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�Economics is a science of thinking in terms of models joined to the art of

choosing models which are relevant to the contemporary world.�

� John Maynard Keynes



Abstract

This thesis contains three essays in applied microeconomic theory. It develops frameworks

to advance the understanding of collusion in labor markets, digital platforms' strategies,

and socially responsible investments, and derives policy implications.

The �rst chapter develops a theory of collusion in the presence of labor market power.

In an oligopoly-oligopsony setting, a �rm needs to increase its wage o�ers to recruit more

workers and expand production, which dampens incentives to deviate from a collusive

outcome. No-poaching and non-compete agreements, preventing a �rm from hiring its

rivals' workers, act as facilitating practices. As a result, labor market power increases

�rms' ability to collude, and collusion harms consumers and workers, underlining the need

for antitrust authorities to monitor collusive behavior also in labor markets. However,

if only wage collusion is monitored, or is prevented by enforcing a minimum wage, �rms

�ercely collude on prices, leaving consumers worse o� than under unconstrained collusion.

The second chapter examines whether users receive their fair contribution to a digi-

tal ecosystem. The frequent accusations of self-preferencing and excessive platform fees

leveled at dominant gatekeepers raise the issue of the standard these platforms should

be held to. The important role played by two zero lower bounds on the pricing of core

and complementary services in the setting of privately and socially optimal platform fees

warrants the concerns about equity for business users. A simple �Pigouvian rule� for

regulating access conditions ensures that business users appropriate their contribution to

the ecosystem, promoting the right level of innovation; it does so by pricing the unpriced

positive externality (ancillary bene�t) enjoyed by a third-party seller that receives access

to the consumer.

The third chapter analyzes the e�ciency of socially responsible investing as a market-

based mechanism to control �rms' externalities. When responsible and pro�t-motivated

investors interact, the former tend to concentrate on a subset of �rms in the economy,

while excluding others. This concentration of responsible capital can mitigate free-riding

and coordination issues in the adoption of green technologies, but it can also create

product market power and crowd out the green investments of excluded �rms. If these

unintended consequences dominate, aggregate green investments and welfare are larger

in the absence of responsible investing. In equilibrium, responsible capital concentrates

most when such concentration is least desirable.
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Chapter I

Labor Market Power and Collusive

Behavior
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1 Introduction

Across many industries, large �rms enjoy signi�cant and increasing degrees of oligop-

sony power in labor markets.1 This raises concerns about anticompetitive labor market

practices, particularly collusive behavior.2 In July 2021, a White House executive order

encouraged �the FTC and DOJ to strengthen antitrust guidance to prevent employers

from collaborating to suppress wages�.3 Accordingly, the DOJ has recently brought sev-

eral criminal cases against naked wage-�xing agreements, the sharing of relevant wage

information, and no-poaching and non-compete agreements.4 In 2023, the FTC has

signed a new agreement with the DOL to bolster e�orts to protect workers by promot-

ing competitive labor markets, identifying collusive behavior as the �rst area of mutual

interest for the two agencies.5

Concerns over collusive behavior in labor markets add to those over collusion in prod-

uct markets, and the two may often coexist. Indeed, in many industries, due to skill

specialization or the local nature of labor and product markets, large �rms that recruit

from the same labor markets also operate in the same product markets, and enjoy mar-

ket power in both.6 Therefore, they can collude both to suppress wages and increase

prices. For instance, the chicken-processing companies involved in one of the major wage

collusion cases investigated to date have also been sued for price-�xing, with the two

cases having factual overlap.7 Similar concerns have recently arisen in the health care

industry.8

This paper aims to develop a theory of collusion in the presence of labor market

power, guiding antitrust enforcement and regulatory interventions. How does oligopsony

power a�ect collusive strategies and their sustainability? Are antitrust authorities' inter-

1Berger et al. (2022) develop a general equilibrium oligopsony model of the labor market and �nd that
it is quantitatively consistent with documented empirical regularities suggestive of oligopsony. Several
other studies �nd low estimates for �rm-level labor supply elasticities across many di�erent sectors (see,
e.g., Manning, 2021).

2For empirical evidence of employer collusion, see Sharma (2024).
3See the Fact Sheet at https://www.presidency.ucsb.edu/documents.
4See https://www.antitrustalert.com/tag/wage-fixing/ for an overview of some recent cases.
5See the Press Release at https://www.ftc.gov/news-events/news/press-releases/2023/09/.

Similarly, in the EU, a recent policy statement from the European Commission treats
wage-�xing and no-poaching agreements as restriction of competition by object : see
https://competition-policy.ec.europa.eu/document/.

6Using plant-level data, Tortarolo and Zarate (2018) �nd signi�cant price mark-ups and wage mark-
downs.

7Because plants cluster in the areas in which chickens are raised by farmers, there are multiple plants
in relatively small areas in which they compete for workers. In both wage- and price-�xing cases, plainti�s
argue that the defendants exchanged information through various intermediaries, including a company
called Agri Stats. The top three chicken industry �rms named in the DOJ's Agri Stats lawsuit (Tyson,
Pilgrim's Pride, and the recently-merged Sanderson-Wayne Farms) have already been subject to at least
$698 million in settlements: see https://accountable.us/report.

8Revelations about a data analytics �rm's role in determining medical payments have raised concerns
about potential price �xing in health care, prompting calls for a federal investigation. See https:

//www.nytimes.com/2024/05/01/us/multiplan-health-insurance-price-fixing.html.
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ventions to monitor collusion in labor markets aligned with consumer protection, or do

they necessarily rely on a broad mandate that includes worker protection? How do labor

market regulations, such as minimum wage and pay-equity provisions, and the antitrust

treatment of no-poaching and non-compete agreements impact collusion and, ultimately,

consumer and worker welfare?

To address these questions, Section 2 introduces labor market power, deriving from

workers' idiosyncratic preferences for di�erent employers,9 in a barebone model of collu-

sion in oligopoly: the Bertrand supergame � i.e., the in�nitely repeated Bertrand oligopoly

game with homogeneous products. At each period, �rms simultaneously make wage of-

fers to workers and set product prices. These choices determine the labor force and the

consumers' demand for each �rm. Firms also employ other variable factors (e.g., �ex-

ible capital inputs, such as materials), traded in competitive markets, to produce the

demanded output;10 the production function exhibits constant returns to scale. Within

this framework, Section 3 characterizes the cartel outcome � i.e., the industrywide-pro�t-

maximizing wage and price levels, which would arise if cartels were legal and contractu-

ally enforceable � and the collusion outcome � i.e., the most pro�table (stationary and

symmetric) subgame-perfect equilibrium of the supergame. It presents two main sets of

results.

First, labor market power facilitates collusion: The critical discount factor above which

the cartel outcome is sustainable under collusion is lower than in perfectly competitive

labor markets. This is because a deviating �rm cannot capture the entire cartel pro�t in

the presence of oligopsony power. While it can still attract all its rivals' consumers by

slightly undercutting the monopoly price, expanding production to satisfy their demand

requires hiring additional workers. Since the (residual) labor supply is upward-sloping,

this entails paying higher wages. It is, therefore, impossible for a deviating �rm to capture

the whole cartel revenue without increasing its average production costs, which weakens

deviation incentives, ultimately fostering collusion.

Second, the analysis reveals the interplay between collusion in labor and product

markets : The best collusive scheme involves both sub-competitive wages and supra-

competitive prices. This outcome equalizes the ratio of the marginal pro�t from collusion

to the marginal pro�t from deviation across labor and product markets: In simple terms,

�rms exploit multimarket contact to allocate their collusive power across both markets,

so they simultaneously raise prices and lower wage o�ers.

These results have relevant policy implications, which are examined in Section 4. In

9See, e.g., Azar et al. (2022), who conclude that job di�erentiation gives employers market power,
allowing them to pay workers less than their marginal productivity.

10As in standard Bertrand models, a �rm is always committed to satisfying all consumers' demand
at its posted price. In this model, it can do so for any labor force at its disposal by adjusting its
endowment of �exible capital. The no rationing assumption ensures the existence of a zero-pro�t static
Nash Equilibrium, which implies that restricting attention to subgame-perfect equilibria in grim-trigger
strategies is without loss of generality, but is otherwise inessential to the results.
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the presence of labor market power, collusion is easier to sustain and harms consumers and

workers alike, so competition authorities need to intensify their enforcement activities.

Moreover, they must actively monitor collusion also in labor markets, even if they follow a

pure consumer surplus standard. The reason is that, if only price collusion is monitored,

�rms can still collude in the labor market:11 By coordinating to reduce their wage o�ers,

they end up hiring fewer workers, making it individually optimal to produce less than

under competitive wage-setting behavior. As a result, even if �rms' price-setting behavior

is non-cooperative due to the monitoring of price collusion, equilibrium output is reduced,

to the detriment of consumers. However, shifting antitrust authorities' (limited) budget

devoted to monitoring collusive behavior from product to labor markets would lead to

the worst outcome from consumers' standpoint: Pure price collusion yields even higher

prices than a multimarket collusive arrangement. The reason is that when wage collusion

is monitored, competitive behavior in the labor market leads to higher wages, which in

turn raises production costs, making higher prices incentive-compatible.12

When collusive behavior cannot be monitored, the introduction of a binding minimum

wage, or an increase thereof, may similarly lead to an increase in equilibrium employment

and prices. In the presence of oligopsony power, such a pass-through of an increased

regulatory minimum wage to consumers would not occur under competitive behavior:

A binding minimum wage deprives oligopsonists of incentives to hire fewer workers in

order to pay lower wages; under competitive behavior, this would give them incentives

to expand production, i.e., to set lower prices. However, this e�ect may be outweighed

by the strengthening of price collusion, which is triggered by the inability of colluding in

wages. Thus, consumer harm from an increase in the minimum wage, often found in the

empirical literature since Card and Krueger (1994), is not inconsistent with the presence

of labor market power; instead, it is suggestive of collusive behavior.

The result that oligopsony power fosters collusion also implies that �rms capture most

of the bene�ts from their labor market power: The pass-through to consumer prices of

wage mark-downs due to �rms' market power vis-à-vis workers is more limited than under

competitive behavior. As a result, policies aimed at limiting the extent of �rms' labor

market power by protecting workers' bargaining power � e.g., strengthening trade unions

11Collusive behavior often takes place through price- and wage-�xing agreements, requiring commu-
nication (though, being illegal, hence not enforceable in court, these agreements must be incentive-
compatible) � see, e.g., Harrington (2006). If antitrust authorities prevent �rms from agreeing on prices
(e.g., by monitoring communication among pricing managers), �rms can still engage in wage-�xing agree-
ments (e.g., through communication among HR directors); in these cases, provided they o�er the agreed
wage, �rms can set any price level without triggering a punishment, which results in competitive (i.e.,
static-Nash) price-setting behavior taking wages set at the collusive level. The same semi-collusive out-
come arises if antitrust authorities can only infer whether the prevailing price is supra-competitive given
the observed �rms' labor force.

12Monitoring of wage collusion is thus complementary to, rather than a substitute for, monitoring of
price collusion: The welfare gain to consumers from the monitoring of price collusion is higher when
wage collusion is monitored.
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� bene�t workers mostly at the expense of �rms rather than consumers.

Labor market power, deriving from the local nature of many (especially low-skilled)

labor markets (e.g., Marinescu and Rathelot, 2018), also has implications for standard

policy measures aimed at enhancing the competitiveness of product markets. First, pro-

moting product market globalization (e.g., through free trade agreements), whereby �rms

in di�erent geographic markets compete for consumers in a global product market, may

fail to lead to competitive prices. The opportunity to serve consumers in other markets

does not necessarily strengthen �rms' incentives to deviate from a collusive outcome,

due to the di�culty to recruit workers from those corresponding labor markets in or-

der to expand production. This �nding is consistent with the evidence on mark-ups

in De Loecker and Eeckhout (2018) and underscores the irreplaceable role of antitrust

authorities' monitoring of collusion.

Second, in local labor markets it is often the case that the same workers can be hired

by �rms selling di�erent products. In these circumstances, oligopsony power introduces

cross-market externalities through the labor market: Higher wage o�ers by any �rm also

harm �rms selling in independent product markets by increasing the wage they need to of-

fer to recruit a given number of workers. As a result, �rms selling in independent product

markets can collude together (on wages and price levels) to internalize these externalities,

and conglomerate mergers � i.e., mergers across �rms in independent product markets

� facilitate such cross-market collusion, thereby leading to higher prices in all markets,

consistent with empirical evidence (e.g., Ciliberto and Williams, 2014). These �ndings

advocate for a strict conglomerate merger policy when the merging parties recruit workers

in the same labor markets.

Finally, extending the model to long-term employment contracts allows for the iden-

ti�cation of labor-market-speci�c facilitating devices. Considering an overlapping gener-

ations model with identical cohorts of workers, Section 5 shows that no-poaching agree-

ments (NPA), prohibiting �rms from making o�ers to each others' current employees, can

be used as facilitating practices. The impossibility of making poaching o�ers makes the

(residual) labor supply steeper for a deviating �rm that wants to expand its labor force,

discouraging deviations from a collusive equilibrium. The reason is that, for any wage

o�er above the (candidate) equilibrium one, a deviating �rm can expand its labor force

to a greater extent when it can make the same o�er also to its rivals' workers, as some of

them would accept it. Thus, signing binding NPA enables �rms to sustain more collusive

outcomes. This result provides an anticompetitive rationale for the widespread use of

NPA also in low-skilled labor markets (e.g., Krueger and Ashenfelter, 2022) and justi�es

their per se illegality antitrust status in these markets. Non-compete agreements (NCA),

whereby a worker commits with the current employer to not work for a competitor in the

future, and which are also widely used in low-skilled labor markets (Starr et al., 2021),

5



can similarly dampen deviation incentives.13

Through a di�erent mechanism, also pay-equity regulations, which require �rms not to

wage-discriminate among workers (�equal pay for equal work�), facilitate collusion: For a

�rm contemplating an increase in its wage o�ers to recruit more newcomers and (absent

NPA or NCA) rivals' incumbent workers, pay-equity regulations imply the obligation

to correspondingly increase the remuneration of its current employees, which reduces

the pro�tability of such deviation. This result may explain why the introduction of

pay-transparency rules, which help enforce pay-equity regulations by revealing eventual

pay disparities among coworkers performing similar work within a �rm, often leads to a

reduction in average wages (Cullen, 2024).

Section 6 concludes. All proofs are in Appendix A. Appendix B contains additional

material.

Related literature. Starting from Friedman (1971), an extensive literature has ana-

lyzed collusion in oligopoly supergames. Previous studies have examined how the sus-

tainability of collusion depends on �rms' asymmetries or product di�erentiation, capacity

constraints, market transparency, business cycles or demand �uctuations, inter alia, and

how �rms can employ facilitating practices such as joint venture agreements and resale

price maintenance: see Ivaldi et al. (2003) for an excellent overview. All these mod-

els, however, assume that �rms are price takers in the input markets and produce at a

constant marginal cost. Departing from these assumptions, this paper shows that labor

market power facilitates collusion.

The mechanism underlying this facilitating e�ect is that a deviating �rm faces increas-

ing marginal costs when expanding production because of the need to raise its wage o�ers

to attract more workers. This result holds whenever each �rm faces an upward-sloping

labor supply, no matter whether the oligopolists also interact in the same labor market.

Diseconomies of scale indeed make it possible to sustain supra-competitive equilibrium

prices even absent repeated interactions, as shown by Dastidar (1995) in his analysis of

the Bertrand game with convex costs. Unlike in Dastidar (1995) and follow-up work (see

Vives, 1999, for an overview), by microfounding the cost function through the modeling

of the labor market, this paper also examines how �rms that simultaneously interact in

the same labor and product markets can collude in both markets.

In the latter respect, this work relates to the literature on multimarket contact. Bern-

heim and Whinston (1990) were the �rst to formalize the insight that multimarket contact

can facilitate collusion. In their framework with multiple independent product markets,

multimarket contact pools the incentive-compatibility constraints for collusion across

markets, which can relax binding constraints if markets are asymmetric. This insight

13Workers do not expect to receive attractive poaching o�ers from other employers along any stationary
equilibrium path, so they are willing to sign a non-compete clause without asking for compensation.
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has been extended to interdependent product markets by Spagnolo (1999) and Choi and

Gerlach (2013). Considering vertically related markets,14 this paper unveils novel mecha-

nisms through which multimarket contact facilitates collusion, driven by the pro�tability

of a joint deviation (in output and input markets). The paper also extends the analysis

to multiple product markets, showing that, unlike in Bernheim and Whinston (1990),

conglomerate mergers can have anticompetitive multimarket-contact e�ects even when

(product) markets are completely symmetric. This is because such mergers reduce the

pro�tability of a joint deviation across product markets, as expanding production in one

market entails higher recruitment costs also in the other market.15

Moreover, the present paper is the �rst to model wage collusion. The long-standing lit-

erature on monopsony or oligopsony power in labor markets has abstracted from product

market interactions and collusion. Borrowing the terminology from Manning (2021), two

main approaches have been taken in this literature to model employers' market power:

The �new classical� approach posits employer di�erentiation deriving from heterogeneity

in tastes among workers, and borrows standard industrial organization models of imper-

fect competition (e.g., Bhaskar and To, 1999); the �modern� approach is instead based on

frictions in the labor market deriving from a search-and-matching process (e.g., Burdett

and Mortensen, 1998). This model follows the �rst approach, but its insights are robust

to the case where labor market power derives from search frictions (see Appendix B.1).

The few papers examining non-cooperative (Tong and Ornaghi, 2021) or cooperative

(Gonzaga et al., 2014) oligopoly-oligopsony models have followed the same approach, but

have relied on static analyses, thereby neglecting collusive behavior.

Finally, some recent papers have examined the trade-o� between reduced worker mo-

bility and increased employee training entailed by no-poaching and non-compete agree-

ments (e.g., Martins and Thomas, 2023, and Shi, 2023, respectively). Mukherjee and

Vasconcelos (2012) have similarly considered these agreements as alternative means for

employers to avoid engaging in wage wars for hiring each others' �star workers�. In all

these models, the rationale for these clauses and their competitive and welfare e�ects only

apply to high-skilled labor markets, where workers' training or individual performance

are relevant. By showing how these agreements can help �rms to sustain more collu-

sive outcomes, this paper provides a novel anticompetitive rationale for their use also in

low-skilled labor markets, which is robust to, but does not rely on, �rms also interacting

in the same product market. The mechanism is similar in spirit to Aghion and Bolton

(1987) and Rasmusen et al. (1991), where contractual restrictions to mobility discourage

14Previous works on collusion in vertically related markets (e.g., Nocke and White, 2007, Piccolo and
Mikl'os-Thal, 2012, and Normann et al., 2015) have focused on models of vertical supply chains.

15The industrial organization literature on conglomerate mergers � i.e., mergers of �rms selling in
independent product markets � is rather sparse. In a recent paper, Chen and Rey (2023) have examined
the welfare e�ects of these mergers in the presence of heterogeneous �consumption synergies� deriving
from bundling of independent products. In this paper, independent product markets are instead linked
through the labor market.
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potential competition (i.e., entry) rather than the competitive behavior (i.e., deviations)

of incumbents.

2 Model

This section describes the baseline model and examines the benchmark scenarios where

�rms have no (individual) labor market power.

2.1 Set-up

Consider a product market with n symmetric �rms. To produce, they need to employ

workers, whom they hire from the same labor market, and other (variable) production

factors.

Product market. Firms produce perfect substitutes and compete à la Bertrand. That

is, each �rm i ∈ N ≡ {1, ..., n} posts a price pi at which it is committed to serving all

the resulting demand (no rationing of consumers). Perfect substitutability implies that

consumers only buy from the lowest-priced �rm(s): Consumers' demand is a downward-

sloping function Q(p) of the lowest available price p ≡ mini∈N pi; if several �rms charge

p, they equally split Q(p). Formally, �rm i sells

qdi ≡ 1[pi = p]
Q(p)

#{i : pi = p}
, (1)

where #{i : pi = p} is the number of �rms that charge the lowest price in the market.

Production function. Each �rm i produces with a constant returns to scale (hereafter,

CRS) production function: Its output is given by qsi ≡ F (`i, ki), where F (·) is (positively)
homogeneous of degree one, `i is the labor force at its disposal, and ki represents the

amount of another variable factor, which will be referred to as �exible capital, it employs

for production. Flexible capital is traded in a competitive market at rate r.

Labor market. In the labor market, there is a measure J of ex-ante identical workers,

indexed by j ∈ [0, J ], where J is (�nite but) su�ciently large, so that workers are always

in excess supply for �rms i ∈ N . Each worker j inelastically supplies one unit of labor

when hired by a �rm i in exchange for a wage wi,j. All workers have the same outside

option w0, whose value is common knowledge, say the competitive wage they would earn

if hired outside of the considered industry. Worker j's utility from accepting �rm i's

o�er is given by wi,j + ξi,j, where ξi,j are i.i.d. draws from a continuous c.d.f. Ξ(·) with
bounded support [ξ, ξ], and represent j's non-monetary extra-utility from working in i
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rather than in the outside competitive sector. The realizations of ξi,j are worker j's

private information, and workers are anonymous from �rms' standpoint.

Firms can (costlessly) make personalized wage o�ers to as many workers as they want;

each worker observes the available o�ers and decides which one to accept (if any). Each

�rm i is committed to paying wi,j to workers j who have accepted its o�er no matter how

much it produces � i.e., no new hires or dismissals are possible after consumers' demand

realizes (short-term rigid labor force).16 Therefore, �rm i's labor force is17

`i ≡
∫
j∈[0,J ]

1

[
wi,j + ξi,j ≥ max

{
w0, max

i′∈N\{i}
(wi′,j + ξi′,j)

}]
dj, (2)

with the convention that wi,j = −∞ for any worker j to whom �rm i does not make an

o�er.

Timing and solution concept. Each �rm i sets its product price pi and makes o�ers

{wi,j}j∈[0,J ] to workers. These choices are simultaneous and determine the amount of

output each �rm must produce, qi = qdi given in Eqn. (1), and each �rm's labor force, `i
given in Eqn. (2), respectively. Under the no-rationing and short-term rigid labor force

assumptions, (qi, `i) pin down the amount of �exible capital K(`i, qi) ≡ F−1,k(`i, qi) (with

F−1,k(·) denoting the inverse of the production function with respect to k) �rm i needs

to employ.

This paper considers the in�nitely repeated version of this stage game, with perfect

monitoring, long-lived �rms and short-lived workers.18 That is, time is discrete and

indexed by t = 0, 1, ..., identical cohorts of one-period-lived workers enter the labor market

at each t, and �rms discount pro�ts at a common rate δ ∈ (0, 1). The solution concept

is stationary symmetric Subgame Perfect Nash Equilibrium in pure strategies, hereafter

referred to as SPNE, with no wage-discrimination � i.e., along the equilibrium path, all

�rms charge the same price (pi ≡ p) and o�er the same wage to all workers over time

(wi,j ≡ w); no restrictions are imposed o�-equilibrium path.

Discussion and assumption. This paper aims to understand the impact of labor

market power on collusive behavior. As price- and wage-�xing cartels are per se illegal,

cartel provisions are not enforceable in court, and colluding �rms are constrained to

choose self-sustainable price and wage levels. Throughout the paper, cartel outcomes

refer to price and wage levels that would prevail if cartels were enforceable and collusive

16No-rationing and short-term rigid labor force are assumed even if a �rm makes negative pro�ts (no
exit).

17Ξ being continuous, workers' tie-breaking rule is immaterial to the analysis.
18As �exible capital is not a strategic choice, the stage game is the simultaneous-choice wage- and price-

setting game. As �rms can only post uniform prices, provided they sell a non-durable good, whether
consumers are short- or long-lived is immaterial to the analysis.
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outcomes to those arising in the most pro�table SPNE of the supergame.19

The �rst building block of the framework is a barebone model of collusion in oligopoly,

namely, the Bertrand supergame. This model is particularly tractable because Nash

reversion yields a discounted pro�t of zero, which, by the results in Abreu (1988), implies

that restricting attention to grim-trigger strategies (Friedman, 1971) is without loss of

generality. This conclusion will still be valid in my model, which signi�cantly simpli�es

the analysis. Formally, a stationary action pro�le (pi, {wi,j}j∈[0,J ])i∈N is a SPNE in grim-

trigger strategies of the supergame de�ned above if, at any given t, �rms play the speci�ed

actions if and only if no �rm has played di�erently at any t′ < t; else, a Nash Equilibrium

of the stage game (hereafter, static NE ) is played.

The Bertrand game assumes that �rms are committed to satisfying all consumers'

demand at their posted prices, which is plausible in cases where there are high costs of

turning consumers away (see Vives, 1999, for a discussion). For this to be feasible also o�-

path, �rms must be able to adjust their production capacity after demand is realized. In

this model, �rms produce using labor and �exible capital and,20 in line with the literature

on multimarket contact (Bernheim and Whinston, 1990), I consider simultaneous �rms'

choices in labor and product markets to rule out commitment e�ects. Then, �exible

capital must be eventually adjusted after consumers express their demand to ensure no-

rationing. The assumption that capital inputs, such as materials, lack adjustment costs

and monopsony power aligns with empirical evidence (Yeh et al., 2022).

To avoid the results of the paper be driven by the no-rationing assumption, the fol-

lowing will be assumed throughout:

(A) Serving all consumers' demand would be optimal for a �rm deviating from the cartel

outcome, even if it could not adjust its wage o�ers and had the option to target fewer

consumers.

Assumption (A) is formalized in Appendix A, together with other technical assump-

tions guaranteeing that all problems considered in the analysis are well-behaved.

Following the �new-classical approach� to labor market power (Manning, 2021), �rms

enjoy labor market power because workers are in excess supply and have idiosyncratic

preferences for di�erent employers. The considered model, under a Type I Extreme Value

speci�cation for Ξ(·), is equivalent to a logit model, which has often been estimated in

19The distinction between explicit and tacit collusion is immaterial to the analysis, except in Section
4.1, where I examine antitrust authorities' monitoring of collusion, which is only possible for explicit
collusion.

20If labor were the only (variable) production factor, wage choices alone would determine �rms' capacity
(at least in the short-run), and output would always be sold at the market-clearing price (Kreps and
Scheinkman, 1983). Then, collusion in the labor or product market would be equivalent. Constant returns
to scale (with respect to {`i, ki}), while being in line with empirical evidence in many manufacturing
industries (e.g., Berger et al., 2022), are mainly assumed for consistency with the standard Bertrand
supergame; same as for �rm symmetry.
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empirical works (e.g., Card et al., 2018, Tortarolo and Zarate, 2018).21 The assumptions

that workers are short-lived and can only be employed by �rms selling in the same product

market will be later relaxed. The robustness of the main results with respect to the other

modeling choices is discussed in Appendix B.2.

2.2 Benchmarks: No individual-�rm labor market power

Before proceeding with the analysis, this section shows that the considered framework is a

straightforward extension of the analysis of collusion in the Bertrand oligopoly supergame

whenever �rms i ∈ N are identical from workers' viewpoint and so, at least individually,

have no labor market power.

Perfectly competitive labor market. Suppose that the labor market is perfectly

competitive: ξi,j ≡ 0 for all i and j, so that (i) �rms need to o�er at least w0 to hire any

worker, and (ii) workers being in excess supply, �rms can hire as many workers as they

want at w0. Therefore, each �rm i only chooses how many o�ers to make, determining

its labor force `i,22 and �rms' cost-minimization problems are independent of each other.

For any anticipated quantity qi to sell, the optimal labor demand `∗(qi) of �rm i is

obtained by minimizing the production cost w0`i+rK(`i, qi). As the production function

is CRS and all factors' prices are constant, standard arguments imply that (i) the optimal

labor demand is such that `∗(qi) = qi`
∗(1), and (ii) �rms can produce any amount of

output at a constant marginal, or average, cost: Formally, the minimized average cost

function is

C0(q) ≡ 1

q
[w0`

∗(q) + rK(`∗(q), q)] = w0`
∗(1) + r K(`∗(1), 1) ≡ c0 ∀q > 0. (3)

As a result, the analysis unravels as in a standard Bertrand supergame with constant

marginal costs (Friedman, 1971): Firms always choose the individually optimal labor

demand in equilibrium, and a �rm deviating from a candidate equilibrium price p can

appropriate the whole industry pro�t by slightly undercutting p (so to capture all con-

sumers' demand Q(p) instead of its share 1/n) and optimally expanding its labor demand

(from `∗(Q(p)/n) to `∗(Q(p))) in order to produce Q(p) at the same marginal cost c0.

No individual-�rm labor market power. Suppose now that all �rms i ∈ N are still

identical from workers' viewpoint, but workers value di�erently working in the considered

21The considered �rms may be able to mark-down the competitive salary w0 which, as standard in
partial equilibrium analysis, is taken as exogenous (this is always the case if, e.g., ξ ≥ 0). However,
the results of the paper only rely on each �rm i ∈ N facing an upward-sloping (residual) labor supply
function.

22Formally, each �rm i o�ers w0 to all workers with probability ρi such that it ends up hiring `i
workers in equilibrium � e.g., with two �rms and workers breaking ties with equal probability across
them, Jρi

(
ρi′

1
2 + (1− ρi′)

)
= `i.
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industry compared to the outside competitive sector: Formally, for any worker j, ξi,j ≡
ξj ∼ Ξ for all i.

Then, the cost-e�cient way for a cartel to produce a quantity q is de�ned as

C0(q) ≡ 1

q
min
w
{wL0(w) + rK(L0(w), q)} , (4)

where L0(w) ≡ J [1− Ξ(w0 − w)] is the industrywide labor supply when all �rms i ∈ N
o�er wi,j = w to all workers j ∈ [0, J ]. Slightly abusing notation, denote by p = c0 the

solution to p = C0(Q(p)). For any p > c0, a �rm deviating from a candidate equilibrium

(p, w) can appropriate the whole industry pro�t. In fact, it can capture all consumers'

demand Q(p) by slightly undercutting the candidate equilibrium price p; and it can hire

all workers L0(w) by slightly overcutting the candidate equilibrium wage w.23

Results and implications. The previous arguments imply that, in both the considered

scenarios, the following results hold:

Proposition 0 (no individual-�rm labor market power). If the labor market is

perfectly competitive (ξi,j ≡ 0) or �rms have no individual labor market power (ξi,j ≡
ξj ∼ Ξ), then:

� For all δ < δM0 ≡ (n− 1)/n, the unique SPNE is the repetition of the static NE, in

which �rms price at the minimized average cost and make zero pro�ts;

� For all δ ≥ δM0 , the cartel outcome � i.e., the price and labor demand or wage o�ers

that maximize industry pro�ts � is a SPNE.

The results of Proposition 0 show that, provided �rms have no individual labor market

power, the analysis yields the standard results of collusion in the Bertrand oligopoly

supergame, whose main features can be summarized as follows:

1. Competitive static equilibrium: The static game admits a unique (symmetric) NE,

where �rms price at the optimized average cost (p = c0) and make zero pro�ts.

Starting from any candidate NE with p > c0, where �rms make positive pro�ts

π = (p − c0)Q(p)/n, each �rm can pro�tably deviate by slightly undercutting this

price to serve all consumers' demand Q(p); this output is produced at the same

average cost c0 because the deviating �rm recruits the extra workers at the same

wage.

2. �Bang-bang� collusion: For any price p ∈ (c0, p
M
0 ], where pM0 ≡ arg maxp(p −

C0(Q(p)))Q(p) denotes the cartel price, the deviation examined above allows the

23This argument also implies that, in any candidate static NE, �rms produce at the optimized average
cost.
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deviating �rm to reap the whole industry pro�t in the deviation period. However, it

triggers Nash reversion and so a pro�t of zero forever after. As a result, no collusion

at all is sustainable (i.e., p = c0 for all t) if δ < δM0 , whereas the cartel outcome is

sustainable for all δ ≥ δM0 .

3. Pure price collusion: The cartel outcome can be implemented by colluding �rms

by only coordinating on setting price pM0 . Firms do not need to also coordinate

their behavior in the labor market: Each �rm always acts in its individual best

interest in the labor market, to produce its share of the monopoly output in the

most cost-e�cient way (i.e., at the optimized average cost de�ned above). Put it

di�erently, once �rms have agreed on how much to produce (i.e., on the product

price p), there is no need for colluding also on how to produce (i.e., on how many

workers to hire or on wage o�ers to make).24

To sum up, in the absence of (individual-�rm) labor market power, antitrust authorities

only need to monitor �rms' price-setting behavior in industries featuring relatively few

competitors to ensure that consumers have access to competitively-priced products, and

e�cient employment and wage levels. The analysis of Section 3 will show that none of

these results holds in the presence of individual-�rm labor market power.

3 Equilibrium analysis

When workers derive �rm-speci�c non-monetary utility from working in the considered

industry (ξi,j ∼i.i.d. Ξ for all i, j), each �rm has labor market power: It can o�er a lower

wage relative to its competitors, and still hire any worker with positive probability. This

section contains the equilibrium analysis in this scenario. Section 3.1 characterizes the

Nash Equilibria of the static game. Section 3.2 analyzes the supergame, �rst character-

izing the conditions under which the cartel outcome can be sustained as a SPNE, and

then deriving the collusive outcome when it cannot.

3.1 Static game

This section characterizes �rm behavior in the static game to grasp the �rst insights on

the impact of labor market power and to show that grim-trigger strategies are without loss

of generality in the supergame. To simplify the exposition and without loss of insights, I

restrict attention to symmetric NEs.

24Conversely, coordination only on labor market behavior (i.e., agreeing to restrict the number of o�ers
or to o�er the wage prevailing in the cartel outcome) would not su�ce to implement the cartel outcome,
because �rms would have incentives to undercut pM0 even holding �xed the number of workers they hire
in the cartel outcome.

13



Wage-o�er game. The next lemma describes �rm behavior in the personalized-o�ers

game vis-à-vis workers:

Lemma 1 (wage o�ers). For each �rm i, making non-discriminatory wage o�ers �

i.e., o�ering wi,j ≡ wi ∀j ∈ [0, J ] � is a dominant strategy in the static game. Then, if

wi′ ≡ w ∀i′ ∈ N \{i}, �rm i hires a measure `i ≡ L(wi, w) of workers, where the function

L(·) is such that

∂L(wi, w)

∂wi
> 0 >

∂L(wi, w)

∂w
, and

(
∂L(wi, w)

∂wi
+
∂L(wi, w)

∂w

) ∣∣∣∣
wi=w

> 0.

As making o�ers is costless and workers are anonymous from �rms' viewpoint, the

minimal-cost way for a �rm i to hire any labor force `i is, irrespective of its rivals' behavior,

to o�er the same wage to all workers j ∈ [0, J ]. Because, in the case of a non-degenerate

distribution of o�ers, the higher ones are accepted with larger probability, di�erentiating

o�ers across workers (and so, a fortiori, not approaching some of the workers) would

increase the average wage a �rm ends up paying to recruit any given measure `i of

workers, as i would recruit mostly workers to whom it has o�ered high wages.25

As a result, in a static setting, this game of personalized o�ers is equivalent to a

standard wage-competition model with di�erentiated employers, where each �rm posts a

wage and is committed to hiring all workers who accept this wage. Each �rm then faces

a labor supply function obtained from Eqn. (2) for wi,j ≡ wi for all j ∈ [0, J ], which

is upward-sloping in its o�er and downward-sloping in the competitors' o�ers: Labor

market power thus introduces oligopsonistic competition for workers.

Diseconomies of scale. How does oligopsonistic competition a�ect �rms' cost struc-

ture? De�ning �rm i's optimized average cost function, for any given rivals' symmetric

o�ers wi′ ≡ w ∀i′ ∈ N \ {i}, as

C(q;w) ≡ 1

q
min
wi

[wiL(wi, w) + r K(L(wi, w), q)] , (5)

the following result holds:

Lemma 2 (diseconomies of scale). For any symmetric rivals' o�er w, �rm i's opti-

mized average production cost is increasing in output: ∂C(q;w)/∂q > 0.

Lemma 2 states the well-known result that a �rm operating under a CRS production

function and enjoying monopsony power in some input markets faces an increasing average

25The logic of this result is the same behind the optimality of uniform pricing for a monopolist facing
consumers with unit demand (Riley and Zeckhauser, 1983). As workers are anonymous, from each �rm
i's viewpoint any set of rivals' wage o�ers {wi′,j}i′∈N\{i},j∈[0,J] just translates into a di�erent distribution
of workers' best alternative option, which is immaterial to the optimality of a uniform wage o�er.
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cost function (see, e.g., Gelles and Mitchell, 1996). In the present setting, where �rms

recruit from the same labor market, this result applies, holding �xed rivals' wage o�ers, if

�rm i behaves as a monopsonist given its upward-sloping residual labor supply function,

which must be the case in any static NE.

Equilibrium characterization. For any candidate equilibrium price p, each �rm i

expects to sell qi = Q(p)/n, and accordingly chooses what wage wi to o�er workers in

order to minimize its production cost � i.e., for given rivals' o�ers w, it produces at the

optimized average cost C(Q(p)/n;w). The equilibrium wage o�ers are thus a �xed point

of �rms' cost-minimization problems:

Lemma 3 (competitive wage o�ers). For any candidate NE price p, there is a unique

symmetric equilibrium wage o�er W ∗(p), and it is decreasing in p.

As in the benchmark models examined in Section 2.2, in a candidate equilibrium where

�rms charge a higher price, each anticipates a lower consumer demand and thereby �nds

it optimal to hire fewer workers; hence, �rms optimally reduce their wage o�ers.

Each �rm's pro�t in the candidate equilibrium with price p can be written as

π(p) ≡
[
p− C

(
Q(p)

n
;W ∗(p)

)]
Q(p)

n
. (6)

A �rm's best deviation consists in slightly undercutting the candidate equilibrium price p,

attracting all consumers' demand Q(p),26 and optimally increasing its wage o�ers to hire

more workers, in order to minimize the corresponding production cost, thus obtaining a

pro�t

πD(p) ≡ [p− C (Q(p);W ∗(p))]Q(p). (7)

Any price p such that π(p) ≥ max{πD(p), 0}, together with the corresponding wage o�er

w = W ∗(p), is a static NE.

Proposition 1 (static NE). The static game admits a continuum of NEs: There exist

prices pN < pN such that (p,W ∗(p)) set by all �rms is a NE for all p ∈ [pN , pN ]; �rms'

equilibrium pro�t is zero for p = pN and is strictly increasing in p.

The diseconomies of scale e�ect (Lemma 2) implies that if a �rm undercuts the can-

didate equilibrium price p and so serves all the demand Q(p) alone, its (optimized)

average production cost increases: C(Q(p);W ∗(p)) > C(Q(p)/n;W ∗(p)). The price

pN = C(Q(pN)/n;W ∗(pN)), at which �rms make zero pro�ts, is an equilibrium price

because a deviating �rm undercutting pN would end up selling Q(pN) below the corre-

sponding average production cost � i.e., π(pN) = 0 > πD(pN). Higher prices, such that

26This is the case for any candidate NE price below the monopoly price given wage o�ers W ∗(p)
(considering static NEs with higher prices would be uninteresting).
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p > C(Q(p)/n;W ∗(p)) and so �rms make positive pro�ts, can also be sustained as static

NE.27

Implications for the analysis of collusion. The results of Proposition 1 have the

following implications:

Corollary 1 (static NE). The static-game equilibrium characterization has the following

implications for the supergame:

� Perpetual reversion to the zero-pro�t static NE (pN ,W ∗(pN)) ≡ (pN , wN) following

any deviation constitutes an optimal punishment. Therefore, restricting attention

to these SPNE in grim-trigger strategies is without loss of generality;28

� For δ = 0, the most pro�table SPNE is such that �rms play the static NE (pN ,W ∗(pN)) ≡
(pN , wN) for all t and so make positive pro�ts.

3.2 Cartel and collusive outcomes

This section characterizes �rst the cartel outcome and then the most pro�table SPNE of

the supergame for any value of δ.

Cartel outcome. The following proposition characterizes the cartel outcome � i.e., the

prices and wage o�ers that maximize �rms' joint pro�ts, without imposing stationarity

or symmetry assumptions � and provides conditions under which it is sustainable as a

SPNE of the supergame:

Proposition 2 (cartel outcome). The cartel outcome is stationary and symmetric:

Maximizing industry pro�ts requires all �rms to charge the same price pM to consumers

and o�er the same wage wM to all workers over time, with

pM > pN and wM < wN .

This outcome can be sustained as a SPNE of the supergame if and only if δ ≥ δM , with

δM < δM0 .

27The equilibrium characterization is as in a Bertrand game with increasing marginal costs (Dastidar,
1995).

28That is, for any discounted pro�t that some SPNE can achieve, there always exists a SPNE using
these grim-trigger strategies that yields the same discounted pro�t: The most pro�table SPNE is in
grim-trigger strategies. The no-rationing assumption is crucial for the existence of this zero-pro�t static
NE, which greatly simpli�es the analysis. Assumption (A) ensures that the possibility of rationing does
not change qualitatively any of the results of the paper provided that there exists a punishment scheme
yielding a discounted pro�t of zero to a deviating �rm in the continuation game following any deviation.
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Maximization of industry pro�ts requires equally splitting production among all �rms.

The reason is that, because of employer di�erentiation from workers' viewpoint, the wage

level to attract any overall labor force in the industry is minimized when all �rms are

active and o�er the same wage to all workers: First, by the arguments in Lemma 1, wage

discrimination by any �rm would not be cost-e�cient; second, any asymmetry in wage

o�ers across �rms would imply some misallocation of workers � i.e., that some workers

do not work for their preferred �rm � which necessarily increases the average wages to

recruit any overall labor force.

A cartel internalizes the negative cross-�rm consumer-demand externalities from set-

ting low prices (for a given labor force) and labor-supply externalities from o�ering high

wages (for a given output). These two anticompetitive e�ects reinforce each other:

The internalization of price-externalities calls for a larger price, and the correspond-

ingly lower production reduces the needed labor force, which depresses the wage o�ers;

through the same mechanism, the lower wage o�ers because of the internalization of

wage-externalities, reducing the hired labor force, make it optimal to reduce production,

hence to raise prices. As a result, the cartel price is higher, and the cartel wage is lower

than in the most pro�table static NE.

The main result of Proposition 2 is that labor market power facilitates collusion � i.e.,

it lowers the critical discount factor beyond which the cartel outcome is sustainable as

a SPNE of the supergame relative to the benchmark scenarios analyzed in Section 2.2.

This is because, while punishment pro�ts are still equal to zero (recall Corollary 1), in

the presence of employer di�erentiation from workers' standpoint a �rm deviating from

the cartel outcome cannot reap the whole industry pro�t.

This is for two reasons. First, a �rm i's deviation pro�t is strictly below the pro�t

it would make if it were the only �rm active in the labor market. Indeed, even though

i can eliminate rivals' product market competition by slightly undercutting pM , it still

faces their competition in the labor market, as they do not expect the deviation and so

o�er wM to all workers. This competition strictly reduces i's deviation pro�t: As, for all

wi, L(wi, w
M) < L(wi,−∞), it is more expensive for i to hire workers relative to the case

where its rivals are out of the market. Second, even this hypothetical single-�rm pro�t

is strictly below the industry pro�t in the cartel outcome.29 As argued above, employer

di�erentiation implies that, for all w, L(w,−∞) < nL(w,w): Even in the absence of its

rivals, a �rm would need to raise its o�ers to get the same labor force of a n-�rm industry,

which implies facing larger costs to produce the cartel output Q(pM).

29This single-�rm pro�t would be obtained by a deviating �rm if the stage game was a sequential,
production-to-order, game. The main results are robust with respect to the timing of the stage game:
see Appendix B.2.
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Collusion outcomes. Can some collusion manifest itself also when the cartel outcome

is not sustainable (i.e., for δ < δM)? The most pro�table SPNE, for any given δ < δM , is

the pair (p, w) obtained by solving the following problem:

max
p,w

π(p, w) (P)

s.t. δ ≥ 1− π(p, w)

πD(p, w)
,

where the per-�rm pro�t in the candidate SPNE outcome (p, w) is

π(p, w) ≡ p
Q(p)

n
−
[
wL(w,w) + r K

(
L(w,w),

Q(p)

n

)]
, (8)

whereas the highest pro�t that a �rm can make when deviating is given by

πD(p, w) ≡ pQ(p)− C(Q(p);w), (9)

in the period of deviation, and zero afterward, given that (by Corollary 1) �rms revert

to the zero-pro�t static NE after any deviation.30 Then, the incentive-compatibility

constraint in Problem (P) follows from the de�nition of grim-trigger strategies. The

following proposition describes the solution to this problem:

Proposition 3 (multimarket collusion). For all δ ∈ [0, δM ], the most pro�table SPNE

(PM(δ),WM(δ)) is obtained from the binding incentive-compatibility constraint and the

optimality condition
∂π(·)/∂p
∂πD(·)/∂p

=
∂π(·)/∂w
∂πD(·)/∂w

, (10)

and is such that, as δ increases from 0 to δM , PM(δ) continuously increases from pN to

pM and WM(δ) continuously decreases from wN to wM .

For δ = 0, �rms are myopic and so cannot sustain any outcome more collusive than

the most pro�table static NE (Corollary 1); for all δ ≥ δM , �rms can sustain the cartel

outcome, which features both a higher price and a lower wage (Proposition 2). Proposition

3 shows that �rms optimally exploit any increase in the discount factor in the range (0, δM)

to set both a more collusive (higher) price and (lower) wage. In particular, for any such

level of the discount factor, the incentive-compatibility constraint binds, and the optimal

collusive scheme equalizes the ratio of the marginal pro�t from collusion to the marginal

pro�t from deviation across labor and product markets (i.e., with respect to w and p).

30As slightly undercutting p to capture all consumers' demand (and accordingly increasing the wage
o�er above w to minimize the production cost of Q(p)) is the most pro�table deviation if w = W ∗(p),
it is a fortiori so starting from a candidate collusive SPNE where w < W ∗(p) (colluding �rms would
never choose w > W ∗(p)). The reason is that a deviating �rm maximizes the gains from its rivals' more
accommodating behavior in the labor market by maximally expanding its production, i.e. by serving the
whole demand Q(p).
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The pattern of collusive prices in the presence of labor market power resembles the one

arising in oligopoly (with constant marginal costs) when �rms sell di�erentiated products

(e.g., Ross, 1992). Indeed, similar to labor market power, product di�erentiation implies

that a deviating �rm, undercutting a candidate SPNE price p, can never appropriate the

whole industry pro�t at p,31 and its incentives to deviate continuously increase with p.

The same collusive price patterns thus arise when �rms exploit di�erentiation vis-à-vis

workers in the labor market, rather than vis-à-vis consumers in the product market.32

Summing up. The presence of (individual-�rm) labor market power implies that col-

lusive behavior has completely di�erent features:

1. �Collusive� static equilibria: Besides a zero-pro�t equilibrium, �rms can sustain

positive-pro�ts equilibria, with ine�ciently low production and employment levels,

even absent repeated interactions (i.e., if δ = 0).

2. �Smooth� collusion: The ability to collude � i.e., to raise prices and reduce wages

� increases continuously with the discount factor (before �rms reach the cartel

outcome). Moreover, the critical discount factor to sustain the cartel outcome is

lower than in the absence of individual-�rm labor market power.

3. Multimarket collusion: The most pro�table SPNE cannot be implemented by only

colluding on a price level p, leaving each �rm i free to choose its static-pro�t-

maximizing wage o�er to produce qi = Q(p)/n: Firms �nd it optimal to also

coordinate their behavior in the labor market � i.e., to suppress their wage o�ers

below W ∗(p) in order to reduce the industry production costs (formally, WM(δ) <

W ∗(PM(δ)) for all δ > 0: see Section 4.1).

4 Policy implications

Section 3 has shown that colluding �rms are able to set supra-competitive prices and sub-

competitive wage levels, harming consumers and workers alike. To prevent this possibility,

antitrust authorities must monitor collusive behavior. Their monitoring activities may

target preventing collusion in the labor market, the product market, or both, as examined

in Section 4.1. When collusive behavior is hard to monitor � e.g., �rms are able to

31Even if �rms sell di�erentiated products, in the presence of labor market power a deviating �rm's
average cost would increase when it lowers its price and expands its production, which ceteris paribus
facilitates collusion.

32As shown in Section 4.1 below, this holds irrespective of whether �rms collude only on prices or also on
wages. Yet, product di�erentiation also implies that the static NE features positive pro�ts, which limits
the severity of punishments, at least in a SPNE in grim-trigger strategies (as considered in Ross, 1992),
thereby destabilizing collusion. This e�ect is absent in this model: When �rm di�erentiation, which
facilitates collusion by dampening defection pro�ts, comes from the labor market, severe punishments
are ensured in the presence of product homogeneity.
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tacitly collude, without leaving hard evidence to the competition watchdog � competition

authorities or regulators can nonetheless employ several policy measures, in labor and/or

product markets, to make collusion harder to sustain, as examined in Section 4.2.

4.1 Monitoring of collusion

In practice, monitoring of collusive behavior takes place through the detection of price-

and wage-�xing agreements. Suppose that collusion in any market leaves hard evidence,

and the antitrust authority can commit to a monitoring policy and levy hefty �nes on

�rms caught colluding (as in Motta and Polo, 2003, and Choi and Gerlach, 2013, among

many others). Then, if the antitrust authority monitors collusion in both labor and

product markets, the best �rms can do is play the most pro�table static NE (pN , wN)

over time (the results of this section are unchanged if �rms play any other static NE).

If, on the contrary, collusive behavior is left unmonitored, �rms reach the multimarket

collusion outcome characterized in Proposition 3. However, the antitrust authority, when

constrained by limited budget, can monitor collusion only in either the labor market or

the product market. This section �rst characterizes the most pro�table SPNE in these

scenarios and then derives implications of the antitrust authority's monitoring policies.

Preliminaries. Consider a candidate SPNE outcome (p, w). In the analysis of Section

3.2, any deviation from (p, w) triggers the reversion to the zero-pro�t static NE. This

section characterizes the most pro�table SPNE if only deviations from p (resp., from w)

trigger Nash-reversion � i.e., (p, w) is played at any t if and only if all �rms have set p

(resp., w) for all t′ < t, no matter their choices of w (resp., of p); else, (pN , wN) is played.

In these equilibria, the variable whose choice does not trigger the punishment is set by

each �rm to maximize its static pro�t, resulting in static Nash behavior taking as given

the value of the other variable.

These scenarios arise if collusion in each market requires communication among spe-

cialized middle managers � e.g., �rms' HR directors need to communicate in order to

coordinate on collusive wage levels, given the price set by �rms' pricing managers (i.e.,

to set w < W ∗(p)) � and such communication can be prevented, in either market, by

the competition watchdog. Alternatively, the antitrust authority can only infer whether

the prevailing price (resp., wage) is collusive given the observed labor force (resp., con-

sumer demand) � e.g., because it cannot estimate the labor supply function, it is not

able to ascertain whether w < W ∗(p); in this case, �rms can be sued for collusion only

if the observed price is supra-competitive given the observed �rms' wage and labor force

(p > P ∗(w) in the notation below). Both these microfoundations are detailed in Appendix

B.1.
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Monitoring of wage collusion. If wage collusion is monitored, �rms collude only

on the product price: As described above, given a candidate SPNE price p, along the

equilibrium path each �rm chooses the wage o�ers in order to minimize its production

cost of Q(p)/n anticipating that rivals do the same. This competitive behavior in the

labor market introduces the competitive wage constraint w = W ∗(p) in the collusion

Problem (P).

Denoting by pP ≡ arg maxp π(p,W ∗(p)) the price cartel outcome, which would emerge

if �rms could write down p in a legally binding contract, but could not collude on w, the

following results hold:

Proposition 4 (price collusion). Under price collusion, there exists a threshold δP ∈
(0, δM0 ) such that the most pro�table SPNE is (P P (δ),W P (δ)), withW P (δ) = W ∗(P P (δ)),

and P P (δ) being increasing in δ and such that P P (0) = pN and P P (δ) = pP for all δ ≥ δP .

Moreover,

P P (δ) > PM(δ) and W P (δ) > WM(δ),

for all δ > 0.

This proposition shows two main results. First, even though wage collusion is not in

place (i.e., �rms compete in wages, given the price chosen in a collusive fashion), price

collusion also harms workers. Price coordination allows �rms to raise their prices, which

implies that they face a lower demand, and so �nd it individually optimal to reduce their

wage o�ers and hire fewer workers. Thus, as the discount factor grows, �rms can sustain

SPNE featuring both higher prices and lower wages, even if they can coordinate only on

their pricing behavior.

Second, the monitoring of wage collusion only is bene�cial to workers (W P (δ) >

WM(δ)) but harmful to consumers (P P (δ) > PM(δ)). Intuitively, the optimality condi-

tion (10) entails that, under multimarket collusion, �rms exploit their ability to collude

(for a given value of δ) to induce a collusive allocation in both labor and product mar-

kets: In particular, WM(δ) < W ∗(PM(δ)) for all δ > 0. The higher wage levels prevailing

because of competitive behavior in the labor market make it e�cient to produce less and

more expensive for a �rm contemplating a deviation to recruit more workers to expand

its production, rendering higher prices incentive-compatible.

Monitoring of price collusion. If price collusion is monitored, �rms collude only on

their wage o�ers: As explained above, given a candidate SPNE wage w, along the equi-

librium path all �rms have labor force L(w,w) and compete in prices. The most prof-

itable SPNE in this class solves Problem (P) subject to the competitive price constraint

p ≤ P ∗(w), where P ∗(w) is the highest price that prevents a �rm from undercutting

holding �xed the wage level w, obtained by equating the revenue from capturing rivals'
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demand and the cost of the extra endowment of capital needed to satisfy the additional

demand given that the labor force is �xed at L(w,w):

n− 1

n
pQ(p) = r

[
K(L(w,w), Q(p))−K

(
L(w,w),

Q(p)

n

)]
. (11)

Denoting by wW ≡ arg maxw π(P ∗(w), w) the wage cartel outcome, which would

emerge if �rms could write down w in a legally binding contract but could not collude on

p, the following results hold:

Proposition 5 (wage collusion). Under wage collusion, there exists a threshold δW ∈
(0, δM0 ) such that the most pro�table SPNE is (PW (δ),WW (δ)), with WW and PW ≤
P ∗(WW ) being decreasing and increasing in δ, respectively, and such that (PW (0) =

pN < P ∗(wN),WW (0) = wN) and (PW (δ) = P ∗(wW ),WW (δ) = wW ) for all δ ≥ δW .

Moreover, for all δ > 0,

PW (δ) ≤ PM(δ) and WW (δ) ≤ WM(δ),

with strict inequalities whenever the competitive price constraint binds (p = P ∗(w)).

By colluding in the labor market, �rms can sustain higher prices in the supergame,

relative to the highest static NE price pN , even absent price collusion. By coordinating

to lower their wage o�ers, they end up hiring fewer workers; a lower labor force, in turn,

makes individually rational to produce less � i.e., to set higher prices (indeed, P ∗(w) is

decreasing in w). Wage collusion is thus harmful not only to workers, but to consumers

as well.

However, as the competitive price constraint is violated at the multimarket cartel

outcome � i.e., pM > P ∗(wM) � for su�ciently large values of δ, the monitoring of

price collusion prevents �rms from achieving the pro�ts they make under multimarket

collusion.33 For these values of δ, when they cannot collude on prices, �rms ine�ciently

exploit all their ability to collude to suppress wages, implying that the monitoring of

price collusion only is harmful to workers (WW (δ) < WM(δ)) but bene�cial to consumers

(PW (δ) < PM(δ)). In particular, competitive price behavior depresses the marginal

revenue product of labor and entails a more signi�cant increase in demand for a deviating

�rm undercutting the candidate equilibrium price exacerbating the diseconomies of scale

e�ect, thereby making lower wages both more e�cient and incentive-compatible.

33Wage collusion instead su�ces to implement the multimarket collusion outcome for relatively small
values of δ. As in the static game �rms would be indi�erent between undercutting or not the price P ∗(w)
when holding �xed their wage o�ers at w, they have strict static incentives to undercut P ∗(w) given that
they can indeed also increase their o�ers � i.e., πD(P ∗(w), w) > π(P ∗(w), w) for all w. By a continuity
argument, so long as δ is su�ciently small, for any given w the price P ∗(w) is too large to be sustainable
as a SPNE outcome under multimarket collusion. Then, the competitive price constraint does not bind,
so (unlike price collusion) wage collusion can achieve the multimarket collusion outcome. This result is,
however, speci�c to perfect Bertrand competition in the product market.
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Remark (Multimarket-contact e�ect). To conclude the analysis, it is interesting to notice

that, unlike in the multimarket contact model with independent markets (Bernheim and

Whinston, 1990), the multimarket cartel outcome (pM , wM) might be sustainable at a

lower critical discount factor relative to both cartel outcomes in each single market under

competitive behavior in the other market � i.e., it might be that34

δM < min{δP , δW}.

The reason is that competitive behavior in one market does not eliminate the gains

from a deviation in that market once a �rm deviates in the other one: w = W ∗(p) is a

competitive wage level for �xed p (i.e., to produce qi = Q(p)/n), but a deviating �rm

who undercuts p has also incentives to raise its wage; similarly as for the price level

p = P ∗(w). For the reasons discussed above, a price (resp., wage) cartel ine�ciently

pushes the price up (resp., the wage down) relative to a multimarket cartel, which may

enhance the pro�tability of such a joint deviation.35

Implications. Suppose that the antitrust authority adopts a consumer-surplus stan-

dard, in line with its current narrow mandate in many countries. Then, the foregoing

analysis has the following immediate policy implications on the monitoring of collusion:

Corollary 2 (monitoring of collusion). For all δ > 0, P P (δ) > PM(δ) ≥ PW (δ) > pN ,

implying that consumers:

� bene�t from the monitoring of both price and wage collusion;

� bene�t from the monitoring of wage collusion if and only if price collusion is also

monitored;

� always bene�t from the monitoring of price collusion, and more so when also wage

collusion is monitored.

Labor market power makes collusion easier to sustain, which increases the need to

monitor collusive behavior. Moreover, if only price collusion is monitored, �rms have the

incentives and ability to collude to depress wages, which also causes consumer harm by

making higher prices individually rational. Consumer protection thus requires antitrust

34This is a theoretical possibility in light of the results of Proposition 4 and 5. The possibility result
can be established by simulating the model using a Cobb-Douglas production function, an isoelastic
product demand, and a logit labor supply function (Matlab code is available upon request). In the case
of independent product markets considered by Bernheim and Whinston (1990), instead, in order for the
cartel outcome to be sustainable in both markets under multimarket contact, it needs to be sustainable
in at least one of the two markets (no matter the behavior in the other market) absent multimarket
contact.

35Similar to the previous literature on multimarket contact (Matsushima, 2001), labor market power
can have further procollusive e�ects by allowing �rms to detect better deviations in settings with demand
shocks and imperfect monitoring à la Green and Porter (1984). See Appendix B.2 for a discussion.
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authorities to monitor also wage collusion actively.36 Yet, shifting all their attention and

budget towards monitoring wage collusion would not align with their statutory objective:

Under pure price collusion, consumers are even worse o� than under no monitoring at all

of collusive behavior. For these reasons, the welfare stakes for consumer-surplus-oriented

authorities deciding whether to monitor price collusion are higher when wage collusion is

monitored.

