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Abstract
Given samples of density functions on an interval (a, b) of R, categorized according to a factor
variable, we aim to test the equality of their mean functions both overall and across the groups defined
by the factor. While the Functional Analysis of Variance (FANOVA) methodology is well-established
for functional data, its adaptation to density functions (DANOVA) is necessary due to their inherent
constraints of positivity and unit integral. To accommodate these constraints, we naturally use Bayes
spaces methodology by mapping the densities using the centered log-ratio transformation into the
L2

0(a, b) space where we can use FANOVA techniques. Many traditional contrasts in FANOVA rely
on squared differences and can be reinterpreted as squared distances between Bayes perturbations
within the densities space. We illustrate our methodology on a dataset comprising daily maximum
temperatures across Vietnamese provinces between 1987 and 2016. Within the context of climate
change, we first investigate the existence of a non-zero temporal trend of the densities of daily
maximum temperature over Vietnam and then examine whether there is any regional effect on these
trends. Finally, we explore odds ratio based interpretations allowing to describe the trends more
locally.

Keywords: Analysis of variance, Density data, Functional data, Log ratio, Odds ratio, Bayes spaces

1 Introduction1

Climate change remains a central focus of sci-2

entific inquiry, as its effects on weather pat-3

terns, ecosystems, and human livelihoods become4

increasingly pronounced (Hultgren et al., 2022).5

According to the World Meteorological Organi-6

zation, the global mean temperature during the7

2011–2020 period has been 1.10 ± 0.12◦C higher8

than the average recorded between 1850 and9

1900. Notably, weather-related events accounted10

for nearly 94% of all recorded disaster-induced11

displacements over the past decade (World Mete-12

orological Organization, 2023). Among the vari-13

ous global climate indicators, near-surface tem-14

perature is particularly critical, as it directly15

influences human well-being and daily activities16

(Gubler et al., 2023; World Meteorological Orga-17

nization, 2024; Schlenker and Roberts, 2009).18

Temperatures can be measured using various19

1



indicators, such as heat stress, growing degree20

days, killing degree days, temperature intervals,21

or the entire temperature distribution (Roberts22

et al., 2013; Vo et al., 2022; Espagne et al., 2019;23

Schlenker and Roberts, 2009; Hultgren et al.,24

2022). Indeed, considering the entire temperature25

distribution captures the full range of temper-26

atures throughout each day and over multiple27

days, offering a more comprehensive and infor-28

mative perspective (Hsiang et al., 2017; Trinh29

et al., 2023). Vietnam lies closer to the tropics30

than the equator and is significantly influenced31

by the East Sea, resulting in a predominantly32

tropical monsoon climate. The country’s econ-33

omy is heavily reliant on agriculture, supported34

by its fertile deltas, mountainous regions, and35

extensive coastline. Vietnam has been identified36

as one of the five countries most vulnerable to the37

impacts of climate change (World Bank Group38

and Asian Development Bank, 2021; Trinh et al.,39

2021). Since 1960, the country’s mean annual40

temperature has risen by approximately 0.5°C41

to 0.7°C, with an estimated warming rate of42

0.26°C per decade between 1971 and 2010 (World43

Bank Group and Asian Development Bank, 2021).44

Consequently, as in many other nations, analyz-45

ing climate change in Vietnam is of particular46

interest due to its significant implications for47

agriculture, especially rice cultivation (Tran and48

Nguyen, 2021; Trinh et al., 2021; Trinh, 2018)49

With the increasing volume of recorded data,50

data science has seen the rise of new types51

of observations like functional data. Functional52

data analysis is currently a very active field of53

statistics, see Aneiros et al. (2022). Of particu-54

lar interest for our application are density-valued55

data, which can be found in other areas of social56

sciences (for example age distributions, income57

distributions, expenditure distributions), and in58

other fields (for example particle size distribu-59

tions). Density data require a specific treatment60

within the framework of functional data anal-61

ysis, due to their inherent constraints, namely62

non-negativity and integration to one. It is typi-63

cally assumed that each observation corresponds64

to a sampled continuous density function, belong-65

ing to an infinite-dimensional function space, as66

discussed in Petersen et al. (2022). A smooth-67

ing tool is necessary to fill the gap between the68

discrete data and the continuous temperature69

density objects and this procedure step is called70

preprocessing. Among the methods described in71

Petersen et al. (2022), we use the Bayes spaces72

approach first introduced in Egozcue et al. (2006),73

and later on developed in Van Den Boogaart et al.74

(2010, 2014).75

In this paper, we focus on testing mean den-76

sity functions, investigating their equality to a77

reference density as well as their equality across78

groups. Since density functions share similar con-79

straints with compositional vectors, albeit in a80

continuous form, we build upon techniques from81

compositional data analysis (CoDA) but also from82

the functional analysis of variance (FANOVA)83

framework, introduced in Ramsay and Silverman84

(2005); Kokoszka and Reimherr (2017).85

Before comparing group means, a first ques-86

tion can be to find whether the expected density87

is equal to a given reference, for example the uni-88

form density. We adapt the one-sample test from89

the functional framework (see Zhang (2013)) to90

