) holding with equality pins down the
minimum payment W[II(e*,m*)] to the trader, conditional on no manipulation detection,
and in turn, his agency rent. All in all, for m < my, the cost-minimal contract is such that

WI(e", m")] = 0,

o 1 1—(1-p)p cDe*
W[H(e,m)]—7(1_p>p+m*(1_(1—p)p) De’,

and the expected payment to the trader per unit of time is

Ewn) = 5 [(1 = 3 W1, m*)] + ym Wi, m]],
=(1- Vm*)l L—(1—pp ce”,

v (I =p)p+m*(1—(1—-p)p)

: 2(1-(1—p)p) [1 {1 (1 —P)P> } B m] oot
p

ST (I=p)p+m*(1—(1—-p)p)

2

v 1-(1-p

Finally, note that one can make the payment monotonic in the profit II: for II >
II(e*,m*), setting W(II) = W][Il(e*, m*)] rather than W(II) = 0 (and respectively for
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W(II)) is still incentive compatible. Indeed, suppose the trader chooses (e,m) such that
II(e,m) > Il(e*,;m*). Then by reducing e, the trader saves on the cost of effort while
keeping the expected payment unchanged. It follows that the trader’s relevant choice set
reduces to (e,m) such that II(e, m) = II(e*, m*). |

Proof of Proposition 4.1. Rewrite the agency rent as

r(e,m) = K(m,p)(mo — m)ce,

where 5
K(m,p) = >0
’ (1-p)
m 1—(1fpp)p

Since Ok .

= _ZK 2

8m 2 (m7p) ?
the marginal cost of incentivizing risk management when mg € (0,1) and m < my is

or 1
_% = [iK(m,p)z(mo —m)+ K(m,p)| ce,
1 (1-p)p
Ly
__ 1 " 1-0-pp ce, (C.6)

(1-p)
(m T 1—(lfp[;p>
= B(x(p, p))ce,

1

where B(z) = % and z(p, p) = 222 Note that

— 1-(1-p)p
2
St+rx—m
Ox (m+ x)3
ox p
=== <0,
op (1= (1—=p)p)? (C.7)
oz _ LD >0
Op (L= -pp3
0B 1 1
S ————Y

EX (m +x(p, p))? 72

where the first line follows from the fact that m < 1 < 2/y and & > 0 while the third
line from the fact that the highest value of p is p(e,1) = 1 — exp(—er) < 1. We have the

following comparative statics:
0 or 0B Ox
o (—%) = %a—pce > 0,
0
dp

or 0B Ox
9 (_orN_9B  _,
0y om) Oy “
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Proof of Lemma 4.4. Assuming optimal manipulation m = m*, the firm’s optimal search
effort e* solves:

eer[%%\:gl] Ve,m™) (C.9)
where
V(e,m*) = Ie[m*r + (1 —m*)(1 — p)p(m + ay)] — ce — max{0, r(e, m*)}. (C.10)

Note that V(e,m*) is linear in e, hence e* € {0, \"'}. Moreover, V(e,m*) > V(e, 1) =
Tem — ce, since optimal manipulation is weakly preferred to full manipulation and r(e, 1) =
0. Tt follows, that if IA\"'r —cA™t = V(A7H 1) > V(0,1) = 0, then V(A™L,m*) > V(0,m*).
Under assumption (A.2), the last condition is satisfied even for the lowest value of I, that is

I = i)\, achieved when e = A™!, v = 0 and p = 1. It follows that it is optimal to implement
et = 271

Proof of Proposition 4.2. First, we show that the best response level of search effort
and manipulation are, respectively, e* = A~! and
0 if p<p*
m*(p) = q [0,1] if p=p* (C.11)
1 if pf<p

where p* =1 — ¢ € (0,1) was defined in (C.17).