Overall, these results point to a complementarity in the monitoring of collusive be-

havior in labor and product markets. Granting antitrust authorities a broad mandate

� speci�cally, including worker protection in their objectives � is unnecessary to drive

their e�orts against wage collusion,37 as long as they are su�ciently resourced to address

collusion in both labor and product markets.

4.2 Restraining collusion

Suppose now that antitrust authorities are unable to monitor collusive behavior. Firms'

ability to set supra-competitive prices and sub-competitive wages can be constrained by

competition or regulatory measures in labor and product markets.

Minimum wage regulation. One of the most important policies, especially in low-

skilled labor markets, is minimum wage regulation, which constrains colluding �rms'

possibility of suppressing wages.

Proposition 6 (minimum wage regulation). For every δ ∈ (0, δM) there exists ε > 0

such that a minimum wage w ∈ (WM(δ),WM(δ) + ε) imposed by regulation raises both

employment and price levels.

The e�ects of minimum wage regulation crucially depend not only on whether labor

markets are perfectly competitive or oligopsonistic, as recognized by a long-standing

literature (see, e.g., Belman and Wolfson, 2014, for a comprehensive survey) but also on

�rms' competitive conduct. If labor markets are perfectly competitive, any minimum

wage regulation raising the wage above the competitive level w0 implies that �rms �nd it

optimal to hire fewer workers, which, no matter whether they compete or collude in the

product market, leads to higher prices. Conversely, in the presence of labor market power,

�rms would ration workers only if the minimum wage is much larger than the wage level

prevailing in equilibrium. A locally binding minimum wage instead raises employment

levels: Firms no longer have incentives to hire fewer workers in order to be able to pay

lower wages when these are set by regulation. This employment-enhancing e�ect, in turn,

36Similar arguments justify the per se illegality antitrust status of wage cartels even based on a pure
consumer surplus standard. Indeed, in the presence of a wage cartel, �rms colluding on prices would
be able to sustain equilibria with higher prices and lower wages relative to the multimarket collusion
outcomes characterized in Proposition 3 for all δ < δM (see Appendix B.2).

37A broad mandate may indeed have unintended consequences, as discussed in Tirole (2023).
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makes it optimal to expand production, resulting in lower consumer prices. Once again,

this is true in equilibrium under competitive behavior (e.g., Tong and Ornaghi, 2021) and

in the cartel outcome (or, under collusion, for δ ≥ δM).

The novel implication of this model is that, if �rms engage in collusive behavior, but

their ability to collude is constrained by incentive-compatibility (i.e., δ ∈ (0, δM)), the

introduction of a (locally) binding minimum wage, or a (local) increase thereof, implies

that �rms, being unable to depress wages as much as they would like to, exploit their

ability to collude in the product market. That is, �rms o�er to all workers the minimum

wage to comply with regulation (as above, rationing of workers is not optimal if the mini-

mum wage is only slightly higher than the equilibrium wage in the absence of regulation),

but they are able to sustain higher prices.

Minimum wage regulation can thus have the same e�ects as monitoring wage collusion

only: it can back�re on consumer surplus if antitrust authorities are not able to monitor

collusive behavior in product markets. Labor market power and collusive behavior thus

jointly rationalize the evidence in several studies since Card and Krueger (1994) that

increases in the minimum wage can raise both employment and prices. Such �rms'

reactions are thus suggestive of collusive conduct.

Regulation of unions and collective bargaining. In the considered model, labor

market power derives from workers' heterogeneous preferences for working at di�erent

�rms. In reality, however, the extent of �rms' labor market power � to be intended as

their ability to mark down the competitive wage w0 even without engaging in collusion �

also depends on workers' bargaining power: In many countries, the prevailing wage levels

are determined through collective bargaining between employers and unions.

Appendix B.2 develops a model where �rms i ∈ N choose employment levels `i and

wages are determined through collective bargaining. Suppose that the distribution Ξ

is such that the market clearing wage, which would prevail if unions have no bargaining

power, would always be below the competitive wage w0, which would prevail if unions have

full bargaining power. The wage prevailing under collective bargaining is the weighted

average of the market clearing wage and the competitive wage, where weights re�ect

unions' bargaining power.38

Weaker unions imply a lower cost to hire any labor force for the �rms, resulting into

lower consumer prices. However, as labor market power facilitates collusion, weakening

unions' bargaining power increases �rms' ability to set collusive prices, which results into

relatively small pass-throughs of the wage mark-downs to consumer prices. As a result,

when collusion is a concern, the trade-o� between consumer and worker surplus calls for

38Formally, abstracting away from employer di�erentiation, the market clearing wage as function of
industrywide labor demand L ≡

∑
i `i, w

∗(L) < w0, is obtained from J [1 − Ξ(w0 − w∗(L))] = L; the
prevailing wage is then W (L) ≡ αw∗(L) + (1 − α)w0, where α ∈ [0, 1] is an inverse measure of trade
unions' bargaining power.

25



the protection of unions' bargaining power: Increasing �rms' labor market power acts as

a facilitating device, implying that �rms retain much of the corresponding gains, and so

workers lose much more than consumers gain.

Open product markets. Policy measures that open up product markets (e.g., free

trade agreements), by exposing �rms within each local market to competition by �rms

producing in di�erent geographic markets, can make it impossible for them to sustain

collusion, ensuring consumer access to competitively priced products. This section argues

that this result does not necessarily hold if, in line with empirical evidence (e.g., Marinescu

and Rathelot, 2018), labor markets remain local.

Consider H distinct geographic markets h ∈ {1, ..., H}, each composed of a labor and

a product market as described so far. Such geographic markets are independent and,

for simplicity but without loss of insights, identical. Within each market, therefore, the

cartel outcome (pM , wM) is as in Proposition 2 for all H. Suppose that �rms in each

local market h can sell their products in any of the H markets: the larger H, the more

globalized the product market;39 still, �rms can only recruit workers from their local

labor market h. The no-rationing assumption still holds within each market, but a �rm

charging a price below the one prevailing in some other markets is free to choose how

many of these markets it wants to serve.

The following proposition describes the impact of the available number of markets H

on the critical discount factor, denoted by δM(H), to sustain the cartel outcome (pM , wM)

within any geographic market.40

Proposition 7 (product market globalization). There exists a (�nite) number of

markets H∗ such that δM(H) is increasing in H if and only if H < H∗ and, for all

H ≥ H∗, δM(H) = δM(H∗) < (nH∗ − 1)/(nH∗).

For δ = 0, at p = pN �rms are indi�erent between undercutting or not when, if they

do so, they have to serve only consumers in their local market. By the diseconomies

of scale e�ect, the opportunity for a deviating �rm to serve also consumers in other

markets is then valueless: As a result, for all H ≥ 1, the most pro�table SPNE features

(pN , wN) in each market. When δ grows larger, however, an increase in H can limit the

extent of collusion: In the SPNE characterized in Proposition 3 (played in all markets),

outputs and wages are relatively low, implying that a deviating �rm may gain strictly

more by also serving consumers in some other markets; accordingly, colluding �rms in

39Indeed, one can equivalently consider an exogenous number H of geographic markets divided into
H/H disjoint free trade areas, so that each �rm can sell its products in up to H markets: H = 1
corresponds to the case of local product markets analyzed so far, H = H corresponds instead to a single
market.

40There is no need of cross-market collusion to sustain (pM , wM ) within each geographic market � i.e.,
�rms within a market h only need to collude among each other to sustain (pM , wM ) (see Appendix A).
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each market have to set lower prices and higher wages to preserve incentive-compatibility.

As this is especially true at the cartel outcome, it follows that the critical discount factor

to implement (pM , wM) may well be larger when H > 1. Nevertheless, serving more and

more markets requires a deviating �rm to recruit more and more workers, which entails

paying increasingly high wages (this is true even when the dimension J of the local labor

market is su�ciently large � i.e., there are more available workers than a deviating �rm

would want to hire at w0 to serve consumers in all H markets). This implies that a

deviating �rm would not serve consumers in more than H∗ markets.

Therefore, for product market globalization to guarantee a competitive outcome, it

needs to be accompanied by the globalization of labor markets and the absence of labor

market power.As soon as one of these conditions fails, the monitoring of collusion is

needed to protect consumers' and workers' interests. Indeed, the procollusive e�ects of

increased labor market power (Yeh et al., 2022) may outweigh the procompetitive impact

of the increasing globalization of product markets, thereby leading to higher mark-ups,

consistent with the empirical evidence in De Loecker and Eeckhout (2018).

Merger policy. Another traditional policy tool to preserve competition and avoid facil-

itating collusion consists in preventing concentration, by adopting a strict merger policy

that prohibits horizontal mergers (absent substantial e�ciencies). A merged entity, in

fact, has weaker incentives to deviate from a collusive arrangement because of the inter-

nalization of business-stealing externalities across the merged units. This section argues

that, in the presence of labor market power, mergers that increase labor market con-

centration can produce similar anticompetitive e�ects even if the merging parties sell

demand-independent products. These mergers can therefore be labeled as conglomerate

mergers.

Indeed, while the foregoing analysis has considered (strategic) �rms in only one in-

dustry, often workers (especially in low-skilled labor markets) can be employed by �rms

selling di�erent products to consumers within a geographic market. Suppose that the n

�rms considered throughout (with n being even for the sake of the exercise) still recruit

from the same labor market, but now �rms i ∈ {1, ..., n/2} sell product A and the other

�rms i ∈ {n/2 + 1, ..., n} sell product B; product markets z ∈ {A,B} are identical and
independent, with consumer demand qz ≡ Q(pz)/2 in each market, where pz denotes the

(minimum available) price for product z (this normalization ensures that the cartel out-

come remains as in Proposition 2). This section will contrast the scenario in which the n

�rms are independent (single-product �rms) with the one in which the same multiproduct

�rms are active in both product markets � i.e., �rm i, selling product A, merges with

�rm i+n/2, selling product B, for all i ∈ {1, ..., n/2}. In either case, workers' preferences

depend on the features (e.g., the location) of each production plant, irrespective of its

ownership: in both scenarios, workers' labor supply is as above. I again restrict attention
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to the most pro�table stationary symmetric SPNE, where all �rms set price pz ≡ p and

o�er wage wz ≡ w for z = A,B.41

As higher wage o�ers by �rms selling product z entail a negative externality on the la-

bor supply of �rms selling the other product, �rms selling in independent product markets

have incentives to collude together to internalize these cross-market wage-externalities.42

Conglomerate mergers allow to relax incentive-compatibility constraints in this cross-

market collusion problem. This is because, while along any equilibrium path a multi-

product �rm earns the sum of its units' pro�ts, deviation pro�ts are subadditive.

The intuition is as follows. A multiproduct �rm anticipates that any deviation triggers

punishments yielding zero pro�ts in both z = A,B, so it optimally deviates by undercut-

ting p in both product markets. Yet, increasing the wage o�er to recruit more workers

for its production unit in market A imposes a negative externality on its subsidiary in

market B, as it makes it increasingly costly to expand the labor force hired for produc-

tion in market B. As a result, multiproduct �rms cannot obtain the same per-market

deviation pro�t of a single-product �rm, and so have weaker incentives to deviate from

any candidate SPNE (p, w), and in particular from the cartel outcome:

Proposition 8 (conglomerate mergers). Compared to the scenario with distinct single-

product �rms in each product market z = A,B, the critical discount factor to sustain the

cartel outcome is strictly lower when the same �rms operate in both markets.

The result that conglomerate mergers, by inducing multimarket contact, can lead to

more collusive outcomes dates back to Bernheim and Whinston (1990). However, in their

setting with perfectly competitive input markets, pooling incentive constraints across

independent product markets (i) has an e�ect only if markets are asymmetric along some

speci�c dimensions, and (ii) cannot yield a strictly higher price in all markets. In contrast,

the anticompetitive multimarket-contact e�ects of conglomerate mergers are much more

robust in the presence of labor market power, given that, even absent asymmetries, they

simultaneously lead to higher prices in all markets and, on top of this, also entail lower

wages.43 Both e�ects have been found in the data: Ciliberto and Williams (2014) have

shown that, in the airline industry, carriers with a signi�cant amount of multimarket

contact can sustain near-perfect cooperation in setting fares; Arnold (2019) has found that

41Once again, such equilibrium is in grim-trigger strategies, as the results of Corollary 1 hold in each
product market z, for any w−z o�ered by �rms in the other market � i.e., perfect within-market Bertrand
competition ensures the existence of a zero-pro�t continuation equilibrium following a deviation in either
market.

42Under such cross-market collusion, �rms may be bound, for incentive-compatibility reasons, to reduce
consumer prices, relative to the case of within-market collusion, where �rms selling each product z only
collude among each other correctly anticipating the wage o�er by �rms in the other product market
(see Appendix B.3 for the details). By contrast, the internalization of wage-externalities implies that
cross-market collusion unambiguously results in lower wages.

43The subadditivity of deviation pro�ts, which drives the results, generalizes to an arbitrary number of
product markets and applies also to asymmetric SPNE outcomes (pz, wz)z=A,B , which shall be considered
if product markets are asymmetric.
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mergers that result in signi�cant increases in local labor market concentration produce

a decline in wages and these e�ects are not driven by changes in product market power

(see also Prager and Schmitt, 2021, and Berger et al., 2023).

5 Employment contracts and facilitating devices

The foregoing analysis has considered, for simplicity, a spot labor market. In reality, how-

ever, workers typically sign long-term employment contracts, which can be subject to hor-

izontal and vertical restraints, such as no-poaching and non-compete agreements, and a

body of regulations constraining �rms' wage-setting behavior, including pay-transparency

and pay-equity provisions. This section explores how these labor-market-speci�c features

a�ect the sustainability of collusion. The results on labor market collusion do not rely on

the assumption that oligopsonists also interact in the same product market (see Appendix

B.4). However, the analysis is conducted within the oligopoly-oligopsony setting to also

provide insights into price collusion applicable in this scenario.

Set-up. Consider an overlapping generation model with cohorts of myopic T -period

lived workers.44 Each generation is composed of a measure J of workers j as de�ned

in Section 2 with ξi,j ∼i.i.d. Ξ(·) being time-invariant (persistent type). Consistent with

real-world practices, �rms o�er long-term stationary contracts, specifying a per-period

salary with the possibility of Pareto-improving renegotiation and workers' option to quit

at any future period (one-sided commitment).45 To simplify the analysis, suppose that

if a worker is not employed in the considered industry at age τ = 1, ..., T , it cannot be

hired in future periods, i.e., at any age τ ′ > τ � e.g., it leaves the considered industry or

local labor market and enjoys a per-period outside option w0.46

Therefore, at each period t, workers who were aged τ = T in t − 1 retire, and �rms,

simultaneously, (i) make o�ers to newcomers (τ = 1); (ii) possibly renegotiate wages

with their incumbent employees (i.e., previously hired workers of age τ = 2, ..., T ) and

make o�ers to rivals' incumbent employees (if allowed: see below); and (iii) set their

products' price. Then, all workers in the market observe their available o�ers and choose

which �rm to work in (if any), and consumers make their purchase decisions. A �rm i

then needs to employ variable capital ki = K(
∑

τ `τ,i, qi) to satisfy consumers' realized

44The results are qualitatively unchanged if workers are farsighted and discount future payo�s at the
common rate δ (see Appendix A for the details). To keep the model stationary, I assume that the �rst
T generations of workers are simultaneously available at the initial time t = 0.

45Permanent employment contracts specify the current salary, which normally can only be increased in
the future, as downward nominal wage rigidity is prevalent (Lebow et al., 2003). Nevertheless, employees
can decide to leave the �rm at any time. Whether �rms can �re workers hired in period t in future periods
(t+ 1, ...) is immaterial to the results.

46Together with long-term contracts, this assumption rules out ratchet e�ects deriving from employers
learning workers' types ξi,j over time through their contract acceptance decisions.
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demand, qi in Eqn. (1), given the measure `τ,i of workers of each age at its disposal,

which depends on contract o�ers.

In particular, newcomers' labor supply, if i's rivals all o�er them the same wage w1,

is still given by `1,i = L(w1,i, w1), the function L(·) being de�ned in Lemma 1. The

allocation of the available workers
∑

i `1,i of age τ = 2, ..., T across �rms again depends

on currently available wage o�ers in a static fashion � i.e., worker j chooses at each age

τ to work for the �rm i providing the highest overall utility wi,j + ξi,j in that period.

5.1 No-poaching agreements

A no-poaching agreement (hereafter, NPA) among any subset of �rms prevents the signa-

tories from hiring each others' incumbent workers: If �rm i has signed a NPA in period t,

it cannot propose any o�er to workers who have worked for the other signatories in period

t−1.47 If allowed by competition authorities, these agreements are legally binding: Even

if a �rm deviates from a collusive outcome path, it cannot violate the NPA (e.g., the

agreement would be enforced in court, or hefty �nes are levied on the violating �rm). At

each period of the game, each �rm decides whether to join the NPA (that rules for one

period) before labor- and product-market decisions are made as described above, with

the no-poaching constraint for the signatories.

Analysis. Along any stationary equilibrium path, where all employed workers obtain

the same wage w and �rms set the same price p over time, even in the absence of NPAs,

�rms do not make poaching o�ers and only replace retirees with newcomers hired at the

same wage w. Indeed, so long as a �rm wants to hold the same labor force over time,

poaching rivals' incumbent workers would not be optimal, as it would require paying

them a higher wage than the equilibrium level w at which it can recruit newcomers to

replace all its retirees (given that, by revealed preference, rivals' incumbent workers prefer

working for their current employer at the equilibrium wage). Thus, the fact that �rms do

not poach each others' workers per se tells little about whether or not their behavior is

collusive. However, this does not mean that a ban on NPAs is inconsequential, because

the presence of binding NPAs a�ects the defection pro�t that can be captured by a �rm

deviating from a candidate stationary equilibrium path, as argued below.

Suppose, �rst, that NPAs are not in place (e.g., they are banned by competition

authorities). Then, starting from any candidate most pro�table SPNE (p, w), the highest

one-shot deviation pro�t for a �rm i is obtained by slightly undercutting the candidate

equilibrium price p and making wage o�ers that minimize the production cost of Q(p):

47In order for NPAs to have a bite, there must be some incumbent workers in the market, so that the
following analysis, formally speaking, applies for t ≥ 1.
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formally,

min
{wτ,i}

∑
τ=2,...,T

[
wL(w,w) + wτ,i ˜̀τ,i(wτ,i, w)

]
+ w1,iL(w1,i, w) + r K(·), (12)

as the labor force of a deviating �rm i consists of (i) its incumbent workers L(w,w),

whom it keeps at the candidate equilibrium wage w, (ii) poached rivals' workers ˜̀
τ,i,

i.e. their incumbent workers that i can hire by o�ering wτ,i > w,48 and (iii) newcomers,

whose labor supply is L(w1,i, w). Then, for any collusive level of wages (i.e., w < W ∗(p),

this function being de�ned following the same steps as in Lemma 3), the deviating �rm

�nds it optimal to set wτ,i > w for all τ = 1, ..., T . The option to make poaching o�ers to

rivals' incumbent workers is thus valuable from a deviating �rm's standpoint. The reason

is that the wage o�er needed to expand its labor force to any given level is lower when

it can be o�ered to a larger pool of workers, which is the case when a deviating �rm has

the chance of poaching rivals' workers.

Following any deviation, �rms revert to a continuation equilibrium where they set

prices competitively and the deviating �rm makes zero pro�ts; this constitutes an optimal

punishment and implies that the best deviation is indeed the one, characterized above,

that maximizes pro�ts in the period of defection.

If, instead, NPAs are allowed, a stationary equilibrium where on-path all �rms sign

these agreements at any period always exists. If one or more �rms deviate and do not

sign the NPA, this deviation is detected before �rms make wage o�ers and set their

prices, so they immediately revert to a zero-pro�t continuation equilibrium.49 Therefore,

a deviation can be pro�table only in the wage- and price-setting stage after signing the

NPA. Then, by the arguments above, the impossibility of poaching rivals' workers strictly

reduces the pro�ts that a deviating �rm can obtain in the deviation period; following

any deviation, a continuation equilibrium where no NPAs are signed anymore and the

deviating �rm makes zero pro�ts is played.50

48Formally, ˜̀
τ,i(wτ,i, w) ≡ (n − 1)L(w,w) Pr

[
wτ,i + ξi ≥ w + maxi′∈N\{i} ξi′

∣∣ξi < maxi′∈N\{i} ξi′
]
.

As these workers are identical from i's viewpoint, by the same arguments as in Lemma 1, o�ering them
a uniform wage is optimal. In this model, as a deviating �rm deprives its rivals of all consumers and
workers are contestable in future periods, these �rms would have no incentives to make their workers a
countero�er to the poaching o�er.

49A deviating �rm would derive no advantage from the possibility of making poaching o�ers if rivals
can renegotiate their incumbent employees' wages, given that these workers always prefer remaining
where they are if their current employer matches the poaching o�er; moreover, the signatories could try
to poach the deviating �rm's workers, inducing it to increase the remuneration to its incumbent workers.
Firms thus remain symmetric in the continuation game, so a zero-pro�t continuation equilibrium always
exists.

50Starting from a candidate equilibrium where each �rm expects others not to sign the NPA, unilater-
ally signing it is inconsequential; then, all workers hired by the deviating �rm can be poached away by its
rivals in the future, exactly as in the game without NPAs, so that a zero-pro�t continuation equilibrium
still exists.
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Results and implications. By the above analysis, the possibility of signing a binding

NPA weakens defection incentives, allowing �rms to sustain more collusive arrangements

� i.e., the most pro�table SPNE features �rms signing binding NPAs, and setting lower

wages and higher prices relative to the scenario where these agreements are banned by

competition authorities:

Proposition 9 (no-poaching agreements). Banning NPAs increases the critical dis-

count factor to sustain the cartel outcome and leads to strictly higher wages and lower

prices for all lower values of δ.

This model provides an anticompetitive rationale for the use of NPAs in low-skilled

labor markets, where relation-speci�c investments are not a concern and workers are

easily replaceable: These agreements can be employed as facilitating practices � i.e., are

instrumental to (wage and, eventually, price) collusion. A ban on NPAs, by tightening

incentive-compatibility constraints, thus leads to higher wages and, if employers also

interact in the same product market, lower prices. Therefore, the per se illegality status of

naked NPAs in the US legislation, and their similar consideration as by object restrictions

of competition in the EU, is consistent with both worker and consumer protection.

The above analysis also rationalizes the recent empirical evidence on franchise NPAs

and a ban thereof. Commentators have observed that a series of vertical NPAs between

a franchisor and multiple franchisees eliminates competition among the latter as e�ec-

tively as horizontal agreements among themselves orchestrated by the franchisor.51 Even

if competing �rms in the industry are franchisees of di�erent franchisors, all of them

imposing franchise NPAs would facilitate intra- and inter-brand collusion (though to a

lesser extent than an industrywide NPA) by reducing the pool of available workers that

any deviating franchisee can attract. Krueger and Ashenfelter (2022) have documented

that, until recently, over half of all franchise agreements in the US, at companies including

fast-food restaurants and consumer staples (actually, more than in industries with higher

average wages and education levels), included provisions barring franchisees from hiring

one another's workers. Then, because of the legal cases and proposed legislation, many

chains have removed such clauses from their contracts, which, as shown by Lafontaine et

al. (2023) using data from the chain restaurant industry, has led to higher wages.

5.2 Related facilitating devices

Non-compete agreements. A non-compete agreement (hereafter, NCA) between a

�rm and any of its employees prohibits the latter from working for rival �rms in the

following period. Formally, when negotiating with a newcomer (τ = 1), a �rm i can

include a one-period NCA in its o�er at an additional remuneration ω1,i, on top of the

51See, e.g., https://www.concurrences.com/en/bulletin/special-issues/

no-poach-agreements/.
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per-period wage w1,i; in this case, if the worker accepts the o�er, it commits not to work

for a rival �rm i′ ∈ N \ i at age τ = 2. In the following period, a �rm can renegotiate

the wage (i.e., eventually o�er w2,i > w1,i) and eventually propose a remuneration ω2,i to

sign another one-period NCA, and so on.

As, along any stationary equilibrium path, workers never expect to receive any at-

tractive poaching o�er from other �rms, NCAs are signed for free (i.e., ωτ,i = 0 for all

τ and i) even by farsighted workers. In an equilibrium where all workers sign NCAs, a

�rm contemplating a deviation is de facto unable to make o�ers to all rivals' incumbent

workers, precisely as in the presence of an industrywide NPA. However, NCAs may not

be a perfect substitute for NPAs. The reason is that a deviating �rm o�ering NCAs

obtains a larger pool of non-contestable workers, which may make it harder for rivals to

punish its deviation. Unless this e�ect dominates, banning NCAs results in less collusive

outcomes.

Corollary 3 (non-compete agreements). Banning NCAs may increase the critical

discount factor to sustain the cartel outcome and lead to higher wages and lower prices

for all lower values of δ.

This result is a possible theoretical explanation for empirical evidence that, similar to

NPAs, NCAs cover a signi�cant fraction of less-educated and low-wage workers (Starr et

al., 2021), and their ban for these workers resulted in an increase in wages (Lipsitz and

Starr, 2022).

Pay-transparency and pay-equity regulations. Pay-equity rules, such as the US

Equal Pay Act of 1963, are based on the principle �equal pay for equal work�; pay-

transparency regulations, making workers aware of eventual discrimination, are instru-

mental to their enforcement.

In this model, all employed workers receive equal compensation along any stationary

equilibrium path; yet, when a �rm deviates, it optimally o�ers a higher wage to newcom-

ers (and, absent NPAs or NCAs, to rivals' incumbent workers) without correspondingly

increasing the wage of its incumbent workers (as these receive no poaching o�ers in the

deviation period). Pay-equity regulations would instead force the deviating �rm to do

so, reducing its deviation incentives:52

Corollary 4 (pay-equity regulations). Pay-equity regulations forbidding �rms from

wage-discriminate among their employees reduce the critical discount factor to sustain

52Unlike the possibility of signing NCAs, pay-equity regulations cannot help a deviating �rm to obtain
a positive pro�t in the punishment phase: Together with downward nominal wage rigidity, pay-equity
regulations imply that the deviating �rm needs to pay an even (weakly) higher wage in the subsequent
periods, which disadvantages it vis-à-vis its rivals. Thus, similar to NPAs, pay-equity regulations only
add a binding constraint to the (one-shot) deviation pro�t-maximization problem.
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the cartel outcome and lead to strictly lower wages and higher prices for all lower values

of δ.

The facilitation of employer collusion, coming as an unintended consequence of pay-

transparency and pay-equity regulations, may be an explanation for the empirical evi-

dence showing that, on top of narrowing coworker wage gaps, these regulations have often

also led to lower average wages (see Cullen, 2024, and references therein).

6 Conclusion

Employer collusion is not a recent phenomenon. The idea that employers have the in-

centives and the ability to collude to depress wages dates back to Adam Smith; recently,

Delabastita and Rubens (2022) have provided historical evidence of wage cartels among

Belgian coal �rms in the 19th century. The fact that �until recently economists assumed

that labor markets are fairly competitive� (Krueger and Posner, 2018) explains why col-

lusive behavior has only been investigated, both theoretically and empirically, in product

markets. However, the recent evidence that �rms enjoy signi�cant labor market power

and a rising number of antitrust cases involving employers' coordinated behavior make it

paramount to understand the economics of collusion in labor markets, guiding antitrust

and regulatory interventions.

Prima facie, one might think that turning upside-down models of collusion in oligopoly

would su�ce for this purpose: The behavior of �rms with labor market power colluding

to depress wages may simply mirror the well-studied one of �rms with product market

power colluding to raise prices. Adopting this simplistic view would be misleading, as

it overlooks two key aspects. First, �rms often interact in the same labor and product

markets, and have market power in both. Therefore, it would be erroneous to view

labor market and product market collusion as separate phenomena that do not interact:

Understanding labor market collusion requires building a theory of multimarket contact

in vertically related markets. Second, the labor market has distinctive features absent in

product markets. In particular, complex long-term employment contracts, whose terms

are partly subject to public regulation, are prevalent, as opposed to simple one-shot

transactions at �rms' posted prices occurring in most product markets. A theory of

employer collusion must therefore unveil what contractual clauses can constitute labor-

market-speci�c facilitating practices and how regulation of employment contracts can

a�ect the scope for collusion.

This paper has developed a theory of collusion in the presence of labor market power

that encompasses both these aspects. It has shown that the impact of oligopsony power

on collusive behavior is twofold. First, labor market power increases the scope for col-

lusion, in several respects: (i) Firms can sustain the cartel outcome at a lower critical

34



discount factor than in the absence of individual-�rm labor market power; (ii) when �rms

operating in independent product markets hire from the same labor market, oligopsony

power fosters broader cross-market collusion, and conglomerate mergers can produce an-

ticompetitive multimarket-contact e�ects; (iii) �rms can employ labor-market-speci�c

horizontal or vertical restraints, such as no-poaching and non-compete agreements, as

facilitating practices. Second, labor market power makes collusion a multimarket phe-

nomenon: Firms have incentives to cooperate in both labor and product markets; when

colluding in one market is unfeasible (e.g., because of monitoring of collusive behavior by

antitrust authorities), cooperation in the other market strengthens.

Since collusion harms workers and consumers alike, antitrust authorities' e�orts to

monitor also labor market collusion align with consumer protection � i.e., with a narrow

statutory objective, as opposed to a broad mandate including worker protection. E�ec-

tive monitoring of collusive behavior in labor and product markets is indispensable in

safeguarding consumers' and workers' interests because, in the presence of labor mar-

ket power, standard policy measures to promote product market competitiveness (e.g.,

free trade agreements) have limited e�ects on �rms' ability to collude, and labor market

regulations (e.g., pay-equity provisions) can have unintended procollusive implications.

Finally, some implications of this theory can help infer the presence of collusive behav-

ior from observable wage and price data, which can guide antitrust authorities' monitoring

actions. Speci�cally, (i) a simultaneous increase in employment and price levels following

a rise in the minimum wage, (ii) higher average wages and prices following a ban on

no-poaching or non-compete agreements, and (iii) a low pass-through to consumer prices

of wage mark-downs due to an increase in �rms' labor market power (determined by, e.g.,

the weakening of trade unions' bargaining power), are all indicative of collusive behavior.

Existing evidence often aligns with these predictions; this paper will hopefully encourage

further investigations.
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Appendix A: Proofs

Technical assumptions. To guarantee �rm viability, assume �rms sell a positive

quantity when pricing at the optimized average cost. This assumption always holds

if Q(c0) > 0, with c0 de�ned in Eqn. (3), and ξ ≥ 0.

Moreover, I assume that all pro�t functions considered in the maximization problems

are globally concave and admit an interior maximum point, which is therefore obtained

from the �rst-order condition(s). Su�cient conditions for these properties are given by

Q(p)→ 0 as p→∞, Q′′(p) ≤ 0, and ∂2L(·)/∂w2
i , ∂

2L(·)/(∂wi∂w), ∂2L(·)/∂w2 ≤ 0.

Finally, using the notation in Section 3, Assumption (A) can be written as

Q(pM)

|Q′(pM)|
≥ r

∫ nL(wM ,wM )

L(wM ,wM )

∣∣∣∣∂2K(˜̀, Q(pM))

∂`∂q

∣∣∣∣ d˜̀.

Proof of Proposition 0. The results easily follow from the arguments given in the

text.

Proof of Lemma 1. For any rivals' o�ers {wi′,j}i′∈N\{i},j∈[0,J ], �x any `i that �rm i

may want to hire (on- or o�-path). Suppose �rm i o�ers the same wage wi to all workers

j ∈ [0, J ]. Then, from Eqn. (2) it follows that wi must be set such that

`i = J E[Pr[wi + ξi ≥ max{w0, max
i′∈N\{i}

wi′ + ξi′}]],

the expectation being taken with respect to the vector {ξi}i∈N and, eventually, as workers

are anonymous, the distribution of rivals' wage o�ers wi′,j.

To show that o�ering a uniform wage is the minimal-cost way to hire `i workers,

suppose by contradiction that �rm i makes two distinct o�ers, wi to a mass J ′ of workers

and wi > wi to the other workers. Then, wi and wi must be such that

`i = J ′ E[Pr[wi+ξi ≥ max{w0, max
i′∈N\{i}

wi′+ξi′}]]+(J−J ′)E[Pr[wi+ξi ≥ max{w0, max
i′∈N\{i}

wi′+ξi′}]],

where, workers being anonymous, the distribution of rivals' o�ers is the same across the

two groups of workers. As, for all ξi and wi′ ,

Pr[wi + ξi ≥ max{w0, max
i′∈N\{i}

wi′ + ξi′}] < Pr[wi + ξi ≥ max{w0, max
i′∈N\{i}

wi′ + ξi′}],

the deviation increases the average wage paid to the recruited workers. This argument

generalizes to an arbitrary number of di�erent o�ers. As choosing wi,j = −∞ is equivalent

not to approach worker j, this su�ces to show that o�ering uniform wages is a dominant

strategy in the static game.
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Then, each �rm's labor supply function is obtained from Eqn. (2) for wi,j ≡ wi for

all i. As all ξi,j are drawn from the same distribution Ξ, which is assumed smooth, �rms'

labor supply is symmetric and almost everywhere di�erentiable. Then, inspection of Eqn.

(2) immediately implies that, in a situation where all i's rivals o�er the same wage w to

all workers, i's labor supply, denoted by L(wi, w), is increasing in wi and decreasing in

w. Finally, for wi = w, aggregate labor supply writes as∑
i∈N

L(w,w) = J Pr[w + max
i∈N

ξi ≥ w0],

which is clearly increasing in w.

Proof of Lemma 2. Given the wage w o�ered (to all workers) by all its rivals, �rm i's

cost-minimization problem for any given quantity q to produce can be written as

min
`i,ki

W (`i, w)`i + r ki

s.t. q = F (`i, ki),

where

W (`i, w) ≡ L−1,wi(wi, w),

is �rm i's residual (inverse) labor supply, with L−1,wi(·) being the inverse of the labor

supply function L(·) with respect to wi. As L(·) is strictly increasing in wi, this inverse

function is well de�ned and is increasing in `i. Then, by the steps in Gelles and Mitchell

(1996), given that F (·) is CRS, at the optimum, the elasticity of the average cost C(q;w),

de�ned in Eqn. (5), with respect to q equals

1

qC(·)
`2
i

∂Wi(·)
∂`i

> 0,

which implies that the optimized average cost is an increasing function of q.

Proof of Lemma 3. For any candidate symmetric equilibrium price p and wage w

o�ered by rivals, each �rm i expects to sell qi = Q(p)/n and chooses wi solving

min
wi

wiL(wi, w) + r K

(
L(wi, w),

Q(p)

n

)
.

Taking the �rst-order condition yields

L(wi, w) +

[
wi + r

∂K(L(wi, w), Q(p)/n)

∂`

]
∂L(wi, w)

∂wi
= 0. (13)
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Any symmetric equilibrium is then obtained from Eqn. (13) imposing symmetry �

i.e., wi = w. At w → −∞, its left-hand side is negative, as L(−∞,−∞) = 0 and the term

in square brackets is strictly negative and is multiplied by ∂L(·)/∂wi > 0. Conversely,

for w → +∞, this left-hand side is clearly positive.

Therefore, the wage-o�er game (given p) admits a unique symmetric equilibrium wi =

W ∗(p) for all i ∈ N if the derivative of the left-hand side of Eqn. (13) for wi = w with

respect to w is positive. This boils down to the following condition:

∂L(·)
∂wi

+

[
1 + r

∂L(·)
∂wi

∂2K(·)
∂`2

](
∂L(·)
∂wi

+
∂L(·)
∂w

)
− L(·)

∂L(·)
∂wi

(
∂L2(·)
∂w2

i

+
∂L2(·)
∂wi∂w

)
> 0,

which, as [∂L(·)/∂wi+∂L(·)/∂w]|wi=w > 0, always holds for ∂L2(·)/∂w2
i+∂L

2(·)/(∂wi∂w) ≤
0.

Finally, the derivative of the left-hand side of Eqn. (13) with respect to p equals

r
∂L(·)
∂wi︸ ︷︷ ︸

+

∂2K(·)
∂`∂q︸ ︷︷ ︸
−

Q′(·)
n︸ ︷︷ ︸
−

> 0,

which, by the Implicit Function Theorem and the second-order condition of �rms' cost-

minimization problem, shows that W ∗(p) is decreasing in p.

Proof of Proposition 1. As π(0) < 0 < π(pP ),53 and, by concavity, π(p) is strictly

increasing in p for all p < pP , there exists a price level pN ∈ (0, pP ) such that π(pN) = 0.

As �rms can always overcut any candidate equilibrium price and make zero pro�ts, any

candidate equilibrium price is such that p ≥ pN . Then, for all p ≤ pP , the best deviation

for a �rm always consists in slightly undercutting the price, yielding the deviation pro�t

πD(p) in Eqn. (7).

The results of Lemma 2, which apply here as �rms are best-responding to rivals' wages

both on- and o�-path, imply that holding �xed rivals' wage o�ers at W ∗(p), each �rm

faces a convex cost function. Then, by the same steps as in Dastidar (1995), it follows

that the di�erence πD(p)− π(p) is negative at p = pN and is increasing in p, and so that

there is a price pN ∈ (pN , pP ] such that π(p) ≥ πD(p) for all p ≤ pN . Hence, all prices

p ∈ [pN , pN ], with corresponding wage levels w = W ∗(p), constitute NEs of the static

game. As π(p) is strictly increasing in p for all p < pP , equilibria with higher prices are

associated with a larger pro�t.

53Note that (i) π(p) → 0 as p → ∞ (as Q(p) → 0 and so �rms are de facto inactive, i.e. also
W ∗(p) → 0), and (ii) as �rms sell a positive quantity when pricing at the optimized average cost, they
can obtain positive pro�ts by raising their price. Hence, pP is �nite and is such that π(pP ) > 0.
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Proof of Corollary 1. Since optimal punishments pro�ts cannot be negative because

�rms always have the option to shut down, and the simple perfect equilibrium consisting

of the repeated static NE pro�le (pN ,W ∗(pN)) yields discounted pro�ts of zero to all �rms,

by the results in Abreu (1988), restricting attention to SPNE in grim-trigger strategies

specifying reversion to (pN ,W ∗(pN)) is without loss of generality.

For δ = 0, in any SPNE �rms must play a static NE at each period. Hence, the most

pro�table SPNE is the repetition of (pN ,W ∗(pN)).

Proof of Proposition 2. As seen in Lemma 1, uniform wage o�ers (wi,j ≡ wi for all

j ∈ [0, J ]) minimize production costs. Then, industry cost minimization requires each

worker to be hired by the �rm providing the highest non-wage bene�t, which is achieved

by all �rms o�ering the same wage level w. As a result, industry pro�ts' maximization

requires that all �rms are active and equally split the production of the monopoly output

� i.e., charge the same price p to consumers and o�er the same wage w to workers.

Maximizing industry pro�ts is then equivalent to maximize π(p, w) in Eqn. (8) with

respect to p and w. This yields the �rst-order conditions

Q(p) +

[
p− r∂K(L(w,w), Q(p)/n)

∂q

]
Q′(p) = 0, (14)

and

L(w,w) +

[
w + r

∂K(L(w,w), Q(p)/n)

∂`

](
∂L(wi, w)

∂wi
+
∂L(wi, w)

∂w

) ∣∣∣∣
wi=w

= 0, (15)

respectively.

De�ning P̂ (w) as the solution to Eqn. (14) for �xed w, by the Implicit Function

Theorem,

∂P̂ (w)

∂w
= −
−rQ′(·)∂

2K(·)
∂`∂q

(
∂L(·)
∂wi

+ ∂L(·)
∂w

)
∂2π(·)
∂p2

< 0,

as ∂2π(·)/∂p2 < 0 by the second-order condition of the cartel's problem. Similarly,

de�ning Ŵ (p) as the solution to Eqn. (15) for �xed p, the Implicit Function Theorem

implies that

∂Ŵ (p)

∂p
= −

r
n
∂2K(·)
∂`∂q

(
∂L(·)
∂wi

+ ∂L(·)
∂w

)
∂2π(·)
∂w2

< 0,

as ∂2π(·)/∂w2 < 0 by the second-order condition of the cartel's problem.

Comparing Eqn. (15) with Eqn. (13) at a symmetric solution implies that holding

�xed the price p, Ŵ (p) < W ∗(p): This result follows from the second-order conditions

because the left-hand side of Eqn. (15) contains a positive extra-term, as w+r∂K(·)/∂` <
0 for the two equations to hold, and ∂L(·)/∂w < 0.
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If pM > pN , as Ŵ (p) is decreasing in p, this would imply that wM < W ∗(pN) ≡ wN .

Therefore, given that P̂ (w) is decreasing in w, and it is an upper bound on the cartel price

given w (even if P̂ (w) < P ∗(w), with P ∗(·) de�ned by Eqn. (11), the cartel, coordinating

on the most pro�table equilibrium, would still set P̂ (w)), one can conclude that indeed

pM > pN and wM < wN .

In order for (pM , wM) to be sustainable as a SPNE, it must be that

δ ≥ δM ≡ 1− π(pM , wM)

πD(pM , wM)
,

where π(·) and πD(·) are de�ned in Eqn. (8) and (9), respectively (the result that the

pro�t in Eqn. (9) is the highest one attainable in the deviation period is established in

the Proof of Proposition 3 below, and �rms' pro�ts are zero afterwards by Corollary 1).

Therefore, δM < δM0 if and only if πD(pM , wM) < nπ(pM , wM). Let π̂M denote the

highest attainable pro�t in the hypothetical scenario where only one �rm is active. As

�rm i's rivals being inactive is equivalent to wi′ = −∞ for all i′ ∈ N \ {i},

π̂M = max
p,w

pQ(p)− [wL(w,−∞) + r K (L(w,−∞), Q(p))] .

Then, as L(w,−∞) > L(w,wM) (because ∂L(·)/∂w < 0), it immediately follows that

π̂M > max
p,w

pQ(p)−
[
wL(w,wM) + r K

(
L(w,wM), Q(p)

)]
= πD(pM , wM).

Next, as, by de�nition, π(pM , wM) = maxp,w π(p, w), it holds that

nπ(pM , wM) = max
p,w

pQ(p)− [nwL(w,w) + r K (nL(w,w), Q(p))] > π̂M ,

because employers' di�erentiation implies that

nL(w,w) = J Pr[w + max
i∈N

ξi ≥ w0] > J Pr[w + ξi ≥ w0] = L(w,−∞).

Summing up, πD(pM , wM) < π̂M < nπ(pM , wM), and so δM < δM0 .

Proof of Proposition 3. First, I prove that, given a candidate most pro�table SPNE

(p, w) and the corresponding per-period pro�t given in Eqn. (8), the highest deviation

pro�t is the one given in Eqn. (9). To this end, I �rst establish that, supposing that

a deviating �rm wants to deviate in price, its best deviation always consists in slightly

undercutting p. As π(p, w) > 0 (this holds at the most pro�table static NE, hence a

fortiori it shall be true at the most pro�table SPNE for all δ > 0), and a �rm i would

make no sales for any pi > p, one can restrict attention to pi ≤ p, with the convention

that all consumers' demand Q(p) is served by the deviating �rm i even if pi = p (i.e.,
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pi = p corresponds to a slight undercutting of p). The deviating �rm solves

max
pi≤p,wi

piQ(pi)− [wiL(wi, w) + r K (L(wi, w), Q(pi))] ,

and, hence, pi = p is the best deviation price if and only if

Q(p) +

[
p− r∂K(L(wi, w), Q(p))

∂q

]
Q′(p) ≥ 0.

As the collusive price p is weakly below the monopoly price given wi = w, denoted

by P̂ (w) (any higher price would be suboptimal), i's pro�t is increasing in pi and so

this inequality always holds at (L(w,w), Q(p)/n), or equivalently (given that ∂K(·)/∂q is
homogeneous of degree zero) at (nL(w,w), Q(p)). As ∂2K(·)/∂`∂q < 0, it holds a fortiori

in the deviation if nL(w,w) > L(wi, w). This inequality always holds: As colluding �rms

at most fully internalize the negative cross-�rm wage externalities, nL(w,w) is weakly

larger than the overall labor force needed to produce Q(p) at the minimum cost for the

industry; hence, a deviating �rm who wants to produce Q(p) alone will optimally hire

at most nL(w,w) workers; however, given that it needs to raise the wage to attract

workers hired by rivals in equilibrium, it follows that nL(w,w) > L(wi, w) at the optimal

deviation.

Then, the highest deviation pro�t is given by

π̃D(p, w) ≡ max
qi∈{Q(p)/n,Q(p)},wi

pqi − [wiL(wi, w) + r K (L(wi, w), qi)] .

Fix a price level p. If w = W ∗(p), �rm i is already o�ering its static pro�t maximizing

wage level to produce qi = Q(p)/n, and so, for all p > pN , only choosing qi = Q(p)

strictly increases the deviating �rm's pro�t above π(p, w). Colluding �rms can, however,

set w < W ∗(p), which increases the deviation pro�t from choosing qi = Q(p)/n less

than it increases the deviation pro�t from choosing qi = Q(p). Indeed, by the Envelope

Theorem,
∂π̃D(·)
∂w

= L(wi, w)
∂L(wi,w)

∂w
∂L(wi,w)
∂wi

,

is higher, in absolute value, the higher the deviating �rm's wi, which in turn is higher

when it produces more. As a result, any reduction in w belowW ∗(p) further increases the

relative pro�tability for a deviating �rm of choosing qi = Q(p) rather than qi = Q(p)/n.

Therefore, the highest deviation pro�t is obtained for qi = Q(p) and is given by Eqn. (9).

Next, to obtain the most pro�table SPNE for any δ ∈ [0, δM ], I �rst show that the ratio

π(p, w)/πD(p, w) is decreasing in p and increasing in w at any candidate most pro�table
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SPNE. As, for all p ≤ P̂ (w), ∂π(·)/∂p ≥ 0 and, by the arguments above,

∂πD(·)
∂p

= Q(p) +

[
p− r∂K(L(wi, w), Q(p))

∂q

]
Q′(p) > 0,

it holds that
∂

∂p

(
π(·)
πD(·)

)
< 0 ⇐⇒ π(·)

πD(·)
>

∂π(·)/∂p
∂πD(·)/∂p

,

which, using the fact thatK(·) is homogeneous of degree one, and soK(`, q) = ` ∂K(·)/∂`+
q ∂K(·)/∂q, can be written (omitting arguments) as

1
n

[(
p− r ∂K

∂q

)
Q−

(
w + r ∂K

∂`

)
L
]

(
p− r ∂KD

∂q

)
Q−

(
wD + r ∂K

D

∂`

)
LD

>

1
n

[
Q+

(
p− r ∂K

∂q

)
Q′
]

Q+
(
p− r ∂KD

∂q

)
Q′

,

where wD is the best deviation wage, LD ≡ L(wD, w), and KD ≡ K(LD, Q(p)), whilst L

and K denote the corresponding values in the candidate SPNE outcome. The two sides

of this inequality are equal if wD = w and LD = nL. Yet, as argued above, because

wD > w, the deviating �rm sets LD < nL. By a revealed preference argument, πD(·) is
then smaller, hence the left-hand side is larger; conversely, the denominator of the right-

hand side is larger (as its derivative with respect to LD equals −rQ′ · ∂2KD/(∂`∂q) < 0),

so that the right-hand side is smaller. As a result, the inequality is always satis�ed.

Similarly, as, for all w ≥ Ŵ (p), ∂π(·)/∂w ≤ 0 and, as seen above,

∂πD(·)/∂w = LD(∂LD/∂w)/(∂LD/∂wi) < 0, it holds that

∂

∂w

(
π(·)
πD(·)

)
> 0 ⇐⇒ π(·)

πD(·)
>

∂π(·)/∂w
∂πD(·)/∂w

.

As colluding �rm always set w ≤ W ∗(p),

∂π(·)
∂w

> L
∂L/∂w

∂L/∂wi
,

and so a su�cient condition for the above inequality to hold is π(·)/πD(·) > L/LD, or,

equivalently,
πD(·)
LD

<
π(·)
L
.

This inequality always holds because a deviation, entailing an increase in the wage to

be paid to attract more workers, unambiguously reduces the pro�t per worker (i.e., the

deviating �rm is less e�cient than the whole industry in producing the same output

Q(p)).

Therefore, the colluding �rms would always like to raise p (holding �xed w) or reduce

w (holding �xed p), but cannot do so when δ < 1 − π(·)/πD(·) and so the incentive-
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compatibility constraint is violated. It follows that the incentive-compatibility constraint

is binding for all δ < δM , and colluding �rms optimally exploit any increase in δ to

both raise the price and reduce the wage o�ers. By the Implicit Function Theorem, the

results that π(·)/πD(·) is decreasing in p and increasing in w implies that the incentive-

compatibility constraint de�nes an upward-sloping function P IC(w) (resp., W IC(p)) in

the (w, p)-plane (resp., (p, w)-plane), and the colluding �rms choose the point on this

function that maximizes π(p, w). In particular, the Lagrangian of Problem (P) writes as

L(·) = π(p, w)− λ
[
δ − 1 +

π(p, w)

πD(p, w)

]
,

with λ denoting the Lagrange multiplier associated to the incentive-compatibility con-

straint. Taking the �rst-order condition with respect to p and w yields, respectively,54

∂π(·)
∂p

=
λ

[πD(·)]2

[
∂π(·)
∂p

πD(·)− ∂πD(·)
∂p

π(·)
]
,

and
∂π(·)
∂w

=
λ

[πD(·)]2

[
∂π(·)
∂w

πD(·)− ∂πD(·)
∂p

π(·)
]
.

Diving these equations and rearranging yields the optimality condition (10).

Proof of Proposition 4. Maximizing π(p,W ∗(p)) w.r.t. p yields the �rst-order con-

dition

Q(·) +Q′(·)
[
p− r∂K(·)

∂q

]
+ n

∂L(·)/∂w
∂L(·)/∂wi

L(·)∂W
∗(·)
∂p

= 0,

which, as ∂W ∗(p)/∂p < 0, contains a positive extra-term relative to the �rst-order condi-

tion (14) of the multimarket cartel: hence, the price cartel has incentives to set a higher

price holding �xed w. Together with W ∗(p) > Ŵ (p), this implies that pP > pM and

W ∗(pP ) > wM .

Under Assumption (A), pP > pN is such that π(pP ,W ∗(pP )) < πD(pP ,W ∗(pP )),

implying that the critical discount factor to implement the price cartel outcome is

δP = 1− π(pP ,W ∗(pP ))

πD(pP ,W ∗(pP ))
> 0.

Indeed, as wM < W ∗(pM), also L(wM , wM) < L(W ∗(pM),W ∗(pM)), and so

pM ≥ r
∂K(L(wM , wM), Q(pM))

∂q
> r

∂K(L(W ∗(pM),W ∗(pM)), Q(pM))

∂q
.

Therefore, Assumption (A), which is equivalent to the �rst inequality above, implies that

54The functions π(p, w) and πD(p, w) de�ned in Eqn. (8) and (9) are continuously di�erentiable.
Hence, the following expressions are always well-de�ned.
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a �rm is willing to undercut pM even though it must stick to w = W ∗(pM), implying that

a fortiori π(pM ,W ∗(pM)) < πD(pM ,W ∗(pM)). Then, as the di�erence πD(p,W ∗(p)) −
π(p,W ∗(p)) is increasing in p (see the Proof of Proposition 1), and, as seen above, pP >

pM , one can conclude that π(pP ,W ∗(pP )) < πD(pP ,W ∗(pP )).55

Next, the result δP < δM0 follows from Lemma 2. Indeed, o�ering wi = W ∗(p) when

rivals do the same implies that �rm i produces at the minimized average cost function

C(Q(p)/n;W ∗(p)). Then, as rivals still o�er w = W ∗(p) when i deviates, the minimized

average cost to produce Q(p) is larger: C(Q(p);W ∗(p)) > C(Q(p)/n,W ∗(p)), from which

one can conclude that, at p = pP ,

πD(pP ,W ∗(pP )) = [pP − C(Q(pP );W ∗(pP ))]Q(pP ) <

< [pP − C(Q(pP )/n;W ∗(pP ))]Q(pP ) = nπ(pP ,W ∗(pP )),

which implies that δP < (n− 1)/n = δM0 .

Next, consider values of δ > 0 such that both P P (δ) < pP and PM(δ) < pM hold � i.e.,

the incentive-compatibility constraint binds under both price collusion and multimarket

collusion. For all such values of δ, the multimarket collusion outcome (PM(δ),WM(δ))

violates the wage constraint w = W ∗(p). Indeed, at w = W ∗(p), the inequality

∂π(p,W ∗(p))/∂p

∂πD(p,W ∗(p))/∂p
<

∂π(p,W ∗(p))/∂w

∂πD(p,W ∗(p))/∂w

simpli�es, using the notation introduced in the proof of Proposition 3 above, as

1
n

[
Q+

(
p− r ∂K

∂q

)
Q′
]

Q+
(
p− r ∂KD

∂q

)
Q′

<
−L∂L(·)

∂w
∂L(·)
∂wi

−LD ∂LD

∂w
∂LD

∂wi

.

The two sides of this inequality are equal when wD = w and LD = nL; then, wD > wi

implies that LD < nL (see the Proof of Proposition 2), which reduces the denominator

of the left-hand side and increases the denominator of the right-hand side, implying that

this inequality always holds.

Therefore, as the optimality condition (10) is violated under the wage constraint

w = W ∗(p), it follows that, under price collusion, this constraint must bind for all δ > 0.

Then, as under multimarket collusion �rms would never set w > W ∗(p) and the binding

incentive-compatibility constraint de�nes an upward-sloping function in the (p, w)-plane,

it follows that, for any given δ, the price collusion outcome is such that P P (δ) > PM(δ)

and W P (δ) = W ∗(P P (δ)) > WM(δ). Still, as any increase in δ entails an outward shift

of the locus de�ned by the incentive-compatibility constraint and �rms' pro�ts increase

55This implies that pN < pP is such that π(pN ,W ∗(pN )) = πD(pN ,W ∗(pN )), and so (pN ,W ∗(pN )) is
the most pro�table SPNE under price collusion for δ = 0.
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in p for all p ≤ P̂ (w), P P (δ) is increasing in δ, and so W P (δ) = W ∗(P P (δ)) is decreasing

in δ.

Therefore, if the value P P (δM), obtained by the intersection between the upward-

sloping function W IC(p) de�ned by the incentive-compatibility constraint at δM and the

downward-sloping function W ∗(p), is smaller than pP , then δP > δM (in this case, P P (δ)

keeps increasing, and W P (δ) = W IC(P P (δ)) keeps decreasing for all δ ∈ [δM , δP ], where

the multimarket cartel outcome can be sustained); else, δP < δM (in this case, PM(δ)

keeps increasing, and WM(δ) keeps decreasing for all δ ∈ [δP , δM ], where the price cartel

outcome can be sustained).

Proof of Proposition 5. The constraint p ≤ P ∗(w) is obtained by imposing that a

�rm does not gain by undercutting p holding �xed its wage o�er at w � i.e.,

n− 1

n
pQ(p)− r [K(L(w,w), Q(p))−K(L(w,w), Q(p)/n)] ≤ 0. (16)

To see that this inequality de�nes an upper bound on p, note that its left-hand side is

negative at p = 0 and is increasing in p: its derivative with respect to p equals

n− 1

n
[Q(p) + pQ′(p)]− r

[
∂K(L(w,w), Q(p))

∂q
− 1

n

∂K(L(w,w), Q(p)/n)

∂q

]
,

this value being positive as ∂K(L(w,w), Q(p))/∂q > ∂K(L(w,w), Q(p)/n)/∂q andQ(p)+

pQ′(p)− r ∂K(L(w,w), Q(p)/n)/∂q ≥ 0 for all p ≤ P̂ (w). Therefore, P ∗(w) is the value

that satis�es (16) with equality. Moreover, P ∗(w) is a decreasing function of w. This

result follows from the Implicit Function Theorem and the fact that the left-hand side

of inequality (16) is increasing in p, as seen above, and in w: Indeed, its derivative with

respect to w equals

−r
[
∂K(L(w,w), Q(p))

∂`
− ∂K(L(w,w), Q(p)/n)

∂`

](
∂L(w,w)

∂wi
+
∂L(w,w)

∂w

)
> 0.

Next, the most pro�table static NE (pN , wN) is the most collusive SPNE outcome

under wage collusion only for δ = 0: Under Assumption (A), it is such that π(·) = πD(·),
so any di�erent wage level would imply that �rms have incentives to deviate in wage

o�ers holding �xed their price. As argued in the text, pN < P ∗(wN), because a �rm

i is indi�erent between undercutting or not p = pN when it can optimally expand its

labor force, which implies that it is strictly better o� by not undercutting when it cannot

choose wi > wN . By a continuity argument, the price constraint p ≤ P ∗(w) does not

bind for su�ciently low values of δ, so that wage collusion can replicate the multimarket

collusion outcome.

Conversely, Assumption (A) implies that, at the multimarket cartel outcome, any �rm
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would have strict incentives to undercut p = pM even though it cannot raise its wage,

or, equivalently, that pM = P̂ (wM) > P ∗(wM). Therefore, for all δ ≥ δM , the price

constraint binds, implying that under wage collusion, �rms have to move down along

the upward-sloping function in the (p, w)-plane de�ned by the incentive-compatibility

constraint for δ = δM by choosing lower price and wage levels such that the binding

price constraint is satis�ed. Therefore, by a continuity argument, WW (δ) < WM(δ) and

PW (δ) = P ∗(WW (δ)) < PM(δ) for all δ su�ciently large.

This argument also implies that the price constraint must bind at the wage cartel

optimum. Maximizing π(P ∗(w), w) yields the �rst-order condition[
L(·) +

(
w + r

∂K(·)
∂`

)(
∂L(·)
∂wi

+
∂L(·)
∂w

)]
− 1

n

[
Q(·) +

(
p− r∂K(·)

∂q

)
Q′(·)

]
∂P ∗(·)
∂w

= 0,

which, as ∂P ∗(w)/∂w < 0, contains a positive extra-term relative to the �rst-order con-

dition (15) of the multimarket cartel. Together with the fact that, under Assumption

(A), P̂ (w) > P ∗(w) at the optimum, by the corresponding second-order condition this

implies wW < wM and pW < wM .

Therefore, δW > δM if the wage level WW (δ) pinned down, as explained above,

by the intersection (in the (p, w)-plane) between the upward-sloping locus of incentive-

compatible points given δ = δM and the price constraint p = P ∗(w), is such thatWW (δ) >

wW ; else, δW < δM .

In either case, δM < δM0 . This result follows from the same argument given in the

Proof of Proposition 2: At w = wW , the industry is producing Q(pW ) at the minimal

cost; a deviating �rm that wants to produce the same quantity alone will always face

higher costs, because (i) of employer di�erentiation (nL(wW , wW ) > L(wW ,−∞)), and

(ii) of labor market competition by rivals (L(wi,−∞) > L(wi, w
W )∀wi); as a result,

πD(P ∗(wW ), wW ) < nπ(P ∗(wW ), wW ), and so δW < (n− 1)/n = δM0 .

