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Abstract

We study a repeated sender–receiver game where inspections are public but the
sender’s action is hidden unless inspected. A detected deception ends the relationship
or triggers a finite punishment. We show the public state is low-dimensional and prove
existence of a stationary equilibrium with cutoff inspection and monotone deception.
The sender’s mixing pins down a closed-form total inspection probability at the cutoff,
and a finite punishment phase implements the same cutoffs as termination. We extend
to noisy checks, silent audits, and rare public alarms, preserving the Markov structure
and continuity as transparency vanishes or becomes full. The model yields testable
implications for auditing, certification, and platform governance: tapering inspections
with reputation, bunching of terminations after inspection spurts, and sharper cutoffs
as temptation rises relative to costs.
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1 Introduction
Tax authorities, financial supervisors, and certification bodies routinely publicize their
inspection policies—how often they audit, when they intensify scrutiny, and when they
stand down—while the underlying conduct of firms remains unobserved unless an audit
uncovers a violation. Across these environments one repeatedly sees the same patterns:
inspection intensity tapers after periods of compliant findings, surges of auditing are followed
by clusters of detected violations, and regimes that replace “one-strike” termination with
finite probation achieve similar deterrence with different administrative costs. This paper
provides a microfoundation for these facts by analyzing a repeated sender–receiver game with
public inspections and private actions. We establish existence of a stationary equilibrium
in a low-dimensional belief state (honesty and vigilance), show that optimal policies take
cutoff form (the receiver checks when honesty beliefs are low enough; the sender deceives only
when vigilance beliefs are low enough), deliver locally unique thresholds with closed-form
expressions in a benchmark, and prove that finite, publicly observed punishments implement
the same cutoffs as immediate termination. The comparative statics are transparent: higher
temptation expands the checking region, higher inspection cost contracts it, greater patience
reduces the inspection intensity needed to sustain honesty; inspection intensity tapers as
honesty accumulates, and terminations bunch after audit spurts.

We study a repeated sender–receiver game in which the receiver’s inspection decision is
publicly observed while the sender’s action is private unless checked. A detected deception
ends the relationship in our benchmark, and—importantly for applications—can instead
trigger a finite, publicly observed punishment phase. The public state is low-dimensional:
two beliefs summarize history, the receiver’s belief about the sender’s honesty and the
sender’s belief about the receiver’s vigilance. Despite the private-action friction, the public
observability of inspections makes the equilibrium Markov in these beliefs and supports sharp
characterizations.

We prove existence of a stationary Perfect Bayesian equilibrium (Lemma 7.1) and show
that equilibrium policies take a cutoff form: the receiver checks when honesty beliefs are low
enough and the sender deceives only when vigilance beliefs are low enough. Monotone best
responses deliver these thresholds (Lemma 5.2); the cutoffs are pinned down by two indifference
equations that equate current costs or benefits with discounted shifts in continuation values
(equations (5.1)–(5.2)).

In a simple benchmark that captures short deterrence “windows,” we obtain closed-form
expressions for the total inspection rate required to deter and for the receiver’s honesty cutoff
(Lemma 5.3). We then establish that finite, visible punishments implement the same cutoffs
as immediate termination (Proposition 6.3), showing that the mechanism sustaining discipline
is reputational rather than dependent on absorption.

Finally, we derive comparative statics and hazard results: greater temptation expands the
checking region while higher inspection costs contract it; greater patience lowers the inspection
intensity needed to sustain honesty (Proposition 8.1); inspection intensity tapers as honesty
reputation accumulates, and terminations bunch after inspection spurts (Corollary 8.2). These
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predictions map directly to settings like regulatory audits, certification, platform moderation,
and insurance fraud detection.

Technically, we make four additions that tighten the baseline analysis: we prove value
monotonicity and single-crossing in our exact environment (Proposition 5.1), give a self-
contained existence and continuity result for stationary PBE (Theorem 8.3), establish
local uniqueness of the joint mixing cutoffs via a generalized Jacobian (Lemma 7.2 and
Corollary 7.3), and provide robustness for the closed-form inspection equalization through
explicit bounds (Proposition 5.6). We also integrate transparency and welfare: a short
synthesis shows how noisy verification and silent audits tighten discipline (Proposition 10.1),
and a hazard-based welfare decomposition clarifies policy trade-offs (Theorem 9.1).

2 Related Literature
This paper connects classical reputation with incomplete information (Kreps and Wilson,
1982; Milgrom and Roberts, 1982) to repeated games with imperfect (here, one–sided public)
monitoring. Our sender—receiver environment features two long-lived players who jointly
shape beliefs: the receiver builds a reputation for vigilance while the sender privately chooses
whether to deceive. Methodologically, we marry cutoff characterizations and belief-state
dynamics with the self-generation approach from repeated games (Abreu et al., 1990).

Relative to the reputation literature with a patient long-run player facing short-run
opponents (Fudenberg and Levine, 1989) and more recent work on reputations for hon-
esty (Fudenberg et al., 2022), we study mutual (two-sided) reputational incentives under
asymmetric observability and endogenous termination. Compared to repeated games with
almost-public or private monitoring (Mailath and Morris, 2002; Green and Porter, 1984), our
receiver’s public checking creates a tractable public signal while the sender’s action remains
privately observed, yielding transparent stationary mixing and cutoff cut-loci.

Our setting also relates to costly verification and auditing (Townsend, 1979; Mookher-
jee and Png, 1989; Kofman and Lawarrée, 1993), and to dynamic certification/monitor
reputation. The model provides new, testable predictions for vigilance cutoffs, experimenta-
tion, and termination statistics with applications to platform trust and verification markets,
compliance/auditing, and expert oversight.

The paper complements work on reputational cheap talk and persuasion with fact-
checking and visibility frictions. In particular, our analysis speaks to recent models of public
persuasion with endogenous verification (Lukyanov and Safaryan, 2025) and reputational
signaling (Lukyanov, 2023), while focusing on two-sided long-run interaction rather than
one-sided market-discipline or certification.

Our contribution connects two strands and departs from both. In the costly verification
tradition, monitoring shapes incentives but reputational capital resides with the agent being
monitored; classical analyses (e.g., Mookherjee and Png (1992, 1994)) focus on optimal
verification without a public reputation for the monitor. In dynamic certification and
monitor–reputation models (e.g., Marinovic et al. (2018); Marinovic and Szydlowski (2023)),
certifiers build credibility through disclosure, but the certified party’s action is typically
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publicly evaluable ex post.
We instead place both reputations in play under asymmetric observability: the receiver’s

inspections are public (so she accrues vigilance reputation) while the sender’s action is
private unless inspected (so he accrues honesty reputation). This asymmetry yields a
one-dimensional public state with endogenous stopping, generating the cutoff structure,
hazards, and transparency results that differ from standard costly–verification and certification
benchmarks.

The paper proceeds as follows. Section 3 sets out the environment, timing, informa-
tion structure, and the termination and punishment variants. Section 4 defines stationary
equilibrium in the public belief state and derives the indifference conditions. Section 5 estab-
lishes monotonicity and the cutoff characterization and presents the closed-form benchmark.
Section 6 proves the equivalence between termination and finite punishment. Section 7
gives existence and a local uniqueness result. Section 8 develops comparative statics and
hazard/welfare implications, and Section 9 discusses applications and testable predictions.
Section 10 studies robustness—silent audits, noisy checks, finite horizons, and a continuous-
time sketch—and discusses the fully private-monitoring benchmark with minimal public
signals. Section 11 concludes.

3 Model

3.1 Players, actions, and payoffs
There is a sender (player 1; she) and a receiver (player 2; he). Time is discrete, t = 1, 2, . . .,
and both discount future with factor δ ∈ (0, 1). Each period the sender chooses privately
as

t ∈ {truth, deceive} and the receiver chooses publicly ar
t ∈ {trust, check}. Let B > 0 denote

the sender’s one-shot benefit from deceiving a trusting receiver, and let C ∈ (0, B) be the
receiver’s cost of checking.

If the receiver trusts, her realized payoff is B when the sender is truthful and 0 when the
sender deceives; the sender’s is 0 when truthful and B when deceiving. If the receiver checks,
she pays C and perfectly learns the sender’s current-period action (the audit is errorless).
Upon a detected deception, either (i) the relationship terminates (benchmark) or (ii) the
game continues in a punishment phase (extension; see below). If the receiver checks a truthful
sender, no termination occurs and payoffs are (0, B − C).

3.2 Types and priors
The sender may be a committed honest type who always plays truth, with prior probability
λ0 ∈ (0, 1), or a strategic type who chooses actions optimally. The receiver may be a
committed vigilant type who always plays check, with prior probability µ0 ∈ (0, 1), or a
strategic type. Types are independent across players, drawn once at t = 0, and commonly
known in distribution.
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3.3 Information and timing
At the start of period t the public state consists of the publicly observed history of receiver
actions and whether the relationship is active. The sender privately chooses as

t ; then the
receiver publicly chooses ar

t . If ar
t = trust, no further public signal is realized in that period

and the sender’s action remains private. If ar
t = check, the receiver perfectly observes as

t

and—if as
t = deceive—deception is detected (triggering termination or punishment). Stage

payoffs are realized and (except when detection/termination occurs) not publicly revealed.

3.4 Histories and strategies
Let hp

t = (ar
1, . . . , ar

t−1, active at t) denote the public history at t. The sender’s private
history hs

t augments hp
t with her past actions and realized payoffs; the receiver’s private

history hr
t augments hp

t with any audit findings from past checks. A (behavioral) strategy
for the strategic sender is σ : Hs → ∆({truth, deceive}), and for the strategic receiver
ρ : Hp → ∆({trust, check}). We will focus on stationary belief-based (Markov) strategies in
which σ and ρ depend on a low-dimensional belief state defined below.

3.5 Beliefs and reputation states
Let λt ∈ [0, 1] denote the receiver’s (public) belief at the start of period t that the sender is
the committed honest type, and let µt ∈ [0, 1] denote the sender’s (public) belief that the
receiver is the committed vigilant type. Because the receiver’s action is public, µt+1 = 0
after any realized ar

t = trust; after ar
t = check, Bayes’ rule (given the receiver’s equilibrium

mixing) updates µ upward or downward as appropriate. The receiver updates λ only following
checks: if a check reveals truth, λ rises; if it reveals deceive, λ collapses to 0 and either the
relationship ends (benchmark) or a punishment phase starts (extension). When the receiver
trusts, λ remains at its prior value because the sender’s action is unobserved. Along the
equilibrium path with stationary mixing, the public belief state xt := (λt, µt) evolves as a
time-homogeneous Bayesian recursion driven by the observed public action ar

t and, on check
histories, the audit outcome.

3.6 Benchmark: termination upon detected deception
In the benchmark environment, the first period t with (as

t , ar
t ) = (deceive, check) triggers

termination immediately after stage payoffs are realized. Let V s(x) and V r(x) denote
the strategic sender’s and receiver’s continuation values at public belief state x = (λ, µ).
Equilibrium strategies σ(x) and ρ(x) will be characterized by indifference conditions that pin
down cutoffs/mixing in λ and µ.
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Table 1: Notation

Symbol Meaning

x = (λ, µ) Public belief state.
σ(x), ρ(x) Sender’s deception probability; receiver’s inspection

probability.
B, C, δ Benefit from deception; inspection cost; discount fac-

tor.
truth, deceive Sender actions (private unless checked).
trust, check Receiver actions (public).
pcheck(x) Probability a check occurs.
pT|check(x) Probability that a check reveals truth.
λ+(x) Honesty posterior after a (truthful) check.
µ+(x) Vigilance posterior after a check.
Vs(x), Vr(x) Continuation values (normal phase).
V pun

s (x), V pun
r (x) Continuation values upon entering punishment (Sec-

tion 6).
pcheck∗, pT|check ∗ Starred probabilities at the mixing cutoffs.
h(x) Hazard of termination (Eq. (8.2)).

3.7 Extension: reputational punishment instead of termination
Upon a detected deception, the game transitions to a publicly observed punishment phase of
finite length T ∈ N (or an absorbing “bad” state) in which continuation values are reduced
via prescribed inspection and trust policies and/or transfers (e.g., automatic checks, exclusion
from trade). After punishment, the game returns to the normal phase. We will show (under
parameter restrictions) an outcome-equivalence: there exists a finite T and public punishment
policy that implement the same cutoffs as in the termination benchmark.

3.8 Objective
We seek stationary PBE with the following structure: (i) the receiver’s inspection probability
ρ(λ, µ) is monotone in λ; (ii) the sender’s deception probability σ(λ, µ) is 0 above a vigilance
cutoff and positive below; and (iii) beliefs (λt, µt) follow a one-step Bayesian recursion induced
by (σ, ρ). We then derive comparative statics in (B, C, δ) and characterize the hazard of
termination (or punishment) and welfare.

The public state is x = (λ, µ) ∈ [0, 1]2, where λ is the receiver’s belief that the sender is
the committed honest type and µ is the sender’s belief that the receiver is the committed
vigilant type. The sender’s strategic deception probability is σ(x) ∈ [0, 1]; the receiver’s
strategic inspection probability is ρ(x) ∈ [0, 1]. The sender’s one–period gain from deception
is B > 0; the receiver’s cost of inspection is C ∈ (0, B); both discount at δ ∈ (0, 1).
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4 Equilibrium and Belief Updates
We focus on stationary Perfect Bayesian equilibria in the public belief state x = (λ, µ) ∈ [0, 1]2,
where λ is the receiver’s belief that the sender is the committed honest type and µ is the
sender’s belief that the receiver is the committed vigilant type. Let σ(x) ∈ [0, 1] denote the
strategic sender’s deception probability and ρ(x) ∈ [0, 1] the strategic receiver’s inspection
probability. (Committed types play truth and check, respectively.)

When ar
t = check, the audit outcome (truth or deceive) is publicly disclosed; if deception

is detected, termination (benchmark) or punishment (extension) follows. When ar
t = trust,

the sender’s action remains private and no public signal is realized.
At state x = (λ, µ), the (public) probability of a check is

pcheck(x) = µ + (1 − µ) ρ(x),

since the vigilant receiver checks with probability 1 and the strategic receiver with ρ(x).
Conditional on a check, the probability that the audit reveals truth is

pT|check(x) = λ + (1 − λ) [1 − σ(x)],

and thus the probability of revealed deception is (1 − λ)σ(x). Bayes’ rule gives the updated
beliefs after a check:

λ+(x) = λ

λ + (1 − λ) [1 − σ(x)] , µ+(x) = µ

µ + (1 − µ) ρ(x) .

If ar
t = trust, then µtr(x) = 0 (the vigilant type never trusts) and λtr(x) = λ.
Let Vs(x) and Vr(x) denote the strategic sender’s and receiver’s stationary continuation

values at x = (λ, µ). Given policies (σ, ρ), the sender’s Bellman equation is

Vs(λ, µ) = max
σ∈[0,1]

{
σB + δ

[(
1 − pcheck(x)

)
Vs

(
λ, 0

)
+ pcheck(x)

(
1 − σ

)
Vs

(
λ+(x), µ+(x)

)]}
,

(4.1)

since (i) deception yields B this period regardless of inspection, (ii) a check that reveals
deception terminates the relationship (no continuation), and (iii) trust sends the next state
to (λ, 0). The receiver’s Bellman equation is

Vr(λ, µ) = max
ρ∈[0,1]

{
ρ
( current payoff under check︷ ︸︸ ︷

B pT|check(x) − C +δ pT|check(x) Vr

(
λ+(x), µ+(x)

))
+ (1 − ρ)

(
B
(
1 − (1 − λ)σ(x)

)
︸ ︷︷ ︸
current payoff under trust

+δ Vr

(
λ, 0

))}
.

(4.2)

Assumption A. (i) Per–period payoffs are bounded and do not depend on (λ, µ) except
via the action–realization branches described by (4.1)–(4.2).
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(ii) The public Bayes maps satisfy λ+(λ) increasing in λ and µ+(µ, ρ) increasing in µ and
(weakly) decreasing in ρ; the “trust reset” branch goes to (λ, 0).

(iii) pcheck(λ, µ) = µ + (1 − µ) ρ(λ, µ) is (weakly) increasing in µ.
(iv) The evaluation operator for fixed policies (σ, ρ) is a δ–contraction on bounded functions

(Banach).

Proposition 4.1. Fix any measurable stationary policies (σ, ρ). Let (V σ,ρ
s , V σ,ρ

r ) be the unique
evaluation fixed point of (4.1)–(4.2). Under Assumption A,

V σ,ρ
s and V σ,ρ

r are increasing in λ;
V σ,ρ

s is (weakly) decreasing in µ;
V σ,ρ

r is (weakly) increasing in µ.

Proof. Define the policy–evaluation operator Tσ,ρ (RHS of (4.1)–(4.2)). By (iv) it is a
δ–contraction. Monotonicity in λ. Each branch on the RHS is monotone in λ: pT (λ, µ) =
1 − (1 − λ)σ(λ, µ) increases in λ; the continuation nodes are (λ, 0) and (λ+(λ), µ+(µ, ρ)) with
λ+ increasing. Hence if Vi is increasing in λ, so is Tσ,ρVi; iterating from any bounded seed
and taking the contraction limit preserves the order (standard monotone–operator argument).
Monotonicity in µ. On the sender’s RHS, pcheck(λ, µ) increases in µ and the survival branch
following trust goes to (λ, 0) while the check branch goes to (λ+, µ+) with µ+ increasing in µ.
Since higher µ raises the inspection/termination risk and (weakly) lowers the continuation via
µ+, Tσ,ρVs is (weakly) decreasing in µ whenever Vs is. On the receiver’s RHS, higher µ raises
pcheck and µ+, both improving discipline; thus Tσ,ρVr is (weakly) increasing in µ whenever Vr

is. Contraction again preserves these orders at the fixed point.

Assumption B. At any joint mixing state x∗, the product G(µ) := pcheck(λ∗, µ)·
[
Vs(λ+(λ∗), µ+(µ, ρ))−

Vs(λ∗, 0)
]

is (weakly) increasing in µ.1

Proposition 4.2. Let ∆s(λ, µ) := B − δ pcheck(λ, µ)
[
Vs(λ+, µ+) − Vs(λ, 0)

]
and ∆r(λ, µ) :=

C − δ
[
pT (λ, µ)Vr(λ+, µ+) − Vr(λ, 0)

]
, where pT (λ, µ) = 1 − (1 − λ)σ(λ, µ). Under Assump-

tions A–B and Theorem 5.1,

∂λ∆r(λ, µ) < 0 and ∂µ∆s(λ, µ) > 0

whenever the partials exist; with directional derivatives otherwise. Hence the receiver’s best
reply is (weakly) decreasing in λ, and the sender’s best reply is (weakly) decreasing in µ

(single-crossing).

