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Abstract. The use of the Expected Shortfall as a solution for various deficiencies of

quantiles has gained substantial traction in the field of risk assessment over the last 20 years.

Existing approaches to its inference at extreme levels remain limited to distributions that are

both heavy-tailed and have a finite second tail moment. This constitutes a strong restriction

in areas like finance and environmental science, where the random variable of interest may

have a much heavier tail or, at the opposite, may be light-tailed or short-tailed. Under a

wider semiparametric extreme value framework, we develop comprehensive asymptotic theory

for Expected Shortfall estimation above extreme quantiles in the class of distributions with

finite first tail moment, regardless of whether the underlying extreme value index is positive,

negative, or zero. By relying on the moment estimators of the scale and shape extreme

value parameters, we construct corrected asymptotic confidence intervals whose finite-sample

coverage is found to be close to the nominal level on simulated data. We illustrate the

usefulness of our construction on two sets of financial loss returns and flood insurance claims

data.
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1 Introduction

Tail risk assessment is concerned with the analysis of rare events that carry potential serious

impacts on healthcare systems, the environment or the economy. The most common univariate

risk measure, referred to as Value-at-Risk, is the quantile q(τ) of a random risk variable X,

for a suitable τ ∈ (0, 1). Unfortunately, this risk measure is unable to give any idea of the

shape of the distribution of X beyond q(τ), and does not define a coherent risk measure in a

financial and actuarial sense, see Artzner et al. (1999) and Acerbi (2002).

A better alternative to q(τ) in these respects is the Expected Shortfall at level τ , namely

ES(τ) :=
1

1− τ

∫ 1

τ
q(t)dt.

When the distribution of X is continuous, this is the τ -Conditional Value-at-Risk or Condi-

tional Tail Expectation CTE(τ) = E(X |X > q(τ)) (Rockafellar and Uryasev, 2002). The

Expected Shortfall risk measure takes all values of the variable X beyond q(τ) into account.

Being a spectral risk measure with positive and nonincreasing risk spectrum, it is coherent

and comonotonically additive, see Theorem 4.47 p.180 and Remark 4.85 p.199 in Föllmer and

Schied (2004). It is preferred by practitioners concerned with exposure to catastrophic finan-

cial events (Acerbi and Tasche, 2002a,b). It is also favored by major regulators, including

the EU, UK, Australia and Canada, which will require the use of ES(97.5%), rather than

VaR(99%), in alternative internal models from 1 January 2025. In the EU, this is codified

by Article 325ba(1) of Regulation (EU) No 2019/876, updating the Capital Requirements

Regulation (EU) No 575/2013, implementing the Basel Committee on Banking Supervision

rules.

The estimation of the Expected Shortfall has so far mostly focused on its empirical counter-

part. To simplify the presentation, we consider in this introduction the setting when n(1− τ)

is an integer and F is continuous. Then the empirical estimator of ES(τ) is

1

1− τ

∫ 1

τ
q̂n(t)dt or equivalently

1

n(1− τ)

n(1−τ)∑
i=1

Xn−i+1:n,

where q̂n(t) = Xdnte:n is the empirical quantile function of a sample (X1, . . . , Xn) from X,

with X1:n ≤ X2:n ≤ · · · ≤ Xn:n being the order statistics in ascending order. This is an

L−statistic, whose asymptotic behavior has been considered by Brazauskas et al. (2008) for

fixed τ , and by El Methni et al. (2014, 2018), El Methni and Stupfler (2017) and Goegebeur

et al. (2022) at levels τn ↑ 1 as n → ∞, under the assumption that X+ = max(X, 0) has a

finite variance. This restricts appreciably the range of potential applications; for example,

the analysis of the French commercial losses fire insurance dataset of El Methni and Stupfler

(2018) suggests that the underlying distribution there is integrable but has an infinite second
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moment. Apart from El Methni et al. (2018), who consider a general extreme value setting

in nonparametric regression, existing results also assume that the distribution of X is heavy-

tailed. This may constitute a substantial restriction for environmental applications (Beirlant

et al., 2004) but also in finance (Daouia et al., 2024a). The work of El Methni et al. (2018) is,

however, restricted to intermediate risk measures ES(τn) that are only moderately extreme

and stay within the sample.

Developing inference procedures for the empirical Expected Shortfall at extreme levels

under minimal restrictions on the tail of X is the original motivation for this article. We work

under the second-order version of the general extreme value assumption about the quantile

function q(·), which essentially conveys that the right tail of the distribution of X can be

approximated by that of a Generalized Pareto distribution. This makes it possible to construct

extrapolated estimators of the Expected Shortfall using extreme value estimators of the scale

and shape parameters of the approximating Generalized Pareto distribution. Depending on

the class of estimators that is used, the extreme value assumption about q(·) may not be

sufficient; for instance, if the moment estimators of Dekkers et al. (1989) are employed, then an

analogous extreme value assumption about log q(·) should hold, see pp.103-104 in de Haan and

Ferreira (2006). This requires extra technical assumptions about the extreme value parameters

of X, whose necessity for practical purposes is unclear.

Lifting these restrictions is the second motivation for this paper. We first treat the case

of an intermediate, in-sample level τn ↑ 1 by examining the asymptotic behavior of two dif-

ferent classes of estimators: the empirical version and a semiparametric estimator based on

an asymptotic equivalent of ES(τ) − q(τ) as τ ↑ 1. In particular, we obtain the convergence

of the centered and renormalized empirical Expected Shortfall to a stable distribution when

the right tail of X has an infinite second moment. We then get the asymptotic distributions

of extrapolated versions of these Expected Shortfall estimators using the moment estimators

of Dekkers et al. (1989); a useful tool for that purpose, which is of independent interest, is

a new uniform second-order inequality on the log-quantile function of X that holds under

no restrictions whatsoever on the extreme value parameters of X. In particular, we obtain

in passing the asymptotic normality of the moment extreme value index estimator under

no restriction on the second-order extreme value parameter, contrary to the classical result

of Dekkers et al. (1989) which is stated in the reference monograph by de Haan and Fer-

reira (2006, Theorem 3.5.4 on p.104), see Lemma A.10 in the Appendix. We find that the

quality of the asymptotic approximations to the finite-sample distributions of the extrapo-

lated Expected Shortfall estimators can be disappointing, which motivates our construction

of corrected asymptotic confidence intervals by building upon a fine understanding of the

asymptotic behavior of the estimators and the uncertainty introduced by plugging parame-

ter estimates into asymptotic variances and correlations. Our intervals are found to perform
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reasonably well.

This article is organized as follows. We introduce our extreme value framework in Sec-

tion 2. The asymptotic properties of our extreme Expected Shortfall estimators are examined

in Section 3. Inference procedures are considered in Section 4. A finite-sample simulation

study and two real data analyses are reported in Section 5. The Appendix contains all nec-

essary mathematical proofs, further technical details especially about the construction of our

inference procedures, and additional finite-sample results.

2 Statistical framework and motivation

Let F : x 7→ P(X ≤ x) denote the distribution function of the random variable of interest X.

The associated quantile function is q : τ 7→ inf{x ∈ R |F (x) ≥ τ}, and the tail quantile

function is U : t 7→ q(1 − 1/t), for t > 1. We require the following second-order (extended)

regular variation condition on U , which imposes that the right tail of the distribution of X

can be approximated by a Generalized Pareto distribution tail at a known rate:

C2(γ, a, ρ,A) There are γ ∈ R, a scale function a(·) > 0, a second-order parameter ρ ≤ 0

and an auxiliary function A(·) having constant sign and converging to 0 at infinity such that

∀x > 0, lim
t→∞

1

A(t)

(
U(tx)− U(t)

a(t)
−
∫ x

1
sγ−1ds

)
=

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds.

This is a standard condition in extreme value theory, which plays a crucial role in obtaining

refined results on tail estimation, such as central limit theorems and bias reduction procedures,

as pointed out in the discussion pp.302-303 in Fraga Alves et al. (2007). On the theoretical

side, de Haan and Resnick (1996) explores its links with so-called von Mises conditions and

its implications on convergence rates of linearly normalized sample maxima to their natural

Generalized Extreme Value limits in several metrics. This kind of second-order condition can-

not be avoided if no precise model structure is assumed on F and a semiparametric procedure

to recover the right tail behavior of X is sought: see, for example, Sections 2.3 and 2.4 and

Chapter 3 in de Haan and Ferreira (2006), Section 5.6 in Beirlant et al. (2004), and Chapter 2

in Falk et al. (2011) from Section 2.2 onwards. It should, however, be noted that its verification

in practice is notoriously challenging, as no formal tests or diagnostic checks currently exist

to assess its validity in the case of a general Max-Domain of Attraction (MDA). Estimators

for second-order parameters have been proposed in Gomes and Martins (2002), Fraga Alves

et al. (2003) and Caeiro et al. (2005) to assess the strength of the second-order behavior only

in the heavy-tailed case, with later work by Cai et al. (2013) providing consistent second-

order parameter estimators in the setting γ ∈ (−∞, 1/2). Let us also highlight that several

simple sufficient criteria have been recently developed in Stupfler and Usseglio-Carleve (2025)
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to verify second-order regular variation in the light-tailed case given a parametric statisti-

cal model. With these criteria one may show that the second-order condition is satisfied by

most, if not all, of the popular light-tailed distributions, such as the Gaussian, log-normal,

Generalized Gamma, Variance-Gamma and Gamma-Gompertz distributions. Table 1 gives a

non-exhaustive list of distributions satisfying this mild assumption, with corresponding values

of γ, a(·), ρ and A(·), found by applying Lemmas A.1–A.3 in the Appendix.

It follows from assumption C2(γ, a, ρ,A) that for any x > 0, U(tx) ≈ U(t)+a(t)
∫ x

1 s
γ−1ds

as t → ∞. To put it differently, the distribution of X − u given that X > u is, as u

tends to U(∞) = q(1) ≤ ∞, approximately Generalized Pareto with scale parameter σ(u) =

a(1/(1−F (u))), that in general depends on u in a non-trivial way, and shape parameter γ, see

Theorem 1.1.6.4 on p.10 in de Haan and Ferreira (2006). This implies that extreme quantiles

of X can be recovered from so-called intermediate quantiles (colloquially speaking, “extreme,

but not too much”) given estimators of the scale function a(·) and shape parameter γ of the

Generalized Pareto model. A popular solution is the pair of moment estimators developed

by Dekkers et al. (1989), which we introduce now. Let X1, . . . , Xn have the same distribution

as X, and X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the associated order statistics, and assume that

U(∞) = q(1) > 0. Let also (τn) be an intermediate sequence of probabilities, that is, τn ↑ 1

and n(1− τn)→∞. Set

M (1)
n =

1

bn(1− τn)c

bn(1−τn)c∑
i=1

log
Xn−i+1:n

Xdnτne:n
and M (2)

n =
1

bn(1− τn)c

bn(1−τn)c∑
i=1

log2 Xn−i+1:n

Xdnτne:n
.

Then the moment estimators of the scale parameter a(t) at t = (1 − τn)−1 and of the shape

parameter γ are respectively

âMom
n ((1− τn)−1) = Xdnτne:nM

(1)
n (1− γ̂Mom

n,− )

and γ̂Mom
n = M (1)

n + γ̂Mom
n,− , with γ̂Mom

n,− = 1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1

.

A semiparametric estimator of an extreme quantile q(τ ′n), where (τ ′n) is another sequence of

probabilities such that (1− τ ′n)/(1− τn)→ 0, follows as

q̂?n(τ ′n) = Xdnτne:n + âMom
n ((1− τn)−1)

∫ {(1−τ ′n)/(1−τn)}−1

1
sγ̂

Mom
n −1ds.

See Theorem 4.3.1 on p.134 in de Haan and Ferreira (2006) and a discussion of the asymptotic

properties of this estimator in Section 4.3.2 on p.140 therein.

When attempting to transpose that construction to the estimation of the Expected Short-
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fall at extreme levels, it is natural to write first

ES(τ)− q(τ)

a((1− τ)−1)
=

∫ ∞
1

U((1− τ)−1x)− U((1− τ)−1)

a((1− τ)−1)

dx

x2

≈
∫ ∞

1

(∫ x

1
sγ−1ds

)
dx

x2
=

1

1− γ
as τ ↑ 1 (1)

when γ < 1. Besides, by Theorem 2.3.3 on p.44 in de Haan and Ferreira (2006), the function

a(·) is regularly varying with index γ, so that

ES(τ ′n)− q(τ ′n)

a((1− τn)−1)
≈ 1

1− γ
× a((1− τ ′n)−1)

a((1− τn)−1)
≈ 1

1− γ

(
1− τ ′n
1− τn

)−γ
,

ES(τn)− q(τn)

a((1− τn)−1)
≈ 1

1− γ
and

q(τ ′n)− q(τn)

a((1− τn)−1)
≈
∫ {(1−τ ′n)/(1−τn)}−1

1
sγ−1ds.

Combining these three approximations provides

ES(τ ′n)− ES(τn)

a((1− τn)−1)
≈ 1

1− γ

∫ {(1−τ ′n)/(1−τn)}−1

1
sγ−1ds. (2)

Equations (1) and (2) suggest the following class of extrapolated estimators of ES(τ ′n):

ESn(τn) + âMom
n ((1− τn)−1)× 1

1− γ̂Mom
n

∫ (1−τn)/(1−τ ′n)

1
sγ̂

Mom
n −1ds,

with ESn(τn) = ÊSn(τn) =
1

bn(1− τn)c

bn(1−τn)c∑
i=1

Xn−i+1:n (3)

or ESn(τn) = ẼSn(τn) = Xdnτne:n + âMom
n ((1− τn)−1)

1

1− γ̂Mom
n

. (4)

There are, in our view, two main difficulties related to the asymptotic behavior of these

extrapolated estimators. The first one is that the asymptotic theory about ÊSn(τn) has so far

been restricted to heavy-tailed distributions and, within this class, to the range γ ∈ (0, 1/2),

which may be a strong limitation depending on the application at hand; as we shall illustrate

on several samples of real data, there are environmental and financial applications where the

validity of the heavy right tail assumption is dubious, and when it is satisfied, the underlying

distribution may have an infinite variance. This calls for the development of asymptotic theory

for the extrapolated version of ÊSn(τn) in the general MDA, where γ < 1 can be negative,

which would naturally require joint asymptotic theory between ÊSn(τn) and, say, the moment

estimators of a((1−τn)−1) and γ. The second difficulty, which is actually linked to this point,

is that while U satisfies condition C2(γ, a, ρ, A), the currently available asymptotic theory for

these moment estimators, and the extrapolated estimators derived from their use, requires the

somewhat unnatural assumption γ 6= ρ so that a similar condition holds on logU(·), see for

instance the discussions on pp.103 and 140 in de Haan and Ferreira (2006) and Theorem 3.5.4
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on p.104 therein. We shall provide solutions to these two difficulties in the next section, by

studying the asymptotic distribution of ÊSn(τn) in the general setting γ < 1, and by obtaining

directly a slightly weaker, but sufficient, uniform second-order inequality on logU(·) under no

restriction on the pair (γ, ρ).

3 Theory of extreme Expected Shortfall estimation

Let X1, . . . , Xn be independent and identically distributed copies of X, whose tail quantile

function U satisfies condition C2(γ, a, ρ,A). The objective is to estimate an Expected Shortfall

ES(τ) of X above an extreme level q(τ), where τ = τn → 1 as n → ∞. As is typical in

extreme value statistics, we start by the case of an intermediate level τn. In such a case

the target quantity can be estimated nonparametrically. Intermediate quantile estimators

are then extrapolated to properly extreme levels τ ′n, typically satisfying n(1 − τ ′n) = O(1),

using a semiparametric extrapolation formula warranted by condition C2(γ, a, ρ, A) along with

estimators of the scale function a(·) and the shape parameter γ. An important tool will be

the following asymptotic expansion of ES(τ) at high levels τ ; this shall especially be useful

in controlling the bias of extreme value estimators of the Expected Shortfall. Throughout we

let, to be consistent with Section 3.5 in de Haan and Ferreira (2006), x+ = max(x, 0) and

x− = min(x, 0) for any x ∈ R so that x = x+ + x− and |x| = x+ − x−; with this notation, x−

is the opposite of what is traditionally considered the negative part of x in real analysis.

Proposition 1 (Second-order expansion of ES(τ)). Assume that condition C2(γ, a, ρ, A) holds.

(i) Then we have, for any δ, ε > 0 sufficiently small, that for t large enough and all x > 1,∣∣∣∣U(tx)− U(t)

a(t)
−
∫ x

1
sγ−1ds−A(t)

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds

∣∣∣∣ ≤ ε|A(t)|xγ++δ.

(ii) If moreover γ < 1, we have, as τ ↑ 1,

ES(τ)− q(τ)

a((1− τ)−1)
=

CTE(τ)− q(τ)

a((1− τ)−1)
+ o(|A((1− τ)−1)|)

=
1

1− γ
+A((1− τ)−1)

(
1

(1− γ)(1− γ − ρ)
+ o(1)

)
.

(iii) If moreover γ ∈ (0, 1), then, as τ ↑ 1,

ES(τ)− q(τ)

q(τ)
=

γ

1− γ
+

(
a((1− τ)−1)

q(τ)
− γ
)(

1

1− γ
+ o(1)

)
+A((1− τ)−1)

(
γ

(1− γ)(1− γ − ρ)
+ o(1)

)
.
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Proposition 1(i) is a convenient complement to the second-order inequality in Theo-

rem 2.3.6 on p.46 in de Haan and Ferreira (2006) with a weaker upper bound that is sufficient

for our purposes. Proposition 1(ii) is an extension of Lemma 3(ii) in El Methni and Stupfler

(2017), which does not apply under condition C2(γ, a, ρ, A) for γ ≤ 0, to the general extreme

value framework we consider.

3.1 At intermediate levels

Let τ ∈ (0, 1) and recall the notation q̂n(t) = Xdnte:n for the empirical quantile function of the

sample (X1, . . . , Xn). When there are no ties in the sample (this is true with probability 1

if F is continuous) and if moreover n(1 − τ) is an integer, the empirical estimator of ES(τ)

satisfies

1

1− τ

∫ 1

τ
q̂n(t)dt =

1

bn(1− τ)c

bn(1−τ)c∑
i=1

Xn−i+1:n =

∑n
i=1Xi1{Xi>Xdnτe:n}∑n
i=1 1{Xi>Xdnτe:n}

.

The latter estimator is the obvious empirical counterpart of the Conditional Tail Expectation

CTE(τ) = E(X |X > q(τ)). It turns out that in general, in the case when τ = τn → 1

and n(1 − τn) → ∞, as n → ∞, corresponding to an Expected Shortfall above an extreme

but in-sample level, the three estimators in the above equation have the same asymptotic

behavior (see Proposition A.1 for a rigorous statement), and we therefore work throughout

with the estimator ÊSn(τn) defined in (3). Our first result in this section shows that at such

an intermediate level τn, the estimator ÊSn(τn) is consistent, and provides its asymptotic

behavior for any γ < 1. This is not a simple corollary of existing results, as Gaussian

approximations to the tail empirical quantile process from Theorem 2.4.2 on p.51 in de Haan

and Ferreira (2006) are not sufficient in order to handle the case 1/2 ≤ γ < 1. To the best of

our knowledge, no result on ÊSn(τn) has been shown up to now in this challenging case.

Theorem 1 (Weak convergence of the empirical intermediate Expected Shortfall). Suppose

that X satisfies condition C2(γ, a, ρ,A) with γ < 1. Let τn ↑ 1 be such that n(1− τn)→∞.

• Assume γ < 1/2. Then, if
√
n(1− τn)A((1− τn)−1) = O(1), one has

√
n(1− τn)

ÊSn(τn)− ES(τn)

a((1− τn)−1)

d−→ N
(

0,
2

(1− γ)(1− 2γ)

)
.

• If γ = 1/2, we have, provided
√
n(1− τn)A((1− τn)−1)/

√
log(n(1− τn)) = O(1),√

n(1− τn)√
log(n(1− τn))

ÊSn(τn)− ES(τn)

a((1− τn)−1)

d−→ N (0, 4).
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• Assume 1/2 < γ < 1. Then, if (n(1− τn))1−γA((1− τn)−1) = O(1), one has

(n(1− τn))1−γ ÊSn(τn)− ES(τn)

a((1− τn)−1)

d−→ 1

γ

{
−Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}γ
Z1/γ ,

where, for any α ∈ (1, 2), Zα has a unit right-skewed stable distribution with Fourier

transform

E
(
eitZα

)
= exp

(
−|t|α

{
1− i tan

(πα
2

)
sign(t)

})
.

It follows from Theorem 1 that the rate of convergence of ÊSn(τn) varies with the shape

parameter γ: this rate is 1/(n(1− τn))min(1/2,1−γ) for γ ∈ (−∞, 1/2) ∪ (1/2, 1), with a phase

transition at γ = 1/2 for which the rate of convergence is
√

log(n(1− τn))/
√
n(1− τn). The

limiting distribution, meanwhile, is Gaussian for γ ≤ 1/2, and is a non-Gaussian stable

distribution for γ ∈ (1/2, 1). The intuition behind this finding is that, since ÊSn(τn) is a

mean of high order statistics from X, its limiting behavior should be Gaussian when X has a

finite second moment, and non-Gaussian stable otherwise. The proof formalizes this intuition

by connecting the stochastic behavior of ÊSn(τn) to that of a sample mean of i.i.d. Pareto

random variables having extreme value index γ using the Rényi representation. A fundamental

tool in making this connection is Proposition 1(i), whose use in the proof makes a bias

term proportional to A((1− τn)−1) appear; interestingly, the corresponding bias condition in

Theorem 1, which is (n(1− τn))min(1/2,1−γ)A((1− τn)−1) = O(1) for γ ∈ (−∞, 1/2) ∪ (1/2, 1)

and
√
n(1− τn)A((1 − τn)−1)/

√
log(n(1− τn)) = O(1) when γ = 1/2, gets weaker as γ

increases.

Remark 1 (Compatibility with existing results in the Fréchet MDA with finite second mo-

ment). When 0 < γ < 1, a(t)/U(t) → γ as t → ∞ and ES(τ)/q(τ) → 1/(1 − γ) as

τ ↑ 1, see Proposition 1(iii). It follows from Theorem 1 that when 0 < γ < 1/2 and√
n(1− τn)A((1− τn)−1) = O(1),

√
n(1− τn)

(
ÊSn(τn)

ES(τn)
− 1

)
d−→ N

(
0,

2γ2(1− γ)

1− 2γ

)
.

This is Theorem 2 in El Methni and Stupfler (2017) for the distortion function being the

identity function; see also Theorem 1 in El Methni et al. (2014) in the regression setting.

An alternative class of estimators of ES(τn), motivated by Equation (4), is the quantile-

based semiparametric version

ẼSn(τn) = Xdnτne:n + ân((1− τn)−1)
1

1− γ̂n

where ân((1 − τn)−1) is a relatively consistent estimator of a((1 − τn)−1), in the sense that

ân((1 − τn)−1)/a((1 − τn)−1) should converge in probability to 1, and γ̂n is a consistent
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estimator of the shape parameter γ. Examples include the semiparametric class of moment

estimators (Dekkers et al., 1989), Generalized Pareto maximum likelihood estimators (Smith,

1987; Drees et al., 2004) and probability-weighted moment estimators (Hosking et al., 1985;

Diebolt et al., 2007), all of which naturally relate to the Peaks-over-Threshold approach to

extreme value theory. An alternative method is the Block Maxima approach, in which it has

been shown that the Generalized Extreme Value maximum likelihood estimators satisfy the

above convergence as well (Dombry and Ferreira, 2019, Theorem 2.2). A comparison of the

Peaks-over-Threshold and Block Maxima approaches to extreme value analysis is provided

in Bücher and Zhou (2021). These estimators, along with the intermediate empirical quantile

Xdnτne:n, typically converge at the rate 1/
√
n(1− τn) to a joint Gaussian limit, see Chapter 3

in de Haan and Ferreira (2006). The next result discusses the asymptotic properties of ẼSn(τn)

depending on those of the random vector (Xdnτne:n, ân((1− τn)−1), γ̂n).

Theorem 2 (Weak convergence of ẼSn(τn) at intermediate levels). Suppose that X sat-

isfies condition C2(γ, a, ρ,A) with γ < 1. Let τn ↑ 1 be such that n(1 − τn) → ∞ and√
n(1− τn)A((1− τn)−1)→ λ ∈ R. Assume that

√
n(1− τn)

(
Xdnτne:n − q(τn)

a((1− τn)−1)
,
ân((1− τn)−1)

a((1− τn)−1)
− 1, γ̂n − γ

)
d−→ (Nloc, Nscale, Nshape)

where the random vector (Nloc, Nscale, Nshape) has a nondegenerate distribution. Then

√
n(1− τn)

(
ẼSn(τn)− ES(τn)

a((1− τn)−1)
,
Xdnτne:n − q(τn)

a((1− τn)−1)
,
ân((1− τn)−1)

a((1− τn)−1)
− 1, γ̂n − γ

)
d−→
(
Nloc +

1

1− γ
Nscale +

1

(1− γ)2
Nshape −

λ

(1− γ)(1− γ − ρ)
, Nloc, Nscale, Nshape

)
.

As a matter of fact, Theorem 2 is a high-level result that does not require independent data;

all that is required for its use is to be able to show the convergence of semiparametric extreme

value estimators, which is known to hold under, for example, mixing assumptions on the data

for the moment estimators and the Generalized Pareto maximum likelihood estimators, as

can be seen from Theorem 6.2 in Drees (2003) in view of the discussion on p.625 therein.

More generally, since the moment estimators of Dekkers et al. (1989) are smooth, Hadamard

differentiable functionals of the tail empirical process (Xn−bksc:n)0<s≤1, the aforementioned

results will hold as soon as a Gaussian approximation to the tail empirical process is available.

Inspecting the proof of Theorem 1(i) reveals that this result likewise holds under mixing

settings (with an enlarged asymptotic variance), because its main ingredient is a Gaussian

approximation to the tail empirical process. However, the proofs of Theorem 1(ii)-(iii) cru-

cially rely on the Rényi representation of order statistics from an independent unit exponential

sample. As pointed out in the introduction of Hsing (1991), which analyzes the asymptotic

10



properties of the Hill estimator Hill (1975) under α−mixing, the Rényi representation unfor-

tunately does not work when dependence is present. The arguably much easier problem of

extending the Rényi representation for independent but non identically distributed data is

already highly involved, as explained in Nagaraja (2006).

Theorems 1 and 2 will be crucial components of the proofs of our asymptotic results

about the extrapolated versions of ÊSn and ẼSn which, unlike ÊSn(τn) and ẼSn(τn), target

the Expected Shortfall calculated above an extreme quantile level that can converge to 1 at

any rate. This is the focus of our next section.