Proof of Corollary 2. The results in Proposition 3, 4, and 5 yield the inequalities

in the statement. Then, the results immediately follow from consumer surplus being a

decreasing function of the equilibrium price.

Proof of Proposition 6. Take δ̂ ∈ (0, δM) and consider the multimarket collusion

outcome (PM(δ̂),WM(δ̂)), which is the point on the upward-sloping function P IC(w)

de�ned by the binding incentive-compatibility constraint that maximizes the equilibrium

pro�t, i.e. satis�es condition (10). Suppose that the regulator introduces a minimum

wage w = WM(δ̂) + ε, with ε > 0 small enough, and denote by (pM , wM) the most

pro�table SPNE under the wage constraint w ≥ w. Then, this constraint must bind:

wM(δ) = w; moreover, as the regulatory minimum wage is still lower than the wage at

which �rms would like to ration workers, L(w,w) > L(WM(δ̂),WM(δ̂)). As the incentive-
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compatibility constraint is still binding, pM = P IC(w) > P IC(WM(δ̂)) = PM(δ̂).

Proof of Proposition 7. Irrespective of H, the cartel outcome in each product market

is (pM , wM) ≡ arg maxp,w π(p, w), with π(p, w) given in Eqn. (8) as in the baseline model

because each �rm only sells to consumers in its geographic market. The critical discount

factor to sustain (pM , wM) as a SPNE of the supergame in each product market is

δM(H) = 1− π(pM , wM)

πD(pM , wM)
,

where

πD(pM , wM) ≡ max
h∈{1,...,H}

{
hpMQ(pM)−min

wi

[
wiL(wi, w

M) + r K(L(wi, w
M), hQ(pM))

]}
.

This is because, as seen in the baseline model, a deviating �rm always �nds it optimal

to undercut the cartel price and serve all consumers within its local market. Yet, it

may be pro�table to serve consumers in h > 1 markets, if possible (i.e., if H > 1).

However, if H →∞, the maximand H∗ in the above problem is always �nite. The reason

is that a deviating �rm faces a globally increasing average cost function (this is true

by the arguments of the baseline analysis whenever the dimension J of the local labor

market, whose workers can be all attracted by paying w0, is not binding, and even more

so for higher production levels, where the deviating �rm can expand production only by

increasing its endowment of capital) and hence has a �nite optimal level of production.

Therefore, δM(H) is strictly increasing in H for H < H∗, and constant at δM(H∗)

for all H ≥ H∗. Finally, δM(H∗) < (nH∗ − 1)/(nH∗) because a deviating �rm serving

consumers in h markets always obtains πD(pM , wM) < hnπ(pM , wM): This holds for

h = 1 by Proposition 2, and a fortiori holds for h > 1 as the deviating �rm serves

consumers also in geographic markets from which it cannot attract any worker.

Finally, note that there is no need for cross-market collusion to sustain (pM , wM)

within each geographic market. The reason is as follows. Suppose �rms in market h expect

this outcome to prevail in all other markets. Then, a single �rm's best deviation is always

more pro�table than a joint deviation of all �rms in market h from (pM , wM), given that

a joint deviation, implying higher wage o�ers by all �rms in local labor market h, makes

it costlier to expand production for any individual �rm. Hence, for all δ ≥ δM(H), this

critical discount factor being pinned down by the individual-�rm incentive-compatibility

constraint de�ned above, all �rms in market h optimally choose (pM , wM) even if they

only collude among each other.

Proof of Proposition 8. In what follows, `i,z = L(wi,z, wz;wi′,−z, w−z) denotes the

labor force hired by �rm i in market z as function of the own wage o�er, the wage o�er
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of �rm i′ in the other product market −z with which it can merge (as detailed above),

and the symmetric o�ers made by any other �rm in each of the two markets.

If all �rms selling product z set the same price pz and o�er the same wage wz to all

workers, each �rm in product market z ∈ {A,B} makes a per-period pro�t

π(pz, wz;w−z, w−z) ≡ pz
Q(pz)

n
−
[
wzL(wz, wz;w−z, w−z) + r K

(
L(wz, wz;w−z, w−z),

Q(pz)

n

)]
.

With single-product �rms, the highest deviation pro�t equals

πD(pz, wz;w−z, w−z) ≡ pzQ(pz)/2−min
wi

[wiL(wi, wz;w−z, w−z) + r K (L(wi, wz;w−z, w−z), Q(pz)/2)] .

Comparing this deviation pro�t of a single-product �rm with that of a multiproduct

�rm, denoted here by πDm(pz, wz;w−z), at a symmetric SPNE candidate (pz ≡ p, wz =

w−z ≡ w, and also wi′,−z = w with single-product �rms), one has that πDm(p, w;w) <

2πD(p, w;w,w). To see this, note that, at the optimal deviation wage wDz for a single-

product �rm operating in market z,

∂πD(p, w;wi′,−z, w)

∂wi′,−z
= −

(
wDz + r

∂K(L(wDz , w;wi′,−z, w), Q(p)/n)

∂`

)
∂L(wDz , w;wi′,−z, w)

∂wi′,−z
=

= −L(wDz , w;wi′,−z, w)

∂L(wDz ,w;wi′,−z ,w)

∂wi′,−z

∂L(wDz ,w;wi′,−z ,w)

∂wi

< 0.

Therefore, the deviation pro�t in market z is lower when the deviating multiproduct �rm

raises its wage in the other market −z. As a result, a deviating multimarket �rm, raising

its wage o�ers to expand production in both markets, cannot obtain twice as much the

deviation pro�t of a single-product �rm.

As the cartel outcome (pM , wM) � which, by construction, is as in the baseline model

� does not depend on whether �rms are single- or multiproduct, the results πDm(p, w;w) <

2πD(p, w;w,w) and, using the same notation for on-path pro�ts, πm(p, w;w) = 2π(p, w;w,w)

for all (p, w) immediately imply that

1− πm(pM , wM ;wM)

πDm(pM , wM ;wM)
< 1− π(pM , wM ;wM , wM)

πD(pM , wM ;wM , wM)
,

which concludes the proof.

Proof of Proposition 9. Take a stationary equilibrium (p, w) and any wages wDτ,i ≥ w

o�ered by the deviating �rm in the period of deviation (as undercutting the equilibrium

wage is never pro�table). Then, there always exists a continuation equilibrium where the

deviating �rm makes zero pro�t, which constitutes an optimal punishment by the results
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in Abreu (1988).

To establish this claim, as �rms' products are perfect substitutes, it is su�cient to

prove that the average cost of the deviating �rm is weakly larger than the average cost

of the other �rms. To this end, consider a continuation equilibrium where no NPAs are

signed anymore. Such a continuation equilibrium always exists because when each �rm

expects rivals not to sign the NPA, unilaterally signing it would be inconsequential.

Consider the �rst period of the punishment phase. The aggregate labor force in the

industry of workers of age τ ≥ 3 is nL(w,w) (irrespective of whether NPAs were in

place along the equilibrium path), as they were �rst hired when all �rms o�ered the

equilibrium wage: This is a symmetric pool of workers, in the sense that no �rm can hire

more workers from this pool than its rivals unless it o�ers a higher wage. This is true

also for newcomers (τ = 1), given that all workers are available for hire at the initial age.

Finally, the industry labor force of workers of age τ = 2 is

nL(w,w) + J Pr[wD1,i + ξi ≥ max{w0, w + max
i′∈N\{i}

ξi′}|w + max
ĩ∈N

ξĩ < w0],

with wD1,i denoting the o�er they received from the deviating �rm in the deviation period.

That is, this pool of workers consists of the on-path industry labor force and the additional

workers attracted to the deviating �rm i because wDτ,i ≥ w. As ξi,j are i.i.d. draws from

the same distribution Ξ, also this is a symmetric pool of workers in the sense described

above.

Therefore, irrespective of its wage o�ers in the deviation period, the deviating �rm

has never a cost-advantage vis-à-vis its rivals � i.e., it can never recruit a given labor force

paying a lower average wage than its rivals.56 These arguments also hold in subsequent

periods, implying that the deviating �rm makes zero pro�ts forever after the deviation

period.

Given that, for any pro�le of deviation wages, the deviating �rm is guaranteed a payo�

of zero in the continuation game, its highest deviation pro�t is obtained by minimizing

the production cost of Q(p) in the period of deviation. This is because the best static

deviation, by the same arguments as in the baseline model, consists in slightly undercut-

ting the candidate equilibrium price p � i.e., starting from any candidate SPNE (p, w),

one can de�ne the deviation pro�t as

πD(p, w) ≡ pQ(p)− min
{wτ,i}

∑
τ=2,...,T

[
wL(w,w) + wτ,i ˜̀τ,i(wτ,i, w)

]
+ w1,iL(w1,i, w) + r K(·).

56The latter indeed collectively have a strict cost advantage because (i) they know they can keep all
their incumbent workers τ ≥ 2 even o�ering a wage lower by an amount wDτ−1,i − w relative to the one
o�ered by the deviating �rm (this only holds for τ = 2 aged workers in the presence of a NPA on-path),
and (ii) downward nominal wage rigidity is less stringent for them than for the deviating �rm who has
o�ered higher wages in the period of deviation (this gives them an advantage if the wage level in the
punishment phase is lower than the deviation wage).
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In the presence of a binding NPA in the period of deviation, this minimization problem

is subject to the constraint wτ,i = w for all τ = 2, ..., T , so that ˜̀
τ,i(w,w) = 0, given that

o�ering rivals' workers any wi ≤ w is equivalent not to make a poaching o�er.

With a ban on NPAs, the �rst-order condition of the deviating �rm's problem with

respect to wτ,i, for all τ = 2, ..., T , is given by

˜̀
τ,i(·) +

(
wτ,i + r

∂K(·)
∂`

)
∂ ˜̀

τ,i(·)
∂wτ,i

= 0.

For wτ,i = w ∀τ ≥ 2, from the de�nition of ˜̀
τ,i(·) it immediately follows that ˜̀

τ,i(·) = 0 <

∂ ˜̀
τ,i(·)/∂wτ,i, and so the left-hand side of the above equation equals(

w + r
∂K(·)
∂`

)
∂ ˜̀

τ,i(·)
∂wτ,i

< −L(w,w)
∂L(·)
∂wτ,i

∂ ˜̀
τ,i(·)
∂wτ,i

< 0,

where the �rst inequality follows from (i)WM(δ) < W ∗(PM(δ)) and (ii) as
∑

τ L(wτ,i, w) <

n
∑

τ L(w,w) by the diseconomies of scale e�ect (a fortiori so if wτ,i = w for all τ =

2, ..., T ), ∂K(
∑

τ L(wτ,i, w), Q(p))/∂` < ∂K(
∑

τ L(w,w), Q(p)/n)/∂`. By the second-

order condition of the cost-minimization problem, this inequality implies that wτ,i > w

at the optimum for all τ . Therefore, the constraint wτ,i = w for all τ = 2, ..., T (so

that ˜̀
τ,i(·) = 0) imposed by the presence of NPAs binds, strictly lowers the maximum

deviation pro�t.

By the same arguments of the baseline analysis, wage discrimination, even across

workers of di�erent ages, is always ine�cient, implying that the cartel outcome is sta-

tionary and symmetric and so is de�ned as

(pM , wM) ≡ arg max
p,w

π(p, w) ≡ p
Q(p)

n
−
[
wTL(w,w) + r K

(
TL(w,w),

Q(p)

n

)]
,

where maximization with respect to p and w gives the same �rst-order conditions (14)-

(15) as in the baseline model. As punishment pro�ts are zero, the cartel outcome is

sustainable as a SPNE of the dynamic game if and only if

δ ≥ δM ≡ 1− π(pM , wM)

πD(pM , wM)
.

For lower values of the discount factor, by the same steps as in Proposition 3, the op-

timal collusive outcome (within the class of stationary and symmetric allocations) is

(PM(δ),WM(δ)) obtained from the binding incentive-compatibility constraint and the

optimality condition (10), with PM(δ) and WM(δ) being increasing and decreasing in δ,

respectively, and such that, for all δ ∈ (0, δM), WM(δ) < W ∗(PM(δ)), with the static

equilibrium o�er W ∗(p) de�ned by Eqn. (13).
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Then, as the constraint wτ,i = w for all τ ≥ 2 imposed by NPAs in the deviating �rm's

problem strictly reduces the deviation pro�ts from any candidate stationary equilibrium

(p, w), in the presence of NPAs along the equilibrium path: (i) the critical discount factor

δM is lower, and (ii) whenever the incentive-compatibility constraint binds absent NPAs,

�rms will optimally use the resulting slackness in the incentive constraint in the presence

of NPAs to sustain an equilibrium with both higher price and lower wage levels.

The equilibrium where all �rms sign a NPA at all periods is always sustained by

the threat of reverting to a zero-pro�t equilibrium immediately if a �rm does not sign

the NPA. Such a zero-pro�t continuation equilibrium exists because the deviating �rm

can poach the signatories' incumbent workers and vice versa, and �rms compete à la

Bertrand. This drives the deviating �rm's pro�t to zero, making a deviation not to sign

the NPA always unpro�table. Therefore, as the most pro�table equilibrium with NPAs

features higher pro�ts than the most pro�table equilibrium without NPAs, the only way

to prevent �rms from signing NPAs is through a ban on these agreements, which, by the

arguments above, has the e�ects stated in Proposition 9.

Finally, the same results hold if workers are farsighted and discount payo�s at the

common rate δ. Along any stationary equilibrium path, newcomers anticipate that they

will not get higher wages in future periods, so their acceptance decisions are unchanged.

Conversely, when a �rm deviates by o�ering newcomers higher wages, farsighted workers

anticipate getting higher o�ers in the future because �rms are reverting to a competitive

equilibrium, which changes their labor supply decision.57 This e�ect, however, is identical

no matter whether NPAs are banned or not as, in either case, �rms will not sign NPAs

in the competitive continuation equilibrium following the deviation.

Proof of Corollary 3. If NCAs are banned, the most collusive stationary SPNE is as

in the Proof of Proposition 9 above in the scenario of a ban on NPAs. Otherwise, �rms

always �nd it optimal to sign NCAs, for two reasons. First, workers are willing to sign

these clauses at no extra remuneration (ωτ,i = 0 for all τ and i), as they do not expect to

receive poaching o�ers along the equilibrium path, so signing these clauses is costless for

�rms. Second, NCAs signed by other �rms with their workers reduce a deviating �rm's

pro�t in the best static deviation, as they play the exact same role as binding NPAs,

which can only help sustaining more pro�table equilibria. Then, if the possibility by the

deviating �rm of signing NCAs in the deviation period is valuable � i.e., if it increases its

pro�ts in the punishment phase � this �rm will do so anyway. Otherwise, its punishment

pro�ts are zero, implying that its best deviation is indeed the optimal static deviation,

57This is true if newcomers can observe all o�ers or have symmetric beliefs � i.e., each believes that the
deviating �rm is o�ering the same contract to all other newcomers. In the case of private contracting and
passive beliefs, as each worker still believes that the deviating �rm is o�ering the equilibrium contract to
any other worker and so does not expect a wage war, the labor supply is identical to the case of myopic
workers.
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and hence, the presence of NCAs hinders its deviation incentives. In this case, a ban on

NCAs produces the same e�ects as those of a ban on NPAs characterized in Proposition

9.

Proof of Corollary 4. Also in the presence of pay-equity regulations, following any

deviation �rms can play a continuation equilibrium in which the deviating �rm makes

zero pro�ts, which constitutes an optimal punishment. This result follows from the same

arguments in the Proof of Proposition 9 above and from the fact that the regulatory

constraint further penalizes the deviating �rm, which, because of downward nominal

wage rigidity and the deviation wage wD being higher than w, faces the tighter constraint

wi ≥ wD in the punishment phase if it wants to hire newcomers. Therefore, the optimal

deviation from any stationary symmetric SPNE (p, w) is the best static deviation � i.e.,

slightly undercutting p and choosing wage o�ers to minimize the production cost of Q(p):

min
wi

∑
τ=2,...,T

[
wiL(w,w) + wi ˜̀τ,i(wi, w)

]
+ wiL(wi, w) + r K(·),

whose �rst-order condition immediately yields that wi > w. Then, the deviation pro�t is

strictly lower than absent such regulations because keeping the wage at wi = w to own

incumbent workers is optimal absent pay-equity rules. Therefore, introducing pay-equity

regulations dampens deviation incentives from any candidate SPNE outcome (p, w). As a

result, it reduces the critical discount factor to sustain the cartel outcome (which, being

symmetric, does not depend on whether these rules are in place), and allows �rms to

sustain SPNE with strictly higher prices and lower wages for all lower values of δ.

Appendix B: Supplementary material

B.1 Microfoundations

Price or wage collusion and antitrust monitoring. Suppose that �rms need pre-

play communication to coordinate on collusive price and wage levels and that such com-

munication takes place among specialized middle managers of each �rm, say pricing

managers for prices and HR directors for wage o�ers (each acting in its employing �rm's

overall best interests), who then report to the top management that takes �nal decisions.

If such communication is not prevented by antitrust authorities, it leads �rms to im-

plement the multimarket collusive outcome, yielding the results of Section 3.2; if, on the

contrary, antitrust authorities are able to prevent all middle managers from communi-

cating, the best �rms can do is playing the most pro�table static NE (pN ,W ∗(pN)) over

time. However, antitrust authorities may be able to prevent communication only in one

market. If only communication among pricing managers is prevented (monitoring of price
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collusion), �rms will agree upon w, and so only a di�erent wage o�er made by any �rm

will be considered a deviation and trigger Nash reversion; accordingly, each �rm is free to

choose its price in its individual best interest; anticipating this introduces the constraint

p ≤ P ∗(w) in the collusion Problem (P), yielding the wage collusion outcome described

in Proposition 5. Conversely, if only communication among HR directors is prevented

(monitoring of wage collusion), �rms will only agree upon p, each �rm will then set its

individual pro�t-maximizing wage, which adds the constraint w = W ∗(p) to the collusion

Problem (P), yielding the price collusion outcome described in Proposition 4.

The same results hold if antitrust authorities can only look for ex-post evidence of

communication when they have a clue of collusive behavior. Assume the authorities know

the production function and can observe product prices and wage o�ers, and �rms' sales

and labor force. Then, suppose they also know L(·), but not Q(·). In that case, they can

observe whether the prevailing wage level is too low, i.e., w < W ∗(p) (as this equilibrium

value only depends on the equilibrium quantity and not on the demand function), and

in this case will look for, and eventually �nd, evidence of collusion. Anticipating this,

colluding �rms will optimally set w = W ∗(p), which implements the price collusion

outcome (as authorities, not knowing Q(·), cannot infer whether a price is collusive). Vice
versa, if authorities know Q(·), but not L(·), �rms will optimally implement the wage

collusion outcome. Authorities' knowledge of both consumer demand and labor supply

functions or of none leads, respectively, to (pN ,W ∗(pN)) or the multimarket collusive

outcome.

Search frictions. While, in the baseline model, �rms have oligopsony power because

of their di�erentiation vis-à-vis workers, similar conclusions hold in the presence of labor

market power deriving from search frictions in the labor market.

To make this point in the simplest way, suppose that there is no employer di�erentia-

tion: ξi,j ≡ ξj ∼ Ξ for all i ∈ N . Then, worker j will join (one of) the �rm(s) i from which

it has received the highest o�er wi,j, provided that wi,j + ξj ≥ w0. Yet, because of search

frictions in the labor market, �rms cannot reach all workers. For simplicity, say that a

fraction λ/n of workers only receive the o�er from one �rm i, whereas the other workers

actively search and consider o�ers from all �rms.58 Then, denoting w ≡ mini∈N wi, one

has

`i = L(wi, w) ≡ J

(
λ

n
+ 1[wi = w]

1− λ
#{i : wi = w}

)
[1− Ξ(w0 − wi)].

Starting from any candidate SPNE where all �rms set price pi = p and try to reach all

workers (which is always optimal to maximize the labor force for any given wage) o�ering

58The following argument applies, more generally, whenever each �rm i cannot reach a su�ciently
large fraction of workers within the deviation period.
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wi = w, a deviating �rm, by slightly overcutting w, would hire

`i = J

(
λ

n
+ 1− λ

)
[1− Ξ(w0 − w)] < J [1− Ξ(w0 − w)] = nL(w,w)

workers. Under the no-rationing assumption, this translates into a diseconomies of scale

e�ect, yielding similar results to those in the baseline analysis.

To see this, consider the cartel outcome (pM , wM), which is independent of λ.59 As

nL(wM , wM) is the cost-e�cient labor force to produce Q(pM), a deviating �rm, who

shall serve all this demand alone, would necessarily face a larger average cost (because

it cannot recruit the same labor force when o�ering wM to the subset of workers it

can reach). This implies πD(pM , wM) < nπ(pM , wM), and hence δM < δM0 ∀λ > 0.60

Moreover, as the measure of workers that a deviating �rm can steer away from its rivals

by slightly overcutting wM is decreasing in λ, it immediately follows that

∂δM

∂λ
< 0,

so that more signi�cant search frictions (captured by a larger value of λ), which trans-

late into labor market power even absent �rm di�erentiation, unambiguously facilitate

collusion.

B.2 Discussion and robustness

No-rationing assumption. The analysis has maintained the standard assumption

of Bertrand models that �rms are always committed to satisfy all consumers' demand

at their posted price. How would the results change if �rms could choose how much to

produce? To answer this question in a standard model, suppose that �rms simultaneously

choose, on top of p and w, also the amount of the other production factor k to employ.

Then, the static game would not admit a pure-strategy NE with zero pro�ts: In the

candidate NE where �rms are supposed to sell at p = c(Q(p)/n), they would choose

(w, k) so that F (L(w,w), k) = Q(p)/n (i.e., no excess capacity in equilibrium); but then,

any �rm would have incentives to overcut this price, as it would face no competition for

the residual demand.
59As in the baseline model, it is straightforward to prove that the cartel outcome is indeed stationary

and symmetric, and so is de�ned by:

(pM , wM ) ≡ arg max
p,w

pQ(p)− n
[
wL(w,w) + rK

(
L(w,w),

Q(p)

n

)]
=

=pQ(p)− [w J [1− Ξ(w0 − w)] + rK (J [1− Ξ(w0 − w)], Q(p))] ,

where the equality follows from the de�nition of L(·) and from K(·) being homogeneous of degree one.
60Indeed, a zero-pro�t static NE to which �rms can revert in the punishment phase, characterized as

in the baseline analysis, always exists under this speci�cation of the model.
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Indeed, even if k could be adjusted ex-post, the deviating �rm's rivals would have no

incentives to serve the consumers it has left because doing so would entail an increase in

the average production cost. In other words, the only role played in the analysis by the

possibility of adjusting the endowment of k after demand is realized is that jointly with the

no-rationing assumption, it implies that overcutting the competitive price p = c(Q(p)/n)

is not pro�table. In turn, this entails the existence of a zero-pro�t static NE, which allows

to restrict attention to grim-trigger strategies.

Nevertheless, provided that there exists a punishment yielding a discounted pro�t of

zero to a deviating �rm in the continuation game, the qualitative results are unchanged

under the simultaneous timing considered here.61 The reason is that the price-overcutting

incentives described above are absent in the most pro�table SPNE: Colluding �rms' ability

to charge high prices is instead constrained by their incentives to undercut the candidate

equilibrium price. Such undercutting incentives are stronger than in the baseline analysis

whenever, starting from a candidate SPNE (p, w), a deviating �rm would �nd it optimal

to sell a quantity q ∈ (Q(p)/n,Q(p)), rather than q = Q(p) as is constrained to do in

the base model. In these circumstances, this alternative timing of the game strengthens

deviation incentives, resulting in lower prices and higher wages in the most pro�table

SPNE. However, this is the case only for relatively low values of δ: As Assumption

(A) implies that serving all the demand is optimal for a �rm deviating from the cartel

outcome, by a standard continuity argument it follows that the most pro�table SPNE is

unchanged for su�ciently large values of δ.

Sequential stage game. The main results are robust under sequential-moves speci�-

cations of the stage game. In a production-to-order game, in which prices are set (and

publicly-observed) in advance of purchasing production factors, a �rm undercutting a

candidate equilibrium price bene�ts from its rivals optimally avoiding hiring any worker

� i.e., pi < pi′ implies no demand for all �rms i′ ∈ N \ {i}, and so wi′ = ki′ = 0. This

feature of the production-to-order game strengthens undercutting incentives, resulting in

less collusive equilibria; yet, because of employer di�erentiation, it does not eliminate the

diseconomies of scale e�ect. Except for this, the analysis is unchanged (in particular,

there exists a zero-pro�t static NE, implying that grim-trigger strategies are without loss

of generality).62

In a production-in-advance game, where �rms purchase production factors before set-

ting prices � i.e., they �rst make wage o�ers and choose capital endowments, and then,

61As shown by Abreu (1988), grim-trigger strategies are not optimal punishments unless, as in the
baseline model, they yield a discounted pro�t of zero. Otherwise, stick-and-carrot strategies su�ce to
yield zero discounted pro�ts in the continuation game following any deviation for values of δ not too
small.

62Note that a deviation only in the wage o�ers is a fortiori suboptimal given that a price-deviation is
more pro�table than in the baseline model.
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upon observing these choices, set their prices � as known since Kreps and Scheinkman

(1983), prices will be non-cooperatively set at the market clearing level � i.e., p =

Q−1
(∑

i∈N F (`i, ki)
)
� which maximizes individual and industrywide pro�ts for the cho-

sen capacities. Therefore, a production-in-advance game boils down to a model of collu-

sion in production capacities, making monitoring of wage collusion even more crucial to

ensure low prices. The incentives to deviate from a collusive outcome (w, k) � or, equiv-

alently, (p, w), with each �rm buying k = K(L(w,w), Q(p)/n) � are weaker than in the

simultaneous-choice stage game as a deviating �rm not only has to pay a higher wage to

produce more but will also sell at a lower price. In a SPNE in grim-trigger strategies, this

e�ect would be at least in part outweighed by the fact that reversion to the static NE does

not lead to zero pro�ts. As above, however, the result that, through the diseconomies

of scale e�ect, labor market power facilitates collusion always holds provided that �rms

can employ optimal punishment schemes yielding zero discounted continuation pro�ts to

a defector.

Production function. Throughout the analysis, �rms only employ two variable pro-

duction factors. As in Yeh et al. (2022), the analysis immediately generalizes to additional

variable factors traded in competitive markets. Formally, let k1, ..., kV be variable pro-

duction factors, and rv be the unit price of each factor kv, v = 1, ..., V . Suppose that

the production function is CRS with respect to {`, k1, ...., kV }. Then, for any quantity qi
that �rm i needs to produce, given its labor force `i, it chooses (k1, ...., kV ) solving

min
k1,...,kV

∑
v=1,...,V

rvkV

s.t. qi = F

(
`i,

∑
v=1,...,V

kV

)
.

Letting kv = KV (`i, qi), for v = 1, ..., V , denote the solution of the above cost-minimization

problem, the same expression for �rms' pro�t obtains by considering the vector notation

r = (r1, ..., rV ) andK = (K1(`i, qi), ..., KV (`i, qi)); the analysis is unchanged as eachKv(·)
is homogeneous of degree one.

Next, suppose that on top of the (at least two) variable production factors considered

so far, also �xed factors enter the production function. For conciseness, consider the two

variable factors (`, k) as in the base model and only one �xed factor, denoted by z; its

level is �rst set by each �rm and becomes common knowledge at the outset of period

t = 0, then can be publicly revised at the outset of period t = T , for some T ≥ 1,

then again at the outset of period t = 2T , and so on (except for this, the timing of

the game is as in the baseline model). Provided that any deviation in the choice of the

�xed factor triggers a zero-pro�t equilibrium of the continuation game, colluding �rms

optimally choose the value of z to facilitate price and wage collusion. Formally, they solve
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the following problem:

max
p,w,z

π(p, w, z) ≡ p
Q(p)

n
−
[
rzz + wL(w,w) + r K

(
z, L(w,w),

Q(p)

n

)]
s.t. δ ≥ 1− π(p, w, z)

πD(p, w, z)
,

where rz is the unit price of z, K(·) ≡ F−1,k(z, `, q) is the inverse of the production

function F (z, `, k) w.r.t. k, and the deviation pro�t is

πD(p, w, z) ≡ max
qi∈{Q(p)

n
,Q(p)},wi

pqi − [wiL(wi, w) + r K (L(wi, w), z, qi) + rzz] ,

given that the deviating �rm cannot change its choice of z even at the outset of periods

t ∈ {0, T, 2T, ...}, because doing so would entail triggering a zero-pro�t continuation equi-
librium. The �rst-order condition w.r.t. z, when the incentive-compatibility constraint

binds, gives
∂π(·)
∂z

= λ
∂

∂z

[
π(·)
πD(·)

]
,

with λ being the Lagrange multiplier of the above problem, so that �rms account for how

the choice of z a�ects deviation incentives. In particular, setting an ine�ciently low z

from an industrywide pro�t maximization standpoint (given p and w) can be optimal to

weaken price-undercutting incentives.

Importantly, if the production function is CRS with respect to all factors {`, k, z},
the presence of a �xed factor facilitates collusion through a diseconomies of scale e�ect,

given that a deviating �rm cannot expand its endowment of z, and so faces decreasing

returns w.r.t. {`, k}. This, in turn, further exacerbates the diseconomies of scale e�ect

brought up by the presence of labor market power: The decreasing returns of labor when

z is �xed imply that paying higher wages to attract more workers is less appealing than

in the baseline analysis.

Imperfect monitoring. Imperfect labor market competition can have further pro-

collusive e�ects by allowing �rms to detect better deviations in settings with demand

shocks and imperfect monitoring à la Green and Porter (1984) � see, e.g., Matsushima

(2001). In perfectly competitive labor markets, �rms can recruit as many workers as they

want at the competitive wage. So, the labor market delivers no information on whether

a rival has deviated from the collusive price. Conversely, in the presence of labor market

power, even if there is uncertainty on the distribution Ξ at every period, �rms ending up

with an unlikely low labor force (given their wage o�er) can draw inferences on the fact

that a rival has increased its wage to recruit more workers.

Hence, a deviating �rm undercutting the price either also increases its wage o�er,

61



which maximizes its deviation pro�t but increases the chances of triggering the punish-

ment phase, or it does not deviate in the labor market, which makes price-undercutting

less pro�table in the �rst place. In either case, it has weaker deviation incentives.

Wage cartels. Suppose that wage cartels are allowed and �rms reach an agreement,

enforceable in court, which constrains them to o�er a wage w to all workers. As explicit

price cartels are still illegal, colluding �rms solve Problem (P) with a deviation pro�t

max
q∈{Q(p)/n,Q(p)}

p q − [wL(w,w) + r K(L(w,w), q)] < πD(p, w),

which softens the incentive-compatibility constraint. That is, by making it impossible to

recruit more workers at any period, a legally binding wage cartel reduces the pro�tability

of undercutting any candidate SPNE price. The reason is that a deviating �rm can satisfy

the increased demand by only increasing its endowment of variable capital, which is not

cost-e�cient.

Then, for all δ ∈ [0, δM) � i.e., whenever the incentive-constraint binds without an

explicit wage cartel � �rms would �nd it optimal to write down a legally binding wage-

�xing agreement to sustain both lower wages and higher prices than in the most pro�table

SPNE characterized in Proposition 3. This argument provides a rationale for the per

se illegality antitrust status of explicit wage-�xing agreements, even based on a pure

consumer surplus standard.

Collective bargaining. Consider a model where �rms open vacancies, and the wage

they end up paying workers in equilibrium depends on industrywide trade unions' bar-

gaining power.

Formally, each �rm i ∈ N simultaneously chooses how many workers `i to employ

and its product price pi. The latter choices determine consumers' demand as in the main

model. The former choices determine the prevailing wage level. Suppose for simplicity

that �rms are homogeneous from workers' viewpoint � i.e., as above, ξi,j ≡ ξj ∼ Ξ.

Absent trade unions' bargaining power, the wage level w∗(L) < w0, where L ≡
∑

i∈N `i,

is obtained from the market clearing condition J [1 − Ξ(w0 − w∗(L))] = L. If, on the

contrary, trade unions have full bargaining power, they are always able to impose the

competitive wage: w0(L) ≡ w0 ∀L. More generally, suppose that the expected or average

wage paid by each �rm equalsW (L) ≡ αw∗(L)+(1−α)w0, where the parameter α ∈ [0, 1]

is an inverse measure of trade unions' bargaining power � e.g., there is a probability α

with which trade unions will manage to ex-post impose competitive wages for all workers

or a fraction α of workers is unionized and is ex-post able to extract the competitive

wage.

For α = 0, this model is identical to the competitive input markets benchmark exam-
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ined in Section 2.2: The cartel outcome is thus sustainable by colluding �rms if and only if

δ ≥ δM0 . For α = 1, the analysis is similar to Section 3. In particular, starting from a sym-

metric candidate SPNE (`, p), a deviating �rm undercutting the price �nds it optimal to

expand its labor demand. Doing so, however, implies a rise in the market clearing wage.

Because of this diseconomies of scale e�ect, the critical discount factor to sustain the

cartel outcome, de�ned here as (pM , LM) ≡ arg maxp,L pQ(p)− [W (L)L+ r K(L,Q(p))],

is δM < δM0 . More generally, for α ∈ [0, 1] one has that

∂δM

∂α
< 0.

Therefore, policies weakening trade unions' bargaining power facilitate collusion.

B.3 Local labor markets and cross-market collusion

This section considers the model with independent product markets described in Section

4.2, with n/2 di�erent single-product �rms in each market.

Suppose that �rms operating in market z only collude among each other (within-

market collusion). Then, for any given δ and wage w−z o�ered by �rms in the other

market, their optimal collusive scheme (pz, wz) maximizes the pro�t π(pz, wz;w−z, w−z)

subject to the incentive-compatibility constraint δ ≥ 1 − π(·)/πD(·), where the highest

deviation pro�t, similar to the baseline analysis, is given by πD(pz, wz;w−z, w−z) (the

functions π(·) and πD(·) are de�ned in the Proof of Proposition 8).

Then, the within-market cartel outcome is de�ned as the solution to the �xed-point

problem: (pS, wS) ≡ arg maxpz ,wz π(pz, wz;w
S, wS), and it is sustainable for all δ ≥ δS,

where

δS ≡ 1− π(pS, wS;wS, wS)

πD(pS, wS;wS, wS)
< δM0 .

For lower values of δ, the most pro�table SPNE (P S(δ),W S(δ)) is again pinned down by

the binding incentive-compatibility constraint and the optimality condition (10), where

derivatives are taken with respect to variables in the own market z, imposing symmetry

(pz = p and wz = w for z = A,B).

As within-market cartels do not internalize the cross-market externalities taking place

through the labor market, wS is too high from a cross-industry pro�t maximization view-

point: A cross-market cartel would pro�tably set (pM , wM) ≡ arg maxp,w π(p, w;w,w),

with wM < wS and, as hiring fewer workers makes it optimal to reduce production,

pM > pS.

Firms selling their products in independent product markets thus have incentives to

collude together. Under cross market collusion, the most pro�table SPNE, denoted by
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(PM(δ),WM(δ)), solves the following problem:

max
p,w

π(p, w;w,w)

s.t. δ ≥ 1− π(p, w;w,w)

πD(p, w;w,w)
.

As cooperative and defection pro�ts are unchanged, sustaining the more collusive cross-

market cartel outcome requires a higher critical discount factor:63

δM = 1− π(pM , wM ;wM , wM)

πD(pM , wM ;wM , wM)
∈ (δS, δM0 ).

For all δ ∈ [0, δM), the incentive-compatibility constraint binds, and the cross-market

optimal collusive scheme satis�es the optimality condition

∂π(·)/∂pz
∂πD(·)/∂pz

=
∂π(·)/∂wz + ∂π(·)/∂w−z

∂πD(·)/∂wz + ∂πD(·)/∂w−z
. (17)

The internalization of cross-market externalities, as re�ected by the extra-terms on the

right-hand side of Eqn. (17) relative to Eqn. (10), implies that WM(δ) < W S(δ) for

all δ > 0. Whenever the incentive-compatibility constraint also binds under within-

market collusion, however, colluding �rms need to lower their price to o�set the stronger

incentives to deviate deriving from the more collusive wage level. Summing up:64

Proposition (cross-market collusion). The most pro�table SPNE (PM(δ),WM(δ))

with multiple (identical and independent) product markets is only achievable through

cross-market collusion and is such that WM(δ) < W S(δ) for all δ > 0, and PM(δ) >

P S(δ) if and only if δ > δ̃, where δ̃ ∈ (δS, δM).

Labor market power in local labor markets creates the scope for cross-market collu-

sion, strengthening the case for antitrust authorities' monitoring of collusive behavior.

Interestingly, this broadening of collusive behavior does not necessarily translate into

higher consumer prices: The presence of signi�cant wage mark-downs unambiguously

reveals that cross-market collusion is in place.65

63Still, δM < δM0 as, by the same arguments outlined in Section 3.2, πD(pM , wM ;wM , wM ) <
nπ(pM , wM ;wM , wM ).

64The complete proof is omitted for brevity and available upon request.
65How would the above results change if markets are asymmetric? In the presence of signi�cant

asymmetries across markets, there may be values of δ such that the within-market cartel outcome is
attainable in only some markets. In these circumstances, a cross-market collusive scheme can exploit
the slackness of the incentive constraint in these markets to depress wage o�ers in all markets further.
Then, prices can simultaneously rise in these markets where the incentive-compatibility constraint does
not bind and drop in markets where the lower wage levels tighten the incentive constraint.
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B.4 NPAs/NCAs as facilitating practices in perfectly competi-

tive markets

This section considers the model of Section 5 assuming away product market oligopoly

and employer di�erentiation, to derive the procollusive implications of NPAs and NCAs

in the simplest setting.

Formally, suppose that �rms can sell any quantity of their products at the exogenous,

competitive price p0 and are perfectly homogeneous from workers' viewpoint � i.e., ξi,j ≡
ξj for all i. In this simple setting, �rms' per-period (on-path) pro�t can be written as

πi =
∑

τ=1,...,T

(p− wτ,i)`τ,i,

where `τ,i(·) is �rm i's labor force of age-τ workers (which will be characterized below)

when each �rm i o�ers the same wage wτ,i to all workers of age τ (which holds, both on-

and o�-path, in the stationary equilibria considered below), and

p ≡ −r∂K(
∑

τ `τ,i, q
∗(
∑

τ `τ,i))

∂`
,

with

q∗

(∑
τ

`τ,i

)
= arg max

q
p q −

[∑
τ

wτ`τ,i(·)− r K

(∑
τ

`τ,i, q

)]
,

being a constant (i.e., p is independent of all `τ,i).66

No-poaching agreements. To simplify the exposition, suppose for the moment that

workers are myopic. The dynamic game admits an equilibrium where, at any period and

for any history of the game, no NPAs are signed and all �rms o�er w = p to all available

workers (i.e., all newcomers and all incumbent workers in the industry). Indeed, there

are no pro�table deviations from this equilibrium: At any t, unilaterally signing NPAs

when other �rms do not is inconsequential and, by a standard Bertrand-type argument,

o�ering wτ,j < p to any worker j of age τ implies not hiring it with probability one, while

o�ering wτ,j > p implies making a negative per-period surplus p−wτ,j < 0 from its hire.

In this competitive equilibrium, �rms make zero pro�ts at each period.

66This result follows from the production function being CRS. Pro�t maximization with respect to q

yields that q∗(
∑
τ `τ,i) must satisfy the �rst-order condition p0 − r ∂K(·)

∂q = 0, which, substituted into

the pro�t, and using the fact that K(·) is homogeneous of degree one, gives the above expression for πi.
Finally,

∂p

∂`τ,i
= −r

[
∂2K(·)
∂`2τ,i

+
∂2K(·)
∂`τ,i∂q

∂q∗(·)
∂`τ,i

]
= 0,

as, by the Implicit Function Theorem, ∂q∗(·)/∂`τ,i = −∂
2K(·)/∂`τ,i∂q
∂2K(·)/∂q2 , and, by the homogeneity of K(·),

(∂2K(·)/∂`2τ,i)(∂2K(·)/∂q2) = (∂2K(·)/∂`τ,i∂q)2.
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By contrast, in the monopsony equilibrium, the wage o�ered to all available workers

at every period would be wM ≡ arg maxw(p−w)TL(w) < p, where L(w) ≡ JΞ(w0−w) is

the myopic labor supply of each generation of workers.67 As, in this simple model, �rms

are homogeneous from workers' viewpoint, the cartel outcome would feature the same

wage wM o�ered by all �rms to all available workers over time, yielding per-�rm pro�t

π(wM) = (p− wM)TL(wM)/n at any period.

Suppose, �rst, that NPAs are not in place � e.g., they are banned by competition

authorities. Then, starting from any stationary equilibrium with wage w ∈ [wM , p), the

best deviation for any �rm consists in slightly overcutting this wage o�er to all available

workers � i.e., all rivals' incumbent workers and all newcomers, which will then all join

the deviating �rm. By doing so, it obtains a pro�t

πD(w) = (p− w)TL(w) = nπ(w)

in the period of deviation. Afterward, however, �rms will play the equilibrium where

they o�er w = p to all available workers and so make zero pro�ts, which therefore

constitutes an optimal punishment.68 Hence, absent NPAs, any stationary equilibrium

wage w ∈ [wM , p) can be sustained as a SPNE of the dynamic game if and only if

δ ≥ δM0 .

Consider, next, the case where NPAs are allowed, and are signed by all �rms at any

period along a stationary equilibrium path.69 If any of the �rms deviates and does not sign

the NPA at some period t, all �rms will immediately revert to a continuation equilibrium

where they o�er w = p to all available workers starting from the same period t � i.e., all

�rms o�er the competitive wage to newcomers and renegotiate at the competitive level

the wage of their incumbent workers, so that the possibility of poaching rivals' incumbent

workers cannot increase the deviating �rm's pro�t above zero.70 A �rm contemplating a

67As seen in Section 3.1, wage discrimination would only increase the average wage needed to recruit
any overall labor force. In this setting, there is no incentive to o�er to available workers of any age τ
a wage di�erent from the statically optimal one wM : O�ering w < wM to a newcomer entails losing
forever the pro�table possibility of hiring it; and, once a worker is hired at wM , it is pointless to increase
its wage later on, and impossible to reduce it by the assumption of Pareto-improving renegotiation.

68As this equilibrium of the continuation game following the deviation is an optimal punishment no
matter the wage the deviating �rm has o�ered in the previous period and no matter how many workers
it has employed, the optimal deviation is indeed the statically optimal one described above.

69In order for NPAs to have a bite, there must be some incumbent workers in the market, so the
following analysis only applies for t ≥ 1. However, one may consider that, at t = 0, only one generation
of workers is already in the market, with the second generation coming in at t = 1, and so on, so that
T generations of workers are available for all t ≥ T − 1 (this does not a�ect the monopsony wage level
wM ). This makes deviating in the �rst periods less pro�table than in t ≥ T −1, implying that, both with
and without NPAs, the critical discount factor is pinned down by the binding incentive-compatibility
constraint at any t ≥ T − 1.

70This is indeed a continuation equilibrium because, as seen above, o�ering w = p to any worker
is a best response for any �rm when rivals do the same; moreover, by yielding a pro�t of zero to
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deviation in period t shall thus sign the NPA and then deviate in the subsequent wage-

o�er game. In this case, the optimal deviation still consists in slightly overcutting the

candidate equilibrium wage w; however, because of the binding NPA, this o�er can only

be made to newcomers and not to rivals' incumbent workers. As a result, given that �rms

revert to the continuation equilibrium where NPAs are not signed anymore and they o�er

w = p to all available workers from period t+ 1 onwards, the deviation pro�t is

πD(w) =
1

n
(p− w)(T − 1)L(w) + (p− w)L(w) < nπ(w).

Therefore, a stationary equilibrium with NPAs and wage w ∈ [wM , p) can be sustained

as a SPNE of the dynamic game for all

δ ≥ δM ≡ n− 1

n+ T − 1
, with δM < δM0 .

The above analysis implies that, for all δ ∈ [δM , δM0 ), a ban on NPAs makes it im-

possible for �rms to sustain the cartel outcome and so would result in higher equilibrium

wages.71

Finally, the result that banning NPAs increases the critical discount factor to sustain

collusive wages also holds if workers are farsighted and discount future pro�ts at the

common rate δ. Indeed, along any stationary equilibrium path, newcomers anticipate

not getting higher wages in future periods. So, their decision to accept is the same,

whether or not they are farsighted. Conversely, when a �rm deviates by overcutting the

candidate equilibrium wage, farsighted workers (provided they have symmetric beliefs

or all o�ers are publicly observed) anticipate getting higher o�ers in the future because

�rms revert to the competitive equilibrium and are more willing to enter the industry

(see below). This e�ect, however, is identical no matter whether NPAs are banned or not

as, in either case, the competitive equilibrium played after the period of deviation entails

that no NPAs are signed anymore and these workers obtain w = p.

Non-compete agreements. A myopic worker is always willing to sign a NCA without

asking for compensation, given that this clause could only impact its wage in the future.

Therefore, a meaningful analysis of NCAs requires considering farsighted workers (and

symmetric beliefs or public o�ers). For simplicity of exposition, let me consider two-

period lived workers (T = 2), and focus on the critical discount factor to implement the

cartel outcome, i.e., the wage level wM characterized above.

the deviating �rm already in the deviation period, playing this continuation equilibrium constitutes an
optimal punishment.

71Note that, once explicit, legally binding NPAs are banned, the possibility of �rms tacitly agreeing
not to poach each other's workers is valueless: Poaching rivals' workers is optimal only for a �rm who
wants to overcut the candidate equilibrium wage level to expand its labor force; the deviating �rm would
then also renege on the implicit NPA, which therefore cannot help �rms to sustain collusive wage levels.
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Under a ban on NCAs, for any deviation wage w > wM , newcomers anticipate the

wage war in the future period (i.e., that they will earn w = p in the successive period)

and so accept the deviating �rm's o�er if and only if w + δp ≥ (1 + δ)(w0 − ξj), yielding
a labor supply LD(w) ≡ 1 − Ξ[w0 − (w + δp)/(1 + δ)] > L(w) for all w. As this labor

supply is less elastic to wage relative to the on-path labor supply L(w), the unconstrained

monopsony wage would be lower, and so a deviating �rm optimally slightly overcuts wM

vis-à-vis newcomers, besides with rivals' incumbent workers, and gets a deviation pro�t

πD = (p− wM)(L(wM) + LD(wM)) > 2(p− wM)L(wM) = nπ

in the deviation period, and zero afterward (because of wage war in the punishment phase

for all available workers, who are all contestable). As a result, the critical discount factor

to sustain the cartel outcome is strictly higher than δM0 .

Next, suppose NCAs are allowed, and consider a stationary equilibrium where, at all

periods, all �rms o�er wM , sign NCAs with all their workers, and do not make o�ers

to rivals' incumbent workers. Then, as on-path workers do not expect to receive any

attractive o�er from their incumbent employer's rivals in the future, they are willing to

sign these clauses at no extra compensation. Hence, a deviation consisting only of not

o�ering NCAs to any worker is immaterial: The only relevant deviations are in wage

o�ers. Newcomers anticipate that, by accepting NCAs from the deviating �rm, they will

earn the same wage wM in the second period rather than the competitive wage p that they

would get absent NCAs. Hence, one needs to distinguish two cases. First, if the deviating

�rm o�ers NCAs to newcomers, their labor supply will be L(w) as in the myopic case.

Then, the deviating �rm optimally slightly overcuts wM vis-à-vis newcomers, whom it

employs at the same wage in the following period (no other pro�ts are made from that

period onwards). This deviation is not pro�table if and only if

(p− wM)
L(wM)

n
+ (p− wM)L(wM) + δ(p− wM)L(wM) ≤ 1

1− δ
2(p− wM)

L(wM)

n
,

which is equivalent to δ ≥ δM0 .

Second, if the deviating �rm does not o�er NCAs to newcomers, it is de facto providing

them lifetime utility w + δp when making an o�er w, because of the wage-war in the

punishment phase. In order to attract them, this must be higher than the lifetime utility

(1 + δ)wM o�ered by rivals (as they still o�er the equilibrium contract, which features

NCAs, and so would be able to employ them at wM also during the punishment phase).

As rivals o�er the pro�t-maximizing lifetime utility, a deviating �rm would optimally

only slightly overcut it: w = (1 + δ)wM − δp; this implies that it again hires L(wM) and
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obtains a deviation pro�t

(p− wM)
L(wM)

n
+ [p− ((1 + δ)wM − δp)]L(wM),

which, rearranged, is equal to the deviation pro�t in the previous case.

As a result, the cartel outcome can be sustained in a SPNE with NCAs for all δ ≥ δM0 :

Firms' possibility of signing NCAs thus facilitates collusion.
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Chapter II

Fair Gatekeeping in Digital Ecosystems

This chapter is based on joint work with Jean Tirole (TSE). All authors contributed

equally to this research.
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1 Introduction

Dominant gatekeepers � the platforms controlling �core services� such as app stores,

e-commerce, search, or social networking � are often suspected of charging excessive

platform fees to business users (apps, merchants, advertisers) and/or practicing self-

preferencing (favoring their own o�erings when hybrid,1 i.e., when competing in the

markets they operate). This has led to numerous recent investigations and lawsuits

concerning platforms such as Amazon, Apple, Booking, and Google;2 similar questions

will probably surface as AI-based platforms in tech and in health come to the fore.

Detecting �excessive fees� and �self-preferencing,� the two prongs of the regulators' equity

concern (e.g., in the EU Digital Market Act, DMA), is notoriously di�cult or costly;

and so regulators must pick their �ghts, which requires looking for smoking gun evidence

that business users overpay or are discriminated against. Unfortunately, current regu-

lations contain only broadly scripted prescriptions such as the DMA's requirement that

access conditions be fair, reasonable and nondiscriminatory (FRAND). This leaves open

the question of what �fair and reasonable� conceptually means, even putting aside the

measurement issue. Our paper attempts to �ll this void.

Why are policymakers preoccupied with business users' welfare in particular? After all,

over twenty years of research have taught us that the �see-saw e�ect� in two-sided markets

(that a price increase on one side increases the pro�tability of attracting users on the other

side and induces a concomitant price decrease there) implies that antitrust analysis should

consider the entire market and not just its business side. Similarly, the hypothesis of self-

preferencing runs counter the Chicago School argument that a rich ecosystem brings

product variety and lower prices, which can be monetized on the consumer side.

The paper builds a framework capable of accounting for existing business strategies and

assessing regulation over a rich array of digital platform environments. It explains why

there is a good reason to be preoccupied with equity for business users in the context of

digital platforms: The important role played by two zero lower bounds (ZLBs) on core

and app services (whose prices cannot be negative because of arbitrage and so are most

1Pure platform players (like Airbnb or Booking, which operate markets, but do not compete in them)
cannot engage in self-preferencing, although they might enter into �sweet deals� with selected business
users to the same e�ect.

2Examples of self-preferencing include the 2017 EU Google Shopping decision, the 2021 Google case in
Italy (Android Auto did not accept an Enel's app that competed with Google Maps), and investigations
into Amazon's prominent display of Amazon-branded goods and favoring its own logistics services (FBA).
Regarding excessive fees, several antitrust cases (Epic Games v. Apple; Spotify v. Apple; 2024 EU

investigation of Apple and Google's non-compliance with the Digital Market Act) concern third-party
apps trying to circumvent the 30% app store fee they deem unfairly high. The clampdown on most-
favored-nation clauses similarly aims at capping access fees paid by merchants. Regulators may also
directly set caps on access fees. Many local governments in the US introduced caps on the fees that food
delivery platforms charge restaurants during the COVID-19 pandemic, and several of them then made
these caps permanent. The major platforms (Uber Eats, Grubhub and DoorDash) typically charge a
30% fee, and most governments capped these fees to 15%.
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often equal to 0)3 in the setting of privately and socially optimal platform fees. Despite

their importance for strategic behavior and policy and their endogeneity, the multi-sided-

platform literature has mostly ignored ZLBs, or else posited free consumer access to the

platform.

From a bird's eye view, platforms, whether app stores, e-commerce, OTAs, search en-

gines, or social networks, all provide business users (apps, merchants, advertisers) with

access to the consumers. Business users may thereby sell their goods or services and,

importantly, receive ancillary bene�ts from attracting a consumer: Advertising revenues

(content providers), data collection (most apps), fees collected from merchants selling

their products through the app, or else the future pro�ts attached to repeat purchases

and upgrades; we capture these per-consumer ancillary bene�ts in a given app market by

a variable b > 0. Ancillary bene�ts imply that the marginal cost is negative for digital

goods, making the app ZLB particularly relevant (in contrast, b < 0 for most physical

goods, whose production cost must be subtracted when computing the ancillary bene�t).

For digital goods, an incentive for self-preferencing arises when the platform is vertically

integrated and makes more money by supplying, even for free, the good or app itself than

by being paid for giving access, i.e., when b > a, where a is the access fee paid by the

app or merchant to the platform. Even if there is no such foreclosure, low or nil access

fees have a second drawback: they invite entry by me-too apps, that add little value to

the ecosystem but extract a non-negligible share of it, because competition in the app

market is hindered by the app ZLB.

While regulation may keep access fees low or nil, laissez-faire in contrast generates extrac-

tive access fees that squeeze business users; furthermore, the core ZLB, when relevant,

blocks the see-saw e�ect and prevents consumers from bene�tting from the squeeze. Such

extractive fees both induce a suboptimal usage of apps and discourage their creation in

the �rst place.

Section 2 derives a simple rule for the optimal regulation of access conditions. A

�Pigouvian rule� (â = b) allows the third-party apps to capture their contribution to the

ecosystem, promoting the right level of innovation; it does so by pricing the unpriced

positive externality (ancillary bene�t) enjoyed by an app that receives access to the

consumer. It also minimizes double marginalization in the set of access fees that do not

induce self-preferencing.

Section 3 discusses the costs and bene�ts of various approaches to implementing the

Pigouvian rule in the real-world context of heterogenous app sub-markets: regulatory

measurement of b (perhaps triggered by an appeal against `unfair' access fees), a con-

3Freely available apps include some of the most common third-party apps (e.g., payment apps such
as PayPal, news aggregation apps such as Flipboard), as well as the competing in-house apps by Apple
and Google (e.g., Apple Pay and Google Pay, Apple News and Google News, respectively). On the core
side, most digital platforms, such as the major app stores, e-commerce platforms, search engines and
social networks, grant free access to consumers.
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straint on the distribution of access fees set by the platform, and elicitation from business

users, as is already the case, as we show, for sponsored search and display ads.

Section 4 demonstrates that neither platform competition under consumer single-

homing, nor app store competition triggered by regulations requiring Apple and Google

to host competing app stores to encourage consumer multi-homing, solve the equity

concern. Platform competition transfers some value from the platform to the consumer

(the extent of such transfers is again limited by the core ZLB) but, provided platforms still

control access to their consumers, does nothing to solve the equity concern for business

users. App store competition is not e�ective if the dominant platform downlists multi-

homing apps; but even if it is, the absence of access fee makes the platform too app

friendly, because app stores will compete for superior app sales; put di�erently, app

store competition requires levying the optimal access fee b, this time from the alternative

third-party app stores rather than from now-disintermediated third-party business users.

Section 5 reviews the relevant literature, and Section 6 concludes.

A bene�t from our framework is that, despite its simplicity, it accounts for the rich

diversity of digital environments. Table 1's illustrations are mostly drawn from the DMA's

designated gatekeeper list.4

Table 1. Taxonomy of digital platforms.

1. Low access fees. The left column captures alternative drivers of small (often zero)

access fees, implying that the platform makes little or no money on access and therefore

is incentivized to self-preference. First, the platform may have limited gatekeeping ability.

4These illustrations include all the DMA's 7 designated gatekeepers and most of their 24 core platform
services.
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This is the case if apps can disintermediate, making it impossible to levy a revenue-based

fee. Such disintermediation is at the core of the recent Epic and Spotify high-pro�le cases.

Similarly, in the case involving an alleged demotion of competing shopping services by

Google's search engine, Google could not make money on access while it could pro�t from

the consumer's using Google Shopping.5 The third illustration of a limited gatekeeping

capability is provided by app-store competition when the consumer multi-homes across

competing app stores (this illustration is for the moment theoretical, as the EU still has

to e�ectively force Apple and Google to open their operating systems to alternative app

stores). This example is less of a concern than the previous two, since self-preferencing,

if known, will lead consumers to choose alternative app stores.

Besides disintermediation, regulatory caps (e.g., a free-access requirement) is a second

factor of low access fees. A third and more subtle one is provided by the popular freemium

model, if the independent app is discovered (in its free version) on the platform, but up-

grades are purchased through a direct channel. Finally, an incentive for self-preferencing

exists on a subset of app markets when the platform charges a uniform fee (unconstrained

by the previous factors), but ancillary bene�ts are heterogeneous across app markets; even

tough a will then be high, it is still the case that a < b for some app markets.

2. Unconstrained fees. The right column in contrast illustrates gatekeepers that make

more money on access than on supplying the app itself (a > b). The concern then is that

the platform selects excessive fees. In some illustrations, apps are digital and have positive

ancillary bene�ts (b > 0). In other illustrations, a physical good or service creates a

positive cost for the merchant (b < 0). This is the case for e-commerce platforms, whether

hybrid like Amazon or pure player like Booking, and for ad-supported media/services,

whether they get revenue from display ads (Facebook, TikTok, LinkedIn) or sponsored

search ads (Google).

3. Binding core ZLB? Last, many (although not all) platforms provide access to con-

sumers for free: Access or self-provision of services make consumers su�ciently pro�table

on the business side and so the platform bene�ts from attracting the maximum number

of consumers. But some platforms do not face a core ZLB. A device may be sold at a

loss (videogame consoles) or at a pro�t (Apple's iPhone), but in either case the price

is unconstrained and the platform always wants to raise it to re�ect a more valuable

ecosystem. Because of the potency of the see-saw e�ect in this context, excessive fees are

less of a concern than when the core ZLB binds, though they still ine�ciently hamper

innovation in the app segment.

5Similarly, highly visible apps that consumers can access through the browser for free (connecting to
one's bank, Deliveroo, Amazon), known as hybrid apps, also exhibit a = 0. The app store then has a
limited gatekeeping ability.
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2 Access pricing by a gatekeeping platform

2.1 Basic framework

Consider a two-sided digital platform (e.g., an app store) that connects sellers of digital

goods (hereafter, apps) with a mass 1 of consumers. Digital goods entail negligible

marginal costs of production and distribution. Rather, their usage by consumers brings

ancillary bene�t b ≥ 0 for the app providers, such as advertising revenues, consumers'

data that can be monetized, fees collected from merchants selling their products through

the app, etc. Hence, their opportunity cost is negative. App providers face a zero lower

bound constraint because negative prices are subject to arbitrage: Bots and uninterested

consumers may take advantage of the payment for usage, and yet bring no pro�t for

merchants and advertisers and provide valueless data.6

Multiple (a mass 1 of) app markets coexist on the platform. We will analyse a rep-

resentative app market for expositional simplicity; the multiplicity of app markets only

serves to better motivate the �platform pivotality� assumption below, but is otherwise

inessential. In the representative app market, two apps compete for the platform's cus-

tomers.7 Consumers have a unit demand each, and derive utility vi when using app

i = 1, 2, with v1 = v, and v2 = v + ∆ if the app 2 provider sinks an investment cost

γ > 0 and v2 = v otherwise. The development cost γ is drawn from a smooth distribution

G(γ), with density g(γ) and increasing hazard rate G(·)/g(·) on R+, and it is privately

observed by the app 2 provider.

