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Summary

Firms and their entry, exit, and productivity growth processes are at the heart of economic
development. This thesis presents three essays on how key elements of the economic envi-
ronment shape firm dynamics in developing countries, including infrastructure, adjustment
frictions, and regulations.

In the first chapter, Matias Busso and I study what determines the aggregate and regional ef-
fects of new transportation infrastructure. A key overlooked channel is the role that infrastruc-
ture policy plays in changing the incentives of firms to enter, exit, and grow – in turn generating
endogenous changes in local productivity. The chapter documents and quantifies the impor-
tance of this channel by using detailed Mexican microdata and a spatial general-equilibrium
model incorporating firm dynamics. Leveraging random delays in the construction of high-
ways, we empirically show that productivity grows in places with better transportation infras-
tructure. Firms play a critical role in driving these results: highways increase firms’ size, entry
rates, survival rates, and total factor productivity. Then, by calibrating our model on census
data between 1998 and 2018, we find that new highways over this period increased welfare
and income by half a percent, similar to its costs in terms of GDP. Moreover, we find substan-
tial spatial reallocation of workers and production. Nearly half of these effects are explained
by endogenous changes in local productivity, which is driven by firm dynamics.

In the second chapter, co-authored with Jonas Gathen, we focus on the drivers of growth mir-
acles. We argue that growth miracles are driven by a fundamental race: as the economy tries
to catch up to its steady state, changes in the economic environment move the steady state
itself and provide new potential for catch-up growth. We quantify this race over the course
of development using 40 years of plant-level manufacturing panel data from Indonesia and
a structural model of plant dynamics. We estimate the model on the micro data along the
observed growth path without assuming that the economy is ever at a steady state. While
catch-up growth starting from initial conditions in 1975 accounts for 42% of Indonesia’s subse-
quent industrialization, new changes in the economy induce new catch-up growth. In the end,
the economy is in a never-ending race where it never catches up to its full potential.

In the third chapter, Santiago Levy and I study a common growth paradox in developing coun-
tries, where fast industrialization might be coupled with low aggregate productivity growth.
We argue that the paradox can be explained by two opposing forces. On the one hand, govern-
ments introduce policies that promote growth, such as trade liberalization, competition agen-
cies, and regulatory bodies; and on the other hand, policies segment the economy into formal
and informal sectors. To shed light on this outcome, we construct a 20-year establishment-level
panel dataset for Mexico, a country where manufacturing exports grew from seven to 33% of
GDP, but labor informality barely changed, firm informality increased, and TFP growth was
negative. We find that many high-productivity formal firms exit; surviving firms’ size and
productivity hardly grow, and many informalize; entrants are less productive than survivors,
mostly because of large informal entry. Finally, we show that while manufacturing performs
better, its contribution to TFP is modest because informality persists in the sector; and despite
spectacular export growth, the country is now de-industrializing.
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Résumé

Les entreprises et leurs processus d’entrée, de sortie et de croissance de la productivité sont
au cœur du développement économique. Cette thèse présente trois essais sur la manière avec
laquelle les éléments clés de l’environnement économique façonnent la dynamique des en-
treprises dans les pays en développement, notamment l’infrastructure, les frictions d’ajustement
et les réglementations.

Dans le premier chapitre, Matias Busso et moi étudions les déterminants des effets agrégés et
régionaux des nouvelles infrastructures de transport. Un canal clé négligé est le rôle que la
politique en matière d’infrastructure joue dans le changement des incitatifs des entreprises à
entrer, sortir et croître - générant ainsi des changements endogènes dans la productivité locale.
Le chapitre documente et quantifie l’importance de ce méchanisme en utilisant des microdon-
nées mexicaines détaillées et un modèle d’équilibre général spatial incorporant la dynamique
des entreprises. En exploitant les retards aléatoires dans la construction des autoroutes, nous
montrons empiriquement que la productivité croît dans les villes dotés d’une meilleure infras-
tructure de transport. Les entreprises jouent un rôle critique dans la réalisation de ces résul-
tats: les autoroutes augmentent la taille des entreprises, les taux d’entrée, les taux de survie
et la productivité totale des facteurs. Ensuite, en calibrant notre modèle sur les données du
recensement entre 1998 et 2018, nous constatons que les nouvelles autoroutes au cours de cette
période ont augmenté le bien-être et le revenu d’un demi pourcent, ce qui est similaire à leurs
coûts en termes de PIB. De plus, nous constatons une importante réaffectation spatiale des tra-
vailleurs et de la production. Près de la moitié de ces effets s’expliquent par des changements
endogènes dans la productivité locale, entraînés par la dynamique des entreprises.

Dans le deuxième chapitre, co-écrit avec Jonas Gathen, nous nous concentrons sur les mo-
teurs des miracles de croissance. Nous soutenons que les miracles de croissance sont stimulés
par une course fondamentale: alors que l’économie essaie de rattraper son état stationnaire,
les changements dans l’environnement économique déplacent l’état stationnaire lui-même et
fournissent un nouveau potentiel de rattrapage de la croissance. Nous quantifions cette course
au cours du développement en utilisant 40 ans de données de panel des entreprises manufac-
turières en Indonésie et un modèle structurel de dynamique des entreprises. Nous estimons le
modèle sur les microdonnées le long du chemin de croissance observé, sans jamais supposer
que l’économie ne soit à un état stationnaire. Alors que la croissance de rattrapage à partir des
conditions initiales en 1975 représente 42% de l’industrialisation ultérieure de l’Indonésie, de
nouveaux changements dans l’économie induisent de nouvelles croissances de rattrapage. En
fin de compte, l’économie est dans une course sans fin où elle ne parvient jamais à rattraper
son plein potentiel.

Dans le troisième chapitre, Santiago Levy et moi étudions un paradoxe de croissance courant
dans les pays en développement, où une industrialisation rapide pourrait être couplée à une
faible croissance de la productivité globale. Nous soutenons que le paradoxe peut s’expliquer
par deux forces contradictoires. D’une part, les gouvernements introduisent des politiques qui
favorisent la croissance, telles que la libéralisation des échanges, les agences de concurrence
et les organes de réglementation ; et d’autre part, les politiques qui segmentent l’économie
en secteurs formels et informels. Pour éclairer ce résultat, nous construisons un ensemble de
données de panel sur 20 ans au niveau des établissements pour le Mexique, un pays où les ex-
portations manufacturières sont passées de sept à 33% du PIB, mais où l’informalité du travail
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a à peine changé, l’informalité des entreprises a augmenté et la croissance de la productivité
totales des facteurs était négative. Nous constatons que de nombreuses entreprises formelles à
haute productivité sortent; la taille et la productivité des entreprises survivantes augmentent
à peine, et beaucoup deviennent informelles. Les entrants sont moins productifs que les sur-
vivants, principalement en raison de l’entrée massive dans les secteur informel. Enfin, nous
montrons que même si le secteur manufacturièr se comporte mieux, sa contribution à la TFP
est modeste car l’informalité persiste dans le secteur. Malgré une croissance spectaculaire des
exportations, le pays se désindustrialise maintenant.
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Chapter 1

Building Up Local Productivity:
Infrastructure and Firm Dynamics in
Mexico

Matias Busso1 & Oscar Fentanes 2

Abstract

What determines the aggregate and distributional effects of new transportation infrastructure?
One key overlooked channel is the role that infrastructure policy plays in changing the incen-
tives of firms to enter, exit, and grow – in turn generating endogenous changes in local pro-
ductivity. In this paper, we document and quantify the importance of this channel by using
detailed Mexican microdata and a spatial general-equilibrium model that incorporates firm
dynamics. Leveraging random delays in the construction of highways, we empirically show
that productivity grows in places with better transportation infrastructure. Firms play a critical
role in driving this results: highways increase firms’ size, entry rates, survival rates, and total
factor productivity. Then, by calibrating our model on census data between 1998 and 2018,
we find that new highways over this period increased welfare and income by half a percent,
similar to its costs in terms of GDP. Moreover, we find substantial spatial reallocation of work-
ers and production. Nearly half of these effects are explained by endogenous changes in local
productivity, which is driven by firm dynamics.
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1.1 Introduction

Transportation infrastructure is a key determinant of economic development because it re-
duces trade costs and travel times for moving both goods and people, bolstering GDP and
welfare (Banerjee et al., 2020; Allen and Arkolakis, 2022). Over the past years, economic geog-
raphy models –the workhorse spatial framework to study transportation infrastructure– have
emphasized the importance of locations’ characteristics to understand the aggregate and dis-
tributional effects of such policies (Allen and Arkolakis, 2014; Redding and Turner, 2015). In
this literature, locations are characterized by two fundamental features: 1) amenities, which
include housing, weather, cultural attractions, and personal connections; and 2) local produc-
tivity, explaining why the same worker may be more productive in one place than in another.
While the literature has shed light on key components of local amenities, such as housing sup-
ply or public goods congestion, it remains a challenge to understand what determines local
productivity, which is often viewed as an exogenous feature mostly subject to agglomeration
forces.

In this paper, we argue that local productivity is shaped by firm dynamics – that is, the endoge-
nous processes of entry, exit, and growth; and, moreover, that such firm dynamics are a key
driver of the effects of new transportation infrastructure. We support this idea by answering
the following two research questions: Does new transportation infrastructure affect firm dy-
namics and local productivity? And, to what extent do firm dynamics drive the aggregate and
distributional effects of infrastructure policy? We tackle the first question empirically by using
firm-level panel data from Mexico and leveraging a natural experiment arising from highway
planning and execution nationwide over two decades. We answer the second question quanti-
tatively by proposing an economic-geography model à la Allen and Arkolakis (2014), extended
with firm dynamics in the spirit of Melitz (2003).

Our central empirical result is that improvements in transportation infrastructure do, in fact,
lead to local productivity growth, and that this increase is connected to changes in firm dy-
namics. These findings are based on two main data sources. First, the Mexican Economic
Census, a detailed panel data set covering the universe of firms across all locations in the
country. Second, the National Highways Network, a comprehensive digitization of all paved
roads in Mexico – allowing us to fully characterize the dynamics of firms and the evolution of
transportation infrastructure over a 20-year period, from 1998 to 2018.

The main empirical challenge is reverse causality, a concern because it is plausible that eco-
nomic outcomes determine where the government chooses to build new highways. To over-
come this issue, we implement a delayed planned construction approach by digitizing the place-
ment and characteristics of 250 highways that were planned over the period from 2007 to 2018.
In Mexico, presidents present their national highway construction plans when they begin their
term, and they provide Congress with detailed progress reports throughout their tenure. We
use these reports to track the execution status of the plans and their exact construction timing.
The identifying assumption is that, while placement of construction plans may be influenced
by demographic, political, and economic factors, the timing of actual execution, conditional on
its previous selection, is as good as random.

Leveraging this source of variation, we estimate a staggered differences-in-differences model
following Callaway and Sant’Anna (2021) for two sets of construction plans between 2007 and
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2018. We categorize a firm as treated if it operates in a location close to an executed construction
plan and as not yet treated if it is close to a plan that was not executed. We exclude from the
sample all firms far from construction plans. Although this treatment is binary, we show that
it implies significant increases in market access for treated locations.

According to our baseline point estimates, during the treatment period, workers in treated
locations increase their labor productivity by around 5%. This can be explained by two mech-
anisms. First, firms in treated locations are themselves 2% more productive. Second, these
firms also become 2% larger. Thus, local labor productivity grows because more workers are
employed by more productive firms. Firms also become more likely to survive, generating
persistence in the productivity composition of firms in treated locations. After five years, both
workers and firms still exhibit higher productivity in treated locations, indicating long-lasting
effects of highways. Moreover, these effects are accompanied by higher entry rates, suggesting
that potential entrants also react to new transport infrastructure but take longer to respond.

We use a unified framework of economic geography with firm dynamics to theoretically de-
compose the benefits derived from improvements in transport infrastructure into two parts:
gains resulting from reduced trade costs and gains stemming from local productivity growth
driven by firm dynamics.

As is standard in static economic-geography models, our model features a country with a
large number of locations (e.g., cities or municipalities) that differ in exogenous amenities and
local labor productivity. These two characteristics, combined with the geography of trade
costs, determine the spatial distribution of workers, wages, and outputs. The innovation of
our model is that local productivity is given by the average of firms’ productivities. Thus,
local productivity is essentially determined by the number and composition of firms. Because
firms’ decisions about entry and exit are endogenous and dynamic, so is local productivity.

Our model highlights an important mechanism linking transport infrastructure, firm behavior,
and local productivity. Suppose that the government builds a new highway to connect two
important cities. Firms in locations along the road’s path will benefit from greater market
access. They will face lower trade costs, allowing them to sell their products in more distant
markets and to lower prices for their goods. This boosts incumbent firms’ size and profits,
and therefore, their survival probability. Potential entrants observe the higher profitability of
active firms, thus increasing the likelihood that new firms indeed enter. Crucially, the more
productive and larger the firm, the higher its probability of entering and surviving. Thus,
although the increase in market access benefits all firms regardless of their productivity, it
reinforces the entry and persistence of large and productive firms. As a consequence, the
productivity of locations along the new highway increases. The opposite is also the case; that
is, the productivity at locations not connected by the new highway stagnates or decreases.

We recover model fundamentals through a sequential combination of parameterization, model
inversion, and internal calibration to match the path of spatial equilibria in the economic cen-
sus from 1998 to 2018. We calculate the geography of trade costs by computing the minimum
travel times between any pair of locations and parametrically mapping them to iceberg costs.
We determine the path of amenities and labor productivity by inverting the system of spatial
equilibrium equations. Intuitively, differences in population identify differences in amenities
and differences in wages identify differences in local labor productivity. Finally, we recover the
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parameters governing the distribution of firm-level productivity and the entry and exit pro-
cesses through internal calibration. The local firm size distribution identifies the productivity
distribution, and local entry and exit rates identify entry and exit costs.

The calibrated model shows that new highways in Mexico from 1998 to 2018 contributed to real
income and welfare growth, and that these benefits were unequally distributed. It reveals that
firm dynamics played a central role in these effects. In line with the conclusions of previous,
static studies (Allen and Arkolakis, 2014), our findings document that new highways increased
welfare by 0.44% and increased aggregate real revenues by 0.64% in 2018; since Mexico invests
annually 0.5% of its GDP in transport infrastructure, our results suggests that the policy might
be cost effective.

These aggregate effects hide substantial distributional effects. The areas that experienced the
largest investments in new transportation infrastructure were in three key locations: those near
the California and Texas borders, those close to the major ports serving Asia and Europe, and
those close to the Caribbean Sea. In these locations, infrastructure improvements significantly
reduced trade costs and improved market access, enhancing the relative competitiveness of
firms that could tap these benefits. As a result, both real revenues and populations in these
areas increased by nearly 10%, largely at the expense of the central regions of the country that
were largely bypassed by highway infrastructure investments.

To understand how firm dynamics contributes to welfare and real income gains, we compare
our baseline results to those from a model without firm dynamics – that is, one in which local
productivity is exogenous and policy invariant. We find that productivity gains driven by
firm dynamics explain up to 46% of the overall real income gains, and that the rest of the
gains stem from reductions in trade costs. Moreover, in a model without firm dynamics, the
distribution of income gains is more uniform, suggesting that firm dynamics are a force for
spatial divergence.

Finally, we find that productivity grains are mostly driven by better firm selection. This find-
ing comes from decomposing local productivity gains due to highways into two endogenous
components: firm selection, as measured by average idiosyncratic firm productivity, and the
number of firms. We find that the firm selection accounts for 77% of the productivity gains,
and the increasing number of firms explains the remaining 33%.

Overall, our quantitative results show that new highways in Mexico had a more significant
impact on the spatial reallocation of economic activity than on aggregate welfare and income.
This finding conveys an important message to policymakers: transportation infrastructure can
serve as a powerful tool for shaping the geographical distribution of economic activity by pro-
viding incentives for workers and firms to operate in specific locations.

Related literature and contributions

Our contribution is twofold. First, we offer new evidence on the effects of infrastructure on
firm dynamics using panel data for all economic units in a developing country. Second, we
develop a spatial general equilibrium framework where endogenous firm dynamics determine
local productivity. In doing so, we establish a bridge between empirical research on the effects
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of infrastructure on firms and the dynamic spatial literature that quantifies the aggregate and
distributional effects of place-based policies.

Economic geography. This paper builds on the work of Allen and Arkolakis (2014); Redding
(2016); Allen and Arkolakis (2022). We extend their framework by incorporating firm dynam-
ics. This approach endogenizes local productivity, allowing us to decompose the income and
welfare gains resulting from new transportation infrastructure into two component parts: the
reductions in trade costs, and the growth of local productivity.

