
THÈSE de 
DOCTORAT
de l’UNIVERSITÉ TOULOUSE CAPITOLE

Présentée et soutenue par

Monsieur Jonas GATHEN

Le 2 juillet 2024

Essais en Macroéconomie du développement

École doctorale : TSE Toulouse Sciences Economiques

Spécialité : Sciences Economiques - Toulouse

Unité de recherche : TSE-R - Toulouse School of Economics - 
Recherche

Thèse dirigée par  Monsieur Fabrice COLLARD et Monsieur 
Stéphane STRAUB

Composition du jury 
Rapporteur : M. Francisco BUERA
Rapporteur : M. Josep PIJOAN-MAS
Examinateur : M. Matteo BOBBA
Directeur de thèse : M. Fabrice COLLARD

 



Essays in Macro Development

Ph.D. Thesis

Jonas Gathen1

Toulouse School of Economics

July 2024

1 Address: 1, Esplanade de l’Université, 31080 Toulouse, France; email: jonas.gathen@tse-fr.eu



Acknowledgements

I started at TSE in the fall of 2017 for the M1 in Economics, close to seven years ago. Through-
out the Masters and the PhD, TSE became my academic home; a home that I will dearly miss.
My first gratitude thus goes out to TSE as an institution, the fantastic academic environment
that it provided me over the years, including large cohorts of young, enthusiastic and bright
PhD students and the many excellent faculty expanding the research frontier, all the different
research groups and institutes that always left me in awe of all the things I don’t (yet) know,
and the excellent line-up of seminars and workshops letting me learn new things every day. I
started seven years ago eager to learn as much as I could and TSE gave me an amazing envi-
ronment to do just that. A big thanks thus goes to all the people that made this possible, from
the Masters and PhD directors, the seminar organisers and heads of the research groups, to all
the administrative staff involved in letting TSE function as a research hub.

Next, I want to thank my advisors Fabrice Collard, Stéphane Straub, Christian Hellwig and
more recently also Matteo Bobba, as well as people who encouraged me throughout the PhD.
In hindsight, I believe that setting me on the right path from the beginning and raising my
academic aspirations throughout the PhD was instrumental for the success of my PhD. I re-
member Fabrice encouraging me during my ETE thesis, and Alexandre Gaillard as my Macro
TA taking my half-baked ETE thesis ideas seriously, giving me invaluable feedback and push-
ing me to aim for more. Christian also met with me early on, raised my aspirations for my
projects and proposed for me to meet with seminar speakers. Stéphane opened the door for
the Indonesian plant-level data that followed me throughout my PhD and also greatly encour-
aged me with my early projects, two of which now show up as thesis chapters. As my PhD
progressed, Fabrice and Christian both were instrumental by pushing me to submit my first
paper and aiming for a top publication, and to visit LSE. Thank you so much for that.

While the PhD was a lot of work, I also want to acknowledge how lucky I feel for it having been
mostly a really fun experience. Being able to spend most of the Covid time with my partner
in Switzerland, spending a semester at LSE, the collegial and close-knitted academic environ-
ment that the Macro group at TSE offered, and amazing office mates, co-authors, roommates
and friends in Toulouse and around the world all together ensured that I was enjoying most of
my PhD. So a special thanks goes to Franzi and all my friends in Zürich and from my under-
graduate, to Oscar, Jérôme and Till for having been such great roommates and friends, to Thi,
Lukas, Li, Yixin, Oscar J., Johanna, Chanwoo, Pascal and all my other friends from Toulouse, to
all the people and friends that made my stay at LSE such a wonderful experience, to the STEG
organisers who helped me find an academic home in Macro Development, and finally to all
the students and faculty in the Macro group for all their feedback and interesting discussions.
Thank you.

2





Summary

What drives economic growth and development and how do poorer countries become richer?
This fundamental question on the Macroeconomics of Development is the underlying motiva-
tion for this thesis. The three chapters focus on different aspects of the development process.

In the first chapter, co-authored with Oscar Fentanes, we ask how to quantify the effect of
policies in economies where firms face adjustment frictions and the economic environment
changes constantly. In such settings, at any given point in time, the economy responds to
new changes in policy while still adjusting to previous changes. We show how to empirically
disentangle the two using a structural model of plant dynamics and standard plant-level panel
data. We apply our approach to the Indonesian Growth Miracle from 1975 to 2015, estimating
the model on 40-years of micro data along the observed growth path without assuming that the
economy is ever at a steady state. We find that growth from catching-up to previous changes
in the economy is key and does not get less important over time, because adjustments are slow
and economy-wide changes frequent.

The second chapter quantifies the aggregate costs of political connections using a general equi-
librium model in which politically connected firms benefit from output subsidies and endoge-
nously spend resources on rent-seeking activities. The model is structurally estimated using
rich firm-level data for the Indonesian manufacturing sector and a firm-level measure of polit-
ical connectedness based on a natural experiment. I find that subsidies to connected firms are
too high and dispersed, costing the economy between 1.0-4.7% of aggregate output.

The third chapter in my thesis provides a new approach to estimate government worker skills,
a key input to study how the composition and selection of government workers drives state
capacity and development. The approach is applicable in settings where government output is
unobserved and government wages are uninformative about skill differences. The three-step
approach first estimates skills from wages in comparable jobs in the private sector, then relates
these skills to skill-related observables using Machine Learning tools and finally predicts gov-
ernment worker skills out-of-sample. I apply the new estimation approach to rich Indonesian
household-level panel data from 1988 to 2014, showing two main applications. First, I quantify
that government workers are highly selected, that their skills have increased, but that their skill
premium has declined over time. Second, I analyze government wage setting: the Indonesian
government pays a wage premium of at least 30% conditional on skills, about 1/3 of which is
driven by the large gender wage gap in Indonesia’s private sector.

4



Résumé

Quels sont les moteurs de la croissance économique et du développement et comment les pays
pauvres deviennent-ils plus riches ? Cette question fondamentale sur la macroéconomie du
développement est la motivation sous-jacente de cette thèse. Les trois chapitres se concentrent
sur différents aspects du processus de développement.

Dans le premier chapitre, coécrit avec Oscar Fentanes, nous nous demandons comment quan-
tifier l’effet des politiques dans les économies où les entreprises sont confrontées à des frictions
d’ajustement et où l’environnement économique change constamment. Dans ces conditions,
à tout moment, l’économie réagit aux nouveaux changements de politique tout en continuant
à s’adapter aux changements précédents. Nous montrons comment démêler empiriquement
ces deux aspects à l’aide d’un modèle structurel de la dynamique des usines et de données
de panel standard au niveau des usines. Nous appliquons notre approche au miracle de la
croissance indonésien de 1975 à 2015, en estimant le modèle sur 40 ans de données microé-
conomiques le long de la trajectoire de croissance observée, sans supposer que l’économie n’a
jamais atteint un état stable. Nous constatons que la croissance due au rattrapage des change-
ments antérieurs dans l’économie est essentielle et ne perd pas de son importance au fil du
temps, car les ajustements sont lents et les changements à l’échelle de l’économie fréquents.

Le deuxième chapitre quantifie les coûts globaux des relations politiques à l’aide d’un modèle
d’équilibre général dans lequel les entreprises ayant des relations politiques bénéficient de sub-
ventions à la production et dépensent de manière endogène des ressources dans des activités
de recherche de rente. Le modèle est estimé de manière structurelle à l’aide de riches données
au niveau de l’entreprise pour le secteur manufacturier indonésien et d’une mesure de la con-
nectivité politique au niveau de l’entreprise basée sur une expérience naturelle. Je constate que
les subventions accordées aux entreprises connectées sont trop élevées et dispersées, coûtant à
l’économie entre 1,0 et 4,7% de la production globale.

Le troisième chapitre de ma thèse propose une nouvelle approche pour estimer les compé-
tences des fonctionnaires, un élément clé pour étudier comment la composition et la sélection
des fonctionnaires influencent la capacité et le développement de l’État. Cette approche est
applicable dans des contextes où la production du gouvernement n’est pas observée et où les
salaires du gouvernement ne donnent pas d’informations sur les différences de compétences.
L’approche en trois étapes consiste d’abord à estimer les compétences à partir des salaires ver-
sés pour des emplois comparables dans le secteur privé, puis à relier ces compétences à des
éléments observables liés aux compétences à l’aide d’outils d’apprentissage automatique et
enfin à prédire les compétences des fonctionnaires hors échantillon. J’applique la nouvelle
méthode d’estimation à de riches données de panel indonésiennes au niveau des ménages de
1988 à 2014, et je montre deux applications principales. Premièrement, je quantifie le fait que
les fonctionnaires sont hautement sélectionnés, que leurs compétences se sont accrues, mais
que leur prime de compétence a diminué au fil du temps. Deuxièmement, j’analyse la fixa-
tion des salaires des fonctionnaires : le gouvernement indonésien verse une prime salariale
d’au moins 30% en fonction des compétences, dont environ un tiers est dû à l’écart salarial
important entre les hommes et les femmes dans le secteur privé indonésien.
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Chapter 1

Making a Growth Miracle: Historical
Persistence and the Dynamics of
Development

Oscar Fentanes1 & Jonas Gathen2

Abstract

What explains growth miracles? We argue that growth miracles are driven by a fundamental
race: as the economy tries to catch-up to its steady state, changes in the economic environ-
ment move the steady state itself and provide new potential for catch-up growth. We quantify
this race over the course of development using 40 years of plant-level manufacturing panel
data from Indonesia and a structural model of plant dynamics. We estimate the model on the
micro data along the observed growth path without assuming that the economy is ever at a
steady state. While catch-up growth starting from initial conditions in 1975 accounts for 42%
of Indonesia’s subsequent industrialization, new changes in the economy induce new catch-up
growth. In the end, the economy never catches up.
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1.1 Introduction

Over the past 50 years, extended periods of rapid economic growth in China, India and In-
donesia alone lifted roughly 1 billion people out of extreme poverty (World Bank 2023). What
drives such growth miracles? A common view is that growth miracles capture a transition pro-
cess: a permanent policy regime change sets an initially poor and highly misallocated economy
on a transition path towards a better long-run equilibrium (Buera and Shin 2013; Asturias et
al. 2023). These transitions take time because frictions prevent labor and capital to quickly
reallocate across firms and sectors. But if transitions take time, how does this view account for
new changes in policies while the economy is still transitioning? And how can we identify the
aggregate effects of new policies if the economy is still adjusting to previous policies?

In this paper, we show evidence that instead of a one-time transition, growth miracles are
driven by a never-ending race: as the economy tries to catch-up to its steady state, changes in
the economic environment move the steady state itself and induce new transition growth. We
do so by looking at Indonesia, the fourth most populous country in the world. Indonesia pro-
vides an ideal case to study this race since we can draw on almost half a century of manufac-
turing plant-level panel data during which the Indonesian economy completely transformed:
GDP per worker increased five-fold, the working population tripled, output in manufacturing
grew 30-fold and the manufacturing employment share doubled.

Drawing on the micro data, we provide empirical evidence that motivate a model of plant
dynamics in which growth is driven both by changes in the economic environment and tran-
sition phases. Empirically distinguishing these two drivers of growth is crucial because one
might otherwise falsely attribute current growth to current policy changes. To do so, we esti-
mate the model on the micro data along the observed growth path without assuming that the
economy is at a steady state at any point in time. Intuitively, observed conditional choices of
plants identify changes in the economic environment, while the distribution over these choices
summarizes the past and reveals the potential for transition growth.

In line with the common view of growth miracles, we find that initial transition growth is
important: letting the economy in 1975 transition while shutting down all future changes in
the economic environment explains 42% of the manufacturing growth between 1975 and 2015.
However, we also find that the Indonesian economy in 2015 is not closer to its steady state than
it was in 1975, precisely because new changes in the economic environment in the meantime
moved the steady state itself. As the economy is always undergoing important transition pro-
cesses, one key implication is that evaluating policies without considering these adjustments
is highly misleading.

We now provide further details and results. Drawing on our data, we document four main
facts that help us disentangle transition growth from changes in the economic environment
and motivate our subsequent model:

Fact 1: Rapid economic growth coincided with changes in the plant distribution. Average
plant size doubled, the mass of plants increased four-fold and the right tail of the plant size
distribution thickened.

Fact 2: Adjustment processes can account for changes in the plant distribution. These are
respectively: An aging of the plant distribution together with the fact that plants enter small
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and grow over their life cycle, slow entry and exit dynamics, and the fact that it takes time to
grow large plants.

Fact 3: The drivers of aggregate productivity differed markedly before and after the Asian
Financial Crisis. Before the crisis, productivity across plants was driven entirely by the se-
lection of more productive plants, informed by meager within-plant productivity growth. In
contrast, the post-crisis growth period was characterized by strong within-plant productivity
growth and little growth due to selection.

Fact 4: The allocation of resources did not improve systematically over time. This is robust
to different measures of misallocation. We find evidence for volatile productivity dynamics
at the plant-level, large changes in entry, and plant-level adjustment frictions – particularly in
labor – from an event study design that can jointly account for this.

To quantify the race between transition growth and changes in the economic environment, we
draw on a model of plant dynamics in the tradition of Hopenhayn (1992) that is motivated
by the previous empirical facts. In the model, firms face risk regarding their productivity,
choose to enter and exit and hire labor and capital subject to adjustment frictions that lead to
the slow accumulation and reallocation of resources across sectors and firms. We embed these
plant dynamics into a two-sector economy to capture the endogenous reallocation of workers
across manufacturing and the rest of the economy. The main frictions in manufacturing are
labor adjustment costs, in particular convex costs, that prevent plants from growing a large
workforce quickly (Facts 2 + 4). Plants also endogenously enter and exit based on drawing
entry costs and fixed costs of production. The level and dispersion of costs in turn rational-
ize the observed speed of entry and exit dynamics (Facts 2). These features imply that with
an initial distribution characterized by few but productive young plants, the economy goes
through a process of transition growth as plants gradually grow, more plants gradually enter
over time and unproductive plants gradually exit. At any given point in time, the model econ-
omy is characterized by a set of exogenous model fundamentals and the state of the current
economy as captured by the distribution of plants. Model fundamentals include all cost pa-
rameters as well as time-varying aggregates such as aggregate labor supply and technological
changes in manufacturing (Fact 3) and the rest-of-the-economy. Policy affects growth through
driving part of the changes in model fundamentals. Technically, we assume that plants make
dynamic choices forming rational expectations over their future idiosyncratic risk but have
perfect foresight over future aggregate changes in the economy. This introduces a computa-
tionally difficult fixed point problem: plants’ dynamic choices depend on expectations over
the future path of market-clearing prices, which in turn depend on the endogenous evolution
of the entire distribution of plants (as in Buera and Shin 2013).

The key methodological contribution of the paper is to propose a tractable estimation strat-
egy that allows to estimate this model economy on standard plant-level micro data along the
growth path in the data without assuming that the observed economy is at a steady state at
any point in time. Importantly, our model estimation allows model fundamentals to vary flex-
ibly over time, making it particularly suited to study fast-changing economies and markets.
The model estimation proceeds in three main steps that allow to distinguish transition growth
from changes in fundamentals and make the computational costs of the estimation indepen-
dent of the computational costs of solving for a path of model equilibria. In the first step, we
identify the path of time-varying equilibrium prices – only wages in our case – along the ob-
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served growth path (e.g. as in: Gopinath et al. 2017). Given that our model can account for
this equilibrium path, we can treat the path of wages as fixed throughout the estimation and
thereby avoid solving for the computationally costly fixed point in the path of equilibria. In
the second estimation step, we identify the distribution of plants over the state space of the
model, summarizing the history of the economy. In this step, we estimate plant production
functions (Ackerberg, Caves, and Frazer 2015; Demirer 2020) and propose a novel strategy to
separate plant-level productivity into an idiosyncratic and a common aggregate technology
component, allowing us to distinguish selection-driven from technology-driven productivity
growth. In the third and last estimation step, we estimate the model parameters that govern
plants’ adjustment frictions. We do so by drawing on Euler equation Continuous Conditional
Choice (CCC) estimation, exploiting observed conditional input and exit choices of plants and
avoiding to solve a dynamic programming problem to compute model-based dynamic input
choices (Hotz and Miller 1993; Bajari, Benkard, and Levin 2007). In this last step, we estimate
sizable convex adjustment costs in our model, which are identified from the empirical pattern
that even small but highly productive plants grow their labor force gradually over time.

Using the estimated model, we find that transition growth from starting the economy with ini-
tial conditions in 1975 and shutting down all future changes in model fundamentals explains
42% of subsequent manufacturing output growth and all of the aggregate welfare increases
that are due to changes in manufacturing over time. Given an initial distribution that features
young and small plants, sizable labor adjustment frictions and slow entry and exit dynamics,
it takes the economy 26 years to reach 90% of the steady state manufacturing output. Impor-
tantly, transition growth remains an important driver of growth precisely because the econ-
omy’s fundamentals continue to change. To quantify this point, we repeat the previous exer-
cise to compute the transition path for each year, starting from each year’s initial distribution
and model fundamentals. We find that the economy does not get closer to its (time-varying)
steady state. It takes on average 20 years to reach 90% of the steady state manufacturing out-
put and – if anything – the time it takes increases over time. Based on our results, we can thus
strongly reject the idea that transition growth is a transitory phenomenon.

Large changes in fundamentals are key to explain the continuing importance of transition
growth. The structural model allows us to quantify the role of changes in fundamentals in
Indonesia’s manufacturing growth miracle and quantify how much of their effect can be ex-
plained by changes in observed government policy. We do so by focusing on two important
changes in fundamentals that can be linked to development policies that the Indonesian gov-
ernment also pursued to varying degrees over the 40 years we study: (1) large-scale invest-
ments in education that raise the pool of skilled (and cheap) labor, and (2) the active use of FDI
policy to attract manufacturing plants under foreign ownership.

We find that the manufacturing growth miracle would not have happened in the absence of
the estimated doubling in human capital per worker, because labor would have been more
expensive in this economy and manufacturing plants are far more sensitive to higher wages
than the rest of the economy. To gauge the importance of policy in driving overall human
capital increases, we then evaluate Indonesia’s largest school construction program (INPRES)
through the lens of the model. Building on micro-empirical evidence on the wage effects (Duflo
2001, 2004), the scale of the program (Akresh, Halim, and Kleemans 2023), and the slow labor
market integration of treated cohorts, we show that by 2015, the program accounts for roughly
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10% of the overall manufacturing output growth that is due to human capital per worker
increases in the economy.

In contrast, for FDI, we find that manufacturing output in 2015 would have only been 8% lower
in the complete absence of foreign-owned entrants, while we find that regulatory changes in
FDI policy in the late 1980s may potentially account for 85% of the overall effect of FDI on
manufacturing. Taken together, this still means that most growth by far stems from structural
forces related to demographics. Thus, a somber conclusion based on these results – partly
resonating related work on the Indian growth miracle (Bollard, Klenow, and Sharma 2013) – is
that policy matters less for growth than we might think.

Related literature

We contribute to four main strands of literature. First and most importantly, we complement
the growth and macro development literature by studying a model of firm dynamics where
growth is driven by the combination of changes in exogenous fundamentals and transition
growth. This is in contrast to a firm dynamics literature that has mostly analyzed development
differences through differences in steady states.3 Much fewer papers study transition growth
with firm dynamics (e.g. Buera and Shin 2013; Moll 2014; Akcigit, Alp, and Peters 2021; Rug-
gieri 2022; Asturias et al. 2023; Lanteri, Medina, and Tan 2023). We add to this literature by
(1) allowing for further changes in fundamentals along the transition and by (2) estimating
this model on the micro data along the transition without assuming that the economy is at a
steady state at any point in time. Quantitatively, we find that the combination of both sources
of growth matters. Not only are initial transition growth and changes in fundamentals im-
portant for growth, but the economy is always far away from its (time-varying) steady state,
questioning the usefulness of either comparing steady states or focussing on transitions in the
absence of further changes in fundamentals. Apart from the methodological differences, Buera
and Shin (2013) and Asturias et al. (2023) are the most closely related in their focus on under-
standing growth miracles. Our results mainly differ from Buera and Shin (2013) in that we find
no role for reductions in frictions and misallocation – their main driver of transition growth
– but rather a key role for plant and worker demographics in driving transition growth. We
return to Asturias et al. (2023) below.

Second, both modeling and key results in this paper relate to the recent quantitative spatial,
trade and migration literature, which focus on frictional worker mobility and trade while ab-
stracting from firm dynamics. For example, the idea that transitions take long and the econ-
omy is persistently far away from its steady state resonates with recent findings from Allen and
Donaldson (2020) and Kleinman, Liu, and Redding (2023). This literature relates to and builds
on the seminal work of Caliendo, Dvorkin, and Parro (2019) who also study the combination of
changes in exogenous fundamentals and transition growth. In contrast to Caliendo, Dvorkin,
and Parro (2019), tractability in our case does not come from dynamic hat algebra techniques
and we estimate all time-varying model fundamentals. Slow transitions in our paper and this
literature share common causes: low and highly dispersed exit (moving) probabilities and
slow input adjustments.

3While the literature on firm dynamics with a development focus is too vast to cite, overviews are for example
given by Hopenhayn (2014) and Restuccia and Rogerson (2017) for misallocation, Ulyssea (2020) for informality
and Alessandria, Arkolakis, and Ruhl (2021) for trade.
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Third, we contribute more generally to the Quantitative Macroeconomics literature by show-
ing how to tractably estimate the model directly on the observed transition path in the data,
identify the model entirely on plant-level data and only use macro moments for model vali-
dation, an approach that we see as closely aligned to a growing literature that moves “from
micro to macro” (see the overview in: Buera, Kaboski, and Townsend 2023). The “equilibrium
estimation” methods that ensure tractable estimation – enforcing the observed path of equi-
libria throughout the estimation and Euler CCC estimation – are used in other literatures, but
have not yet seen wider application in the Macroeconomic literature.4 We find the equilibrium
estimation approach to be particularly suited for studying a path of time-varying equilibria,
since we can also tractably estimate entire paths of time-varying parameters. While estima-
tion methods that require to first solve the model may offer more flexibility on the choice of
moments that identify parameters, they often have to strongly restrict the parameter space.

At last, our paper also relates to the literature on growth and productivity dynamics. Our
results of selection-driven aggregate productivity growth in Indonesian manufacturing mir-
rors similar results in Brandt, Van Biesebroeck, and Zhang (2012) for China and Asturias et
al. (2023) for Chile and Korea. We add to these papers by establishing the result of selection-
driven productivity growth in a non-parametric setting that nests a larger class of growth mod-
els including various endogenous growth models.

The rest of the paper is structured as follows. The next section presents the main empirical
evidence. Section 1.3 develops the model and discusses identification, estimation and model
validation. In Section 1.4, we quantify the main drivers of growth. The last section concludes.

1.2 Empirical evidence

In this section, we introduce the Indonesian data and key facts about the Indonesian growth
experience that motivate the subsequent model.

1.2.1 Data

Our primary data comes from the plant-level Annual Manufacturing Survey, collected by In-
donesia’s Central Bureau of Statistics. It covers only medium- to large-sized manufacturing
plants by surveying all formal manufacturing establishments with more than 20 employees.
The survey contains detailed and consistent annual information on standard plant-level char-
acteristics from 1975 to 2015, a period of 41 years. It covers between roughly 7,500 to 30,000
plants per year. Throughout, we draw on reported information on plants’ age (based on birth
year), industry (up to 5-digit) and ownership (including foreign ownership). On the produc-
tion side, we draw on plants’ capital stock, value-added revenue, and the number of workers
(including paid and unpaid workers) and wage bill (including contributions and in-kind com-
pensation) which are separately reported for production and non-production workers. Unfor-
tunately, capital is only reported starting in 1990. All variables denoted in Indonesian Rupiah

4The idea of estimating models on the observed path of equilibria in Macroeconomics dates at least back to
Hansen and Singleton (1982). More recent research that conditions estimation on the observed path of equilibrium
prices can for example be found in the literature following Caliendo, Dvorkin, and Parro (2019). In a recent working
paper, Humlum (2022) exploits these two estimation steps in a similar general model framework of growth and
firm dynamics, although entirely different context of industrial robot adoption in Denmark.
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are deflated to real values using the aggregate CPI and normalized to the year 2010. For aggre-
gate data, we further combine the GGDC 10-sector and Economic Transformation databases
for Indonesia, which capture time-consistent aggregate sectoral employment and output series
over the time period 1960-2012 (Timmer, de Vries, and De Vries 2015) and 1990-2018 (Kruse et
al. 2023) respectively. We refer to this data as the GGDC series throughout. In Appendix 1.A.1,
we discuss in detail the data cleaning and homogenization steps we take to ensure consistency
of all datasets over time.

There are two important data limitations. First, while the data is in principle a census of plants
with 20 or more workers, in practice the census misses plants. This shows up in discontinu-
ous jumps in new plant entry during years of the economy-wide Economic Census in 1975,
1985, 1995 and 2006. In those years, plants are added that were previously missed, either
because they were small and made the cutoff, or newly entered. For the subsequent analy-
ses, this means that aggregate changes often show discontinuous drops in census years and
should actually look more smoothed out. Given that we observe the census in 1975, the initial
distribution is correctly reported. Furthermore, this does not bias results that are based on
within-plant variation. Our data also misses plants because of non-reporting, either because
plants miss to report in some years or because we are forced to drop a plant-year entry due to
misreporting (see Appendix 1.A.1). We treat these missing entries as missing at random and
specifically account for missing entries in our structural model. We correct our measurements
of plant entry and exit by denoting plant entry as the first time when a plant identifier enters
the panel and plant exit if we do not observe a given plant identifier at any future time period
(see: Appendix 1.A.1).

The second main data limitation is with respect to the coverage of our data. As we show
in Appendix 1.A.2, while our dataset misses the approximately 99% of Indonesian manufac-
turing plants that have less than 20 workers, most of these plants are characterized by self-
employment with a modal plant size of one to two workers. After cleaning, our manufac-
turing data captures between 25-30% of total manufacturing employment and value-added
output as based on the GGDC data, with shares increasing over time (Figure A.1). We think of
small scale manufacturing as a separate sector given robust evidence that there are few transi-
tions between small and larger scale manufacturing (e.g. Poschke 2013; Van Biesebroeck 2005;
Schoar 2010) and most plants that enter our panel have only recently been established. For
example, the median age of plants that newly enter our plant panel is only two years. The
focus in this paper is thus on how relatively large plants and their dynamics drive aggregate
economic growth. In the model and results parts, we explicitly model the entire economy,
taking into account that our data only captures a time-varying share of output in the overall
economy.

1.2.2 Four key facts of growth

We now highlight four key facts that shed light on the Indonesian growth experience. The
first two facts relate to changes in the entire plant distribution and the importance of slow
adjustment processes. Fact 3 and 4 document changes in the drivers of productivity growth
and the absence of improvements in the allocation of resources over time.
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Figure 1.1: Evolution of aggregate and sectoral employment and output

Notes: (Economy-wide) Total gives the aggregate of the GGDC data. Panel refers to the Indonesian manufacturing
plant census (1975-2015, 20+ workers). All series are normalized by their respective value in the first year. (A) and
(B) use value-added output. Dashed vertical lines denote the onset of the Asian Financial Crisis in 1997.

Rapid economic growth coincided with changes in the plant distribution

As the 4th most populous country in the world, Indonesia underwent a dramatic process of
economic development over the past 50 years, a few key features of which are reported in
Figure 1.1. Between 1975-2015, GDP per worker increased more than five-fold (Panel B), driven
by a 15-fold increase in output (Panel A) and roughly a tripling of the working population
(Panel C). Manufacturing contributed importantly to this aggregate growth: output grew 30-
fold and the manufacturing employment share more than doubled (Panel D).

The period 1975-2015 can be divided into two main growth regimes that are separated by the
Asian Financial Crisis in 1997. The pre-crisis period captures a period of rapid labor-intensive
industrialization, including the period 1987-1994 that Hausmann, Pritchett, and Rodrik (2005)
characterize as a growth acceleration. Most of the total worker flows into manufacturing hap-
pen before 1997 and manufacturing grows far more rapidly than the rest of the economy. Fast
growth in the aggregate working population is also a defining feature of the pre-crisis period
with an average annual growth rate of 3%, 70% higher than in the post-crisis period. Based on
our census of medium- and large-sized plants, the rise of manufacturing rapidly takes off in the
first half of the 1980s and industrialization peaks with the Asian Financial Crisis as evidenced
by manufacturing employment and output shares (Panel D). After the Asian Financial Crisis,
which started in 1997 and hit manufacturing mostly in 1998, the economy experienced lower
total output growth that was due to substantially lower growth in plant entry and employment
and – as we will show further below – by higher plant-level productivity growth.

These aggregate changes went in hand with systematic changes among manufacturing plants.
As evidenced in Figure 1.2, the rapid increase in the total number of workers in manufacturing
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Figure 1.2: Evolution of average plant size and number of plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Panel A: Workers
include paid and unpaid workers. Dotted lines give 95% bootstrapped confidence intervals and solid blue line
gives best linear fit. Panel B: Jumps in 1985, 1995 & 2006 are explained by Economic Census years.

Figure 1.3: Evolution of employment distribution over time

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Only showing years
1975, 1985, 1995, 2005 and 2015. Panel A: Vertical lines give 25th, 50th, 75th, 90th and 95th percentiles. Bunching at
99 workers starts in 2013, after the passing of the 2012 Worker Safety Law that binds for establishments with 100+
workers. Panel B: Share of employment in plants with more than X workers.

is met with a doubling of the average number of workers in manufacturing plants (Panel A)
and a four-fold increase in the number of manufacturing plants. In both cases, most of the
gains were already reached by 1997. Importantly, the entire plant distribution changed sys-
tematically over time. Specifically, Figure 1.3 shows that the right tail of the plant employment
distribution systematically thickened over time – a key feature of the development process that
has been highlighted for firms (rather than establishments) across and within countries (Chen
2022; Choi et al. 2023; Poschke 2018). Panel B shows that the employment share in plants
with more than 50 workers increased by roughly 15%, while the employment share in plants
with more than 500 workers increased by more than 50%.5 The increase in the right tail of the
employment distribution is a main driver of the increase in the average plant size over time.

5We report this metric as it is a simple transformation of the Pareto tail, which is also robust to left-censured
data. We report the corresponding secular decline in Pareto tail coefficients in Appendix 1.A.2. We find systematic
changes in the Pareto coefficient, both in the cross-section (which is not in line with a common Pareto distribution)
and over time (which is not in line with traveling wave equilibria).
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Figure 1.4: Plant life cycle growth by birth cohort

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Workers include paid
and unpaid workers. Plant age is based on reported year of establishment. Panel B normalizes each entry by the
cohort-specific average plant size of plants below age 5 (as in Hsieh & Klenow 2014). Note that each cohort over
time is an unbalanced panel as only surviving plants stay in the panel and there is (limited) plant entry as plants
make the cutoff of 20 workers to be included in the census.

Adjustment processes can account for changes in the plant distribution

We now show evidence for three slow adjustment processes that can respectively account for
increases in the plant size, the mass of plants and the right tail of the plant size distribution.

The aging of the plant distribution We start by showing that the slow aging of the plant
distribution – average plant age increased by 40% since 1975 – can explain average plant size
increases. The reason is that plants enter small and grow over their life cycle. Figure 1.4 plots
life-cycle growth profiles across different cohorts of surviving manufacturing plants. Plants
enter roughly with a similar average number of workers, which grows with plant age. Plants
that survive at least 20 years have about twice as many workers as new entrants; in comparison
and as documented in Hsieh and Klenow (2014), manufacturing plants in the US that survive
for that long are about six times as large as new entrants.6

A benefit of our panel data is that we can show that the increase in the average size of surviving
plants is mostly driven by within-plant growth rather than selection (larger plants being more
likely to survive). Figure 1.5 Panel A shows average year-to-year within-plant growth by age.
Young plants grow their employment quickly, with growth declining slowly as plants become
older, average growth running out after around 20 years. Panel B reports the relative contribu-
tion of survivor growth to average plant size increases by age using the following accounting
identity:

L̄a − L̄a−1︸ ︷︷ ︸
∆avg plant size

≡ NS
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+
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)
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6The numbers are not perfectly comparable, because of the cutoff of 20 workers in the Indonesian data. If
young plants in the US data are smaller, this overestimates the difference across countries, while plants that stay
below 20 workers in the US data bias downward.
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Figure 1.5: Within-plant (survivor) growth in employment

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Sample restricted
to survivors and plants for which plant age is defined (N = 543,586). Panel A: Average annual growth in total
number of workers (paid + unpaid) across plants by age, weighted by a plant’s previous employment. Panel B:
Relative contribution of survivor growth to average plant size growth based on accounting identity in Equation 1
and dividing by the left-hand side to obtain relative contributions.

where S refers to the set of surviving plants from age a − 1 to age a, E refers to entering
plants (which exist because of the size threshold in our data) and X refers to exiting plants.
The contribution of survivors, entry and exit respectively measure their average size weighted
by their share in the population of plants. The net reallocation effect is driven by changes in
the total number of plants over age: if exit outweighs entry (as in our case) then workers are
reallocated towards fewer plants, mechanically increasing average plant size. We find that for
young plants, growth by survivors explains all of the increase in average employment across
plants, while selection as given by the remainder dominates the total effect after age 10-15.

Together, this evidence implies that average plant size crucially depends on where the age
distribution of plants is; since the initial distribution of plants in the newly emerging manu-
facturing sector in 1975 featured mostly young plants, average plant size was small. Despite
the rapid entry of new plants, plants became older and hence larger over time. For example,
average plant age increased by 40% between 1975 to 2006 (the last year in which plant age was
reported in the survey). Figure A.5 also shows how the entire age distribution shifted right
over time.

It takes time for entry and exit dynamics to play out Next, we highlight a basic driver of
slow entry and exit dynamics that can partially account for the observed four-fold increase in
the mass of plants: low entry and exit rates. The idea is simple: the young manufacturing
sector in 1975 features few plants and if only few potential entrepreneurs move into and out
of entrepreneurship, it takes time to build up a mass of plants. For example, suppose there is
a fixed mass of potential entrepreneurs and entry and exit rates into entrepreneurship are the
same. Then the long-run (steady state) share of entrepreneurs is 1/2, but if the economy starts
with no entrepreneurs, it can take many years to get close to the steady state. For entry and
exit rates at 7.9% – equal to the average exit rate across all years and plants in our data7 – it

7This exit rate is substantially lower than the 14-18% documented for informal establishments in Vietnam (Mc-
Caig and Pavcnik 2021) and slightly smaller than the 8.3% documented for small establishments across 12 devel-
oping countries (McKenzie and Paffhausen 2019). Within manufacturing, exit rates also seem to decline with plant
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Figure 1.6: Reduced-form transition dynamics implied by initial plant size distribution

Notes: Predicted changes in distribution based on exercise taking discretized initial plant size distribution (# of
workers) in 1975 and transition matrix giving conditional probabilities of moving from one plant size bin to another
for years 1975-1976. Predictions iterate on initial discretized distribution with fixed transition matrix. Predicted
(constant growth) instead enforces transition matrix incorrectly enforcing constant growth taking average plant
size growth for 1975-1976.

already takes the economy 14 years to reach just 90% of the long-run steady state. While we
do not generally observe potential entrants and thus cannot study entry rates without further
assumptions, in the Appendix we show additional evidence for slow exit processes. Specifi-
cally, Figure A.8 shows that exit rates only slowly decrease with plant productivity and that
exit rates do not increase with aggregate shocks such as the Asian Financial Crisis. This is in
line with growing evidence that stagnant firms in developing countries tend to survive longer
compared to firms in developed countries (e.g. Hsieh and Klenow 2014; Akcigit, Alp, and
Peters 2021; Eslava, Haltiwanger, and Pinzon 2022).

It takes time to grow large plants At last, we show that a lack of large plants in the 1970s
and the fact that it takes time to grow large plants can jointly explain the slow fattening of the
right tail of the employment distribution. We do so by considering the following exercise. Take
as the starting point the initial employment distribution of plants Φ0 in 1975 and discretized
in X = 10 different size bins. Each bin captures the fraction of plants with this number of
workers. We now follow individual plants and compute the probability of moving from one
bin to the other between 1975 and 1976, which we summarize in the transition matrix P of
dimension X2. We predict changes in the distribution by iterating on the initial distribution
using the fixed transition matrix: Φ̂t+τ = Φ0 · P τ . Figure 1.6 shows that the exercise explains
50% of average plant size increases (A) and 70% of the increases in the employment share of
plants with more than 500 workers (B) over time. The reason is that in 1975, the distribution
lacks large plants in comparison to the stationary distribution implied by the employment
growth observed between 1975 and 1976 and it takes time to grow large plants. The exercise
predicts that it takes 25 years to reach 90% of the steady state average plant size, broadly
capturing the speed at which plant growth plays out over time.

The exercise is robust to a number of concerns which we address in Appendix 1.A.3.8 Im-

size, explaining a lower exit rate of 6.2% across all US manufacturing (e.g. Clementi and Palazzo 2016) and broadly
similar exit rates for all manufacturing plants in India and Mexico (Hsieh and Klenow 2014).

8Specifically, we show similar results when allowing for entry and exit, taking any other starting years in the
1970s and that the slow filling up of the right tail of the employment distribution holds for any other year-to-year
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portantly, the exercise cannot distinguish the drivers of employment growth. The transition
matrix Pt,t+1 only gives a reduced-form summary of plant employment growth subject to any
frictions and growth drivers that are present between time t and t + 1, which may include
adjustment frictions, changes in wages or productivity growth. The next two subsections thus
focus on two key determinants of within-plant employment growth: productivity growth and
plant-level hiring frictions.

Productivity growth and selection

What is the role of productivity growth in the Indonesian growth experience and how much
productivity growth is explained by the better selection of plants? In this section, we show
that aggregate productivity increased roughly 3.5-fold between 1975 to 2015. However, the
underlying drivers of this productivity growth differ fundamentally across Indonesia’s two
main growth periods: during the period of rapid labor-intensive industrialization (1975-1997),
all of the aggregate productivity gains are driven by the selection of more productive plants,
while aggregate productivity gains during the period after the Asian Financial Crisis are al-
most entirely driven by within-plant productivity gains. We obtain these results by standard
production function estimation (Ackerberg, Caves, and Frazer 2015; Demirer 2020) and then
separately identifying the productivity improvements that come from the better selection of
plants versus within-plant productivity improvements.

Estimating productivity Following the literature, we estimate a standard value-added Cobb-
Douglas production function in capital k and efficiency units of labor h:

yit = xith
θjt
it k

αjt

it (1.2)

with θjt + αjt ≤ 1 giving the output elasticities of labor and capital in sector j at time t and
xit capturing plant-level productivity. As a baseline and in line with our subsequent dynamic
model, we start with common output elasticities across manufacturing industries, but discuss
further industry variation below. We estimate the labor and capital output elasticities sepa-
rately for each year allowing for both inputs to be potentially fully dynamically chosen, which
means that at this point we can remain agnostic about the frictions that determine plant input
choices and changes in these frictions over time. Specifically, we draw on the control function
approach in Demirer (2020), which is close in spirit to the standard control function value-
added production function estimation based on Ackerberg, Caves, and Frazer (2015), but does
not require intermediate inputs (also see: Gandhi, Navarro, and Rivers 2017). We provide a
discussion and an identification proof adapted to our setting in Appendix 1.A.5, but the in-
tuition of identification is as follows: exploiting the assumption that productivity follows a
first-order Markov process, conditional on previous input choices and output, the ranking of
current inputs identifies the ranking of productivity innovations, which can be used to con-
struct a control function for (unobserved) productivity in the output regression.

transition matrix that can be constructed between 1975 and 2015. An important caveat that we cannot address is
that due to the discretization, the exercise would also give an increase in the plant size if all plants were simply
growing at a constant rate. The red lines in Figure 1.6 report changes with a counterfactual transition matrix
enforcing average employment growth rates between 1975 to 1976 across all plants. While observed within-plant
employment growth is far from constant, the alternative exercise still shows that it is easy to overestimate the
growth in the right tail.
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Results and more details on the estimation are shown in Appendix 1.A.5. Before we discuss the
results, it is important to highlight that we estimate the production function on available rev-
enue data. This comes with the standard limitations that we only identify revenue elasticities
and revenue-based productivity and cannot distinguish between productivity and demand
nor identify changes in markups.9

We find no systematic changes in estimated output elasticities over time and very standard val-
ues for the output elasticity of labor close to 2/3. Importantly, the estimated output elasticity of
labor is substantially larger than the median plant-level labor share (≈ 0.45) and the aggregate
labor share in manufacturing (≈ 0.25). In a frictionless model with Cobb-Douglas production,
plants would equalize cost shares and revenue elasticities. In the next section, we provide
evidence on frictions for labor choices that could rationalize this difference. Our subsequent
model then quantitatively accounts for these large differences. We find smaller estimates for
the capital output elasticity than generally found in the literature, which – as we discuss in
Appendix 1.A.5 – is likely due to attenuation bias from measurement error in observed capital.
A lower capital output elasticity means that observed (mismeasured) variation in capital has
smaller effects on output and we further show that mismeasurement of the capital elasticity is
not biasing our estimates for labor.

Selection versus plant-level productivity growth Next, we quantify how much of the pro-
ductivity improvements across plants are driven by the selection of more productive plants
versus within-plant productivity growth. For this, we assume that plant-level productivity is
the product of a common, potentially endogenous, aggregate technology component zt that
improves the productivity of all plants and an idiosyncratic productivity shock sit: xit ≡ ztsit.
This setup allows us to separate shared technology growth in zt, selection on idiosyncratic
productivity sit and within-plant growth in sit, and nests the productivity side of many ex-
ogenous as well as endogenous growth models in the literature.10 In this setup, we provide
a novel non-parametric identification approach that separates the path of zt from sit (up to a
normalization of z0).

To understand why separate identification of selection and technology growth is difficult in

9Using separate information on prices and quantities, the previous literature has highlighted the important
role of demand for driving firm growth (Hottman, Redding, and Weinstein 2016; Foster, Haltiwanger, and Syver-
son 2016; Eslava and Haltiwanger 2020) and an important part of what we subsequently call “productivity” likely
captures demand. We return to this issue when discussing model counterfactuals where the distinction between
demand and productivity is key. Also, revenue-based productivity measures may be preferred in the Indonesian
context where large changes in product quality bias quantity-based productivity estimates (see Atkin, Khandelwal,
and Osman (2019) for the argument and Hill (2000) for a discussion of strong quality improvements in Indonesian
manufacturing). Relatedly, we also do not identify changes in mark-ups, which usually requires separate informa-
tion on prices and quantities (Bond et al. 2021). Studying changes in markups and its drivers over the course of
development is an exciting direction of future research, but beyond the scope of this paper.

10Specifically, the setup nests standard neoclassical growth models that feature exogenous aggregate produc-
tivity growth and firm selection (e.g. Luttmer 2007; Clementi and Palazzo 2016) as well as endogenous growth
models that feature a common endogenous growth component such as Romer (1990) or models where Gibrat’s law
holds and productivity growth is independent of firm size (Klette and Kortum 2004; Atkeson and Burstein 2010;
Restuccia and Bento 2015; Peters 2020).
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the first place, let us start by looking at log changes in average productivity over time:
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where log(x) ≡ x̃ denotes variables in logs. Changes in average productivity x̃it only identify
growth in technology z under the special case that average changes in productivity s̃ among
survivors as well as changes in average productivity s̃ between exiting and entering plants
exactly cancel out. These terms capture two important selection biases. The entry and exit
terms capture a “static” compositional selection bias that leads to overestimates of aggregate
technology changes as long as less productive plants are more likely to exit and entering plants
are positively selected on productivity. Focusing instead on within-plant changes in produc-
tivity deals with the “static” selection bias, but still leaves a term capturing average changes in
idiosyncratic productivity among surviving plants. We call this term the “dynamic” selection
bias, which generally biases estimated aggregate technology changes downwards if produc-
tivity sit is persistent. Intuitively, if surviving plants are selected based on good histories of
productivity realizations sit, then they are more likely to mean revert in the future.

Non-parametric identification in our setup means that we make no functional form assump-
tions on the arbitrarily time-varying path of aggregate technology zt, the productivity shock
process sit, nor on the plant entry and exit processes that drive endogenous selection. For
expositional purposes, we provide an idea of the identification and estimation approach and
relegate the precise technical assumptions, a detailed identification proof and further estima-
tion details to Appendix 1.A.6. Identification of changes in zt relies on two sets of assumptions.
The first assumption ensures that the productivity shock process sit has a stationary distribu-
tion. Technically, we assume that sit follows the same underlying general first-order, ergodic
Markov process across plants and time, allowing for flexible forms of error dependence. The
stationary distribution is useful because if we could reweight changes in observed productiv-
ity xit among the – potentially highly selected – set of surviving plants based on the stationary
distribution of sit, the “dynamic” selection bias exactly cancels out. That is, Ei∆s̃it is exactly
equal to zero at the stationary distribution of s. The second set of assumptions ensures that
such a stationary distribution can always be constructed using the observed data, restricting
the degree of selection at exit. Specifically, we require that (1) plants’ exit decisions are not
based on future productivity shock realizations, and (2) there is no sharp productivity cutoff
at which all plants would exit, so that there is always common support that allows an appro-
priate reweighting of the distribution. The latter can be empirically tested and – as shown in
Figure A.8 Panel B – finds strong support in the Indonesian data.

With the assumptions in hand, the only remaining difficulty is how to construct the weights
of the stationary distribution and solve for the time path of changes in zt. Here, we first solve
“forward” for the stationary distribution by starting with equal weights over the initial dis-
tribution. Whenever a plant selectively exits, we pass on their weight to plants with similar
productivity who did not exit using a standard Kernel estimator, creating a synthetic panel
among surviving plants that is “representative” of the underlying process of s. For time grow-
ing large – no matter how selected the initial distribution is – one can thereby identify appropri-
ate weights over the selected set of producing plants that recovers the stationary distribution
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Figure 1.7: Aggregate manufacturing technology estimates

Notes: Panel A: Aggregate technology estimates, showing the main estimator (explained in the data) as well as the
within estimator (that only controls for selection, but not mean reversion) and aggregate productivity (measured as
value-added-weighted average productivity). Panel B: Corresponding growth rates in aggregate technology. The
main and within estimators both use (weighted) median changes in plant-level productivity. Further details in the
text.

of s (up to a common scaler z). We then move “backwards” from the last period T to identify
the path of zt: initially normalizing zT , we start with a guess over zT−1, compute the weighted
changes in productivity between T − 1 and T based on the stationary distribution of s in T − 1

and solve for the implied zT . This implies finding a root in zT−1. Iterating on this procedure
until z0 recovers the entire path.

Figure 1.7 shows the estimated path of technology using the full sample and baseline produc-
tivity estimates. Over the entire 40-year period, technology improves little, being less than
5% higher in 2015 than in 1975. However, this masks important changes over time. Specifi-
cally, technology actually declined strongly throughout the 1970s, remained almost constant
throughout the 1980s and 1990s and then saw rapid growth of roughly 4% per year since the
year 2000. At the same time, aggregate productivity – measured as the value-added-weighted
average productivity across plants – increased roughly 3.5-fold by 2015 and increased by 75%
by the time of the Asian Financial Crisis in 1997. Together, this means that the sources of
productivity growth fundamentally differed over the two Indonesian growth periods: plant
selection rather than shared technology growth drove more than all of the productivity gains
during Indonesia’s period of rapid labor-intensive industrialization (1975-1997), while the pat-
tern reversed after the year 2000, with common technology growth explaining more than 90%
of the aggregate productivity gains. These estimates – especially after the Asian Financial
Crisis – are driven by within-plant productivity growth of surviving plants. Pre-1997, true
technology growth is lower than the unweighted within-plant productivity growth because of
positive mean reversion that can be explained by the presence of many young and low pro-
ductive plants that mean revert upwards in their productivity shocks. Post-1997, positive and
negative mean reversion roughly balance out, explaining the similar growth paths of the main
and within estimators. In Appendix 1.A.6 we further discuss what could be driving these large
changes in the role of aggregate technology over time.

The allocation of resources did not improve over time

At last, we look at measures of the misallocation of resources over time. We start with an
accounting-based decomposition of growth in Indonesian manufacturing. Using the previ-
ously assumed production structure and separation of plant-level TFP into an aggregate tech-
nology and idiosyncratic productivity component, we can write growth in manufacturing out-
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put as:11
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(1.3)

whereNt tracks the number of active plants. Total output is the combination of the state of fac-
tor accumulation and aggregate TFP. Aggregate TFP, in turn, can be further decomposed into
aggregate technology and – following Olley and Pakes (1996) – a combination of average pro-
ductivity and a covariance term that captures whether resources in the economy are allocated
towards the most productive plants. Since the covariance is affected by common trends in its
inputs such as changes in the sample size, Figure 1.8) plots the correlation of plant-level pro-
ductivity and resource shares, which is robust to common trends and simply the normalized
covariance. Panel A and B show this measure of the allocation of resources for the full sam-
ple of plants and only for surviving plants that already operated in 1975, normalizing each by
the first year. Each panel additionally plots the cross-sectional correlation within industries.12

Across all plants, the allocation of resources actually deteriorated over time, while it remained
stable for survivors, indicating that the deterioration is driven by the entry of small plants.
As further documented in Appendix 1.A.7, this result also holds within a balanced panel and
separately within each cohort of entering plants between 1970 to 1999.

In Appendix 1.A.7, we also report changes in the dispersion of marginal revenue products of
capital and labor over time, which maps to changes in misallocation in the literature building
on Hsieh and Klenow (2009).13 Again, we find that, if anything, the dispersion of measured
marginal revenue products (even within 5-digit industries) tends to increase over time. Thus,
based on our estimates and in contrast to Buera and Shin (2013), we find little evidence for an
undoing of misallocation being a feature of growth in Indonesia.

The misallocation dynamics shown in Figure 1.8) are a function of changes in plants’ produc-
tivities and how inputs reallocate across plants. To shed light on these dynamics at the micro-
level, we are interested in how plants’ inputs respond to changes in productivity. Figure 1.9
shows how plants’ labor and capital shares evolve as a response to a positive and permanent
productivity shock of at least 20% – roughly equal to the 75th percentile of within-plant pro-
ductivity changes. We use a standard staggered differences-in-differences design (Callaway
and Sant’Anna 2021) that is particularly suited here, because it captures plant-level dynamic
responses while controlling for time and plant fixed effects that ensure that results are nei-
ther driven by aggregate shocks in specific years nor by fixed differences across plants such
as differences across industries or even plant-specific production functions. Given selective
plant entry and exit and resulting composition biases from estimating treatment effects on un-

11The proof can be found in Appendix 1.B.4.
12Specifically, we proceed similar as in Gopinath et al. (2017): we first estimate the correlation across plants in

a given industry and year and then construct the weighted average correlation across industries using the indus-
try’s average share in manufacturing value added as an industry-specific time-invariant weight. Using the same
weights when aggregating across industries ensures that within-industry estimates reflect purely variation within
industries over time.