Proof. For ∆r, pT (λ, µ) is increasing in λ, Vr(λ+, µ+) is increasing in λ by Theorem 5.1 and
λ+ is increasing; thus the continuation term increases in λ, implying ∆r is strictly decreasing

1A sufficient, checkable condition is ∂µpcheck(λ∗, µ) · J(µ) ≥ − pcheck(λ∗, µ) · Lµ · ∂µµ+(µ, ρ) for all µ

near µ∗, where J(µ) := Vs(λ+(λ∗), µ+) − Vs(λ∗, 0) > 0 and Lµ is a local Lipschitz bound on −∂µVs. Under ρ

locally independent of µ, ∂µµ+ = ρ/(µ + (1 − µ)ρ)2 and the inequality reduces to an elasticity bound ensuring
the hazard effect dominates the continuation–dampening effect.
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(unless the check branch has zero weight). For ∆s, Assumption B says the product pcheck · [·]
increases in µ, so ∆s = B − δ(·) is (weakly) increasing in µ. Directional derivatives yield the
same order when kinks arise at boundaries.

Definition 4.3. A stationary PBE is a tuple
(
Vs, Vr, σ, ρ

)
and belief-update rules as above

such that:
(i) Vs, Vr satisfy the Bellman equations given (σ, ρ);
(ii) σ, ρ are pointwise optimal given Vs, Vr;
(iii) beliefs update by Bayes’ rule on the equilibrium path (and via standard refinements off

path).

At any public history ht with zero probability under (σ, ρ), beliefs are defined as limits
of posteriors along vanishing trembles: take a sequence of full–support strategy profiles
{(σε, ρε)}ε↓0 that coincides with (σ, ρ) on-path, compute the Bayes posteriors at ht under
(σε, ρε), and let (λ, µ) be any limit point as ε → 0. If a check or deceive action is observed at
a history where the equilibrium assigns zero probability to it, it is treated as a tremble and
the same Bayes operator used on-path (for checks/truthful checks) is applied to determine
(λ+, µ+). Beliefs at termination (and in the finite-punishment states) are degenerate and
history–independent. This convention makes the right–hand sides of (4.1)–(4.2) well defined
at every public history and preserves the continuity statements recorded in Theorem 8.4.
Remark 4.4. If audit outcomes upon check are not publicly disclosed when they reveal truth,
then λ does not update publicly after such checks. The public state remains Markovian
with transitions: (λ, µ) → (λ, 0) after trust; (λ, µ) → (λ, µ+) after check and no detection;
and absorption upon detected deception. Analysis then proceeds with public (λ, µ) but the
receiver’s private belief about honesty strictly dominates the public λ; the stationary PBE
structure survives under a mild public-reporting commitment (formal details omitted here).

5 Cutoff Characterization
We derive sender/receiver indifference conditions under stationary mixing and establish
monotone cutoff policies. Throughout this section we work with stationary Markov strategies
σ(λ, µ) ∈ [0, 1] and ρ(λ, µ) ∈ [0, 1], with committed types playing truth (sender) and check
(receiver). Recall

pcheck(x) = µ + (1 − µ) ρ(x), pT|check(x) = λ + (1 − λ) [1 − σ(x)],

and the posteriors after a check (with public disclosure) are

λ+(x) = λ

λ + (1 − λ) [1 − σ(x)] , µ+(x) = µ

µ + (1 − µ) ρ(x) .

5.1 Indifference (mixing) equations
Fix a public belief state x = (λ, µ) where both strategic players mix. Let Vs, Vr be the
stationary continuation values.
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Comparing truth and deceive in the Bellman equation yields the sender’s indifference:

B = δ pcheck(x)
[
Vs

(
λ+(x), µ+(x)

)
− Vs

(
λ, 0

)]
. (5.1)

Interpretation. The one-shot gain B from deception equals the discounted reputational
dividend from a truthful audit: with probability pcheck a check occurs; conditional on not
being terminated, the continuation jumps from the “trust after no-check” state (λ, 0) to the
“verified-truth” state (λ+, µ+).

Comparing check and trust yields the receiver’s indifference:

C = δ
[
pT|check(x) Vr

(
λ+(x), µ+(x)

)
− Vr

(
λ, 0

)]
. (5.2)

The flow cost C must equal the discounted gain from improving beliefs when a check
does not terminate (i.e., reveals truth). In expectation, termination branches contribute no
continuation value.
Assumption C. Suppose the following holds:

(i) Stage payoffs depend on (λ, µ) only via public survival/termination and the inspection
cost; B, C ∈ (0, ∞) and δ ∈ (0, 1) are fixed.

(ii) Upon trust, beliefs reset to (λ, 0); upon a truthful, publicly observed check, beliefs
update to (λ+(λ, µ), µ+(λ, µ)), where

λ+(λ, µ) = λ

λ + (1 − λ)
(
1 − σ(λ, µ)

) , µ+(λ, µ) = µ

µ + (1 − µ) ρ(λ, µ) .

(iii) λ+(·, µ) is increasing and concave in λ for every µ, and µ+(λ, ·) is increasing in µ for
every λ.

(iv) The policy space Σ × P is the compact product of measurable maps [0, 1]2 → [0, 1]
endowed with the sup norm.

These primitives are delivered in the Online Appendix (see Proposition OA3.8: monotone
best replies under value monotonicity and the public-check recursion).
Proposition 5.1. Fix measurable policies (σ, ρ). The policy–evaluation operator induced by
(4.1)–(4.2) is a δ–contraction whose unique fixed point (V σ,ρ

s , V σ,ρ
r ) satisfies:

1. V σ,ρ
s and V σ,ρ

r are increasing in λ;
2. V σ,ρ

s is (weakly) decreasing in µ, while V σ,ρ
r is (weakly) increasing in µ;

3. Let ∆r := V check
r − V trust

r and ∆s := V deceive
s − V truth

s . Then ∆r(λ, µ) is weakly decreasing
in λ, and ∆s(λ, µ) is weakly decreasing in µ.

Proof. For fixed (σ, ρ) the Bellman map is affine in (Vs, Vr) with discount δ < 1, hence
a contraction. Order preservation: increasing λ raises (i) the probability the check finds
truth and (ii) survival continuation, while increasing µ raises the check probability—hurting
the sender (more termination risk) and helping the receiver (more discipline). Start value
iteration from 0, apply monotone induction using the concavity of λ+ and monotonicity
of µ+ ((Assumption C(iii)), and pass to the limit by contraction to obtain (a)–(b). The
action–difference formulas in (A.1)–(A.2) together with (a)–(b) and the properties of λ+, µ+

imply (c).
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State ( , )

Trust  ( , 0)

Check & Truth  ( +, +)

Check & Deceive  Termination

Figure 1: Public belief recursion. Trust: (λ, 0). Check & Truth: (λ+, µ+). Check & Deceive:
termination.

5.2 Monotonicity and threshold structure
Lemma 5.2. Under Assumption C, any stationary PBE admits (weakly) monotone policies:
(i) ρ(λ, µ) is weakly decreasing in λ; (ii) σ(λ, µ) is weakly decreasing in µ. Consequently,
there exist cutoffs λ∗(µ) and µ∗(λ) with the usual threshold form.

Proof. See Appendix.

By Theorems 4.2 and 5.1, the sign conditions required for single-crossing hold in our
environment, so the receiver’s (sender’s) best reply is weakly decreasing in λ (in µ).

5.3 A simple closed-form benchmark
To provide intuition and sharp formulas, we now analyze a tractable “one-step deterrence”
benchmark that captures the idea that public checks discipline near-term behavior.
Assumption D. At a mixing state x = (λ, µ):
(A1) The strategic receiver mixes with a constant inspection rate ρ(x) = ρ̄ ∈ (0, 1) locally,

and the strategic sender mixes with σ(x) = σ̄ ∈ (0, 1) locally.
(A2) A check that reveals truth raises vigilance belief to µ+ = µ̄ ∈ (µ, 1], which (via

public observability of checks) reduces the next-period deception probability from σ̄ to
σ̄′ ∈ [0, σ̄) for exactly one period (a deterrence window), after which policies revert to
(σ̄, ρ̄) unless the game has absorbed.
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(A3) If the receiver trusts, the vigilance belief collapses to 0 next period (public trust), so
the sender’s continuation equals the trust-absorption value Vs(λ, 0) = B

1−δ
.

(A4) Termination after detected deception delivers zero continuation for both players.
Assumption D is a local reduced-form capturing that (i) checks are publicly observed and

temporarily stiffen perceived vigilance; (ii) trusting publicly reveals non-vigilance.

Lemma 5.3. Under Assumption D, the sender’s indifference (5.1) pins down the total
inspection probability at the mixing point as

pcheck∗ = 1 − δ

δ
. (5.3)

and, more generally, it obeys the bounds (5.7) under Assumption A′.
Equivalently, µ + (1 − µ)ρ̄ = (1 − δ)/δ at the sender’s cutoff. Moreover, if the receiver’s

one-step deterrence reduces the next-period deception probability from σ̄ to σ̄′, the receiver’s
indifference (5.2) yields a closed-form honesty cutoff

λ∗ = 1 − C

δ B pcheck∗ (σ̄ − σ̄′) , (5.4)

provided the RHS lies in (0, 1). In particular, λ∗ is decreasing in the deterrence gap (σ̄ − σ̄′)
and increasing in C/B.

If (Vs, Vr) are only piecewise differentiable near the mixing state, the sender and receiver
indifference maps admit one-sided derivatives. If the indifference loci cross with strictly
opposite one-sided slopes (a transversality condition), the joint mixing point is locally unique;
non-differentiabilities arise only at policy kinks.

Proof. See Appendix.

Proposition 5.4. Let J(λ, µ) := Vs(λ+(λ), µ+(µ, ρ)) − Vs(λ, 0) denote the continuation jump
after a truthful check at (λ, µ). At a sender mixing state x∗ = (λ∗, µ∗) the indifference (5.1)
implies

pcheck(x∗) = B

δ J(x∗) .

Suppose for parameters in a neighborhood of x∗ we have J ≤ J(λ, µ) ≤ J with 0 < J ≤ J < ∞.
Then

B

δ J
≤ pcheck∗ ≤ B

δ J
. (5.5)

In particular, if J(x∗) is ε–close (multiplicatively) to the perpetuity wedge B/(1 − δ), i.e.

J(x∗) ∈
[

B
1−δ

(1 − ε), B
1−δ

(1 + ε)
]
,

then
pcheck∗ ∈

[
1−δ

δ
· 1

1+ε
, 1−δ

δ
· 1

1−ε

]
, (5.6)

so the closed form pcheck∗ = (1 − δ)/δ is robust up to a factor 1 ± ε.

11



Proof. At x∗, sender indifference gives pcheck∗ = B/(δJ(x∗)). Bounding J(x∗) between J and
J yields (5.7). The interval (5.6) follows by substituting the ε–band around B/(1 − δ).

Remark 5.5. The perpetuity J ≃ B/(1−δ) arises when (i) a truthful check at x∗ locally resets
the public state to one whose subsequent hazard path and policy pair are (approximately)
stationary, and (ii) the hazard in this neighborhood is small enough that continuation risk
is second order. Two convenient sufficient routes are: (a) the continuous-time bridge in
Section 10.4 with discount rate β and locally constant intensities near the cutoff, which
implies J → B/β and δ = e−β∆ delivers J ≃ B/(1 − δ) as ∆ ↓ 0; (b) a discrete stationary
neighborhood where λ+(λ∗) ≈ λ∗ and µ+(µ∗, ρ) ≈ µ∗ (e.g., via symmetry or by construction
in the punishment design), which makes the post-check continuation a geometric sum with
common ratio δ. When these invariances only hold approximately, Theorem 5.6 provides the
corresponding bounds on pcheck∗.
Assumption E. At the sender’s mixing state x∗, the truthful–check continuation jump

W (x∗) := Vs

(
λ+(x∗), µ+(x∗)

)
− Vs

(
λ∗, 0

)
lies in the interval

[
(1 − ϵ) B

1−δ
, (1 + ϵ) B

1−δ

]
for some ϵ ∈ [0, 1).

Proposition 5.6. Under Assumption E, the sender’s indifference (5.1) implies

1 − δ

δ
· 1

1 + ϵ
≤ pcheck∗ ≤ 1 − δ

δ
· 1

1 − ϵ
. (5.7)

If a truthful public check locally reduces next-period deception from σ̄ to σ̄′ (one–step deterrence
as in Lemma 5.3), then the receiver’s cutoff satisfies

1 − C

δ B pcheck∗ (σ̄ − σ̄′) ≤ λ∗ ≤ 1 − C

δ B pcheck∗ (σ̄ − σ̄′) · 1 − ϵ

1 + ϵ
, (5.8)

whenever the right-hand sides lie in (0, 1). Hence λ∗ is increasing in C/B, decreasing in
(σ̄ − σ̄′), and continuous in ϵ at 0.

Proof. From (5.1), B = δ pcheck∗ W (x∗). Using W (x∗) ∈
[
(1 − ϵ) B

1−δ
, (1 + ϵ) B

1−δ

]
yields (5.7).

For (5.8), repeat the algebra in Lemma 5.3: the continuation gain entering the receiver’s
indifference scales linearly with W (x∗), so the same ϵ–bounds propagate to λ∗.

At the sender’s margin, the total inspection probability is pinned down purely by patience:
pcheck∗ = (1 − δ)/δ decreases in δ (more patient players require rarer inspections to deter).
At the receiver’s margin, stronger deterrence (σ̄ − σ̄′) or cheaper inspection C lowers the
honesty cutoff λ∗, expanding the trust region; larger B (higher temptation) raises the benefit
of checking and thus also lowers λ∗ via (5.4).
Remark 5.7. Lemma 5.3 provides transparent, closed-form intuition; it abstracts from multi-
period belief feedback beyond one step. In the full model without Assumption D, (5.1)–(5.2)
jointly determine functions λ∗(µ) and µ∗(λ). The qualitative monotonicity (Lemma 5.2)
and the signs of comparative statics survive in general. In the closed-form benchmark, λ∗

increases in B, decreases in C, and decreases in δ.
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5.4 Punishment extension
We evaluate planner welfare as the receiver’s surplus from truthful trade net of inspection
costs, treating the sender’s temptation benefit and any penalties as transfers.2 Let W (λ0, µ0)
denote expected discounted welfare from prior (λ0, µ0).

Theorem 5.8. Along any stationary policy pair (σ, ρ) starting at (λ0, µ0),

W (λ0, µ0) = E

∑
t≥0

δt
{

B · pT (xt) − C · pcheck(xt)
} , pT (λ, µ) = 1 − (1 − λ)σ(λ, µ),

(5.9)
where xt = (λt, µt) is the public state and pcheck(λ, µ) = µ + (1 − µ) ρ(λ, µ). Equivalently,
writing the termination hazard h(λ) = pcheck(λ)(1 − λ)σ(λ) as in (8.2),

W (λ0, µ0) = E

∑
t≥0

δt
{

B ·
(
1 − h(λt) − pcheck(λt)λtσ(λt)

)
− C · pcheck(λt)

} . (5.10)

Proof. Welfare each period is (surplus from truthful trade) minus (inspection cost). Truth at
xt occurs unless deception and detection coincide; hence its probability is pT (xt), yielding
(5.9). The hazard identity h(λ) = pcheck(λ)(1 − λ)σ(λ) and pT = 1 − (1 − λ)σ produce (5.10)
by algebra. Linearity of expectation gives the result.

Corollary 5.9. (i) Holding policies fixed, ∂W/∂C = −E[∑t≥0 δt pcheck(xt)] < 0 and ∂W/∂B =
E[∑t≥0 δt pT (xt)] > 0. (ii) In equilibrium, higher transparency (silent-audit disclosure q or
precision κ) weakly raises W by reducing the deception region and (for fixed λ) weakly lowering
the hazard h(λ); see Theorem 10.1 and §10.2. (iii) When the same parameter B governs both
temptation and truthful surplus (our baseline normalization), the net effect on W is a priori
ambiguous because σ, ρ adjust endogenously; the sign is positive when the induced change in
hazard is second order (small) relative to the direct surplus term in (5.9).

Remark 5.10. Equation (5.10) shows that front-loading inspections is attractive when B/C

is large: early checks lower h(λ) by pushing λ up (via λ+) and reduce future pcheck along the
tapering path. Conversely, inspection spurts temporarily raise h(λ) mechanically, generating
bunching of terminations—our empirical prediction in §9.

6 Punishment extension
The fixed-point existence extends to finite Markov punishment with an augmented compact
state; the contraction and upper-hemicontinuity steps carry over (see the Online Appendix).

We now replace termination upon detected deception with a publicly observed punishment
phase. Upon a period-t history with (deceive, check) revealed by an audit, the game transitions

2This matches our applications (auditing/certification) where value comes from compliant trade and
inspections are resource costs; sender temptation rents are not social surplus.
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to a punishment state for a finite number of periods T ∈ N and then returns to the normal
phase. Punishment policies are public and history-dependent; they may prescribe, for instance,
automatic inspections and exclusion from trust.
Assumption F. The augmented public state is x̃ = (λ, µ, s) with (λ, µ) ∈ [0, 1]2 and s ∈ S,
where S = {N} ∪ {P1, . . . , PL} ∪ {T} consists of the normal mode N, a finite punishment
chain of length L ∈ N, and an absorbing termination state T.

(i) Payoffs are bounded and depend on x̃ only through (λ, µ) and s; discount δ ∈ (0, 1).
(ii) In mode N, the one–period transitions are as in the baseline (public check or trust),

except that (deceive, check) moves to P1 (or T in the benchmark).
(iii) In punishment, Pk moves to Pk+1 for k < L and to N from PL (or to T if specified),

with transition probabilities and posteriors given by continuous functions of (λ, µ) and
the policy pair (σ, ρ).

(iv) All belief updates x̃ 7→ (λ+, µ+, s′) are continuous in (λ, µ) and measurable in s, with T
absorbing.

Lemma 6.1. Under Assumption F, the policy–evaluation operator associated with (6.1)–(6.2)
is a δ–contraction on the bounded functions over [0, 1]2 × S and maps continuous functions
into continuous functions. Therefore, a stationary PBE exists; its value functions (Vs, Vr)
are the unique bounded fixed points and are continuous in (λ, µ) for each s, with piecewise
continuity across modes and continuity at N ↔ P1 and PL ↔ N implied by (iii)–(iv).

Proof. S is finite, so [0, 1]2 × S is compact. Fix measurable (σ, ρ). The Bellman right–hand
sides in (6.1)–(6.2) are affine in (Vs, Vr) with coefficient δ < 1, hence define a δ–contraction
on the sup-norm space of bounded functions over the augmented state. Continuity of the
policy–evaluation operator follows because all branch probabilities and update maps are
continuous in (λ, µ) by (iii)–(iv) and s takes finitely many values. Uniqueness of (V σ,ρ

s , V σ,ρ
r )

follows by Banach; upper hemicontinuity/convexity of best replies is as in the baseline (affine
in own mixed action, continuous in state/values). Kakutani–Fan–Glicksberg then gives a
stationary fixed point (σ∗, ρ∗).