Dynamic spatial models: Our paper relates to recent dynamic spatial frameworks. Using an
approach similar to that of Caliendo et al. (2019), we present a model with trade and labor
mobility; however, we allow for firm heterogeneity in a non-competitive market. Similar to
the work of Lindenlaub et al. (2022), we focus on firms; using an approach similar to the one
adopted by Kleinman et al. (2023), we also feature a dynamic spatial trade model with labor
mobility. However, there are important differences in that Lindenlaub et al. (2022) abstract
from the trade structure, and Kleinman et al. (2023) assume a representative firm by location
with exogenous productivity. In contrast to both, we allow local productivity to be determined
by the dynamics of heterogeneous firms in an internal trade environment. To the best of our
knowledge, this is the first paper to incorporate entry, exit, and growth dynamics of heteroge-
neous firms in a spatial model with a realistic geography of trade costs, and then to validate it
with a natural experiment.

Effects of infrastructure on growth. This paper also relates to the micro-empirical literature
that measures the effects of transport infrastructure on local growth (Donaldson, 2018; Banerjee
et al., 2020) and firm performance (Holl, 2016; Holl and Mariotti, 2018; Gibbons et al., 2019).
Our contribution lies in providing new evidence for a developing country by using novel firm-
level panel data that cover the universe of firms from all industries, both formal and informal,
over a 20-year period. To the best of our knowledge, this is the first paper in this literature that
features data of such comprehensive coverage for a developing country.

Furthermore, previous studies focusing on the effects of transport infrastructure on firm-level
productivity have relied on traditional estimation procedures such as those used by Levin-
sohn and Petrin (2003) and Olley and Pakes (1992). However, these measures are based on
value-added production functions and confound the effects of infrastructure on revenues and
intermediate inputs. Our paper estimates firm productivity using a gross output-production
function similar to that of Gandhi et al. (2020). This approach reveals productivity gains stem-
ming only from higher revenues, in line with standard trade models.

Effects of infrastructure on firm dynamics. Evidence on the effects of infrastructure on firm
dynamics is scarce because of data limitations. Among these few studies, Shiferaw et al. (2015)
document that better transportation infrastructure favors firm entry, especially of large firms.
Zhou (2023) also finds that locations with better exposure attract larger firms, but that places
far from highways have higher entry rates. Our paper provides new evidence on entry and
exit by documenting that responses to the arrival of new infrastructure are faster for exits than
for entries. Moreover, our paper is the first one to show that while infrastructure does induce
within-city firm migration, the entry and exit impacts of infrastructure are not the result of
firms migrating across cities.

Effects of highways in the Mexican context. Other empirical studies have focused on the im-
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pacts of road infrastructure in Mexico. Examples include Durán-Fernández and Santos (2014);
Pérez and Sandoval (2017); Blankespoor et al. (2017). These studies have relied on location-
level data. By contrast, by exploiting panel identifiers from Busso et al. (2018), we show firm-
level time variation for the first time. Moreover, our study examines the impacts of a more
detailed and denser highway network, and it exploits execution of presidential construction
plans as a source of exogenous variation to measure causal effects.

Structure of the paper. The rest of the paper proceeds as follows: Section 1.2 briefly discusses
the economic and infrastructural context of Mexico. Section 1.3 discusses the sources, nov-
elty and advantages of our data. Section 1.4 outlines our empirical approach and presents
our results. Section 1.5 shows our dynamic spatial general- equilibrium model. Section 1.6
shows how we estimate the model and how the model fits the data. Section 1.7 presents our
quantitative results. Section 1.8 concludes.

1.2 Growth and infrastructure in Mexico

After the implementation of macroeconomic policies inspired by the Washington Consensus
in the 1990s and the North American Free Trade Agreement (NAFTA) in 1994, Mexico has
enjoyed an extended period of macroeconomic stability (Levy, 2018). Nevertheless, in terms
of real GDP, the nation has seen an average annual growth rate of merely 2.4% between 1995
and 2015, resulting in a corresponding annual growth of real GDP per capita of just 0.8%.

Economic growth has been not only slow but also unequally distributed across regions. Be-
tween 1995 and 2015, states near the US border, such as Chihuahua and Nuevo León, or in the
central industrial belt such as Guanajuato and Querétaro, experienced rapid industrialization,
resulting in annual real GDP growth rates exceeding 4%. Conversely, states in the southern re-
gion, such as Chiapas, Guerrero, and Oaxaca, remained largely underdeveloped and achieved
an average real GDP growth rate of a mere 1% real over the same period.

A prevalent explanation for these disparities in economic performance is the unequal dis-
tribution of high-quality transport infrastructure. Regions with limited access to highways,
railroads, and seaports are less appealing to firms that rely on high connectivity to intricate
input-output networks (Dávila et al., 2002). In this perspective, highways are of unrivaled
importance for Mexico, given that 83% of domestic cargo is transported via road freight.3

For the past two decades, the federal government has acknowledged deficiencies in the high-
ways network and sought to address them through the sexennial National Infrastructure Plan.
In these plans, the government determines the objectives, location, characteristics and budget
of key, proposed highways. However, while most middle-income countries allocate between
1% and 5% of annual GDP to new, inland transportation infrastructure, Mexico’s investment
is only around 0.5% of GDP (OECD, 2020). As a result, Mexico’s investments almost certainly
insufficient to meet its transportation needs.

The extent to which this deficiency in robust transportation infrastructure might contribute
to the country’s sluggish economic growth, despite the implementation of ambitious macroe-
conomic reforms, continues to be a subject of ongoing debate. Moreover, it remains an open

3In addition, 96% of people traveling within the country use highways.
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question as to whether a policy of more ambitious investments in road infrastructure in un-
derdeveloped regions could potentially attract highly productive firms and reduce economic
disparities across the country.

1.3 Data

Our study relies on three primary sources of data. The first is the Mexican Economic Census,
which is conducted every five years. We rely on data collected from 1998 to 2018. These data
have three important features: they cover the universe of establishments in Mexico, provide
geolocations of establishments at the block level, and they longitudinally link establishments.
These features allow us to characterize firms’ dynamics across all locations. A second key data
source is the National Highways Network. We use data from the network over the period
from 2004 to 2019. These data allow us to determine all origin-destination travel times and to
estimate trade costs between locations. A third key source of data is the National Infrastructure
Plans from the presidential terms over the periods from 2007 to 2012 and 2013 to 2018. These
plans describe how each new administration intends to spend its infrastructure budget. Here
we provide next a brief overview of each data set’s characteristics. (Greater details on data
construction and cleaning procedures are provided in Appendix 1.A.)

1.3.1 The Economic Census

Our main data source is the Mexican Economic Census, collected by the Mexican Institute of
Statistics and Geography (INEGI). Although the census is conducted at the establishment level,
throughout our paper we refer to these units as firms.4 The census captures all formal and
informal establishments of all sizes that produce goods or provide services in fixed facilities.
The census includes such facilities in all locations with a population larger than 2,500 people
and for all 6-digit industries according to the North American Industrial Classification System
(NAICS). Excluded from the census are agriculture and government (and street vendors of any
industry). In this paper, we focus on establishments in manufacturing, commerce, and service
sectors. To leverage the panel structure of the census, we use INEGI’s official firm identifiers
to link the waves in 2008, 2013, and 2018. To link the waves 1998, 2003, and 2008, we use the
fuzzy linkage described in Busso, Fentanes and Levy (2018), which uses firm identity, location,
and industry to match units across census waves.5

Table 1.1 displays the coverage of the census, indicating that the number of firms increased
from 2.7 million in 1998 to 4.7 million in 2018, representing an implied annual growth rate of
2.8%. Over the same period, the number of workers increased from 13.3 million to 24.8 million,
with an implied annual growth rate of 3.1%. For reference, the corresponding average GDP
growth rate was 2.4%.

Based on annual employment surveys, there were an estimated 39 million workers in urban
the locations that were included in the 2018 economic census, (i.e., places with more than 2,500
people). Table 1.1 reveals that our data encompass almost 25 million workers, representing
61.5% of the national workforce. The difference between these figures is due to the government

4Levy (2018) documents that 99.7% of establishments are single-establishment firms.
5The accuracy rate of this linkage algorithm is 95% (Busso et al., 2018).
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Table 1.1: Mexico’s Economic Census
Year Firms Workers 6-digit Populated

(millions) (millions) sectors locations
1998 2.72 13.31 720 2,566
2003 2.92 14.41 726 2,629
2008 3.66 18.14 732 2,801
2013 4.17 19.66 735 3,033
2018 4.73 24.82 741 3,234

Notes: Full census coverage.

sector, which employs 4 million workers, and the remaining 10 million workers who operate
as street vendors.6

Locations. The Economic Census stratifies the territory into three primary levels: state, mu-
nicipality, and locality. While the boundaries and codes for states and municipality remain
constant, those for localities may change because they are based on demographic characteris-
tics that may require redefining a given census tract’s boundaries. To account for differences
in census tracts, we establish our own fixed geography. We accomplish this by defining a
time-consistent set of locations, composed of localities likely to belong to the same city. The
procedure consists on generating a 1 km buffer around the 7,136 localities and classifying con-
tiguous buffers as the same location. This procedure results in 3,248 locations consistent across
all census waves. Panel (a) in Figure 1.1 shows their geographic distribution.7

1.3.2 The National Highways Network

The second data source is the National Highways Network (Red Nacional de Carreteras). This
database, published by INEGI, consists of shapefiles including all national and state paved
roads and highways in Mexico at five points in time: 2004, 2011, 2014, 2018, and 2019. Panel
(b) in Figure 1.1 illustrates this network in 2018. In 2004, Mexico had 106,079 kilometers of
paved highways, by 2019, the network reached 187,453 kilometers. 8

We use the data on highways to create a matrix of minimum travel times between any two
locations in the country to help estimate internal trade costs for our quantitative model. With
3,248 locations defined, the size of our minimum-travel-times matrix is 3,248×3,248. To com-
pute it, we implement the Dijkstra (1959) algorithm, which finds the shortest path between
two nodes in a network. We reduce the digitization bias pointed out by Allen and Arkolakis
(2014), by discretizing the space into a grid of 382,181 hexagons.9 Each hexagon is weighted
by the maximum legal speed on the highways that cross them. If two or more highways cross
a hexagon, we use only the highway with the top maximum speed. If a hexagon belongs to the
interior of a city, we assume that its speed is 30km/h. Hexagons carry information about how

6Table 1.1 also shows that the number of 6-digit sectors slightly increased from 720 6-digit industries in 1998 to
741 in 2018. This is mostly due to revisions of the NAICS.

7Table 1.1 shows that the economic census increases its geographic coverage over time. The main reason is that,
as the population grows, more localities cross the 2,500-person threshold, and thus they qualify to appear in the
economic census.

8The comparable network in France is close to 1 million kilometers (Autoroutes nationales, départementales et
communales). To put this into perspective, France at that time had 14 meters of highway per capita, 10 times the 1.4
meters per capita figure for Mexico..

9The edge length is 1.22 kilometers. The H-resolution is 7 according to Uber’s Hexagonal Hierarchical Spatial
Index.
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Figure 1.1: Locations and highways network in Mexico, 2018

(a) 3,248 locations (b) 187,000 km of highways

Notes: Panel (a) shows locations following our definition. Panel (b) all paved roads and highways excluding
within-city roads.

level or steep the terrain is; this is considered in the computation. (Appendix 1.A provides
additional details.)

Figure 1.2: Estimated minimum driving times to Mexico City

(a) Estimated minimum number of hours needed to
drive from municipalities to Mexico City (2018)

(b) % decrease in estimated minimum number of hours
to drive from municipalities to Mexico City (1998-2018)

Notes: Maps subdivided into municipalities.

Panel (a) of Figure 1.2 shows the minimum travel times required to drive to Mexico City from
the 2,457 other municipalities in the country. Assuming no traffic jams, 70% of municipalities
can be reached from Mexico City within 6 hours; 20% take between 6 hours and half a day, and
the remaining 10% require at least half a day. The most remote location is a 52-hour drive from
Mexico City.

Panel (b) of Figure 1.2 illustrates the percentage change in time required to reach Mexico City
during the period 1998-2018. The time needed to reach Mexico by road decreased by less than
10% over that period. For nearly one-third of Mexico’s municipalities the time needed to reach
the capital declined by 10% and 20%. For roughly one-fifth of the municipalities, the time
needed to drive to the capital decreased by more than 20%. The regions that saw the most
significant improvements, shown in green on the map, include those near the Caribbean Sea,
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the California and Texas ports of entry, and the two primary seaports connecting the country
to Europe and Asia.

1.3.3 The National Infrastructure Plans

Our third data source is the National Infrastructure Plans. These data contain 250 construction
plans from 2007 to 2018. They provide a source of quasi-natural variation that we utilize in our
empirical analysis. The plans originate from two distinct presidential terms: 175 from the Fe-
lipe Calderón administration (2007-2012) and 75 from the Enrique Peña Nieto administration
(2013-2018).

We use geographical software to locate all 250 plans on a map. If plans are executed, their
locations can be easily pinpointed on a map since they appear in subsequent waves of the
highway network shapefiles with updated characteristics. However, in cases where the plans
are not executed, we infer their locations based on the plan descriptions. Subsequently, we
draw these hypothetical highways on our shapefiles and assign them attributes such as width,
number of lanes, and maximum speed based on the technical specifications provided in the
construction plans.

To accurately document plans’ execution and timing, we relied on annual progress reports
from the Mexican Transportation Ministry to Congress. These reports provide detailed infor-
mation on the number of kilometers built each year, the amount of money spent, and the year
of project completion. It is important to note that highway construction plans may or may
not be executed for various reasons. The actual execution of a project could be influenced by
budgetary changes, technical challenges, opposition from the local population, or other polit-
ical considerations. Unfortunately, the reports do not specify the reasons why a given plan
was not built. In the empirical section, we examine whether plan execution and timing can be
predicted by the characteristics of adjacent cities.

Table 1.2: Construction plans and year of execution

(a) 2007-2012 Administration (b) 2013-2018 Administration
Executed Execution year Total Executed Execution year Total

No 115 No 33

Yes

2007 2

Yes

2008 11 2013 9
2009 9 2014 10
2010 7 2015 4
2011 10 2016 9
2012 21 2017 10

Total 175 Total 75

Table 1.2 presents the execution status of the construction plans and their timing. For the ad-
ministration over the period from 2007 to 2012, 40% of the 175 construction plans were fully
executed. Half of these plans were completed within the first four years of the presidential
term, while the remaining half were finished in the last two years. Similarly, for the adminis-
tration over the period from 2013 to 2018, 56% of the 75 construction plans were completed,
with half of them being finished in the first 2 years.

Figure 1.3 shows the geographical distribution of plans according to their execution status. The
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Figure 1.3: The construction plans.

(a) Plans 2007-2012 (b) Plans 2013-2018

Notes: Green lines denote construction plans that were completed. Red lines denotes plans that were not built.

majority of states were crossed by at least one plan during the first administration. In contrast,
most plans during the second administration were concentrated in the southern region of the
country.

Figure 1.4: Overlap construction plans and Economic Census waves

1998 2003 2008 2013 2018 census waves

plans 2007-2012

plans 2013-2018

We combine these construction plans with economic census data. As shown in Figure 1.4, there
is no perfect temporal overlap between the two databases. We leverage this fact to characterize
pre-treatment, treatment, and post-treatment periods. Clearly, the censuses in 1998 and 2003
serve as pre-treatment periods for both sets of construction plans, and the censuses from 2008
to 2018 serve as staggered treatment periods.

1.4 Empirical evidence

We document how improvements in transportation infrastructure affect local labor produc-
tivity and firm dynamics. We first combine data from the Mexican Economic Census with
information from the National Highways Network, and then leverage the timing of the execu-
tion of presidential construction plans as a source of plausibly exogenous variation to estimate
a staggered differences-in-differences regression model, as in Callaway and Sant’Anna (2021).

Measuring the effects of infrastructure on economic outcomes is a challenging task for two
main reasons. First, the placement of infrastructure projects is not random; most of the time,
economic or political considerations motivate the placement. Second, infrastructure projects,
such as highways, may produce spillover effects because such projects are part of a larger
network that can benefit all locations to varying degrees. Our empirical approach explicitly
addresses the first problem. However, in our baseline specification, we do not account for
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spillover effects. If spillovers do exist, our estimates would represent a lower bound.10

1.4.1 Main specification

The main goal of our empirical section is to document that when firms are exposed to better
transport infrastructure, their performance improves, and so do their chances of entering and
surviving. Moreover, we are interested in disentangling whether these effects stem from the
actual construction or simply the announcement of new highways. Finally, we aim at deter-
mining if highways have only a temporary effect on firms or if they persist in the medium-run.
To capture these effects we rely on a standard differences-in-differences model with staggered
treatment timing. The regression equation is of the form:

yn,i,t = αi + αt + γ′Xn,i +
min∑
e=1

βpersist.e ·Di,t−e + β0 ·Di,t +
max∑
e=1

βanticipe ·Di,t+e + εn,i,t (1.1)

In (1.1), the index n denotes the firm, i denotes the location, and t denotes the period. On the
left-hand side, yn,i,t represents the outcome of interest. On the right-hand side, the coefficient
αi indicates location and αt corresponds to time fixed effects. Xn,i is a vector of observed
control variables. The error term εit is clustered at the location level, at which the treatment
occurs as is standard in the literature.