3.2 At extreme levels

Let (τ ′n) be another sequence of probabilities such that (1−τ ′n)/(1−τn)→ 0. Typical examples

include τ ′n = 1−1/n, with the associated extreme quantile q(τ ′n) ≡ q(1−1/n) having the order

of magnitude of the sample maximum Xn:n in the data. Equation (2) suggests the following,

broad class of extrapolated estimators of ES(τ ′n):

ES
?
n(τ ′n) = ESn(τn) + ân((1− τn)−1)× 1

1− γ̂n

∫ (1−τn)/(1−τ ′n)

1
sγ̂n−1ds.

Here ESn(τn) is a relatively consistent estimator of ES(τn), such as ÊSn(τn) or ẼSn(τn),

ân((1 − τn)−1) is a relatively consistent estimator of a((1 − τn)−1) and γ̂n is a consistent

estimator of γ. The objective of the next result in this section is to give a high-level result

about the convergence of ES
?
n(τ ′n), along with its corollary when ESn(τn) = ÊSn(τn), resulting

in an estimator ES
?
n(τ ′n) = ÊS

?

n(τ ′n), and its corollary when ESn(τn) = ẼSn(τn), resulting in

an estimator ES
?
n(τ ′n) = ẼS

?

n(τ ′n).

Theorem 3 (Asymptotic expansion of the extrapolated estimator ES
?
n(τ ′n)). Suppose that X

satisfies condition C2(γ, a, ρ, A) with γ < 1, and ρ < 0 if γ ≥ 0. Let τn, τ
′
n ↑ 1 be such that

n(1− τn)→∞ and 1/dn := (1− τ ′n)/(1− τn)→ 0. Assume that

√
n(1− τn)

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
= OP(1) and

√
n(1− τn)(γ̂n − γ) = OP(1).

Suppose finally that

•
√
n(1− τn)A((1− τn)−1)→ λ ∈ R,

• log(dn)/
√
n(1− τn)→ 0.

11



Then

ES
?
n(τ ′n)− ES(τ ′n)

a((1− τn)−1)

d
=

ESn(τn)− ES(τn)

a((1− τn)−1)
− γ−

1− γ−

∫ dn

1
sγ−1 log(s)ds

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
+

(
1

1− γ
− γ−

(1− γ−)2

)∫ dn

1
sγ−1 log(s)ds (γ̂n − γ)

−
∫ dn

1 sγ−1 log(s)ds√
n(1− τn)

(
λ

γ−(1− 2γ− − ρ)

(1− γ−)(1− γ− − ρ)(γ− + ρ)
+ oP(1)

)
.

An inspection of the proof reveals that the assumption that ρ < 0 when γ ≥ 0 is necessary

in order to control the bias term incurred in the approximation a((1− τ ′n)−1)/a((1− τn)−1) ≈
((1− τ ′n)/(1− τn))−γ made when constructing the extrapolated estimator ES

?
n(τ ′n). Condition√

n(1− τn)A((1 − τn)−1) → λ ∈ R is a condition required due to having to control the

bias incurred by using the semiparametric extrapolation formula (2). Condition log((1 −
τn)/(1 − τ ′n))/

√
n(1− τn) → 0, meanwhile, is standard, see for example Theorem 4.3.1 on

p.134 in de Haan and Ferreira (2006) in the context of extreme quantile estimation.

When using ESn(τn) = ÊSn(τn) for γ < 1/2, or ESn(τn) = ẼSn(τn) when γ < 1, it follows

from Theorems 1 and 2 that (ESn(τn)−ES(τn))/a((1−τn)−1) = OP(1/
√
n(1− τn)). We may

then draw the following useful corollary.

Corollary 1 (Weak convergence of the extrapolated estimator ES
?
n(τ ′n)). With the notation

and under the conditions of Theorem 3, if actually√
n(1− τn)

(
ESn(τn)− ES(τn)

a((1− τn)−1)
,
ân((1− τn)−1)

a((1− τn)−1)
− 1, γ̂n − γ

)
d−→ (Zloc, Zscale, Zshape)

where the trivariate random vector (Zloc, Zscale, Zshape) has a nondegenerate distribution, then

√
n(1− τn)

ES
?
n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ dn

1 sγ−1 log(s)ds

d−→ γ2
−Zloc −

γ−
1− γ−

Zscale +

(
1

1− γ
− γ−

(1− γ−)2

)
Zshape − λ

γ−(1− 2γ− − ρ)

(1− γ−)(1− γ− − ρ)(γ− + ρ)
.

The following corollary will be convenient to deal with the specific case γ ≥ 0.

Corollary 2 (Weak convergence of the extrapolated estimator ES
?
n(τ ′n), light or heavy tails).

With the notation and under the conditions of Theorem 3 with γ ≥ 0, if actually√
n(1− τn)

ESn(τn)− ES(τn)

a((1− τn)−1)
= OP(1),

√
n(1− τn)

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
= OP(1)

and
√
n(1− τn)(γ̂n − γ)

d−→ Z where Z has a nondegenerate distribution, then

√
n(1− τn)

ES
?
n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ dn

1 sγ−1 log(s)ds

d−→ 1

1− γ
Z.

12



Theorem 3 reveals that the interplay between the estimation of ES(τn), at the intermediate

level, and the estimation of the scale and shape parameters of the approximating Generalized

Pareto distribution, is potentially more complex than in the estimation of extreme quantiles

because, unlike Xdnτne:n, ÊSn(τn) will converge to ES(τn) at a rate slower than 1/
√
n(1− τn)

when γ ∈ [1/2, 1). We make this explicit when ân((1 − τn)−1) = âMom
n ((1 − τn)−1) and

γ̂n = γ̂Mom
n . The following second-order inequality controlling the asymptotic behavior of

logU under condition C2(γ, a, ρ,A) is crucial for that purpose.

Proposition 2 (On regular variation properties of logU). Assume that 0 < U(∞) = q(1) ≤
∞, and that condition C2(γ, a, ρ,A) holds. Then we have, for any δ, ε > 0 sufficiently small,

that for t large enough and all x > 1,∣∣∣∣ logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds+

(
a(t)

U(t)
− γ+

)∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

−A(t)x−γ+

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds

∣∣∣∣ ≤ ε(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)
xδ.

Proposition 2 is valid regardless of the values of γ and ρ and features the functions a and

A themselves rather than modifications of these functions, unlike the inequality stated at the

top of p.104 in de Haan and Ferreira (2006). It is a weaker inequality since it is restricted to

the range x > 1 and its right-hand side does not feature the multiplicative term xγ−+ρ, but

it shall be sufficient for our purpose of obtaining the asymptotic distribution of extrapolated

Expected Shortfall estimators based on the moment estimators âMom
n ((1− τn)−1) and γ̂Mom

n .

It is shown in Appendix B that Proposition 2 can indeed be seen as an extension of the

second-order condition typically used in the literature.

We may now provide the asymptotic distribution of the estimator ÊS
?

n(τ ′n). Define

B1(γ, ρ) =
1 + γ + γ2 − ργ2

(1− γ)(1 + γ)2(1− ρ)2
1{0≤γ<1} +

ρ(1− γ)

(1− γ − ρ)(1− 2γ − ρ)(γ + ρ)
1{γ<0},

B2(γ) =
γ

(1− γ)(1 + γ)2
1{0≤γ<1} −

γ(1− 2γ − 2γ2 + 5γ3)

(1− γ)3(1− 2γ)(1− 3γ)
1{γ<0}

and V (γ) =
γ2 + 1

(1− γ)2
1{0≤γ<1} +

(1− γ)2(1− 3γ + 4γ2)

(1− 2γ)(1− 3γ)(1− 4γ)
1{γ<0}.

Theorem 4 (Weak convergence of the moment-based estimator ÊS
?

n(τ ′n)). Suppose that X

satisfies condition C2(γ, a, ρ, A) with 0 < U(∞) = q(1) ≤ ∞, γ < 1, and ρ < 0 if γ ≥ 0. Let

τn, τ
′
n ↑ 1 be such that n(1− τn)→∞ and n(1− τ ′n) = O(1). Assume finally that

•
√
n(1− τn)A((1− τn)−1)→ λ ∈ R,

•
√
n(1− τn)(a((1− τn)−1)/q(τn)− γ+)→ µ ∈ R,

• log((1− τn)/(1− τ ′n))/
√
n(1− τn)→ 0.

13



Take ân((1− τn)−1) = âMom
n ((1− τn)−1) and γ̂n = γ̂Mom

n . Then

√
n(1− τn)

ÊS
?

n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ (1−τn)/(1−τ ′n)

1 sγ−1 log(s)ds

d−→ N (λB1(γ, ρ) + µB2(γ), V (γ)).

Condition
√
n(1− τn)(a((1 − τn)−1)/q(τn) − γ+) → µ ∈ R is, compared to Theorem 3,

an extra bias condition which appears due to the use of the moment estimator γ̂Mom
n , whose

asymptotic normality requires an extrapolation formula on logU similar in spirit to (2). In

view to Proposition 2, the use of this extrapolation formula on logU makes a bias term

proportional to (a((1 − τn)−1)/q(τn) − γ+) appear. Note moreover that when γ > 0 and

n(1− τ ′n) = O(1), which covers for instance the standard case when τ ′n = 1− 1/n represents a

quantile level in the neighborhood of the maximal observation in the sample, the asymptotic

behavior of ÊS
?

n(τ ′n) is dominated by that of the extreme value index estimator γ̂n. This may

not be the case if this condition on τ ′n is violated when γ ∈ [1/2, 1), because then ÊSn(τn)

converges to ES(τn) at a rate slower than 1/
√
n(1− τn).

Our final main result examines the asymptotic distribution of ẼS
?

n(τ ′n). Define

B3(γ) =
γ

(1− γ)(1 + γ)2
1{0≤γ<1} −

γ(1− 3γ2)

(1− γ)(1− 2γ)(1− 3γ)
1{γ<0}.

Theorem 5 (Weak convergence of the class of estimators ẼS
?

n(τ ′n)). Suppose that X satisfies

condition C2(γ, a, ρ, A) with 0 < U(∞) = q(1) ≤ ∞, γ < 1, and ρ < 0 if γ ≥ 0. Let τn, τ
′
n ↑ 1

be such that n(1− τn)→∞ and (1− τ ′n)/(1− τn)→ 0. Assume finally that

•
√
n(1− τn)A((1− τn)−1)→ λ ∈ R,

•
√
n(1− τn)(a((1− τn)−1)/q(τn)− γ+)→ µ ∈ R,

• log((1− τn)/(1− τ ′n))/
√
n(1− τn)→ 0.

Take ân((1− τn)−1) = âMom
n ((1− τn)−1) and γ̂n = γ̂Mom

n . Then

√
n(1− τn)

ẼS
?

n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ (1−τn)/(1−τ ′n)

1 sγ−1 log(s)ds

d−→ N (λB1(γ, ρ) + µB3(γ), V (γ)).

Theorem 3, Corollary 1 and Corollary 2 are, like Theorem 2, high-level results valid under

serial dependence. As a consequence, an analogue of Theorem 5, which is a consequence of

Theorems 2 and 3 together with the joint convergence of the extreme value moment estimators,

will hold under mixing assumptions. Theorem 4 (in the case γ < 1/2) also holds under mixing

settings and with an enlarged asymptotic variance. These asymptotic results and their proofs

are the basis for the construction of accurate and computationally straightforward confidence

intervals about ES(τ ′n), as discussed below.
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4 Corrected asymptotic inference

We first highlight various defects of the standard asymptotic confidence intervals for the

extreme Expected Shortfall derived from our results, and we build upon our insight to design

corrected versions of these intervals whose coverage is close to the nominal level in the general

case γ < 1. Our methods are implemented in the freely available R package Expectrem, see

Section C.1 for a description of the relevant commands. We rely on the moment estimators

ân((1 − τn)−1) = âMom
n ((1 − τn)−1) of the scale and γ̂n = γ̂Mom

n of the shape extreme value

parameters, respectively; we shall use the fact that if
√
n(1− τn)A((1 − τn)−1) → 0 and√

n(1− τn)(a((1− τn)−1)/q(τn)− γ+)→ 0, then√
n(1− τn)

(
Xdnτne:n − q(τn)

a((1− τn)−1)
,
ân((1− τn)−1)

a((1− τn)−1)
− 1, γ̂n − γ

)
d−→ (Nloc, Nscale, Nshape),

where (Nloc, Nscale, Nshape) is trivariate Gaussian centered and has covariance matrix

Σ = Σ(γ) =


1 γ 0

γ v1(γ) c(γ)

0 c(γ) v2(γ)

 ,

with

v1(γ) = (γ2 + 2)1{γ≥0} +
2− 16γ + 51γ2 − 69γ3 + 50γ4 − 24γ5

(1− 2γ)(1− 3γ)(1− 4γ)
1{γ<0},

v2(γ) = (γ2 + 1)1{γ≥0} +
(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)
1{γ<0},

and c(γ) = −(1− γ)1{γ≥0} −
(1− γ)2(1− 4γ + 12γ2)

(1− 3γ)(1− 4γ)
1{γ<0}.

See the proof of Theorem 5 in the case γ < 0, and Corollary 4.2.2 on p.133 in de Haan and

Ferreira (2006) when γ ≥ 0. Throughout this section we let Y1, . . . , Yn be independent and

identically unit Pareto distributed (i.e. with distribution function y 7→ 1− 1/y for y ≥ 1) and

we recall that (X1, . . . , Xn)
d
= (U(Y1), . . . , U(Yn)).

We consider the case where the probability level τ ′n ↑ 1 is such that n(1− τ ′n) is bounded,

which is the typical scenario in extreme value practice. The case of an intermediate level

τn = 1 − kn/n, where kn → ∞ and kn/n → 0, is discussed in Section C.2 of the Appendix.

We first construct confidence intervals based on ÊS
?

n(τ ′n), the extrapolated version of the

empirical Expected Shortfall estimator. For a heavy-tailed distribution with finite variance,

an extensively studied competitor is the Weissman-type (after Weissman, 1978) estimator

ÊS
W

n (τ ′n) =

(
1− τ ′n
1− τn

)−γ̂H
n

ÊSn(τn) =

(
kn

n(1− τ ′n)

)γ̂H
n

ÊSn(1− kn/n).
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Here γ̂H
n = M

(1)
n is the Hill estimator of γ Hill (1975). For γ ∈ (0, 1/2), the asymptotic

behavior of this estimator is dominated by that of γ̂H
n (see El Methni and Stupfler, 2017), so

that √
kn

log(kn/(n(1− τ ′n)))
log

ÊS
W

n (τ ′n)

ES(τ ′n)

d−→ N (0, γ2).

The associated 100(1− α)% asymptotic confidence interval is

Î?1(α) =

[
ÊS

W

n (τ ′n) exp

(
±γ̂H

n

log(kn/(n(1− τ ′n)))√
kn

z1−α/2

)]
where z1−α/2 is the quantile of level 1 − α/2 of the standard Gaussian distribution. Lifting

the restriction γ ∈ (0, 1/2) can be done using the semiparametric estimator ÊS
?

n(τ ′n) instead

of ÊS
W

n (τ ′n), with ân(n/kn) = âMom
n (n/kn) and γ̂n = γ̂Mom

n . Applying Theorem 4 (with the

notation therein) suggests, when γ < 1, another confidence interval for ES(τ ′n):

Î?2(α) =

[
ÊS

?

n(τ ′n)±
ân(n/kn)

∫ kn/(n(1−τ ′n))
1 sγ̂n−1 log(s)ds

√
kn

√
V (γ̂n)z1−α/2

]
.

This confidence interval is theoretically valid for γ < 1. In the proof of Theorem 4, the

limiting distribution of ÊS
?

n(τ ′n) is obtained, when γ ∈ [0, 1), by neglecting the finite-sample

uncertainty in ÊSn(1− kn/n) and ân(n/kn). To construct an accurate approximation to the

distribution of ÊS
?

n(τ ′n), we propose a sampling approach. Let dn = kn/(n(1− τ ′n)); up to the

additive bias term ES(τ ′n)− ES(1− kn/n)− a(n/kn)
1−γ

∫ dn
1 sγ−1ds that we neglect,

ÊS
?

n(τ ′n)− ES(τ ′n)

ân(n/kn)
≈ ÊSn(1− kn/n)− ES(1− kn/n)

ân(n/kn)
−
∫ dn

1 sγ−1ds

1− γ

(
a(n/kn)

ân(n/kn)
− 1

)
+

(∫ dn
1 sγ−1ds

(1− γ)2
+

∫ dn
1 log(s)sγ−1ds

1− γ

)
(γ̂n − γ).

We obtain an asymptotic representation of each term of the right-hand side in the above

approximation. Up to a negligible bias term,

ÊSn(1− kn/n)− ES(1− kn/n)

a(n/kn)
≈ ÊSn(1− kn/n)−Xn−kn:n

a(n/kn)
− 1

1− γ
+
Xn−kn:n − U(n/kn)

a(n/kn)

d
≈ a(Yn−kn:n)

a(n/kn)
× 1

kn

kn∑
i=1

(
U(Yn−i+1:n)− U(Yn−kn:n)

a(Yn−kn:n)
− 1

1− γ

)
+

1

1− γ

(
a(Yn−kn:n)

a(n/kn)
− 1

)
+
U(Yn−kn:n)− U(n/kn)

a(n/kn)
.

Using condition C2(γ, a, ρ,A), the Rényi representation (see (A.15) and (A.16) in the Ap-
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pendix) and the regular variation property of a(·) we get, with Dr(x) =
∫ x

1 s
r−1ds,

ÊSn(1− kn/n)− ES(1− kn/n)

a(n/kn)

d
≈
(
kn
n
Yn−kn:n

)γ
× 1

kn

kn∑
i=1

(
Dγ(Yn−i+1:n/Yn−kn:n)− 1

1− γ

)
+

1

1− γ

((
kn
n
Yn−kn:n

)γ
− 1

)
+Dγ

(
kn
n
Yn−kn:n

)
d
=

kn
n

exp

 n∑
i=kn+1

log(Yi)

i

γ (
1

kn

kn∑
i=1

Dγ(Yi)−
1

1− γ

)

+
1

1− γ
Dγ

kn
n

exp

 n∑
i=kn+1

log(Yi)

i

 =: −G(1)
n (Y1, . . . , Yn, γ).

Besides

ân(n/kn)

a(n/kn)
=
Xn−kn:n − U(n/kn)

a(n/kn)
M (1)
n (1− γ̂n,−) +

{
U(n/kn)

a(n/kn)
M (1)
n

}
(1− γ̂n,−)

and as such, it follows from (A.58), (A.60), (A.61) in the proof of Lemma A.8 (see the Ap-

pendix) and the convergence M
(1)
n (1− γ̂n,−)

P→ γ+ that

ân(n/kn)

a(n/kn)

d
≈ γ+Dγ

kn
n

exp

 n∑
i=kn+1

log(Yi)

i



+
1

2

(
1

kn

kn∑
i=1

Dγ−(Yi)

)1−

(
1
kn

∑kn
i=1Dγ−(Yi)

)2

1
kn

∑kn
i=1(Dγ−(Yi))2


−1

=: G(2)
n (Y1, . . . , Yn, γ).

Finally,

γ̂n − γ =
a(n/kn)

U(n/kn)

{
U(n/kn)

a(n/kn)
M (1)
n

}
− γ+ +

1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1

− γ−


≈ γ+

({
U(n/kn)

a(n/kn)
M (1)
n

}
− 1

)
+

1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1

− γ−


so using again the Rényi representation and Equations (A.60) and (A.61) in the proof of

Lemma A.8 (see the Appendix) leads to(
ÊSn(1− kn/n)− ES(1− kn/n)

ân(n/kn)
,
a(n/kn)

ân(n/kn)
− 1, γ̂n − γ

)
d
≈

(
−Gn(Y1, . . . , Yn, γ),

1

G
(2)
n (Y1, . . . , Yn, γ)

− 1, Hn(Y1, . . . , Yn, γ)

)
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with Gn(Y1, . . . , Yn, γ) := G
(1)
n (Y1, . . . , Yn, γ)/G

(2)
n (Y1, . . . , Yn, γ) and

Hn(Y1, . . . , Yn, γ) := γ+

(
1

kn

kn∑
i=1

Dγ−(Yi)− 1

)
+ 1− 1

2

1−

(
1
kn

∑kn
i=1Dγ−(Yi)

)2

1
kn

∑kn
i=1Dγ−(Yi)2


−1

− γ−.

Conclude that

ÊS
?

n(τ ′n)− ES(τ ′n)

ân(n/kn)

d
≈ −Gn(Y1, . . . , Yn, γ)−

∫ dn
1 sγ−1ds

1− γ

(
1

G
(2)
n (Y1, . . . , Yn, γ)

− 1

)

+

(∫ dn
1 sγ−1ds

(1− γ)2
+

∫ dn
1 log(s)sγ−1ds

1− γ

)
Hn(Y1, . . . , Yn, γ) =: −En(Y1, . . . , Yn, γ).

The random variable En(Y1, . . . , Yn, γ) is very easy to simulate and its distribution can thus

be tabulated; this gives rise to the confidence interval

Î?3(α) =
[
ÊS

?

n(τ ′n) + ân(n/kn)en,α/2(γ̂n), ÊS
?

n(τ ′n) + ân(n/kn)en,1−α/2(γ̂n)
]

where en,τ (γ) is the τth quantile of En(Y1, . . . , Yn, γ). Our experience is that the performance

of this interval is adversely affected by ignoring the finite-sample uncertainty in the plug-in

step of replacing γ by γ̂n when the tail of X is very heavy. Since
√
kn(γ̂n − γ)

d
≈ N (0, v2(γ)),

we propose to deal with this issue of uncertainty quantification by computing directly the

quantiles of En(Y1, . . . , Yn, γ̃n) for γ̃n = γ̂n+Z
√
v2(γ̂n)/kn, where Z ∼ N (0, 1) is independent

from the data; in addition, we retain only those values of γ̃n that are smaller than 1, i.e. we

resample given γ̃n < 1. This gives rise to an alternative interval Î?4(α). Algorithm 1 gives all

the details concerning the actual computation of both Î?3(α) and Î?4(α) (here and throughout

the function Φ denotes the standard normal distribution function).

We turn to extrapolated versions of the semiparametric Expected Shortfall estimator.

Again, in the heavy-tailed setting γ ∈ (0, 1), one may consider the Weissman-type estimator

ẼS
W

n (τ ′n) =

(
1− τ ′n
1− τn

)−γ̂H
n

ẼS
H

n (τn) =

(
kn

n(1− τ ′n)

)γ̂H
n Xn−kn:n

1− γ̂H
n

built upon the intermediate estimator ẼS
H

n (τn) = Xn−kn:n/(1− γ̂H
n ) motivated by the approx-

imation ES(τ) ≈ q(τ)/(1− τ) as τ ↑ 1, see Proposition 1(iii). It is also readily seen that the

asymptotic behavior of γ̂H
n dominates, leading to a 100(1−α)% confidence interval analogous

to Î?1(α):

Ĩ?1(α) =

[
ẼS

W

n (τ ′n) exp

(
±γ̂H

n

log(kn/(n(1− τ ′n)))√
kn

z1−α/2

)]
.

Just as in the construction of Î?2(α) as opposed to Î?1(α), one may construct a more widely

applicable confidence interval Ĩ?2(α) by using the estimator ẼS
?

n(τ ′n) instead of ẼS
W

n (τ ′n). The-
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Algorithm 1 Confidence intervals for ES(τ ′n) - Extrapolated empirical estimator

Require: N ≥ 1, α ∈ (0, 1), ÊSn(1− kn/n), ân(n/kn) = âMom
n (n/kn), γ̂n = γ̂Mom

n (kn)

Ensure: γ̂n < 1 and 1− τ ′n < kn/n

Compute ÊS
?

n(τ ′n) = ÊSn(1− kn/n) + ân(n/kn)× 1
1−γ̂n

∫ kn/(n(1−τ ′n))
1 sγ̂n−1ds

Simulate N replications U1, . . . , UN from a uniform distribution on [0, 1]

for i ∈ {1, . . . , N} do

Calculate γ̃n,i = γ̂n +
√

v2(γ̂n)
kn

Φ−1
(
UiΦ

(
(1− γ̂n)

√
kn

v2(γ̂n)

))
Simulate n replications Y1, . . . , Yn from a unit Pareto distribution

Compute Ei = En(Y1, . . . , Yn, γ̂n) and Ẽi = En(Y1, . . . , Yn, γ̃n,i)

end for

Compute

{
Eup = Eup(α) = EbN(1−α/2)c:N

Edown = Edown(α) = EbNα/2c:N
and

{
Ẽup = Ẽup(α) = ẼbN(1−α/2)c:N

Ẽdown = Ẽdown(α) = ẼbNα/2c:N

return

 Î?3(α) =
[
ÊS

?

n(τ ′n) + ân(n/kn)Edown, ÊS
?

n(τ ′n) + ân(n/kn)Eup

]
Î?4(α) =

[
ÊS

?

n(τ ′n) + ân(n/kn)Ẽdown, ÊS
?

n(τ ′n) + ân(n/kn)Ẽup

]

orem 5 suggests the interval

Ĩ?2(α) =

[
ẼS

?

n(τ ′n)±
ân(n/kn)

∫ kn/(n(1−τ ′n))
1 sγ̂n−1 log(s)ds

√
kn

√
V (γ̂n)z1−α/2

]
,

which closely resembles Î?2(α), the only difference being that ÊS
?

n(τ ′n) is replaced by ẼS
?

n(τ ′n).

Like Î?2(α), this confidence interval is theoretically valid for γ < 1, but its finite-sample perfor-

mance suffers when the underlying distribution is heavy-tailed because it neglects the statis-

tical uncertainty in ẼSn(1− kn/n) and ân(n/kn). We devise a workaround based on viewing

ẼS
?

n(τ ′n) as a quadratic form of a Gaussian random vector. Set Jn,1(γ) =
∫ kn/(n(1−τ ′n))

1 sγ−1ds

and Jn,2(γ) =
∫ kn/(n(1−τ ′n))

1 sγ−1 log(s)ds, and set

Z̃?n =
√
kn

ẼS
?

n(τ ′n)− ES(τ ′n)

ân(n/kn)
=
√
kn

ẼS
?

n(τ ′n)− ES(τ ′n)

a(n/kn)

a(n/kn)

ân(n/kn)
.

Since

ẼS
?

n(τ ′n)− ES(τ ′n)

a(n/kn)
≈ ẼSn(1− kn/n)− ES(1− kn/n)

a(n/kn)

+

∫ dn
1 sγ−1ds

1− γ

(
ân(n/kn)

a(n/kn)
− 1

)
+

(∫ dn
1 sγ−1ds

(1− γ)2
+

∫ dn
1 log(s)sγ−1ds

1− γ

)
(γ̂n − γ),

19



recalling Theorem 2 suggests the approximation

Z̃?n
d
≈
(
Nloc +

1 + Jn,1(γ)

1− γ
Nscale +

1 + Jn,1(γ) + (1− γ)Jn,2(γ)

(1− γ)2
Nshape

)(
1− Nscale√

kn

)
= u?(γ)>N +

N>S?(γ)N√
kn

,

where N = (Nloc, Nscale, Nshape)
> follows a trivariate centered normal distribution with co-

variance matrix Σ,

u?(γ) =


1

1+Jn,1(γ)
1−γ

1+Jn,1(γ)+(1−γ)Jn,2(γ)
(1−γ)2



and S?(γ) =


0 −1

2 0

−1
2 −1+Jn,1(γ)

1−γ −1+Jn,1(γ)+(1−γ)Jn,2(γ)
2(1−γ)2

0 −1+Jn,1(γ)+(1−γ)Jn,2(γ)
2(1−γ)2 0

 .