Welfare-detrimental platform behavior can occur only when there is a single superior

app, and this app is owned by an independent developer. Therefore, without loss of

insight for the equity question, we assume that only an independent provider can develop

a superior app. The platform in contrast may either own app 1 (the platform is then

hybrid), or be a pure platform (app 1 is also independently owned). The platform business

model is endogenous, and vertical integration takes place by introducing another inferior

app, which is able to drive app 1 out of the market.8

We consider a gatekeeping platform that charges consumers a �xed access price and

adopts an agency business model: third-party app providers pay a unit access fee a ≥ 0

6Alternatively, non-negative price constraints arise because of technical di�culties in operationalizing
negative prices � as in the following quote from the Stigler Report (p. 30) �It is possible that a digital
market has an equilibrium price that is negative; in other words, because of the value of target advertising,
the consumer's data is so valuable that the platform would pay for it. But the di�culty of making
micropayments might lead a platform to mark up this negative competitive price to zero.�

7There can be more than two apps, as when there is a fringe of previous generation (i.e., inferior)
apps. The case where there is only one app is captured in our notation below by v = 0.

8If both apps are owned by third-party providers, it is without loss of generality to assume that
only app 2 can innovate: since Bertrand competition among symmetric apps dissipates pro�ts, at most
one app innovates in a pure-strategy equilibrium. The results are unchanged if the platform vertically
integrates by making a take-it-or-leave-it takeover o�er to app 1's provider; making a takeover o�er to a
superior app instead is never pro�table for the platform.
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for distributing their apps and set their prices.9 Figure 1 depicts the (most interesting)

case in which the platform operates a hybrid marketplace and app 2 sells a superior

version.

p0

 v,  p1

 v  + ,  p2 a 

Figure 1: Two-sided market.

Let xi = 1 if consumers buy app i = 1, 2, and xi = 0 otherwise. To avoid the

standard �openess problem,� we assume that consumers buy an app when indi�erent

between doing so and not buying at all and, if v2 = v + ∆, they select the superior app

when indi�erent between the two apps. When instead v1 = v2, we make the standard

tie-breaking assumption that consumers select both apps with the same probability in

case of price equality (this assumption is not crucial to the results). In the following, p0

denotes the consumers' access price to the platform and pi the price of each app i. The

pro�t of app provider i = 1, 2 (or division if owned by the platform) is

πi ≡ xi(pi + b− a).

A pure-player platform's pro�t is

π0 = p0 + a(x1 + x2),

whilst a hybrid platform's pro�t can be written as the pro�t it would make as a pure

platform, plus the extra pro�t its app division makes if it captures the app market � i.e.,

it is given by π0 + π1.

Left unmonitored, the platform can, if it wants, make apps less attractive (e.g.,

through downlisting). It then chooses {δi ≥ 0}i=1,2 so that the value of app i for con-

sumers becomes vi − δi. Strict inequalities correspond to non-price foreclosure.10 In the

case of a hybrid platform, self-preferencing corresponds to policy {δ1 = 0, δ2 > 0}. We

will employ �non-price foreclosure� and �self-preferencing� indi�erently in the hybrid con-

text. The concept of �non-price foreclosure� is broader � to the extent that the hybrid

9Appendix B.2 shows that, provided ∆ > b, our insights are unchanged considering instead ad-valorem
access fees. The reason is that with an ad-valorem fee a pure-player platform can capture ∆, which the
superior app passes through to consumers, but cannot capture b. Therefore, if ∆ < b, vertical integration
combined with self-preferencing is always optimal.

10When the platform �nds it optimal to foreclose, it will reduce the attractiveness of a single app so
that the other app is selected by consumers. In practice this can be accomplished by downlisting the
foreclosed app. Hence, our large set of foreclosing options involves no loss of generality.
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platform won't handicap its own app � as it applies also to the pure-platform case. In

contrast, regulatory monitoring of equal access forces the platform to select δi = 0 for

i = 1, 2.

As summarized in Figure 2, the timing is as follows: (1) The access fee a is set, by the

platform or by regulation; (2) app 2 developer privately observes its development cost

γ ∼ G(·) and decides whether to introduce a superior version of its app; (3) the plat-

form decides whether to vertically integrate and to foreclose the third-party app(s); (4)

the platform and the apps simultaneously set prices {p0, p1, p2};11 �nally, (5) consumers

choose whether to patronize the platform and, if so, which app to purchase.

Figure 2: Timing.

The simultaneity of price choices may give rise to a multiplicity of pure-strategy

equilibria, as is familiar in Nash demand games � e.g., in the literature on tying (Choi and

Stefanadis, 2001, Carlton and Waldman, 2002). We will make the reasonable assumption

that the platform is �pivotal� for consumers' participation:

De�nition (platform pivotality). An equilibrium of the pricing subgame (stage (4)) ex-

hibits platform pivotality if a third-party app maximizes its pro�t taking the mass of

consumers present on the platform as given; that is, independent app providers do not

perceive themselves as pivotal for the consumers' decision of whether to join the platform.

With many app markets, the platform pivotality assumption is innocuous when the

platform faces a downward-sloping demand (as in Section 2.4.1) because the value and

price of an individual third-party app in one app market has a negligible impact on

consumers' overall utility from access to the platform. Unless otherwise stated, we will

focus on the following equilibria (insights are not much a�ected by this focus; Appendix

B.1 characterizes all equilibria):

De�nition (equilibrium). An equilibrium of the pricing subgame is a set of pure strategies

that (i) are undominated and (ii) satisfy platform pivotality.

The equilibrium pro�t of app i provider if there is no foreclosure is denoted by π∗i (a).

Let us introduce some further de�nitions:
11That a is set �rst is natural if this access fee is regulated. Under laissez-faire, the platform needs to

commit to a for some time to attract sellers (in reality, access fees charged by major digital platforms
are stable over time). Put di�erently, the timing allows the platform to squeeze a superior third-party
app, but not to hold it up. As standard tie breaking conditions, we suppose that in case of indi�erence,
app 2 decides to introduce the superior version, whereas the platform does not vertically integrate or
foreclose.
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De�nition (competitive neutrality). The access fee a is competitively neutral in a range

[a, ā] if, in this range, (i) the platform has no incentive to use non-price foreclosure (even

if it can), and (ii) the equilibrium pro�ts and the allocation {xi}i∈{1,2} are independent
of a over the range.

De�nition (fairness and squeeze). If the platform does not foreclose it, a superior app

receives its fair share of its contribution to the ecosystem if π∗2(a) = ∆ and it is squeezed

if π∗2(a) < ∆.

While at this stage the notions of �fair reward� and �squeeze� are only de�nitions, we

will show that the fair values of the access fee maximize social welfare.

De�nition (zero lower bounds). The app i's zero lower bound (ZLB) binds if p∗i = 0. The

core ZLB binds if p∗0 = 0.12

The remainder of this section is organized as follows. Section 2.2 characterizes the

subgame-perfect equilibrium for any level of the access fee. Section 2.3 characterizes and

contrasts privately and welfare optimal levels of the access fee. Extending the model

to heterogeneous consumers' valuations for the platform's core services and the superior

app's quality, Section 2.4 derives a Pigouvian rule for access fee regulation.

2.2 Impact of the access fee

2.2.1 Equilibrium prices in the absence of self-preferencing

We �rst assume that non-price foreclosure is prevented through regulatory monitoring.

Note that, in both cases of a pure and a hybrid platform, both apps have the same

opportunity cost of selling (a − b) and do not charge below this opportunity cost in

an equilibrium in undominated strategies, except an in-house app when constrained by

consumers' willingness to pay for it. When it sells a superior version, the non-pivotal

third-party app charges consumers a mark-up ∆ over the price of the inferior app, unless

it is constrained by consumers' willingness to pay. Therefore, in any subgame following

app 2's innovation, the unique equilibrium outcome (absent non-price foreclosure) takes

four con�gurations as a increases:

(1) Muted app competition. When the opportunity cost is negative (a − b < 0), app

1 cannot charge an app price p1 below 0 due to the app ZLB and therefore sets p∗1 = 0,

while app 2 is priced at p∗2 = ∆. The superior app does not feel the full competitive

pressure from app 1, and so makes supranormal pro�t (π∗2(a) = ∆ + (b − a) > ∆). The

consumers obtain surplus v > 0 and so p∗0 = v.

(2) Access fee neutrality. If the opportunity cost is non-negative (a − b ≥ 0), the

standard Bertrand equilibrium outcome in undominated strategies has p∗1 = a − b (the
12If app 2 introduces a superior version, p∗2 > 0 always holds in the basic model: a �superior app ZLB�

is never binding). This ZLB may bind in extensions of the basic model, for instance if apps adopt a
freemium business model, or the demand for a superior app is downward sloping (Section 2.4.2).
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app ZLB does not bind) and p∗2 = (a−b)+∆, so that π∗2(a) = ∆ (fair reward): A change in

the access fee increases one-for-one both apps' opportunity cost. Access fee pass-through

is feasible in our model as long as consumers keep purchasing the app; using the fact

that consumers are in equilibrium indi�erent between the two apps, p∗0 = v − (a − b),

and so it must be that a− b ≤ v. By making charging the consumer or app 2 for access

perfect substitutes, pass-through causes the access fee to be neutral in this region. The

neutrality region exhibits the familiar �see-saw property� of two-sided-market theory, in

which an increase in the merchant fee translates (in our case one-for-one) into a decrease

in the consumer fee.

(3) Superior app's squeeze. When a > b + v, an inferior third-party app is not

viable and the superior app can no longer apply mark-up ∆ over the opportunity cost:

p2 = (a − b) + ∆ > v + ∆. So, to sell to consumers on the platform it must lower its

mark-up and sell at p∗2 = v+∆. Because the consumers do not bene�t from apps, the core

ZLB is binding (p∗0 = 0) and the access fee is no longer neutral, as app 2 developer must

absorb its increase to keep customers. App 2 developer's margin is squeezed (π∗2(a) < ∆,

with π∗2(a) strictly decreasing in a and π∗2(b+v+∆) = 0), and the platform appropriates,

at least in part, the superior app's contribution to the ecosystem.

(4) Superior app's exit. When a > b+ v+ ∆, the superior app would have to sell at a

price below the fee paid to the platform minus the ancillary bene�t. It is then excluded

from the app market. Such price foreclosure bene�ts neither the gatekeeper nor app 2

developer.

Lemma 1 (retail prices in the absence of self-preferencing). Suppose that app 2

sells a superior version and the platform cannot use non-price instruments to foreclose.

Whether the platform is pure or hybrid, the equilibrium outcome is unique. Because

consumers are homogeneous, their surplus is extracted (p∗0 + p∗2 = v + ∆) and π∗0(a) +

π∗2(a) = b+ v + ∆ (and π∗1(a) = 0) for all a ≤ b+ v + ∆. Furthermore,

(1) when a < b:{
App ZLB: p∗1 = 0 and p∗2 = ∆,

Supranormal app pro�t: π∗2(a) = ∆ + (b− a) > ∆,

(2) when b ≤ a ≤ b+ v:{
Passthrough: p∗1 = a− b and p∗2 = p∗1 + ∆,

Fair reward: π∗2(a) = ∆,

(3) when b+ v < a ≤ b+ v + ∆:{
Core ZLB (p∗0 = 0): p∗2 = v + ∆ (and p∗1 = v in hybrid platform case),

Superior app's squeeze: π∗2(a) = b+ v + ∆− a < ∆,
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(4) when a > b+ v + ∆:{
Superior app's exit: p∗1 = v in hybrid platform case; π∗i (a) = 0∀i in pure platform case,

Price foreclosure: π∗2(a) = 0.

Proof of Lemma 1. Consider a pure or hybrid platform. Suppose that app 2 is viable

(a ≤ b + v + ∆), hence it serves consumers in equilibrium. Prices p1 above a − b ≥ 0

cannot be equilibrium prices. (a) Either the superior app is not constrained by users'

willingness to pay (p2 < v + ∆) and then p∗2 = p1 + ∆ by platform pivotality. The

consumers are indi�erent between the two apps and so app 1 could gain a − b > 0 by

slightly lowering its price. By this reasoning, the app ZLB is binding for a < b. (b)

Or, if the superior app is constrained by users' willingness to pay (p2 = v + ∆), then

p1 ≥ v for app 2 to win the market and so app 1 is out of the market. This is the case

if and only if a − b > v: Otherwise app 1 could charge p1 = a − b(+ε), take the market

and gain relative to the presumed equilibrium behavior. In this region of the access

fee, the in-house app's undominated price is p∗1 = v, because it ensures the ecosystem

viability if app 2 unexpectedly charges p2 > v + ∆. Similarly, if app 2 is not viable

(a > b + v + ∆), p∗1 = v because any lower price would reduce the hybrid platform's

chances of gaining more than the price foreclosure pro�t through the access fee if app 2

unexpectedly charges p2 ≤ v+∆. Conversely, prices p1 strictly below a−b are dominated

by price a− b irrespective of app 1 ownership for all a ≤ b+ v, because p1 < a− b would
make app 1 regret having won the consumer if app 2 charged an unexpectedly high price.

Finally, p∗0 = vi∗−p∗i∗ where i∗ ∈ {1, 2} is the app consumers patronize in equilibrium.

The same arguments imply that, if the app 2 provider does not introduce a superior

version (i.e., v1 = v2), perfect Bertrand competition in the app market (constrained by

the app ZLB) implies equilibrium prices p∗1 = p∗2 = max{a− b, 0} whenever the apps are
not constrained by consumers' willingness to pay (a− b ≤ v); for a > b + v, third-party

apps are not viable whereas a hybrid platform serves consumers at p∗1 = v � i.e., the

equilibrium prices are as in Lemma 1 with ∆ = 0.

Remark (the link between ECPR and the ZLBs). The equilibrium characterization in

Lemma 1 unveils a simple connection between the ZLBs and Baumol and Willig's ECPR

rule for a vertically integrated �rm providing access to a rival:

De�nition (ECPR level). The access fee is below (equal to, above) the Baumol-Willig

e�cient component pricing rule level if a is smaller than (equal to, higher than) the unit

pro�t, p1 + b, lost by the hybrid platform when a third-party app attracts a consumer.

Corollary 1 (ECPR). In equilibrium, the access fee is

� below the ECPR level (a < p∗1 − (−b)) if and only if the app ZLB binds (a < b);

� at the ECPR level (a = p∗1 − (−b)) if and only if no ZLB binds (b ≤ a ≤ b+ v);
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� above the ECPR level (a > p∗1− (−b)) if and only if the core ZLB binds (a > b+ v).

2.2.2 Platform business model and self-preferencing

Let us augment the platform's strategy space by letting it engage in non-price foreclosure

(the platform is left unmonitored), and consider its business model choice.

Proposition 1 (vertical integration and self-preferencing). The platform bene�ts

from vertical integration combined with self-preferencing if and only if a < b.

Proof of Proposition 1. First, we argue that the platform has no incentive to engage

in non-price foreclosure (δi > 0 for some i = 1, 2) when both apps are independent.

This is clearly the case if both apps have value v, as symmetric competition keeps prices

at the lowest possible level and reducing both apps' values to the same extent leaves

app prices unchanged but implies that the platform needs to reduce p0. If app 2 sells

a superior version, suppose without loss of generality that v2 − δ2 > v1 − δ1. If app 2

is not constrained by consumers' willingness to pay, an increase in δ2 has no impact on

consumer surplus from apps as it decreases the superior app's markup and its value for the

consumers by the same amount. In contrast, an increase in δ1 reduces app competition

and hurts the consumers, so the platform could reduce δ1 and raise p0 to the same extent

(keeping consumer membership constant), thereby increasing its pro�t. When app 2 is

constrained by consumers' willingness to pay, p∗0 = 0 and so the platform's pro�t equals

π∗0 = a for all (δ1, δ2).

Second, consider a hybrid platform. Without loss of generality, we can assume that

δ1 = 0 and either δ2 = 0 (no foreclosure) or δ2 = v2 (full foreclosure). Intuitively,

the platform's choice determines which among the in-house and third-party apps the

consumers will select. In the former case, making the third-party app worthless involves

no loss of generality. In the latter case, as seen above, picking δ2 > 0 does not bene�t

the platform. When foreclosing, the platform can achieve pro�t v + b � i.e., the value

it creates on a stand-alone basis. When not foreclosing, if the third-party app sells a

superior version, the platform makes pro�t π∗0(a) = v + min(a, b) if there is no squeeze

and more when there is a squeeze; if instead v2 = v, the platform makes pro�t π∗0(a) +

π∗1(a) = v + [min(a, b) + b]/2. Therefore, in either case, a hybrid platform engages in

self-preferencing if and only if a < b.

Finally, as seen in Section 2.2.1, app 1's ownership does not a�ect the prices that

consumers pay in the equilibrium without foreclosure. Hence, provided app 2 is viable,

vertical integration is pro�table if and only if the hybrid platform has incentives to engage

in self-preferencing � i.e., for all a < b. Note that the platform also �nds it optimal

to vertically integrate when app 2 is not viable � i.e., for all a > b + v (resp. a >

b+ v+ ∆) if v2 = v (resp. v2 = v+ ∆) � to avoid the Pareto-dominated price-foreclosure
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outcome.13

In a nutshell, for a < b (i.e., when the app ZLB binds), a hybrid platform does

not have enough skin in the game to want to give access to its rival. Then, vertical

integration enables the platform to reap the bene�t b−a from foreclosing the third-party

app provider. Without taking a stance on their desirability, we note that existing (GDPR,

DMA) and forthcoming regulations aim at restricting the use of data and thereby reduce

the ancillary bene�t b. Such a decrease in b reduces the incentive for self-preferencing,

keeping the access fee constant.

Extending the model to app-provider-speci�c ancillary bene�ts, Appendix B.3 shows

that the end of current arrangements under which the platform shares with its apps

their data would increase the incentive for self-preferencing, as this scenario reduces the

ancillary bene�t for the platform only conditional on a third-party app making a sale,

increasing its opportunity cost to let it serve consumers. Such a move would thus have to

be accompanied with increased regulatory monitoring and/or reduced regulatory pressure

on access-fee setting.

2.2.3 App development

The app 2 provider introduces a superior version of its app if and only if the extra-pro�t

it makes by o�ering a superior app covers its investment cost γ. Absent innovation, app

2 always makes zero pro�t, as either it is foreclosed or it engages in perfect Bertrand

competition with positive opportunity cost. Figure 3 depicts how the superior app's

pro�t varies with the access fee; the innovation is introduced whenever this pro�t exceeds

the investment cost.

Lemma 2 (innovation). The innovation always takes place when socially optimal if and

only if the access fee lies in the competitive neutrality region a ∈ [b, b + v], at which a

superior app receives its fair share of its contribution to the ecosystem.

Proof of Lemma 2. The app 2 provider introduces a superior version of its app if and

only if π∗2(a) ≥ γ and the platform has no incentive to foreclose it. Therefore:

� For a < b, the anticipation of foreclosure gives the app 2 provider no incentive to

innovate for any γ > 0.

� For a ∈ [b, b + v], the innovation takes place if and only if it is socially optimal �

i.e., ∆ ≥ γ.

13Alternatively, for a ∈ (b + v, b + v + ∆) this outcome can be avoided by a hybrid platform by
committing to innovation-contingent access fees or engaging in ex-post Pareto-improving renegotiation,
capping a at b + v if app 2 does not sell a superior version. In practice, this can be accomplished by
charging a lower fee to a third-party seller whose revenue does not exceed a certain threshold (b+ v+ ∆
in our model), as the major app stores actually do.
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Figure 3: Superior app's pro�t (gross of the development cost γ). The dashed line
represents the pro�t when self-preferencing is feasible and the full line the pro�t when it
is not.

� For a ∈ (b + v, b + v + ∆], a socially optimal innovation with development cost

γ ∈ (b+ v + ∆− a,∆] would not be undertaken.

� For a > b+ v + ∆, a superior app is not viable and so the app 2 provider does not

innovate for all γ > 0.

An independent developer's innovation creates social value ∆ while entailing a cost γ.

Therefore, the innovation has positive net value if and only if ∆ ≥ γ. As app 2 has private

incentives to innovate if and only if π∗2(a) ≥ γ, guaranteeing a third-party provider a fair

reward for its contribution to the ecosystem is needed to ensure the socially e�cient level

of innovation. By contrast, both the anticipation of price or non-price foreclosure and of

margin squeezes ine�ciently dampen a third-party developer's incentive to innovate.

2.3 Platform-optimal vs welfare-optimal access pricing

We de�ne social welfare as the sum of consumer net surplus and the �rms' pro�ts, net of

app 2 developer's cost of innovation.

Proposition 2 (optimal access fees).

(i) Pro�t-maximizing access fee. The platform's pro�t is maximized at a∗ ∈ (b+ v, b+

v + ∆), given by

a∗ = b+ v +
G(b+ v + ∆− a∗)
g(b+ v + ∆− a∗)

.

(ii) Welfare-optimal access fees. Social welfare is maximized for a ∈ [b, b+v], i.e. if and

only if a superior app receives a fair reward for its contribution to the ecosystem.
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Proof of Proposition 2. (i) No matter whether app 2 sells a superior version, for a < b

the platform makes pro�t v + b by vertically integrating and foreclosing app 2, which

coincides with its pro�t in the neutrality region a ∈ [b, b+ v] and in the price-foreclosure

region a > b+ v + ∆. For a ∈ (b+ v, b+ v + ∆), innovation takes place with probability

G(b + v + ∆ − a), in which case the platform gets a, else the platform gets the price-

foreclosure pro�t v+b through vertical integration. Hence, the platform's expected pro�t

is v + b+G(b+ v + ∆− a)[a− (v + b)], which is maximized at a∗ > b+ v characterized

above.

(ii) Consumer surplus is always extracted by the platform through the core price and,

as the platform can always ensure the ecosystem viability through vertical integration,

ex-post social welfare is maximized whenever there is no price (a > b + v + ∆) or non-

price foreclosure (a < b) of a superior app. While margin squeeze, occurring for b + v <

a < b + v + ∆, has a purely redistributional e�ect conditional on a superior app being

introduced, it reduces welfare by yielding suboptimal investments (Lemma 2). As a result,

ex-ante social welfare is maximized if and only if a ∈ [b, b + v], which correspond to the

levels of the access fee at which a superior app developer receives its fair reward (Lemma

1).

A squeezed third-party app provider has a suboptimal incentive to develop its app.

The impact of the access fee on the richness of the ecosystem is accounted for by the

platform, but incompletely so. As a result, an ine�ciently low amount of innovation

takes place under laissez-faire. Capping, by regulation, the access fee to any level in the

competitive neutrality region (i.e., a ∈ [b, b + v]) is needed to maximize social welfare.

Considering independent developers' innovation incentives thus unveils a natural link

between fair access pricing and welfare maximization.

Remark (is there a trade-o� between consumer surplus and innovation?). The call for

third-party developer reward ∆ was made from the point of view of e�ciency/welfare

maximization. A consumer standard might seem to lead to a social demand for some

�taxation� of innovation in the form of a squeeze on app pro�ts, provided that the increase

in access fee is passed through to consumers via a reduction in the core price. But there

is here no trade-o� between consumer and innovator surplus because there is no pass

through (the squeeze region coincides with the core ZLB one); and so the consumer

standard leads to no speci�c conclusion on the innovation front.

This conclusion is robust to platform or app store competition (Section 4), because

the core ZLB again binds and so there is no pass-through to consumers. Conversely, by

raising the price of the superior app, high access fees can trigger an excessive substitution

toward the inferior app or reduce consumer participation on the platform, resulting in

consumer harm (Section 2.4). As we shall see, in all these environments there is no

competitive neutrality region and so the unique welfare-maximizing access fee is â = b.

84



Remark (monitoring of self-preferencing and excessive innovation). The welfare-optimal

access fees are a ∈ [b, b + v] even if self-preferencing is prevented through regulatory

monitoring. In this case, the supranormal pro�t made by a superior third-party app

implies that it has socially excessive incentives to innovate for a < b: Because as app 1

is selected by one half of consumers when app 2 does not introduce the superior version,

a socially ine�cient innovation with development cost γ ∈ (∆,∆ + (b − a)/2] would be

introduced.

One may in general be suspicious of concerns about excessive innovation. Yet, this

possibility is natural in the digital economy, precisely because of the existence of an

ancillary bene�t b > 0. A me-too innovation in the app segment, bringing along a small

improvement ∆ = ε in app quality, allows the innovator to corner the app market.14

Remark (Physical goods and devices). Our analysis also applies to platforms hosting

sellers of physical products (e.g., e-commerce platforms such as Amazon and eBay) or

services (e.g., OTAs such as Booking and Expedia) that entail positive marginal costs

ca. With ancillary bene�t b† > 0, and letting b ≡ b† − ca, the region where a superior

app makes supranormal pro�ts (if the platform is a pure-player or self-preferencing is

monitored) or is foreclosed is empty whenever the adjusted ancillary bene�t is negative

(b < 0). The platform-optimal level of the access fee is still a∗, which strictly exceeds the

welfare-optimal levels a ∈ [max{b, 0}, b+ v].

The analysis also generalizes to accommodate devices (smartphone, laptop, or game

console) needed to connect to the platform. Assume that the device brings stand-alone

value vd, the same for all consumers,15 and let cd denote its production cost. If the device

is �cheap� relative to its stand-alone value, that is if vd ≥ cd, consumers own it regardless

of whether there is a competitive original equipment manufacturers (OEM) sector or a

monopoly platform vertically integrated into device manufacturing, and so the foregoing

analysis is literally unchanged.16

In the case of a �costly� device, i.e. if vd < cd, the results depend on whether the plat-

form is vertically integrated into device manufacturing (or, equivalently, it can subsidize

device manufacturers). If the device (e.g., an Android-powered smartphone) is manufac-

tured by a competitive OEM industry, it is sold at cost (i.e., at price cd), implying that

consumer surplus from the apps must exceed cd−vd > 0. For that reason, the equilibrium

cannot be in the squeeze region. Conversely, when the device is produced by the platform

(e.g., iPhone), the core ZLB can be circumvented by subsidizing the device: the platform

14Similarly, assuming that entry can occur at value proposition v (no innovation relative to the current
generation), me-too entry will occur for a < b as long as the entry cost is smaller than (b− a)/n, where
n is the number of active apps: The ancillary bene�t is thus dissipated.

15For example smartphones can be used for �non-gatekeeping purposes� such as taking pictures and
making calls; likewise desktops have other usages than supporting services intermediated by a gatekeeper.

16This is the case also if vd represents the value of platform's core services (independently of app
consumption), as these are digital goods and so cd = 0 < vd.
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can squeeze a superior app and bundle device and app store at a price vd. As a result,

allowing vertical integration into device manufacturing and (at least �some�) squeeze may

be necessary for the ecosystem viability (see Appendix B.4 for the complete analysis).17

2.4 Consumer heterogeneity and Pigouvian regulation

This section allows consumers to di�er in the overall demand for the platform (Section

2.4.1) or in their demand for a superior app (Section 2.4.2).18 Beside showing the ro-

bustness of our insights, these extensions introduce a meaningful distinction between the

social and the consumer welfare standard, and derive a Pigouvian principle that underlies

optimal access fee regulation in more general environments. Concretely, we show that

the regulated access fee should coincide with the ancillary bene�t associated with app

distribution:

â = b.

The reason why this can be interpreted as the Pigouvian level of the access fee is that

b represents an unpriced externality that is internalized when app suppliers are charged

â = b. The proofs of the results of this section are omitted for brevity and can be found

in Appendix A.

2.4.1 Elastic platform demand

Assume that consumers directly derive utility from the core service, independently of

apps. Their willingness to pay for the core service, vc, is heterogeneous, has wide support

(in R), and is distributed according to a smooth cdf F (vc) with density f(vc) and decreas-

ing (inverse) hazard rate ρ(vc) ≡ [1−F (vc)]/f(vc). A negative value of vc corresponds to

a learning or an opportunity cost.

If the platform is hybrid and there is no superior app (or if it is foreclosed), both the

core and app ZLBs bind (p∗0 = p∗1 = 0) whenever

arg max
{p0+p1}

(p0 + p1 + b)[1− F (p0 + p1 − v)] ≤ 0 ⇐⇒ b ≥ ρ(−v),

because the cuto� is given by v∗c + v = p0 + p1. As this is a novel feature compared

with the foregoing analysis (where at most one ZLB bound), we restrict attention to this

region of parameters:

Proposition 3 (elastic platform demand). Augment the basic model by adding a

consumer utility from core services, vc, distributed according to a smooth cdf F (vc) with

17The possibility that some squeeze be needed to ensure viability applies not only to the case of costly
physical devices but also when entry costs in the core segment are very large, and so the viability of the
platform is not a foregone conclusion: see Appendix B.5.

18If consumers di�er only in the ancillary bene�t they provide to the app they patronize, the foregoing
analysis remains unchanged, with b reinterpreted as the average per-consumer bene�t.
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density f(vc) in R, and decreasing (inverse) hazard rate ρ(vc) ≡ [1−F (vc)]/f(vc). Suppose

that b ≥ ρ(−v), so that the core and app ZLB both bind (p∗0 = p∗1 = 0) in the hybrid

platform case when a superior app does not exist or is foreclosed.

(i) The platform engages in vertical integration combined with self-preferencing if and

only if a < b.

(ii) Consumer surplus and social welfare are maximized at â = b. In contrast, under

laissez-faire, a∗ ≥ â.

For all a ≤ b, the unique equilibrium features the same app prices of the basic model,

so that consumers are indi�erent between the two apps, no matter whether app 2 sells a

superior version. Therefore, letting a third-party app serve consumers does not increase

their participation but reduces the platform's unit revenue for all a < b. As a result,

the platform makes strictly more by vertically integrating and foreclosing any third-party

app, which crowds out innovation incentives. Conversely, at â = b the platform has no

incentive to foreclose and so a third-party app innovates if and only if ∆[1−F (−v)] ≥ γ

� i.e., whenever it is socially optimal taking as given consumers' participation on the

platform at the foreclosure level (a non-pivotal innovative app cannot expand consumer

participation, as it would never charge p2 < ∆).

For a > b, a continuum of equilibria that satisfy conditions (i)-(ii) of our equilibrium

de�nition exist in the hybrid platform case. In particular, there exists a strictly increasing

function p̄(a), with p̄(b) = 0 and p̄(a) < a− b for a > b, such that for any p1 ∈ [0, p̄(a)],

{p1, p
∗
2 = p1 + ∆} is an equilibrium whenever p2 ≤ v2 = v + ∆; the core ZLB binds

(p∗0 = 0) in all equilibria.19Yet, any of these equilibria yields strictly lower social welfare

relative to the equilibrium emerging for â = b: Either p1 = 0 and so a superior third-party

app's margin is squeezed (p∗2 + b− a = ∆ + b− a < ∆ for all a > b), which bene�ts the

platform (hence, a∗ > â) but implies ine�ciently low innovation incentives; or app prices

are increasing in the access fee and, as the binding core ZLB prevents such price increases

to be o�set by a lower consumer access price, also consumer participation is ine�ciently

reduced. In the latter case, also consumer surplus is uniquely maximized at â = b.

Remark (core ZLB and the rich ecosystem argument). The platform's incentive to pro-

vide a rich ecosystem rather than extract the business users' surpluses through squeezes

and self-preferencing depends on whether, at the margin, the platform can monetize the

ecosystem on the consumer side. The core ZLB is a simple and robust reason why such

19This is because the platform may want to set app prices p1 that would be �too low� (dominated)
from the point of view of the narrowly-construed app-market-i pro�t, as a low app price attracts more
consumers to the platform. Thus, the concept of undominated strategy must be interpreted at the multi-
product level for the hybrid platform, and it here fails to select a unique equilibrium. Such below-cost
pricing would not emerge in equilibrium if the inferior app were independently owned, and it implies
that app 2 is not viable if it does not sell a superior version.
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monetization may be infeasible.20 One might argue that platforms can break the core

ZLB constraint by o�ering free software and services (Amelio and Jullien, 2012). Yet,

if raising quality of service comes at an increasing cost, there is only partial relaxation

of the constraint. Moreover, bundling may not relax the core ZLB at all, as an inferior

in-house app commands a zero price regardless, and so it makes no di�erence whether it

is bundled with the core or marketed separately.

2.4.2 Elastic demand for the superior app

This section introduces heterogeneity with respect to the perceived extra quality of a

superior app.21

Proposition 4 (elastic demand for the superior app). Suppose that consumers have

heterogeneous valuations ∆ for the extra value brought about by a superior app (distributed

according to a smooth cdf H(∆) with support R+ and a decreasing inverse hazard rate).

The platform engages in vertical integration combined with self-preferencing if and only

if a < b. Consumer surplus and social welfare are uniquely maximized at â = b < a∗.

By encouraging an excessive consumption of the in-house app, a hybrid platform's

below-opportunity-cost pricing in the competitive segment, which emerges in the unique

Nash equilibrium for all a > b,22 harms both consumers and the superior third-party app

provider, ine�ciently weakening innovation incentives. As a result, optimal access fee

regulation must follow the Pigouvian principle.23

20But it is not the only reason; suppose, e.g., that, in contrast with our speci�cation, the inframarginal
consumers value the app store more that the marginal ones. Suppose consumers get utility from two
services: a non-platform one (say, pictures and calls for an iPhone) and, for a subset of them only, the
app store. Then, a marginal improvement in app store quality does not induce the platform to increase
its price on the device, as this improvement is valued only by inframarginal users. There is de facto a
lower bound, with similar implications as a core ZLB, but it is not 0. This second reason for the absence
of pass-through is reminiscent of Spence's (1975) observation that a monopolist's incentive to (over or
under) supply quality depends on the relationship between the marginal and the average consumer's
willingness to pay for quality, where �quality� in our context can be understood as �low superior app's
price�.

21With a continuum of app markets, we assume that for a given consumer ∆ is the same across app
markets.

22The mechanism is similar to the one at play in Chen and Rey (2012), who provide a rationale for
loss leading in the retailing industry. By pricing the competitive good (that is, the in-house app) below
cost, and raising the price for the monopolized good (that is, consumers' access price) accordingly, the
platform: (i) maintains the total price charged to consumers with low (extra-) willingness to pay for the
superior app (corresponding to one-stop shoppers in Chen-Rey), who buy the in-house app; (ii) increases
the margin earned on those with higher willingness to pay, who buy the superior app (Chen-Rey's multi-
stop shoppers) in the monopolized segment; and (iii) induces the superior app to reduce its price (hence,
squeezes its margin). By contrast, a third-party seller would price app 1 above the opportunity cost. This
implies that the platform always has an incentive to vertically integrate in order to exert competitive
pressure on the superior app.

23Unlike in the previous versions of the model, here this result would hold even if the superior third-
party app pre-exists the access fee policy; a lower access fee would instead be socially optimal if ver-
tical integration is not an option or self-preferencing can be monitored, so as to further reduce double
marginalization and spur innovation.
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3 Implementation of the Pigouvian rule

Our analysis, which calls for Pigouvian regulation (â = b), posits a representative app

market.24 Appendix B.1 shows that the theory easily generalizes to an arbitrary number

of heterogeneous app markets: Letting the ancillary bene�t, the inferior app value and

the competitive advantage of the superior app in market k be denoted bk, vk, and ∆k,

respectively, the platform and welfare optimal access fees in each market k are25

ak∗ = bk + vk +
Gk(bk + vk + ∆k − ak∗)
gk(bk + vk + ∆k − ak∗)

> âk = bk,

with Gk(·) and gk(·) denoting the cdf and pdf of the development cost γk in market k.

As is the case for optimal taxes in public �nance, the theoretical benchmark � here the

ancillary bene�t obtained when the app acquires a customer � must be supplemented

with an empirical methodology to measure the relevant data. A weak spot of the DMA

is its limited guidance regarding both the theoretical benchmark and its implementation.

It contains broadly scripted conditions26 and alludes to FRAND (Fair, Reasonable and

Non-Discriminatory) access fees. To go beyond such general statements, the regulator

may either engage in information collection or elicit this information from the parties.

In the �rst approach, the regulator estimates the ancillary bene�t b or the existence

of an �unfair downlisting� (which requires measuring ∆). Measuring the ancillary bene�t

is the path taken in the EU for capping the merchant fees for card payments. The

investigation of unfair downlisting (self-preferencing) has been undertaken in a few recent

academic papers on Amazon's vertical integration.27 Note that the detection of unfair

downlisting speaks to the self-preferencing question, but does not address the excessive-

fees one.

The heterogeneity of app markets however hinders either endeavor. For instance, app

categories di�er substantially in terms of the ancillary bene�t their distribution generates:

there are data-poor and data-rich markets � e.g., social media and food delivery apps

24Or, equivalently, a mass 1 of ex-ante identical app markets k ∈ [0, 1], with the development cost γk
being i.i.d. across markets. Indeed, by the law of large numbers, the probability G(π∗2) with which app
2 innovates in the representative app market (almost surely) equals the fraction of markets where the
innovation is introduced, implying that expected pro�ts and welfare are as in the basic model.

25Even under laissez-faire, the platform may not �nely tailor the access fee to the speci�c app market
(as we will see, an exception to this rule is search or display advertising). This is for at least two
reasons. The �rst is the complexity cost: The platform would have to de�ne individual app markets and
estimate the pro�t-maximizing fee in each of them. The second is related to commitment: a very-�ne-
grained policy may discourage innovation in the app market (or equivalently the porting of apps to the
particular platform). In such circumstances, the platform may prefer a uniform policy (such as the app
stores' familiar 30% cut) to a �ne-grained one. But, in the class of uniform fees, it is still the case that
the platform's optimal fee exceeds the socially optimal one.

26E.g., �The gatekeeper shall not engage in any behaviour that undermines e�ective compliance with
the obligations of Articles 5, 6 and 7� (Article 13(4)).

27See Farronato et al. (2023), Lee-Musol� (2024), and Waldfogel (2024) for recent studies, and Etro
(2024) for a survey of some earlier studies.
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sell much more personal data to third-party advertisers than videoconferencing apps.28

The industry has private information about these values that is hardly available to the

regulator. The alternative is to elicit the value of the bene�t b from the industry, or

possibly combine both approaches. This section explores these paths.

3.1 Eliciting the information from the platform

We �rst consider an elicitation of ancillary bene�ts from the platform. To examine how

the regulator's limited knowledge of market-speci�c ancillary bene�ts a�ects access fee

regulation in the simplest possible model, we consider the best-case scenario in which the

regulator knows their cumulative distribution K(b) in the population of app markets. A

necessary condition for the Pigouvian access fee to be implemented in all markets is that

the distribution of (observed) access fees be equal to the distribution of bene�ts.

Proposition 5 (impossibility of elicitation from a hybrid platform). Suppose the

regulator knows the distribution K(b) of ancillary bene�ts and lets the platform choose

(ak)k subject to the constraint that the distribution of access fees mimics that of bene�ts

(i.e., follows K(a)). Then, if self-preferencing cannot be monitored, setting ak = bk for

all k is not incentive-compatible for a hybrid platform.

Proof of Proposition 5. Take two markets k′ and k′′ such that vk
′ ≤ bk

′′ − bk′ < vk
′
+ ∆k′ .

If the platform sets ak = bk for k ∈ {k′, k′′}, in equilibrium it obtains pro�t vk + bk

from each of these markets: it obtains bk from either the access fee or its in-house app

distribution, and appropriates consumer net value from this app market, vk, through

p0. By setting instead ak
′

= bk
′′
and ak

′′
= bk

′
, and foreclosing the third-party app in

market k′′, the hybrid platform still obtains pro�t vk
′′

+ bk
′′
in the higher-b market (i.e.,

consumer net value plus bene�t from in-house app distribution in market k′′), but now

makes a larger pro�t ak
′

= bk
′′
> bk

′
+ vk

′
from the lower-b market with probability

Gk′(vk
′
+ ∆k′ + bk

′ − bk′′) > 0, because in market k′ app prices are in the squeeze region

if app 2 innovates.

If self-preferencing cannot be monitored, the Pigouvian rule is not implementable in all

markets even if the regulator knows the distribution of b, and so can require that a and b

have the same distribution K(·).29 The reason is that, rather than charging ak = bk in all

markets, a hybrid platform can pro�tably charge higher fees in markets where b is lower,

so as to squeeze superior third-party developers' margins in these markets, and foreclose

28See https://www.pcloud.com/it/invasive-apps.
29Whether the regulator observes (vk,∆k) or not is immaterial for Proposition 5. Note also that

the impossibility result holds a fortiori if the regulator sets a global access fee cap, which would be a
less stringent regulation. If vertical integration is not an option, or under monitoring of foreclosure,
the Pigouvian rule can instead be implemented by delegating fee setting to the platform under the
constraint that the distributions of a and b be the same; but the assumption that the regulator knows
the distribution of ancillary bene�ts is a strong one.
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independent providers in markets where b is higher, where it is constrained to set lower

fees, which allows it not to lose pro�t in these markets. Thus, under no monitoring of

self-preferencing, market-speci�c fees cannot be enforced under asymmetric information,

and the regulator faces a trade-o� between preventing foreclosure of providers in high-b

markets and allowing margin squeeze in low-b ones, implying that innovation incentives

are always ine�ciently dampened.

Remark (o�-path measurement and appeals). Measuring b systematically to overcome

this impossibility result would imply considerable costs and delays. At best one can allow

appeals that hopefully will not be frequent if the incentive scheme is designed properly.

Suppose that the platform chooses the access conditions {ak, δk2} (of which the regulator

observes only ak) and, after prices are set, a superior third-party app chooses whether to

appeal �against a high access fee� (an inferior app 2 has nothing to gain from an appeal).

In this appeal procedure, the authority observes a noisy, but unbiased, measure b̃k of the

ancillary bene�t, with cdf R(b̃k) such that
∫
R b̃

kdR(b̃k) = bk. If ak > b̃k, then the access

fee is assessed to be unfair, and the defendant (the platform) must pay a �ne τ(ak − b̃k)
(with τ > 0) to the plainti� (the third-party app); and vice versa if ak ≤ b̃k.

The outcome of the appeal procedure interferes neither with the platform's choice of

whether to foreclose the third-party app, nor with prices chosen by the �rms before the

appeal. This implies that the third-party app will appeal whenever
∫
R τ(ak− b̃k)dR(b̃k) >

0⇔ ak > bk. So if τ ≥ 1, the platform does not gain from in�ating the access fee beyond

bk. The possibility to levy su�ciently large �nes to the platform if it loses the appeal

also discourages it from building a reputation for engaging in foreclosure after being

challenged by an app: see Appendix B.6 for a detailed analysis.

3.2 Eliciting the information from business users

Section 3.1's impossibility result hinged on the assumption that fee setting is delegated

to the platform. We now reverse the roles in access fee setting. Section 3.2.1 argues that

an elicitation from third-party sellers is the norm for ad-supported platforms that award

ad-slots through auctions, and shows that our analysis extends to display and search

advertising. Building on these insights, Section 3.2.2 explores elicitation from third-party

apps in our app store model.

3.2.1 Elicitation through auctions: Ad-supported platforms

When analyzing ad-supported media and services, one should think of ads as giving

merchants access to the consumer. In this respect, Facebook or Google Search are not

that di�erent from Amazon or Booking. Our �app providers� can be third-party sellers

advertising their products on the platform � e.g., display advertising on social media

platforms (Facebook, TikTok) or search advertising on search engines (Google, Microsoft
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Bing). An interesting feature is that the access fee, a, is here elicited from business users

through an ad-auction rather than set by a platform or a regulator.

Display and search advertising can thus be modeled by slightly extending our basic

setting. Consider N identical markets, indexed by k = 1, . . . , N , each comprising two

sellers whose product values are as in the basic model, and a unit mass of consumers.

Each consumer is interested in only one product category30 � i.e., derives values (vk
∗

1 , v
k∗
2 )

from the products in market k∗ and no value from products in other markets � which is

unknown to the �rms and possibly to the consumer as well: The platform showing ads

(in the case of display advertising) and also the consumer conducting the search (in the

case of search advertising) know only that the consideration set includes N markets, but

cannot identify the desired product k∗ prior to the consumer accessing the platform.

The timing goes as follows: (1) The platform commits to displaying consumers a

number m of ad-slots; (2) seller 2 in each market decides whether to sink a cost γ

to introduce a superior product (investment decisions are publicly observed); (3) slots

are auctioned o� by the platform through a uniform price auction (which ensures the

Vickrey-Clarke-Groves outcome): the m highest bidders are selected and pay the highest

losing bid per-click, hereafter a(m); (4) the platform can engage in (vertical integration

combined with) self-preferencing � i.e., as in the basic model, it can reduce consumers'

perceived value of any third-party product; (5) the platform and the displayed sellers set

their product prices; and (6) consumers observe their valuation and the prices of the m

displayed products and decide whether to patronize the platform and which products to

purchase � hence, each click leads to a sale.31

Note that imposing a reserve price equal to the platform-optimal access fee a∗ in

Proposition 2 would allow the platform to directly replicate the laissez-faire outcome

of the basic model: even when the number of slots is not restricted (i.e., the platform

displays all sellers who pay the reserve price), only superior sellers are willing to pay

a∗ ∈ (v+b, v+b+∆) per-sale (therefore, they are able to charge consumers the monopoly

price p∗2 = v + ∆).

Even in the absence of reserve prices, however, the platform can squeeze innovative

sellers by restricting the number of slots, as in Prat and Valletti (2022).32 To see this,

let n ∈ {0, ..., N} denote the number of sellers that introduce the superior version. If

m < n, competition for ad-slots among superior sellers yields a(m) = b + v + ∆, and

so they cannot recoup their investment cost. As a result, for all m < N the unique

symmetric equilibrium of the investment subgame is in mixed strategies: each seller 2 is

30The results also hold if each consumer is interested in all N markets.
31Our results hold irrespective of whether the pool of displayed sellers is common knowledge at the

pricing stage, and immediately extend to any constant click-through and conversion rates.
32See also Ichihashi and Smolin (2024) for a rationing of ad-slots that is contingent on prices o�ered

by sellers, and Janssen et al. (2024) for the assignment of products to sponsored positions and the
obfuscation of the organic positions' informational content.
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indi�erent and invests with probability ρ(m), increasing in m. By contrast, for m = N

any superior seller ensures a slot by outbidding inferior ones, who are willing to bid up to

a(m) = b + v per-sale for a slot. This outcome yields a fair reward (each superior seller

gets ∆ per consumer, because p∗2 = v + ∆ when a = b + v), and so ensures the socially

e�cient level of innovation.33 Yet, the platform might gain strictly more by setting some

m∗ < N : doing so implies that with some probability m∗ < n and so all superior sellers

are fully squeezed; this intensive margin gain may o�set the extensive margin loss from

not showing to some consumers their desired product. The following result is proved in

Appendix A:

Proposition 6 (ad-auctions). Any superior seller receives its fair share for its contri-

bution to the ecosystem if a slot is auctioned o� without reserve price for each market

(m̂ = N). In contrast, the platform may �nd it pro�table to restrict the number of

available slots (i.e., it auctions m∗ ≤ N slots).

Note that while the Pigouvian outcome is achieved for m̂ = N , the resulting access fee

is now a = v + b rather than b. This is because seller competition is now for the market

rather than in the market. As a result, both under laissez faire and in the socially optimal

outcome, all displayed sellers charge the monopoly price (p∗i = vi) and so the core ZLB

binds (p∗0 = 0), as is typically the case for ad-supported platforms.

In advertising markets, the challenge for regulators is not to measure b in order to

identify excessive access fees, but rather to ensure that gatekeepers do not design mecha-

nisms that allow them to squeeze third-party sellers in similar ways � e.g., through reserve

prices, �xed fees in managed ad campaigns (see Bergemann et al., 2024), or by restricting

the number of ad slots.

3.2.2 Access fee setting by third-party apps

When the number of slots is not restricted, as is the case for app stores, the challenge

for an elicitation from third-party sellers is that they want the lowest possible access

fee (a = 0); we saw that for digital goods the absence of access fee encourages the

development of me-too apps, whose main purpose is to steal value from existing apps and

which create little value for the consumer. To prevent this possibility, the regulator may

refrain from monitoring foreclosure.

Let us go back to the app store model with possibly heterogeneous app markets

indexed by k, and examine access fee setting by third-party apps subject to the threat

33This outcome indeed arises for all m ∈ [N, 2N), also if b < 0 (provided the total value b + v is
positive). In contrast, not restricting at all the number of slots (m ≥ 2N) implies no competition for
slots, hence a(m) = 0. Then, as in the basic model, the platform has incentives to vertically integrate and
foreclose superior sellers if b > 0 (socially excessive innovation would instead prevail in the pure-player
platform case or if foreclosure is monitored). Similarly, in the case of organic search, where de facto
a = 0, the search engine has incentive to engage in self-preferencing in markets where it is present as a
competitor to third-parties and b > 0, as, e.g., in the Google Shopping and Google Flight cases.
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of foreclosure. In each market k, after each independent app i proposes a unit access

fee aki , app 2 decides whether to innovate. Then, the (pure or hybrid) platform selects

{δki }i=1,2 � i.e., it decides to give access to no, one or the two app providers in each market.

Finally, the platform and the (non foreclosed) app providers set their prices {p0, p
k
1, p

k
2},

and consumers make their consumption choice.

Proposition 7 (information-light implementation). The welfare-optimal outcome

is implemented in all markets by letting all third-party app providers pick their access fee

subject to the threat of foreclosure.

Proof of Proposition 7. We establish this result separately for the two cases of a hybrid

and a pure platform:

(i) Hybrid platform: When the platform is hybrid and can engage in self-preferencing,

app 2 always makes no pro�t if it does not sell a superior version. As a result, the

socially optimal level of innovation obtains if and only if πk∗2 = ∆k with the innovation

(fair reward). This outcome can be attained by just eliciting the access fee from the

third-party app in each app market k: If foreclosure is not monitored, then choosing

ak ∈
[
bk, bk + vk

]
is optimal for the third-party app, as it is foreclosed for ak < bk and

squeezed for ak > b+ vk.

(ii) Pure platform: Let the two third-party apps in market k propose access fees ak1 and

ak2. We claim that ak1 = ak2 = vk+bk: Any inferior app knows that it can win consumers if

and only if it is the more rewarding app from the platform's standpoint; it cannot a�ord

paying more than vk + bk, though. A superior app must then bid vk + bk as well, as

otherwise it would be foreclosed by the platform, which would bring it a higher access

fee. The platform lets both apps operate, and app prices are pki = vki for all i = 1, 2

and k (hence, the core ZLB binds). Hence, any inferior app makes zero pro�t, whilst a

superior app obtains its fair reward (πk∗2 = vk + ∆k + bk − (vk + bk) = ∆k), which yields

the socially e�cient level of innovation. �

Although this result is encouraging, it relies on the platform maximizing its pro�t in

each app market. Yet, the fact that platforms are engaged in a variety of B2B relationships

across apps and across time gives them the possibility to build a reputation for toughness,

or, put di�erently, to extract higher access fees through predation (by adopting behaviors

that do not maximize their short-term pro�t). This may be the case if the superior app

determines the access fee, as in the present model. The platform may downlist this app

when the latter o�ers a socially optimal access fee but refuses to �self-squeeze� (o�er above

vk + bk in our model). Such downlisting would �teach a lesson� to the app developer or,

more to the point, its colleagues. How can such predation be prevented? One possibility

is to ensure that the access fee is not determined by a superior app, so the latter cannot be

pressured to self-squeeze. This is the case in the auction model of Section 3.2.1, provided

that the platform does not unduly restrict the number of slots so as to induce competition
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for the market among superior providers in distinct app markets. Another approach is

to introduce an appeal procedure, similar to the Remark in Section 3.1, to ascertain an

�unfair downlisting� (which requires measuring ∆ rather than b).

4 Contested bottlenecks

Does platform competition eliminate the scope for access fee regulation? To answer this

question, a prior query is �does platform competition promote multi-homing?�; for, it is

well known that consumer single-homing on an intermediary provides this intermediary

with the monopoly of access to the consumer, regardless of whether it had to compete

with other intermediaries to enlist the consumer. Accordingly, the intermediary is a

�gatekeeper� or a �bottleneck� pursuant to acquiring the consumer, and can sell access to

this consumer at a monopoly price (a∗ in the basic model), with the negative consequences

that we described earlier. On the other hand, whether a platform captures single-homing

consumers could depend on the fee a, high fees potentially inducing high app prices; so

we need to look into the mechanics of competition to become the bottleneck.

Even in the presence of competition among several intermediaries, consumer multi-

homing may not emerge for at least two reasons: (a) the intermediary is associated with a

costly device (few people have both an iPhone and a Samsung), and (b) habit formation

and familiarity imply that consumers may multi-home in membership but single-home

in usage (most consumers use solely Google search even though also Bing is available on

any browser, or systematically consult Booking even though they have as easy an access

to Expedia).

In this section, we assume that independent apps multi-home (most popular third-

party apps are available on both Apple's and Google's app stores: Bresnahan et al., 2015).

By convention and to illustrate the two polar cases, we talk about �competing platforms�

when consumers single-home (Section 4.1) and �competing app stores� when consumers

multi-home on rival intermediaries (Section 4.2), as envisioned by the DMA (for expo-

sitional simplicity, we consider a representative app market as in the basic model). The

proofs of the results of this section are relegated to Appendix A.

4.1 Platform competition

Consider N ≥ 2 (symmetric) competing platforms, indexed by j (Figure 4). In the

representative app market, each platform may own an inferior app (valued v1 = v by

consumers); app 2 multi-homes on all platforms, and is valued v2 ∈ {v, v + ∆} � i.e.,

sinking the development cost γ allows it introduce the superior version of its app on

all platforms. Let U j ≡ uj − pj0 denote consumers' net value from access to platform

j's ecosystem, where uj ≡ max{v1 − pj1, v2 − pj2, 0}, and {pj0, p
j
1, p

j
2} are consumers'
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access price and app i = 1, 2 prices on platform j, respectively. To analyse platform

competition in the starkest way, we consider perfect competition. That is, we suppose

that all consumers patronize only the platform o�ering the highest net value U j. As a

tie-breaking condition, we assume that platforms o�ering the same utility split equally

the demand, though this does not a�ect our results.

The timing is the same as with a single platform: (1) The access fees {aj} are set

either by the platforms or by regulation; (2) app 2 decides whether to introduce the

superior version; (3) the platforms decide whether to vertically integrate and select the

apps' realized quality advantage {δj1, δ
j
2}; (4) the platforms and the apps select their

prices {pj0, p
j
1} and pj2;

34 (5) consumers choose their platform, and their app on that

platform. We can skip the foreclosure decision (the choice of {δji }i=1,2) because under

perfect platform competition, a platform has no incentive to degrade its ecosystem by

foreclosing a superior app even if aj < b.

Platform A

Consumers

Platform A's inferior app

Platform B

3rd party superior app

Platform B's inferior app

Figure 4: Competing platforms (j = A,B) under consumer single-homing.

In equilibrium, all platforms vertically integrate and o�er the same net utility U∗ = v

to consumers, and the core ZLB binds. The presence of platform competition forces

platforms to o�er the inferior app at zero even if aj > b, which is only possible under

vertical integration. Indeed, because in equilibrium consumers are indi�erent between

the two apps, any candidate equilibrium pj1 > 0 would give room for a platform j to

vertically integrate and undercut its rivals. Then, a superior third-party app optimally

sets price pj2 = ∆ and is squeezed if aj > b for all j. The analysis is similar to that with a

monopoly platform in which the core ZLB binds; indeed, it is optimal for each platform

to squeeze a superior app. The only di�erence with the monopoly platform case is a

transfer of value v from the platform to the consumers.

Proposition 8 (platform competition). Consider N ≥ 2 identical competing plat-

forms, indexed by j.

34It is straightforward to check that, in this simple model, whether a platform's decisions in stages
(1) and (3) are observed by rival platforms before the pricing stage is immaterial to the results. Note
that, in this context, platform pivotality requires any third-party app to take consumers' demand on
each platform as given when setting its price.
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(i) Laissez-faire. In the laissez-faire equilibrium, all platforms vertically integrate, both

ZLBs are binding (p∗0 = p∗1 = 0), and a superior app sets p∗2 = ∆ on all platforms. All

platforms select access fee a∗ = b + G(∆ + b − a∗)/g(∆ + b − a∗) and make pro�t a∗/N

each. Consumers receive net surplus v each, and a superior third-party app is squeezed.

(ii) Access fee regulation. The welfare optimal access fee is â = b < a∗, yielding per-

platform pro�t b/N and a fair reward to a superior third-party app; consumers still receive

net surplus v each.

The laissez-faire result aligns with the conventional wisdom in platform economics35

that the multi-homing side does not bene�t from platform competition, while the single-

homing one (the competitive bottleneck) does, because the platform is the gatekeeper for

users on the single-homing side: Platform competition allows consumers to get positive

net surplus v. The novel feature of our framework is that perfectly competing platforms

collectively earn a positive pro�t, (b+G(∆+b−a∗)/g(∆+b−a∗), under laissez-faire. The
�rst component of this pro�t is the ancillary bene�t from app distribution; the second

component is part of the value brought about by a superior app developer, which is

extracted through the access fee squeeze.36 Both revenues are not competed away by

price competition because of the core ZLB.

The latter conclusion would not hold if platforms are vertically integrated into de-

vice manufacturing (or subsidize external device manufacturers under exclusive dealing):

competing platforms would then pass through to consumers, via a below-cost price of

their devices, the pro�ts earned by squeezing a superior app through the access fee a∗,

implying that access fees above the Pigouvian level bene�t consumers. However, under

the welfare-oriented criterion, the optimal access fee is still â = b.

4.2 App store competition on a platform

The DMA and the proposed Open App Markets Act require Apple and Google to guar-

antee third-party app stores' access to their respective devices. These alternative paths

from business users to consumers are meant to discipline the currently monopolistic app

stores and bring higher quality to consumers and lower fees to business users.37 As the

regulatory texts are silent as to the access conditions, we look at a benchmark in which

35See Caillaud and Jullien (2003), Armstrong (2006), Armstrong and Wright (2007) and, more recently,
Teh et al. (2023). Armstrong and Wright (2007) explore the implications of a ZLB constraint on the
access price charged to the single-homing side, which competing platforms would like to subsidize.

36This result hinges on the assumption that platforms can vertically integrate into the app segment:
If the inferior app were o�ered by a (single- or multi-homing) third-party provider, a∗ = b would prevail
in the laissez-faire equilibrium, which would eliminate the scope for regulation. The reason is that, as
non-pivotal third-party apps set their prices as in the basic model, any access fee aj > b would be passed
through to consumers, implying U j < v and no customer for platform j.