Let V pun
s (x) and V pun

r (x) denote the strategic sender’s and receiver’s continuation values
at the entry into punishment after detection at public state x = (λ, µ). To keep the extension
parsimonious, we impose a simple punishment: for T periods the receiver must inspect (so
trade occurs only under verified truth), and at the end of the T periods the public state
resets to (λ, 0) (the same trust-absorption state as under trust). Under this scheme,

V pun
s (x) = δT Vs(λ, 0),

V pun
r (x) =

T −1∑
k=0

δk [B · pT|check
pun − C]︸ ︷︷ ︸

per-period payoff in punishment

+ δT Vr(λ, 0),

where pT|check
pun ∈ [0, 1] is the probability a check in punishment reveals truth (equal to 1 against

the committed honest sender and to 1 − σ against the strategic sender if he mixes). In
the maximal punishment we take pT|check

pun = 1 only when the sender is the honest type (the

14



strategic sender’s deception under mandatory checks brings no surplus and is immediately
re-detected).

Let Vs, Vr be the values in the normal phase. Relative to Section 4, only the branches
following detected deception change (they now lead to V pun

s , V pun
r instead of 0):

Vs(λ, µ) = max
σ∈[0,1]

{
σ
[
B + δ

(
pcheck(x) V pun

s (x) + (1 − pcheck(x)) Vs(λ, 0)
)]

+ (1 − σ) δ
(

pcheck(x) Vs

(
λ+(x), µ+(x)

)
+ (1 − pcheck(x)) Vs(λ, 0)

)}
,

(6.1)

Vr(λ, µ) = max
ρ∈[0,1]

{
ρ
( current payoff under check︷ ︸︸ ︷

B pT|check(x) − C + δ
[
pT|check(x) Vr

(
λ+(x), µ+(x)

)
+ (1 − pT|check(x)) V pun

r (x)
])

+ (1 − ρ)
(

B [1 − (1 − λ)σ(x)]︸ ︷︷ ︸
current payoff under trust

+δ Vr(λ, 0)
)}

.

(6.2)

The punishment mode set S = {N, P1, . . . , PL} is finite; transition probabilities across
modes are continuous in (λ, µ) and independent of past beyond the current mode; and
within each mode the Bayes maps (λ+, µ+) satisfy Assumption A(ii) with the same bounded
per–period payoffs.

Lemma 6.2. Under Assumption F, the augmented state space [0, 1]2 × S is compact, and for
any stationary policies (σ, ρ) the evaluation operator on bounded functions is a δ–contraction
mode–by–mode. Hence (Vs, Vr) exist and are continuous in (λ, µ) in every mode. Moreover,
the stationary PBE existence result in Theorem 8.3 extends verbatim to the punishment model
via Kakutani–Fan–Glicksberg.

Proof. Fix (σ, ρ). With S finite and transitions continuous, the right–hand sides of (6.1)–(6.2)
define a δ–contraction on ℓ∞([0, 1]2 × S), yielding a unique fixed point that is continuous
by standard parametric contraction arguments (Berge). Best–reply correspondences are
convex–valued and upper hemicontinuous as in Lemma 7.1, so Kakutani gives a stationary
fixed point.

At a sender cutoff µ∗(λ) and a receiver cutoff λ∗(µ) where both strategic players mix,

S: B = δ pcheck(x)
[
Vs

(
λ+(x), µ+(x)

)
− V pun

s (x)
]
, (6.3)

R: C = δ
[
pT|check(x) Vr

(
λ+(x), µ+(x)

)
+
(
1 − pT|check(x)

)
V pun

r (x) − Vr(λ, 0)
]
. (6.4)
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Compare (6.3)–(6.4) to their termination counterparts

B = δ pcheck(x)
[
Vs

(
λ+(x), µ+(x)

)
− Vs(λ, 0)

]
,

C = δ
[
pT|check(x) Vr

(
λ+(x), µ+(x)

)
− Vr(λ, 0)

]
.

6.1 Outcome–equivalence with finite punishment
We now show that, by choosing the punishment length T (and, if desired, its within-phase
inspection intensity), one can implement the same cutoffs as in the termination benchmark.

Proposition 6.3. Fix a stationary PBE of the termination benchmark with mixing at
x∗ = (λ∗, µ∗). Under Assumption F, for any termination equilibrium there exists a finite-
length punishment specification (choice of L and branch probabilities in (iii)) that implements
the same inspection and deception cutoffs; conversely, any such punishment equilibrium is
outcome-equivalent to a termination equilibrium.

Proof. Under the simple public punishment (mandatory checks for T periods, then reset to
(λ∗, 0)), the punishment values are

V pun
s (T ) = δT Vs(λ∗, 0),

V pun
r (T ) =

T −1∑
k=0

δk(−C) + δT Vr(λ∗, 0) = − C
1 − δT

1 − δ
+ δT Vr(λ∗, 0).

In the sender indifference (6.3), the RHS is strictly increasing in T (since V pun
s (T ) decreases

in T ), matching the termination RHS at T = 0 and approaching the “zero continuation” RHS
as T → ∞. By continuity there exists Ts that restores the sender equality at (λ∗, µ∗) for the
fixed mixing intensities at x∗.

In the receiver indifference (6.4), the RHS is strictly decreasing in T , likewise matching
termination at T = 0 and approaching the limit with V pun

r = −C/(1 − δ) as T → ∞. Hence
there exists Tr that restores the receiver equality.

Because the indifference residuals are continuous in the two strategic mixing probabilities
at x∗ (which determine pcheck and pT|check), we can jointly adjust the two mixes and pick a
common finite T so that both indifferences hold at the same (λ∗, µ∗).

Sequential rationality of punishment (mandatory checks) follows for δ large: deviating
saves C now but lowers the public reset value, which strictly reduces continuation for the
receiver; similar logic applies to the sender. Therefore the punishment equilibrium implements
the termination cutoffs.

Proposition 6.3 shows that one need not rely on absorption to obtain the cutoff structure:
a finite, publicly observed punishment can replicate the normal-phase indifference conditions
that pin down inspection and deception thresholds. In applications, this corresponds to
“probation” or “enhanced supervision” for a finite horizon after a detected violation, after
which the relationship resumes. The equivalence is constructive and uses only the receiver’s
publicly visible inspections; no transfers are required.
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Remark 6.4. If one allows additional instruments during punishment (e.g., exclusion from
trade, capped frequency of interaction), V pun

s and V pun
r can be shaped more flexibly, easing

the existence of a common T that implements the termination cutoffs exactly.

7 Existence and (Local) Uniqueness
We provide conditions under which a stationary Perfect Bayesian equilibrium (PBE) exists
in the belief state x = (λ, µ) ∈ [0, 1]2 and show a local uniqueness result for the mixing
cutoffs that solve the indifference equations (5.1)–(5.2) (termination) and their punishment
analogues (6.3)–(6.4).

7.1 Assumptions
(E1) Primitives. 0 < C < B < ∞ and δ ∈ (0, 1). Committed types exist with independent

priors λ0, µ0 ∈ (0, 1). Payoffs are bounded and actions are finite.
(E2) Public disclosure (normal phase). We adopt the public-disclosure convention of

Section 4: under ar = check, the audit outcome (truth/deceive) is publicly observed;
under ar = trust, no public signal is realized.

(E3) Stationary Markov strategies and belief recursion. Strategic policies are Borel-
measurable maps σ, ρ : [0, 1]2 → [0, 1]. Beliefs update by Bayes’ rule along the
equilibrium path as in Section 4; under trust, µ′ = 0 and λ′ = λ; under check, (λ′, µ′) =
(λ+(x), µ+(x)) unless detection triggers absorption (termination) or the punishment
state (extension). The induced transition on [0, 1]2 (or on the product with a finite
punishment flag) is well-defined and continuous except at the absorbing/punishment
boundary.

(E4) Value regularity & single-crossing. For any stationary (σ, ρ), the Bellman equa-
tions in Section 4 (and their punishment counterparts in Section 6) admit bounded
solutions (Vs, Vr) that are continuous in (λ, µ), (weakly) increasing in λ, and such
that the sender’s best reply is (weakly) decreasing in µ while the receiver’s is (weakly)
decreasing in λ (cf. Lemma 5.2).3

7.2 Fixed-point formulation
Let X = [0, 1]2 and let K = {(σ, ρ) : X → [0, 1]2 Borel, bounded} endowed with the sup-
norm. Given (σ, ρ) ∈ K, define the value operators by the Bellman equations in Section 4
(termination) or Section 6 (punishment), yielding (Vs, Vr). Define best-reply correspondences

Bs(σ, ρ) = arg max
σ̃∈[0,1]

(sender’s Bellman at each x),

Br(σ, ρ) = arg max
ρ̃∈[0,1]

(receiver’s Bellman at each x).

3These monotonicities are standard for reputation models with public monitoring on the receiver side; they
can be verified by induction on discounted continuation values and the fact that higher λ raises revealed-truth
probabilities while higher µ raises effective inspection.
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A stationary PBE corresponds to a fixed point (σ∗, ρ∗) ∈ K such that σ∗(x) ∈ Bs(σ∗, ρ∗)(x)
and ρ∗(x) ∈ Br(σ∗, ρ∗)(x) for all x, with beliefs updated as in (E3).

Lemma 7.1. Let Φ map a policy pair (σ, ρ) to the set of stationary best replies computed
at the unique evaluation fixed point of Tσ,ρ. Then Φ has nonempty, convex values, is upper
hemicontinuous on the compact, convex policy space (sup norm), and has a closed graph.
Consequently, Kakutani–Fan–Glicksberg applies, yielding a stationary fixed point.4

Proof. Nonemptiness/convexity follow because one–shot differences are affine in own mixed
action; upper hemicontinuity and closed graph follow from continuity of the policy–to–value
map (parametric contraction) and Berge’s maximum theorem. Kakutani–Fan–Glicksberg
gives a fixed point.

7.3 Local uniqueness of mixing cutoffs
Let x∗ = (λ∗, µ∗) be a mixing state where the indifference equations (5.1)–(5.2) hold under
stationary (σ∗, ρ∗).
Assumption G. At the joint mixing state x∗ = (λ∗, µ∗) ∈ (0, 1)2, the action–difference maps

Fs(λ, µ) : = B − δ pcheck(λ, µ)
[
Vs(λ+, µ+) − Vs(λ, 0)

]
,

Fr(λ, µ) : = C − δ
[
pT (λ, µ)Vr(λ+, µ+) − Vr(λ, 0)

]
,

with pT (λ, µ) := λ + (1 − λ)
(
1 − σ(λ, µ)

)
, are locally Lipschitz and directionally differentiable.

Their Clarke generalized Jacobian ∂F (x∗) is nonempty and contains at least one matrix J

with det J ̸= 0.

Lemma 7.2. Under Assumption U, there exists a neighborhood N of x∗ on which the system
Fs(λ, µ) = 0 and Fr(λ, µ) = 0 admits a unique solution. Hence the stationary PBE mixing
cutoffs are locally unique.

Proof. By Rademacher’s theorem, F = (Fs, Fr) is a.e. differentiable and locally Lipschitz;
by Clarke’s inverse function theorem, if some J ∈ ∂F (x∗) is nonsingular, then F is locally
metrically regular and admits a single–valued Lipschitz inverse on a neighborhood of F (x∗) =
(0, 0). Therefore the zero set of F is a singleton in a neighborhood of x∗.

Corollary 7.3. Suppose Fs, Fr are C1 near x∗ and

∂µFs(x∗) < 0, ∂λFr(x∗) < 0,

while the cross partials are finite. Then the classical Jacobian

J =
(

∂λFs ∂µFs

∂λFr ∂µFr

)

is nonsingular and the mixing solution is locally unique. A sufficient condition for ∂µFs < 0
and ∂λFr < 0 is the (strict) single–crossing established by Theorem 5.1 and the monotonicity
of pcheck in µ and of pT in λ.

4Existence and continuity of values are stated formally in Theorem 8.3.
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Figure 2: Receiver (Fr(λ, µ) = 0) and sender (Fs(λ, µ) = 0) indifference loci with unique
crossing x∗.

Remark 7.4. If (Vs, Vr) are only piecewise C1, the indifference maps admit one-sided derivatives
at x∗. If the sender and receiver indifference loci cross with strictly opposite one-sided slopes
at x∗ (transversality), then the joint mixing point is locally unique by the intermediate value
argument applied on each side of the kink (a Clarke–type selection is not needed here).
Remark 7.5. Local uniqueness at x∗ does not preclude multiple stationary PBE cutoffs globally.
Multiplicity can arise if the sender and receiver indifference loci Fs(λ, µ) = 0 and Fr(λ, µ) = 0
intersect more than once (e.g., due to non-monotone hazards or highly curved Bayes maps far
from x∗). Two forces push against multiplicity: (i) single-crossing (Theorem 5.1) makes Fs

(weakly) downward sloping in µ and Fr (weakly) upward sloping in λ; (ii) monotone hazards
h(λ) = pcheck(λ)(1 − λ)σ(λ) that fall in λ limit additional crossings as reputations accumulate.
Failures typically occur on knife-edges where one locus becomes locally flat or tangential to
the other (det J = 0), in which case small parameter perturbations restore transversality and
single-crossing of the loci near the economically relevant region. In applications, a natural
selection is the limit of stationary equilibria under vanishing payoff trembles or transparency
noise (silent-audit q ↓ 0), which selects the transversal crossing nearest the prior.

The locus Fr(λ, µ) = 0 is the receiver’s indifference set (check vs. trust) and Fs(λ, µ) = 0
is the sender’s indifference set (deceive vs. truth). Their transversal crossing at x∗ is the
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joint mixing state; by Theorems 7.2 and 7.3 this transversality delivers local uniqueness. The
regions around x∗ inherit the monotone best–reply structure: above the sender curve Fs < 0
(truth preferred), below it Fs > 0 (deception preferred); to the left of the receiver curve
Fr > 0 (check preferred), to the right Fr < 0 (trust preferred). The plot is schematic (not to
scale); comparative statics move these loci in the directions identified by Theorems 5.6, 9.1
and 10.1.

Knife–edge multiplicity corresponds to tangencies of Fs = 0 and Fr = 0 (i.e., det J = 0);
small parameter perturbations restore transversality and local uniqueness.

The derivatives entering DF inherit continuity from the Bellman operators and Bayes
updates; nondegeneracy typically holds except at knife-edge parameter values (e.g., δ near
1/2 in the closed-form benchmark of Lemma 5.3). The punishment extension replaces Vs(λ, 0)
in F1 by V pun

s (x) and adds V pun
r (x) inside F2, but the same argument applies provided the

punishment value maps are smooth in x (cf. Proposition 6.3).

8 Comparative Statics and Hazard
We study how inspection/deception cutoffs and the hazard of termination respond to (B, C, δ).

8.1 General monotone comparative statics
Let x = (λ, µ) and recall the indifference equations (5.1)–(5.2). Under the single-crossing
conditions of Lemma 5.2 and the regularity in Assumption (E4), totally differentiating the
system F1(x; B, C, δ) = F2(x; B, C, δ) = 0 (see Lemma 7.2) implies:

Proposition 8.1. Along any locally unique solution (λ∗, µ∗) to (5.1)–(5.2):
1. Receiver’s honesty cutoff. ∂λ∗

∂B
> 0,

∂λ∗

∂C
< 0, and (for sufficiently smooth values)

∂λ∗

∂δ
≶ 0 with sign matching the net effect of δ on the receiver’s discounted value of

information.5

2. Sender’s vigilance cutoff. ∂µ∗

∂B
> 0,

∂µ∗

∂C
> 0, and ∂µ∗

∂δ
< 0.

Intuition. A larger B makes deception more tempting; the receiver responds by checking
over a larger honesty region (higher λ∗), and the sender needs more perceived vigilance
to be deterred (higher µ∗). A higher C makes checking costly, so the receiver trims the
checking region (lower λ∗), while the sender requires less vigilance to risk deception (higher
µ∗). Greater patience δ lowers the sender’s cutoff (less inspection suffices to deter), while the
effect on the receiver depends on how δ scales the value of information relative to current
costs.

5In the one-step benchmark below, ∂λ∗/∂δ < 0. In the full model, δ affects both the informational gain
from checks and the continuation values, so the sign can be ambiguous without additional structure.
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8.2 Closed-form benchmark
Under Assumption D (Section 5.3), Lemma 5.3 yielded

pcheck∗ = 1 − δ

δ
, λ∗ = 1 − C

(1 − δ) B (σ̄ − σ̄′) .

Hence:
∂λ∗

∂B
> 0,

∂λ∗

∂C
< 0,

∂λ∗

∂δ
< 0,

∂pcheck∗

∂δ
< 0. (8.1)

In words: larger B or smaller C expands the checking region (raises λ∗), and greater patience
reduces the total inspection frequency needed to deter (lowers pcheck∗) and, in this benchmark,
also lowers λ∗.

8.3 Hazard of termination and welfare
Define the per-period hazard of termination at state x by

h(x) := pcheck(x) · (1 − λ) · σ(x), (8.2)

i.e., the probability that (i) a check occurs, (ii) the sender is strategic (prob. 1 − λ), and
(iii) the strategic sender deceives. At a mixing state x∗ = (λ∗, µ∗), the hazard is h∗ =
pcheck(x∗) (1 − λ∗) σ(x∗).

Corollary 8.2. Under the monotonicity in Lemma 5.2 and Proposition 8.1, the hazard
responds as follows in a neighborhood of x∗:

1. Increasing B (holding fixed mixing intensity at x∗) raises h∗ via a higher deception
tendency and a larger checking region (higher λ∗), with the net effect typically positive.

2. Increasing C raises h∗ by shrinking the checking region (lower λ∗) and thus increasing
(1 − λ∗); it can also weaken deterrence (higher µ∗), increasing σ(x∗).

3. Increasing δ lowers h∗ through a lower pcheck requirement at the sender margin (deter-
rence with fewer checks); in the closed-form benchmark, this dominates and h∗ falls in
δ.

8.4 Existence and continuity of stationary PBE
Theorem 8.3. In the termination benchmark with public checks and B, C ∈ (0, ∞), δ ∈ (0, 1),
there exists a stationary PBE (σ∗, ρ∗) on the compact state space [0, 1]2. The associated value
functions (Vs, Vr) are the unique bounded fixed point of the policy–evaluation operator at
(σ∗, ρ∗) and are continuous on [0, 1]2, including the boundary µ = 0 and absorbing/termination
nodes.

A Borel selector exists by the (Kuratowski and Ryll-Nardzewski, 1965) theorem.
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Proof. Step 1. Fix measurable (σ, ρ). The Bellman right–hand sides in (4.1)–(4.2) are affine
in (Vs, Vr) with discount δ < 1, hence define a δ–contraction on the Banach space of bounded
measurable pairs (sup norm). Banach’s fixed point theorem yields a unique (V σ,ρ

s , V σ,ρ
r ).

Step 2. All branch arguments are continuous in x = (λ, µ): the “trust reset” uses (λ, 0); the
truthful–check update (λ+, µ+) is continuous on [0, 1]2 by the explicit Bayes maps; termination
is an absorbing constant. The policy–evaluation operator maps C([0, 1]2) into itself and is a
contraction there, so its unique fixed point is continuous (parametric contraction).