13There are important limitations to interpreting changes in the covariance between measured revenue produc-
tivity and input shares as changes in misallocation. For example, in Hsieh and Klenow (2009), an efficient allocation
implies zero correlation between TFPR and the input share. We note that revenue productivity in our model is not
equal to TFPR in Hsieh and Klenow (2009), but instead much more closely correlated with their measure of TFPQ.
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Figure 1.8: Evolution of cross-sectional correlation of plant productivity and input share

Notes: Input shares are computed based on Cobb-Douglas aggregator. Within-industry results based on first es-
timating the correlation across plants in a given industry and year and then constructing the weighted average
correlation across industries using the industry’s average share in manufacturing value added as a time-invariant
weight. All series are normalized by the first year.

Figure 1.9: Event study: Input share responses to a permanent productivity shock

Notes: Treatment defined by permanent productivity shock of 20 percent change that does not revert back, neither
before nor after treatment. Event study following Callaway & Sant’Anna (2021) estimated on balanced panel of
treated plants and with all non-treated plants as control, event time zero gives first period of treatment, effects at
-1 normalized to zero by assumption. Sample for capital share is restricted to post 1990 due to data availability.
Details in the text.

balanced panels, Figure 1.9 reports estimated dynamic treatment effects for different balanced
panels.14

Plants’ labor shares drop by more than 20 percentage points in the first year of treatment and
recover slowly over time as plants respond by increasing hiring. In Appendix 1.A.8, we further
show that the slow labor share adjustments are indeed driven by slow hiring rather than wage
increases. In a model with the above production side but where plants can adjust employment
without constraints, there should be no response in the labor share, indicating frictions in ad-
justing labor. Quantitatively, these frictions are large: For example, the average “treatment”
shock is roughly 40%, so that a plant with an initial labor share of 0.7 would not adjust labor at
all in the first year of a large productivity increase. In contrast, estimated dynamic responses

14The treatment effects are estimated with all non-treated plants as control. Event time zero gives the first
period of treatment, while treatment effects in event time -1 are normalized to zero by assumption. Apart from
the 20% cutoff, the treatment definition also ensures we identify a permanent productivity shock by ruling out
shocks followed and preceded by productivity changes of more than 10% per year and ruling out an accumulation
of shocks over multiple periods that undo the shock at period 0. E.g. if we look at an event window from -3 to 2,
then productivity at -3 cannot be more than 10% apart from the pre-level at -1 and productivity at 2 cannot be more
than 10% apart from productivity at event 0. This does not restrict input shares. The rapid observed declines in
the sample sizes are due to the high observed volatility of productivity, making it difficult to identify permanent
shocks in the data.
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for capital are much noisier and we cannot reject that capital shares immediately recover af-
ter the first year. For both inputs, we find no evidence for pre-trends, pointing away from
an anticipation of productivity shocks. Taken together, volatile plant-level productivity and
slow labor adjustments thus offer an explanation as to why the allocation of resources did not
improve over time.

1.3 Structural model

While the four empirical facts document important changes in the economy and distribution
of manufacturing plants over time (Fact 1), entry and exit dynamics that shape the selection
of plants (Facts 2, 3 & 4), and the importance of slow plant-level adjustment processes (Facts 2
& 4), the empirical evidence is not sufficient to quantify the drivers of the Indonesian growth
miracle. In particular, it does not allow us to quantify the aggregate effects of policy changes
separately from transition growth. For this, we now build a model of plant dynamics and
growth in the tradition of Hopenhayn (1992). In the model, plants face idiosyncratic risk in
their productivity and choose capital and labor inputs subject to labor adjustment costs and a
simple financing constraint that rationalize slow plant-level adjustments (Facts 2 & 4). Plants
face fixed costs that drive endogenous entry and exit, which in turn drives aggregate selection
dynamics (Fact 3).

The model features a time-varying growth path which is driven by three endogenous forces:
changes in the input distribution, changes in the productivity distribution due to a combina-
tion of exogenous technology growth and plant selection, and changes in (mis)allocation as
given by their joint distribution. All three forces are driven by the race between transition
growth and by changes in model fundamentals that induce new transition growth. Changes
in model fundamentals include changes in labor supply, potential entrants, technology, adjust-
ment frictions and taxes. We further embed the model of plant heterogeneity into a two-sector
general equilibrium model to capture changes in the rest of the economy and the endogenous
reallocation of labor across sectors over time. The potential of transition growth at any point
in time is given by the current distribution of plants encoding the history of the economy and
future growth potential as given by current model fundamentals and expectations over the
future. We follow the growth literature in treating the growth path as deterministic and by
assuming that agents have perfect foresight over aggregate changes in the economy.

1.3.1 Model Setup

The model economy is set in discrete time indexed by t = 1, 2, .... We assume that Indonesia is
a small open economy vis-a-vis the rest of the world and has access to world capital markets
at interest rate r∗. There are two sectors of production: Manufacturing (M) and the rest-of-
the-economy (R). Both sectors produce the same homogeneous, perfectly substitutable good,
which serves as numeraire. Manufacturing features heterogeneous plants whose endogenous
mass and distribution are time-varying, while we model the rest-of-the-economy as a simple
representative firm whose exogenous technology and endogenous labor demand change over
time. Labor is inelastically supplied by households which choose in which sector to work.
Labor markets in both sectors are fully competitive. There is a government that levies a val-
ued added and a corporate income tax, the two main corporate tax instruments in Indonesia.

30



We assume the government levies these taxes and redistributes revenue back to households.
Similarly, we assume that all plant profits are simply transferred back to households.

Manufacturing

The manufacturing sector is composed of risk-neutral plants that are heterogeneous in their
productivity sit. Each period, plants choose capital k and labor h on spot markets to pro-
duce output, while facing idiosyncratic risk over their future productivity sit and time-varying
changes in the economy. We denote plants’ payoff-relevant aggregate state of the economy, in-
cluding perfect anticipation of future changes in aggregates by Ωt and make its components
more explicit below. A plant’s output yit and taxable profits πit at time t are given by:

yit(sit, zt, hi,t, ki,t) = ztsith
θ
itk

α
it (1.4)

πt(sit, hi,t, ki,t; zt, wt) = (1− τCt )
(
(1− τV AT

t )yit(sit, zt, hi,t, ki,t)− wthi,t −Rtki,t
)

(1.5)

where the production function is as in Section 1.2.2, τV AT
t gives the Indonesian value-added

tax and τCt the corporate income tax that is levied on taxable profits. Given the frictions in
this economy, both tax instruments generally distort input choices. Rt gives plants’ capital
borrowing rate, which is equal to the deposit rate rt plus depreciation δ assuming competitive
rental markets. Idiosyncratic risk sit follows a Markov process of order one. We further assume
that sit is exogenous and independent of aggregate technology zt. For zt, we leave the path
unrestricted, but assume it is exogenous.

What drives slow plant adjustments? We assume that plants face labor adjustment costs. These
capture, for example, managerial time constraints that arise from the time it takes to hire, fire
and reorganize production tasks, a key constraint for plant growth in developing countries
(Bloom et al. 2013, 2020).15 Following the literature, we model them as follows (e.g. Cooper,
Gong, and Yan 2018; Cooper, Haltiwanger, and Willis 2015):
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
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hi,t−1 if ht > ht−1
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hi,t−1

)2
hi,t−1 if ht < ht−1

(1.6)

where F are fixed adjustment costs that capture overhead in dealing with hiring (F+) or firing
(F−) and c0 captures per worker hiring and firing costs. Importantly, there are convex adjust-
ment costs whose importance is captured by c1 and which capture costs of growing (c+1 ) or
shrinking (c−1 ) plants quickly. Convex adjustment costs are key to explain the slow growth of
plants over time and are a key determinant of the speed of transition growth. We allow all
costs to be asymmetric to accommodate that firing and hiring is often regulated differently. At
last, we index all adjustment costs in terms of wages since wage indexation provides a simple
way to let costs grow with the economy. Besides this indexation, in the baseline model, we

15In Appendix 1.B.1, we provide a simple microfoundation in terms of the costs of scarce managerial time to
show how organizational changes induce convex costs. An alternative interpretation of convex adjustment costs
is given in labor search models where they are rationalized via convex (reduced-form) hiring or vacancy posting
costs (e.g. Bilal et al. 2022; Coşar, Guner, and Tybout 2016)). The key difference is that adjustment costs in search
models become partly functions of equilibrium outcomes such as market tightness. We abstract from this general
equilibrium mechanism here given that the primary focus of the paper is on longer run growth dynamics and not
business cycle variation in unemployment and market tightness.
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Figure 1.10: Timing in time t for manufacturing firms.

assume that adjustment cost parameters are fixed over time, but the model and estimation can
accommodate time-varying parameters and we return to this point in later sections.

On top of adjustment costs, we assume that plants face a standard financing constraint that
captures underdeveloped financial markets, in line with a large Macro Finance literature that
emphasizes their importance (e.g. Buera and Shin 2013; Midrigan and Xu 2014; Moll 2014).
Specifically, we assume the following working capital constraint:

wthit ≤ κt(1− τV AT
t )yit (Working capital constraint) (1.7)

As we show in Appendix 1.B.2, the constraint can be microfounded as a simple limited en-
forcement problem whereby plants may want to run deficits in order to grow their workforce,
but cannot commit to repaying. Limited contract enforcement due to a weak judicial system
then leads to the borrowing constraint in equilibrium. κt then captures the probability that
the judicial system will enforce the contract, with higher κt mapping to stronger institutions
and a less binding constraint. The reason that plants may want to run deficits to grow their
workforce is that in the presence of convex adjustment costs it is costly to build up a plant’s
workforce quickly, so that even less productive plants may want to run deficits to build up
their workforce hoping for good future productivity realizations.

The timing of manufacturing production is summarized in Figure 1.10. At the beginning of a
period, incumbents observe their current productivity and make production decisions. Plants’
payoff-relevant aggregate state is given by: Ωt ≡ {zt, wt, r

∗}∞t . After production takes place,
incumbent plants incur a fixed cost of production cFi,t, upon which plants decide whether they
want to continue producing (and pay cFi,t) or permanently exit (as in Clementi and Palazzo
2016). The fixed cost is drawn from a distribution G, which we assume to be Gumbel with
scale and variance parameters (µXt , σXt ). A larger variance in the fixed costs rationalizes more
overlap in the labor and productivity distributions of surviving and exiting plants. The exit
decision of the plant depends on the plant’s expected future value, the cost shock as well as
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the costs of closing down the plant (as in Hopenhayn and Rogerson 1993):

max
{
βE[VM (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt]− cFi,t,−CE(hi,t)

}
(1.8)

where VM gives the continuation value of an incumbent plant and CE(hi,t) the costs of closing
down the plant. The above maximization problem implicitly defines plant i’s survival prob-
ability that the operating cost draw cFi,t is lower than its future expected continuation value:
λ(si,t, hi,t; Ωt) ≡ P

(
x ≥ cFi,t

)
= G

(
x
)

where x ≡ βE[VM (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt] +CE(hi,t).

The ex-ante value of an incumbent manufacturing plant can be written in recursive form ac-
cording to:

VM (si,t, hi,t−1; Ωt) = max
hi,t≤h̄,ki,t

{
π(sit, hi,t, ki,t; zt, wt)− wtACt(hi,t−1, hi,t) + λ(si,t, hi,t; Ωt)

{
− Ec[c

F
it |stay(si,t, hi,t; Ωt)] + βE

[
VM (si,t+1, hi,t,Ωt+1)|si,t, hi,t,Ωt+1

]}}
(1.9)

Plants have a common discount factor β = 1/(1 + r∗), which is pinned down by the world
interest rate. The presence of adjustment costs and financial constraints in combination with
productivity dynamics makes this a dynamic problem since plants take into account that con-
temporaneous changes in their inputs influence adjustment and financing costs in the future.

Next, we consider endogenous plant entry. As visualized in Figure 1.10, each period there is
a cohort of potential entrants (PE) of measure |PE|t. Each potential entrant draws a random
entry cost cEit from a distribution P , which they need to pay in case they start producing. Again,
we assume that entry costs follow a Gumbel distribution with scale and variance parameters
(µEt , σ

E
t ). Potential entrants differ in their idiosyncratic productivity sit and their initial labor

hi,t, which they know when making the entry decision for producing in period t. The initial
heterogeneous level of labor and productivity is key to capture that there is plant entry of many
small as well as some very large plants that matter in the aggregate. It also accounts for the fact
that we only observe and model plants with 20 or more workers. The exogenous distribution
of potential entrants is given by PEt(ht, st), which is time-varying due to exogenous reasons
such as demographic changes that have been shown to be key for explaining variation in firm
creation over time (Bernstein et al. 2022; Karahan, Pugsley, and Şahin 2019; Liang, Wang, and
Lazear 2018). Potential entrant i with entry cost shock cEit enters if its net value is positive:

VPE(si,t, hi,t; Ωt) = max
{
VM (si,t, hi,t; Ωt)− cEit , 0

}
(1.10)

where we have normalized the outside option to zero. Similar to exit, this gives the following
mapping P

(
VM (si,t, hi,t; Ωt) ≥ cEit

)
= P

(
VM (si,t, hi,t; Ωt)

)
. Note that in this specification the

initial mass and distribution of entrants is endogenous, but entrants only start making input
choices the period after they entered. A time-varying distribution of potential entrants also
allows us to deal with plant entry jumps in years of the economic census as we further discuss
in the estimation section. We denote the endogenous mass of entry for each state (ht, st) in
period t by µ(ht, st), which is a function of Ωt. Similarly, we define bym(ht, st) the endogenous
mass of producing plants for each state (ht, st) in period t. With slight abuse of notation, denote
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by Mt the set of producing plants at time t.

Rest-of-the-economy

We model the rest-of-the-economy parsimoniously as a representative firm with a decreasing
returns to scale (DRS) production function:

Y R
t = At

(
HR

t

)θR with θR ∈ (0, 1) (1.11)

where At is time-varying TFP, HR
t gives labor employed and θR gives the output elasticity

in the rest-of-the-economy. Decreasing returns to scale ensure that economy-wide wages can
be affected by changes in manufacturing. The rest-of-the-economy sector takes as given pro-
ductivity At and the wage rate wt and chooses optimal labor demand maximizing per period
profits: πRt (At, wt, τt) = Y R

t (At) − (1 + τRt )wtH
R
t , subject to labor demand wedges τRt . Labor

demand is then given by:

HR∗
t =

(
θRAt

(1 + τRt )wt

) 1
1−θR

(1.12)

Labor demand wedges in the rest-of-the-economy are a simple way to capture observed varia-
tion in the labor intensity of output and one can think of them as changes in labor frictions. At

captures changes in technology of the rest-of-the-economy. We allow bothAt and τRt to change
over time, but treat them as deterministic and exogenous paths.

Households

There is a continuum of households j that are characterized by their exogenous household-
specific efficiency units of labor hjt and whose exogenous mass at time t is denoted by Lt.
Households supply labor inelastically so that the aggregate labor supply is given by Ht =∫
j hjtdj. Changes in Lt and Ht

Lt
capture changes in the working population and education

per worker respectively. We abstract from consumption-savings decisions by assuming that
households are hand-to-mouth, simply consuming their labor income yjt net of transfers from
the government and plant profits Tjt: cjt = yjt + Tjt.16 Households allocate their labor supply
across both sectors based on maximizing labor income: yjt = max{hjtwM

t , hjtw
R
t }.

Equilibrium

We assume that the observed growth path in the data is characterized by a path of per-period
perfect foresight Recursive Competitive Equilibria.

Definition 1 (Model fundamentals.). Model fundamentals at time t capture all exogenous model
parameters, processes and distributions as given by:

ΘF
t = {θ, α, δ, F−, c−0 , c

−
1 , F

+, c+0 , c
+
1 , {At, τ

R
t , Ht, PEt, zt, τ

C
t , τ

V AT
t , κt, µ

X
t , σ

X
t , µ

E
t , σ

E
t }∞t }.

We further denote by Θ̄F
t the modified set of model fundamentals where all fundamentals are fixed to

16We only make this assumption to fix ideas. Given the small open economy setup, the domestic supply of
capital is inelastic to changes in domestic savings behavior such that the production side – which is the focus of this
paper – would look exactly the same if heterogeneous households would instead solve a savings and consumption
choice. Given inelastic labor supply, the model is also isomorphic to one with uniform labor income taxes in both
sectors.
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their value at time t forever. At last, denote by ΘF
t \ {x = x̄} the modified set of model fundamentals

where only model fundamental x is changed to x̄.

Definition 2 (Initial distribution.). The distribution of surviving plants from period t − 1 gives the
initial distribution at time t and is denoted by St.

A path of perfect foresight Recursive Competitive Equilibria starting at time t is then given
by model fundamentals ΘF

t , an initial distribution St, and endogenous sequences of prices
{wt, r

∗}∞t , corresponding quantities and distribution of producing plants {mt}∞t such that each
period τ ∈ [t,∞):

1. The rest-of-the-economy sector statically chooses optimal labor demand maximizing prof-
its taking as given productivity Aτ , the wage wτ and labor demand wedges τRτ .

2. Manufacturing plants choose optimal labor and capital demand.
3. Potential entrants optimally make entry and incumbents optimally make exit decisions.
4. Households inelastically supply total laborHτ and optimally allocate labor across sectors

to maximize labor income.
5. The aggregate wagewτ adjusts to ensure that the labor market clears: Hτ = HR

τ (wτ , Aτ , τ
R
τ )+∑

i∈Mτ
h(siτ , hi,τ−1; Ωτ )

6. The government runs a balanced budget by levying a value added and corporate income
tax and redistributing revenue back to households.

7. The capital market clears every period such that international capital supply equals do-
mestic capital demand:

∑
i∈Mτ

k(siτ , hi,τ−1; Ωτ ) = KINT
τ .

8. The mass of active plants in τ and previous aggregate state Ωτ−1 is equal to surviving
plants from τ − 1 plus endogenous new entrants:

∀(sτ , hτ ) : m(sτ , hτ ; Ωτ ) =
∑

sτ−1,hτ−1

(
1h∗=hτP[sτ |sτ−1]λ(sτ−1, hτ−1; Ωτ−1)×

m(sτ−1, hτ−1; Ωτ−1)
)
+ µ(sτ , hτ )

(1.13)

9. The goods market clears each period such that total production is either consumed or
exported: Yτ =

∑
i∈Mτ

yi,τ + Y R
τ = Cτ + NXτ where NXτ = EXPτ − KINT

τ are net
exports.17

The observed growth path features a combination of changes in model fundamentals that
move the economy’s steady state and transition growth as the economy is trying to catch up
to this steady state. We now formalize these concepts.

Definition 3 (Balanced Growth Path (BGP) and Steady State (SS)). Along a BGP, underlying
technology in both sectors (At, zt) and the endogenous wage grow at the same constant rate, while all
remaining model fundamentals and the endogenous distribution of plants stays constant (see details in
Appendix 1.B.3). A steady-state is a BGP for which the growth rate is zero. Both BGP and steady-
state are uniquely defined by model fundamentals ΘF that admit a BGP/SS.18

Definition 4 (Transition path). The unique perfect foresight transition path starting at t towards

17Note that we have implicitly treated all entry costs, fixed costs and adjustment costs as shadow costs here, as
they neither directly enter labor market clearing nor the aggregate resource constraint.

18Uniqueness depends on the uniqueness of the individual policy functions and the unique mapping between
policies and prices. We treat our numeric algorithm as formally defining the equilibrium refinement conditions
sufficient for uniqueness.
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a BGP is defined by an initial distribution St and model fundamentals ΘF
t (which admit a BGP), and

gives a path of equilibrium wages over the transition.19

In Section 4, we use the model to separately quantify the role of transition growth from changes
in the steady state.

1.3.2 Estimation

The model captures a race between changes in model fundamentals and the distribution of
plants (over the state space) trying to catch up to these changes. We now take this model
to the data and show how to disentangle changes in the distribution from changes in model
fundamentals. Estimation proceeds in three main steps, while an additional step is needed for
model counterfactuals. The first step identifies equilibrium prices – only wages in our case – in
the data. We take an equilibrium estimation approach (Hotz and Miller 1993; Bajari, Benkard,
and Levin 2007; Caliendo, Dvorkin, and Parro 2019), which means that we treat our model
as generating the equilibrium wage path we observe in the data. We can thus treat the path
of equilibrium wages as fixed throughout the estimation and only need to solve for changes
in the equilibrium wage path for counterfactuals. This greatly simplifies the estimation as it
avoids solving for the equilibrium path of the model during the estimation. In the second step,
we identify the distribution over the entire state space of the economy over time and use this
to back out related model fundamentals such as the initial distribution. The third step then
solves for remaining fundamentals that are related to the dynamic input and exit choices of
plants drawing on observed choices of plants conditional on the state space. In this step, we
also need to make an explicit assumption about the evolution of model fundamentals beyond
the time frame of our data. To conduct model counterfactuals, we further back out model
fundamentals that are not needed to solve the baseline economy, such as fundamentals of the
rest of the economy.

With each estimation step, we enforce more model structure and assumptions, making pa-
rameter identification very transparent. An important benefit of our approach is that we can
directly draw on the production function and aggregate technology estimates discussed in Sec-
tion 1.2.2 whose identifying assumptions nest our model. Table 1.1 provides an overview of
the estimation steps and all model fundamentals and estimates. We now discuss each step in
more detail. Given the larger number of model fundamentals, we focus throughout on the
most important parts and relegate details to Appendix 1.B.5.

Step 1: Equilibrium wage estimation

In the first step, we estimate the path of equilibrium wages that clear labor markets in each pe-
riod. While prices could in principle be directly observed in the data, based on our model, we
only observe plants’ wage bills (wthit), which are a combination of the wage and the quantity
of labor. We are only interested in changes over time and thus normalize the level of initial
wages w0 to unity. Ideally, we would like to capture changes in the wage by looking at wage
changes for a worker whose efficiency units of labor remained constant. This would for ex-
ample avoid any assumptions on how workers with different skills select across plants. In the

19Uniqueness of the transition path can be proven via contraction mapping arguments over the path of price
expectations. Again, our numeric algorithm for the transition gives a unique path for perfect foresight equilibria
and we treat this as formally defining the equilibrium refinement conditions sufficient for uniqueness.
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Table 1.1: Overview of parameter identification and estimation

Object Description Type Identification idea Value Details
Parameterization:

r∗ World interest rate F Risk-free rate 0.04
δ Depreciation rate F Standard 0.1
τCt Corporate tax F Official rate 0.2 Section A.2.4
τV AT
t VAT F Official rate 0.1 Section A.2.4

Estimation:
Step 1:

θ Prod function F Control function 0.694 Section 2.3.2
α Prod function F Control function 0.03 Section 2.3.2
wt Wage path E ∆i(wthit)/lit Fig. 12 Section 3.2.2
κt Borrowing constraint F Max labor share 1.7 Section A.2.4

Step 2:
zt Techn path F ∆iproductivityit Fig. 8 Section 2.3.2

P(s′|s) Transition matrix F Obs. transitions Section 3.2.2
Init distrib F Obs. survivors Section 3.2.2

Et Entrants E Obs. entry Section 3.2.2
Step 3:

Adj costs F Euler CCC Table 2 Section 3.2.2
Cost ratio Fixed cost F Euler CCC Table 2 Section 3.2.2
Cost level F Match mass 2015 Section 3.2.2

For counterfactuals:
At, θR, τ

R
t Rest-of-Economy F First-order condition Section A.2.4

Entry costs F Section A.2.4
PEt Potential Entrants F Entrants + entry proba Section A.2.4

Details: Types are: F(undamental) and E(quilibrium object). The former stay fixed in counterfactuals,
the latter change endogenously. If applicable, reported standard errors correct for multi-step estimation
procedure and cluster at the plant-level by using block bootstrap across all estimation steps (This is cur-
rently still work in progress).
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Figure 1.11: Evolution of estimated real wage in Indonesian manufacturing

Notes: Based on within-task changes in the wage bill per worker by task (production and non-production). Data:
Indonesian manufacuring census (1975-2015, 20+ workers).

absence of worker-level data that spans the entire time period, we instead draw on changes
in within-plant per worker wages for similar job types, exploiting that the Indonesian data re-
ports wages and the number of workers separately for production and non-production work.
Our identification strategy for the wage allows for arbitrary sorting of workers with differ-
ent skills not only across plants but also across different job types within plants, but restricts
changes in the skill sorting within job types over time. Formally, we assume that plant i uses
on average the same skills per worker within job types k: hkit/l

k
it = αk

i · εkit. εkit allows job types
within plants to vary in their skill intensity around αj

i over time. With standard restrictions on
εkit, this ensures that wages are identified from:

Ei

[
log(wt+1h

k
it+1/l

k
it+1)− log(wth

k
it/l

k
it)
]
= log(wt+1)− log(wt)

As our estimate of changes in wages, we use median within-plant-worker-type changes in
wages, weighting observations by the average of total workers of type k between t and t +

1, ensuring that wages are identified from median wage changes of workers (not plants). If
anything, we think this estimator overestimates wage increases, because (1) any increase in
within-worker human capital (e.g. on-the-job learning) will be attributed to increases in the
wage, and (2) the estimates are for surviving plants, which might see more wage growth.

Figure 1.11 plots the estimated real wage series in the data. Our preferred estimator uses wage
bills for production workers only, as production workers are relatively homogeneous and thus
the identifying assumption is more likely to hold. For completeness, we also report estimated
wage series using non-production workers and pooling all workers. Our estimates show that
wages per efficiency unit of labor increased by more than 85% over the 40-year period with
important variation over time. Given that the average wage bill per manufacturing worker
increased roughly 4-fold in the data, these estimates imply that the average manufacturing
worker in 2015 was about 2.2x more efficient than the average manufacturing worker in 1975.
We find this a reasonable estimate given the large educational gains of Indonesian workers
observed over this period. As external validation, Gathen (2021) also finds a similar wage
increase from separate estimates on Indonesian worker data between 1998 and 2015.
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Step 2: Mapping the entire distribution over the state space

In the second step, we map any plant in our data to the state space of our model: (hit−1, sit, wt, zt).
While our data captures a discrete number of plants, we treat this mass as continuous for the
estimation. This allows us to identify changes in the entire distribution of plants over the state
space over time, which is crucial to determine the potential for transition growth. Specifically,
we use this mapping to identify two key model fundamentals – the productivity process and
the initial distribution – and an equilibrium object which changes in counterfactuals: the dis-
tribution of entrants.

To identify the state space, we draw on the wage estimates from Step 1, which together with a
plant’s wage bill (wthit) identifies hit−1. To obtain plant productivity and technology, we draw
on the identification and estimation approach from Section 1.2.2, which hold under weak as-
sumptions on exit and input choices. Having identified plant productivity sit (up to a normal-
ization of zt), we estimate the dynamic process of sit by discretizing s and then estimating the
transition matrix P(s′|s) non-parametrically using (pooled) within-plant productivity changes
in the data. The transition matrix is a fundamental of the economy and is identified based on
within-plant changes in productivity conditional on previous productivity, and only requires
that all productivity states are observed with positive probability at some point.20

Next, we exploit the state space mapping to identify the initial distribution of surviving plants
over (si,t, hi,t−1;Ω) in 1976. While our data starts in 1975, the first year for which we can
identify hi,t−1 is 1976. We treat this initial distribution as a model fundamental, implicitly
assuming that in any counterfactual, initial survivors do not anticipate any changes to the
baseline equilibrium paths of wages and technology prior to 1976. The main benefit of directly
taking the initial distribution from the data is that we can remain agnostic about its origins and
allow the data to reveal the initial degree of misallocation. A downside is that if the model does
not capture all mechanisms of dispersion over the state space, the initial distribution may look
more “misallocated” than it actually is; leading to overestimating model-implied transition
dynamics.

At last, the state space mapping also allows us to identify time-varying entrant distributions
E(st, ht;Ω), which are equilibrium objects but related to the fundamental potential entrant dis-
tributions via: PEt(st, ht;Ω) = Et(st, ht;Ω)/PE(st, ht;Ω), where PE(.) gives the entry proba-
bility, which is a function of the model-implied value of entering as well as the parameters of
the entry cost distribution. For the model estimation along the baseline equilibrium path, we
treat these equilibrium entrant distributions as fixed. Our approach implies that the baseline
model exactly replicates observed plant entry. This is in contrast to plant-level exit and labor
demand decisions, for which our estimation approach allows the model to fail.

Step 3: Estimating the dynamics of the model

Step 3 reveals the remaining parameters of the economy that are needed for the baseline model:
fixed cost parameters that govern entry and exit decisions as well as adjustment cost param-
eters that govern how plants make dynamic labor choices. This step enforces more model

20While an imperfect ex-post test, we check ergodicity of the implied idiosyncratic productivity process sit
by verifying that all states in the discretized transition matrix can be eventually reached. In Appendix 1.B.5, we
provide details on the discretization of productivity and labor, which we rely on for numerically solving the model
and counterfactuals.
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structure, particularly on how plants make dynamic input, exit and entry choices, and how
plants form expectations over the future. We separate this section into two parts with the first
part only exploiting optimal plant-level choices across consecutive periods, while the second
part also enforces long-run expectations.

Euler equation CCC estimation We identify most remaining parameters by exploiting ob-
served exit and labor input choices conditional on the state space, drawing on standard con-
ditional choice probability (CCP) and continuous conditional choice (CCC) Euler estimation
techniques (Hotz and Miller 1993; Bajari, Benkard, and Levin 2007). Taking first-order condi-
tions with respect to labor from the incumbent’s value function above and directly plugging
in the envelope condition, we obtain the following Euler equation:

0 =
∂π(si,t, kit, hi,t, zt)

∂hi,t︸ ︷︷ ︸
Labor wedge

− wt
∂Ch(hi,t, hi,t−1)

∂hi,t︸ ︷︷ ︸
Current marginal adj costs

+
∂λ(si,t, hi,t,Ωt)

∂hi,t

{
−g̃(si,t, hi,t,Ωt) + βE

[
V (si,t+1, hi,t,Ωt+1)|si,t, hi,t,Ωt

]}
︸ ︷︷ ︸

Marginal benefit on survival

+ λ(si,t, hi,t,Ωt)

{
−∂g̃(si,t, hi,t,Ωt)

∂hi,t
+ βE

[
−wt+1

∂Ch(hi,t+1, hi,t)

∂hi,t
|si,t, hi,t,Ωt

]}
︸ ︷︷ ︸

Marginal benefits on future costs

(1.14)

where we have used g̃(si,t, hi,t,Ωt) to denote the expected fixed cost conditional on surviving
to emphasize that it is a function of the state space.

The Euler equation, which holds for any plant that is optimally adjusting labor, says that plants
should equalize today’s marginal product of labor with the marginal costs of labor and current
as well as future labor adjustments. Adjustment costs give a natural explanation for why there
is a “wedge” between the static marginal product and the marginal costs of labor (Hsieh and
Klenow 2009). For our estimation purposes, the important features of the Euler equation are
that it holds along the transition, and that it gives a nonlinear equation in observable plant-
level choices (exit and input choices) and parameters that govern survival probabilities as well
as adjustment costs. Specifically, marginal adjustment costs are a function of adjustment cost
parameters. The tricky terms are expected and marginal expected fixed costs, marginal sur-
vival probabilities and the expected future continuation value. As we show in Appendix 1.B.6,
the Gumbel distribution for the fixed costs ensures that we can analytically invert all of these
terms as functions of observed survival probabilities and parameters of the Gumbel distribu-
tion.

Appendix Table B.1 presents the non-linear least squares (NLS) estimation results and Ap-
pendix 1.B.6 gives the exact estimating equation and estimation details. The Euler equation
flexibly identifies marginal adjustment costs. Intuitively, linear adjustment costs are identified
from the observed labor wedge across plants and the probability of switching between shrink-
ing and growing as determined by the volatility of the estimated productivity process. Convex
costs instead scale with the labor growth and are thus identified from the variation in within-
plant labor demand growth across periods, again conditioned by the observed volatility of the
productivity process. We find sizable adjustment costs – especially convex costs on growing
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– that rationalize why even productive plants (with a high labor wedge) conditional on previ-
ous plant employment do not grow faster. Quantitatively, our estimates imply that growing
a plant’s workforce by 20% within a year – a growth rate slightly above the 75th percentile
– leads to adjustment costs that are about 75% of the previous wage bill. Informed by faster
observed shrinking conditional on productivity, convex costs on shrinking are estimated to be
less than half as big. We also estimate that a plant pays almost 75% of a new worker’s annual
wage in the form of hiring costs, which is identified from the high observed wedge between the
marginal product and wage and the high volatility of productivity that make any investments
in the workforce risky. In Appendix 1.B.6, we also report time-varying estimates of adjustment
costs. If anything, we find that convex adjustment costs tend to increase over time beyond
what is implied by increases in the wage, pointing away from a reduction in frictions driving
Indonesian growth.

Solving the baseline model The Euler equation only identifies the ratio between the level
and scale of the fixed cost distribution that determine plant exit. To separately identify the
level, we solve the model and match one moment in the data and model: the mass of plants in
2015, assuming that the census is complete for that year. The estimated level and scale of the
fixed cost distribution rationalize average exit rates and the low but positive correlation with
underlying productivity and size.

Solving the model introduces two issues that are common to equilibrium estimation approaches.
First, by requiring to solve for plants’ value functions, we need to make an explicit assumption
on long-run expectations of plants after the year 2015 when our data ends. We assume that af-
ter 2015, plants expect to be on a balanced growth path with manufacturing technology grow-
ing at the average rate at which it grew in the preceding ten years.21 Given that technology in
manufacturing grew strongly since 2000, this assumption implies optimistic expectations, in
line with low exit and strong observed plant growth in the years prior to 2015.

The second issue for the equilibrium estimation is that enforcing revealed equilibrium prices
along the estimation of the baseline economy does not guarantee that these prices actually
clear markets in our model over time. We ensure consistency – informed by our specific con-
text and data availability – by treating the observed data as correctly revealing prices, but not
necessarily correctly revealing aggregate labor demand and supply. As discussed in Section
1.2.1, our data does not correctly reveal aggregate labor demand and supply due to mis- and
non-reporting and as explicitly taken into account in our measure of plant exit. We thus use the
model-implied aggregate labor demand and supply for the baseline growth path and enforce
the implied fundamentals that ensure market clearing for all future model-based counterfactu-
als. This is how our approach also ensures that counterfactuals are consistent with the baseline
model economy.

1.3.3 Evaluating model fit

To assess how well the model fits the data over time, we revisit three main results from Section
1.2. Having estimated the model on micro moments, we start out by moving from “micro to

21We provide technical details on the BGP and how to solve for the stationarized value function in 2015 in
Appendix 1.B.3. An alternative would be to solve for a continued transition towards a long-run BGP by making
explicit assumptions on how all fundamentals evolve after 2015. We do not follow this approach, because it adds
substantial additional computational costs while requiring similarly strong assumptions.
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Figure 1.12: Baseline model fit

Notes: All graphs report results for manufacturing only and for each panel, both series are normalized to the initial
level in the data. Average size is reported in efficiency units of labor. Selection (measuring average productivity),
input distribution (the sum of the Cobb-Douglas aggregator of capital and labor) and covariance (the covariance
between plant productivity and the share in inputs as given by the Cobb-Douglas aggregator) refer to the three
corresponding terms in the growth accounting identity introduced in Section 2.

macro”, evaluating the model’s aggregate predictions. We then validate how well the model
matches plants’ dynamic input choices and changes in the entire plant distribution over time.

Figure 1.12 shows how the baseline model fits the mass of plants, aggregate output in manu-
facturing and the three main endogenous components that we used in Section 1.2.2 to formally
decompose manufacturing growth. For completeness, we also plot the evolution of the aver-
age plant size as measured in efficiency units of labor. The model closely tracks the more than
30-fold increase in manufacturing output over time, including rapid growth in the absence of
technology improvements until the Asian Financial Crisis, the decline during the crisis and the
fast post-crisis growth. Overall, the model tends to slightly underestimate output at the plant
level given the higher model-implied mass of plants.

The accounting identity helps to understand why the model fits the aggregate data well and
where the model underperforms. First, as the main component of aggregate output growth,
the model closely tracks the distribution of labor and capital across the endogenous plant dis-
tribution over time. Neither total labor demand, the total number of plants over time (apart
from the first and last year) nor the distribution of inputs is hit by construction. The model cap-
tures the right degree of slow labor accumulation across the entire plant size distribution over
time, which can be even more clearly seen from looking at the average plant size. Secondly,
the model tracks well the evolution of average productivity across plants, capturing well the
endogenous selection of plants over time. If anything, the model overpredicts productivity
growth in the early years and underpredicts towards the end. This can be in part explained
by a too fast productivity convergence implied by the estimated productivity process, stem-
ming from frequent temporary productivity shocks that lead to overestimating productivity
transitions. At last, the model also performs reasonably well on the most difficult part: the
endogenous evolution of the joint distribution of productivity and inputs, as captured by the
covariance term. Here, the model captures the decline in the covariance over time, as many
small and productive plants enter and resources only reallocate slowly due to sizable adjust-
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Figure 1.13: Model validation: Event study and changes in distribution

Notes: Left graph replicates event study exactly as in Section 2 using simulated data from model growth path. Right
graph gives changes in the employment distribution (using efficiency units of labor) for model versus data. For
both data and model, wage bills are used and divided by (same) estimated wage path.

ment frictions.

Next, we are interested in whether the model is also in line with the micro-level labor dy-
namics. Figure 1.13 Panel A shows the same estimated event study as in the data, using the
exact same treatment definition and sample restrictions but now using simulated data from
our baseline model from 1976 to 2015. The event study results align well. Both pre-trend, the
exact magnitude of the treatment effect at impact and the slow recovery of the labor share fol-
low the data. We also note that the balanced sample restrictions imposed in the data lead to
very similar sample sizes in the simulated data indicating that we identify similarly selected
sets of plants (which received a rare permanent productivity shock).

At last, Figure 1.13 Panel B compares model-implied versus observed changes in the entire
employment distribution of plants over time. In 1976, the first year that our model predicts
plant decisions, the distributions are still largely indistinguishable. Over time, the employment
distribution moves strongly to the right with average employment increasing almost 4-fold
and the mass of the distribution shifting from a strong left tail towards the right. The model
tracks this overall change well, but slightly overpredicts the right tail. Importantly, we do not
see a marked deterioration of the distribution even after 40 years of endogenous evolution.

1.4 Quantifying the drivers of aggregate growth

Using the estimated model, we now quantify the drivers of growth. Specifically, we quan-
tify (1) the importance of initial transition growth, (2) the continuing importance of transition
growth over the course of development, and (3) the role of policy. We present each in turn.

1.4.1 Initial conditions and the role of transition growth

We start by quantifying the importance of transition growth based on the initial economy at
the onset of the Indonesian growth miracle in 1976. How much would the 1976 economy have
grown purely from transition growth in the absence of any further changes in model funda-
mentals? For this, we start from the initial economy with the initial distribution M1976, fix
initial model fundamentals Θ̄F

1976 to their value in 1976 and solve for the perfect foresight tran-
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Figure 1.14: Growth from initial conditions

Notes: Results for counterfactual where economy evolves only based on initial conditions (all fundamentals fixed
to initial level). All graphs report results for manufacturing only. Average size is reported in efficiency units of
labor. Selection (measuring average productivity), input distribution (the sum of the Cobb-Douglas aggregator of
capital and labor) and covariance (the covariance between plant productivity and the share in inputs as given by
the Cobb-Douglas aggregator) refer to the three corresponding terms in the growth accounting identity introduced
in Section 2.

sition path (see Section 1.3), which includes solving for a counterfactual path of equilibrium
wages that clears the labor market over time as the initial distribution of plants transitions
towards the steady state distribution defined by Θ̄F

1976.

Figure 1.14 highlights the resulting counterfactual growth in manufacturing. Overall output in
manufacturing increases roughly 12-fold over time, accounting for 42% of the overall output
gains compared to the baseline (model) economy. The reason is that young and small plants –
which dominate the initial distribution and new entrants – gradually hire more workers and
increase their productivity through a combination of productivity convergence and the exit of
less productive plants. At the same time, entry consistently exceeds exit and the mass of plants
gradually doubles over time. The increase in workers across manufacturing plants is mostly
driven by the reallocation of labor from the rest of the economy: in the absence of observed
changes in the aggregate labor supply and technology in the rest of the economy, the model
predicts that Indonesia would have seen a manufacturing miracle with manufacturing labor
and output shares reaching close to 30% over 40 years (in contrast to observed shares of less
than 10%). Average plant size increases far more rapidly because in the absence of productivity
improvements in the rest of the economy, aggregate wages stay almost 40% lower than in the
baseline economy. Hence, initial conditions explain more than all of the increase in the average
plant size over time, with cheap labor being the main driving force. Looking at changes in the
entire distribution, Figure C.2 highlights that the increase in the average plant size is indeed
driven by a movement in the right tail, which forms slowly because it takes time to grow large
plants and the initial distribution lacks large plants, in line with the empirical evidence in
Section 1.2.2.

What about economy-wide effects? Aggregate output per worker increases by roughly 25% by
2015 in this counterfactual economy, explaining 5.2% of the close to 6-fold increase in aggre-
gate output per worker observed between 1976 and 2015. However, this comparison may be
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Figure 1.15: Distance to steady state over time

Notes: Years to reach 90% of the steady state manufacturing output for each transition path over 1976-2015. Each
year’s perfect foresight equilibrium transition path starts from that year’s initial distribution and fixes fundamen-
tals of that year over the transition. Best linear fit includes 95% CIs. Jumps are partly driven by census years in
which potential entrant distributions change more strongly.

unfair given that a large part of the 6-fold increase in aggregate output per worker is driven
by changes in the rest of the economy, not by manufacturing. In the end, manufacturing in
our data captures less than 10% of aggregate output in the economy. We thus also consider a
counterfactual in which only the rest of the economy fundamentals change as observed, but
manufacturing fundamentals and the initial distribution of manufacturing plants stay fixed to
their values in 1976. Using this counterfactual to “purge” the effects of changes in the rest of
the economy and isolate the effects of changes in manufacturing only, we find that initial tran-
sition growth accounts for all (117%) of the aggregate output per worker gains that are due to
changes in manufacturing by 2015.

1.4.2 The never-ending race: Transition growth remains important

As evidenced in the previous section, even in the absence of further changes in model funda-
mentals, transition dynamics – due to slow labor hiring and firing and slow plant entry and
exit dynamics – take decades to play out. A key question is whether the Indonesian economy
runs out of transition growth over time as new changes in model fundamentals provide new
potential for transition growth. We find that the quantitative answer to this question is no.
We show this result by revisiting the previous exercise but instead of computing the transi-
tion path based only on the initial distribution in 1976 and initial model fundamentals Θ̄F

1976,
we compute the perfect foresight transition paths for each year between 1976 and 2015 start-
ing from that year’s initial distribution and model fundamentals Θ̄F

t . This gives a total of 40
different counterfactual transition paths with their corresponding counterfactual equilibrium
wage paths and plant distributions. As a measure of the transition potential, we then calculate
for each transition path the number of years it takes to reach 90% of the (time-varying) steady
state manufacturing output. Figure 1.15 shows that it takes the 1976 economy 26 years to come
close to the steady state if fundamentals were to remain constant at Θ̄F

1976. On average, it takes
about 20 years and, importantly, the number of years to come close to the steady state does not
systematically decline and – if anything – increases over time.

This race between catching up to the steady state and changes in the steady state itself can only
be studied in a model that features both transition growth and changes in fundamentals and
we find strong quantitative evidence that due to the combination of large and frequent changes
in fundamentals and slow transition dynamics, the Indonesian economy does not get closer to
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its time-varying steady state. Large demographic changes and policy changes pre-1975 also
provide a simple explanation for why the initial Indonesian economy in 1976 was far away
from its steady state. At last, potential for transition growth may not always provide a positive
force for economic growth; in fact, after 40 years of demographic changes, the mass of plants
in 2015 is above its steady state and transition growth is now negative as the mass of plants
slowly declines along the transition – an important consequence of an aging population.

1.4.3 The role of policy

While the Indonesian growth experience is driven by a never-ending race of transition growth
and changes in model fundamentals that induce new transition growth, the question is how
government policy enters. The simple answer is: policy drives part of the changes in model
fundamentals. Thus, to evaluate the effect of policy, we need to link changes in policies to
changes in model fundamentals. In this section, we show how to do this by focussing on
two specific but very important Indonesian government policy changes since 1975: education
reform that maps to changes in human capital (and thus aggregate effective labor supply),
and changes in Indonesia’s foreign direct investment (FDI) policy that map to changes in the
distribution of potential foreign entrants over time. In both cases, we first quantify the overall
effect of changes in the specific model fundamental and then quantify the (relative) effect that
can be attributed to specific policy changes. We show that overall changes in human capital
were large and a necessary condition for Indonesia’s manufacturing take-off, but observed
education policies only explain 5% of this effect. In contrast, we find that the overall growth
effects of FDI in Indonesian manufacturing were modest, but that observed changes in FDI
policy explain up to 85% of its effects.

The role of cheap labor & the INPRES school construction program

What are the economy-wide and manufacturing growth effects of dramatic increases in hu-
man capital in the Indonesian economy? Over the period 1976 to 2015, our estimates sug-
gest that human capital per worker Ht/Lt increased by 220%. To quantify the overall effects
of human capital increases, we consider a counterfactual in which the Indonesian economy
had not seen any human capital per worker increases over time. That is, we consider a
counterfactual growth path where we start from the initial distribution in 1976 and a coun-
terfactual path of model fundamentals with a modified path for the aggregate labor supply:
ΘF

1976 \ {Ht/Lt = H1976/L1976}∞t . To quantify the extent to which policy contributed to the
overall increases in human capital, we evaluate the effects of a particular educational policy
change. Namely, we evaluate the largest school construction program in Indonesia’s history
and one of the largest in the world: the 1970s INPRES school construction program. The pro-
gram successfully led to increases in schooling and wages (see: Duflo 2001; Akresh, Halim,
and Kleemans 2023). We assume the program only affected the Indonesian economy through
its effects on human capital. To quantify the effects of the INPRES program, we consider a
counterfactual in which all gains in human capital materialized except the ones that were due
to the INPRES program. For this we construct a counterfactual path of aggregate human cap-
ital in the absence of the INPRES program, drawing on existing estimates on the wage effects
of the program (which map to marginal changes in human capital), the known scale of the
program and the increasing share of treated cohorts over time (details in Appendix 1.C.2).
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Figure 1.16: The role of education in Indonesia’s manufacturing growth.

Overall, we find that the estimated 220% increase in human capital per worker increased ag-
gregate output per worker by 26.5% in 2015. The seemingly small aggregate effect is explained
by output in the rest of the economy being less dependent on labor, as captured by a low es-
timated labor elasticity. Figure 1.16 visualizes the quantitative effects that increases in human
capital had on manufacturing growth over the period 1976-2015. Manufacturing growth in
Indonesia relied heavily on the cheap labor that increases in human capital brought; in the
absence of this effective increase in the supply of labor (“No Education”), wages would have
roughly doubled and Indonesia would not have developed a successful manufacturing sector,
with manufacturing output and its employment share not even reaching 1/4 of their histori-
cal level. Average plant size would have only increased marginally over time, far less plants
would have entered and far more would have exited. The INPRES program only accounts for
a small share of these effects, roughly driving 5% of the aggregate output per worker gains
from increases in human capital. Figure 1.16 shows that the effect on manufacturing output,
the mass of producing plants and overall hiring, is approximately twice as big as the aggregate
effects. This is because manufacturing is more sensitive to labor costs than the rest of the econ-
omy. Furthermore, the positive effects of the INPRES program slowly increase over time as
more cohorts of Indonesians that benefited from the new-built schools enter the labor market.

The role of foreign ownership and FDI policy

Next, we look at the role of foreign direct investment in manufacturing, which we define as the
foreign ownership of manufacturing plants. Foreign-owned manufacturing plants are quan-
titatively important, accounting for roughly 30% of manufacturing output in 2015 (see Figure
C.3 in Appendix 1.C.3) and the aggregate importance of foreign ownership increased steadily
since the late 1980s. FDI policy primarily affects the entry of foreign-owned plants, since
ownership shares are highly persistent and most variation in foreign ownership is across, not
within plants. We thus assume that FDI only affects the Indonesian growth experience through
changing the distribution of potential entrants – a model fundamental that is robust to time
variation in the incentives to enter – and consider counterfactual growth paths in which we
only change the path of potential entrant distributions. Again, we want to separately quantify
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the effects of FDI and the relative effect that changes in observed FDI policy had on FDI. For
this, we separate the distribution of potential entrants at any point in time into the distribution
of potential foreign entrants and potential domestic entrants enforcing model-consistent entry
decisions. We then construct a counterfactual path of potential entrant distributions without
foreign entrants. To capture the effect of policy, we consider important regulatory changes in
FDI policy in 1987. Specifically, we exploit variation in potential foreign entrant distributions
right before and after the reform to measure the effect of policy and use the estimated effect to
construct a counterfactual path of potential foreign entrant distributions in the absence of the
FDI policy change (details in Appendix 1.C.3).

We find that FDI helped manufacturing growth, but did not play a transformative role. Specif-
ically, the entry of foreign-owned manufacturing plants explains 7.5% of the aggregate output
per worker gains due to manufacturing growth and we estimate that manufacturing output
and the manufacturing employment share would be 8% lower in 2015 in the absence of FDI.
The reason for this rather small effect is that given a high estimated supply of domestic poten-
tial entrants, the downward pressure on labor demand and wages due to the disappearance of
foreign entrants leads to an elastic response of domestic entry in general equilibrium that mit-
igates some of the negative effects of losing FDI. In contrast to the case of education policy, we
find that changes in FDI policy potentially explain most of the overall growth effects from FDI.
Specifically, changes in FDI policy potentially explain a four- to five-fold increase in potential
entry and these changes in FDI policy in turn explain 85% of the overall growth effects from
FDI.

1.5 Conclusion

This paper studied the drivers of growth miracles. Building on 40 years of plant-level man-
ufacturing panel data for Indonesia, we motivated a model in which rapid growth is driven
by a combination of transition growth and changes in fundamentals that are dominated by
worker and plant demographics. We showed how to tractably estimate this model on the ob-
served growth path using standard plant-level data and without assuming that the observed
economy is at a steady state at any point in time. We found that transition growth is key:
42% of the observed manufacturing output growth is simply explained by initial conditions in
1975 – dominated by young and small manufacturing plants – providing ample opportunities
for catch-up growth. Transition growth also does not become less important over time be-
cause important demographic changes in the economy induce further potential for transition
growth.

Since our model and estimation framework maps directly to observed time-varying aggre-
gate growth and its micro-level drivers of endogenous changes in the distribution of plants,
it is particularly suited to study the dynamic growth effects of observed policy. This link is
important not only to better validate macroeconomic models of growth, but also to study the
aggregate growth and general equilibrium effects of policy – effects that are rarely identified in
micro-empirical policy evaluations. In this paper, we only started looking at this by showing
how to use the estimated model to evaluate the dynamic growth effects of two important In-
donesian policies: education reform and changes in FDI policy. Based on our results, a somber
conclusion – partly resonating related work on the Indian growth miracle (Bollard, Klenow,
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and Sharma 2013) – is that observed policy mattered less for growth than we might think.
Instead, we find that Indonesian growth was mostly driven by structural forces related to de-
mographics. This does not mean that policy necessarily plays no role. In fact, in Appendix
1.C.4 we consider two sets of reduced-form policies – a reduction in (convex) labor adjustment
frictions and an increase in annual technology growth – that both would have doubled Indone-
sian manufacturing output by 2015, an even more remarkable manufacturing miracle closer to
experiences in countries such as China and Malaysia. Future research should further unpack
what drives changes in adjustment costs, technology growth or the pool of potential entering
plants and link these closer to policy.
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Appendices

1.A Data and Empirical Evidence

1.A.1 Data cleaning details

In the following subsection, we describe in detail the data cleaning steps we take to ensure
that the data is consistent over time and that results are not driven by different forms of mea-
surement error. The main data cleaning steps relate to cleaning plant-level labor (wage bill and
workers) and output (value added) over time. We further discuss how we deal with “dynamic”
outliers (e.g. unrealistic within-plant jumps in value added or the wage bill) and observations
with extreme labor shares that pose numerous problems for the estimation and computation
of the model. Besides these mentioned cleaning steps, we also drop a few clear outliers, such
as when the plant ID is misreported or missing or when magnitudes of multiple reported vari-
ables are impossible. (Give details on final cleaning: How does raw data differ from cleaned
data). At last, we report details on how we clean the capital series, industry codes and measure
plant entry and exit.