37Scott Morton et al. (2024) argue that the Apple's App Store o�ers poor-quality discovery and
curation, and that rival app stores could innovate in the two dimensions and further o�er lower fees to
app providers.
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third-party app stores must be given free access to the platform. Does the availability of

competing app stores on a single device eliminate the scope for access fee regulation?

We now have a sequence of �platforms,� so we must clarify the terminology. In the

following, �platform� will keep designating the gatekeeper to the consumer, whilst �app

stores� will be the entities interacting with business users: see Figure 5. Consider a

monopoly platform, hereafter denoted by A, vertically integrated into device manufac-

turing. Let vd and p0 denote, respectively, the device stand-alone value and price. On its

app store, whose access is priced at pA0 ,
38 consumers can �nd an inferior, in-house or third-

party, app valued v and a potentially superior third-party app valued v2 ∈ {v, v + ∆},
depending on whether its provider sinks the investment cost γ to introduce a superior

version, at prices pA1 and pA2 respectively. A's in-house app store faces competition from

a third-party app store B priced at pB0 , where consumers can �nd the respective inferior

(in-house or third-party) app, bringing value v, at price pB1 , and the same, multi-homing

third-party app available on A's store at price pB2 .

Platform

(In-house)
app store A

(3rd party)
app store B

Consumers

App store A's inferior app

3rd party superior app

App store B's inferior app

Figure 5: Competing app stores under consumer multi-homing.

Suppose consumers multi-home across app stores that they can access for free (which

is always the case in equilibrium).39 Then, a superior third-party app would serve all

consumers on the least expensive platform: App stores de facto engage in Bertrand

competition for a superior app, which dissipates their pro�ts � i.e., nil access fees prevail

in equilibrium.

Proposition 9 (app store competition). Suppose that the regulator mandates app

store competition on devices, with app stores enjoying free access to the device, and that

consumers multi-home on app stores on their device.

38When multiple app stores compete for consumers on the same device, its vertically integrated manu-
facturer is forced to unbundle its two core products (the device and the app store), charging two di�erent
prices. In what follows, we refer to the app stores as the core products.

39If instead consumers always single-home (because of, e.g., habit formation, or else each downloads at
most one app store), then, as all app stores are equally constrained by the core ZLB (pA0 ≥ 0 and pB0 ≥ 0)
the analysis is as in Section 4.1 (with the only di�erence that the monopoly manufacturer appropriates
consumer surplus charging p0 = v + vd for the device; this value would instead be appropriated by
consumers in the presence also of platform competition). Pigouvian regulation is thus still needed to
fairly reward a superior third-party app provider.
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� Because a superior app steers the consumers to the app store with the lowest access

fee, Bertrand competition among pure-player or hybrid app stores induces them to

charge nothing for consumer access (p∗0 = 0) and to levy no fee on third-party apps

(a∗ = 0). A superior app then makes supranormal pro�t ∆ + b.

� The Pigouvian access fee (â = b, where now b is a �oor rather than a cap) maximizes

welfare by avoiding over-investment in the app market.

In this simple model, the fair outcome can alternatively be achieved by allowing the

platform to levy on third-party app stores a unit access fee α for each app sold through

their stores. As Bertrand competition among app stores with opportunity cost α implies

that they will in turn charge a = α to the third-party apps, setting by regulation α̂ = b

maximizes welfare. Thus, whether for apps or for app stores, the proper concept of

FRAND access pricing boils down to the Pigouvian principle.

This conclusion would be supported also by a consumer surplus standard in a model

where consumers have heterogeneous valuations vd for the device, because A would react

to the reduced pro�tability of the app store (due to competition) by increasing the device

price p0 (as in Anderson and Bedre-Defolie, 2024b).

5 Relevant literature

(a) Foreclosure. The paper o�ers new insights on incentives for foreclosure. Because

our focus is on gatekeeping, foreclosure of independent apps cannot arise here from the

platform's desire to erect �apps barriers to entry� for alternative platforms (Carlton and

Waldman, 2002). The aftermarket (Farrell and Klemperer, 2007) and loss-leader (e.g,

Lal and Matutes, 1994; Chen and Rey, 2012) incentives to favor internal production

over external ones are also absent in our framework. Another rationale for foreclosure

stems from regulation: see the literature on the essential facility doctrine (e.g., Hart

and Tirole, 1990; Rey and Tirole, 2007), on access pricing for one-sided markets (e.g.,

La�ont and Tirole, 1994) and on telecom and payment card markets (e.g., Armstrong,

1998; La�ont et al., 1998; Rochet and Tirole, 2002, 2011). In this literature, the access

fee to the essential facility is capped, as well as the (equivalent of) the core price; ZLBs

play no role. We have contributed to this literature by showing that in digital ecoystems

the validity of Chicago School's �rich ecosystem argument�40 requires an access fee that

40The old Chicago School critique of foreclosure theory can be stated for the platform context in the
following way: �Aside from e�ciency motives, a hybrid platform (the monopoly segment) has no incentive
to foreclose a third-party app (an independent player in the competitive market): A rich ecosystem bene�ts
consumers in two ways, product variety and enhanced competition, and allows the platform to raise its
consumer price to extract the associated increase in consumer surplus.�
This argument is akin to several others recommending a focus on price levels, but non on price structures:
in public utility regulation (delegation of individual prices to utilities under the umbrella of a price
cap solely aimed at reducing the overall price level), in the antitrust of two-sided markets (the see-
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exceeds the ancillary bene�t of attracting consumers on the app.

(b) Platform is not a gatekeeper. The literature has studied the regulation of platform

fees when the consumer and the merchant can transact through multiple channels: the

platform and another channel (direct purchases, other platforms, other payment methods

in the case of a payment platform). Because the consumer chooses the channel, the welfare

analysis is naturally grounded in the externalities associated with this choice.

Some contributions suppose that the merchant o�ers the same price regardless of the

channel (there is a most-favored-nation, MFN, clause); the merchant's revenue from a

sale is then channel-independent, which does not mean that its markup is. The merchant

may enjoy a convenience bene�t from the platform channel, as in Rochet and Tirole

(2011): A card payment may dominate cash and cheque in terms of expediency, fraud

prevention, accounting, or absence of hold up. The socially optimal access fee corrects

for externalities of consumer channel choice upon merchants, and the socially optimal

access fee (which in payment networks is at least partially passed through by issuers

to consumers) is equal to the merchant bene�t from a card usage; this internalization

principle is the so-called tourist test. In Gomes and Mantovani (2025), the platform

creates an informational and a convenience bene�ts for consumers; in particular, the

platform o�ers products that they were unaware of. This improved-opportunities bene�t

of the platform is internalized by consumers. But, consumers' access to the platform

being assumed free, they do not directly reward the platform for it, which is a problem

if the platform is created only if su�ciently pro�table. The platform however can charge

consumers indirectly through the competing merchants' access fee, then passed through

to consumers. Gomes and Mantovani show that, provided the presence of the platform

does not increase aggregate sales, the welfare-maximizing access fee equals the sum of

the two bene�ts it brings. In both papers, a∗ > â.

Alternatively, there may be no MFN (Wang and Wright, 2025). Prices are lower on

the platform if it displays tougher merchant competition than the direct sale channel. The

consumers may then choose to transact through the platform not because they prefer this

channel, but because the latter lowers merchants' markups, at least in part a redistributive

e�ect. The privately optimal fee may now fall short of the socially e�cient one, which

equals the platform's marginal cost of implementing the transaction plus the amount by

which the platform, by intensifying seller competition, decreases the merchants' margins.

Again, the merchants' pass-through of the access fee is key to restoring proper consumer

incentives.

In contrast with these papers, which hinge on consumers' choice of channel to inter-

act with merchants, we assume that consumers single-home, whether there is platform

competition or not: the platform is a �gatekeeper�. The set of potential externalities

saw argument and the concomitant recommendation of looking at a single market), and in authorities'
agnostic stance with regards to (second- and third-degree) price discrimination.
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under consideration is then rather di�erent: (a) a vertically integrated platform may use

non-price instruments to prevent consumers from accessing the best product; (b) the

platform may jeopardize the existence of superior third-party apps by squeezing them

through a high access fee; (c) the third-party apps enjoy supranormal pro�t when the

app ZLB binds. The welfare-maximizing access fee is then equal to the opportunity cost

for the platform of letting third-party sellers serve consumers, rather than to the bene�ts

it brings to one or both sides of the market.

(c) Platform presence in app markets. A number of recent papers examine platforms'

incentive to vertically integrate, and the welfare e�ect of this vertical integration, in

the presence of foreclosure and/or imitation concerns: see Anderson and Bedre-Defolie

(2024a,b), Etro (2021, 2023), Gutièrrez (2021), Hagiu et al. (2022) and Zennyo (2022).

Yet, these works, as the ones on platform fees' regulation, assume non-negative opportu-

nity costs (i.e., rule out an app ZLB) and do not consider access pricing on the consumer

side.41 To be certain, one may argue that the widespread assumption that platforms

grant free access to consumers in these papers re�ects a core ZLB.42 However, they do

not connect the validity of the underlying assumption with the level of seller access fees.

Another closely related contribution to our paper is Choi and Jeon (2021). They

show that tying may help a �rm circumvent a non-negative price constraint in the tied

(complementary) product market that prevents it from squeezing superior sellers in that

market. Zero lower bounds do not usually emerge in standard models (e.g., Choi and

Stefanadis, 2001, Carlton and Waldman, 2002), which assume that the tied market in-

volves a positive marginal cost. Unlike in this literature on tying, which does not consider

access pricing, in our paper margin squeeze of superior third-party sellers by the platform

does not necessarily occur via below-cost pricing in the tied (competitive) good market,

but primarily via fees: In this case, it is the core ZLB, rather than the ZLB in the tied

market (the app ZLB in our terminology), that binds.

6 Conclusion

Gatekeeping platforms control businesses' access to us. Policymakers dealing with plat-

form access have met with the di�culty that welfare analyses in two-sided markets are

generally ambiguous. The see-saw e�ect, and its distant parent, the Chicago school rich

ecosystem argument, hold that self-preferencing and high access fees, by degrading the

ecosystem and making it unattractive to the consumer side, do not bene�t the platform.

41By considering access pricing both on consumer and seller side, our work relates to the literature
on optimal pricing by two-sided platforms pioneered by Armstrong (2006), Caillaud and Jullien (2003)
and Rochet and Tirole (2003, 2006). This literature however is not concerned with hybrid platforms and
mostly ignores ZLB constraints.

42In other papers on hybrid platforms, including Etro (2023) and Padilla et al. (2022), app stores are
bundled with physical devices, so that consumers are always charged a positive price.
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Relatedly, capping access fees for business users leads to higher prices on the consumer

side. This paper argues that this logic does not apply to the zero-lower-bounds environ-

ment of digital markets.

The core ZLB (the impossibility for digital platforms to charge negative access prices

to consumers) creates incentives for harmful behaviors:

1. The see-saw e�ect no longer operates. Bene�ts from a better ecosystem are not

passed through to consumers as the platform is reluctant to raise prices. This gives

the platform incentives to maximally extract the surplus of business users through

high access fees. Extractive access fees create a double marginalization and induce

a suboptimal usage of innovative apps. They furthermore discourage the creation

of apps. A binding core ZLB might therefore be a smoking gun that high access

fees are detrimental.

2. The core ZLB is more likely to bind if there is platform competition, or, in its

absence, a high elasticity of consumer demand for the platform. It is less likely to

bind if a costly device is part of the bottleneck.

The app ZLB (the infeasibility of negative app prices) limits competition in the app

markets and generates two ine�ciencies:

3. The greater pro�t made in-house relative to providing access (which arises when

a < b) creates incentives for self-preferencing, all the more so, the larger the ancillary

bene�t b (e.g., goods are digital rather than physical) relative to the access fee

a. Unfortunately, antitrust watchdogs �nd it notoriously di�cult to discern and

demonstrate self-preferencing. A binding app ZLB might therefore be a smoking

gun that the platform has incentives to engage in self-preferencing.

4. Low or zero access fees dissipate value by inviting business stealing by me-too apps,

that add little value to the ecosystem but extract a non-negligible share of it.

Overall, the argument for capping access fees and more generally enforcing equitable

access to gatekeeping platforms is de�nitely stronger in the presence of ZLBs. In this

respect, we concur with the spirit of recent regulatory developments. The latter however

remain nebulous when it comes to speci�c recommendations, and the occasional invoca-

tion of the need for �fair, reasonable and non-discriminatory� terms is not helpful. The

paper provides guidance for policy-making:

5. The Pigouvian rule (â = b) discourages self-preferencing and thereby spares in-

trusive assessment of whether access conditions are actually fair; it also provides

app developers with a fair return and therefore a proper incentive to innovate; �-

nally, it minimizes double marginalization conditional on intrusive regulation being

infeasible or too costly.
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Despite these clear theoretical messages, meeting the empirical challenge of regulating

platforms' access policies remains as di�cult as it is essential. The task of answering

whether a 10% or 30%merchant fee is appropriate is marred with asymmetric information.

We made real progress on the question of how to implement the theoretical benchmark;

but we feel that more work is necessary to properly tame the gatekeeping platforms while

not preventing them from o�ering innovative services to consumers and businesses alike.

As new AI-based platforms are entering the e-commerce, search, and health markets, this

question should remain a priority.
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Appendix A: Omitted proofs

Proof of Proposition 3. We distinguish two cases, depending on whether the access

fee is lower or larger than the ancillary bene�t.

a < b. Whether the platform is vertically integrated or not does not matter; intu-

itively, app 1 is available at price 0 and the platform cannot boost consumer membership

by reducing its price. We can therefore focus on the vertically integrated case. As we

saw in the text, b ≥ ρ(−v) implies that under self-preferencing p0 = p1 = 0 and the

platform's pro�t is b[1 − F (−v)]. Can the platform do better by granting access to a

superior third-party app? The unique price equilibrium is p∗1 = 0 and p∗2 = ∆. For, if

p2 > ∆, the platform could charge p1 = (p2−∆)− ε and obtain p1 + b > a per-consumer,

without this a�ecting consumer surplus from apps, hence p0. Hence, the utility of the

consumers from apps is v, and the platform's pro�t if the third-party app serves the app

market is (p0 + a)[1− F (p0 − v)] < (p0 + b)[1− F (p0 − v)] ≤ b[1− F (−v)].

Similarly, if app 2 does not introduce a superior version, symmetric Bertrand compe-

tition with negative opportunity costs implies that the unique equilibrium is p∗1 = p∗2 = 0,

yielding platform pro�t [p0+(a+b)/2][1−F (p0−v)] < (p0+b)[1−F (p0−v)] ≤ b[1−F (−v)].

Therefore, no matter whether app 2 sells a superior version, the platform �nds it optimal

to engage in vertical integration combined with self-preferencing for all a < b.

a ≥ b. If app 2 does not introduce a superior version, it is never viable in equilibrium.

This is because the platform's pro�t from letting an inferior app serve consumer at the

marginal cost, (p0 + a)[1 − F (a − b + p0 − v)], is maximized at p0 = 0 and lower than

the foreclosure pro�t, as the two are equal at a = b and ∂
∂a
{a[1 − F (a − b − v)]}

∣∣
a=b

=

1−F (−v)− bf(−v) < 0 for b > ρ(−v). Therefore, if app 2 does not invest, the platform

gains strictly more by vertically integrating and setting p∗0 = p∗1 = 0 (price-foreclosure)

for all a > b.

Consider the subgame where app 2 has invested. In the hybrid platform case, consider

the following candidate equilibrium:

{p∗0 = 0, p1, p
∗
2 = p1 + ∆},

with p1 ∈ [0, v]. This constitutes an equilibrium � i.e., it satis�es conditions (i) and (ii)

of our equilibrium de�nition � whenever app 2 is viable (i.e., p1 + ∆ + b ≥ a) for all p1

such that

[1− F (p1 − v)]a ≥ [1− F (−v)]b,

which de�nes an interval [0, p(a)], where p(a) ∈ (0, a− b) is increasing in a.

To see this, note that given p1 ∈ [0, v], a viable non-pivotal third-party app optimally
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charges p∗2 = p1 + ∆. Then,

arg max
p0

(p0 + a)[1− F (p0 + p1 + v)] = 0 ⇐⇒ a ≥ ρ(p1 − v),

which is implied by a > b and (the inverse hazard rate being decreasing) p1 ≥ 0; so,

p∗0 = 0. Since increasing p1 has no e�ect on the equilibrium pro�ts (consumers still buy

the third-party app), the only possible deviations to consider are to p̃1 < p1. Any such

deviation implies that the in-house app is sold. Then, the optimal deviation is to p̃1 = 0,

yielding the foreclosure pro�t [1− F (−v)]b. It follows that p1 is an equilibrium price for

the inferior app if and only if [1 − F (p1 − v)]a ≥ [1 − F (−v)]b. Hence, p1 = 0 is always

an equilibrium, but it is not unique: The larger a, the larger the upper bound on p1,

denoted by p̄(a), that can be sustained as an equilibrium. Still, b > ρ(−v) implies that

p̄(a) < a− b. Moreover, for given a, platform's equilibrium pro�t decreases in p1.

Note that here the concept of equilibrium in undominated strategies does not help

selecting an equilibrium. Compare an equilibrium price p1 and consider an alternative

price p̂1. A price p̂1 < p1 (if any) increases platform pro�t if price p2 (not necessarily the

equilibrium price) is such that app 1 has the market regardless of p̂1 or p1; it decreases

platform pro�t if price p2 is such that app 1 is selected under p̂1, but not under p1, as

p̂1 + b < a. Similarly, a price p̂1 > p1 decreases platform pro�t if price p2 (not necessarily

the equilibrium price) is such that app 1 has the market regardless of p̂1 or p1; it increases

platform pro�t if price p2 is such that app 1 is selected under p1, but not under p̂1, as

p1 + b < a.

Therefore, the hybrid platform gains at least the foreclosure pro�t for all a ≥ b, and

it can gain strictly more for some a∗ > b, depending on which equilibrium is played.

E.g., in the equilibrium with p∗0 = p∗1 = 0 and p∗2 = ∆ for all a ≤ b + ∆, as app 2

innovates if and only if (∆ + b− a)(1−F (−v))− γ ≥ 0, the platform's expected pro�t is

[1− F (−v)]{b + (a− b)G[(∆ + b− a)(1− F (−v))]}, which is maximized at a∗ > b such

that a∗ = b+G[(∆ + b− a∗)(1− F (−v))]/g[(∆ + b− a∗)(1− F (−v))].

Welfare-optimal access fee. As app 2 does not make any pro�t when it does not introduce

a superior version, it decides to innovate if and only if a ≥ b (no self-preferencing) and

(p1 + ∆ + b−a)[1−F (p1− v)] ≥ γ. At â = b, the unique equilibrium features {p∗0 = p∗1 =

0, p∗2 = ∆}. Hence, innovation takes place if and only if ∆[1 − F (−v)] ≥ γ. As a non-

pivotal innovative app never charges p2 < ∆, it cannot expand consumer participation

relative to the foreclosure level, 1−F (−v). For a > b, innovation is ine�ciently dampened:

either p1 = 0 and so socially e�cient innovations with γ ∈ ((∆ + b−a)[1−F (−v)],∆[1−
F (−v)]] are not undertaken, or p1 is increasing in a and so socially e�cient innovations

with γ ∈ (∆[1− F (−v − p1)],∆[1− F (−v)]] are not undertaken.

Ex-post social welfare equals the value under foreclosure,
∫ +∞
−v (b + vc + v)dF (vc), if

the innovation is not undertaken, and
∫ +∞
−u (b + vc + v + ∆)dF (vc) − γ if the innovation
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is introduced, where u is consumer net utility. Given that u ≤ (v + ∆) − p2 ≤ v, social

welfare is maximized at u = v, which requires p2 = ∆⇐⇒ p1 = 0. As noted earlier, this

is the unique equilibrium outcome if and only if â = b.

Similarly, ex-post consumer surplus equals the value under foreclosure,
∫ +∞
−v (vc +

v)dF (vc), if the innovation is not undertaken, and
∫ +∞
−u (vc + v − p1)dF (vc) − γ if the

innovation is introduced, hence it is also maximized at u = v and p1 = 0, which is the

unique equilibrium outcome if and only if â = b.

Proof of Proposition 4. If no innovation takes place, consumers are homogeneous and

so the equilibrium of the basic model obtains, implying that the app 2 provider always

makes zero pro�t, whereas the platform obtains the foreclosure pro�t v + b. In what

follows, we consider the subgames following the introduction of a superior version by app

2.

Consider, �rst, a hybrid platform. For p0 + p1 ≤ v, all consumers buy one app. Since

a consumer with type ∆ prefers the third-party app if and only if ∆ ≥ p2 − p1, letting

H(·) denote the cdf of consumers' type ∆, �rms' pro�ts in the representative market are

π∗0 + π∗1 = p0 + a+H(p2 − p1)(p1 + b− a),

and

π∗2 = [1−H(p2 − p1)](p2 + b− a).

Since its pro�t is increasing in p0, the platform optimally sets p0 = v−p1 ∈ [0, v], so that

all consumers buy one app, and those buying the in-house app are left with no surplus.

By doing so, it achieves a higher pro�t compared with the one attainable setting prices

so that p0 +p1 > v.43 For any given a, denoting by h(·) the pdf of consumers' type on R+

and by ρ∆(∆̃) ≡ [1−H(∆̃)]/h(∆̃) the inverse hazard rate, which we assume decreasing,

we have:

Lemma (Equilibrium prices and self-preferencing). Suppose app 2 sells a superior

version. There are two thresholds (a, a), with b < a < b+ v < a, such that, in the hybrid

platform case:

43For p0 + p1 > v, only the third-party app is bought in equilibrium, and �rms' pro�ts are

π0 + π1 = π0 = [1−H(p0 + p2 − v)](p0 + a),

and
π2 = [1−H(p0 + p2 − v)](p2 + b− a).

For the deviation p0 = v − p1 (so p2 remains the same): p0 + p2 − v = p2 − p1, and so

π∗0 + π∗1 = [1−H(p0 + p2 − v)](p0 + a) +H(p0 + p2 − v)(b+ v) > π1.

Therefore, p∗0 = v − p1 is set so that all consumers access the platform in equilibrium.
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� For a ≤ a, the inferior app ZLB binds (p∗1 = 0) and p∗0 = v; also the superior

app ZLB binds (p∗2 = 0) for a ∈ [0, b − ρ∆(0)], p∗2 is instead strictly positive and

increasing in a for a ∈ (b− ρ∆(0), a].

� For a ∈ (a, a): 0 < p∗1 < a− b < p∗2, and p
∗
0 = v − p∗1 > 0, with (p∗2 − p∗1) and �rms'

pro�ts being constant when a varies.

� For a ≥ a, the core ZLB binds (p∗0 = 0) and p∗1 = v < p∗2, with p
∗
2 being strictly

increasing in a.

If left unmonitored, the platform engages in self-preferencing if and only if a < b.

Proof of Lemma. The �rst-order conditions with respect to app prices are as follows

∂[π∗0 + π∗1]

∂p1

= −h(p2−p1)(p1+b−a)−1+H(p2−p1) = 0 ⇐⇒ a−b−p1 = ρ∆(p2−p1), (1)

and

∂π∗2
∂p2

= −h(p2−p1)(p2 + b−a) + 1−H(p2−p1) = 0 ⇐⇒ p2− (a− b) = ρ∆(p2−p1). (2)

As ∆ is distributed on R+, p∗2 ≥ p∗1 in any equilibrium, with strict inequality whenever

the superior app ZLB does not bind. First, consider an equilibrium where p∗1 = 0 ≤ p∗2.

By (1), this is the case if and only if

∂[π∗0 + π∗1]

∂p1

∣∣∣∣
p1=0

≤ 0 ⇐⇒ a− b ≤ ρ∆(p2) ≤ p2 − (a− b) ⇐⇒ p2 ≥ 2(a− b), (3)

where the second inequality uses (2), which holds with equality as long as p2 > 0. Hence,

in equilibrium p∗1(a) = p∗2(a) = 0 if ∂[π∗0+π∗1 ]

∂p1
|p1=p2=0 ≤ 0 and ∂π∗2

∂p2
|p1=p2=0 ≤ 0, which gives

a < b− ρ∆(0). In turn, from (2),

p2 ≥ 2(a− b) ⇐⇒ a− b ≤ ρ∆(2(a− b)), (4)

which, as the LHS (resp. RHS) is increasing (resp. decreasing) in a, is satis�ed if and

only if a ≤ a, with a > b. The platform's pro�t is

π∗0(a) + π∗1(a) = v + a+H(p∗2)(b− a).

For a ∈ [0, b−ρ∆(0)], as p∗1 = p∗2 = 0 and H(0) = 1 (i.e., all consumers buy the third-party

app), π∗0(a) + π∗1(a) = v + a < v + b. For a ∈ (b− ρ∆(0), a], p∗2 > 0, and, by the implicit

function theorem,

∂[π∗0 + π∗1]

∂a
= h(p∗2)

∂p∗2
∂a

(b− a)−H(p∗2) + 1 > 0 ⇐⇒ ∂p∗2
∂a

(a− b) < ρ∆(p∗2) = p∗2 − (a− b),
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which is satis�ed for all a < b, as ∂p∗2
∂a

> 0 (since p∗2 > 0 > a− b), and for a ∈ [b, a] as well,

by (3), as ∂p∗2
∂a

< 1 (the monotone hazard rate assumption implies ∂p∗2
∂a
∈ (0, 1)). Therefore,

we can conclude that ∂[π∗0+π∗1 ]

∂a
> 0 for all a ∈ [0, a]. Given that π∗0(b) + π∗1(b) = v + b, it

then follows that non-price foreclosure is optimal for the platform if and only if a < b.

Next, consider an equilibrium where p∗2 > p∗1 ∈ (0, v). In this equilibrium, (1)-(2)

imply

a− b− p1 = ρ∆(p2 − p1) = p2 − (a− b) ⇐⇒ p1 + p2 = 2(a− b). (5)

As p∗2 > p∗1, it must be p
∗
1 < a− b < p∗2. Using (5), (1) rewrites as

a− p1 − b = ρ∆(2(a− p1 − b)). (6)

As the LHS (resp. RHS) is decreasing (resp. increasing) in p1, this equilibrium exists if

and only if

p∗1 > 0 ⇐⇒ a− b > ρ∆(2(a− b)) ⇐⇒ a > a,

and, using (2),

p∗1 < v ⇐⇒ a− b− v < ρ∆(2(a− b− v)) ⇐⇒ a < a,

where, comparing the two above inequalities, it follows that a > a. From (6) it follows

that p∗1−a is constant varying a. Since p1+p2 = 2(a−b) is equivalent to p1−a = a−p2−2b,

this implies that a− p∗2 is constant in a as well, and so also p∗2− p∗1 does not vary with a.

This shows a neutrality result: π∗0(a)+π∗1(a) = [1−H(p∗2−p∗1)](v−p∗1−a)+H(p∗2−p∗1)(b+v)

is independent of a in this range. However, π∗0(a) + π∗1(a) > v + b since p∗1 < a− b.
Finally, we consider an equilibrium where p∗1 = v < p∗2 (and so p∗0 = 0). By (1) and

(2), this is the case if and only if

∂[π0 + π1]

∂p1

∣∣∣∣
p1=v

≥ 0 ⇐⇒ a−b−v ≥ ρ∆(p2−v) = p2−(a−b) ⇐⇒ a−b−v ≥ ρ∆(2(a−b−v)),

which holds if and only if a ≥ a, with a > b+ v implying p∗1 = v < a− b. The platform's

pro�t is

π∗0(a) + π∗1(a) = H(p∗2 − v)(b+ v − a) + a.

We then have:

∂[π∗0 + π∗1]

∂a
= h(p∗2 − v)

∂p∗2
∂a

(b+ v − a)−H(p∗2 − v) + 1,

where, by the monotone hazard rate assumption, ∂p∗2
∂a
∈ (0, 1) is characterized using the

implicit function theorem.

Platform business model and innovation. If app 1 was independently owned, it would
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make positive expected pro�t π∗1 = H(p2− p1)(p1 + b− a) by setting a price p1 > a− b if
b < a < b + v. Vertical integration allows the platform to capture app 1's pro�t � i.e., a

hybrid platform earns π∗1 on top of the pure platform pro�t π∗0. By revealed preference,

the result that p1 is below the opportunity cost under vertical integration implies that

the hybrid platform earns strictly more than the sum π∗0 + π∗1 in the equilibrium without

vertical integration. Hence, the platform has strict incentives to vertically integrate both

when integration takes place by introducing another inferior app � as, this app featuring

a lower price than the independent inferior app, it takes all its consumers � or by making

a takeover o�er to the independent provider of app 1. Finally, an independent app 1

provider would not be viable if a > b+ v, implying that a fortiori the platform vertically

integrates in this case. As a result, when app 2 sells a superior version, the platform �nds

it optimal to vertically integrate for all values of a.

Hence, app 2 earns nothing if it does not innovate, whereas by innovating it gets

nothing for a < b (self-preferencing region) and the pro�t π∗2 characterized above, minus

the investment cost γ, for a ≥ b. As a result, app 2 innovates with probability G[(1 −
H(p∗2 − p∗1))(p∗2 + b− a)] if and only if a ≥ b.

Platform-optimal vs welfare-optimal access fees. Therefore, platform's expected pro�t

equals v + b for all a < b, and simpli�es as

v + b+G[(1−H(p∗2 − p∗1))(p∗2 + b− a)][1−H(p∗2 − p∗1)](a− b− p∗1),

for a ≥ b. Since, at a = b, p∗1 ≡ 0 < p∗2, the derivative of this expected pro�t at a = b

equals G[(1−H(p∗2))p∗2][1−H(p∗2)] > 0, which implies that a∗ > b.44

Similarly, expected social welfare equals W (a) = v + b for a < b, and

W (a) = v + b+G[(1−H(p∗2 − p∗1))(p∗2 + b− a)]

∫
∆≥p∗2−p∗1

∆ dH(∆),

44The result a∗ > b also holds if the superior app pre-exists the access fee setting: indeed, the platform's
pro�t conditional on the innovation being introduced is maximized at a∗ > a. To see this, note that for
a ≥ a, we have

∂[π∗0 + π∗1 ]

∂a
> 0 ⇐⇒ a− b− v < 2(p∗2 + b− a) +

h′(p∗2 − v)

h(p∗2 − v)
(p∗2 + b− a)2.

At a = a, p∗2 = 2(a− b)− v. Substituting into the above inequality and simplifying gives

h′(2(a− b− v))

h(2(a− b− v))
(a− b− v) =

h′(2(a− b− v))

h(2(a− b− v))
ρ∆(2(a− b− v)) > −1,

where the equality follows from the de�nition of a. This inequality is always satis�ed as it is equivalent
to the assumption of decreasing inverse hazard rate. Therefore, the platform's equilibrium pro�t is still
increasing at a = a, and so a∗ > a > b.
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which is strictly larger than v + b, for all a ≥ b. We have that

∂W (a)

∂a
=− g(·)

[
h(·)(p∗2 + b− a)

∂[p∗2 − p∗1]

∂a
+ [1−H(·)]

(
1− ∂p∗2

∂a

)]∫
∆≥p∗2−p∗1

∆ dH(∆)+

−G(·)h(·)(p∗2 − p∗1)
∂[p∗2 − p∗1]

∂a
≤ 0 ∀a ≥ b,

with strict inequality at a = b, implying that, when non-price foreclosure cannot be

monitored, â = b maximizes expected social welfare.

Finally, as p∗0 + p∗1 = v, consumers purchasing the platform's in-house app have zero

surplus, and expected consumer surplus equals S(a) = 0 with foreclosure (a < b), and

S(a) = G[(1−H(p∗2 − p∗1))(p∗2 + b− a)]

∫
∆≥p∗2−p∗1

[∆− (p∗2 − p∗1)] dH(∆) > 0,

if there is no foreclosure (i.e., for all a ≥ b). We have that

∂S(a)

∂a
=− g(·)

[
h(·)(p∗2 + b− a)

∂[p∗2 − p∗1]

∂a
+ [1−H(·)]

(
1− ∂p∗2

∂a

)]∫
∆≥p∗2−p∗1

[∆− (p∗2 − p∗1)] dH(∆)

−G(·)[1−H(·)]∂[p∗2 − p∗1]

∂a
≤ 0 ∀a ≥ b,

with strict inequality at a = b, implying that, when non-price foreclosure cannot be

monitored, â = b also maximizes expected consumer surplus.45

Proof of Proposition 6. Consider a subgame following innovation by n ∈ {0, ..., N}
sellers. For any number m of available slots, the undominated strategy equilibrium of the

uniform price auction is as follows.

Lemma (equilibrium bid). Denoting by n ≤ N the number of app markets where seller

2 innovates, the equilibrium bid paid by the m winners of the ad-auction is:

a(m) =


v + b+ ∆ if m < n

v + b if n ≤ m < 2N

0 if m ≥ 2N

Proof of Lemma. We consider three distinct cases:

45The same results also hold if the superior app pre-exists the access fee policy: in this case, consumer
surplus and social welfare are as above with G(·) ≡ 1; hence, they are both lower under foreclosure
(implying that, if non-price foreclosure cannot be monitored, it must be that a ≥ b) and decreasing in
the relative price p∗2 − p∗1, which is a weakly increasing function of a (strictly so for a ∈ [b, a]). The
result that expected social welfare and consumer surplus are strictly decreasing at a = b implies that, if
foreclosure can be monitored (irrespective of whether the superior app pre-exists the access fee policy)
the regulator would set â < b.
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(i) If m < n, there are fewer slots than superior sellers; the Bertrand logic applies.

Superior apps' competition implies that all superior apps bid v + b + ∆, which then is

the equilibrium bid: inferior sellers cannot a�ord to pay a(m) = v + b + ∆ per-sale,

and any displayed superior seller can set the monopoly price p∗2 = v + ∆ and receives

an extra b, and so makes zero pro�t. A superior seller cannot increase its pro�t neither

by bidding a < a(m) (it would lose the auction for sure), nor by bidding a > a(m) (as

serving consumers would come at a loss).

(ii) If n ≤ m < 2N , all superior sellers win with probability 1 by slightly overbidding the

inferior sellers' bid, v+b, i.e., the per-consumer revenue any inferior seller makes if selected

(this per-consumer revenue is captured only if the superior seller in the same market is

not selected, which never happens on-path; however, �pay-per-click� implies that only

bidding v+ b is an undominated strategy for an inferior seller). Therefore, a(m) = v+ b.

Inferior sellers, if selected, charge p∗1 = v and so make zero pro�ts regardless of whether a

superior seller in their market exists. Any superior seller's price is p∗2 = v+ ∆ whether or

not it faces a competitor. Hence, the pricing behavior is unchanged no matter whether

the pool of selected sellers is common knowledge at the pricing stage. All superior sellers

are displayed, set p∗2 = v + ∆ and make a pro�t ∆ per-sale.

(iii) Ifm ≥ 2N , all products are always shown, and so all sellers bid zero: hence, a(m) = 0.

Equilibrium prices are then p∗1 = 0 and p∗2 ∈ {0,∆} depending on whether product 2 is

superior, so that a superior seller makes pro�t ∆ + b per-sale.

Anticipating this, platform's behavior is as follows:

Lemma (self-preferencing). The platform engages in (vertical integration combined

with) self-preferencing if and only if m ≥ 2N .

Proof of Lemma. Consumer access price p∗0 equals consumer net surplus from the dis-

played slots.

� If m ≥ 2N , all products are shown and consumers receive net surplus v from the

preferred market, hence p∗0 = v, which, as a(m) = 0, coincides with the platform's

pro�t. By serving consumers directly � i.e., o�ering an inferior product in each

market and self-preferencing it � the platform can instead appropriate v + b, and

so (vertical integration combined with) self-preferencing is privately optimal.

� For all m < 2N , consumers get no net surplus from the displayed products (as

p∗i = vi for all sellers), and so p∗0 = 0, implying that the platform's pro�t coincides

with the revenues from fees. As the platform obtains at least v + b through fees

from any third-party sale, it has no incentive to steer consumers to its in-house

products (hence, no incentives to vertically integrate either).
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We next characterize the symmetric equilibrium of the innovation stage as a function

of the sellers' development cost γ > 0.

Lemma (innovation). For a given number m of available slots, the innovation stage ad-

mits a unique symmetric equilibrium. If γ ≤ ∆/N , each seller 2 innovates with probability

ρ∗(m) ∈ [0, 1], with:

(i) ρ∗(0) = 0,

(ii) dρ(m)
dm

> 0 for all m ∈ [0, N ],

(iii) ρ∗(m) = 1 for all m ∈ [N, 2N),

(iv) ρ∗(m) = 0 for all m ≥ 2N .

If instead γ > ∆/N , no seller innovates.

Proof of Lemma. An inferior seller always makes zero pro�t; a superior one obtains

pro�t ∆/N (as each consumer selects it with probability 1/N) if and only if m < 2N

(otherwise, the platform engages in self-preferencing) and the number n of superior sellers

in equilibrium satis�es n ≤ m, and zero pro�t otherwise. Therefore, there is never

innovation if γ > ∆/N . For γ ≤ ∆/N , no seller innovates in the trivial case m = 0 or

if m ≥ 2N , whereas all sellers 2 innovate if m ≥ N ; if m ∈ (0, N), seller 2 in market i

innovates if and only if

Pr[n−i ≤ m− 1] ·∆/N − γ ≥ 0,

where n−i ∈ {0, . . . , N − 1} is the number of its innovative rivals. A symmetric mixed

strategy equilibrium in which each seller 2 innovates with probability ρ ∈ (0, 1) is obtained

by solving the indi�erence condition:

m−1∑
j=0

(
n−i
j

)
ρj(1− ρ)n−i−j =

Nγ

∆
.

Uniqueness and monotonicity in m of the solution follow from the properties of the

binomial distribution.

We are now ready to prove the statement of Proposition 6.

Welfare-optimal number of slots. Setting m̂ = N (indeed, any m ∈ [N, 2N)) implies

that all sellers 2 innovate if and only if ∆/N ≥ γ and no seller innovates otherwise,

which is socially e�cient. Note that, as each consumer derives value from each market

k = 1, ..., N with probability 1/N , the socially e�cient number of slots guarantees each

innovative seller its fair reward ∆/N . Conversely, when innovation is socially optimal, it

is ine�ciently dampened for all m < N (as each seller innovates only with probability
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ρ∗(m) < 1) or m ≥ 2N (because the anticipation of foreclosure gives no incentives to

innovate).46

Platform-optimal number of slots. By contrast, the platform may make a larger pro�t

by setting m∗ < N .47 As seen above, the platform makes pro�t v + b by setting any

m ∈ [N, 2N) (and also for m ≥ 2N provided it can vertically integrate and engage in self-

preferencing). If γ ≤ ∆/N , choosing m < N implies that the number of superior sellers is

binomially distributed with success probability ρ∗(m), and the platform's expected pro�t

is

m/N {v + b+ Pr[n > m] ·∆} .

Whether this is larger than v + b depends on the parameters.

To see this, consider the simplest example with N = 2 markets. For m = 1, we have

ρ∗ = 1− 2γ/∆ and so the platform's pro�t equals

1

2

[
v + b+ ∆(ρ∗)2

]
=

1

2

[
v + b+

(∆− 2γ)2

∆

]
,

which is larger than b+ v if and only if

∆ > 2γ +
b+ v

2
+

√(
b+ v

2

)2

+ (b+ v)2γ,

which concludes the proof.

Proof of Proposition 8. Suppose app 2 sells a superior version. As uj ≡ max{v −
pj1, v+∆−pj2, 0}, and the superior app always charges pj∗2 ≥ ∆, we have uj ∈ [0, v] for all j.

As p0 ≥ 0 and consumers' outside option is zero, also U j ∈ [0, v]. Next, take two platforms

j′ and j′′ and suppose they o�er di�erent utility levels to consumers, v ≥ U j′ > U j′′ ≥ 0,

with U j′ = maxj{U j} so that platform j′ has a strictly positive market share. Then,

platform j′′ would face no demand and make zero pro�t. By vertically integrating and

foreclosing the third-party app, and setting prices pj
′′

0 + pj
′′

1 ≤ v − U j′ , it would o�er

utility U j′′ ≥ U j′ and make a positive pro�t.

As a result, all platforms must o�er the same utility U∗ in equilibrium. Hence, their

pro�t is 1
N

(pj0 + pj1 + b) with foreclosure, with pj0 + pj1 = v − U∗, and 1
N

(pj0 + aj) without

46In the latter case, if self-preferencing is monitored or vertical integration is not an option for the
platform, then excessive innovation would prevail, i.e., all sellers 2 would innovate even for some γ > ∆/N ,
and so m̂ = N would still be optimal.

47This possibility result hinges on the restriction to symmetric equilibria in the innovation stage.
Indeed, for all m ∈ (0, N), if γ ≤ ∆/N the innovation stage also admits asymmetric pure-strategy
equilibria in which a number n = m of sellers innovate. This is because if seller 2 in market k expects
m (resp. m− 1) rivals to innovate, it has no (it has) incentives to do so, given that an innovative seller
gets pro�t ∆/N if and only if n ≤ m and zero otherwise. Selecting any such equilibrium implies that
the platform's pro�t is always maximized at m∗ = m̂ = N , as restricting the number of slots reduces the
amount of sales without yielding a positive probability of margin squeeze.

116



foreclosure, with pj0 = v + ∆ − pj∗2 − U∗. If p
j
0 > 0 for some j, then, no matter whether

it forecloses or not the third-party app, platform j would �nd it optimally to deviate,

charging a slightly lower access price to consumers to serve all demand. Therefore, in

equilibrium pj∗0 = 0 for all j.

Whenever its rivals are expected to provide U∗ = v in equilibrium, any platform

j has no pro�table deviation to U j 6= U∗: o�ering U j < v drives its pro�t to zero,

and, as shown above, it is never possible to provide U j > v. As U∗ = v can always

be provided by vertically integrating, foreclosing the third-party app, and setting pj0 =

pj1 = 0, it follows that an equilibrium where U∗ = v always exists. We next characterize

the corresponding subgame perfect equilibrium prices for any given (aj, δj2 = 0)j=1,...,N

(no foreclosure). Suppose that in equilibrium pj1 > 0 � this is necessarily the case if

platform j is a pure player and aj > b (with two independent apps, equilibrium prices

are as in the basic model). Then, as pj∗2 = min{pj1 + ∆, v + ∆} whenever app 2 is viable,

uj = max{v − pj1, 0} < v. Given that rival platforms o�er higher value U∗ = v, the

considered platform makes no pro�t. It has therefore a strictly pro�table deviation: It

can vertically integrate, set pj1 = 0 and thus, by selling its in-house app, o�er value

U j = v to consumers, so as to attract some of them and make positive pro�ts. Hence,

the app ZLB binds: pj∗1 = 0 for all j and (aj, δj = 0)j=1,...,N . Anticipating this, the

(non-foreclosed) third-party seller must set pj∗2 = ∆ to sell its app. It optimally does so

whenever selling its app yields positive pro�t on platform j (i.e., as long as ∆+b−aj ≥ 0).

This implies that each platform has an incentive to vertically integrate for all aj > b. For

aj ≤ b, app prices are pj∗1 = 0 and pj∗2 = ∆ no matter whether the platform is vertically

integrated; still, platforms do not foreclose as otherwise they could be undercut by a

deviating platform o�ering access to the superior app.

By the same arguments, if app 2 does not introduce a superior version, the platform

always vertically integrates and sets pj∗1 = 0, and it engages in non-price foreclosure if

aj < b and in price foreclosure if aj > b. Therefore, app 2 does not make any pro�t if it

does not innovate (in this case, each platform makes the foreclosure pro�t b/N), whereas

it makes pro�t ∆ + b− aj from each platform j's consumer if it innovates (recall that for

all aj ≤ b+∆ app prices are pj∗1 = 0 and pj∗2 = ∆). As each platform is selected by a share

1/N of consumers, app 2 introduces the innovation if and only if ∆ + b− 1
N

∑N
j=1 a

j ≥ γ.

Therefore, platform j's expected pro�t is

πj =
1

N

[
b+ (aj − b)G

(
∆ + b−

∑N
k=1 a

k

N

)]
.

Maximizing it with respect to aj immediately yields the unique symmetric equilibrium

a∗ = b+
G(∆ + b− a∗)
g(∆ + b− a∗)

,
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with a∗ ∈ (b, b + ∆). Hence, π∗0 = 1
N

[b+G(∆ + b− a∗)/g(∆ + b− a∗)] exceeds the

foreclosure pro�t b
N
. By contrast, socially e�cient investment incentives require that

â = b.

Proof of Proposition 9. As in Proposition 8, no matter whether app 2 sells a superior

version, app store competition implies that each app store provides net utility U∗ = v to

consumers in equilibrium. Hence, it must be pj∗0 = pj∗1 = 0 for all aj and app stores j

(implying that platform j would vertically integrate for all aj > b), including the in-house

app store. As all app stores can be accessed for free, consumers multi-home.

Moreover, as in Proposition 8, if app 2 does not introduce a superior version, app

store j engages in (vertical integration combined with) non-price foreclosure if aj < b and

in price foreclosure if aj > b. Without innovation, for all access fees the equilibrium thus

features the foreclosure pro�ts, i.e. b/N for each app store and 0 for app 2.

If app 2 introduces a superior version, an equilibrium where it is foreclosed by all

app stores cannot exist under laissez-faire: Given that consumers would prefer to buy

the superior app at any price pj2 ≤ ∆, any app store would deviate by granting access to

the superior app at an access fee aj > b/N , promoting app 2 innovation and increasing

the pro�t conditional on innovation taking place. By contrast, starting from a candidate

equilibrium where the superior app is given access by its rivals, a deviating app store

would lose all its consumers if foreclosing.

Because the superior app can sell to all consumers on any app store j at any price

pj2 ≤ ∆, it will optimally sell at a price (slightly below) ∆ on the app store charging the

lowest access fee: this app store attracts all sales, and the superior app makes a pro�t

π2 = ∆ + b − minj a
j. Because of this, the unique (symmetric) laissez-faire equilibrium

features aj∗ = 0 for all j.48 Indeed, in any candidate equilibrium with positive access fees,

all app stores must set the same access fee a∗ to attract some sales; but then each app

store would pro�tably slightly undercut a∗: this deviation has a negligible impact on the

probability G(∆ + b−minj a
j) with which app 2 innovates, but allows the deviating app

store to capture a positive access fee on all (rather than a fraction 1/N of) consumers.

Then, under laissez-faire a superior app makes pro�t π∗2 = ∆ + b, while app stores

make zero pro�ts. As a result, app 2 innovates for all γ ≤ ∆ + b, implying that socially

ine�cient innovations with development cost γ ∈ (∆,∆ + b] will be introduced. By

contrast, social welfare is maximized whenever π∗2 = ∆, which is the case if and only if

aj = b for all j.

Finally, both under laissez-faire and under the Pigouvian rule, consumers get net value

v from the app stores and vd from the device, and so the monopoly platform optimally

48More precisely, when at least two app stores set aj∗ = 0, the others could set any positive access fee.
Yet, in any such equilibrium the superior app, selling only through the most convenient app stores, pays
no access fee.
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sets p0 = v + vd.

Appendix B: Extensions and robustness

B.1 Heterogeneous app markets

This section generalizes the basic model to multiple, heterogeneous app markets, indexed

by k. The following analysis applies to an arbitrary �nite number or to a continuum

(mass 1) of markets. Let the ancillary bene�t, the inferior app value and the competitive

advantage of the superior app in market k be denoted bk, vk, and ∆k; Gk(·) and gk(·)
denote the cdf and pdf of the development cost γk of app 2 in market k. Third-party

providers are di�erent across app markets. We allow for more generality the access fee

to be app-market contingent (ak).

Proposition (heterogeneous app markets). Suppose that multiple heterogeneous app

markets, indexed by k and each described as the representative app market of the basic

model, coexist on the platform.

� The platform engages in vertically integration combined with self preferencing in

any market k where ak < bk.

� Under laissez-faire, the platform's pro�t is maximized by setting a market-speci�c

access fee ak∗, de�ned by

ak∗ = bk + vk +
Gk(bk + vk + ∆k − ak∗)
gk(bk + vk + ∆k − ak∗)

;

this value strictly exceeds the welfare-optimal values of the access fee in market k,

given by ak ∈ [bk, bk + vk].

Proof of Proposition. To start with, we show that the pricing stage admits a unique

equilibrium, with app prices as in Lemma 1 in each market k. Let us consider general

valuations vki − δki for i = 1, 2 in each app market k. Slightly abusing notation, in what

follows we denote ∆k = 0 if app 2 in market k does not sell a superior version.

Assume, without loss of generality, that vk2−δk2 ≥ vk1−δk1 , i.e. ∆k−δk2 +δk1 ≥ 0. Let us

�rst show that we can assume, also without loss of generality, that pk1 ≤ max(ak − bk, 0).

Either vk1−δk1 < pk1 and app 1 is out of app market k; then charging max(ak−bk, 0) cannot

do worse than charging pk1, regardless of whether app 1 is owned by the platform or an

independent app provider (and in the case of vertical integration, may increase consumers'

surplus, which bene�ts the platform, which can raise p0). Or vk1 − δk1 ≥ pk1; because app 2

wins the market, if app 2 is owned by an independent app provider, platform pivotality

(condition (ii) of our equilibrium de�nition) implies that app 2 takes as given consumers'
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participation on the platform and so optimally sets pk2 such that consumers are indi�erent

between the two apps: pk2 = pk1 + ∆k − δk2 + δk1 . If pk1 > ak − bk > 0, app 1 can charge

pk2−(∆k−δk2 +δk1)−ε < pk1, win the market and make a strictly higher pro�t; furthermore,

if app 1 is owned by the platform, the consumers' utility from app market k slightly

increases.

Next suppose that pk1 < ak − bk (which requires ak > bk). Let us show that price

pk1 is strictly dominated for an independent owner of app 1 by price ak − bk. If p̃k2 ≡
pk2−(∆k−δk2 +δk1) lies below pk1, whether app 1 is priced at p

k
1 or a

k−bk makes no di�erence;

but if it lies above pk1, charging p
k
1 rather than ak − bk implies a loss of ak − bk − pk1 > 0 if

app 1 is owned by an independent provider; in this case, the only undominated behavior

involves pk1 = ak − bk.
Finally, suppose that the platform owns app 1. The same arguments imply that

pk1 = max{ak − bk, 0} is the unique price in an equilibrium in undominated strategies if

the non-pivotal app 2 is viable � i.e., ak ≤ bk + vk + ∆k − δk2 . Otherwise, app 2 charges

any pk2 > vk + ∆k− δk2 and the unique undominated price for the in-house app is pk1 = vk:

reducing pk1 and increasing p0 to the same extent would in fact reduces platform pro�t if

app 2 were to set p̃k2 ≤ vk + ∆k − δk2 .
Consumers' utility from accessing the app store is

U ≡
∑
k

uk − p0,

with uk being the utility obtained from app market k:

uk ≡ max{vk1 − pk1, vk2 − pk2, 0}.

As seen above, irrespective of the ownership of the inferior app in each market k, equi-

librium app prices {pk∗1 , pk∗2 } are as in the basic model. Then, p0 is set so as to satisfy

consumers' participation constraint with equality (U = 0):

p∗0 =
∑
k

uk∗.

Hence, denoting xki = 1 if app i is sold in market k, platform's pro�t writes

p∗0 +
∑

{k:xk1=1}

(pk∗1 + bk) +
∑

{k:xk2=1}

ak =
∑

{k:xk1=1}

πk(xk1 = 1) +
∑

{k:xk2=1}

πk(xk2 = 1),

where

πk(xk1 = 1) ≡ vk1 + bk, πk(xk2 = 1) ≡ vk2 − pk∗2 + ak,

are the per-market pro�ts with and without foreclosure, respectively (inclusive of the
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revenues from optimally setting consumers' access price).

Consider, �rst, markets where app 2 sells a superior version. If not foreclosed, the

superior third-party app in market k makes

πk∗2 = pk∗2 + bk − ak.

In any market k where ak < bk, absent foreclosure, consumers purchase the superior app

at pk∗2 = ∆k and obtain utility uk∗ = vk. As this is the same utility that they would

obtain under foreclosure and pk∗1 = 0, it follows that by foreclosing superior rivals in

any such market the platform can charge the same access price p∗0 to consumers, but

obtains higher unit revenues bk > ak. Therefore, vertical integration combined with self-

preferencing occur for all ak < bk. In any market k where ak ∈ [bk, bk + vk], absent

foreclosure, consumers purchase the superior app at pk∗2 = ak − bk + ∆k and obtain

utility uk∗ = vk − (ak − bk) > 0. From any such market, the platform obtains pro�t

πk(xk = 1) = vk + bk = πk(xk = 0), and so is indi�erent between foreclosing or not. The

third-party seller gains πk∗2 = ∆k. In any market k where ak ∈ (bk + vk, bk + vk + ∆k],

absent foreclosure, consumers purchase the superior app at pk∗2 = vk + ∆k < ak− bk + ∆k

and obtain utility uk∗ = 0. From any such market, the platform obtains pro�t πk(xk =

1) = ak > vk + bk = πk(xk = 0), and so is strictly better o� than under foreclosure.

The superior app is squeezed: πk∗2 = vk + ∆k + bk − ak < ∆k. The platform vertically

integrates, and the price foreclosure outcome arises, in markets where the superior app

is not viable, i.e. where ak > bk + vk + ∆k.

In markets where app 2 does not sell a superior version, pk∗1 = pk∗2 = max{ak−bk, 0} for
all ak ≤ bk+vk. As above, the platform gains from vertical integration combined with self-

preferencing in markets where ak < bk, whereas it is indi�erent for ak ∈ [bk, bk + vk]. For

ak > bk + vk, both third-party apps are not viable, hence the platform makes πk(xk1 = 1)

by vertically integrating (price foreclosure). Therefore, for all ak, app 2 in market k does

not make any pro�t without introducing a superior version. Innovation therefore takes

place if and only if πk∗2 ≥ γ, i.e., with probability Gk(pk∗2 + bk − ak) if and only if ak ≥ bk

(no self-preferencing). Overall, the platform always gains bk +vk, unless app 2 introduces

a superior version and it is squeezed. The expected platform's pro�t is then∑
k

bk + vk +Gk(vk + ∆k + bk − ak),

which is maximized at ak∗ given in the statement, implying that the core ZLB binds

under laissez-faire. By contrast, social welfare is maximized when investment incentives

are socially e�cient: πk∗2 = ∆k � i.e., for ak ∈ [bk, bk + vk].

Remark (other Nash equilibria). We have focused throughout on the unique equilibrium

outcome satisfying undominated strategies and platform pivotality. When ak > bk and
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app 2 sells a superior version in market k, there are other Nash equilibria satisfying

platform pivotality, in which app 1 in market k charges a price pk1 below its opportunity

cost ak − bk � i.e., pk1 ∈ [0, ak − bk) and, as above, p∗2 = min{pk1 + ∆k, vk + ∆k} provided
that app 2 makes a non-negative pro�t, and p∗0 is set to extract consumers' net utility

across app markets in the considered equilibrium.49 These equilibria with below-cost

pricing involve a squeeze of the superior app (i.e. πk∗2 (ak) < ∆k for all ak > bk). As a

result, âk = bk is the only access fee that yields a fair reward and is not subject to the

multiplicity issue provided that independent apps do not perceive themselves as pivotal

(part (ii) of our equilibrium de�nition).50

Remark (elicitation from the platform under monitoring of foreclosure). This setting

with multiple heterogeneous app markets has been employed in Section 3 to study the

implementation of the Pigouvian rule. In particular, Proposition 5 has established the

impossibility of elicitation from the platform. Let us observe that this impossibility

result does not hold if self-preferencing can be monitored or if vertical integration is

not an option. A sketch of the proof goes as follows. Let W ∗ ≡ E[W k∗] = E[vk +

bk + ∆k] and ∆ ≡ E[∆k] (we again denote ∆k = 0 if app 2 in market k does not

innovate). Truth-telling yields platform payo� W ∗ − ∆. A deviation yields platform

payo� E[W k∗
1{ak≤vk+bk+∆k}−πk2(ak)]. If ak > vk + bk +∆k, the app-k market disappears,

which hurts the platform; if ak < bk, the platform leaves a supranormal rent to the

app (πk2(ak) > ∆k), which reduces the platform payo� unless this allows the platform

to squeeze the superior app in some market l. But even in the latter case, the platform

loses: if bk > bl and bl + vl ≤ bk ≤ bl + vl + ∆l, a permutation (ak = bl and conversely)

leads to πl2(bk) + πk2(bl) = [vl + bl + ∆l − bk] + [∆k + bk − bl] = [πk2(bk) + πl2(bl)] + vl. The

equilibrium outcome (although not the equilibrium strategies) is unique.

B.2 Ad-valorem access fees

Throughout the paper we considered for simplicity linear (per-unit) access fees. Here

we show that our results are robust when considering instead ad-valorem fees (which are

more often employed in reality): For each app sold by a third-party seller at price pi, the

platform gets tpi and the seller (1− t)pi, with t ∈ [0, 1]. Let us �rst consider the hybrid

platform case.

Lemma (hybrid platform). For any ad-valorem access fee t ∈ [0, 1], in the hybrid

platform case the equilibrium has the following features:

49At prices below ak − bk, app 1 would lose money if the superior app were to raise its price and
surrender the market to app 1; therefore, such equilibria are ruled out by the requirement (i) of the
equilibrium de�nition that dominated strategies be eliminated.

50Finally, for all values of the access fee, there are also Nash equilibria in which pk2 is again low, but
for another reason: App 2 could internalize the consumers' participation constraint, i.e. perceive itself
as pivotal (for example all app 2 providers would charge nothing if p0 =

∑
k v

k
2 ); hence the need for

condition (ii) of the equilibrium de�nition as well.
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1. If app 2 does not sell a superior version, or if it does but b > ∆, the platform is

better o� foreclosing the third-party app for all t.

2. If app 2 sells a superior version and b ≤ ∆:

� For t ∈ [0, b
∆

): p∗1 = 0 (the app ZLB binds), p∗2 = ∆, and p∗0 = v; hence,

π∗0(t) = v + t∆ < v + b, and so the platform is better o� foreclosing the third-

party app (self-preferencing);

� For t ∈
[
b
∆
, b+v
v+∆

]
, p∗1 = t∆−b

1−t , p
∗
2 = ∆−b

1−t , and p
∗
0 = v − t∆−b

1−t ; for any such t,

π∗0(t) = v + b and π∗2(t) = ∆ (competitive neutrality);

� For t ∈ ( b+v
v+∆

, 1]: p∗1 = t(v + ∆) − b, p∗2 = v + ∆, and p∗0 = 0 (the core ZLB

binds); hence, π∗0(t) = t(v + ∆) > v + b and π∗2(t) = (1 − t)(v + ∆) + b < ∆

(superior app squeeze).