Straightforward calculations show that, if Z = (Z1, . . . , Zp) is a p−dimensional random vector

of independent centered unit Gaussian random variables and M is a p× p symmetric matrix,

one has E(Z>MZ) = tr(M) and E((Z>MZ)2) = 2 tr(M2) + (tr(M))2. The mean m?(γ) and

standard deviation s?(γ) of u?(γ)>N + N>S?(γ)N/
√
kn are then

m?(γ) =
tr(S?(γ)Σ(γ))√

kn
and s?(γ) =

√
u?(γ)>Σ(γ)u?(γ) + 2

tr(S?(γ)Σ(γ)S?(γ)Σ(γ))

kn
.

Approximating Z̃?n by a Gaussian random variable with mean m?(γ̂n) and standard deviation

s?(γ̂n) suggests the confidence interval

Ĩ?3(α) =

[
ẼS

?

n(τ ′n)− ân(n/kn)√
kn

m?(γ̂n)± ân(n/kn)√
kn

s?(γ̂n)z1−α/2

]
.

Similarly to Î?3(α), the finite-sample performance of Ĩ?3(α) is compromised because the statis-

tical uncertainty of the estimator γ̂n plugged into m? and s? is not accounted for. To take

this uncertainty into account, we analytically derive a correction term that should be added

due to this plug-in step. Let Σ = ΛΛ> be the Cholesky decomposition of Σ, where

Λ = Λ(γ) =


1 0 0

γ
√
v1(γ)− γ2 0

0 c(γ)√
v1(γ)−γ2

√
v2(γ)− c2(γ)

v1(γ)−γ2


and note that N = ΛZ where Z is made of three independent centered unit Gaussian random
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variables. Recalling that
√
kn(γ̂n − γ) ≈ Nshape, a Taylor expansion yields

Z̃?n
d
= u?(γ)>Λ(γ)Z +

Z>Λ(γ)>S?(γ)Λ(γ)Z√
kn

+ oP

(
1√
kn

)
d
= u?(γ̂n)>Λ(γ̂n)Z +

Z>Λ(γ̂n)>S?(γ̂n)Λ(γ̂n)Z√
kn

− θ?(γ̂n)>
Nshape√
kn

Z + oP

(
1√
kn

)
where θ?(γ) =

du?

dγ
(γ)>Λ(γ) + u?(γ)>

dΛ

dγ
(γ).

Since N = ΛZ, one has Nshape = Λ23(γ)Z2 + Λ33(γ)Z3
d
= Λ23(γ̂n)Z2 + Λ33(γ̂n)Z3 + oP(1).

Then

Z̃?n
d
= w?(γ̂n)>Z +

Z>W?(γ̂n)Z√
kn

+ oP

(
1√
kn

)
,

where w?(γ) = Λ>(γ)u?(γ), and

W?(γ) = Λ(γ)>S?(γ)Λ(γ)

− 1

2


0 θ?1(γ)Λ23(γ) θ?1(γ)Λ33(γ)

θ?1(γ)Λ23(γ) 2θ?2(γ)Λ23(γ) θ?2(γ)Λ33(γ) + θ?3(γ)Λ23(γ)

θ?1(γ)Λ33(γ) θ?2(γ)Λ33(γ) + θ?3(γ)Λ23(γ) 2θ?3(γ)Λ33(γ)

 .

We omit the explicit expressions of w?(γ) and W?(γ) for the sake of brevity. As in the con-

struction of Ĩ?3(α), we then approximate the distribution of the random variable w?(γ0)>Z +

Z>W?(γ0)Z/
√
kn (for any fixed γ0 < 1) by a Gaussian distribution with mean tr(W?(γ0))/

√
kn

and variance ‖w?(γ0)‖22 + 2 tr((W?(γ0))2)/kn. This suggests our final confidence interval

Ĩ?4(α) =

ẼS
?

n(τ ′n) +
ân(n/kn)√

kn

−tr(W?(γ̂n))√
kn

±

√
‖w?(γ̂n)‖22 + 2

tr((W?(γ̂n))2)

kn
z1−α/2

 .
We next examine and compare the finite-sample performance of these eight intervals.

5 Numerical experiments

5.1 Finite-sample simulation study

We consider the Kumaraswamy, Reverse-Burr, Gumbel, Exponential, Pareto and Fréchet dis-

tributions, see Table 1. In each setting, we simulate N = 10,000 replications of an i.i.d. sam-

ple of size n = 1,000 from the chosen distribution. We estimate and infer the quantity

ES(τ ′n) = ES(1 − 1/n) = ES(0.999) using the estimators ÊS
?

n(τ ′n) and ẼS
?

n(τ ′n), and the

confidence intervals Î?1(α), Î?2(α), Î?3(α), Î?4(α), Ĩ?1(α), Ĩ?2(α), Ĩ?3(α) and Ĩ?4(α) with α = 0.05,

i.e. at the nominal confidence level 100(1 − 0.05)% = 95%, and with base intermediate level

τn = 1−kn/n with kn = 200. The true values of ES(0.999), computed using Table E.1 (except
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for the Reverse-Burr distribution where the true value was obtained numerically using the

cubintegrate routine from the R package cubature), and the empirical coverage probabili-

ties of the competing intervals are provided in Table 2. We carried out a similar inferential

exercise for the intermediate value ES(τn) = ES(1 − kn/n) = ES(0.8); since this is arguably

less relevant for statistical practice than inference at extreme levels near or beyond the limits

of the sample, we defer the results of the analysis at the intermediate level to Section D of

the Appendix.

The interval Î?4(α) appears to have coverage probability closest to the nominal level overall

when the underlying distribution has a finite variance; note that Ĩ?4(α) performs worse when

γ < 0, due to the fact that its construction neglects various sources of bias that are nonetheless

substantial in that setting. By contrast, Ĩ?4(α) seems to offer the best trade-off between

coverage and interval length for infinite-variance distributions, whereas Î?4(α) has slightly

better coverage at the expense of being much wider. The naive Gaussian intervals Î?1(α),

Î?2(α), Ĩ?1(α) and Ĩ?2(α) do not perform well even when the conditions for their theoretical

validity are satisfied. The interpretation here is that the Gaussian asymptotic behavior of

ÊS
?

n and ẼS
?

n, giving rise to the naive Gaussian confidence intervals, is obtained by neglecting

the uncertainty in ÊSn, ẼSn and ân, even though it is substantial in finite-sample settings.

5.2 Real data application 1: The OpenFEMA dataset

The OpenFEMA dataset, provided by the US government1, contains a historical database

of records of residential flood insurance claims in the USA updated at a monthly frequency.

Our goal is to infer the average value of an extremely high claim, defined here as happening

with probability 0.5%. To alleviate concerns linked to possible non-stationarity of the data,

we consider the claims consecutive to floods caused by a stream, river, or lake overflow that

occurred in 2012 (sample 1), on the one hand, and 2017 (sample 2), on the other hand.

We further stratify along floods rated A in the database (each corresponding to a so-called

Special Flood with no Base Flood Elevation on the insurance rate map) and those rated B

(each corresponding to a so-called Moderate Flood from primary water source). A scatterplot

of the locations of the claims, superimposed on a map of the USA, is given in Figure 1.

After data cleaning, this yields four samples of flood insurance claims, expressed in thou-

sands of USD, denoted by A-2012 (n = 555), B-2012 (n = 402), A-2017 (n = 1,131) and

B-2017 (n = 925). The large cluster of claims in New Jersey and New York in 2012 is linked

to Hurricane Sandy in late October 2012. The two large clusters of 2017 claims are related to

Hurricane Harvey in southeast Texas and Louisiana in August 2017, and to Hurricane Irma

in Florida in September 2017. We give in Figure 2 moment extreme value index estimates

1Freely available at https://www.fema.gov/openfema-data-page/fima-nfip-redacted-claims-v2
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and extrapolated Expected Shortfall estimates at level 0.995, along with the asymptotic con-

fidence intervals Î?4(α) and Ĩ?4(α) constructed in Section 4 with α = 0.05, i.e. at the nominal

confidence level 95%. The analysis of sample A-2012 reveals a heavy right tail with an infinite

variance, with the estimates ÊS
?

n and ẼS
?

n agreeing with the Weissman-Hill estimates ÊS
W

n

and ẼS
W

n . The analysis of sample A-2017 is less conclusive, with the extreme value index

estimate not significantly different from 0 at the 95% asymptotic confidence level, although

the point estimate is always positive. In this situation, it is better to avoid assuming that the

right tail is heavy, and therefore to use the estimates ÊS
?

n and ẼS
?

n instead of the Weissman-

Hill estimates. Samples B-2012 and B-2017 are pretty clearly light-tailed (γ = 0), and we

observe that for such samples the Weissman-Hill estimates are more sensitive to the choice of

k and very quickly drift away from the estimates ÊS
?

n and ẼS
?

n because the Hill estimate of γ

takes substantially higher values than its moment estimate on most of the range of values of

k considered.

From an applied standpoint, it is reasonable to conclude that while there are clear dif-

ferences between the tails along zone types, it is not obvious that the extreme Expected

Shortfall changes across years within a zone even if the uncertainty about estimates is af-

fected by changing sample sizes: a rough point estimate of ES(0.995) is 500,000 USD for zone

A, and 400,000 USD for zone B. We carried out a similar analysis with different subsamples

of the data and in different years, and found that likewise, the validity of the assumption of

a finite variance in the claim size distribution or, on the contrary, of its heavy-tailedness is

dubious; see Figure 6 in Section E of the Appendix.

5.3 Real data application 2: Daily financial loss returns

We examine the extreme value behavior of two series of daily loss returns (i.e. negative log-

returns) for the CAC 40 and FTSE 100 indices, from 9 December 2008 to 12 July 2016

for the former and from 6 July 2005 to 10 June 2013 for the latter, covering the subprime

financial crisis. These time series may feature substantial serial dependence. To handle this

dependence in a dynamic setting, it is usual practice to apply a filter such as an ARMA-

GARCH model and then, subject to the residuals from the fitted model passing goodness-

of-fit checks, to treat the residuals from this model as i.i.d. observations to which extreme

value theory may be applied. This kind of two-stage procedure, first fitting an ARMA-

GARCH model to retrieve standardized residuals and then employing extreme value theory

to estimate tail-related risk under the assumption that they can statistically be considered

i.i.d., has been used since at least McNeil and Frey (2000). To the best of our knowledge,

most of the recent methodological contributions in this framework assume that the residuals

can be considered identically distributed and even heavy-tailed: see, among others, He and
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Einmahl (2016), Girard et al. (2021) and Kaibuchi et al. (2022). Despite the theoretical

impossibility to guarantee the homogeneity of residuals, this assumption remains a reasonable

approximation for the purposes of extreme value analysis: indeed, since the focus is solely on

extreme residuals, minor deviations from this assumption in the central part of the distribution

will not materially affect the results as long as the extremes of the residuals can be considered

homogeneous. However, our assessments hereafter provide empirical evidence of the fact that

the residuals may have light-tailed or short-tailed distributions.

We first provide more details about our stationarity and goodness-of-fit checks in order

to back the use of the ARMA-GARCH filter. For each observed time series, we consider

successive rolling windows of length n = 1,500, which results in 438 (resp. 503) samples

of n daily loss returns for the CAC 40 (resp. FTSE 100) data. In Figure 3, panels (A)

and (E) show the results of the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test for each

rolling window, illustrating the stationarity of the CAC 40 and FTSE 100 time series samples

across all rolling windows, which is a prerequisite for ARMA-GARCH modeling. Following the

methodology of Girard et al. (2022), we then estimate an ARMA(1,1)-GARCH(1,1) model

on the successive rolling windows for each dataset. The corresponding residuals form 438

(resp. 503) samples of size n for the CAC 40 (resp. FTSE 100) data. Panels (B) and (F)

of Figure 3 examine the independence of the residuals within each sample using the Ljung-

Box test on both the residuals and their squares. As a complement to the Ljung-Box test,

panels (C) and (G) showcase the results of the Lagrange Multiplier test, as proposed by Engle

(1982), to confirm the absence of remaining ARCH effects in the residuals and evaluate the

adequacy of the fitted ARMA-GARCH model. Finally, the results of the sign bias test of

Engle and Ng (1993), presented in panels (D) and (H), indicate the absence of leverage effects

in the data, at the significance level 0.05, and thus that our conditional variance structure is

not misspecified.

We then estimate the extreme value index γ of each sample of residuals using the estimator

γ̂Mom
n . As illustrated in the first two series of panels in Figure 4, the heavy right tail model

γ > 0 can reasonably be excluded for these samples, and depending on the rolling window

chosen, the appropriate model seems to be either light-tailed or short-tailed, although it is

often difficult to firmly rule out a light-tailed model. This is especially clear when considering

the final rolling window in each dataset, the moment estimator plot of which is indicated

in cyan in the leftmost panels (A) and (E) in Figure 4. Assuming again that the residuals

within this rolling window can be statistically considered i.i.d. and the second-order condition

C2(γ, a, ρ, A) holds, we know by Lemma A.10 in the Appendix that, if
√
kA(n/k) → 0 and

√
k(a(n/k)/q(1 − k/n) − γ+) → 0, then the moment estimator γ̂Mom

n of the extreme value

24



index γ of the sample of residuals satisfies

√
k(γ̂Mom

n − γ)
d−→


N (0, γ2 + 1) if γ ≥ 0,

N
(

0,
(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)

)
if γ < 0.

This asymptotic normality result straightforwardly opens the door to the construction of

asymptotic Gaussian 95% confidence intervals for γ. The moment estimator plot relative to

the final rolling window is represented in panels (B) and (F), along with the aforementioned

asymptotic 95% confidence intervals: it is reasonable to conclude from these panels that the

residuals are, respectively, light-tailed for the CAC 40 and short-tailed for the FTSE 100 over

this window. We arrived at the same conclusion using a more parsimonious GARCH(1,1)

model and/or a different sample size n for the rolling window. Although this variety of tail

behaviors does not seem to have been appreciated before in the statistical literature, it is of

utmost interest to practitioners concerned with the accuracy of daily forecasts; as we showed in

our simulation study, even when the data is heavy-tailed, there is no substantial drawback in

using the general estimators ÊS
?

n and ẼS
?

n we provide, whereas the Weissman-Hill estimators

ÊS
W

n and ẼS
W

n perform poorly outside of the heavy right tail model.

Of course, as highlighted above, this analysis requires that the residuals can be statistically

considered to satisfy the second-order condition C2(γ, a, ρ, A), along with the bias conditions
√
kA(n/k) → λ = 0 and

√
k(a(n/k)/q(1 − k/n) − γ+) → µ = 0. To check that this body

of assumptions (homogeneity of the tail residuals and bias components λ = 0 and µ = 0) is

indeed reasonable, we note that according to Propositions 1(i) and 2, if a random variable X,

with tail quantile function U and right endpoint q(1) ∈ (0,∞], satisfies condition C2(γ, a, ρ, A),

then for t, tx large enough,

U(tx)− U(t)

a(t)
≈
∫ x

1
sγ−1ds+A(t)

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds

and
logU(tx)− logU(t)

a(t)/U(t)
≈
∫ x

1
sγ−−1ds−

(
a(t)

U(t)
− γ+

)∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

+A(t)x−γ+

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds.

It follows from these two approximations that:

• On the one hand, the distribution of the exceedance X − z given that X > z is, as z

tends to q(1), approximately Generalized Pareto with scale parameter a(1/(1− F (z)))

and shape parameter γ, with the quality of the approximation controlled by the function

A;

• On the other hand, the distribution of the log-exceedance logX− log z given that X > z

is, as z tends to q(1), approximately Generalized Pareto with scale parameter a(1/(1−
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F (z)))/U(1/(1−F (z))) ≈ a(1/(1−F (z)))/z and shape parameter γ−, with the quality

of the approximation controlled by the function A and the function a/U − γ+.

In other words, the assumptions of homogeneity and negligible bias components can be checked

by constructing Generalized Pareto QQ-plots of the k exceedances (resp. log-exceedances)

over the threshold Xn−k:n, with scale and shape parameter values taken as the estimates

âMom
n (n/k) and γ̂Mom

n = γ̂Mom
n (k) (resp. âMom

n (n/k)/Xn−k:n and γ̂Mom
n,− = γ̂Mom

n,− (k)): if these

QQ-plots align closely with the y = x line, showing no substantial deviation in the right end,

then both the assumption of homogeneity of extremes and the assumption that λ = µ = 0 can

be considered reasonable. We constructed an overlay of these Generalized Pareto QQ-plots of

the residuals (Figure 5, top panels) and log-residuals (Figure 5, bottom panels) corresponding

to each rolling window in the CAC 40 and FTSE 100 datasets. It can be seen from these graphs

that the two assumptions indeed appear to be satisfied generally over all rolling windows, with

the particular example of the last rolling window highlighted using red circles.

The resulting residual-based estimates ÊS
?

n(1− 1/n) and ẼS
?

n(1− 1/n) obtained over the

last rolling window are represented in panels (C) for CAC 40 and (G) for FTSE 100, along

with their 95% asymptotic confidence intervals Î?4(α) and Ĩ?4(α) with α = 0.05, respectively.

They point towards very similar estimates and confidence intervals, with clearly identified

stable regions around k = 200 resulting in pointwise ES(1 − 1/n) estimates around 5.3 for

CAC 40 residuals and 3.9 for FTSE 100 residuals. Dynamic predictions of the extreme ES for

the next day can then easily be obtained for the raw data using the ARMA(1,1)-GARCH(1,1)

structure. We do so by adapting the procedure described in Daouia et al. (2024b) and we

provide, in the rightmost panels of Figure 4, the point forecast ẼS
?

n(1 − 1/n) in (D) and

ÊS
?

n(1−1/n) in (H) of ES(1−1/n) for the daily loss returns over the observation period, along

with their 95% asymptotic confidence intervals and the realization of the future observation.
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Föllmer, H. and Schied, A. (2004). Stochastic Finance – An Introduction in Discrete Time

(second edition). de Gruyter, Berlin.

28



Fraga Alves, M. I., Gomes, M. I., and de Haan, L. (2003). A new class of semi-parametric

estimators of the second order parameter. Portugaliae Mathematica, 60(2):193–213.

Fraga Alves, M. I., Gomes, M. I., de Haan, L., and Neves, C. (2007). A note on second order

conditions in extreme value theory: Linking general and heavy tail conditions. REVSTAT,

5(3):285–304.

Fung, T. and Seneta, E. (2018). Quantile function expansion using regularly varying functions.

Methodology and Computing in Applied Probability, 20(4):1091–1103.

Geluk, J. L. and de Haan, L. (2000). Stable probability distributions and their domains of

attraction: A direct approach. Probability and Mathematical Statistics, 20(1):169–188.

Girard, S., Stupfler, G., and Usseglio-Carleve, A. (2021). Extreme conditional expectile esti-

mation in heavy-tailed heteroscedastic regression models. Annals of Statistics, 49(6):3358–

3382.

Girard, S., Stupfler, G., and Usseglio-Carleve, A. (2022). On automatic bias reduction for

extreme expectile estimation. Statistics & Computing, 32(4):64.

Goegebeur, Y., Guillou, A., Pedersen, T., and Qin, J. (2022). Extreme-value based esti-

mation of the conditional tail moment with application to reinsurance rating. Insurance:

Mathematics and Economics, 107:102–122.

Gomes, M. I. and Martins, M. J. (2002). “Asymptotically unbiased” estimators of the tail

index based on external estimation of the second order parameter. Extremes, 5(1):5–31.

He, Y. and Einmahl, J. H. J. (2016). Estimation of extreme depth-based quantile regions.

Journal of the Royal Statistical Society Series B, 79(2):449–461.

Hill, B. M. (1975). A simple general approach to inference about the tail of a distribution.

Annals of Statistics, 3(5):1163–1174.

Hosking, J. R. M., Wallis, J. R., and Wood, E. F. (1985). Estimation of the generalized

extreme-value distribution by the method of probability-weighted moments. Technometrics,

27(3):251–261.

Hsing, T. (1991). On tail index estimation using dependent data. Annals of Statistics,

19(3):1547–1569.

Kaibuchi, H., Kawasaki, Y., and Stupfler, G. (2022). GARCH-UGH: a bias-reduced approach

for dynamic extreme Value-at-Risk estimation in financial time series. Quantitative Finance,

22(7):1277–1294.

29



McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic

financial time series: an extreme value approach. Journal of Empirical Finance, 7(3–4):271–

300.

Nagaraja, H. N. (2006). Order statistics from independent exponential random variables and

the sum of the top order statistics. In Balakrishnan, N., Sarabia, J. M., and Castillo,

E., editors, Advances in Distribution Theory, Order Statistics, and Inference, Statistics for

Industry and Technology, chapter 11, pages 173–185. Birkhäuser Boston.
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ré

ch
et

(α
=

1
)

1
−

ex
p
(−
t−

1
),
t
>

0
1

t
+

1 1
2
t−

1
−

2
−

1 6
t−

2

In
v
er

se
-G

a
m

m
a

∫ 1/t 0
1

Γ
(α

)
x
α
−

1
e−

x
d
x
,
t
>

0
1
/
α

1

α
(Γ

(α
+

1
))

1
/
α
t1
/
α

+
(Γ

(α
+

1
))

1
/
α

2
α

(α
+

1
)(
α

+
2
)
t−

1
/
α

−
2
/
α

−
(Γ

(α
+

1
))

2
/
α

α
(α

+
1
)(
α

+
2
)
t−

2
/
α

C
a
u
ch

y
1
/
2
−

a
rc

ta
n
(t

)/
π

1
1 π
t

+
π 3
t−

1
−

2
−

2
π
2

3
t−

2

S
tu

d
en

t
∫ ∞ t

Γ
((
α

+
1
)/

2
)

√
α
π

Γ
(α
/
2
)

( 1
+

x
2 α

) −(α
+

1
)/

2

d
x

1
/
α

C
α α
t1
/
α

+
α

+
1

2
(α

+
2
)
C
−

1
α
t−

1
/
α

−
2
/
α

−
α

+
1

α
+

2
C
−

2
α
t−

2
/
α

E
x
p

o
n
en

ti
a
l

ex
p
(−
t)
,
t
>

0
0

1
−
∞

0

G
a
m

m
a

(α
6=

1
)

∫ ∞ t
1

Γ
(α

)
x
α
−

1
e−

x
d
x
,
t
>

0
0

1
+

α
−

1
lo

g
(t

)
−

(α
−

1
)2

lo
g

lo
g
(t

)

lo
g
2
(t

)
+

(α
−

1
)

lo
g

Γ
(α

)+
α
−

2

lo
g
2
(t

)
0

−
α
−

1
lo

g
2
(t

)

W
ei

b
u
ll

(β
6=

1
)

ex
p
(−
tβ

),
t
>

0
0

1 β
lo

g
(t

)1
/
β
−

1
0

( 1 β
−

1
) 1

lo
g
(t

)

G
u
m

b
el

1
−

ex
p
(−

ex
p
(−
t)

)
0

1
+

1 2
t−

1
−

1
−

1 2
t−

1

L
o
g
is

ti
c

1
/
(1

+
ex

p
(t

))
0

1
+
t−

1
−

1
−
t−

1

N
o
rm

a
l

1
−

Φ
(t

)
=
∫ ∞ t

1
√

2
π
e−

x
2
/
2
d
x

0
1

√
2

lo
g
(t

)

( 1
+

lo
g

lo
g
(t

)
4

lo
g
(t

)
+
( 1 2

lo
g
(4
π

)
−

1
) 1 2

lo
g
(t

)

)
0

−
1

2
lo

g
(t

)

A
rc

si
n
e

1
−

2
a
rc

si
n
(√
t)
/
π
,
t
∈

[0
,1

]
−

2
π
2 2
t−

2
−

π
4

1
2
t−

4
−

2
π
2 3
t−

2

B
et

a
(α
6=

1
)

∫ 1 t
1

B
(α
,β

)
x
α
−

1
(1
−
x

)β
−

1
d
x
,
t
∈

[0
,1

]
−

1
/
β

(β
B

(α
,β

))
1
/
β

β
t−

1
/
β
−

2
(1
−
α

)(
β
B

(α
,β

))
2
/
β

β
(β

+
1
)

t−
2
/
β

−
1
/
β

2
(1
−
α

)(
β
B

(α
,β

))
1
/
β

β
(β

+
1
)

t−
1
/
β

B
et

a
(α

=
1
)

(1
−
t)
β
,
t
∈

[0
,1

]
−

1
/
β

1 β
t−

1
/
β

−
∞

0

K
u
m

a
ra

sw
a
m

y
(α
6=

1
)

(1
−
tα

)β
,
t
∈

[0
,1

]
−

1
/
β

1 α
β
t−

1
/
β
−

1 α
β

( 1 α
−

1
) t−2

/
β

−
1
/
β

1 β

( 1 α
−

1
) t−1

/
β

R
ev

er
se

-B
u
rr

(1
+

(1
−
t)
−
β
/
α

)−
1
/
β
,
t
<

1
−
α

α
t−
α

+
α β

(α
+
β

)t
−
β
−
α

−
β

−
(α

+
β

)t
−
β

R
ev

er
se

-F
ré
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Î? 2
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Î? 4

(α
),
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Ĩ? 3
(α

)
an

d
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Stream, river, or lake overflows in 2012

Stream, river, or lake overflows in 2017

Figure 1: OpenFEMA Flood Insurance data – Locations of flood claims consecutive to a

stream, river, or lake overflow in 2012 (top) and 2017 (bottom) in the United States. A red

cross denotes a claim in an area rated A (Special Flood with no Base Flood Elevation) and a

green cross denotes a claim in an area rated B (Moderate Flood from primary water source).
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Figure 2: OpenFEMA Flood Insurance data – Left panels: Histograms of the claims. Middle

panels: Extreme value index estimates γ̂Mom
n (solid black) with 95% asymptotic Gaussian

confidence intervals (black ribbon), and Hill estimates (solid red) as functions of k. Right

panels: Expected Shortfall estimates ÊS
?

n(0.995) and ẼS
?

n(0.995) (solid blue and green, re-

spectively) with 95% asymptotic confidence intervals Î?4(α) (blue ribbon) and Ĩ?4(α) (green

ribbon) for α = 0.05, and Weissman-Hill Expected Shortfall estimates ÊS
W

n (0.995) (solid red)

and ẼS
W

n (0.995) (dotted red) as functions of k.
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Figure 5: (Top panels) Overlay of QQ-plots from all rolling windows (grey points) for the

GPD fitted to exceedances of the residuals over their 90th percentile threshold, along with

the QQ-plot from the final rolling window (red circles), for the CAC 40 dataset (left panel)

and FTSE 100 dataset (right panel). (Bottom panels) Overlay of QQ-plots from all rolling

windows (grey points) for the GPD fitted to exceedances of the log-residuals over their 90th

percentile threshold, along with the QQ-plot from the final rolling window (red circles), for

the CAC 40 dataset (left panel) and FTSE 100 dataset (right panel).
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Appendix to the paper “Corrected inference about
the extreme Expected Shortfall in the general

Max-Domain of Attraction”

Abdelaati Daouia, Gilles Stupfler & Antoine Usseglio-Carleve

This appendix contains all necessary auxiliary results, their proofs and the proofs of our

main results, and provides extra finite-sample results about our simulation study. Unless

specified otherwise, we denote throughout by F and F = 1−F the distribution function and

survival function of the random variable of interest X. The associated quantile function is

q : τ 7→ inf{x ∈ R |F (x) ≥ τ}, and the tail quantile function is U : t 7→ q(1− 1/t), for t > 1.