K
Ttag)p
Assuming optimal manipulation m = m*, the firm’s optimal search effort e* solves:

V * C.12
e, (e,m”) (C.12)

where
Vie,m*) = Ie[m*r + (1 —m*)(1 — p)p(7 + a)] — ce. (C.13)

Note that V(e,m*) is linear in e, hence e¢* € {0, A\"'}. Moreover, V(e,m*) > V(e, 1) =
lem — ce, since optimal manipulation is weakly preferred to full manipulation. It follows,
that if I\"'r —cA™! = V(A1 1) > V(0,1) = 0, then V(A™!,m*) > V(0,m*). Under
assumption (A.2), the above condition, is satisfied even for the lowest value of I, that is

I = i), achieved when e = A\™', + = 0 and p = 1. It follows that it is optimal to choose
et =271

Given the optimal search effort, the best response manipulation level m*(p) solves

m%)i] INHmr+ (1=m)(1 = p)p(m + ay)] — A~ (C.14)
me|0,

If p > p*, we have 7 — (1 — p)p(m + a;) > 0 so that the objective is strictly increasing,
and the optimum is m* = 1. If p = p* the objective is flat, hence the firm is indifferent
among all the m € [0,1]. If p < p*, the objective is strictly decreasing, and the optimum
ism* = 0.
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Let p(m) = p(A~',m) and m(p) = p~'(p) be its inverse function. An equilibrium is an
intersection of m*(p) and m(p). Note that m/(p) = 1/p'(m) and % = —%/p’(m), hence
by Lemma 4.1 we have that m(p) is strictly increasing in p and strictly decreasing in ¢.
Moreover, p(0) = ¢/(t + A/p) > 0 and p(1) = 1 — exp(—¢/A\) < 1, hence m(p) = 0 for
p = p«(t) > 0 and m(p) = 1 for p = pu(t) € (p«(t),1) where both p.(:) and p..(c) are
strictly increasing, approach 0 when ¢ tends to 0 and approach 1 when ¢ tends to infinity.
It follows that there exists a threshold ¢ such that, for all © < ¢, we have p,.(¢) < p*, and
m(p) intersects m*(p) only once, at the point (p,m) = (p«(¢),0). Moreover, there exists a
threshold 7 > ¢ such that, for all + > 7, we have p.(¢) > p*, and m(p) intersects m*(p) only
once, at the point (p,m) = (pui(t),1). When ¢ € (1,7), the function m(p) intersects m*(p)
at exactly three points:

(p.m) € { (pu(0),0), (Pul0), 1), (0", 10(p")) },
where m(p*) € (0,1). [ |

Proof of Lemma 4.5. By Lemma 4.4, we have e* = A\~!1. Hence, the firm’s best response
m*(p) solves:

max V' (m)
me[0,1]

where
V(m) = V(A m) =IX"[mr+ (1 —=m)(1 —p)p(m + ap)] — eA™" — max{0,r(m)},

2(1— (1 —=p)p)
(I=pp+ (1 —(1—p)p)m

r(m) =r(At,m) = (mo(p) — m)eA™ .

(C.15)
First, note that the objective function is continuous in m and that
1y (1-p)p
V'(m) INTr = (L= p)p(m + ay)] + = L At ifm <mg
m) = (1—p)p
(m + 1—(1—19)/))
INHr — (1= p)p(m + ay)] if m > my,

where the first line uses Equation (C.6). The objective is concave for m < my, and linear
otherwise. Moreover, we have that when 0 < mg < 1 and m approaches mg from the left,
the derivative takes value

4

- I 1
(l N (—p)p )C)‘ a(p, )7 (C 6)
v 1-(1-p)p

Vi(mo(p)™) = IN"[r — (1= p)p(7 + o )] +

where the second addend is strictly positive.

Let
T

pr=1-— (7T+—04+)P € (0,1). (C.17)
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If p > p*, we have m — (1 — p)p(7m + a4 ) > 0 so that the derivative of the linear part of
the objective is strictly positive and the left derivative at mg is bigger. Hence, the objective
is globally increasing and the optimum is m = 1.

If p = p* the objective is flat for m > mg(p) and strictly increasing for m < mg(p).
Hence the firm is indifferent among all the m € [mg(p*), 1].