density functions in Section 4.1.91

As outlined by Martín-Fernández et al. (2015),92

the analysis of grouped data typically begins93

with testing the equality of group means and a94

widely used approach for this purpose in CoDA is95

the multivariate analysis of variance (MANOVA)96

contrast, which needs to be adapted here to con-97

tinuous objects. On the other hand, the FANOVA98

techniques must be adapted when applied to99

density functions because they reside in the con-100

strained space B2(a, b). We present five test101

statistics in Section 4.2 for the problem of testing102

the equality of group means of density functions,103

which we call DANOVA for distributional analysis104

of variance.105

When an ANOVA test leads to a rejection106

of the null hypothesis of equal group means,107

a related question of interest is the pairwise108

comparison of group means (see for example109

Martín-Fernández et al., 2015, who present addi-110

tional techniques for interpreting the differences111

between the groups in CoDA). This question is112

treated in Section 4.3.113

Finally, to go beyond the global comparisons114

of densities and do a more local analysis, we adapt115

a technique based on odds ratios from Maier et al.116

(2025) to infer the relative mass of the densities117

over specific intervals.118

We apply the above tools to address different119

questions relative to climate change in Vietnam.120

We use the distributions of maximum temper-121

atures in the provinces of Vietnam to compare122

the six administrative regions in terms of cli-123

mate change. The dataset and its preprocessing124

are presented in Section 3. After constructing a125

trend slope density for each province summariz-126

ing its time evolution, we investigate maximum127

temperature distribution changes through these128
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trend slope densities sample. A one-sample test129

comparing the mean slope density to the uniform130

distribution addresses the question of the exis-131

tence of a climate change in the whole of Vietnam132

in Section 4.1. Then, an analysis of variance of the133

slope densities in Section 4.2 detects whether the134

climate change is the same across regions. Finally135

in Section 5, we compare the relative frequencies136

in different subintervals of the temperature distri-137

bution using infinitesimal odds ratios introduced138

in Maier et al. (2025).139

2 Framework and reminders140

2.1 Reminders on functional141

analysis of variance142

In the classical framework of Functional Analysis143

of Variance, or simply FANOVA (as presented in144

Zhang, 2013, p. 144), we observe G independent145

functional samples, denoted by (fg1, . . . , fgng ) for146

1 ≤ g ≤ G, from stochastic processes with values147

in L2(a, b), satisfying for 1 ≤ i ≤ ng and a ≤ x ≤148

b149

fgi(x) = fg(x) + vgi(x), (1)
where fg(x) = E(fgi)(x) is the unknown mean150

function in group g and the stochastic error pro-151

cess vgi has mean 0 and common covariance152

operator. The total sample size is n =
∑G

g=1 ng.153

The overall sample mean curve f̄.. and the group154

sample mean curves f̄g. are respectively defined155

by156

f̄..(x) = 1
n

G∑
g=1

ng∑
i=1

fgi(x) (2)

f̄g.(x) = 1
ng

ng∑
i=1

fgi(x) (3)

The pointwise between-group mean square error157

and the pointwise within-group mean square error158

at x are respectively defined by159

SSB(x) =
G∑

g=1
ng

(
f̄g.(x) − f̄..(x)

)2 and (4)

SSW(x) =
G∑

g=1

ng∑
i=1

(
fgi(x) − f̄g.(x)

)2
. (5)

Ramsay and Silverman (2005) extend the classical160

F-test and propose the pointwise functional F-161

ratio to test the equality of the group mean curves162

at a given point x, using the local F-statistic163

F (x) = SSB(x)
SSW(x) . (6)

For a global assessment of the equality of the164

group mean curves on the whole interval of vari-165

ation of their argument, Zhang and Chen (2007)166

and Zhang (2013) introduce L2-norm based tests167

as well as F-type test statistics. Later on, Zhang168

and Liang (2014) propose the GPF test based on169

the integral of the pointwise F-ratio statistic and170

the Fmax test based on the maximum of the point-171

wise F-test. It is then necessary to approximate172

the null distribution of these statistics. This can173

be achieved using a permutation based procedure174

as in Ramsay and Silverman (2005) or a bootstrap175

procedure as in Zhang et al. (2019).176

2.2 Reminders on distributional177

data analysis and Bayes spaces178

Egozcue et al. (2006) and Van Den Boogaart et al.179

(2010, 2014) define the Bayes spaces of prob-180

ability density functions relative to a reference181

measure λ on an interval of R, in a similar fash-182

ion as L2(λ) spaces. In the following, the measure183

λ will be Lebesgue measure on a finite interval184

[a, b] and we will denote these spaces by B2(a, b).185

We consider the separable Hilbert space L2
0(a, b)186

of square-integrable functions with a zero inte-187

gral on (a, b) equipped with the inner product188

⟨f, g⟩L2 =
∫ b

a
fg dλ. For any measurable function189

p : [a, b] → R that is positive almost everywhere190

and such that the function log(p) is integrable, we191

can define its centered log-ratio transform clr(p)192

x ∈ [a, b] 7→ log(p(x)) − 1
b − a

∫ b

a

log(p)(u)du.

(7)
Note that by construction clr(p) ∈ L2

0(a, b). Con-193

versely for each f ∈ L2
0(λ), the equivalence class194

clr−1(f) = {α exp(f), α > 0} contains positive195

functions that are equal almost everywhere, up to196

a multiplicative constant. Among them there is a197

unique probability density function p (thus sat-198

isfying
∫ b

a
p(u) du = 1) that we use to represent199

clr−1(f).200

Then the Bayes Hilbert space with Lebesgue201

reference measure on the interval [a, b] is the set202

of probability density functions203

B2(a, b) =
{

clr−1(f), f ∈ L2
0(a, b)