The treatment variable, Dit, is defined at the location level i. It is a binary indicator that takes
the value of one for firm n if its location is exposed to the execution of a construction plan at
time t and zero otherwise. The model includes three conceptually different treatment effects.
The set of coefficients βpersist.e captures the effects of the treatment before period t on current
outcomes. The coefficient β0 measures the contemporaneous treatment effect at t. Finally, the
set of coefficients βanticip.e reflects possible anticipatory effects at t of future treatments. We
provide a detailed description of Dit below.

For the coefficients βpersist.e , β0, β
anticip.
e to be identified, the model relies on the following as-

sumptions. The first concerns the irreversibility of the treatment; that is, once a highway is built,
it cannot be destroyed. This assumptions ensures that the three groups of coefficients are sepa-
rately identified. The second concerns conditional parallel trends based on a never-treated group;
that is, only firms in a location with the same characteristics would follow the same trend in the
absence of treatment. This assumption guarantees that the measured effects can have a causal
interpretation. Following Theorem 1 in Callaway and Sant’Anna (2021), these assumptions
imply that we can identify all group-time average treatment effects (ATE).

1.4.2 Outcomes

In this section we provide a detailed definition of our outcomes of interest: value added per
worker, firm-level total factor productivity (TFP), firm size, and firm entry and exit rates.

Value added per worker. We calculate this by dividing firm value added by the number of
workers. Value added is defined as the total revenue derived from all commercial activities of
the firm, minus intermediate expenditures, such as raw materials and electricity. The definition

10We are working on a robustness check to account for spillover effects by specifying counterfactual infrastruc-
ture shocks as in Borusyak and Hull (2020).
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of total workers includes blue- and white-collar employees, as well as owners, outsourced per-
sonnel, and piece-rate workers. We represent this metric logarithmically as log(V A/L). This
measure offers the advantage of being consistent with models that use standard frameworks
in which the production function is constant returns to scale, and it relies solely on labor.

Revenue productivity. We measure TFP as in Gandhi et al. (2020) (henceforth GNR). This
measure assumes a Cobb-Douglas production function of the form y = TFP · kαs l

β
sm

γ
s , where

y represents gross output, k is the capital stock, l is total workers and m is the intermediate in-
puts. The three input elasticities, αs, βs, γs, are assumed to be the same for all firms within the
same three-digit industry s. We express this outcome logarithmically as log(TFP )GNR. The
main advantage of this productivity measure is that it attributes all increases in TFP to higher
revenues while holding inputs constant. Traditional value added-based production functions
such as Olley and Pakes (1992); Levinsohn and Petrin (2003); Ackerberg et al. (2015) cannot
disentangle whether an increase in TFP is due to higher revenue or reductions in intermedi-
ate input expenditures. It is important to note that log(TFP )GNR is a revenue productivity
measure. This means that it cannot disentangle whether a higher TFP is due to an increase in
prices or an increase in physical productivity. This issue can be solved by exploiting firm-level
prices; unfortunately, such data are unavailable in the Economic Census.

Firm size. This is simply the sum of all blue- and white-collar workers, owners, and out-
sourced and piece-rate workers. We denote this outcome in logs as log(L). We consider own-
ers and family members as part of production workers since most firms in Mexico operate
exclusively with type of workers in profit-sharing agreements.

Average wage. This is measured as the total wage bill divided by the number of workers. We
express this outcome in logarithms as log(w). In cases in which firms do not report the wage
bill because they operate under profit-sharing agreements that are commonly used by most
informal firms we employ the wage imputation method described in Busso et al. (2012). This
procedure involves assigning missing wages to be the same as those in firms from the same
state, six-digit industry, and of similar size.

Entry and exit. For entry, this is a dummy variable that takes the value of one if the firm
appeared for the first time in the census wave, and zero otherwise. For exit, it takes the value
of one if the firm is observed for the last time and zero otherwise.

1.4.3 Treatment and sample

Treatment. The treatment variable, denoted as Di,t, is an index function that equals one if
the firm operates close to a fully executed construction plan and zero otherwise. A location
is considered to be close to a construction plan if it overlaps with a buffer of radius B around
the plan. For robustness checks, we consider different values for B, specifically, 5, 10 and 15
kilometers.

Figure 1.17 in Appendix 1.B illustrates treated (in green) and not-yet-treated (in red) locations
for a specific buffer size B. Notice that the treatment is not defined for locations that do not
overlap with any buffer; this will affect the sample size.

Sample. The sample includes only locations overlapping with construction plans. Table 1.3
shows the number of locations in the sample for B = 5 kilometers. It shows that 771 of the
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3,248 locations overlap with construction plans from 2007 to 2012. Among them, 259 intersect
with plans that were fully executed before 2012, and another 512 intersect with plans that were
not undertaken. Similarly, for the construction plans envisioned over the period from 2013
to 2018, 457 locations overlap with construction plans; among them, 278 were fully executed
before 2018. Table 1.14 in the appendix shows how the number of locations in the sample
increases when we use a larger buffer size.

Table 1.3: Locations in sample and treatment group
Plans period 2007-2012 2013-2018
With plans 771 457

With out plans 2,475 2,789
Total locations 3,246 3,246

Executed 259 278
Not executed 512 179

Total locations 771 457

Although the Economic Census covers from 2.7 million firms in 1998 to 4.7 million in 2018 (see
Table 1.1), we do not include all of them in our empirical estimation. Our sample is limited to
firms in locations overlapping with construction plans. For instance, considering the construc-
tion plans from 2013 to 2018, Table 1.4 shows that 2.73 million firms in 2018 are in the sample.
Among them, 1.26 million are in the treatment group. Table 1.15 in the appendix shows how
the number of firms in our sample increases as we increase the buffer size.

Table 1.4: Firms in the sample and treated group
Plans period 2007-2012 2013-2018

Census Sample Treated Sample Treated
1998 2.09 1.43 1.65 0.73
2003 2.23 1.51 1.75 0.77
2008 2.72 1.82 2.14 0.97
2013 3.06 2.04 2.43 1.12
2018 3.43 2.26 2.73 1.26

Notes: Treated means that the firm belongs to the treatment group, not that it was treated at that period.

1.4.4 Validity

The validity of our empirical approach relies on the timing of execution of construction plans
being orthogonal to economic outcomes. We provide three tests to show that this source of
variation is indeed as good as random.

The first test evaluates whether execution of plans can be predicted. We show that while the
geographical assignment of construction plans is correlated with demographic, economic, and
political characteristics, the actual execution and the timing is not. To do this, we regress, at
the location level, an index variable denoting if a location is close to a construction plan, and
whether it was executed, on local characteristics. Column (1) from Table 1.16 (Appendix 1.B)
shows that certain areas are more likely to be targeted by a construction plan. These areas are
those that have larger populations and higher value added per worker, and those that voted
for the opposition party in the previous presidential election. Column (2), however, shows that
none of these characteristics matter for the eventual execution of the plan.
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The second test provides a balance table to study whether treated and untreated locations dif-
fer in characteristics at baseline. We find that although there are some differences in levels,
there are none in growth rates. Table 1.17 (Appendix 1.B) shows that treated and untreated
groups are similar in population, average firm size, average firm productivity, and industrial
composition. Firms in treated locations, however, hire more formal workers on average, and
they are more capital intensive. If we focus on growth rates, they don’t seem to evolve differ-
ently, which suggests that existing differences are constant across time.

The third test addresses whether the parallel-trends assumption holds. As we show in the
following section (tables 1.5 and 1.6), there are no statistically significant pre-trends in our
outcomes of interest.

Additional concerns about the validity of our approach are that construction plans may only
capture minor improvements in the highways network, and that most of the effects that we
measure may be driven by other infrastructure projects tied to the plans, such as industrial
parks or housing developments. In Table 1.18 (Appendix 1.B) we provide evidence that the
construction plans have a significant effect market access. Execution of construction plans
imply an increase in market access of 0.07%. Because the baseline increase was on average
0.13%, the implied gains derived from plan execution are 53%.

1.4.5 Empirical results

To derive our baseline results we estimate two separate event-study models following Call-
away and Sant’Anna (2021). One is for the 2007-2012 construction plans, and the other is for
the 2013-2018 plans. Regressions are estimated at the firm level, assuming that the data are
repeated cross-sectional.

Tables 1.5 and 1.6 show our baseline results for a buffer size B = 5km. As is good practice
in the literature (Baker et al., 2022), we show first our estimates without covariates. Appendix
1.B shows robustness checks that include firm- and location-level covariates; we separately
estimate the model for tradable and non tradable goods, and for different buffer sizes.

Table 1.5: Baseline results. Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFPR)GNR log(L) log(w) Entry Exit

β−1 -0.0167 -0.0041 -0.0014 -0.0059 0.0083 0.0074
s.e. [.0228] [.0135] [.0084] [.0056] [.0069] [.0072]

β0 -0.0017 0.0044 -.0139** -0.0015 0.0143 -.0169**
s.e. [.0158] [.0056] [.0063] [.0057] [.0101] [.007]

β1 .0653*** .0174** -0.0049 -.0111** .0158*** -.0329**
s.e. [.0197] [.0082] [.0098] [.0054] [.0053] [.0129]

Controls No No No No No No
Obs. 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. The sample includes all firms from 1998
to 2018. It excludes firms with value added or capital levels smaller than zero.

Construction plans 2007-2012. Table 1.5 shows that, for all outcomes of interest, β−1 is not
statistically different from zero, which suggests that firms did not react to the treatment before
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they were exposed, and thus, that the parallel-trends assumption holds. According to the esti-
mated β0, there is no evidence of a contemporaneous effect of construction plan execution on
labor productivity and firm TFP. There is a negative effect on firm size, but this does not have
a significant effects on wages. Though there are no contemporaneous effects on firm entries,
there are effects on plan exits; plan execution decreases firm exits by 1.69 percentage points. Fi-
nally, the coefficients β1 capturing effects of highways five years after their construction, show
a 6.5% increase in labor productivity and a 1.74% increase in firm TFP. Firm size is not affected.
Wages slightly decrease. Firm entries increase by 1.6 percentage points, and firm exits decrease
by 3.3 percentage points.

In summary, although the results for the 2007-2012 construction plans are in line with a story
of labor and firm productivity gains and changes in firm dynamics due to better transport
infrastructure, the results also suggest that these effects may take time to unfold.

Table 1.6: Baseline results. Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFPR)GNR log(L) log(w) Entry

β−1 -.0641** -0.0073 -0.0028 0.002 0.0086
s.e. [.0257] [.0075] [.0076] [.0048] [.0055]

β0 .0547** .0179** .0157* .0113** 0.0018
s.e. [.0226] [.0074] [.0092] [.005] [.0079]

β1 -0.0013 0.0094 .0335*** .0146** .0238*
s.e. [.0231] [.0112] [.0109] [.0065] [.0124]

Controls No No No No No
Obs. 6,375,668 6,375,668 6,375,668 6,375,668 6,375,668

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. The sample includes all firms from 2003
to 2018. The sample excludes firms with value added or capital levels smaller than zero.

Construction plans 2013-2018. Table 1.6 shows that there are no anticipatory effects for all
outcomes of interest, except one, log(va/L). The estimates for β0 suggest significant contem-
poraneous effects on productivity and firm dynamics. When construction plans are executed,
local labor productivity increases by 5.5%. This increase is coupled with an 1.8% rise in firm
TFP and a 1.6% increase in firm size. There is a positive but noisy effect on average wages.
There is no effect on firm entry.11 One period after the treatment – that is, five years – neither
workers nor firms in treated locations continue to be more productive. However, they become
even larger (3.3%), and firm entry increases by 2.4 percentage points.

In summary, the results for 2013-2018 construction plans are in line with our hypothesis that
better transportation infrastructure increase local labor productivity and that this is linked to
more productive firms and changes in firm dynamics, notably, higher survival and entry rates.
Although the effects on productivity are not persistent, effects on firm dynamics are.

1.4.6 Robustness checks

Regressions by sector. In Appendix 1.B we show the results estimated separately by three
broad sectors: manufacturing, commerce and services. Table 1.19 shows the results for the

11Exit is not defined for this regression as the Census 2023 was not yet available at the time of this writing.
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2007-2012 construction plans. The contemporaneous negative effects of highways on exit are
present in all sectors although they are stronger in manufacturing and services (2 percentage
points) than in commerce (1.4 percentage points). As in the aggregate case, the effects on
productivity and firm dynamics appear one period after the treatment. The largest increases
in labor productivity (8.4%) and firm TFP (3.6%) are in the commerce sector. Higher entry
rates are present only in the services sector and lower exit in all. Overall, the sector that has
the strongest response to new transportation infrastructure is commerce. This is not surprising
since this is the sector for which trade costs are more relevant for input and output markets.

Table 1.20 shows the results for the 2013-2018 construction plans. Results by sector show that
the contemporaneous positive effects on productivity are driven mostly by the commerce and
services sectors and not by manufacturing. Again, there are no contemporaneous effects of
firm entry. One period after the treatment, there are negative effects on revenue productivity
for manufacturing firms, no effects for commerce, and positive effects for services. Higher
entry five years after the treatment is only present in the commerce sector.

Controls. Tables 1.21 and 1.22 in Appendix 1.B show that our results are robust to adding
time-invariant controls that take the Economic Census 1998 and the Population Census 2000
as baseline. For the 2007-2012 construction plans, point estimates preserve the sign, are slightly
larger, and increase their statistical significance. A similar pattern is observed for the 2013-2018
construction plans.

Different buffer sizes. Tables 1.23, 1.25, 1.24 and 1.26 in Appendix 1.B show that our results
are robust to larger buffer sizes. Focusing on the 2013-2018 construction plans, as the buffer size
increases, most point estimates decrease and some become statistically zero. This is consistent
with the fact that as we increase the buffer size, we also increase the sample and the risk
of considering more distant locations as treated when they are only weakly affected by the
construction plans.

Firm mobility. A common source of bias when studying firm entry and exit is firm reloca-
tion. When relocations are not tracked in the data, address changes are counted as an exit and
then recounted as a new entry, biasing both rates upwards. Since we can track firm location
changes across the entire country in the census, we verify whether new transport infrastruc-
ture incentivizes firms to relocate. In Appendix 1.B we show that although firm relocation can
be substantial, as much as 5% of all surviving firms, they mostly move within a given city or
commuting zone; thus, this does not bias our results because our treatment is defined at the lo-
cation level. Interestingly, we find that new transport infrastructure does affect within-location
firm relocation.

1.4.7 Discussion

Our findings have shown that new transport infrastructure has a positive effect on local labor
productivity, and that this increase is associated to an increase in firm TFP. The positive effects
of infrastructure on firm-level productivity we find are in line with those of previous findings
(Holl, 2016; Holl and Mariotti, 2018; Gibbons et al., 2018). Labor and firm productivity may in-
crease for many reasons. For example, average firm TFP can stem from better firm selection or
from agglomeration externalities (Combes et al., 2012). Wan and Zhang (2017); Lee (2021); Xu
and Feng (2022) provide empirical evidence that new highways incentives firm agglomeration,
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and Ahlfeldt and Feddersen (2018) find that infrastructure is a driver of better firm selection.
Though our empirical study cannot disentangle selection from agglomeration effects, our evi-
dence on firm entry and exit suggest that firm selection plays an important role in the overall
increase in productivity.

The findings also show that new infrastructure affects firm dynamics – that is, it impacts the
processes of firm entry, exit, and growth. The literature has found mixed evidence regarding
infrastructure’s impacts on the entry process. Audretsch et al. (2017); Gibbons et al. (2019)
find that the number of firms in places with better access to infrastructure increases, mostly
driven by entry; however, Chang and Zheng (2022) find no effects on entry and a decline in
the number of firms in locations exposed to new transport infrastructure. In general, we do
not find statistically significant effects on entry in the short run. However, we find positive
effects one period after the treatment (five years later). Research documenting the effects of
transport infrastructure on firm exit is scarce. We find negative effects of new highways on
firm exit, which is consistent with a story in which better highways decrease trade costs and
increase firm profitability and chances of survival.12

In the following section, we propose a model that rationalizes why new transportation infras-
tructure distorts firm dynamics, and how this mechanism determines location-level productiv-
ity. In the model, local labor productivity is directly determined by the composition for firms;
thus, firm selection is an important channel that drives the effects of better infrastructure on
economic outcomes. Although we do not model agglomeration forces directly, the model is
flexible enough to account for them at no computational cost (as described in Appendix 1.C).13

1.5 Model

In Section 1.4, we documented that new highways increased firm-level TFP, firm entry, and
the likelihood of a firm’s survival. These positive effects translate into higher local labor pro-
ductivity. In this section, we outline a theoretical framework that allows us to interpret these
results and study the implications for aggregate output, welfare, and the spatial distribution
of economic activity. To do this, we build upon an economic geography model à la Allen and
Arkolakis (2014) to incorporate firm dynamics by which we mean the endogenous processes
of entry, exit, and growth of heterogeneous firms in the tradition of Melitz (2003).