Proof of Lemma. App 2 always makes positive per-consumer pro�t (1 − t)p2 + b, and

the platform prefers selling its own app as long as tp2 < b + p1. If app 2 does not sell

a superior version, perfect Bertrand competition implies p∗2 = p∗1 ≤ (1− t)p∗2 + b, and so

the app ZLB binds: p∗1 = p∗2 = 0 for all t. As the platform does not collect fees from app

2 sales, it �nds it optimal to foreclose app 2 and so gets v + b.

If app 2 sells a superior version, given the app ZLB constraint, equilibrium app prices

are

p∗1 = max{0, tp∗2 − b} and p∗2 = min{p∗1 + ∆, v + ∆}.

As long as app providers are unconstrained by consumers' willingness to pay, the equi-

librium app prices are p∗1 = t∆−b
1−t , p

∗
2 = ∆−b

1−t if t ≥ b
∆

p∗1 = 0, p∗2 = ∆ if t < b
∆

Hence, for t < b
∆
∈ (0, 1), p∗0 = v, and foreclosure is optimal (this result holds for

all t ∈ [0, 1] when b > ∆): π∗0(t) = v + t∆ < v + b ⇐⇒ t < b
∆
. For t ≥ b

∆
,

p∗0 = v + ∆− p∗2 = v + b−t∆
1−t , and so π∗0(t) = v + b and π∗2(t) = v. This is the equilibrium

outcome as long as p∗2 < v + ∆, which requires t < b+v
v+∆

. For t ≥ b+v
v+∆

, p∗2 = v + ∆, and

so p∗1 = t(v + ∆)− b ∈ (v, p∗2 −∆) and p∗0 = 0. In this case, π∗0(t) = t(v + ∆) > v + b and

π∗2(t) = (1− t)(v + ∆) + b < ∆.

Under ad-valorem fees, the platform can capture ∆, which is charged by the superior

app, but cannot capture b. As a result, foreclosure is always optimal if b > ∆; this is

always true when app 2 does not sell a superior version � i.e., ∆ = 0. If instead b ≤ ∆,

the equilibrium characterization with a hybrid platform mirrors the one under unit fees:

for low (resp. high) values of the access fee, the app (resp. core) ZLB binds, and the

platform is strictly better o� foreclosing (resp. not foreclosing) a superior third-party

app; for intermediate values of t, no ZLB binds, and the neutrality result holds.
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Unlike in the basic model, however, this neutrality region does not exist in the pure

platform case. This is because, unlike under linear fees, here an inferior third-party app

provider has a lower opportunity cost, and thus is a tougher competitor to a superior

seller, relative to the platform. This result has important implications on the platform's

business model choice:

Lemma (platform business model). If the platform is a pure player, for all t ∈ [0, 1],

p∗1 = 0 and p∗2 = ∆ (resp. p∗2 = 0) if app 2 sells (resp. does not sell) a superior version.

Therefore, the platform gains from vertical integration combined with self-preferencing:

(i) for all t ∈ [0, 1] if either b > ∆ or b ≤ ∆ but app 2 does not innovate; (ii) only for

t < b
∆
if b ≤ ∆ and app 2 sells a superior version. In the latter case, the superior app is

squeezed for all t > b
∆
.

Proof of Lemma. If app 1 is also provided by a third-party seller, it �nds it optimal

to sell if and only if (1 − t)p1 + b ≥ 0, and so p∗1 = max{0,− b
1−t} = 0. As then

p∗2 = min{p1 + ∆, v+ ∆}, we obtain that, for all t, p∗1 = 0 and p∗2 = ∆, with ∆ = 0 if app

2 does not innovate, and so p∗0 = v.

Then, as above, for all t ∈ [0, 1] the platform does not make access fee revenues if app

2 does not innovate, implying that it has incentives to vertically integrate and foreclose

app 2 in these circumstances.

If, in contrast, app 2 innovates, it makes pro�t π∗2(t) = (1 − t)∆ + b, whereas the

pure-player platform obtains π∗0(t) = v + t∆. Therefore:

� For all t < b
∆
(again, always if b > ∆), the superior app makes a supranormal pro�t.

The platform has incentives to vertically integrate, by acquiring the inferior app at

a negligible price, and foreclose the superior app;

� For t = b
∆
, the superior app obtains its fair reward, and the platform has no strict

incentives to vertically integrate;

� For all t > b
∆
, the superior app is squeezed, and the platform is strictly better o�

by operating as a pure-player platform.

As app 2 always makes zero pro�t if it does not innovate, the superior version is

introduced if and only if t ≥ b
∆
(no self-preferencing) and (1− t)∆ + b ≥ γ. Accordingly,

it is easy to derive the following results:

Proposition (optimal access fees). Suppose b < ∆. Then:

(i) Pro�t-maximizing access fee. The platform's pro�t is maximized at

t∗ = min

{
b

∆
+

1

∆

G((1− t∗)∆ + b)

g((1− t∗)∆ + b)
, 1

}
;
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(ii) Welfare-optimal access fee. Social welfare is maximized at t̂ = b
∆
< t∗, at which a

superior app receives a fair reward for its contribution to the ecosystem.

Proof of Proposition. By the results in the Lemma above, the platform's gains the fore-

closure pro�t v + b for all t ≤ b
∆
. For t > b

∆
, the platform still vertically integrates and

gets v+ b if app 2 does not innovate, otherwise it gets a higher pro�t t∆+v by remaining

a pure player. As in this region app 2 innovates if and only if (1 − t)∆ + b ≥ γ, the

platform's expected pro�t equals v+ b+G((1− t)∆ + b)[t∆− b], which is maximized for

t∗ given in the statement.

As consumer surplus is always extracted by the platform through the access price, ex-

post social welfare is simplyW ∗ = b+v+∆x2, with ∆ = 0 if app 2 does not innovate, and

so is maximized whenever there is no self-preferencing vis-à-vis a superior app: t ≥ b
∆
.

Ex-ante expected social welfare maximization then requires the innovation to take place

only when it is socially optimal � i.e., if ∆ ≥ γ. This is equivalent to π∗2(t) = ∆ (fair

reward), and so the welfare optimal fee is t̂ = b
∆
< t∗.

Note that the welfare optimal access fee is such that p∗2(t̂) = ∆, so that the platform

obtains t̂p∗2(t̂) = b from distributing a superior third-party app. Hence, optimal access

fee regulation still follows the Pigouvian principle.51

B.3 Asymmetric ancillary bene�ts

We assumed for simplicity that all providers reap the same bene�t from app distribution.

This need not be the case. First, the platform may obtain a share of bene�ts when a third-

party app is sold, as when Google shares data with independent apps in its ecosystem.

Second, the bene�ts from app distribution may depend on provider-speci�c features. We

therefore allow the ancillary bene�t to take the form b†ixi for app i, where xi = 1 if the

consumer chooses app i and xi = 0 otherwise. Letting b1 ≡ b†11 − b
†
10 > 0 for a in-house

app and bi ≡ b†ixi > 0 for an independent app i, and assuming, without loss of generality,52

that ∆ > b1 − b2, the analysis carries through with appropriate modi�cations:

Proposition (asymmetric ancillary bene�ts). Consider a hybrid platform. With

asymmetric ancillary bene�ts b†ixi, denoting b1 ≡ b†11− b
†
10 and b2 ≡ b†21, with ∆ > b1− b2:

(i) The platform has an incentive to engage in self-preferencing vis-à-vis a superior app

if and only if a < b1.

(ii) Any a ∈ [b1, b1 + v] yields a fair reward to a superior app and so maximizes social

welfare; these levels are strictly lower than the platform's pro�t-maximizing fee,

a∗ = v + b1 +G(b2 + v + ∆− a∗)/g(b2 + v + ∆− a∗).
51As in the model with linear access fees, the Pigouvian rule also applies if self-preferencing can be

monitored, because lower values of the access fee would result in socially excessive innovation.
52∆ + b2 < b1 would mean that the �superior� app creates less total value than the �inferior� app, a

case that we noted is uninteresting in the hybrid platform case.
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Proof of Proposition. If app 2 does not introduce a superior version, it always makes

zero pro�t in equilibrium: (i) If b2 > b1, app 1 has a cost-disadvantage vis-à-vis app 2,

implying equilibrium prices p∗1 = p∗2 = max{a − b1, 0}, with all consumers buying app 2

(whenever app 2 is viable); but then the platform makes less than the foreclosure pro�t

v + b†11 and so has incentives to favour its own app (the same result applies for b2 = b1).

(ii) If b2 < b1, app 2 has a cost-disadvantage vis-à-vis app 1 and so cannot make any sale

in equilibrium.

If app 2 introduces a superior version, equilibrium app prices are p∗1 = max{a− b1, 0}
and p∗2 = min{p∗1 + ∆, v + ∆} (provided app 2 is viable). The third-party app's pro�t is

then π∗2 = ∆ + (b2 − b1) in the neutrality region [b1, b1 + v], and π∗2 = b2 + v + ∆ − a in

the squeeze region.

The third-party app's contribution to the ecosystem is now ∆ + (b2 − b1). Therefore,

picking access fees in the neutrality region creates neither a squeeze nor an incentive for

self-preferencing, and yields socially e�cient innovation incentives � i.e., app 2 innovates

if and only if ∆ + (b2 − b1) ≥ γ.

By contrast, the platform gains v + b†11 for all a ≤ b1 + v, but a higher pro�t a + b†10

in the squeeze region if app 2 innovates. Hence, platform's expected pro�t is v + b†11 +

G(b2 + v + ∆ − a)[a − (v + b1)] for a > b1 + v. Pro�t maximization yields a∗ > b1 + v

given in the statement.

The analysis can also be generalized to pure platforms. The novel insight is that

a pure platform may engage in non-price foreclosure, even if the access conditions are

�non-discriminatory�, i.e., if the access fee a and the share ξ ∈ (0, 1) of ancillary ben-

e�ts received by the platform are app-independent; the platform then may reduce the

attractiveness of an app that is preferred by consumers � i.e., that has introduced the

innovation � but o�ers a low ancillary bene�t. To see this, suppose that a ≤ b†21 < b†11. If

δ2 = 0, equilibrium app prices are p∗1 = 0 and p∗2 = ∆, and so p∗0 = v and, as consumers

select app 2, π0 = v + a + ξb†21. The platform would then make more money by setting

δ2 slightly above ∆, so that p∗1 = p∗2 = 0, consumers select app 1 and the platform still

charges p∗0 = v and makes higher pro�t π0 = v + a+ ξb†11.

B.4 Physical devices

Suppose that consumers can access an app store (Apple's App Store, Google Play, Mi-

crosoft Store...) only upon purchase of a costly physical device (smartphone, laptop, or

game console). Assume that the device brings stand-alone value vd, the same for all

consumers. For example smartphones can be used for �non-gatekeeping purposes� such

as taking pictures and making calls; likewise desktops have other usages than supporting

services intermediated by a gatekeeper. Let cd denote the device's production cost (the

ancillary bene�t is denoted b†). As in the basic model, all prices are set simultaneously
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and consumers then take their consumption decisions.

If the device is �cheap� relative to its stand-alone value, that is if vd ≥ cd, consumers

own IT regardless of whether there is a competitive original equipment manufacturers

(OEM) sector or a monopoly, vertically integrated platform, and so the foregoing analysis

is literally unchanged:53 the platform engages in margin squeeze of a superior app by

setting a = a∗, whereas the socially optimal access fees are the strictly lower levels

a ∈ [b, b+ v], with b ≡ b†, at which a superior app provider obtains its fair reward.

Next consider a �costly� device, i.e. vd < cd.

(a) Suppose �rst that the platform is not vertically integrated into device manufactur-

ing (and cannot subsidize device manufacturers); instead, the device (say, an Android-

powered smartphone) is manufactured by a competitive OEM industry. The device is

sold at cost, i.e. at price cd.

The consumer surplus from the apps must exceed cd − vd > 0. For that reason, the

equilibrium cannot be in the squeeze region, as this would imply that a superior app is

constrained by, and charges the consumer's willingness to pay for the app. This means

that a superior app must receive ∆ and that the gross surplus to be divided between the

consumer and the platform is v + b†. Letting

b ≡ b† − (cd − vd),

the platform must set a ≤ b + v. Then, the market exists if and only if v + vd − cd =

v + b− b† ≥ 0, because the core ZLB prevents the ancillary bene�t b† from being passed

through to consumers (as would also be the case of ∆ if a superior app were squeezed).

(b) When the device is produced by a vertically integrated platform (as is the case for,

e.g., videogame platforms) or the platform can subsidize device manufacturers, the core

ZLB can be circumvented by subsidizing the device. The platform can then (i) squeeze

a superior app by setting a = a∗, and (ii) charge price vd for the device (implying a loss

cd − vd per device) and p0 = 0 for the app store. Concretely, the platform can bundle

device and app store and sell the bundle at vd. The market then exists provided that the

total surplus is positive: v + b+G(v + ∆ + b† − a∗)[a∗ − (v + b†)] ≥ 0.

Proposition (devices). Suppose that the device is produced by a competitive sector. Let

b† denote the ancillary bene�t and b ≡ b† −max{0, cd − vd} denote the adjusted ancillary

bene�t.

(i) When the device is cheap (b = b†), the baseline analysis is unchanged.

(ii) When the device is costly (b = b† − (cd − vd)):
53The only di�erence between these two cases is that with a competitive OEM sector the device is

sold at cost and access to the app store is sold at p∗0 characterized in Lemma 1 (the consumers therefore
obtain surplus vd − cd), whereas a monopoly, vertically integrated platform can bundle device and app
store at price vd + p∗0, extracting consumer surplus.
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� When the platform is not vertically integrated into device manufacturing, the market

exists if and only if v+b−b† ≥ 0. The platform optimally sets a = b+v and p0 = 0.

It does not squeeze superior apps.

� When the platform is vertically integrated into device manufacturing, the market

exists if and only if v + b + G(v + ∆ + b† − a∗)[a∗ − (v + b†)] ≥ 0. The platform

bundles device and app store at price vd and squeezes a superior app (a∗ > v + b†

is as in the basic model), and so has an incentive to vertically integrate into device

manufacturing.

� If v + b − b† < 0 < v + b + G(v + ∆ + b† − a∗)[a∗ − (v + b†)], allowing vertical

integration into device manufacturing and (at least �some�) squeeze is necessary for

the ecosystem's viability.

An interesting result here is that vertical integration into devices can enable ecosystem

viability. The intuition relates to the familiar Tinbergen rule requiring at least as many

independent instruments as there are targets: the access fee alone cannot achieve two

contradictory goals. To make the platform more attractive to consumers, a must make

apps cheap and therefore be low. But that may not su�ce to induce the consumers

to purchase the costly device. The second instrument is a platform subsidy to such

purchases. In turn, a platform integrated into device manufacturing may not want to pay

this subsidy unless the apps themselves are put to contribution through a high access fee.

This high fee can be o�set on the user side through the subsidy instrument.

B.5 Platform viability and entry

Assume that the social welfare function is U +ωΠ, where Π is total pro�t (platforms and

apps) and ω ∈ (0, 1) is the weight on industry pro�ts relative to consumer surplus U .54

Suppose that there is (sequential) entry into the platform segment, with entry cost J .

Suppose further that self-preferencing cannot be monitored, and so the access fee must

be no lower than b.

From the results of Section 4.1, it follows that the socially optimal number of platforms

is at most two, because extra platforms beyond N = 2 do not alter the consumer surplus

and variable pro�t, but add entry costs and so are necessarily suboptimal. Given that,

with N = 3, each entrant makes b
3
under the Pigouvian rule, and higher pro�ts under

laissez-faire, for all J ≤ b
3
there is always too much entry into the platform segment,

54Under a social welfare standard (ω = 1), platform competition just entails socially wasteful duplica-
tive entry costs: welfare maximization dictates N = 1. On the contrary, under a consumer surplus
standard (ω = 0), as a monopolist brings zero net value to consumers, entry by any number N ≥ 2 of
platforms would be optimal (i.e., there is never excessive entry in equilibrium from consumers' stand-
point).
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which, without monitoring of non-price foreclosure, cannot be prevented by access fee

regulation.

Under a monopoly platform, the consumers obtain no surplus (U = 0). A second

entrant increases consumer surplus by v, at the expense of platform total pro�t, but also

entails a socially wasteful entry cost J . Formally, U + ωΠ = v + ω(b + ∆ − 2J) under

duopoly and U +ωΠ = ω(b+ v+ ∆− J) under monopoly. Hence, a duopoly is preferred

to monopoly if and only if (1− ω)v ≥ ωJ , or J ≤ 1−ω
ω
v.

Thus, assuming that the access fee is set, by regulation, at the Pigouvian level, for

J ∈ [max{1−ω
ω
v, b

3
}, b

2
] there is again too much entry, as two platforms enter but it would

be optimal to have one. The region of parameters where excessive entry prevails of

course expands when platforms are free to set access fees, as the absence of regulation

increases their pro�ts. If, on the contrary, J ∈ ( b
2
,min{1−ω

ω
v, b + v}], then spurring the

welfare-maximizing second entry requires setting the access fee above the Pigouvian level.

Similarly, if J ∈ (b+v, b+v+∆], there is a potential trade-o� between the �rst platform's

viability, which requires a squeeze in the app's pro�t, and app viability, which calls for

staying away from the squeeze region to obtain the proper level of innovation.

Proposition (entry). Because the core ZLB prevents platform pro�ts from being com-

peted away, socially excessive entry prevails when the entry cost is low and foreclosure

cannot be monitored. By contrast, for high entry costs, setting access fees above the Pigou-

vian level is desirable to spur platform entry, if no other instrument is available (as we

saw, a > b introduces distortions).

These results suggest that, while access fee regulation is an e�ective instrument to

achieve fairness, thereby promoting e�cient entry and investment decisions in the app

segment, it may not be a jack of all trades, able to take on extra tasks such as ensuring

contestability of the core segment.

B.6 O�-path measurement and appeals

Measuring b systematically would imply considerable costs and delays. At best one can,

when the access fee is determined by the platform, allow appeals that hopefully will not be

frequent if the incentive scheme is designed properly. Let us focus on the more interesting

case of a hybrid platform and a superior third-party app (as any inferior third-party app

is never foreclosed and makes zero pro�t for all a ≥ b and the platform would never set

a < b).

Suppose the regulator is equipped with a noisy measure of the ancillary bene�t if called

upon by a party. More precisely, the platform chooses the access conditions {ak, δk2} (of
which the regulator observes only a), then prices are set, and �nally the superior third-

party app chooses whether to appeal �against a high access fee�. In this appeal procedure,
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the authority observes a noisy, but unbiased, version b̃k of the ancillary bene�t, with cdf

R(b̃k) such that
∫
R b̃

kdR(b̃k) = bk. If ak > b̃k, then the access fee is assessed to be unfair,

and the defendant (the platform) must pay a �ne τ(ak − b̃k) (with τ > 0) to the plainti�

(the third-party app); and vice versa if ak ≤ b̃k.

The outcome of the appeal procedure interferes neither with the platform's choice

of whether to foreclose the third-party app, nor with access and app prices chosen by

the �rms before the appeal. This implies that the third-party app will appeal whenever∫
R τ(ak− b̃k)dR(b̃k) > 0⇔ ak > bk. So if τ ≥ 1, the platform does not gain from in�ating

the access fee beyond bk.

This analysis however understates the platform's ability to extort high access fees.

Let us therefore �empower� the platform by allowing it to foreclose the third-party app

after the latter has appealed (silence means assent, so the absence of appeal means that

the proposed a applies). Suppose that the platform faces a sequential entry of superior

third-party apps in distinct but identical app submarkets and discounts future pro�ts at

a rate β. The platform can therefore build a reputation for preying on apps that dare to

appeal.

Proposition (appeals). Give the third-party app a right to appeal against a high access

fee chosen by the platform. If the regulator can produce a noisy measure b̃k of the ancillary

bene�t, and impose su�ciently large �nes to the platform if it loses the appeal � namely,

τ(ak − b̃k) if ak > b̃k, with τ ≥ max{1, β/(1 − β)} � then the Pigouvian rule can be

implemented even when the platform can build a reputation for engaging in foreclosure

after being challenged by an app.

Proof of Proposition. The arguments above imply that the third-party app in market k

will appeal whenever
∫
R τ(ak − b̃k)dR(b̃k) > 0⇔ ak > bk.

Moving backwards to the pricing stage, pk1 = 0 and pk2 = ∆k is the worst-case scenario

for the third-party app in any platform-pivotality equilibrium. Then, for all ak ≤ bk +∆k

(no access-price foreclosure), the third-party app's pro�t, absent non-price foreclosure, is

at least πk2 = ∆k + bk − ak. Because total pro�t is at most vk + bk + ∆k, the platform's

maximal expected pro�t from setting any ak > bk and therefore being challenged is

vk + ak −
∫
R
τ(ak − b̃k)dR(b̃k),

which is decreasing in ak provided τ > 1. In contrast, the platform makes pro�t vk +

bk either by setting ak < bk and foreclosing the superior app, or by choosing ak =

bk, while any other (ak, δk2)-choice yields strictly lower pro�t. Therefore, the Pigouvian

principle can always be implemented by giving the platform a tiny advantage in the

appeal procedure � e.g., the appeal bene�ts the third-party app if and only if ak > b̃k + ε

for a small positive ε, so that a small squeeze is tolerated and the platform strictly prefers
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not to foreclose.

The observation that the third-party app appeals for any ak > bk(+ε) crucially hinges

on the fact that appealing has no impact on its market pro�t. This would not be the case if

the platform had the possibility (and the incentive) to foreclose it post appeal. When such

a post-appeal foreclosure threat is credible, the third-party app does not appeal whenever

∆k+bk−ak ≥
∫
R τ(ak− b̃k)dR(b̃k), or equivalently ak ≤ a† ≡ bk+ ∆k

τ+1
. If τ is large enough

relative to the platform's discount factor β, however, such reputation building strategy

can be prevented. To see this, suppose for simplicity that, by foreclosing after a = a† is

appealed in the �rst market, the platform is able to secure pro�t vk+a† forever after, which

implies a discounted extra pro�t β∆k

(1−β)(1+τ)
from future markets relative to the pro�t vk+bk

it obtains by proposing ak = bk,55 at an expected loss
∫
R τ(a† − b̃k)dR(b̃k) = τ ∆k

1+τ
from

the appeal. Therefore, setting τ ≥ β
1−β prevents such reputation-building strategy.

55For τ > 1, this pro�t in turn exceeds the pro�t from proposing a† in the �rst market and not
foreclosing after being challenged, thereby failing to build a reputation for foreclosing future apps.
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Chapter III

Externalities of Responsible

Investments

This chapter is based on joint work with Alessio Piccolo (Indiana Kelley) and Jan Schneemeier

(MSU Broad). All authors contributed equally to this research.
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1 Introduction

Companies face increasing pressure from investors to include environmental and social

factors in their policies. By March 2024, 4,827 investors managing $128 trillion have

signed the United Nations Principles for Responsible Investment (UN PRI), pledging to

incorporate corporate social responsibility (CSR) issues into their investment analysis

and ownership policies. In 2020, $1 in every $3 under professional management in the

United States was allocated to sustainable investments (Edmans, 2023). The primary

rationale for this socially responsible investing (SRI) is to change or divest from �rms

that exert negative externalities, to reduce their harm to society.

In a world where political institutions fail to control externalities, responsible investors

can have a positive impact by serving as substitutes for regulation and other forms of

government intervention. While there is extensive literature on the limits to government

intervention (e.g., Acemoglu, 2003; Besley and Persson, 2023), the ine�ciencies that may

arise when capital markets try to control �rms' externalities are less understood. The

objective of this article is to investigate the impact of SRI in a framework where its

potential ine�ciencies, and the externalities that such ine�ciencies may impose on other

stakeholders, are carefully articulated and analyzed.

Our starting point is a traditional model of �rms' externalities, where �rms' private

incentives are insu�cient to incentivize the socially optimal level of externalities reduc-

tion. For the sake of concreteness, we interpret �rms' externalities as the pollution they

generate through production, and externalities reduction as their e�orts to abate pollu-

tion. We use the model to study the following question: Suppose some investors care

about externalities and can in�uence �rms' policies (e.g., by engaging in governance, or

because managers cater to the preferences of their shareholders), but only feel �responsi-

ble� for the externalities generated by the �rms in their portfolios; how do they invest in

equilibrium, and with which e�ects on the economy?

Sustainable funds are typically evaluated based on the average ESG scores of the

stocks in their portfolios (see, e.g., Morningstar's �globe� ratings of funds); consistent with

this observation, we assume that responsible investors, who make up a fraction of total

investors in the market, su�er a disutility from holding polluting �rms.1 The remaining

investors are �non-responsible�, in the sense that they only care about �nancial returns.

Both types of investors submit demands for the �rms' shares in a �nancial market, and

share prices adjust to equate demand and supply.

Our �rst main insight is that, when the fraction of investors who are responsible is

1Our modeling of responsible preferences is consistent with the traditional explanations of individuals'
demand for CSR (i.e., warm-glow and image concerns (Andreoni, 1990; Bénabou and Tirole, 2010) and
similar to other papers on SRI (see, e.g., Heinkel et al., 2001; Pástor et al., 2021; Goldstein et al., 2022).
For evidence on warm-glow preferences for investors see Heeb et al. (2023) and Bonnefon et al. (2025).
Hartzmark and Sussman (2019) document that mutual funds with higher globe ratings attract larger
�ows.
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not too large, responsible investors prefer to adopt investment strategies that lead to a

concentration of SRI in a few �rms in the economy. The basic idea is easy to explain: by

coordinating their portfolio choices to concentrate their investments in only a few �rms,

responsible investors can create enough price pressure on these �rms' shares, so that

non-responsible investors prefer to go after other �rms. This way, responsible investors

can acquire large ownership stakes in the �rms they target, and signi�cantly change

their abatement policies, at the cost of smaller �nancial returns on their holdings. The

equilibrium strategies of responsible investors resemble some of the typical SRI strategies

in practice (e.g., best-in-class investing and ESG exclusion)2 and are broadly consistent

with the concentration of green capital we observe in the data (Figure 1).
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Figure 1: This �gure plots HHI indexes of Green and Non-Green Capital at the industry
level for NYSE/NASDAQ-listed stocks as of 2020. Industries are de�ned by NAICS 2-
digit codes. NYSE/NASDAQ-listed stocks are from CRSP.

The following step of our analysis is understanding how this concentration of re-

sponsible investments a�ects aggregate abatement, allowing for interdependence in �rms'

private incentives to abate, �rst in a general, reduced-form way (similar to Bulow et

2Best-in-class investing (or positive screening) refers to the approach of selecting companies that are
leaders in their industry or equity sector in terms of ESG criteria. ESG exclusion (or negative screening)
refers to the strategy of excluding speci�c companies or sectors that do not meet certain ESG thresholds.
See Starks (2023) for a taxonomy of the typical ESG investing strategies.
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al., 1985), and then by microfounding the interdependence through �rms' interactions in

product markets. The abundance of SRI then spurs the abatement e�orts of the �rms in

responsible investors' portfolios, but it also has an indirect e�ect on the other, "excluded"

�rms.

First, suppose that abatement e�orts are strategic complements, so that the indirect

e�ect is positive � that is, the excluded �rms follow the lead of the targeted �rms and also

abate more. Complementarity is most likely to arise when there are positive spillovers in

developing green technologies (as documented by Aghion et al. (2016) for the auto indus-

try), or when �rms' products are complements in consumers' preferences (e.g., electric

vehicles and charging stations). In this case, SRI concentration can be the most e�cient

way to overcome free-riding and coordination issues in adopting green technologies, and

aggregate abatement always increases with SRI compared to a world where no investor

is responsible.

Next, consider a setting where abatement e�orts are strategic substitutes, so the

indirect e�ect is negative � that is, the increased abatement of the �rms targeted by

responsible investors crowds out those of the excluded. Substitutability is most likely to

arise when �rms compete for consumers in product markets (e.g., when the traditional

�Schumpeterian e�ect� of competition is at play, as documented by Aghion et al., 2005)

or for resources in input markets (e.g., lithium batteries for electric vehicles: see Speirs et

al., 2014). From a social welfare perspective, SRI concentration is then less desirable in

these environments, to the extreme that the crowding-out can outweigh the direct e�ect,

in which case aggregate abatement would be larger without responsible investors. Even

when concentrated SRI increases aggregate abatement, it may still be undesirable: The

concentration of SRI helps the �responsible� �rms gain product market power, which then

allows them to charge higher prices for green products, so that consumption and welfare

might still be lower than in a world without SRI.

Perhaps surprisingly, responsible investments concentrate the most in our model when

concentration is least desirable � that is, when the crowding-out e�ect described above is

strongest. The reason is that the crowding out makes excluded �rms less green and, thus,

less attractive to responsible investors, which reinforces their preference for concentration.

It is worth emphasizing that, when a majority of investors in the market are responsible,

concentration is no longer necessary, so SRI becomes more uniformly distributed across

the �rms in the economy. Our model thus suggests that, while SRI is likely to help

the transition to a greener economy if it becomes the norm in �nancial markets, it may

generate ine�ciencies in the interim or if it remains a somewhat limited phenomenon.

A more subtle type of ine�ciency of SRI relates to this transition toward a more

uniform distribution of responsible investments in the economy. In our model, responsi-

ble investors in�uence �rms' abatement policies and, at the same time, select companies

based on their expectations about these policies. This feedback loop between SRI and
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abatement e�orts is such that, for intermediate values of the fraction of responsible in-

vestors, multiple SRI distributions, with di�erent levels of concentration and aggregate

abatement, can be supported in equilibrium. In environments with independence in

abatement e�orts, we show that responsible investors favor concentration even when a

more uniform distribution of SRI would be possible in equilibrium and would yield larger

aggregate abatement.

Overall, our results highlight an inherent tension in the role of SRI as a mechanism to

control externalities: When their mass is su�ciently small, responsible investors need to

concentrate to have a signi�cant impact on �rms' policies; however, when they do, their

preferences become more detached from aggregate abatement, as they fail to internalize

the abatement choices of the excluded �rms. So they may end up creating a few "green

islands" in a "sea of brown �rms," instead of driving a more generalized change toward

a greener economy, even when SRI becomes more popular, and driving such a change

would be feasible.

Contributions. We make three main contributions to the literature. First, we con-

tribute to the literature on SRI by providing a theoretical analysis of its distributional

e�ciency. By studying asymmetric equilibria in a framework with multiple �rms, we are

able to explore the e�ects of SRI concentration for excluded �rms and aggregate external-

ities. We also examine how SRI concentration spills over to product markets by a�ecting

�rms' competitive positions.

While there is extensive literature on the direct e�ects of SRI on �rm externalities

(Heinkel et al., 2001; Broccardo et al., 2022; Edmans et al., 2022; Gupta et al., 2022;

Oehmke and Opp, 2025), the spillovers to other �rms and markets are less understood.

The papers closest to ours are those that explore SRI in general equilibrium models with

perfect competition (Hakenes and Schliephake, 2021; Landier and Lovo, 2025). Besides

exploring asymmetric equilibria and imperfect competition, we consider a general model

of interdependence in abatement choices, which allows for both complementarity and sub-

stitutability.3 The analysis of the interaction between SRI and other forms of incentives

to limit externalities (e.g., the pricing of CSR issues in product markets) also connects our

paper to those exploring the interplay between SRI and regulation (Biais and Landier,

2022; Piatti et al., 2022; Huang and Kopytov, 2023).4

Second, we contribute to the vast literature on the objectives of the �rm. The tra-

ditional view that �rms should primarily maximize pro�ts (Friedman, 1970) has been

3Landier and Lovo (2025) consider a setting with two production sectors where supply-chain inter-
actions generate a form of complementarity in �rms' toxic emissions. Hakenes and Schliephake (2021)
abstract from interdependence in abatement e�orts. Both papers focus on symmetric equilibria, so they
abstract from the implications of SRI concentration.

4Other work on SRI focuses on its implications for �nancial market outcomes, like expected returns
(Pástor et al., 2021) and price informativeness (Goldstein et al., 2022).
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challenged by several recent papers (Elhauge, 2005; Bénabou and Tirole, 2010; Hart and

Zingales, 2017). They argue that when political institutions fail to control externalities

(due to commitment problems and political failures (e.g., Acemoglu, 2003; Besley and

Persson, 2023), �rms should internalize shareholders' social preferences, potentially pur-

suing social goals at the expense of pro�ts. We explore the e�ciency of this market-based

approach to controlling �rm externalities. Our paper �ts into a broader line of research

exploring how individual social preferences in�uence public goods provision (e.g., Bén-

abou and Tirole, 2006; Besley and Ghatak, 2007; Kaufmann et al., 2024).

Third, we provide a parsimonious model for studying the general equilibrium im-

plications of heterogeneity in investor preferences. While we focus on investors' social

attitudes, other dimensions of heterogeneity are relevant for other applications. There

is a large body of evidence that investors di�er along multiple dimensions, like their in-

vestment horizons (Bushee, 1998; Gaspar et al., 2005) governance attitudes (Bubb and

Catan, 2022), and social and political ideologies (Bolton et al., 2020). A growing theoret-

ical literature studies how such heterogeneity a�ects the feedback between trading and

governance decisions (Kakhbod et al., 2023; Levit et al., 2024) in single-�rm settings.

We derive a tractable characterization of (asymmetric) equilibria where ex-ante identical

�rms di�er in their ownership and consequently implement di�erent policies, which allows

us to study how investors' heterogeneity a�ects the distribution of �rms' ownership and

policies in the economy.

2 A model of Socially Responsible Investments

The model consists of two dates, t ∈ {1, 2}, and a �nite number of publicly traded

�rms, j ∈ J ≡ {1, . . . , N}. At time t = 1, investors trade claims to the �rms' pro�ts,

which determines �rm ownership. At time t = 2, �rms �rst make costly investments to

limit their externalities; then, their pro�ts realize and are distributed to shareholders.

All agents in the model are rational, and for simplicity, we assume that there is no

discounting.

2.1 Externalities and �rm policies

All �rms are ex-ante identical. Each �rm generates a negative externality λ at a rate

1−σj. For concreteness, we refer to λ as the pollution generated by the �rm's production

process, and to the actions �rms take to limit their externalities as abatement e�orts.5

We denote these abatement e�orts by σj ∈ [0, 1], where σj can be interpreted either as the

percentage reduction in pollution or as the probability of adopting a clean technology that

5More broadly, λ may also capture other externalities, such as the societal cost of a negative corporate
culture.
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fully abates pollution. The cost of abatement is C(σj), which is continuously di�erentiable,
increasing, and convex. Firm j's expected pro�t Πj is given by Π (σj, ~σ−j) ≡ πj − C(σj),
where πj = π (σj, ~σ−j) denotes expected pro�ts gross of abatement costs. We assume that

πj is positive, continuously di�erentiable in both arguments, and that it is increasing and

concave in σj. The assumption that πj increases with σj captures �rms' private incentives

to abate, that is, independent of their ownership (more on this shortly), which may re�ect

pressure from consumers, workers, or government regulation.

We assume that πj also depends on the abatement e�orts of other �rms, which are

collected in the vector ~σ−j. This means that j's private incentives to abate can depend

on ~σ−j, which allows for interdependence in abatement e�orts. Similar to Bulow et al.

(1985), we �rst capture this interdependence in a general, reduced-form way, through

the properties of the cross derivatives ∂2πj
∂σj∂σj′

, for all j′ 6= j. If ∂2πj
∂σj∂σj′

> 0, abatement

e�orts are strategic complements, and more e�orts by another �rm strengthen �rm j's

private incentives to abate. Examples of strategic complementarities include technolog-

ical spillovers in developing green technologies or �rms selling complementary goods. If
∂2πj

∂σj∂σj′
< 0, abatement e�orts are strategic substitutes, which is the case, for instance,

when �rms compete for consumers in product markets or for resources in input markets.

(iii) Finally, ∂2πj
∂σj∂σj′

= 0 describes a benchmark where the abatement e�orts are inde-

pendent across �rms. In Section 5, we micro-found this interdependence by explicitly

modeling �rms' interactions in product markets.

2.2 Ownership market and �rm objective

At time t = 1, investors' trading determines �rms' ownership. Each �rm has a �xed supply

of shares, normalized to one, traded in a �nancial market. A unit mass of atomistic

investors, indexed by i ∈ [0, 1], simultaneously submit their demand schedules for the

shares of each �rm. The market-clearing price pj adjusts to equate demand and supply.

Investors have heterogeneous preferences. A fraction 1−χ, with χ ∈ (0, 1), are purely

pro�t-motivated, in that they maximize the expected monetary return from their holdings

� that is, the expected value of their claims to �rms' pro�ts net of the share prices and

a trading cost Ki. The remaining investors also su�er a disutility from holding polluting

�rms (e.g., Heinkel et al., 2001; Pástor et al., 2021; Goldstein et al., 2022), as they

internalize the societal cost of pollution of �rms in their portfolios. We refer to the latter

as socially responsible investors (i ∈ R), and to the former as non-responsible investors

(i ∈ N ). Formally, for a given vector of anticipated abatement choices ~σ ≡ (σ1, ..., σN)′,

investor i solves:

max
~si≥~0

∑
j∈J

sij [Πj − pj − 1i,Rλ(1− σj)]−Ki, (1)

where ~si ≡ (si1, ..., s1N)′ collects the number of shares investor i holds in each �rm j,
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and 1i,R = 1 if i is responsible (i ∈ R) and 0 otherwise (i ∈ N ).6 We assume that

the trading cost of purchasing
∑

j sij shares is Ki = K
(∑

j sij

)
and, to obtain closed-

form solutions for the trading strategies, we set K(x) ≡ κ
2
x2 (similar to Banerjee et al.

(2018) and Dávila and Parlatore, 2021).7 Investors' portfolio decisions determine �rm

ownership: we let sRj ≡
∫ 1

0
sij1i,Rdi denote the shares of �rm j held by R investors, and

~sR ≡ (sR1 , . . . , s
R
N) the distribution of responsible ownership in the economy.

At the beginning of t = 2, �rms simultaneously choose their abatement levels. Each

�rm incorporates its shareholders' preferences into its objective function, so ownership

in�uences abatement e�orts. Formally, given its share of responsible owners sRj , �rm j

chooses σj to solve:

max
σj∈[0,1]

Πj − λ(1− σj)sRj . (2)

The objective in Program (2) is a weighted average of the expected payo� per share to

investors, where the weights are equal to the shares held by each shareholder.8 This

speci�cation is typically referred to as proportional control assumption (see, e.g., O'Brien

and Salop, 1999; López and Vives, 2019), and captures di�erent channels through which

shareholders can in�uence managerial decisions in proportion to their stake in the �rm.9

In our setting, R investors internalize the cost of the pollution generated by the �rms they

hold. So, the larger the share of j's responsible ownership, the more the �rm internalizes

the societal cost of pollution λ when choosing its abatement e�ort.

To simplify the exposition, we impose the following assumption:

Assumption 1. λ > C ′(1) >
∂πj
∂σj

(1,~1).

The �rst inequality in Assumption 1 implies that it is socially optimal for all �rms

to fully abate their pollution (i.e., to set σj = 1 for all j), since the societal cost of

pollution is always larger than the cost of abatement. The second inequality implies that

�rms' private incentives are, however, insu�cient to achieve this outcome: at ~σ = ~1, the

(private) marginal bene�t of abatement is lower than the marginal cost. This creates an

6Investors are atomistic, so they take aggregate outcomes as given. Adding a disutility for the aggre-
gate externality to Program (1) would thus not a�ect the equilibrium characterization. More broadly,
the equilibrium characterization carries through as long as R investors care relatively more about the
pollution generated by the �rms in their portfolio (see Appendix B.4).

7The assumption that K(·) depends on the total size of i's portfolio (rather than its composition) is
consistent with this cost re�ecting both direct and indirect transaction costs, such as the borrowing or
opportunity costs of raising funds for the investor. As shown in Appendix B.5, our results carry through
if trading costs instead depend on the individual holdings of each �rm.

8At the beginning of time t = 2, investors have already paid the share price and transaction cost.
It follows that a N investor receives an expected payo� Πj from holding a share of �rm j, while a R
investor receives an expected payo� Πj − λ(1− σj).

9Examples include voting (e.g., Levit and Malenko, 2011; Levit et al., 2024), exit, and voice (e.g.,
Edmans and Manso, 2011). Appendix B.3 analyzes a variation of the model where shareholders vote
on whether the �rm should internalize the pollution externality when choosing its CSR investment; our
main results carry through.

139



opportunity for R investors to have a positive impact on the economy, by pushing �rms'

abatement e�orts closer to the �rst-best.

2.3 Sequence of events and equilibrium de�nition

The timing of the model unfolds as follows.

t = 1: Investors trade and form their portfolios {sij} for i ∈ [0, 1] and j ∈ J .

t = 2: Firms choose abatement e�orts σj; pro�ts are realized and distributed to share-

holders.

We use subgame perfect equilibrium as the solution concept10 and restrict our atten-

tion to pure-strategy equilibria in which �rms with identical ownership structures choose

the same abatement levels.11 An equilibrium consists of a collection {{sij}, ~σ}, where
i ∈ [0, 1] and j ∈ J , that jointly solves Programs (1) and (2) and satis�es sequential

rationality. Depending on the parameters, the model may feature two types of equilibria:

(i) symmetric equilibria, in which all �rms have the same proportion of responsible owners

� formally, sRj = sRj′ for all j, j
′ ∈ J � resulting in uniform abatement levels; and (ii)

asymmetric equilibria, in which responsible ownership varies across �rms � i.e., sRj 6= sRj′

for some j 6= j′ � leading to heterogeneity in abatement decisions.

3 Equilibrium analysis

3.1 Preliminaries

We begin by characterizing the solutions to Programs (1) and (2) and describing the

strategic interactions among investors.

10We assume the distribution of SRI ~sR becomes common knowledge after trading takes place. This
means that stage t = 2 constitutes a proper subgame, so the standard equilibrium concept is subgame
perfect equilibrium. Since �rms correctly anticipate ~sR, and each individual investor cannot impact ~sR

by deviating from any given equilibrium, the equilibrium outcomes are the same if �rm j only observes
sRj . The equilibrium concept in this case would be Perfect Bayesian equilibrium. In Appendix B.6, we
show that our results are robust to a setting where this timing is reversed � i.e., �rms �rst choose their
abatement investments to attract investors and maximize their stock prices.

11This restriction is without loss of generality when we consider equilibria where there are some �rms
owned by both type of investors, as then the combination of R and N investors' incentive-compatibility
conditions ensures that �rms with the same sRj always choose the same σj . Otherwise, there may be

equilibria where �rms with the same ownership (namely, those with sRj = 0) choose di�erent abatement
levels. However, by the results in Hefti (2017), such equilibria do not exist provided that strategic
substitutability is not too strong.

140



Abatement e�orts. Given its responsible ownership sRj and conjectures about the

other �rms' abatement e�orts ~σ−j, �rm j's optimal abatement is pinned down by the

following �rst-order condition:

Γ
(
σj, ~σ−j; s

R
j

)
≡ ∂πj
∂σj

(σj, ~σ−j)− C ′(σj)︸ ︷︷ ︸
Private abatement incentives

+ λsRj︸︷︷︸
SRI pressure

R 0, (3)

where the inequality sign is ≤ (≥) if σj = 0 (σj = 1), and it is an equality if σj ∈ (0, 1).

The function Γ
(
σj, ~σ−j; s

R
j

)
describes �rms' overall abatement incentives, which con-

sist of two components: their private incentives and the internalization of R owners' pref-

erences. The private incentives depend on how σj a�ects expected pro�ts Πj = πj−C(σj).
Unless abatement e�orts are strategically independent, the marginal impact of σj on Πj

also depends on the abatement choices of other �rms: when other �rms abate more,

�rm j's incentive to abate decreases when abatement e�orts are strategic substitutes and

increases when they are strategic complements. In these cases, an equilibrium value of

~σ will have to solve the �rst-order conditions in Eqn. (3) simultaneously for all �rms.

The second component depends on the share of responsible owners sRj , with a larger sRj
inducing �rm j to abate more.

Portfolio choices. Investors' portfolio choices determine the equilibrium distribution

of responsible ownership ~sR. Investors are atomistic, so each investor i takes the price

vector ~p ≡ (p1, . . . , pN) as given when choosing its portfolio. Moreover, i rationally

anticipates �rms' abatement e�orts and expected pro�ts, and how these depend on the

distribution of R investors across �rms. The investor's optimal portfolio satis�es:

Πj − pj − 1i,Rλ(1− σj) ≤ κ
∑
j∈J

sij, (4)

where the inequality is strict only if i does not invest in �rm j (i.e., if sij = 0).

The marginal cost of shareholding, i.e., the right-hand side of Eqn. (4), is constant

across �rms. To break ties, we assume that investors incur a small cost of acquiring shares

in multiple �rms, so each individual investor prefers to hold shares in one �rm only.12

We can then write investor i's demand for �rm j's shares as:

sij =

max
{

1
κ

[Πj∗ − pj∗ − 1i,Rλ(1− σj∗)] , 0
}

for j∗ ∈ argmaxj{Πj − pj − 1i,Rλ(1− σj)}

0 for j 6= j∗.

(5)

12Without this tie-breaking assumption, each of the equilibria we characterize coexists with observa-
tionally equivalent ones (i.e., featuring the same distribution of SRI) where investors hold diversi�ed
portfolios, i.e., divide their optimal demands across �rms.
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i is willing to invest if the preference-adjusted return, Πj − pj − 1i,Rλ(1− σj), is positive
for at least one �rm; otherwise, i does not invest in any �rm. If the preference-adjusted

return is positive for more than one �rm, i invests in the one where it is the largest, j∗.

Market clearing and share prices. N types have, all else equal, higher valuations

for �rms that do not fully abate (i.e., for which σj < 1) and the same valuations as R
types for those that do.13 So N investors always hold some shares in equilibrium, while

R investors may not. Let αRj (αNj ) denote the fraction of R (N ) investors buying positive

shares of �rm j, where the quantity purchased is given in Eqn. (5) above. The following

market-clearing condition pins down j's equilibrium price:

χαRj
1

κ
[Πj − pj − λ(1− σj)]︸ ︷︷ ︸

sRj

+(1− χ)αNj
1

κ
[Πj − pj] = 1. (6)

The �rst summand in Eqn. (6) is j's responsible ownership, sRj , as it represents R in-

vestors' aggregate demand for j's shares. Solving this expression for the share price pj
yields:

pj = Πj −
κ

χαRj + (1− χ)αNj︸ ︷︷ ︸
Liquidity discount

−
χαRj λ(1− σj)

χαRj + (1− χ)αNj︸ ︷︷ ︸
Pollution discount

. (7)

j's equilibrium share price equals its expected pro�ts, net of two discounts. The �rst

is a standard liquidity discount, which compensates investors for the trading cost. This

discount is reduced when there is more demand for j (more investors choose j∗ = j),

so each investor holds smaller stakes and, thus, incurs lower trading costs. The second

discount re�ects the preferences of the R investors trading the �rm (it compensates them

for the disutility of holding a polluting �rm), so it increases in both their mass, χαRj , and

the pollution externality net of abatement, λ(1−σj). Since Πj is fully re�ected in pj, the

�nancial return from buying j's shares is the sum of these two discounts.

In equilibrium, abatement e�orts and investors' demands must jointly satisfy Eqns. (3)

and (5), with the price vector ~p given in Eqn. (7).

Interaction among investors. The interaction between a �rm's responsible ownership

sRj and its abatement e�orts σj is characterized by a two-way feedback: On the one

hand, when σj goes up, R investors' return from holding �rm j increases; so more R
investors want to demand �rm j's shares, and those that do so have valuations closer to

N investors. Both these e�ects lead to an increase in sRj . On the other hand, when sRj

13Appendix B.7 shows that our qualitative results are unchanged a setting where �rms' investments
bring up a positive externality λ at a rate σj , which increases the utility of responsible agents, who then
have higher valuations for �rms' shares relative to N investors.
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is larger, j internalizes more of the pollution cost and abates more. This feedback loop

between a �rm's policies and its ownership is similar to the interaction between trading

and voting in Levit et al. (2024). In our model, this loop gives rise to two di�erent types

of coordination motives in the portfolio choices of R investors: How aggressively they

should trade in a given �rm, and which �rms they should include in their portfolios.

To understand the �rst type, hold �xed the mass of investors of each type demanding

�rm j, αRj and αNj . An individual investor i ∈ R trades more aggressively (that is,

submits a larger demand schedule sij for any given price pj) when it expects the �rm to

abate more and, thus, its preference-adjusted return to be larger. If i thinks the other R
investors will trade j more aggressively, it anticipates sRj will be larger and, thus, j will

abate more. So, i wants to trade j more aggressively when it expects other R investors

to do the same. We refer to this �rst type of coordination motive � operating through

the intensity of trading � as the intensive margin. This type of coordination motive is

also present in single-�rm settings like Levit et al. (2024).

To understand the second type of coordination motive, suppose investors have not yet

decided which �rms to include in their portfolios, so they are in the process of determining

αRj and αNj , and compare two di�erent �rms, j and j′. If relatively more R investors

demand �rm j, and the overall demand for this �rm is larger, but not too much larger,

each type of investors prefers a di�erent �rm: R investors prefer j, since it has more R
ownership and thus abates more; N investors prefer j′, since it has less demand pressure

and thus a larger liquidity discount. For the same reason, if the overall demand for j

is too much larger, even the R investors would prefer to demand j′. So, i ∈ R is more

willing to select �rm j when she expects enough, but not too many, other R investors to

do the same. We refer to this second type of coordination motive � operating through

the selection of �rms � as the extensive margin. This second type of coordination motive

only arises in the asymmetric equilibria of a model with multiple �rms, so formalizing it

and studying its implications for �rm ownership and policies is one of the contributions

of our paper.

3.2 Symmetric equilibria

In the next step, we analyze symmetric equilibria, in which all �rms have the same

proportion of R owners sR and, thus, have the same abatement e�orts σ∗ and share

price p∗. There are two types of symmetric equilibria: those where only N investors hold

stocks and those where all �rms have the same positive share of R investors.

For a given σ, the investors' demands and, as a consequence, the degree of responsible

ownership in a symmetric equilibrium are uniquely pinned down by the market-clearing

conditions:

sR(σ) = max

{
χ

N

1

κ
[Nκ− (1− χ)(1− σ)λ] , 0

}
. (8)
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The equilibrium value of σ follows from the �rst-order condition for the abatement e�orts

in Eqn. (3) evaluated at σj = σ and sRj = sR(σ) de�ned in Eqn. (8) for all �rms.

In principle, there can be multiple values of σ that satisfy this �rst-order condition

and, thus, multiple symmetric equilibria σ∗. This is because of two di�erent channels:

First, independently from their ownership, �rms' private incentives to abate may feature

enough strategic complementarity to generate multiple equilibria. Second, the feedback

loop between sR and σ may be su�ciently strong to give rise to multiple equilibria,

even when ∂2πj
∂σj∂σj′

≤ 0. In this second case, R investors need to coordinate on how

aggressively they trade, that is, on the intensive margin, as each R investor will want

to trade more aggressively when it expects the others to do the same and, thus, σ to be

larger. Proposition 1 characterizes the symmetric equilibria.

Proposition 1 (symmetric equilibria). A symmetric equilibrium always exists. There

exist thresholds χ̃ and χ0, where 0 ≤ χ̃ ≤ χ0 < 1, for the mass χ of R investors such

that:

1. For χ ≤ χ̃, all symmetric equilibria feature no SRI (i.e., sR = 0);

2. For χ ∈ (χ̃, χ0], symmetric equilibria with and without SRI may coexist;

3. For χ > χ0, all symmetric equilibria feature SRI (i.e., sR > 0).

Firm j's equilibrium abatement e�ort σ∗ satis�es the optimality condition in Eqn. (3) for

σj = σ∗ and sRj = sR(σ∗) de�ned in Eqn. (8) for all j. If the symmetric equilibrium is

unique for all χ ∈ (0, 1), it features no SRI i� χ ≤ χ0, and the equilibrium abatement

e�ort σ∗ and responsible ownership sR are continuous and increasing in χ.

When their mass is small, R investors may be unable to become owners in any symmetric

equilibrium. If the pollution externality is relatively large, the valuation gap between

responsible and non-responsible investors is too large for R investors to hold positive

shares when there is too many N types: We have χ̃ > 0, so R investors do not hold

any shares for all χ ∈ (0, χ̃]. For intermediate values of χ, symmetric equilibria with and

without SRI may coexist, provided that the feedback loop between σ and sR is su�ciently

strong. In this case, the equilibrium with SRI is the one where R investors coordinate

to trade more aggressively and close the valuation gap enough to hold positive shares.

Finally, as χ becomes su�ciently large, there are too many R investors, and equilibria

without SRI are no longer possible. Otherwise, the few remaining N investors would

have to hold excessively large stakes to ensure market clearing.

The equilibrium multiplicity that may derive from complementarity in �rms' strategic

decisions (Bulow et al., 1985) or investors' coordination along the intensive margin (Levit

et al., 2024) has already been studied in previous work. To simplify the exposition
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and focus on the most novel aspects of our paper (the characterization of asymmetric

equilibria, and their e�ciency implications), we impose the following assumption.

Assumption 2. We assume that Γ(σ, σ·~1; sR(σ)) is decreasing in σ so that the symmetric

equilibrium is unique � formally,

∂

∂σ

(
∂Πj

∂σj
(σ, σ ·~1)

)
+

λ2

4Nκ
< 0 ∀σ ∈ (0, 1).

If �rms' private abatement incentives decrease steeply enough with the symmetric level

of abatement σ (that is, if ∂
∂σ

(
∂Πj
∂σj

(σ, σ ·~1)
)
is su�ciently negative), neither of the two

channels described above is strong enough to generate equilibrium multiplicity: The

function Γ(σ, σ ·~1; sR(σ)) crosses 0 at most once and, if so, from above. So, the �rst-order

condition pins down a unique value of σ∗. This is the case when the complementarity in

�rms' abatement choices is not too strong and the abatement cost is su�ciently convex,

so that large changes in σ are too costly.

3.3 Asymmetric equilibria

In addition to symmetric equilibria, the game may also admit asymmetric equilibria,

where �rms di�er in their share of R investors and abatement e�orts, even though they

are ex-ante identical.

To build intuition, consider the case where N investors hold �rms j ≤ n while R
investors hold �rms j > n, which implies sRj≤n = 0 and sRj>n = 1. Existence of these

equilibria requires R investors to prefer investing in �rms j > n to j ≤ n, and vice versa

for N investors. These two incentive-compatibility conditions can be written as:{
Πj>n − pj>n − λ(1− σj>n) > Πj≤n − pj≤n − λ(1− σj≤n)

Πj≤n − pj≤n > Πj>n − pj>n,
(9)

where the share prices are as described in Eqn. (7), and �rms' abatement e�orts solve

the system of best-responses implied by their optimality conditions (Eqn. 3), evaluated

at sRj = 1 for the �rms only held by R investors, and sRj = 0 for those only held by N
investors.

Expected pro�ts Πj cancel out in Πj − pj, so the way abatement impacts pro�ts does

not directly a�ect the �nancial component of returns. Firms j > n have more R investors

than the others, so they abate more; all else equal, R investors then prefer �rms j > n to

j ≤ n. N investors only compare �nancial returns, so they prefer �rms j ≤ n if there is

su�ciently more demand pressure and, thus, a smaller liquidity discount in �rms j > n.

This requires the overall mass ofR investors, χ, to be su�ciently large, so that the overall

demand for �rms j > n is su�ciently larger. χ cannot be too large, however, otherwise
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there would be too much demand pressure in �rms j > n and even R investors would

prefer �rms j ≤ n. Therefore, for the two incentive-compatibility conditions in Eqn. (9)

to simultaneously hold and, thus, for these types of equilibria to exist, we need χ to lie

in an intermediate range.

In these equilibria, investors need to coordinate their choices of which �rms to include

in their portfolios, so that R investors only include j > n, and N investors only include

j ≤ n. This occurs through the extensive margin of coordination described before: R
investors are willing to go after shares in high demand if they know this demand comes

from like-minded investors, as they anticipate that these �rms will abate more. A similar

logic applies to the equilibria in which a subset of �rms is held by both types of investors.14

Proposition 2 formalizes these insights.

Proposition 2 (asymmetric equilibria). For any pair (n, n) with n ≥ n, an asym-

metric equilibrium, where R investors hold shares in �rms j > n and N investors hold

shares in �rms j ≤ n, exists i� the mass χ of R investors is in an intermediate range,

χ < χ < χ. In equilibrium, �rm j's abatement choice is given by:

σj =


σ for j > n,

σ̂ for n < j ≤ n,

σ for j ≤ n,

where σ = 1 by Assumption 1, and (σ̂, σ), and the share of R ownership in �rms n <

j ≤ n jointly solve �rms' and investors' optimality conditions in Eqns. (3) and (5), with

1 > σ̂ > σ.

Among all equilibria, responsible ownership is most concentrated (in the Her�ndahl-

Hirschman Index sense) in the set of �best-in-class� equilibria, where n = n = N − 1.

Since �rms are ex ante identical, we can describe any asymmetric equilibrium by a pair

of integers (n, n) such that only N investors hold shares in �rms j ≤ n, both R and N
hold shares in �rms n < j ≤ n, and only R investors hold shares in �rms j > n, and a set

of abatement e�orts, σ, σ̂, and σ, one for each group of �rms.15 Within each group, �rms

have the same proportion of responsible owners and, thus, the same abatement levels.

Across groups, �rms with more responsible ownership abate more, as they face stronger

pressure to cut pollution. Figure 2 illustrates the equilibrium characterization.

14In asymmetric equilibria where some �rms have mixed ownership (both R and N owners), both
the extensive and intensive margin of coordination are at play, with the extensive margin shaping the
distribution of investors across �rms, and the intensive margin how aggressively investors trade in �rms
with mixed ownership.

15The same notation can be used to describe symmetric equilibria, where the equilibrium without SRI
has n = n = N , and the one with SRI has n = 0 and n = N . As we discussed before, equilibria where
only R investors hold shares (n = n = 0) are not possible. Except for these three pairs, all other values
of (n, n) with 0 ≤ n ≤ n ≤ N describe an asymmetric equilibrium.
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Figure 2: Illustration of asymmetric equilibria.

In any asymmetric equilibrium with n ≥ 1, SRI is concentrated in a subset of �rms in

the economy. SRI concentration is maximized in the set of best-in-class equilibria, where

R investors target �rm N and exclude the remaining N − 1 �rms, while N investors

exclude �rm N and invest in the other �rms, which is a special case (n = n = n = N −1)

of the equilibria we described at the beginning of this section.16 R investors' strategy

in a best-in-class equilibrium mirrors a common ESG strategy in practice, where SRI

funds concentrate their holdings in the most sustainable �rm within a sector ("best-in-

class"). To simplify the exposition, we focus on this type of equilibria when we describe

the economics of SRI concentration in the rest of the paper, but our insights extend to

asymmetric equilibria more generally.

4 The economics of SRI concentration

In this section, we compare the two types of equilibria characterized in Section 3. The

results we obtain here shed light on the causes and consequences of SRI concentration.

Preliminaries. As we will see shortly, the abatement e�orts of �rms excluded from

responsible investors' portfolios in asymmetric equilibria play a central role in the eco-

nomics of SRI concentration. As a preliminary to our main results, we compare the

abatement levels of these �rms in the set of best-in-class equilibria to those in the coex-

isting symmetric equilibrium, which serves as the counterfactual to SRI concentration.