}
(8)

equipped with the only separable Hilbert204

space structure (⊕, ⊙, ⟨·, ·⟩B2) that makes205
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the centered log-ratio transform an isom-206

etry between (B2(a, b), ⊕, ⊙, ⟨·, ·⟩B2) and207

(L2
0(a, b), +, ·, ⟨·, ·⟩L2). The resulting addition208

⊕ is called Aitchison perturbation (⊖ denot-209

ing the negative perturbation) and the scalar210

multiplication ⊙ is called Aitchison powering.211

Following Van Den Boogaart et al. (2014), it212

is also possible to use the centered log-ratio trans-213

form in order to transport to B2(a, b) the Borel214

sets, as well as the expectation and covariance of215

L2
0(a, b)-valued random variables. For a random216

density π in B2(a, b), one can define the expected217

value in the Bayes space:218

EB(π) = clr−1(E[clr(π)]) (9)

and the covariance operator, for ϕ ∈ B2(a, b):219

CovB [π](ϕ) = clr−1(CovB [clr π](clr ϕ)) =
EB
[
⟨π ⊖ EB(π), ϕ⟩B2 ⊙

(
π ⊖ EB(π)

)]
. (10)

Notations for distributional analysis of220

variance in Bayes spaces221

In order to avoid confusion, we adopt a specific222

notation to distinguish ordinary (unconstrained)223

functions from densities in a Bayes space. We224

observe G independent density samples, denoted225

by (πg1, . . . , πgng ) for 1 ≤ g ≤ G, from stochas-226

tic processes with values in B2(a, b), satisfying for227

1 ≤ i ≤ ng and a ≤ x ≤ b228

πgi(x) = (πg ⊕ ugi)(x), (11)

where πg(x) = EB(πgi)(x) is the unknown mean
density in group g and the stochastic error process
ugi has mean equal to the uniform distribution on
(a, b) and common covariance operator (defined
by (10) in Bayes spaces). The total sample size is
n =

∑G
g=1 ng. As above the overall sample mean

density is defined as

π̄..(x) = 1
n

⊙
G⊕

g=1

ng⊕
i=1

πgi(x)

and the sample mean density in group g as

π̄g.(x) = 1
ng

⊙
ng⊕
i=1

πgi(x).

Applying the FANOVA formulas to the clr-229

transformed densities, we adapt the FANOVA230

framework to densities and define the point-231

wise between-group mean square error and the232

pointwise within-group mean square error at x by233

SSB(x) =
G∑

g=1
ng(clr(π̄g.)(x) − clr(π̄..)(x))2

(12)

SSW(x) =
G∑

g=1

ng∑
i=1

(clr(πgi)(x) − clr(π̄g.)(x))2

(13)

3 Data description and234

preprocessing235

3.1 Description236

The climate data used in this study comprises237

daily temperatures and precipitation, sourced238

from the Climate Prediction Center (CPC)239

database, developed by the National Oceanic and240

Atmospheric Administration (NOAA). This data241

provides historical records of the maximum and242

minimum temperatures for a 0.5-degree by 0.5-243

degree grid of latitude and longitude. For this244

study, we focus exclusively on maximum temper-245

atures as they are a direct indicator of heat stress246

on both humans and the environment. The data247

spans the years 1987 to 2016. In order to address248

the discrepancy between the geographical coor-249

dinates and the municipalities of Vietnam (63250

provinces), we calculate the average of all grid251

cells or the value of the four nearest localities to252

impute the missing data. This process results in253

365 or 366 daily maximum temperature records254

for each province and year.255

During the study period, maximum tempera-256

tures (hereafter denoted Tmax) range from -5°C to257

nearly 45°C. However, extreme cold and extreme258

heat are rare. For the purpose of our analy-259

sis, we focus on a temperature range of 12°C260

to 40°C. Temperatures below 12°C are adjusted261

upward to 12°C, while temperatures exceeding262

40°C are capped at 40°C. As we can see on263

Figure 1, there are n = 63 provinces in Vietnam264

grouped into G = 6 socioeconomic regions. We265

use the following acronyms for the regions: NMM266

for Northern Midlands and Mountains region267

(n1 = 14 provinces), RRD for Red River Delta268

region (n2 = 12 provinces), NCC for North Cen-269

tral Coast region (n3 = 13 provinces), CHR for270

Central Highlands region (n4 = 5 provinces),271

SR for Southeast region (n5 = 6 provinces)272

and MDR for Mekong Delta region (n6 = 13273

provinces). Trinh et al. (2021) highlight the fact274

that the regions have their own weather peculiar-275

ities. Some regions in the north have four seasons:276
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winter, spring, summer, and autumn, while some277

regions in the south experience two distinct sea-278

sons: the dry season (November to April) and279

the rainy season (May to October) (Trinh et al.,280

2021; World Bank Group and Asian Development281

Bank, 2021). For example, according to Trinh282

et al. (2021), during the period 1960-2000 winter283

temperatures rose faster than those of the sum-284

mer, and temperatures in the northern zones rose285

faster than in the southern zones.

Fig. 1 Map of the provinces of Vietnam colored by region.