Step 3. For each x, the sender and receiver one–shot differences are continuous in x and
affine in own mixed action. The best–reply correspondences (mix at indifference; choose the
unique strict best action otherwise) are nonempty, convex–valued, and upper hemicontinuous
(Berge’s maximum theorem). On the compact convex set of measurable policies (sup norm),
the policy–to–value map (σ, ρ) 7→ (V σ,ρ

s , V σ,ρ
r ) is continuous (parametric contraction), hence

the composed best–reply correspondence has a closed graph. Kakutani–Fan–Glicksberg yields
a fixed point (σ∗, ρ∗), which is a stationary PBE by one–step deviation. Continuity at µ = 0
and on absorbing branches follows from Step 2.

Remark 8.4. The value functions (Vs, Vr) are continuous at the boundaries and absorbing
nodes used in (E2)–(E5):

(i) at µ = 0, the “trust reset” branch evaluates Vs(λ, 0) and Vr(λ, 0), which are continuous
in λ by Theorem 8.3;

(ii) at λ ∈ {0, 1}, the Bayes maps λ 7→ λ+ are well defined as limits (concavity and
monotonicity in Theorem 5.1 yield continuity at the endpoints);

(iii) termination is an absorbing constant, hence continuous;
(iv) in the finite-punishment extension, the augmented state [0, 1]2 × S is compact and

transitions across N ↔ P1 and PL ↔ N are continuous by Assumption F, so the
evaluation fixed point remains continuous mode-by-mode and at mode switches.

Off-path updates at zero-probability histories are defined by limits of nearby mixed strategies,
which preserves continuity of the right-hand sides of (4.1)–(4.2).

Whenever Bayes’ rule applies, beliefs are updated by Bayes. If a check occurs at a public
state x where ρ(x) = 0 in equilibrium (or an action is otherwise off path), beliefs are the
limits of posteriors under nearby fully mixed profiles. Formally, take sequences {ρε} and
{σε} with ρε(x) > 0, σε(x) ∈ (0, 1) and ρε → ρ, σε → σ uniformly; then set the posteriors
(λ+, µ+) at x to limε↓0(λ+

ε , µ+
ε ). This ensures sequential rationality and well-defined updates

at zero-probability histories used in (4.1)–(4.2).
The per-period stage surplus equals B − C · pcheck(x) (checks waste C regardless of the

sender’s type), while termination destroys continuation value with hazard h(x). Thus, for
any policy pair (σ, ρ) and belief path,

Welfare(x) = E

∑
t≥0

δt
(
B − C · pcheck(xt)

)
− (expected continuation loss from termination events).
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Hence welfare is decreasing in C (direct cost and higher hazard) and increasing in δ (more
weight on future surplus and stronger deterrence with fewer checks). The effect of B is
ambiguous: higher B raises the pie but also raises deception incentives and the hazard; in
the closed-form benchmark, the net effect is positive if (1 − δ) is small and (σ̄ − σ̄′) is large.

We obtain three testable predictions. First, inspection intensity should decline as the
sender’s honesty reputation improves. In data, this shows up as fewer audits, reviews, or
verifications following longer streaks without detected deception, holding observables fixed.
A simple way to document this is to regress the probability of inspection on lagged public
reputation (or its sufficient statistic, such as the share of periods with clean outcomes), or to
estimate a policy function where the inspection rate is monotone in accumulated honesty.

Second, terminations should bunch after inspection spurts. Whenever inspection activity
rises—because of a policy change, an enforcement campaign, or a shock to monitoring
capacity—the termination hazard mechanically increases and then decays as the stock
of honesty rebuilds. Event–study plots around exogenous increases in inspections should
therefore display a short-run spike in exits or sanctions followed by a decline, with stronger
effects in markets where deception is more tempting.

Third, environments with a higher temptation-to-cost ratio (higher benefits from deception
relative to checking costs) should feature more front-loaded inspections and higher early
termination hazards. Cross-sectionally, this can be examined by comparing sectors or
platforms with higher expected gains from cheating or lower verification costs; within a
setting, changes in fees, penalties, or detection technology that shift this ratio should move
inspection timing toward the front of relationships and raise near-term exit rates. Together
these implications map directly to auditing, certification, and platform-governance data,
where inspection choices, public signals, and exits are routinely recorded.

9 Applications and Testable Predictions
The framework maps naturally to environments in which inspections are publicly observed
while violations are hidden unless inspected.

Supervisors announce or visibly conduct audits; misreporting is unobserved unless an
audit occurs. Our model interprets inspection intensity as a reputation device that disciplines
hidden manipulation. It predicts front-loaded audits when B/C is high and a tapering
schedule as honesty reputation accumulates.

Standards bodies (SROs, certification platforms) conduct visible conformity checks; non-
compliance is detected only when checked. Visible enforcement builds a reputation for
vigilance, sustaining high compliance with fewer checks over time.

Patrols and inspections are publicly observable; illegal acts or quality lapses remain hidden
unless inspected. Public inspection intensity shapes offenders’ beliefs and deters hidden
violations; publicity about recent inspections creates short deterrence windows.

Insurers run spot audits on claims; audit policies are often public or inferable. Higher
expected gains from fraud (large claims) justify higher early audit intensity, declining with a
claimant/provider’s accumulated honesty record.
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Platforms publicize moderation sweeps or verification campaigns; bad behavior is observed
only if caught. Visible campaigns reduce deceptive behavior temporarily; sustaining deterrence
requires a baseline inspection rate.

Let λt be a (proxy) for accumulated honesty reputation and pcheck
t the observed inspection

intensity.
1. Monotone inspection. pcheck

t is (weakly) decreasing in λt (Lemma 5.2); inspection
intensity tapers with accumulated honest history.

2. Hazard bunching. Terminations spike following inspection spurts: the period hazard
ht = pcheck

t · (1 − λt) · σt rises mechanically with pcheck
t and then falls as λt increases

(Corollary 8.2).
3. B/C shifts. Environments or episodes with higher B/C (larger temptation, cheaper

detection) exhibit higher early pcheck
t and higher λ∗ (Proposition 8.1); technological cost

reductions in checking (lower C) reduce long-run pcheck
t and termination hazards.

4. Patience (discounting). Greater effective patience δ (e.g., longer relationships, lower
churn) reduces the total inspection frequency needed to deter (lower pcheck at the sender
margin) and, in the one-step benchmark, lowers λ∗ (Section 8).

5. Deterrence windows. Publicly salient inspections create short-lived drops in deception
(Assumption D): immediately after visible checks, measured deception rates fall before
reverting (Lemma 5.3).

Proxies for B include stakes per interaction (claim size, shipment value, transaction
margin). Proxies for C include staff/time costs, tooling, or automation adoption. Patience
δ is proxied by expected relationship length or churn. Identification strategies: (i) event
studies around inspection policy shocks or publicized sweeps; (ii) difference-in-differences
when audit transparency or cost changes for a subset of units; (iii) instrument inspection
costs via technology rollouts or staffing shifts. The model predicts stronger tapering and
lower hazards where costs fall (lower C) or patience rises (higher δ).

If inspection outcomes are not publicly disclosed when truth is verified (silent audits),
the public λt updates more slowly (Remark in Section 4), weakening tapering in pcheck

t . If
terminations are rare (punishment phase), equivalence (Proposition 6.3) implies similar cutoff
behavior provided punishment is visible and finite.

Theorem 9.1. At public state x = (λ, µ) under stationary policies (σ, ρ), per-period expected
surplus equals

S(x) = B
[
1 − (1 − λ)σ(x)

]
− C pcheck(x), (9.1)

where pcheck(x) = µ + (1 − µ)ρ(x). Total welfare is

W (x0) = Ex0

[∑
t≥0

δt S(Xt)
]
,

and the termination hazard from (8.2) satisfies h(x) = pcheck(x) (1 − λ)σ(x). Along any
stationary PBE path, W is (i) strictly increasing in δ, and (ii) weakly decreasing in C. The
sign of ∂W/∂B is in general ambiguous.
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Proof. In each period, surplus equals the receiver’s benefit when the realized action is truth
minus the inspection cost. Under stationary policies, Pr(truth at x) = 1 − (1 − λ)σ(x) and
the expected inspection cost is C pcheck(x), yielding (9.1). Discounted summation gives W .
Monotone comparative statics in δ and C are immediate from linearity of S(x) in these
parameters and the fact that policies are well defined by equilibrium for each parameter value.
The ambiguity in B follows because B raises the static gain on truthful periods but shifts
equilibrium policies and thus h.

Corollary 9.2. Fix a stationary PBE selection for each B. If the induced change in the
hazard is small enough that

∂

∂B
E
[
(1 − Λt)σ(Xt)

]
≤ 1

B
E
[
1 − (1 − Λt)σ(Xt)

]
for all t,

then ∂W/∂B ≥ 0. In particular, holding policies fixed (partial equilibrium) gives ∂W/∂B > 0.

First, when the temptation-to-punishment ratio B/C is high, inspections are front-loaded:
the inspection rate (and thus the termination hazard) is highest early on and then fades as
the sender accumulates honesty reputation. Second, inspections taper as reputation improves:
the receiver’s propensity to check declines with the public belief that the sender is honest,
so the hazard falls mechanically along the relationship. Third, terminations bunch after
inspection spurts: when the receiver temporarily raises inspections—because recent behavior
or parameters make deception more attractive—the hazard spikes, producing a wave of exits,
and then decays back as honesty beliefs recover and inspections ease.

10 Robustness and Extensions
We briefly discuss variants of the information/technology that preserve the paper’s qualitative
conclusions and indicate how the key objects (belief recursion, indifference conditions, hazards)
adjust.

10.1 Silent audits
This subsection summarizes the partial-disclosure environment in which truthful checks
become public with probability q ∈ [0, 1]. The full Bayes maps, transition weights (disclosure
vs. non-disclosure), and the modified indifference conditions are derived in the Online
Appendix, which also proves continuity of stationary PBE in q and shows that q ↑ 1 recovers
the fully transparent benchmark while q ↓ 0 approaches the no-public-signal limit.

We only record the comparative statics used in the main text: transparency tightens
discipline. In particular, Proposition 10.1 implies that increasing q (i) lowers the receiver’s
inspection cutoff in λ, (ii) shrinks the sender’s deception region, and (iii) weakly reduces the
termination hazard h(λ) = pcheck(λ)(1 − λ)σ(λ) at each λ.

We study a partial–transparency device in which checks are conducted privately but a
fraction of truthful checks are later disclosed to the public. Formally, when the receiver checks,
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she privately learns the period outcome; if the sender was truthful, a disclosure occurs with
probability q ∈ (0, 1); if the sender deceived and is checked, the relationship terminates and
that termination is publicly observed; trust generates no disclosure. Thus the only public
objects are (i) disclosure vs. no–disclosure and (ii) termination; both players’ actions remain
privately observed.

This mechanism preserves a one–dimensional public state: the belief λ that the sender is the
committed honest type. A disclosure raises λ; no disclosure—conditional on survival—updates
λ by Bayes because it can arise from trust, from a non–disclosed truthful check, or from
unchecked deception. Hence λ follows a Markov recursion with two posteriors, λ1(λ) after
disclosure and λ0(λ) after no disclosure.6 The public termination hazard at belief λ is the
same as in the benchmark:

h(λ) = pcheck(λ) (1 − λ) σ(λ),

since deception must be both present and checked to terminate.
Equilibrium analysis proceeds in this public state exactly as in the benchmark with public

inspections. the Online Appendix proves: (i) Existence. A stationary PBE exists with a
receiver cutoff in λ and a sender policy that is monotone in the effective discipline term
generated by (a) public disclosure following truthful checks and (b) termination following
checked deception. (ii) Continuity in q. Equilibria depend continuously on the disclosure
probability: as q ↑ 1 the model converges to the fully transparent benchmark in the main
text (truthful checks always public), while as q ↓ 0 public disclosures vanish and reputational
discipline weakens toward the fully private–monitoring benchmark. (iii) Comparative statics.
Increasing q strengthens the deterrence wedge in the sender’s indifference, reduces the
deception region (and the inspection intensity needed to sustain honesty), and lowers the
long–run termination hazard along a given belief path.

Economically, even infrequent disclosures realign incentives by making continuation depend
on publicly improved beliefs after disclosed truthful checks—exactly the transparency lever
used in audits, certification schemes, and platform governance.

10.2 Noisy checks
We allow publicly observed checks to be imperfect. Conditional on a check, a binary signal
s ∈ {good, bad} is drawn with Pr(good | truth, check) = πT , Pr(bad | deceive, check) = πD,
and precision κ := πT + πD − 1 ∈ [0, 1] (κ = 1 recovers perfect verification; κ = 0 is
uninformative). We keep the rule that a bad triggers termination (or the punishment phase)
only if deception was present; good continues with Bayesian updating. The public state
remains Markov, and the full Bayes maps/branch probabilities are in the Online Appendix.

Relative to the baseline, keep (5.1)–(5.2) but (i) replace the truthful-on-check term by

pT|check(λ, µ)⇝ πT

[
λ + (1 − λ)

(
1 − σ(λ, µ)

)]
,

6Explicit formulas in the Online Appendix.
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and (ii) scale the detection/termination branch by πD, so the per–period hazard becomes (Here
κ ≡ πT +πD −1 ∈ [0, 1]; the detection branch scales by πD, so hκ(λ) = pcheck(λ)(1−λ)σ(λ) πD,
consistent with Online Appendix OA2.)

hκ(λ) = pcheck(λ) (1 − λ) σ(λ) πD, (10.1)

with hκ → h as κ ↑ 1.7
Noisy verification and partial disclosure act as transparency devices. Let q ∈ [0, 1] be the

probability that a truthful check becomes public (silent audits; the Online Appendix). Both
κ and q preserve a Markov public state and shift the same indifference system as a reduction
in C or an increase in δ.

Proposition 10.1. Fix (B, C, δ). In any stationary PBE: (i) if q2 > q1, the receiver’s
inspection cutoff in λ weakly decreases, the sender’s deception region shrinks, and the hazard
h(λ) = pcheck(λ)(1 − λ)σ(λ) is weakly lower at each λ; (ii) if κ2 > κ1, the inspection cutoff
weakly decreases and hκ(λ) in (10.1) moves weakly toward the perfect–verification benchmark
as κ ↑ 1. Policies depend continuously on (q, κ).

Sketch. Differentiate the sender/receiver indifference conditions in q or κ: higher transparency
increases the weight on publicly realized good news and/or detection probability, shifting
∆r down in λ and ∆s up in µ; single–crossing then lowers the inspection cutoff and shrinks
deception. Continuity follows from continuity of branch weights and the fixed–point map.

10.3 Fully private monitoring benchmark
When both players’ actions are privately observed and no audit outcome is ever made public,
a low–dimensional public state does not exist: neither player observes how outsiders’ beliefs
evolve, higher–order beliefs matter, and a stationary PBE generally cannot be expressed
as a recursion in (λ, µ). In particular, the only publicly observable event—termination
after a detected deception—need not occur on path for long stretches, so Bayes’ rule pro-
vides no common update. This makes the fully private benchmark analytically fragile and
non–recursive.

Two results from the Online Appendix clarify what survives and how to restore tractability.
First, with no public information, stationary self–confirming equilibria (SCE) are easy to
characterize but degenerate dynamically: the strategic sender strictly prefers deception in
every period whenever δ < 1, and the receiver’s inspection intensity is pinned down by the
static inequality R (1 − θ) ≷ C. In the knife–edge case R (1 − θ) = C any inspection rate is
consistent; otherwise the receiver either never inspects or always inspects, and the termination
hazard is respectively 0 or front–loaded. This benchmark is useful as a robustness check, but
it lacks the reputational cutoffs and tapering that are central in our main analysis.

Second, tractability (and meaningful reputation dynamics) is restored by injecting a
minimal amount of public information. We show that an ε–frequency public “alarm” with

7Posteriors after a “good” signal are in the Online Appendix.
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likelihood ratio κ > 1 favoring deception creates a one–dimensional public belief state λ and
delivers a stationary PBE with the same cutoff logic as in the body of the paper. Moreover,
equilibria depend continuously on ε and converge to a well–defined limit as ε ↓ 0.

In Online Appendix we obtain the same conclusions when truthful checks are silently
audited but disclosed with probability q ∈ (0, 1): the public belief is again Markov, stationary
PBE exist, and policies vary continuously in q up to the fully transparent benchmark q ↑ 1.
In both variants, the sender’s indifference equates B to a discounted discipline term that
scales with the public probability of either being checked or generating public news; this term
is strictly positive even when the receiver chooses not to inspect, which is why infinitesimal
public information suffices to reinstate reputational cutoffs.

For interpretation, the minimal–revelation devices correspond to practices such as random-
ized spot audits that publish outcomes, occasional whistleblower disclosures, or policy–driven
transparency where a fraction of truthful inspections is publicized. Any such design that
yields rare but informative public signals (either directly revealing truth or tilting alarms
toward deception) maintains a Markov public state and preserves monotone best responses
and cutoff comparative statics for inspection and deception. Thus, while the fully private
benchmark highlights the limits of reputation without public signals, our main results apply
verbatim once even a vanishing amount of public information is present, providing a clean
rationale for transparency policies in auditing, certification, and platform moderation.

10.4 Discrete–continuous link
Consider a continuous-time (CT) version in which, at public honesty λ, the receiver inspects
with intensity r(λ) and the sender deceives with intensity σ(λ); detected deception terminates.
Let β > 0 be the CT discount rate, and let vs, vr solve the stationary HJB system associated
with these intensities and the Bayes jump maps.

Discretize time with step ∆ > 0, discount δ∆ := e−β∆, and per-period probabilities

pcheck
∆ (λ) := r(λ) ∆, σ∆(λ) := σ(λ) ∆,

truncated to [0, 1], with the same Bayes updates as in the baseline model. Let (V ∆
s , V ∆

r ) be
the discrete-time values under stationary policies (σ∆, ρ∆) and let (λ∗

∆, µ∗
∆) denote the joint

mixing cutoffs.

Lemma 10.2. As ∆ ↓ 0, the discrete-time Bellman operators converge to the CT resolvent,
and the values converge uniformly:

lim
∆↓0

∥V ∆
i − vi∥∞ = 0, i ∈ {s, r}.

Moreover, every sequence of stationary PBE selections admits a subsequence for which the
cutoffs and hazards converge:

(λ∗
∆, µ∗

∆) → (λ∗, µ∗), h∆(λ) = pcheck
∆ (λ) (1 − λ) σ∆(λ) ⇒ h(λ) = r(λ) (1 − λ) σ(λ),

with (λ∗, µ∗) a stationary CT cutoff (MPE) and h the CT termination intensity.
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Proof sketch. The discrete transition kernel is an Euler discretization of the CT generator;
the Bellman operator converges to the CT resolvent as ∆ → 0. Uniform convergence of
values follows from standard resolvent–HJB arguments under bounded intensities. Stationary
cutoffs solve a continuous system of indifference conditions in the values; by continuity and
compactness, subsequential convergence holds, and the discrete hazard h∆ converges pointwise
to h.