1.5.1 Geography

Time is discrete and indexed by t. In each period, there exists a fixed set of locations in the
country denoted by J = 1, 2, . . . , J .14 Locations in this economy are understood as local labor
markets such as cities or commuting zones. They are interconnected by a network of highways
that can be improved by building new routes or upgrading existing ones. Improvements in
the highways network can reduce the minimum travel times between any two locations.15 We

12See Grover Goswami et al. (2024) for the effects on competition. See Baum-Snow et al. (2024) for firm to
location productivity pass-through.

13The main challenge is identification. It is seldom straightforward to disentangle the parameter governing
agglomeration externalities from baseline productivity.

14For endogenous city formation see Gaubert (2018).
15We rule out the Braess’s paradox stating that adding one or more roads to a road network may slow down

overall traffic flow through it. A paper featuring congestion is Allen and Arkolakis (2022).
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denote the matrix of minimum travel times between locations i and j as {Ti,j,t}i,j∈J .

We assume that the matrix of minimum travel times is sufficient to determine a geography of
bilateral trade costs, denoted by {τi,j,t}i,j∈J .16 For now, we remain agnostic about the exact
function that maps travel times to trade costs. From now on, for all variables with subscript
(i, j), (i) denotes the origin, and (j) denotes the destination.

1.5.2 Households

At time t, the country is inhabited by an exogenous number of perfectly mobile households,
denoted as L̄t. Households decide where to reside and how much to consume. Each household
is endowed with one unit of labor, which is inelastically supplied to the local labor market at a
wage rate of wi,t. The household consumes a basket of varieties cj,i,t(n) produced by firm n in
location j. These varieties form a composite good Ci,t aggregated à la Dixit and Stiglitz (1977):

Ci,t =

∑
j∈J

∑
n∈Mj,t

cj,i,t(n)
σ−1
σ

 σ
σ−1

(1.2)

Where σ > 1 is the elasticity of substitution across all varieties. The price of a variety cj,i,t(n)
is denoted by pj,i,t(n). Utility is derived from this basket of goods and local amenities ui,t
according to the function:

Ui,t ≡ Ci,t · ui,t (1.3)

Amenities rationalize why households move to certain places despite receiving lower wages.
These considerations include good weather, cultural attractions, family ties, and birthplace
preferences (Zerecero, 2021). The consumption basket {cj,i,t(n)} maximizes (1.3) subject to the
budget constraint: ∑

j∈J

∑
n∈Mjt

pj,i,t(n)cj,i,t(n) = wi,t + di,t (1.4)

Where di,t denotes the dividends paid by the firms to households. We assume that all profits
are collected by a central fund and then redistributed. Using the approach undertaken by
Chaney (2008), each household owns wi,t shares of the fund, thus, income is proportional to
the local wage and does not affect household’s location choices. For the sake of simplicity in
notation, we omit dividends from the equations.17

From the household’s utility-maximization problem we can show that the instantaneous, indi-
rect utility depends on the real wage wi,t

Pi,t
and local amenities ui,t as follows:

Ui,t =
wi,t

Pi,t
· ui,t (1.5)

16This assumption is reasonable in the absence of internal tariffs.
17Under this assumption, we can show that the actual income is σ

σ−1
wi,t which proportionally shifts welfare

Ui,t for all i.
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Where Pi,t is the standard price index of location i, defined as:

Pi,t ≡

∑
j∈J

∑
n∈Mj,t

pj,i,t(n)
1−σ

 1
1−σ

(1.6)

Aggregate Marshallian demand of the Li,t households in location i for a variety n produced at
location j is:

cj,i,t(n) = pj,i,t(n)
−σwi,tLi,tP

σ−1
i,t (1.7)

According to this demand function, the price elasticity is σ and wi,tLi,tP
σ−1
i,t is a local demand

shifter that proportionally raises demand for all local varieties. The demand function implies
that households demand a positive amount of all varieties as long as there exists a firm willing
to produce them.18

Households’ location choice. Households are freely mobile and decide where to live at the
beginning of every period. The value of living at location i at time t is:

Wi,t = Ui,t + βEΩ [Wt+1|Ωt] (1.8)

Where Ωt is the aggregate state of the economy at time t, which includes all information about
the distribution of prices and quantities across locations. Households discount the future at
rate β ∈ (0, 1) forming beliefs EΩ through expectations that may depart from rational. The
continuation value is Wt+1, defined as:

Wt+1 = max
j∈J

{Wj,t+1} (1.9)

The absence of a moving cost in the continuation value reflects the fact that households can
freely move from location i to j. The location choice is then:

i = argmax
j∈J

Wj,t (1.10)

1.5.3 Firms

Technology. In period t, there are Mi,t heterogeneous, risk-neutral firms at location i. They
use labor to produce a single variety, indexed by n ∈Mi,t, with the following constant returns
to scale technology:

yi,t(n) = ψi,t(n) · li,t(n) (1.11)

Where firm-level productivity, ψi,t(n), is separable in two parts as:

ψi,t(n) = zi,t · si(n) (1.12)

18It is straightforward to extend this framework to many sectors as in Asturias et al. (2019). This will imply
having different elasticities within and across sectors. Arkolakis et al. (2019) show that heterogeneous markups
may imply smaller welfare gains from trade.
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Where zi,t is a random location-specific productivity shifter.19 It rationalizes why the same
firm would exhibit different labor productivity when situated in a different location or when
experiencing distinct time periods. On the other hand, si(n) is the idiosyncratic productivity
of a firm, which is time invariant and drawn before entry.

Profit maximization. Firms operate in a monopolistic competition market and sell their prod-
ucts to all locations. When firm n in location i serves market j, it chooses labor, output, and
prices to solve:

max
pi,j,t(n),yi,j,t(n),li,j,t(n)

πi,j,t(n) = pi,j,t(n)yi,j,t(n)− wi,tli,j,t(n) ∀j ∈ J

subject to (1.7)
(1.13)

Consumers at j pay pi,j,t(n) = τi,j,t · pi,t(n), where pi,t(n) is the price at the location of origin.
At the optimum, firms will price a constant markup over the marginal cost. That is:

pi,j,t(n) =

(
σ

σ − 1

)
τi,j,twi,t

ψi,t(n)
(1.14)

Optimal labor and quantities follow from (1.14) and the demand and production functions.
Equation (1.14) implies that all differences in prices of the variety n are fully explained by
differences in trade costs; so any reductions in trade costs will be fully passed on to consumers
in the form of a lower price.

Definition 1. Location’s i market access is:

mai,t ≡ σ̃
∑
j∈J

τ1−σ
i,j,t wj,tLj,tP

σ−1
j,t (1.15)

where σ̃ ≡
(

σ
σ−1

)1−σ
.

Proposition 1. Firm’s (total) optimal labor demand and profits are:

li,t(n) = ψi,t(n)
σ−1 · w−σ

i,t ·mai,t (1.16)

and
πi,t(n) =

1

σ
· ψi,t(n)

σ−1 · w1−σ
i,t ·mai,t (1.17)

Proof. See Appendix 1.C.

According to (1.16) and (1.17) static optimal decisions of firms depend only on their produc-
tivity, local wages, and market access.20

Incumbent’s problem. Firms decide to stay or exit after production takes place and profits are
realized. The value of an incumbent firm in location i producing variety n is:

Vi,t(n)
I = πi,t(n) + βEΩ [Vi,t+1(n)|Ωt] (1.18)

19This shifter can be further decomposed by making assumptions on, for instance, agglomeration externalities
(Combes et al., 2012).

20Firms have no local labor market power; thus they take wages and market access as given. See Azkarate-
Askasua and Zerecero (2022) for local labor market power.
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Where the continuation value, normalizing the outside option for entrepreneurs to zero for all
n, is:

Vi,t+1(n) = max{Vi,t+1(n)
I − fi,t(n), 0} (1.19)

Here, fi,t(n) is a random operating cost drawn at the end of period t. This operating cost
provides the rationale that can explain why there is not a hard productivity cut-off for exiting
firms in the data; some productive firms exit, and some unproductive firms stay in the market.

Entrants’ problem. At the end of period t, exogenous MPE
i,t potential entrants draw idiosyn-

cratic productivity shocks {si(n)}n∈MPE
i,t

, then, determine the value of entering and starting
operations in t+ 1:

Vi,t(n)
E = βEΩ

[
Vi,t+1(n)

I |Ωt

]
(1.20)

Where ei,t(n) is a random entry cost observed before making the entry decision. Normalizing
the outside option to zero, the potential entrant decides to enter in t+ 1 if:

Vi,t(n)
E − ei,t(n) > 0 (1.21)

The entry shock ei,t(n) explains why certain unproductive firms might enter the market while
some highly productive ones might not. As the productivity draw increases, so does the value
of entering the market, making it more likely for a firm to choose to enter.

1.5.4 Local labor productivity

In standard economic-geography models, production in a location takes place in a single rep-
resentative firm with a production function of the form Yi,t = Ai,tLi,t, where Ai,t is local labor
productivity and is exogenously given and, therefore, policy invariant. The key innovation of
our framework is that we allow Ai,t to depend on local productivity shocks and the endoge-
nous and dynamic firm composition.

Definition 2. The endogenous location-level labor productivity is:

Ai,t ≡

 ∑
n∈Mi,t

φi,t(n)
σ−1

 1
σ−1

(1.22)

Notice that definition 2 is isomorphic to a framework in which a location-specific variety is
produced using intermediate inputs from local firms and aggregated according to (1.2). Com-
bining this definition with the firm’s production function, the productivity of a location can be
rewritten as:

Ai,t = zi,n ·

 ∑
n∈Mi,t

si(n)
σ−1

 1
σ−1

(1.23)

Equation (1.23) shows that the labor productivity of a location depends on the exogenous pro-
ductivity shifter zi,t, the endogenous number of firms Mi,t, and importantly, the endogenous
idiosyncratic productivity distribution {si(n)}n∈Mi,t . The distribution of si(n) is determined
by the incumbent and potential entrant problems described above and evolves according to
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the following process:

{si(n)}n∈Mi,t = {si(n)}In∈Mi,t−1
∪ {si(n)}En∈Mi,t

(1.24)

Intuitively, the current set of producing firms is the union of the sets of surviving firms from
the previous period and the potential entrants that decided to start production in t.

Proposition 2. Output at the location level, given by Yi,t = Ai,tLi,t, can be decomposed as:

log(Yi,t) = log(zi,t)︸ ︷︷ ︸
Technology shock

+ log(s̃i,t)︸ ︷︷ ︸
Firm selection

+

(
1

σ − 1

)
log(Mi,t)︸ ︷︷ ︸

Varieties

+ log(Li,t)︸ ︷︷ ︸
Total labor

(1.25)

Where s̃i,t ≡
[

1
Mi,t

∑
n∈Mi,t

si(n)
σ−1
] 1

σ−1 is the generalized mean idiosyncratic productivity of loca-
tion i. All terms in the decomposition are positively valued.

Proof. Combine (1.2), (1.11), (1.15) and (1.16).

Equation (1.25) shows that a location will produce more composite output per worker if it faces
favorable exogenous technology shocks; if firm selection improves; or if many firms agglom-
erate in the location.

1.5.5 Equilibrium

Timing. Figure 1.5 illustrates the timing of our model. At the beginning of period t, all agents
observe the realization of local amenities, productivity shocks, trade costs, and total popula-
tion. As the composition of firms in period twas decided in t−1, local labor productivities,Ai,t,
are immediately determined. Then, households determine labor supply by deciding where to
live, taking prices and wages as given.

Simultaneously, firms decide their labor demand and production levels, taking market access
and wages as given. Finally, profits are realized and redistributed to households. Before the
end of the period, incumbent firms decide whether they will continue or exit, and potential
entrants decide whether to enter or not. Once these decisions are made, the number and com-
position of active firms in t+ 1 are determined.

Similar to Caliendo et al. (2019), we establish a distinction between a temporary and a sequen-
tial competitive equilibrium. The temporary equilibrium is the solution to the multi-location
internal trade model. The sequential equilibrium is characterized by the migration decisions of
households and the entry and exit decisions of firms.

Definition 3. Given L̄t, ui,t, zi,t, τi,j,t, a temporary equilibrium are quantities Li,t, yi,j,t and prices
, wi,t, pi,t(n), Pi,t such that:

1. Households maximize utility given by (1.4)

2. Firms maximize profits given by (1.13)
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Figure 1.5: Timing of the model

t t+ 1
(a) Nature

ui,t, zi,t
τi,j,t, L̄t

I draw fi(n)
PE draw ei(n), si(n)

PE

ui,t+1, zi,t+1

τi,j,t+1, L̄t+1

t t+ 1
(b) Firms and households

Firms
demand li,t(n)

produce yi,j,t(n)
profits πi,t(n)

I stay/exit

PE enter/not

HH move to i
consume cj,i,t(n)

t t+ 1
(c) Spatial general equilibrium

Mi,t

Ai,t
Li,t, wi,t, Pi,t

MStay
i,t

MEntry
i,t+1

Mi,t+1

Ai,t+1

Notes: I=incumbents. PE=potential entrants. HH=households

3. Wages wi,t clear local labor markets ∀i ∈ J :

Li,t =
∑

n∈Mi,t

li,t(n)

4. Prices pi,j,t(n) clear good markets ∀n ∈Mi,t and ∀i, j ∈ J :

ci,j,t(n) = yi,j,t(n)

wi,tLi,t =
∑
j∈J

∑
n∈Mj

pi,j,t(n)yi,j,t(n)

Definition 4. Given L̄t, ui,t, zi,t, τi,j,t and fi,t(n), ei,t(n), a sequential equilibrium are quantities
Li,t, Mi,t such that:

1. Migration decisions solve (1.10) and utility is equalized across locations Ui,t = Ut ∀i ∈ J ,
moreover: ∑

i∈J

∑
j∈J

(Li,t − Lj,t−1) = L̄t − L̄t−1

2. Entry and exit decisions solve (1.19) and (1.21) and:

Mi,t =MS
i,t +ME

i,t−1∀i ∈ J

Where MS
i,t denotes the mass of surviving firms from t− 1 to t.
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Proposition 3. The static equilibrium exists, and it is unique; therefore, the sequence of temporary
equilibria exists, and is unique. Moreover, for arbitrary constants Ut and ϕt, the following system of
equations determines the static spatial equilibrium.

Li,tw
σ
i,t = σ̃U1−σ

t

∑
j∈J

τ1−σ
i,j Aσ−1

i,t uσ−1
j,t Lj,tw

σ
j,t (1.26)

w1−σ
i,t = σ̃U1−σ

t

∑
j∈J

τ1−σ
i,j Aσ−1

j,t uσ−1
i,t w1−σ

j,t (1.27)

Li,tw
σ
i,tA

1−σ
i,t = ϕtw

1−σ
i,t u1−σ

i,t = mai,t (1.28)

Proof. From market clearing, the indirect utility function, and the price index, we obtain (1.26).
From the price index and the indirect utility function we get (1.27). From theorems 1 and
2 in Allen and Arkolakis (2014) we know that, given L̄t, ui,t, Ai,t, τi,j,t, the sequence of static
equilibrium exists, it is unique, and it satisfies 1.28.

Proposition 4. There is a unique allocation of workers across firms within location given by:

li,t(n)

Li,t
=

(
si(n)

s̄i,t

)σ−1

(1.29)

Where s̄i,t ≡
(∑

n∈Mi,t
si,t(n)

σ−1
) 1

σ−1 .

Proof. Combine equations (1.16) and (1.28).

According to (1.29), there is a convex relationship between a firm’s relative productivity and
its relative size. If firms with relatively high levels of productivity enter location i such that
firm n is 1% relatively less productive, it will lose (σ − 1)% of its share in the local labor force.

1.6 Calibration

In this section, we take our model to the Mexican data by using a combination of parameter-
ization, model inversion, and internal calibration. Then, we conduct two validation exercises
to test the model’s predictive performance.

1.6.1 Parameterization

Time period and locations. In our model, each period spans five years, aligning with the
frequency of our five census waves: 1998, 2003, 2008, 2013, and 2018. We set the 5-year discount
rate to β = 0.82, consistent with an annual discount rate of 0.96. We restrict the number of
locations to J = 2, 463. The rest have been excluded because they do not consistently appear
in all census waves, or they have fewer than 10 firms, which addresses confidentiality concerns.
Our 2,463 locations encompass 93% of all firms in 1998 and 85% in 2018.

Elasticity of substitution. We set σ = 9 for all periods, following Eaton and Kortum (2002) and
Allen and Arkolakis (2014). This choice allows us to ensure comparability of our results with
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standard internal trade models.21 This value is higher than what is often found in the literature
(e.g Hsieh and Klenow (2009)). Lower values of σ would imply lower substitutability across
goods and therefore larger gains from the reduction in trade costs.

Trade costs. We estimate trade costs τi,j,t for all census waves in two-steps. First, we compute
the minimum travel time between any two locations, Ti,j,t, by using the Dijkstra algorithm
(Dijkstra, 1959). This algorithm discretizes the space in cells characterized by the speed of
their highways. If a cell is not intersected by any highway, we assume a transit speed of 5
km/h. If it is crossed by one or more highways, the transit speed is determined by the one
with the highest maximum speed, which ranges from 50 km/h to 120 km/h. We set the speed
in cells forming urban agglomerations to be 30 km/h.