286

3.2 Smoothing287

We will assume that the observed data arise288

from random densities, themselves sampled from289

an hypothesized and unknown distribution on a290

Bayes space. Since the elements of the Bayes291

spaces are density functions, whereas the observed292

data (usually samples of real-valued observations293

or histograms) is always discrete, a preprocessing294

step is necessary to transform the observed sam-295

ples or histograms into a sample of probability296

density functions. We will follow the preprocess-297

ing procedure of Machalová et al. (2016, 2021)298

to transform our yearly samples of maximum299

temperatures at the province level into density300

functions that belong to a finite-dimensional sub-301

space C∆
q (a, b) of the Bayes Hilbert space B2(a, b),302

made of compositional splines. A compositional303

spline (CB-spline) is a probability density func-304

tion whose logarithm is a polynomial spline.305

The process starts by the choice of a basis306

of normalized B-spline functions for the space307

S∆
d (a, b) ⊂ L2(a, b), of polynomial splines or308

order d (degree less than or equal to d − 1)309

and inside knots ∆ = (δ1, . . . , δk), of dimen-310

sion d + k (see Schumaker, 1981, for a complete311

description). To accommodate the zero-integral312

constraint, Machalová et al. (2016) introduce the313

ZB-spline functions, denoted by Zℓ(x), 1 ≤ ℓ ≤314

d + k − 1 for the subspace Z∆
d (a, b) = S∆

d (a, b) ∩315

L2
0(a, b) of dimension d + k − 1, the loss of one316

dimension being due to the zero-integral con-317

straint. Finally the inverse clr of the ZB-spline318

basis functions, called the CB-spline basis func-319

tions, denoted by Cℓ = clr−1(Zℓ) generate the320

space C∆
d (a, b), an Euclidean subspace of B2(a, b)321

of dimension k + d − 1, made of compositional322

splines on [a, b] of order d with knots sequence ∆.323

The expansion (14) of a density π of the subspace324

C∆
d (a, b) of B2(a, b) and the corresponding expan-325

sion (15) of its clr transform in the corresponding326

ZB-spline basis generating the space Z∆
d (a, b) are327

then given by:328

π(x) =
d+k−1⊕

ℓ=1
[π]Cℓ ⊙ Cℓ(x), (14)

clr(π)(x) =
d+k−1∑

ℓ=1
[π]Cℓ Zℓ(x), (15)

where [π]Cℓ is the ℓ-th coefficient of π in the CB-329

spline basis C. Note that the coefficients are the330

same in the two equations. The coefficients of the331

global sample mean and regional sample means332

are readily obtained by333

clr π̄g.(x) = 1
ng

ng∑
i=1

clr πgi(x) (16)

= 1
ng

ng∑
i=1

d+m−1∑
ℓ=1

[πgi]Cℓ · Zℓ(x) (17)
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=
d+m−1∑

ℓ=1

(
1

ng

ng∑
i=1

[πgi]Cℓ

)
· Zℓ(x),

(18)

and similarly334

clr π̄..(x) =
d+m−1∑

ℓ=1

(
1
G

G∑
g=1

1
ng

ng∑
i=1

[πgi]Cℓ

)
·Zℓ(x).

(19)
As in Machalová et al. (2016), after sum-335

marizing the initial temperature samples using336

histograms, penalized least squares splines are337

applied to smooth the data, treating the his-338

togram bin centers as the first coordinates and339

the corresponding relative frequencies as the sec-340

ond coordinates. Figure 2, which displays the341

province-level temperature densities grouped by342

region, highlights distinct regional patterns in the343

temperature distributions.344

3.3 Temporal trend by province345

To capture the temporal evolution of tempera-346

ture density distributions across provinces within347

a given region (or within the whole Vietnam), we348

consider a simplified trend model in which each349

province’s density evolves linearly over time in350

the Bayes space sense. More precisely, if πt
gi now351

denotes the density in province i (i = 1, . . . , n)352

at time t, the simple time evolution model (for353

each province) is the following density-on-scalar354

regression model:355

πt
gi(x) = [αgi ⊕ (t ⊙ βgi) ⊕ εgit](x), (20)

where βgi is the trend slope density (or simply356

slope density) for province i in region g. When357

the slope density of this model is the uniform dis-358

tribution on (a, b), there is no observable trend in359

the evolution of temperature densities.360

For estimating the parameters of (20), as in361

Talská et al. (2018), the clr transformation in362

applied to (20) and the resulting equation is that363

of a simple multivariate regression model. The364

fitted slopes seem to give a good approximation365

of the trend evolution since the coefficients of366

determination (defined in the context of density-367

on-scalar regression in Talská et al., 2018, p. 79)368

range from 63% to 97% (median of 94%) across369

provinces, with a better fit in the south. As often370

done in functional data, we will treat the resulting371

estimators of αgi and βgi as our sample density372

dataset (and therefore do not use the hat nota-373

tion). In Section 5, we also use the trend density374

Fig. 2 Regional mean density of maximum temperature
across the years 1987 to 2016.
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functions π̃gi of this model defined by375

π̃t
gi(x) = [αgi ⊕ (t ⊙ βgi)](x). (21)

Figure 3 displays the province specific slope den-376

sities βgi grouped by region.377

4 Global tests378

All testing procedures in this section involve379

hypotheses about the global behavior of mean380

densities in the whole interval [a, b]. In the appli-381

cation, the global tests of this section will be382

applied to the samples of trend slope densities in383

order to investigate the regional effect on climate384

change.385

4.1 One-sample problem386

In this section, we do not consider a group effect387

so that G = 1 and we temporarily drop the g388

index resulting in a sample πi, i = 1, . . . n dis-389

tributed as π. We are given a reference density390

π0 of particular interest and we wish to test the391

equality to π0 of the mean density EB(π):392

H0 : EB(π) = π0. (22)

Since393

EB(π) = π0 ⇔ clrEB(π) = clr π0

⇔ E(clr π) = clr π0,
(23)

the global one-sample test on mean densities is394

equivalent to a one sample test in the L2(a, b)395

space on the clr transformed densities fi = clr(πi)396

for which we may apply a classical one sample397

test for functional data as described in Chap-398

ter 5 of Zhang (2013). As in Zhang (2013), the399

functional sample (f1, . . . , fn), is assumed to arise400

from model (1) (without the regional index g).401

Two test statistics are available: the L2-norm402

test statistic (Zhang (2013)) and the PC approach403

(Kokoszka and Reimherr (2017)). We now adapt404

them to our density framework.405

L2 approach. The L2-norm statistic yields in the406

Bayes space407

Tnorm = n∥ clr(π̄..) − clr(π0)∥2
L2

0(a,b) (24)