If p < p*, the linear part of the objective is decreasing, hence the optimum must be
in [0,mg]. Suppose my > 0. The maximum is m = my when a(p, I) defined in (C.16)
is positive (i.e. the concave part is increasing over [0,mg(p))), which is the case when
max{0,p(/)} < p < p* where

ﬁU)E{p<1f:MnI):0} (C.18)

is strictly increasing. To see this note that a(p, I) is strictly increasing in p (by the second
line of (C.7)), strictly decreasing in I (since p < p*), and

4
a(0.1) = INHr — plm + )] + v eA ™,
(3++)
4
et >0,

(J,(p*,]) =7
(— + max {0, o })
v o

where a(0, I) can be either positive or negative. The threshold p(I) is strictly positive if
a(0, ) < 0, which is the case for

4 1
I > c

+15 prtag) -7

(C.19)

Il
I~

2=

For p < p(I), the optimum must be strictly below mg(p) and solve the first-order
condition

1y (1-p)p
Ir— (1 =p)p(r+ay)] + —2 l(l(l)p)p sc =0, (C.20)
(m - 1*(1€pp)p>
which after rearranging yields
1 (1-p)p
ol el vz 1 —
m— G A et ) BT (C.21)

[(I=plp(m+ay)—all 1-(1-p)p
which is strictly increasing in p and strictly decreasing in 1.

The optimum m°(p, I) eventually reaches its lower bound when the left-hand side of
(C.20) evaluated at m = 0, that is

b(p, I) = I[m — (1 = p)p(m + ay)] +
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is weakly negative, which is the case when p < p(I) and p(/) > 0 where

p(h) = {p <5 :0(p, 1) = 0}, (C.22)

is strictly increasing. To see this note that b(p, I) is strictly increasing in p and strictly

decreasing in I, and

+ £
-

()
b(p,I) > 0,

where (0, 1) can be either positive or negative. The threshold p(I) is strictly positive if
b(0, 1) < 0, which is the case for

2=
b

b(0,1) =I[r — p(m + ay)] +

C

)

l L

bl ey 1
(L) plm+ay)—m
1

c=1>1. (C.23)

Lastly, note that m*(p, I) is weakly increasing in p, since mq(p) is weakly increasing in
p and m°(p, I) is strictly increasing in p. Second m*(p, I) is weakly decreasing in I, since
m°(p, I) is strictly decreasing in I and mq(p) is independent of I. |

Proof of Proposition 4.3. Consider the best response level of manipulation given by
Lemma 4.5 and Lemma 4.2. Let S,,(p) and S¥(p, 1) denote the set of m that can be
supported in equilibrium, respectively, in the setting without and with agency:

(0 if p<p”
S’rrL(p) - [07 1] if b= p*
(1 if p>pY

(C.24)
( {0,m°(p), mo(p)} if p<p*
S (p) = [mo(p*), 1] if p=p*
( 1 it p>ph
Note that
=0 if p<p
min S,, (p)
=1 if p>p*,
(C.25)
>0 if < p*
minSY(p) ¢ p=r
=1 if p>p"
and that
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=0 if p<yp*
max S, (p)
=1 i p=>p,
(C.26)
>0 if p<p*
max S (p)
=1 if p>p~
[ |

Proof of Proposition 4.4. When + = 0 we have p = 0. The best response level of
manipulation simplifies to (suppressing dependency on p):
m*(I) =4 m°(I) if I<I<I (C.27)
0 if I<I
where m*(I) is continuous, m°(I) is strictly decreasing, while I and I are defined in (C.19)
and (C.23), respectively.

Let ,
Al

=

l—p I(1-p)
be the inverse of the mass of trading opportunities I(m) = I(A™!,m) where I(e,m) is
defined in (4.5). An equilibrium is an intersection of m(I) and m*([). Note that

(C.28)

0 it 1<1I
2 me _
me(N) =4 —== D rer<T
0 if I<I
L+ m(I
fﬁuy:_tL7_il

hence m*'(I) < 0 and m/(I) < 0. Moreover, if an equilibrium exists (so that m(l) =
m*(I)), we have m/(I) < m*'(I) implying that m(l) crosses m*(I) from above. This,
together with the continuity of both m*(I) and m([I), implies that there exists at most one
equilibrium. An equilibrium always exists as m(I(1)) =1 > m*(I(1)) and m(1(0)) =0 <
m*(1(0)).