Cleaning labor and the labor wage bill

The manufacturing census consistently reports a plant’s total number of workers (including
paid and unpaid) as well as separately the number of paid versus unpaid workers and the
number of production and non-production (including managerial) workers. The main clean-
ing step we apply to ensure consistency over time is to drop all plants with less than 20 total
workers (which is enforced by BPS starting in 1990, but not before), drop plants that report zero
paid workers or that report more paid workers than total workers. This step drops slightly less
than 2% of plant-year observations with dropped observations concentrated before 1990. We
also identify a bunching at 99 workers in the years 2013-2015 (roughly 3-4% of plants), which
we interpret as true bunching driven by actual policy changes and thus do not correct.22

For the structural model, we build on a plant’s reported total wage bill. This variable is the sum
of the total wage bill for other workers and for production workers. In principle, it includes
all payments to labor, including in-kind transfers, overtime pay, bonuses and social contri-
butions (e.g. pension and accident allowances). Since the survey asks about current workers
and doesn’t separately ask about severance pay, we treat the reported wage bill as excluding
severance pay.

22For example, Indonesia introduced an occupational safety and health regulation in 2012 that was targeted
at manufacturing firms and mandates any workplace with more than 100 workers to implement additional work
safety measures.
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We take three main cleaning steps for the reported wage bill. First, we correct systematic mis-
reporting for the year 2011. Looking at the evolution of the distribution of the total wage bill
across years, we find that 2011 is the only clear outlier with the only bimodal wage distribution
across all years. In 2011, the bottom 20% of observations show exactly the same per worker
wage at an unrealistically low level that is below the bottom 1% of observations in 2010 and
2012 and roughly 50 times lower than the average minimum wage in 2011. Given that these
are well-defined misentries, the remainder of the distribution is well-behaved and we observe
most plants before and after 2011, we opt for imputing misentries using within-plant averages
across 2010 to 2012, enforcing linear growth for 2011.

Second, we correct for misreporting in the wages for non-production workers. Non-production
workers account for roughly 16.5% of overall employment in our data. However, 17% of
plant-year observations reportedly employ zero non-production workers. This also means
that plants may not always report all managerial workers, which is likely if the managerial
staff partly owns the establishment (and is thus not formally employed). To the extent that all
payments to managerial workers should be counted as labor costs, the Indonesian data may
significantly underestimate labor costs. We cannot correct for this form of underreporting.
However, we can correct for the following: About 10% more plant-year observations report
zero wage payments to non-production workers than plant-year observations reporting zero
non-production workers. That is, there are plants that report employing non-production work-
ers, but paying them no wages. This could be in part due to some plants reporting managerial
staff who receive remuneration other than wages or due to plants simply not reporting non-
production worker wages. In any case, we think it is better to impute wages here, using plants’
reported wages for production workers and the average year-specific pay gap across produc-
tion and non-production workers for plants that report both wages. We find that wage premia
for non-production workers were around 90% in 1975 and declined to around 20% in 2015. In
the end, the overall importance of this correction is small, because the correction only applies
to a small number of observations.

In the third and last cleaning step, we correct the total reported wage bill across periods where
the exact questions and components of the total wage bill changed. While plants were asked
consistently to report total payments including cash and in-kind wages, pensions and other
social contributions between 1975-1995, survey questions changed most notably between 2001-
2003, 2004-2010 and 2011-2015. Looking at changes in the distribution of reported total wage
bills, the 2004-2010 period appears to be the most problematic period in which total wages are
systematically underreported vis-a-vis the other periods.

We correct for changes in the measurement of the total wage bill over the period 2004-2010
by exploiting within-plant changes in reported wage bills across changes in the measurement
period (from 2003 to 2004 and from 2010 to 2011) and further utilizing information across
different types of workers and the reporting of the number of workers by type. Plants i re-
port xjit, the total reported wage bill for worker type j in period t. Specifically, we assume
that: xjitm = wth

j
itϵ

j
itτ

j
m, where wt is the wage (in line with our model), hjit are plant-worker-

type-specific efficiency units of labor, ϵjit captures idiosyncratic measurement error and τ jm is
systematic underreporting that is constant within a worker-type and within the measurement
period m where the same questions to elicit the worker-type-specific wage bill are asked. We
assume that τ jm ∈ (0, 1] for the period 2004-2010 and unity otherwise.
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Our approach separately identifies wages from the measurement error τ jm across time and thus
allows to correct for an important part of measurement error that leads to the underestimation
of the total wage bill and a time inconsistent measure of the wage bill. For separate identifica-
tion, we assume that over two consecutive periods, plants use the same average human capital

within types of worker: hj
it

ljit
=

hj
it+1

ljit+1

= αj
i . This allows some plants to specialize on high pro-

ductive production workers or other plants to specialize on low productive managerial staff,
but restricts changes in the average human capital within plant-worker-types. As long as the
plant-specific number of workers by type are reported either without measurement error or
with constant plant-worker-type measurement error, the assumption allows to identify:

Ei

xj
i,t+1,m

lji,t+1,m

xj
i,t,m

lji,t,m

≡ Ei

x̃ji,t+1,m

x̃ji,t,m
=
wt+1

wt
Ei

ϵjit+1

ϵjit

Within measurement periods m, one can show that under realistic magnitudes for the mea-
surement error, the following holds:23

Ei

x̃ji,t+1,m

x̃ji,t,m
≈ wt+1

wt

Across measurement periods, separate identification of the change in measurement and the
wage is impossible without further assumptions. To see this, write:
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where we have made use of the same approximation as above. Even then, changes in the
measurement error across measurement periods cannot be separately identified from wage
changes. To solve this issue, we interpolate wages from wage growth in the previous period
and the next period (for which measurement does not change), assuming that wages grow
smoothly over time.

In our case, we set τ jm = 1 for all measurement periods except the period 2004-2011. To identify
τ jm′ for 2004-2011, we are now actually over-identified, because we can identify the measure-
ment error from variation between 2003-2004 or from 2010-2011. We choose to use 2003-2004
because 2010-2011 featured a change in the minimum wage in Indonesia, which partly ex-
plains a large increase in plants’ total wage bills and we do not know how to separate this
change from a change in the measurement. Following this approach, we find that τ jm′ ≈ 0.94,
similar when restricting to production workers only or when looking at all workers. We en-

23Specifically, a first-order Taylor series approximation around the mean of the measurement errors
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. With a second-order Taylor series approximation, we get: Ei
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]
. Plugging in realistic measurement error, the 2nd-order correction is very

small. For example, if measurement error within plants is positively correlated (which is the likely case), then the
two correction terms go in opposite directions. Furthermore, both the covariance term and the variance term are
close to zero for reasonable magnitudes of measurement error.
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force the production worker correction across all plants for the measurement period 2004-2011
(which means that their wage bills get upward corrected by 1/τ jm′ , a correction of roughly 6%).

Cleaning output / value-added

Throughout the paper, we use a consistent definition of value-added output. This definition
coincides with how the Indonesian statistical agency (BPS) constructed value-added output
for some, but not all years. Specifically,

Value-addedit ≡ Gross incomeit − Intermediatesit

where Gross incomeit ≡ Gross salesit+electricity salesit+revenue from industrial servicesit+
other incomeit +∆value of semi-finished productsit and Intermediatesit ≡ Raw materialsit +
Total fuel/electricity expendituresit + Other expensesit. All inputs in the accounting identi-
ties are reported in their current values of Rupiah, which we deflate to 2010 constant Rupiah
based on the aggregate CPI. We start by dropping observations with missing or negative gross
income, which are less than 0.5% of observations.

Next, we construct a time-consistent measure of intermediates. The main issue is that inter-
mediates are likely underreported since the survey only asks for specific categories of expen-
ditures and intermediate expenditures have likely become more complex over time, leading
plants to underreport parts of their expenditures. This leads to an overestimate of value-added
output and an underestimate of capital and labor cost shares at the plant-level. We correct in-
termediate expenditures in two steps.

In the first step, we look at one main expenditure category of intermediate inputs for which
we know that time inconsistency is an issue. Specifically, Other expensesit are reported in-
consistently over time because not all components of other expenses are enumerated in every
year. In the following, we describe the components of Other expensesit and how we impute
them consistently across plants over time. In the years with the most detailed survey questions,
Other expensesit (Xit in short) are the sum of three components (indexed by c): (1) expenses for
other goods (consisting of packaging, spare parts and stationary), (2) manufacturing services,
repair and maintenance, and (3) remaining other expenses (with detailed subcomponents for
some years). We improve the measure of intermediate expenditures by imputing these three
subcomponents in cases where they are missing. Similar to the components of the labor wage
bill, we deal with underreporting of other expenses by exploiting within-plant differences in
reporting around years with changes in survey questions. We separately impute missing frac-
tions of each of the three components of other expenses, using further information on subcate-
gories j within components c, bringing all series to the most complete level of reporting in the
years 2006 and 1996/1997.

Specifically, we assume that ∀c, j : Xicjt = αicjYit. That is, any other expense category (or
subcategory) is a plant-subcategory-specific fraction of gross income Yit. Since expenditures
for specific subcategories are systematically missing in some years, but gross income Yit is
reported for all years, we impute complete missing subcategory expenditures as follows: For
plants that we observe across different measurement periods, we impute their expenditure
shares from average within-plant expenditure shares around the time of missing. For example,
expenses for other goods are missing between 1998 and 2005, which we impute using the
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plant average of plant-specific expenditure shares in 1997 and 2006 together with plant-year-
specific gross income Yit. This ensures within-plant consistency and allows for plant-category-
year-specific variation in expenditures. For plants for which we do not observe expenditures
in other years, we use the aggregate category-specific expenditure share around the time of
missing.

On top of this, we correct reported expenditures for the remaining other expenditures for the
period 1975-1984 in which the reported series is clearly underreported in comparison to post
1985. For this correction, we again proceed separately for plants that we observe across mea-
surement periods and for plants that we do not, using either the average within-plant differ-
ence in reported ratios or the ratio of aggregate expenditure shares across the two measurement
periods as correction factors.

Overall, this first step of cleaning intermediate inputs ensures more time consistency, but does
not have a sizable effect on overall intermediate expenditures. In the second step of correcting
intermediate expenditures, we deal with the sizable remaining decline in the intermediate ex-
penditure share across plants over time. For example, the aggregate intermediate expenditure
share declines by more than 10 percentage points from roughly 0.65 in 1980 to 0.525 in 2015
(mostly driven by a decline in the raw material input share). We expect that a major part of
this decline is in fact measurement error. One simple reason could be that plants use more
processed intermediate inputs, which they do not fully report as “raw materials”. To distin-
guish this driver from industrial composition effects (e.g. industries relying on intermediate
inputs declining in relative importance over time), we construct the following correction: We
regress log(ϕijt/(1 − ϕijt)) = αj + αt + ϵijt where ϕijt is the intermediate expenditure share
of plant i in 5-digit industry j at time t. We use the log odds ratio to ensure that any cor-
rection we implement gives expenditure shares that are bounded between zero and one. αj

and αt capture industry and time fixed effects. We interpret αt as our time-varying bias term,
using α1975 as the normalization factor (for which the bias is zero). Controlling for industry
fixed effects ensures that the bias terms do not capture variation in intermediate expenditure
shares from changes in the industrial composition. Corrected intermediate input shares are
then given by ϕ̃ijt = exp(αj+α1975+ ϵijt)/(1+exp(αj+α1975+ ϵijt)). The correction maintains
plant-level variation in intermediate expenditure shares and delivers both within-plant and
aggregate time consistency. To ensure that the regression is well-specified, we initially drop
observations with non-positive intermediate inputs or value added as well as observations
with missing value added. This drops less than 2% of observations. After the correction, we
recompute intermediate expenditures and value added.

Identifying problematic outliers: jumps and extreme labor shares

The last important cleaning step we take, is to identify problematic outliers that are likely
misentries and would have an outsized role on the model estimation and inference.

We start with “dynamic” outliers by which we refer observations that are outliers within the
time series of an individual plant. We treat a plant-year observation as a dynamic outlier if
the total wage bill or value added output series (Xit in the following) of an individual plant
sees a sizable one-time jump after which it reverts directly back. We consider two different
measures: the year-to-year within-plant change Xit

Xit−1
and the year-to-year within-plant quan-

tile difference qt(Xit) − qt−1(Xit−1). For both measures, we first identify a potential outlier
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if any of the two measures is below the 10th or above the 90th within-year percentile for the
respective measure. For example, we classify the following observation a potential outlier: Be-
tween 1993 and 1994, a plant’s quantile of value added output changed by more than the 90th
percentile of this year’s distribution of value added output quantile changes. We classify any
potential outlier as an actual outlier only if the following year is also identified as a potential
outlier whose change goes in the opposite direction.24 This ensures to identify jumps, while the
initial and final level do not need to coincide, allowing for plant-, time- and variable-specific
drifts. Big one time changes are explicitly not counted as outliers, treating them as true shocks.
We drop any dynamic outlier that we detect through this procedure. Note that this procedure
also identifies observations that change back and forth multiple times in a row as outliers as
long as their changes are very large. In total, this procedure drops almost 10% of plant-year
observations and roughly 10% of total reported value added.

The second and last cleaning step we take is to drop observations with extreme labor shares.
These are observations with reported labor shares below 5% and above 500% (roughly differ-
ing from the median labor share of 50% by a factor of 10). Extreme labor shares are likely a
combination of overreported value added and underreported wage bills and these observa-
tions have a sizable impact on aggregates. They make up roughly 3% of observations, but
account for 41% of total reported value added. While we think that many of these plant-year
observations with large value added are correctly classified as being “granular” in their im-
portance for output (e.g. many of these plants consistently report being large over time), their
exact value added output and wage bills are likely mismeasured.

Cleaning capital

For cleaning plants’ self-reported capital stock, we draw on the cleaning steps in Cali, Le
Moglie, and Presidente (2021), which is the most thorough attempt at cleaning the Indonesian
manufacturing plant capital series that we are aware of. The cleaning steps draw in part on
the perpetual inventory method (PIM). Details can be found in Cali, Le Moglie, and Presidente
(2021).

Cleaning industry codes

Industry classifications changed over time, starting with ISIC 2 in 1975 and moving to ISIC
3, ISIC 3.1 and ISIC 4 by the end of our data period. For harmonization, we start by fix-
ing a plant’s first reported 5-digit industry (the most disaggregated level reported). While
plants may reasonably change industries over time, we opt for fixing industries to have a
time-consistent plant-level measure of industry. We then build backward correspondences at
the 2-, 3-, 4- and 5-digit industries respectively using within-plant changes in industry classi-
fications across changes in classification systems (that is, correspondences that map from later
year classifications to earlier ones). For plants that enter later, we enforce these within-plant
correspondences. In the case of one-to-many mappings (e.g. the same industry code in ISIC
3.1 maps to different codes in ISIC 3), we enforce the most common one. Note that this only
matters for plants that are not observed previously. In the case of no linking (e.g. a plant enters
in ISIC 4 with a code that has no observed backward linkage), we check codes manually and
use official crosswalks. In the cases where we think that industries are truly “new”, we simply

24We do this separately by measure so the identification of an outlier is based on within-measure changes only.
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create a new industry code. In the end, we are left with 140 unique 5-digit industry codes, 120
of which are initial ISIC 2 codes and 20 codes are new industries. At the 2-digit level, we have
9 different industries.

Plant entry and exit

In principle, classifying entry and exit should be straightforward: whenever a plant with a
new panel identifier enters our panel, we would record this as plant entry and whenever that
plant reports in t but does not report in t+1, we would record the plant as having exited at the
end of t. In practice, this classification would inflate plant entry and exit because occasional
non-reporting is common. This is because of actual non-reporting and – as described above
– because we explicitly drop plant-year observations with misreported entries. We thus only
classify a plant as having exited if we do not observe reporting by the plant at any future time
period. Similarly for entry, we only count the plant as entering if it is the first time the plant
identifier has entered the panel. This difference is quantitatively important: the unconditional
exit rate drops almost by half from around 14% to 7.9% if we follow our classification. As we
discuss in the main text, 7.9% is close to other exit rates reported for India, Mexico and the US
(e.g. Hsieh & Klenow 2014).

Where and how does this matter and could this new classification bias results differentially
over time? Throughout the analyses, we mostly draw on within-plant changes that are robust
to compositional changes due to entry and exit. In the structural model, we explicitly continue
modeling plants that are non-reporting but non-exiting, correcting for (some forms of) differ-
ential non-reporting over the state space. Bias does arise from non-reporting or misreporting
that is correlated with the state space for certain estimation steps. For example, estimating con-
ditional exit probabilities clearly suffers from bias if measured exit probabilities are biased over
the state space. Two potential issues may be particularly important in our case: non-reporting
due to the cutoff of 20 workers and that our measure of exit may inflate exit towards the end
of our data because we cannot distinguish permanent exit from temporary non-reporting. We
think that both issues likely introduce biases that are small in magnitude.

As for the cutoff of 20 workers, the issue would be particularly problematic if plants regularly
moved back and forth over the threshold or if plants with more than 20 workers moved per-
manently below the threshold, which we would wrongly classify as plant exit. We do not think
that these are important issues in the Indonesian data. For example, few plants shrink and as
we show in the main text, plants with 20 workers become relatively less important vis-a-vis
larger plants over time. Also, given that pre-1990, plants often continue reporting even if they
move below 20 workers, we find that movements around the threshold are rare. As for the
classification of exit towards the end of the sample, we note that non-reporting actually seems
to decline over time and 2015 (the last year of the data) is a census year in which enumeration
is most complete.

1.A.2 Further main descriptives

Figure A.1 reports the evolution of the share of employment and value-added output that is
captured by the Indonesian manufacturing plant census (1975-2015) in comparison to aggre-
gate manufacturing value-added output and employment as reported in the GGDC 10-sector
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Figure A.1: Representativeness of manufacturing panel over time

Notes: Evolution of the employment and value-added output share captured by the Indonesian manufacturing
plant census (1975-2015) in comparison to aggregate manufacturing value-added output and employment as
reported in the GGDC 10-sector database (1975-2012) and the Economic Transformation Database (1990-2018).
Straight lines report (unweighted) time averages. The black dotted line highlights the Asian Financial Crisis.

database (1975-2012) and the Economic Transformation Database (1990-2018).25 The series
tend to increase over time, which captures the fact that medium- to large-size manufactur-
ing plants become more important over time. However, there is important variation in the
shares over time that is not well-captured by a simple secular increase in the importance of
medium- to large-sized manufacturing plants. In the model, we allow for the time-varying
importance of the rest-of-the-economy, and differentially so for output and employment, in-
cluding the part of manufacturing that our data misses. Note that for output, the increase
is much stronger if we do not clean the value-added series, because a few plant entries can
have an outsized effect on total value-added (e.g. for only a minimally cleaned output series,
we found that the output share of our manufacturing data can increase to up to 80% by 2015,
entirely driven by a few plant entries).

In the main text, we also report that our manufacturing panel misses 99% of manufacturing
plants in Indonesia. This is based on information on a random five percent sample of all manu-
facturing establishments from the Indonesian Economic Census in 2006 reported in Hsieh and
Olken (2014). We also verify that our micro-data is consistent with capturing all manufacturing
plants with more than 20 workers. For example, based on the 2006 census sample (as reported
in Hsieh and Olken (2014)), manufacturing plants with more than 50 workers should capture
34% of total manufacturing employment, while this figure is 32% based on employment in
our micro-data (29.5% after cleaning) and taking the aggregate sectoral employment from the
GGDC 10-sector database as denominator. Given that the manufacturing plant panel includes
new plants based on the Economic Census, coverage is more complete after Economic Census
years.

25We merge the latter two series consistently over time by enforcing the more recent vintage and aligning all
series before 1990 to be consistent with the evolution after 1990. Specifically, for each variable, we take the ratio of
the GGDC10 and ETD series in 1990 to be the amount that the 1990 GGDC series needs to be adjusted by. We then
similarly correct each year from 1975 to 1990 by a correction factor that equals unity in 1975 (no correction in 1975),
is equal to the full correction in 1990 and is taken from an equal-spaced, smoothed series in the years between.
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Figure A.2: Evolution of aggregate and sectoral employment and output (in logs)

Notes: (Economy-wide) Total and GGDC are based on joining the GGDC 10-sector Database (1975-2012) and the
Economic Transformation Database (1990-2018). Panel refers to the Indonesian manufacturing plant census (1975-
2015, 20+ workers). All series are normalized by their respective value in the first year. (A) and (B) use value-added
output.

Next, Figure A.2 reports the evolution of aggregates in the Indonesian economy, showing the
series in logs to better visualize how growth rates changed over time.

For completeness, Figure A.3 reports the full year-to-year evolution of employment shares for
different plant sizes.

We further report estimated Pareto tail coefficients for the manufacturing data in Figure A.4.
We follow Chen (2022) in constructing two simple, but alternative measures of the Pareto tail.
Let F (x, t) be the CDF of the underlying distribution of plant employment, and f the density
function. Then F̃ (x, t) ≡ 1−F (x, t) denotes the fraction of plants with size greater than x, and
F̃ emp(x, t) ≡

∫∞
x ydF (y, t) the total employment in plants with size greater than x. In addition,

let TL be the employment size threshold for large plants and TS for small plants. Assuming
that F (x, t) follows a Pareto distribution with shape parameter kt, we have:

kt = 1− log
F̃ emp(TL)

F̃ emp(TS)
/log

TL
TS

Alternatively,

kt = −log F̃ (TL)
F̃ (TS)

/log
TL
TS

In both cases, Pareto tails can be computed in the absence of knowing the employment share or
fraction of plants below 20 workers, because these shares cancel out. Panel A reports estimated
Pareto coefficients for different thresholds TL for the employment share measure, while Panel
B reports the estimated Pareto coefficients for the same thresholds TL but for the number of
plants instead.
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Figure A.3: Evolution of employment shares in large Indonesian manufacturing plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers.

Figure A.4: Evolution of Pareto tail coefficients

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers.

In accordance with the main text, we estimate Pareto tails by decade in 1975, 1985, 1995, 2005
and 2015. The overall trend in Pareto tails is consistent for different measures and different
thresholds TL: the tail of the employment distribution grows markedly thicker over time.
However, there are important differences both across measures and across different thresholds,
which is not in line with a common Pareto distribution in the cross-section. The quantitative
implications are also very different for the two different measures, because Pareto tails below
1 imply that not even the mean of the distribution is defined.

Figure A.5 reports changes in the plant age distribution over time. Average plant age increased
by roughly 40% between 1975 and 2006. While the 1975 plant distribution does feature very old
plants, by far most plants are very young. In contrast, 30 years later, the plant age distribution
is far more equally distributed, featuring more medium-old plants and relatively fewer very
young plants.

1.A.3 Additional results for iterating on initial distribution

In this subsection, we provide further results on the reduced-form exercise of iterating on the
discretized initial plant distribution. We start out by showing that 1975 and 1976 are good
starting years, and if anything, give conservative estimates. We then show that results are very
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Figure A.5: Evolution of the age distribution across plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Only showing data for
years 1975, 1985, 1995,2006. The last year is 2006, because 2006 is the last year where plant age is separately asked
in the survey. After 2006, we only observe plant age for surviving plants, biasing estimates of the cross-sectional
age distribution.

similar when accounting for entry and exit.

Results are similar when varying transition matrices and averaging transition matrices over
multiple years. From an historical point of view, taking 1975 as the starting year and 1975
and 1976 as the initial years from which we construct the reduced-form transition matrix, is
conservative, because (1) the two years fall in between the two periods of growth accelerations
identified by Hausmann, Pritchett, and Rodrik (2005) for Indonesia (which are dated to 1967-
1974 and 1987-1994 respectively), and (2) they are not affected by any notable labor or financial
market reforms and predate the major tax reform of 1976 (see: Hill 2000). This is not to say that
the 1970s were economically without important events. Oil prices rose dramatically in 1973
and inflation became a major macroeconomic issue that was followed by interest rate hikes
and ceilings on commercial bank credit in 1974 (Hill 2000, 294). There were also important
export-promoting trade policy reforms throughout the 1970s, but during a time in which In-
donesia was still a very closed economy. Based on World Bank national accounts data, exports
made up around 22% of GDP in 1975 whose share actually slightly decreased from 1975 to
1976, alleviating the concern that the growth between 1975 and 1976 is purely driven by trade
reforms.

Figure A.6 shows that taking transition matrices for any other starting year (e.g. 1985 as start-
ing year for 1985-1986 transitions) gives, if anything, stronger results than the ones reported
for 1975 and 1976. Most years see much more growth in the average plant size and the employ-
ment share of large plants. Importantly, all years show an eventual increase in the employment
share of large plants, giving credence to the idea of a tail that slowly fills up. Furthermore, any
other starting year in the 1970s would have given much stronger results. E.g. taking transi-
tions between 1976 and 1977 would have explained 67% of the average size increase and 96%
of the employment share increase over time. We also considered averaging transition matrices
across multiple years and obtained very similar results.

Next, we considered two variations on the exercise to account for entry and exit. To begin with,
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Figure A.6: Reduced-form transition dynamics from initial conditions in 1975 and all year-to-
year transition matrices

Notes: Reduced-form transition dynamics implied by initial plant size distribution in 1975, but taking transition
matrices from each year-to-year pair in the data.

note that entry and exit is potentially very important, especially if entering plants differ from
exiting plants. Of the roughly 6,800 plants with more than 20 workers operating in 1975, less
than 12% were still operating in 2015. On the other hand, as shown previously, the number
of active plants increased by a factor of 4 between 1975 and 2015. This means that the vast
majority of active plants in 2015 did either not exist or was not captured in the 1975 census. To
capture the role of entry and exit, we amend the previous exercise by including a state-0 which
captures inactive plants or potential entrants. This means that both the initial distribution is
defined over an additional state-0 and the transition matrix will feature transitions into (exit)
and out of state-0 (entry). To construct the new transition matrix, we can use observed entry
and exit flows. Since transition matrix entries are computed as the share of flows from bin x in
period t into any other bin in period t + 1, we can readily compute transitions from an active
state to an exit state. However, we cannot directly compute entries from inactivity, because
the baseline is fundamentally undetermined. We do not know how many inactive or potential
plants there are. This means we can also not directly compute the new initial distribution
that includes the measure of plants in state-0. Since both the transition matrix and the initial
distribution depend on the number of inactive plants, this number cannot be identified from
observables in the first two periods alone. In theory, we can pin down the initial number of
inactive plants by enforcing that the transition matrix stays constant over time and by feeding
in another moment, the change in the number of plants between 1976 and 1977. However,
the initial periods saw an initial decrease in the number of plants between 1975-1976 and a
subsequent increase between 1976-1977. To match this pattern, we would have to enforce a
negative transition matrix entry for staying inactive.

To avoid this, while giving almost indistinguishable results, we instead assume that the share
of inactive plants that stay inactive is 0. This identifies the transition matrix and we then con-
sider two additional exercises where we keep this transition matrix fixed. In the first version of
the exercise with entry and exit, we simply iterate on the initial distribution and the transition
matrix. This keeps the total number of plants (inactive + active) constant, while introducing
interesting entry and exit dynamics that directly affect the evolution of the plant size distri-
bution over time. Results for this exercise are given by the lines “Entry + Exit” in Figure A.7.
While the long-run results are almost unchanged to the previous results, introducing entry and
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Figure A.7: Reduced-form transition exercise with entry and exit

Notes:

exit does speed up transition dynamics considerably, providing a much better out-of-sample
fit for the early transition period. This is driven by observed exiting plants being smaller and
less productive than observed new entrants in 1976. With a positive share of inactive plants
staying inactive each period would slow these predicted transition dynamics down.

In the second version of the exercise with entry and exit, we additionally vary the number
of plants that enter each period. Specifically, we exactly match the increase in the number
of active plants over time as shown in Figure 1.2, while taking information on new entrants
and exits only from 1975 and 1976. In contrast to the previous exercise with entry and exit,
here we do take limited information on future plant entry and thus it does not lend as well to
predicting future changes in the plant size distribution. However, this exercise gives a more
complete picture of the importance of entry and exit observed in the data. Results are given by
the lines denoted “Entry + Exit Growth” in Figure A.7. The series again behave very similarly
as before, but we can more clearly see that important year-to-year fluctuations in the real data
series are driven by entry shocks. For example, the inclusion of many more plants in 1985 had
important medium- to longer-run effects on the evolution of the size distribution.

1.A.4 Further details on exit behavior

Here, we provide evidence that exit behavior only varies little with plant productivity and
does not clearly respond to aggregate shocks. Figure A.8 Panel A shows that exit rates vary
quite strongly over time, but are not straightforwardly affected by measurable aggregate eco-
nomic shocks. For example, exit rates actually decreased during the Asian Financial Crisis in
1998 & 1999. To focus only on within-industry variation, we residualize exit rates by 5-digit
industry fixed effects here. Figure A.8 Panel B shows productivity distributions of exiting
and surviving plants using value added per worker as a simple measure of (labor) produc-
tivity and only using within-industry-time variation by residualizing the measure by detailed
5-digit industry-year fixed effects. Surviving plants are more productive on average than exit-
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Figure A.8: Main plant exit patterns

Notes: Panel A: Residualized by 5-digit industry fixed effects. Standard errors are two-way clustered by industry
and year. Results show 95% confidence bands and blue line gives unconditional average. Panel B: Labor productiv-
ity is measured as value added per worker, residualized by 5-digit industry-year fixed effects. Vertical lines report
25th, 50th, 75th, 90th and 95th percentiles respectively.

ing plants, but given strong overlap in the two distributions, most plants do not exit because
of their productivity. A dynamic implication of this difference is that much of plant exit is not
driven by productivity so that it takes time for unproductive plants to leave the economy and
productivity improvements from selective exit take time to materialize.

1.A.5 Details and robustness for production function estimation

We start out by proving formal identification of the production function for the different cases
(static vs. dynamic capital, time variation in production functions, industry heterogeneity). We
then discuss our estimation strategy and provide detailed estimation results for the case with
full flexibility on the time variation in production functions but without industry heterogene-
ity. In the last part, we then consider the case of industry heterogeneity.

Identification of production function

We have the following setup. Log output by firm i at time t is given by

yit = xit + f(hit, kit)

where xit is productivity, hit is labor input, kit is capital and the price of the homogeneous
production good is normalized to unity throughout. We leave f() unspecified here to make
clear that the identification proof is non-parametric. In the estimation and model, we assume
that f() is Cobb-Douglas. We also suppress industry variation here, but identification extends
naturally to the case with industry variation in production functions. We start with the more
general case where both capital and labor are chosen dynamically and then discuss the simpler
case when capital is statically chosen.

Following the literature, we assume that in the case of dynamic capital input choices, capital
is pre-determined. The input choices can then be written as non-parametric functions of the
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relevant state-space:

hit = fh(hit−1, kit, xit,Ωt)

kit = fk(kit−1, hit−1, xit−1,Ωt−1)

where we have specified in which sense capital is pre-determined. For notational simplic-
ity, we drop the dependence on Ωt throughout, because identification arguments are cross-
sectional. At last, productivity follows a general first-order Markov process with

xit = fx(xit−1, uit) with uit|xit−1 ∼ U(0, 1)

where uit is an innovation. This representation follows the Skorohod representation of random
variables and is without loss of generality (see Demirer 2022). Output, labor and capital are
strictly monotonic in productivity, which imposes weak regularity conditions on the produc-
tivity process xit, such that each can be inverted for productivity:

∂y

∂x
> 0 =⇒ xit = f−1

y (h, k, y,Ωt) (1.15)

∂h

∂x
> 0 =⇒ xit = f−1

h (h−1, h, k,Ωt) (1.16)

∂k

∂x
> 0 =⇒ xit−1 = f−1

k (k, k−1, h−1,Ωt−1) (1.17)

We now adapt the identification proof by Demirer (2020):

h = fh(h−1, k, fx(x−1, u)) = fh(h−1, k, fx(f
−1
y (h−1, k−1, y−1), u)) = f̃h(h−1, k, k−1, y−1, u)

u = Fh|h−1,k,k−1,y−1
(h|h−1, k, k−1, y−1)

Intuitively, two firms with the same current capital, previous labor, previous capital and pre-
vious output, but different today’s labor differ only in innovation to productivity. Using the
identified u, we can then identify the production function using the control function fx(x−1, u)

for unobserved productivity x:

y = f(h, k) + fx(x−1, u) = f(h, k) + fx(f
−1
y (h−1, k−1, y−1), u)

A semi-parametric regression of y on the known function f(h, k) of observables and a non-
parametric term in observables/identified terms (h−1, k−1, y−1, u) identifies the output elastic-
ities of interest.

In the case where capital is chosen statically (e.g. via a frictionless rental market), the identi-
fication approach simplifies. Specifically, dependence on k drops out in the sense that input
choices are now given by:

hit = fh(hit−1, xit,Ωt)

kit = fk(hit−1, xit,Ωt) = fk(hit, xit,Ωt)
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Output and labor are strictly monotonic in productivity such that:

∂y

∂x
> 0 =⇒ xit = f−1

y (h, y,Ωt) (1.18)

∂h

∂x
> 0 =⇒ xit = f−1

h (h−1, h,Ωt) (1.19)

Identification is then given by:

h = fh(h−1, fx(x−1, u)) = fh(h−1, fx(f
−1
y (h−1, y−1), u)) = f̃h(h−1, y−1, u)

u = Fh|h−1,y−1
(h|h−1, y−1)

Now, without dependence on capital, two firms with the same previous labor and previous
output, but different today’s labor differ only in innovation to productivity. Using the identi-
fied u, we can then identify the production function using the control function fx(x−1, u) for
unobserved productivity x:

y = f(h, k) + fx(x−1, u) = f(h, k) + fx(f
−1
y (h−1, y−1), u)

A semi-parametric regression of y on the known function f(h, k) of observables and a non-
parametric term in observables/identified terms (h−1, y−1, u) identifies the output elasticities
of interest.

Production function estimation with time-variation but no industry variation

In the following, we report our production function estimation results. We start by showing
results based on the sample from 1990 until 2015, which includes data on plant-level capital.
We then discuss estimates from 1975-1990 and estimates with further industry heterogeneity.
Importantly, (1) the estimated elasticities for labor are not biased by excluding capital, and (2)
the estimated capital elasticities post-1990 are very low, meaning that any choice on how to
model capital has only very small effects on productivity estimates.

Figure A.9 reports estimated capital and labor elasticities. Panel A gives estimates based on as-
suming that capital is statically chosen, while Panel B allows capital to be dynamically chosen.
The estimates assume a common production function across manufacturing industries, but al-
low for fully flexible elasticities over time. Allowing for time-series variation is important, be-
cause policy functions are generally time-varying if the economic environment changes so that
pooling estimates across years without allowing input choices to vary over time is model in-
consistent. Elasticity estimates are remarkably stable and do not show a clear trend over time.
Estimates are also very similar whether one assumes static or dynamic capital input choices.
For example, the average estimated labor elasticity varies by less than 5% across the two differ-
ent estimators (from 0.726 to 0.694). Furthermore, the estimated labor elasticity is close to 2/3,
a common value in the literature. Note, however, that this is in a context where both the ag-
gregate labor share in manufacturing (around 0.25) and the median labor share (around 0.54)
are substantially below the estimated elasticities. Our model accounts for this systematic dif-
ference. Estimated capital elasticities are much lower than commonly estimated/used values
in the literature and we discuss this point further below.

Elasticity estimates for each year are based on the following estimation steps: In the first step,
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Figure A.9: Estimated capital and labor output elasticities for each year between 1990-2015

Notes: Panel A gives estimates based on a static choice of capital, Panel B gives estimates assuming capital is
dynamically chosen. The latter requires to drop year 1990 in the estimation, because the estimator requires previous
capital choices. Horizontal lines give average estimates over time. Grey dotted lines give 95 percent confidence
bands (note that standard errors are not yet corrected for the two-stage estimation).

we flexibly estimate the rank (taking the empirical cumulative distribution function) of labor
conditional on previous labor and previous output. From this estimate, we then back out
a monotonic transformation of the productivity innovation u as the difference between the
observed and estimated rank. In the second step, we then estimate a log-log regression in
capital and labor on output, but flexibly controlling for the different components of the control
function (the estimated u and previous labor, output and capital). The dynamic and static
capital estimators differ only in the variables that we condition on in each of the two estimation
steps. For both estimators and both estimation steps, we draw on generalized additive models
(GAMs) as a flexible and robust way to estimate semi-parametric models (Hastie 2017). We
obtain very similar results when choosing flexible polynomial regressions.

Given our estimation approach, why are capital elasticity estimates so low? We think the main
reason here is a standard attenuation bias in the capital elasticity estimates given substantial
measurement error in observed plant-level capital. Apart from the control function term, the
second step estimation is a standard linear regression in capital, so that any classical mea-
surement error in capital will attenuate the estimated capital elasticity. Why do we suspect
measurement error in the capital series? As reported in Cali, Le Moglie, and Presidente (2021),
one common issue in the reported plant-level capital series is misreporting in the units, which
exactly shows up as a log-additive measurement error. Apart from such unit misreporting,
capital – as is well known – is also more susceptible to misreporting because it is a stock that
not all plants necessarily keep track of (in contrast to cost flows such as the labor bill). Infer-
ring changes in the stock directly from reported investments and assumptions on capital-type-
specific depreciation rates (as is done in perpetual inventory methods and the capital series
based on Cali, Le Moglie, and Presidente (2021) that we draw on), can mitigate some of this
measurement error but unlikely all.

Besides attenuation bias from noisy capital reporting, the capital series likely also suffers from
more systematic biases that complicate their use. To show this, we consider the case where
capital is chosen statically in which case we can directly make use of plants’ first-order con-
ditions instead of estimating the capital elasticity from the output regression. This first-order
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Figure A.10: The effects of alternative estimates of capital elasticities

Notes: Left: Evolution of capital shares based on the capital series in Cali, Le Moglie, and Presidente (2021). For
better comparability, using also their real value added series which deflates output by sector-specific prices. To
construct capital shares, assume that rental rate is 14 percent (interest rate of 4 percent and depreciation of 10 per-
cent) and value added tax is 10 percent. Right: Estimated labor elasticities when assuming that capital is statically
chosen and its output elasticity is fixed at the median from Cali, Le Moglie, and Presidente (2021), which is 0.207.

approach does not generally suffer from attenuation bias because one can estimate capital elas-
ticities from average or median capital shares, which are robust to log-additive measurement
error. Specifically, the static capital input choice conditional on the assumed production struc-
ture implies the standard condition:

αjt =
(rt + δt)kit
(1− τy)ptyit

where αjt gives the potentially industry-time-specific capital elasticity, (rt + δ) gives the com-
petitive rental rate of capital, τy gives a value-added tax and ptyit gives plant revenue.26 Figure
A.10 (left) plots changes in median capital shares over time. Capital shares more than halved
between 1990 and 2015, which would also imply a halving of capital elasticities in the case
of static capital choices. This seems unlikely, among others because of global capital-biased
technological change, the advent of industrial robots and a running out of labor intensive in-
dustrialization in Indonesia. Also, in the case of adjustment frictions, one would have expected
an increase in the capital share as the economy is catching up, not a decline. More likely, we
think plants systematically underreport new capital investments and we might overestimate
depreciation of existing capital.27 Taking noisy capital estimates together with systematic mis-
reporting, it is hard to trust the Indonesian plant-level capital series. We thus choose to stick
with the low estimated capital elasticities for the baseline model and results, which implies that
observed capital variation has very small effects on plant output and labor decisions. Still, to
gauge how sensitive our estimates are to low capital elasticities, Figure A.10 (right) also reports
estimated labor elasticities in case where we enforce the much higher capital elasticity based
on the median capital share. We find that estimated labor elasticities are almost unchanged
when assuming such a higher capital elasticity.

Next, we consider production function estimation for the period 1975-1990 for which we lack
data on capital. We follow two different approaches to understand whether there have been

26If observed capital features log-additive measurement error (k̃it = kε), then, Ei
(rt+δt)k̃it
(1−τy)ptyit

= αjt.
27Of course, one may also explain a strong decline in estimated revenue elasticities by changes in markups.

However, the required magnitude of such markup changes also seems unrealistic. Through the lens of a standard
monopolistic competition model, the difference in estimated revenue elasticities would translate to a roughly 100
percentage point increase in the markup. That is, if a product is sold at 50% above marginal cost, it would now be
sold at 150% above marginal cost.
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Figure A.11: Estimated output elasticities of labor for each year between 1975-2015

Notes: Dynamic and static k report previously estimated labor elasticities. Only labor shows estimates based on
the assumption that the production function only features labor. Static k (FOC) assumes that the capital choice is
static and enforces the average estimated capital elasticity from the Dynamic k estimator (which nests the static k
estimator) from 1990-2015.

important changes in production functions over time. In the first approach, we simply as-
sume that the production function does not feature capital and estimate only labor elasticities
from 1975-2015, comparing this to the estimated labor elasticities estimated with capital data
from 1990-2015. In the second approach, we assume a static choice for capital and enforce
the estimated capital elasticities from before. As shown in Figure A.10, we find that for both
approaches estimated labor elasticities are very similar to estimates after 1990 and that they
are remarkably stable and do not show a clear trend over time. We interpret this as strong
evidence that production functions did not systematically change over time.

Production function estimation with industry variation

We now consider industry-level variation in production functions. (Show 2 results: 1. Test for
equality across industries. 2. Check how correlated productivity estimates are)

1.A.6 Details and robustness for aggregate technology estimates

In this section, we give a formal identification proof, estimation details for separating aggre-
gate technology from idiosyncratic productivity and a discussion of the drivers of technology
growth. To simplify the exposition, in the following we will denote the logarithm of a vector by
lower letter cases. Hence, in slight deviation from the exposition in the main paper, we assume
that productivity for plant i at time t is given by: Yit = Ztexp(sit). So that the log-additive form
is: yit = zt + sit(sit−1). The average of within-plant changes in log productivity is then:

1

NS
t,t−1

∑
i∈NS

t,t−1

∆yit = zt − zt−1︸ ︷︷ ︸
∆z

+
1

NS
t,t−1

∑
i∈NS

t,t−1

∆sit

︸ ︷︷ ︸
Avg mean reversion of survivors

Identification

Proposition 1 (Main identification result). Under the following four assumptions:
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1. (Common first-order stationary Markov process) s follows the same general first-order, sta-
tionary ergodic Markov process for all i & t.

2. (Selective exit). The decision to exit after period t can flexibly depend on observables and un-
observables Xit as well as productivity sit, but may not depend on future productivity sit+1.
Specifically,

P(exit) = f(Xit, sit, zt) with Pt(exit) ⊥⊥ si,t+1|si,t

3. (No complete exit over s) Pt(exit|sit) < 1 ∀s ∈ Supp(s)

4. (Connected support in s) For each period t, there exists at least a subset of the support of s
in that period which is fully contained in the support of all s in all future periods. Formally:
∀t,∃St ⊂ Supp(sit) for which St ⊂ ∪τ>tSupp(siτ ).

the path zt ∀t is identified given some normalization zτ for some τ ∈ [0, T ] and max t ≡ T → ∞.

Proof. To already convey the idea of a suitable estimator for the time path of zt, let us proof
Proposition 1 constructively. Identification proceeds sequentially in two fundamental steps. In
the first step, I show identification of the density of the stationary distribution of s, which
is identified for t → ∞. In the second step, the density of the stationary distribution is
used to identify the path of zt backwards by starting at some final time T . The density of
the stationary distribution is key because it can be used to construct weights under which a
weighted difference ∆yit exactly identifies ∆zt. Specifically, there exist weights ωs such that∑

i∈NS
T+1,T

ω(siT )(siT+1− siT ) = 0 (where
∑

i ωs(si) = 1). These weights recover the stationary

distribution of s. Denote by fSS(s) the density of the stationary distribution at s and by ft(s)
the density of the distribution of s at time t. Assuming that this distribution shares the support
of the stationary distribution, we have:

lim
N→∞

N∑
i∈NS

t+1,t

fSS(sit)

ft(sit)

(
log(sit+1)− log(sit)

)
= 0

The weights are thus defined by ωs(sit) ≡ fSS(sit)
ft(sit)

and are a function of the unknown den-
sity function of the stationary distribution of s. To identify the density fSS(s), start with the
distribution of plants at t0 over known yi0. The idea is to follow survivors (as they follow
the process for s), while replacing exiting plants with plants that stay in the panel that have
similar yit. More formally, denote the initial set of plants by N0 where each plant is given a
uniform weight ω̃i0 = 1

N0
. We are interested in updating N . For this, pass on the weight of

each surviving plant and redistribute the weight of each plant that exits to close plants around
them.28 This gives N1. Updating in this way allows to eventually pass on weight to plants that
have entered the economy, even if they have entered in an arbitrarily selective way. As t→ ∞,
surviving plants will eventually populate the entire support of s and this procedure gives a
synthetic sample N∞ with weights ω̃i∞(si∞) that directly identify the density fSS(s).

The second step of the proof takes the identified density fSS(s) and works backwards from
time T . Normalizing the final value zT , one can show that zT−1 solves a fixed point problem.

28As N → ∞ and the assumption that exiting probabilities are always strictly lower than one, there always
exists a plant that is arbitrarily close to an exiting plant.
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Specifically:∑
i∈NS

T,T−1

ωŝT−1(zT−1)(yiT−yiT−1) = zT−zT−1+
∑

i∈NS
T,T−1

ωŝT−1(zT−1)(siT−ŝiT−1(zT−1)) = zT−zT−1

where the last equality holds only if the guess zT−1 is correct. It thus gives a nonlinear equa-
tion in zT−1 (since the weights and the right-hand side depend on zT−1). One can iterate on
this procedure to identify the path of zt backwards. At any point in time t < T − 1, one
can also alternatively guess zT−1 and instead of using weights at all, estimate the bias term∑

i∈NS
T,T−1

(siT − ŝiT−1(zT−1)) directly using future survivors with similar s. This alternative
relaxes the assumption of a common support with the stationary distribution and instead only
requires that we can build a sample with similar survivors – requiring a much weaker con-
nected support.

Estimation

Estimation proceeds along the lines of the constructive identification proof. In the first step,
one sequentially builds the synthetic panel with weights ωs(sit) (which sum to 1 in each year).
In principle, one can use any standard matching estimator for passing on the weight for ex-
iting plants. We find that a Kernel matching estimator works well, because matching is only
based on one variable and the Kernel estimator distributes the weight widely across multiple
observations, reducing variance.29

One can then estimate fSS(s) using observed s in the last period T and constructed weights
ω̂s(siT ). Any standard density estimator such as a Kernel density estimator works here. To
reduce variance, one can also estimate fSS(s) on the last x periods (where x is at the discretion
of the researcher). In general, for any fixed T , the bias on the estimated weights is increasing
in the persistence of the process as well as in the distance of the initial distribution from the
stationary distribution. That is, for large T and low persistence, one can use more periods in the
end to estimate fSS(s).30 Once the density is estimated, one can then proceed by sequentially
estimating the path zt. For each period t and for each guess of zt, this means one has to estimate
ft(sit(ẑt)). Again, any standard density estimator works here. One can then construct the
weights according to: ωst(sit) ≡ fSS(sit)

ft(sit)
. Alternatively, one can choose not to use weights

and instead directly estimate the bias from mean reversion. In that case, one can again use any
kind of matching estimator to match plants in twith productivity s(ẑt) to future survivors with
similar s. The variance in the bias estimate reduces with the number of matched plants such
that one to many matches are recommended. As before, a Kernel-based matching estimator is
a natural choice here. In either the approach with weights or with an estimated bias term, one
then finds zt that solves the fixed point problem, requiring a standard root finder. We have not
formally proven uniqueness of the root, but in practice, we found no issue of a multiplicity
of roots. In principle, any (weighted) moment of within-plant changes in productivity that
preserves scalar multiplicity can be used for the estimation. In practice, we use (weighted)
median changes in productivity as the median is less susceptible to outliers. Results are similar
when taking the weighted average.

29Note that one can readily match based on further variables such as detailed industries to minimize the risk of
model misspecification.

30A formal treatment of optimally solving this trade-off is beyond the scope of this paper.
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Figure A.12: Evolution of key exporter statistics

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers and reported export
shares (out of total value-added).

The drivers of aggregate technology

We now discuss the potential drivers of the estimated aggregate technology growth path. First,
through the lens of standard endogeneous growth models such as Romer (1990), the increase in
technology growth after the year 2000 could be driven by overall human capital improvements
and a better integration into global markets. However, there seems to be no sharp change in
human capital improvements nor in the integration into global markets. For example, Figure
A.12 shows that the share of manufacturing output that is exported stays very stable around
20% and the fraction of plants that are exporting also remained flat since the mid 1980s.

Alternatively, the patterns may be in line with models of learning and imitation (e.g. Perla,
Tonetti, and Waugh 2021), whereby the initial entry of many new and relatively unproductive
plants lowered productivity growth and the subsequent better selection of plants increased the
productivity growth from learning and imitation. While this may be an underlying driver of
technology growth, we only find a very weak correlation between contemporaneous changes
in aggregate technology and the evolution of average plant productivity (or other moments of
the productivity distribution).

The increase in technology growth may also be in line with the recent theory in Ottonello and
Winberry (2023) whereby constrained firms initially invest in factor accumulation and only
later in activities that increase productivity. Given that we find little empirical evidence for
capital deepening, only little plant-level labor deepening in the sense of rising labor shares
and strong increases in financial access in the run-up to the Asian Financial Crisis, we are
rather skeptical that this mechanism can explain large changes in aggregate technology. Still,
given the limitations on the capital series and limited evidence on plant-level investments in
technology, we cannot rule out that this mechanism is an important driving force of technology
growth.

At last, since we cannot distinguish between productivity and demand drivers, changes in
demand may also be an important driver of the patterns we observe. For example, the Asian
Financial Crisis shows up as a more than 20% drop in technology, which is likely to be at
least partly demand-driven. In line with this interpretation, Figure A.12 shows that plant-
level exports almost completely plummet in 1998. Decreases in technology may also be partly
explained by decreases in demand as the economy grows richer and consumers switch their
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Figure A.13: Evolution of cross-sectional correlation of plant productivity and input share

Notes: Input shares are computed based on a Cobb-Douglas aggregator as explained in the text. For within-industry
results, we first estimate the correlation across plants in a given industry and year and then construct the weighted
average correlation across industries using the industry’s average share in manufacturing value added as a time-
invariant weight. All series are normalized by the first year.

demand towards services (e.g. Alder et al 2019, Comin et al 2021).