The asymptotic distribution of this statistic under408

the null is that of a linear combination of chi-409

squared statistics weighted by the eigenvalues410

of the covariance operator, see Kokoszka and411

Reimherr (2017). For the computation of the412

Fig. 3 Trends slopes of provinces grouped by region. The
dotted line represents the uniform density on [12◦C, 40◦C]
which is the reference measure.
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p-value of the test, the eigenvalues have to be esti-413

mated using FPCA and Kokoszka and Reimherr414

(2017) provide code for the computation of the415

L2-norm.416

PC approach. To eliminate the dependence of417

the limiting distribution upon the unknown eigen-418

values, Kokoszka and Reimherr (2017) propose419

to truncate the Functional Principal Component420

Analysis (FPCA) and use a Hotelling-type test421

statistic. Keeping the first p terms, the statistic is422

given by423

TPC = n∥ clr(π̄..) − clr(π0))∥2
S−1 (25)

= n

p∑
k=1

⟨clr(π̄..) − clr(π0), vk⟩2
L2

0(a,b)

λ̂k,
(26)

where ∥.∥2
S−1 is the squared norm weighted by the424

inverse of the covariance matrix of the clr coef-425

ficients, λk are the eigenvalues and vk the eigen-426

functions of the FPCA. Its limiting distribution427

under the null is then a simple chi-squared with428

p degrees of freedom. Kokoszka and Reimherr429

(2017) recommend using the smallest value of p430

for which the explained variance exceeds 85%, and431

to use the norm approach otherwise.432

Application: evolution of temperature433

distributions over the period 1987-2016434

Figure 4 displays the global mean trend which435

shows that, overall in Vietnam, there is a rel-436

ative stability in the central range of tempera-437

tures [20◦C, 32◦C] while low temperatures (below438

20◦C) tend to become more frequent at the439

expense of very high ones above 32◦C. The justi-440

fication for this statement will be given in Section441

5.442

We perform the one-sample test for the trend443

slope sample of βgi. To evaluate the existence444

of climate change, we choose π0 to be the neu-445

tral element (uniform density on (a, b)), so that446

the null hypothesis represents the absence of cli-447

mate change. Both tests in Table 4.1 confirm448

the existence of a non-uniform mean trend slope,449

indicative of global climate change. We use the fol-450

lowing convention for p-values: *** indicate that451

the p-value is less than 1% (strong rejection), **452

indicate that the p-value is less than 5% (medium453

rejection), * indicates that the p-value is less than454

10% (weak rejection) and no star means that we455

cannot reject the null hypothesis based on the456

data.457

Fig. 4 Global mean trend. The dotted line represents the
uniform density on [12◦C, 40◦C], which is the reference
measure.

Name Statistic p-value

PC 38 3.1e-08 ***
L2 1.3 1.3e-06 ***

Table 1 Test statistics and
p-values for the global one-sample
problem.

Application: regional evolution of458

temperature distributions over the period459

1987-2016460

After testing the existence of global climate461

change, it may be interesting to perform a one-462

sample test in each region separately to see463

whether climate change does not affect some464

regions. The corresponding Šidák-adjusted p-465

values (see Abdi, 2010) are displayed in Table466

2. This table strongly supports the existence of467

climate change in the Red River Delta (RRD)468

region and in the southern regions SR and MDR,469

the non-existence of climate change in the Cen-470

tral Highlands (CHR) region. The results are471

more contrasted in the Northern Midlands and472

Mountains (NMM) region and in the North Cen-473

tral Coast (NCC) region where the tests are474

either non-significant or very marginally signif-475

icant. These results should be interpreted with476

caution due to the small sample size in each477

region.478

Region Sample size PC L2

NMM 14 7.9e-02 * 0.12
RRD 12 1.6e-10 *** 1.5e-04 ***
NCC 13 8e-02 * 0.12
CHR 5 0.65 0.99
SR 6 1.8e-03 *** 4.2e-04 ***
MDR 13 0 *** 4.9e-08 ***

Table 2 Šidák-adjusted p-values for the regional one
sample test.
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4.2 Distributional ANOVA479

Using the notations of Section 2, the objective480

of DANOVA is to test the null hypothesis H0481

that the G group mean densities EB(πg) are equal482

against the usual alternative that at least two483

means are different, where mean density here is484

understood in the Bayes space sense:485

H0 : ∀g, EB(πgi) = EB(π1i). (27)

Let us first note that for two densities π1 and π2486

we have the following equivalence487

EB(π1) = EB(π2) ⇔ E(clr π1) = E(clr π2), (28)

since the clr of the expected density in the Bayes488

sense is equal to the expected value in the classical489

sense of the clr of the density in the correspond-490

ing L2
0 space. Therefore, the assumption (27) is491

equivalent to492

H0 : ∀g, E(clr πgi) = E(clr π1i). (29)