16With substitutability or independence in abatement e�orts, the best-in-class equilibrium is unique,
since there is a unique value of σ that satis�es the excluded �rms' optimality conditions in Eqn. (3).
With complementarity, there might be instead multiple values of σ that satisfy these conditions and,
thus, multiple best-in-class equilibria.
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Lemma 1 (e�ect on excluded �rms). Compare the abatement levels of the excluded

�rms in any best-in-class equilibrium (σ) to those in the coexisting symmetric equilibrium

(σ∗).

1. If the symmetric equilibrium does not feature SRI, then σ ≤ σ∗ if abatement choices

are strategic substitutes, σ ≥ σ∗ if they are strategic complements, and σ = σ∗ if

they are independent.

2. If the symmetric equilibrium features SRI, then σ ≤ σ∗ under strategic substitutabil-

ity or independence, while σ R σ∗ under strategic complementarity.

Except for the last one, the inequalities above are all strict if σ∗ > 0.

When the symmetric counterfactual does not feature SRI, excluded �rms are fully owned

by N investors in both equilibria, so any change in their abatement across the two equi-

libria is driven by the interdependence in their private incentives, ∂πj
∂σj

(hence, if abatement

decisions are independent, their behavior remains unchanged). If abatement e�orts are

strategic substitutes, these �rms reduce their abatement in response to the higher abate-

ment e�orts of the best-in-class �rm; conversely, if e�orts are strategic complements, the

excluded �rms abate more in any best-in-class equilibrium. If the symmetric equilibrium

also features SRI, all �rms face pressure from shareholders to reduce emissions. If this

pressure is su�ciently large, excluded �rms abate more than in the symmetric equilibrium

even under strategic complementarity.

4.1 Why does concentration arise?

Our next step is to understand when and whyR investors may adopt investment strategies

that lead to concentration of SRI.

Proposition 3 (preference for concentration). If two equilibria coexist, each group

of investors prefers the one where they hold larger shares, and R and N investors never

strictly prefer the same equilibrium.

1. For χ ∈ (0, χ0], R investors do not trade in the symmetric equilibrium; thus, they

always prefer a best-in-class equilibrium if it exists. If the pollution externality λ is

large (λ ≥ λ), a best-in-class equilibrium exists for χ ∈ ( 1
N
,min{χ0, χ}].

2. For χ ∈ (χ0, 1), R investors hold positive shares in the symmetric equilibrium.

With independence or substitutability in abatement e�orts, a unique best-in-class

equilibrium exists, and R investors prefer it to the symmetric equilibrium, for χ ∈
[max{ 1

N
, χ0}, χ′′), with χ0 < χ′′ < χ < 1.
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Proposition 3 yields our �rst main implication: When the societal cost of pollution is large,

R investors have a strict preference for concentration whenever their mass is not too large.

Intuitively, concentration allows the R investors to create enough price pressure on the

�rms they target (e.g., the best-in-class �rm), so that the N types (who have relatively

higher valuations for polluting �rms) go after other �rms, and R investors can have a

signi�cant impact on those they hold.

Below, we describe the speci�c logic behind these results. An investor's payo� in-

creases with the number of shares it holds in equilibrium, and investors of the same type

always get the same payo� in equilibrium. This implies that all R investors always pre-

fer the same equilibrium among di�erent equilibria, and they prefer a best-in-class to

the symmetric equilibrium if they hold larger stakes in the former. In the symmetric

equilibrium, R investors become owners only if χ is above a threshold χ0. For χ ≤ χ0,

R investors are then strictly better o� in a best-in-class equilibrium whenever it exists.

If the pollution externality is large, the valuation gap between R and N investors is

substantial, so it is hard for R investors to become owners unless they concentrate and

turn the best-in-class �rm green. In this case, χ0 is larger than 1
N
, which is the lower

bound for the existence of any best-in-class equilibrium, so any such equilibrium exists

and it is thus strictly preferred by R investors. Indeed, χ = 1
N

because there is a mass

χ of investors in the best-in-class �rm, and a mass 1−χ
N−1

in the excluded �rms; so we

must have χ > 1
N
to have overall more investors and, thus, more demand pressure in the

best-in-class �rm. This is because the best-in-class �rm (j = N) fully abates its emission,

so there is no pollution discount in pN and, thus, χ > 1
N
is enough to make N investors

prefer the excluded �rms (j < N).

The existence threshold χ is instead such that, for all χ < χ, an individual R investor

i prefers to hold the best-in-class �rm (j = N) to any of the excluded ones (j ≤ N−1); χ0

is instead such that, for all χ ≤ χ0, i prefers not to invest compared to holding any �rm in

the symmetric equilibrium. The excluded �rms have more demand pressure and, under

strategic substitutability or independence, abate less in the best-in-class equilibrium than

in the symmetric without SRI.17 Investing in the excluded �rms must then be relatively

less attractive in the best-in-class equilibrium. It follows that there must be a non-empty

interval for χ where i is willing to invest in j ≤ N in the symmetric equilibrium, but still

prefers �rm j = N in a best-in-class equilibrium.

At least under substitutability or independence, the two equilibria must then coexist

also for some χ > χ0, provided that χ is not too large (χ < χ). For χ close to χ0,

the valuation gap with N investors is still large, so R investors hold smaller stakes in

the symmetric equilibrium; for χ close to χ, the best-in-class �rm is too crowded, so R
17There is a mass 1−χ

N−1 of N investors in each excluded �rm in the best-in-class equilibrium, and a

mass 1−χ
N in any �rm in the symmetric equilibrium without SRI. For the comparison of the excluded

�rms' abatement e�orts across equilibria, see Lemma 1.
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investors hold larger stakes in the symmetric equilibrium.18 It follows that, even when χ

is large enough for R investors to participate in both types of equilibria, they still prefer

the best-in-class equilibrium unless χ is su�ciently large.

We conclude this section with a brief discussion of equilibrium selection. Proposition

3 shows that, when two equilibria coexist, R and N investors always disagree on which

equilibrium they prefer. The reason is simple. The total number of shares on the market

is �xed. If two equilibria A and B coexist, for investor i to prefer A over B, then some

other investor i′ must hold fewer shares in equilibrium A than in equilibrium B and, thus,

prefer B to A. Since investors of the same type always get the same payo� in equilibrium,

i′ must be of a di�erent type than i. Whenever R investors strictly prefer one of two

di�erent equilibria, N investors then strictly prefer the other. So, even if R investors

prefer to concentrate, it is unclear which equilibrium investors will coordinate on, since

neither equilibrium is payo�-dominant. In Appendix B.2, we show that equilibria with

concentration are relatively more "stable,� in the traditional sense of being more robust

to small perturbations to the equilibrium strategies. We describe how this points to a

simple mechanism for equilibrium selection in favor of equilibria with concentration (e.g.,

some SRI funds making commitments to best-in-class investing).

4.2 When does concentration reduce pollution?

Having established that R investors prefer to concentrate when a su�cient fraction of

investors are non-responsible, our next step is to understand how SRI concentration a�ects

aggregate pollution. As before, the symmetric equilibrium plays the role of counterfactual

to SRI concentration.

Proposition 4 (e�ect on aggregate abatement). Compare the aggregate abatement

(
∑

j σj) in any best-in-class equilibrium and in the coexisting symmetric equilibrium.

1. If the symmetric equilibrium does not feature SRI,
∑

j σj can be smaller in the best-

in-class equilibrium only if abatement e�orts are strategic substitutes. A su�cient

condition for this result to hold is Γ( 1
N
, 1
N
·~1; 0) > 0 ≥ Γ(0, (1,~0); 0).

2. If the symmetric equilibrium features SRI,
∑

j σj can be smaller in a best-in-class

equilibrium in all three cases of strategic interaction. If there is independence in

abatement e�orts and Γ(0,~0; 0) ≥ 0,
∑

j σj is always smaller in the best-in-class

equilibrium if χ ∈ (χ′, χ), with χ0 < χ′ < χ.

18sRj → 0 as χ approaches χ0. As χ approaches instead χ, R investors become indi�erent between
investing in the best-in-class or the excluded �rms. Since, as we described above, these �rms are less
attractive in the best-in-class equilibrium, R investors must hold strictly larger stakes in (and, thus,
prefer) the symmetric equilibrium.
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Proposition 4 characterizes the two mechanisms through which SRI concentration can

reduce aggregate abatement
∑

j σj, in which case SRI concentration is ine�cient from

a social welfare perspective. Since the best-in-class �rm always abates (at least weakly)

more than in the symmetric equilibrium, both mechanisms must operate through the

indirect e�ects of concentration on the abatement e�orts of the excluded �rms, σj≤N−1.

If the symmetric equilibrium does not feature SRI,
∑

j σj can be smaller in a best-

in-class equilibrium only if σj≤N−1 is smaller than in a world where all shareholders and,

thus, all �rms are purely pro�t-motivated. This can be true only if abatement e�orts

are strategic substitutes, as the increased abatement e�orts of the best-in-class �rm must

crowd out those of the excluded. In this case, the ine�ciency of concentration is to "tilt

the playing �eld" too much in favor of the best-in-class �rm, which causes the excluded

�rms to drop their abatement e�orts compared to a counterfactual where there is no SRI,

the playing �eld is level, and all �rms pursue such e�orts.

The su�cient condition at the end of Part 1 of Proposition 4 helps us think about

economic environments where this ine�ciency materializes. Formally, the condition im-

plies that (i) all �rms abate more than 1
N

in the symmetric equilibrium (σ∗ > 1
N

and,

thus,
∑

j σj > 1) and (ii) the excluded �rms give entirely up on abating in a best-in-class

equilibrium (σ = 1, σ = 0, so
∑

j σj = 1). An environment where this is more likely to

hold is one where �rms compete for consumers whose demand is very sensitive to dif-

ferences in pollution across �rms, so that the excluded �rms give up on abating in the

best-in-class equilibrium, where they lag behind the best-in-class, but they abate a lot

in the symmetric equilibrium, where all �rms compete neck-and-neck. This is similar to

how competition a�ects innovation in Aghion et al. (2005).

When the symmetric equilibrium also features SRI,
∑

j σj is smaller in a best-in-class

equilibrium when σj≤N−1 would be much larger if R investors were to pressure also the

excluded �rms, like they do in the symmetric equilibrium. In this case, the ine�ciency

of concentration consists in creating a few "green islands" in a "sea of brown �rms,"

rather than driving a more generalized change toward a greener economy. This type

of ine�ciency can arise in all three cases of strategic interaction in abatement e�orts,

including the benchmark without strategic interaction.

The benchmark with independence in abatement e�orts is more tractable, so we use

it to derive further results. In Part 2 of Proposition 4, we show that, when σ∗ > 0,

aggregate abatement is always smaller in a best-in-class equilibrium for values of χ near

the upper end of its existence range, χ. In a best-in-class equilibrium, R investor i holds

a mass 1
χ
of shares of the best-in-class �rm, and χ is the smallest value of χ such that i

would hold a larger position if it were to deviate and invest in one of the excluded �rms.

For χ close to χ, i must then hold close to 1
χ
shares in the symmetric equilibrium, where

�rms abate more than the excluded �rms do in a best-in-class equilibrium, and there is

fewer N investors in each �rm. Collectively, R investors then hold close to χ
N
· 1
χ

= 1
N
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shares in each �rm in the symmetric equilibrium which, by the concavity of the �rms'

abatement choice problem, implies σ∗ > 1
N

+ N−1
N
σ and, thus, Nσ∗ > 1 + (N − 1)σ.

To wrap up, the results in Proposition 4 yield our second main insight: Concentration

may be necessary for R investors to participate and, unless there is too much strategic

substitutability in abatement choices, socially desirable when their mass χ is small. Even

when this is the case, however, concentration persists even as χ becomes larger, and it is

no longer neither needed for R investors to participate nor socially desirable.

4.3 Externalities of concentration

The last step of our analysis is to study whether R investors' preference for concentration

aligns with the broader social objective of reducing aggregate pollution. As a benchmark,

we �rst note that this alignment always holds when we restrict attention to symmetric

equilibria. Indeed, if Assumption 2 does not hold, and multiple symmetric equilibria

coexist, among theseR investors always prefer the equilibrium with the highest aggregate

abatement. This is because, in that equilibrium, �rms pollute less, so the valuation gap

with N investors is smaller and, as a result, R investors hold larger stakes.

Proposition 5 shows that this alignment can break down in asymmetric equilibria.

Proposition 5 (private vs. social value of concentration). The following results

hold:

1. R investors may prefer a best-in-class equilibrium, even when aggregate abatement

(
∑

j σj) is lower than in the coexisting symmetric equilibrium. If there is indepen-

dence in abatement e�orts and Γ(0,~0; 0) ≥ 0, this holds for all χ ∈ (χ′, χ′′), with

χ0 < χ′ ≤ χ′′ < χ, with strict inequality provided that σ∗ < 1 at χ = 1
N
.

2. When the excluded �rms' abatement levels (σ) in a best-in-class equilibrium are

higher, aggregate abatement (
∑

j σj = 1 + (N − 1)σ) increases, but the equilibrium

exists over a smaller interval of χ. In the limit as excluded �rms approach full

abatement (σ → 1), this equilibrium ceases to exist.

There are two ways in which R investors' preference for concentration diverges from the

social desirability of concentration. First, R investors may prefer a best-in-class equilib-

rium even when this leads to lower aggregate abatement than the coexisting symmetric

equilibrium. With independence in abatement choices, we are able to show this always

happens for some χ within the existence interval of the best-in-class equilibrium. Intu-

itively, R investor i is indi�erent between the two equilibria at χ = χ′′, where i holds
1
χ
shares in both, and prefers the best-in-class equilibrium for χ < χ′′. In Part 2 of

Proposition 4, we have shown that, at χ = χ′′,
∑

j σj is already larger in the symmetric

equilibrium. So, there must be some values of χ smaller than χ′′ such that
∑

j σj is
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larger in the symmetric equilibrium, but i still prefers the best-in-class one.19 Figure 3

illustrates these results in a numerical example of the model.
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Figure 3: This left (right) panel plots the position of a responsible investor in a given �rm
sRij (aggregate abatement

∑
j σj) as a function of the mass of responsible investors χ. The

dotted black line corresponds to the symmetric equilibrium, and the solid blue line to
the best-in-class equilibrium. Functional forms and parameters: πj = σj∆, C(σj) = bσ2

j ,
N = 3, λ = 2, κ = 0.25, b = 0.75, and ∆ = 0.6.

Second, from a social welfare perspective, concentration is more desirable when the

increased abatement of the best-in-class �rm has a larger positive e�ect on the abatement

e�orts of the excluded �rms. That is, when σ and, thus,
∑

j σj are larger. One would then

want a best-in-class equilibrium to be more likely in environments where σ is larger. We

show that the exact opposite happens: a best-in-class equilibrium exists over a smaller

interval of χ when σ is larger, and it disappears entirely in the limit as excluded �rms

approach full abatement (σ → 1). Intuitively, when excluded �rms abate more, they

become more attractive to R investors, so investing only in the best-in-class �rm becomes

harder to sustain in equilibrium.

Corollary 1 shows that the same inverse relationship can arise between the existence of

concentration and its relative impact on aggregate abatement (relative to the symmetric

counterfactual).

Corollary 1 (existence vs impact). Consider any pair of pro�t functions π′ and π′′

such that (i) Γ(0,~0; 0) is negative only under π′, and (ii) Γ(σ, (1, σ ·~1); 0) is weakly greater

under π′ for all σ ∈ [0, 1]. Then there always exists a best-in-class equilibrium such that

the following results hold:

1. The symmetric equilibrium without SRI features higher abatement under π′′, but

excluded �rms in the best-in-class equilibrium abate more under π′.

19The set χ ∈ (χ′, χ′′) is always non-empty when λ ≥ λ, so that the best-in-class equilibrium and the
symmetric equilibrium with SRI coexist for χ ∈ (χ0, χ). If λ < λ, the interval is still non-empty provided
that R investors strictly prefer the best-in-class equilibrium at χ = 1/N , which is the case if σ∗ < 1, so
that the best-in-class �rm still abates more than in the symmetric equilibrium.
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2. The di�erence in aggregate abatement between the best-in-class equilibrium and the

symmetric equilibrium without SRI is larger under π′, but the existence interval for

the best-in-class equilibrium is larger under π′′.

Condition (i) implies that, in the symmetric equilibrium without SRI, �rms choose σ∗ = 0

under π′, but σ∗ > 0 under π′′. Condition (ii) implies that this ranking �ips in the best-in-

class equilibrium: excluded �rms abate more under π′ than under π′′. The interpretation

we have in mind is that, under π′, R investors can solve a coordination problem in the

adoption of green technologies: if they turn the best-in-class �rm green, the excluded

�rms will also abate a lot, due to complementarity in abatement choices, but all �rms

do not abate if they are left on their own. By contrast, under π′′, �rms have strong

abatement incentives in the symmetric equilibrium, but the excluded �rms give up on

abating in the best-in-class one, due to substitutability in abatement choices.

Since σ∗ is smaller and σ is larger under π′, one would want SRI concentration to

be more likely under π′, where it has a more positive e�ect on
∑

j σj compared to the

symmetric counterfactual. However, the opposite occurs: because a higher σ makes it

harder to sustain concentration, the best-in-class equilibrium exists over a smaller range

of parameters under π′. Figure 4 illustrates the results in Corollary 1 in a numerical

example of the model.
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(a) Strategic substitutability.

0.2 0.3 0.4 0.5 0.6 0.7

0

1

2

3

4

5

χ

Σ
j

(b) Strategic complementarity.

Figure 4: This �gure plots aggregate abatement
∑

j σj as a function of the mass of
responsible investors χ. The dotted black line corresponds to the symmetric equilibrium,
and the solid blue line to the best-in-class equilibrium. For both panels, C(σj) = aσj+bσ

2
j .

Panel (a) features strategic substitutability (π′ in Corollary 1) based on the product
market model in Section 5.3 with a mass of responsible consumers equal to 0.3 and
u(x) = αx+0.5βx2 with α = 3 and β = 0.5; Panel (b) features strategic complementarity
(π′′ in Corollary 1) with πj = σj∆+γσj (S(~σ−j)− 0.5σj) where S is the softmax-weighted

average
∑
j′ 6=j σj′ exp(ε−1σj′ )∑
j′ 6=j exp(ε−1σj′ )

with ε = 0.065. Parameters: N = 5, λ = 1, κ = 0.1, a =

0.39, b = 0.3,∆ = 0.344, and γ = 0.68.

Proposition 5 yields the third main insight of the paper, which is to highlight an

inherent tension in the role of SRI as a mechanism to control externalities: When SRI is
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not too popular, R investors will favor concentration in equilibrium, but when they do

concentrate, their preferences become detached from aggregate abatement. The wedge

between R investors' preference for concentration and its social desirability manifests in

two di�erent ways. First, R investors favor concentration for "too long,� even as SRI

becomes more popular and less concentrated strategies that would increase aggregate

abatement are also possible in equilibrium. Second, concentration is more likely to arise

exactly when it is the least desirable, that is, when the abatement e�orts of the best-in-

class �rm crowd out those of the excluded �rms.

Why does this wedge only arise when R investors concentrate? In equilibria without

concentration, R investors are equally represented across �rms and, as a consequence,

�rms have the same abatement levels. Individually, R investors still only care about

the pollution generated by the �rms in their portfolios but, since all �rms choose the

same abatement levels, this is a su�cient statistics for aggregate abatement. So, the

preferences ofR investors become more aligned with aggregate abatement as they become

more uniformly distributed across �rms.

5 Downstream e�ects: Shaping consumption norms

Most climate scientists believe that limiting the risk of a natural disaster requires a green

transition � a signi�cant transformation of production and consumption norms. Like

portfolio choices, consumption norms re�ect both preferences and prices (Besley and

Persson, 2023). Another dimension of the overall impact of SRI is thus the way it a�ects

the supply and price of clean products. To investigate these e�ects, we add to our model

a unit mass of households, indexed by h ∈ [0, 1], to study how SRI, and its concentration,

a�ect consumption.

5.1 Product market model

We assume some households prefer to buy from �rms that pollute less, so that, by a�ect-

ing the distribution of �rms' abatement e�orts, R investors indirectly impact households'

consumption decisions. The presence of responsible households also implies that, inde-

pendently of SRI, abatement increases the demand for a �rm's products and thereby

boosts its revenues, providing a microfoundation for the private abatement incentives

assumed in the previous sections.

We use the notation θj = c (θj = d) to signify that j uses a clean (dirty) production

technology. The dirty technology generates a negative pollution externality λ, while the

clean one does not. The random vector ~θ ≡ (θ1, . . . , θN)′ describes each �rm's technology.

We de�ne σj as the probability that �rm j uses the clean technology, σj ≡ Pr(θj = c).

For a given realization of ~θ, the economy is populated by nc clean and nd ≡ N − nc
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dirty �rms, each supplying one product unit, with products being potentially di�erent

across �rms. The equilibrium prices ~ρ ≡ (ρ1, . . . , ρN)′ equate demand and supply for all

products. To simplify the exposition, we assume zero costs of production, so �rm j's

pro�t is the market-clearing price for its product net of the abatement cost.

Households have heterogeneous preferences. Similar to investors, a fraction χ ∈ (0, 1)

of households incur a disutility λ from consuming dirty products (those produced using

the dirty technology), so we refer to them as responsible consumers (h ∈ R). The remain-

ing households (h ∈ N ) are, all else equal, indi�erent between clean and dirty products.

Given �rms' technologies ~θ and product prices ~ρ, household h chooses a consumption bun-

dle ~xh ≡ (xh1, . . . , xhN)′ to maximize its utility from consumption U(~xh) : (R+)N → R+,

net of the expenditure and, if h is responsible, the disutility for the consumption of dirty

products:20

max
~xh≥~0

U(~xh)−
∑
j∈J

xhj
(
ρj + λ1h∈R1θj=d

)
. (10)

For a given realization of ~θ, the product market equilibrium does not depend on

investors' portfolio choices {sij} and �rms' abatement e�orts ~σ. It follows that the

equilibrium characterization in Section 3 carries through, with the following equilibrium

speci�cation for �rm j's expected gross pro�ts:

πj = σjE[ρj|θj = c] + (1− σj)E[ρj|θj = d], (11)

where E[ρj|θj = θ̃] denotes the expected market-clearing price ρj given j's technology

θ̃ ∈ {c, d}.
The expectation in Eqn. (11) is taken over the technology realizations of the other

N − 1 �rms, given their abatement e�orts ~σ−j. All else equal, a clean product will

always sell at a (at least weakly) larger price than a dirty one in equilibrium, since R
households su�er a disutility from consuming dirty products, so they have a larger demand

for clean products. The marginal revenue from j's abatement e�orts (∂πj
∂σj

) is then the

expected price premium for selling a clean product, E[ρj|θj = c]−E[ρj|θj = d]. For some

speci�cations of U(·), this premium also depends on other �rms' abatement choices, as R
households' willingness to pay for j's clean product depends on the availability of other

clean products in the economy.

Since �rms' production costs (gross of abatement) are zero, the expected surplus

generated in the product market is equal to the aggregate utility from consumption

PS =

∫ 1

0

E [U(~xh)] dh,

20Program (10) implicitly assumes that consumers' budget constraints are not binding at the equilib-
rium consumption, so their choice is equivalent to an unconstrained problem. This assumption simpli�es
the exposition but does not a�ect our results.
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where the expectation is taken with respect to the random vector ~θ and households'

demand is evaluated at its equilibrium value.21

Households and investors are both atomistic, so the characterization of equilibria (and

aggregate welfare) does not depend on whether some households are both consumers and

investors.22 Their preferences over equilibria, however, do: In some cases, SRI concen-

tration hurts consumers and, thus, households that are both responsible investors and

consumers may have less of a preference for asymmetric equilibria. To simplify the ex-

position, here we take SRI concentration as given, and focus on its e�ects on product

market surplus. We consider three speci�cations for U(·), each yielding a di�erent type of
interaction in abatement e�orts (independence, substitutability, and complementarity),

and study the implications of SRI concentration on consumption in each setting. In what

follows, u(·) : R+ → R+ is a continuously di�erentiable, increasing, and concave function.

Since the utility from consumption is concave, in all three speci�cations for U(·), PS
is maximized when all households have the same consumption levels. This is the case

only if there is su�ciently many clean products, as R households su�er a disutility from

consuming dirty products and, thus, have lower demand for these products.

5.2 Benchmark with independent products

First, we consider a benchmark in which consumers view products as independent, that

is, the demand for each product does not depend on the characteristics or prices of the

others:

U(~xh) =
∑
j∈J

u(xhj). (12)

In this setting, each �rm can be interpreted as a representative �rm of a distinct industry.

Proposition 6 (independence). Suppose �rms sell independent products � i.e., U(·) is
de�ned in Eqn. (12):

21Following Dewatripont and Tirole (2024), PS excludes the disutility incurred by R households when
consuming dirty products. Similarly, excluding R investors' disutility from purchasing shares in polluting
�rms, total surplus is de�ned as

S = PS −
∑
j∈J

[λ(1− σj) + C(σj)]− κ
2

∫ 1

0

(ι′~si)
2
di,

where the second component is the sum of pollution and abatement costs, and the last is the aggregate
trading cost. S is largest when all �rms fully abate their emissions, so that PS is the largest, �rms abate
to the socially optimal level, and trading costs are the smallest (since the trading cost investor i incurs
from holding sij∗ shares is convex in sij∗ , aggregate trading costs are minimized when sij∗ is the same
across investors, which requires σj = 1 for all j, so that all investors have the same valuations). We
think of κ as being small compared to λ, so we focus on the �rst two components of S in our analysis.

22Both take equilibrium outcomes as given, so, under the assumption that budget constraints are
not binding, investment and consumption decisions are two separate optimization problems even for
households that are both investors and consumers.
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1. Firm j's product price ρj only depends on its production technology θj ∈ {c, d}.
Therefore, �rms' abatement e�orts are independent.

2. Expected product market surplus PS is an increasing function of
∑

j σj. Hence,

compared to the coexisting symmetric equilibrium, PS is smaller in the best-in-class

equilibrium if and only if
∑

j σj is also smaller.

If �rms are active in di�erent markets, each �rm's price premium from selling a clean

product does not depend on other �rms' production technologies. As a result, �rms'

abatement e�orts are independent. As the expected number of clean �rms is equal to

aggregate abatement, and PS strictly increases with the number of clean �rms, SRI

concentration can only reduce expected-product market surplus if it reduces aggregate

abatement.

5.3 From SRI concentration to product market power

Next, we analyze a setting where �rms compete within the same industry, so their prod-

ucts are substitutes. Formally, we specify household h's utility from consumption as:

U(~xh) = u

(∑
j∈J

xhj

)
. (13)

Conditional on the technology, products here are perfect substitutes, as h's utility depends

only on its aggregate consumption. There are then only two types of products: clean and

dirty, with the price of each type determined by its aggregate supply.

Proposition 7 (substitutability). Suppose �rms sell (perfect) substitutes � i.e., U(·)
is de�ned in Eqn. (13):

1. The price premium for a clean product decreases with the number of clean rivals.

Therefore, �rms' abatement e�orts are strategic substitutes.

2. Expected product market surplus PS depends on ~σ. Compared to the coexisting

symmetric equilibrium, PS can be smaller in the best-in-class equilibrium, even

when
∑

j σj is higher.

The equilibrium depends on the number of clean �rms nc. (1) If nc is small, the supply

of clean products is too little, so, if there is any clean product, it sells at a price premium

λ. R consumers are then indi�erent between paying the price premium or incurring the

disutility λ, so their consumption is ine�ciently low relative to N consumers. (2) If

nc takes intermediate values, there is enough clean �rms for R consumers to buy only

clean products, at a price premium lower than λ and decreasing with nc. R households

though still have lower consumption thanN consumers, as they still pay a price premium,
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though this ine�ciency here is less pronounced. (3) If nc is su�ciently large, there is

more clean products than R households demand, so there is no longer a price premium

for clean products and also some N households consume these products. All households'

consumption is equalized, so product market surplus reaches its maximum level. The

equilibrium characterization is illustrated in Figure 5.

0

N nc

ρc

ρd

0

(a) Product prices.

0

N nc

xhc

xhd

R consumptionN consumption

(b) Consumption choices.

Figure 5: Illustration of product market equilibrium with perfect substitutes goods (see
Eqn. (13)). In both panels, nc is the number of clean �rms, with nc taking values in
{0, 1, ..., N}. In Panel (a), ρc and ρd describe the equilibrium prices of clean and dirty
products. In panel (b), xhc and xhd describe household h's consumption choices of clean
and dirty products.

The equilibrium characterization has two important implications. First, the relative

pro�tability (i.e., the price premium) of selling clean products decreases with the number

of clean rivals. For any �rm j, an increase in a rival's abatement e�ort shifts the distri-

bution of the number of clean rivals in a �rst-order stochastic dominance sense, which

reduces the expected price premium. This shift reduces the expected extra-pro�t j makes

from adopting the clean technology, which discourages its abatement e�orts: When prod-

ucts are substitutes, abatement e�orts are thus strategic substitutes.23 In this setting,

SRI concentration then generates a crowding-out of the excluded �rms' abatement e�orts,

as shown in the numerical example in Figure 4, Panel (a).

Second, product market surplus strictly increases with the number of clean �rms

nc (up to its maximum level) only if nc is already su�ciently large. When only a few

�rms supply clean products, they fully capture the extra utility λ they generate for R
households through the price premium; so the net surplus and consumption level of R
households is the same as if only dirty products were available. Through this channel,

even when concentrated SRI increases aggregate abatement relative to the symmetric

23Provided clean products are preferred by R consumers, the condition that the expected extra pro�t
from being clean decreases with the number of clean rivals and, thus, that abatement e�orts are strate-
gic substitutes is satis�ed in other standard oligopoly models (e.g., Hotelling/Salop models, imperfect
Bertrand competition).
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equilibrium, it may still reduce expected responsible consumption and product market

surplus: The crowding out of abatement e�orts by the excluded �rms can still reduce the

likelihood that nc is large enough, leading to product-market power for clean �rms and

higher prices for clean products.

5.4 From SRI concentration to green catalysts

Finally, we consider a setting where �rms produce complementary products:

U(~x) = u

(
min
j∈J

xhj

)
. (14)

Products here are perfect complements, as households derive utility from consuming a

bundle of goods in which each �rm supplies a necessary component.24 Since demand only

depends on the total cost of the bundle, there is a continuum of market-clearing prices.

We look at the unique symmetric equilibrium of the product market, where all products

sell at the same price.25

Proposition 8 (complementarity). Suppose �rms sell (perfect) complements � i.e.,

U(·) is de�ned in Eqn. (14) � and R consumers never consume dirty products (λ > u′(0)):

1. The price premium for a clean product increases with the number of clean rivals,

implying that �rms' abatement e�orts are strategic complements.

2. Expected product market surplus PS depends on
∏

j σj. Compared to the coexisting

symmetric equilibrium, PS is always larger in a best-in-class equilibrium if the

symmetric one does not feature SRI; if it does, PS can be smaller in a best-in-class

equilibrium even when it increases
∑

j σj.

Since households always purchase the N goods together, R types here may be willing

to buy only if all products are clean, in which case the price for all products is higher

due to the increased demand. As a result, �rm j's marginal bene�t from abatement is

higher when the probabilities σj′ that the other �rms j′ 6= j develop the clean technology

are larger. Complementarity in consumption thus induces strategic complementarity in

�rms' abatement e�orts.

In this environment, the best-in-class �rm acts as a green catalyst, pushing up the

investments of the excluded �rms relative to a coexisting symmetric equilibrium without

SRI. However, when the symmetric equilibrium also features SRI, concentration can still

24Alternatively, this model applies to a vertical supply chain, where �rm j supplies an essential input
used by �rm j + 1.

25Restricting attention to a symmetric equilibrium price is natural in this setting: N consumers are
indi�erent between clean and dirty products, while R consumers purchase only when all products are
clean.
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reduce expected product market surplus even when it increases aggregate abatement.

This happens when the di�erentiation it induces in �rms' abatement levels lowers the

likelihood that all �rms develop the clean technology, thereby reducing the chances that

R consumers can buy a bundle of clean products.

6 Conclusion

The practice of incorporating environmental and social factors into investment decisions

and ownership policies is becoming increasingly popular. This paper has developed a

framework to explore how this socially responsible investing (SRI) a�ects �rms' concerns

with Corporate Social Responsibility (CSR) issues and analyzed the implications for �rm

externalities and product markets. We have shown that the typical SRI strategies (e.g.,

best-in-class investing and ESG exclusion) lead to distributional ine�ciencies that can

either prevent a transition to a greener economy from materializing or push one where

�rms have more market power, and consumers are ultimately worse o�. We have also

demonstrated that these ine�ciencies are unlikely to persist if SRI becomes su�ciently

popular.

Recognizing the potential ine�ciencies of SRI has important implications for regula-

tors, which could be addressed in future research. For example, it would be interesting

to study which mechanisms may help direct investors toward a more e�cient distribution

of green capital. Natural candidates could be redesigning the information re�ected in

ESG scores, the objectives of SRI funds, and �rms' green disclosure requirements. Such

interventions may face less political resistance than traditional approaches, like taxes or

caps on carbon emissions.
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Appendix A: Proofs

We �rst introduce the function χ̂, which serves as a threshold for the fraction χ of R
investors. This expression will be useful in several proofs.

χ̂(σ, n) ≡ 1

2
+

√
4κλ(N − n)(1− σ) + (λ(1− σ)−Nκ)2 −Nκ

2λ(1− σ)
∀σ ∈ [0, 1),

and χ̂(1, n) ≡ 1− n
N
. The threshold χ̂(·) is decreasing in σ and n.

Proof of Proposition 1. The derivative of Γ(σ, σ ·~1; sR(σ)) with respect to σ equals

λ2χ(1− χ)

Nκ
1

{
σ > 1− Nκ

λ(1− χ)

}
+

∂

∂σ

(
∂Πj

∂σj
(σ, σ ·~1)

)
. (15)

As ∂Πj
∂σj

(1,~1) < 0 by Assumption 1, the equilibrium abatement level in any equilibrium

without SRI is strictly lower than 1; if ∂Πj
∂σj

(0,~0) ≤ 0, then σ∗ = 0 is an equilibrium,

else there exists an interior equilibrium σ∗ ∈ (0, 1). In both cases, there may be more

than one equilibrium without SRI. Let σ0 denote the smallest abatement policy across

equilibria without SRI. Note that

σ0 > 1− Nκ

λ(1− χ)
⇐⇒ χ > 1− Nκ

λ(1− σ0)
= χ̂(σ0, N).

Denoting χ̂(σ0, N) ≡ χ0, we have that:26

1. For χ ≤ χ0, σ = σ0 is such that Γ(σ0, σ0 ·~1; sR(σ0)) ≤ 0 (with equality in an interior

solution) with sR = 0, and so the game always admits at least one equilibrium with

no SRI. However, for larger values of σ such that sR > 0, Γ(σ, σ · ~1; sR(σ)) can

be increasing in σ, and so the �rst-order condition Γ(σ, σ · ~1; sR(σ)) = 0 game can

admit at least one other solution σ∗ > σ0, which corresponds to an equilibrium with

SRI. These equilibria, however, cannot exist for χ su�ciently small, as the positive

term in the derivative (15) vanishes for χ→ 0, and so the function Γ(σ, σ ·~1; sR(σ))

crosses zero for the last time (if ever) at the largest abatement level across equilibria

without SRI. As a result, there exists a threshold χ̃ ∈ (0, χ0] such that for χ ≤ χ̃

the game only admits equilibria without SRI, whereas for χ ∈ (χ̃, χ0] equilibria

without SRI can coexist with at least one equilibrium with SRI.

2. For χ > χ0, if σ0 > 0, as ∂Πj
∂σj

= 0 and sR > 0, Γ(σ, σ · ~1; sR(σ)) is positive at

σ = σ0 (hence, a fortiori, also at the larger abatement levels of any other equilibrium

without SRI), which implies that the equilibria without SRI do not exist. Then, this

26Note that the region of parameters χ ∈ (0, χ0] is empty if χ0 ≤ 0 � i.e., if λ ≤ Nκ
1−σ0

. In these
circumstances, the results in point 2 below apply for all χ ∈ (0, 1).
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expression either equals zero at some σ∗ > σ0, with any such σ∗ corresponding to

an equilibrium with SRI (sR > 0), or it is positive for all σ ∈ [0, 1] (which is always

the case for χ → 1 under Assumption 1) and so σ∗ = 1 is the unique equilibrium,

and it features SRI. If instead σ0 = 0, i.e. Γ(0, 0 ·~1; 0) < 0, then for χ > χ0 but not

too large so that also Γ(0, 0 · ~1; χ
Nκ

[Nκ − λ(1 − χ)]) < 0, σ∗ = 0 is the abatement

policy in an equilibrium with SRI (sR = χ
Nκ

[Nκ− λ(1− χ)] > 0 and so, as above,

there are no equilibria without SRI).

These arguments imply that the equilibrium is always unique if Γ(σ, σ·~1; sR(σ)) is globally

decreasing. From (15) it follows that this is always the case if∣∣∣∣∣ ∂∂σ
(
∂Πj

∂σj
(σ, σ ·~1)

) ∣∣∣∣∣ > λ2χ(1− χ)

Nκ
∀σ ∈ [0, 1],

this threshold being weakly larger than λ2

4Nκ
for all χ ∈ (0, 1). Therefore, under Assump-

tion 2, the symmetric equilibrium is unique for all χ ∈ (0, 1), and it features no SRI

(hence, σ∗ = σ0, with σ0 being the abatement level in the unique equilibrium without

SRI) for all χ ≤ χ0, and SRI (hence, σ∗ > σ0) for all χ > χ0.

As Γ(σ, σ · ~1; sR(σ)) is continuous and decreasing in χ,27 by the implicit function

theorem, it follows that σ∗ is a continuous and increasing function of χ (strictly so in the

equilibrium with SRI provided that σ∗ ∈ (0, 1)). To establish that also sR is increasing

in χ, note that σ∗ depends on χ only indirectly through sR, and that σ∗ is increasing in

sR. As a result, the sign of ∂sR

∂χ
must be the same as the sign of ∂σ∗

∂χ
.

Proof of Proposition 2. In an asymmetric equilibrium,R investors must be indi�erent

across all �rms j > n and strictly prefer them over �rms j ≤ n, whereas N investors

must be indi�erent across all �rms j ≤ n and strictly prefer them over �rms j > n. Using

the notation in the Proposition for �rms' abatement e�orts, and an analogous notation

for expected pro�ts and share prices, we must haveΠ− p− λ(1− σ) = Π̂− p̂− λ(1− σ̂) > Π− p− λ(1− σ)

Π− p < Π̂− p̂ = Π− p.
(16)

27Di�erentiating this function for χ ≥ χ̂(σ∗, N) with respect to χ gives

−λ(Nκ− λ(1− σ∗)(1− 2χ))

Nκ
.

As this derivative is decreasing in χ, a su�cient condition for it to be negative for all χ ≥ χ̂(σ∗, N) is

−λ(Nκ− λ(1− σ∗)(1− 2χ̂(σ∗, N)))

Nκ
= −λ(λ(1− σ∗)−Nκ)

Nκ
< 0,

which holds for all Nκ < λ(1− σ∗). This condition needs to hold as it is equivalent to χ̂(σ∗, N) > 0.
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As a result,

Π− p− λ(1− σ̂) < Π̂− p̂− λ(1− σ̂) = Π− p− λ(1− σ),

where the inequality follows from N investors' preferences and the equality from R in-

vestors' indi�erence, which implies σ̂ < σ; and similarly

Π− p− λ(1− σ) < Π̂− p̂− λ(1− σ̂) = Π− p− λ(1− σ̂),

where the inequality follows from R investors' preferences and the equality from N in-

vestors' indi�erence, which implies σ < σ̂.28

We next characterize the existence conditions for these equilibria. Let αRj > 0 and

αRj > 0 be the fraction of R investors who buy shares in any �rm j > n and j ∈ (n, n],

respectively, with
∑

j>n α
R
j +

∑
j∈(n,n] α

R
j = 1. Similarly, let αNj > 0 and αNj > 0 be the

fraction of N investors who buy shares in any �rm j ≤ n and j ∈ (n, n], respectively,

with
∑

j≤n α
N
j +

∑
j∈(n,n] α

N
j = 1.

Then, the market-clearing condition for �rm j ∈ J is given by:

1 =


(1− χ)αNj

1
κ

(Πj − pj) if j ≤ n

χαRj
1
κ

[Πj − pj − λ(1− σj)] + (1− χ)αNj
1
κ

(Πj − pj) if j ∈ (n, n]

χαRj
1
κ

[Πj − pj − λ(1− σj)] if j > n.

(17)

Note that for j > n we require that all �rms have the same Πj − pj − λ(1− σj) to make

R investors indi�erent. It directly follows that αRj ≡ αR for j > n. By the same logic,

we have αNj ≡ αN for j ≤ n. Similarly, all j ∈ (n, n] must o�er the same Πj − pj and
Πj − pj − λ(1− σj) so that αRj ≡ αR and αNj ≡ αN .

The equilibrium abatement policies are obtained as a �xed-point of �rms' best-response

functions in Eqn. (3), with

sRj =


0 for j ≤ n

χαR(κ−αNλ(1−χ)(1−σ̂))
κ(χαR+(1−χ)αN )

∈ (0, 1) for n < j ≤ n

1 for j > n,

For �rms j > n, Assumption 1 implies that σ = 1.

Proof of n = n ≡ n. In this case, we have that αR = αN = 0 so that αR = 1
N−n and

28Note that, while we considered so far the more general case with three ��rm types� � i.e., 0 < n <
n < N � the inequalities in Eqn. (16) imply that (i) if no �rm is held exclusively by R investors (n = N),
σ < σ̂; (ii) if no �rm has �mixed ownership� (n = n), σ < σ; and (iii) if no �rm is held exclusively by N
investors (n = 0), σ̂ < σ. The remainder of the proof only relies on the presence of SRI in at least one
�rm.
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αN = 1
n
. Hence, we have σj = σ for j ≤ n and σj = σ otherwise, with σ > σ by the

results above. Using these results, we can rewrite Eqn. (7) as:

Πj − pj =


(N−n)κ

χ
+ λ(1− σ) if j > n

nκ
1−χ if j ≤ n.

Equilibrium existence requires thatR (N ) investors are indi�erent between holding shares

in any �rm j > n (j ≤ n) and that they prefer this to buying shares in other �rms or

not trading at all. We denote the expected utility of investor i ∈ [0, 1] by Ui. Plugging

in the equilibrium demands given in Eqn. (5) yields Ui = κ
2
(s∗i )

2, increasing in s∗i . In

this equilibrium, the demands for an R and N investor is, thus, equal to N−n
χ

and n
1−χ ,

respectively. Since Ui > 0 for all investors, we just have to ensure that neither type has

an incentive to deviate to buy shares in a di�erent �rm.

If an individual R investor deviates and trades in �rm j ≤ n, its optimal demand is

equal to 1
κ

(
nκ

1−χ − λ(1− σ)
)
. We therefore require that:

N − n
χ

>
1

κ

(
nκ

1− χ
− λ(1− σ)

)
⇔ χ < χ̂(σ, n).

Similarly, if an individual N investor deviates and trades in �rm j > n, its optimal

demand is equal to 1
κ

(
N−n)κ

χ
+ λ(1− σ)

)
. We therefore require that:

n

1− χ
>

1

κ

(
(N − n)κ

χ
+ λ(1− σ)

)
⇔ χ > χ̂(σ, n).

Summing up, these equilibria exist if and only if χ̂(σ, n) < χ < χ̂(σ, n). Therefore, in

these equilibria, as (σ, σ) do not depend on χ, we have that χ ≡ χ̂(σ, n) and χ ≡ χ̂(σ, n),

with χ < χ because χ̂(·) is decreasing in σ and σ > σ.

Last, we clarify the sense in which the best-in-class equilibria are those with the high-

est concentration of responsible capital. We formalize this notion using the Her�ndahl-

Hirschman Index (HHI), a standard measure of concentration.

The HHI of responsible capital is de�ned as the sum of squared portfolio shares across

�rms:

HHIR =
N∑
j=1

z2
j ,

where zj denotes the share of total responsible investment allocated to �rm j. If R
investors invest in some �rms, then the index ranges from 1/N (equal-weighted allocation

across all �rms) to 1 (full allocation to a single �rm). Hence, the HHI is maximized when

all responsible investors allocate their capital to a single �rm, reaching HHIR = 1.

Two equilibria achieve this maximum value:
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1. An equilibrium in which responsible investors hold only �rm N and non-responsible

investors hold some shares in all �rms, including �rm N ; and

2. An equilibrium in which responsible investors hold only �rm N , and non-responsible

investors hold only �rms 1 through N − 1, with no overlap in �rm ownership.

We refer to the second allocation as the best-in-class equilibrium, and it is the one we

focus on in the main text. This equilibrium not only yields the highest possible HHIR, but

also maximizes the concentration of non-responsible capital (HHIN ) among the remaining

�rms, given the complete segmentation of ownership across investor types.

Thus, among all equilibria with concentrated responsible investment, the best-in-class

equilibrium features the highest possible concentration of responsible capital.

Proof of n < n. In this case, �rms j ∈ (n, n] are held by both N and R investors, which,

by the results above, will set σj = σ̂ ∈ (σ, σ). Using the results above, we can rewrite

Eqn. (7) as:

Πj − pj =


κ

(1−χ)αN
if j ≤ n

κ+λ(1−σ̂)χαR

χαR+(1−χ)αN
if j ∈ (n, n]

κ
χαR

+ λ(1− σ) if j > n,

(18)

with (N − n)αR + (n − n)αR = 1 and that nαN + (n − n)αN = 1. Next, we use the

indi�erence conditions for R and N investors to solve for the optimal αθ and αθ with

θ ∈ {R,N}.

1. Suppose that n > 0 and n < N so that we have three distinct �rm types (with

di�erent σj). R investors must be indi�erent between holding �rms j > n and

j ∈ (n, n]:29

κ

χαR
=
κ− λ(1− σ̂)(1− χ)αN

χαR + (1− χ)αN
.

Similarly, N investors must be indi�erent between holding �rms j > n and j ∈
(n, n]:

κ

(1− χ)αN
=
κ+ λ(1− σ̂)χαR

χαR + (1− χ)αN
.

Next, we sum over the N market-clearing conditions in Eqn. (17) and the indi�er-

ence conditions described above to write:

Nκ = Πj − pj − λ(1− σ̂)χ =
κ+ λ(1− σ̂)χαR

χαR + (1− χ)αN
− λ(1− σ̂)χ ∀j ∈ (n, n].

29As above, R investors always make positive pro�ts when buying shares in �rms j > n. Therefore,
the following indi�erence condition implies that they are willing to participate in the �nancial market.
The same argument applies to N investors.
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We can then solve for αR and αN :

αR =
κ

χ(Nκ− λ(1− σ̂)(1− χ))
,

αN =
κ

(1− χ)(Nκ+ λ(1− σ̂)χ)
.

αR and αN follow from (N − n)αR + (n − n)αR = 1 and nαN + (n − n)αN = 1.

Equilibrium existence requires (N − n)αR ∈ (0, 1) and nαN ∈ (0, 1), which is

equivalent to χ̂(σ̂, n) < χ < χ̂(σ̂, n).

2. Suppose that n > 0 and n = N so that �rms j ≤ n are only held by N investors

and �rms j ∈ (n,N ] are held by both types. Therefore, we have αR = 0 and

αR = 1
N−n . Summing over the market clearing conditions and using the indi�erence

of N investors yields:

Nκ = Πj − pj − λ(1− σ̂)χ =
κ+ λ(1− σ̂)χ 1

N−n

χ 1
N−n + (1− χ)αN

− λ(1− σ̂)χ ∀j ≤ n.

Solving this equation for αN leads to:

αN =
κ(1−N χ

N−n) + λ(1− σ̂) χ
N−n(1− χ)

(1− χ) [Nκ+ λ(1− σ̂)χ]
.

Equilibrium existence requires that (N − n)αN ∈ (0, 1) or χ < χ̂(σ̂, n). Finally, R
investors are willing to hold �rms j > n if and only if:

Πj − pj − λ(1− σ̂) > 0⇔ Nκ− λ(1− σ̂)(1− χ) > 0⇔ χ > χ̂(σ̂, N).

3. Suppose that n = 0 and n < N so that �rms j > n are solely held byR investors and

all other �rms are held by both types of investors. Therefore, we have αN = 0 and

αN = 1
n
. Summing over the market-clearing conditions and using the indi�erence

of R investors yields:

Nκ = Πj − pj − λ(1− σ̂)χ =
κ+ λ(1− σ̂)χαR

χαR + 1−χ
n

− λ(1− σ̂)χ ∀j > n.

Solving this equation for αR leads to:

αR =
κ(n−N(1− χ))− λχ(1− χ)(1− σ̂)

nχ(Nκ− λ(1− χ)(1− σ̂))
.

Equilibrium existence requires that nαR ∈ (0, 1), which is equivalent to χ > χ̂(σ̂, n).
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The expressions derived above also imply that N investors make positive trading

pro�ts and do not have an incentive to deviate from this equilibrium.

To wrap up, in all equilibria with n < n, where σ̂ depends on χ through sRj , χ is the

solution to χ = χ̂(σ̂, n), and χ is the solution to χ = χ̂(σ̂, n), with χ < χ because χ̂(·) is
decreasing in n.

Proof of Lemma 1. The proof proceeds in two parts, corresponding to Part 1 and

Part 2 of the Proposition.

Proof of Part 1. For χ ≤ χ0, sRj = 0 for all j in the symmetric equilibrium and for

all j ≤ N − 1 in the best-in-class equilibrium. Hence, any such σj is obtained from
∂πj
∂σj

(σj, ~σ−j) − C ′(σj) ≤ 0, with equality in an interior solution (σj > 0). Hence, σ is

di�erent from σ∗ = σ0 if and only if ∂2πj
∂σj∂σj′

6= 0 for some j′ 6= j (hence, σ = σ0 under

strategic independence) and ~σ−j 6= ~σ0. Since, by Proposition 2, σ < σ = 1, we have

that, if abatement choices are strategic substitutes (complements), ∂πj
∂σj

(σ, (σ ·~1, 1)) < (>

)
∂πj
∂σj

(σ, σ ·~1) for all σ < 1, and so (by the second-order condition of Program (2)) we must

have σ ≤ (≥)σ0, with strict inequality if σ0 > 0.

Proof of Part 2. For χ > χ0, the symmetric equilibrium features σ∗ ≥ σ0, with strict

inequality in an interior solution. Therefore, from the previous results it follows that σ <

σ∗ if abatement choices are strategic substitutes or independent, whereas the comparison

between σ and σ∗ is in general ambiguous under strategic complementarity as both values

are larger than σ0.

Proof of Proposition 3. As seen above, the expected utility of investor i ∈ [0, 1] is

Ui = κ
2
(s∗i )

2, increasing in the number of shares purchased, s∗i . Note that all investors of a

certain type must have the same Ui, and therefore s∗i , in a speci�c equilibrium. Hence, we

let sθ denote the equilibrium demand of an individual θ-investor with θ ∈ {R,N}. As a
result, the total demand across all �rms for R (N ) investors is equal to χsR ((1−χ)sN ).

Imposing market clearing, i.e., equating total demand across all �rms with the total

supply N , leads to χsR+ (1−χ)sN = N . Let sθ
′
and sθ

′′
denote the equilibrium demand

of a θ-type investor in two di�erent equilibria. Since χsR
′
+(1−χ)sN

′
= χsR

′′
+(1−χ)sN

′′
,

we must have that sR
′
> sR

′′
if and only if sN

′
< sN

′′
. Therefore, R and N investors

never strictly prefer the same equilibrium.

Proof of Part 1. As σ = 1, the best-in-class equilibrium exists for χ̂(1, 1) = 1
N
< χ <

χ̂(σ, 1). We have that 1
N
< χ0 if and only if

λ > λ ≡ κN2

(N − 1)(1− σ0)
.

The threshold λ is well de�ned because σ0 < 1 does not depend on λ.
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Proof of Part 2. As χ0 = χ̂(σ0, N) and χ̂(·) is decreasing in σ and N , a su�cient

condition for χ̂(σ, 1) > χ0 is that σ0 ≥ σ, which always holds if �rms' abatement policies

are strategic substitutes or independent, as shown in Lemma 1, Part 1.

R investors collectively buy χsR = 1 shares in the best-in-class equilibrium (as

sRj≤N−1 = 0 and sRN = 1), whereas in the symmetric equilibrium they buy no shares

for χ ≤ χ0 and a positive amount of shares, increasing in χ, for χ > χ0. Therefore, they

strictly prefer the best-in-class equilibrium (whenever it exists) for χ < χ0. We prove

below that this result holds for all χ < χ′′, with χ′′ ∈ (χ0, χ).

Recall that each R investor's preference-adjusted return equals κ
χ
, which decreases in

χ, in the best-in-class equilibrium, and Nκ− λ(1−χ)(1− σ∗), increasing in χ and σ∗, in

the symmetric equilibrium. As σ∗ > σ whenever �rms' abatement policies are strategic

substitutes or independent (see Lemma 1, Part 2), a su�cient condition for R investors

to prefer the symmetric equilibrium is κ
χ
< Nκ− λ(1− χ)(1− σ), which simpli�es as

κ(1−Nχ) + λχ(1− χ)(1− σ)

χ
< 0.

As this expression equals zero at χ = χ, we can conclude that R investors prefer the

symmetric equilibrium if and only if χ > χ′′ for some χ′′ ∈ (χ0, χ). Finally, note that

if χ0 < 1
N
, so that interval in which the two equilibria coexist coincides with ( 1

N
, χ),

at χ = 1
N
R investors always prefer the best-in-class equilibrium, strictly so whenever

σ∗ < 1 � i.e., χ′′ ≥ 1
N
, with strict inequality if σ∗ < 1 at χ = 1

N
.

Proof of Proposition 4. We prove Part 1 and Part 2 separately.

Proof of Part 1. By the results in Lemma 1, Part 1, for all χ ≤ χ0 we have that σ ≥ σ0

under strategic complementarity or independence, implying that σ + (N − 1)σ > Nσ0.

By contrast, as under strategic substitutability σ < σ0 in an interior solution, one might

have that σ + (N − 1)σ < Nσ0. This possibility result is shown in Figure 4.

To derive a su�cient condition for this result to hold, recall that Assumption 1 guar-

antees that in the best-in-class equilibrium, the best-in-class �rm (j = N with sRj = 1)

chooses σ = 1. Eqn. (3) then implies that the excluded �rms (j < N with sRj = 0)

choose σ = 0 if and only if Γ(0, (1,~0); 0) ≤ 0. Under this condition, aggregate abatement

equals σ + (N − 1)σ = 1 in the best-in-class equilibrium. This value is smaller than in

the equilibrium without SRI (sRj = 0 for all j) if and only if σ0 >
1
N
. By Eqn. (3), this

is the case if and only if Γ( 1
N
, 1
N
· ~1; 0) > 0. These two conditions ensure that aggregate

abatement is lower in the best-in-class equilibrium than in the symmetric equilibrium

without SRI.

Proof of Part 2. For χ > χ0, σ∗ > σ0 is increasing in χ, whereas (σ, σ) are independent of

χ. Therefore, even if �rms' abatement e�orts are independent or strategic complements,
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it is possible that aggregate abatement is larger in the symmetric equilibrium than in the

best-in-class equilibrium for χ su�ciently large � i.e., χ ∈ (χ′, χ), with χ′ > χ0. Note

that, if χ0 <
1
N
, so that interval in which the two equilibria coexist coincides with ( 1

N
, χ),

it is possible that aggregate abatement is larger in the symmetric equilibrium already at

χ = 1
N
� i.e., that χ′ = 1

N
.

We show that the result χ′ < χ is always true under strategic independence. In order

for σ + (N − 1)σ < Nσ∗, it must be that[
∂Πj

∂σj
(σ) + λsR(σ)

] ∣∣∣∣
σ= 1

N
σ+N−1

N
σ

> 0, (19)

given that πj does not depend on ~σ−j under strategic independence, where sR(σ) given

in Eqn. 8 is increasing in σ. At χ = χ, we have that sR
(

1
N
σ + N−1

N
σ
)
− 1

N
equals

(σ − σ)
(
N
√
κ2N2 + λ2(1− σ)2 − 2κλ(N − 2)(1− σ)− κN2 + λ(N − 2)(1− σ)

)
2λN2(1− σ)2

> 0,

and so sR
(

1
N
σ + N−1

N
σ
)
> 1

N
. Therefore, as the left-hand side of (19) is increasing in

sR(·), a su�cient condition for it to hold in a left-neighborhood of χ = χ is

F (N) ≡ ∂Πj

∂σj

(
1

N
σ +

N − 1

N
σ

)
+
λ

N
≥ 0.

Assumption 1 guarantees that F (1) > 0; moreover, in an interior solution (∂Πj
∂σj

(σ) = 0),

F (N)→ 0 as N →∞. As with strategic independence σ = 1 and σ = σ0 ∈ (0, 1) do not

depend on N , we have that

F ′(N) = − 1

N2

[
λ+ (σ − σ)

∂2Π

∂σ2
j

(
1

N
σ +

N − 1

N
σ

)]
,

and

F ′′(N) =
1

N

[
(σ − σ)2

N3

∂3Π

∂σ3
j

(
1

N
σ +

N − 1

N
σ

)
− 2F ′(N)

]
.

Therefore,

� If ∂
3Π
∂σ3
j
≤ 0, any stationary point of F (N) � i.e., any N∗ such that F ′(N∗) = 0 � is a

maximum point. As F (1) > 0 and limN→∞ F (N) = 0, it follows that either F (N)

is inverted-U-shaped, or it is globally decreasing. In either case, F (N) > 0 for all

N .

� If ∂3Π
∂σ3
j
> 0, any stationary point of F (N) is a minimum point. As F (1) > 0 and

limN→∞ F (N) = 0, it follows that F (N) is is globally decreasing and positive.

The inequality F (N) ≥ 0 is thus always satis�ed. As in equilibrium sR is increasing in
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χ, it then follows that there exists a threshold χ′ ∈ (χ0, χ) such that
∑

j σj is larger in

the symmetric equilibrium than in the best-in-class equilibrium if and only if χ > χ′.

Proof of Proposition 5. We establish the results in Part 1 and 2 separately.

Proof of Part 1. We know from Proposition 3 that the best-in-class equilibrium can coexist

with the symmetric equilibrium without SRI (χ < χ0) and, in this case, it is always

preferred by R investors, and from Proposition 4 that it can feature lower aggregate

abatement under strategic substitutability. The former result holds by continuity in a

right-neighborhood of χ0; the latter result holds a fortiori for χ > χ0.