A Auxiliary results and proofs

Our first result gives simple sufficient conditions under which condition C2(γ, a, ρ,A) holds.

They are formulated in terms of asymptotic expansions of the tail quantile function.

Lemma A.1 (Sufficient conditions for C2(γ, a, ρ, A)). Let U be the tail quantile function of

the random variable X.

• (Heavy tails) Assume that

U(t) = tα(C +Dt−β + o(t−β)) as t→∞

with α, β, C > 0 and D 6= 0.

1. If α 6= β, then condition C2(γ, a, ρ, A) holds with γ = α, ρ = −β,

A(t) = −β(α− β)

α

D

C
t−β and a(t) = αCtα

(
1− 1

β
A(t)

)
= αCtα

(
1 +

α− β
α

D

C
t−β
)
.

2. If α = β and moreover

U(t) = tα(C +Dt−α +D′t−α−α
′
+ o(t−α−α

′
)) as t→∞

with α′ > 0 and D′ 6= 0, then condition C2(γ, a, ρ,A) holds with γ = α, ρ =

−α− α′,

A(t) =
α′(α+ α′)

α

D′

C
t−α−α

′
and a(t) = αCtα

(
1− α′

α

D′

C
t−α−α

′
)
.

• (Light tails) Assume that

U(t) = logα(t)(C +Dt−β logδ(t) + o(t−β logδ(t))) as t→∞

with α, β, C > 0 and D, δ ∈ R.
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1. If α = 1 and D 6= 0, then condition C2(γ, a, ρ, A) holds with γ = 0, ρ = −β,

A(t) = β2D

C
t−β log1+δ(t) and a(t) = C

(
1− 1

β
A(t)

)
= C

(
1− βD

C
t−β log1+δ(t)

)
.

2. If α 6= 1, then condition C2(γ, a, ρ,A) holds with γ = ρ = 0,

A(t) =
α− 1

log(t)
and a(t) = αC logα−1(t).

• (Short tails) Assume that U(∞) < +∞ and

U(∞)− U(t) = t−α(C +Dt−β + o(t−β)) as t→∞

with α, β, C > 0 and D 6= 0. Then condition C2(γ, a, ρ,A) holds with γ = −α, ρ = −β,

A(t) = −β(α+ β)

α

D

C
t−β and a(t) = αCt−α

(
1− 1

β
A(t)

)
= αCt−α

(
1 +

α+ β

α

D

C
t−β
)
.

Proof of Lemma A.1. We prove each statement separately.

(Heavy tails) Assume that U(t) = tα(C + Dt−β + o(t−β)) as t → ∞, with α, β, C > 0 and

D 6= 0. If α 6= β, set

A(t) = −β(α− β)

α

D

C
t−β and a(t) = αCtα

(
1 +

α− β
α

D

C
t−β
)
.

Then

U(tx)− U(t)

a(t)
− xα − 1

α
= −α− β

α

D

C
t−β

xα − 1

α
+
α− β
α

D

C
t−β

xα−β − 1

α− β
+ o(t−β)

= A(t)

∫ x

1
sα−1

(∫ s

1
u−β−1du

)
ds+ o(|A(t)|)

as announced. If in fact α = β and

U(t) = tα(C +Dt−α +D′t−α−α
′
+ o(t−α−α

′
)) = D + tα(C +D′t−α−α

′
+ o(t−α−α

′
))

as t→∞, then U(t)−D = tα(C+D′t−α−α
′
+o(t−α−α

′
)) as t→∞ and the above calculation

applies with D replaced by D′ and β replaced by α+ α′.

(Light tails) Assume that U(t) = logα(t)(C + Dt−β logδ(t) + o(t−β logδ(t))) as t → ∞ with

α, β, C > 0 and D, δ ∈ R. If α = 1, then for any x > 0,

U(tx)− U(t) = C log(x) +D(x−β − 1)t−β log1+δ(t) + o(t−β log1+δ(t))

= C

(
1− βD

C
t−β log1+δ(t)

)
log(x)

+ C × β2D

C
t−β log1+δ(t)

∫ x

1
s−1

(∫ s

1
u−β−1du

)
ds+ o(t−β log1+δ(t)).
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This proves the result in this case. If in fact α 6= 1, then for any x > 0,

U(tx) = C logα(t)

(
1 + α

log(x)

log(t)
+
α(α− 1)

2

log2(x)

log2(t)
+ o

(
1

log2(t)

))
and therefore

U(tx)− U(t)

αC logα−1(t)
= log(x) +

α− 1

log(t)
× 1

2
log2(x) + o

(
1

log(t)

)
= log(x) +

α− 1

log(t)

∫ x

1
s−1

(∫ s

1
u−1du

)
ds+ o

(
1

log(t)

)
as required.

(Short tails) Assume that U(∞) < +∞ and U(∞) − U(t) = t−α(C + Dt−β + o(t−β)) as

t→∞ with α, β, C > 0 and D 6= 0. Set

A(t) = −β(α+ β)

α

D

C
t−β and a(t) = αCt−α

(
1− 1

β
A(t)

)
= αCt−α

(
1 +

α+ β

α

D

C
t−β
)
.

Then

U(tx)− U(t)

a(t)
− x−α − 1

−α
= −α+ β

α

D

C
t−β

x−α − 1

−α
+
α+ β

α

D

C
t−β

x−α−β − 1

−α− β
+ o(t−β)

= A(t)

∫ x

1
s−α−1

(∫ s

1
u−β−1du

)
ds+ o(|A(t)|)

as announced.

The next two lemmas are dedicated to checking condition C2(γ, a, ρ, A) for the Gamma

distribution with unit scale and for the standard Gaussian distribution. This is done by

computing asymptotic expansions of the tail quantile functions of these distributions that are

of independent interest; in particular, we obtain approximations that are more precise than

those proven in Sections 4.1 and 4.3 in Fung and Seneta (2018).

Lemma A.2 (Asymptotic expansion of the Gamma quantile function). Let U be the tail

quantile function of the Gamma distribution with shape parameter α 6= 1, whose distribution

function is

F (x) =

∫ x

0

1

Γ(α)
tα−1e−t dt for x > 0.

Then

U(t) = log(t)

(
1 + (α− 1)

log log(t)

log(t)
− log Γ(α)

log(t)
+ (α− 1)2 log log(t)

log2(t)

−(α− 1)(log Γ(α)− 1)

log2(t)
+ o

(
1

log2(t)

))
as t→∞.

In particular, the Gamma distribution satisfies condition C2(γ, a, ρ, A), with γ = ρ = 0,

a(t) = 1 +
α− 1

log(t)
− (α− 1)2 log log(t)

log2(t)
+ (α− 1)

log Γ(α) + α− 2

log2(t)
and A(t) = − α− 1

log2(t)
.
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Proof of Lemma A.2. The key is to note that for any β > 0 and any x > 0,∫ ∞
x

tβ−1e−t dt = xβ−1e−x + (β − 1)

∫ ∞
x

tβ−2e−t dt

by an integration by parts, and since

0 ≤
∫ ∞
x

tβ−2e−t dt ≤ 1

x

∫ ∞
x

tβ−1e−t dt,

one has

∀β > 0,

∫ ∞
x

tβ−1e−t dt = xβ−1e−x
(

1 + O

(
1

x

))
as x→∞.

Consequently

1− F (x) =

∫ ∞
x

1

Γ(α)
tα−1e−t dt

=
xα−1e−x

Γ(α)
+

(α− 1)xα−2e−x

Γ(α)
+

(α− 1)(α− 2)

Γ(α)

∫ ∞
x

tα−3e−t dt

=
xα−1e−x

Γ(α)

(
1 +

α− 1

x
+

(α− 1)(α− 2)

x2
+ O

(
1

x3

))
as x→∞.

The Gamma distribution is unbounded to the right, so U(t) → ∞ as t → ∞, and has a

continuous distribution function, so 1 − F (U(t)) = 1/t for any t > 1. Plugging x = U(t) in

the above asymptotic expansion leads in particular to

log(t) = U(t)− (α− 1) log(U(t)) + log Γ(α)− α− 1

U(t)
+ O

(
1

(U(t))2

)
as t→∞. (A.1)

We repeatedly use (A.1) in order to get the successive terms appearing in the desired asymp-

totic expansion of U(t).

Asymptotic equivalent of U(t): The leading term in the right-hand side of (A.1) is obvi-

ously U(t), so U(t) ∼ log(t).

First term in the asymptotic expansion of U(t): Write U(t) = log(t)(1 + ε1(t)), with

ε1(t)→ 0 as t→∞. Then (A.1) yields

0 = log(t)ε1(t)− (α− 1) log log(t)(1 + o(1))

and therefore ε1(t) ∼ (α− 1) log log(t)
log(t) .

Second term in the asymptotic expansion of U(t): Write

U(t) = log(t)

(
1 + (α− 1)

log log(t)

log(t)
(1 + ε2(t))

)
,

with ε2(t)→ 0 as t→∞. We find, using (A.1), that

0 = (α− 1) log log(t)ε2(t) + log Γ(α) + o(1)
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and therefore ε2(t) ∼ − log Γ(α)
α−1

1
log log(t) .

Third term in the asymptotic expansion of U(t): Write

U(t) = log(t)

(
1 + (α− 1)

log log(t)

log(t)
− log Γ(α)

log(t)
(1 + ε3(t))

)
,

with ε3(t)→ 0 as t→∞. Then 1/U(t) ∼ 1/ log(t) = o(log log(t)/ log(t)) and

log(U(t)) = log log(t) + (α− 1)
log log(t)

log(t)
+ o

(
log log(t)

log(t)

)
.

Plugging these two relationships into (A.1) results in

0 = log Γ(α)ε3(t) + (α− 1)2 log log(t)

log(t)
(1 + o(1))

and therefore ε3(t) ∼ − (α−1)2

log Γ(α)
log log(t)

log(t) .

Fourth term in the asymptotic expansion of U(t): Write finally

U(t) = log(t)

(
1 + (α− 1)

log log(t)

log(t)
− log Γ(α)

log(t)
+ (α− 1)2 log log(t)

log2(t)
(1 + ε4(t))

)
,

with ε4(t)→ 0 as t→∞. One has 1/U(t) ∼ 1/ log(t) and

log(U(t)) = log log(t) + (α− 1)
log log(t)

log(t)
− log Γ(α)

log(t)
+ o

(
1

log(t)

)
.

Plugging these two relationships into (A.1) results in

0 = (α− 1) log log(t)ε4(t) + log Γ(α)− 1 + o(1)

and therefore ε4(t) ∼ − log Γ(α)−1
α−1

1
log log(t) . Hence the desired asymptotic expansion of U .

To prove that U satisfies condition C2(γ, a, ρ, A), note that since

1− F (x) =
xα−1e−x

Γ(α)

(
1 +

α− 1

x
+

(α− 1)(α− 2)

x2
+ O

(
1

x3

))
as x→∞,

one may write the following stronger version of (A.1):

log(t) = U(t)− (α− 1) log(U(t)) + log Γ(α)

− log

(
1 +

α− 1

U(t)
+

(α− 1)(α− 2)

(U(t))2
+ o

(
1

(U(t))2

))
as t→∞.

In particular, for any x > 0,

U(tx)− U(t) = log(x) + (α− 1) log

(
U(tx)

U(t)

)
+ log

(
1 + (α− 1)/U(tx) + (α− 1)(α− 2)/(U(tx))2 + o(1/ log2(t))

1 + (α− 1)/U(t) + (α− 1)(α− 2)/(U(t))2 + o(1/ log2(t))

)
. (A.2)
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Since U(tx)/U(t) → 1, this yields, first of all, the convergence U(tx) − U(t) → log(x) as

t → ∞. Then straightforward calculations based on the asymptotic expansion of U(t) we

have previously obtained entail

U(tx)

log(tx)
− U(t)

log(t)
= (α− 1)

(
log log(tx)

log(tx)
− log log(t)

log(t)

)
−
(

log Γ(α)

log(tx)
− log Γ(α)

log(t)

)
+ o

(
1

log2(t)

)
=

(
−(α− 1)

log log(t)

log2(t)
+

log Γ(α) + α− 1

log2(t)

)
log(x) + o

(
1

log2(t)

)
(A.3)

and, using the fact that U(t) ∼ log(t),

1 + (α− 1)/U(tx) + (α− 1)(α− 2)/(U(tx))2 + o(1/ log2(t))

1 + (α− 1)/U(t) + (α− 1)(α− 2)/(U(t))2 + o(1/ log2(t))
− 1

= (α− 1)

(
1

U(tx)
− 1

U(t)

)
+ o

(
1

log2(t)

)
= −(α− 1)

log(x)

log2(t)
+ o

(
1

log2(t)

)
. (A.4)

Combine (A.2), (A.3) and (A.4) and the fact that U(t)/ log(t) = 1 + O(log log(t)/ log(t)) to

get

U(tx)− U(t) = log(x) + (α− 1) log

(
1 +

log(x)

log(t)

)
+ (α− 1) log

(
1 +

log(t)

U(t)

(
U(tx)

log(tx)
− U(t)

log(t)

))
+ log

(
1 + (α− 1)/U(tx) + (α− 1)(α− 2)/(U(tx))2 + o(1/ log2(t))

1 + (α− 1)/U(t) + (α− 1)(α− 2)/(U(t))2 + o(1/ log2(t))

)
= log(x)

(
1 +

α− 1

log(t)
− (α− 1)2 log log(t)

log2(t)
+ (α− 1)

log Γ(α) + α− 2

log2(t)

)
− α− 1

log2(t)
× 1

2
log2(x) + o

(
1

log2(t)

)
.

The conclusion directly follows.

Lemma A.3 (Asymptotic expansion of the Gaussian quantile function). Let U be the tail

quantile function of the standard Gaussian distribution. Then

U(t) =
√

2 log(t)

(
1− log log(t)

4 log(t)
− log(4π)

4 log(t)
− log2(log(t))

32 log2(t)
− 1

8

(
1

2
log(4π)− 1

)
log log(t)

log2(t)

−1

4

(
1

8
log2(4π)− 1

2
log(4π) + 1

)
1

log2(t)
+ o

(
1

log2(t)

))
as t→∞.

In particular, the standard Gaussian distribution satisfies condition C2(γ, a, ρ, A), with γ =

ρ = 0,

a(t) =
1√

2 log(t)

(
1 +

log log(t)

4 log(t)
+

(
1

2
log(4π)− 1

)
1

2 log(t)

)
and A(t) = − 1

2 log(t)
.
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Proof of Lemma A.3. Let Φ be the distribution function of the standard Gaussian distribu-

tion. The starting point is to integrate by parts twice in order to get

1− Φ(x) =

∫ ∞
x

1√
2π
e−u

2/2du =
1√
2π

e−x
2/2

x

(
1− 1

x2

)
+

∫ ∞
x

3√
2π
e−u

2/2 du

u4

=
1√
2π

e−x
2/2

x

(
1− 1

x2
+ O

(
1

x4

))
as x→∞.

Consequently

− log(1− Φ(x)) =
x2

2
+ log(x) +

1

2
log(2π) +

1

x2
+ O

(
1

x4

)
as x→∞.

The standard Gaussian distribution is unbounded to the right, so U(t)→∞ as t→∞, and Φ

is continuous, so 1−Φ(U(t)) = 1/t for any t > 1. Plugging x = U(t) in the above asymptotic

expansion leads to

log(t) =
(U(t))2

2
+ log(U(t)) +

1

2
log(2π) +

1

(U(t))2
+ O

(
1

(U(t))4

)
as t→∞. (A.5)

As in the proof of Lemma A.2, we repeatedly use (A.5) in order to get the successive terms

appearing in the desired asymptotic expansion of U(t).

Asymptotic equivalent of U(t): The leading term in the right-hand side of (A.5) is obvi-

ously (U(t))2/2, which yields U(t) ∼
√

2 log(t).

First term in the asymptotic expansion of U(t): Writing U(t) =
√

2 log(t)(1 + ε1(t)),

with ε1(t)→ 0 as t→∞, one obtains from (A.5) that

0 = 2 log(t)ε1(t)(1 + o(1)) +
1

2
log log(t) + O(1)

and therefore ε1(t) ∼ − log log(t)
4 log(t) .

Second term in the asymptotic expansion of U(t): Writing

U(t) =
√

2 log(t)

(
1− log log(t)

4 log(t)
(1 + ε2(t))

)
,

with ε2(t)→ 0 as t→∞, we get using (A.5)

0 = −1

2
log log(t)ε2(t) +

1

2
log(4π) + o(1)

and therefore ε2(t) ∼ log(4π)
log log(t) .

Third term in the asymptotic expansion of U(t): Write

U(t) =
√

2 log(t)

(
1− log log(t)

4 log(t)
− log(4π)

4 log(t)
(1 + ε3(t))

)
,
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with ε3(t)→ 0 as t→∞. Then

(U(t))2

2
− log(t) = −1

2
log log(t)− 1

2
log(4π)(1 + ε3(t)) +

log2(log(t))

16 log(t)
(1 + o(1))

and

log(U(t)) =
1

2
log log(t) +

1

2
log(2) + o

(
log2(log(t))

log(t)

)
.

Plugging these two asymptotic expansions into (A.5) results in

0 = −1

2
log(4π)ε3(t) +

log2(log(t))

16 log(t)
(1 + o(1))

and therefore ε3(t) ∼ log2(log(t))
8 log(4π) log(t) .

Fourth term in the asymptotic expansion of U(t): Write

U(t) =
√

2 log(t)

(
1− log log(t)

4 log(t)
− log(4π)

4 log(t)
− log2(log(t))

32 log2(t)
(1 + ε4(t))

)
,

with ε4(t)→ 0 as t→∞. One has

(U(t))2

2
− log(t) = −1

2
log log(t)− 1

2
log(4π)− log2(log(t))

16 log(t)
ε4(t) +

log(4π) log log(t)

8 log(t)
(1 + o(1))

and

log(U(t)) =
1

2
log log(t) +

1

2
log(2)− log log(t)

4 log(t)
(1 + o(1)).

Plugging these two asymptotic expansions into (A.5) results in

0 = − log2(log(t))

16 log(t)
ε4(t) +

1

4

(
1

2
log(4π)− 1

)
log log(t)

log(t)

and therefore ε4(t) ∼ 4
(

1
2 log(4π)− 1

)
1

log log(t) .

Fifth term in the asymptotic expansion of U(t): Write finally

U(t) =
√

2 log(t)

(
1− log log(t)

4 log(t)
− log(4π)

4 log(t)
− log2(log(t))

32 log2(t)

−1

8

(
1

2
log(4π)− 1

)
log log(t)

log2(t)
(1 + ε5(t))

)
with ε5(t)→ 0 as t→∞. One has

(U(t))2

2
− log(t) = −1

2
log log(t)− 1

2
log(4π)− 1

4

(
1

2
log(4π)− 1

)
log log(t)

log2(t)
ε5(t)

+
log log(t)

4 log(t)
+

log2(4π)

16 log(t)
(1 + o(1))
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and

log(U(t)) =
1

2
log log(t) +

1

2
log(2)− log log(t)

4 log(t)
− log(4π)

4 log(t)
(1 + o(1)).

Plugging the two above asymptotic expansions along with the asymptotic equivalent 1/(U(t))2 ∼
1/(2 log(t)) into (A.5) yields

0 = −1

4

(
1

2
log(4π)− 1

)
log log(t)

log(t)
ε5(t) +

1

2

(
1

8
log2(4π)− 1

2
log(4π) + 1

)
1

log(t)
(1 + o(1))

and therefore

1

8

(
1

2
log(4π)− 1

)
ε5(t) ∼ 1

4

(
1

8
log2(4π)− 1

2
log(4π) + 1

)
1

log log(t)
.

This results in the desired asymptotic expansion of U .

To prove that U satisfies condition C2(γ, a, ρ,A), note that the asymptotic expansion we have

just shown gives, for any x > 0,

U(tx) =
√

2 log(t)

(
1 +

log(x)

2 log(t)
− log2(x)

8 log2(t)
+ o

(
1

log2(t)

))
×
(

1− log log(t)

4 log(t)

{
1− log(x)

log(t)

}
− log(x)

4 log2(t)
− log(4π)

4 log(t)

{
1− log(x)

log(t)

}
− log2(log(t))

32 log2(t)

−1

8

(
1

2
log(4π)− 1

)
log log(t)

log2(t)
− 1

4

(
1

8
log2(4π)− 1

2
log(4π) + 1

)
1

log2(t)
(1 + o(1))

)
= U(t) +

√
2 log(t)

(
log(x)

2 log(t)
+

log log(t)

8 log2(t)
log(x) +

(
1

2
log(4π)− 1

)
log(x)

4 log2(t)

− log2(x)

8 log2(t)
+ o

(
1

log2(t)

))
as t→∞. Consequently

U(tx)− U(t) =
1√

2 log(t)

({
1 +

log log(t)

4 log(t)
+

(
1

2
log(4π)− 1

)
1

2 log(t)

}
log(x)

− 1

2 log(t)
× 1

2
log2(x) + o

(
1

log(t)

))
from which the result follows immediately.

We next introduce notation linked to the second-order condition C2(γ, a, ρ, A) that shall

be used several times in subsequent proofs. If this condition holds, define

a?(t) =



a(t)

(
1− 1

ρ
A(t)

)
, ρ < 0,

a(t)

(
1− 1

γ
A(t)

)
, γ 6= 0, ρ = 0,

a(t), γ = 0, ρ = 0,

and A?(t) =


1

ρ
A(t), ρ < 0,

A(t), ρ = 0

(A.6)
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as well as

Ψγ,ρ(x) =



xγ+ρ − 1

γ + ρ
, γ + ρ 6= 0, ρ < 0,

log(x), γ + ρ = 0, ρ < 0,

1

γ
xγ log(x), γ 6= 0, ρ = 0,

1

2
log2(x), γ = 0, ρ = 0.

(A.7)

Then, up to replacing a? and A? by suitable functions a?,0 and A?,0 such that a?,0(t) =

a?(t)(1 + o(|A(t)|)) and A?,0(t) = A?(t)(1 + o(1)) as t → ∞, Theorem 2.3.6 p.46 in de Haan

and Ferreira (2006) guarantees, for any δ, ε > 0, that t, tx can be chosen so large that∣∣∣∣U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds−A?(t)Ψγ,ρ(x)

∣∣∣∣ ≤ ε|A(t)|xγ+ρ max(xδ, x−δ). (A.8)

Note also that a? is asymptotically equivalent to a in a neighborhood of infinity and a?(t)/U(t)−
γ+ = O(|a(t)/U(t)−γ+|)+O(|A(t)|) as t→∞. We now have the material necessary to prove

Proposition 1.

Proof of Proposition 1. (i) One has

U(tx)− U(t)

a(t)
−
∫ x

1
sγ−1ds =

U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds+

(
a?(t)

a(t)
− 1

)∫ x

1
sγ−1ds

+

(
a?(t)

a(t)
− 1

)(
U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds

)
. (A.9)

Fix δ, ε > 0 sufficiently small. Inequality (A.8) yields, for t large enough and all x > 1,∣∣∣∣(a?(t)a(t)
− 1

)(
U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds

)∣∣∣∣ ≤ ε

3
|A(t)|xγ++δ. (A.10)

Note also the relationship a?(t)/a(t)−1 = c(γ, ρ)A(t)(1+o(|A(t)|)) as t→∞, where c(γ, ρ) =

−1/ρ if ρ < 0, −1/γ if ρ = 0 and γ 6= 0, and 0 if γ = 0 and ρ = 0. Then, for t large enough

and all x > 1,∣∣∣∣(a?(t)a(t)
− 1

)∫ x

1
sγ−1ds− c(γ, ρ)A(t)

∫ x

1
sγ−1ds

∣∣∣∣ ≤ ε

3
|A(t)|xγ++δ. (A.11)

Set finally d(ρ) = 1/ρ if ρ < 0 and 1 if ρ = 0, and combine inequality (A.8) again with (A.9), (A.10)

and (A.11) to obtain that for t large enough and all x > 1,∣∣∣∣U(tx)− U(t)

a(t)
−
∫ x

1
sγ−1ds− c(γ, ρ)A(t)

∫ x

1
sγ−1ds− d(ρ)A(t)Ψγ,ρ(x)

∣∣∣∣ ≤ ε|A(t)|xγ++δ.

It is then sufficient to prove the identity

c(γ, ρ)

∫ x

1
sγ−1ds+ d(ρ)Ψγ,ρ(x) =

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds. (A.12)
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We prove this identity by exhaustion. For this we recall that

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds =



1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
if γ 6= 0, ρ < 0, γ + ρ 6= 0,

1

ρ

(
log(x)− xγ − 1

γ

)
if γ 6= 0, ρ < 0, γ + ρ = 0,

1

ρ

(
xρ − 1

ρ
− log(x)

)
if γ = 0, ρ < 0,

1

γ

(
xγ log(x)− xγ − 1

γ

)
if γ 6= 0, ρ = 0,

1

2
log2(x) if γ = 0, ρ = 0.

If γ 6= 0, ρ < 0 and γ + ρ 6= 0, the left-hand side of (A.12) is

1

ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
=

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds,

and if instead γ + ρ = 0, the left-hand side of (A.12) is

1

ρ

(
log(x)− xγ − 1

γ

)
=

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds.

When γ = 0 and ρ < 0, the left-hand side of (A.12) is

1

ρ

(
xρ − 1

ρ
− log(x)

)
=

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds.

If γ 6= 0 and ρ = 0, the left-hand side of (A.12) is

1

γ

(
xγ log(x)− xγ − 1

γ

)
=

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds,

and when γ = 0 and ρ = 0, it is

1

2
log2(x) =

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds.