In order to adapt FANOVA to DANOVA, we can493

thus simply apply the FANOVA techniques to the494

clr transformed densities in the functional space495

L2
0. The R package fdANOVA (described in Górecki496

and Smaga, 2019) provides several FANOVA497

options and we focus on the following five test498

statistics. Their evaluation requires the compu-499

tation of the following quantities: the pointwise500

variations SSB(x) and SSW(x) from (12) and501

(13), and pairwise negative perturbations between502

group means for the statistic proposed by Cuevas503

et al. (2004). The coefficients of the required clr504

transforms in a chosen ZB-basis are easily com-505

puted from the coefficients of the clr of πgi, π̄g., π̄..,506

the last two being obtained by (16) and (19). Let507

us briefly describe the five test statistics and try to508

provide when possible a Bayes space expression.509

1. The L2-norm based test statistic from Zhang510

and Chen (2007) is given in the framework of511

ANOVA by512

L2B =
∫ b

a

SSB(x)dx, (30)

where SSB(x) is given by (4). Note that an513

alternative formula for L2B when applied to514

clr of densities is directly given in the Bayes515

space by516

L2B =
G∑

g=1
ng∥π̄g. ⊖ π̄..∥2

B2 , (31)

which shows that this statistic can be517

expressed as a norm and is therefore invari-518

ant under almost-everywhere equality. In the519

Górecki and Smaga (2019) R package, the L2B520

implementation uses an asymptotic distribu-521

tion of the test statistic.522

2. The F-type tests from Shen and Faraway523

(2004) and Zhang (2011) use both within and524

between variation:525

FB =
∫ b

a
SSB(x)dx/(G − 1)∫ b

a
SSW(x)dx/(n − G)

=
∑G

g=1 ng∥π̄g. ⊖ π̄..∥2
B2/(G − 1)∑G

g=1
∑ng

i=1 ∥πgi ⊖ π̄g.∥2
B2/(n − G)

.

(32)

We choose the FB implementation (biased-526

reduced) for the computation of the p-value.527

Under the null hypothesis, this statistic is528

asymptotically equal to a linear combination529

of independent χ2 for the numerator and530

the denominator, and can thus be approx-531

imated by a Fischer distribution (Zhang,532

2011, Theorem 1 and equation (2.16)). The533

test statistic coincides with that of Van534

Den Boogaart et al. (2014) by the second535

equality in (32). However, Van Den Boogaart536

et al. (2014) use a bootstrap procedure rather537

than the above approximation.538

3. The CS statistic from Cuevas et al. (2004) uses539

pairwise differences. When applied to clr of540

densities, due to the linearity of clr, we get541

CS =
∑
g<g′

ng

∫ b

a

(clr π̄g.(x) − clr π̄g′.(x))2
dx

=
∑
g<g′

ng∥π̄g. ⊖ π̄g′.∥2
B2

(33)

The CS implementation in the fdANOVA pack-542

age uses a heteroscedastic assumption and543

parametric bootstrap. Note that an alternative544

formula for CS is the sum of the Bayes norms545

of all pairwise differences between groups.546

4. The GPF statistic from Zhang and Liang547

(2014) integrates the pointwise F-ratio instead548

of integrating separately the pointwise within549

and between variations:550

GPF =
∫ b

a

SSB(x)/(G − 1)
SSW(x)/(n − G)dx. (34)

Under the null hypothesis, this statistic is551

asymptotically equal to a linear combination552
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of independent χ2, which can be approximated553

by a χ2-distribution (Zhang and Liang, 2014,554

Proposition 1). In the implementation of the555

fdANOVA package, GPF is divided by b − a, and556

the null distribution is modified accordingly.557

Górecki and Smaga (2018) (page 5) claim that558

the GPF test is more powerful than the F-type559

tests.560

5. The Fmax statistic from Zhang et al. (2019)561

rather computes the supremum of the point-562

wise F-ratio instead of integrating it as in563

GPF:564

Fmax = sup
x∈(a,b)

SSB(x)/(G − 1)
SSW(x)/(n − G) . (35)

We consider the implementation Fmaxb which565

bootstraps the distribution under the null566

hypothesis. The statistic Fmax is the only one567

that is not invariant under almost-everywhere568

equality: changing one value of a density in the569

dataset might change the value of Fmax. Note570

also that the statistics GPF and Fmax cannot571

be written straightforwardly in terms of norms572

in the Bayes space.573

Application: regional evolution of574

temperature distribution over the period575

1987-2016576

Figure 5 displays the regional mean trend slope577

densities. For the central regions (CHR and578

NCC), this plot shows a relative stability of the579

maximum temperature distribution (the trend is580

not far from uniform). For the RRD region, the581

curve exhibits a noticeable bump above the uni-582

form on the right tail. More details about the583

interpretation of these curves will be given in584

Section 5.585

We now test whether these trend densities586

vary across regions. Table 3 summarizes the587

results of the global analysis of variance for which588

the above tests all conclude that there is a differ-589

ence in the way the regional temperature densities590

evolve in time.591

Name Statistic p-value

GPF 10 0 ***
Fmaxb 36 0 ***
CS 700 0 ***
L2B 130 0 ***
FB 9.9 0 ***

Table 3 Test statistics and
p-values for DANOVA.

Fig. 5 Regional mean trend slopes. The dotted line rep-
resents the uniform density on [12◦C, 40◦C] which is the
reference measure.
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4.3 Pairwise comparisons592