1.A.7 Additional results on changes in misallocation

In this section, we report two sets of additional results. First, we show additional evidence on
the evolution of the covariance and correlation of plant-level productivity and input shares.
Figure A.13 shows additional evidence on the correlation for a balanced panel of plants and
for each cohort of plants between 1970 and 1999. We construct the balanced panel by selecting
all plant-year observations between 1975 and 1990 for which the plant operated in 1975 and
in 1990 and for which we observe more than 10 observations (to avoid dropping all plants for
which individual years are missing or had to be dropped). Extending the time frame would
drop too many plants.

For completeness, Figure A.14 also plots the covariance instead of the correlation. For the full
sample, this covariance also does not increase over time due to the entry of small plants. For
surviving plants, the covariance increases strongly. This is mechanical, because the sample
shrinks over time, which naturally leads input shares to increase. Also, average productiv-
ity strongly increases among surviving plants, adding an additional trend. The correlation is
robust to such common trends.

The second set of results is on an alternative measure of the allocation of resources. Figure
A.15 reports changes in the dispersion of marginal revenue products of labor and capital; a
sign of misallocation in the static model of Hsieh and Klenow (2009). Most importantly, we
do not find any evidence for a decreasing dispersion in marginal revenue products over time,
which could be linked to an “undoing of misallocation” that drives economic growth. Instead,
we find evidence for an increase in the dispersion over time. Most of these increases happen
after the Asian Financial Crisis in 1997. We think that the measured increases in the dispersion
of marginal revenue products are at least in part driven by changes in measurement. We refer
the interested reader to the discussion of measurement changes further above.
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Figure A.14: Evolution of cross-sectional covariance of plant productivity and input share

Notes: Input shares are computed based on a Cobb-Douglas aggregator as explained in the text. For within-industry
results, we first estimate the covariance across plants in a given industry and year and then construct the weighted
average covariance across industries using the industry’s average share in manufacturing value added as a time-
invariant weight. All series are normalized by the first year.

Figure A.15: Evolution of cross-sectional variation in marginal revenue products

Notes: Evolution of cross-sectional standard deviation in marginal revenue products of labor and capital following
Hsieh and Klenow (2009) and Gopinath et al (2017).

1.A.8 Further event study evidence

In this section, we report event study results for hiring responses (in contrast to the labor share
responses). We stick to the same treatment definition as previously. To study the dynamic hir-
ing responses of plants to a permanent positive productivity shock, we look at the worker share
(# worker / value added) instead of the labor share (wage bill / value added). The concern of
looking at the labor share is that a positive productivity or demand shock at the plant level
may lead workers to bargain for higher wages to share in the profit gains. If these bargaining
gains slowly accumulate, then we misattribute slow increases in the labor share to labor ad-
justment frictions. Figure A.16 shows that this concern is unwarranted. Plants actually slowly
increase hiring, analogously to the labor share.
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Figure A.16: Further event study results for worker shares

Notes: Worker share measured as ratio of number of workers over value added. Treatment definition as in main
event study.

1.B Model and Estimation

1.B.1 Adjustment costs as costs of managerial time

In the following, we show that adjustment costs can be microfounded as costs of scarce man-
agerial time. Our goal is to make explicit how adjustment costs can capture the time constraints
of a manager working at a plant and to show why it makes sense to write adjustment costs in
terms of the costs of labor wt.

Suppose a plant owner solves the following problem:

V (si,t, hi,t−1,Ωt) = max
hi,t

{
yit(sit, hi,t; zt)− wtht − wtT (hi,t, hi,t−1)

+ λ(si,t, hi,t,Ωt)
{
−Ec[cF |stay] + βE

[
V (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt

]}}

where T (hi,t, hi,t−1) gives the managerial time needed to implement changes in the workforce.
We denote T (hi,t, hi,t−1) in terms of the efficiency units of a worker such that we can express
the manager’s time cost in terms of the wage wt. One can think of wtT (hi,t, hi,t−1) as the actual
compensation that managers receive or as a combination of compensation and opportunity
costs of managerial time.

Time costs are due to two main managerial tasks: (1) the task of hiring and firing, and (2) the
task of reorganizing production. Conditional on the task, we think of a single unit of the task
as requiring always the same amount of time (e.g. signing one contract always takes a fixed
amount of time), but the total units needed depends on the organization and the amount of
hiring. Hiring and firing requires (c+F , c

−
F ) units of time for each unit of labor hired or fired

∆h ≡ |hit − hit−1|. This time comes from filling out paperwork, signing the contracts and
adding the worker to the books. Policies that affect the paperwork that plants need to fill out,
will change these costs.

Next, for any workers the plant hires or fires, managers need to assign and explain changes in
worker tasks. Both for hiring and firing, we assume that managerial time to assign and explain
new worker tasks is proportional to the percentage change in the workforce. We assume this
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is for different reasons in the case of hiring and firing and thus the unit cost of changes in the
workforce for hiring and firing can differ. For hiring, the plant hires hit − hit−1 workers who
they need to explain their new task. The proportional time cost in the case of hiring comes from
the possibility that each new worker can also learn from their coworkers. However, in the case
of relatively many new hires, each new hire can learn from relatively fewer coworkers, thus
increasing the time that the manager needs to add. In the case of firing, jobs may potentially
not simply disappear, but need to be reorganized. In this case, the managerial time costs of
reorganizing scale with the number of lost jobs hit−1 − hit (for which replacements need to
be found) and are proportional to the percentage change in the workforce because this is the
amount of time the manager needs to reexplain jobs to all existing workers.

In the end, the entrepreneurial time costs Th are then given by the functional form reported in
the main text:

Tt(hi,t−1, hi,t) =


c+0,t(hi,t − hi,t−1) +

c+1,t
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht > ht−1

0 if ht = ht−1

c−0,t(hi,t−1 − hi,t) +
c−1,t
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht < ht−1

(1.20)

Note that the main text also features fixed costs that can easily be rationalized by fixed time
costs of managers whenever there is a change in the organization.

1.B.2 Microfoundation of working capital constraint

The microfoundation of the working capital constraint can be derived from a standard limited
enforcement problem (e.g. as in Buera and Shin 2013). Assume that plant managers need to
first pay their workers before being able to produce and they do so by borrowing the entire
wage bill wthit with a financial intermediary. For simplicity, suppose further that the time be-
tween production and paying the wage bill is ε → 0 such that the costs of borrowing go to
zero. Suppose further that the plant manager – after paying their workers and producing –
could decide to run away with a fraction 1

κ̃t
of the borrowed resources wthit. Isomorphically,

the plant manager runs away with all of the resources, but is caught with probability 1
κ̃t

. We
assume that the only punishment in case of successful evasion is that the financial intermedi-
ary can now sue the plant manager and claim (part of) the output of the plant in period t. We
assume that the claim is proportional to plant output net of value-added tax. Importantly, the
plant manager never loses access to the plant and is not excluded from any future economic
activity, ensuring that the constraint remains a static problem. In equilibrium, the financial in-
termediary will lend wthit only to the extent that no plant manager will renege on the contract,
implying the financing constraint:

wthit ≥ κtyit

1.B.3 Stationarized value function and balanced growth path after 2015

After 2015, we assume that plants expect wages, all costs and aggregate productivity to rise
at the same growth rate (1 + g) over time. This allows to capture realistic future growth in
a parsimonious way and is in line with the entire economy being on a balanced growth path
after 2015. An alternative would be to only enforce constant growth in costs and productivity
and then solve for the actual endogenous wage path after 2015 that clears labor markets after
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2015. This would require further assumptions on how other fundamentals in the economy
evolve (e.g. wedges and technology in the rest of the economy and aggregate labor supply)
and feature a continued transition towards an eventual balanced growth path (as long as as-
sumptions on the changes in future fundamentals allow for a balanced growth path). Given
that the growth path after 2015 is not identified, we think that our approach strikes a good
balance between realism and parsimony.

The value function in 2015 (denoted by T and suppressing dependence on ΩT for expositional
clarity) writes:

VM
T (si,T , hi,T−1) = max

hi,T∈[h,h̄]

{
zT si,Th

θ
i,Tk

α
i,T − wThi,T − (r + δ)ki,T − wTAC(hi,T , hi,T−1)+

λ(si,T , hi,T )
{
−Ec[cF |stayi,T ] + βE

[
VM (si,T+1, hi,T )|si,T , hi,T

]}}
(1.21)

In the following, we show that under the right normalization and assuming constant growth
for all costs and productivity, we can write: VM

T (si,T , hi,T−1) = ṼM (si,T , hi,T−1)z̃T , which im-
plies that we can solve for VM

T (si,T , hi,T−1) by first solving for the stationary ṼM (si,T , hi,T−1)

and then renormalizing by z̃T . To show this, we proceed in two steps. First, we find the nor-
malizing factor z̃T , which needs to grow at a constant rate (1 + g). We do so by deriving the

optimal static capital choice: k∗i,T =
(

α
r+δzT si,Th

θ
i,T

) 1
1−α . Plugging the capital choice into the

value function gives:

VM
T (si,T , hi,T−1) = max

hi,T∈[h,h̄]

{
z

1
1−α

T si,Th
θ
i,T

(
α

r + δ
si,Th

θ
i,T

) α
1−α

− wThi,T−

z
1

1−α

T (r + δ)

(
α

r + δ
si,Th

θ
i,T

) 1
1−α

− wTAC(hi,T , hi,T−1)+

λ(si,T , hi,T ; ΩT )
{
−Ec[cF |stayi,T ] + βE

[
VM (si,T+1, hi,T )|si,T , hi,T

]}}
(1.22)

from which we can see that for output and capital to grow at a constant rate, we need that

z
1

1−α

T ≡ z̃T grows at a constant rate. Dividing through by z̃T gives the deflated value function
ṼM (si,T , hi,T−1):

ṼM (si,T , hi,T−1) = max
hi,T∈[h,h̄]

{
si,Th

θ
i,T

(
α

r + δ
si,Th

θ
i,T

) α
1−α

− wT

z̃T
hi,T−

(r + δ)

(
α

r + δ
si,Th

θ
i,T

) 1
1−α

− wT

z̃T
AC(hi,T , hi,T−1)+

λ(si,T , hi,T ; ΩT )

{
−
Ec[cF |stayi,T ]

z̃T
+ βE

[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T

]}}
(1.23)
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where we have made use of the constant growth in z̃:

VM
T+1(si,T+1, hi,T )

z̃T
=
VM
T+1(si,T+1, hi,T )

z̃T+1

z̃T+1

z̃T
= (1 + g)ṼM (si,T+1, hi,T )

In the second step, we need to prove that all other aggregate time-varying components also
grow at the same rate. In the deflated value function, output and capital do not depend on
time-varying aggregates anymore. All terms featuring wages require that wages grow at the
same rate (1 + g), such that wT

z̃T
= w̃ is a constant. The trickier parts are λ(si,T , hi,T ; ΩT ) and

Ec[cF |stayi,T ]. We prove that λ(si,T , hi,T ; ΩT ) does not depend on time ΩT if all costs grow by
the same rate and that expected fixed costs Ec[cF |stayi,T ] grow at the same rate (1 + g).

Using the analytic formula for the survival rate, it is easy to see that the survival rate does not
vary with time-varying aggregates as long as µxT and σxT grow at the same rate (1 + g):

λ(si,T , hi,T ; ΩT ) = exp

−exp

−
βE
[V M (si,T+1,hi,T ,ΩT+1)

z̃T
|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T


= exp

(
−exp

(
−
βE
[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T

))
(1.24)

At last, we use the analytic formula for the expected fixed costs to show that they indeed grow
at the same rate (1 + g):

Ec[cF |stayi,T ]

z̃T
=βE

[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
λ(si,T , hi,T )−

σxT
z̃T

Γ

(
0, exp

(
−
βE
[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T

))
(1.25)

which does not depend on aggregate time-varying components.

1.B.4 Formal derivation of main accounting identity

We can start by giving a formal derivation of the main accounting identity that we use to
validate our model.
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Yt ≡
∑
i

yit

=
∑
i

ztsitf(xit) =
∑
i

ztsitf(xit)

∑
i f(xit)∑
i f(xit)

= zt ∗
∑
i

f(xit) ∗
∑
i

sit
f(xit)∑
i f(xit)

= zt ∗
∑
i

f(xit) ∗
∑
i

(sit − s̄t + s̄t)

(
f(xit)∑
i f(xit)

− 1

Nt
+

1

Nt

)
= zt ∗

∑
i

f(xit) ∗
[
s̄t +Ntcov

(
sit,

f(xit)∑
i f(xit)

)]

ln(Yt) = ln(zt) + ln

(∑
i

f(xit)

)
+ ln

(
s̄t +Ntcov

(
sit,

f(xit)∑
i f(xit)

))

1.B.5 Details on estimation

In this section, we provide further details on the model estimation.

Taxes

In the following, we discuss how we map Indonesian corporate income and value added taxes
(VAT) over the period 1975-2015 to our model economy. In both cases, we assume that tax rates
are constant over time and uniform across firms/plants. This is a very accurate mapping for
the VAT, but less accurate for the corporate income tax rate. Throughout, we abstract from the
very important topic of tax evasion and enforcement, but we discuss the empirical evidence
on this.

We start with the simpler VAT, which we fix in the model economy to a constant 10%, the rate
which was officially introduced in 1985 and has remained unchanged in place until now (see:
Gillis 1985; Hill 2000; Basri et al. 2021). Officially, the only exemptions are on exports, which
we do not model and thus abstract from and there were higher luxury product rates in place
that we also abstract from. The VAT replaced an older sales tax that was in place between
1951-1985, whose rates varied from 5 to 20%, but with most sales subject to a 10% rate (Lent
and Ojha 1969, 537). Enforcement of the sales tax before 1985 was almost absent, leading to
widespread evasion (e.g. see: Gillis 1985), but the introduction of the VAT greatly improved
(self-)enforcement and reduced evasion (Hill 2000; Basri et al. 2021), so that our assumption of
a flat 10% rate seems reasonable (at least since 1985).

Changes in the corporate income tax rates are slightly more complicated, with major reforms
in 1985 and 2009. We simplify our analysis by assuming a fixed 20% corporate income tax rate
across firms and over time. Before 1985, many different tax rates were in place, including top
marginal rates at 45%, which were non-enforced (Gillis 1985). With the 1985 reforms, corporate
income rates were reduced and homogenized, with the maximum marginal rate capped at
35% (Gillis 1985). Between 1985 and 2009, the corporate income tax rates followed a 3-tiered
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schedule of different marginal tax rates defined over taxable profits (see: Gillis 1985; Basri et al.
2021). The different cutoffs and marginal rates were varied slightly over time, adjusting in part
to inflation. For example, in 1985, a tax rate of 15 percent applied to the first IDR 10 million,
25 percent to the next IDR 40 million, and 35 percent on any taxable profits in excess of IDR 50
million (Gillis 1985). By 2009, as documented in Basri et al. (2021), a rate of 10 percent applied
for the first IDR 50 million in taxable income; a rate of 15 percent applied for the next IDR 50
million; and a rate of 30 percent applied on all taxable profits over IDR 100 million. After 2009,
the corporate income tax system moved to a flat 25 percent rate, with a more complicated
schedule of discounts based on gross income that led to effective tax rates below 25 percent
(see Basri et al. (2021) for details). Tax evasion and enforcement for the corporate tax rate
posed a larger problem than for the VAT, especially before 1985 but also after (Hill 2000, 51f.;
Basri et al. 2021). In the end, our 20% flat tax rate assumption tries to parsimoniously capture
average effective corporate income tax rates, while abstracting from important temporal and
cross-sectional variation.

Estimation of borrowing constraint

To identify the borrowing constraint κt, note that the working capital constraint writes as:

wthit

(1− τV AT
t )yit

≤ κt

The left-hand side of this constraint is a tax-adjusted labor share, which is directly observable.
The constraint gives an inequality so that in the absence of measurement error in wthit or
(1− τV AT

t )yit:

κt = max
i

(
wthit

(1− τV AT
t )yit

)
for i→ ∞

as long as the constraint is strictly binding for any plant. It is easy to see that the constraint will
always bind for some plants as long as there is a non-zero chance for large productivity losses
and plants face some positive costs of adjusting labor. The bigger problem is that any estimator
based on the maximum observed adjusted labor share will be strongly influenced by outliers
and individual measurement error in the labor share. As we discuss in more detail in the data
cleaning Appendix, changes in the survey questions over time is one reason why we expect
systematic variation in the maximum reported labor share over time that is independent of
actual changes in the borrowing constraint κt. We thus give up on identifying variation in κt
over time. Instead, we opt for a robust estimator of κ, taking the 95th percentile of the observed
adjusted labor share. Based on this estimator, we find that κ = 1.7.

Discretization details

We discretize productivity and labor. Specifically, we choose 30 grid points for idiosyncratic
productivity, which we select based on quantiles of the productivity distribution. We choose
more quantiles at the right tail of the distribution as these high productivity plants are key for
the aggregate economy. Non-parametrically estimating the transition matrix of idiosyncratic
productivity is quantitatively important as other oft-used processes such as an AR(1) log-
normal process cannot replicate empirically observed productivity dynamics (e.g. see Ruiz-
García (2019)). We discretize efficiency units of labor ht−1 on a grid of 1000 points that we
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choose based on equal spaced quantiles, ensuring that the entire labor distribution is well rep-
resented. Specifically, we choose the bottom 990 grid points based on quantiles (ensuring that
all plants in the data can be mapped to the grid) and then use the last 10 grid points to extend
the upper bound for labor to allow plants in the model to grow beyond what we observe in
the data.

Fundamentals needed for model counterfactuals

Two key sets of model fundamentals are not needed for solving the baseline model, because
they are linked to reduced-form statistics that are treated as fixed along the baseline equilib-
rium path: the path of potential entrant distributions and the fundamentals of the rest-of-the-
economy including aggregate labor supply. For model counterfactuals, however, all funda-
mentals are needed, so we now discuss their identification.

The potential entrant distributions can be related to objects of the baseline equilibrium path:
PEt(st, ht;Ω) = Et(st, ht;Ω)/PE(st, ht;Ω), where Et(st, ht;Ω) is the identified path of entrant
distributions and PE(st, ht;Ω) = P

(
VM (si,t, hi,t; Ωt)

)
gives the path of entry probability dis-

tributions. The latter is a function of the incumbent’s value function, which we directly obtain
from the baseline model computation, and the entry cost distribution P . Since the potential
entrant distributions and the entry cost distribution are not separately identified, we make the
identifying assumption that the entry cost distribution is the same as the fixed cost distribution
governing plant survival.31

The time path of aggregate labor supply is given by the sum of aggregated labor supply in the
two sectors of the economy: Ht = HR

t +HM
t . Total labor supply in manufacturing HM

t is iden-
tified from aggregating up plant-level labor demand hit over the computed equilibrium path.
To obtain HR

t , we use the total observed number of workers lRt in the Rest of the Economy and
map this to the total efficiency units of labor in R accounting for differential worker selection
across sectors in Indonesia.32

For the rest-of-the-economy, we can directly identify θR and the sequences of At and τRt . For
this, take plant first-order conditions to obtain: θR

(1+τRt )
=

wthR
t

yRt
. We use observed yRt and can

construct wth
R
t to obtain the left-hand side. We assume that wedges behave such that the

average of the right-hand side over time is exactly equal to θR. Labor wedges τRt are backed
out such that the previous equation holds exactly. Given θR and hRt , we can simply back out
the sequence At using: At = yRt /

(
HR

t

)θR .

31Given that plant entry and survival likely depend on similar economic forces (e.g. similar outside options for
not running a plant), we think this gives a reasonable estimate. We also think this gives a conservative estimate of
potential entry because most plants survive, implying that most potential entrants also enter. The assumption is a
form of normalizing the distribution of potential entrants and is more general than normalizing the total number
of potential entrants as often done in entry models (see Aguirregabiria 2021, Chp. 5).

32Specifically, we use the estimates of wage differences and worker selection across rural agriculture and urban
non-agriculture from Hicks et al. (2017) for Indonesia. This leads us to estimate that average efficiency units of labor
are roughly two times larger in M than in R. Hicks et al. (2017), using worker-level panel data from Indonesia,
find that non-agricultural jobs earn about 2.5 times higher income than agricultural jobs, but that around 80% of
this earnings gap is explained by selection as captured by individual-specific fixed effects. Through the lens of our
model, this implies that manufacturing workers have on average more efficiency units of labor. We enforce the
point estimates of Hicks et al. (2017) across all time periods.
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1.B.6 Details on Euler estimation

In this subsection, we provide more details on the Euler estimation procedure we use and
derive all main results.

Derivations for Gumbel distribution

We start out by showing that the Gumbel distribution for fixed costs allows closed-form ex-
pressions for the survival probability and the conditional expectation of fixed costs. For ex-
positional clarity, we suppress dependence on the aggregate state Ωt, but note that all objects
generally depend on the aggregate state.

λ(si,t, hi,t) =exp

(
−exp

(
−(x(sit, hit)− µxt )

σxt

))
(1.26)

Ec[cF |stay] ≡ g̃(si,t, hi,t) =x(sit, hit)λ(si,t, hi,t)− σxt Γ

(
0, exp

(
−(x(sit, hit)− µxt )

σxt

))
(1.27)

where x(sit, hit) ≡ βE
[
V (si,t+1, hi,t)|sit, hit

]
and Γ() gives the incomplete Gamma function.

That is, in principle, Ec[cF |stay] depends not only non-linearly on the parameters {µxt , σxt },
but also depends directly on the unknown expected future value x. However, given that the
continuation value x is simply an invertible function of (observable) λ(si,t, hi,t), we can rewrite
the term to substitute for x:

g̃(si,t, hi,t) =µ
x
t λ(si,t, hi,t)− σxt

{
ln (−ln (λ(si,t, hi,t)))λ(si,t, hi,t) + Γ (0,−ln (λ(si,t, hi,t)))

}
≡µxt g̃1(si,t, hi,t)− σxt g̃2(si,t, hi,t)

We will use these equations and the invertibility of exit rates for continuation values through-
out.

Identification details

In the following, we derive the estimating Euler equation and then discuss identification. To
derive the estimating Euler equation, we exploit the invertibility of exit rates as shown above
and simplify terms to rewrite the Euler equation only in terms of observables and model pa-
rameters:

0 =
∂y(si,t, kit, hi,t, zt)

∂hi,t
− wt − wt

∂Ch(hi,t, hi,t−1;wt)

∂hi,t
+

λ(si,t, hi,t)βE
[
−wt+1

∂Ch(hi,t+1, hi,t;wt+1)

∂hi,t
|si,t, hi,t

]{

1− λ(si,t, hi,t) + ln
(
λ(si,t, hi,t)

)[µxt
σxt

(2λ(si,t, hi,t)− 1)− Γ (0,−ln (λ(si,t, hi,t)))−

ln
(
− ln

(
λ(si,t, hi,t)

))
(2λ(si,t, hi,t)− 1)− λ(si,t, hi,t)

∂Γ (0,−ln (λ(si,t, hi,t)))
∂λ(si,t, hi,t)

]}

Given the estimating Euler equation, we can now discuss the identification of the parameters.
We discuss each of the three sets of parameters in turn.
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Linear and convex adjustment cost parameters: Without giving a full identification proof, one
can see that the Euler equation generally identifies marginal adjustment costs ∂Ch(hi,t,hi,t−1;wt)

∂hi,t

non-parametrically. Given our functional form assumption on adjustment costs, linear costs
c0 & convex costs c1 are identified as follows: c0 adds as a fixed wedge between the marginal
product and the marginal costs of labor, but any adjustments today save on adjustments to-
morrow. Thus, linear costs are pinned down by the observed labor wedge across plants and
the probability of switching between shrinking and growing as determined by the volatility of
the productivity process. Asymmetric linear costs are identified from the differential behavior
of growing and shrinking plants. The convex costs c1 instead scale with labor growth and are
thus identified from the variation in within-plant labor demand growth across periods, again
conditioned by the observed volatility of the productivity process. Low labor demand growth
despite a high labor wedge will point to strong convex adjustment costs. Again, asymme-
try here is identified from differential growth and shrinking (conditional on the productivity
process and the state).

Fixed adjustment costs: The Euler equation does not identify fixed costs F+ & F− since they
do not enter marginal adjustment costs. However, we note that fixed costs are identified from
the (time-varying) distribution of plants that are not adjusting and for whom the Euler equa-
tion does not hold. The idea is that the more plants choose to not change their labor inputs (as
we condition on previous labor and vary productivity), the higher the implied fixed costs. In
the data, driven by the choice of focussing on efficiency units of labor, we do not see any plant
that remains strictly inactive. We can thus not rule out that fixed costs are zero and fix them
to zero throughout. We also note that in a previous version of the paper, we estimated fixed
costs indirectly by solving for the model equilibrium path and also found them to be noisily
estimated around zero. In cases where one might be particularly interested in fixed costs of ad-
justment that induce inaction – such as the sluggish responses to aggregate shocks – we think
it is best to either work directly with the number of workers or at least work with the nominal
wage bill.

Cost parameters (exit): One can immediately see that the Euler equation only identifies the
ratio µx

t
σx
t

. The reason is that the Euler equation captures the marginal effect of changes in labor
demand on the survival probability, which only depends on the ratio of the level and disper-
sion of costs. What variation in the data identifies this cost ratio? While the dependence in
the Euler Equation looks daunting, the cost ratio is jointly disciplined by the size of the labor
wedge, the dispersion in survival probabilities and the size of marginal adjustment costs next
period over current labor demand. Given empirically estimated survival probabilities, one can
see that a higher cost ratio generally increases the labor wedge.33 Thus, high observed labor
wedges push towards lower cost ratios.

Estimation details

The estimation proceeds in two stages. In the first stage, we estimate reduced-form survival
probabilities λ(si,t, hi,t,Ωt) and dynamic labor input choices h(hit−1, sit,Ωt) conditional on the
state space. In the second stage, we enforce these reduced-form objects to estimate the Euler

33This is as long as marginal adjustment costs tomorrow are negative, since
λ(si,t, hi,t)ln(λ(si,t, hi,t)) (2λ(si,t, hi,t)− 1) is generally negative (since survival probabilities are generally
higher than 0.5 and ln(λ(si,t, hi,t)) < 0).
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equation for the structural parameters of interest.

We start with the estimation of conditional survival probabilities and labor input choices. To
flexibly estimate both, we draw on generalized additive models for their combination of flex-
ibility and robustness in estimating semi-parametric functional forms. However, subsequent
parameter estimates are very similar when using flexible polynomial regressions in the first
stage instead. We start with survival probabilities, which – through the lens of the model – are
a nonlinear, time-varying function in current labor and productivity. They are time-varying
because exit decisions depend on the aggregate state space through current wages and ag-
gregate productivity as well as through perfect foresight over future wages and aggregate
productivity. We estimate survival probabilities as the combination of year fixed effects and
semi-parametric functions in labor, productivity and their interaction. In general, we find that
the estimated survival probabilities make sense while improving on a simple linear model
in labor, productivity and year fixed effects. Specifically, the GAM achieves an adjusted R2

that is roughly 13% higher than the linear model and produces survival probabilities that are
increasing in productivity.

For labor input choices, we instead estimate the GAM as the combination of year fixed effects
and semi-parametric functions in previous labor, productivity and their interaction.34 The ad-
justed R2 of our GAM is around 96%, driven by the huge explanatory power that previous
labor has for current labor. In fact, a simple linear regression of previous labor on current
labor already reaches R2 = 0.95 with a coefficient of auto-correlation close to unity. Hence,
a policy function that simply says to stick with past labor already explains observed labor
choices extremely well. Through the lens of the model and the Euler equation, in the presence
of sufficient productivity variation, this already points to large adjustment costs. However, to
identify adjustment cost parameters, we require that the estimated policy functions also show
variation across productivity, since changes in productivity conditional on previous labor vary
the returns to adjusting labor. Figure B.1 plots the policy functions implied by our estimated
GAM. Panel A varies previous labor and fixes productivity at the median, while Panel B varies
productivity but fixes previous labor at the median. We find that policy functions are mono-
tonic in productivity (in line with the model), but nonlinear such that labor is declining more
strongly for low productivities and increasing more strongly for high productivities.

In the second stage, we enforce these reduced-form objects to estimate the Euler equation for
the structural parameters of interest. For this stage, we follow the CCP literature in impos-
ing our model structure. This means that we impose the same discretized state space as in
our model and the same process of idiosyncratic productivity to ensure that the Euler esti-
mation gives parameter estimates that are fully consistent with our model. We also impose
CCC-estimated input choices for plants at time t and for all states in t + 1 conditional on the
plant’s state in t, greatly reducing the noise in the estimation: this means that for a plant with
labor hit−1 and sit, we do not use observed hit and hit+1, but instead the predicted values
ĥit(sit, hit−1,Ωt) and ĥit+1(sit+1, ĥit,Ωt+1), where the latter is over all possible s to be able to

34We also looked at more flexibility in how policy functions could vary in labor and productivity over time
(beyond a simple year fixed effect), however, we found this to give less robust results. The reason is that such
higher flexibility is more likely to predict more erratic differences in input choices over consecutive years, which
“violate” the smoothing motive implied by the Euler equation and which can then only be rationalized by extreme
adjustment cost parameters. We believe that if the underlying data has less measurement issues (that are driven by
common aggregate components) and is maybe taken from an economic environment where there are less changes
over time, it is more feasible to allow for more flexibility in how policy functions can change over time.
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Figure B.1: Step 1 of CCC estimation: flexibly estimated labor input choices

Notes: Panel A gives labor choices over previous labor (fixing productivity at the unconditional sample median).
Panel B gives labor choices over productivity (fixing previous labor at the unconditional sample median). Dotted
lines give unconditional sample medians.

compute the expectation term.35

We think it is important to briefly mention the computational gains here. An important step
in the estimation is that we follow Bajari, Benkard, and Levin (2007) in exploiting the fact
that adjustment cost parameters enter linearly in the problem, which is due to the linearity
of the marginal adjustment cost specification and due to plants’ risk neutrality. Practically,
this means that we can compute all expectation terms outside the parameter loop, greatly
speeding up the parameter estimation. It is important to highlight the computational gains
from this step alone: We can estimate parameters from both steps in less than 2 minutes on
a standard personal computer and moving to annually estimated parameters (increasing the
number of parameters by a factor of 40) can sometimes even be faster – the reason is that the
pre-computed terms all stay the same and instead of estimating X parameters on N data points,
we now separately estimate X parameters on N/T data points T times, which one can even
parallelize.

We estimate structural parameters via nonlinear least squares (NLS). We do so by assuming
that the Euler equation can be written as: f(Θ) + ηit = 0, where ηit is model misspecifica-
tion error or additive measurement error and Θ is the vector of parameters. Table B.1 reports
estimated results. Table B.2 separately estimates parameters for the period before the Asian Fi-
nancial Crisis and for the period after. One can see that estimated adjustment cost parameters
are considerably higher post-1999 than before. At last, we also estimate adjustment costs at an
annual level. Figure B.2 shows the yearly estimated convex adjustment costs and shows that
they tend to increase over time.

35An alternative to our approach would be to directly use observed plant-level future labor adjustments as
noisy realizations of expected labor adjustments, without enforcing model-based expectations (e.g. Hall 1979). Our
approach is closer to our model, greatly reducing noise in the estimation, which is particularly problematic for the
estimation of convex costs that disproportionately react to outliers. However, this makes our estimation approach
– as other CCC/CCP estimators – more susceptible to model misspecification.
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Table B.1: Main Euler estimation results

Parameters Estimates Std error 95% CI

c+0 0.735 0.010 [0.715,0.755]
c+1 36.656 0.059 [36.54,36.772]
c−0 0.000 0.011 [-0.022,0.022]
c−1 12.593 0.073 [12.45,12.736]

Cost ratio -0.366 0.004 [-0.374,-0.358]

Details: Pooled across all consecutive plant-year ob-
servation pairs (N = 358,240). Adjustment cost parame-
ters are restricted to be (weakly) positive and the cost ra-
tio is bounded between -0.577 and -0.366 to ensure that
median and mean costs are sufficiently far apart and ra-
tionalize dispersion in exit probabilities. Inference for
corner solutions should be treated with care. Standard
errors are not yet corrected for the multi-stage estima-
tion.

Table B.2: Euler estimation results: Pre vs. Post Crisis

Parameters Estimates Std error 95% CI
Pre-1997 Post-1999 Pre-1997 Post-1999 Pre-1997 Post-1999

c+0 0.635 0.731 0.008 0.013 [0.619,0.651] [0.706,0.756]
c+1 28.590 38.495 0.098 0.069 [28.398,28.782] [38.356,38.63]
c−0 0.000 0.000 0.006 0.013 [-0.012,0.012] [-0.025,0.025]
c−1 7.206 15.605 0.167 0.088 [6.879,7.533] [15.433,15.777]

Cost ratio -0.366 -0.366 NaN 0.004 [NaN,NaN] [-0.374,-0.358]

Details: Pooled across all consecutive plant-year observation pairs (N = 136,918 for pre, N =
209,075 for post). Adjustment cost parameters are restricted to be (weakly) positive and the cost ratio
is bounded between -0.577 and -0.366 to ensure that median and mean costs are sufficiently far apart
and rationalize dispersion in exit probabilities. Inference for corner solutions should be treated with
care. Standard errors are not yet corrected for the multi-stage estimation.

Figure B.2: Annually estimated convex adjustment costs. Details in text.
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Figure C.1: Changes in the entire distribution: baseline model versus data.

1.B.7 Further model validation exercises

In this section, we show further model validation results. Specifically, Figure C.1 shows the
distribution of labor shares. A key feature of the data, which the model captures, is that while
average labor shares increase when holding productivity constant, the large observed shifts in
productivity due to selection and productivity convergence imply that increasingly more pro-
duction is concentrated in more productive plants. These productive plants, however, have
substantially lower labor shares, in part because they were surprised by positive productiv-
ity shocks and adjust labor only slowly, and in part because they avoid large labor increases
anticipating future mean reversion in productivity. Together, this implies that the aggregate
labor share is low and remains low over time, with the median labor share even declining in
the data. Apart from the decline in the median labor share, the model correctly captures these
distributional changes.

1.C Counterfactuals and results

1.C.1 Further results on decomposing the drivers of growth

Figure C.2 reports the evolution of the employment distribution in the baseline (model) econ-
omy versus the counterfactual (model) economy where only initial conditions in 1976 play out
over time (and all other fundamentals in 1976 are fixed).

1.C.2 Details on INPRES evaluation

This section provides further details on the model-based evaluation of the INPRES school con-
struction program. We start out with more details on how we interpret the program through
the lens of the model, how the program’s effects map into changes in model fundamentals and
how we identify counterfactual fundamentals of the economy had the INPRES school con-
struction program not been implemented. In the second part, we then provide more detailed
results on the model-based evaluation of the INPRES program.
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Figure C.2: Evolution of employment distribution: baseline model versus initial conditions
counterfactual

Notes: Details in the text.

We assume that the program’s direct effect only goes through improving children’s education
as measured by human capital h in the model. We can be agnostic about how schools raised
human capital, capturing a combination of changes along the extensive margin (some children
are induced into going to school in the first place), intensive margin (some children stay longer
in school) and quality margin (more schools and teachers meant smaller classroom sizes and
closer proximity that may provide additional time for learning). We assume that overall demo-
graphic changes are not affected. The direct effects of changes in human capital then induce a
number of endogenous changes in the model. Specifically, the increase in human capital puts
downward pressure on wages and drives up labor demand both in the rest of the economy
and across all manufacturing firms. Increases in human capital also have an effect on the en-
dogenous entry and exit of firms, but we assume that this only happens through input costs.
Specifically, we rule out that increases in education may have a direct effect on entrepreneurial
choices and the distribution of potential entrants. Given that the policy only had measur-
able effects on primary and secondary schooling outcomes and that entrepreneurs in larger
manufacturing firms are more likely to have tertiary education, we think this is a reasonable
assumption.

Formally, we model the INPRES program as changing individual-level human capital, which
aggregates up to aggregate human capital Ht over time. While the model allows for individ-
uals being differentially affected by the school construction program and also differentially
select into different sectors, the general equilibrium results only depend on the change in ag-
gregate human capital. Denoting by Lt the evolution of the number of workers (which we
assume to be unaffected by the program), we need to know the average effect of the program
on human capital per worker. Through the lens of the model, the average treatment effects es-
timated via differences-in-differences exactly capture the average differences in human capital
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h induced by the INPRES program for workers who were treated by the program, netting out
aggregate changes in the wage. We can rewrite the effect of the overall program on wages as
the combination of three separate effects that have been estimated in the literature: the effect
of the program on school construction, school construction on years of education and years of
education on wages. We further simplify the setup by assuming that we can treat the three
terms as separate expectations (which is true under homogeneous treatment effects or when
the shocks driving variation in the treatment effects are independent):

E
[

∂wage
∂program

]
= E

[
∂wage

∂years of schooling
∂years of schooling
∂no. of schools

∂no. of schools
∂program

]
= E

[
∂wage

∂years of schooling

]
︸ ︷︷ ︸

≈0.1 (Chaisemartin & d’Haultfoeille ’18)

E
[
∂years of schooling
∂no. of schools

]
︸ ︷︷ ︸

≈0.25 (Akresh et al ’21)

E
[
∂no. of schools
∂program

]
︸ ︷︷ ︸

1.98 (per 1k children; direct measure)

Following Akresh, Halim, and Kleemans (2023), we assume from this that the program on av-
erage increased years of schooling by half a year for individuals of any treated cohort. We
further follow Akresh, Halim, and Kleemans (2023) by assuming that individuals join the
workforce at age 18 and that differences in human capital induced by the program are con-
stant over a person’s life, in line with one-time educational gains. The primary schools built
by the INPRES program between 1973-1979 are for children between the ages of 7-12 years,
such that children fully treated by the INPRES program first joined the labor force by 1984. As
in the existing literature, we assume that all cohorts born after 1968 benefit from the INPRES
program. This assumes that the last cohort that we observe in 2015 still benefited from INPRES
schools in 2009 (their last year of primary school).36 To avoid having to deal with partial treat-
ment, we further assume that cohorts before 1968 did not benefit from the program. Through
the lens of our model, the INPRES program thus led to variation in aggregate human capital
over the period 1986 to 2015.

We use the following steps to construct counterfactual paths of aggregate human capital in the
absence of the INPRES program:

1. Start from aggregate human capital Ht given by model

2. For each year t between 1975 and 2015:

• count share of working population affected by INPRES treatment (ϕTt ) & get aggre-
gate human capital without INPRES: H̃t = Ht ∗ (1 − ϕTt ) + Ht ∗ ϕTt ∗ 1

β̃
where β̃ is

the corresponding average treatment effect of the program (here: assume that this
is 1.05 given as above)

We thus implicitly assume that all cohorts have the same average human capital. This is un-
likely, but in the absence of better worker-level estimates of human capital, this is the best we
can do. Still, we think that there are two biases that push in opposite directions so that we
think the overall bias may not be too strong. First, younger cohorts likely have more human
capital, which means we overestimate human capital in the absence of the INPRES program
H̃t. At the same time, individuals likely experience human capital increases over their life cy-

36The program initially planned for the INPRES-built schools to last for 20 years, however, Akresh, Halim, and
Kleemans (2023) note that most even exist 40 years later. Our assumption implies that the maximum age for an
INPRES school in our data is 36 years, well in line with the age range of INPRES schools.
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cle such that young cohorts have less experience and less human capital, biasing our results in
the opposite direction.

To construct the path of ϕTt we draw on representative and harmonized population census data
that we retrieve via IPUMS. For each available census wave t ∈ {1980, 1985, 1990, 1995, 2000, 2005, 2010},
we construct the share of working age individuals (between 18-65) who have been born in 1968
or later, which gives ϕTt . For the years in between, we extrapolate from the previous census
wave assuming there is no differential mortality risk. The treated share in the working pop-
ulation is zero before 1986 and then - due to baby-boom cohorts - increases rapidly to almost
20% by 1990, 50% by 2000 and 75% by 2015.

Applying this time path, we find that the INPRES program raised the annual economy-wide
level of human capital by 3.6% by 2015. While important, this effect only accounts for less than
2% of the more than doubling of human capital per worker that we estimated over the entire
time period from 1975-2015. These numbers also explain the model-based aggregate effects of
the INPRES program that we find.

1.C.3 Details on FDI policy counterfactual

In this section, we provide further details on the model-based evaluation of attracting more
foreign-owned plant entrants in Indonesian manufacturing. We start out with more details on
the entry of foreign-owned plants, how we interpret this variation and map it to the model,
how regulatory changes on FDI map to changes in model fundamentals and how we identify
counterfactual fundamentals of the economy had Indonesia’s FDI policy been different. In the
second part, we then provide more detailed results on the model-based evaluation.

We start out by showing variation in ownership across Indonesian manufacturing plants over
time. In Figure C.3 we plot the share of total manufacturing output that is owned either by
the state (central + local govt), private domestic or foreign owners. We construct this by sum-
ming up all value-added output across plants but taking plants’ reported ownership shares as
weights. The main movement can be observed in the decline of state ownership from around
30% in 1975 to around 5% in 2015 and the rise of foreign ownership. The domestic private sec-
tor is by far the largest actor and owns between 60-70% of all manufacturing production. If we
were instead to look at the share of plants, we find that more than 90% are fully domestically
owned, which is stable over time. Again, we find that state ownership declines over time and
foreign ownership increases, making up almost the entire remainder of 10% by 2015.

For the role of FDI policy, we are specifically interested in the effect on plant entry. Plant
entry is particularly important, because most variation in foreign ownership shares is across
and not within plants as plant-level ownership shares are relatively constant.37 Figure C.4
thus reports evidence on the importance of foreign ownership among new entering plants.38

Within a given year, foreign-owned plants (those that are majority foreign owned) make up

37For example, the variation in foreign ownership explained by plant fixed effects is 78% and the persistence in
foreign ownership as measured by an AR(1) regression is ρ ≈ 0.9. Restricting only to plants that were ever foreign
owned gives slightly lower numbers with the R2 ≈ 0.6 and ρ ≈ 0.77.

38We define new entering plants as plants that enter the panel for the first time. While foreign-owned plants
are larger and unlikely to not make the cutoff of 20 workers, we want to make sure to compare foreign- and non-
foreign-owned plants correctly. To this end, we further impose the restriction that the plant has to be younger
than 10 years (which is the spacing of the censuses). The sample of entrants without the age restriction looks very
similar.
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Figure C.3: Evolution of ownership shares for Indonesian manufacturing plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Figure reports the
fraction of total manufacturing output that is owned by the state (either local or central government), domestic
private owners or foreign owners measured by summing up all value-added output of plants and weighting plants’
output by their respective reported ownership shares.

around 3.8% of entering plants, but they account for 18-19% of total output among entrants.
Entrants with some foreign ownership are almost always close to fully foreign-owned with
average ownership shares around 80% and the median at 95%. Figure C.4 also documents im-
portant variation across time - variation that we exploit for identifying the effect of FDI policy.
Specifically, the Indonesian FDI regulatory regime turned increasingly restrictive throughout
the 1970s, forbidding 100% foreign ownership and banning FDI entirely in some sectors of the
economy (see: Hill 2000). This policy regime reverted only in the second half of the 1980s with
simplifications and more transparency over existing restrictions introduced in 1987. In 1992,
100% foreign ownership was permitted again and the 1990s saw increasing attempts at luring
foreign manufacturing plants. We can see some of these changes in observed entry, including
a marked increase in the absolute and relative weight of foreign entrants between 1990 and the
Asian Financial Crisis in 1997. We also see a correlation of these policy changes with the ag-
gregate ownership series, with the importance of foreign ownership increasing steadily from
10% in the late 1980s up to 35% by 2015.

We exploit this policy variation to study the influence of changes in foreign direct investment
policy in the Indonesian growth experience. We proceed as follows: We first identify the dis-
tribution of actual foreign entrants, which - through the lens of the model - is a reduced form
object that masks the underlying distribution of potential foreign entrants. To take out the vari-
ation in foreign entry that is purely explained by changes in the economic conditions that make
entry more or less attractive, we proceed as before and use the model-identified, time-varying
entry probabilities to invert for potential foreign entry distributions. In the next step, we are
interested in whether FDI policy changes can account for changes in these potential foreign
entry distributions over time. To do so, we compare the period of “restrictive FDI” from 1975-
1986 with the period of “FDI promotion” from 1987-1997. Given the known data limitations of
annual variation in entry (e.g. the bunching of entry around census years), we aggregate the
potential entry distributions within each of the two time periods. Luckily, the census waves
do not fall in a year between, so that there is no ambiguity in how to attribute entrants. We
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Figure C.4: Evolution of the entry of plants with foreign ownership

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. In both Panels, the
output measures aggregate up value-added across plants, with Majority summing up output for entering plants
who are at least 50 percent foreign-owned, and Weighted summing up output based on the respective ownership
share. Number of plants instead constructs the share and absolute increase based on the total number of majority-
foreign-owned plants.

then compare changes in these two aggregated potential entrant distributions. For simplicity,
we measure the effect of changes in the FDI policy on changes in potential foreign entrants by
comparing the weighted mass of potential entrants across the two periods, taking as weights
either the plants’ value added or employment at entry.39

1.C.4 Making a (more impressive) Growth Miracle

In this part of the Appendix, we move away from Indonesia’s historical growth experience
and ask whether and how Indonesia could have experienced a more impressive manufactur-
ing growth miracle, closer in comparison to the experiences of countries such as China or
Malaysia. For this, we study two important policy levers that both have sizable growth ef-
fects, but play out differently over time. Specifically, we look at reduced-form policy changes
that either reduce (convex) labor adjustment frictions or increase the annual growth in aggre-
gate technology in manufacturing, but deliver the same long-run growth in manufacturing
output.40

Figure C.5 shows how the manufacturing miracle would have played out differently in the
two alternative scenarios that both see a doubling of manufacturing output by 2015 compared
to the baseline miracle economy. As expected, lower adjustment costs lead to faster hiring

39We thus only use the time series variation and not a differences-in-differences identification design. The
model-based trend correction should ensure the validity of the approach and we do not think that it is credible to
compare foreign entrants to domestic entrants in a differences-in-differences design, because changes in domestic
entrants (e.g. due to changes in demographics) may likely show very different trends. An alternative with a DiD
design would be to compare potential entrant distributions across different countries or across different industries
that were differentially treated by the regulatory regime. This is an interesting approach that we leave for future
work.

40To reduce labor adjustment frictions, we consider a policy package that reduces both linear and convex adjust-
ment costs. For the linear hiring and firing costs, we consider a hiring subsidy for each new hire of around 25% of
the annual wage bill. Changes in convex costs are harder to map directly to tangible policies. Given our microfoun-
dation in terms of scarce managerial time and talent, we think of them as policies that improve managerial quality
in the economy such as training programs. We consider a feasible policy mix that halves the estimated convex cost
parameters (for hiring and firing) – in line with the lower end of annually estimated adjustment cost parameters
that we find in the data. For aggregate technology in manufacturing, zt, we consider a policy that raises its annual
growth by a constant rate to the degree that manufacturing output in 2015 is the same as in the adjustment cost
counterfactual.
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Figure C.5: Main miracle economy counterfactuals.

and thus faster transitions such that output growth is initially higher. With lower adjustment
costs, far more large manufacturing plants emerge, driving up the average plant size. Growth
in manufacturing technology, on the other hand, makes all plants more productive, leading to
more entry and less exit of small plants, a stronger left tail and a much lower covariance of
idiosyncratic productivity and resources.
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Chapter 2

The Aggregate Costs of Political
Connections

Jonas Gathen1

Abstract

This paper quantifies the aggregate costs of political connections using a general equilibrium
model in which politically connected firms benefit from output subsidies and endogenously
spend resources on rent-seeking activities. The model is structurally estimated using rich firm-
level data for the Indonesian manufacturing sector and a firm-level measure of political con-
nectedness based on a natural experiment from the authoritarian rule of Suharto at the end of
the 1990s. A major innovation is to non-parametrically identify the output subsidy from dif-
ferences in distributions of revenue-based total factor productivity (TFP) across connected and
non-connected firms. In general equilibrium, both the distribution and the level of subsidies
to connected firms matter. I find that subsidies to connected firms are too high and dispersed,
costing the economy between 1.0-4.7% of aggregate output. At most, 45% of these output
costs are due to the misallocation of factors of production towards connected firms. The large
remainder is explained by the costs of subsidizing connected firms instead of putting saved
subsidies to more productive use.

1Toulouse School of Economics; j.gathen@posteo.de. I am indebted to my advisors Fabrice Collard, Christian
Hellwig and Stéphane Straub for their support throughout this project. I further thank, in no particular order, Ben
Moll, Beatriz Simon Yarza, Felipe Brugués, Tim Lee, Nicolas Werquin, Mathias Reynaert, Matthias Meier, Patrick
Fève, Ferenc Szucs, Mounu Prem and all participants at the TSE Macro workshop, the EEA/ESEM conference
2021 and the Mannheim Internal Seminar for helpful comments. I want to thank Bob Rijkers for sharing data,
feedback and helpful information on using the measure of political connections for Indonesia used in this paper
and Mushfiq Mobarak for kindly sharing their measure of political connections. I want to thank the World Bank
Jakarta team, especially Massimiliano Calí, for gratefully sharing the manufacturing firm-level data for Indonesia
including much-improved capital series and providing helpful feedback and suggestions on the project. This pa-
per has been funded by the Agence Nationale de la Recherche under grant ANR-17-EURE-0010 (Investissements
d’Avenir program). I am also especially grateful to Alexandre Gaillard and Oscar Fentanes for many discussions.
All remaining errors are my own.
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2.1 Introduction

What are the economy-wide costs of a few corrupt elites? There is strong anecdotal and quan-
titative evidence that autocrats and their inner circles obtain special economic privileges for
their businesses to amass large fortunes. For example, wealth in excess of one-quarter of GDP
was attributed to Putin’s inner circle in Russia (Aslund 2019) and Tunisia’s former dictator
Ben Ali (Rijkers, Freund, and Nucifora 2017). This accumulation of wealth in the hands of a
few politically connected elites and their businesses comes, among others, from corruption,
unfair competition and systematic property rights violations and therefore is the sign of larger
distortions that matter for the aggregate economy.

This paper systematically quantifies the costs that a few connected firms can pose for the en-
tire economy. A motivating example makes the costs of political connections that this paper
quantifies more explicit. In 1996, the Indonesian government decided to promote its national
car industry by offering a generous combination of various tax and tariff exemptions to se-
lected firms. Seemingly by coincidence, one day before the policy announcement, Suharto’s
son created a local car manufacturing company that ended up becoming the sole beneficiary
of the government tax exemptions. These tax exemptions were awarded despite the company
not operating a single car assembly line. Eventually, another presidential decree by Suharto
allowed his son’s company to import cars instead and sell these at an effective tax rate that
was about 90% lower than that faced by competitors (for details, see Hale 2001). Additionally,
the government further supported the company by directly buying its cars. This example il-
lustrates two main economy-wide costs of political connections. First are misallocation costs:
direct and indirect subsidies led the connected car manufacturer to increase its operations and
demand more inputs, pushing up input prices and crowding out productive capital and labor
from other firms in the economy. These misallocation costs depend crucially on (1) how the
government selects connected firms, (2) the extent of the subsidies and (3) whether the subsi-
dies alleviate other distortions in the economy. The second main costs of political connections
are opportunity costs of public funds: direct and indirect subsidies to connected firms are costly
because these resources could be spent on more efficient development objectives.