Equation (A.12) follows and the proof of (i) is complete.

(ii) Since X has the same distribution as U(Y ), where Y has a unit Pareto distribution (with

distribution function y 7→ 1− 1/y, for y > 1), one may write

CTE(τ)− q(τ) = E(U(Y )− U(t) |U(Y ) > U(t))

where throughout t = t(τ) = (1− τ)−1 →∞ as τ ↑ 1. Note also that condition C2(γ, a, ρ, A)

is equivalent to the following second-order condition on F :

lim
s↑q(1)

1

A(1/F (s))

(
F (s+ x a(1/F (s)))

F (s)
−Qγ(x)

)
= Gγ,ρ(x), when 1 + γx > 0,
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where Qγ and Gγ,ρ are functions that are continuous at 0 with Qγ(0) = 1 and Gγ,ρ(0) = 0, see

Theorem 2.3.8 p.48 in de Haan and Ferreira (2006). This equivalent second-order condition

is known to be true locally uniformly in x, see Theorem B.3.19 p.401 in de Haan and Ferreira

(2006). Taking s = U(t) and x = εA(t) for |ε| arbitrarily small, mimicking the first seven

lines of the proof of this Theorem B.3.19 p.401 in de Haan and Ferreira (2006) leads to

tF (U(t)) = 1 + o(|A(t)|) and then to

CTE(τ)− q(τ) =
E((U(Y )− U(t))1{Y >1/F (U(t))})

F (U(t))

= tE((U(Y )− U(t))1{Y >1/F (U(t))})(1 + o(|A(t)|)).

Moreover

|E((U(Y )− U(t))1{Y >1/F (U(t))})− E((U(Y )− U(t))1{Y >t})|

≤
∣∣U(1/F (U(t)))− U(t)

∣∣× 1

t
|tF (U(t))− 1| = o

(
a(t)

t
|A(t)|

)
,

using the fact that the extended regular variation property satisfied by U holds in fact locally

uniformly in x > 0, see Theorem B.2.18 p.383 in de Haan and Ferreira (2006), and taking

x = x(t) = 1/(tF (U(t)))→ 1 as t→∞. This entails

CTE(τ)− q(τ) = tE((U(Y )− U(t))1{Y >t}) + o(a(t)|A(t)|)

= t

∫ ∞
t

(U(y)− U(t))
dy

y2
+ o(a(t)|A(t)|).

Since

t

∫ ∞
t

(U(y)− U(t))
dy

y2
=

1

1− τ

∫ 1

τ
(q(s)− q(τ))ds = ES(τ)− q(τ)

this shows that
CTE(τ)− q(τ)

a((1− τ)−1)
=

ES(τ)− q(τ)

a((1− τ)−1)
+ o(|A((1− τ)−1)|).

The change of variables y = tx then yields

ES(τ)− q(τ)

a((1− τ)−1)
=

∫ ∞
1

U(tx)− U(t)

a(t)

dx

x2
+ o(|A(t)|).

Combining (i) with condition γ < 1, we obtain

ES(τ)− q(τ)

a((1− τ)−1)
=

∫ ∞
1

(∫ x

1
sγ−1ds

)
dx

x2

+A(t)

∫ ∞
1

{∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds

}
dx

x2
+ o(|A(t)|).

Use finally the identity∫ ∞
1

{∫ x

1
sb−1

(∫ s

1
uc−1du

)
ds

}
dx

x2
=

1

(1− b)(1− b− c)
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valid for b < 1 and b+ c < 1 to conclude the proof of (ii).

(iii) This is a consequence of (ii) and the convergence a(t)/U(t)→ γ+ = γ as t→∞.

Throughout this appendix, for 1 < α < 2, we denote by Zα a unit, right-skewed stable

random variable having Fourier transform

E
(
eitZα

)
= exp

(
−|t|α

{
1− i tan

(πα
2

)
sign(t)

})
.

We also recall the notation Γ : x ∈ (0,∞) 7→ Γ(x) =
∫∞

0 tx−1e−tdt for Euler’s Gamma

function.

The following lemma is a central limit theorem for sums of Pareto random variables. It is the

fundamental tool for the proof of Proposition A.1 below.

Lemma A.4 (Limiting behavior of sample averages of Pareto random variables). Let (Yi) be

a sequence of independent unit Pareto random variables.

• [Case γ < 1/2, finite second moment] When γ < 1/2, we have

√
k

(
1

k

k∑
i=1

Y γ
i −

1

1− γ

)
d−→ N

(
0,

γ2

(1− γ)2(1− 2γ)

)
.

• [Case γ = 1/2, infinite second moment, phase transition] We have

√
k√

log k

(
1

k

k∑
i=1

√
Yi − 2

)
d−→ N(0, 1).

• [Case 1/2 < γ < 1, infinite second moment] When 1/2 < γ < 1, we have

k1−γ

(
1

k

k∑
i=1

Y γ
i −

1

1− γ

)
d−→
{
−Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}γ
Z1/γ .

Proof of Lemma A.4. First and foremost, for any α < 1, E(Y α) = 1/(1 − α). The first

convergence is then an obvious consequence of the standard central limit theorem.

To show the second and third convergences, we follow Section XVII.5 of Feller (1971), which

provides a unified treatment of the two cases. Equivalent results can be obtained by applying

Theorems 1 and 2 in Geluk and de Haan (2000). Let, for any fixed γ ∈ [1/2, 1) and m ∈ R,

µγ,m be the truncated second moment function of Y γ −m, defined by

∀x > 0, µγ,m(x) :=

∫ x

−x
z2P(Y γ −m ∈ dz).
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Then, for x > |1−m|, µγ,m(x) = E((Y γ −m)2
1{|Y γ−m|≤x}) = E((Y γ −m)2

1{Y γ≤x+m}) and

therefore ∣∣µγ,m(x)− E((Y γ −m)2
1{Y γ≤x})

∣∣ ≤ E((Y γ −m)2
1{Y γ∈(x,x+m]}).

Clearly, for x > |1−m| and x > 1,

E((Y γ −m)2
1{Y γ∈(x,x+m]}) ≤ max(x2, (x−m)2)P(Y γ ∈ (x, x+m])

= max(x2, (x−m)2)
∣∣∣P(Y > x1/γ)− P(Y > (x+m)1/γ)

∣∣∣
= x−1/γ max(x2, (x−m)2)

∣∣∣∣1− (1 +
m

x

)−1/γ
∣∣∣∣

= o(x2−1/γ) as x→∞.

Moreover, in view of the fact that Y γ has a finite first moment and an infinite second moment,

the monotone convergence theorem yields

E((Y γ −m)2
1{Y γ≤x}) = E(Y 2γ

1{Y γ≤x})− 2mE(Y γ
1{Y γ≤x}) +m2P(Y γ ≤ x)

= E(Y 2γ
1{|Y γ |≤x}) + O(1) = µγ,0(x)(1 + o(1)) as x→∞.

Let µ = µγ,0 be the truncated second moment function of Y γ . Since

∀x > 1, µ(x) =
1

γ

∫ x

1
y1−1/γdy =


1

2γ − 1
(x2−1/γ − 1) if γ ∈ (1/2, 1),

2 log x if γ = 1/2,

we find that for any m ∈ R,

µγ,m(x) = µ(x)(1 + o(1)) =


x2−1/γ

2γ − 1
(1 + o(1)) if γ ∈ (1/2, 1),

2 log(x)(1 + o(1)) if γ = 1/2.

Then the sequence

ak :=


(2γ − 1)−γkγ if γ ∈ (1/2, 1)

√
k log k if γ = 1/2

clearly satisfies ak → ∞ and kµ(ak)/a
2
k → 1. Furthermore, the random variable Y γ is such

that

∀y > 1, P(Y γ ≤ −y) = 0 and P(Y γ > y) = y−1/γ .

The conditions of Theorem 2 in Section XVII.5 of Feller (1971) are therefore satisfied; note

that its balanced tails condition (5.18) implicitly allows that one tail is regularly varying and
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dominates the other, as can be seen by comparing this condition with the setup of (3.17) and

(3.18) in Section XVII.3 of Feller (1971). By Theorem 3 in Section XVII.5 therein,

1

ak

(
k∑
i=1

{Y γ
i − E(Y γ)}

)
d−→W1/γ , (A.13)

where W1/γ has a stable distribution with Fourier transform

E
(
eitW1/γ

)
= exp

(
|t|1/γ Γ(3− 1/γ)

(1/γ)(1/γ − 1)

{
cos

(
π

2γ

)
− i sin

(
π

2γ

)
sign(t)

})
.

[Note the typo below (3.19) in Section XVII.3 of Feller (1971), which should read “here the

lower sign applies when ζ > 0, the upper for ζ < 0”, as can be seen by comparing (3.19)

with (3.11) therein.] The result is then immediate for γ = 1/2. When γ ∈ (1/2, 1), the above

Fourier transform is also

E
(
eitW1/γ

)
= exp

(
−|t|1/γ

{
−(2γ − 1)

Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}{
1− i tan

(
π

2γ

)
sign(t)

})
.

Rephrase then convergence (A.13) as

k1−γ

(
1

k

k∑
i=1

Y γ
i −

1

1− γ

)
d−→ (2γ − 1)−γW1/γ

d
=

{
−Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}γ
Z1/γ (A.14)

to conclude the proof.

Proposition A.1 below gives the joint asymptotic behavior of the empirical counterpart of

the Expected Shortfall and the empirical quantile at intermediate levels. It is the key to the

proof of Theorem 1. Before proceeding to the statement and proof of Proposition A.1 it will

be useful to recall a couple of results linked to Rényi’s representation of order statistics from

an independent unit exponential sample (see p.37 in de Haan and Ferreira, 2006), as this

will be an important tool in some of our proofs below. Let (E1, . . . , En) be independent unit

exponential random variables: one has

(Ei:n)1≤i≤n
d
=

 i∑
j=1

Ej
n− j + 1


1≤i≤n

.

Consequently

((En−i+1:n − En−k:n)1≤i≤k, En−k:n)
d
=

 n−i+1∑
j=n−k+1

Ej
n− j + 1


1≤i≤k

,

n−k∑
j=1

Ej
n− j + 1

 .

(A.15)
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It follows in particular that (En−i+1:n − En−k:n)1≤i≤k
d
= (Ek−i+1:k)1≤i≤k and thus that, for

any measurable function f on (0,∞),

1

k

k∑
i=1

f(En−i+1:n − En−k:n)
d
=

1

k

k∑
i=1

f(Ei) and
1

k

k∑
i=1

f(En−i+1:n − En−k:n) ⊥⊥ En−k:n.

This can be equivalently rephrased in the following way: if (Y1, . . . , Yn) are independent unit

Pareto random variables, then for any measurable function f on (1,∞),

1

k

k∑
i=1

f(Yn−i+1:n/Yn−k:n)
d
=

1

k

k∑
i=1

f(Yi) and
1

k

k∑
i=1

f(Yn−i+1:n/Yn−k:n) ⊥⊥ Yn−k:n. (A.16)

[This follows from the fact that if Y is unit Pareto, then log Y is unit exponential.] A particular

consequence of that is the law of large numbers

1

k

k∑
i=1

f(Yn−i+1:n/Yn−k:n)
P−→ E(f(Y )) =

∫ ∞
1

f(x)
dx

x2
(A.17)

valid as soon as x 7→ x−2f(x)1{x≥1} is integrable. This convergence will mostly be used with

the following choices for f :

• For f(x) = xa{
∫ x

1 s
b−1ds} with a < 1 and a+ b < 1, yielding

E
(
Y a

{∫ Y

1
sb−1ds

})
=

1

(1− a)(1− a− b)
. (A.18)

• For f(x) = xa{
∫ x

1 s
b−1(

∫ s
1 u

c−1du)ds} with a < 1, a+ b < 1 and a+ b+ c < 1, yielding

E
(
Y a

{∫ Y

1
sb−1

(∫ s

1
uc−1du

)
ds

})
=

1

(1− a)(1− a− b)(1− a− b− c)
. (A.19)

• For f(x) = xa{
∫ x

1 s
b−1(

∫ s
1 u

c−1du)ds}(
∫ x

1 s
d−1ds) with a < 1, a + b < 1, a + b + c < 1,

a+ d < 1, a+ b+ d < 1 and a+ b+ c+ d < 1, yielding

E
(
Y a

{∫ Y

1
sb−1

(∫ s

1
uc−1du

)
ds

}(∫ Y

1
sd−1ds

))
=

(1− a− b− d)(1− a− b− c− d) + (1− a)(2− 2a− 2b− c− d)

(1− a)(1− a− d)(1− a− b)(1− a− b− d)(1− a− b− c)(1− a− b− c− d)
.

(A.20)

We also note the following two lemmas (possibly known elsewhere) used in the proof of Propo-

sition A.1. We provide concise proofs of these auxiliary results for the sake of completeness.
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Lemma A.5. Let f be a measurable positive function on (0,∞). Assume that there are α ∈ R,

β ≤ 0 and a measurable function C having constant sign and converging to 0 at infinity such

that the following property holds: for any δ, ε > 0, there is t0 > 0 such that for t, tx ≥ t0,∣∣∣∣f(tx)

f(t)
− xα − C(t)xα

∫ x

1
sβ−1ds

∣∣∣∣ ≤ ε|C(t)|xα+β max(xδ, x−δ).

Then if (Y1, . . . , Yn) are independent unit Pareto random variables, and if k = k(n) is a

sequence of integers with k →∞ and k/n→ 0, one has

f(Yn−k:n)

f(n/k)
−
(
k

n
Yn−k:n

)α
= oP(|C(n/k)|).

Proof of Lemma A.5. It follows from Corollary 2.2.2 p.41 in de Haan and Ferreira (2006) that
k
nYn−k:n = 1 + oP(1), and in particular that Yn−k:n

P−→ ∞. Use the assumption on f with

t = n/k →∞ and tx = Yn−k:n to obtain, for any δ > 0,

f(Yn−k:n)

f(n/k)
−
(
k

n
Yn−k:n

)α
= C(n/k)

(
k

n
Yn−k:n

)α ∫ k
n
Yn−k:n

1
sβ−1ds

+ oP

(
|C(n/k)|

(
k

n
Yn−k:n

)α+β±δ
)
.

Use again the fact that k
nYn−k:n = 1 + oP(1) to complete the proof.

Lemma A.6 (Asymptotic (random) inversion lemma). Let X1, . . . , Xn, . . . be independent and

identically distributed random copies of a random variable X satisfying condition C2(γ, a, ρ, A).

Let k = k(n)→∞ be a sequence of integers such that k/n→ 0 and
√
kA(n/k) = O(1). Define

F̂n(x) =
1

n

n∑
i=1

1{Xi≤x} and F̂n(x) = 1− F̂n(x).

Then √
k
(n
k
F̂n(Xn−k:n)− 1

)
P−→ 0.

[This sample analog of the identity F (q(τ))/(1− τ) = 1 + o(|A((1− τ)−1)|) (see the proof of

Proposition 1(ii)) is obvious if F is continuous, since then F̂n(Xn−k:n) = k/n.]

Proof of Lemma A.6. Fix t > 0 and write

√
k
∣∣∣n
k
F̂n(Xn−k:n)− 1

∣∣∣ ≥ t⇔ √k (n
k
F̂n(Xn−k:n)− 1

)
≤ −t

because F̂n(Xn−k:n) ≤ k/n. Then clearly

√
k
∣∣∣n
k
F̂n(Xn−k:n)− 1

∣∣∣ ≥ t⇔ 1− k

n

(
1− t√

k

)
≤ F̂n(Xn−k:n).
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Since α 7→ Xdnαe:n is the left-continuous inverse of F̂n, one has α ≤ F̂n(x)⇔ Xdnαe:n ≤ x for

any α ∈ (0, 1) and x ∈ R. We obtain

√
k
∣∣∣n
k
F̂n(Xn−k:n)− 1

∣∣∣ ≥ t⇔ Xn−bk(1−t/
√
k)c:n ≤ Xn−k:n

or equivalently

P
(√

k
∣∣∣n
k
F̂n(Xn−k:n)− 1

∣∣∣ ≥ t) = P

(
√
k
Xn−k:n −Xn−bk(1−t/

√
k)c:n

a0(n/k)
≥ 0

)

where a0 is a function that is asymptotically equivalent to a in a neighborhood of infinity and

such that Corollary 2.4.6 p.52 in de Haan and Ferreira (2006) applies. Using this theorem,

one finds
√
k

(
Xn−k:n −Xn−bk(1−t/

√
k)c:n

a0(n/k)
+

∫ (1−t/
√
k)−1

1
zγ−1dz

)
P−→ 0.

Consequently
√
k
Xn−k:n −Xn−bk(1−t/

√
k)c:n

a0(n/k)

P−→ −t < 0

and then

P
(√

k
∣∣∣n
k
F̂n(Xn−k:n)− 1

∣∣∣ ≥ t) = P

(
√
k
Xn−k:n −Xn−bk(1−t/

√
k)c:n

a0(n/k)
+ t ≥ t

)
→ 0

as required.

Let here and throughout X1, . . . , Xn be independent and identically distributed random copies

of a random variable X satisfying condition C2(γ, a, ρ, A). We are now ready to state and prove

Proposition A.1 and, in passing, that the estimator ÊSn(τn) is asymptotically equivalent to

the two, a priori different estimators

ÊS
(1)

n (τn) =

∑n
i=1Xi1{Xi>Xdnτne:n}∑n
i=1 1{Xi>Xdnτne:n}

and ÊS
(2)

n (τn) =
1

1− τn

∫ 1

τn

q̂n(t)dt

when τn is intermediate.

Proposition A.1 (Joint weak convergence of ÊSn(τn) and the empirical quantile). Suppose

that X satisfies condition C2(γ, a, ρ,A) with γ < 1. Let τn ↑ 1 with n(1− τn)→∞. Let also

vn(γ) =



√
n(1− τn) if γ < 1/2,√
n(1− τn)/

√
log(n(1− τn)) if γ = 1/2,

(n(1− τn))1−γ if 1/2 < γ < 1.
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Then, if vn(γ)A((1− τn)−1) = O(1), one has

vn(γ)

(
ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

− 1

1− γ
− 1

(1− γ)(1− γ − ρ)
A((1− τn)−1),

Xdnτne:n − q(τn)

a((1− τn)−1)

)

d−→



N

02,


1 + γ + 2γ2

(1− γ)(1− 2γ)

γ

1− γ
γ

1− γ
1


 if γ < 1/2,

(N (0, 4), 0) if γ = 1/2,(
1

γ

{
−Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}γ
Z1/γ , 0

)
if 1/2 < γ < 1.

If moreover
√
n(1− τn)A((1− τn)−1) = O(1), then

vn(γ)

(
ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

− 1

1− γ

)
= vn(γ)

 ÊS
(1)

n (τn)−Xdnτne:n
a((1− τn)−1)

− 1

1− γ

+ oP(1)

= vn(γ)

 ÊS
(2)

n (τn)−Xdnτne:n
a((1− τn)−1)

− 1

1− γ

+ oP(1)

and the above bivariate convergence result holds with ÊSn replaced by either ÊS
(1)

n or ÊS
(2)

n .

Proof of Proposition A.1. Set k = n − dnτne = bn(1 − τn)c, so that k = k(n) is a sequence

of integers asymptotically equivalent to n(1− τn); in particular, k → ∞ and k/n → 0. Note

that Xdnτne:n = Xn−k:n, and therefore ÊSn(τn) = ÊSn(1 − k/n). Besides, a combination of

Theorem 2.3.3 p.44 in de Haan and Ferreira (2006) with Theorem B.2.18 p.383 in de Haan

and Ferreira (2006) applied to the function t 7→ t−γa(t) yields, for any δ, ε > 0 sufficiently

small, that for t, tx large enough,∣∣∣∣a(tx)

a(t)
− xγ −A0(t)xγ

∫ x

1
sρ−1ds

∣∣∣∣ ≤ ε|A0(t)|xγ+ρ max(xδ, x−δ) (A.21)

up to replacing the function A by a suitable, asymptotically equivalent function A0. Since

clearly
n(1− τn)

k
= 1 + O

(
1

n(1− τn)

)
,

it follows from Proposition 1(i) that

q(τn)− q(1− k/n)

a((1− τn)−1)
= O

(
1

n(1− τn)

)
+ o(|A((1− τn)−1)|) = o

(
1

vn(γ)

)
, (A.22)

and from (A.21) that

a((1− τn)−1)

a(n/k)
− 1 = O

(
1

n(1− τn)

)
+ o(|A((1− τn)−1)|) = o

(
1

vn(γ)

)
. (A.23)
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We split the proof into two parts.

Step 1: Convergence properties of ÊSn(τn)

From Equations (A.22) and (A.23) and the convergence A((1− τn)−1)/A(n/k) → 1 (coming

as a consequence of the regular variation property of A) it follows that it suffices to work in

the setting τn = 1− k/n with k = k(n) a sequence of integers such that k →∞ and k/n→ 0,

in which case

ÊSn(1− k/n)−Xn−k:n =
1

k

k∑
i=1

(Xn−i+1:n −Xn−k:n).

With this in mind, we consider two cases.

Case γ < 1/2: Recall the notation of (A.6) and (A.7), and use the versions of a? and A?

such that (A.8) holds. According to Theorem 2.4.2 and Corollary 2.4.6 pp.51-52 in de Haan

and Ferreira (2006), up to enlarging the underlying probability space, one can construct a

sequence of standard Brownian motions (Wn) such that for any ε > 0,

sup
0<s≤1

min(1, sγ+1/2+ε)

∣∣∣∣∣√k
(
Xn−bksc:n −Xn−k:n

a?(n/k)
−
∫ 1/s

1
zγ−1dz

)

− (s−γ−1Wn(s)−Wn(1))−
√
kA?(n/k)Ψγ,ρ(s

−1)

∣∣∣∣∣ P−→ 0

and

∣∣∣∣∣√kXn−k:n − q(1− k/n)

a?(n/k)
−Wn(1)

∣∣∣∣∣ P−→ 0.

Then √
k
Xn−k:n − q(1− k/n)

a(n/k)
= Wn(1) + oP(1)

because a? and a are asymptotically equivalent in a neighborhood of infinity. Also∫ 1

0

(
√
k

(
Xn−bksc:n −Xn−k:n

a?(n/k)
−
∫ 1/s

1
zγ−1dz

)
−
√
kA?(n/k)Ψγ,ρ(s

−1)

)
ds

=

∫ 1

0
(s−γ−1Wn(s)−Wn(1))ds+ oP(1).

In particular

1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a?(n/k)
=

∫ 1

0

Xn−bksc:n −Xn−k:n

a?(n/k)
ds =

1

1− γ
+ OP

(
1√
k

)
. (A.24)

Let, as in the proof of Proposition 1(i), c(γ, ρ) = −1/ρ if ρ < 0, −1/γ if ρ = 0 and γ 6= 0,

and 0 if γ = 0 and ρ = 0, as well as d(ρ) = 1/ρ if ρ < 0 and 1 if ρ = 0, so that a?(t) =

a(t)(1 + c(γ, ρ)A(t)(1 + o(1))) and A?(t) = d(ρ)A(t)(1 + o(1)). Combining (A.12), (A.18)
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and (A.19), one obtains

c(γ, ρ)

1− γ
+ d(ρ)

∫ 1

0
Ψγ,ρ(s

−1)ds =

∫ ∞
1

(
c(γ, ρ)

∫ x

1
sγ−1ds+ d(ρ)Ψγ,ρ(x)

)
dx

x2

=

∫ ∞
1

{∫ x

1
sγ−1

(∫ s

1
uρ−1

)
ds

}
dx

x2

=
1

(1− γ)(1− γ − ρ)
. (A.25)

Combining (A.24) and (A.25) results in

√
k

(
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)
− 1

1− γ
− 1

(1− γ)(1− γ − ρ)
A(n/k)

)

=
√
k

(
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a?(n/k)
− 1

1− γ

)
(1 + oP(1))

+
c(γ, ρ)

1− γ
√
kA(n/k)− 1

(1− γ)(1− γ − ρ)

√
kA(n/k) + oP(1)

=

∫ 1

0

(
√
k

(
Xn−bksc:n −Xn−k:n

a?(n/k)
−
∫ 1/s

1
zγ−1dz

)
−
√
kA?(n/k)Ψγ,ρ(s

−1)

)
ds+ oP(1)

=

∫ 1

0
(s−γ−1Wn(s)−Wn(1))ds+ oP(1).

Since Cov(Wn(s),Wn(t)) = min(s, t) for any s, t > 0, it is readily checked that

(∫ 1

0
(s−γ−1Wn(s)−Wn(1))ds, Wn(1)

)
d
= N

02,


1 + γ + 2γ2

(1− γ)(1− 2γ)

γ

1− γ
γ

1− γ
1


 .

The conclusion follows in this case.

Case 1/2 ≤ γ < 1: Let (Yi) be a sequence of independent unit Pareto random variables. Recall

from Corollary 2.2.2 p.41 in de Haan and Ferreira (2006) that k
nYn−k:n = 1 + OP(1/

√
k), and

in particular that Yn−k:n
P−→∞. Apply Proposition 1(i) to get

Xn−k:n − q(1− k/n)

a(n/k)

d
=
U(Yn−k:n)− U(n/k)

a(n/k)
=

( knYn−k:n)γ − 1

γ
+ oP(|A(n/k)|). (A.26)

By Corollary 2.2.2 p.41 in de Haan and Ferreira (2006) again, we obtain

vn(γ)
Xn−k:n − q(1− k/n)

a(n/k)
= OP

(
vn(γ)√

k

)
+ oP(vn(γ)|A(n/k)|) = oP(1).

Besides,

1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)

d
=
a(Yn−k:n)

a(n/k)
× 1

k

k∑
i=1

U(Yn−i+1:n)− U(Yn−k:n)

a(Yn−k:n)
. (A.27)
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Pick δ > 0 such that γ + δ < 1. By Proposition 1(i) again,

1

k

k∑
i=1

U(Yn−i+1:n)− U(Yn−k:n)

a(Yn−k:n)
=

1

k

k∑
i=1

(Yn−i+1:n/Yn−k:n)γ − 1

γ

+A(Yn−k:n)× 1

k

k∑
i=1

∫ Yn−i+1:n/Yn−k:n

1
sγ−1

(∫ s

1
uρ−1

)
ds

+ oP(|A(Yn−k:n)|)× 1

k

k∑
i=1

(
Yn−i+1:n

Yn−k:n

)γ+δ

. (A.28)

Using Lemma A.5 applied to the function a (which, by (A.21), satisfies the uniform inequality

required in that Lemma), the fact that k
nYn−k:n = 1 + OP(1/

√
k), and the regular variation

property of A, we obtain

a(Yn−k:n)

a(n/k)
= 1+oP

(
1

vn(γ)

)
and vn(γ)A(Yn−k:n) = vn(γ)A(n/k)(1+oP(1)) = OP(1). (A.29)

Combining (A.16), (A.18), (A.19), (A.27), (A.28) and (A.29), we find

1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)

d
=

(
1

k

k∑
i=1

Y γ
i − 1

γ
+

1

(1− γ)(1− γ − ρ)
A(n/k) + oP

(
1

vn(γ)

))

×
(

1 + oP

(
1

vn(γ)

))
.