11 Conclusion
This paper analyzes a repeated sender–receiver environment in which inspection decisions
are public while the sender’s actions are private unless checked. The public observability of
inspections yields a low-dimensional belief state (honesty and vigilance) on which we construct
a stationary PBE and prove existence (Lemma 7.1). Equilibrium policies take a cutoff form:
the receiver checks when honesty beliefs are sufficiently low and the sender deceives only when
vigilance beliefs are sufficiently low, with monotone best responses (Lemma 5.2) and locally
unique thresholds pinned down by two indifference equations. In a benchmark with short
deterrence windows we obtain closed-form expressions for the total inspection rate required to
deter and for the honesty cutoff (Lemma 5.3). We further show that finite, publicly observed
punishments implement the same cutoffs as immediate termination (Proposition 6.3), so
discipline is sustained by reputational cutoffs rather than by absorption per se.

The model delivers transparent comparative statics and hazard predictions. Greater
temptation raises the checking region while higher inspection costs shrink it; greater patience
reduces the inspection intensity needed to sustain honesty (Proposition 8.1). Inspection
intensity tapers with accumulated honesty, and terminations bunch following inspection spurts
(Corollary 8.2). These results map directly to auditing, certification, platform moderation,
and insurance contexts where inspections are visible but violations are revealed only upon
inspection. For policy and design, the analysis suggests front-loaded inspections when B/C

is high, a gradual taper as honesty accumulates, and the possibility of replacing one-strike
termination with finite, visible probation without altering equilibrium cutoffs—potentially
lowering administrative costs while preserving deterrence.

Several limitations point to fruitful extensions. We show robustness to silent audits and
noisy checks, yet fully private monitoring remains analytically intractable without minimal
public signals; characterizing optimal information design that injects such signals is a natural
next step. Endogenizing enforcement instruments (e.g., inspection cost via technology
adoption) and punishment menus, allowing heterogeneous types or networked interactions
(platform ecosystems), or moving to continuous time with time-varying inspection rates could
sharpen welfare and implementation results. On the empirical side, the model’s cutoffs and
hazard predictions lend themselves to event studies and cost-shock designs; estimating the
implied (B, C, δ) from audit and moderation data would help quantify the efficiency gains
from reputational enforcement and the substitution between termination and finite probation.
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A Proofs
Proof of Lemma 5.2. By Proposition 5.1(a)–(b), the continuation values Vs, Vr are monotone
in (λ, µ). Using (A.1)–(A.2), this implies ∆r is decreasing in λ and ∆s in µ, hence the stated
policy monotonicities; the cutoff forms follow because binary best replies to single-crossing
differences admit thresholds.

Fix a public state x = (λ, µ) and write

pcheck(x) : = µ + (1 − µ) ρ(x),
pT|check(x) : = λ + (1 − λ)

(
1 − σ(x)

)
.

From (4.1)–(4.2), the action–contingent values at x are

V deceive
s (x) = B + δ (1 − pcheck(x)) Vs(λ, 0),
V truth

s (x) = δ
[
pcheck(x) Vs(λ+(x), µ+(x)) + (1 − pcheck(x)) Vs(λ, 0)

]
,

V check
r (x) = B pT|check(x) − C + δ pT|check(x) Vr(λ+(x), µ+(x)),

V trust
r (x) = B

[
1 − (1 − λ)σ(x)

]
+ δ Vr(λ, 0).

Define the action–difference functions

∆r(x) : = V check
r (x) − V trust

r (x),
∆s(x) : = V deceive

s (x) − V truth
s (x).

A direct subtraction yields

∆r(x) = R(1 − λ) σ(x) − C + δ
[
Vr(λ+(x), µ+(x)) − Vr(λ, 0)

]
, (A.1)

and
∆s(x) = B − δ pcheck(x)

[
Vs(λ+(x), µ+(x)) − Vs(λ, 0)

]
. (A.2)

Step 1. Fix µ and λ′ < λ′′. Compare ∆r(λ′′, µ) vs. ∆r(λ′, µ) using (A.1).
(i) The current detection term R(1 − λ)σ(λ, µ) is weakly decreasing in λ, since 1 − λ falls

in λ and σ ∈ [0, 1].
(ii) For the continuation term, note that the Bayes map λ 7→ λ+(λ, µ) = λ

λ+(1−λ)(1−σ(λ,µ))
is increasing and concave in λ (fractional linear), hence the increment λ+(λ, µ) − λ is
weakly decreasing in λ.

By hypothesis, Vr is increasing in λ and in µ, while µ+(λ, µ) = µ
µ+(1−µ) ρ(λ,µ) ∈ [µ, 1] and the

trust–posterior on the receiver equals 0. Therefore

Vr(λ+(λ′′, µ), µ+(λ′′, µ)) − Vr(λ′′, 0) ≤ Vr(λ+(λ′, µ), µ+(λ′, µ)) − Vr(λ′, 0),

i.e., the continuation gain from a truthful public check is weakly smaller at higher λ. Com-
bining (i)–(ii) in (A.1) yields ∆r(λ′′, µ) ≤ ∆r(λ′, µ), so ∆r(·, µ) is weakly decreasing in λ.
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Since the receiver’s best reply is ρ(λ, µ) ∈ arg max{∆r(λ, µ), 0} for each (λ, µ), it follows that
ρ(λ, µ) is weakly decreasing in λ.
Step 2. Fix λ and µ′ < µ′′. Consider (A.2). Write

Θ(µ) := pcheck(λ, µ)
[
Vs(λ+(λ, µ), µ+(λ, µ)) − Vs(λ, 0)

]
.

We show Θ(µ) is weakly increasing in µ, which implies ∆s(λ, µ) = B − δ Θ(µ) is weakly
decreasing in µ. First, pcheck(λ, µ) = µ + (1 − µ) ρ(λ, µ) is weakly increasing in µ (holding ρ

at the respective states). Second, µ+(λ, µ) = µ
µ+(1−µ) ρ(λ,µ) is weakly increasing in µ, and by

hypothesis Vs is weakly decreasing in µ and increasing in λ. Therefore

Vs(λ+(λ, µ′′), µ+(λ, µ′′)) − Vs(λ, 0) ≤ Vs(λ+(λ, µ′), µ+(λ, µ′)) − Vs(λ, 0),

so the sender’s continuation loss from a truthful public check weakens as µ rises. Multiplying
a weakly larger pcheck by a weakly smaller nonnegative bracket preserves weak increase of
the product (values are bounded), hence Θ(µ′′) ≥ Θ(µ′) and thus ∆s(λ, µ′′) ≤ ∆s(λ, µ′). The
sender’s best reply is σ(λ, µ) ∈ arg max{∆s(λ, µ), 0}, hence σ(λ, µ) is weakly decreasing in µ.
Step 3. For each fixed µ, ∆r(·, µ) is weakly decreasing, so the receiver’s binary choice admits
a threshold: there exists a (possibly set–valued) cutoff λ∗(µ) such that the receiver checks
iff λ ≤ λ∗(µ) (mixing when equality holds). Likewise, for each fixed λ, ∆s(λ, ·) is weakly
decreasing, so there exists µ∗(λ) such that the sender deceives iff µ ≤ µ∗(λ) (mixing at
equality).

This proves the lemma.

Proof of Lemma 5.3. Let x∗ = (λ∗, µ∗) be a sender–mixing public state in the termination
benchmark, so that the Bellman equalities at x∗ hold and both actions are used with positive
probability. Recall the sender’s and receiver’s indifference equations (cf. (5.1)–(5.2)):

B = δ pcheck(x∗)
[

Vs(λ+(x∗), µ+(x∗)) − Vs(λ∗, 0)
]
, (A.3)

C = δ
[

pT|check(x∗) Vr

(
λ+(x∗), µ+(x∗)

)
− Vr(λ∗, 0)

]
. (A.4)

Step 1. By Assumption D(i) (local stationarity at the sender’s cutoff), the continuation wedge
created by a truthful, publicly observed check equals a perpetuity worth B/(1 − δ):

Vs(λ+(x∗), µ+(x∗)) − Vs(λ∗, 0) = B

1 − δ
. (A.5)

Substituting (A.5) into the sender indifference (A.3) gives

B = δ pcheck(x∗) B

1 − δ
,

hence
pcheck∗ := pcheck(x∗) = 1 − δ

δ
,
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which is (5.3). Noting that pcheck(λ, µ) = µ + (1 − µ) ρ(λ, µ) yields the stated equivalent form
µ + (1 − µ)ρ̄ = (1 − δ)/δ at the sender’s cutoff.

Step 2. Suppose that a truthful, publicly observed check at x∗ reduces next–period deception by
the strategic sender from σ̄ to σ̄′, with all other components of the continuation environment
locally unchanged (Assumption D(ii), “one–step deterrence”). Then the receiver’s one–period
gain in expected benefit at t+1 equals

B · (1 − λ∗)︸ ︷︷ ︸
prob. strategic sender

· (σ̄ − σ̄′)︸ ︷︷ ︸
drop in deception

,

and stationarity propagates this increment forward. Using the sender’s wedge identity from
Step 1, the implied continuation gain can be written in closed form as

Vr

(
λ+(x∗), µ+(x∗)

)
− Vr(λ∗, 0) = pcheck∗

pT|check(x∗) B (1 − λ∗) (σ̄ − σ̄′) , (A.6)

i.e., the Bayes branch weight pT|check(x∗) cancels when we translate a one–period improvement
into a continuation increment under the equilibrium survival/termination mixture.8

Substituting (A.6) in the receiver indifference (A.4) yields

C = δ pT|check(x∗) · pcheck∗

pT|check(x∗) B (1 − λ∗) (σ̄ − σ̄′) = δ B pcheck∗ (1 − λ∗) (σ̄ − σ̄′) .

Solving for λ∗ gives
λ∗ = 1 − C

δ B pcheck∗ (σ̄ − σ̄′) ,

which is (5.4). The comparative statics in the last sentence follow immediately: λ∗ is
decreasing in the deterrence gap (σ̄ − σ̄′) and increasing in C/B. The formula is meaningful
whenever the right–hand side lies in (0, 1).

OA1 Silent audits
We study the case in which the receiver’s inspection decision is publicly observed, but the
outcome of a truthful check is not disclosed: only detected deception (deceive, check) becomes
public via termination (absorbing). Thus the public state remains two–dimensional x = (λ, µ):
honesty belief λ and vigilance belief µ. The key change relative to the main benchmark is
that on truthful–check branches, the public honesty belief does not jump: λ+

pub = λ (while
the receiver’s private posterior increases).

8Formally, write the receiver’s Bellman at x∗ under the two continuations (truthful–check vs. no–check)
and isolate the part that varies with the next–period deception rate. The mapping from a one–period change
in deception probability to a continuation change is linear; the factor pcheck∗/pT|check(x∗) is obtained by
substituting the sender’s indifference (Step 1) to eliminate the common survival multiplier. This is the same
“equalization” device that delivers (5.3).
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At x = (λ, µ) the total check probability is pcheck(x) = µ + (1 − µ) ρ(x). When a check
occurs and the sender is truthful, the public next state is (λ, µ+(x)); when a check occurs and
the sender deceives, termination occurs; with no check the next state is (λ, 0) (vigilance belief
resets because no public check happened). Formally, replace every occurrence of Vs(λ+(x), ·)
on truthful–check branches in the public Bellman system by Vs(λ, ·); the vigilance posterior
µ+(x) remains as in the main model because checks are public.

Let Vs(x) and Vr(x) denote continuation values. Then

Vs(λ, µ) = max
σ∈[0,1]

{
σ B + δ

[(
1 − pcheck(x)

)
Vs(λ, 0)

+ pcheck(x)
(
1 − σ

)
Vs

(
λ, µ+(x)

)
︸ ︷︷ ︸

truthful check: no public honesty jump

]}
,

(OA1.1)

Vr(λ, µ) = max
ρ∈[0,1]

{
ρ
(

B pT|check(x) − C + δ pT|check(x)

truthful check continues︷ ︸︸ ︷
Vr

(
λ, µ+(x)

) )

+ (1 − ρ)
(

B [1 − (1 − λ) σ(x)] + δ Vr(λ, 0)
)}

.

(OA1.2)
Here pT|check(x) = λ + (1 − λ) [1 − σ(x)] is the probability a check verifies truth.

At any belief x∗ where both players mix, sender and receiver indifferences are

B = δ pcheck(x∗)
[
Vs

(
λ∗, µ+(x∗)

)
− Vs

(
λ∗, 0

)]
, (OA1.3)

C = δ pT|check(x∗)
[
Vr

(
λ∗, µ+(x∗)

)
− Vr

(
λ∗, 0

)]
. (OA1.4)

Compared to full disclosure, the sender’s “truthful–check continuation gain” replaces

Vs

(
λ+(x∗), µ+(x∗)

)
− Vs(λ∗, 0)

by Vs

(
λ∗, µ+(x∗)

)
− Vs(λ∗, 0), which is weakly smaller because Vs is (weakly) increasing in

honesty belief.

Theorem OA1.1. Under bounded payoffs and δ ∈ (0, 1), the silent–audit model admits a
stationary PBE in the public state x = (λ, µ) with (possibly mixed) policies (σ, ρ) and bounded
values (Vs, Vr) solving (OA1.1)–(OA1.2). At any mixed x∗, (OA1.3)–(OA1.4) hold.

Proof. Fix measurable (σ, ρ). The right–hand sides of (OA1.1)–(OA1.2) define a contraction
mapping on the product of bounded functions over [0, 1]2 with modulus δ (dependence on
(Vs, Vr) is affine and multiplied by δ), yielding unique bounded continuous values (Vs, Vr).
Pointwise best–reply correspondences are nonempty, convex–valued, and u.h.c. by Berge’s
theorem. On the compact convex space of measurable policies [0, 1][0,1]2 × [0, 1][0,1]2 (product
topology), Kakutani–Fan–Glicksberg gives a fixed point; measurable selections exist by
Kuratowski–Ryll–Nardzewski. Bayes consistency is built into µ+ and the termination branch.
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Lemma OA1.2. If Vs and Vr are (weakly) increasing in λ and µ, then the receiver’s best
reply is (weakly) decreasing in λ and (weakly) increasing in µ; the sender’s best reply is
(weakly) decreasing in µ and increasing in λ only through pT|check and pcheck. Hence stationary
PBE admit cutoff characterizations in λ for fixed µ, and in µ for fixed λ.

Proof. Compare the receiver’s “check − trust” difference implied by (OA1.2):

∆r(x) = −C + δ pT|check(x)
[
Vr(λ, µ+(x)) − Vr(λ, 0)

]
.

This is decreasing in λ (since pT|check is increasing in λ but the bracketed continuation gain
does not depend on λ under silent audits) and increasing in µ via µ+(x). For the sender, the
difference “truth − deceive” from (OA1.1) is

∆s(x) = −B + δ pcheck(x)
[
Vs(λ, µ+(x)) − Vs(λ, 0)

]
,

which is increasing in µ via pcheck and µ+(x); dependence on λ only enters through pcheck, pT|check.
Monotonicity yields the stated cutoffs.

Proposition OA1.3. Let λ∗
full(µ) be the receiver’s cutoff in the full–disclosure model and

λ∗
silent(µ) the cutoff under silent audits. Then for all µ ∈ [0, 1],

λ∗
silent(µ) ≥ λ∗

full(µ),

with strict inequality whenever the truthful–check continuation gain Vs(λ+(x), µ+(x))−Vs(λ, 0)
is strictly increasing in λ at x = (λ∗

full(µ), µ).

Proof. Fix µ and evaluate the sender’s margin at λ = λ∗
full(µ) and the policies from the

full–disclosure equilibrium. In that model,

B = δ pcheck(x)
[
Vs(λ+(x), µ+(x)) − Vs(λ, 0)

]
.

Under the silent–audit recursion, the same (σ, ρ) and λ yield the weakly smaller right–hand
side

δ pcheck(x)
[
Vs(λ, µ+(x)) − Vs(λ, 0)

]
,

because λ+(x) ≥ λ and Vs is increasing in λ (Blackwell improvement of the transition). Hence,
holding λ fixed, the sender would strictly prefer deception under silent audits unless pcheck

increases. Since the receiver’s best reply is decreasing in λ (Lemma OA1.2), raising pcheck

at a mixing point requires weakly higher ρ, which in a cutoff policy corresponds to a weakly
higher cutoff λ∗. The strict case follows when the truthful–check continuation gain is strictly
larger under full disclosure at that λ.

Let a truthful check be publicly disclosed with probability q ∈ [0, 1] (and otherwise silent).
Then the truthful–check continuation term in (OA1.1) is replaced by

q Vs

(
λ+(x), µ+(x)

)
+ (1 − q) Vs

(
λ, µ+(x)

)
,

and analogously in the receiver’s Bellman. Existence and monotone BR follow as above.
Moreover:
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Proposition OA1.4. Let λ∗(q; µ) be the receiver’s cutoff at transparency level q ∈ [0, 1].
Then λ∗(q; µ) is weakly decreasing in q for every µ. Consequently, the equilibrium termination
hazard is weakly decreasing in q for fixed primitives (B, C, δ).

Proof. The Bellman operator with parameter q′ Blackwell–dominates that with q whenever
q′ > q, because the truthful–check continuation is a convex combination that increases with q

(keeping µ–transitions fixed). Hence the fixed–point values (Vs, Vr) are weakly increasing in q

(parametric contraction + monotone operator). In the sender’s indifference (OA1.3), a larger
q raises the right–hand side at fixed (λ, µ, σ, ρ); thus to maintain equality with constant B, a
smaller pcheck suffices. Since pcheck is decreasing in the receiver’s cutoff (Lemma OA1.2), λ∗

must (weakly) fall with q. The hazard h(x) = pcheck(x) (1 − λ) σ(x) then (weakly) falls with
q along the equilibrium policy.

Relative to full public disclosure, silent audits weaken the public informativeness of
truthful checks and therefore expand the checking region (higher λ∗) and (weakly) raise
hazards. Allowing partial transparency q ∈ (0, 1) interpolates linearly in the truthful–check
term and yields a clean monotone comparative static: more transparency ⇒ less checking
needed to deter, lower hazards, and (weakly) higher values.

OA2 Noisy checks
We extend the benchmark with publicly observed checks by allowing the check to return
a binary signal s ∈ {good, bad} that is only informative about the sender’s period action.
Conditional on a check, the signal technology is

Pr(good | truth, check) = πT ,

Pr(bad | deceive, check) = πD,

κ : = πT + πD − 1 ∈ [0, 1],

where κ is precision (κ = 1 is perfect verification; κ = 0 is uninformative). The action check
remains publicly observed. As before, (deceive, check) may trigger termination (benchmark)
or a finite punishment phase (extension).

We analyze two natural disclosure regimes:

Regime A (deception–only termination). A bad signal leads to termination only if
deception was present that period; equivalently, bad signals on truthful periods are automati-
cally overturned (e.g., via review) and do not terminate. This matches the replacement rules
stated in the main text.
Regime B (terminate on any bad). Any bad signal triggers termination, even if the
sender was truthful (false positives cause erroneous termination).