In Indonesia, only 1% of firms are connected, but they are disproportionately large, making up
15% of total (value-added) revenue. The average connected firm is around twelve times larger
than the average non-connected firm, which also holds within narrowly defined industries.
I show this by drawing on detailed annual firm-level manufacturing census data and previ-
ous micro-empirical work by Mobarak and Purbasari (2006), who identify connected firms in
Indonesia under the authoritarian rule of Suharto at the end of the 1990s using a natural ex-
periment.2 A key question to quantify economy-wide distortions from political connections is
how much of this size difference is due to political connections and how much is due to other
firm fundamentals that we may simply call productivity. I use a structural model to disentangle
the role of selection from the benefits of political connections and quantify the costs of favors
to connected firms. In the model, firms flexibly spend resources on rent-seeking activities to
obtain an output subsidy that can be seen as a reduced-form net transfer from the govern-

2The natural experiment follows Fisman (2001) and identifies all stock-listed firms that benefit from connec-
tions by looking at stock-price fluctuations in response to plausibly exogenous shocks to the health of dictator
Suharto. Mobarak and Purbasari (2006) then find the remaining connected firms by exploiting a highly concen-
trated ownership network and link all connected firms to the micro-data.

98



ment.3 The major methodological innovation of this paper is to non-parametrically identify
the unobserved output subsidy from differences in distributions of revenue-based total factor
productivity (TFP) across connected and non-connected firms. I do so using a type of quantile
treatment effect (QTE) estimator with endogenous selection into treatment. Finally, combining
estimated subsidies with a full general equilibrium model allows to quantify the aggregate
costs of political connections.

The identification of subsidies is difficult because they do not just enter as “wedges” that dis-
tort model-based first-order conditions as usually studied in the misallocation literature (Hsieh
and Klenow 2009), but they also directly distort observed revenue. A key contribution of this
paper is to show how to identify subsidies non-parametrically, that is, without making a func-
tional form assumption on how rent-seeking activities buy government benefits. Identification
only draws on a revenue-based measure of total factor productivity (TFP) for connected and
non-connected firms. This measure of TFP captures a combination of subsidies and actual
productivity. To separately identify them, I crucially rely on two main assumptions. The first
is a monotonicity restriction that ensures that firms with the highest measured TFP also have
the highest productivity. This restriction does not mean that subsidies need to increase in pro-
ductivity, only that subsidies cannot decline too fast with firm productivity. The assumption
can also be indirectly tested. The second main assumption is on the selection of politically
connected firms, and is more restrictive. Specifically, I parameterize how connected firms are
selected, making estimated subsidies dependent on the degree of selection.4 The benefit of this
assumption is that it gives intuitive (and estimable) bounds on subsidies, spanning from the
case of no selection - connected firms being a representative sample of all firms - to the case of
maximal positive selection where most TFP is actual productivity.5

The structural estimation is based on a matching procedure that exploits observed non-connected
firms that do not receive subsidies. The idea is to selectively sample firms from the population
of non-connected firms and use the monotonicity restriction to order and then match them
to the observed sample of connected firms to back out their productivities. Estimated subsi-
dies reveal a high degree of selection, especially at the bottom of the productivity distribution.
Based on both bounds, the least productive politically connected firm is still more productive
than 40% of non-connected firms. However, despite connected firms being selected, estimated
subsidies are sizable. For the average connected firm, the government subsidizes at least 40%
of output or, equivalently, pays a price markup of at least 65%.

With the estimated subsidies in hand, I show that a structural model of endogenous rent-
seeking can almost perfectly explain them quantitatively. The structural model is needed to

3This subsidy captures many of the channels through which political connections matter, such as lower taxes
due to tax avoidance and evasion (Johnson and Mitton 2003; Do, Nguyen, and Tran 2017), output and input sub-
sidies, preferential access to government contracts, state-owned land and natural resources (Brugu’es, Brugu’es,
and Giambra 2018; Chen and Kung 2018; Schoenherr 2019; Straub 2014; Szucs 2017) as well as preferential access
to institutions and infrastructure (Fisman and Wang 2015). While the identification of benefits allows for any com-
bination of these factors, subsequent welfare estimates rely on the government paying for the benefits and them
entering through revenue, as is the case for tax evasion, government subsidies and government demand.

4This differs from standard approaches in the quantile treatment effect (QTE) literature who either feature
the standard QTE without selection into treatment (Doksum 1974; Lehmann and D’Abrera 1975), selection based
on observables (Firpo 2007) or instrumental variable approaches with general selection on unobservables (Cher-
nozhukov and Hansen 2005).

5There is good evidence that connected firms are negatively selected within subsets of large firms, such as listed
firms or firms eligible for government contracts (e.g. Gonzalez and Prem 2019; Schoenherr 2019; Szucs 2017). My
results are in line with this since, conditional on firm size, politically connected firms are less productive.
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infer unobserved rent-seeking activities, which affect input prices in general equilibrium and
hence the aggregate costs of political connections. In the model, rent-seeking activities of a firm
are organized within a department that is in charge of lobbying, tax evasion, legal affairs and
bribery. Connected firms then endogenously choose the size of this rent-seeking department.
The estimated model shows decreasing returns to rent-seeking activity and convex costs that
increase both in rent-seeking activity and firm size. Model-implied subsidies explain more
than 95% of the variation in estimated subsidies for both bounds. The economic intuition is
that firms optimally trade-off investing in rent-seeking activities that they use to buy subsidies
with trying to stay below the radar of opposing interest groups and public scrutiny. In the data,
connected firms with intermediate levels of productivity receive the largest subsidies. Through
the lens of the model, these firms are at a sweet spot where they are productive enough at rent-
seeking while being small enough to receive little public scrutiny. Based on the estimates,
connected firms differ widely in how much they spend on rent-seeking activities. The largest
connected firms spend less than 2% of their input costs on rent-seeking, while smaller and
less productive firms benefit from receiving less attention and spend up to 30% of their input
costs on rent-seeking. As a validation of these estimates of unobserved rent-seeking activities,
I show that they align with recent quantitative evidence on high-level rent-seeking activities,
as evidenced in the Odebrecht corruption scandal (see Campos et al. 2021).

The last step to quantify the aggregate costs of political connections is to consider firms’ deci-
sions in a simple general equilibrium model with competitive capital and labor markets. Even
though connected firms are more productive than the average firm, and there is some rationale
to subsidize them, estimated subsidies are far too large and dispersed to be efficient. Accord-
ing to the baseline estimates, the total annual output costs of political connections are 1.0-4.7%.
Despite the focus in the literature on misallocation costs, I find that at least 55% of the costs of
political connections are driven by opportunity costs of public funds as subsidies would be more
efficiently spent on reducing distortionary taxes for all firms in the economy. The remainder
is driven by capital and labor being misallocated. Connected firms end up much larger than is
socially optimal, crowding out resources from other, non-connected firms in the economy. Al-
most all misallocation of resources happens across and not within firms because rent-seeking
activities are concentrated in a few connected firms. I find even narrower welfare bounds and
higher output costs ranging from 4-6.5% when considering the detrimental effects of politi-
cal connections on the provision of public goods and increasing market power. These results
are robust to further heterogeneity in industry- and connections-type and different forms of
measurement error.

Given that a large part of the costs come from inefficiently high subsidies to connected firms
that do not receive enough public scrutiny, I find high returns to increase monitoring of rent-
seeking and corruption in the economy. Conservative estimates suggest policies that double
all existing monitoring activities as long as extra monitoring costs are less than 0.1% of GDP -
a realistic assumption considering that such extra spending amounts to 10x the global annual
budget of Transparency International.6 In summary, a few connected firms can pose high
societal costs, and curbing their influence can have large returns.

The structure of the paper is as follows: Below, I discuss the related literature and contribution.

6This is at Indonesia’s 1997 GDP. See: https://www.transparency.org/en/the-organisation/
our-operating-budget. Accessed on May 12th, 2022.

100

https://www.transparency.org/en/the-organisation/our-operating-budget
https://www.transparency.org/en/the-organisation/our-operating-budget


Section 2 discusses the measure of political connections in the Indonesian data and how con-
nected firms differ from non-connected firms. In section 3, I present and structurally estimate
a model that can explain size differences between connected and non-connected firms and en-
dogenizes subsidies. Section 4 quantifies the economy-wide costs of political connections. Key
extensions of the baseline model and various robustness results are in section 5, while the last
section concludes.

Literature

The key contribution of this paper is to provide quantitative estimates of the aggregate costs
of political connections in general equilibrium. A growing micro-empirical literature has doc-
umented how favors to connected firms drain government resources7 and lead to large al-
locative inefficiencies.8 However, quantifying the aggregate costs of political connections has
remained an elusive quest.9

Garcia-Santana et al. (2020) consider costs of political connections in general equilibrium but
do not have firm-level evidence of political connections, forcing them to draw on sectoral esti-
mates of corruption. The firm-level data allows to estimate firm-level subsidies directly. To the
best of my knowledge, this paper is the first to propose a method that allows to estimate sub-
sidies without imposing a functional form for the returns of rent-seeking.10 Non-parametric
identification matters; I find robust evidence for hump-shaped subsidy schedules in firm pro-
ductivity, which rejects parametric rent-seeking technologies used in the rest of the literature
(e.g. Akcigit, Baslandze, and Lotti forthcoming; Garcia-Santana et al. 2020; Arayavechkit,
Saffie, and Shin 2018; Huneeus and Kim 2021). I show that standard models of rent-seeking
need to feature increasing costs of rent-seeking activities to rationalize this empirical pattern
and propose a simple functional form that can explain estimated subsidies, while being in line
with observed spending on rent-seeking activities in other contexts (e.g. Campos et al. (2021)).

Arayavechkit, Saffie, and Shin (2018) and Huneeus and Kim (2021) both study the aggregate

7For example, Chen and Kung (2018) find that connected firms in China pay between 55-60% less for state-
owned land.

8Haselmann, Schoenherr, and Vig (2018) show extensive misallocation of bank credit between connected firms
and banks in Germany and Schoenherr (2019) finds that politically connected firms in Korea win a larger number
of government contracts and that they execute these contracts systematically worse and at higher costs than non-
connected firms. Schoenherr (2019) estimates that three quarters of the costs of contract misallocation are due
to selecting the wrong firms to give contracts to. Similarly, Brugu’es, Brugu’es, and Giambra (2018) find that
connected firms are more likely to win discretionary government procurement contracts in Ecuador and that these
firms charge higher prices and are less efficient. Szucs (2017) shows that connected firms in Hungary sort into
government procurement contracts that are allocated with higher bureaucratic discretion and finds evidence that
these connected firms are of lower productivity. In contrast, Bertrand et al. (2018) does not find evidence that
connected firms receive higher benefits from the state in France.

9Few papers looked at welfare, e.g. Faccio (2006); Fisman (2001); Gonzalez and Prem (2019); Martinez-Bravo,
Mukherjee, and Stegmann (2017); Straub (2014); Gonzalez, Prem, and Urz’ua (2018); Chen and Kung (2018); Fisman
and Wang (2015); Haselmann, Schoenherr, and Vig (2018); Schoenherr (2019). Notable recent exceptions are Akcigit,
Baslandze, and Lotti (forthcoming), Bai, Hsieh, and Song (2020), Garcia-Santana et al. (2020), Arayavechkit, Saffie,
and Shin (2018) and Huneeus and Kim (2021). Brugu’es, Brugu’es, and Giambra (2018), Szucs (2017) and Koren et
al. (2015) also look at costs of rent-seeking focussing exclusively on partial equilibrium effects.

10This rent-seeking technology is similar to the idea of a “concealment technology” (Cremer and Gahvari 1994)
or evasion technology (e.g. Slemrod and Yitzhaki 2002) used in the tax evasion literature. It is closer to the idea
of tax avoidance (see Slemrod and Yitzhaki 2002; Slemrod 2001) in that I model political connections without
risk, firms know how much taxes they have to pay this period and are only uncertain about future tax payments
as political connections may change. This seems to be more in line with how connections work in developing
countries (e.g. see Hoang 2018; Chen and Kung 2018).

101



costs of lobbying in the US, which they infer from firm-level lobbying expenditures and size
distortions. The novelty in both papers is that they directly observe lobbying activity. I study
the aggregate costs of rent-seeking in a context that is corruption-rife and non-democratic and
where lobbying data is not available and would only capture a small portion of overall rent-
seeking behavior. To quantify the aggregate costs of rent-seeking, one requires knowledge on
the returns from rent-seeking as well as the extent of rent-seeking. My approach - using only
information on standard firm inputs and output as well as whether a firm is connected or not -
allows to flexibly identify returns and infer unobserved rent-seeking activities with additional
assumptions in a second step. This second step is not needed if data on rent-seeking activities
is directly available. Given the lack of data on rent-seeking activities - especially in corruption-
rife contexts where rent-seeking activities are likely the most harmful - the approach in my
paper to study the welfare costs of rent-seeking is applicable across many different contexts.

The paper is also complementary to Bai, Hsieh, and Song (2020) and Akcigit, Baslandze, and
Lotti (forthcoming) in that I provide quantitative estimates on the costs and benefits of po-
litical connections that help to better understand welfare implications. Bai, Hsieh, and Song
(2020) show how bureaucrats in China favor firms to help them avoid bad institutions and
growth distorting regulation. I find that costs greatly outweigh benefits on aggregate. Akcigit,
Baslandze, and Lotti (forthcoming) show important evidence for dynamic losses from politi-
cal connections through a lack of innovation. I abstract from such dynamic losses because the
data, unfortunately, does not allow me to study how connections change at the firm-level over
time. Since I abstract from dynamic losses, my estimates should be seen as lower bounds on
the costs of political connections.

The paper also strongly relates to the misallocation literature. Economically, I find that most
costs from political distortions are due to real opportunity costs of public funds and not due
to the misallocation of factors of production - a forceful reminder of the limitations from fo-
cussing only on misallocation losses. Methodologically, the paper speaks to direct and indirect
approaches in the misallocation literature (e.g. Restuccia and Rogerson 2017). An interesting
feature of this paper is that it combines the direct and indirect approaches by flexibly captur-
ing different distortions when estimating subsidies with minimal structural assumptions and
only later linking them to a full structural model. The paper also contributes separately to both
strands of this literature. On the direct side, it adds to the literature by focussing on political
connections as one particular friction.11

On the indirect side, most quantitative empirical work has followed Hsieh and Klenow (2009)
in inferring general distortions from wedges in first-order conditions that lead to observed
variation in factor shares (this also includes Garcia-Santana et al. (2020) and Huneeus and
Kim (2021)). By assumption, the wedge approach captures distortions that only indirectly af-
fect output and inputs via sub-optimal decisions. This paper takes the opposite and neglected
approach of identifying “direct” distortions from differences in TFP distributions across con-
nected and non-connected firms.12 I term this a subsidy approach, a quantitative version of

11For other papers following this direct approach, see the literature cited in Restuccia and Rogerson (2017).
Among papers that follow a direct approach, Guner, Ventura, and Xu (2008) is similar in that it also considers a
distortion that firms internalize and that directly affects the measured productivity distribution.

12TFP in this paper is TFPQ in the setup by Hsieh and Klenow (2009), and they treat it s as a fundamental, while
I show that it includes a combination of subsidies and fundamental productivity. Hsieh and Klenow (2009) and
wedge approaches in their spirit assume that one observes undistorted (pre-wedge) output, while I instead assume
that we can only observe distorted (post-subsidy) output.
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Restuccia and Rogerson (2008) where subsidies are endogenous and identified using micro-
data. Given that subsidies are identified from fundamentally different variation in the data, I
show in a key extension in Section 5 how one can combine the subsidy and wedge approaches,
allowing for different wedge distributions for connected and non-connected firms. In this case,
a further benefit of my estimation approach is that it directly gives a control group from which
one can infer counterfactual wedges - a key issue in wedge approaches. In an application, I
show how these counterfactual wedges can quantify additional costs of political connections
that stem from market power. A limitation of the subsidy approach is that it cannot distinguish
between an output subsidy and input subsidies, and I capture all subsidies under a single out-
put subsidy throughout.

Compared to the literature, the estimated costs of a few politically connected firms are high.
I find that 1% of firms explain up to 20% of the total costs of misallocation found in Hsieh
and Klenow (2009).13 In contrast to Restuccia and Rogerson (2008), this is in a setup where
subsidies are even positively correlated with productivity. The quantitative results are also in
line with recent micro empirical research that has found productivity improvements and re-
ductions in frictions (Abeberese et al. 2021) as well as positive competition effects (Hallward-
Driemeier, Kochanova, and Rijkers 2021) in the wake of Indonesia’s democratisation process
and the fall of previously connected firms. More importantly, the structural setup in this paper
shows how a decline in political connections leads to a reallocation of government spend-
ing and productive resources, reduces frictions and increases competition that in turn drive
growth and development. Compared to other estimates on the costs of political rent-seeking,
I find around 50% higher costs than Huneeus and Kim (2021)’s estimated costs of lobbying
in the US. One might have expected even larger costs given the focus on the overall effect of
rent-seeking in a highly corrupt regime. However, it is important to note that the costs of po-
litical connections studied here do not only depend on the extent of rent-seeking but also on
the efficiency of public spending and the level of baseline distortions that rent-seeking may
potentially ameliorate. A lower efficiency of public spending and higher baseline distortions
in Indonesia explain why costs of rent-seeking can be of a similar magnitude in developing
and developed countries.

2.2 Political Connections in Indonesia

The starting point is a good measure of political connections for which I draw entirely on
Mobarak and Purbasari (2006). I first introduce their measure and the firm data and then
briefly highlight key empirical regularities that will inform subsequent modelling choices.

Identifying connected firms in Indonesia

Indonesia under the rule of dictator Suharto at the end of the 1990s was characterized by a
vast patronage network that extended from the capital city of Jakarta down to the village level
(Fisman 2001; Martinez-Bravo, Mukherjee, and Stegmann 2017). By allocating public contracts,
concessions, credit, and extra-budgetary revenues, a network of elites closely connected to the

13I take the market power and wedge estimates in this paper that are closest to models in the misallocation
literature. I find aggregate productivity costs between 7.7-9.9%, computing aggregate productivity as Zt =

Yt

Kα
t L

β
t

,

which is comparable, but not identical to the setup in Hsieh and Klenow (2009).
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state administration was able to amass large amounts of wealth (see Hadiz and Robison 2013;
Robison and Hadiz 2004). Such economic systems of patronage are, unfortunately, still widely
prevalent around the world (e.g. Aslund 2019; Chen and Kung 2018; Diwan, Malik, and Atiyas
2019). Based on comparative statistics such as Transparency International’s Corruption Index,
today’s Indonesia is similarly corrupt as countries such as Russia, Vietnam, Mexico and Brazil.

There is also strong evidence that political and economic elites held onto power after the fall
of the Suharto regime in the aftermath of the Asian Financial Crisis in 1997 (see Robison and
Hadiz 2004; Martinez-Bravo, Mukherjee, and Stegmann 2017). Still, recent empirical work
finds that the eventual democratisation process led to productivity improvements and reduc-
tions in frictions among firms (Abeberese et al. 2021) and that this was at least in part driven
by an increase in competition after the fall of previously connected firms (Hallward-Driemeier,
Kochanova, and Rijkers 2021). In this paper, I will be able to quantify a number of economic
mechanisms through which these effects played out.

At the same time, Indonesia is exceptional for providing several rich data sources that have
allowed scholars to identify politically connected firms and link these to detailed annual firm-
level panel data. Specifically, this paper draws on the Annual Manufacturing Survey (Survei
Tahunan Perusahaam Industri Pengolahan) collected by Indonesia’s Central Bureau of Statis-
tics (Badan Pusat Statistik), which covers all formal manufacturing establishments with more
than 20 employees. Based on the GGDC 10-sector database, these account for about 30% of
all value-added manufacturing output in Indonesia (Fentanes and Gathen 2022). The survey
contains detailed industry information (up to 5-digit), employment, production, and other
firm characteristics and has been used extensively in the Economics literature (e.g. Amiti and
Konings 2007). I combine this with the measure of political connections from Mobarak and
Purbasari (2006), who identified politically connected firms and already linked these to firms
in the survey.

Mobarak and Purbasari (2006) identify connected firms in two different ways. In this paper,
I use the union of the two sets of firms as my main measure of whether a firm is politically
connected. The first set of firms is identified by tracing firms that were directly owned and
founded by blood relatives of Suharto. This set excludes firms whose owners might have
strategically married into the Suharto family. For the second and more comprehensive set of
firms, Mobarak and Purbasari (2006) draw on the natural experiment in Fisman (2001). Fis-
man (2001) uses news about plausibly exogenous health issues of dictator Suharto in various
periods between 1995-1996 and looks at responses to firms’ stock prices on the Jakarta Stock
Exchange around these events. The idea is that news about the deteriorating health condi-
tions of the dictator should negatively affect the stock price of firms that benefit from being
politically connected to the dictator. The added benefit of the Indonesian context is that the In-
donesian regime was highly centralized around the dictator, so shocks to the dictator’s health
should affect any listed connected firm. Mobarak and Purbasari (2006) then link the identified
listed connected firms to non-listed connected firms by tracing all other firms that share own-
ership and management through conglomerate structures. As Claessens, Djankov, and Lang
(2000) and Carney and Child (2013) show, most firms belong to larger conglomerate structures
owned by specific families and ownership and control is rarely separated in Southeast Asian
firms, including Indonesia. At last, Mobarak and Purbasari (2006) link the set of identified
connected firms to the manufacturing census, leaving a sample of 241 firms, of which 89 firms
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Figure 2.1: Output distribution: Connected vs. non-connected firms

Notes: Distributions of firm-specific real value-added output (in 2010 USD in 000’s) for cross-section of Indonesian
firms in 1997 based on Statistik Industri, the Indonesian manufacturing firm census. Connected vs. non-connected
firms are identified as in Mobarak & Purbasari (2006). Non-connected firms: N = 18,317. Connected firms: N = 241.

are identified as being owned and founded by blood connections of Suharto.

I provide more detailed information on each of the steps in Appendix A.1 and discuss the
role of measurement error in Section 5. However, it is important to highlight three key fea-
tures of this data. First, this definition of political connections captures “high-level” political
connections and does not capture more local connections of firms to local authorities in the bu-
reaucracy or police. The reason is that the approach only captures firms linked to conglomerate
structures that either belong to Suharto’s blood family or include at least one listed firm that is
identified via the natural experiment. Second, the measure of political connections is different
from state-owned enterprises, but there is some overlap. About 15% of connected firms in the
data can be classified as at least partly state-owned, while the remaining 85% of connected
firms see no state ownership. I further discuss the role of state ownership in Section 5. At last,
the approach identifies a snapshot of the connected manufacturing firms in 1994-1997, shortly
before the Asian Financial crisis in 1997/8. Throughout, I consider only data before the Asian
Financial Crisis, because I do not observe changes in connections after the crisis.

Differences between connected and non-connected firms

Figure 2.1 shows the firm-size differences in value-added output between connected and non-
connected firms for the cross-section of Indonesian manufacturing firms in 1997, the year be-
fore the crisis. The average connected firm is about twelve times larger than the average non-
connected firm, but there is also considerable overlap in output across the two distributions.
In fact, there exist non-connected firms that are smaller than the smallest connected firm and
non-connected firms that are larger than the largest connected firm. The size distribution of
non-connected firms is visibly more skewed and more dispersed. One way to see the disper-
sion is that the coefficient of variation is more than four times larger for the size distribution of
non-connected than for connected firms (13 vs 3).

Table 2.1 documents the average size differences between connected and non-connected firms
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Table 2.1: Within-industry size ratios of average connected over average non-connected firms

Within industry
unconditional 2-digit 3-digit 4-digit 5-digit

Ratio 11.96 14.19 13.51 17.74 19.93
# industries 1 9 31 115 302
# industries w/ connected firm 1 9 26 62 103

Details:
Data is real value-added output data for the cross-section of Indonesian manufac-
turing firms in 1997 based on Statistik Industri. Size ratios are computed based on
the ratio of the average size for connected vs. the average size of non-connected
firms within each considered industry and then averaged across industries using the
number of connected firms in each industry as weight. Non-connected firms: N =
18,317. Connected firms: N = 241.

within industries. I separately compute the average output of all connected and non-connected
firms and compute their ratios by industry. I then take these size ratios and average over
them to derive an economy-wide size ratio, using as weights the number of connected firms
in each industry. Column 1 reports the average size ratio without industry heterogeneity, and
Columns 2-5 report ratios looking respectively within 2-, 3-, 4- and 5-digit industries. I find
that connected firms are not only considerably larger on average than non-connected firms, but
these size differences are just as large or even larger within industries. Even within narrowly
defined industries, the average connected firm is more than 12 times and up to 20 times larger
than the average non-connected firm. Outliers do not drive this pattern. As for the distribution
of connected firms across industries, connected firms are widely dispersed. Only about 1.3%
of all firms are connected, but connected firms still show up in all nine 2-digit industries, 26
out of 31 3-digit industries and about one-third of all roughly 300 5-digit industries. This dis-
persion across industries suggests that size differences are not driven by selection into specific
industries.14

2.3 Quantifying the role of connections: A structural approach

This section develops a simple model of heterogeneous firms similar to Restuccia and Roger-
son (2008) without entry and exit, where firms make static choices of production inputs. Size
differences between connected and non-connected firms in the model are driven by funda-
mental differences in idiosyncratic productivity and differences in benefits from political con-
nections. Benefits from political connections are modelled as idiosyncratic output subsidies,
which in contrast to Restuccia and Rogerson (2008), are endogenized via strategic spending
on rent-seeking activities similar to Garcia-Santana et al. (2020) and Akcigit, Baslandze, and
Lotti (2018). Based on this model, I show how to identify and estimate benefits from politi-
cal connections flexibly. The last part shows how these estimates align with a rich model of
endogenous rent-seeking behavior, which is subsequently used for partial and general equi-
librium counterfactuals.

14Further empirical results and robustness exercises are reported in Appendix A.2.
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2.3.1 Modeling political connections

Household & government

The household side of the model is kept as simple as possible, featuring a representative house-
hold maximizing life-time discounted utility:

∞∑
t=0

βtU(Ct)

subject to a CRRA intertemporal utility function U(Ct) and a per period budget constraint:

At+1 + Ct = (1 + rt − δ)At + wtLt +Πt + Tt

where households face no risk, provide labor supplyLt inelastically at potentially time-varying
wage wt, rent capital to firms at the potentially time-varying interest rate rt, face depreciation
of capital at rate δ and demand consumption goods fully elastically. Households further re-
ceive net profits by firms and net revenue Tt from the government. The household’s optimal
consumption-savings choice is then characterized by the standard Euler Equation:

1 = β(1 + rt+1 − δ)
U ′(Ct+1)

U ′(Ct)

In the baseline model, the government levies taxes, subsidizes connected firms and balances
its budget each period by paying any net revenues Tt lump sum to households.

Firms

The economy is populated by a fixed and discrete number of heterogeneous firms indexed by
i whose after-tax value-added revenues Ri are given by:

Ri = (1− τ̄)piyi = (1− τi)yi = (1− τi)zik
α
i l

β
i with α+ β ≤ 1 (2.1)

zi captures firm-specific productivity, ki and li denote the firm’s input choices of capital and
labor and α and β give the revenue elasticities of capital and labor respectively.15 Crucially,
as in Restuccia and Rogerson (2008), firms face idiosyncratic taxes τi that are directly paid to
the government. Specifically, all non-connected firms face a constant de jure revenue tax τi = τ̄

that is set to 25% to mimic Indonesia’s flat corporate income tax rate.16 Political connections in
the model solely enter by distorting these baseline taxes. As the key object of interest, define
the differential subsidy (1+ τ̃i) ≡ 1−τi

1−τ̄ , so that connected firms for whom τi < τ̄ are subsidized
and non-connected firms face τ̃i = 0. In this setup, taxes are like firm-specific output prices
given by: pi = (1 + τ̃i) (where prices of non-connected firms are constant and normalized
to unity). The differential subsidy τ̃i captures in a reduced-form way many of the channels

15One can think of this setup as heterogeneous firms producing a single output or as I show in Appendix A.3,
isomorphically as an economy with CES demand and differentiated inputs. In the latter case, zi flexibly captures
both productivity and demand. I do not separately identify the role of demand vs productivity. As is standard
in models of firm-size dynamics, both factors influence firm dynamics in the same way. For ease of exposition, I
simply refer to them as productivity in the following.

16There are reduced tax rates for small enterprises as well as public enterprises. The former do not play a role
in my model and do not show up in the Manufacturing census data. I ignore the latter or implicitly capture them
if they are counted as connected firms.
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mentioned in the introduction through which connected firms benefit from interactions with
the government. The direct identification and estimation of τ̃i in this paper allow for any of
these channels. However, to be consistent with the subsequent quantification of the costs of
political connections, I interpret distortions throughout as either direct tax distortions (tax cuts
or evasion) or as higher output prices that the government pays for - a public mark-up.

To allow the firm size of connected firms to flexibly depend on their benefits from political
connections, I endogenize the differential subsidy τ̃i(). To fix ideas and in line with the little
existing systematic evidence on high-level rent-seeking (Campos et al. 2021), think of rent-
seeking activities of a firm as being organized within a department in charge of lobbying, tax
evasion, legal affairs and bribery. The endogenous subsidy can then be thought of as the output
of the rent-seeking department. To make this clear, call τ̃ the Political Connections Technology,
which depends on four inputs: τ̃(lP , kP , εi, zi). First, connected firms endogenously choose
the size of their rent-seeking department by choosing the amount of capital, kP , and labor, lP ,
engaged in rent-seeking activities. Labor employed in rent-seeking activities captures lawyers
who renegotiate contracts and find tax loops, lobbyists who push for favorable legislation and
preferential contracts, management and other workers who are involved in managing rent-
seeking projects, meeting and cultivating political contacts and labor used by third parties
who specialize in facilitating rent-seeking and corruption (Hoang 2018). Rent-seeking capital
captures equipment and machines that are used for rent-seeking activities. These endogenous
rent-seeking activities are similar to Garcia-Santana et al. (2020) but more general than the
fixed cost of political connections as in Akcigit, Baslandze, and Lotti (2018).17 Furthermore, the
output of rent-seeking activities can directly depend on firm productivity zi to capture the idea
that more productive firms are also more productive at rent-seeking or that the government
may interact differently with more productive firms.

At last, whether the firm takes part in rent-seeking activities depends on an exogenous binary
variable εi that captures access to political connections. With ε = 0, individual firms are not
currently matched to a politician in power, do not have the ear of the political elite or have a
distaste for political connections, so subsidies are zero (τ̃i = 0). Similar to Akcigit, Baslandze,
and Lotti (2018), this captures the idea that political connections depend partly on luck, evi-
denced by the fact that despite political connections being profitable, most firms - including
some of the largest Indonesian firms - are not connected.18 I model the process of εi in a way
that nests the endogenous entry into political connections via a fixed cost (e.g. as in Huneeus
and Kim 2021).

Given the Political Connections Technology τ̃(lP , kP , εi, zi), how do connected and non-connected
firms choose inputs? All firm choices are static.19 Firms buy workers on the spot market at a
common wage w and rent assets at a rental rate r from households. Both assets and labor can

17Specifically, the fixed cost in Akcigit, Baslandze, and Lotti (2018) simply captures the remuneration of one
politician and is thus nested by rent-seeking activities in labor lP in the model above. Spending on political connec-
tions in Garcia-Santana et al. (2020) captures direct in-kind bribes that are captured by total rent-seeking activities
in my model.

18Later on, I show how to generalize ε to allow for a finite number of different types of connections. Types could
then be industries or different groups of connected firms, such as connected firms that are blood-connected to the
dictator Suharto versus connected firms who do not have this special link, nesting corruption-specific productivity
as in Garcia-Santana et al. (2020). While not specifically modeled, this setup also captures endogenous entry into
political connections via a fixed cost because of how the process of εi is specified.

19In the conclusion, I briefly discuss how the identification approach may also work in a dynamic setup.
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be used instantaneously either as productive inputs or for rent-seeking activities. εi may vary
over time (following a first-order Markov process). However, the realization of εi is known
to the firm at the beginning of a period before it makes any other production decisions. A
firm is thus fully characterized by productivity zi as well as the realization of εi and solves the
following static problem each period:

max
k,l,lP ,kP

{
π(zit, εit) ≡

(
1 + τ̃(lP , kP , εit, zit)

)
(1− τ̄)zitk

αlβ − wt(l + lP )− rt(k + kP )

}
(2.2)

This problem gives simple and intuitive static FOCs that say that firms should equalize the
marginal benefits and the marginal costs (as captured by the rental prices of capital and labor)
for both production and rent-seeking activities:

rt = α
Rit(k

∗, l∗, l∗P , k
∗
P )

k∗
=
∂τ̃(l∗P , k

∗
P , εit, zit)

∂kP
(1− τ̄)zitk

∗αl∗β

wt = β
Rit(k

∗, l∗, l∗P , k
∗
P )

l∗
=
∂τ̃(l∗P , k

∗
P , εit, zit)

∂lP
(1− τ̄)zitk

∗αl∗β
(2.3)

Based on a revealed-preference argument, firms show up as non-connected if they optimally
choose rent-seeking labor and capital such that τ̃ = 0.

Equilibrium

The aggregate resource constraint is given by: Yt =
∑

i zitk
α
itl

β
it = Ct + It. The focus in this

paper is on a steady state competitive equilibrium that is described by competitive prices (r∗, w∗)

that households and firms take as given and competitive allocations such that:

• the exogenously given set of firms all produce by optimally choosing capital, labor and
rent-seeking activities based on their realizations of (zit, εit)

• the household optimally chooses consumption and savings based on the Euler Equation
given above and consumption and savings are constant over time

• the government levies taxes and subsidizes connected firms and balances its budget each
period by transferring net revenue lump-sum to the household

• prices adjust such that capital demand and supply and labor demand and supply equal-
ize each period and these aggregates are constant over time

• the distribution of firms over (zit, εit) is at its stationary distribution

2.3.2 Identification of political connections

Taking a step back, it is important to highlight that the welfare implications of subsidies to
connected firms are ex-ante unclear in this setup. Given the baseline distortion of revenue taxes
that all firms face, there is a welfare argument for subsidizing connected firms.20 In the end,
whether subsidies to connected firms are harmful in comparison to no subsidies to connected
firms depends on at least three key margins: (i) How many firms become connected, (ii) the
distribution of subsidies as governed by the shape of τ̃(.) and (iii) the extent of socially wasteful
spending on rent-seeking activities that directly depends on the selection of connected firms

20As I show formally in Appendix A.4, in a setup with heterogeneous firms, decreasing returns to scale in
production and distortive output taxes, it is optimal to subsidize firms at constant rates (up to small general equi-
librium corrections) and distribute subsidies as widely as possible.
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as governed by ε.

To estimate the costs of political connections, it is important to capture all three margins flex-
ibly. The first margin is directly pinned down by observing the number of connected firms
in the data. In contrast, the other two margins must allow for considerable flexibility in how
connected firms are selected and how rent-seeking activities by connected firms translate into
firm-specific subsidies. The approach in this paper, as formally stated in Proposition 2, is to im-
pose functional form restrictions on the selection of connected firms, pose a weak assumption
on the shape of τ̃(.) and then back out τ̃(.) non-parametrically:

Proposition 2 (Main identification result). Given the previous setup and conditional on having
identified total factor productivity (TFP) defined as TFPi ≡ (1 − τi)zi one can separately identify τi
and zi based on the following two assumptions:

1. (Selection). Firms with access to political connections have been drawn from a known population
of productivities zi according to:

P(ε ̸= 0) =

cz
ρ
i , if zi ≥ z̄

0, otherwise

where c is a normalizing constant to ensure well-defined sampling.

2. (Monotonicity of TFP) The connections technology τ̃(.) is such that there is a monotonic map-
ping between TFPi and productivity zi for firms with access to political connections. Formally,
∂TFP (z,τ̃)

∂z = (1 + τ̃)(1− τ̄) + ∂τ̃
∂z (1− τ̄)z > 0 for τ̄ ∈ (0, 1) given and all τ̃ ∈ supp(τ̃).

The proof of this proposition is straightforward. The assumption on selection guarantees that
we can link an identified distribution of productivities to an observed distribution of TFP for
connected firms. In contrast, the monotonicity assumption allows linking moments of this
identified productivity distribution to moments of the observed distribution of TFP of con-
nected firms. We can then identify the entire subsidy distribution using τ(q) = TFP (q)/z(q)−1

for any quantile q.

There are several components in the proposition that are important to unpack. Beginning with
the monotonicity assumption on TFP, this assumption states that the ranking of connected
firms by TFP is identical to the underlying ranking of their productivities. This restriction on
the underlying Political Connections Technology τ̃(q), namely that (1 + τ̃) + ∂τ̃

∂z z > 0, is naturally
given for functions that are strictly increasing in rent-seeking activities, but exhibit any form
of decreasing, constant or increasing returns to scale. More generally, it also allows τ̃(q) to
be decreasing, only that any decline in τ̃(q) is not faster than the corresponding increase in
productivity. For example, this allows a Political Connections Technology where benefits from
political connections decline with firm size as this puts the firm into the public eye, making any
corrupt practices more difficult or where the Political Connections Technology is understood as
a reduced-form tax evasion technology where the probability of getting caught increases with
firm size. Importantly, the monotonicity assumption nests decreasing returns to scale functions
that have been considered in the literature (Akcigit, Baslandze, and Lotti 2018; Garcia-Santana
et al. 2020) and thus allows for testing their functional form assumptions formally.

The selection assumption is more restrictive and can be divided into two parts. First, identifi-
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cation requires observing a known population of productivities from which firms with access
to political connections are drawn. The setup in this paper makes this particularly suitable as
subsidies to connected firms are considered differential subsidies compared to non-connected
firms. Hence, the TFP of non-connected firms gives their underlying productivities up to a
known baseline revenue tax τ̄ . Furthermore, we need to assume that the productivities of non-
connected firms can be treated as the underlying population from which access to political
connections is drawn. Again, the setup in this paper is such that the sample of non-connected
firms is roughly 100 times larger than the sample of connected firms, making this population
assumption a natural choice. The last component for the first part of the selection assumption
is that the support of underlying productivities for connected firms is entirely contained in the
support of productivities of non-connected firms. This common support assumption is similar
to standard matching estimators and, as I show in the estimation part below, can be readily
verified in the data.

The second part of the selection assumption puts structure on the selection rule with which
firms receive access to political connections. The idea for identification is that given a selection
rule with which access to connections is drawn, one can selectively sample the productiv-
ities of connected firms using the population of productivities of non-connected firms. An
estimator can then simply be an average across many independently but selectively drawn
productivities. The functional form restriction is required to identify the selective sampling
process. To see this, note that without this assumption, one could draw arbitrary samples
of non-connected firms rationalizing any productivity distribution of connected firms within
the productivity support of non-connected firms. The functional form assumption allows for
considerable selection. One way to see this is to think of it as a setup in which connections
are formed at selective meetings where a minimal firm size is needed to access the meetings
and larger, more productive firms are more likely to meet or be approached by politicians at
that meeting. The pre-selection might be done directly by politicians or may capture fixed or
high variable costs to rent-seeking activity that are not worthwhile for firms below a certain
productivity/size threshold, capturing endogenous entry into political connections. Identifi-
cation results for the parameters of the selection rule are stated in Proposition 3:

Proposition 3 (Identification of the selection of connected firms and conservative subsidy
bounds). Given the assumptions in Proposition 2, the parameters of the selection rule that govern
access to political connections are set-identified under the following additional restrictions:

1. (conservative normalization): The subsidy of the connected firm with the lowest possible ob-
servable TFP is zero (τ̃q=0 = 0 for q giving the quantile of the underlying productivity distribu-
tion of connected firms).

2. (rational rent-seeking): Connected firms will never choose τ̃ < 0.

3. (independence as minimum selection): There is a lower bound for selection that is given by
ρ = 0 and z̄ = 0, the case of independence between ε and z.

Specifically, z̄ is point-identified under conservative normalization and independent of ρ. And ρ
is set-identified with ρ ∈ {0, ρ̄}, where ρ̄ is identified from the maximum ρ for which rational rent-
seeking still holds and another firm’s τ̃q>0 = 0. The model is rejected in case ρ̄ < 0. We can call identi-
fied subsidy distributions τ̃(q) based on the sets of parameters

{
{z̄, 0}, {z̄, ρ̄}

}
conservative bounds for

actual subsidy distributions.
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This proposition makes clear how the parameters z̄ and ρ allow for considerable selection of
connected firms. z̄ truncates the productivity distribution of non-connected firms from which
access to political connections is drawn and thus shifts the entire productivity distribution of
connected firms. One can also think of z̄ as giving an entry threshold given by a fixed cost of
entry into political connections. ρ allows for additional correlation between access to political
connections and underlying productivity within this truncated productivity distribution. The
distribution of subsidies is then identified from residual dispersion in TFP that is not explained
by selective sampling-implied variation in underlying productivities.

2.3.3 Estimation of political connections

Estimation of subsidies to connected firms proceeds in two steps. The first step estimates TFP
for all firms in the economy. In the second step, I use a quantile treatment effect (QTE) esti-
mator for subsidies that builds on Propositions 2 and 3 and uses a bootstrap-based matching
procedure. To estimate TFP, I follow a strictly model-consistent approach. In principle, any es-
timator for TFP as defined previously can be used in the first step. However, model consistency
ensures consistent partial and general equilibrium counterfactuals and a cleaner identification
and estimation of subsidies. In Section 5, I consider how results are affected by alternative TFP
estimation that allows for wedges and further production function heterogeneity.

The model-consistent TFP estimator consists of first estimating revenue function elasticities α
and β exploiting static first-order conditions of firms. These first-order conditions state that
revenue spending shares on productive labor and capital equal their respective revenue elas-
ticities. By assumption, revenue elasticities are identical across connected and non-connected
firms, so it suffices to use observed revenue spending shares for non-connected firms. This has
the benefit of not having to take a stand on whether reported input spending by connected
firms is misreported or partly includes spending on non-productive, rent-seeking activities.
Static first-order conditions of non-connected firms imply that observed revenue factor spend-
ing shares should be constant across firms. In the data, as shown among others in Hsieh and
Klenow (2009), there is strong variation in revenue factor shares even within narrowly de-
fined industries. In the baseline results, I treat the observed variation in factor shares as stem-
ming solely from measurement error in reported labor and capital spending centred around 0.
Specifically, I estimate α and β using median factor revenue shares across all non-connected
firms. Given estimates for α and β, I use observed firm revenue Rit and the model-implied
spendings on productive capital k∗it and labor l∗it to identify:

TFPi = (1− τi)zi =
Rit(k

∗
it, l

∗
it, l

∗
P , k

∗
P )

k∗αs
it l∗βs

it

(2.4)

Using model-implied spendings on productive capital and labor is crucial here. It cleans the
data from measurement error in labor and capital spendings, which shuts down all the varia-
tion used in Hsieh and Klenow (2009) and abstracts from any variation in factor shares due to
dynamic input choices (e.g. Asker, Collard-Wexler, and De Loecker 2014). It ensures that - con-
ditional on α and β - all variation in TFP is estimated from variation in observed revenue. The
implicit assumption here is that reported revenue is reported without measurement error. In
Section 5, I consider both measurement error in reported revenue and generalize the approach
to allow for both wedges and subsidies at the same time.
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Figure 2.2: TFP distribution: Connected vs. non-connected firms

Notes: Distributions of firm-specific TFP for cross-section of Indonesian firms in 1997 based on Statistik Industri,
the Indonesian manufacturing firm census. Connected vs. non-connected firms are identified as in Mobarak &
Purbasari (2006). TFP is identified as residual from production function estimation at the 1-digit industry level
(single production function across all firms) as explained in the text. The x-axis is on a log-scale. The dotted line
indicates the minimum TFP of connected firms after dropping the 3 lowest TFP connected firms. Non-connected
firms: N = 18,317. Connected firms: N = 241.

Figure 2.2 shows the estimated TFP distributions of connected and non-connected firms for
the cross-section of Indonesian manufacturing firms in 1997. The data shows that the average
connected firm has slightly less than 3.5 times higher TFP than the average non-connected firm,
and there is a large overlap in the two distributions. These size differences are considerably
smaller than the value-added output differences reported in Figure 2.1. Based on the baseline
model, TFP for non-connected firms is exactly equal to their productivity zi, so Figure 2.2
captures the entire productivity distribution of non-connected firms.

Given TFP, the second step of the estimation approach constructs a matching estimator that
matches each connected firm with a comparable non-connected firm for which: TFPi,NC =

z̃i,NC . For a given selection rule, Propositions 2 and 3 can be used to draw a set of connected
firms from the population of non-connected firms and match them according to their ordering
of productivities and TFP. In the case of sampling independent bootstrap samples, the ap-
proach matches the nth highest productivity firm in the bootstrap sample to the nth highest
TFP connected firm. The productivity estimate for each connected firm is the average over
all matched productivities for this specific connected firm. This non-standard, distributional
matching estimator is necessary as standard matching based on observables does not work
here. Standard matching approaches would require matching on observables that explain pro-
ductivity but are not directly affected by political connections. In Section 5, I show how the
approach can be extended to still control for further observables and that results are robust to
this. Treating non-connected firms as the underlying population and selectively sampling from
their productivities works well in this context as there are many more non-connected to con-
nected firms in the data. To verify the common support assumption for productivities, we can
first note that common support is fulfilled for TFP. The highest productivity of a non-connected
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firm is about 70% higher than the highest TFP among all connected firms. Furthermore, we
know that due to rational rent-seeking, τ̃i ≥ 0, so that TFPi ≥ z̃i, which establishes that there
is no connected firm with productivity higher than that of all non-connected firms in the data.
For the lower bound, I assume that no connected firms have lower productivity than all other
non-connected firms in the data. This assumption is very weak since connected firms are un-
likely to be that unproductive, and a violation of this assumption would imply unrealistically
high subsidies.

The parameters of the selection process are estimated as follows. Call the number of connected
firms NC and the sample of connected firms Ci, which is ordered by TFP. Under the assump-
tion of conservative normalization, the subsidy is zero for the connected firm with the lowest
possible productivity. Ci = 1 refers to the connected firm with the lowest productivity in the
data. Setting the subsidy to zero for this connected firm gives the most conservative estimate
of the lower productivity bound that is still in line with the data and the assumption of conser-
vative normalization without extrapolating beyond the lowest TFP connected firm observed.
It is conservative because it raises the productivity estimates for all connected firms and, in
turn, lowers their subsidy estimates. Since z̄ entirely depends on the lowest observed TFP
of connected firms, this estimator is susceptible to low-TFP outliers among connected firms,
which would drive up estimates of subsidies. Again, I take a conservative approach to bias
my estimates against finding high subsidies by dropping the three connected firms with the
lowest observed TFP. The dotted line in Figure 2.2 reports the baseline estimate for z̄. To es-
timate ρ̄, first define the truncated productivity distribution of non-connected firms Z̃(q)z̄ for
any quantile q. For the case of ρ = 0, sampling from the truncated productivity distribution
is uniform so that the subsidy distribution is given by τ(q) = TFP (q)/Z̃(q)z̄ − 1 for all uni-
formly spaced (NC − 1) quantiles. The estimator may also be referred to as a quantile matching
estimator. For the lower subsidy bound, one draws bootstrap samples from the truncated pro-
ductivity distribution according to the additional correlation ρ. The productivity estimate is
the average productivity across bootstrap samples for each connected firm. ρ̄ is the maximum
possible correlation ρ for which another subsidy estimate than for Ci = 1 becomes zero.

The resulting non-parametric estimates of the Political Connections Technology τi are shown in
Figure 2.3, plotted over the ordering of productivities. Both the estimated upper and the lower
bound subsidy schedules follow a hump shape over productivity; the subsidy first increases
and then decreases in absolute terms for highly productive firms. The shape is precisely esti-
mated based on the 95% pointwise bootstrap confidence bands given by the grey dotted lines.
The estimated shape follows from the TFP distribution of connected firms being less dispersed
and less skewed than the truncated productivity distribution and is not enforced by the esti-
mator. As shown in Section 5, the concave or hump shape also shows up when considering
wedges and industry- or type-specific subsidy schedules.

The estimate for ρ̄ is 0.93. This leads a firm with productivity similar to the largest connected
firm in the sample to be more than 23x as likely to be connected as a firm close to the estimated
productivity threshold. Importantly, point-estimated subsidies stay positive over the entire
distribution, which is not enforced by the estimation approach except for the connected firm
with the lowest TFP. We can thus use the bootstrap confidence bands as an overidentification
test for the assumption that τ̃i ≥ 0. The upper bound clearly passes this test except for the
largest connected firm whose subsidy is imprecisely estimated. And even though the lower
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Figure 2.3: Baseline subsidy estimates

Notes: Baseline non-parametric estimates of conservative subsidy bounds. Red lines give point estimates formed
by average estimated productivities across bootstrap samples respectively for the lower and upper bound. Grey,
dashed lines give point-wise 95% bootstrap confidence bands using 10,000 bootstrap samples. Lower bound esti-
mated to be given by p = 0.93. Estimates based on assumptions explained in the text and estimated using data on
cross-section of Indonesian manufacturing firms in 1997 based on Statistik Industri, the Indonesian manufacturing
firm census. Connected (N = 238, dropped 3 outliers) vs. non-connected (N = 18,317) firms are identified as in
Mobarak & Purbasari (2006).

bound estimate shrinks all subsidies towards zero, confidence bands in this case also clearly
rule out negative subsidy estimates.

Through the lens of the model, the estimated subsidy can be directly interpreted as the total
price premium paid by the government - a public mark-up. For the average subsidized con-
nected firm, this estimated public mark-up varies from around 65% for the lower bound to
about 150% for the upper bound. While it is difficult to directly compare these estimates to
other estimates in the literature, Schoenherr (2019) estimates average direct cost increases for
politically connected firms of around 30% for Korea. The above estimates are reasonable if
indirect subsidies such as tax evasion or direct input subsidies are of a similar magnitude to
direct output subsidies.21

2.3.4 Estimating endogenous rent-seeking activities

What can we learn from estimated subsidies about how firms invest in unobserved rent-
seeking activities? In the following, I estimate a Political Connections Technology that flexibly
captures benefits from investing in rent-seeking activities and costs and explains most varia-
tion in non-parametrically estimated subsidies. This Political Connections Technology that maps
from rent-seeking behavior to returns to rent-seeking is central in any model of rent-seeking
behavior Arayavechkit, Saffie, and Shin (2018), but has received little empirical validation to
date. In this paper, estimating the Political Connections Technology is crucial not just to ratio-
nalize estimated subsidies, but also to quantify the costs of political connections in partial and
general equilibrium where we need to know how political connections distort aggregate capi-

21It is important to note that while input subsidies are likely quantitatively important, they will be picked up
through the output subsidy but they are not isomorphic in this setup.
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tal and labor demand through rent-seeking activities.22

The previous literature has assumed variants of a Political Connections Technology where returns
to rent-seeking τ̃i are given by a decreasing returns to scale technology in rent-seeking activities
p Arayavechkit, Saffie, and Shin (2018). I show in Appendix A.5 that this functional form
cannot generate hump-shaped subsidy schedules as observed in the data. Hence, I extend and
generalize previously used functional forms by assuming the following Political Connections
Technology in rent-seeking p:

τ̃i(ε, z, p) = f(ε, z, p)− cost(z, p) = εzpθp − cpθczθz

In Appendix A.6, I provide two different micro-foundations for this functional form. One is
where firms bribe and lobby politicians who need to push for regulatory changes, preferen-
tial policies and access to government contracts, and an alternative micro-foundation where
firms bribe tax collectors to avoid taxes. In both cases, the first part captures benefits from
connections and nests the case of decreasing returns to scale considered in the literature. θp
captures the output elasticity with which bribes are funnelled to politicians via lobbying and
obfuscatory exchanges. It also captures the degree of returns with which either politicians or
tax collectors can allow for subsidies. Intuitively, this will be identified from the slope of the
increasing part of estimated subsidies. ε captures the level of benefits so that not having access
to political connections shuts down their benefits. Including z allows more productive firms
to also be more efficient at rent-seeking activities.