Once we have the minimum travel times for all pairs i, j and for all t, we compute the trade
costs as in Hanson (2005) and Pérez and Sandoval (2017) assuming the following parametric
form:

τi,j =

eλ0+λ1Ti,j if i ̸= j

1 if i = j
(1.30)

Where λ0 represents the fixed cost of the goods leaving the location of origin, and λ1 denotes
the additional cost incurred for each additional hour of transportation time. We parameterize
this function following Pérez and Sandoval (2017). They estimate λ0 = 0.0557 and λ1 = 0.0024

for Mexico using price data for avocados, which are a good primarily produced in a single
location and sold at prices that increase with travel time. Their estimates imply that when
goods leave the location of origin, prices increase immediately by 5.57% and then increase by
5.76% for every 24 hours in transit.

Figure 1.6: Travel times and reduction in trade costs, 1998-2018

(a) Hours origin-destination (b) Trade costs reduction, 1998-2018

Notes: Figures show all origin-destination i, j combinations (3, 2342).

Figure 1.6 panel (a) shows the distribution of travel time hours for all pairs of origins and
destinations in the data. In 1998, the median origin-destination travel time was 13.4 hours.
This decreased to 11.6 hours in 2018. Panel (b) shows how the overall reduction in travel times

21In Gaubert (2018) this is calibrated to match the average revenue-to-cost margin in each sector.
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affected the implied trade costs. The median origin destination pair (i, j) saw a reduction of
0.26% in trade costs.

1.6.2 Labor and wage paths

Labor and wages. We assume that the observed geographical distributions of wages wi,t and
labor Li,t across locations are equilibrium outcomes of the model. We measure the local labor
distribution {Li,t}i∈J as the number of workers reported in the census.

The distribution of local wages {wi,t}i∈J , is obtained by residualizing wages in two steps.
First, we compute local average wages w̄i,t as total wage bill over the number of workers.
And second, we regress it on local observable characteristics that are not accounted for by our
model and use the estimated residuals as local wages. The regression model is:

w̄i,t = β0 + β1% educi,t + β2% manufi,t + β3K/Li,t + β4% infi,t + ϵi,t (1.31)

Where i denotes the location and t the census year. The regression accounts for heterogeneity in
education, industrial composition, capital intensity, and informality. Figure 1.18 in Appendix
1.C shows the correlation between residualized wages and local population. Wages in large
locations are higher even after controlling by observable characteristics. This is in line with a
story in which locations with highly productive firms increase both local labor productivity
and wages, and thus attract more workers.

1.6.3 Model inversion

Local amenities and productivity. We invert the model to retrieve the distribution of local
amenities ui,t and local labor productivity Ai,t. For a given geography of trade costs, dif-
ferences in amenities are identified from differences in population in locations with similar
wages. On the other hand, differences in labor productivity are identified from differences in
labor income in locations with similar amenities. Formally, (1.32) and (1.33) retrieve amenities
and productivities from an observed distribution of trade costs, local labor, and wages.22

u1−σ
i,t =

σ̃U1−σ
t

ϕt

∑
j∈J

τ1−σ
i,j,t w

σ−1
i,t wσ

j,tLj,tu
σ−1
j,t ∀i ∈ J (1.32)

Ai,t =

[
1

ϕt
Li,tw

2σ−1
i,t uσ−1

i,t

] 1
σ−1

∀i ∈ J (1.33)

To determine ϕt we use the equilibrium in the labor market L̄t =
∑

i∈J Li,t:

ϕt = L̄t

(∑
i∈J

w1−2σ
i,t u1−σ

i,t Aσ−1
i,t

)−1

(1.34)

Figure 1.7 illustrates the correlation between amenities, labor productivity, population, and
wages. Two contrasting cases, Tijuana and Merida, highlight how these variables interact.

22Endogenous constants Ut and ϕt are not identified in levels. We normalize them to one at baseline.
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Tijuana is a dangerous city located in the northern Mexican desert, while Merida, situated near
the Caribbean Sea, is renowned for its safety. Tijuana has limited local amenities in comparison
to Merida; nonetheless, Tijuana has higher population and wage levels than Merida. This is
explained by Tijuana’s higher local labor productivity, which is driven by its highly productive
firms in the export-oriented manufacturing sector.

Figure 1.7: Amenities, productivity, and equilibrium outcomes, 2018

(a) Productivity and employment (b) Productivity and wages

(c) Amenities and employment (d) Amenities and wages

Notes: Marker size denotes the number of firms in the location.

1.6.4 Internal calibration

Once we have fully characterized the path of aggregate location-level equilibrium outcomes,
we exploit the microdata to determine the primitives that govern firm dynamics in the model.
These are the path of location-level productivity shocks, the initial distribution of idiosyncratic
productivities, the entry- and exit-cost distributions, and the path of potential entrants.

Location-specific productivity shock. From (1.23) and defining

s̄i,t ≡

 ∑
n∈Mi,t

si(n)
σ−1

 1
σ−1

, (1.35)
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we solve for the location-specific productivity shock as follows:

zi,t =
Ai,t

s̄i,t
(1.36)

Computation of zi,t requires firstAi,t which comes from model inversion described above; and
second, the distribution of firm-level idiosyncratic productivity, which is a sequential equilib-
rium outcome. This distribution {si,t(n)}n∈Mi,t ∀i ∈ J depends on the initial distribution of
idiosyncratic productivities and the entry and exit costs’ stochastic distributions.

Initial idiosyncratic productivity distribution. To identify the initial distribution of si,t(n) we
assume that the economy reached the steady state in 1998 starting from an arbitrary point in
the past. Then, we exploit the result that in equilibrium:

li,t(n)

Li,t
=

(
si,t(n)

s̄i,t

)σ−1

(1.37)

Thus, the observed distribution of firm-level labor demand is fully informative about the ini-
tial idiosyncratic productivity distribution. More precisely, if l̃i,t(n) =

(
1

σ−1

)
[log(li,t(n)) −

log(Li,t)] follows an arbitrary distribution F (µl̃, σl̃), then, si,t(n) follows F (µl̃ + log(s̄i,t), σl̃).
From firm-level data we compute µl̃, σl̃, and then we solve the fixed-point problem until s̄i,t is
consistent with the equilibrium condition.23

Potential entrants’ productivity distribution. The distribution of idiosyncratic productivities
is governed by F (µs, σs). Assuming that we know F (µf , σf ) and F (µe, σe), we estimate the
parameters µs, σs by solving the following problem:24

{µ̂s, σ̂s} = arg min
µs,σs

∑
i∈J

∑
n∈Mi

·
[
log(li(n)

data)− log(li(n)
model)

]2
(1.38)

Here, li(n) is the number of workers in a firm in the data, and li(n)model is the labor demand in
the model according to Equation 1.16. Intuitively, conditional on a set of values for the entry
and exit costs, the optimal estimators of µs, σs are the ones that minimize the square percentage
deviations in labor demands observed in the data and the ones implied in the model.

Exit costs. We estimate the exit-cost parameters as follows: first, recall that a firm at the end of
period t stays in the market for period t + 1 if the expected continuation value in t + 1 minus
a cost shock observed at the end of t is higher than the outside option, which we normalize to
zero. Denote the continuation value as:

xi,t(n) = βEΩ [Vi,t+1(n)|Ωt] (1.39)

Suppose that the cost shock, denoted as fi,t(n), comes from a Gumbel probability distribution
G(.). The survival probability of a firm is then:

λ(xi,t(n)) = P[xi,t(n) > fi,t(n)] = G(xi,t(n)) (1.40)

23In the quantitative section we assume F (.) is log normal and that µl̃, σl̃ are location specific.
24We need to add more details on the definition and existence of a steady state.
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Denoting the location parameter µf and the spread parameter σf , we obtain:

λ(xi,t(n)) = e−e
−
(

xi,t(n)−µf
σf

)
(1.41)

To compute xi,t(n) we assume that firms form myopic expectations denoted as Ẽ about the
future-state space Ωt+1. This implies that ẼΩ [Vi,t+1(n)|Ωt] = Vi,t(n). Then, the survival proba-
bility is the solution to the non-linear system given by equations 1.17 and 1.41, which gives:

λ(wi,tli,t(n)) =
1

β
−

1
σ−1wi,tli,t(n)

µs − σslog[−log[λ(wi,tli,t(n))]]
(1.42)

Equation 1.42 shows that there is a non-linear mapping between the firm-level equilibrium
wage bill wi,tli,t(n) and the survival probability λ(wi,tli,t(n)). We leverage this relationship
to retrieve the cost-shock-distribution parameters µf , σf by solving for the parameters of the
cost-shock distribution that will solve the minimization problem:

{µ̂f , σ̂f} = arg min
µf ,σf

∑
i∈J

∑
n∈Mi

·
[
λ(wi,tli,t(n))

data − λ(wi,tli,t(n))
model

]2
(1.43)

Problem (1.43) requires that the full mapping between wage bill and exit rates are defined in
the data. Since the data are granular, we approximate this relationship by grouping all wage-
bill values in percentiles and then computing the associated exit rate. Finally, we approximate
this relationship with a polynomial fit, using this continuous approximation as the values tar-
geted by the minimization problem.

Figure 1.8 shows the polynomial fit ant the survival rates in the data. Notice that survival rates
are concave for the low and middle sections of the wage-bill distribution and convex for the
high end. This implies that when very large firms shrink, their survival rates decrease faster
than when small firms in terms of wage bill do.

Potential entrants and entry costs. At every period we observe in the data the productivity
distribution of entrants and their number. However, since by definition we do not observe the
potential entrants, there are infinitely many combinations of potential entrant distributions
and entry costs that rationalize the observed entrants in the data.

To address this problem we assume first that entry costs ei(n) are drawn from the same dis-
tribution as exit costs fi(n). Then, for a given productivity distribution of potential entrants,
we back up the mass of potential entrants {MPE

i,t }i∈J by solving their entry problem until the
implied number of entrants {ME

i,t}i∈J plus the survivors {MS
i,t}i∈J is equal to the number of

firms observed in the next period {Mi,t+1}i∈J .

Finally, to recover the parameters governing the productivity distribution of potential entrants
we assume that they follow a process F (µE , σE). Then we solve their entry problem, combine
these entrants with the survivors, and verify if this productivity distribution is consistent with
the one observed in the next period. We iterate on µE , σE until we reach convergence.
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Figure 1.8: Wage bill (wl) and survival rate λ in the data

Notes: Each dot is a percentile p in the wage-bill distribution. The polynomial fit of degree d estimated with the

ordinary- least-squares (OLS) model: log
(

λp,t

1−λp,t

)
=

∑
d γdlog(wLp,t)

d + γt + εp,t.
For d = 3, γ1 = 3.206, γ2 = −0.512, γ3 = 0.028.

1.6.5 Model validation

Local productivity. Local labor productivity Ai,t is identified without production data. As a
validation exercise, we show that its correlation with its data counterpart, based on firm-level
output data, is strong. We do this by computing Âi,t as in (1.22), with φ̂i,t(n) estimated as value
added per worker.

Figure 1.19 in the appendix shows that, for all years, the R2 of regressing model-implied and
empirical local labor productivity is close to 0.8. This suggests that the model-implied local
labor productivity captures most of the variation in the data. The remaining 0.2 of the varia-
tion comes from mechanisms absent in out model, such as industrial heterogeneity or spatial
frictions in human capital mobility.

Natural experiment replication. We further validate the model by replicating the natural ex-
periment from Section 1.4 inside the model and showing that it provides similar point esti-
mates. We do this by creating a counterfactual scenario in which we effectively shut down
all new highways, eliminating all plans that were constructed from 2013 to 2018. We then
compare outcomes from the data and from this counterfactual exercise for both treated and
untreated groups.25

25We do not limit the exercise to eliminating only highways from the construction plans; this is because our em-
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Table 1.6 column (3) shows that the empirical point estimate is 1.6% in a 90% confidence inter-
val of [0.1%, 3.1%]. Figure 1.9 panel (a) shows that the associated effect in the model is 2.8%,
which falls within the confidence interval. We interpret this as reasonable evidence that the
model is capable of capturing the observed behavior in the data.

Furthermore, we use the model to argue that the “no anticipation of the treatment" assumption
in the empirical exercise implies an underestimation of our estimates. To address this issue,
we allow firms in 2013 to expect that all announced construction plans will be built and to
make their surviving decisions accordingly. We then compare treated and untreated groups
in 2018. Panel (b) reveals that if we allow firms to react to the announcement, the net effect
is 0.4 percentage points smaller, which is still within the confidence interval but closer to the
empirical estimate. This result suggests that our empirical estimates are likely to be a lower
bound of the true effect.

Figure 1.9: Effects of new highways 2013-2018 model vs natural experiment

(a) Firms do not expect plans to be executed (b) Firms expect plans to be fullyl executed

Notes: The figure shows the replication of natural experiment for 2013-2018 construction plans. In panel (a)
incumbent firms do not expect plans to be executed. In panel (b) incumbent firms expect all plans to be executed.

Vertical dashed lines denote the corresponding average effect.

1.7 Quantitative results

1.7.1 Contribution of highways to welfare and growth

Between 1998 and 2018, the network of paved roads and highways in Mexico expanded from
approximately 100,000 kilometers to nearly 200,000 kilometers. In this section, we show that
this expansion produced modest welfare and income gains but high reallocation of economic
activity across locations. We then show that firm dynamics were a key driver of both the aggre-
gate and distributional effects. To analyze these dynamics we construct a counterfactual sce-
nario in which the trade geography remains at 1998 levels, and we then recalculate the growth
trajectory using our model. We interpret the difference between this counterfactual scenario
and the path in the data as the contribution of highways that were constructed between 1998
and 2018.

pirical estimates may also capture effects from secondary roads or other highways that influence both the treatment
and control groups.
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Welfare and aggregate effects. New highways built from 1998 to 2018 increased welfare, real
income, and productivity. Table 1.7 shows the comparisons of results from the counterfactual
scenario in which the highway network remained as it was in 1998 and those outcomes as
shown in our data that actually occurred in 2018. Welfare is 0.44% higher. Real income is
0.64% higher. And aggregate productivity is 0.13% higher. The number of firms, however, is
0.10% lower.

Welfare gains are entirely explained by the increase in real income as amenities are exoge-
nous. The findings of Allen and Arkolakis (2014) serve as a reference for the extent of welfare
gains; they document that the entire interstate highways network in the US increased welfare
by 1.3%. As our model reveals, real income rises for two reasons. First, labor productivity
improves, leading to higher nominal wages. Second, reductions in trade costs drive down
prices of goods, as indicated by reductions in local price indices. The increase in productivity
is explained by positive firm selection, driven by higher survival and entry rates of productive
firms. Then, too, a more efficient transportation system requires fewer firms in the aggregate,
as lower trade costs allow fewer firms to serve more markets.

Table 1.7: Gains from highways
(1) (2) (3) (4)

Year Welfare Real income Productivity Firms
1998 0.00% 0.00% 0.00% 0.00%
2003 0.13% 0.09% 0.04% -0.04%
2008 0.24% 0.36% 0.25% -0.02%
2013 0.40% 0.40% 0.22% -0.07%
2018 0.44% 0.64% 0.13% -0.10%

Notes: Gains measure how much higher outcomes are with respect to a counterfactual in which none of the new
highways after 1998 were built. L denotes total labor productivity as in (1.22). wL/P is total real remunerations.

M is the total number of firms.

Distributional effects. Aggregate results hide important distributional effects across space. To
illustrate this point, Table 1.8 shows gains at the 25th, 50th and 75th percentile levels in labor,
real income, labor productivity, and number of firms that result from new infrastructure across
all locations from 1998 to 2018.

People migrate until utility is equalized; thus, there is no dispersion in welfare gains. This
leads to net migration-implied population gains of at least 5% above the 75th percentile and
similar levels of losses below the 25th percentile. Due to these population losses, as shown by
Column (2), real income fell in more than half of the locations, while, at the same time, real
income for those whose earnings were in the top 75th percentile rose by at least 5%.

Firms react differently across space to new transport infrastructure. As shown in Column (3),
labor productivity decreased in half of the locations due to exit of productive firms. Even
though, in the aggregate, better transport infrastructure implies that fewer firms are needed,
this is mostly driven by net exits of firms in locations locations that are farther away from the
highway network. As Column (4) shows, there was a net decrease in the number of firms in
more than half of locations, but a net increase of at least 2.34% in a quarter of locations.