When the test of equality of group mean densities593

is significant, conducting a post-hoc analysis of594

pairwise group mean comparisons can help iden-595

tify which pairs differ. The null hypothesis for596

comparing groups g and g′ is:597

H0 : EB(πgi) = EB(πg′i),598

which is equivalent to599

H0 : E(clr πgi) = E(clr πg′i).600

Testing whether the mean density in group g1601

is equal to the mean density in group g2 can be602

viewed as a two-sample ANOVA test. A multiple603

testing correction is necessary when performing604

these tests for all pairs of groups.605

Application: regional evolution of606

temperature distribution over the period607

1987-2016608

Table 4 displays the tests statistics with their609

Šidák-adjusted p-values for the five pairwise tests.610

We summarize and visualize these results on611

Figure 6 by drawing612

1. a solid line between two regions when the613

equality of mean slope densities is rejected by614

all five tests615

2. a dotted line between two regions when the616

equality of mean slope densities is rejected by617

some but not all of the five tests618

3. no line between two regions when the equality619

of mean slope densities is rejected by all five620

tests.621

The small number of dotted lines supports the622

fact that the five tests agree most of the time. The623

structure of Figure 6 is interestingly similar to624

the geographical structure of the regions (see the625

map on Figure 1) with solid lines between neigh-626

bouring regions. It shows that the Mekong Delta627

region differs statistically from most other regions628

in terms of climate change. Among the remain-629

ing regions, the Red River Delta region differs the630

most from the others in the sense that it is only631

connected by dotted lines.632

5 Interval-wise interpretation633

The global tests presented in the previous section,634

whether one-sample tests or analysis of variance,635

enable us to draw inferences about differences in636

the behavior of mean densities across the entire637

temperature range. Now, we aim to make more638

localized statements regarding regional differ-639

ences in temporal evolution, particularly within640

specific temperature intervals.641

Region 1 Region 2 L2B FB CS

NMM RRD 1e-01 * 0.18 0 ***
NMM NCC 1 1 1
NMM CHR 0.97 0.99 0.96
NMM SR 0.71 0.83 0.26
NMM MDR 5.4e-09 *** 1.4e-06 *** 0 ***
RRD NCC 2.5e-03 *** 8.6e-03 *** 0 ***
RRD CHR 0.82 0.89 1
RRD SR 8.7e-11 *** 3.9e-06 *** 0 ***
RRD MDR 0 *** 0 *** 0 ***
NCC CHR 0.99 1 0.99
NCC SR 0.6 0.71 0.14
NCC MDR 7.9e-13 *** 2.6e-09 *** 0 ***
CHR SR 0.15 0.4 0.46
CHR MDR 3.7e-11 *** 2.3e-07 *** 0 ***
SR MDR 9e-04 *** 6.2e-03 *** 0 ***

Region 1 Region 2 GPF Fmaxb

NMM RRD 0.33 0.85
NMM NCC 1 0.97
NMM CHR 0.48 0.37
NMM SR 3e-05 *** 0 ***
NMM MDR 0 *** 0 ***
RRD NCC 2.8e-02 ** 0 ***
RRD CHR 3.3e-02 ** 0 ***
RRD SR 0 *** 0 ***
RRD MDR 0 *** 0 ***
NCC CHR 0.98 0.96
NCC SR 0.49 0.14
NCC MDR 2e-13 *** 0 ***
CHR SR 0.27 0.54
CHR MDR 4.8e-11 *** 0 ***
SR MDR 2.7e-06 *** 0.14

Table 4 Šidák-adjusted p-values for pairwise
group mean comparison.

Unfortunately, the idea of adapting local tests642

from FANOVA does not work for two reasons.643

First of all, the meaning of a test of the equality644

of two mean densities evaluated at a given point x645

is unclear since densities are only defined almost646

everywhere, unless we impose continuity restric-647

tions. The second reason is that the equivalence648

(28) between the equality of two mean densities649

and the equality of their clr transform is not valid650

anymore at the local level because the clr trans-651

form evaluated at x involves all values of the log652

density and not only its value at x.653

For these reasons, we turn attention to some654

interpretation tools presented in Maier et al.655

(2024) based on odds ratios.656

5.1 Infinitesimal odds ratios657

We focus on subintervals I ⊂ (a, b) and wish to658

assess the time evolution of the relative probabil-659

ity to be in one interval versus the other.660

We can rely on (Maier et al., 2024, pp. 10661

and 11, Proposition 3.1) for the definition of the662

infinitesimal odds ratios and their interpretation.663

The objective is to compare the value of a slope664
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NMM

MDR

SR

CHR

RRD

NCC

Fig. 6 Summary of pairwise tests between regions of Viet-
nam. Solid line: no test rejects the null hypothesis; dotted
line: some tests reject the null hypothesis; absence of line:
all tests reject the null hypothesis.

density βgi and βg. (we call it β in this paragraph)665

at two different temperature values x and z in the666

temperature range. Let us define the relative fre-667

quency ORx|z(β) of a density β at two points x668

and z by669

ORx|z(β) = β(x)
β(z) (36)

For β = βgi in model (20), let us show that670

this quantity is indeed an infinitesimal odds ratio671

relative to the trend densities π̃it(z). Indeed, by672

linearity of model (20), we have that for all t,673

βgi(x)
βgi(z) =

π̃t+1
gi (x) ⊖ π̃t

gi(x)
π̃t+1

gi (z) ⊖ π̃t
gi(z)

and therefore674

ORx|z(βgi) =

π̃t+1
gi

(x)
π̃t+1

gi
(z)

π̃t
gi

(x)
π̃t

gi
(z)

(37)

is the ratio of the odds of x versus z at time t + 1675

by the odds of x versus z at time t. We thus see676

that the relative change of the odds of x versus z677

in the period (t, t+1) is equal to β(x)
β(z) −1. Note that678

this relative change formula is only valid within679

our simple linear trend model.680

According to part (a) of Proposition 3.1681

in Maier et al. (2024), if we observe that682

ORx|z(βgi) > 1 for all x, z when x is in a given683

interval A and z in a given interval B for a given684

slope density βgi, then we may conclude that con-685

ditional on the temperature being in A or B, the686

odds (according to the density π̃t+1
gi ) of being in687

A at time t + 1 are larger than the odds (accord-688

ing to the trend density π̃t
gi) of being in A at689

time t. Because the probability of an event is an690

increasing function of its odds, same is true for691

the corresponding probabilities so that there has692

been a mass transfer of the probability mass of693

the trend density from B to A between t and t+1.694

Using the fact that ORx|z(βgi) > 1 is equiv-695

alent to βgi(x) > βgi(z), we are going to show696

that the curve of βgi allows to draw conclusions697

about the temperature density changes as follows.698

For a given level τ = βgi(x0) > 0, let the collec-699

tion of intervals (or unions of intervals) Aτ (βgi)700

be defined by Aτ (βgi) = {x : βgi(x) > τ}. Let701

Ac
τ (βgi) be the complement of Aτ (βgi). Then we702

have for almost all x ∈ Aτ (βgi) and almost all703

z ∈ Ac
τ (βgi)704

ORx|z(βgi) = β(x)
β(x0)