Apply Lemma A.4 to

1

k

k∑
i=1

Y γ
i − 1

γ
− 1

1− γ
=

1

γ

(
1

k

k∑
i=1

Y γ
i −

1

1− γ

)

in order to complete the proof in this case.

Step 2: Asymptotic equivalence between ÊSn(τn), ÊS
(1)

n (τn) and ÊS
(2)

n (τn)

Recall that in this part of the result we assume moreover
√
n(1− τn)A((1 − τn)−1) = O(1).

Clearly ÊS
(1)

n (τn) = ÊS
(1)

n (1− k/n), and thus, by Equation (A.23),

ÊS
(1)

n (τn)−Xdnτne:n
a((1− τn)−1)

=
ÊS

(1)

n (1− k/n)−Xn−k:n

a(n/k)

(
1 + o

(
1√

n(1− τn)

))
.

Furthermore,

ÊS
(1)

n (1− k/n)−Xn−k:n =

∑n
i=1(Xi −Xn−k:n)1{Xi>Xn−k:n}∑n

i=1 1{Xi>Xn−k:n}
=

∑k
i=1(Xn−i+1:n −Xn−k:n)∑n

i=1 1{Xi>Xn−k:n}
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so that, by Lemma A.6,

ÊS
(1)

n (1− k/n)−Xn−k:n =
1
k

∑k
i=1(Xn−i+1:n −Xn−k:n)

n
k F̂n(Xn−k:n)

=
1

k

k∑
i=1

(Xn−i+1:n −Xn−k:n)

(
1 + oP

(
1√
k

))

=
(

ÊSn(τn)−Xdnτne:n
)(

1 + oP

(
1√

n(1− τn)

))
.

Since obviously

ÊSn(τn)−Xdnτne:n =
n

k

∫ 1

1−k/n
(q̂n(t)− q̂n(1− k/n))dt

=
n(1− τn)

k
× 1

1− τn

∫ 1

τn

(q̂n(t)− q̂n(τn))dt

=

(
ÊS

(2)

n (τn)−Xdnτne:n
)(

1 + o

(
1√

n(1− τn)

))
,

one finds

ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

=
ÊS

(1)

n (τn)−Xdnτne:n
a((1− τn)−1)

(
1 + oP

(
1√

n(1− τn)

))

=
ÊS

(2)

n (τn)−Xdnτne:n
a((1− τn)−1)

(
1 + oP

(
1√

n(1− τn)

))
.

Applying the convergence result obtained as a first step completes the proof because in any

of the cases considered vn(γ) = O(
√
n(1− τn)).

Proof of Theorem 1. Write

ÊSn(τn)− ES(τn)

a((1− τn)−1)
=

ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

+
Xdnτne:n − q(τn)

a((1− τn)−1)
− ES(τn)− q(τn)

a((1− τn)−1)
.

Set, as in Proposition A.1,

vn(γ) =



√
n(1− τn) if 0 < γ < 1/2,√
n(1− τn)/

√
log(n(1− τn)) if γ = 1/2,

(n(1− τn))1−γ if 1/2 < γ < 1.
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Combine Proposition 1(ii) and Proposition A.1 to get

vn(γ)

(
ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

− ES(τn)− q(τn)

a((1− τn)−1)
,
Xdnτne:n − q(τn)

a((1− τn)−1)

)

d−→



N

02,


1 + γ + 2γ2

(1− γ)(1− 2γ)

γ

1− γ
γ

1− γ
1


 if γ < 1/2,

(N (0, 4), 0) if γ = 1/2,(
1

γ

{
−Γ(2− 1/γ)

1/γ − 1
cos

(
π

2γ

)}γ
Z1/γ , 0

)
if 1/2 < γ < 1.

The result is now a simple consequence of this joint convergence property.

Proof of Theorem 2. Note that

ẼSn(τn)− ES(τn)

a((1− τn)−1)
=
Xdnτne:n − q(τn)

a((1− τn)−1)
+

1

1− γ̂n

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
+

γ̂n − γ
(1− γ̂n)(1− γ)

−
{

ES(τn)− q(τn)

a((1− τn)−1)
− 1

1− γ

}
.

The result is then a simple consequence of Proposition 1(ii).

Proof of Theorem 3. Recall the notation dn = (1− τn)/(1− τ ′n) and start by writing

ES
?
n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
=

ESn(τn)− ES(τn)

a((1− τn)−1)
+

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
1

1− γ̂n

∫ dn

1
sγ̂n−1ds

+
γ̂n − γ

(1− γ̂n)(1− γ)

∫ dn

1
sγ̂n−1ds+

1

1− γ

(∫ dn

1
sγ̂n−1ds−

∫ dn

1
sγ−1ds

)
−
(

ES(τ ′n)− ES(τn)

a((1− τn)−1)
− 1

1− γ

∫ dn

1
sγ−1ds

)
. (A.30)

Now, for any t ∈ R,∣∣∣∣∣
∫ dn

1 st−1ds∫ dn
1 sγ−1ds

− 1

∣∣∣∣∣ ≤ sup
1≤s≤dn

|st−γ − 1| ≤ |t− γ| log(dn) exp(|t− γ| log(dn))

by the mean value theorem. Since log(dn)/
√
n(1− τn)→ 0 and γ̂n is

√
n(1− τn)−consistent,

this yields ∫ dn
1 sγ̂n−1ds∫ dn
1 sγ−1ds

P−→ 1.

Besides, a straightforward calculation gives

∫ dn

1
sγ−1 log(s)ds =


1

γ

(
dγn log(dn)− dγn − 1

γ

)
if γ 6= 0,

log2(dn)

2
if γ = 0.

(A.31)
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As a consequence,

1∫ dn
1 sγ−1 log(s)ds

→ γ2
− and

∫ dn
1 sγ̂n−1ds∫ dn

1 sγ−1 log(s)ds

P−→ −γ−. (A.32)

Furthermore, for any s ∈ [1, dn] and any t ∈ R, a Taylor expansion yields

|st−1 − sγ−1 − (t− γ)sγ−1 log(s)| ≤ (t− γ)2 log2(s)

2
max
u∈[γ,t]

su−1

≤ (t− γ)2

2
(sγ−1 + st−1) log2(s).

It follows that ∣∣∣∣∫ dn

1
sγ̂n−1ds−

∫ dn

1
sγ−1ds− (γ̂n − γ)

∫ dn

1
sγ−1 log(s)ds

∣∣∣∣
≤ (γ̂n − γ)2 log(dn)

2

∫ dn

1
(sγ−1 + sγ̂n−1) log(s)ds.

Since for any t ∈ R,∣∣∣∣∣
∫ dn

1 st−1 log(s)ds∫ dn
1 sγ−1 log(s)ds

− 1

∣∣∣∣∣ ≤ sup
1≤s≤dn

|st−γ − 1| ≤ |t− γ| log(dn) exp(|t− γ| log(dn))

by the mean value theorem again, one finds∫ dn
1 sγ̂n−1 log(s)ds∫ dn
1 sγ−1 log(s)ds

P−→ 1

and thus√
n(1− τn)∫ dn

1 sγ−1 log(s)ds

∣∣∣∣∫ dn

1
sγ̂n−1ds−

∫ dn

1
sγ−1ds− (γ̂n − γ)

∫ dn

1
sγ−1 log(s)ds

∣∣∣∣ P−→ 0. (A.33)

Conclude from (A.32) and (A.33) that

ESn(τn)− ES(τn)

a((1− τn)−1)
+

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
1

1− γ̂n

∫ dn

1
sγ̂n−1ds

+
γ̂n − γ

(1− γ̂n)(1− γ)

∫ dn

1
sγ̂n−1ds+

1

1− γ

(∫ dn

1
sγ̂n−1ds−

∫ dn

1
sγ−1ds

)
d
=

ESn(τn)− ES(τn)

a((1− τn)−1)
− γ−

1− γ−

∫ dn

1
sγ−1 log(s)ds

(
ân((1− τn)−1)

a((1− τn)−1)
− 1

)
+

(
1

1− γ
− γ−

(1− γ−)2

)∫ dn

1
sγ−1 log(s)ds (γ̂n − γ) + oP

(∫ dn
1 sγ−1 log(s)ds√

n(1− τn)

)
. (A.34)

The final (bias) term in (A.30) is controlled by noting that, for any γ ∈ R,

γ

1− γ

∫ dn

1
sγ−1ds =

1

1− γ

((
1− τ ′n
1− τn

)−γ
− 1

)
.
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[Note that indeed both sides are 0 when γ = 0.] This makes it possible to write

ES(τ ′n)− ES(τn)

a((1− τn)−1)
− 1

1− γ

∫ dn

1
sγ−1ds

=
a((1− τ ′n)−1)

a((1− τn)−1)

(
ES(τ ′n)− q(τ ′n)

a((1− τ ′n)−1)
− 1

1− γ

)
+

1

1− γ

(
a((1− τ ′n)−1)

a((1− τn)−1)
−
(

1− τ ′n
1− τn

)−γ)

−
(

ES(τn)− q(τn)

a((1− τn)−1)
− 1

1− γ

)
+

(
q(τ ′n)− q(τn)

a((1− τn)−1)
−
∫ dn

1
sγ−1ds

)
. (A.35)

Recalling (A.21) and using the assumption ρ < 0 when γ ≥ 0 along with (A.31), we obtain

a((1− τ ′n)−1)

a((1− τn)−1)
−
(

1− τ ′n
1− τn

)−γ
=


A((1− τn)−1)dγn

(
−1

ρ
+ o(1)

)
if γ ≥ 0, ρ < 0,

o(|A((1− τn)−1)|) if γ < 0

= o

(
1√

n(1− τn)

∫ dn

1
sγ−1 log(s)ds

)
. (A.36)

Combining Proposition 1(ii) and the assumption ρ < 0 when γ ≥ 0 again with the above

equality, Potter bounds (see de Haan and Ferreira, 2006, Proposition B.1.9.5 p.367) on the

function |A| and (A.31), we find

a((1− τ ′n)−1)

a((1− τn)−1)

(
ES(τ ′n)− q(τ ′n)

a((1− τ ′n)−1)
− 1

1− γ

)
= O

((
1− τ ′n
1− τn

)−γ
|A((1− τ ′n)−1)|

)
+ o

(
1√

n(1− τn)

∫ dn

1
sγ−1 log(s)ds

)

= o(|A((1− τn)−1)|dγn) + o

(
1√

n(1− τn)

∫ dn

1
sγ−1 log(s)ds

)

= o

(
1√

n(1− τn)

∫ dn

1
sγ−1 log(s)ds

)
. (A.37)

Besides, Proposition 1(ii) and (A.32) yield√
n(1− τn)∫ dn

1 sγ−1 log(s)ds

(
ES(τn)− q(τn)

a((1− τn)−1)
− 1

1− γ

)

=


o(
√
n(1− τn)|A((1− τn)−1)|) = o(1) if γ ≥ 0, ρ < 0,

λ
γ2

(1− γ)(1− γ − ρ)
+ o(1) if γ < 0

= λ
γ2
−

(1− γ−)(1− γ− − ρ)
+ o(1). (A.38)
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It is, finally, shown on p.137 in de Haan and Ferreira (2006) that√
n(1− τn)∫ dn

1 sγ−1 log(s)ds

{
q(τ ′n)− q(τn)

a((1− τn)−1)
−
∫ dn

1
sγ−1ds

}
= λ

γ−
γ− + ρ

+ o(1). (A.39)

Combine (A.35), (A.36), (A.37), (A.38) and (A.39) to get√
n(1− τn)∫ dn

1 sγ−1 log(s)ds

(
ES(τ ′n)− ES(τn)

a((1− τn)−1)
− 1

1− γ

∫ dn

1
sγ−1ds

)
→ λ

γ−(1− 2γ− − ρ)

(1− γ−)(1− γ− − ρ)(γ− + ρ)
.

Report this together with (A.34) into (A.30) to complete the proof.

Recall that the Dekkers et al. (1989) moment estimators of the scale parameter a(t) at t =

(1− τn)−1 and of the shape parameter γ are respectively

âMom
n ((1− τn)−1) = Xdnτne:nM

(1)
n (1− γ̂Mom

n,− )

and γ̂Mom
n = M (1)

n + γ̂Mom
n,− , with γ̂Mom

n,− = 1− 1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1

,

where

M (1)
n =

1

bn(1− τn)c

bn(1−τn)c∑
i=1

log
Xn−i+1:n

Xdnτne:n
and M (2)

n =
1

bn(1− τn)c

bn(1−τn)c∑
i=1

log2 Xn−i+1:n

Xdnτne:n
.

The main technical ingredient for the asymptotic analysis of these moment estimators is

Proposition 2, whose proof relies on the following lemma.

Lemma A.7 (Uniform inequality on logU). Assume that 0 < U(∞) = q(1) ≤ ∞, that con-

dition C2(γ, a, ρ, A) holds, and recall the definitions of a?, A? and Ψγ,ρ as in Equations (A.6)

and (A.7). Then, up to replacing the functions a? and A? by suitable functions a?,0 and A?,0

such that a?,0(t) = a?(t)(1 + o(|A(t)|)) and A?,0(t) = A?(t)(1 + o(1)) as t→∞, we have, for

any δ, ε > 0 sufficiently small, that for t large enough and all x > 1,∣∣∣∣ logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−−1ds+

(
a?(t)

U(t)
− γ+

)∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

−A?(t)x−γ+Ψγ,ρ(x)

∣∣∣∣≤ ε(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)
xδ.

Proof of Lemma A.7. Work throughout with the versions of the functions a? = a?,0 and

A? = A?,0 that make (A.8) hold true. Take t so large that U(t) > 0 and write, for any x > 1,

logU(tx)− logU(t)

a?(t)/U(t)
=
U(t)

a?(t)
log

(
1 +

a?(t)

U(t)

U(tx)− U(t)

a?(t)

)
.
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We treat the two cases γ ≤ 0 and γ > 0 separately, and when considering γ > 0 we shall deal

with the subcases ρ < 0 and ρ = 0 separately. Fix δ, ε > 0 small enough; in particular, we

impose that δ < −ρ in the case γ > 0 and ρ < 0. Fix also ε ∈ (0, 1).

Case γ ≤ 0: It follows from (A.8) that

∀η > 0, sup
x≥1

x−η
∣∣∣∣U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds

∣∣∣∣ = O(|A(t)|)→ 0 as t→∞. (A.40)

In particular,

∀η > 0, sup
x≥1

x−η
U(tx)− U(t)

a?(t)
= O(1) as t→∞. (A.41)

These facts and the convergence a?(t)/U(t)→ 0 motivate writing the identity

logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−1ds

=
U(t)

a?(t)

{
log

(
1 +

a?(t)

U(t)

U(tx)− U(t)

a?(t)

)
− a?(t)

U(t)

U(tx)− U(t)

a?(t)

}
+
U(tx)− U(t)

a?(t)
−
∫ x

1
sγ−1ds. (A.42)

We concentrate on the first term. By Taylor’s theorem,∣∣∣∣log(1 + h)− h+
h2

2

∣∣∣∣ ≤ h3

3
for any h > 0.

Combining this for h = a?(t)
U(t)

U(tx)−U(t)
a?(t) > 0 with (A.41) results in∣∣∣∣∣U(t)

a?(t)

{
log

(
1 +

a?(t)

U(t)

U(tx)− U(t)

a?(t)

)
− a?(t)

U(t)

U(tx)− U(t)

a?(t)

}
+

1

2

a?(t)

U(t)

(
U(tx)− U(t)

a?(t)

)2
∣∣∣∣∣

≤ ε

2

a(t)

U(t)
xδ

for t large enough, uniformly in x > 1. Then, using (A.40) and (A.41) again, we find∣∣∣∣∣U(t)

a?(t)

{
log

(
1 +

a?(t)

U(t)

U(tx)− U(t)

a?(t)

)
− a?(t)

U(t)

U(tx)− U(t)

a?(t)

}
+

1

2

a?(t)

U(t)

(∫ x

1
sγ−1ds

)2
∣∣∣∣∣

≤ ε a(t)

U(t)
xδ (A.43)

for t large enough, uniformly in x > 1. Combining (A.8), (A.42) and (A.43), we get, for t

large enough,∣∣∣∣∣ logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−1ds+

1

2

a?(t)

U(t)

(∫ x

1
sγ−1ds

)2

−A?(t)Ψγ,ρ(x)

∣∣∣∣∣
≤ ε

(
a(t)

U(t)
xδ + |A(t)|xγ+ρ+δ

)
≤ ε

(
a(t)

U(t)
+ |A(t)|

)
xδ for all x > 1.
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Since, when γ ≤ 0,∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds =

∫ x

1
sγ−1

(∫ s

1
uγ−1du

)
ds =

1

2

(∫ x

1
sγ−1ds

)2

,

the desired result follows in this case.

Case γ > 0: One has

logU(tx)− logU(t)

a?(t)/U(t)
− log(x) =

(
U(t)

a?(t)
− 1

γ

)
(logU(tx)− logU(t))

+
1

γ
log

(
1 + x−γ

a?(t)

U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ)

)
. (A.44)

We start by controlling the first term in (A.44). To this end we use the convergence a(t)/U(t)→
γ as t→∞ in order to write

U(t)

a?(t)
− 1

γ
= − 1

γ2

(
a?(t)

U(t)
− γ
)

(1 + η(t))

where η(t)→ 0 as t→∞. This results in(
U(t)

a?(t)
− 1

γ

)
(logU(tx)− logU(t))

= γ

(
U(t)

a?(t)
− 1

γ

)
log(x) +

(
U(t)

a?(t)
− 1

γ

)
(logU(tx)− logU(t)− γ log(x))

= −1

γ
log(x)

(
a?(t)

U(t)
− γ
)

(1 + η(t))

− 1

γ2

(
a?(t)

U(t)
− γ
)

(logU(tx)− logU(t)− γ log(x))(1 + η(t)). (A.45)

The function U is regularly varying with index γ, so

∀x > 0, lim
t→∞

logU(tx)− logU(t)

γ
= log(x).

This convergence makes it possible to apply Proposition B.2.17 p.382 in de Haan and Ferreira

(2006) to the function logU ; combined with (A.45), this provides, for t large enough,∣∣∣∣(U(t)

a?(t)
− 1

γ

)
(logU(tx)− logU(t)) +

1

γ
log(x)

(
a?(t)

U(t)
− γ
)∣∣∣∣ ≤ ε(∣∣∣∣ a(t)

U(t)
− γ
∣∣∣∣+ |A(t)|

)
xδ

(A.46)

for all x > 1 (recall that |a?(t)/U(t)− γ| = O(|a(t)/U(t)− γ|+ |A(t)|) by definition of a?).

We turn to the control of the second term in (A.44). When ρ < 0, note that (A.8) and (A.40)
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imply

x−γ
a?(t)

U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ) =

(
a?(t)

U(t)
− γ
)
x−γ − 1

−γ
+ γx−γA?(t)Ψγ,ρ(x)

+ x−γ
(
a?(t)

U(t)
− γ
)(

U(tx)− U(t)

a?(t)
− xγ − 1

γ

)
+ γx−γ

(
U(tx)− U(t)

a?(t)
− xγ − 1

γ
−A?(t)Ψγ,ρ(x)

)
=

(
a?(t)

U(t)
− γ
)
x−γ − 1

−γ
+ γx−γA?(t)Ψγ,ρ(x)

+ o

(∣∣∣∣ a(t)

U(t)
− γ
∣∣∣∣+ |A(t)|

)
(A.47)

uniformly in x > 1 as t→∞. In particular

sup
x>1

∣∣∣∣x−γ a?(t)U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ)

∣∣∣∣ = O

(∣∣∣∣ a(t)

U(t)
− γ
∣∣∣∣+ |A(t)|

)
→ 0 (A.48)

as t → ∞. Combine (A.47) and (A.48) with a Taylor expansion of z 7→ log(1 + z) around

z = 0 to obtain

1

γ
log

(
1 + x−γ

a?(t)

U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ)

)
=

1

γ

{(
a?(t)

U(t)
− γ
)
x−γ − 1

−γ
+ γx−γA?(t)Ψγ,ρ(x)

}
+ o

(∣∣∣∣ a(t)

U(t)
− γ
∣∣∣∣+ |A(t)|

)
(A.49)

uniformly in x > 1 as t→∞. When ρ = 0, write instead the second term in (A.44) as

1

γ
log

(
1 + x−γ

a?(t)

U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ)

)
=

log((tx)−γU(tx))− log(t−γU(t))

γ
.

By Theorems 2.1 and 3.1 in Fraga Alves et al. (2007),

∀x > 0, lim
t→∞

1

A(t)

(
U(tx)

U(t)
− xγ

)
= xγ log(x). (A.50)

Taking the logarithm in (A.50) produces the convergence

∀x > 0, lim
t→∞

log((tx)−γU(tx))− log(t−γU(t))

A(t)
= log(x).

Apply then Proposition B.2.17 p.382 in de Haan and Ferreira (2006) to obtain that∣∣log((tx)−γU(tx))− log(t−γU(t))−A(t) log(x)
∣∣ ≤ ε|A(t)|xδ

for all x > 1 when t is large enough. In other words∣∣∣∣1γ log

(
1 + x−γ

a?(t)

U(t)

U(tx)− U(t)

a?(t)
− (1− x−γ)

)
−A(t)x−γΨγ,ρ(x)

∣∣∣∣
=

∣∣∣∣ log((tx)−γU(tx))− log(t−γU(t))

γ
−A(t)x−γΨγ,ρ(x)

∣∣∣∣ ≤ ε|A(t)|xδ (A.51)
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for all x > 1 when t is large enough, because Ψγ,ρ(x) = 1
γx

γ log(x) when ρ = 0 and γ > 0.

Furthermore, Theorem 2.1 in Fraga Alves et al. (2007) guarantees that

a?(t)

U(t)
− γ =

a(t)

U(t)

(
1− 1

γ
A(t) + o(|A(t)|)

)
− γ

=
a(t)

U(t)
− γ −A(t) + o(|A(t)|) = o(|A(t)|). (A.52)

Conclude, from a combination of (A.44), (A.46) and (A.49) when ρ < 0, that∣∣∣∣ logU(tx)− logU(t)

a?(t)/U(t)
− log(x) +

1

γ

(
a?(t)

U(t)
− γ
)(

log(x)− x−γ − 1

−γ

)∣∣∣∣
− A?(t)x

−γΨγ,ρ(x)
∣∣ ≤ ε(∣∣∣∣ a(t)

U(t)
− γ
∣∣∣∣+ |A(t)|

)
xδ

when t is large enough uniformly in x > 1, and likewise from a combination of (A.44), (A.46), (A.51)

and (A.52) when ρ = 0 (since then A? = A). The result follows because when γ > 0,∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds =

∫ x

1
s−1

(∫ s

1
u−γ−1du

)
ds =

1

γ

(
log(x)− x−γ − 1

−γ

)
.

The proof is complete.

Proof of Proposition 2. We prove the result by suitably modifying the proof of Proposi-

tion 1(i). Fix δ, ε > 0 such that the conclusion of Lemma A.7 holds. Write, with the notation

of Lemma A.7,

logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

=
logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−−1ds+

(
a?(t)

a(t)
− 1

)∫ x

1
sγ−−1ds

+

(
a?(t)

a(t)
− 1

)(
logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−−1ds

)
. (A.53)

By Lemma A.7, one has, for t large enough and all x > 1,∣∣∣∣(a?(t)a(t)
− 1

)(
logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−−1ds

)∣∣∣∣ ≤ ε

3

(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)
xδ.

(A.54)

Use Lemma A.7 again to obtain, for t large enough and all x > 1,∣∣∣∣ logU(tx)− logU(t)

a?(t)/U(t)
−
∫ x

1
sγ−−1ds+

(
a?(t)

U(t)
− γ+

)∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

−A?(t)x−γ+Ψγ,ρ(x)

∣∣∣∣≤ ε

3

(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)
xδ. (A.55)

Recall the convergence a(t)/U(t)→ γ+ and, from the proof of Proposition 1(i), the notation

c(γ, ρ) = −1/ρ if ρ < 0, −1/γ if ρ = 0 and γ 6= 0, and 0 if γ = 0 and ρ = 0, as well as the
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notation d(ρ) = 1/ρ if ρ < 0 and 1 if ρ = 0, so that a?(t)/a(t)− 1 = c(γ, ρ)A(t)(1 + o(|A(t)|))
and A?(t) = d(ρ)A(t)(1 + o(|A(t)|)) as t→∞. Then

a?(t)

U(t)
− γ+ =

a(t)

U(t)
− γ+ + c(γ, ρ)γ+A(t) + o

(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)

and, for t large enough and all x > 1,∣∣∣∣(a?(t)a(t)
− 1

)∫ x

1
sγ−−1ds− c(γ, ρ)A(t)

∫ x

1
sγ−−1ds

∣∣∣∣ ≤ ε

3
|A(t)|xδ. (A.56)

Conclude that for t large enough and all x > 1,∣∣∣∣ logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

+

(
a(t)

U(t)
− γ+

)∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds− c(γ, ρ)A(t)

∫ x

1
sγ−−1ds

+ c(γ, ρ)γ+A(t)

∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds− d(ρ)A(t)x−γ+Ψγ,ρ(x)

∣∣∣∣
≤ ε

(∣∣∣∣ a(t)

U(t)
− γ+

∣∣∣∣+ |A(t)|
)
xδ

by combining (A.53), (A.54), (A.55) and (A.56). To conclude it is then sufficient to show that

c(γ, ρ)

(∫ x

1
sγ−−1ds− γ+

∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

)
+ d(ρ)x−γ+Ψγ,ρ(x) = x−γ+

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds. (A.57)

A simple calculation proves the identity∫ x

1
sγ−−1ds− γ+

∫ x

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds = x−γ+

∫ x

1
sγ−1ds

so that (A.57) is in fact equivalent to (A.12), which was shown to be correct in the proof of

Proposition 1(i). Conclude that (A.57) holds, thus completing the proof.

We may now proceed to the statement of Lemma A.8, which is nothing but a joint con-

vergence result for (M
(1)
n ,M

(2)
n , Xdnτne:n). It is the key to the proof of the joint convergence

Lemma A.9 about ÊSn(τn), the corresponding intermediate empirical quantile Xdnτne:n and

the moment estimators when γ < 0, which is an essential ingredient in the proofs of Theo-

rems 4 and 5. Let us highlight that the present lemma is not a consequence of earlier results

by Dekkers et al. (1989) and Chapter 3.5 in de Haan and Ferreira (2006), because it does not

feature the restriction that γ 6= ρ.
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Lemma A.8 (Joint weak convergence of the building blocks for the moment estimator). Sup-

pose that the tail quantile function U of X satisfies condition C2(γ, a, ρ, A) with 0 < U(∞) =

q(1) ≤ ∞. Let k = k(n) be a sequence of integers with k →∞, k/n→ 0,
√
kA(n/k)→ λ ∈ R

and
√
k(a(n/k)/U(n/k)− γ+)→ µ ∈ R. Let further (Yi) be a sequence of independent copies

of a unit Pareto random variable Y . Define

M(1)
n =

1

k

k∑
i=1

log
U(Yn−i+1:n)

U(Yn−k:n)
and M(2)

n =
1

k

k∑
i=1

log2 U(Yn−i+1:n)

U(Yn−k:n)
.