To understand the geographical concentration of these heterogeneous gains, we show in Figure
1.10 the state-average impacts on key economic outcomes.26 In general, the states that experi-

26We calculate these averages weighted by population. State-level averages are used for clarity in presentation.
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Table 1.8: Distribution of impacts from new highways
(1) (2) (3) (4)

Percentile Labor Real income Productivity Firms
25th -5.76% -5.32% -0.60% -2.65%
50th -0.94% -0.50% 0.01% -0.12%
75th 5.17% 5.60% 0.58% 2.34%

Notes: The table shows the impacts on labor, real income, productivity and the number of firms from the new
highway network by comparing outcomes with those that would have emerged in a counterfactual scenario in

which the highway network had remained unchnaged since 1998. L denotes total labor productivity as in (1.22).
wL/P is total real income. M is the total number of firms.

enced the largest gains are those situated near to the main port of entry to California (Tijuana)
or to the Caribbean Sea, the largest tourist hub (Cancun). The states that saw moderate gains
are those located near the port of entry to New Mexico and Texas (Juarez and Nuevo Laredo)
or to the main sea ports connecting Mexico to Asia (Manzanillo) and Europe (Veracruz). The
remaining states mostly incurred losses, indicating that more economic activity would have
been concentrated there in the absence of the new transport infrastructure.

Panel (a) in Figure 1.10 shows that consumers in better connected areas can purchase goods at
prices that are as much as 3% lower. According to panel (b), demand for goods produced also
increases by up to 5% these locations. Panels (c) and (d) further reveal that these effects result
in positive net population growth ranging from 10% to 40%, along with similar real revenue
gains. In panel (e), it is shown that in these locations, the introduction of new highways in-
creases the number of firms by 1% to 5%. While these firms may vary in productivity levels,
the addition of the new highways is predominantly productivity enhancing (see panel (f)). The
opposite holds true for areas with limited exposure to new transport infrastructure; these firms
largely experience .

Contribution of firm dynamics. We quantify the role played by firm dynamics in the aggregate
and distributional effects of new transport infrastructure in two ways. First, we compare the
effects of highways on economic outcomes in our model to the effects predicted by standard
trade models, which assume a static economy and exogenous local productivity. Notice that
our model collapses to this framework by assuming an infinitely lived, single representative
firm by location (Allen and Arkolakis, 2014).

Table 1.9 shows welfare and income gains when we abstract from firm dynamics. We omit
gains in productivity and the number of firms because they are zero by definition in the ab-
sence of dynamic firm behavior. Column (1) shows that welfare gains in the absence of firm
dynamics are slightly smaller. In terms of the impacts on welfare, this result suggests that
the reduction in trade costs, not local productivity, matters the most for individuals. A key
driver of this result is the assumption of free mobility. In terms of real income, firm dynamics
play a bigger role. When we allow for firm dynamics, income gains in 2003 are 0.09%, while
a standard model would imply gains of 0.05%. This means that 55% of the real revenue gains
come from the reduction in trade costs induced by better highways, and that the remaining
45% of real income gains come from local productivity gains driven by firm dynamics. The
contribution of firm dynamics is 11% for 2008, 16% for 2013 and 7.6% for 2018.

A model overlooking firm dynamics not only underestimates gains from the construction of

Figure 1.20 in the Appendix shows maps with impacts at the location level.
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Figure 1.10: Average impacts from the highway network expansion (1998-2018)

(a) Impacts on the price index (%) (b) Impacts on market access (%)

(c) Impacts on employment (%) (d) Impacts on real revenue (%)

(e) Impacts on the number of firms (%) (f) Impacts on productivity (%)

Notes: The maps show the impacts that stem from expanding the highways network over the period from 1998 to
2018. Changes are shown at the state level and are calculated by averaging locations weighted by population.

Impacts at the municipal level are shown in Figure 1.20 in Appendix 1.C.
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Table 1.9: Gains from highways, without including firm dynamics
(1) (2)

Year Welfare Real income
1998 0.00% 0.00%
2003 0.11% 0.05%
2008 0.24% 0.32%
2013 0.39% 0.34%
2018 0.44% 0.59%

Notes: The table shows how much welfare and real income increased following the building of highways over the
1998-2018 period with respect to a counterfactual scenario that would have emerged had no new highways been

built. The productivity and number of firms in a given location are kept fixed.

new highways but also their dispersion. Table 1.10 shows that the interquartile range of labor
gains is 9.98%, compared to 10.93% in our baseline model. Similarly, for real income gains.
This result suggests that firm dynamics are a force for spatial divergence when new transport
infrastructure is unequally targeted across space.

Table 1.10: Distribution of gains from highways, without including firm dynamics
(1) (2)

Percentile Labor Real income
25th -5.32% -4.87%
50th -0.72% -0.27%
75th 4.67% 5.12%

Notes: The table shows how much welfare and real income increased following the building of highways over the
1998-2018 period with respect to a counterfactual scenario that would have emerged had no new highways been

built. The productivity and number of firms in a given location are kept fixed.

Second, we compute the extent to which the increase in local labor productivity induced by
transport infrastructure can be attributed to firm selection or net firm entry. Notice that in a
model without firm dynamics both are zero. Equation (1.25) implies that:

∆log(Ai,t)
baseline −∆log(Ai,t)

no new highways = ∆log(s̃i,t)
baseline −∆log(s̃i,t)

no new highways

+∆log(Mi,t)
baseline −∆log(Mi,t)

no new highways

(1.44)

Equation (1.44) captures the fact that some firm selection and net firm entry would have taken
place in a counterfactual with no new highways over the period from 1998 to 2018. The differ-
ence between this counterfactual and what we observe in the data captures the responses of
firms to new infrastructure.

Figure 1.11 shows the decomposition in (1.44) for all locations. Panel (a) shows that, in half the
locations, new transportation infrastructure decreased labor productivity. Moreover, for most
of the locations a larger portion of the total change is explained by firm selection rather that
by net firm entry. In panel (b), we regress labor productivity growth on firm-selection growth
induced by new highways over the period from 1998 to 2018. According to the R2, 64% of the
variation in labor productivity growth is explained by variation in firm selection.
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Figure 1.11: Decomposition of local productivity growth induced by new highways (1998-2018

(a) Decomposition of productivity growth (b) Correlation between location productivity and firm
selection

Notes: Productivity is measured by Ai,t. Selection is measured by average idiosyncratic productivity s̃i,t. Firms
are measured by Mi,t. Dots show the J locations, and lines show a polynomial fit of degree 3.

1.7.2 A more ambitious infrastructure policy

Between 1998 and 2018 the paved roads network in Mexico doubled. The median origin-to-
destination travel time (to drive from municipalities in Mexico to Mexico City) fell by 13% in
20 years, from 13.4 to 11.6 hours. Mexico has 1.4 meters of paved roads per capita. This is
one-tenth of the equivalent figure for the US, Mexico’s neighbor and largest trading partner.
The disparity raises the question: What would have happened if infrastructure investments
had been more ambitious over the period we study?

We use our calibrated model to answer this question by focusing on an alternative infrastruc-
ture policy in which the percentage reduction in travel times is twice as great as the levels
calculated by using the 1998-2018 data; we then compare the likely outcomes from the two
counterfactual scenarios: 1) the scenario in which the speed made possible from the highway
network is twice that of the speed possible from the network that was constructed by 2018,
and 2) the scenario that would have likely occurred in 2018 had no new highways been built
after 1998.

Table 1.11: Likely impacts of a highway network twice as fast as the 2018 network
(1) (2) (3) (4)

Year Welfare Total wL/P Total A Total M
1998 0.00% 0.00% 0.00% 0.00%
2003 0.21% 0.10% 0.01% -0.08%
2008 0.45% 0.49% 0.28% -0.05%
2013 0.59% 0.56% 0.24% -0.12%
2018 0.84% 1.10% 0.14% -0.12%

Notes: The table compares the impacts from two counterfactual scenarios, one in which journeys are twice as fast
as those made possible by the network that existed in 2018, and one in which the highway network in 2018

remained the same as it had been in 1998.

Table 1.11 shows the results of this experiment. Column (1) shows that welfare and real rev-
enue gains in 2018 would have been nearly double the level of gains from the actually built
highways. Although labor productivity would be higher with a speedier highway network
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than the one that was constructed, the difference is small.

Table 1.12: Distribution of impacts if the highways were twice as fast as the 2018 network
(1) (2) (3) (4)

Percentile Labor Real income Productivity Firms
25th -5.14% -5.55% -0.62% -2.64%
50th 0.60% 0.19% -0.02% 0.00%
75th 5.62% 5.21% 0.59% 2.47%

Notes: The table compares impacts from two counterfactual scenarios: one in which the highway network is twice
as fast as the 2018 network that was constructed, and one in which no new highways were built after 1998. L
denotes total labor productivity as in (1.22). wL/P denotes total real income. M denotes the total number of

firms.

Finally, Table 1.12 shows that, although the welfare and real income gains are larger, the un-
equal distribution of these benefits is preserved. This exercise highlights that proportionally
improving the highways network has aggregate benefits but no effects on regional conver-
gence.

1.8 Conclusion

This paper reveals that firm dynamics are a key determinant of the aggregate and distribu-
tional effects of new transportation infrastructure. We empirically document that new trans-
portation infrastructure increases labor productivity, firms’ total factor productivity, and entry
and exit rates of firms.

We introduce a novel, spatial general-equilibrium model with heterogeneous firm dynamics to
show that infrastructure policies affect aggregate income an welfare in two ways. The first is a
direct effect: better transportation infrastructure reduces trade costs for goods, which is trans-
mitted to consumers in the form of lower prices, and to firms as higher demand. This second
is an indirect effect: new transport infrastructure increases entry and survival of productive
firms in locations that are better integrated into the transportation network; this translates into
higher labor productivity, income, and welfare.

These effects, however, are unequally distributed across space and among income levels. Re-
gions close to the US border, to sea ports, and to tourist hubs are better exposed to new trans-
portation infrastructure so they disproportionally benefit the most. Besides having greater
market access, these regions also attract and keep productive firms. The opposite is true for
less expose locations, mostly concentrated in the center of the country.

All in all, transport infrastructure is likely to have stronger distributional than aggregate ef-
fects, especially in situations in which the highways network is underdeveloped, as is the case
in Mexico. An interesting avenue for future research could examine whether a place-based
system of taxes and transfers can help mitigate the negative effects of low infrastructure in-
vestments in remote locations.
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Appendices

1.A Appendix: Data

Constant geography

Geographical units covered by the Economic Census of Mexico are States, Municipalities, Lo-
calities, and AGEBs, in descending order. To capture the change of economic activities within
a single region over time, we needed to generate an identifier to overcome the issue of locali-
ties growing in size and splitting into multiple localities.27 Therefore we developed a balanced
panel of agglomerations, which we generate by combining neighboring localities that share
borders. First, we take the 2019 Economic Census as a baseline considering that it will have
the most extensive coverage of localities. The geographical coverage of the Economic Census
is based on economic activity, hence a combination of both urban and rural localities. The next
step was then to merge both the urban and rural localities that appeared in the Census into
the shapefiles published by the INEGI. However, in cases where we were not able to find a
shapefile for a locality in the Census, we found an alternative source of the Catalog, also pub-
lished by INEGI which is a list of localities and their coordinates. We transformed the list of
coordinates into points on the map and created a 1km buffer around those points in order to
factor them in as polygons. With the selected set of localities’ polygons, we create a buffer of
1km to identify clusters of localities. If the buffered localities share borders, we define it as an
"Agglomeration". This process yielded a total of 3,248 unique agglomeration IDs.

Figure 1.12: Constructing agglomerations

(a) 1km Buffer around localities (b) Grouped neighboring localities

Notes: Figure shows an arbitrary area.

27Localities are defined as 2,500 inhabitants.
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Once we had the polygon shapefile of agglomeration IDs, we assigned each year of localities in
the respective Economic Census to a respective agglomeration id. This process is conducted in
three steps. First, we repeat the process of selecting from the map which localities are covered
by the Census. We then overlap the localities shapefile with the agglomeration shapefile to
assign the ID of its overlapping agglomeration. For the localities that were not matched to
the Economic Census, the second source was the Catalog, and for those that still did not find
a correspondence, we assigned the same agglomeration id as the largest locality in the given
municipality.

Roads

We use 2004, 2011, 2014, and 2019 highways (Red Nacional de Caminos) publicly available from
INEGI. Among the different types of road constructions, we focus on intercity highways (Car-
reteras). Similar to agglomerations, we follow the assumption that highways cannot disappear.
Therefore, we fixed the set of highways from each year by adding highways that existed in the
previous year but were omitted. First, we created a buffer of 500m around all the highway
maps to accommodate inconsistent breaks of highways. Next, we overlap the previous year’s
map with the more recent map, identifying which segments lie outside the buffer zones of the
most recent map. This will locate the highways that exist in the previous year but not on the
most recent map. Based on the assumption that highways do not disappear, we append these
parts to the recent map and create a "fixed" map of highways.

The information available for each highway are the ID number of the highway, route number,
speed, and the number of lanes.

Figure 1.13: Highways in 2018

(a) 1km Buffer around localities (b) Grouped neighboring localities

Notes: Figure shows an arbitrary area.
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Table 1.13: National investment in highways (Million 2018 MXN)

2004-2014 2014-2018

Total investment 599650.42 221466.46
Yearly avg. 59965.04 55366.61

Investment numbers taken again from the annuals. We take half the re-
ported investment for end-of-period and start-of-period years.
Yearly values deflated with the inflation reported between July of the base
year and July of 2018. Inflation taken from INEGI’s inflation calculator
available at https://www.inegi.org.mx/app/indicesdeprecios/
calculadorainflacion.aspx.

Minimum travel times

Similar to grid points, but in more accurate distance measurement, we use Uber’s Hexagonal
Hierarchical Spatial Index as our grid system, or in other words, cells.28 Based on the hexago-
nal system, we locate agglomerations and highway networks to the overlapping hexagon and
store the highway’s information in the respective hexagons. For instance, information on the
speed, number of lanes, and width of the road will be stored in the neighboring hexagons,
which allows us to develop an algorithm to estimate travel times that follow the path of
hexagons. In addition to the highway information publicly available at INEGI, we consider
the elevation of localities to reflect actual travel times.29

Our travel time analysis is conducted in four steps. First, we select the origin, destination, and
highway network that will be used to travel from one location to another. It can be traveling
from one agglomeration to another, or it could also be from one agglomeration to an airport,
port, or even a specific city. For the origin and destination shapefiles, in case they are in poly-
gons, we extract each polygon’s centroids and consider them as a starting point and an ending
point. Once we have chosen the shapefiles, we use the aforementioned open-source hexagon
system by Uber to locate the shapefiles into respective hexagons. When storing information
to the highways, we assign a set of parameters to address the issue of missing information for
some years. We acknowledge that some highway shapefiles might not have all the informa-
tion on speed, lanes, and width; hence we include in the algorithm to take specific values when
there is a piece of missing information. Additionally, there will always be hexabins where it
is not close to a highway network. For these hexagons, we assign a speed value of 5km/hour,
meaning the only option will be to travel by walking. We also assign the order of variables
based on priorities among speed, lane, and width for the code to first use when calculating the
travel time. Then, we estimate the travel time from one origin point to all other destinations
using the properties. Finally, we merge all the different origin points into a single matrix.

Construction plans

We focus on two government infrastructure projects under two administrations: Felipe Calderón(2006-
2012) (see Figure 1.14) and Enrique Peña Nieto(2012-2018) (see Figure 1.15). Based on the of-
ficial report National Infrastructure Program published by the Department of Transportation
(Sector Comunicaciones y Transportes(SCT)), we focused on highway plans, which yielded

28https://www.uber.com/blog/h3/
29https://portal.opentopography.org/datasetMetadata?otCollectionID=OT.042013.4326.1
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175 plans from the Calderón administration and 76 plans from the Peña Nieto administration.
Both reports include details on which State the highway is located in, and the type of improve-
ment the plan aims to achieve (construction or expansion).

Figure 1.14: Example of 2007-2012 Construction Plan

Figure 1.15: Example of 2013-2018 Construction Plan

Based on the construction plans, we develop a data set that contains information on the re-
spective state in which the plan takes place, the duration of the project, and specific details of
the construction.
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Figure 1.16: Using Google Earth Pro to digitize the construction plans

Once we had a dataset of the construction plans list, the next step was to digitize the informa-
tion in map format. Using Google Earth, we set the origin and destination of the highway plan
based on how the name is written (e.g., if the plan stated "Expansion a 12 m Caborca-Sonoyta",
meaning expand the lane to 12m in the highway connecting Caborca and Sonoyta, we would
set Caborca as the origin and Sonoyta as the destination). Each search was saved, merged,
then exported into a shapefile. However, note that the plans did not mention which specific
part of the highway they will improve. Thus we considered the entire highway as a part of the
plan. Once we had a complete shapefile of all the construction plans, we conducted a quality
check for all the plans. We would search the plan online and see if there are additional sources
published by each State government supplementing the details of the plan. In some cases, the
State government reported an image of the exact location of the plan.

We were able to classify the construction plans based on the type of road, the type of improve-
ment, and whether the targeted highways are located in/out of a city.