Unless otherwise noted, we present formulas under Regime A (to mirror the main-text
mapping) and then state the simple modifications for Regime B.
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OA2.1 Belief updates and hazards
Let λ be the public belief that the sender is the committed honest type and let σ(x) ∈ [0, 1]
be the deception probability of a strategic sender at public state x (which can be λ alone or
(λ, µ) depending on your baseline). When a check occurs, the probability that the period
action was truth equals

Pr(truth | check, x) = λ + (1 − λ) [1 − σ(x)]. (OA2.1)

A good signal can arise from truth (probability πT ) and, if deception occurred, from a false
negative (probability 1 − πD). Bayes’ rule therefore yields the posterior after a good signal:

λ+
good(x) = πT [λ + (1 − λ)(1 − σ(x))]

πT [λ + (1 − λ)(1 − σ(x))] + (1 − πD) (1 − λ) σ(x) . (OA2.2)

If trust is publicly observed (no check), there is no information about the sender’s action
that period, so the public honesty belief does not update: λns = λ.9

The per-period termination hazard differs across regimes:

Regime A: h(x) = pcheck(x)
[
(1 − λ) σ(x) πD

]
, (OA2.3)

Regime B: h(x) = pcheck(x)
[
λ (1 − πT ) + (1 − λ) σ(x) πD

]
. (OA2.4)

where pcheck(x) = µ + (1 − µ) ρ(x) is the public probability of a check against a strategic
sender (as in the main text).

OA2.2 Bellman equations and indifference
Write Vs(x) and Vr(x) for continuation values at the public state x. If a check occurs and the
signal is good, the relationship continues and next period’s public state is (λ+

good(x), µ+); if
bad and Regime A holds, termination reveals deception and stops. If trust, there is no signal
and the state is (λ, µns).

Under Regime A, the sender’s Bellman equation is

Vs(x) = max
{ truth︷ ︸︸ ︷

δ
[
(1 − pcheck(x)) Vs(λ, µns) + pcheck(x) Vs(λ+

good(x), µ+)
]
,

B + δ
[
(1 − pcheck(x)) Vs(λ, µns) + pcheck(x) (1 − πD) Vs(λ+

good(x), µ+)
]

︸ ︷︷ ︸
deceive

}
.

(OA2.5)
9If you track the vigilance reputation µ of the receiver (committed always–check type), it updates upon

observing a check (via µ+ = µ
µ+(1−µ) ρ(x) ) and collapses to zero upon observing trust.
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The receiver’s Bellman equation is

Vr(x) = max
{ trust︷ ︸︸ ︷

B
[
1 − (1 − λ)σ(x)

]
+ δ Vr(λ, µns),

B
[
λ + (1 − λ)(1 − σ(x))

]
+ R (1 − λ)σ(x) πD − C + δ Vr(λ+

good(x), µ+)︸ ︷︷ ︸
check

}
.

(OA2.6)
At any mixing state x∗ (where both pure actions are used with positive probability), indiffer-
ence yields

Sender: B = δ pcheck(x∗) πD

[
Vs

(
λ+

good(x∗), µ+
)

− Vs

(
λ, µns

)]
, (OA2.7)

Receiver: C = R (1 − λ∗)σ(x∗) πD + δ
(

Vr

(
λ+

good(x∗), µ+
)

− Vr

(
λ, µns

))
. (OA2.8)

The B–terms cancel in (OA2.8) because the expected stage benefit from truth is identical
under trust and check.

If any bad triggers termination (even under truth), then in (OA2.5) replace the truth
continuation by δ [(1 − pcheck(x))Vs(λ, µns) + pcheck(x) πT Vs(λ+

good(x), µ+)] and in (OA2.6)
replace the check continuation analogously. The indifference conditions become

B = δ pcheck(x∗)
[
πD Vs(λ+

good(x∗), µ+) − (1 − πT ) Vs(λ, µns)
]
, (OA2.9)

C = R
[
λ∗(1 − πT ) + (1 − λ∗)σ(x∗)πD

]
+ δ

(
πT Vr(λ+

good(x∗), µ+) − Vr(λ, µns)
)

.

(OA2.10)

OA2.3 Existence and structure
Existence of a stationary PBE follows as in the benchmark: the policy–evaluation operator
remains a δ–contraction (the only change is the continuation branch weights), and pointwise
best replies are affine in own control; Berge + Kakutani–Fan–Glicksberg deliver a fixed point
(details omitted to avoid repetition). Monotone best responses and cutoff inspection in the
public honesty belief carry over provided Vr is increasing in λ (value monotonicity) and
pcheck(·) is weakly decreasing in λ.

Lemma OA2.1. Fix πT , πD ∈ [0, 1] with κ = πT + πD − 1 ∈ [0, 1]. Then λ+
good(x) in (OA2.2)

is (i) strictly increasing in λ, (ii) weakly decreasing in σ(x), (iii) weakly increasing in πT ,
and (iv) weakly increasing in πD. If κ = 1 (perfect checks), λ+

good = λ
λ+(1−λ)[1−σ(x)] , matching

the perfect-verification benchmark.

Proof. Each claim follows by direct differentiation of the rational expression in (OA2.2)
(denominator positive) and the fact that a higher πT or πD improves the likelihood ratio of
good in favor of truth.
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Proposition OA2.2. Under Regime A, as κ falls (i.e., πT or πD falls), the sender’s discipline
term on the right-hand side of (OA2.7) weakens and the receiver’s informational gain in
(OA2.8) weakens. Consequently, any inspection cutoff λ∗ (if unique) shifts outward (higher),
and the termination hazard h(x) weakly falls pointwise. The same qualitative conclusions
hold under Regime B.

If bad triggers a finite, publicly visible punishment phase rather than termination, re-
place the termination branch in (OA2.5)–(OA2.6) with the corresponding punishment values
V pun

s , V pun
r . The outcome-equivalence result from the main text carries over: for any termina-

tion equilibrium, there exists a finite punishment system that implements the same mixing
cutoffs (the proof is identical with the noisy weights inserted).

(i) The main text’s replacement rules correspond to Regime A; if you prefer the more
stringent Regime B, apply (OA2.4)–(OA2.10). (ii) In the limit κ ↑ 1 we recover the perfect-
verification model; in the opposite limit κ ↓ 0 the signal is uninformative, the good posterior
collapses to λ, and reputational discipline reverts toward that with silent audits of vanishing
disclosure.

OA3 Private monitoring
This appendix studies a fully private–monitoring environment in which both actions (the
sender’s truth/deceive and the receiver’s trust/check) are privately observed, but there is
a small, exogenous public signal each period. The public signal is informative about the
period’s outcome and preserves a low–dimensional public belief about the sender’s honesty;
equilibrium strategies are Markov in this public belief.

Stage payoffs match the main text except we allow a contemporaneous compensation to
the receiver upon detected deception: if (deceive, check) occurs, the receiver obtains R − C

and the relationship terminates; if (truth, check) occurs, she obtains B − C; if (truth, trust)
occurs, she obtains B; and if (deceive, trust) occurs, she obtains 0. The sender receives B

when he deceives (regardless of inspection) and 0 when truthful.

OA3.1 Minimal Public Revelation
Time is discrete; discount factor δ ∈ (0, 1). Let λt denote the public belief that the sender is
the committed honest type at the start of period t. Each period yields a binary public signal
St ∈ {0, 1} with small frequency ε ∈ (0, 1) and likelihood ratio κ > 1 favoring deception:

Pr(St = 1 | truth) = ε, Pr(St = 1 | deceive) = κ ε (≤ 1).

Receiver checks and sender actions are private unless (deceive, check) occurs, which terminates
the relationship and is publicly observed.

Let σ(λ) ∈ [0, 1] be the strategic sender’s deception probability at public belief λ and
ρ(λ) ∈ [0, 1] the strategic receiver’s inspection probability (both depend on λ only). Because
checks are private, the public state is one–dimensional (no public µ recursion). For notational
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convenience, let p̄check(λ) := µ0 + (1 − µ0) ρ(λ) denote the ex–ante check probability against
a strategic sender (where µ0 ∈ [0, 1] is the prior weight on a committed vigilant receiver).

Given mixing σ(λ) at belief λ, Bayes’ rule delivers the next public belief after the public
signal:

λ1(λ) ≡ Pr(honest | S = 1, λ) = λ

λ + (1 − λ) [κ σ(λ) + (1 − σ(λ))] , (OA3.1)

λ0(λ) ≡ Pr(honest | S = 0, λ) = (1 − ε) λ

(1 − ε) λ + (1 − λ) [1 − κε σ(λ) − ε (1 − σ(λ))] . (OA3.2)

Define the variant–specific continuation operators (used below) as the expected next–value
under truth or deception conditional on survival:

Gtruth
i (λ) : = ε Vi

(
λ1(λ)

)
+ (1 − ε) Vi

(
λ0(λ)

)
,

Gdeceive
i (λ) : = κε Vi

(
λ1(λ)

)
+ (1 − κε) Vi

(
λ0(λ)

)
,

for i ∈ {s, r}.
Let Vs(λ) and Vr(λ) be the (public–state) continuation values when the relationship is

active at public belief λ. Checking is private; the only publicly visible resolution is termination
upon detected deception.

If the sender is strategic and chooses deceive at λ, his value is

B + δ (1 − p̄check(λ)) Gdeceive
s (λ),

where survival requires “no check” against a strategic sender. If he chooses truth, his value is

0 + δ Gtruth
s (λ).

At any mixing belief λ∗,

B = δ
[
Gtruth

s (λ∗) − (1 − p̄check(λ∗)) Gdeceive
s (λ∗)

]
. (OA3.3)

If the receiver checks, her current payoff is

B ·
[
λ + (1 − λ)(1 − σ(λ))

]
︸ ︷︷ ︸

truth branch

+ R · (1 − λ)σ(λ)︸ ︷︷ ︸
compensation on detected deception

− C,

and her continuation equals δ ·
[
λ + (1 − λ)(1 − σ(λ))

]
· Gtruth

r (λ) (since deception triggers
termination). If she trusts, her current payoff is B ·

[
λ + (1 − λ)(1 − σ(λ))

]
and continuation

is δ ·
(

λ · Gtruth
r (λ) + (1 − λ)σ(λ) · Gdeceive

r (λ) + (1 − λ)(1 − σ(λ)) · Gtruth
r (λ)

)
, i.e., truth

survives and deception survives when unchecked. At any mixing belief λ∗,

C = R · (1 − λ∗)σ(λ∗) + δ (1 − λ∗)σ(λ∗) · Gdeceive
r (λ∗). (OA3.4)

Intuition: checking sacrifices future continuation precisely on the deception branch (which
it terminates), so the benefit of checking is the contemporaneous compensation R plus the
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discounted continuation it forgoes under trust on that branch; at indifference this equals the
cost C.

By the same single–crossing logic as in the main text (see Theorem 5.2), best replies are
monotone in the public honesty belief: the receiver’s optimal inspection is weakly decreasing
in λ, so a cutoff λ∗ exists; the sender’s deception is decreasing in the effective discipline term
(1 − p̄check(λ)) and in the informativeness of public news (which shapes Gtruth

s − Gdeceive
s ).

Theorem OA3.1. Fix ε ∈ (0, 1) and κ > 1. Under bounded payoffs and δ ∈ (0, 1), there
exists a stationary PBE in the public state λ with a receiver cutoff policy and a (possibly
mixed) sender policy. At any mixing belief λ∗, the indifference conditions (OA3.3)–(OA3.4)
hold with updates given by (OA3.1)–(OA3.2).

Proof. Fix ε ∈ (0, 1) and κ > 1. Let Λ := [0, 1] denote the compact public belief space.
At any λ ∈ Λ, the sender’s and receiver’s action sets are finite: As = {truth, deceive}
and Ar = {trust, check}. Mixed actions at λ are identified with probabilities in [0, 1], i.e.,
the sender’s deception probability σ(λ) ∈ [0, 1] and the receiver’s inspection probability
ρ(λ) ∈ [0, 1].
Step 1. Let

Σ :=
∏
λ∈Λ

[0, 1], P :=
∏
λ∈Λ

[0, 1], K := Σ × P.

Endow Σ and P with the product topology and K with the product of these. By Tychonoff,
K is compact; it is convex as a product of convex sets. An element (σ, ρ) ∈ K is a (possibly
nonmeasurable) strategy profile λ 7→ (σ(λ), ρ(λ)).

Fix (σ, ρ) ∈ K. Define the public–state value operator Tε,σ,ρ on the Banach space
V := B(Λ) × B(Λ) of bounded real–valued functions on Λ (with the sup norm), via the
right–hand sides of the Bellman equations in (OA3.3)–(OA3.4): for each λ ∈ Λ,

Tε,σ,ρ

[
Vs

Vr

]
(λ) =



σ(λ)
{
B + δ [1 − p̄check(λ)] Gdeceive

s (λ; ε, σ, Vs)
}

+(1 − σ(λ))
{
δ Gtruth

s (λ; ε, σ, Vs)
}

ρ(λ)
{
B[λ + (1 − λ)(1 − σ(λ))]+
R(1 − λ)σ(λ) − C+

δ [λ + (1 − λ)(1 − σ(λ))] Gtruth
r (λ; ε, σ, Vr)

}
+(1 − ρ(λ))

{
B[1 − (1 − λ)σ(λ)]

+δ
[
λ Gtruth

r (λ; ε, σ, Vr)
+(1 − λ)σ(λ) Gdeceive

r (λ; ε, σ, Vr)
+(1 − λ)(1 − σ(λ)) Gtruth

r (λ; ε, σ, Vr)
]}



, (OA3.5)

where p̄check(λ) = µ0+(1−µ0)ρ(λ) and the news–weighted continuation operators Gtruth
i , Gdeceive

i

(i ∈ {s, r}) are defined in §OA3.1 from the Bayes maps λ1(λ) and λ0(λ) in (OA3.1)–(OA3.2).
For any (Vs, Vr), (V ′

s , V ′
r ) ∈ V ,∥∥∥Tε,σ,ρ[Vs, Vr] − Tε,σ,ρ[V ′

s , V ′
r ]
∥∥∥

∞
≤ δ

∥∥∥[Vs, Vr] − [V ′
s , V ′

r ]
∥∥∥

∞
,
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so Tε,σ,ρ is a contraction with modulus δ. By Banach’s fixed–point theorem, for each (σ, ρ) ∈ K
there exists a unique bounded value pair

(V ε,σ,ρ
s , V ε,σ,ρ

r ) ∈ V

satisfying the public–state Bellman equations.

Step 2. If (σn, ρn) → (σ, ρ) in the product topology of K, then for each fixed λ the Bayes maps
λ1(λ), λ0(λ) defined by (OA3.1)–(OA3.2) are continuous in σ(λ), and hence the operators
Tε,σn,ρn converge pointwise to Tε,σ,ρ on V . Because the modulus δ is common, the unique fixed
points satisfy

V ε,σn,ρn
i (λ) −→ V ε,σ,ρ

i (λ) for each λ ∈ Λ, i ∈ {s, r}.

Step 3. For any (σ, ρ) ∈ K, define at each λ ∈ Λ the sender’s and receiver’s pointwise Bellman
objectives under own action as ∈ As, ar ∈ Ar by substituting the unique values (V ε,σ,ρ

s , V ε,σ,ρ
r )

into the current–payoff plus discounted–continuation formulas (OA3.3)–(OA3.4). Because
action sets are finite and payoffs/continuations are continuous in (σ(λ), ρ(λ)) and λ, these
objectives are continuous in the parameters and affine in own mixed action at λ. By Berge’s
Maximum Theorem, the pointwise best–reply correspondences

Bs(σ, ρ)(λ) ⊂ [0, 1], Br(σ, ρ)(λ) ⊂ [0, 1]

are nonempty, convex, compact–valued and upper hemicontinuous in (σ, ρ) for each fixed λ.
Define the global best–reply correspondence on K by

B(σ, ρ) :=
{

(σ̃, ρ̃) ∈ K : σ̃(λ) ∈ Bs(σ, ρ)(λ), ρ̃(λ) ∈ Br(σ, ρ)(λ) ∀ λ ∈ Λ
}

.

Equip K with the product topology (Tychonoff). Because products of upper hemicontinuous
correspondences with nonempty compact convex values are upper hemicontinuous with
nonempty compact convex values in the product topology,10 B has nonempty, convex, compact
values and a closed graph.

Step 4. The Kakutani–Fan–Glicksberg fixed–point theorem applies on the compact convex
set K (a product of intervals; a convex subset of the locally convex product space ∏λ∈Λ R2).
Therefore there exists (σ∗, ρ∗) ∈ K with

(σ∗, ρ∗) ∈ B(σ∗, ρ∗).

By construction, this means that at every λ ∈ Λ the strategies σ∗(λ) and ρ∗(λ) are (possibly
mixed) pointwise best replies given (σ∗, ρ∗) and their induced values (V ε,σ∗,ρ∗

s , V ε,σ∗,ρ∗
r ).

Step 5. The public state evolves via the Bayes maps (OA3.1)–(OA3.2), which depend only on
current λ and σ∗(λ); termination after detected deception is absorbing. Hence the value pair
(V ε,σ∗,ρ∗

s , V ε,σ∗,ρ∗
r ) solves the public–state Bellman system under (σ∗, ρ∗). Because (σ∗, ρ∗) are

10See, e.g., (Aliprantis and Border, 2006) for closed–graph and u.h.c. stability under products; or argue
directly: graphs are closed pointwise and the product of closed sets is closed in the product topology.
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pointwise best replies at every λ, the profile is sequentially rational in the public state, and
beliefs are Bayes–consistent by construction. Thus (σ∗, ρ∗) constitutes a stationary PBE in
the ε–alarm environment.
Step 6. The argument above delivers a fixed point in K; a priori, the selections λ 7→ σ∗(λ), ρ∗(λ)
need not be Borel measurable. However, for each (σ, ρ) the pointwise best–reply correspon-
dences λ 7→ Bs(σ, ρ)(λ) and λ 7→ Br(σ, ρ)(λ) have measurable graphs (they are closed–valued
and depend continuously on λ through continuous payoffs and values). By the (Kuratowski
and Ryll-Nardzewski, 1965) measurable selection theorem, there exist Borel–measurable se-
lectors. Therefore we may choose the equilibrium selectors to be Borel–measurable functions
of λ.

This completes the proof of existence of a stationary PBE in the public belief state for
the ε–alarm model.

Theorem OA3.2. Let (σε, ρε, λ∗
ε) denote stationary PBE objects for each ε > 0. If policies

are uniformly Lipschitz on compact subsets of (0, 1) and {λ∗
ε} remains in such a subset, then

along any sequence εn ↓ 0 there exists a subsequence converging to (σ0, ρ0, λ∗
0) that solves the

limit fixed point obtained by replacing the Bayes maps (OA3.1)–(OA3.2) with their ε = 0
limits in (OA3.3)–(OA3.4).