Then

√
k

(
U(Yn−k:n)

a(Yn−k:n)
M(1)

n −
1

1− γ−
,

{
U(Yn−k:n)

a(Yn−k:n)

}2

M(2)
n −

2

(1− γ−)(1− 2γ−)
,
U(Yn−k:n)− U(n/k)

a(n/k)

)
d−→ N

(
λ(B

(1)
A (γ, ρ), B

(2)
A (γ, ρ), 0) + µ(B

(1)
a/U (γ), B

(2)
a/U (γ), 0),V

)
where the bias terms in the limiting distribution are

B
(1)
A (γ, ρ) =

1

(1 + |γ|)(1− γ− − ρ)
=


1

(1 + γ)(1− ρ)
if γ ≥ 0,

1

(1− γ)(1− γ − ρ)
if γ < 0,

B
(2)
A (γ, ρ) =

2(3 + 2γ+ − 4γ− − 2ρ− γ+ρ)

(1 + γ+)(1 + |γ|)(1− 2γ−)(1− γ− − ρ)(1− 2γ− − ρ)

=


2(3 + 2γ − 2ρ− γρ)

(1 + γ)2(1− ρ)2
if γ ≥ 0,

2(3− 4γ − 2ρ)

(1− γ)(1− 2γ)(1− γ − ρ)(1− 2γ − ρ)
if γ < 0,

B
(1)
a/U (γ) = − 1

(1− γ−)(1− γ− + |γ|)
=


− 1

1 + γ
if γ ≥ 0,

− 1

(1− γ)(1− 2γ)
if γ < 0,

and B
(2)
a/U (γ) = − 2(3 + 2γ+)

(1− γ−)(1− γ− + |γ|)(1− 2γ− + |γ|)

=


−2(3 + 2γ)

(1 + γ)2
if γ ≥ 0,

− 6

(1− γ)(1− 2γ)(1− 3γ)
if γ < 0,
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and the covariance matrix V is

V =



1

(1− γ−)2(1− 2γ−)

4

(1− γ−)2(1− 2γ−)(1− 3γ−)
0

4

(1− γ−)2(1− 2γ−)(1− 3γ−)

4(5− 11γ−)

(1− γ−)2(1− 2γ−)2(1− 3γ−)(1− 4γ−)
0

0 0 1

 .

Proof of Lemma A.8. Combine Corollary 2.2.2 p.41 in de Haan and Ferreira (2006), Propo-

sition 1(i) and the assumption
√
kA(n/k) = O(1) to get

√
k
U(Yn−k:n)− U(n/k)

a(n/k)
=
√
k

∫ k
n
Yn−k:n

1
sγ−1ds+ oP(1)

d−→ N (0, 1). (A.58)

Write then

a(Yn−k:n)

U(Yn−k:n)
− a(n/k)

U(n/k)
=

a(n/k)

U(Yn−k:n)

(
a(Yn−k:n)

a(n/k)
− 1− a(n/k)

U(n/k)

U(Yn−k:n)− U(n/k)

a(n/k)

)
.

It follows from the fact that k
nYn−k:n = 1 + oP(1) and the regular variation property of U

with index γ+ (use Corollary 1.2.10.1 on p.23 in de Haan and Ferreira (2006) when γ > 0,

Lemma 1.2.9.3 on p.22 in de Haan and Ferreira (2006) when γ = 0, and the convergence of

U(t) to U(∞) ∈ (0,∞) when γ < 0) that a(n/k)/U(Yn−k:n)
P−→ γ+. Recalling (A.21) and

combining Lemma A.5 for the function a with (A.58) yields

a(Yn−k:n)

U(Yn−k:n)
− a(n/k)

U(n/k)
= (γ+ + oP(1))

((
k

n
Yn−k:n

)γ
− 1− γ+

∫ k
n
Yn−k:n

1
sγ−1ds+ oP

(
1√
k

))
.

Consequently, from (A.58) again,

√
k

(
a(Yn−k:n)

U(Yn−k:n)
− γ+

)
=
√
k

(
a(n/k)

U(n/k)
− γ+

)
+ oP(1)

P−→ µ. (A.59)

Now, combining Proposition 2 with (A.17), (A.59) and the regular variation property of A,

we find

√
k

(
U(Yn−k:n)

a(Yn−k:n)
M(1)

n −
1

1− γ−

)
=
√
k

(
1

k

k∑
i=1

∫ Yn−i+1:n/Yn−k:n

1
sγ−−1ds− 1

1− γ−

)

−
√
k

(
a(n/k)

U(n/k)
− γ+

)
E
(∫ Y

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

)
+
√
kA(n/k)E

(
Y −γ+

∫ Y

1
sγ−1

(∫ s

1
uρ−1du

)
ds

)
+ oP(1). (A.60)
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Likewise, writing (
logU(tx)− logU(t)

a(t)/U(t)

)2

−
(∫ x

1
sγ−−1ds

)2

= 2

(∫ x

1
sγ−−1ds

)(
logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

)
+

(
logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

)2

we find

√
k

({
U(Yn−k:n)

a(Yn−k:n)

}2

M(2)
n −

2

(1− γ−)(1− 2γ−)

)

=
√
k

1

k

k∑
i=1

(∫ Yn−i+1:n/Yn−k:n

1
sγ−−1ds

)2

− 2

(1− γ−)(1− 2γ−)


− 2
√
k

(
a(n/k)

U(n/k)
− γ+

)
E
((∫ Y

1
sγ−−1ds

){∫ Y

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

})
+ 2
√
kA(n/k)E

((∫ Y

1
sγ−−1ds

)
Y −γ+

{∫ Y

1
sγ−1

(∫ s

1
uρ−1du

)
ds

})
+ oP(1). (A.61)

Obviously

√
k

(
1

k

k∑
i=1

∫ Yn−i+1:n/Yn−k:n

1
sγ−−1ds− 1

1− γ−
,

1

k

k∑
i=1

(∫ Yn−i+1:n/Yn−k:n

1
sγ−−1ds

)2

− 2

(1− γ−)(1− 2γ−)
,

∫ k
n
Yn−k:n

1
sγ−1ds


d−→ N (03,V ) (A.62)

by using (A.16) combined with the Cramér-Wold device, the fact that
∫ Y

1 sγ−−1ds = log Y is

unit exponential when γ ≥ 0, and the straightforward identity

∀α, β > 0 with (α+ β)γ < 1, Cov(Y αγ , Y βγ) =
αβγ2

(1− αγ)(1− βγ)(1− (α+ β)γ)
,

as well as the standard central limit theorem, and Corollary 2.2.2 p.41 in de Haan and Ferreira

(2006) for the asymptotic normality of the third component. From (A.62), it follows that it

suffices to compute the bias terms in order to complete the proof. Using (A.19) twice, we get

E
(∫ Y

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

)
=

1

(1− γ−)(1− γ− + |γ|)
and

E
(
Y −γ+

∫ Y

1
sγ−1

(∫ s

1
uρ−1du

)
ds

)
=

1

(1 + γ+)(1 + γ+ − γ)(1 + γ+ − γ − ρ)

=
1

(1 + |γ|)(1− γ− − ρ)
.
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Using (A.20), we find after straightforward calculations that

E
((∫ Y

1
sγ−−1ds

){∫ Y

1
sγ−−1

(∫ s

1
u−|γ|−1du

)
ds

})
=

3− 7γ− + 6γ2
− + 2|γ|

(1− γ−)2(1− 2γ−)(1− γ− + |γ|)(1− 2γ− + |γ|)

=
3 + 2γ+

(1− γ−)(1− γ− + |γ|)(1− 2γ− + |γ|)

and

E
((∫ Y

1
sγ−−1ds

)
Y −γ+

{∫ Y

1
sγ−1

(∫ s

1
uρ−1du

)
ds

})
=

3 + 2γ+ − 7γ− + 4γ2
− − 2ρ− γ+ρ+ 2γ−ρ

(1 + γ+)2(1− γ−)2(1− 2γ−)(1− γ− − ρ)(1− 2γ− − ρ)

=
3 + 2γ+ − 4γ− − 2ρ− γ+ρ

(1 + γ+)(1 + |γ|)(1− 2γ−)(1− γ− − ρ)(1− 2γ− − ρ)
.

The proof is complete.

Lemma A.9 (Joint weak convergence of ÊSn(τn) and the building blocks for the moment

estimator in the short tail case). Suppose that X satisfies condition C2(γ, a, ρ,A) with γ < 0

and 0 < U(∞) = q(1) < ∞. Let τn ↑ 1 be such that n(1 − τn) → ∞,
√
n(1− τn)A((1 −

τn)−1)→ λ ∈ R and
√
n(1− τn) a((1− τn)−1)/q(τn)→ µ ∈ R.

1. One has

√
n(1− τn)

ÊSn(τn)− ES(τn)

a((1− τn)−1)

=
√
n(1− τn)

(
Xdnτne:nM

(1)
n

a((1− τn)−1)
− 1

1− γ

)
+
√
n(1− τn)

Xdnτne:n − q(τn)

a((1− τn)−1)

− λ

(1− γ)(1− γ − ρ)
+

µ

(1− γ)(1− 2γ)
+ oP(1).

2. The following joint weak convergence result holds:

√
n(1− τn)

(
ÊSn(τn)− ES(τn)

a((1− τn)−1)
,
Xdnτne:nM

(1)
n

a((1− τn)−1)
− 1

1− γ
, γ̂Mom
n,− − γ,

Xdnτne:n − q(τn)

a((1− τn)−1)

)
d−→ N

((
0,

λ

(1− γ)(1− γ − ρ)
− µ

(1− γ)(1− 2γ)
,

λ(1− γ)(1− 2γ)

(1− γ − ρ)(1− 2γ − ρ)
− µ(1− γ)

1− 3γ
, 0

)
,C

)

73



where C = C(γ) is the 4× 4 positive semidefinite symmetric matrix whose entries are

C11 =
2

(1− γ)(1− 2γ)
, C12 =

1 + 2γ

(1− γ)(1− 2γ)
, C13 =

2γ

1− 3γ
, C14 =

1

1− γ
,

C22 =
1 + γ + 2γ2

(1− γ)(1− 2γ)
, C23 =

2γ

1− 3γ
, C24 =

γ

1− γ
,

C33 =
(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)
, C34 = 0 and C44 = 1.

This results in particular corrects Corollary 3.5.6 p.108 in de Haan and Ferreira (2006), in

which the reported asymptotic variance of γ̂Mom
n,− − γ is unfortunately incorrect.

Proof of Lemma A.9. (i) From Propositions 1(i) and 2, and with the notation therein, we

have, for any δ, ε > 0 sufficiently small (in particular, we choose δ < 1), that for t large

enough and all x > 1,∣∣∣∣∣U(tx)− U(t)

a(t)
− logU(tx)− logU(t)

a(t)/U(t)
− a(t)

U(t)

1

2

(
xγ − 1

γ

)2
∣∣∣∣∣ ≤ ε

(
a(t)

U(t)
+ |A(t)|

)
xδ. (A.63)

Besides, and as in the proof of Proposition A.1, it suffices to work in the case when k = n(1−τn)

is a sequence of integers, with then

ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

replaced by
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)
.

Let then (Yi) be a sequence of independent unit Pareto random variables. Obviously

√
k

(
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)
,
Xn−k:nM

(1)
n

a(n/k)

)

d
=
√
k
a(Yn−k:n)

a(n/k)

(
1

k

k∑
i=1

U(Yn−i+1:n)− U(Yn−k:n)

a(Yn−k:n)
,

1

k

k∑
i=1

logU(Yn−i+1:n)− logU(Yn−k:n)

(a/U)(Yn−k:n)

)

so that

√
k

(
1

k

k∑
i=1

Xn−i+1:n −Xn−k:n

a(n/k)
− Xn−k:nM

(1)
n

a(n/k)

)

d
=
a(Yn−k:n)

a(n/k)

(
√
k
a(Yn−k:n)

U(Yn−k:n)
× 1

k

k∑
i=1

1

2

(
(Yn−i+1:n/Yn−k:n)γ − 1

γ

)2

+ oP(1)

)
d
=

µ

(1− γ)(1− 2γ)
+ oP(1)

by Equations (A.17), (A.18) and the uniform inequality (A.63), along with the convergence
k
nYn−k:n

P−→ 1 combined with the regular variation properties of a, U and A (see de Haan
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and Ferreira, 2006, Lemma 1.2.9 and Corollary 1.2.10 pp.22-23). This yields

ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

−
Xdnτne:nM

(1)
n

a((1− τn)−1)
=

1√
n(1− τn)

(
µ

(1− γ)(1− 2γ)
+ oP(1)

)
. (A.64)

To conclude the proof of (i), write

√
n(1− τn)

ÊSn(τn)− ES(τn)

a((1− τn)−1)

=
√
n(1− τn)

(
ÊSn(τn)−Xdnτne:n
a((1− τn)−1)

− 1

1− γ

)
+
√
n(1− τn)

Xdnτne:n − q(τn)

a((1− τn)−1)

−
√
n(1− τn)

(
ES(τn)− q(τn)

a((1− τn)−1)
− 1

1− γ

)
=
√
n(1− τn)

(
Xdnτne:nM

(1)
n

a((1− τn)−1)
− 1

1− γ

)
+
√
n(1− τn)

Xdnτne:n − q(τn)

a((1− τn)−1)

− λ

(1− γ)(1− γ − ρ)
+

µ

(1− γ)(1− 2γ)
+ oP(1)

by (A.64) and Proposition 1(ii).

(ii) Using (i), straightforward calculations show that it suffices to prove that, again when

k = n(1− τn) is a sequence of integers,

√
k

(
Xn−k:n

a(n/k)
M (1)
n −

1

1− γ
,

{
Xn−k:n

a(n/k)

}2

M (2)
n −

2

(1− γ)(1− 2γ)
,
Xn−k:n − q(1− k/n)

a(n/k)

)
d−→ N

((
λ

(1− γ)(1− γ − ρ)
− µ

(1− γ)(1− 2γ)
,

2(3− 4γ − 2ρ)λ

(1− γ)(1− 2γ)(1− γ − ρ)(1− 2γ − ρ)
− 6µ

(1− γ)(1− 2γ)(1− 3γ)
, 0

)
,

1 + γ + 2γ2

(1− γ)(1− 2γ)

4(1 + γ2 − 3γ3)

(1− γ)2(1− 2γ)(1− 3γ)

γ

1− γ
4(1 + γ2 − 3γ3)

(1− γ)2(1− 2γ)(1− 3γ)

4(5− γ + 2γ2 − 24γ3)

(1− γ)2(1− 2γ)(1− 3γ)(1− 4γ)

4γ

(1− γ)(1− 2γ)

γ

1− γ
4γ

(1− γ)(1− 2γ)
1




.

(A.65)

Indeed, if this convergence is true, then a simple linearization of γ̂Mom
n,− − γ yields

γ̂Mom
n,− − γ = (1− γ)2(1− 2γ)

{
−2

(
Xn−k:n

a(n/k)
M (1)
n −

1

1− γ

)
+

1− 2γ

2

({
Xn−k:n

a(n/k)

}2

M (2)
n −

2

(1− γ)(1− 2γ)

)}
+ oP

(
1√
k

)
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and straightforward matrix algebra gives the desired convergence. With the notation of

Lemma A.8, the random vector on the left-hand side of (A.65) has the same distribution

as

√
k

(
U(Yn−k:n)

a(n/k)
M(1)

n −
1

1− γ
,

{
U(Yn−k:n)

a(n/k)

}2

M(2)
n −

2

(1− γ)(1− 2γ)
,
U(Yn−k:n)− U(n/k)

a(n/k)

)
.

Now, by Lemma A.5 applied to the function a (which satisfies the required second-order

inequality, see (A.21)), Lemma A.8 and (A.58),

√
k

(
U(Yn−k:n)

a(n/k)
M(1)

n −
1

1− γ

)
=
√
k

(
U(Yn−k:n)

a(Yn−k:n)
M(1)

n −
1

1− γ

)
+
√
k

(
a(Yn−k:n)

a(n/k)
− 1

)
U(Yn−k:n)

a(Yn−k:n)
M(1)

n

=
√
k

(
U(Yn−k:n)

a(Yn−k:n)
M(1)

n −
1

1− γ

)
+

γ

1− γ
×
√
k
U(Yn−k:n)− U(n/k)

a(n/k)
+ oP(1).

Likewise,

√
k

({
U(Yn−k:n)

a(n/k)

}2

M(2)
n −

2

(1− γ)(1− 2γ)

)

=
√
k

({
U(Yn−k:n)

a(Yn−k:n)

}2

M(2)
n −

2

(1− γ)(1− 2γ)

)

+
√
k

(
a(Yn−k:n)

a(n/k)
− 1

)(
a(Yn−k:n)

a(n/k)
+ 1

){
U(Yn−k:n)

a(Yn−k:n)

}2

M(2)
n

=
√
k

({
U(Yn−k:n)

a(Yn−k:n)

}2

M(2)
n −

2

(1− γ)(1− 2γ)

)

+
4γ

(1− γ)(1− 2γ)
×
√
k
U(Yn−k:n)− U(n/k)

a(n/k)
+ oP(1).

Convergence (A.65) now follows immediately from Lemma A.8 and straightforward, if bur-

densome, calculations.

Our final auxiliary result will be useful when establishing the asymptotic properties of moment-

based extrapolated Expected Shortfall estimators. This lemma can be seen as a complement

to Theorem 3.5.4 p.104 in de Haan and Ferreira (2006), because it provides a unified repre-

sentation of the bias term of γ̂Mom
n .

Lemma A.10 (Convergence of γ̂Mom
n ). Suppose that X satisfies condition C2(γ, a, ρ, A) with

0 < U(∞) = q(1) ≤ ∞. Let τn ↑ 1 be such that n(1− τn)→∞,
√
n(1− τn)A((1− τn)−1)→

λ ∈ R and
√
n(1− τn)(a((1 − τn)−1)/q(τn) − γ+) → µ ∈ R. Then

√
n(1− τn)(γ̂Mom

n − γ) is
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asymptotically Gaussian with mean λ b1(γ, ρ) + µ b2(γ), where

b1(γ, ρ) =


1 + γ + γ2 − ργ2

(1 + γ)2(1− ρ)2
if γ ≥ 0,

(1− γ)(1− 2γ)

(1− γ − ρ)(1− 2γ − ρ)
if γ < 0,

and b2(γ) =


γ

(1 + γ)2
if γ ≥ 0,

− γ(1 + γ)

(1− γ)(1− 3γ)
if γ < 0,

and variance 
γ2 + 1 if γ ≥ 0,

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)
if γ < 0.

Proof of Lemma A.10. Recall that γ̂Mom
n = M

(1)
n + γ̂Mom

n,− . Set k = bn(1− τn)c: in particular

k → ∞, k/n → 0,
√
kA(n/k) → λ (because of the regular variation property of A) and

√
k(a(n/k)/U(n/k)− γ+)→ µ (using Equations (A.22) and (A.23)). Note that

(M (1)
n − γ+, γ̂

Mom
n,− − γ−)

d
=

 a(Yn−k:n)

U(Yn−k:n)
M

(1)
n − γ+, 1−

1

2

(
1− (M

(1)
n )2

M
(2)
n

)−1

− γ−


where, letting the Yi be independent copies of a unit Pareto random variable Y ,

M
(j)
n =

{
U(Yn−k:n)

a(Yn−k:n)

}j
× 1

k

k∑
i=1

logj
U(Yn−i+1:n)

U(Yn−k:n)
.

Recalling (A.59), a straightforward linearization then yields

(M (1)
n − γ+, γ̂

Mom
n,− − γ−)

d
=

(
γ+

(
M

(1)
n −

1

1− γ−

)
+

1√
k

µ

1− γ−
,

(1− γ−)2(1− 2γ−)

{
−2

(
M

(1)
n −

1

1− γ−

)
+

1− 2γ−
2

(
M

(2)
n −

2

(1− γ−)(1− 2γ−)

)})
+ oP

(
1√
k

)
. (A.66)

Conclude that√
n(1− τn)(γ̂Mom

n − γ) =
µ

1− γ
+
√
n(1− τn)(γ̂Mom

n,− − γ) + oP(1) (A.67)

when γ < 0, so that the result is an immediate consequence of Lemma A.9 in this case. When

γ ≥ 0, Equation (A.66) yields√
n(1− τn)(γ̂Mom

n − γ)
d
= (γ − 2)

(
M

(1)
n − 1

)
+

1

2

(
M

(2)
n − 2

)
+ µ+ oP(1)

and the result follows from Lemma A.8 and straightforward calculations.
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Proof of Theorem 4. We consider three cases: γ < 0, then 0 ≤ γ < 1/2 and finally 1/2 ≤
γ < 1. As a preliminary step we note that when γ ≥ 0 and ρ < 0 one has, according to

Theorem 4.2.1 p.131 in de Haan and Ferreira (2006),√
n(1− τn)

(
âMom
n ((1− τn)−1)

a((1− τn)−1)
− 1

)
= OP(1). (A.68)

Case γ < 0: Recall that

âMom
n ((1− τn)−1) = Xdnτne:nM

(1)
n (1− γ̂Mom

n,− ).

It immediately follows from Lemma A.9 that

√
n(1− τn)

(
âMom
n ((1− τn)−1)

a((1− τn)−1)
− 1

)
= (1− γ)×

√
n(1− τn)

(
Xdnτne:nM

(1)
n

a((1− τn)−1)
− 1

1− γ

)
− 1

1− γ
×
√
n(1− τn)(γ̂Mom

n,− − γ) + oP(1). (A.69)

Recalling (A.67) and applying Lemma A.9 then yields, after straightforward matrix algebra,

√
n(1− τn)

(
ÊSn(τn)− ES(τn)

a((1− τn)−1)
,
âMom
n ((1− τn)−1)

a((1− τn)−1)
− 1, γ̂Mom

n − γ

)
d−→ (Zloc, Zscale, Zshape)

where the vector (Zloc, Zscale, Zshape) is trivariate Gaussian with mean vector defined as

E(Zloc) = 0,

E(Zscale) = −λ ρ

(1− γ − ρ)(1− 2γ − ρ)
+ µ

γ

(1− 2γ)(1− 3γ)
,

and E(Zshape) = λ
(1− γ)(1− 2γ)

(1− γ − ρ)(1− 2γ − ρ)
− µ γ(1 + γ)

(1− γ)(1− 3γ)
,

and with covariance matrix

2

(1− γ)(1− 2γ)

1− 4γ − γ2 + 6γ3

(1− γ)(1− 2γ)(1− 3γ)

2γ

1− 3γ

1− 4γ − γ2 + 6γ3

(1− γ)(1− 2γ)(1− 3γ)

2− 16γ + 51γ2 − 69γ3 + 50γ4 − 24γ5

(1− 2γ)(1− 3γ)(1− 4γ)
−(1− γ)2(1− 4γ + 12γ2)

(1− 3γ)(1− 4γ)

2γ

1− 3γ
−(1− γ)2(1− 4γ + 12γ2)

(1− 3γ)(1− 4γ)

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)


.

The result now follows from a direct application of Corollary 1.

Case 0 ≤ γ < 1/2: In this setting, the result is an immediate consequence of Corollary 2,

whose assumptions are fulfilled thanks to Theorem 1, (A.68) and Lemma A.10.

Case 1/2 ≤ γ < 1: Let, as in the statement of Theorem 3, dn = (1 − τn)/(1 − τ ′n). By

Equation (A.31), ∫ dn

1
sγ−1 log(s)ds =

1

γ
dγn log(dn)(1 + o(1))
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and since 1/dn = O(1/(n(1− τn)))→ 0, one obviously has

1∫ dn
1 sγ−1 log(s)ds

= o(d−γn ) = o((n(1− τn))−γ).

Consequently
√
n(1− τn)/

∫ dn
1 sγ−1 log(s)ds→ 0. Combining Theorems 1 and 3 with (A.68)

and Lemma A.10, we get√
n(1− τn)

ÊS
?

n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ dn

1 sγ−1 log(s)ds
=

1

1− γ
√
n(1− τn)(γ̂n − γ) + oP(1).

The conclusion again follows from Lemma A.10.

Proof of Theorem 5. We split the proof into two parts: we first consider the case γ < 0 and

then the case 0 ≤ γ < 1. As a starting point we note that in general, if ẼSn(τn) is defined as

ẼSn(τn) = Xdnτne:n + ân((1− τn)−1)
1

1− γ̂n
,

where it is assumed that√
n(1− τn)

(
Xdnτne:n − q(τn)

a((1− τn)−1)
,
ân((1− τn)−1)

a((1− τn)−1)
− 1, γ̂n − γ

)
d−→ (Nloc, Nscale, Nshape),

in which the trivariate random vector (Nloc, Nscale, Nshape) has a nondegenerate distribution,

then a simple combination of Theorem 2 and Corollary 1 entails√
n(1− τn)

ẼS
?

n(τ ′n)− ES(τ ′n)

a((1− τn)−1)
∫ (1−τn)/(1−τ ′n)

1 sγ−1 log(s)ds

d−→ γ2
−Nloc − γ−Nscale +

1

1− γ+
Nshape − λ

γ−
γ− + ρ

. (A.70)

Case γ < 0: Use Lemma A.9 in conjunction with (A.67) and (A.69) to obtain that√
n(1− τn)

(
Xdnτne:n − q(τn)

a((1− τn)−1)
,
âMom
n ((1− τn)−1)

a((1− τn)−1)
− 1, γ̂Mom

n − γ
)

d−→ (Nloc, Nscale, Nshape)

where the vector (Nloc, Nscale, Nshape) is trivariate Gaussian with mean vector defined as

E(Nloc) = 0,

E(Nscale) = −λ ρ

(1− γ − ρ)(1− 2γ − ρ)
+ µ

γ

(1− 2γ)(1− 3γ)
,

and E(Nshape) = λ
(1− γ)(1− 2γ)

(1− γ − ρ)(1− 2γ − ρ)
− µ γ(1 + γ)

(1− γ)(1− 3γ)
,

and with covariance matrix

1 γ 0

γ
2− 16γ + 51γ2 − 69γ3 + 50γ4 − 24γ5

(1− 2γ)(1− 3γ)(1− 4γ)
−(1− γ)2(1− 4γ + 12γ2)

(1− 3γ)(1− 4γ)

0 −(1− γ)2(1− 4γ + 12γ2)

(1− 3γ)(1− 4γ)

(1− γ)2(1− 2γ)(1− γ + 6γ2)

(1− 3γ)(1− 4γ)


.
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Combine this convergence with (A.70) to obtain the result after straightforward calculations.