Note that m* is increasing in 7 (since both I and I are increasing and continuous in
7, and so is m°(p, I)) while m is independent of 7. It follows that the equilibrium level of
manipulation m* is weakly increasing in m, and there exist two ordered thresholds # < 7
such that m* € (0,my) for 7 € (z,7) and is strictly increasing in 7.

The equilibrium profits for the firm are
Im)(m*m + (1 = m)p(r + ) — ()
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Consider the level of manipulation arising from full coordination, that is the m that solves

i I(m) fmr + (1= m)p( + )] = r(m).

The first-order derivative of the objective function is
I'(m) [ + (1= m)p(r + ay)] + I(m) [ — plr + a3)] = '(m). (C.29)

Suppose m € (z,T) so that m* € (0,mg). This derivative is strictly negative at m = m*,
implying that the optimal level of manipulation under full coordination is strictly lower
than in equilibrium. To see this note that m* solves the first order condition (C.20) so
that the sum of the last two addends in (C.29) is nil. Moreover, I'(m) < 0 by Lemma
4.1 and [mm + (1 —m)p(m + a4)] > 0 (otherwise there will be no search in equilibrium).
Using similar arguments, one shows that if 7 < w, m* = 0 Pareto dominates m > 0, and
if # > 7, m* = my is either Pareto optimal or Pareto-dominated by m < my. |

Proof of Proposition 4.5. Defining I(m) = I(A~!,m) and p(m) = p(A~1,m) and X (m) =
m*(p(m), I(m)), an equilibrium level of manipulation m* is a solution to

while equilibrium market conditions are p* = p(m*) and I* = I(m*).

Pareto-Superior Equilibrium First, if several equilibria coexist, the one with the low-
est m* Pareto dominates the other ones. Indeed, suppose mj > mj are equilibria. mJ
being a best response to I(m7) implies

I(my)[mim+(L=mi)p(r—ai)]=rlmi, I(m])] > I(m])[mom+(1—m3)p(r—a )| =r[ms, I(m7)].
m3 > mj implies I(m3) < I(m7) and r|mj, I(m3)] > r[m3, [(m})], which in turn implies

L(my)[mim+(1=—my)p(r—ay)|=rlmi, [(mq)] > I(m3)[mam+(1-—m3)p(m—ay )] —rlm3, [(ms)].

That is, firm’s net profits are higher in the equilibrium with m7 than in the one with
m3. In the rest of the proof, we let m* denote the smallest equilibrium manipulation.

Second, X (m) crosses the 45-degrees line from above at m*, that is, X'(m*) < 1. To
see this, note that X (0) > 0 and X (1) < 1, and that X (m) is weakly increasing since
X (m) = 5 (p(m), 1(m))pf (m) + 5 (p(m), L(m)) I (m) > 0,
as both terms are weakly positive by Lemma 4.1 and Lemma 4.5. Since X (m) is continuous
and weakly increasing, and X(0) > 0, X(1) < 1, there exists a smallest fixed point
m* € [0, 1] such that X (m*) = m*. For any m < m*, we must have X (m) > m, otherwise

we would contradict the minimality of m*. Therefore, X (m) crosses the 45-degree line
from above at m*.
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Trader’s Compensation and Market Conditions We now study how the trader’s
compensation changes with equilibrium market conditions, p* and I*. The trader’s rent is
nil whenever m* > my and positive otherwise. When m* = 0 it takes value

2(1 = (1 —p*)p)
(1—=p*)p

which is strictly increasing in p* and independent of I*. When m* = m°(p(m*), I(m*)),
rewriting the trader’s rent as

r(m*) =

mo(p*)eA™t, (C.30)

2(mo(p) —m) e\l

(1-p)p
1-(1-p)p +m

r(m) =

and plugging m* = m°(p*, I*) into r(m) yields

me=[¢<1+ T e P

v 1=(0=p)p ¢

which is decreasing in p* and increasing in I*.