The second part of the technology captures costs of political connections. In both micro-
foundations, these costs capture the risk of being detected or having some benefits overturned
by other politicians who oppose policies in the political process, public scrutiny or by lawsuits.
The elasticity θc then captures the convexity or concavity of these costs and is identified from
the curvature at the top of estimated τ where subsidies change from increasing to decreas-
ing. c captures the level of these costs. Additionally, the term zθz captures in a simple way
the mechanism that costs of rent-seeking activities may be increasing in firm size, making it
harder for larger firms that are in the public eye to obtain subsidies and explaining why es-
timated subsidy rates τ are decreasing quickly for larger firms. θz is identified by how fast
subsidies decrease with productivity.

At last, I follow the previous model of rent-seeking in that connected firms employ work-
ers and capital in a rent-seeking department to oversee all rent-seeking activities within the
company. Since rent-seeking activities are not directly observed, I aggregate total rent-seeking
in labor and capital using a standard Cobb-Douglas aggregator: p ≡ kηp l

1−η
p . I assume that

η = α
α+β , which ensures that labor and capital are not differentially distorted, while ensuring a

realistic relative role for capital and labor in rent-seeking. To the same effect, one could assume
that rent-seeking activities p are intermediate goods bought from other firms.

Figure 2.4 shows the estimates for the lower and upper bound of the Political Connections Tech-
nology.23 The economic model fits estimated subsidies almost perfectly, giving anR2 of around

22Econometrically, estimating the Political Connections Technology also provides efficiency gains, because it can
be used to reduce the variance in productivity and subsidy estimates.

23Parameters are estimated using non-linear least squares (NLS), minimizing the sum of squared residuals be-
tween the non-parametric subsidies and subsidies implied by the model. I use R’s “L-BFGS-B” solver, which is a
box constrained quasi-Newton method, to solve for optimal parameter values.
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Figure 2.4: Model-implied subsidies vs. estimated subsidies

Notes: Fitting non-parametrically identified subsidies against estimates of subsidy based on functional form for
the Political Connections Technology. Estimates are at the 1-digit industry level, considering a single production
function across all firms. Parameters of the Political Connections Technology are chosen to minimize the sum of
squared residuals between the non-parametric subsidies from the data and the implied, optimal subsidies from the
model. The R2 is 94.7 percent for the upper bound and 95.1 percent for the lower bound compared to a constant
subsidy.

95% using a constant subsidy as the baseline comparison. Estimated parameters for the upper
and lower bound are very similar and differ mostly in the “level” parameters. Both bounds ex-
hibit strong decreasing returns to scale in benefits from rent-seeking activities (θp = 0.57−0.59)
and slightly convex costs (θc = 1.15− 1.2) in combination with sizable additional costs of rent-
seeking activities in firm size (θz = 2.33− 2.51). These additional costs of size are larger for the
lower bound and are important to match the faster decline in subsidies. The estimated model
generates an interesting trade-off due to the dependence of rent-seeking activities on underly-
ing productivity: Highly productive firms are also highly productive at rent-seeking activities,
but they are large and visible in the public eye, making any rent-seeking activities riskier. On
the other hand, less productive firms are less productive at rent-seeking activities, but they are
also less prominent in the public eye, making it easier to avoid detection. Based on the model
results, observed connected firms have positive subsidies because they are in the sweet spot
where they are productive enough to generate subsidies in the presence of detection costs and
not large enough yet to avoid too much public scrutiny. As Figure 2.4 shows, by extrapolating
model-implied subsidies for lower productivities, these subsidies quickly go to zero as costs
are too high compared to benefits from rent-seeking activities.

Based on the estimated model of rent-seeking, we can also look at implied spendings on rent-
seeking activities. The average connected firm spends between 5-10% of total labor and capital
costs on rent-seeking activities with large variation in these shares across connected firms.
Connected firms with the highest subsidies spend as much as 22-27% of input spending on
rent-seeking activities while spending quickly declines with firm size. The largest connected
firms spend negligible shares on rent-seeking activities. How do these numbers compare to
micro evidence on rent-seeking and lobbying activities by firms? Campos et al. (2021) look
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at judicial documents from the Odebrecht case, the anti-corruption case against a Brazilian
engineering and construction conglomerate that bribed hundreds of politicians and political
parties across Latin America. In this case, bribe payments alone were estimated to be around
1% of final project costs. Adding additional costs of rent-seeking going to lawyers and workers
employed in rent-seeking activities, this observed magnitude is well in line with the economic
model as long as we think of the Odebrecht conglomerate and its companies as being above
average in size compared to other connected firms.

2.4 Quantifying the costs of political connections

This section quantifies the costs of political connections using the estimated subsidies and
estimated Political Connections Technology. The main cost estimates are measured in output and
welfare losses compared to the counterfactual economy where political connections are absent.
In the last part of this section, I also quantify the benefits of public oversight to limit the role
of political connections by studying counterfactual increases in auditing.24 At last, I always
separately estimate effects for the conservative upper and lower bounds (denoted LB and UB)
and report bounds for all estimates throughout.

2.4.1 Baseline output and welfare losses from political connections

Table 2.2 reports the baseline estimates of the aggregate costs of political connections. The
presence of political connections costs the economy between 1.0-4.7% of aggregate output and
lowers aggregate wages between 1.3-5.6%. The baseline estimates come from comparing the
distorted economy with political connections in 1997 to a counterfactual economy where sub-
sidies to connected firms are entirely shut down and where the government lowers output
taxes to the extent that total government revenue without subsidies stays constant. One might
think of this setting as an economy where the government needs to finance a number of pub-
lic goods that require a fixed amount of spending and can only do so via distortive corporate
taxes. This counterfactual does not require to take a stand on how and why the government
spends resources as government expenditures apart from spending on connected firms is kept
constant. It is important to note that the baseline counterfactual does not abolish all distor-
tions in the economy; it only reduces size distortions of connected firms to the benchmark of
non-connected firms. I further assume that the 1997 distorted economy is in steady state and
compare it to the steady-state of the counterfactual economy.25 To solve for this counterfactual,
I jointly solve for the wage that clears the labor market and the tax rate that keeps tax revenue
equal to the baseline distorted economy. It turns out that abolishing subsidies to connected
firms allows the government to reduce distortive output tax rates from 25% to at least 22% and
up to 18%.

24Throughout, I use estimates of productivities and subsidies based on the estimated Political Connections Tech-
nology, which reduces estimation variance compared to the non-parametric estimates. The main results are almost
indistinguishable when using original estimates.

25Transition dynamics between steady states in the static setup are not particularly interesting and relatively
fast. Household savings slowly adapt to changes in capital demand. In the case where steady state capital demand
rises, interest rates will first spike up and then converge back to the steady state interest rate. While labor supply is
fixed, capital labor complementarity will also lead wages to slowly adapt. Relative consumption and output gains
depend on household preferences, while steady-state comparisons allow to abstract from specifying them. In the
case where the government productively invests tax revenue (considered further below), the stock of public capital
increases only slowly, leading to slower transition dynamics and a more muted price response.
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Before decomposing the aggregate costs of political connections, it makes sense to briefly dis-
cuss the baseline distorted economy as reported in Table 2.2. In the baseline distorted economy,
the average connected firm is estimated to be between five to nine times larger than the aver-
age non-connected firm. This number is different from the ratio of 12 reported in Table 2.1,
because we are now looking at firm gross output Yit instead of net output (1− τi)Yit reported
as value-added revenue in the data. Total output by connected firms accounts for up to 10%
total output in the economy. At last, the government effectively subsidizes connected firms.
Based on the upper bound estimates, the government spends about 25% of tax revenue on
subsidizing connected firms.

The output and labor income costs of political connections split up into two main costs. First,
is a misallocation cost where capital and labor is captured by highly subsidized firms instead
of reallocating these resources to more productive firms in the economy. Once subsidies are
eliminated, resources reallocate as connected firms downsize and prices in the economy adapt,
leading more productive non-connected firms to demand more inputs. The second main cost
is the shadow cost of public funds. There are costs to raising public funds for government ex-
penditures captured by the distortion that output taxes bring and by the opportunity costs of
public funds. In the baseline counterfactual, these costs are only captured by the distortion
of the output tax. To quantify the pure misallocation cost, I consider a counterfactual economy
where political connections are abolished, but where the shadow cost of public funds (the baseline
distortive output tax) is kept constant. Any additional revenue gains in this counterfactual are
redistributed lump-sum to households. As shown in Table 2.2, the misallocation cost in terms
of total output makes up between zero to 45% of the costs of political connections. That is, for
the lower bound, the negative effects from misallocating resources are exactly on par with the
benefits from political connections.

To better understand the mechanisms that are driving the misallocation cost, consider first the
partial equilibrium setting in which prices stay fixed (as reported in the first row of Table
2.2). The partial equilibrium counterfactual already reveals the extent of misallocation in the
distorted economy as firm size differences are now only driven by differences in fundamental
productivity. In partial equilibrium, abolishing political connections leaves choices of non-
connected firms entirely unchanged but leads to a drastic reduction in subsidies to connected
firms, leading them in turn to downsize by 40-80% for the average connected firm. In general
equilibrium, the reduction in firm size by connected firms decreases demand for capital and
labor, putting downward pressure on prices. Lower interest rates and lower wages incentivize
all other firms in the economy to increase their capital and labor demand, leading to an increase
in firm sizes for non-connected firms and pushing up prices again.26

As seen in Table 2.2 when reporting the relative contribution of the pure misallocation cost, these
forces on net leave wages 3-6% lower than they were in the distorted economy with political
connections. The drop in labor and capital demand from connected firms is only partly offset
by non-connected firms. In principle, this could also be driven by freeing labor and capital
from rent-seeking activities that can now be used in productive activities. However, according
to the structural estimates, rent-seeking capital and labor comprise less than 0.2% of aggregate
capital and labor and their effects on prices are correspondingly small. Households end up

26Note that in a stationary equilibrium, the interest rate stays unchanged because it is pinned down by house-
hold preferences: the fall in the interest rate leads households to dissave until the stationary interest rate is reached.
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Table 2.2: Main results: Aggregate costs of political connections

Outcomes: Output Welfare Wages Govt Revenue
LB UB LB UB LB UB LB UB

(Naive) PE costs -4.11% -4.92% -5.4% -5.73% 0.0% 0.0% 7.43% 26.61%
Baseline GE costs 1.05% 4.67% 1.02% 4.56% 1.31% 5.59% 0% 0%
Contribution:

Misallocation -2.43% 43.94% 40.61% 68.38% -268.94% -105.78% 12.01pp 35.9pp
Public funds 102.43% 56.06% 59.39% 31.62% 368.94% 205.78% -12.01pp -35.9pp

Institutions 1.65% 6.76% 0.96% 5.11% -1.9% -1.57% 13.89% 42.17%

Details: Costs using baseline subsidy estimates. Baseline general eq. (GE) costs are computed by compar-
ing the observed distorted economy with a counterfactual economy where connections are shut down and dis-
tortive taxes are reduced such that govt revenue stays constant. Partial eq. results abolish subsidies to connected
firms but keep prices fixed. The contribution of misallocation is quantified via a GE counterfactual where taxes
stay constant and any additional tax revenue is redistributed lump-sum. Costs of worse institutions is based
on an economy where govt resources are invested productively (see Section 4.2). All GE counterfactuals com-
pare steady states. In steady state, the interest rate is pinned down by HH preferences and only the wage may
change. LB and UB refer respectively to lower and upper bound estimates. Output refers to net production
(without subsidies), Welfare costs are based on the percentage of consumption that households are willing to
forego to keep welfare constant (and is equivalent to consumption changes here). Government revenue refers
to revenue net of subsidies.

better off due to lump-sum transfers and redistributing higher firm profits. At last, given that
tax revenue is saved from spending it on connected firms and output is increasing, total tax
revenue from corporate taxes increases by 12-36%. About 2/3 of this increase is driven by
eliminating transfers to connected firms as seen in partial equilibrium, while the remainder is
driven by the general equilibrium response of output, leading all other firms to pay more taxes
as they increase their output.

Given that the misallocation cost for the baseline estimates are up to 45% of the total output
costs of political connections, the remaining 55% are explained by the shadow cost of public funds.
These opportunity costs turn out to dominate the total costs of political connections as it would
allow the government to additionally reduce distortive tax rates on all firms in the economy.
According to the baseline estimates, this effect is strong enough to entirely reverse the negative
wage effects when shutting down the misallocation costs, as all firms in the economy - especially
the most productive firms - demand more labor and capital, driving up final wages by between
1.3 to 5.6%.

At last, based on the model estimates, a large part of the misallocation of resources happens
across industries. That is, political connections also distort the relative size of industries, not
just the allocation of resources within industries. Based on both bounds, about 10% of indus-
tries at the 4-digit level are larger due to political connections. These “connected industries”
account for roughly 20% of total output and are between 14-24% larger due to political con-
nections. However, the subsidization of connected firms within these industries comes at the
detriment of the remaining 90% of industries that pay average output costs that range from
4-8%.

120



2.4.2 The costs of political connections from weakening institutions

The baseline estimates of the costs of political connections are based on a shadow cost of public
funds that comes solely from distortive taxes. However, in developing countries, the costs
of political connections likely also go through the quality of public goods and institutions
more generally. Political connections deteriorate institutions and weaken the rule of law since
subsidies crowd out resources that could be spent on alternatives. To capture this effect, I
consider an alternative cost estimate based on a model where the government uses tax revenue
productively to invest in productive public goods such as infrastructure, legal institutions,
security and the enforcement of property rights. The subsidy and rent-seeking estimates are
consistent with this reformulation; only the counterfactual changes, which now requires more
assumptions.

Specifically, one needs to take a stand on how the government spends resources, how efficient
it is at spending these resources on productive public goods and how public goods enter firms’
production functions. I follow a standard setup for government investment (e.g. Ramey 2020).
I assume that government-provided public goods enter firm TFP as: TFPi = (1+ τ̃i)(1− τ̄)z̃iGχ,
where χ captures the private output elasticity of public goods. Call total tax revenue T and
suppose that the government invests a constant fraction of this tax revenue productively (IG)
in public goods according to the following law of motion: G′ = (1 − δG)G + κIG. Public
goods G capture public capital such as roads and other infrastructure as well as any other
resources the government spends that affect firm production, δG gives the depreciation rate of
public goods and κ ∈ (0, 1] gives a measure of public funds that are misused (see: Pritchett
2000). I calibrate the additional parameters using either standard values or values specific to
Indonesia.27 To solve for the steady state counterfactual, I jointly solve for the wage that clears
the labor market and the stationary value G∗ that is consistent with steady state tax revenue
T ∗. I report results in the last row of Table 2.2.

Based on the quantitative results, considering the role on public goods exacerbates the ag-
gregate costs of political connections by at least 40%. Since higher tax revenue leads to bet-
ter institutions which in turn incentivizes firms to produce even more, this creates a positive
feedback loop that drives up benefits from higher tax revenue. In the Indonesian data, the
aggregate costs of political connections taking into account productive public goods are about
1.65-6.75% of total output, as captured by the comparison with the distorted economy with
public goods. The positive feedback loop eventually leads to tax revenue and hence public
good spending that is between 14-42% higher than in the distorted economy. Again, the large
majority of these costs are driven by the shadow costs of public funds. Which numbers are more
realistic - the baseline or public goods results - depends on what the Indonesian government
would do with their revenue in the absence of favoring connected firms. The results in this
paper indicate that investing the increased tax revenue in public goods would be far more ef-
fective than lowering tax rates, which turns out to be robust to alternative parameterizations

27Specifically, I assume a conservative long-run value for the output elasticity χ = 0.1 taken from the literature
(see Bom and Ligthart 2014). δG is assumed to be 3.25% following Arslanalp et al. (2010). κ is taken directly from
the randomized controlled trial in Olken (2007) who studies corruption in infrastructure spending in Indonesia
finding that on average about 24% of funds are lost in infrastructure projects financed by the central state, such that
κ = 0.76. I assume the government spends a constant 35% of tax revenue on productive investments and returns
the remainder as lump-sum transfers to households. I do not have a direct estimate of this fraction, but this number
is 20% in the US (Ramey 2020). I vary this parameter and find that welfare benefits are higher, the lower this share.
Hence, I take 35% as a conservative estimate.
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of the benefits of public goods.28

2.4.3 Quantifying the benefits of public oversight

Numerous societal actors constrain the influence of politically connected firms by enforcing
taxes and regulation, voicing concerns over legislature and executive orders that benefit con-
nected firms and uncovering tax evasion and corruption. In this subsection, I use the struc-
tural model to provide evidence on the benefits of all these activities which I simply call public
oversight. In the distorted baseline economy, connected firms endogenously choose their level
of rent-seeking conditional on the observed level of public oversight in the Indonesian econ-
omy. To quantify the benefits of public oversight, we can now use the structural model to
consider counterfactual scenarios in which we vary public oversight and study the endoge-
nous responses of connected firms with respect to these changes in oversight. Specifically, I
consider changes in public oversight by a common factor x, which, based on the structural
model, simply shift the level of public oversight c in the Political Connections Technology.29

Proportional changes in public oversight can be interpreted as proportional increases in the
amount of tax audits, efforts of congressional oversight and the number of investigative re-
ports by watchdogs such as Global Witness and Transparency International. While the costs
of increasing audits is unobserved and hence a full cost-benefit analysis is beyond the scope
of this paper, one can still quantify the output gains over the increase in audits x. To do so,
I consider general equilibrium counterfactuals in which firms respond endogenously to the
new level of public oversight and the aggregate level of tax revenue changes. To isolate the
role of public oversight, I assume the government returns any additional revenue lump-sum
to households and does not use it in a productive way (e.g. via lowering distortive taxes or
investing extra revenue in public goods). Furthermore, note that the effectiveness of public
oversight is an endogenous outcome in the model as it depends on how much connected firms
invest in rent-seeking activities. More specifically, since θc > 1 in the estimated Political Con-
nections Technology, the marginal detection probability is decreasing in the level of audits,
making any additional audit less effective, which connected firms also take into account.

To think about the benefits of public oversight, I consider the limit case of zero costs of auditing.
Note that there is a trade-off even in the case of zero audit costs, because subsidizing connected
firms can be beneficial up to the point where subsidies relax distortive taxes. This means that
the maximum output gain over x gives an upper bound for the optimal amount of auditing. I
find that while maxima differ widely across the lower and upper bound, both bounds suggest
large output gains from increasing auditing. Based on the conservative lower bound estimates,
maximal output gains for zero costs of audits are reached slightly below doubling auditing
economy-wide and a social planner that cares about maximizing output should be willing
to spend as much as 0.1% of GDP on audits. To get a rough idea of this magnitude, taking
Indonesia’s GDP in 1997, this fraction of GDP already amounts to roughly a 100-fold increase
in the annual global budget of Transparency International in 2019.30 For the upper bound,

28For example, more than doubling the depreciation rate of public goods to δG = 7.5% per annum and halving
the private output elasticity of public capital to χ = 0.05, still gives general equilibrium output increases that are
comparable to the constant tax revenue counterfactual.

29In Appendix A.6, I discuss in more detail the microfoundation of the Political Connections Technology as well
as the exact interpretation of all parameters, including the level of public oversight c.

30See: https://www.transparency.org/en/the-organisation/our-operating-budget. Ac-
cessed on 12th May 2022.
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output gains are as large as 2.1% of GDP, which are realized for increasing auditing threefold.
Through the lens of the model, audits are effective despite not targeting heavily subsidized
connected firms that pose especially large aggregate costs. Based on the model parameters,
connected firms endogenously respond to a general increase in audits in such a way that audits
also end up affecting the entire distribution of subsidies in a uniform way. There is an even
stronger case for increasing audits in case they can be targeted at more heavily subsidized
firms.

2.5 Extensions & Robustness results

In this section, I consider a variety of different robustness exercises and extensions. I start
out by considering the role of variation in marginal revenue products, wedges and market
power. I then turn to re-estimating non-parametric subsidies allowing for further industry-
and connection-type variation, showing how the estimator can be extended to conditional
matching on further observables.31 At last, I consider how sensitive results are to measurement
error and misreporting. Throughout, I relegate details to Appendix A.7. and focus mostly on
the results.

2.5.1 Wedges and the costs of market power

The setup so far has abstracted from any variation in factor revenue shares. A large part of
the misallocation literature following Hsieh and Klenow (2009) have used this variation to es-
timate wedges in static first-order conditions that pose aggregate costs for the economy. To
discuss how this additional variation might affect results, Table 2.5 in Appendix A.2 reports
evidence on observed labor and capital spending shares across and within industries. Con-
nected firms have systematically lower observed factor revenue shares than non-connected
firms. While factor revenue shares between the two groups of firms are only slightly lower for
capital, there are large differences for labor. Differences in labor shares decline considerably
when comparing shares within industries, but stay large. One more important feature of the
data is that factor shares are up to 60% more dispersed for connected than for non-connected
firms. Appendix A.2 provides further details and shows that these results are robust.

Through the lens of the model and in the spirit of Hsieh and Klenow (2009), systematic dis-
persion in factor revenue shares can be explained by reduced-form wedges that prevent firms
from optimally choosing inputs. Specifically, we can define idiosyncratic labor and capital
wedges based on the following distorted first-order conditions:

αR∗
i = (1 + τiK)rk∗i (2.5)

βR∗
i = (1 + τiL)wl

∗
i (2.6)

where R∗
i is observed optimal firm revenue, τiK and τiL are firm-specific wedges for capital

and labor choices and k∗i and l∗i are productive capital and labor inputs. Assume that all firms

31Beyond heterogeneity in industries and types, one could also control for other observables. For example, one
could further match on location, ownership structure such as whether the firm belongs to a conglomerate, or even
same firms who saw changes in their connections status over time. Unfortunately, I do not observe conglomerate
association nor changes in connections over time. And, as I explain below, increasing the number of controls
requires observing sufficiently many connected firms.
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Figure 2.5: Estimated subsidies with firm-specific input cost wedges

Notes: Non-parametric estimates of conservative subsidy bounds additionally allowing for firm-specific wedges
in capital and labor input costs. Red lines give point estimates formed by average estimated productivities across
bootstrap samples respectively for the lower and upper bound. Grey, dashed lines give point-wise 95% bootstrap
confidence bands using 10,000 bootstrap samples. Lower bound estimated to be given by p = 0.39, implying that
the most productive connected firm was about 10 times more likely to become connected than the least productive
connected firm. Estimates based on assumptions explained in the text. Connected (N = 209, after dropping same
outliers as for baseline) vs. non-connected (N = 14,713) firms with observed inputs are identified as in Mobarak &
Purbasari (2006).

report their productive inputs plus some potentially firm-specific fraction of their rent-seeking
activities (that is: k̃i ∈ [k∗i , k

∗
i + k∗ip] and similarly for labor). Then it follows directly that lower

observed factor revenue shares translate into connected firms facing higher wedges, indicating
that they face higher implicit input costs, which Hsieh and Klenow (2009) interpret as size
restrictions.32

To quantify how wedges affect the costs of political connections, I reestimate subsidies, the
Political Connections Technology and general equilibrium counterfactuals allowing for wedges.
The estimation approach for subsidies of connected firms remains unchanged assuming that
connected firms are still only selected based on productivity (and not directly on wedges).
This rules out quid-pro-quo benefits where subsidies are offered conditional on how connected
firms choose inputs.

Figure 2.5 shows conservative upper and lower bound estimates of subsidies. In comparison
to the baseline estimates in Figure 2.3, subsidies allowing for additional idiosyncratic wedges
are roughly 40% higher. This is driven by higher and more dispersed wedges for connected
firms.33 While wedges do lead to more heterogeneity, the newly estimated Political Connections
Technology still explains about 70% of the variation in subsidies. The key economic mechanisms
stay unchanged: benefits of political connections continue to exhibit decreasing returns to scale
(θp ≈ 0.52 − 0.56) and costs of political connections are convex in rent-seeking activities (θc ≈
1.25− 1.28) as well as firm size (θz ≈ 2.08− 2.26).

32The interpretation of positive wedges as size restrictions also holds for a dynamic setting: in the case where
within industry variation in revenue factor shares is driven by dynamic input choices such as with time to build
capital and labor or factor adjustment costs, observing lower factor shares would mean connected firms face higher
or more binding adjustment costs (e.g. see Asker, Collard-Wexler, and De Loecker 2014).

33Note that the productivity threshold z̄ is re-estimated so that most of the changes in the subsidy estimates are
driven by the increased dispersion in wedges for connected firms rather than the level difference.
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To consider the aggregate costs of political connections, one needs to take a stand on what esti-
mated wedges capture and how these wedges may change in a counterfactual economy where
political connections are abolished. Building on good evidence for Indonesia that connected
firms are in less competitive industries (Hallward-Driemeier, Kochanova, and Rijkers 2021),
that connected firms are much more likely to receive licenses that buy them market power
(Mobarak and Purbasari 2006) and that there is a positive correlation between within-industry
firm size and profit shares (shown in Appendix A.2), I interpret higher wedges of connected
firms (which capture higher profit shares) as being primarily driven by market power. The ben-
efit of the subsidy approach is that each connected firm automatically has a matched sample
of comparable non-connected firms who have not benefited from political connections. One
can then directly use this firm-specific matched set of comparable firms to infer counterfac-
tual wedges. To maintain realistic variation in wedges in the counterfactual, I bootstrap 10,000
counterfactuals in which I randomly sample a single wedge for each connected firm among the
set of wedges of matched firms. Abstracting from aggregate changes in market power due to
abolishing political connections, connected firms in this counterfactual will only lose the mar-
ket power that is associated to their connections and not the market power that they would
have in either case because of their high productivity. Table 2.3 shows that aggregate costs of
political connections additionally taking into account wedges and market power are at least
30% higher than the benchmark costs. Output costs are more precisely estimated and lie be-
tween 4.5-6%. Furthermore, we can quantify the contribution of the market power channel by
estimating costs without re-drawing wedges. I find that market power of connected firms as
measured by the counterfactual reduction in the dispersion of wedges drives between 10-35%
of the total costs of political connections.

2.5.2 Industry heterogeneity

In this subsection, I consider subsidy estimates and costs of political connections under more
industry heterogeneity, extending the baseline matching estimator to matching conditional on
further observables. The non-parametric within-industry estimator separately draws produc-
tivities from non-connected firms within the same industry and matches firms accordingly.
This introduces a trade-off as within industry matching matches firms that are more similar
while at the same time reduces both the population from where productivities can be drawn
and the sample with which one can match.

Subsidy estimates for four different levels of production function heterogeneity are reported
in Figure 2.6 showing only upper bound estimates for expositional clarity. Within each panel,
each line marks one different industry at the respective digit. Three patterns are noteworthy.
First, comparing the 1-digit to the 2-digit results, we can see that the concave or even hump-
shaped Political Connections Technology does show up in most industries (6 out of 8), indicating
that it is an important feature of the data. The two 2-digit industries where this pattern is less
clear have only few observations, leading to very noisy estimates. While results are slightly
harder to interpret at the 3-digit and 4-digit level, we can still see hump-shape relationships
between the subsidy and productivity within many industries. Secondly, the level of the sub-
sidies increases slightly when allowing for more production function heterogeneity, reflecting
slightly larger size differences within industries as reported in Table 2.1. At last, productiv-
ity estimates change considerably across the different specifications since production function
elasticities now vary across industries.
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Figure 2.6: Estimated subsidies with industry heterogeneity

Notes: Non-parametric identification of subsidies to connected firms as function of estimated firm-level productiv-
ities with industry heterogeneity. Panel 1-4 give estimates at 1-, 2-, 3- and 4-digit industry levels respectively using
the upper bound estimator for productivities. Estimation is explained in the text. Connected (N = 238, dropped 3
outliers) vs. non-connected (N = 18,317) firms are identified as in Mobarak & Purbasari (2006).

For the costs of political connections, I re-estimate the Political Connections Technology taking
into account further heterogeneity. I find that estimated parameters at the 2-digit level main-
tain decreasing returns to scale in benefits from rent-seeking activities and convex costs both
in rent-seeking activities and firm size. The R2 of the noisier estimates at the 2-digit industry
level still exceeds 95%. However, as for the baseline results, rent-seeking activities have only a
very limited effect on aggregate effects because they only raise aggregate capital and labor by a
small amount. The key effects go through extensive subsidies and firm-size distortions which
misallocate productive capital and labor at marginally unproductive firms. Estimated costs of
political connections turn out to be similar at the 2-digit level and much higher at the 3-digit
level, which should be interpreted with care given noisier subsidy and rent-seeking activity es-
timates. In summary, results are broadly similar when allowing for more heterogeneity across
industries.

2.5.3 Testing for further types of connected firms

Another source of heterogeneity is to consider different types of connected firms ε. For ex-
ample, one might expect that some firms close to Suharto are just lucky being born into the
right network, while others have worked hard and paid a high cost to obtain favors. To test
for such differences, I consider two sets of type heterogeneity. For the estimation, I enforce
the same productivity cutoff and the same conservative selection bounds as for the main esti-
mates, in line with the null hypothesis of identical Political Connections Technologies. For each set
of type heterogeneity, I then separately draw and match bootstrap samples for the differently-
connected firms to obtain productivity estimates.

Panel A of Figure 2.7 reports separately estimated subsidies and productivities for “normal”
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Figure 2.7: Estimated subsidies with connection-type heterogeneity

Notes: Non-parametric estimation of output subsidies and productivity allowing for different Political Connections
Technologies for different types of connections. Panel A: Connection types distinguish blood connected (N = 89)
and normal connected (N = 152) firms (details in Section 2). Panel B: Distinguishes connected firms that are partly
state-owned (N = 39) and connected firms that are not state-owned (N = 199).

connected firms and for firms directly owned, founded and run by blood relatives of dictator
Suharto. One can think of many reasons why Political Connections Technologies should look dif-
ferently for the two sets of connected firms and why the latter set of firms should receive larger
subsidies. Perhaps surprisingly, estimated Political Connections Technologies look almost indis-
tinguishable, with blood connected firms receiving slightly higher subsidies. I also formally
test equality of Political Connections Technologies by considering bootstrapped confidence bands
and cannot reject equality.34 Panel B shows separately estimated subsidies and productivities
for connected firms that are at least partly state-owned and connected firms that are not. One
concern with the estimates might be that state ownership changes the relationship between
connected firms and politicians and thus leads to very different Political Connections Technolo-
gies. Again, I find no evidence for this in the data. While estimated subsidies are slightly
larger for connected firms that are state-owned (in line with economic intuition), the distri-
bution of subsidies looks very similar and as for the previous results I cannot reject equality
from a statistical point-of-view. These are encouraging findings for the paper, because it alle-
viates concerns that unobserved type-heterogeneity or a few connected firms are biasing the
results, lending credence to the baseline results. Similarity in the subsidy estimates also shows
up when estimating the aggregate costs of political connections: I find largely similar, though
slightly higher estimated costs as reported in Table 2.3.

2.5.4 Measurement error

The non-parametric subsidy estimation seems to rely crucially on the assumption that value-
added output is correctly reported, because conditional on the production function parame-
ters, estimated TFP only relies on variation in reported value-added output. Estimated subsidy
schedules are then inferred from the relative dispersion in TFP between connected and non-
connected firms. This subsection considers how sensitive subsidy estimates are in the presence

34Formally, I only consider point-wise overlap in confidence bands, which is not a full statistical test. However,
for most points, confidence bands include point estimates, which is sufficient for rejection. Statistical power of this
test is obviously limited given the few number of connected firms by type, but differences in point estimates are
also economically small.
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of measurement error in value-added output.

I consider four types of measurement error and bootstrap the estimation of subsidies, Political
Connections Technology and welfare costs for both bounds. Figure 2.9 in Appendix A.7 reports
average alternatively estimated subsidies across bootstrap draws for each type of measure-
ment error. Table 2.3 reports the corresponding welfare effects. The first three types of mea-
surement error affect all firms, connected and non-connected, and have mean zero. In Panels
A and B, I consider classic, normally distributed and non-symmetric log-normally distributed
measurement error. Only the second type affects the right tail of the observed output distribu-
tion and hence the magnitude of estimated subsidies. However, both forms of measurement
error have little effects on the overall shape of the estimated subsidy schedules nor estimated
welfare costs.

To consider a potentially more problematic case of bias, I consider measurement error that cor-
relates directly with firm size in Panel C. Perhaps surprisingly, it turns out that this form of
correlated measurement error also leaves subsidy estimates and estimated welfare costs basi-
cally untouched. The reason for this is that correlated measurement error does not affect the
relative dispersion of output distributions across connected and non-connected firms. To also
consider the effect of differential output distortions, I introduce measurement error that only
affects connected firms in Panel D. Specifically, I assume that all connected firms systematically
underreport a fixed 20% of output.35 The results again are robust to this form of measurement
error. The reason is that such selective underreporting is entirely captured by the productiv-
ity cutoff. A higher percentage of underreporting simply leads to a lower estimated cutoff,
leaving the estimated levels unbiased. If anything, the upper bound welfare cost estimates are
now somewhat higher. In summary, the reported estimates in this paper are robust to various
forms of standard and non-standard measurement error.

2.6 Conclusion & Discussion

This paper has provided a structural approach to quantify the general equilibrium costs of po-
litical connections. Using a model where firms endogenously invest in rent-seeking activities
to obtain firm-specific subsidies, I showed how to non-parametrically identify conservative
bounds for these subsidies and flexibly estimate the technology with which firms invest in
rent-seeking activities. Applying this methodological approach to Indonesia, I find high ag-
gregate costs of political connections. Costs are between 1.0-4.7% of annual output and higher
when accounting for market power and effects on public goods.

A number of qualifications of the results are in order. While the quantitative results are ro-
bust to further industry- and connection type-heterogeneity, wedges and different forms of
measurement error, some issues are harder to assess. For example, due to data constraints,
the focus of this paper has been on manufacturing plants. Political connections may play a
different role in other sectors and at the firm-level. Furthermore, political connections will
always remain elusive, making measurement of them difficult. This paper’s measure of po-
litical connections is based on a natural experiment and arguably the most credible estimates
we have. One complementary avenue for future research is to collect more direct evidence on

35I considered underreporting of 5%, 10% and 20% respectively, but results were all quantitatively similar and I
report the results with the most measurement error.
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Table 2.3: Main robustness and extension results: Aggregate costs of political connections

Outcomes: Output Welfare Wages
LB UB LB UB LB UB

Baseline GE costs 1.05% 4.67% 1.02% 4.56% 1.31% 5.59%
Market Power + Wedges:

Full costs 4.57% 5.97% 4.89% 6.05% 7.65% 12.66%
Market power contrib. (%) 35.81% 10.22% 35.45% 9.56% 18.56% 8.97%

Industry heterogeneity:
2-digit 1.09% 3.53% 0.96% 3.3% 2.99% 6.37%
3-digit 9.4% 12.23% 8.81% 12.89% 7.18% 4.91%

Type heterogeneity:
Blood vs. normal 1.59% 4.66% 1.54% 4.54% 2.01% 5.59%
State-owned vs. not 2.03% 4.82% 1.97% 4.69% 2.58% 5.78%

Measurement Error:
Classic 1.19% 5.07% 1.15% 4.91% 1.52% 6.15%
Non-symmetric 1.7% 5.37% 1.64% 5.24% 2.13% 6.38%
Correlated 1.17% 4.27% 1.12% 4.13% 1.47% 5.18%
Underreporting C 1.22% 5.42% 1.17% 5.24% 1.54% 6.58%

Details:
Aggregate costs of political connections under various robustness exercises and model exten-
sions. Throughout, general eq. costs are computed by comparing the observed distorted econ-
omy with a counterfactual economy where connections are shut down and distortive taxes are
reduced such that government revenue stays constant. All general equilibrium counterfactu-
als compare steady states. LB and UB refer respectively to lower and upper bound estimates.
Output refers to net production (without subsidies), Welfare costs are based on the percentage
of consumption that households are willing to forego to keep welfare constant (and is equiva-
lent to consumption changes here). Government revenue refers to revenue net of subsidies.
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rent-seeking activities and use this to validate the model-implied distribution of rent-seeking
activities.
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2.8 Appendix

2.8.1 Further details on measuring political connections

Mobarak and Purbasari (2006) extend the work by Fisman (2001) by examining how the stock
price of the universe of firms traded on the Jakarta Stock Exchange (JSX)36 responded to ad-
verse news about Suharto’s health in various episodes between 1994 and 1997. Using daily
stock price data for the 985 market trading days between 1994 and 1997, they run a set of re-
gressions of abnormal stock returns for each firm on aggregate movements in the JSX, the av-
erage return for the industry category in which that firm belongs, movements in the exchange
rate and interest rate, and an indicator variable for days when the news about Suharto’s health
was reported by the press. A firm is defined to be “politically connected” if the Suharto health
news indicator has a negative coefficient which is significantly different from zero at the 95%
confidence level. Using statistical significance as a threshold gives a firm-specific threshold
that also takes into account the firm-specific variability of its stock price.37 This identifies 29
stock listed firms as being politically connected and the authors used newspapers and other
media to confirm that these firms were indeed connected.

The identities of the key personnel running these 29 politically connected firms allow Mobarak
and Purbasari (2006) to identify, by proxy, other firms that are connected to Suharto, but not
traded on the Jakarta Stock Exchange. The authors do this by locating all other firms that share
ownership and management with those 29 firms. As Claessens, Djankov, and Lang (2000) and
Carney and Child (2013) show, ownership and control is rarely separated in Southeast Asian
firms including Indonesia and most firms belong to larger conglomerate structures that are
owned by specific families. This allows to link stock-listed firms to a larger network of other
firms of the same conglomerate, who are owned by the same family. Due to the prevalence
of political connections being tied to interpersonal links between families, this allows to track
connected firms beyond stock-listed firms. Specifically, Mobarak and Purbasari (2006) identify
each member of the Board of Directors and Board of Commissioners of each of the 29 firms us-
ing the Indonesian Capital Market Directory 1998. They then use the publication 400 Prominent
Indonesian Businessmen to find the names of all conglomerates to which the individuals running
the connected firms belong. Finally, they turn to Conglomeration Indonesia to identify all sub-
sidiary firms of the ‘connected’ business groups and trace all other firms and conglomerates
that share ownership and management. In total, this gives them 2,126 connected firms.

The implicit assumption at this point is that all relevant political connections in Indonesia go
through larger conglomerates which have at least one publicly traded firm that is identified as
being politically connected. Thus, this definition of political connections captures “high-level”
political connections and is unlikely to capture more local connections of firms to local author-
ities in the bureaucracy or police. This should be kept in mind when interpreting the results

36The authors estimate this for 285 of the 293 firms traded on the Jakarta Stock Exchange at that time.
37The authors use three different definitions of firm stock returns, including the actual return, the deviation of

the actual return from its average, and the abnormal return net of movements correlated with the aggregate JSX
market return. They also variably define the event dates to be the day the illness occurs or the day it is reported in
the press. The identities of ‘politically connected’ firms are roughly invariant to the particular definition of returns
or event dates used. Note that using statistical significance as a filter may introduce differential bias by size. If the
variability of stock prices is related to fundamentals such as firm size then statistical power will vary by size of firm
and then selection will be worse for smaller firms. I have not conducted tests or simulations to assess this concern,
but given that T = 985, it seems likely that power is not a relevant concern.
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in this paper. Another key concern of using this measure of connections is that it is likely to
capture only larger firms and is more likely to miss small connected firms. In the structural
approach used later in the paper, results will explicitly depend on the smallest observed con-
nected firms exactly to be robust to the idea that if all connected firms are large and successful
this must not imply that connections are very beneficial, but could also be driven by the fact
that we do not capture smaller and less successful connected firms in the data.

The next limitation of the data is that while the approach allows to identify a variety of con-
nected firms, the available firm-level data to link these to is the annual manufacturing census
data that captures medium- and large-sized manufacturing firms with more than 20 employ-
ees. This considerably restricts the sample: only 16 of the 29 initial stock-listed firms and 408 of
the 2,126 identified connected firms are manufacturing firms, which makes up roughly 20% of
firms. Based on the GGDC 10-sector database, the manufacturing sector accounted for about
34% of value-added output in 1997, which is squarely between the percentage of manufactur-
ing firms among stock-listed firms and the percentage among all connected firms. It is unclear
exactly what biases this sample selection introduces, but it may even lead to more conservative
estimates of the costs of political connections given that connections are likely to play a bigger
role in a number of non-manufacturing sectors such as utilities (including telecommunications
and energy), mining, construction, finance and land-dependent agriculture. Of these manu-
facturing firms, linking them to the census is further complicated by the fact that firms are
generally de-identified in the manufacturing census data. Using three broad identifying vari-
ables - province location, 5-digit industry code and (rough) number of employees - Mobarak
and Purbasari (2006) can succesfully match 241 firms or 59% of connected firms to the census
of manufacturing firms. Mobarak and Purbasari (2006) argue that the attrition involved in this
matching step is not related to any fundamentals and should thus not differentially bias the
estimates apart from underestimating the number of connected firms.38

In the end, this approach allows to identify 241 connected firms in the manufacturing census
data. It allows to identify the snapshot of politically connected firms at the highest level for
a short time period of around 1-2 years shortly before the Asian Financial crisis in 1997/8.
Throughout the paper, I allow the set of connected firms to vary over time with some firms
loosing their connections or seeing changes in the extent of their connections, but all results
will be based on the set of connected firms in 1997 and I therefore assume that this is a repre-
sentative picture of connected firms also for other years in the data. Of the 241 firms, 89 firms
are identified as being owned and founded by blood connections of Suharto. 34 of these 89
firms are similarly identified as being connected by the stock market identification approach.
This imperfect overlap may be due to three different problems. First, it may show that the
stock market identification approach is highly imperfect in capturing all connected firms (only
about 40% of connected firms are identified). This could be due to the nature of the approach
only capturing firms that are linked through conglomerates that have a stock listed firm or the

38However, I have not been able to validate this claim and replicate this part of their analysis given that the
authors could not share this part of the analysis with me. There could be a number of reasons why the matching
step could introduce additional problems. For example, matching by (rough) number of employees may introduce
bias against small firms as this set of firms may include more overlap in the number of employees and thus makes
it less likely to find unique matches in the data. On the other hand, matching by province location may make it
harder to match more successful firms in more economically active parts of the country (e.g. Java). Access to the set
of all connected manufacturing firms could allow to control for potential differential misclassification in this step
of the analysis.
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Figure 2.8: (Gross) Output distributions: Connected vs. non-connected firms

connected

non−connected

0 5 10 15
log real output

Notes: Distributions of firm-specific real gross output (in logs and in 2010 USD) for cross-section of Indonesian
firms in 1997 based on Statistik Industri, the Indonesian manufacturing firm census. Connected vs. non-connected
firms are identified as in Mobarak & Purbasari (2006). Non-connected firms: N = 18,303. Connected firms: N = 241.

statistical uncertainty in the estimates, but it could also be because the approach only captures
connected firms whose connections are deemed sufficiently volatile. These issues only pose a
real problem for this paper if they bias the identified size distribution of connected firms, oth-
erwise, this paper will only underestimate the costs of political connections. Second, imperfect
overlap may indicate that not all blood connected firms identified in the data truly benefit from
their connections. In this case, I could overestimate the costs of political connections. How-
ever, if the assumptions for the estimation of subsidies are correct, this should be picked up by
the estimation approach.

2.8.2 Further empirical results

Further differences between connected and non-connected firms

In this subsection of the Appendix, I report further results on differences between connected
and non-connected firms that are in part referenced in the text, but not reported. First, Figure
2.8 reports size distributions for connected and non-connected firms in 1997 using gross firm
output instead of value-added output. This looks very similar to the corresponding value-
added figure. In fact, the average connected firm is slightly less than 12 times as large as the
average non-connected firm for both value-added and gross output measures.

Second, we can look at size differences between connected and non-connected firms within
industries looking at (real) gross output figures instead of (real) value-added figures. Similar

136



Table 2.4: Average relative size of connected vs. non-connected firms within industry (for gross
output)

Within industry
unconditional 2-digit 3-digit 4-digit

Difference 11.77 12.62 11 9.44
# connected 241 241 241 241
# non-connected 18,317 18,317 18,317 18,317

Table 2.5: Median observable factor revenue shares for labor and capital for connected (C) and
non-connected (NC) firms across and within industries

labor share (va) capital share (va) Total share (va)
NC C NC C NC C

Unconditional 0.51 0.20 0.26 0.18 0.82 0.45
Within 2-digit 0.48 0.23 0.26 0.20 0.77 0.47
Within 3-digit 0.45 0.23 0.27 0.23 0.75 0.48
Within 4-digit 0.39 0.24 0.23 0.21 0.60 0.42
Within 5-digit 0.37 0.27 0.22 0.26 0.57 0.49

Details: The table reports median factor shares of connected and
non-connected firms across the different factor inputs (columns) and
across industries (rows). For within-industry estimates, median fac-
tor shares in each industry are computed separately for connected and
non-connected groups and are aggregated across industries using the
number of connected firms within an industry as weights.

to Table 2.1 in the main text, I report differences between connected and non-connected firms
in Table 2.4.

Next, Table 2.5 reports descriptive evidence on median observed labor and capital spending
shares across and within industries. I compute capital and labor shares using the reported
wage bill and the capital bill as a ratio over reported value-added output. For the capital bill, I
use the estimated capital stock of a firm and multiply it with the effective model-based rental
rate of capital. Additionally, I compute the sum of revenue shares for capital and labor. To
obtain within industry estimates, I aggregate median factor shares at the industry-level across
industries using the number of connected firms within an industry as weights. Results are
similar for average factor shares instead.

Results are very similar: Connected firms have much lower observable labor shares, but very
similar capital and materials shares. This is not an issue of selection into specific industries
that have lower labor shares, but also holds within industries. Additionally, we can look at
the dispersion of factor revenue shares by comparing coefficients of variation, the ratio of the
standard deviation over the mean. Looking across all industries, I find that labor revenue
shares are 60% more dispersed for connected than for non-connected firms. The coefficient of
variation for connected firms is around 0.94 while it is around 0.57 for non-connected firms.
Similar results but smaller differences in dispersion hold for capital (0.99 vs. 0.82) and total
shares (0.84 vs. 0.56). These results are robust to outliers.
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Correlation between firm size, market share and profit share

This subsection reports regression results for how profits correlate with market shares (de-
fined at different industry levels). Results clearly show a positive relationship between market
shares and profits, which is in line with theories where the market share is a measure of mar-
ket power and is thus correlated with profits. Furthermore, the results show that connected
firms seem to have even larger profit shares conditional on their market share, indicating that
political connections might buy market power beyond what is expected based on firm size.

Table 2.6: Market Power Regressions: testing the relationship between profits and market share

Profit share
1-digit 1-digit 2-digit 2-digit 3-digit 3-digit 4-digit 4-digit

Market Share 72.174∗∗∗ 60.782∗
(1-digit) (5.510) (35.050)

Market Share 10.172∗∗∗ 9.612∗∗∗

(2-digit) (0.730) (2.832)

Market Share 4.466∗∗∗ 4.818∗∗∗

(3-digit) (0.261) (0.861)

Market Share 1.890∗∗∗ 2.266∗∗∗

(4-digit) (0.096) (0.199)

Non-connected? −0.225∗∗∗ −0.136∗∗∗ −0.201∗∗∗ −0.119∗∗∗ −0.199∗∗∗ −0.108∗∗∗ −0.186∗∗∗ −0.090∗∗

(0.033) (0.042) (0.033) (0.040) (0.033) (0.040) (0.033) (0.038)

Constant 0.359∗∗∗ 0.334∗∗∗ 0.329∗∗∗ 0.311∗∗∗

(0.033) (0.033) (0.033) (0.033)

Industry FE? No Yes No Yes No Yes No Yes
R2 0.016 0.203 0.017 0.206 0.023 0.213 0.029 0.222
Adjusted R2 0.015 0.197 0.017 0.200 0.023 0.207 0.029 0.216
Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Standard errors are clustered at the fixed effect level. Industry FEs are at the 4-digit level.

2.8.3 Productivity vs. demand and the relation between single good vs. differenti-
ated inputs with CES demand

In this part of the Appendix, I show a standard result in the heterogeneous firm literature,
namely that a setup with a single good produced by heterogeneous firms with DRS technology
is isomorphic to a setup where firms produce differentiated goods and face CES demand. The
latter setup makes it clearer that zi in the model used in this paper can flexibly capture both
productivity and demand processes.

Assume the economy is populated by a mass of identical households of total measure L who
each supply labor inelastically and consume a large variety of differentiated goods according to
a standard Constant Elasticity of Substitution (CES) demand system.39 To allow for variation
in demand across industries, I consider two different levels of nested preferences such that

39E.g. see Costinot and Rodríguez-Clare (2014), or Hsieh and Klenow (2009).
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products within and across industries s can have different elasticities of substitution:
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where C, Cs and ci,s are respectively the demands for the composite consumption good, for
the sector-specific composite good and for the differentiated goods. ψs ≥ 0 and ψi ≥ 0 are
exogenous demand parameters that are sector-specific and firm-sector-specific. σ ≥ 1 and
σs ≥ 1 capture the elasticities of substitution between composite goods from different sectors
and between differentiated goods within a sector. Households are assumed to statically choose
consumption that maximizes their utility, leading to a simple and well-known closed-form
expression for product demand:

ci,s = Bi,sp
−σs
i,s (2.9)

whereBi,s denotes a combination of the exogenous demand parameters.40 Note that this setup
assumes that households do not distinguish between goods of connected and non-connected
firms within industries and in the CES setup this means that connected firms have no addi-
tional market power within industries.

On the firm side, we have individual heterogeneous firms i in industry s that differ in their
firm-specific productivity Ai,s and their political connections and that produce differentiated
products qi,s with a standard decreasing-returns-to-scale (DRS) Cobb-Douglas production func-
tion that is industry-specific (denoted by s):

qi,s = Aik
α̃s
i lβ̃s

i (2.12)

where qi,s is firm-specific output, k & l are firm-specific capital and labor inputs, and α̃s & β̃s
are industry-specific output elasticities. Firm i statically chooses the optimal price pi,s given
inputs k & l such that demand and supply equalize. Suppose further that firms are small so
that they cannot affect the aggregate price level P nor industry-level price levels Ps and thus
take product demand as given.41 At last, political connections enter through a revenue or
output subsidy τi such that firm-specific revenue is given by:

Ri,s = (1 + τi)pi,sqi,s = (1 + τi)A
σs−1
σs

i B
1
σs
i kαs

i lβs

i ≡ (1 + τi)zik
αs
i lβs

i (2.13)

40Specifically, product-specific demand is given by:

Cs = ψsC
(Ps

P

)−σ

(2.10)

ci,s = ψiCs

(pi,s
Ps

)−σs

(2.11)

where P is the aggregate price index, Ps are the price indices for sectoral composite goods and pi,s are prices for
final differentiated goods.