Proof. Fix κ > 1 and let ε̄ ∈ (0, 1/κ). Consider any sequence {εn}n≥1 ⊂ (0, ε̄] with εn ↓ 0.
For each n, let (σn, ρn, λ∗

n) be a stationary PBE of the εn–alarm environment, where strategies
depend on the public belief λ ∈ (0, 1). By assumption, there exist 0 < λ < λ < 1 such that
λ∗

n ∈ [λ, λ] =: Λ for all n, and the strategies are uniformly Lipschitz on Λ.
Step 1. By Arzelà–Ascoli, the sets

S := {σn|Λ : n ≥ 1}, R := {ρn|Λ : n ≥ 1}

are relatively compact in (C(Λ), ∥ · ∥∞) because they are uniformly bounded in [0, 1] and
equicontinuous (uniform Lipschitz). Passing to a subsequence (not relabeled), there exist
σ0, ρ0 ∈ C(Λ) with σn → σ0 and ρn → ρ0 uniformly on Λ. Since λ∗

n ∈ Λ for all n, compactness
yields (again passing to a subsequence if needed) λ∗

n → λ∗
0 ∈ Λ.

Step 2. For each ε ∈ (0, ε̄], define the Bayes maps at belief λ under ε–alarm (cf. (OA3.1)–(OA3.2)):

β1(λ; σ) := λ

λ + (1 − λ) [κ σ(λ) + (1 − σ(λ))] ,

β0
ε (λ; σ) := (1 − ε)λ

(1 − ε)λ + (1 − λ) [1 − ε(κ σ(λ) + 1 − σ(λ))] .

For λ ∈ Λ and σ ∈ C(Λ) with values in [0, 1], the denominators are bounded below by a
positive constant independent of ε ∈ (0, ε̄]: indeed,

λ + (1 − λ) [κ σ + (1 − σ)] ≥ λ > 0,

and, using ε ≤ ε̄ < 1/κ,

(1 − ε)λ + (1 − λ) [1 − ε(κ σ + 1 − σ)] ≥ (1 − ε̄)λ + (1 − λ) [1 − ε̄ max{1, κ}] > 0.
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Hence the maps (ε, λ, σ) 7→ β1(λ; σ) and (ε, λ, σ) 7→ β0
ε (λ; σ) are jointly continuous on

(0, ε̄] × Λ × B, where B is the unit ball of C(Λ).
Next define the news-weighted continuation operators for i ∈ {s, r}:

Gtruth
i (λ; ε, σ, Vi) := ε Vi

(
β1(λ; σ)

)
+ (1 − ε) Vi

(
β0

ε (λ; σ)
)
,

Gdeceive
i (λ; ε, σ, Vi) := κε Vi

(
β1(λ; σ)

)
+ (1 − κε) Vi

(
β0

ε (λ; σ)
)
.

If Vi,n → Vi,0 uniformly on Λ and σn → σ0 uniformly, then by the continuity of β1, β0
ε we have

sup
λ∈Λ

∣∣∣Gtruth
i (λ; εn, σn, Vi,n) − Gtruth

i (λ; 0, σ0, Vi,0)
∣∣∣ → 0,

and similarly for Gdeceive
i , where we set the zero–news limits11

Gtruth
i (λ; 0, σ, Vi) = Vi(λ), Gdeceive

i (λ; 0, σ, Vi) = Vi(λ).

Step 3. The map (ε, σ, ρ, Vs, Vr) 7→ Tε,σ,ρ[Vs, Vr] is jointly continuous on (0, ε̄] × C(Λ)4 by
Step 2 and uniform boundedness of σ, ρ. By a standard parametric contraction argument,12

if εn → 0, σn → σ0, and ρn → ρ0 uniformly on Λ, then

(V εn,σn,ρn
s , V εn,σn,ρn

r ) −→ (V 0,σ0,ρ0
s , V 0,σ0,ρ0

r ) uniformly on Λ.

Step 4. For each ε ∈ [0, ε̄] and fixed (σ, ρ), define at each λ ∈ Λ the sender’s and receiver’s
pointwise Bellman objectives under own action as ∈ {0, 1} (0 ≡ truth, 1 ≡ deceive) and
ar ∈ {0, 1} (0 ≡ trust, 1 ≡ check) using the corresponding current payoff terms and the
continuation given by Step 3. These objectives are continuous in (ε, σ, ρ, Vs, Vr, λ) and affine
in own action. By Berge’s Maximum Theorem, the pointwise best–reply correspondences

Bs,ε(σ, ρ)(λ) ⊂ [0, 1], Br,ε(σ, ρ)(λ) ⊂ [0, 1]

are nonempty, convex–valued, and upper hemicontinuous in (ε, σ, ρ) (for the product of the
sup–norm topologies). Hence the global best–reply correspondence

Bε(σ, ρ) :=
{

(σ̃, ρ̃) ∈ C(Λ)2 : σ̃(λ) ∈ Bs,ε(σ, ρ)(λ), ρ̃(λ) ∈ Br,ε(σ, ρ)(λ) ∀λ ∈ Λ
}

has a closed graph in C(Λ)2 × C(Λ)2.13

By stationarity, (σn, ρn) ∈ Bεn(σn, ρn) for all n. Passing to the limit along the convergent
subsequence of Step 1 and using the closed–graph property (and Step 3 for continuity of
values), we conclude

(σ0, ρ0) ∈ B0(σ0, ρ0),
11The latter follow from β1 being independent of ε and β0

ε (λ; σ) → λ as ε ↓ 0.
12E.g., if Tθ are contractions with a common modulus and Tθn

→ Tθ0 uniformly on a compact set, then
their unique fixed points converge: Vθn → Vθ0 .

13Closedness follows from pointwise upper hemicontinuity and Tychonoff’s theorem.
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i.e., (σ0, ρ0) is a stationary best–response pair in the ε = 0 environment (the “no–public–news”
limit), with values (V 0,σ0,ρ0

s , V 0,σ0,ρ0
r ).

Step 5. Let the indifference residuals at ε be

F1,ε(λ) := B − δ
[
Gtruth

s (λ; ε, σε, V ε,σε,ρε
s ) − (1 − p̄check

ε (λ)) Gdeceive
s (λ; ε, σε, V ε,σε,ρε

s )
]
,

F2,ε(λ) := C − R (1 − λ)σε(λ) − δ (1 − λ)σε(λ) Gdeceive
r (λ; ε, σε, V ε,σε,ρε

r ),

where p̄check
ε (λ) = µ0 + (1 − µ0)ρε(λ). By construction, at any mixed state λ∗

ε of a stationary
equilibrium we have

F1,ε(λ∗
ε) = 0, F2,ε(λ∗

ε) = 0.

By Steps 1–3, Fj,εn → Fj,0 uniformly on Λ (j = 1, 2), where the limit residuals are

F1,0(λ) = B − δ
[
V 0,σ0,ρ0

s (λ) − (1 − p̄check
0 (λ)) V 0,σ0,ρ0

s (λ)
]

= B − δ p̄check
0 (λ) V 0,σ0,ρ0

s (λ),

F2,0(λ) = C − R (1 − λ)σ0(λ) − δ (1 − λ)σ0(λ) V 0,σ0,ρ0
r (λ),

with p̄check
0 (λ) = µ0 + (1 − µ0)ρ0(λ). Let λ∗

n → λ∗
0 (Step 1). Uniform convergence of Fj,εn and

continuity implies
0 = lim

n→∞
Fj,εn(λ∗

n) = Fj,0(λ∗
0), j = 1, 2.

Hence λ∗
0 solves the limit indifference system obtained by replacing the Bayes maps with

their ε = 0 limits in (OA3.3)–(OA3.4), as claimed.
We have extracted a subsequence for which (σεn , ρεn , λ∗

εn
) → (σ0, ρ0, λ∗

0) uniformly on Λ
(for policies) and pointwise (for cutoffs), with (σ0, ρ0) a stationary best–response pair in the
ε = 0 environment and λ∗

0 solving the limit indifference equations.

From (OA3.3), the sender’s margin depends on the gap Gtruth
s − (1 − p̄check)Gdeceive

s : larger
κ (more informative alarms) raises this gap and thus reduces the deception region; larger ε

strengthens news and moves the cutoff similarly; higher C from (OA3.4) raises the honesty
cutoff unless offset by higher R; larger B increases the sender’s temptation and shifts the
cutoff in the standard direction.

OA3.2 Self–confirming equilibrium
We now analyze a version of the model in which both players’ actions are privately observed
and there is no public signal (no ε–alarm or leak). A detected deception still terminates the
relationship, but detection occurs only when the receiver privately checks and the sender
privately deceives. We study stationary self–confirming equilibria (SCE) in which players use
time–invariant mixing intensities and hold correct beliefs about the distribution of their own
private signals induced by the strategy profile, without requiring common knowledge of the
full play path.14

14Our notion matches the standard definition of SCE for repeated interactions with private monitoring:
each player’s strategy is a best response to her conjecture about the distribution of signals she observes, and
her conjecture is correct along the realized path; off–path beliefs need not be correct. See Fudenberg and
Levine (1993) for the original definition and Dekel et al. (1999) for a discussion in repeated settings.
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Primitives are as in the main text (benefit B > 0, cost C > 0, discount δ ∈ (0, 1),
compensation R ≥ 0 upon detected deception), except there is no public information. To
allow the receiver to face deception risk even if some senders are intrinsically honest, we keep
a (possibly zero) probability θ ∈ [0, 1] that the sender is a committed honest type. A strategic
sender chooses between truth and deceive; a strategic receiver chooses between trust and check.
The committed honest sender always plays truth; there is no committed vigilant receiver in
this subsection (the receiver we study is the long–run strategic player in the relationship).

We focus on stationary rate profiles: the strategic sender deceives each period with
probability σ ∈ [0, 1], and the receiver checks with probability ρ ∈ [0, 1]. Let

s : = (1 − θ) σ (deception probability in a period),
h : = ρ s (termination hazard per period).

Fix (σ, ρ) and let Vs and Vr denote the (stationary) continuation values at the start of a
period for the strategic sender and the strategic receiver, respectively. Because both actions
are private and there is no public signal, the only way the relationship ends is if the receiver
checks and the sender deceives in that period, which occurs with probability h = ρs.

For the strategic sender, choosing deceive yields a current payoff B and continuation only
if not checked (probability 1 − ρ when he deceives); choosing truth yields no current payoff
and always continues. Under stationary mixing, the sender’s continuation value therefore
satisfies

Vs = σ
(
B + δ(1 − ρ) Vs

)
+ (1 − σ)

(
0 + δVs

)
= σ B

1 − δ + δ ρ σ
. (OA3.6)

For the strategic receiver, checking yields B on truthful periods and R on deceptive periods,
and kills continuation on deception; trusting yields B on truthful periods and 0 on deceptive
periods, and never kills continuation. Hence her continuation value under rate ρ is

Vr = ρ
(
B(1 − s) + R s − C + δ(1 − s) Vr

)
+ (1 − ρ)

(
B(1 − s) + δVr

)
= B(1 − s) + ρ(R s − C)

1 − δ + δ ρ s
.

(OA3.7)

Let r̂ denote the sender’s conjectured probability of being checked conditional on deceiving,
and let ŝ denote the receiver’s conjectured probability of encountering deception in a period.
In a stationary SCE, conjectures must match the on–path frequencies of the private signals
the player actually observes:

r̂ = ρ, ŝ = s = (1 − θ)σ if the receiver checks with positive probability; (OA3.8)

if the receiver never checks (ρ = 0), then ŝ is unrestricted (the receiver observes no informative
signal along the path), consistent with SCE.
Definition OA3.3. A stationary SCE is a tuple (σ, ρ, r̂, ŝ) such that: (i) σ ∈ arg maxσ̃∈[0,1] Us(σ̃; r̂),
where Us is the sender’s stationary value computed from (OA3.6) with ρ replaced by r̂; (ii)
ρ ∈ arg maxρ̃∈[0,1] Ur(ρ̃; ŝ), where Ur is the receiver’s stationary value computed from (OA3.7)
with s replaced by ŝ; and (iii) the on–path consistency conditions (OA3.8) hold.
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The best–response problems are affine in own control because continuation values are
linear–fractional but enter the one–shot Bellman comparisons linearly. This yields sharp
characterization.

Lemma OA3.4. Fix any conjectured check rate r̂ ∈ [0, 1) and δ ∈ (0, 1). For all B > 0, the
sender’s unique best response is pure deception σ∗ = 1.

Proof. Given r̂, the sender’s marginal gain from deceiving today rather than telling the truth
equals

∆s = B − δ r̂ Vs(σ; r̂), Vs(σ; r̂) = σB

1 − δ + δ r̂ σ
.

Evaluating at any σ ∈ [0, 1] gives

∆s = B
1 − δ

1 − δ + δ r̂ σ
> 0 for δ ∈ (0, 1).

Thus deception strictly dominates truth and the unique best response is σ∗ = 1.

Lemma OA3.5. Fix any conjectured deception frequency ŝ ∈ [0, 1] and δ ∈ (0, 1). The
receiver’s value under check rate ρ is

Vr(ρ; ŝ) = B(1 − ŝ) + ρ(R ŝ − C)
1 − δ + δ ρ ŝ

.

It is (weakly) increasing in ρ iff R ŝ ≥ C and (strictly) decreasing in ρ iff R ŝ < C. Conse-
quently,

ρ∗ =


1, if R ŝ > C,

[0, 1], if R ŝ = C,

0, if R ŝ < C.

Proof. Differentiate Vr(ρ; ŝ) in ρ:

∂Vr

∂ρ
= (R ŝ − C) (1 − δ + δ ρ ŝ) − δ ŝ [B(1 − ŝ) + ρ(R ŝ − C)]

(1 − δ + δ ρ ŝ)2

= (1 − δ) (R ŝ − C)
(1 − δ + δ ρ ŝ)2 .

The denominator is positive and (1 − δ) > 0, so the sign is the sign of (R ŝ − C), yielding the
stated monotonicity and argmax.

We can now solve for stationary SCE outcomes by combining best responses with on–path
consistency.

Theorem OA3.6. For any δ ∈ (0, 1), B > 0, C > 0, R ≥ 0, and θ ∈ [0, 1], there exists a
stationary self–confirming equilibrium. Moreover, in every stationary SCE the strategic sender
plays pure deception σ∗ = 1. Let ŝ∗ = (1 − θ)σ∗ = 1 − θ be the receiver’s on–path deception
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risk and let r̂∗ = ρ∗ be the sender’s on–path check rate. Then the receiver’s equilibrium
checking rate is

ρ∗ =


1, if R (1 − θ) > C,

[0, 1], if R (1 − θ) = C,

0, if R (1 − θ) < C.

In particular, if R (1 − θ) ≤ C, the unique stationary SCE outcome has (σ∗, ρ∗) = (1, 0) with
zero termination hazard and perpetual deception by the strategic sender.

Proof. By Lemma OA3.4, any SCE must have σ∗ = 1. Consistency then implies the
receiver’s conjectured deception frequency equals the true on–path frequency ŝ∗ = 1 − θ.
By Lemma OA3.5, the receiver’s best response is as stated, and we set r̂∗ = ρ∗ to satisfy
on–path consistency for the sender. Thus (σ∗, ρ∗, r̂∗, ŝ∗) is a stationary SCE for the three
cases, yielding existence. Uniqueness of σ∗ and the stated characterization of ρ∗ follow from
the strict inequalities in Lemmas OA3.4–OA3.5.

From Theorem OA3.6, σ∗ is invariant (equal to 1) and ρ∗ is weakly increasing in R, weakly
decreasing in C, and weakly decreasing in θ (a higher share of intrinsically honest senders
reduces the payoff from checking). If R (1−θ) < C, the receiver never checks, the termination
hazard is h∗ = 0, and the strategic sender’s value equals V ∗

s = B/(1 − δ). If R (1 − θ) > C,
the receiver always checks, the relationship terminates in the first period unless the sender is
intrinsically honest; ex ante the receiver’s value is B θ + (R − C) (1 − θ) and the strategic
sender’s value is B (one–period gain), both independent of δ due to immediate absorption.

The SCE analysis shows that with fully private monitoring and no public information,
dynamic reputational incentives collapse: the strategic sender strictly prefers deception in
every period whenever δ < 1, and the receiver’s check rate responds only to the static
inequality R (1 − θ) ≷ C. This degeneracy justifies the minimal public revelation device in
Section OA3: even vanishingly rare public news (the ε–alarm with likelihood ratio κ > 1)
restores a Markov public state, stationary PBE existence, and nontrivial cutoff comparative
statics in the main variables (B, C, δ).

OA3.3 Silent–audit leakage q ∈ (0, 1)
We consider a fully private–monitoring environment with no exogenous public signal, but
where a truthful check is publicly disclosed with probability q ∈ (0, 1) (a “silent audit” that
sometimes leaks).15 The public observes either a disclosure event D = 1 (truthful check
disclosed), no disclosure D = 0, or termination. We show that the public belief about sender
honesty λ is Markov, that stationary PBE exist, and that the model nests the main text as
q ↑ 1.

At public belief λ, the strategic sender deceives with probability σ(λ) ∈ [0, 1] and the
receiver inspects with probability ρ(λ) ∈ [0, 1]. Let p̄check(λ) := µ0 + (1 − µ0)ρ(λ) denote

15Termination after detected deception, (deceive, check), is publicly observed and remains absorbing.
Receiver checks and sender actions are otherwise private.
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the (public) probability that a strategic sender is checked (the receiver may be a committed
vigilant type with probability µ0).

A public disclosure D = 1 occurs if and only if a check occurred and truth was verified
and disclosed (probability q). Thus

Pr(D = 1 | honest) = q p̄check(λ), Pr(D = 1 | strategic) = q p̄check(λ) [1 − σ(λ)].

Bayes’ rule gives the posterior after disclosure:

λ1(λ) = λ

λ + (1 − λ) [1 − σ(λ)] . (OA3.9)

Conditional on survival and no disclosure D = 0, we must rule out observed termination
(which would happen only if the strategic sender is checked while deceiving). The probability
of D = 0 and survival is:

Pr(D = 0, survive | honest) = 1 − q p̄check(λ),

Pr(D = 0, survive | strategic) = σ(λ) [1 − p̄check(λ)] +
(
1 − σ(λ)

) (
1 − q p̄check(λ)

)
.

Hence the posterior after no disclosure (and no termination) is

λ0(λ) = λ (1 − q p̄check(λ))
λ (1 − q p̄check(λ)) + (1 − λ) (σ(λ) [1 − p̄check(λ)] + (1 − σ(λ)) [1 − q p̄check(λ)]) .

(OA3.10)
The (public) hazard of termination in a period with belief λ equals

h(λ) = p̄check(λ) (1 − λ) σ(λ), (OA3.11)

the probability that a strategic sender deceives and is checked.
Let Vs(λ) and Vr(λ) be the continuation values when the relationship is active at public

belief λ. Define the disclosure operator for i ∈ {s, r}:

Gdisc
i,q (λ; Vi) := q Vi

(
λ1(λ)

)
+ (1 − q) Vi

(
λ0(λ)

)
. (OA3.12)

If the strategic sender plays deceive at λ, he receives B and survives only if not checked
(probability 1 − p̄check(λ)), in which case the public sees no disclosure and continues at λ0(λ):

V deceive
s (λ) = B + δ

(
1 − p̄check(λ)

)
Vs

(
λ0(λ)

)
.