Consider now the S/I ratio. The derivation of the S/I-ratio is as follows. Let F' denote
the fixed component of trader’s wage. The incentive compatibility constraints respectively
for search and compliance become:

(1 —7) [WII(X,m)] + F| > F + cDA,

7 [ m)] + F] > — +1(1_ _(177%_)5)[1 o

cDA.

v

1. If m > my, the incentive compatibility constraint for search is binding when F' = 0,
which is therefore the highest possible fixed wage in an optimal contract.

2. If m < myg, the incentive compatibility constraint for search is not binding when
F = 0. The highest fixed wage in an optimal contract is such that both incentive
compatibility constraints (for search and compliance) are binding, which yields

F
F + WI[IL(A, m)]

= 2y(mg — m).

Consider now equilibrium behavior of the S/I ratio when it is positive (i.e. m* < my).
When m* = 0, the ratio is proportional to mg(p*) which is increasing in p* and independent
of I*. When m* = m°(p*, I*) we have

1 1 /1 1 c
2 0molp) — (0", 1) = [ £+ 207) |31/ +0t07) - -
v 2V (L =p)p(m + ay) — 7] I*
(C.32)
which is increasing in I* and decreasing in p* since z(p) = 19@3 )p’;p is decreasing.
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Comparative Statics We now study how the equilibrium level of risk management
and trader’s compensation changes with ¢ and A\. Equilibrium manipulation m* weakly
decreases with 7. In fact, in equilibrium we have m* = m*(p(m*),I(m*)) and by the
implicit function theorem, noting that I(m) directly depends on i, we have

om*_ mi(p(m), I(m")) 25 _
di 1— X'(m*) =

since the numerator is weakly negative by Lemma 4.1 and Lemma 4.5. The inequal-
ity is strict when mj < 0, which is the case when the best response is determined by
m°(p(m*), I(m*)). Note also that m*(i) exhibits discrete downward jumps as i increases
and a lower fixed point is selected. The trader’s equilibrium rent, as well as the rent per
unit of effort, weakly increase with . If m* = 1 or m* = my(p(m*)), then r(m*) = 0 is
independent of i. If m* = m°(p(m*), I(m*)) then the rent is given by Equation (C.31) and
is increasing in ¢ since by Lemma (4.1) we have

op* om*

5 )= <0
5I* L om* 6l
T AR T

and r* decreases with p* and increases with I*, as shown before. When m* = 0, the
-1
rent is given by Equation (C.30) and is independent of i since p* = p(0) = (L + %) L is

independent of 7. Using similar arguments one show that the S/I ratio exhibits a similar
behavior and weakly increases with .

Consider now the comparative static with respect to A\. By the implicit function theo-
rem, noting that both p(m) and I(m) directly depend on e¢* = A7, we have

om* _ m;(p(m*), ](m*)) 8;:9(;11) +mj (p(m*), ](m*)) ala(j\n) <0
O\ 1 — X’(m*) o

since the numerator is weakly negative by Lemma 4.1 and Lemma 4.5. The inequality
is strict whenever m* ¢ {0,1} and the best response is determined by either mq(p(m*))
(in which case my > 0 and mj = 0) or m°(p(m*),I(m*)) (in which case m; > 0 and
mj < 0). Note also that m*(\) exhibits discrete downward jumps as A increases and a
lower fixed point is selected. The trader’s rent per unit of effort r(m*)/e* exhibits an
inverted U-shaped behavior as A increases. If m* = 1 or m* = mg(p(m*)), then r(m*) =0
is independent of A. If m* = m°(p(m*), I(m*)) then the rent is given by Equation (C.31)
and the normalized rent is increasing in A since by Lemma (4.1) we have

(5p*_, Lom*  op
oy Pty <0
51, §m* 8l
5)\—](m)5)\ +5>0,

and 7* decreases with p* and increases with I*, as shown above. If m* = 0 then r(m*)
is given by Equation (C.30), hence the (normalized) rent is increasing in p* = p(0) =
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-1
(L + %) ¢ and thus decreasing in A. Using similar arguments, one shows that the S/I

ratio exhibits an inverted U-shaped behavior when A increases. [ |
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