41This is a standard assumption in models of monopolistic competition, but may be violated in case where we
look at large connected firms within industries that contain only few firms in total. In case it holds, the price is
given by:

p∗i,s = A
− 1

σs
i B

1
σs
i

(
kαs
i lβs

i

)− 1
σs
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zi then measures a combination of demand and supply factors, which I simply call “productiv-
ity” throughout the paper. The idea is that the process zi is seen as a highly flexible, exogenous
process that is not directly affected by political connections, but benefits from political connec-
tions τi can directly depend on zi and can additionally correlate due to self-selection.

2.8.4 Optimal subsidies to connected firms in the presence of distortive taxes

In this section, I formally solve for optimal subsidies to connected firms.42 The problem of
optimal subsidies is an optimal taxation problem where the government has a fixed amount of
resources T̄ it needs to levy from connected firms that are heterogeneous in productivity and
tries to set firm-specific output tax rates τi to maximize total output for this group of firms.
Note that this reduces to net subsidies instead of net taxes if T̄ < 0 and individual firms are
subsidized in case τi < 0. This encompasses arbitrary subsets of firms: e.g. the government
might only be able to set some of the taxes/subsidies in an idiosyncratic way (for connected
firms), while for others (non-connected) taxes could be fixed. I start with the simpler case of
a partial equilibrium analysis where input prices are unaffected by the taxes. Given that the
focus is on arbitrary taxes for a few firms, this is almost equivalent to the optimal taxes in
general equilibrium and I deal with the general case further below.

I show that the partial equilibrium problem has a simple solution that requires setting a con-
stant subsidy rate across connected firms. This means that more productive firms will receive
higher total amounts of subsidies, but not at a higher subsidy rate. Take any subset of firms for
which the government tries to maximize their output by setting idiosyncratic output tax rates.
That is:

max
{τi}i

∑
i

zik
∗
i (τi, w, r)

αl∗i (τi, w, r)
β + λ

[
T̄ −

∑
i

τizik
∗
i (τi, w, r)

αl∗i (τi, w, r)
β

]

where k∗i (τi, w, r) and l∗i (τi, w, r) give optimal input choices by firms that take their idiosyn-
cratic tax rate as given. Technically, the government optimizes over the envelope of optimal
firm decisions and this is a perfect information setup where the government can set idiosyn-
cratic taxes based on the revealed size of the firm. Given Cobb-Douglas production functions
and constant input prices across firms, optimal input policies take the following well-known
closed-form:

k∗i (τi, w, r) = [(1− τi)zi]
1

1−α−β

(
β

w

) β
1−α−β (α

r

) (1−β)
1−α−β (2.14)

l∗i (τi, w, r) = [(1− τi)zi]
1

1−α−β

(
β

w

) (1−α)
1−α−β (α

r

) α
1−α−β (2.15)

Taking first-order conditions for any τi, we get the following optimal tax condition:

α+ β

1− α− β
+ λ

{
(1− τ∗i )− τ∗i

α+ β

1− α− β

}
= 0

which states that the government should equalize the marginal budget benefits from setting
a higher tax rate (captured by the shadow cost of public funds λ) with the negative marginal

42I want to thank Matthias Meier for suggesting to do this exercise.
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output effects from setting a higher tax rate. The budget benefits scale with the tax rate times
the optimal output that the firm chooses based on the tax rate, while the output scales without
the tax rate. The optimal tax rate can then be expressed in closed-form as a function of the
shadow cost of public funds:

τi =

α+β
1−α−β + λ

λ
1−α−β

Importantly, idiosyncratic productivity zi cancels out in this expression such that optimal tax
rates end up being uniform across firms and their level is determined by the need of funds.

In general equilibrium, this result changes slightly. The reason is that any tax changes now also
have an indirect effect on equilibrium prices. Fortunately, this is still tractable here. Specifically,
the interest rate is pinned down in steady state so that we only need to look at the effect on
wages. The market clearing wage, on the other hand, can be solved for in closed-form. Given
inelastic labor supply Lt, the following holds for the wage:

w∗ = β

L−1
t

N∑
j

[(1− τj)zj ]
1

1−α−β


1−α−β
1−α (α

r

) α
1−α

One can then write the general equilibrium optimal taxation problem as:

max
{τi}i∈C

N∑
i

(1− λτi)z
1

1−α−β

i (1− τi)
α+β

1−α−β

 N∑
j

[(1− τj)zj ]
1

1−α−β


−β
1−α

− λT̄

First-order conditions now take into account for the effect a tax change has on the entire distri-
bution of output:

0 =
(1− λτ∗i )

1− α− β

(α+ β)(1− τ∗i ) + z
1

1−α−β

i

β

1− α
(1− τ∗i )

α+β
1−α−β

 N∑
j

[(1− τj)zj ]
1

1−α−β

−1− λ

While this does not have a closed-form form for the optimal tax rate τ∗i , one can still say some-
thing about how the optimal tax rate is changing in productivity zi. Using the implicit function
theorem and plugging in estimated productivity values, I show that the optimal tax rate is (per-
haps surprisingly) increasing in productivity. The intuition for this is that for more productive
firms, charging them lower taxes increases their input demand disproportionately more, which
ends up driving up input prices marginally more than other firms. This is a “small is beautiful”
result that stems from the decreasing returns to scale. Importantly, these general equilibrium
corrections are small because this is about a few distorted tax rates compared to the entire
economy (which shows up in the formula through the inverse of the entire productivity dis-
tribution). So in the case where you start from flat taxes and relax the budgetary constraint λ
(that is decrease T̄ ), you optimally want to marginally lower everyones’ taxes but marginally
marginally more for low productive firms.

As a final remark, one could alternatively solve the optimal taxation problem in general equi-
librium additionally taking into account the endogenous response of connected firms in influ-
encing their effective tax rate. This would fix the estimated Political Connections Technology in
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this paper and solve for the optimal baseline tax rate, knowing that connected firms distort
these. This is another interesting question that the setup and estimations in this paper allow to
study more rigorously. I leave this for future work.

2.8.5 Estimated subsidies, hump-shape and existing Political Connections Tech-
nologies

In this section, I show that standard Political Connections Technologies considered in the litera-
ture cannot rationalize hump-shaped subsidy schedules (over productivity), which I find to be
a robust feature of the data. Specifically, the literature has considered two important variants
of a decreasing returns to scale Connections Technology. Variant 1 is given by: τ̃i(c, p) = cpθp

where c may be a constant or idiosyncratic rent-seeking efficiency and p gives rent-seeking
activities. Variant 2 instead also features firm’s physical productivity z: τ̃i(c, z, p) = czθzpθp

Arayavechkit, Saffie, and Shin (2018).

To show this, I consider the following setup. Firm profits are given by:

π = (1 + τ̃i(c, z, p))zx
α − w(x+ p)

where x gives firm inputs and w gives the price of both the input and rent-seeking activity.
Results do not depend on x being a single input nor on w being the same price for inputs
and rent-seeking. The proof proceeds the same for both variants. I first derive first-order
conditions for input and rent-seeking choices. Using these first-order conditions, I can then
use the Implicit Function theorem to characterize the partial derivative ∂p

∂z . For the Connections
Technology to allow for a hump-shaped subsidy schedule, one requires that ∂p

∂z = 0 at the peak.
I show that ∂p

∂z can never be zero under both Connections Technologies.

Variant 1

First-order conditions are given by:

∂π

∂p
= 0 : θpcp

θp−1zxα = w

∂π

∂x
= 0 : α(1 + cpθp)zxα−1 = w

Solving the first equation for x and plugging it into the second equation gives the nonlinear
equation F :

α(1 + cpθp)z

(
w

θpcz

)α−1
α

p
(1−θp)(α−1)

α − w = 0

By the Implicit Function theorem,

∂p∗

∂z
= −

∂F
∂z
∂F
∂p

= −

[
1

αz

(1 + cpθp)p

(1 + cpθp)(
α+θp−1

α )− θp

]

The numerator of this term is weakly positive given that p ≥ 0 and is non-zero at the point
where estimated subsidies are maximal in the data. Furthermore, there are large parame-
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ter ranges for which model-implied subsidies under this Connections Technology are always
monotonic (which is rejected in the data). For example, subsidies are strictly increasing in z if
α+ θp < 1 or if α+ θp > 1, but θp > (1 + cpθp)(

α+θp−1
α ).

Variant 2

First-order conditions are now given by:

∂π

∂p
= 0 : θpcp

θp−1z1+θzxα = w

∂π

∂x
= 0 : α(1 + czθzpθp)zxα−1 = w

Solving the first equation for x and plugging it again into the second equation gives the non-
linear equation F :

α(1 + czθzpθp)z

(
w

θpcz1+θz

)α−1
α

p
(1−θp)(α−1)

α − w = 0

By the Implicit Function theorem,

∂p∗

∂z
= −

∂F
∂z
∂F
∂p

= −p

[
czθzpθp(1 + 1+θz−αθz

α ) + (1+θz−αθz
α )

(
α+θp−1

α )(1 + czθzpθp)− θp

]

Again, the numerator of this term is weakly positive given that p ≥ 0 and is non-zero at
the point where estimated subsidies are maximal in the data. Furthermore, there are large
parameter ranges for which model-implied subsidies under this Connections Technology are
always monotonic (which is rejected in the data). For example, subsidies are strictly increasing
in z if α+ θp < 1 or if α+ θp > 1, but θp > (1 + czθzpθp)(

α+θp−1
α ).

2.8.6 Microfoundations of the Political Connections Technology

In the following I provide two possible microfoundations for the Political Connections Technol-
ogy used throughout the paper that are based on two different interpretations of what political
connections buy. In the first interpretation, the Political Connections Technology buys output sub-
sidies, while in the second interpretation, the Political Connections Technology is reinterpreted as
the share of taxes that connected firms pay.

The Political Connections Technology as an output subsidy

One interpretation of the Political Connections Technology is as a net output subsidy. The para-
metric form chosen for this technology is: τi = εzip

θp − cpθczθzi . To microfound this choice,
suppose the government can use part of the tax revenue to buy products from firms that are
then redistributed to households. As was shown before, τi only captures demand beyond
standard demand for a similar non-connected firm. That is, the government basically offers
a contract to a connected firm saying, whatever your total demand from households, we will
pay τi/(1 + τi) percent of this demand or we subsidize households’ demand by this percent-
age. The assumption here is that most government policies that directly or indirectly subsidize
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firms can be represented by this menu over τi instead of contracts that are fixed to quantities.
That is, politicians directly bargain over subsidy rates and not absolute transfers. The micro-
foundation of the parametric form of τi is then linked to the political process that offers subsidy
rates.

Specifically, suppose that for each connected firm there exists a continuum of relevant govern-
ment bills that each may promise a unit of government demand. τi gives at the same time the
net subsidy rate obtained by a connected firm i as well as the measure of government bills that
the connected firm managed to influence in its favor. Given that there are few connected firms
in this economy, this model abstracts from competition for government bills across connected
firms and simply assumes that all connected firms care about their own set of government
bills that they can influence. There are two terms in the Political Connections Technology. The
first term captures the amount of bills that the firm managed to influence, while the second
term captures the amount of influenced bills that are overturned via audits or other public
oversight. Given the continuous measure of government bills, these audits give deterministic
detection rates. Let us look at each of the terms in turn.

The first part of the technology (εzipθp) captures the measure of bills that the connected firm
manages to influence via bribing and lobbying the politician they are connected to. There are
two ways to think about this term that lead to very similar parameter interpretations. First,
the politician has direct access to government bills and offers the firm a linear bribe schedule
(τ̃i = const. ∗ b), but the firm faces costs of concealment or production costs to transform rent-
seeking spending p into actual bribes b so that b = c̃onst.+zi ∗pθp where zi gives the firm’s pro-
ductivity at concealing bribes and θp is now the elasticity of this concealment technology. This
captures what economic sociologists call costs of obfuscating bribes as meaningful, symbolic
interactions (Hoang 2018). Remember that rent-seeking spending p captures a combination of
capital and labor and one can think of this as final goods (any form of bribes such as luxuries
and money) or as some combination of capital and labor services. Also, the constant in the lin-
ear bribe schedule captures the politician’s efficiency and one may think of this as also being
potentially heterogeneous across the type of connections - an idea I explore in the paper.

Alternatively, political capital does not need to be converted (b = p), but the politician may
face direct costs of obtaining the subsidy rates through parliamentary approval, bargaining
with other politicians or filling out the paper work. For example, increasingly higher benefits
to firms might require the approval of more politicians who all need to be bribed as well (in
the case of θp ∈ (0, 1)) or costs of bribing decline as there are increasing returns to scale in
filling out paper work (in the case of θp > 1). In these cases, θp captures the elasticity of
costs from obtaining output subsidy rates. zi then captures that politicians are more efficient
at influencing bills if the firm is more productive (as they need to argue less). In both cases,
counterfactuals have very similar interpretations. For example, one can think of doubling ε as
doubling the efficiency of the politician to transform bribes into subsidies.

For the second term, suppose the politician faces risks of audits or opposition from other politi-
cians. Remember that subsidy rates are determined by a continuum of small amendments to
laws or policies. In this case, audits can overturn a fraction of subsidies. The second term
(cpθczθzi ) then captures the number of subsidy rates that are overruled by audits. pθc captures
the idea that benefits to politically connected firms are more likely to be contested by other
politicians or the public as the number of distortionary policy and regulatory amendments
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increases. θc measures the elasticity of this opposing reaction. zθzi instead captures the op-
position stemming not from bribes, but from extra scrutiny that larger firms in the economy
receive. Importantly, c measures the level of audits in the economy.

An alternative interpretation that is not considered here is one where the Political Connections
Technology is interpreted as a state-funded project such as a private-public partnership (PPP)
or a state-owned enterprise. The idea of this interpretation is that output of connected firms
is (1 + τi)zik

αs
i lβs

i , which can be separated into standard output zikαs
i lβs

i and a rent-seeking
project τizikαs

i lβs

i that is financed entirely by the government.

The Political Connections Technology as a tax evasion technology

Following the redefinition of the Political Connections Technology as a tax evasion technology in
Section 4, we can write the share of taxes that connected firms pay as: ϕi ≡ 1− τi

(
1−τ̄
τ̄

)
where

τ̄ gives the official corporate tax rate. Plugging in the parametric form chosen for the Political
Connections Technology, this can be rewritten as:

ϕi = 1− εzip
θp
(1− τ̄

τ̄

)
+ cpθczθzi

(1− τ̄

τ̄

)
The share of taxes that a firm pays is then determined by two terms; the first term decreases and
the second term increases the share of taxes as political capital spending is increasing. Suppose
the following simple setup. A tax collector is in charge of a firm’s filing and has discretion over
ϕi. The tax collector takes bribes b in the form of capital for setting a lower ϕi as in the previous
narrative. Suppose that total taxes depend on many different rules, different documents or
that it depends on a long list of entries in revenue filings to the tax administration. Suppose
that the tax collector charges a bribe for reducing the tax in each document, each data entry or
each part of the tax. In this case, the share of taxes paid by the firm can be expressed as a linear
rule in bribes: ϕi = 1− const. ∗ b. Now suppose that the firm needs to “produce” or “conceal”
b so that b = c̃onst. ∗ z ∗ pθp where θp is now the elasticity of this production or concealment
technology and z the productivity.

For the second term, suppose the tax collector faces oversight from managers or risk of being
checked up on. The tax collector conceals or calculates lower rates for each entry and man-
agers may sporadically check up on any entry. As the number of entries becomes large, the
probability of being detected equals the number of checks. Suppose for simplicity that for each
check that leads to corrections, the tax collector does not face any punishment and only the tax
demands are changed. The tax collector offers to reduce taxes, but does not insure the risk of
corrections. Then the second term captures the number of distorted tax entries that become
corrected and one can rewrite this term as const. ∗ f(size) ∗ bθ̃, where f(size) captures flexibly
the idea that check-ups by superiors might depend on the size of the firm where larger firms
are also more likely to be checked up and θ̃ can be thought of as a span-of-control parameter
that captures how close tax collectors are being monitored. For a high θ̃, this control is high,
which leaves little room for tax collectors to change tax rates for connected firms. Importantly,
c captures the level of auditing.
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2.8.7 Further details on extensions & robustness results

This part of the Appendix provides more details on the extensions and robustness results pre-
sented in Section 5.

Wedges and the costs of market power

Here, I provide further details on the estimation of wedges, subsidy estimation and coun-
terfactuals with wedges. To quantify how wedges affect the costs of political connections, I
reestimate subsidies, the Political Connections Technology and general equilibrium counterfactu-
als allowing for wedges. For simplicity, I assume that connected firms only report productive
capital and labor inputs. Further, normalizing wedges by assuming that median reported fac-
tor shares for non-connected firms identify output elasticities, both idiosyncratic wedges and
TFP can be directly estimated in the data for all firms. The estimation approach for subsidies
of connected firms then remains unchanged assuming that the assumptions in Propositions 2
and 3 continue to hold. Most importantly, this means that connected firms are still only se-
lected based on productivity (and not directly on wedges) and that wedges do not break the
monotonicity of TFP, which naturally holds as long as wedges do not directly enter the Polit-
ical Connections Technology. This rules out quid-pro-quo benefits where subsidies are offered
conditional on how connected firms choose inputs.

Figure 2.5 shows conservative upper and lower bound estimates of subsidies. In compar-
ison to the baseline estimates in Figure 2.3, estimated subsidies allowing for additional id-
iosyncratic wedges leads to roughly 40% higher average subsidy estimates. The reason for
this directly follows from observing higher and more dispersed wedges for connected firms
as they put downward pressure on size differences between connected and non-connected
firms, requiring higher subsidies to explain large observed differences in size distributions.43

While wedges do lead to more heterogeneity, non-parametric subsidy estimates can be well ex-
plained by model-implied subsidies based on optimally choosing rent-seeking activities taking
into account firm’s own productivity, the costs of rent-seeking activity as well as idiosyncratic
wedges. Specifically, model-implied subsidies explain about 70% of the variation in subsi-
dies for both bounds based on the R2 with the average subsidy as the comparison. The key
economic mechanisms as captured by the estimated elasticities stay unchanged: benefits of
political connections continue to exhibit decreasing returns to scale (θp ≈ 0.52−0.56) and costs
of political connections are convex in rent-seeking activities (θc ≈ 1.25 − 1.28) as well as firm
size (θz ≈ 2.08− 2.26).

Industry heterogeneity

This subsection provides further details on estimating subsidies and costs of political connec-
tions under more industry heterogeneity. The non-parametric within-industry estimator sep-
arately draws productivities from non-connected firms within the same industry and matches
firms accordingly. This introduces a trade-off as within industry matching matches firms that
are more similar while at the same time reduces both the population from where productiv-
ities can be drawn and the sample with which one can match. For example, in the extreme

43Note that the productivity threshold z̄ is re-estimated so that most of the changes in the subsidy estimates are
driven by the increased dispersion in wedges for connected firms rather than the level difference.
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case of only a single connected firm within an industry, the productivity estimate will sim-
ply be the average productivity of non-connected firms above the threshold productivity z̄s
within this industry. Precision of non-parametric productivity estimates is driven by being
able to order many firms within bootstrap samples, so the precision of the estimates declines
with further industry heterogeneity. Relatedly, allowing for unrestricted industry-specific pro-
ductivity thresholds z̄s fixes the lowest TFP connected firm within each industry, restricting
more and more subsidies as more industry heterogeneity is considered. As a solution of this
bias-variance trade-off, I enforce a single quantile cutoff, meaning that the bottom x% based on
TFP of non-connected firms in each industry are excluded when matching. Hence, the implied
productivity threshold across industries can still vary depending on the industry-specific dis-
tributions of productivities. The cutoff x is then conservatively estimated to be the minimum
productivity quantile of connected firms across all industries.44 The lower subsidy bound is
estimated similarly, enforcing a single correlation ρ̄ across industries, which is given by the
minimum ρ̄ for which any other subsidy estimate across any industry becomes zero.45

For the costs of political connections, I re-estimate the Political Connections Technology taking
into account further heterogeneity. We generally expect the parameters of the Political Connec-
tions Technology to vary across industries as industries differ in how closely related they are
to the political system, affecting the difficulty of lobbying for preferential policies or receiving
government contracts, and they differ in visibility, affecting oversight and the chance of prefer-
ential deals being detected and publicly reported. However, this variation is not summarized
in a single parameter in the proposed Political Connections Technology. To explain estimated
subsidies with further industry heterogeneity, while keeping estimation parsimonious, I keep
the same functional form and estimated parameters, but allow the parameters that govern lev-
els (ε and c) and parameters that govern elasticities to differ by a common factor across 2-digit
industries. This adds two additional parameters per industry and I found this a good compro-
mise between not overfitting, while allowing reasonable variation in the Political Connections
Technology across industries that mimics the same hump shape pattern of subsidies and cap-
tures the same fundamental drivers of observed subsidies. Estimated parameters at the 2-digit
level maintain decreasing returns to scale in benefits from rent-seeking activities and convex
costs both in rent-seeking activities and firm size. The R2 of the noisier estimates at the 2-digit
industry level still exceeds 95%.

Measurement Error

I consider four types of measurement error. For each type I independently draw B type-
specific realizations of measurement error for each firm. For each iteration b ∈ B, I obtain true
output by purging observed output from the measurement error and then reestimate subsi-
dies, the political connections technology and welfare costs for both bounds. I report average
results for each type of measurement error. I choose B = 50. In case not otherwise stated, I

44This is well-defined as long as there are multiple connected firms within an industry. There is only a single
connected firm for one industry at the 4-digit level, which I exclude when computing the 4-digit cutoff. The esti-
mated cutoff is around 38.6% at the 1-digit level, 36% at the 2-digit level, 10.2% at the 3-digit level and 8.6% at the
4-digit level.

45This is well-defined as long as the upper bound estimates are all strictly positive. This is the case for the 2-digit
and 3-digit industries. Here, I find ρ̄ = 0.186 at the 2-digit level and ρ̄ = 0.157 at the 3-digit level. At the 4-digit
level, a few subsidy estimates are already negative for the upper bound. Formally, the model is rejected at the
4-digit level and given the noise at this estimation level, I abstract from it for the subsequent welfare estimates.
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Figure 2.9: Estimated subsidies with different types of measurement error

Notes: Non-parametric estimation of output subsidies and productivity allowing for different forms of measure-
ment error in reported output (value-added revenue). For Panel A - C, measurement error is mean zero and its
variance is chosen such that the R2 of a regression of reported output on real output is 75 percent. Panel A: Clas-
sic normal log-additive measurement error for all firms. Panel B: Log-normal log-additive measurement error for
all firms (non-symmetric). Panel C: Measurement error that positively correlates with firm size (taking reported
output) for all firms. Panel D: Systematic underreporting of connected firms by 20 percent of output. Plot gives
average subsidy estimates across 50 independent draws of measurement error for each type.

choose the variance of measurement error such that a regression of reported output on real
output gives an R2 = 0.75.

In Panels A-C, I consider measurement error that affects all firms, connected and non-connected,
and that has mean zero. Panel A considers multiplicative measurement error of the form:
ỹit = yit ∗ errorit where ỹit is reported value-added output and log(errorit) is normally dis-
tributed. Estimated subsidy schedules are almost entirely unaffected, which shows up in al-
most identical welfare costs. The reason is that observed log output is also close to normally
distributed so that adding normally distributed errors leaves the output distribution unaf-
fected. While not shown here, I also consider distributions with heavier or lighter tails by
simply scaling normally distributed measurement error and find also no quantitatively mean-
ingful differences in subsidy estimates.46 To consider error that is differently distributed than

46Specifically, I take log(errorit)φ with φ ∈ {0.5, 1.5}. In case of negative errors, I take −(−x)φ.
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log output, I consider non-symmetric measurement error by now letting errorit be normally
distributed. In this case, subsidy estimates turn out to be higher, which also translate into
higher welfare costs of connections. The reason is that this measurement error led to a lower
dispersion of the right tail of the observed output distributions, biasing baseline subsidy esti-
mates downward and leading to underestimate true subsidies. Similarly, in case measurement
error led to a higher dispersion of the observed output distributions on the right tail, then the
baseline subsidy estimates would be overestimated. Still, based on Panel A and B, these two
forms of measurement error have little effects on the overall shape of the estimated subsidy
schedules nor estimated welfare costs.

To consider a potentially more problematic case of bias, I consider measurement error that cor-
relates directly with firm size in Panel C. Specifically, I consider log(errorit) = β0+β1log(ỹit)+

νit where νit is mean zero normally distributed, β0 is such that the overall error is mean zero
and β1 > 0. Perhaps surprisingly, it turns out that this form of correlated measurement error
also leaves subsidy estimates and estimated welfare costs basically untouched. The reason for
this is that this form of correlated measurement error does not affect the relative dispersion
of output distributions across connected and non-connected firms. To also consider the effect
of differential output distortions, I introduce measurement error that only affects connected
firms in Panel D. Specifically, I assume that all connected firms systematically underreport a
fixed 20% of output.47 The results again are robust to this form of measurement error. The
reason is that such selective underreporting is entirely captured by the productivity cutoff. A
higher percentage of underreporting simply leads to a lower estimated cutoff, leaving the esti-
mated levels unbiased. If anything, the upper bound welfare cost estimates are now somewhat
higher.

47I considered underreporting of 5%, 10% and 20% respectively, but results were all quantitatively similar and I
report the results with the most measurement error.
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Chapter 3

Estimating government worker skills:
Application to worker selection and
wage setting in Indonesia

Jonas Gathen1

Abstract

This paper provides a new approach to estimate government worker skills that is applicable in
settings where government output is unobserved and government wages are uninformative
about skill differences. The approach estimates skills from wages in comparable jobs in the pri-
vate sector, relates these skills to skill-related observables using Machine Learning tools and
then predicts government worker skills out-of-sample. I apply the new estimation approach to
rich Indonesian household-level panel data from 1988 to 2014, showing two main applications.
First, I quantify that government workers are highly selected, that their skills have increased,
but that their skill premium has declined over time. Second, I analyze government wage set-
ting: the Indonesian government pays a wage premium of at least 30% conditional on skills,
about 1/3 of which is driven by the large gender wage gap in Indonesia’s private sector.

1Toulouse School of Economics; j.gathen@posteo.de. I would like to thank my advisors Stéphane Straub, Mat-
teo Bobba, Fabrice Collard and Christian Hellwig for their continued support. For helpful feedback and comments,
I also want to thank in no particular order: Olivier de Groote, Thierry Magnac, Mitch Downey, Pascal Lavergne,
Guohui Jiang, Johanna Isman, Oscar Fentanes and Jens Wäckerle. At last, I am indebted to the feedback by sem-
inar and conference participants at the IAST Political Economy workshop, the TSE Macro workshop, the EUDN
development conference in Passau 2020, Stockholm University’s applied micro workshop and the workshop of the
World Bank’s Bureaucracy Lab. All remaining errors are my own.
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3.1 Introduction

How do relative skills of government workers evolve over the course of development and
how does this affect changes in the quality of government services? Does the government
manage to select highly skilled workers? Are government wages informative about underlying
skills and does the government pay a wage premium? A key ingredient for answering these
questions is a good measure of government worker skills. This paper provides a new approach
to estimate such skills, showing how to estimate unobserved skills in government jobs for any
worker in the economy. The paper then applies the estimation approach to rich household-
level panel data from Indonesia to study (1) systematic changes in the skills of government
workers and their selection and (2) government wage setting over a period of almost 30 years.

Traditional approaches in Economics measure a worker’s skill – or marginal productivity of
labor – either directly by observing output and making an assumption on the underlying pro-
duction function (e.g. Attanasio et al. 2020; Chetty, Friedman, and Rockoff 2014) or by draw-
ing on observed wages assuming some form of competitive wage setting process that relates
wages to the marginal productivity of a worker (Polachek 2008; Meghir and Pistaferri 2011;
Sanders and Taber 2012). For the skill estimation of government workers, both approaches are
problematic, because government output is usually unobserved (think of the output of a bu-
reaucracy), wage competition may not force bureaucracies to change wages and government
worker wages often follow rigid wage-setting rules that disguise underlying skill differences
(e.g. Biasi 2021).

This paper develops a three-step estimation approach that sidesteps these concerns. The first
estimation step extracts a noisy individual-specific estimate of skills – an individual fixed effect
– from wages in private sector jobs that are comparable to government jobs. The key assump-
tion here is that there exist comparable private sector jobs for which observed wages may
flexibly deviate from competitive wages but are at least a noisy function of the equilibrium
price of skills, underlying worker-specific skills and experience. The second estimation step is
about predicting the individual-specific noisy skill estimate using a rich set of skill-related ob-
servables. I show how Machine Learning algorithms are particularly useful here to disentangle
actual skills from estimation noise and flexible shocks to wages. The key assumption here is
that skills of interest are solely a (flexible) function of skill-related observables. In the third
and last estimation step, one can then enforce the estimated relationship between individual-
specific skills and skill-related observables to obtain an out-of-sample skill estimate for work-
ers for whom we have not previously estimated skills. The approach thus allows to estimate
skills of government workers in government jobs as well as potential skills in a government
job for any worker in the economy for whom we observe these skill-related observables. The
estimation approach can thus also be used in many other settings in which researchers need
to estimate potential job-specific skills for workers who work in other jobs with very differ-
ent skill requirements, while allowing for flexible selection into jobs based on observables and
unobservables.

In the second part of the paper, I apply this estimation approach to the case study of Indonesia
between 1988 to 2014 drawing on a large and high-quality representative panel that tracks in-
dividuals and households over time. The data – the Indonesian Family and Life Survey (IFLS)
– is particularly suited for the estimation approach as it features (1) a large sample of gov-
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ernment and private sector workers across many different occupations, (2) one of the longest
wage and employment panels in a developing country context, and (3) an exceptional breadth
of skill-related variables such as educational background, national exam scores, test results for
self-administered Raven tests, cognition and memory tasks, the big-5 personality traits and
elicited risk and time preferences. Drawing on the IFLS, I estimate individual-level skills in
government-like jobs using private sector workers in social service jobs as the reference group
given that 80% of government workers also work in social services. To do so, I first purge ob-
served wages from a changing equilibrium skill price that I identify using the flat spot identi-
fication approach in Bowlus and Robinson (2012). I then back out individual-level fixed effects
from a standard Mincerian regression on wages deflated by the skill price. In the next step, I
predict the noisy individual fixed effects using skill related observables and different Machine
Learning algorithms. I find that an off-the-shelf gradient boosted tree algorithm outperforms
other algorithms in my context and use this estimated model to predict government worker
skills for all workers in the economy.

Having estimated government worker skills, I then illustrate two main applications for which
skill estimates are key. In the first application, I look at changes in government worker skills,
the selection of government workers based on skills and how relative skills of government
workers have evolved. I find that Indonesian government workers are strongly positively se-
lected on skills and that their skills have also increased over time as new cohorts with higher
skills entered the labor force. However, I find that the skill premium of government workers
actually declined over time as skills of workers in the rest of the economy caught up. I show
that a big part of this is driven by an increasing right tail of workers who would be highly
skilled in government jobs but who the government does not attract for government jobs, and
that changes in the hiring practices of Indonesian government workers in the process of de-
mocratization, decentralization and civil service reforms after the year 2000 have only led to
small changes in how the government de facto selects government workers. Finally, I show
evidence that uneven hiring waves across years lead to differences in cohort-specific govern-
ment employment shares, which have an adverse effect on government worker selection: in
years in which the government hires more, average government worker skills decline, which
holds conditional on the jobs that the government opens. This is consistent with the idea that
more hiring forces the government to eventually move down the distribution as the top of the
distribution thins out.

In the second main application, I show how to use the skill estimates to look at government
wage setting and the wage premium of government workers. First, I find evidence that In-
donesian government wages are indeed less informative about underlying skills than private
sector wages in comparable jobs. I find this by predicting government wages using estimated
skills from comparable private sector jobs and by re-estimating skills using government wages
instead. However, due to more predictable life-cycle wage progression in the public sector,
government wages become more predictive of skills when accounting for experience. Second,
I find that the Indonesian government pays a large wage premium of at least 30% compared to
similar jobs in the private sector. Does this mean that the Indonesian government is overpay-
ing for workers? While this could be true, I also find strong evidence for more discriminatory
wage setting in the private sector. A gender wage gap in the private sector of 35% even after
controlling for job, skills and experience accounts for 1/3 of the government wage premium
alone.
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The paper is structured as follows. Below, I discuss how the new estimation approach and
empirical results relate to the existing literature. In the next section, I explain the procedure to
estimate government worker skills. This approach is applied to Indonesian data in Section 3,
where I also give more details on the local context. Section 4 shows two main applications for
Indonesia as examples for the usefulness of the approach. Section 5 discusses extensions and
the last section concludes.

Related literature

The contribution of this paper is both technical and conceptual. Technically, the paper con-
tributes to the literature by proposing a novel estimation approach that allows to measure
government worker skills for all government workers as well as any other worker in the econ-
omy. This differs from two alternative approaches that have previously been proposed in the
literature. One common approach – as followed by Dal B’o, Finan, and Rossi (2013), Dal B’o
et al. (2017), Besley et al. (2017), and Colonnelli, Prem, and Teso (2020) – is to use (resid-
ualized) previous private sector wages of government workers as a measure of government
worker skills. Previous private sector employment can be a misleading measure of skills in
cases where government workers take their first real job in the public sector or have previ-
ously worked in a very different occupation, in which case it might be a better measure of a
worker’s outside option. More technically, the approach in this paper – similar to Dal B’o et al.
(2017) and Besley et al. (2017) – also draws on residuals from observed private sector wages
but restricts to a comparable subset of government jobs and deals directly with the econo-
metric concern that residualized wages only give a noisy estimate of individual-level skills,
“regularizing” skills using skill-related observables and Machine Learning tools. Whenever
rich skill-related observables are available, I thus believe that my approach provides a better
way to estimate skills from wages.

The second approach followed in Best, Hjort, and Szakonyi (2017) is complementary to my ap-
proach. Best, Hjort, and Szakonyi (2017) consider a context in which individual bureaucrats’
output is observable – prices paid by bureaucrats in the government procurement of goods.
Similar to using wages, they then also draw on a residualized measure of output and extract
an individual-bureaucrat fixed-effect. While Best, Hjort, and Szakonyi (2017) are not directly
interested in the individual fixed-effects, they are interested in a variance decomposition for
which noisy estimates of fixed-effects would bias their results. They thus propose a “covari-
ance shrinkage” approach that uses bootstrapping to separate variances in the true signal and
noise. The two key differences are that, first, the approach in this paper does not require to
observe government output but informative wages instead, and second, that to “shrink” the
noise in the estimation of individual fixed-effects this paper uses rich covariates that also al-
low to predict skills for any worker in the economy, while the approach in Best, Hjort, and
Szakonyi (2017) uses a shrinkage approach without covariates.

Conceptually, the paper uses estimated government worker skills to contribute to the growing
literature on the workings of bureaucracies, the developmental state and how the delivery of
government services can be improved (Best, Hjort, and Szakonyi 2017; Decarolis et al. 2018;
Rasul and Rogger 2018; Finan, Olken, and Pande 2017). The estimation approach allows for
a systematic measurement of government worker skills, a key – but difficult to measure – in-
put in the production of government services. The estimation approach thus complements a
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number of recent papers that have studied how the government selects government workers
(Colonnelli, Prem, and Teso 2020; Dal B’o, Finan, and Rossi 2013; Jia, Kudamatsu, and Seim
2015; Bhavnani and Lee 2019; Estrada 2019), who self-selects into government jobs (Ashraf,
Bandiera, and Lee 2016; Hanna and Wang 2017; Weaver 2019) and how the government re-
munerates workers (see: Finan, Olken, and Pande 2017). In line with Ashraf, Bandiera, and
Lee (2016) and Weaver (2019), I find strong positive selection of government workers based
on skills. This also means that large documented government wage premia in developing
countries (e.g. see: Finan, Olken, and Pande 2017) are smaller after controlling for selection on
skills; for Indonesia, I find a 30% wage premium conditional on skills, which is more than 20
percentage points lower than without controlling for skill selection.

The key novelty with respect to this literature is the broader scope of the estimation approach
that allows to study all government workers over a long period of time. The approach is par-
ticularly useful in settings where government output is hard to observe, and thus especially
relevant for studying higher-level bureaucracies where government output may be hard to de-
fine and measure, allowing researchers to move beyond the study of last-mile service delivery
(e.g. Chaudhury et al. 2006; Banerjee, Iyer, and Somanathan 2007; Finan, Olken, and Pande
2017). Importantly, the broader scope of the approach allows me to establish at least two novel
findings in the literature. First, I show that despite growing absolute skills, relative skills of
government workers systematically declined in Indonesia over the past 30 years. I link this
finding to the difficulty of the Indonesian government to attract the workers with the highest
skills to the government. Second, I show evidence for the detrimental effect of government
hiring cycles on the selection of government workers. The evidence is consistent with the idea
that in years of outsized hiring, the government needs to move down the skill distribution of
the applicant pool to fill all government positions.

A good sign of a new estimation approach is that it raises many interesting questions that
can now be studied more rigorously: For example, what are the output or welfare costs of
government hiring cycles? Or what drives the relative decline in government skills and does
this go in hand with a relative decline in state capacity versus private sector capacity over
the course of development? These questions are particularly well-suited for future structural
work, for which the estimated government skills in this paper can function as a direct input.

3.2 Identifying government worker skills

This section outlines the three-step identification approach and its underlying assumptions.
The focus is on the baseline identification setup that is also used for the subsequent empirical
application, while extensions are left to Section 5.

The first step is about identifying a “noisy” signal of human capital and skills using wages in
a suitable private sector job, which Proposition 4 formalizes.

Proposition 4 (Step 1: Identifying a signal of government-worker skills). Assuming there exists
a subset of “government-like” jobs (potentially in the private sector) for which:

(i) (wage determination process): observed real hourly wagesWi,e,t of individual iwith experience
e at time t follow:

Wi,e,t = Pt ∗Hi,e,t ∗ exp(ϵi,e,t) (3.1)
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where Hi,e,t captures human capital relevant for government jobs, Pt captures the (equilibrium)
price of efficiency units of human capital and ϵi,e,t is a flexible mean-zero error term that is inde-
pendently distributed of (Pt, Hi,e,t), follows a stationary process and has finite variance.

(ii) (experience profile): Human capital log(Hi,e,t) ≡ hi,e,t follows a standard Mincerian experience
process:

hi,e,t = zi + δ0 ∗ expi,e,t + δ1exp
2
i,e,t (3.2)

with δ0 > 0 and δ1 < 0 such that the experience profile is concave, and where zi = log(Zi) =

hi,0,t denotes individual-specific human capital at labor market entry.

Then:

1. (flat-spot identification): Following Bowlus and Robinson (2012), an unbiased and consistent
estimator (forN → ∞) for the path of the equilibrium skill price Pt (up to a level of normalization)
is given by within-individual wage changes for workers in their flat-spot (FP) region:

Ei∈FP[wi,e,t − wi,e−1,t−1] = pt − pt−1 + Ei∈FP[(hi,e,t − hi,e−1,t−1) + ϵi,e,t − ϵi,e−1,t−1] (3.3)

2. (skill signal identification): Estimates of the experience parameters (δ0, δ1) are consistent and
unbiased. However, estimates of individual skills zi are only unbiased but generically inconsistent
in a panel with fixed T due to the incidental parameters problem.

The proof draws on standard results and is relegated to Appendix A.2. Proposition 4 defines
the two main measures of skills used throughout this paper: (1) individual-specific human
capital hi,e,t that incorporates experience and (2) skills at labor market entry zi. The former is
more relevant for questions related to the stock or distribution of human capital at any point
in time, while the latter is more relevant for questions related to the selection of government
workers and comparing government workers with different levels of experience. Proposition
4 shows how wages in a government-like job can be used to identify signals for both measures
of skills. These are only noisy signals, because estimates for hi,e,t and zi are not consistent and
thus still include permanent and temporary components of the error ϵi,e,t that drive observed
wages but are unrelated to human capital.

In the following, I discuss the two main assumptions. The assumption on the wage determi-
nation process follows a large human capital literature that links wages to human capital. This
nests most models of the labor market, but for example rules out models of labor search and
matching where informational asymmetries between workers and employees lead to a perma-
nent disconnect between skills and wages as in Taber and Vejlin (2020).2 The approach only
assumes that wages are partly determined by underlying human capital, allowing the price
of human capital to change flexibly over time and for wages to be influenced by many other
(unobserved) factors as captured by the error ϵi,e,t.

Allowing the price of human capital to change flexibly over time is key, as this allows for
changes in the supply and demand of government-job-specific human capital in the overall
economy. Such changes may be directly driven by changes in government hiring. Similarly,
the approach allows for systematic changes in the price of government-like output, which

2It should be noted that permanent characteristics at labor market entry are generally found to be by far the
main drivers of earnings inequality (e.g. Huggett, Ventura, and Yaron 2011; Keane and Wolpin 1997; Lamadon,
Mogstad, and Setzler 2019; Taber and Vejlin 2020), making it a natural starting point.
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could also be directly influenced by the government, and which will also show up as changes
in the skill price. Importantly, the approach requires to focus on a market for government-like
jobs where there is a single skill price Pt, but it does not require that the government pays that
skill price or that other related markets have the same skill price.

The error ϵi,e,t in the wage-determination process allows for different factors that influence
wages, such as compensating differentials, deviations from fully competitive labor markets
or contractual deviations from spot-market wages. This means that firms can temporarily
value individual-specific human capital in a way that differs from the market in order to at-
tract, retain, or discourage specific individuals, or because information is imperfect. Moreover,
these decisions can be correlated over time, nesting flexible time dependence of the errors. As
will become clear in the second estimation step, the approach can even allow for permanent
individual-specific shocks such as permanent employer-specific wage markdowns or perma-
nent non-wage job characteristics (e.g. Lamadon, Mogstad, and Setzler 2019). However, the
more stringent assumption is that errors need to be independent of human capital and the skill
price; otherwise, the estimation approach will wrongfully attribute part of the error to changes
in the skill price or human capital. This rules out deviations from competitive wages that are
systematically correlated with experience as this would lead to inconsistent estimates of the
experience profile.

The second main assumption is on the experience profile. Here, I take a more stringent para-
metric restriction, assuming a standard quadratic experience profile. The parametric assump-
tion can easily be relaxed as I show in Section 5. The key economic restriction is that experience
profiles need to exhibit a flat-spot at some level of experience in which human capital does not
grow further, a condition that finds strong empirical support (e.g. Lagakos et al. 2018) and
theoretical support from models of endogenous human capital accumulation that imply de-
creasing returns to human capital accumulation towards the end of a worker’s life cycle (e.g.
Magnac, Pistolesi, and Roux 2018). The flat-spot restriction is needed for the skill price iden-
tification. Following Bowlus and Robinson (2012), the idea is that the wages of workers for
whom human capital is not increasing further over the life cycle reflects only changes in the
underlying skill price.

Before proceeding with the second step, two further remarks are in order. First, the approach
can only identify relative differences in skills across workers at a single point in time and
across workers over time, but the overall level of skills is unidentified. A benefit of focusing on
differences is that the setup allows for constant differences in wages, for example when labor
or government-like output are priced with a constant markup or markdown. Second, the idea
of wages revealing human capital implicitly assumes an underlying production function that
defines the marginal product of labor for government-like output: ∂Y G

∂hi,e,t
. A statement such as

“a worker is twice as skilled as another worker” thus maps differences in skills to the worker’s
marginal contribution to government-like output.

Having obtained a noisy estimate of skills, the second estimation step gives a consistent esti-
mate of skills by projecting the skill signals on a rich set of skill-related observables.

Proposition 5 (Step 2: Projecting skill signals on skill-related observables). Denote the skill sig-
nals of the previous step by ẑi, which can be written as ẑi = zi + ηi with ηi being independent of zi
given the assumptions in Proposition 4. Further assuming that worker skills in the “government-like”
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job follow:
zi = f(Xi) (3.4)

where f() is any Borel measurable function and Xi are observable individual-specific characteristics,
then the non-parametric regression of ẑi = f(Xi) + ηi using observable Xi gives a consistent estimate
of individual skills zi in government-like jobs.

Proposition 5 draws on the Machine Learning literature, where the idea of flexibly projecting
noisy estimates of y on explanatory variables X to obtain a consistent estimate of y is called
“regularizing”.3 As in the Machine Learning literature, the goal is to remain as flexible as possi-
ble for approximating the relationship between zi andXi using flexible non-linear functions for
f(), while best selecting skill-related variables X that predict skills zi. In the labor market con-
text, many variables are likely correlated with skills, but ex ante, it is unclear which variables
will be the most predictive of skills and what the exact functional relationship looks like, let
alone interaction effects between variables, making it an ideal setting for Machine Learning al-
gorithms. The key assumption here is that skills are fully explained by observable skill-related
variables, which can be restrictive in many settings. For the Indonesian application below, I
use a rich set of variables related to educational background, results from self-administered
cognition and intelligence tests, survey responses on risk and time preferences, spoken lan-
guages, and various literacy measures. In this setup, the key assumption would, for example,
be violated if unobserved variables related to soft skills or mechanical skills are relevant for
skills in government jobs, but are only insufficiently correlated with observed variables.

Again, two additional remarks are in order. First, a notable benefit of the approach is that one
does not need to disentangle between which variables actually cause skills versus which are
simply correlated with skills as long as the same relationship between f(Xi) and skills holds for
other workers in the economy. Second and related, correctly separating skills from permanent
and temporary shocks to wages relies on using skill-related observables Xi that are uncor-
related with wage shocks. The following example illustrates practical difficulties with this
assumption. Suppose that private sector workers in government-like jobs face a gender wage
gap due to pure discrimination. Given the interest in actual skills, we do not want to include
gender in Xi because the approach would then wrongly interpret the discriminatory gender
wage gap as actual skill differences. However, leaving gender out of Xi will only correctly
identify f(Xi) if gender is uncorrelated with f(Xi).

The third and final estimation step, as formalized in Corollary 5.1, exploits the mapping be-
tween skills zi and skill-related observables Xi to obtain consistent skill estimates for any
worker in the economy.

Corollary 5.1 (Step 3: Predicting skills out-of-sample). Given a consistent estimate of f(Xi) over
the support S ≡ supp(X), the assumptions in Proposition 4 & 5, then knowledge of X is sufficient to
obtain a consistent estimate of zj for any worker j in the economy for whom Xj is observed (and for
whom Xj has common support with S).

Corollary 5.1 makes clear that the purpose of the second estimation step is not only to “reg-
ularize” noisy fixed effects. In this case, one could have also used approaches such as Ridge
Regression that do not rely on covariates and the restrictive assumption that skills are solely a

3The proposition follows directly from the result that standard Machine Learning algorithms can approximate
arbitrary non-linear functions (e.g. Hornik, Stinchcombe, and White 1989).
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function of skill-related observables (e.g. see: Best, Hjort, and Szakonyi 2017). In combination
with the last estimation step, the approach allows to predict skills in government-like jobs for
any worker in the economy using skill-related observables. For workers in very different jobs,
this allows to predict their “potential skills” in government jobs and for government workers
it allows to quantify their actual skills without relying on their wages or requiring to observe
government output.

At last, note that the common support assumption in Corollary 5.1 is not needed if one is will-
ing to extrapolate on the functional form for f(Xi). The approach already allows for systematic
worker sorting across jobs based on individual and unobserved taste differences and sorting
based on Xi. However, only in the case of perfect sorting on Xi some support of Xi will never
be observed for the private sector workers in government-like jobs and hence skill predictions
for any other workers with Xi outside the support will rely entirely on extrapolations of the
estimated functional form f(). Common support on Xi can be empirically tested and is not an
issue in the empirical application that I study below.

3.3 Estimating government worker skills in Indonesia

In this section I apply the identification approach to the case of Indonesia, the fourth most
populous country in the world, over a period of almost 30 years from 1988 to 2014. I start by
giving an overview of the context and underlying data and then go through each estimation
step in turn.

3.3.1 Context & Data

Between 1988 and 2014, Indonesia moved away from a military-ruled, highly centralized au-
thoritarian government under General Suharto (1967-1998) to a relatively consolidated, highly
decentralized democracy. Incomes per capita have increased roughly 7-fold, poverty has been
dramatically reduced and Indonesia has transitioned to become a middle-income country. The
Suharto regime was characterized by extensive cronyism and patronage under which the bu-
reaucracy was greatly expanded but also seen as a direct political instrument to collect votes
and offer political support (Fisman 2001; Hadiz and Robison 2013; Martinez-Bravo, Mukher-
jee, and Stegmann 2017; Robison and Hadiz 2004). Civil Servants were obliged to become
members of the political apparatus, support the party in power and hiring and promotion de-
cisions were made to support regime stability (e.g. Kristiansen and Ramli 2006, 215; McLeod
2008). With the Asian Financial Crisis in 1997/1998 and the subsequent fall of the Suharto
regime, Indonesia embarked on the Era Reformasi, targeting constitutional, judicial, public fi-
nancial management and privatization reforms as well as an unprecedented decentralization
process. In this new, decentralized system, three-fourths of the Civil Service (including teach-
ers and health workers) are assigned to local governments in contrast to a fraction of this under
the Suharto regime. Since the decentralization reforms, the central government can steer civil
service hiring by setting overall quotas for the number of civil service jobs, while districts are
left with a high degree of discretion as they decide on applicants and applicant requirements.
Throughout the 2000s, a number of ministries started bureaucracy reform initiatives that tried
to set civil service remuneration on par with the private sector and pushed for more compet-
itive hiring and promotion practices (e.g. Horhoruw et al. 2013). Due to uneven adoption
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across ministries, in 2010, the government mandated public sector reform for all central and
local governments, but only in 2014, a new Indonesian Civil Service law was passed.

I draw on nationally representative data from the Indonesian Family Life Survey – IFLS in
short – which is particularly suited for the identification strategy in this paper. Specifically,
the IFLS is a large and high-quality household- and individual-level panel dataset that collects
exceptionally detailed information on individual’s occupations, wages, skills and preferences.
It is based on a sample of 7,224 households and 22,347 individuals tracked throughout five
waves (1993, 1997-98, 2000, 2007-08, and 2014-2015), representing about 83% of the Indonesian
population living in 13 of the nation’s 26 provinces in 1993. Due to an intensive focus on
respondent tracking, re-contact rates between any two rounds are above 90%, and 87% of the
original households were contacted in all five rounds (see: Strauss, Witoelar, and Sikoki 2016).
As a comparison, these re-contact rates are as high or higher than most longitudinal surveys
in the United States and Europe.