Type of highways listed in the construction plan:

• Inter-region (e.g., Chalco-Nepantla)

• Beltways (e.g., Libramiento)

• Connection to the border of each state (e.g., Límite de estados Pue/Ver)

• Junctions (e.g., entronque La Ventosa)
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• Access to a specific location (e.g.,Acceso al Puerto Salina Cruz)

• Bridges (e.g., Puente)

Type of construction plans:

• Expand highways to 4/6/8 lanes (both direction)

• Construct 4 lanes (both directions)

• Expand or construct 2 lanes and 2 side roads

• Modernize and improve conditions

City classification:

• IN: If the construction plan is for a highway inside a city

• OUT: If the construction plan is for a highway connecting two regions outside a city

• LIB: If the construction plan is for beltways specifically 30

Collecting information on whether the construction plan was executed.

Treatment variables

Variables For all the treatment variables, we generate three types of buffers around each ag-
glomerations in order to accommodate the noise of map accuracy. All variables are constructed
by agglomeration IDs.

Length of highways’ segments that overlap each agglomeration Area of buffered agglomera-
tions Density (length/area) of highways’ segments

With regard to the construction plan, we first construct a dummy variable indicating whether
an agglomeration lies within any construction plan. We assess by 5,10, and 15km buffers of
each agglomeration. Next, we specify the construction plan by those that were executed and
those that were not. We generate a dummy variable indicating whether an agglomeration lies
within an executed construction plan and a non-executed plan. Lastly, we develop a dummy
variable indicating whether an agglomeration is placed in a construction plan’s starting and
end points. We identify the starting and end point by the region’s first and last name men-
tioned in the plan.

We also construct treatment variables to measure market access. Using the population census
of 2019, we extract the population size by agglomerations. Next, we identify the top 100 ag-
glomerations with the largest population. Then we use the previously generated minimum
travel time values to generate a new variable, the distance from each agglomeration to the
nearest hub.

30We specify the beltways since beltways mostly have the purpose of reducing traffic within each city.
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1.B Appendix: Empirics

Treatment and sample

Figure 1.17: Treated and untreated locations

Notes: Figure displays an arbitrary area of the country. Gray areas are locations (3,248 in total). Dashed areas are
buffers around construction plans. For a given year, green construction plans have been fully executed and red

not yet.

Table 1.14: Treated locations
(a) Locations by overlap with plans

2007-2012 2013-2018
Buffer size (km) 5 10 15 5 10 15

With plans 771 1,052 1,330 457 678 898
With out plans 2,475 2,194 1,916 2,789 2,568 2,348

Total 3,246 3,246 3,246 3,246 3,246 3,246

(b) Locations by execution of plans
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15
Executed 259 261 265 278 404 551

Not executed 512 791 1,065 179 274 347
Total 771 1,052 1,330 457 678 898
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Table 1.15: Firms in the sample and treated group
(a) Sample of firms
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15 Total
1998 2.09 2.16 2.26 1.65 1.69 1.73 2.78
2003 2.23 2.30 2.42 1.75 1.79 1.84 2.98
2008 2.72 2.81 2.96 2.14 2.20 2.27 3.67
2013 3.06 3.17 3.36 2.43 2.50 2.58 4.17
2018 3.43 3.56 3.78 2.73 2.81 2.92 4.74

(b) Treated firms
2007-2012 2013-2018

Buffer size (km) 5 10 15 5 10 15 Total
1998 1.43 1.50 1.52 0.73 0.76 0.80 2.78
2003 1.51 1.59 1.61 0.77 0.80 0.84 2.98
2008 1.82 1.92 1.95 0.97 1.01 1.07 3.67
2013 2.04 2.16 2.20 1.12 1.16 1.23 4.17
2018 2.26 2.40 2.45 1.26 1.31 1.40 4.74

Validity of empirical approach

Table 1.16: Predicting construction plans 2013-2018

(1) (2)
Plan Execution

log(population) 0.0483*** -0.0262
(0.00987) (0.0173)

log(value added/workers) 0.0563*** 0.0483
(0.0138) (0.0251)

∆ log(population) 0.384*** 0.144
(0.0566) (0.104)

∆ log(value added/workers) -0.0335* -0.0123
(0.0147) (0.0287)

log(votes for PRI) -0.0191* -0.0191
(0.00828) (0.0149)

Observations 2146 611
R-sq 0.255 0.379

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Regressions at the municipality level.
Variables and growth rates are from Economic Census 2003 and 2008 and population Census 2000 and 2010.
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Table 1.17: Balance table
Variable Locat. Mean Mean Diff. s.e. p-value Stat.

untreated treated signif.

Share manuf. 400 0.169 0.151 -0.018 0.015 0.220
Share salaried 400 0.228 0.288 0.061 0.019 0.001 ***

log(K) 400 11.237 11.547 0.310 0.310 0.318
log(K/L) 400 4.305 4.527 0.223 0.109 0.041 **

∆ share manuf. 376 0.018 0.013 -0.006 0.007 0.407
∆ share salaried 376 -0.019 -0.025 -0.006 0.012 0.612

∆ K 376 0.441 0.445 0.004 0.074 0.957
∆ K/L 376 -0.001 0.072 0.073 0.067 0.275

log(L per estab.) 400 0.944 0.996 0.052 0.049 0.289
log(V.A./L) 400 4.665 4.859 0.194 0.138 0.161

log(TFP) (L-P) 400 4.028 4.258 0.229 0.128 0.073 *
∆ L per estab. 376 0.114 0.082 -0.032 0.027 0.229

∆ V.A./L 376 -0.202 -0.260 -0.058 0.065 0.373
∆ TFP 376 -0.177 -0.170 0.007 0.094 0.937

log(population) 397 10.949 10.964 0.015 0.174 0.931
∆ population 362 0.801 0.832 0.030 0.015 0.050 *

log(highways) 400 10.753 10.618 -0.136 0.093 0.147
∆ highways 400 0.271 0.236 -0.036 0.023 0.114

First stage regressions

Construction plans and market access. An implicit assumption of our identification strategy
is that the execution of construction plans affects firms by increasing their market access as
they can reach more distant markets or acquire intermediate inputs at a lower cost. We test
this assumption by estimating the following two-ways-fixed-effects model:

log(MAj) = time+ treatmentj + δ · time · treatmentj + β · controlsj + εj (1.45)

We estimate Equation 1.45 separately for both sets of construction plans at the location level.
Here time denotes pre and post treatment periods and treatmentj whether the location be-
longs to the treatment group or not. controlsj is a battery of locaiton level controls at baseline.

MAi is a measure of market access. We follow Allen and Arkolakis (2014); Blankespoor et al.
(2017) to compute it according to:

log(MAi) =
∑
j

Populationj

τσ−1
i,j

(1.46)

To stay consistent with the literature, we assume σ = 9. MAi captures the market access
from location i, defined as the weighted sum of the population of all locations in the country
discounted by the one-to-one trade costs τij . For this exercise, we keep the population fixed at
2003 levels. We compute two versions of this measure. MA1 that includes all locations; and
MA2, that includes all but the location i itself. The trade costs τij is determined as in Equation
1.30, explained in detail in the model section.
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Table 1.18: First stage regressions

Plans 2007-2012 Plans 2013-2018

(1) (2) (3) (4)
log(MA1) log(MA2) log(MA1) log(MA2)

time 0.00752*** 0.00812*** time 0.00130*** 0.00154***
(0.00180) (0.00163) (0.000188) (0.000125)

treated -0.00439* -0.00383 treated -0.000180 -0.000397
(0.00245) (0.00236) (0.000625) (0.000576)

time*treated 0.00798* 0.00757* time*treated 0.000756** 0.000560*
(0.00448) (0.00444) (0.000357) (0.000329)

Controls Yes Yes Controls Yes Yes
Obs. 1230 1230 Obs. 750 750
R-sq 0.99 0.99 R-sq 0.99 0.99

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 1.18 shows the results for both sets of construction plans, for two measures of market
access and controlling for baseline characteristics market access in 2004 and state fixed effects.
In summary, execution of construction plans has a positive effect on market access in treated
locations.

For the construction plans 2007-2012, their execution implied a 0.79% higher market access for
exposed locations. In this period, market access increased in average 0.75% for all locations,
meaning that the treatment implied an increase in market access twice as large for treated
locations. For the 2013-2018 plans, the increase was 0.07%. Since in this period market access
increased in average 0.13% for all locations, the treatment implied a 53% larger market increase
for treated locations.
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Robustness checks

Regressions by sector

Table 1.19: Regressions by sector, Construction plans 2007-2012

Manufacturing

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 .0733* 0.01 0.0226 0.0062 0.0084 .0203*
s.e. [.0401] [.0148] [.022] [.0107] [.0117] [.0121]

β0 -.0463* 0.0091 -.0559*** -0.0056 0.008 -.0199***
s.e. [.0237] [.0066] [.0161] [.0064] [.0092] [.0059]

β1 .0648* 0.0129 -.0555* -0.0107 0.0099 -.0337***
s.e. [.0342] [.0144] [.0287] [.0073] [.0134] [.0082]

Controls No No No No No No
Obs. 733,654 733,654 733,654 733,654 733,654 733,654

Commerce

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 -0.0372 -0.014 -0.0029 -0.0054 0.0099 0.0099
s.e. [.023] [.0158] [.0071] [.006] [.0062] [.0084]

β0 0.0178 0.0092 -0.0116 -0.0045 0.0048 -.0144**
s.e. [.0118] [.0078] [.0082] [.0057] [.0059] [.0067]

β1 .0835*** .0361** -0.0055 -.0153** 0.0056 -.029**
s.e. [.0235] [.016] [.009] [.0073] [.0049] [.0137]

Controls No No No No No No
Obs. 2,727,356 2,727,356 2,727,356 2,727,356 2,727,356 2,727,356

Services

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP )GNR log(L) log(w) Entry Exit

β−1 -0.03 -0.0081 -0.004 -0.0069 0.0082 0.003
s.e. [.0258] [.0097] [.0104] [.0064] [.0089] [.0086]

β0 -0.0015 0.0038 -.017** -0.0013 0.021 -.0203**
s.e. [.021] [.0045] [.0069] [.0058] [.0141] [.0096]

β1 .0533*** .0188** -0.0019 -.0108* .0217*** -.0388***
s.e. [.0202] [.0095] [.0123] [.0058] [.0075] [.0143]

Controls No No No No No No
Obs. 3,511,463 3,511,463 3,511,463 3,511,463 3,511,463 3,511,463

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 1.20: Regressions by sector, Construction plans 2013-2018

Manufacturing

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -0.0505 -0.0127 0.0344 0.0036 0.0114
s.e. [.0478] [.0158] [.0219] [.0068] [.0085]

β0 0.0351 0.0092 0.0214 .0199** -0.0009
s.e. [.048] [.0156] [.0319] [.0079] [.0109]

β1 -.1506** -.0628*** 0.0378 -0.0128 0.029
s.e. [.0587] [.024] [.0263] [.012] [.0241]

Controls No No No No No
Obs. 645,540 645,540 645,540 645,540 645,540

Commerce

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -.0562** -.0182* -0.0084 0.0048 0.009
s.e. [.0222] [.0102] [.0056] [.0035] [.0057]

β0 .0362** .0173* .0198* .0081** -0.0018
s.e. [.0158] [.01] [.0102] [.0036] [.0076]

β1 -.0438* -0.0107 .0343*** 0.0088 0.0171
s.e. [.0247] [.0186] [.0088] [.0131] [.0105]

Controls No No No No No
Obs. 2,521,552 2,521,552 2,521,552 2,521,552 2,521,552

Services

(1) (2) (3) (4) (5)
log(va/L) log(TFP )GNR log(L) log(w) Entry

β−1 -.0652** -.0182** -0.0067 0.002 0.0074
s.e. [.0298] [.0084] [.0103] [.0056] [.0065]

β0 .078** .0207** 0.0111 .0098* 0.0049
s.e. [.0312] [.0099] [.007] [.0059] [.0082]

β1 .0811*** .0209*** .0337*** 0.0231 .0287**
s.e. [.0233] [.0073] [.0129] [.0145] [.0135]

Controls No No No No No
Obs. 3,144,586 3,144,586 3,144,586 3,144,586 3,144,586
Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Regressions with controls

Table 1.21: Regressions with controls. Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -0.025 -0.0097 -0.0003 -0.0054 0.0097 0.0074
s.e. [.0209] [.0102] [.0078] [.0044] [.0069] [.0071]

β0 0.0095 .009** -.0143*** -0.0007 0.0141 -.0173**
s.e. [.0125] [.0044] [.0054] [.0038] [.0102] [.0072]

β1 .0748*** .0295*** -0.0021 -.0106** .0152*** -.0329**
s.e. [.0216] [.011] [.0069] [.0045] [.005] [.0131]

Controls Yes Yes Yes Yes Yes Yes
Obs. 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649 7,060,649

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Sample includes all firms from 1998 to
2018. Excludes firms with value added or capital smaller than zero. Controls include 3-digit sector.

Table 1.22: Regressions with controls. Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.0629*** -.0193*** -0.0062 0.0037 0.0099
s.e. [.0239] [.0072] [.0078] [.0046] [.0066]

β0 .0494** .0156** .0134* .0089** 0.0018
s.e. [.0205] [.0069] [.0079] [.0038] [.0076]

β1 -0.0033 -0.005 .0258*** .0129* .025**
s.e. [.0219] [.0095] [.0094] [.0069] [.0125]

Controls Yes Yes Yes Yes Yes
Obs. 6,375,668 6,375,668 6,375,668 6,375,668 6,375,668

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1. Sample includes all firms from 1998 to
2018. Excludes firms with value added or capital smaller than zero. Controls include 3-digit sector.

Regressions by buffer size

Table 1.23: Buffer = 10km, Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -.0414* -0.0177 -0.0059 -0.0082 .0118* 0.0003
s.e. [.0217] [.0123] [.008] [.0051] [.0063] [.0072]

β0 0.0059 0.0092 -0.0119 -0.0014 0.0148 -.0138*
s.e. [.0209] [.0077] [.0074] [.0053] [.0092] [.0079]

β1 .0598*** .0152* -0.0059 -.0132** .0191*** -.0334***
s.e. [.0211] [.0088] [.0095] [.0053] [.0043] [.0128]

Controls No No No No No No
Obs. 7,280,866 7,280,866 7,280,866 7,280,866 7,280,866 7,280,866

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Table 1.24: Buffer = 10km, Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.065** -0.0078 -0.004 0.0024 0.0078
s.e. [.0265] [.0076] [.0074] [.0049] [.0054]

β0 .0564** .0184*** .0154* .0108** 0.0017
s.e. [.0221] [.0071] [.0089] [.0048] [.0077]

β1 0.0116 0.0133 .0372*** .0148** .0277**
s.e. [.0241] [.0105] [.0101] [.0062] [.0119]

Controls No No No No No
Obs. 6,526,519 6,526,519 6,526,519 6,526,519 6,526,519

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 1.25: Buffer = 15km, Construction plans 2007-2012

(1) (2) (3) (4) (5) (6)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry Exit

β−1 -0.0351 -0.0143 -0.004 -0.0075 .0111* 0.0038
s.e. [.0217] [.012] [.0076] [.0047] [.0061] [.0072]

β0 0.0013 0.0083 -0.0109 -0.0007 .0161* -0.0117
s.e. [.0191] [.007] [.0077] [.0051] [.0088] [.0076]

β1 .0522** 0.0138 -0.002 -.0126** .0216*** -.0284**
s.e. [.0211] [.0084] [.0098] [.005] [.0045] [.0132]

Controls No No No No No No
Obs. 7,665,879 7,665,879 7,665,879 7,665,879 7,665,879 7,665,879

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Table 1.26: Buffer = 15km, Construction plans 2013-2018

(1) (2) (3) (4) (5)
log(va/L) log(TFP) (GNR) log(L) log(w) Entry

β−1 -.0718*** -0.0089 -0.0042 0.0036 0.0076
s.e. [.0255] [.0075] [.0076] [.0048] [.0053]

β0 .0611*** .0183*** .015* .0096** 0.0023
s.e. [.0217] [.007] [.0084] [.0047] [.0075]

β1 0.0137 0.0131 .0361*** .0147** .029**
s.e. [.0238] [.0102] [.0098] [.0061] [.0117]

Controls No No No No No
Obs. 6,723,947 6,723,947 6,723,947 6,723,947 6,723,947

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Evidence on firm mobility, 2013-2018

In this section we show a novel margin of firm dynamics that can be affected by the devel-
opment of the highways network: the geographical location of firms within cities. First, we
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show that firm mobility is present in the data by exploiting a novel section in the Economic
Census 2018 where establishments are asked if they had a different location in the previous
wave (2013), and then report the main reason why they moved. And second, by regressing the
mobility decision and reasons on execution of construction plans.

Firm mobility in the data. The 2018 census included two new questions regarding firm mobil-
ity. First, the census asks if the firm changed address between 2013 and 2018. If the answer is
yes, the census asks an additional question on the reason why it moved to a different address.
The reasons are codified in 6 categories: low business growth, increase in facility’s rental prices,
to move closer to clients and suppliers, public insecurity, tax-related reasons and, finally, other
reasons.