β(x0)
β(z) > 1, (38)

Therefore, we may say that the probability that705

it lies in Aτ (βgi) according to the trend density706

at time t + 1 (i.e. under the distribution π̃t+1) is707

higher than that according to the trend density at708

time t (i.e. under the distribution π̃t). We will con-709

sider various values of the level τ increasing from710

the minimum to the maximum of the slope density711

and comment the corresponding interpretations.712

5.2 Global change in temperature713

distribution over the period714

1987-2016715

Next we apply these interpretations to the global716

slope density β... From (37) we can derive that717

ORx|z(β̄..) = π̃t+1
.. (x) ⊖ π̃t

..(x)
π̃t+1

.. (z) ⊖ π̃t
..(z) =

π̃t+1
.. (x)

π̃t+1
.. (z)
π̃t

..(x)
π̃t

..(z)

(39)

On Figure 7, using a first level of 0.0362 rep-718

resented by a horizontal line, we see that on aver-719

age in Vietnam low temperatures below 18.2◦C720

become relatively more frequent than tempera-721

tures above 18.2◦C. Similarly, with a second level722

of 0.0355, we see that on average in Vietnam high723
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Fig. 7 Global mean slope density with three levels.

temperatures above 33.4◦C become relatively724

more frequent than temperatures below 33.4◦C.725

However these two statements need to be put into726

perspective due to the scarcity of observations at727

the extremes. More importantly, focusing now on728

the range [19.6◦C, 32.9◦C] and the level 0.0359,729

we can say that the frequency of temperatures730

within the interval [19.6◦C, 25.4◦C] has decreased731

over time relative to those in [25.4◦C, 32.9◦C],732

supporting a global warming trend. Technically,733

this assertion corresponds to the interpretation of734

a conditional probability statement.735

5.3 Regional changes in736

temperature distribution over737

the period 1987-2016738

Similarly, when comparing the regional slope den-739

sity βg. at two temperature points x and z, we use740

ORx|z(βg.). From (37) we can derive that741

ORx|z(β̄g.) =
π̃t+1

g. (x) ⊖ π̃t
g.(x)

π̃t+1
g. (z) ⊖ π̃t

g.(z)
=

π̃t+1
g. (x)

π̃t+1
g. (z)

π̃t
g.(x)

π̃t
g.(z)

(40)

Figures 8, 9 and 10 display the slope densities742

of the six regions with some chosen values of level743

τ . We are able to group the regions in terms of744

the shape of their mean slope density.745

Based on Figure 8, in mountainous regions,746

as for the global trend, the small and high val-747

ues of τ demonstrate an increase of the frequency748

of low temperatures. Provided we focus on the749

medium range ([22.6◦C, 27.6◦C] for NMM and750

[21◦C, 29.1◦C] for NCC), the intermediate values751

of τ show a shift towards higher temperatures.752

Based on Figure 9, the RRD and CHR regions753

display an increasing spread of their tempera-754

ture distribution over time (small values of τ)755

and an increase of extremely high temperature756

Fig. 8 Mean slope densities of North Central Coast
(NCC) and Northern Midlands and Mountains (NMM)
regions with levels.

Fig. 9 Mean slope densities of Red River Delta (RRD)
and Central Highlands (CHR) regions with levels.
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Fig. 10 Mean slope densities of Southeast (SR) and
Mekong Delta (MDR) regions with levels.

events (high values of τ). Note that since temper-757

ature change is not detected in the CHR region758

(Table 3), its interpretation based on odds ratio759

is probably not reliable.760

Based on Figure 10, the south in contrast761

shows a concentration in the medium range762

around 25◦C for SR and 28◦C for MDR at the763

expense of high temperatures.764

While these groups reflect the geography (lati-765

tude and elevation) of Vietnam, they are also con-766

sistent with the groups suggested by the regional767

one-sample tests (Table 2) and the pairwise com-768

parisons (Table 4).769

6 Conclusion770

We have adapted several functional data analy-771

sis tests to density functions in order to assess772

the equality of mean densities and to perform773

DANOVA tests in the framework of Bayes spaces.774

In our target application of temperature density775

evolution in Vietnam, the one-sample test allows776

to conclude that there is statistical evidence of a777

climate change in Vietnam in the sense that the778

trend slope density is not uniform. Furthermore,779

when considering the functions globally, most of780

the DANOVA statistics strongly reject the null781

hypothesis, that is, the equality of trend slope782

density across the Vietnamese regions. For more783

local interpretations, we rely on the infinitesi-784

mal odds ratio of Maier et al. (2025). These785

local investigations remain exploratory, and ele-786

vating them to formal tests presents an interesting787

avenue for future research. Needless to say that788

the proposed methodology can be applied in other789

application frameworks. Future research might790

try to reduce the uncertainty due to the low den-791

sity of extreme temperatures, possibly weighting792

the domain of the Bayes space as in Talská et al.793

(2020). This methodology is promising for envi-794

ronmental studies, with a possible application for795

example to the relative concentrations of contam-796

inants in grounds or rivers analyzed as density797

functions.798
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