Employment & wages: The IFLS data includes detailed employment data for each survey
round. In addition to current employment, the survey included questions on previous em-
ployment. As in Hicks et al. (2017), this allows to create up to a 27-year annual individual
employment panel from 1988 to 2014, making it one of the longest employment panel datasets
available for developing countries and uniquely positioned to study life cycle wage growth
(see: Lagakos and Shu 2023).4 Employment information captures principal and secondary
employment including government jobs. I focus on principal jobs as the job classification
throughout this paper. For wages I use real hourly income based on total wages and total
hours worked across all jobs, and by deflating nominal values using Indonesia-wide average
monthly CPI-based inflation together with the specific survey months to best deal with periods
of high inflation.

Skill variables: The IFLS data also contains an exceptional breadth of skill-related variables. I
restrict myself to the 28 most important variables based on variable importance metrics in sub-
sequent prediction tasks. These variables are dummies for the level of education, test results
for self-administered Raven tests, cognition and memory tasks, the literacy of respondents,
relative rankings in standard Indonesian exams, the big-5 personality traits and elicited risk
and time preferences. I z-standardize all numeric variables pooling across all individuals.

Definition of government worker: In Indonesia, there are permanent civil service positions
called Pegawai Negeri Sipil (PNS) as well as temporary civil servant positions (non-PNS). The
latter are for example common in the educational sector where 60% of new teacher hires are on
temporary contracts (Pierskalla and Sacks 2018). The IFLS includes both permanent and tem-
porary government workers, defining government jobs broadly as jobs with any government
office for which one receives remuneration in money or in kind. Appendix A provides further
details on the hiring process of government workers in Indonesia.

Job categories, sectors and occupations: The IFLS distinguishes broad job categories (includ-
ing government workers) from the job’s sector at the 1-digit level and an occupational classifi-
cation at the 2-digit level. To allow for sufficiently large occupational groups for government
workers, I recode the occupational classification into nine different 1- to 2-digit occupations

4Employment status and sector of employment are available for each year, but in the fourth and fifth IFLS
round, earnings were collected only for the current job. Following Hicks et al. (2017), the earnings measure in this
paper is the sum of all wages, profits, and benefits.
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Figure 3.1: Employment shares by broad job category

Notes: Barplot of broad job categories for primary occupations over the pooled panel of employment histories
1988-2014. Source: IFLS, Pooled sample: N = 403,626. Unique individuals: n = 36,126

that captures most variation in government sector jobs. For example, I leave the 2-digit codes
for “teachers” and for “government officials and executives”, while I keep the 1-digit code
“other service areas”.

3.3.2 Descriptives

Figure 3.1 plots the share of government workers compared to the employment share of the
other most common categories of work in developing countries, pooling all waves. On aver-
age, about 7% of the workforce are government workers, around 33% of workers have per-
manent, formal jobs in the private sector, roughly 40% of workers follow some form of self-
employment and the remaining 20% of workers are casually employed or unpaid. Compared
internationally, government employment in Indonesia is relatively low as it often exceeds 10%
of the workforce for middle-income countries and may easily exceed 20% for high-income
countries (e.g. Finan, Olken, and Pande 2017). Based on complementary government statistics,
up to 50% of the government employees captured in the IFLS data should be non-permanent
government workers.5

Figure 3.2 shows the evolution of the government workforce and hiring over time. In line with
the stated government policy of reducing government employment, the left panel shows that
the share of government workers has been slowly declining since 1988. The decline also shows
up in the data through a large drop of hiring for birth cohorts after 1965 as reported in the right
panel of Figure 3.2.

Next, we can ask what types of jobs government workers are doing in Indonesia. Figure 3.3
shows the distribution of government jobs across 10 different sectors and compares their shares
to the private sector. More than 80% of government sector jobs are in social services, including
education and health, with the next biggest sector being agriculture and forestry at around 6%.

5Specifically, permanent government workers only make up roughly 3.5-4% of all employees in Indonesia
based on a Civil Service census from the year 2015 reported in Pierskalla et al. (2020) and the total number of
employees for the same year taken from Statistics Indonesia.
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Figure 3.2: Evolution of government employment shares

Notes: Evolution of government employment (as primary occupation) as a share of total employment by year from
1988 to 20014 (left) and by 15 equal-sized birth cohort bins (right). Restricted to age range 25 to 58 to account for
early government retirement age and tertiary education for government workers. Source: all five waves from the
IFLS (1993,1997,2000,2007,2014), Pooled sample: N = 303,368. Unique individuals: n = 29,992. Unique government
workers = 2,813.

Figure 3.3: Employment shares across sectors of work for government vs. private sector work-
ers

Notes: Pooled data for 1988-2014. Source: IFLS, Total observations = 165,257. Unique individuals: n = 23,377, Govt
workers = 3,230. Excludes observations with missing sectoral codes.

In comparison, only about 24% of private sector jobs are in social services.

In Figure 3.4, I provide further details on which occupations government workers hold. More
than 30% of government workers are teachers, more than 10% are government officials and
executives, and 13.5% of government workers work in other service areas. Not surprisingly,
the prevalence of the same occupations among private sector workers looks very different:
while there are almost no private military/police nor bureaucrats and about twice as many
government teachers than private teachers, there are 20x more private laborers and private
sales workers and 12x more private agricultural workers.

Another important feature of the data on government employment are transition rates between
the private and the public sector, defined as individuals who are observed switching either
from a non-government job to a government job (in-mover) or the reverse (out-mover). About
10% of person-year observations are movers of which slightly more move into the government
than out (around 53% vs. 47%). Among those who move, 42% are observed to move both in

161



Figure 3.4: Government employment shares by occupation

Notes: Barplot of occupations among government workers, 1988-2014. Source: IFLS, Pooled sample: N = 29,855.
Unique govt workers = 3,238. Excludes observations with missing occupational codes. Occupation is a combination
of 1- and 2-digit occupational codes reported in the IFLS data.

and out of the government.

At last, Table 3.1 reports how government workers differ from private sector workers and other
workers in the economy in terms of observables, including skill variables. On average, gov-
ernment workers are more likely to be male, older than private sector workers, earn about 80%
higher hourly wages and work slightly less than private sector workers. Importantly, govern-
ment workers are on average much more skilled: they are much more likely to have received
higher education, perform better on self-administered memory and word ability tasks, and
they achieved higher rankings on nationally administered exams. While not reported here,
one can also note that these skill measures are mostly increasing for all groups of workers over
time.

3.3.3 Step 1: Estimating “noisy” skills

Following Proposition 4, to obtain “noisy” estimates of worker skills in government-like jobs,
the first substep is to select a suitable government-like job for which we estimate skills. I use
private sector workers in social services as the main estimation sample in this paper given the
prevalence of social service jobs for government workers.6 The choice of the estimation sample
balances the need for a large enough sample and comparability with government jobs. Note
that with larger sample sizes one could also separately apply the estimation approach to more
disaggregated job categories. The level of aggregation that I choose alleviates the difficulty of
finding exact private sector counterparts to specialized jobs such as the police. However, the
underlying assumption is that even in such jobs, the general skill set needed broadly aligns
with the skills needed for social service jobs in the private sector. As explained in more de-
tail in Appendix A, civil servants in Indonesia are also not trained as specialists, but rather go
through a common selection and training process that emphasizes more general skills, which
is exactly the skills that the estimation approach in this paper seeks to pick up. Another cri-

6Specifically, I use private sector workers who have worked in a social services job before, to alleviate the issue
of missing values in the sectoral category of individual’s jobs and to capture individuals who transition jobs.
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Table 3.1: Main observable differences: government vs. private sector vs. all other workers

Variable Govt Control Private Other
Share male 0.69 0.67 0.67 0.63
Mean age 39.32 33.09 33.80 42.12
Mean relative wage 1.81 0.99 0.90 0.93
Mean weekly hours 39.44 41.44 40.13 38.30
Share higher educ 0.52 0.16 0.09 0.03
Mean word recall 0.15 -0.07 -0.28 -0.70
Share speak Indonesian 0.41 0.39 0.30 0.18
Mean word ability 0.40 -0.04 -0.22 -0.55
Mean math IQ 0.35 0.01 -0.07 -0.16
Mean national ranking (total) 0.05 -0.03 -0.05 -0.02
Mean national ranking
(language)

0.01 0.02 -0.01 -0.01

Mean national ranking (math) 0.00 0.00 -0.02 -0.01

Details: Based on pooled data and restricting to workers in working age (between 16 to 70
years old), positive work hours and non-missings in age, experience, work hours and income. N
= 137,8527. Unique individuals = 24,206. Unique govt workers = 2,342. Unique control workers =
4,812. Unique private sector workers = 13,394. Unique other workers = 8,470. The control group
are private sector workers who have worked in social services before. Mean relative wage gives the
group-specific mean of the wage divided by the year-specific mean wage across all groups (with
means trimmed at the 2.5th and 97.5th percentiles). Apart from dummy variables, all skill-related
observables are z-standardized across all individuals.

tique may be that the more multi-dimensional nature of government jobs makes performance
measures difficult in the public sector (e.g. Finan, Olken, and Pande 2017). However, the same
argument can be made for social service jobs in the private sector. And importantly, the skill
estimation approach here specifically allows for the idea that measuring performance in a job
is difficult and that wages are only noisy signals of underlying human capital and skills. In the
results section, I will specifically test the informativeness of wages for underlying skills and
compare the private and public sector.

After specifying the estimation sample, the next substep is to purge the observed wage from
changes in the skill price. Figure 3.5 plots the estimated (equilibrium) skill price drawing on
Bowlus and Robinson (2012) and Proposition 4.7 The estimates indicate a slightly increas-
ing price between 1988 and 1997 after which the price drops sharply with the Asian Financial
Crisis, in line with a large drop in the overall demand for skilled labor in the economy and par-
ticularly in social services. After the crisis, the skill price recovers strongly, growing by more
than 50% between 2000 and 2014, in line with growing demand as the economy expands and
moves further into services. Overall, the increase in the skill price was much slower than the
more than 7-fold increase in real GDP per capita over the entire time period, in line with a con-
sistent growth in the supply of skilled labor. The slower increase in the skill price during the
early 1990s is also in line with average years of schooling in Indonesia increasing particularly
strongly in the late 1980s (Duflo 2001, 2004).

The last substep following Proposition 4 is to obtain a noisy estimate of individual-level human

7Skill price estimates are usually sensitive to the exact flat spot region chosen. I chose an age region from 45
to 60, which is in line with regions usually used in the literature and is consistent with the subsequently estimated
wage experience profile.
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Figure 3.5: Evolution of skill price

Notes: Skill price estimation following Bowlus & Robinson (2012). "Main (Mean within)" gives the baseline esti-
mator based on Proposition 4, while "Median within" reports the same estimator using median changes instead.
"Median" and "Mean" alternatively report estimates without demeaning within-individuals first. For the flat-spot
region, I use the age range from 45 to 60, consistent with subsequently estimated experience profiles. For all esti-
mates, the level of prices is normalized such that the time-series average is unity.

capital by disentangling experience effects from individual-specific skills at labor market entry.
Assuming that deflated log wages follow: w̃i,e,t ≡ wi,e,t−pt = zi+δ0 ∗expi,e,t+δ1exp2i,e,t, Table
3.6 reports estimates for the parameters of the experience profile: (δ0, δ1), which are identified
from within-individual changes in wages and experience. Within-individual variation is key
to ensure that estimated experience profiles are not biased by systematic composition changes
in skills at labor market entry, such as due to less experienced cohorts entering the labor market
with better education.8 The estimated parameters give concave experience profiles with a flat-
spot around 28 years of experience, in line with the assumed flat-spot region for the skill price
estimation.

3.3.4 Steps 2 & 3: Predicting skills

In Step 2 of the estimation approach, following Proposition 5, the noisy individual fixed effects
are flexibly projected onto a larger set of skill-related observables. I use standard off-the-shelf
Machine Learning algorithms for this task. Specifically, I compare three different algorithms
with a benchmark of a standard OLS regression with dummies for the educational background
(primary, junior secondary, senior secondary and higher education). The three algorithms are
LASSO using all variables and all their first-order interaction terms (which includes squared
terms), Random Forest and Gradient-Boosted Trees. Due to the high flexibility of Machine
Learning algorithms, it is important to avoid overfitting, which leads to noise in small sample
estimation. To avoid overfitting, I follow standard practice and use 15-fold cross-validation
and train the hyperparameters of each Machine Learning Algorithm via a simple, coarse grid
search. I choose a higher than usual number of cross validation folds due to the smaller sam-

8Note that the IFLS only has wage information for two separate years after the year 2000 since the 2007 & 2014
waves do not ask for wages retrospectively. This means that within-worker wage experience profiles are more
informed by wage profiles prior to the year 2000. However, the limitation does not preclude to estimate worker
fixed effects for workers that enter the labor market after the year 2000 or even workers whose wages are only
observed once.
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Table 3.2: Comparing performance and similarity of different Machine Learning algorithms

Measure Indiv. OLS LASSO RF GBM

R2 4785 0.1097 0.1601 0.1453 0.1794
Corr(OLS,x) 4785 1.0000 0.7143 0.5007 0.5919
Corr(LASSO,x) 4785 0.7143 1.0000 0.7871 0.9321
Corr(RF,x) 4785 0.5007 0.7871 1.0000 0.8562
Corr(GBM,x) 4785 0.5919 0.9321 0.8562 1.0000

ple size, avoiding additionally separating between validation and test datasets.9 The final
individual-level dataset for “training” the skill estimation algorithm includes 4,785 unique in-
dividuals.

Table 3.2 reports the performance of each of the different algorithms in terms of its R2. I find
the GBM algorithm to perform the best with an R2 of around 18%, while the LASSO algo-
rithm achieves 16% and the Random Forest algorithm only 14.5%. In comparison to the simple
OLS algorithm, the Machine Learning algorithms can explain about 60% more variance in the
individual fixed effects, highlighting the importance of accounting for non-linearities and ad-
ditional variables. Interpreting the difference between LASSO & GBM as the importance of
non-linearities allows a simple variance decomposition that attributes 72% of the predictive
gains compared to OLS to having additional variables and 28% to allowing for additional non-
linearities.

So what information are the Machine Learning algorithms picking up and what predicts skills?
Focussing on the GBM estimates as the best-performing baseline estimates, Table 3.7 in Ap-
pendix B.1 ranks variables by variable importance measure that weights the relative impor-
tance for each covariate in the prediction task taking into account nonlinearity and interactions
of the different variables. We can see that the algorithm does identify the various educational
background dummy variables as the most important variables for predicting skills, but among
the top 15 most predictive variables there are also scores on word cognition tasks, Raven IQ-
score, some of the Big-5 measures and the ability to speak the national language. Another way
to see the importance of using additional covariates is to look at the correlation of predictions
across different algorithms as reported in Table 3.2. Comparing the predictions of the three
different Machine Learning algorithms with the OLS predictions, we can note that the correla-
tion is at most 0.71, indicating that the OLS predictions are missing very important variation
that the different Machine Learning algorithms take into account. Secondly, we can compare
the different predictions of the Machine Learning algorithms among each other. For example,
comparing LASSO with gradient-boosted trees, we find that their correlation is around 0.93,
indicating that they both capture very similar additional variation.

9In larger datasets, ensemble methods combining different Machine Learning algorithms could also provide
additional gains for prediction tasks and reduces model sensitivity if sufficiently regularized. Model sensitivity
usually plays a big issue, but Machine Learning algorithms used on larger datasets can potentially ameliorate the
issue.
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Figure 3.6: Evolution government worker skills

Notes: Skill estimates show results from baseline specification with private sector social service workers (Control
group in Figure) as estimation sample and GBM estimator as ML algorithm. Relative skills are in log differences.
Data is pooled across all waves of the IFLS and then plotted by year.

3.4 Main empirical results

Taking the individual skill estimates based on the best-performing Machine Learning algo-
rithm, I now show two major applications using estimates of government worker skills for
any worker in the economy. I discuss each in turn.

3.4.1 Application 1: Changes in skills & selection

In the first application of the skill estimation approach, I quantify that government workers
are highly selected, but that the quality of the government workforce and its selection changed
systematically over time.

Evolution of absolute and relative skills

Figure 3.6 plots the evolution of government worker skills over time as well as relative skills
of government workers compared to other workers in the economy, revealing three important
facts. First, government workers are on average much more skilled: in 1988, they are roughly
45% more skilled than private sector workers in social services (the control group) and more
than 65% more skilled than private sector workers, in line with skill differences reported in
Table 3.1. Second, as visible on the left plot, average skills increased by roughly 30% across
all workers since 1988, again, in line with general increases in education. Third, while these
average increases in skills also hold separately for government workers and non-government
workers, the increases were more pronounced for non-government workers such that the rel-
ative skill premium of the government has steadily declined since 1988.

What explains these changes in average skills over time? Given that the focus was on skills at
labor market entry that are fixed over an individual’s lifetime, changes in average and relative
skills of government workers are entirely driven by changes in the composition of workers.
The latter changes due to hiring of young cohorts and exiting of old cohorts as well as due to
mid-career transitions into and out of the government. Figure 3.7 shows that overall skills are
strongly increasing across birth cohorts, with a big increase starting around 1960, which co-
incides with the largest school construction program in Indonesian history (see: Duflo 2001).
At the same time, the relative skill premium of government workers strongly declined across
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Figure 3.7: Government worker skills across cohorts

Notes: Skill estimates show results from baseline specification with private sector social service workers (Control
group in Figure) as estimation sample and GBM estimator as ML algorithm. Relative skills are in log differences.
Data is pooled across all waves of the IFLS and then plotted by (binned) cohort. Cohort bins are determined by
equal-sized bins in pooled data. Sample restricted to working ages of government workers (25-58). Dotted line
denotes the first cohort that was treated by the INPRES school construction program studied in Duflo (2001).

birth cohorts also starting around 1960. This relative decline in government worker skills is
particularly surprising given that Figure 3.2 already showed that government hiring declined
in birth cohorts shortly after 1960. In the case that government jobs are in high demand, one
would have expected that a decline in supply would have led to an increase in relative skills
as long as the government is good at selecting workers on skills. So is the Indonesian gov-
ernment simply becoming worse at selecting workers? Or are government jobs becoming less
attractive for highly skilled workers? Or are there maybe changes in the types of jobs that the
government is offering for which the skill requirement changed systematically? The next two
subsections zone in on these questions.

The government selection rule

Motivated by the decline in the relative skill premium of government workers, I now turn to
studying the selection of government workers across the entire skill distribution. In practice,
governments – including the Indonesian government – use multi-stage selection processes that
include restrictions on who can apply, entry exams and a selection on a combination of observ-
ables that are revealed through CVs and information provided during the application process.
At the same time, corruption, clientelism and politically-motivated hiring can influence the se-
lection at different stages (Colonnelli and Prem 2017; Hanna and Wang 2017; Jia, Kudamatsu,
and Seim 2015; Weaver 2019). This holds particularly so for Indonesia, where there is solid
evidence that politics has an influence on selection into and promotion patterns within the
Civil Service (Pierskalla and Sacks 2018), that there is widespread corruption among bureau-
crats (Valsecchi 2016), and where civil service jobs have historically been sold in an auction-like
fashion (Kristiansen and Ramli 2006). To study how “good” the government is de facto at se-
lecting government workers, I define the following simple reduced-form selection rule st(z):

st(z) ≡ ft(z|(selected|applied)) =
ft(z|applied ∩ selected)

ft(z|applied)
(3.5)

where ft(z|applied) gives the skill distribution of the applicant pool and ft(z|applied ∩ selected)
the skill distribution of newly selected government workers. The selection rule is above unity
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Figure 3.8: Estimated government selection rule

Notes: The selection rule is based on the distribution of estimated skills for all workers and for the subset of gov-
ernment workers only. In both cases, the estimates are based on all unique workers, not repeated observations
per worker. Estimates are based on a direct estimator of the density ratio using unconstrained Least-Squares Im-
portance Fitting (uLSIF) taking standard values for the corresponding hyperparameters: lambda (0.2) and sigma
(0.1).

at any skill level z if the state selects more people with these skills than would be expected un-
der uniform drawing from the conditional skill distribution of applicants. A key property of a
good selection rule would then, for example, be that it is increasing in skills, such that higher
quality candidates are more likely to be employed.10 An implicit assumption here is that there
are more applicants than government workers to be selected, which is the empirically relevant
setting for developing countries and many developed countries.11

How do we measure the two conditional distributions? While the sample of selected govern-
ment workers directly identifies the numerator of the selection rule, the denominator given
by the applicant skill distribution turns out to be trickier. Conceptually, the applicant pool is
trickier because one needs to take a stance on what the selection rule should capture. For exam-
ple, we could interpret the selection rule narrowly by understanding applicants as individuals
who have actually filled out an application form. This information may be readily available in
many contexts. However, formal application requirements may already exclude highly skilled
potential government workers such that a more inclusive definition of the applicant pool can
be more interesting in practice. Since the IFLS data unfortunately does not measure “interest
in a government job” nor whether a worker applied for a government job in the past, I look
at the limit case assuming that every worker in the economy would take a government job;
a useful benchmark that will be a good approximation in many developing country settings
where interest in a safe government position is ubiquitous. This limit case is likely a lower
bound for the selection rule because we expect low-skilled individuals to be more likely to
take a government-sector job than high-skilled individuals who are more likely to have good
outside options.

Figure 3.8 shows the estimated selection rule and the conditional skill density functions for

10This is equivalent to the two conditional densities exhibiting the Monotone Likelihood Ratio Property
11In 2014, there were around 2.6 million applicants for 100k open civil service positions in Indonesia (see here

as of April 22, 2024).
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Figure 3.9: Estimated changes in government selection rule

Notes: The two estimated selection rules are based on the distribution of estimated skills for all workers and for the
subset of government workers only. For before 2000, the estimation data is restricted to workers who show up in
the IFLS data in the year 2000 or before. For after 2000, the selection rule is estimated using government workers
who entered the sample after 2000, and all other workers who entered the labor force after the year 2000 to focus on
new entrants in the labor market. Estimates are again based on a direct estimator of the density ratio using uncon-
strained Least-Squares Importance Fitting (uLSIF) taking standard values for the corresponding hyperparameters:
lambda (0.2) and sigma (0.1).

government workers and all workers separately.12 Two main points are worth noting: First, the
government selection rule is indeed mostly increasing. The Indonesian government is much
less likely to pick low skilled workers as civil servants compared to their density in the data,
which translates into a ratio below 1, and is more likely to pick high skilled workers leading to
density ratios above 1.13 Second, the selection rule drops for highly skilled workers. If indeed
everyone in the economy would take a government job, the point estimates imply that the
government becomes worse at selecting the most qualified workers in the economy. The more
likely explanation in this case (apart from statistical uncertainty) is that we have misspecified
the applicant pool and that the individuals that would be most skilled in a government sector
job are actually not interested in taking government jobs.

How does the selection rule account for the decline in the skill premium of government work-
ers? Suppose the selection rule, which the government determines through its hiring practices,
stayed constant over time. In this case, a systematic rightward shift of the skill distribution in
the population has ambiguous effects depending on where the distribution is. As long as the
mass of applicants at the left of the selection rule’s maximum moves up the curve, these work-
ers are more likely to be selected, increasing government worker skills. However, if skills for
high-skilled workers shift further, then they eventually become less likely to end up working
for the government, decreasing skills.

12To estimate the ratio, I use a direct estimator of the density ratio using unconstrained Least-Squares Impor-
tance Fitting (uLSIF) proposed by Hido et al. (2011), which is more robust than separately estimating skill distri-
butions for nominator and denominator and then forming the ratio of the two. Similar to density estimation, there
are many different direct estimators for density ratios proposed in the literature, which I found to perform very
similarly for my application.

13The visible spikes in the skill distributions are due to the importance of the discrete educational background
and bunching of same key missing variables, which the Machine Learning algorithm simply treats as another
categorical value of the respective variable.
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At last, the decline in the skill premium of government workers could also be explained by
changes in the selection rule itself. Between 1988 and 2014, Indonesia moved from a highly
centralized autocratic government with a regime-aligned bureaucracy (Hadiz and Robison
2013; Robison and Hadiz 2004) to a democratic system with a highly decentralized bureau-
cracy (Blunt, Turner, and Lindroth 2012; Brinkerhoff and Wetterberg 2013). These changes
were accompanied with a decline in government hiring (see Figure 3.2) as well as numer-
ous bureaucracy reforms starting unevenly across ministries in the 2000s and a change to
a computer-assisted selection that seems to have greatly reduced corruption at the selection
stage (Kuipers 2021). Figure 3.9 shows estimated changes in the de facto selection rule when
restricting to workers that started working before the year 2000 versus after 2000. To interpret
changes in the selection rule, suppose that the distribution of applicants stayed the same: in
this case, the estimates indeed suggest that after 2000 it became harder for low-skilled workers
to work for the government, indicated by the downward shift in the selection rule. At the same
time, the selection rule is also lower for high-skilled workers suggesting that the government
has not become better at selecting high-skilled workers. Taken together, the relative decline in
the skill premium of government workers documented in Figure 3.6 thus seem mostly driven
by skill improvements in the applicant population, and only little influenced by improvements
in the selection of government workers.

Relative skills & changes in government hiring

In this final subsection, I provide further evidence on a main mechanism that impacts changes
in relative skills of government workers: As overall government hiring declines, the govern-
ment should be able to hire relatively better workers since they have a larger pool of applicants
to choose from. For Indonesia, this mechanism counteracts some of the decline in relative skills
as more skilled workers end up working in the private sector.

To provide evidence for the mechanism, I consider changes in the government employment
share. The idea is that there is strong year-to-year variation in how much the government is
hiring, driven in part by political cycles and the discrete nature of legislation. If hiring by the
government happens mostly at labor market entry, then one would expect differential expo-
sure of birth cohorts to government hiring, as evidenced by observed differences in cohort-
specific government employment shares. Conditional on filling the same job, more treated
cohorts should thus show lower average skills. Table 3.3 shows regression evidence that this is
indeed the case. Column 1 shows that the average skill premium of government workers is in-
deed declining in year-to-year changes in the cohort-specific government employment share.
Column 2 shows that this effect also holds conditional on the same job, using job occupation
and sector fixed effects. At last, Columns 3 & 4 show the same results additionally controlling
for a time trend in skills.

3.4.2 Application 2: Government wage setting

The second major application looks at the wages of government workers; specifically at the
informativeness of government wages and whether government workers are overpriced com-
pared to the private sector.
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Table 3.3: The government skill premium and changes in government hiring intensity

Dependent Variable: Skill
Model: (1) (2) (3) (4)

Variables
Constant 7.866∗∗∗ -1,004.170∗∗∗

(0.001) (73.670)
Change govt empl share 0.465∗∗∗ 0.361∗∗∗ 0.425∗∗∗ 0.334∗∗∗

(0.025) (0.046) (0.024) (0.045)
Govt worker 0.536∗∗∗ 0.202∗∗∗ 0.547∗∗∗ 0.220∗∗∗

(0.003) (0.051) (0.003) (0.051)
Change govt empl share × Govt worker -0.678∗∗∗ -0.574∗∗∗ -0.574∗∗∗ -0.489∗∗

(0.065) (0.176) (0.064) (0.171)
year 1.001∗∗∗ 0.760∗∗

(0.074) (0.261)
year square 0.000∗∗∗ 0.000∗∗

(0.000) (0.000)

Fixed-effects
Occupation Yes Yes
Sector Yes Yes

Fit statistics
Observations 107,759 106,854 107,759 106,854
R2 0.19 0.35 0.22 0.37
Within R2 0.02 0.05

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: Data based on full worker panel, but restricting to workers between the age of 25 to 58 (the working age of

government workers in Indonesia). Occupation and sector fixed effects reduce the sample size slightly due to
missings in the occupation variable.

Are government wages uninformative?

The starting point of the estimation approach was the idea that government worker wages
are potentially uninformative about underlying skills, because – as in the case of Indonesia –
they follow rigid tenure schedules and allowances with little use of performance incentives or
wage dispersion. For Indonesia, I find more nuanced results; government wages are far from
uninformative about underlying skills, but I also find that comparable private sector wages
are more informative about skills. I show this with two different exercises. First, I test whether
government worker wages are indeed less informative about underlying skills than in the pri-
vate sector by predicting real hourly wages for government workers and private sector work-
ers in social services using estimated skills. Table 3.8 in the Appendix reports these results.
Comparing Columns 1 & 4 shows that government worker wages are indeed less informative
about underlying skills than wages in comparable private sector jobs: the R2 is 0.114 vs. 0.157.
However, this relative ranking changes once one controls for experience profiles, given a far
more deterministic government wage experience schedule. For example, even when enforc-
ing the same experience coefficients as in the comparable private sector (columns 2 & 5), life
cycle human capital of government workers predicts 18.3% of the variation versus 18% in the
private sector. The R2 increases to 22.1%, roughly doubling the explanatory power compared
to only job market entry skills when allowing for government-specific experience coefficients
(columns 3 & 6).

The second test of the informativeness of government worker wages is to re-estimate govern-
ment worker skills following all estimation stages but using government wages instead and
then looking at the correlation across the two skill measures. As shown in Figure 3.10 in the
Appendix, this correlation is high with an R2 of around 74%. Assuming that baseline skills
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are estimated correctly, government wages are thus informative about underlying skills, but
are biased. As shown in Figures 3.11 and 3.12 in the Appendix, the bias and the variance of
the bias increase in skills, such that skills based on government wages are a particularly bad
measure for the most skilled government workers, underestimating their skills on average and
being less informative for them.

Is there a government wage premium?

The estimation approach allows for a direct measurement of the wage premium of government
workers: conditional on the same level of skills, do government workers earn higher wages?
The answer is: yes. Government workers earn a large wage premium of at least 30%. Specif-
ically, Table 3.4 reports different estimates for the wage premium restricting to government
workers and the control group of private sector workers in social services. Column 1 docu-
ments a large unconditional wage premium of 0.7 log points, which translates into twice as
high real hourly wages. The wage premium roughly halves when controlling for worker skills
(column 4), pointing to strong positive selection on skills. The wage premium also generally
reduces when focussing on within-job comparisons by introducing occupation and sector fixed
effects (columns 3 & 5). To avoid biasing estimated wage premia due to compositional changes
over time – for example, if there are more control group workers in more recent periods – re-
sults for columns (2) to (8) include year fixed effects. At last, one may be interested in capturing
the wage premium conditional on human capital that incorporates experience. Columns (6) &
(7) report wage premia controlling for experience using the life-cycle skill measure hi,e,t that
incorporates estimated human capital experience profiles. These estimates lead to the most
conservative wage premia of around 0.26 log points, or a wage premium of roughly 30%. The
last column considers changes in the wage premium over time and finds that the government
wage premium is clearly increasing over time.

What is driving this large observed wage premium? It turns out that an important driver of the
government wage premium is the absence of a gender wage gap in the public sector. Women
in Indonesia’s private sector face a large real hourly wage penalty compared to men in the
private sector. Table 3.5 reports a raw gender wage gap of 0.432 log points, or a roughly 35%
(!) wage cut for women compared to men in the private sector (column 1), which decreases to
about 0.3 log points – or a wage penalty of 26% – after controlling for the same job, experience
and skills (column 4). This gender wage is also stable over time (coefficient “Male x year” in
column 5). The gender wage gap in the public sector, on the other hand, is much smaller, at
about 1/4 of the wage gap in the private sector after controlling for the same job, experience
and skills (column 4 and using the sum of the coefficients for “Male” & “Govt worker x Male”).
That is, in the absence of a differential gender wage gap in the private sector, the government
wage premium would be roughly 30% lower (the sum of coefficients “Govt worker” & “Govt
worker x Male” in column 4 in comparison to the coefficient for “Govt worker” in Table 3
column 7).

3.5 Extensions

This section discusses main extensions of the skill estimation approach.
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Table 3.4: Regression results: Government wage premium

Dependent Variable: log(real hourly wage)
Model: (1) (2) (3) (4) (5) (6) (7) (8)

Variables
Constant 8.419∗∗∗

(0.007)
Is govt worker? 0.704∗∗∗ 0.721∗∗∗ 0.519∗∗∗ 0.377∗∗∗ 0.369∗∗∗ 0.246∗∗∗ 0.262∗∗∗ 0.087∗∗∗

(0.012) (0.034) (0.042) (0.028) (0.032) (0.030) (0.032) (0.029)
Skill 1.054∗∗∗ 0.942∗∗∗

(0.042) (0.049)
Life-cycle skill 1.183∗∗∗ 1.090∗∗∗ 1.093∗∗∗

(0.042) (0.047) (0.049)
Govt worker X year 0.016∗∗∗

(0.002)

Fixed-effects
Year Yes Yes Yes Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Sector Yes Yes Yes Yes

Fit statistics
Observations 33,583 33,583 33,362 33,583 33,362 33,583 33,362 33,362
R2 0.09 0.13 0.19 0.24 0.26 0.27 0.29 0.29
Within R2 0.10 0.04 0.22 0.12 0.25 0.16 0.16

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: Sample restricted to government workers and control group (private sector workers who have worked in
social services at any point in time). Standard errors are clustered at the year level (except for column 1 which
assumes IID standard errors). Adding occupation and sector fixed effects reduces the sample size slightly due to
missings in the occupation variable.

3.5.1 More flexible skill-experience profiles

The estimation approach for government worker skills in this paper allows for far more flex-
ibility in skill experience profiles. A natural extension allows not only for a measure of skills
at labor market entry, but also for individual-specific learning capabilities. Such a measure
would then also allow to consider selection of workers on learning capabilities. A similar al-
ternative would be to allow for multi-dimensional individual skill estimates. In both cases,
the key to estimation would be to construct multiple individual-specific fixed effects and then
separately regress these on skill- or learning-related observables. To see how this would look,
assume that human capital hi,e,t evolves according to the following factor structure:

hi,e,t = zi ∗ egi∗δe (3.6)

where zi are individual time-fixed skills at labor market entry, gi are individual-specific learn-
ing capabilities and δe are arbitrary experience-fixed effects. Government worker skills are
defined as zi = hi,0,t, assuming that δ0 = 0, and the correlation between the two different fixed
effects is unrestricted. The factor structure allows individual-specific skills and individual-
specific wage-experience profiles, but restricts the shape of the latter to a factor structure. This
can be seen as a generalization of earlier panel data methods such as the Within estimator
which allows only individual-specific levels. The factor structure can match well empirically
observed concave wage-experience profiles that differ in slope across individuals. Specifically,
it has been well documented that wage-experience profiles are steeper for highly educated
than for less educated individuals and that the variance of the slope of wage-experience pro-
files is increasing with observed skills such as education (Guvenen 2009; Guvenen and Smith
2014; Kahn and Lange 2014; Lagakos et al. 2018; Primiceri and Van Rens 2009). Alternatively,

173



Table 3.5: Regression results: Government wage premium & gender gap

Dependent Variable: log(real hourly wage)
Model: (1) (2) (3) (4) (5)

Variables
Constant 8.130∗∗∗

(0.013)
Govt worker 1.032∗∗∗ 0.717∗∗∗ 0.510∗∗∗ 0.400∗∗∗ 0.223∗∗∗

(0.021) (0.049) (0.036) (0.038) (0.038)
Male 0.432∗∗∗ 0.477∗∗∗ 0.365∗∗∗ 0.303∗∗∗ 0.291∗∗∗

(0.016) (0.020) (0.018) (0.017) (0.025)
Govt worker × Male -0.489∗∗∗ -0.350∗∗∗ -0.242∗∗∗ -0.219∗∗∗ -0.205∗∗∗

(0.025) (0.026) (0.022) (0.023) (0.022)
Skill 0.887∗∗∗

(0.050)
Life-cycle skill 1.028∗∗∗ 1.032∗∗∗

(0.048) (0.050)
Govt worker X year 0.015∗∗∗

(0.002)
Male X year 0.001

(0.001)

Fixed-effects
Year Yes Yes Yes Yes
Occupation Yes Yes Yes Yes
Sector Yes Yes Yes Yes

Fit statistics
Observations 33,583 33,362 33,362 33,362 33,362
R2 0.11 0.21 0.27 0.30 0.30
Within R2 0.07 0.14 0.17 0.17

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: Sample restricted to government workers and control group (private sector workers who have worked in
social services at any point in time). Standard errors are clustered at the year level (except for column 1 which

assumes IID standard errors). Adding occupation and sector fixed effects reduces the sample size slightly due to
missings in the occupation variable.

one can allow for multiple dimensions of skills by incorporating multiple factors, which are
usually restricted to be orthogonal (see Ahn, Lee, and Schmidt 2013; Bai 2009). In Appendix
A.5, I provide a more detailed practical guide of how to estimate multiple noisy fixed effects in
this setup and discuss Monte Carlo evidence that shows its performance in realistic empirical
settings.

3.5.2 Further heterogeneity in skill prices or jobs

An important limitation of the approach in this paper is that skill estimation requires the as-
sumption that there is a single skill price in the skill estimation sample for a comparable job
with the same skill requirements. While subsequent analyses conditioned on narrower within-
job comparisons, the skill estimation itself relies on comparing across these jobs to value skills.
If one is worried about this assumption, an alternative approach is to specify a model that maps
from noisy individual fixed effects to skill-related observables, while controlling for further
group fixed effects. These groups could be jobs or also geographic areas to capture different
skill prices across locations. The same fixed effects should then be used in any downstream em-
pirical analysis to ensure that results are only based on variation within fixed effects. Another
alternative to allow for more price variation is to directly compute group-specific skill prices
following a group-specific flat-spot identification. Again, this gives separate normalizations
across groups, so that levels in skills cannot be compared across groups anymore, requiring
group-specific fixed effects in later analyses.
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3.6 Conclusion

This paper provided a new approach to estimate government worker skills using residualized
wages in comparable jobs in the private sector, relating these to skill-related observables us-
ing Machine Learning tools and then predicting government worker skills out-of-sample. I
then showed two main applications drawing on rich Indonesian household-level panel data.
First, I showed evidence for the selection of government workers. Despite growing absolute
skills, relative skills of government workers systematically declined in Indonesia over the past
30 years. I linked this finding to the difficulty of the Indonesian government to attract the
workers with the highest skills to the government. Furthermore, I showed evidence for the
detrimental effect of government hiring cycles on the selection of government workers. The
evidence is consistent with the idea that in years of outsized hiring, the government needs to
move down the skill distribution of the applicant pool to fill all government positions, leading
to lower average skills. In the second main application, I looked at government wage setting
and showed that the Indonesian government pays a wage premium of at least 30% conditional
on skills, about 1/3 of which is driven by the large gender wage gap in Indonesia’s private
sector.

A good sign of a new estimation approach is that it raises many interesting questions – both
conceptual and theoretically – that can now be studied more rigorously: For example, what are
the output or welfare costs of government hiring cycles? Or what drives the relative decline
in government skills and does this go in hand with a relative decline in state capacity versus
private sector capacity over the course of development? All of these questions are particularly
well-suited for future structural work on the functionings of bureaucracies, for which the esti-
mated government skills in this paper can directly be used as state variables. This allows for a
tractable framework to consider selection into different jobs, investments in endogenous skills
and the counterfactual responses of government output. This structural work would allow to
consider novel counterfactuals of practical interest that are otherwise hard to evaluate. For
example, how would changes in the selection rule of government workers via changes in the
application process affect private sector labor markets and investments in skills and formal
education? Or eventually, how would changes in government hiring practices affect private
sector versus public sector production and how should governments select workers over the
course of development?
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3.8 Appendix

3.8.1 Further details on the selection and hiring process of government workers

Entering the Civil Service is remarkably well-defined in Indonesia despite large changes to the
Civil Service over the time period of interest as applicants run through a centralized applica-
tion process. Applicants apply to the specific position or district they are interested in, but still
run through a centralized application process and due to frequent rotations and across-country
stationing, are likely to end up with a position somewhere else than where they applied if they
are admitted. Formal requirements of applying to the Civil Service are that individuals have
to be between 18-35 years old, never been imprisoned, not be a member of a political party,
be in good physical and mental health and be willing to work in any region in Indonesia.
For each job opening there are then additional educational requirements, which are set by the
district and which often mean an undergraduate diploma. Since 2012, all applicants have to
go through a civil servant enrollment test (CPNS), which includes three parts: an administra-
tive selection, a basic competence test (Seleksi Kompetensi Dasar) recently administered via a
computer-assisted test and a specific field competence selection (Seleksi Kompetensi Bidang).14

Solely based on aggregate numbers, obtaining a Civil Service job is difficult. In 2014, prior to
a 4-year public sector employment moratorium, there were more than 2.6 million applicants
for 100,000 available positions, which translates into an acceptance rate of slightly below 4%
(see: Anandari and Nuryakin 2019). This is similar to the 1-5% acceptance rates reported in
Kristiansen and Ramli (2006) for two Indonesian regions in the early 2000s.15

In practice, it is unclear how well the recruitment system in place selects qualified candidates
and how this changed over time. Horhoruw et al. (2013) notes that it is unclear whether reform
processes since 2001 have actually led to an improvement of hiring practices beyond just a
few reform-minded institutions. In Pierskalla and Sacks (2018), the authors draw on teacher
censuses to show that changes in the political system after 1998 actually had negative effects
on public hiring. They find that increased political competition gave local elites an incentive
to use their discretionary control over state hiring to increase patronage efforts as evidenced
by election-related increases in the number of contract teachers on local payrolls and increases
in civil service teacher certifications. At the same time, Pierskalla et al. (2020) use data on
the universe of civil servants to show that civil servants with a postgraduate education are
twice as likely to be promoted after 1999 in comparison to before, indicating a combination of
composition changes and more performance-related promotion patterns.

Kristiansen and Ramli (2006) draw on in-depth qualitative and quantitative evidence from in-
terviews and focus groups with a non-representative sample of 60 civil servants in two areas
of Indonesia to document that personal ties and nepotism are often named as primary rea-
sons for hiring. Moreover, the selling of government jobs is widely practiced. Kristiansen and
Ramli (2006) document that all respondents paid for their first Civil Service position and that
the average reported price for these jobs is around 2.5 times the official annual initial salary of-

14Under the Suharto regime, the Civil Service system was organized as a military-type organisation where new
recruits were not differentiated other than by level of education, which introduced generalist civil servants and
abolished further specializations within the bureaucracy (McLeod 2006). Recent reforms have tried to reverse this.

15Note, the percentage of acceptances has increased in the author’s sample, which would be in line with the
model on the evolution of state capacity.
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fered. This is slightly higher than the 17 months of salary reported recently in Weaver (2019).16

There is also some evidence that the average real price for a government position has slowly
increased between 1995-2004. Prices are positively correlated with the salary of the job (which
in turn is mechanically tied to the education level of the civil servant) and seem to be posi-
tively correlated with the ease of rent-seeking possibilities in the specific job offered.17 This
evidence on prices is in line with a competitive auction price for government sector jobs as
found in Weaver (2019). In the end, it is unclear how these unlawful hiring practices perform
with respect to selecting the most qualified candidates as this depends on the correlation be-
tween quality and the ability to pay for a job or the probability of knowing someone important
in the bureaucracy. Interestingly, Weaver (2019) finds that for the context they look at, this
correlation is highly positive so that the selling of government sector jobs actually leads to a
good selection rule in terms of quality of the new hires.

16The author does not share the country of study to provide additional security for their survey respondents.
17Among the usual rent-seeking possibilities are various forms of contract kickbacks, payment from staff in

exchange for positions and hiring on projects, loan accounts structured to earn interest by the agency, provision of
ghost services, inflated invoicing in collusion with contractors, procedures for tax avoidance, irregular payments
for health and education services, bribes to police officers and judges, and speed money to obtain formal papers
and permits (World Bank 2003; Vian 2005; Chapman 2005; Azfar 2005).
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3.8.2 Proof of Proposition 4

I start with the flat-spot identification. Unbiasedness is given by:

Ei∈FP[wi,e,t − wi,e−1,t−1] = pt − pt−1 + Ei∈FP[(hi,e,t − hi,e−1,t−1)]︸ ︷︷ ︸
=0 due to flat spot assumption

+Ei∈FP[ϵi,e,t − ϵi,e−1,t−1]︸ ︷︷ ︸
=0

(3.7)

Consistency of the estimator is given by:

1

NFP

∑
i∈FP

[wi,e,t−wi,e−1,t−1]
N→∞−−−−→ pt−pt−1+Ei∈FP[(hi,e,t − hi,e−1,t−1)]︸ ︷︷ ︸

=0 due to flat spot assumption

+Ei∈FP[ϵi,e,t − ϵi,e−1,t−1]︸ ︷︷ ︸
=0

(3.8)
The estimator combines estimated year-to-year changes in prices, giving an unbiased and con-
sistent estimate of the entire price path (up to a level of normalization).

Given unbiased and consistent estimates of the skill price process, one can construct an unbi-
ased estimate of individual skills using a standard-within estimator for:

w̃i,e,t − w̃i,· = δ0 ∗
(
expi,e,t − expi,·

)
+ δ1

(
exp2i,e,t − exp2i,·

)
+
(
ϵi,e,t − ϵi,·

)
(3.9)

However, as is known as the incidental parameters problem, zi cannot be consistently esti-
mated from the above as long as T ̸→ ∞ (e.g. see: Wooldridge 2010, Chp. 10).
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Table 3.6: Regression results: Experience profile

Dependent Variable: log wage (deflated by skill price)
Model: (1) (2)

Variables
Constant 8.193∗∗∗

(0.015)
experience 0.029∗∗∗ 0.031∗∗∗

(0.002) (0.004)
experience square -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)

Fixed-effects
Individual Yes

Fit statistics
Observations 20,538 20,538
R2 0.01 0.65
Within R2 0.01

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Notes: Sample are comparison workers (private sector workers in social services).

3.8.3 Additional results for skill estimation
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Table 3.7: Relative variable importance

Variable Importance
PrimaryEduc 100.000000
HigherEduc 91.345271
SeniorSecondEduc 55.312742
writeLetterIndo 46.846035
speakIndonesian 36.889641
RelativeIndonScore 20.298544
CountWordRecall 17.260944
RelativeTotalScore 15.285114
CountBackwards 14.368554
WordAbil 10.753075
Big5Open 10.375476
RavenIQ 10.116039
MathIQ 10.092988
Big5Neu 8.222708
JuniorSecondEduc 7.195992
RiskPref1 5.723784
RelativeMathScore 3.346342
CountWordRecallDelayed 3.183184
RiskPref2 1.926393
Big5Ext 1.465696

Details: Based on best-performing GBM
algorithm and restricting to top 20 variables.
Variable importance is based on traversing
the tree and recording how much the metric
(R2 here) changes every time a given vari-
able is used for splitting. One then takes the
average reductions across all base-learners
for each variable and normalizes the most
important variable to 100
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Table 3.8: Regression results: Informativeness of government wages

Dependent Variable: log(real hourly wage)
Model: (1) (2) (3) (4) (5) (6)

Variables
Constant 0.478∗∗ -1.897∗∗∗ -1.427∗∗∗ -0.593∗∗∗ -1.555∗∗∗ -1.519∗∗∗

(0.211) (0.204) (0.204) (0.146) (0.149) (0.151)
Skill 1.030∗∗∗ 1.166∗∗∗ 1.116∗∗∗ 1.194∗∗∗

(0.025) (0.024) (0.018) (0.018)
Life-cycle skill 1.267∗∗∗ 1.201∗∗∗

(0.023) (0.018)
experience 0.068∗∗∗ 0.041∗∗∗

(0.003) (0.002)
experience square -0.001∗∗∗ -0.001∗∗∗

(0.000) (0.000)

Fit statistics
Observations 13,130 13,130 13,130 20,453 20,453 20,453
R2 0.11 0.18 0.22 0.16 0.18 0.18
Adjusted R2 0.11 0.18 0.22 0.16 0.18 0.18

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Notes: Columns 1-3 focus on public worker wages only, while Columns 4-6 focus on comparison workers (private
sector workers in social services).

3.8.4 Additional empirical results

This part of the Appendix provides additional results for Section 4 that are in part referenced
in the main text.

Figure 3.10: Correlation of baseline skill estimates and skill estimates based on government
wages

Notes: Baseline skill estimates are based on private sector social service workers as estimation sample and GBM
estimator as ML algorithm (as explained in text). Skill estimates based on government wages go through the same
estimation steps using all government workers for estimation sample instead (that is, the same skill price estimator
and the GBM estimator).
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Figure 3.11: Error of skill estimate based on government wages (compared to baseline skill
estimate)

Notes: Error gives the difference between skills based on government wages and the baseline skills (in log differ-
ences, assuming multiplicative error). Baseline skill estimates are based on private sector social service workers as
estimation sample and GBM estimator as ML algorithm (as explained in text). Skill estimates based on government
wages go through the same estimation steps using all government workers for estimation sample instead (that is,
the same skill price estimator and the GBM estimator).

Figure 3.12: Absolute error of skill estimate based on government wages (compared to baseline
skill estimate)

Notes: Absolute error gives the absolute difference between skills based on government wages and the baseline
skills (in log differences, assuming multiplicative error). Baseline skill estimates are based on private sector social
service workers as estimation sample and GBM estimator as ML algorithm (as explained in text). Skill estimates
based on government wages go through the same estimation steps using all government workers for estimation
sample instead (that is, the same skill price estimator and the GBM estimator).
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3.8.5 Estimation details: factor structure for experience profile

The factor structure introduced in Section 5.1 can be estimated using the two-stage estima-
tor of Pesaran (2006).18 Pesaran (2006) proposes to use cross-sectional averages to estimate
experience factors δe. For this, one can first demean the series to get:

˜̃wi,e ≡ w̃i,e − w̃i,• = g(zi)(δe − δ•) + (ϵi,e − ϵi,•) (3.10)

Using the economic structure of the problem gives δ0 = 0, so that identification of (δe − δ•)

also separately identifies the two terms. Using the fact that in the assumed data-generating
process: limn→∞ ˜̃w•,e = g(z)(δe − δ•), we can write:

˜̃w•,e
˜̃w•,0

→ 1− δe
δ•

(3.11)

˜̃w•,e gives as many equations as there are experience levels. However, with the previous re-
striction of δ0 = 0, we lose one restriction which requires to directly use: ˜̃w•,e ≈ g(z)(δe − δ•).
Given that we are not directly interested in the estimates of δ nor g(zi), we can instead choose
any non-zero normalization to obtain the same estimates of individual skills log(zi). For any
normalization of g(z), we obtain an estimate of δ. We can then include these in the following
experience-series regression for each individual to estimate log(zi) and g(zi):

w̃i,e = log(zi) + δ̂eg(zi) + ϵi,e (3.12)

The individual-level skill estimates are the constant of the regression, giving the estimate
̂log(zi). The derived estimate of private sector skills is generically inconsistent in a panel with

fixed T due to the incidental parameters problem. This is generally true of any estimator that
gives individual-specific estimates. For example, a standard Within-estimator also gives in-
consistent estimates of the individual levels as long as the time dimension is not tending to
infinity. Intuitively, the setup only allows us to extract a noisy signal from the even noisier
wage data.

18Using Monte Carlo simulations, I checked that the Pesaran (2006) estimator performs much better in esti-
mating the factor structure than alternative estimators such as a Within estimator and two different Concentrated
Maximum Likelihood estimators. This performance even holds with unbalanced and potentially non-stationary
panel data as observed in real-world applications. I am happy to share these results upon request. Based on the
existing econometric literature, this is a novel result, because I am not aware of any studies that have looked at
the performance of factor model estimators for the individual-level estimates itself (in contrast to treatment effect
parameters that are estimated in the presence of individual-level effects).
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