With independence in abatement e�orts, we have proved that, relative to the sym-

metric equilibrium, the best-in-class equilibrium is preferred by R investors for χ < χ′′ ∈
(χ0, χ) and reduces aggregate abatement for χ > χ′ ∈ (χ0, χ). As R investors are indif-

ferent if and only if they collectively hold the same shares in the two equilibria, we have

that sR = 1
N

at χ = χ′′. In the proof of Proposition 4, Part 2, we have shown that if

sR = 1
N
, the symmetric equilibrium features higher aggregate abatement, and so χ′′ > χ′

whenever χ′′ > 1
N
. Recall that χ′′ = 1

N
if and only if σ∗ = 1 at χ = 1

N
, which implies

that aggregate abatement is always larger in the symmetric relative to the best-in-class

equilibrium � i.e., χ′′ = χ′ = 1
N
.

Proof of Part 2. As shown in Proposition 2, the best-in-class equilibrium exists for

χ̂(1, 1) = 1
N
< χ < χ̂(σ, 1) (as σ = 1 under Assumption 1). As χ̂(σ, 1) is decreasing in σ,

the measure of the interval of χ in which such equilibrium exists shrinks as σ increases

and equals zero for σ = 1.

Proof of Proposition 6. With independent products, the �rst-order condition of con-

sumer h's utility maximization gives

u′(xhj) = ρj + λ1h∈R1θj=d,

yielding demand xhj = u′−1(ρj + λ1h∈R1θj=d) for each �rm j.30 The market-clearing

condition for each �rm j's product is then

χu′
−1

(ρj + λ1θj=d) + (1− χ)u′
−1

(ρj) = 1.

This condition implies that each clean product (θj = c) is sold at price ρj = u′(1), whereas

the market-clearing price of each dirty product is ρj ∈ (u′(1)− λ, u′(1)), obtained by the

above condition for 1θj=d = 1. As these prices do not depend on the number of clean

�rms in the market, �rm j's expected pro�t does not depend on rivals' abatement levels.

30This treatment assumes that responsible consumers have positive demand also for dirty products.
However, the same results hold if λ > u′(0), so that R consumers boycott dirty products.
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De�ne PS(θj) as the total surplus generated by �rm j's product:

S(θj) = χu[u′
−1

(ρj + λ1θj=d)] + (1− χ)u[u′
−1

(ρj)].

The concavity of u(·) implies that this value is higher when consumption is equalized

across consumers, i.e., PS(c) = u(1) > S(d). As σj = Pr[θj = c], we have that E[S(θj)] =

S(d) + [S(c)− S(d)]σj. Therefore, PS =
∑

j∈J E[S(θj)] = S(d) + [S(c)− S(d)]
∑

j∈J σj

is an increasing function of
∑

j∈J σj.

Proof of Proposition 7. As products are perfect substitutes, a consumer h only buys

from a �rm j∗ ∈ argminj∈J (ρj + λ1h∈R1θj=d), and its demand is xhj∗ = u′−1(ρj +

λ1h∈R1θ∗j=d). Consider equilibria where the products of �rms operating with the same

technology have the same demand and market-clearing price. Denoting by ρc(nc) (ρd(nc))

the market-clearing price for each clean (dirty) �rm as function of the number nc ∈
{1, ..., N − 1} of clean �rms,31 the equilibrium takes one of the following forms:

1. R consumers buy both products and N consumers buy dirty products. For R con-

sumers to be indi�erent among all products, it must be that ρd + λ = ρc (which

implies that ρc > ρd, and so N consumers prefer dirty products).

Denoting by ρ ≡ ρc = ρd + λ, and letting αR be the fraction of R consumers that

buy any of the clean products, the market-clearing condition for clean products is

αRχu′
−1

(ρ) = nc, (20)

and for dirty products is

(1− αR)χu′
−1

(ρ) + (1− χ)u′
−1

(ρ− λ) = N − nc. (21)

Any such equilibrium is a pair (ρ, αR), with αR ∈ (0, 1), that jointly solve Eqns.

(20)-(21).

Summing up conditions (20) and (21) yields

χu′
−1

(ρ) + (1− χ)u′
−1

(ρ− λ) = N,

which admits a unique solution ρ, independent of nc and αR. Because from Eqn.

(20) we have ρ = u′
(

nc
αRχ

)
, this implies that the ratio nc

αR
is a constant. Denoting

this constant ratio by y, substituting (20) into (21), after simple manipulations,

31For nc = 0 (nc = N), the analysis is identical to case 1 (case 3) below for αR = 0 (αN = 1). Case 1
never arises if R consumers boycott dirty products (λ > u′(0)), but the results of Proposition 7 still go
through.
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yields

u′
(
y

χ

)
− λ = u′

(
N − y
1− χ

)
, (22)

which, solved for y, pins down αR. The left-hand side (right-hand side) of this

equation is decreasing (increasing) in y, hence it is increasing (decreasing) in αR.

As it must be that αR < 1 for this equilibrium to exist, given that y = nc for

αR = 1, the considered equilibrium exists, and it is unique, if and only if

λ < u′
(
nc
χ

)
− u′

(
N − nc
1− χ

)
,

this upper bound being decreasing in nc and positive for nc < Nχ. Hence, this

equilibrium exists if and only if nc < nc, where nc ∈ [0, Nχ).

Therefore, for any nc < nc, using Eqn. (22) product market surplus is given by

PS(nc) = χu

(
y

χ

)
+ (1− χ)u

(
N − y
1− χ

)
, (23)

and it is constant varying nc.

2. R consumers buy clean products and N consumers buy dirty products. For R (N )

consumers to prefer clean (dirty) products, it must be that ρd + λ > ρc > ρd.

The market-clearing conditions for clean and dirty products immediately yield the

respective unique equilibrium prices,

χu′
−1

(ρc) = nc =⇒ ρc = u′
(
nc
χ

)
,

and

(1− χ)u′
−1

(ρd) = N − nc =⇒ ρd = u′
(
N − nc
1− χ

)
.

Therefore, the conditions ρd + λ > ρc > ρd boil down to

nc < Nχ and λ > u′
(
nc
χ

)
− u′

(
N − nc
1− χ

)
.

Hence, this equilibrium exists if and only if nc ∈ [nc, nc], with nc being the highest

integer smaller than Nχ.

Therefore, for any nc ∈ [nc, nc], product market surplus equals

PS(nc) = χu

(
nc
χ

)
+ (1− χ)u

(
N − nc
1− χ

)
,

which, since nc
χ
< N−nc

1−χ and u(·) is concave, is strictly increasing in nc and larger
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than for any nc < c.

3. R consumers buy clean products and N consumers buy both products. For N con-

sumers to be indi�erent among all products, it must be that ρc = ρd, which implies

that R consumers prefer clean products.

Denoting by ρ the common market-clearing price, and by αN the fraction of N
consumers who buy clean products, the market-clearing condition for clean products

is

χu′
−1

(ρ) + αN (1− χ)u′
−1

(ρ) = nc, (24)

and for dirty products is

(1− αN )(1− χ)u′
−1

(ρ) = N − nc. (25)

Any such equilibrium is a pair (ρ, αN ), with αN ∈ (0, 1), that jointly solve Eqns.

(24)-(25).

Summing up conditions (24) and (25) yields the unique equilibrium price ρ = u′(N),

which, substituted into (25), after simple manipulations, gives

αN = 1− N − nc
(1− χ)N

.

Therefore, this equilibrium exists and it is unique if and only if αN ∈ (0, 1), which

boils down to nc > Nχ � i.e., nc > nc.

Therefore, for any nc > nc, product market surplus is PS(nc) = u(N), which is

independent of nc and larger than the one for nc ∈ [nc, nc] because u(·) is concave.

To wrap up, denoting by ρc(nc) (ρd(nc)) the equilibrium price of clean (dirty) products

as function of the number of clean �rms in the market, the foregoing analysis implies

that ρc(nc) (ρd(nc)) is decreasing (increasing) in nc, strictly so for nc ∈ [nc, nc], and

ρc(nc) ≥ ρd(nc), with strict inequality for all n ≤ nc. Then, denoting by nc,−j the number

of �rm j's clean rivals, we can write j's expected pro�t as

πj =
N−1∑

ñc,−j=0

Pr[nc,−j = ñc,−j] {ρd(ñc,−j) + σj[ρc(ñc,−j + 1)− ρd(ñc,−j)]} ,

from which we have that ∂πj
∂σj

=
∑N−1

ñc,−j=0 Pr[nc,−j = ñc,−j][ρc(ñc,−j + 1) − ρd(ñc,−j)].

This function is decreasing in any rival's abatement e�ort because (1) as argued above,

the di�erence ρc(ñc,−j + 1) − ρd(ñc,−j) is decreasing in ñc,−j; and (2) the probability

distribution of nc,−j ∈ {0, ..., N − 1} is Poisson-Binomial with success probabilities ~σ−j
and an increase in any rival's abatement e�ort shifts the distribution of nc in a �rst-order

178



stochastic dominance sense, making higher realizations of nc,−j more likely. Therefore,

we can conclude that ∂2πj
∂σj∂σj′

≤ 0, with strict inequality provided that σj′ < 1 for at least

nc �rm j's rivals.

Finally, expected product market surplus is PS =
∑N

ñc=0 Pr[nc = ñc]S(ñc)), where the

probability distribution of nc ∈ {0, ..., N} is Poisson-Binomial with success probabilities

σj. By the previous results, PS(ñc) is increasing in ñc (strictly so for ñc ∈ [nc, nc]),

hence the same �rst-order stochastic dominance argument put forward above implies

that PS is increasing in each σj. Suppose that the best-in-class equilibrium exists in a

neighborhood of χ0. Then, as strategic substitutability implies that σ < σ0 < σ (recall

Lemma 1), whether SRI concentration increases product market surplus is in general

ambiguous.

Proof of Proposition 8. When �rms' products are perfect complements, consumer h

optimally chooses to consume xhj ≡ xh for all j ∈ J , where xh solves

max
xh≥0

u(xh)− xh
∑
j∈J

(
ρj + λ1h∈R1θj=d

)
.

The optimal xh is then obtained from

u′(xh) ≤
∑
j

(
ρj + λ1h∈R1θj=d

)
,

with equality in an interior solution (xh > 0). Assuming λ > u′(0) guarantees that R
consumers do not buy any product unless all �rms sell clean products. Then, we have to

distinguish two cases:

� If 0 ≤ nc ≤ N − 1, only N consumers buy �rms' (clean or dirty) products, so that

the market-clearing condition for each �rm j is (1−χ)u′−1
(∑

j∈J ρj

)
= 1, yielding

the symmetric equilibrium price

ρ(nc) =
1

N
u′
(

1

1− χ

)
,

independent of nc.

� If nc = N , all consumers buy the same quantity xh = u′−1
(∑

j∈J ρj

)
from each

�rm j, and so the market-clearing conditions yield the symmetric equilibrium price

ρ(N) =
1

N
u′ (1) .
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Therefore, �rm j's expected pro�t equals

πj =
1

N

[
u′
(

1

1− χ

)
+

(
u′ (1)− u′

(
1

1− χ

))
σj
∏
j′ 6=j

σj′

]
,

so that
∂2πj

∂σj∂σj′
=

1

N

(
u′ (1)− u′

(
1

1− χ

)) ∏
j′′ 6=j,j′

σj′′ ≥ 0,

with strict inequality provided that σj > 0 for all j. Firms' abatement policies are then

strategic complements.

Finally, expected product market surplus equals

PS = (1− χ)u

(
1

1− χ

)
+

(
u (1)− u

(
1

1− χ

))∏
j∈J

σj,

and so is an increasing function of
∏

j∈J σj. Therefore:

� For χ ≤ χ0, the symmetric equilibrium features no SRI (σj = σ0) and in best-in-

class equilibrium σ > σ > σ0 by Lemma 1. Therefore,
∏

j∈J σj, and so expected

product market surplus, is larger in best-in-class equilibrium than in the symmetric

equilibrium.32

� For χ > χ0, the symmetric equilibrium features SRI (σj = σ∗ > σ0), and SRI

concentration can reduce
∏

j∈J σj. Indeed, if
∑

j∈J σj is lower in the best-in-class

equilibrium � i.e., if σ+(N−1)σ < Nσ∗ � then a fortiori SRI concentration reduces∏
j∈J σj (and so PS) � i.e., σσN−1 < (σ∗)N . This result follows from the AM-GM

Inequality σ+(N−1)σ
N

> N
√
σσN−1. However, SRI concentration can reduce PS even

when it increases aggregate abatement: e.g., as σ = 1, for N = 2 this happens if

max{2σ∗ − 1, 0} < σ < (σ∗)2.

Appendix B: Supplementary material

B.1 Data appendix

We obtain mutual funds' stock holding information from Thomson/Re�nitiv S12 (S12

hereafter). Since S12 does not have an indicator for ESG funds, following Dikolli et

al. (2022), we rely on Morningstar's classi�cation to identify ESG funds in S12 data

(https://www.morningstar.com/esg-screener). We classify a fund as an ESG fund if

Morningstar states that the fund's management identi�es the fund as sustainability-

focused in public �lings (�Sustainable Investment by Prospectus�). Otherwise, we classify

32The same results hold considering other equilibria with concentrated SRI.
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the fund as a non-ESG fund.

We match S12 data and Morningstar data using fund tickers. Since tickers can be

reused, we manually compare fund names in S12 and Morningstar and verify the match

if it can be inferred from the fund names that the same sponsor manages two funds.

Throughout this process, we identify 82 ESG funds in S12 data. We de�neGreenCapitalit
as the aggregated value of stock holdings in �rm i at year t by ESG funds. Similarly,

Non− GreenCapitalit is de�ned as the aggregated stock holdings in �rm i at year t by

non-ESG funds.

We obtain Re�nitiv's ESG Combined Scores for US �rms listed in NYES and NAS-

DAQ during 2002-2020. The list of NYSE/NASDAQ-listed stocks and stock prices is

obtained from CRSP.

To construct the HHI indexes for green (non-green) capital at the industry level, we

�rst compute the share of green capital in a �rm for a given year over the aggregated

green (non-green) capital in the industry that the �rm belongs to in the same year. The

HHI indexes for green (non-green) capital are then obtained by summing the squared

shares of green (non-green) capital in the industry. Similarly, we compute HHI indexes

for ESG combined scores at the industry level are by summing the squared shares of

ESG combined scores in a �rm for a given year over the aggregated ESG combined scores

in the industry that the �rm belongs to in the same year. These HHI indexes allow us

to measure the concentration of green and non-green capital and ESG combined scores

within each industry.

B.2 Stability of concentration

We have shown in Proposition 3 that, when two equilibria coexist, R and N investors

always disagree on which equilibrium they prefer. So, even if R investors prefer to

concentrate, it is not clear how they choose which equilibrium is played, since neither

equilibria is payo�-dominant. The typical stability-based equilibrium re�nements (e.g.,

trembling-hand perfect equilibria (Selten, 1975) and sequential equilibria (Kreps and

Wilson, 1982) do not immediately apply, since the investors' action space is continuous

in our model.33 A simple and intuitive way to still explore stability in our model (in the

traditional sense of robustness to small perturbations to the equilibrium strategies) is to

consider a setting where, when two equilibria coexist, a small set of investors commit to

playing the strategies they play in their preferred equilibrium.

Proposition B.1 (stability of concentration). Suppose the best-in-class equilibrium

and the symmetric equilibrium coexist when the mass of R investors χ is in a neighborhood

33Investors form conjectures about the pro�ts and abatement choices of each �rm and, based on these
conjectures, submit a demand schedule, in the space of continuous, positive functions, for each share.
The original formulations of trembling-hand perfect equilibria (Selten, 1975) and sequential equilibria
(Kreps and Wilson, 1982) both require a �nite action space, so they do not apply to our setting.
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of the threshold χ0, which is such that the symmetric equilibrium features SRI i� χ > χ0.

De�ne a perturbation of the original game as one where a small mass of investors (α̂→ 0)

of a given type always plays the strategies they play in their preferred equilibrium (among

these two). The best-in-class equilibrium is always robust to such perturbations (that is,

it continues to exist in the perturbed game), while the symmetric equilibrium is not.

Within a subset of the values of χ for which R investors prefer the best-in-class equilib-

rium (that is, for χ around the threshold χ0), the symmetric equilibrium is less "stable":

even a small subset of R investors committing to the strategies they play in the best-in-

class equilibrium is su�cient to break the symmetric equilibrium, while a small subset of

N investors committing to play like in the symmetric equilibrium does not su�ce to break

the best-in-class equilibrium.34 This suggests a simple mechanism for equilibrium selec-

tion in favor of equilibria with concentration (e.g., some SRI funds making commitments

to best-in-class investing).

The mechanism that makes the best-in-class equilibrium relatively more stable is

similar to the traditional tâtonnement dynamics: When a fraction ofR investors commits

to only buying shares of �rm j (rather than splitting among the N �rms), the other �rms

become more attractive to N investors, since there is relatively less demand pressure for

their shares. As some N investors move toward the other �rms, j's ownership becomes

more responsible and, thus, σj goes up. This attracts more R investors to hold only j,

triggering a set of mutually best-responses that diverge from the symmetric equilibrium.

This process is not at work in the opposite case: When a fraction of N investors commits

to buying all �rms (rather than only the excluded ones), the excluded �rms become more

attractive to the remaining N investors, since there is relatively less demand pressure

in these �rms. So, neither the remaining N investors in the excluded �rms, nor the R
investors in the best-in-class �rm,35 want to move away from the best-in-class equilibrium

strategies.

B.3 Shareholder voting

In this section, we consider a variation of the model where shareholders in�uence �rms'

abatement e�orts through voting. The modeling of the voting stage is similar to Levit et

al. (2024).

34Of course, as the fraction of commitment types approaches 1, almost all N investors play the strate-
gies they play in the symmetric equilibrium, at which point R investors' best-responses also converge to
the symmetric strategies.

35The commitment types do not a�ect the abatement of the best-in-class �rm, since λ > C′(1) means
that a small set of N investors cannot move the �rm away from full abatement, but they do increase
price pressure in the �rm. In the best-in-class equilibrium, however, R investors have a strict preference
for the best-in-class �rm, so a small increase in price pressure is not enough to change their portfolio
choices. In the symmetric equilibrium, all investors are instead indi�erent across �rms, which makes the
equilibrium inherently less robust to perturbations.
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At time t = 2, given the distribution of SRI across �rms, the shareholders of each �rm

vote on an ESG proposal that de�nes the �rm's objective when choosing its abatement

e�orts. If the proposal is rejected, �rm j chooses σj to maximize its expected pro�ts Πj;

if the proposal is accepted, it chooses σj to maximize Πj − λ(1 − σj), internalizing the

�rm's pollution externality λ(1− σj). For simplicity, we assume each share has one vote,

and focus on subgame perfect equilibria in undominated strategies of the voting game.36

The proposal is accepted if at least a fraction τ ∈ (0, 1) of all shares are cast in favor (τ

may be di�erent than 1
2
to re�ect super-majority voting).

Equilibrium analysis. To simplify the exposition, we focus on the analysis of sym-

metric equilibria and asymmetric equilibria with full separation (i.e., N investors hold

�rms j ≤ n and R investors hold �rms j > n). De�ning the threshold χ̂(σ, n) as in the

main model, the following holds:

Proposition B.2 (Shareholder voting). Suppose shareholders of each �rm vote on an

ESG proposal that de�nes whether the �rm should internalize the pollution externality

when choosing its abatement e�orts. The following two types of equilibria may exist:

� (Symmetric equilibria.) A symmetric equilibrium always exists. It features no SRI

if χ ≤ χ̂(σ0, N), where, as in the main model, σ0 = arg maxσj Πj(σj, σ0 · ~1), and

SRI otherwise. In particular, de�ning χ̃(σ) ≡ 1
2

+

√
(λ(1−σ)−κN)2+4κλN(1−σ)τ−κN

2λ(1−σ)
, for

all χ ∈ [χ̂(σ0, N), χ̃(σ0)) there is a symmetric equilibrium with SRI where �rms still

choose σ0, and for all χ ≥ χ̃(σ∗), with χ̃(σ∗) ∈ (χ̂(σ0, N), χ̃(σ0)), there is another

symmetric equilibrium with SRI where �rms choose σ∗ = arg maxσj Πj(σj, σ
∗ ·~1)−

λ(1− σj) > σ0.

� (Asymmetric equilibria.) Asymmetric equilibria with full separation where R in-

vestors target �rms j > n, and σj = σ (σj = σ) for j ≤ n (j > n), exist if and only

if χ̂(σ, n) < χ < χ̂(σ, n), where (σ, σ) are the same as in the main model.

There exist parameter con�gurations such that the only equilibria with SRI are asymmetric

and, in these equilibria, aggregate abatement is lower than in the benchmark without SRI.

The asymmetric equilibria with full separation exist for the same parameter space and

feature the same abatement e�orts as in the baseline model. This is because investors

correctly anticipate that, for all τ ∈ (0, 1), the ESG proposal will be accepted in �rms

j > n (where all shareholders are R types and so vote in favor) and rejected in �rms

j ≤ n (where all shareholders are N types and so vote against). This implies that �rms'

36This restriction is common in the literature on voting games. The usual assumption in this literature
is that dispersed shareholders vote as if they were pivotal (see, e.g., Baron and Ferejohn, 1989, and
Austen-Smith and Banks, 1996).
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policies and pro�ts in this candidate equilibrium are as in the main model, which makes

the investors' demands unchanged.

Similarly, there always exists a symmetric equilibrium (with or without SRI). As in

the main model, the symmetric equilibrium features no SRI if the mass of responsible

investors is su�ciently small. In this case, we have shown (see Figure 4) that, under

strategic substitutability, aggregate CSR investments can be lower in the best-in-class

equilibrium.

Unlike in the main model, the game always admits two symmetric equilibria with

SRI when χ takes intermediate values (i.e., for χ̃(σ∗) ≤ χ < χ̃(σ0)). This follows from a

coordination problem among R investors: if each of them expects like-minded investors

to buy a large number of shares in each �rm so that sR∗ > τ and the proposal is expected

to be accepted, the investor has incentives to buy more shares. Else, R investors still

buy positive shares in all �rms (because χ > χ̂(σ0, N) implies that the share price would

be too low if only N investors trade in the market), but not enough to have an impact

on �rms' abatement e�orts. Thus, in this version of the model, the presence of SRI may

not a�ect aggregate abatement when R investors do not concentrate in equilibrium.

B.4 Broad vs narrow mandate

In this section, we consider a variation of the model where R investors su�er a disutility

from the pollution generated by all �rms, irrespective of their holdings. Formally, given

Ki = κ
2
(
∑

j∈J sij)
2, the investors' portfolio problem becomes the following:

max
sij≥0

∑
j∈J

sij (Πj − pj)−
∑
j∈J

1i,Rλ(1− σj)−Ki. (26)

Similar to the main model, given its ownership, �rm j's optimal abatement policy

solves:

max
σj∈[0,1]

Πj − sRj
∑
k∈J

λ(1− σk). (27)

The objective in Program (27) is a weighted average of the investors' expected payo�,

where the weights are proportional to the shares held by each shareholder.

The way we model the broad investment mandate calls for two remarks. First, the

pollution disutility in Program (26) is independent of R investors' portfolio choices, so it

does not a�ect their optimal demands. R and N investors then have the same demand

functions in this version of the model. It follows that the equilibrium characterization

is the same if all investors su�er from aggregate pollution, but �rms only internalize

the disutility of R types when choosing their abatement e�orts (consistent with these

investors engaging more to in�uence �rms' green policies).

Second, j's objective in Program (27) includes the abatement levels of the other
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�rms. However, �rms move simultaneously in our model, so j takes these levels as given

when choosing σj. Therefore, each individual �rm is still unable to in�uence the others'

abatement. It follows that, even if R investors care about aggregate pollution, they are

not able to push �rms to internalize the indirect e�ects of their investments on other

�rms (i.e., the crowding-in and crowding-out e�ects).

Equilibrium analysis. R investors' pollution disutility is independent of their portfo-

lio choices. Moreover, since investors are atomistic, they take �rms' abatement e�orts as

given. Hence, the pollution disutility does not distort R investors' demand compared to

N types. Therefore, each investor's demand is now

sij =

max
{

1
κ

[Πj∗ − pj∗ ] , 0
}

for j∗ ∈ argmaxj{Πj − pj}

0 for j 6= j∗.
(28)

Since all investors have the same demand, equilibria without SRI do not exist in this

framework.

Proposition B.3 (broad mandate). When R investors have a broad mandate, the

game admits a unique symmetric equilibrium and a continuum of asymmetric equilibria.

In some equilibria, R investors invest only in a subset of �rms, and aggregate abatement

e�orts are lower than in the symmetric equilibrium.

The game features a prevalence of asymmetric equilibria also under the broad mandate

assumption: Since investors can be allocated across �rms in any arbitrary way compatible

with the market-clearing conditions, the game admits in�nitely many equilibria, of which

only one is symmetric. For given ownership structure, �rms' investments are the same

as in the main model. It follows that the asymmetric equilibria feature dispersion in

abatement e�orts, where �rms with more SRI invest more. Similar to the main model,

SRI concentration can then reduce aggregate abatement e�orts relative to the benchmark

without SRI and, a fortiori, to the symmetric equilibrium, which features SRI. Yet, unlike

in the main analysis, here these asymmetric equilibria with low abatement levels can be

Pareto dominated by the symmetric equilibrium, because R investors do care about

aggregate abatement.

Finally, it is worth noting that, since the disutility for aggregate pollution does not

a�ect the investors' demand, adding this disutility to their payo� in our main model would

not a�ect the equilibrium characterization. Formally, let ξ > 0 denote the intensity of

the warm-glow component in R investors' utility (in our main model, we set ξ = 1 for

simplicity), and suppose investor i either maximizes∑
j∈J

sij (Πj − pj − 1i,Rξλ(1− σj))−
∑
j∈J

1i,Rλ(1− σj)−Ki
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(i.e., only R types su�er from aggregate pollution), or∑
j∈J

sij (Πj − pj − 1i,Rξλ(1− σj))−
∑
j∈J

λ(1− σj)−Ki

(i.e., both R and N types su�er from aggregate pollution).

In either case, the investor's demand is the same as in the main model, with ξλ in

place of λ, and so the equilibrium characterization would also be the same.37

B.5 Alternative trading costs

In this section, we consider an alternative speci�cation of the trading cost, which depends

on the individual holdings of each �rm:

K(~sij) ≡ κ
∑
j∈J

s2
ij. (29)

Notice that, under the assumption that �rms' pro�ts are normally distributed with mean

Πj and exogenous variance κ
r
, with r > 0, this speci�cation is equivalent to a portfolio-

choice problem where investors have CARA preferences with risk aversion coe�cient r.

Equilibrium Analysis. For a given distribution of SRI, the optimal CSR investments

are the same as in the main model. In the ownership market stage, taking the �rst-order

conditions of investors' problem, we now have

sij = max

{
1

κ
[Πj − pj − 1i,Rλ(1− σj)] , 0

}
∀j ∈ J .

It follows that, in equilibrium, each R investor buys shares in any �rm j for which

Πj − pj − λ(1− σj) > 0 and each N investor buys shares in all �rms. This is because (a)

when R investors have positive demand, N investors must also have positive demand,

and (b) in order for all markets to clear, N investors must have positive demand also

for �rms in which R investors have zero demand � i.e., similar to our baseline model, in

equilibrium Πj > pj for all j ∈ J .
The marginal cost of acquiring a small position in a �rm is zero, independent of the

investor's holdings in other �rms. Hence, N types invest in all �rms in equilibrium. R
investors, however, might still choose to exclude a subset of �rms if the externalities they

generate are too high.

37In the �rm's problem, we would have (1 + ξ)λ in place of λ, so the equilibrium abatement policies
would be slightly di�erent compared to the main model. However, the features of the equilibrium
described in Propositions 1 and 2 would continue to hold.
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Proposition B.4 (per-�rm trading costs). Consider the trading cost in Eqn. (29).

Then, all the equilibria are such that N investors demand positive shares in all �rms and

R investors demand positive shares in n ∈ {0, ..., N} �rms. Any such equilibrium exists

if and only if

1− κ

λ(1− σ(n))
< χ ≤ 1− κ

λ(1− σ(n))
, (30)

where σ(n) > σ(n) are the equilibrium abatement levels derived from Eqn. (3).

The equilibrium existence conditions are less tractable in this version of the model,

because equilibrium values (σ(n), σ(n)) depend on χ (through R investors' aggregate

demands in each �rm), so the endpoints of the interval for χ de�ned by the existence

conditions in Eqn. (30) are themselves a function of χ. This is not the case for the

equilibria with sRj≤n = 0 and sRj>n = 1 we obtained in the main model. While the analysis

is accordingly more complicated in this setting, the main results carry through under this

alternative speci�cation of the trading cost.

First, asymmetric equilibria, featuring concentrated SRI, also arise in this version of

the model. Similar to the main model, R investors' impact on abatement policies creates

a strategic complementarity in their portfolio choices along the extensive margin: by

concentrating in a subset of �rms j ≥ N − n, R investors have more impact on their

abatement choices, which reduces the valuation gap with N investors and make these

�rms more attractive to R types. Hence, concentration may help R investors participate

in the �nancial market. Since �rms j < N − n have instead a negative return net of the

pollution disutility, R investors still choose to exclude these �rms from their portfolios,

even though the marginal cost of acquiring positions in additional �rms is zero for them.

Second, when �rms' abatement choices are strategic substitutes, the crowding-out e�ect

of concentrated equilibria also arises in this model extension, so that concentrated SRI

may reduce aggregate abatement relative to the equilibrium without SRI.

B.6 Reverse timing

In our main model, �rms choose their abatement levels after the investors trade. Here, we

explore a setting where this timing is reversed � i.e., �rms �rst choose their abatement

investments to attract investors and maximize their stock prices. This version of the

model applies best to settings where �rms can make credible commitments to pollution

abatement and managers care about their �rms' stock prices.

The timing of the game is now as follows. At time t = 1, each �rm j commits to σj
to maximize its expected share price pj. At the beginning of time t = 2, given the �rms'

abatement choices ~σ, investors trade the �rms' shares at their market clearing prices.

Finally, pro�ts realize and are distributed to shareholders.
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Equilibrium Analysis. Since investors take ~σ as given, their optimal demands at t = 2

are the same as in our main model (see Eqn. (5)).38 At t = 1, each �rm j anticipates the

equilibrium share price pj that results from these demands, and solves

max
σj

pj.

Let us focus for simplicity on the equilibria with sRj≤n = 0 and sRj>n = 1, for n ∈ {1, ..., N−
1}. In these equilibria, market-clearing conditions give pj≤n = Πj − κn

1−χ and pj>n =

Πj − κ(N−n)
χ
−λ(1−σj), and the equilibrium abatement choices are as in the main model

(σj≤n = σ < σ = σj>n).

Since the investors' demands and market-clearing conditions are the same as in the

main model, the conditions in Proposition 2 are still necessary for existence. However,

here they are no longer su�cient: while (σ, σ) are local mutual-best-response, that is,

holding �xed the investors' portfolio choices, j may have pro�table global deviations that

trigger di�erent portfolio choices by investors. Therefore, equilibrium existence here also

requires that all feasible global deviations are unpro�table. Namely, a �rm j ≤ n (j > n)

may deviate by attracting also, or only, R (N ) investors, or by attracting a larger mass

of N (R) investors.
When an individual investor is indi�erent between the shares of a deviating �rm j and

those of some other �rms, we assume that the investor breaks the indi�erence against

j. This rules out the possibility that a deviating �rm attracts only a fraction of the

investors of another �rm, limiting the number of possible global deviations to consider.39

In particular, we can show that none of the global deviations are feasible starting from

the best-in-class equilibrium (n = N − 1), which implies the following.

Proposition B.5 (reverse timing). If each �rm j commits to σj to maximize its share

price, the best-in-class equilibrium exists for χ ∈ (χ, χ), where χ and χ are as in Proposi-

tion 2, and it may feature lower aggregate abatement relative to the coexisting symmetric

equilibrium.

Although �rms are ex-ante identical, they may select di�erent abatement policies in

equilibrium: some �rms abate more to attract R investors, while others abate less and

cater to N investors. This di�erentiation makes it harder for each �rm to deviate and
38The fact that here ~σ is observed, whereas in the main model it is correctly anticipated, plays no

role on the equilibrium path (o�-path events are immaterial to the analysis, given the continuum of
investors). Moreover, in both models, investors take as given the market-clearing prices and correctly
anticipate �rms' expected pro�ts given ~σ.

39It is worth emphasizing that, even when a given deviation is possible, it is not necessarily pro�table:
holding Πj �xed, attracting more (or a di�erent type of) investors increases the share price of a devi-
ating �rm j. However, the deviation requires choosing a σj that is not a best-response to the other
�rms' investments, which may decrease Πj and, as a result, pj . It follows that the possibility result in
Proposition B.5 is likely to hold even without this tie-breaking assumption, though the analysis would
be more cumbersome.
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attract both types of investors, since each equilibrium policy is tailored to the preferences

of a speci�c investor type. As, for any given distribution of SRI, abatement policies are

set as in the main model, the implications of SRI are the same under this alternative

timing of the game.

B.7 Provision of public goods

In the main model, each �rm j generates a negative externality λ at a rate 1−σj. In such

a setting, responsible agents have lower valuations than non-responsible ones for brown

�rms' shares and products. This implies that in equilibrium N investors can crowd out

R investors, but not the other way around.

Here we show that our qualitative results are robust under the opposite assumption.

Namely, suppose the status quo entails no externality, but �rms' investments bring up a

positive externality λ at a rate σj, which increases the utility of responsible agents. There-

fore, in this setting, R investors have higher valuations for �rms' shares than N investors,

and so responsible investors can crowd out non-responsible ones from the market.

Denoting again by Πj = Π(σj, ~σ−j) �rm j's expected pro�t, which satis�es the same

assumptions as in the base model, for a given vector of �rms' investments ~σ, investor i

now solves:

max
sij≥0

∑
j

sijΠj − pj + 1i,Rλσj −Ki,

and, under the proportional control assumption, each �rm j chooses its investment level

solving:

max
σj∈[0,1]

Πj + λσjs
R
j .

Equilibrium Analysis. Taking the �rst-order condition at the investment stage, it is

straightforward to see that �rm j's pro�t is still maximized for σj solving Eqn. (3).

Moving backward to the investment stage, we obtain the following shares' demand:

sij =

max{ 1
κ

[Πj∗ − pj∗ + 1i,Rλσj∗ ] , 0} for j∗ = argmaxj{Πj − pj + 1i,Rλσj}

0 for j 6= j∗.

The market clearing conditions determine the equilibrium share prices

pj = Πj −
κ

χαRj + (1− χ)αNj︸ ︷︷ ︸
liquidity discount

+
λσjχα

R
j

χαRj + (1− χ)αNj︸ ︷︷ ︸
green premium

, (31)

where
∑

j α
R
j = 1 in all equilibria and

∑
j α
N
j ∈ {0, 1}, as αNj = 0 for all j in an

equilibrium where N investors are crowded out from the market.
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The equilibrium characterization mirrors the one shown in the main model. To sim-

plify the exposition, we focus on the analysis of symmetric equilibria and asymmetric

equilibria where sRj≤n = 0 and sRj>n = 1, for n ∈ {1, ..., N − 1}. De�ning

χ̂R(σ, n) ≡ 1

2
−
√

(Nκ+ λσ)2 − 4κλnσ −Nκ
2λσ

, (32)

where the function χ̂R(·) is decreasing in σ, increasing in n, and such that χ̂R(·) ∈ (0, n
N

),

the following results hold:

Proposition B.6 (green premium). If each �rm j's investments bring up a positive

externality λ at a rate σj, internalized by R investors, the game admits the following two

types of equilibria:

� (Symmetric equilibria.) An symmetric equilibrium always exists and, under As-

sumption 2, it is unique. It features exclusion of N investors for χ ≥ χ̂R(σR, N),

where σR is �rms' equilibrium investment when sRj = 1 for all j ∈ J ; and coexis-

tence of R and N investors (sR∗ ∈ (0, 1) and so σ∗ < σR for all j ∈ J ) otherwise.

� (Asymmetric equilibria.) Equilibria where sRj≤n = 0 and sRj>n = 1 exist for χ̂R(σ,N−
n) < χ < χ̂R(σ,N − n), where the investment levels σj≤n ≡ σ < σ ≡ σj>n are

the same de�ned in Proposition 2. These equilibria may feature lower aggregate

investments relative to the coexisting symmetric equilibrium.

When R investors are too few to crowd out N investors from all �rms, they can have

a larger impact on the investments of �rms in their portfolios by targeting a subset of

�rms. As a result, SRI concentration may still arise in equilibrium even when R investors

have higher valuations compared to N investors.

In particular, as in the main model there exist equilibria where sRj≤n = 0 and sRj>n = 1

and �rms choose investments levels σj≤n ≡ σ < σ ≡ σj>n. The results of Proposition

4 then imply that, also in this version of the model, the best-in-class equilibrium may

reduce aggregate investments relative to a world without SRI, hence a fortiori relative to

the coexisting symmetric equilibrium with SRI (where sR∗ > 0 and so �rms invest more).

B.8 Proofs for Appendix B

Proof of Proposition B.1. From Proposition 3, we know that in a neighborhood of χ0:

(i) the best-in-class equilibrium and the symmetric equilibrium coexist if λ ≥ λ and �rms'

abatement policies are strategic substitutes or independent, and (ii) R investors strictly

prefer the best-in-class equilibrium whereas N investors strictly prefer the symmetric

equilibrium.

Recall that, in the symmetric equilibrium, each (R and N ) investor i selects each

�rm j ∈ {1, ..., N} with probability 1
N
� equivalently, each �rm is selected by a fraction
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1
N

of each type of investors � and submits a demand schedule sθi = max{Π∗ − pj −
1i,Rλ(1− σ∗), 0} in the selected �rm. By contrast, in the best-in-class equilibrium, each

R investor selects (with probability 1) �rm j = N and submits a demand schedule

sRi = max{Π− pN − λ(1− σ), 0}, whereas each N investor selects each �rm j < N with

probability 1
N−1

and submits a demand schedule sNi = max{Π − pj<N − λ(1 − σ), 0} in
the selected �rm.

Best-in-class equilibrium. As χ0 ∈ (χ, χ), in a neighborhood of χ0, in the best-in-class

equilibrium Π− p− λ(1− σ) > max{Π− p− λ(1− σ), 0} and Π− p < Π− p. Starting
from the best-in-class equilibrium, consider a perturbed game where a mass α̂ of N
investors play the strategies they play in the symmetric equilibrium � i.e., a fraction
1
N

of them submit a demand schedule sNi = max{Π∗ − pN , 0} in �rm j = N . Then,

even though these N investors are able to purchase positive shares in �rm N , since

each σj (hence, also Πj) is a continuous function of sRN , for α̂ su�ciently small it is

still the case that ΠN − pN − λ(1 − σN) > max{Πj<N − pj<N − λ(1 − σj<N), 0} and

ΠN − pN < Πj<N − pj<N . Therefore, all R investors still select �rm j = N and buy

shares sRi = max{ΠN − pN − λ(1 − σN), 0} = ΠN − pN − λ(1 − σN), whereas all non-

committed N investors still select each �rm j < N with equal probability 1
N−1

and buy

shares sNi = max{Πj<N − pj<N , 0} = Πj<N − pj<N , these strategies converging to the

equilibrium ones as α̂ → 0, because sRN → 1 and abatement policies and pro�ts are

continuous in sRN .

Moreover, Assumption 1 implies that, for sRN su�ciently large, σN = 1 and, since

sRj<N = 0 also in the perturbed game, σj<N = σ (and so also ΠN = Π and Πj<N = Π). As

a consequence, there exists α′ > 0 such that, for all α̂ ∈ (0, α′], the perturbed game admits

an equilibrium with the same abatement policies (and �rms' pro�ts) of the best-in-class

equilibrium.

Symmetric equilibrium. Starting from the symmetric equilibrium, consider a perturbation

of the original game where a mass α̂ of R investors play the strategies they play in the

best-in-class equilibrium � i.e., they all submit a demand schedule sRi = max{Π− pN −
λ(1− σ), 0} in �rm j = N . In order for the symmetric equilibrium to be robust to such

perturbation, the probability with which each non-committed R and N investor selects

each �rm should smoothly converge to 1
N
as α̂ → 0. For this to hold, all these investors

should be indi�erent among all �rms in the perturbed game.

(a) Equilibrium with SRI. In order for the perturbed game to admit an symmetric equi-

librium which features SRI, it must be that σj<N = σN ≡ σ in order for both types of

investors' indi�erence conditions to hold, which implies that Πj<N = ΠN ≡ Π; then, the

indi�erence conditions imply that pj<N = pj=N ≡ p.
Let αR (resp. αN ) denote the probability with which each non-committed R (resp.

N ) investor selects �rm j = N . Then, the following market-clearing conditions for �rms
j < N and j = N must hold, together with the condition sRj<N = sRN , to ensure that �rms
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choose the same abatement policy:
(1− α̂) 1−αR

N−1 χ
1
κ max{Π− p− λ(1− σ), 0}+ 1−αN

N−1 (1− χ) 1
κ max{Π− p, 0} = 1,

α̂χ 1
κ max{Π− p− λ(1− σ), 0}+ (1− α̂)αRχ 1

κ max{Π− p− λ(1− σ), 0}+ αN (1− χ) 1
κ max{Π− p, 0} = 1,

αN (1− χ) 1
κ max{Π− p, 0} = 1−αN

N−1 (1− χ) 1
κ max{Π− p, 0}.

If �rms' abatement policies are independent it is always the case that Π − λ(1 − σ) >

ΠN − λ(1− σN). This is because σN = argmaxσ ΠN − sRNλ(1− σ) and so the preference-

adjusted gross return ΠN − λ(1− σN) of R investors is maximized when sRN = 1. Under

substitutability, this result a fortiori holds because sRN = 1 dampens rivals' abatement

levels, further increasing R investors' preference-adjusted gross return in �rm j = N .

Therefore, whenever non-committed R investors buy positive shares, committed R in-

vestors a fortiori do so. Of course, also N investors have higher demand and so they also

end up buying positive shares in this candidate equilibrium.

Then, supposing that all demands are strictly positive, solving the system for (αR, αN , p)

yields the candidate equilibrium values

αR =
1

(1− α̂)N

[
1− α̂N +

α̂(N − 1)[Π− Π− λ(σ − σ)]

λ[(1− (1− α̂)σ − α̂σ)χ− (1− σ)] + α̂χ(Π− Π) +Nκ

]
,

αN = 1
N
, and p = Π + α̂χ(Π− Π)−Nκ− λχ[1− σ − α̂(σ − σ)].

For α̂→ 0, this solution is not admissible in a neighborhood of χ0. Indeed, as α̂→ 0,

�rms' abatement policies should converge to σ0 at χ = χ0 (as sRj = 0 for all j in the

symmetric equilibrium of the original game) and then we would have

αR|χ→χ0 = 1 +
κ(N − 1)

λ(1− σ0)−Nκ
> 1,

where the inequality follows because λ(1−σ0)−Nκ > 0 is equivalent to χ0 < 1. Moreover,

as αR|χ→χ0 is bounded away from one, this result implies that there exists a threshold

α′′ > 0 such that the considered candidate equilibrium does not exist in the perturbed

game for all α̂ ∈ (0, α′′].

(b) Equilibrium without SRI. Alternatively, it is possible that non-committed R investors

end up buying zero shares in all �rms.40 In this case, the symmetric equilibrium is not

robust to the perturbation if committed R investors are able to buy positive shares in

�rm j = N . Indeed, in this case, sRN > 0 = sRj<N , and so σN > σj<N . As ΠN − pN =

Πj<N −pj<N by N investors' indi�erence condition,41 this implies that non-committed R
40If they buy positive shares only in a subset of �rms, they strictly prefer these �rms to the others

and so the probability of selecting each �rm cannot smoothly converge to 1
N as α̂ → 0, implying that

the symmetric equilibrium is not robust to the perturbation.
41If N investors were to prefer �rms j < N to �rm N , sRN = 1 and so non-committed R investors

would also enter �rm N .
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investors strictly prefer �rm N to �rms j < N , hence their strategies are discontinuous

as α̂→ 0.

In the candidate equilibrium under consideration, only the committed R investors

potentially buy shares, and so the market-clearing conditions for �rms j < N and j = N

and the indi�erence condition of N investors are, respectively,
1−αN
N−1

(1− χ) 1
κ

max{Πj<N − pj<N , 0} = 1,

α̂χ 1
κ

max{Π− pN − λ(1− σ), 0}+ αN (1− χ) 1
κ

max{ΠN − pN , 0} = 1,

Πj<N − pj<N = ΠN − pN .

The previous argument implies that, to prove that the symmetric equilibrium is not robust

to the perturbation, we only need to show that there exists a solution to the above system

such that Π− pN − λ(1− σ) > 0 � i.e., the perturbed game admits an equilibrium with

(at least) committed SRI, rather than a symmetric equilibrium without SRI. Supposing

that this condition holds, the solution to the above system is such that

Π− pN − λ(1− σ) =
Nκ− (1− χ)(λ(1− σ) + ΠN − Π)

1− (1− α̂)χ
,

which, at χ = χ0, for α̂ → 0 (so that ΠN → Π0) equals Π − λ(1 − σ) − [Π0 − λ(1 −
σ0)] > 0 (by the arguments above, this inequality always holds under independence or

substitutability), so that committed R investors cannot be crowded out. Moreover, as

this value is bounded away from zero, this result implies that there exists a threshold

α′′′ ∈ (0, 1] such that the perturbed game does not admit an equilibrium without SRI for

all α̂ ∈ (0, α̂′′′].

Taken together, the above results show that, in a neighborhood of χ0, (1) as α̂ →
0, non-committed investors' strategies are continuous in the best-in-class equilibrium

but they are not in the symmetric equilibrium, and (2) for all α̂ ∈ (0, α], with α ≡
min{α′, α′′, α′′′}, the perturbed game admits an equilibrium where (σj<N = σ, σN = 1)

but not a symmetric equilibrium and σj ≡ σ for all j.42

Proof of Proposition B.2. Since investors correctly anticipate ~σ, their optimal de-

mands at t = 1 are the same as in our main model (Eqn. 5). We next characterize the

�rm choice of σj. In the asymmetric equilibrium with full separation, each �rm j > n

maximizes Πj − λ(1 − σj), as sRj>n = 1 implies that the proposal is accepted for all

τ ∈ (0, 1), and �rm j ≤ n maximizes Πj, as sRj≤n = 0 implies that the proposal is always

rejected. Since this is identical to our main model, these two types of �rms choose the

42Indeed, in order for all �rms to choose the same abatement policy, sRj should be the same for all j.
As committed R investors buy positive shares in �rm N for all α̂ ∈ (0, α′′′], this is only possible if the
candidate equilibrium with SRI described in part (a) above exists, which is not true for all α̂ ∈ (0, α′′].
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same abatement e�orts (σ, σ) de�ned in Proposition 2. Moreover, since each individ-

ual investor is atomistic and does not change the voting outcome, we obtain the same

existence condition χ̂(σ, n) < χ < χ̂(σ, n) as in the main model.

In the symmetric equilibrium, we have to di�erentiate three cases at t = 2: (i) sR =

0 and σ∗ = σ0, (ii) sR < τ and so again σ∗ = σ0, and (iii) sR ≥ τ and so σ∗ =

arg maxσj Πj(σj, σ
∗ · ~1) − λ(1 − σj) > σ0. The �rst case is identical to our main model

so that the symmetric equilibrium without SRI exists for all χ < χ̂(σ0, N). As, in any

symmetric equilibrium with SRI, sR∗ is given by Eqn. (8), case (ii) requires that:

τ > χ− λ(1− χ)χ

Nκ
(1− σ0)⇔ χ < χ̃(σ0),

where χ̃(σ0) > χ̂(σ0, N).43 Case (iii) requires that:

τ ≤ χ− λ(1− χ)χ

Nκ
(1− σ∗)⇔ χ ≥ χ̃(σ∗),

where σ∗ solves the �rst-order condition C ′(σ∗) ≥ ∂πj
∂σj

+λ, and χ̃(σ∗) ∈ (χ̂(σ0, N), χ̃(σ0)).44

Thus, for χ ∈ [χ̃(σ∗), χ̃(σ0)) the game admits two symmetric equilibria, both of them

featuring SRI.

Next, we show that, for some parameter con�gurations, the only equilibria with SRI

are asymmetric, and aggregate abatement is lower than in the benchmark without SRI.

For simplicity, we consider the same functional form for πj and parameters as in Figure

4. Note that the existence threshold χ̂(σ, n), and the equilibrium CSR investments σ0,

σ, and σ are the same as in the main model. Therefore, as shown in Figure 4, in a range

of the parameters, the best-in-class equilibrium coexists with the symmetric equilibrium

with no SRI, and aggregate abatement is lower in the former equilibrium.

Proof of Proposition B.3. Given the shares' demand in Eqn. (28), for the market-

clearing conditions to hold for all �rms, it must be that Πj − pj is positive and constant

across �rms � i.e., in any equilibrium, all investors must be indi�erent between all �rms'

43Indeed,

χ̃(σ0)− χ̂(σ0, N) =

√
(λ(1− σ)−Nκ)2 + 4κλN(1− σ)τ − (λ(1− σ)−Nκ)

2λ(1− σ)
> 0.

44The result χ̃(σ∗) < χ̃(σ0) follows from σ∗ > σ0 and χ̃(·) being decreasing in σ:

∂χ̃(·)
∂σ

∝ Nκ− λ(1− 2τ)(1− σ)−
√

(λ(1− σ)− κN)2 + 4κλN(1− σ)τ < 0;

whereas χ̃(σ∗) > χ̂(σ0, N) because, for all σ, χ̃(σ)|τ=0 = χ̂(σ0, N) and χ̃(·) is increasing in τ .
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shares. The market-clearing conditions then write as

[
χαRj + (1− χ)αNj

] 1

κ
(Πj − pj) = 1 ∀j ∈ J .

Summing across �rms, and using the fact that Πj − pj does not depend on j, yields
1
κ

(Πj − pj) = N and so

χαRj + (1− χ)αNj =
1

N
. (33)

Any pair (αRj , α
N
j ) ∈ [0, 1]2 that satis�es Eqn. (33), provided

∑
j∈J α

R
j =

∑
j∈J α

N
j = 1,

yields an equilibrium of the game. Therefore, the game admits a continuum of equilibria.

In any equilibrium, �rms' abatement e�orts are determined as in the base model.

Indeed, under the proportional control assumption, �rm j solves

max
σj∈[0,1]

Πj − sRj
∑
k∈J

λ(1− σk),

which yields the same policies of the base model, where, given the market-clearing con-

ditions, sRj = χNαRj .

Therefore, as in the main model, the game admits:

� A unique symmetric equilibrium, which here is obtained for αRj = αNj = 1
N
for all

j, where all �rms have the same ownership and choose the same abatement e�orts

(and accordingly make the same expected pro�ts and have the same shares' prices);

� Multiple (in this case, in�nitely many) asymmetric equilibria, in which �rms more

targeted byR investors abate more compared to �rms that feature less prevalence of

responsible capital (and, accordingly, �rms make di�erent pro�ts and have di�erent

shares' prices).

In particular, there may be equilibria where R investors concentrate in a subset of �rms.

As in the base model, consider αRj≤n = 0 and αRj>n = 1
N−n . Then, the market clearing

conditions imply that αNj≤n = 1
N(1−χ)

and αNj>N = N(1−χ)−n
(N−n)N(1−χ)

. Note that for χ = 1− n
N
,

αNj>n = 0, so that we obtain the equilibria with full separation characterized in the main

model. The result in Proposition 4 then implies that aggregate abatement may be lower in

this equilibrium than in the scenario with no SRI (αRj = sRj = 0∀j). In turn, aggregate

abatement is lower in the no-SRI benchmark than in the symmetric equilibrium with

SRI (where αRj = 1
N

and so sRj > 0 for all j), which here exists for all values of the

parameters.45

45Note that, by continuity of investors' and �rms' equilibrium strategies, the possibility result that
concentrated SRI may reduce aggregate abatement relative to no-SRI and, a fortiori, to the symmetric
equilibrium with SRI, extends to a non-zero measure set of the parameters.
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Proof of Proposition B.4. As we have argued that N investors always demand pos-

itive shares in all �rms, and R investors are symmetric, it follows that any candidate

equilibrium is characterized by the subset of �rms targeted by R investors. Without loss

of generality, let these �rms be j > n.

For any given n, the corresponding equilibrium exists whenR investors have a positive

net payo� from buying shares in �rms j > n only. That is, when

Πj>n − pj>n − λ(1− σj>n) = κ− (1− χ)λ(1− σj>n) > 0⇔ χ > 1− κ

λ(1− σj>n)

and

Πj≤n − pj≤n − λ(1− σj≤n) =
κ

1− χ
− λ(1− σj≤n) ≤ 0⇔ χ ≤ 1− κ

λ(1− σj≤n)
,

where the equalities follow from the market-clearing conditions

χ

κ
[Πj>n − pj>n − λ(1− σj>n)]+

1− χ
κ

[Πj>n − pj>n] = 1 and
1− χ
κ

[Πj≤n − pj≤n] = 1,

and the equilibrium abatement investments σj≤n ≡ σ(n) < σ(n) ≡ σj>n are obtained

from Eqn. (3), with sRj≤n = 0 and sRj>n = χ
(

1− (1−χ)λ(1−σ(n))
κ

)
. The equilibrium existence

conditions then can be written as in Eqn. (30).

Proof of Proposition B.5. We consider the best-in-class equilibrium, which (as ar-

gued in the text) features the same abatement levels (σ, σ) characterized in Proposition

2. A necessary condition for this equilibrium to exist is χ̂(σ, 1) ≡ χ < χ < χ ≡ χ̂(σ, 1).

In what follows, we show that, provided that all market-clearing conditions always hold

(on- and o�-path)46 and that a deviating �rm is unable to target a speci�c fraction of

N or R investors, global deviations cannot be implemented, and so this condition is also

su�cient for existence of the best-in-class equilibrium. We use the superscript d to denote

deviation outcomes.

First, consider deviations by the targeted �rm j = N , which should be held only

by R investors in equilibrium. Suppose it tries to attract only N investors. Then, its

market-clearing price would be

pdN = Πd
N −

κ

1− χ
.

Following the deviation, market clearing implies that R investors equally distribute their

demand among the other �rms, so we have pdj<N = Πd
j<N−

(N−1)κ
χ
−λ(1−σ). N investors

46Note that the market-clearing price of any �rm j in Eqn. (7) would be unbounded below if there was
no demand for j's shares (i.e., pj → −∞ if αθj → 0 for all θ ∈ {N ,R}), which would lead any investor to
buy j's shares. Thus, market-clearing conditions rule out deviations where a single �rms tries to attract
all investors.
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then prefer holding �rm N to any �rm j < N if Πd
N − pdN > Πd

j<N − pdj<N , which is

equivalent to κ
1−χ >

(N−1)κ
χ

+ λ(1− σ). This condition holds for

χ >
1

2
+

√
λ2(1− σ)2 + κ (κN2 + 2λ(N − 2)(1− σ))−Nκ

2λ(1− σ)
.

However, as this threshold is larger than χ, this deviation is not feasible in the region of

parameters where the best-in-class equilibrium can exist.

Second, consider deviations by an excluded �rm, say (without loss of generality) �rm

1, which should be held by N investors only in equilibrium. Suppose �rm 1 tries to

attract only R investors. Then, its market-clearing price is

pd1 = Πd
1 −

κ

χ
− λ(1− σd1).

Following the deviation, the market-clearing conditions imply that N investors allocate

their demand equally among the other �rms, and so Πd
N − pdN = Πd

j∈[2,N−1] − pdj∈[2,N−1] =
(N−1)κ

1−χ . R investors prefer �rm 1 to �rm N if Πd
1− pd1− λ(1− σd1) > Πd

N − pdN − λ(1− σ),

which, given the market clearing prices, is equivalent to κ
χ
> (N−1)κ

1−χ − λ(1 − σ). This

inequality boils down to χ < χ. Therefore, this global deviation is not feasible whenever

the best-in-class equilibrium can exist.

Finally, suppose that an excluded �rm, say j = 1, tries to attract all the N investors

(instead of just a share 1
N−1

of them). Then, by the market-clearing conditions it follows

that R investors equally distribute their demand among the other �rms, and �rm 1's

market-clearing price is

pd1 = Πd
1 −

κ

1− χ
.

Following the deviation, N investors prefer �rm 1 to any �rm j ∈ [2, N − 1] if Πd
1 − pd1 =

κ
1−χ > Πd

j∈[2,N−1] − pdj∈[2,N−1] = (N−1)κ
χ

+ λ(1− σ), which is equivalent to

χ >
1

2
+

√
λ2(1− σ)2 + κ (κN2 + 2λ(N − 2)(1− σ))− κN

2λ(1− σ)
.

However, as this threshold is larger than χ, also this deviation is not feasible whenever

the best-in-class equilibrium can exist.

As we have ruled out all possible global deviations, we can conclude that, also under

the alternative timing considered in this section, the best-in-class equilibrium exists for

all χ < χ < χ. From the main analysis, we know that this equilibrium may feature lower

aggregate abatement relative to the equilibrium without SRI.

Proof of Proposition B.6. Assume Assumption 2 and consider, �rst, an equilibrium

where N investors are crowded out. This equilibrium exists if and only if onlyR investors
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are willing to trade shares in all �rms. That is, letting σR, ΠR, and pR denote �rms'

investments, expected pro�ts, and share prices in this candidate equilibrium, it must be

ΠR − pR ≤ 0 < ΠR − pR + λσR.

Substituting the market clearing price from Eqn. (31) for αRj = 1
N

and αNj = 0, these

condition boil down to χ ≥ Nκ
λσR

= χ̂R(σR, N), where σR is obtained as the unique solution

of Eqn. (3) for sRj = 1. Then, proceeding as in the proof of Proposition 1, it can be shown

that, for all χ < χ̂R(σR, N), there is a unique symmetric equilibrium where, for all j ∈ J ,
σj = σ∗ < σR is obtained from Eqn. (3) for sRj = sR∗ = χ

Nκ
[Nκ+ λ(1− χ)σ∗] ∈ (0, 1).

Consider asymmetric equilibria where sRj≤n = 0 and sRj>n = 1, for n ∈ {1, ..., N − 1}.
As argued in the text, these equilibria feature the same �rms' investments as the main

model, i.e., σj≤n ≡ σ < σ ≡ σj>n characterized in Proposition 2. Therefore, provided

these equilibria exist, they may yield lower aggregate investments than a benchmark with

no SRI (where σj = σ0 ∀j ∈ J ) and hence, a fortiori, relative to the coexisting symmetric

equilibrium, which always features SRI (and so σ∗ > σ0).

As seen in the main model, these equilibria exist if N (resp. R) investors prefer

holding any �rm j ≤ n (resp. j > n) to any other �rm and to buying no shares at

all. Similar to the proof of Proposition 2, using the market clearing conditions, these

conditions boil down to
(N − n)κ

χ
>

nκ

1− χ
+ λσ,

and
nκ

1− χ
>

(N − n)κ

χ
+ λσ.

Putting these conditions together �nally yields χ̂R(σ,N − n) < χ < χ̂R(σ,N − n), where

the threshold χ̂R(·) is de�ned in Eqn. (32).
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