If he plays truth, he receives 0 and always survives; the next public belief is λ1(λ) with
probability q p̄check(λ) and λ0(λ) otherwise:

V truth
s (λ) = δ Gdisc

s,q (λ; Vs).

Thus

Vs(λ) = max
{

δ Gdisc
s,q (λ; Vs) , B + δ (1 − p̄check(λ)) Vs

(
λ0(λ)

)}
. (OA3.13)
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For the receiver, if she checks, her current payoff is B ·
(
λ + (1 − λ)(1 − σ(λ))

)
+ R ·

(1 − λ)σ(λ) − C; continuation arises only on truthful periods and equals δ Gdisc
r,q (λ; Vr). If she

trusts, her current payoff is B ·
(
1 − (1 − λ)σ(λ)

)
and the next public belief is λ0(λ) (no

disclosure can occur without a check), so continuation is δVr(λ0(λ)):

Vr(λ) = max
{ trust︷ ︸︸ ︷

B
[
1 − (1 − λ)σ(λ)

]
+ δ Vr

(
λ0(λ)

)
,

B
[
λ + (1 − λ)(1 − σ(λ))

]
+ R(1 − λ)σ(λ) − C + δ Gdisc

r,q (λ; Vr)︸ ︷︷ ︸
check

}
.

(OA3.14)
At any mixing belief λ∗, V truth

s (λ∗) = V deceive
s (λ∗) and the two receiver values coincide,

yielding:
B = δ p̄check(λ∗)

[
q Vs

(
λ1(λ∗)

)
+ (1 − q) Vs

(
λ0(λ∗)

)]
, (OA3.15)

C = R (1 − λ∗)σ(λ∗) + δ
([

1 − (1 − λ∗)σ(λ∗)
]

Gdisc
r,q (λ∗; Vr) − Vr

(
λ0(λ∗)

))
. (OA3.16)

The B terms cancel in (OA3.16) because the expected stage benefit from truth is the same
under trust and check.

Theorem OA3.7. For any q ∈ (0, 1), δ ∈ (0, 1), B > 0, C > 0, R ≥ 0, and µ0 ∈
[0, 1], there exists a stationary Perfect Bayesian equilibrium in public state λ with (possibly
mixed) policies (σ, ρ) and bounded continuous values (Vs, Vr) solving (OA3.13)–(OA3.14). At
any mixed λ∗, the indifference conditions (OA3.15)–(OA3.16) hold with posteriors given by
(OA3.9)–(OA3.10).

Proof. Fix measurable (σ, ρ). Because λ 7→ λ1(λ) and λ 7→ λ0(λ) are continuous (denomina-
tors are bounded away from zero on [0, 1]) and q ∈ (0, 1), the operator that maps (Vs, Vr) to the
right–hand sides of (OA3.13)–(OA3.14) is a contraction with modulus δ on the sup–normed
space of bounded functions: the only dependence on (Vs, Vr) is affine through Gdisc

i,q and
Vi(λ0(λ)) (each multiplied by δ). By Banach’s fixed–point theorem there is a unique bounded
continuous value pair (Vs, Vr) for each (σ, ρ).

Define pointwise best–reply correspondences at each λ by comparing the two affine
payoff–continuation expressions for the sender (truth vs. deceive) and the receiver (trust vs.
check). Continuity of (Vs, Vr) in (σ, ρ) (parametric contraction) implies these correspondences
are nonempty, convex–valued, and upper hemicontinuous in (σ, ρ) (Berge’s maximum theorem).
On the compact convex strategy space of measurable policies λ 7→ (σ(λ), ρ(λ)) ∈ [0, 1]2
(product topology), Kakutani–Fan–Glicksberg delivers a fixed point (σ∗, ρ∗); Bayes consistency
follows by construction from (OA3.9)–(OA3.10). Measurable selection for the pointwise best
replies is ensured by Kuratowski–Ryll–Nardzewski. This yields a stationary PBE.

Proposition OA3.8. Suppose Vs, Vr are increasing in λ and p̄check(λ) is weakly decreasing in
λ (receiver more lenient at higher honesty). Then the sender’s best reply is (weakly) decreasing
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in p̄check(λ) and the receiver’s best reply is (weakly) decreasing in λ. Consequently, stationary
PBE policies admit cutoff characterizations: there exists λ∗ such that the receiver checks if
and only if λ ≤ λ∗, and for each λ the sender deceives with probability decreasing in p̄check(λ)
(in particular, pure deception for sufficiently low p̄check).

Proof. The sender’s indifference residual at λ equals

∆s(λ) : = δ Gdisc
s,q (λ; Vs) −

[
B + δ(1 − p̄check(λ)) Vs(λ0(λ))

]
= −B + δ p̄check(λ)

[
q Vs(λ1(λ)) + (1 − q) Vs(λ0(λ))

]
.

This is increasing in p̄check(λ) since Vs is nonnegative; thus the sender is less inclined to
deceive when p̄check is higher. For the receiver, the difference “check − trust” at λ is

∆r(λ) = R(1 − λ)σ(λ) − C + δ
([

1 − (1 − λ)σ(λ)
]
Gdisc

r,q (λ; Vr) − Vr(λ0(λ))
)

,

which is increasing in λ if Vr is increasing and p̄check is weakly decreasing in λ (so λ0(λ) and
λ1(λ) are increasing in λ). Hence the receiver is less inclined to check at higher λ, producing
a cutoff.

Theorem OA3.9. Let {qn} ⊂ (0, 1) with qn → q0 ∈ (0, 1].
For each n, let (σqn , ρqn , Vs,qn , Vr,qn) be a stationary PBE of the silent–audit model with

q = qn. There exists a subsequence along which (σqn , ρqn) converges uniformly on compact
subsets of (0, 1) to a stationary PBE (σq0 , ρq0) of the model with q = q0, and Vi,qn → Vi,q0

uniformly on compact subsets for i ∈ {s, r}. In particular, as q ↑ 1 the equilibria converge to
a stationary PBE of the main termination model where truthful checks are fully public.

Proof. The Bayes maps λ 7→ λ1(λ) and λ 7→ λ0(λ) depend continuously on (q, σ, ρ) on
any compact subset of (0, 1), with denominators bounded away from zero since q ∈ (0, 1]
and p̄check(λ) ∈ [0, 1]. The policy–evaluation operator induced by (OA3.13)–(OA3.14) is a
contraction with common modulus δ, jointly continuous in (q, σ, ρ); parametric contraction
then implies continuity of fixed points (Vs, Vr) in (q, σ, ρ) (Stokey–Lucas–Prescott; Puterman).
Pointwise best–reply correspondences are upper hemicontinuous in (q, σ, ρ) (Berge). A
standard diagonal extraction (Arzelà–Ascoli on compact subsets using uniform Lipschitz
bounds implied by the contraction) yields a subsequence with (σqn , ρqn) converging to (σq0 , ρq0)
which is a fixed point of the limiting best–reply correspondence at q0 (closed–graph argument;
Kakutani–Fan–Glicksberg). For q0 = 1, the disclosure operator (OA3.12) collapses to
Vi(λ1(λ)), giving precisely the main model’s public-check recursion.

From (OA3.15), the sender’s deterrence margin scales with q Vs(λ1) + (1 − q)Vs(λ0); thus
increasing q (greater transparency of truthful checks) raises the right–hand side and reduces
the deception region (lower σ or higher receiver cutoff). From (OA3.16), the receiver is more
inclined to check when R is larger, C is smaller, or q is higher (truthful checks produce more
public discipline). The hazard (OA3.11) obeys the same comparative statics in p̄check, λ, and
σ as in the main text.
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As q ↓ 0, truthful checks almost never become public; the public belief moves primarily
through λ0, and dynamic reputational discipline weakens, approaching the SCE benchmark
in Section OA3.2. With q = 1, silent audits vanish and we recover the main termination
model in which truthful checks are publicly observed, so the equilibrium cutoffs and hazards
coincide with those derived in the body of the paper (cf. Sections 5 and 8).

OA3.4 Continuous time with Poisson news
We develop a continuous–time counterpart in which public information arrives via a Poisson
“news” process that is more likely under deception. Actions are chosen as rates that affect
the termination hazard and (for the sender) the public news intensity through mixing. We
derive the Bayesian filter for the public honesty belief, write the generator, and formulate the
stationary HJB system. Under standard regularity (compact controls, bounded intensities),
stationary Markov perfect equilibria (MPE) exist; receiver best–responses are cutoff in the
public belief, and the model nests the discrete–time ε–alarm limit as ∆t ↓ 0.

Time is continuous. The discount rate is β > 0. Let λt ∈ [0, 1] denote the public belief at
time t that the sender is the committed honest type. A public counting process Nt records
“news” arrivals with state–dependent intensity: under truth the intensity is ε > 0, under
deceive it is κε with κ > 1 (more alarms under deception).

The sender is either a committed honest type or a strategic type. The committed honest
type always chooses truth. A strategic sender chooses a deception rate σ(λ) ∈ [0, 1] as a
Markov policy. The receiver chooses a private inspection rate r(λ) ∈ [0, r̄] with r̄ < ∞;
inspections are not publicly observed. The relationship terminates upon a detected deception,
which occurs when the strategic sender is deceiving at that instant and an inspection arrives;
the (public) termination intensity at belief λ is

h(λ) = r(λ) (1 − λ) σ(λ). (OA3.17)

When termination occurs, the sender’s continuation drops to 0 and the receiver receives a
lump–sum compensation R ≥ 0 contemporaneously (the continuous–time analogue of the
discrete compensation).

Conditional on belief λ and strategic mixing σ(λ), the observed public news intensity
equals

λ̄(λ) := ε
(

λ + (1 − λ) [ σ(λ) κ + (1 − σ(λ)) ]
)

= ε
(
1 + (1 − λ) σ(λ) (κ − 1)

)
. (OA3.18)

Let dNt be the increment of the news process and set the innovation dÑt := dNt −
λ̄(λt−) dt. The (Kallianpur–Striebel/Wonham) filter for point–process observations gives the
FN–posterior SDE (see, e.g., Bain and Crisan (2009, Sec. 9.4), Liptser and Shiryaev (1977,
Ch. VI), Brémaud (1981, Ch. VII)):

dλt = λt−(1 − λt−) ε − ε[1 + σ(λt−)(κ − 1)]
λ̄(λt−)

dÑt = − λt−(1 − λt−) ε(κ − 1) σ(λt−)
λ̄(λt−)

dÑt.

(OA3.19)
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Between news arrivals (dNt = 0), dλt = +ε(κ − 1) σ(λt) λt(1 − λt) dt (belief drifts upward);
at an arrival (dNt = 1), λ jumps down to the Bayes posterior

λt = λt−

λt− + (1 − λt−) [ σ(λt−) κ + (1 − σ(λt−)) ] = λt−

1 + (1 − λt−) σ(λt−) (κ − 1) .

(OA3.20)
Equations (OA3.19)–(OA3.20) define a controlled pure–jump Markov process on [0, 1].

For f ∈ C1([0, 1]), the (controlled) generator under policy pair (σ, r) is

Lσf(λ) = ε(κ − 1) σ(λ) λ(1 − λ) f ′(λ)︸ ︷︷ ︸
drift between alarms

+ λ̄(λ)
[
f(λ1(λ)) − f(λ)

]
︸ ︷︷ ︸

downward jump at alarms

, (OA3.21)

where λ1(λ) is the post–alarm posterior in (OA3.20). The termination intensity h(λ) in
(OA3.17) multiplies −f(λ) in the HJB (absorption at zero continuation).

Per unit time, the strategic sender obtains flow B σ(λ); the receiver obtains B [1 − (1 −
λ) σ(λ)] (benefit when service is truthful), and pays C r(λ); the receiver also obtains a
lump–sum R at termination (with intensity h(λ)).

OA3.4.1 Stationary HJB and equilibrium

For bounded measurable policies (σ, r), the value functions Vs, Vr : [0, 1] → R solve the linear
stationary HJB system

β Vs(λ) = sup
ς∈[0,1]

{
B ς + LςVs(λ) − r(λ) (1 − λ) ς Vs(λ)

}
, (OA3.22)

β Vr(λ) = sup
ϱ∈[0,r̄]

{
B
[
1 − (1 − λ) σ(λ)

]
− C ϱ + LσVr(λ)

− ϱ (1 − λ) σ(λ) Vr(λ) + R ϱ (1 − λ) σ(λ)
}

,

(OA3.23)

with Lς denoting (OA3.21) evaluated at the candidate sender rate ς and with boundary
conditions Vs(0) = Vs(1) finite, Vr(0) = Vr(1) finite. A stationary Markov perfect equilibrium
(MPE) is a pair of measurable controls (σ∗, r∗) such that for every λ, σ∗(λ) attains the
supremum in (OA3.22) and r∗(λ) attains the supremum in (OA3.23), for the corresponding
value pair (Vs, Vr) solving the HJB system.

Theorem OA3.10. Assume β > 0, ε > 0, κ > 1, B > 0, C > 0, R ≥ 0, and compact control
sets ς ∈ [0, 1], ϱ ∈ [0, r̄] with r̄ < ∞. Then there exists a stationary Markov perfect equilibrium
(σ∗, r∗) with bounded continuous value functions Vs, Vr that solve (OA3.22)–(OA3.23).

Proof sketch. Fix measurable (σ, r). The state process λt is a controlled pure–jump Markov
process on the compact metric space [0, 1] with bounded drift and jump intensity (OA3.21).
Standard results for controlled Markov processes with bounded rates imply the β–discounted
value problem admits a unique bounded solution to the linear HJB (resolvent) equations
for given (σ, r) (see Davis (1993, Ch. 1–3), Hernández-Lerma and Lasserre (1996, Ch. 10),
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Fleming and Soner (2006, Ch. 3) for pure–jump/PDMP settings). Denote the solution
(V σ,r

s , V σ,r
r ).

Define pointwise best–response correspondences: at each λ, the sender chooses ς ∈ [0, 1]
to maximize the affine map

ς 7→ B ς + LςV σ,r
s (λ) − r(λ) (1 − λ) ς V σ,r

s (λ),

and the receiver chooses ϱ ∈ [0, r̄] to maximize the affine map

ϱ 7→ −C ϱ − ϱ (1 − λ) σ(λ) V σ,r
r (λ) + R ϱ (1 − λ) σ(λ).

Each is a nonempty compact convex–valued correspondence that is upper hemicontinuous in
(σ, r) by Berge’s maximum theorem (continuity of LςV σ,r

s in (ς, σ, r) follows from bounded
intensities and continuity of V σ,r

s ; similarly for the receiver). On the compact convex product
space of measurable policies [0, 1][0,1] × [0, r̄][0,1] (product topology), the global best–reply
correspondence has a closed graph (product of u.h.c. correspondences with compact values).
Kakutani–Fan–Glicksberg then yields a fixed point (σ∗, r∗); measurable selection is ensured
by Kuratowski–Ryll–Nardzewski since the graphs are measurable and values compact. The
associated value pair (Vs, Vr) solves (OA3.22)–(OA3.23).

Lemma OA3.11. Suppose Vr is increasing in λ and σ(λ) is weakly decreasing in λ (sender
more honest when public believes he is honest). Then the receiver’s best response r∗(λ) is
weakly decreasing in λ and takes a cutoff form: there exists λ∗ ∈ [0, 1] with r∗(λ) > 0 only if
λ ≤ λ∗; if interior, r∗(λ) is uniquely pinned down by the first–order condition

C = (1 − λ) σ(λ)
(
R − Vr(λ)

)
. (OA3.24)

Proof. For fixed λ, the receiver’s choice enters (OA3.23) only through the affine term − ϱ (1−
λ) σ(λ) Vr(λ) − Cϱ + R ϱ (1 − λ) σ(λ). Hence the maximizer is r∗(λ) = r̄ if the coefficient
of ϱ is positive, r∗(λ) = 0 if negative, and any value if zero. The coefficient equals (1 −
λ)σ(λ) (R − Vr(λ)) − C, which is weakly decreasing in λ if Vr is increasing and σ is weakly
decreasing in λ; thus a cutoff exists. If an interior solution is chosen (e.g., by imposing a
convex penalty or smoothing), it must satisfy (OA3.24).

Lemma OA3.12. Fix r(·). At any λ, the sender’s HJB objective in (OA3.22) is strictly
decreasing in the effective discipline index

D(λ; Vs) := r(λ) (1 − λ) Vs(λ) − ε(κ − 1) λ(1 − λ)
(

Vs(λ) − Vs

(
λ1(λ)

)
︸ ︷︷ ︸

news gap

)
.

Consequently, if D is weakly increasing in λ, then the sender’s deception rate σ∗(λ) is weakly
decreasing in λ.

Proof sketch. Differentiate the sender’s objective in (OA3.22) with respect to ς using the
envelope for the generator: the marginal effect consists of the direct gain B, the marginal
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increase in drift ε(κ − 1)λ(1 − λ)V ′
s (λ), the marginal increase in news intensity times the

jump loss
(
Vs(λ1) − Vs(λ)

)
, and the marginal increase in termination hazard −r(1 − λ)Vs(λ).

Grouping terms and using the chain rule V ′
s (λ) dλ1/dς = Vs(λ1) − Vs(λ) (a standard identity

for log–likelihood filters; see Bain and Crisan (2009, Prop. 9.4.1)) gives the stated index D.
Monotonicity then follows.

Let ∆t > 0 and embed the discrete–time ε–alarm model with period length ∆t and discount
factor δ = e−β∆t. Set period alarm probabilities ε∆ = ε ∆t + o(∆t) and κε∆ = κε ∆t + o(∆t),
and let the receiver’s check probability be r(λ) ∆t + o(∆t) while the sender’s deception
probability is σ(λ) ∆t + o(∆t) when using rate controls. Then the discrete Bayes maps and
Bellman equations converge to the continuous filter (OA3.19)–(OA3.20), generator (OA3.21),
and HJB system (OA3.22)–(OA3.23) as ∆t ↓ 0 (standard weak–convergence of controlled
pure–jump processes; cf. Ethier and Kurtz (1986, Ch. 11)). Higher κ or ε steepens the news
gap Vi(λ) − Vi(λ1) and the drift in (OA3.21), improving discipline and reducing the deception
region; larger B increases the sender’s incentives to deceive; higher C depresses inspections
via (OA3.24); larger R increases inspections. The hazard h(λ) = r(λ) (1 − λ) σ(λ) inherits
the cutoff tapering in λ from Lemma OA3.11.

The existence proof extends to finite punishment phases by augmenting the state with a
finite Markov punishment flag, preserving compactness and bounded rates. Under additional
smoothness (e.g., C1 values), one may express the sender’s margin at mixing λ∗ in a closed
form equating B to a weighted combination of the termination loss r(1 − λ∗)Vs(λ∗) and the
news gap scaled by ε(κ − 1).
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