Case 0 ≤ γ < 1: It is a particular consequence of Lemma A.8 that√
n(1− τn)

Xdnτne:n − q(τn)

a((1− τn)−1)
= OP(1). (A.71)

Combine (A.68), (A.71) and Lemma A.10 to get√
n(1− τn)

ẼSn(τn)− ES(τn)

a((1− τn)−1)
= OP(1) and

√
n(1− τn)

(
âMom
n ((1− τn)−1)

a((1− τn)−1)
− 1

)
= OP(1).

Use this in conjunction with Lemma A.10 and Corollary 2 to obtain the desired result.

B Compatibility between Proposition 2 and existing second-

order theory

According to the discussion on p.103 in de Haan and Ferreira (2006), if condition C2(γ, a, ρ, A)

holds with 0 < U(∞) = q(1) ≤ ∞, γ 6= ρ and ρ < 0 when γ > 0, then logU satisfies a similar

second-order condition:

∀x > 0, lim
t→∞

1

B(t)

(
logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

)
=

∫ x

1
sγ−−1

(∫ s

1
uρ
′−1du

)
ds.

(B.72)

According to Lemma B.3.16 p.398 in de Haan and Ferreira (2006), the quantities ρ′ and B

are defined as

ρ′ =

ρ if γ < ρ ≤ 0 or 0 < −ρ ≤ γ or (0 < γ < −ρ and l = 0),

−|γ| if ρ < γ ≤ 0 or (0 < γ < −ρ and l 6= 0),

and B(t) =



A(t) if γ < ρ ≤ 0,

ρ

γ + ρ
A(t) if 0 < −ρ < γ or (0 < γ < −ρ and l = 0),

γ+ −
a(t)

U(t)
if ρ < γ ≤ 0 or γ = −ρ or (0 < γ < −ρ and l 6= 0),

where for γ + ρ < 0 the quantity l is defined as l = limt→∞ U(t) − a(t)/γ (see Theorem 2.1

in Fraga Alves et al. (2007) for the existence of this limit). Theorem 2.1 in Fraga Alves et al.

(2007) also shows that actually, when γ 6= ρ,

lim
t→∞

1

A(t)

(
a(t)

U(t)
− γ+

)
=



0 if γ < ρ ≤ 0,

γ

γ + ρ
if 0 < −ρ < γ or (0 < γ < −ρ and l = 0),

±∞ if ρ < γ ≤ 0 or γ = −ρ or (0 < γ < −ρ and l 6= 0).
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This means that the second-order condition (B.72) on logU is an immediate consequence of

Proposition 2 when either A(t) or a(t)/U(t)− γ+ dominates the other, that is, in any of the

four situations γ < ρ ≤ 0, ρ < γ ≤ 0, γ = −ρ and (0 < γ < −ρ and l 6= 0). When this is not

the case, that is, when 0 < −ρ < γ or (0 < γ < −ρ and l = 0), then Proposition 2 and the

above result from Fraga Alves et al. (2007) yield, as t→∞,

logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds

= A(t)

{
− γ

γ + ρ

∫ x

1
s−1

(∫ s

1
u−γ−1du

)
ds+ x−γ

∫ x

1
sγ−1

(∫ s

1
uρ−1du

)
ds+ o(1)

}
pointwise in x. A straightforward calculation then shows that

logU(tx)− logU(t)

a(t)/U(t)
−
∫ x

1
sγ−−1ds =

ρ

γ + ρ
A(t)

∫ x

1
s−1

(∫ s

1
uρ−1du

)
ds+ o(|A(t)|)

which, again, is nothing but the second-order condition (B.72). Proposition 2 therefore ex-

tends this second-order condition on logU by avoiding the restrictions γ 6= ρ and ρ < 0 if

γ > 0.

C Technical details of the construction of the corrected infer-

ence procedures

C.1 The Expectrem R package

We have implemented our methods in an R package called Expectrem, freely available on

GitHub2. The objective of this package is to provide methods for the estimation of certain

expectation-type quantities, such as expectiles and the Expected Shortfall. We have added

the following objects to the existing version of this R package:

• momentindex: For a dataset X given in input, this function returns the moment estimator

γ̂Mom
n using the kn (argument k) top log-spacings. The asymptotic Gaussian confidence

interval (with confidence level ci.level, default 0.95) derived from Theorem 3.5.4 p.104

in de Haan and Ferreira (2006) is also returned.

• extES: At a given probability level τ ′n (argument tau), and for a dataset X given in input,

compute an extrapolated estimator of the Expected Shortfall at level τ ′n using the kn

top order statistics (argument k). Setting the argument estim to "Hill" returns the

estimator ÊS
W

n (τ ′n) if method="direct", and ẼS
W

n (τ ′n) if method="indirect". Setting

the argument estim to "Moment" leads to ÊS
?

n(τ ′n) if method="direct", and to ẼS
?

n(τ ′n)

2https://github.com/AntoineUC/Expectrem
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if method="indirect". The associated confidence intervals at an asymptotic confidence

level 1− α (argument ci.level, default 0.95), which are Î?1(α), Ĩ?1(α), Î?4(α) and Ĩ?4(α),

respectively, are also returned.

• ESexp, ESfrechet, ESgumbel, ESkumaraswamy, ESlnorm, ESlogis, ESnorm, ESpareto,

ESrev frechet, ESt, ESweibull: These functions give the values of the Expected Short-

fall (at a vector of levels specified by the argument probs) of the exponential, Fréchet,

Gumbel, Kumaraswamy, log-normal, logistic, Gaussian, Pareto, reverse-Fréchet, Stu-

dent and Weibull distributions.

• flood data: The OpenFEMA flood claim amounts dataset used in Section 5.2 (and

Section E of the Appendix).

C.2 Inference at intermediate levels

We consider here the intermediate setting when τn = 1 − kn/n with kn → ∞ and kn/n → 0

as n → ∞. In this situation, ES(τn) may be estimated either by the empirical Expected

Shortfall ÊSn(τn), or by its quantile-based semiparametric estimator ẼSn(τn). To the best

of our knowledge, the literature on ÊSn(τn) has previously focused on the case when X is

heavy-tailed and has a finite variance, that is, γ ∈ (0, 1/2). In this case, Remark 1 suggests

the following (competitor) confidence interval at level 1− α:

Î1(α) =

[
ÊSn(1− kn/n) exp

(
± γ̂H

n√
kn

√
2(1− γ̂H

n )

1− 2γ̂H
n

z1−α/2

)]
,

where z1−α/2 is the quantile of level 1−α/2 of the standard normal distribution, and γ̂H
n = M

(1)
n

is the Hill (1975) estimator. This confidence interval is naturally restricted to the situation

γ ∈ (0, 1/2). A more general inference procedure can be obtained as follows: note that up to

a negligible bias term,

ÊSn(τn)− ES(τn)

a((1− τn)−1)
≈ 1

kn

kn∑
i=1

Xn−i+1:n −Xn−kn:n

a(n/kn)
− 1

1− γ
+
Xn−kn:n − q(1− kn/n)

a(n/kn)
.

Therefore

ÊSn(τn)− ES(τn)

a((1− τn)−1)

d
≈ a(Yn−kn:n)

a(n/kn)
× 1

kn

kn∑
i=1

(
U(Yn−i+1:n)− U(Yn−kn:n)

a(Yn−kn:n)
− 1

1− γ

)
+

1

1− γ

(
a(Yn−kn:n)

a(n/kn)
− 1

)
+
U(Yn−kn:n)− U(n/kn)

a(n/kn)
.

Recall that Y is unit Pareto if and only if log(Y ) is unit exponential. Using the regular

variation property of the function a, condition C2(γ, a, ρ,A) and the Rényi representation
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(see (A.15) and (A.16) in the Appendix), we get, with the notation Dr(x) =
∫ x

1 s
r−1ds,

ÊSn(τn)− ES(τn)

a((1− τn)−1)

d
≈
(
kn
n
Yn−kn:n

)γ
× 1

kn

kn∑
i=1

(
Dγ(Yn−i+1:n/Yn−kn:n)− 1

1− γ

)
+

1

1− γ

((
kn
n
Yn−kn:n

)γ
− 1

)
+Dγ

(
kn
n
Yn−kn:n

)
d
=

kn
n

exp

 n∑
i=kn+1

log(Yi)

i

γ (
1

kn

kn∑
i=1

Dγ(Yi)−
1

1− γ

)

+
1

1− γ
Dγ

kn
n

exp

 n∑
i=kn+1

log(Yi)

i

 =: −G(1)
n (Y1, . . . , Yn, γ).

Besides

ân((1− τn)−1)

a((1− τn)−1)
=
Xn−kn:n − U(n/kn)

a(n/kn)
M (1)
n (1− γ̂n,−) +

{
U(n/kn)

a(n/kn)
M (1)
n

}
(1− γ̂n,−)

and as such, it follows from (A.58), (A.60), (A.61) and the convergence M
(1)
n (1− γ̂n,−)

P→ γ+

that

ân((1− τn)−1)

a((1− τn)−1)

d
≈ γ+Dγ

(
kn
n
Yn−kn:n

)

+
1

2

(
1

kn

kn∑
i=1

Dγ−(Yn−i+1:n/Yn−kn:n)

)1−

(
1
kn

∑kn
i=1Dγ−(Yn−i+1:n/Yn−kn:n)

)2

1
kn

∑kn
i=1(Dγ−(Yn−i+1:n/Yn−kn:n))2


−1

.

Conclude by the Rényi representation again (with the same variables Yi) that

ân((1− τn)−1)

a((1− τn)−1)

d
≈ γ+Dγ

kn
n

exp

 n∑
i=kn+1

log(Yi)

i



+
1

2

(
1

kn

kn∑
i=1

Dγ−(Yi)

)1−

(
1
kn

∑kn
i=1Dγ−(Yi)

)2

1
kn

∑kn
i=1(Dγ−(Yi))2


−1

=: G(2)
n (Y1, . . . , Yn, γ)

and therefore

ÊSn(τn)− ES(τn)

ân((1− τn)−1)

d
≈ −G

(1)
n (Y1, . . . , Yn, γ)

G
(2)
n (Y1, . . . , Yn, γ)

=: −Gn(Y1, . . . , Yn, γ).

For any γ < 1, the random quantity Gn(Y1, . . . , Yn, γ) is straightforward to simulate, meaning

that its distribution can be tabulated. This leads to the following confidence interval for

ES(1− kn/n):

Î2(α) =
[
ÊSn(1− kn/n) + ân(n/kn)gn,α/2(γ̂n), ÊSn(1− kn/n) + ân(n/kn)gn,1−α/2(γ̂n)

]
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where gn,τ (γ) is the τth quantile of Gn(Y1, . . . , Yn, γ). Our experience with this interval

is that it provides excellent results for γ ≤ 1/4, but when γ > 1/4, its performance is

adversely affected by the finite-sample uncertainty in the plug-in step of replacing γ by γ̂n.

To put it differently, for large positive values of γ, the distributions of Gn(Y1, . . . , Yn, γ) and

Gn(Y1, . . . , Yn, γ̂n) may look substantially different in finite samples. Since
√
kn(γ̂n − γ)

d
≈

N (0, v2(γ)), we propose to deal with this issue of uncertainty quantification by computing

directly the quantiles of Gn(Y1, . . . , Yn, γ̃n) for γ̃n = γ̂n + Z
√
v2(γ̂n)/kn, where Z ∼ N (0, 1)

is independent from the data; in addition, we retain only those values of γ̃n that are smaller

than 1, i.e. we resample given γ̃n < 1. This gives rise to an approximation for the distribution

of Gn(Y1, . . . , Yn, γ̂n) and, accordingly, to a different interval Î3(α). A step-by-step description

of the construction of both Î2(α) and Î3(α) can be found in Algorithm 2 (where Φ denotes

the standard normal distribution function).

Algorithm 2 Confidence intervals for ES(1− kn/n) - Empirical estimator

Require: N ≥ 1, α ∈ (0, 1), ÊSn(1− kn/n), ân(n/kn) = âMom
n (n/kn), γ̂n = γ̂Mom

n (kn)

Ensure: γ̂n < 1

1: Simulate N replications U1, . . . , UN of a uniform distribution on [0, 1]

2: for i ∈ {1, . . . , N} do

3: Calculate γ̃n,i = γ̂n +
√

v2(γ̂n)
kn

Φ−1
(
UiΦ

(
(1− γ̂n)

√
kn

v2(γ̂n)

))
4: Simulate n replications Y1, . . . , Yn of a unit Pareto distribution

5: Compute Gi = Gn(Y1, . . . , Yn, γ̂n) and G̃i = Gn(Y1, . . . , Yn, γ̃n,i)

6: end for

7: Compute

{
Gup = Gup(α) = GbN(1−α/2)c:N

Gdown = Gdown(α) = GbNα/2c:N
and

{
G̃up = G̃up(α) = G̃bN(1−α/2)c:N

G̃down = G̃down(α) = G̃bNα/2c:N

8: return

 Î2(α) =
[
ÊSn(1− kn/n) + ân(n/kn)Gdown, ÊSn(1− kn/n) + ân(n/kn)Gup

]
Î3(α) =

[
ÊSn(1− kn/n) + ân(n/kn)G̃down, ÊSn(1− kn/n) + ân(n/kn)G̃up

]
We turn to the quantile-based estimator ẼSn(τn). We first note that in the heavy-tailed

setting γ ∈ (0, 1), owing to the convergence a(t)/U(t) → γ as t → ∞, the following simpler

version of the quantile-based estimator has been considered by El Methni and Stupfler (2017):

ẼS
H

n (1− kn/n) =
Xn−kn:n

1− γ̂H
n

,

where γ̂H
n is again the Hill estimator, see Section 3.2 therein. Since, by (A.16) with f = log,
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Xn−kn:n and γ̂H
n are asymptotically independent, it is straightforward to prove that

√
kn log

(
ẼS

H

n (1− kn/n)

ES(1− kn/n)

)
=
√
kn

(
ẼS

H

n (1− kn/n)

ES(1− kn/n)
− 1

)
+ oP(1)

d−→ N
(

0,
γ2

(1− γ)2
(1 + (1− γ)2)

)
.

The following naive (competitor) asymptotic confidence interval at level 1− α follows:

Ĩ1(α) =

[
ẼS

H

n (1− kn/n) exp

(
± γ̂H

n

1− γ̂H
n

√
1 + (1− γ̂H

n )2
z1−α/2√
kn

)]
.

This interval is only valid for γ ∈ (0, 1). Using the semiparametric estimator ẼSn (with

the moment estimators ân(n/kn) = âMom
n (n/kn) of the scale and γ̂n = γ̂Mom

n of the shape

extreme value parameters, respectively) instead of ẼS
H

n and applying Theorem 2 leads to the

alternative confidence interval

Ĩ2(α) =
[
ẼSn(1− kn/n)

± ân(n/kn)√
kn

√
(1 + γ̂n)(1− γ̂n)3 + v1(γ̂n)(1− γ̂n)2 + 2c(γ̂n)(1− γ̂n) + v2(γ̂n)

(1− γ̂n)4
z1−α/2

]
.

This confidence interval is, in theory, valid for any γ < 1 but its finite-sample performance is

often disappointing, particularly when γ is close to 1. We correct this interval so as to push

its finite-sample coverage close to the nominal level while keeping it Gaussian in nature. Set

Z̃n =
√
kn

ẼSn(1− kn/n)− ES(1− kn/n)

ân(n/kn)
=
√
kn

ẼSn(1− kn/n)− ES(1− kn/n)

a(n/kn)

a(n/kn)

ân(n/kn)
.

Theorem 2 suggests the finer approximation

Z̃n
d
≈
(
Nloc +

1

1− γ
Nscale +

1

(1− γ)2
Nshape

)(
1− Nscale√

kn

)
d
= u>N +

N>SN√
kn

,

where N = (Nloc, Nscale, Nshape)
> follows a trivariate centered normal distribution with co-

variance matrix Σ,

S = S(γ) =


0 −1

2 0

−1
2 − 1

1−γ − 1
2(1−γ)2

0 − 1
2(1−γ)2 0

 and u = u(γ) =


1
1

1−γ
1

(1−γ)2

 .

Straightforward calculations show that, if Z = (Z1, . . . , Zp) is a p−dimensional Gaussian

random vector made of independent centered unit Gaussian random variables and M is a p×p
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symmetric matrix, one has E(Z>MZ) = tr(M) and E((Z>MZ)2) = 2 tr(M2)+(tr(M))2. The

mean m(γ) and variance s2(γ) of the random variable u>N + N>SN/
√
kn are then

m(γ) =
tr(SΣ)√

kn
and s2(γ) = u>Σu + 2

tr(SΣSΣ)

kn
.

Approximating Z̃n by a Gaussian random variable with mean m(γ̂n) and variance s2(γ̂n)

suggests the confidence interval

Ĩ3(α) =

[
ẼSn(1− kn/n)− ân(n/kn)√

kn
m(γ̂n)± ân(n/kn)√

kn
s(γ̂n)z1−α/2

]
.

Similarly to Î2(α), the finite-sample performance of this interval suffers from not taking into

account the statistical uncertainty of the estimator γ̂n plugged into m and s2. To take this

uncertainty into account, we analytically derive the correction term that should be added due

to this plug-in step. Let Σ = ΛΛ> be the Cholesky decomposition of Σ, where

Λ = Λ(γ) =


1 0 0

γ
√
v1(γ)− γ2 0

0 c(γ)√
v1(γ)−γ2

√
v2(γ)− c2(γ)

v1(γ)−γ2


and note that N = ΛZ where Z is a 3−dimensional Gaussian random vector made of inde-

pendent centered unit Gaussian random variables. Recalling that
√
kn(γ̂n − γ) ≈ Nshape, a

Taylor expansion yields

Z̃n
d
= u(γ)>Λ(γ)Z +

Z>Λ(γ)>S(γ)Λ(γ)Z√
kn

+ oP

(
1√
kn

)
d
= u(γ̂n)>Λ(γ̂n)Z +

Z>Λ(γ̂n)>S(γ̂n)Λ(γ̂n)Z√
kn

− θ(γ̂n)>
Nshape√
kn

Z + oP

(
1√
kn

)
where θ(γ) =

du

dγ
(γ)>Λ(γ) + u(γ)>

dΛ

dγ
(γ).

Since N = ΛZ, one has Nshape = Λ23(γ)Z2 + Λ33(γ)Z3
d
= Λ23(γ̂n)Z2 + Λ33(γ̂n)Z3 + oP(1).

Then

Z̃n
d
= w(γ̂n)>Z +

Z>W(γ̂n)Z√
kn

+ oP

(
1√
kn

)
,

where w(γ) = Λ>(γ)u(γ) and

W(γ) = Λ(γ)>S(γ)Λ(γ)

− 1

2


0 θ1(γ)Λ23(γ) θ1(γ)Λ33(γ)

θ1(γ)Λ23(γ) 2θ2(γ)Λ23(γ) θ2(γ)Λ33(γ) + θ3(γ)Λ23(γ)

θ1(γ)Λ33(γ) θ2(γ)Λ33(γ) + θ3(γ)Λ23(γ) 2θ3(γ)Λ33(γ)

 .
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Explicit expressions can of course be given for w(γ) and W(γ); we omit the details for the

sake of brevity. As in the construction of the confidence interval Ĩ3(α), we then approximate

the distribution of the random variable w(γ0)>Z+Z>W(γ0)Z/
√
kn (for any fixed γ0 < 1) by

a Gaussian distribution with mean tr(W(γ0))/
√
kn and variance ‖w(γ0)‖22 +2 tr(W2(γ0))/kn.

This suggests our final confidence interval for ES(1− kn/n):

Ĩ4(α) =

ẼSn(1− kn/n) +
ân(n/kn)√

kn

−tr(W(γ̂n))√
kn

±

√
‖w(γ̂n)‖22 + 2

tr(W2(γ̂n))

kn

 z1−α/2

 .
We shall see that this interval has coverage probabilities close to the nominal level across the

full range γ < 1 in a reasonably large class of models.

D Simulation study at intermediate levels

We check the quality of our estimators and related inference procedures at an intermediate

level on simulated datasets. We consider the same distributions as in the main paper, that is:

• The Kumaraswamy distribution with 1−F (t) = (1− tα)β for t ∈ [0, 1], and the Reverse-

Burr distribution with 1 − F (t) = (1 + (1 − t)−β/α)−1/β for t < 1 (here α > 0, β > 0),

with respective extreme value indices γ = −1/β < 0 and γ = −α < 0.

• The Gumbel distribution with 1 − F (t) = 1 − exp(− exp(−t)), and the Exponential

distribution 1− F (t) = exp(−t) for t > 0, both having extreme value index γ = 0.

• The Pareto distribution with 1 − F (t) = t−α for t > 1, and the Fréchet distribution

with 1−F (t) = 1− exp(−t−α) for t > 0 (here α > 0), both having extreme value index

γ = 1/α > 0.

In each setting, we simulate N = 10,000 replications of an i.i.d. sample of size n = 1,000

from the chosen distribution. We fix kn = 200 and we estimate and infer the quantity

ES(1 − kn/n) = ES(0.8) using the estimators ÊSn(1 − kn/n) and ẼSn(1 − kn/n), and the

confidence intervals Î1(α), Î2(α), Î3(α), Ĩ1(α), Ĩ2(α), Ĩ3(α) and Ĩ4(α) at confidence level 1−α =

0.95. The true values of ES(0.8), evaluated using Table E.1, and the empirical coverage

probabilities of the competing intervals are provided in Table E.2.

At the intermediate level, it appears that the interval Î3(α) overall performs best among

the confidence intervals based on ÊSn; in particular, its coverage probability is very close

to the nominal level even for the infinite-variance Fréchet distribution with γ = 1/2. The

conclusion is somewhat more complex regarding the intervals based on ẼSn: the interval

Ĩ2(α), which is purely based on the asymptotic normality of ẼSn, seems to perform best for

finite-variance distributions, while Ĩ4(α) should be preferred to Ĩ2(α) when the underlying
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distribution has an infinite variance. Overall, the confidence intervals Î1(α) and Ĩ1(α) behave

very poorly when the assumption of a heavy right tail is violated, and the intervals Î1(α) and

Î2(α) also have poor coverage when the variance of the underlying distribution is infinite.

E OpenFEMA data analysis: Further results

Figure 6 below contains our results linked to the analysis of the data in zones A and B in

2021 (samples of sizes n = 557 and 101, respectively), and the analysis of the data in Zones

A01, A02, A03, A04 and A05 (each corresponding to a so-called Special Flood zone with Base

Flood Elevation on the insurance rate map) in 2012 (the data points in each Zone have been

pooled to form a sample of size n = 812).
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Zone B − 2021
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Figure 6: OpenFEMA Flood Insurance data – Left panels: Histograms of the claims. Middle

panels: Extreme value index estimates γ̂Mom
n (solid black) with 95% asymptotic Gaussian

confidence intervals (black ribbon), and Hill estimates (solid red) as functions of k. Right

panels: Expected Shortfall estimates ÊS
?

n(0.995) and ẼS
?

n(0.995) (solid blue and green, re-

spectively) with 95% asymptotic confidence intervals Î?4(α) (blue ribbon) and Ĩ?4(α) (green

ribbon) for α = 0.05, and Weissman-Hill Expected Shortfall estimates ÊS
W

n (0.995) (solid red)

and ẼS
W

n (0.995) (dotted red) as functions of k.
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Distribution Density function f(t) ES(τ)

Pareto (α > 1) αt−α−1, t > 1 α
α−1

(1− τ)−1/α

Burr (0 < α < 1) 1
α
tβ/α−1

(
1 + tβ/α

)−1/β−1

, t > 0
((1−τ)−β−1)α/β

1−α 2F1

(
1, 1 + 1−α

β
, 1

1−τ−β ;−α
β

)
Fréchet (α > 1) αt−1−α exp(−t−α), t > 0

γlog(1/τ)(1−1/α)

1−τ

Student (α > 1) Φ′α(t) =
Γ(α+1

2 )
√
απΓ(α2 )

(
1 + t2

α

)−(α+1)/2 Γ(α+1
2 )

√
απΓ(α2 )

α
α−1

(
1 +

(Φ−1
α (τ))2

α

)(1−α)/2

Exponential exp(−t), t > 0 1− log(1− τ)

Weibull βtβ−1 exp(−tβ), t > 0
Γlog(1/(1−τ))(1+1/β)

1−τ

Log-normal 1

tσ
√

2π
exp

(
− (log(t)−µ)2

2σ2

)
, t > 0 exp

(
µ+ σ2

2

)
Φ(σ−Φ−1(τ))

1−τ

Gumbel exp(−t) exp(− exp(−t)) c+τ log(− log(τ))+E1(− log(τ))
1−τ

Laplace 1
2

exp(−|t|) min{τ,1−τ}(1−log(2 min{τ,1−τ}))
1−τ

Logistic exp(−t)
(1+exp(−t))2

(
τ

1−τ log(τ) + log(1− τ)
)

Normal ϕ(t) = Φ′(t) = 1√
2π

exp
(
− t

2

2

)
ϕ(Φ−1(τ))

1−τ

Kumaraswamy αβtα−1 (1− tα)β−1 , t ∈ [0, 1] β
B( 1

α
+1,β)−B

1−(1−τ)1/β ( 1
α

+1,β)
1−τ

Reverse-Fréchet α(1− t)α−1 exp (−(1− t)α) , t < 1 1− γ− log(τ)( 1
α )−ατ(− log(τ))1/α

α(1−τ)

Triangular 2t, t ∈ [0, 1] and (2− t), t ∈ [1, 2]


1−(2τ)3/2/3

1−τ for τ ≤ 1/2,

2

(
1−
√

2(1−τ)

3

)
for τ ≥ 1/2

Table E.1: A list of standard, unit-scale continuous distributions and the associated values

of the Expected Shortfall. The parameters α and β are positive, and for the log-normal

distribution, we take µ ∈ R and σ > 0. We write Φ for the standard Gaussian distribu-

tion function and ϕ = Φ′ for the associated density function, Φα for the Student distri-

bution function with α degrees of freedom, x 7→ 2F1(a, b, c;x) for the ordinary hypergeo-

metric function found as one of the two fundamental solutions of the differential equation

x(1− x)y′′(x) + (c− (a+ b+ 1)x)y′(x)− ab y(x) = 0, γx(α) =
∫ x

0 t
α−1e−t dt for the lower in-

complete Gamma function, Γx(α) =
∫∞
x tα−1e−t dt for the upper incomplete Gamma function,

c for the Euler-Mascheroni constant, E1(x) =
∫∞
x {exp(−t)/t}dt for the exponential integral

and Bx(α, β) =
∫ x

0 t
α−1(1− t)β−1 dt for the lower incomplete Beta function.
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Î 2
(α

),
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