Not all firms answered the firm mobility questions. The 2018 census covers 4,737,931 firms;
among them, 1,832,685 answered the mobility questions, which is 39% of the total. Accord-
ing to INEGI’s officials, small and medium firms are over-represented among the respondent
firms. Considering only the respondents, 4.28% of firms changed address between 2013 and
2018, which means that the census documents 78,527 movers. By extrapolating this percentage
to the full census, the number of movers could be around 203,011 firms. However, this number
could be biased if non-respondents have a different moving behavior.

Among the 78,527 movers, 12.6% are from the manufacturing sector, 32.6% from commerce,
and 54.8% from services. In the population of firms, 12.3% are in the manufacturing sector,
47.6% in commerce, and 40.1% in services. If moving to a different location was random, we
should expect these percentages to be similar. However, there is a large disparity in the share of
movers from the services sector and the share they represent in the population. This suggests
that service providers are more likely to move to another location. A possible explanation
could be that they face lower moving costs or expect higher returns from moving than firms in
commerce and manufacturing.

Firms might have many reasons to move. The Economic Census asks what is the main one and
codifies the answers. The distribution of these answers is the following. 10.43% declare low
business growth, 31.8% increase in facility’s rental prices, 13.8% to move closer to clients and
suppliers, 3.6% public insecurity, 0.8% tax-related reasons and, finally, 39.5% other reasons.

The effects of better highways on firm mobility. We now provide evidence on the effects of
highways on the firm mobility decision. To do this, we estimate the following probit model:

P (new location in 2018 = yes)ij = Φ[α+ βXij + δDj + εij ] (1.47)

In this model, i denotes the firm and j the location. Xij denotes a vector of controls, and
Dj takes the value of 1 if construction plans were executed between 2013 and 2018 and zero
otherwise. The parameter of interest is δ, which captures whether better highways affect the
probability of moving to a different location.

Table 1.27 shows the results by sector and with and without controls for population density
and number of firms and workers at baseline, to control for the fact that mobility might defer
depending on how crowded a location is. Columns (1) and (2) show that execution of con-
traction plans has a positive effect on the probability of an firm to have moved to a different
location between census waves of 2013 and 2018. Columns (3) and (4) show that manufactur-
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ing firm mobility doesn’t seem to be connected to changes in the highways network. Finally,
firms in the services sector seem to be affected by highways when they make mobility decisions
but these effects are not robust to baseline demographic characteristics of the location.

Table 1.27: Porbit model. Outcome: probability of moving
Sector Commerce Manufacturing Services

(1) (2) (3) (4) (5) (6)
Treatment .1269** .0731** 0.0907 0.0699 .0992** 0.0595

se -0.0484 -0.0349 -0.0552 -0.0552 -0.0497 -0.04

N 475,370 472,852 124,885 124,464 476,515 476,031
Controls No Yes No Yes No Yes

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

Similarly, to determine if highways affect the reasons why firms move, we run the following
probit model:

P (main reason r = yes)ij = Φ[α+ βXij + δDj + εij ] (1.48)

Where r is the main reason why the firm changed location and can be: low business growth,
increase in facility’s rental prices, to move closer to clients and suppliers, public insecurity, tax-
related reasons and, finally, other reasons. Table 1.28 shows the results by sector and adding
controls for baseline demographic characteristics such as population density, number of firms
and workers. Whereas firms can move for diverse reasons, when highways are improved, the
reported reason that is positively distorted is proximity to clients and suppliers, except for the
manufacturing sector.
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Table 1.28: Porbit model. Outcome: probability of moving
Commerce

(1) (2) (3) (4) (5) (6)
Reason Growth Rents Proximity Insecurity Taxes Other

Treatment -0.0045 -0.0693 .1113** 0.077 0.1018 -0.0097
se [.0376] [.0632] [.0434] [.0648] [.0705] [.0543]

N 14,672 14,672 14,672 14,672 14,672 14,672
Controls Yes Yes Yes Yes Yes Yes

Manufacturing
(1) (2) (3) (4) (5) (6)

Reason Growth Rents Proximity Insecurity Taxes Other
Treatment -0.0023 -0.006 0.0392 0.0226 .3036** -0.021

se [.0498] [.0714] [.0558] [.0704] [.112] [.072]

N 5,802 5,802 5,802 5,802 5,802 5,802
Controls Yes Yes Yes Yes Yes Yes

Services
(1) (2) (3) (4) (5) (6)

Reason Growth Rents Proximity Insecurity Taxes Other
Treatment 0.0007 -0.0771 .1241*** 0.0441 0.086 -0.0073

se [.0271] [.0489] [.028] [.0439] [.0685] [.0444]

N 25,220 25,220 25,220 25,220 25,220 25,220
Controls Yes Yes Yes Yes Yes Yes

Notes: Standard errors are in brackets. ∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.

The impact of new highways on intra-city relocation choices carries an implication for firm
dynamics. When location changes are not tracked in the data, the rate of firm exit can be
inflated, possibly leading to an underestimation of the reduction in exit observed produced by
our treatment. Simultaneously, not tracking location changes could lead to an overestimation
of firm entry which could potentially result in an overestimation of firm entry rates in treated
locations. Lastly, considering that relocations are often motivated by a desire to be closer to
clients and suppliers, it is reasonable to expect that revenue productivity tends to be higher at
the new locations.
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1.C Appendix: Model

Figure 1.18: Residual wage by location

(a) Wage by location, data and residual (b) Residual wage/data wage by location

Notes: Figure shows estimation for 2018. Marker size in panel (a) denotes the number of firms; the largest is
Mexico City. β1, β2, β3 significant at the 95%.
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Figure 1.19: Local labor productivity, model vs. microdata

(a) 1998 (b) 2003

(c) 2008 (d) 2013

(e) 2018

Notes: Gains stemming from expanding the highways network from 1998 to 2018. Gains are at the location level.
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Quantitative results

Figure 1.20: Location gains from the 1998-2018 highways network

(a) Price index reductions (%) (b) Market access gains (%)

(c) Employment gains (%) (d) Real revenue gains (%)

(e) Productivity gains (%) (f) Firms gains (%)

Notes: Gains stemming from expanding the highways network from 1998 to 2018. Gains are at the location level.
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1.C.1 Agglomeration and congestion externalities

Agglomeration externalities. Firm level productivity is separable in two parts as:

ψi,t(n) ≡ zi,t · si(n) (1.49)

Now zi,t is not fully exogenous but depends positively on the local population to capture
agglomeration externalities stemming from, for example, a larger pool of ideas that make all
workers more productive in the location.

zi,t = z̄i,tL
α
i,tz (1.50)

Where z̄i,t is the exogenous part and αz ≥ 0 governs the degree of agglomeration externalities.
The rest of the model remains the same. The existence of the spatial equilibrium will now
depend on αz . Allen and Arkolakis (2014) provide the existence conditions.

Congestion externalities. Utility is still given by:

Ui,t ≡ Ci,t · ui,t (1.51)

But now, local amenities suffer from congestion externalities. The larger the amount of people
living in a location, the larger the degradation and congestion of amenities. We can model it
as:

ui,t = z̄i,tL
α
i,tu (1.52)

Where ūi,t is the exogenous part and αu ≥ 0 governs the degree of congestion externalities.
Adding a congestion force reduces the strong negative relationship between local wages and
amenities. Allen and Arkolakis (2014) provide the existence conditions of the equilibrium for
combinations of parameters governing agglomeration and congestion externalities.

1.C.2 Firm sorting

We model firm sorting following Gaubert (2018). Firms choose their location only at entry
since, in the data, most firm migration happens within locations rather than across them.31

Productivity ψi(n) of firm n when choosing location i is:

log(ψi,t(n)) = log(zi,t) + α log(Li,t) + log(si(n)) · (1 + log(Li,t))
η + εi,t(n) (1.53)

Here, zi,t captures location-specific productivity shocks, α governs the intensity of local spillovers,
η determines the degree of complementarity between idiosyncratic productivity si(n) and city
size, and finally, εi,t represents a firm-level taste shock for location i.

Equation 1.53 fully determines the sorting of firms. Local spillovers rationalize why more
firms move to big cities, the complementarity term explains why big cities attract the most
productive firms, and the taste shock accounts for the imperfect sorting observed in the data.

We assume that the taste shock follows a Fréchet distribution with shape parameter ξ. The

31Alternatively, this empirical observation can be replicated by allowing on-the-life-cycle migration coupled
with high moving costs.
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share firms that will choose location i is:

Mi,t

Mt
=

V ξ
i,t∑

j∈J V
ξ
j,t

(1.54)
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Chapter 2

Making a Growth Miracle: Historical
Persistence and the Dynamics of
Development

Oscar Fentanes1 & Jonas Gathen2

Abstract

What explains growth miracles? We argue that growth miracles are driven by a fundamental
race: as the economy tries to catch-up to its steady state, changes in the economic environ-
ment move the steady state itself and provide new potential for catch-up growth. We quantify
this race over the course of development using 40 years of plant-level manufacturing panel
data from Indonesia and a structural model of plant dynamics. We estimate the model on the
micro data along the observed growth path without assuming that the economy is ever at a
steady state. While catch-up growth starting from initial conditions in 1975 accounts for 42%
of Indonesia’s subsequent industrialization, new changes in the economy induce new catch-up
growth. In the end, the economy never catches up.
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2.1 Introduction

Over the past 50 years, extended periods of rapid economic growth in China, India and In-
donesia alone lifted roughly 1 billion people out of extreme poverty (World Bank 2023). What
drives such growth miracles? A common view is that growth miracles capture a transition pro-
cess: a permanent policy regime change sets an initially poor and highly misallocated economy
on a transition path towards a better long-run equilibrium (Buera and Shin 2013; Asturias et
al. 2023). These transitions take time because frictions prevent labor and capital to quickly
reallocate across firms and sectors. But if transitions take time, how does this view account for
new changes in policies while the economy is still transitioning? And how can we identify the
aggregate effects of new policies if the economy is still adjusting to previous policies?

In this paper, we show evidence that instead of a one-time transition, growth miracles are
driven by a never-ending race: as the economy tries to catch-up to its steady state, changes in
the economic environment move the steady state itself and induce new transition growth. We
do so by looking at Indonesia, the fourth most populous country in the world. Indonesia pro-
vides an ideal case to study this race since we can draw on almost half a century of manufac-
turing plant-level panel data during which the Indonesian economy completely transformed:
GDP per worker increased five-fold, the working population tripled, output in manufacturing
grew 30-fold and the manufacturing employment share doubled.

Drawing on the micro data, we provide empirical evidence that motivate a model of plant
dynamics in which growth is driven both by changes in the economic environment and tran-
sition phases. Empirically distinguishing these two drivers of growth is crucial because one
might otherwise falsely attribute current growth to current policy changes. To do so, we esti-
mate the model on the micro data along the observed growth path without assuming that the
economy is at a steady state at any point in time. Intuitively, observed conditional choices of
plants identify changes in the economic environment, while the distribution over these choices
summarizes the past and reveals the potential for transition growth.

In line with the common view of growth miracles, we find that initial transition growth is
important: letting the economy in 1975 transition while shutting down all future changes in
the economic environment explains 42% of the manufacturing growth between 1975 and 2015.
However, we also find that the Indonesian economy in 2015 is not closer to its steady state than
it was in 1975, precisely because new changes in the economic environment in the meantime
moved the steady state itself. As the economy is always undergoing important transition pro-
cesses, one key implication is that evaluating policies without considering these adjustments
is highly misleading.

We now provide further details and results. Drawing on our data, we document four main
facts that help us disentangle transition growth from changes in the economic environment
and motivate our subsequent model:

Fact 1: Rapid economic growth coincided with changes in the plant distribution. Average
plant size doubled, the mass of plants increased four-fold and the right tail of the plant size
distribution thickened.

Fact 2: Adjustment processes can account for changes in the plant distribution. These are
respectively: An aging of the plant distribution together with the fact that plants enter small
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and grow over their life cycle, slow entry and exit dynamics, and the fact that it takes time to
grow large plants.

Fact 3: The drivers of aggregate productivity differed markedly before and after the Asian
Financial Crisis. Before the crisis, productivity across plants was driven entirely by the se-
lection of more productive plants, informed by meager within-plant productivity growth. In
contrast, the post-crisis growth period was characterized by strong within-plant productivity
growth and little growth due to selection.

Fact 4: The allocation of resources did not improve systematically over time. This is robust
to different measures of misallocation. We find evidence for volatile productivity dynamics
at the plant-level, large changes in entry, and plant-level adjustment frictions – particularly in
labor – from an event study design that can jointly account for this.

To quantify the race between transition growth and changes in the economic environment, we
draw on a model of plant dynamics in the tradition of Hopenhayn (1992) that is motivated
by the previous empirical facts. In the model, firms face risk regarding their productivity,
choose to enter and exit and hire labor and capital subject to adjustment frictions that lead to
the slow accumulation and reallocation of resources across sectors and firms. We embed these
plant dynamics into a two-sector economy to capture the endogenous reallocation of workers
across manufacturing and the rest of the economy. The main frictions in manufacturing are
labor adjustment costs, in particular convex costs, that prevent plants from growing a large
workforce quickly (Facts 2 + 4). Plants also endogenously enter and exit based on drawing
entry costs and fixed costs of production. The level and dispersion of costs in turn rational-
ize the observed speed of entry and exit dynamics (Facts 2). These features imply that with
an initial distribution characterized by few but productive young plants, the economy goes
through a process of transition growth as plants gradually grow, more plants gradually enter
over time and unproductive plants gradually exit. At any given point in time, the model econ-
omy is characterized by a set of exogenous model fundamentals and the state of the current
economy as captured by the distribution of plants. Model fundamentals include all cost pa-
rameters as well as time-varying aggregates such as aggregate labor supply and technological
changes in manufacturing (Fact 3) and the rest-of-the-economy. Policy affects growth through
driving part of the changes in model fundamentals. Technically, we assume that plants make
dynamic choices forming rational expectations over their future idiosyncratic risk but have
perfect foresight over future aggregate changes in the economy. This introduces a computa-
tionally difficult fixed point problem: plants’ dynamic choices depend on expectations over
the future path of market-clearing prices, which in turn depend on the endogenous evolution
of the entire distribution of plants (as in Buera and Shin 2013).

The key methodological contribution of the paper is to propose a tractable estimation strat-
egy that allows to estimate this model economy on standard plant-level micro data along the
growth path in the data without assuming that the observed economy is at a steady state at
any point in time. Importantly, our model estimation allows model fundamentals to vary flex-
ibly over time, making it particularly suited to study fast-changing economies and markets.
The model estimation proceeds in three main steps that allow to distinguish transition growth
from changes in fundamentals and make the computational costs of the estimation indepen-
dent of the computational costs of solving for a path of model equilibria. In the first step, we
identify the path of time-varying equilibrium prices – only wages in our case – along the ob-
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served growth path (e.g. as in: Gopinath et al. 2017). Given that our model can account for
this equilibrium path, we can treat the path of wages as fixed throughout the estimation and
thereby avoid solving for the computationally costly fixed point in the path of equilibria. In
the second estimation step, we identify the distribution of plants over the state space of the
model, summarizing the history of the economy. In this step, we estimate plant production
functions (Ackerberg, Caves, and Frazer 2015; Demirer 2020) and propose a novel strategy to
separate plant-level productivity into an idiosyncratic and a common aggregate technology
component, allowing us to distinguish selection-driven from technology-driven productivity
growth. In the third and last estimation step, we estimate the model parameters that govern
plants’ adjustment frictions. We do so by drawing on Euler equation Continuous Conditional
Choice (CCC) estimation, exploiting observed conditional input and exit choices of plants and
avoiding to solve a dynamic programming problem to compute model-based dynamic input
choices (Hotz and Miller 1993; Bajari, Benkard, and Levin 2007). In this last step, we estimate
sizable convex adjustment costs in our model, which are identified from the empirical pattern
that even small but highly productive plants grow their labor force gradually over time.

Using the estimated model, we find that transition growth from starting the economy with ini-
tial conditions in 1975 and shutting down all future changes in model fundamentals explains
42% of subsequent manufacturing output growth and all of the aggregate welfare increases
that are due to changes in manufacturing over time. Given an initial distribution that features
young and small plants, sizable labor adjustment frictions and slow entry and exit dynamics,
it takes the economy 26 years to reach 90% of the steady state manufacturing output. Impor-
tantly, transition growth remains an important driver of growth precisely because the econ-
omy’s fundamentals continue to change. To quantify this point, we repeat the previous exer-
cise to compute the transition path for each year, starting from each year’s initial distribution
and model fundamentals. We find that the economy does not get closer to its (time-varying)
steady state. It takes on average 20 years to reach 90% of the steady state manufacturing out-
put and – if anything – the time it takes increases over time. Based on our results, we can thus
strongly reject the idea that transition growth is a transitory phenomenon.

Large changes in fundamentals are key to explain the continuing importance of transition
growth. The structural model allows us to quantify the role of changes in fundamentals in
Indonesia’s manufacturing growth miracle and quantify how much of their effect can be ex-
plained by changes in observed government policy. We do so by focusing on two important
changes in fundamentals that can be linked to development policies that the Indonesian gov-
ernment also pursued to varying degrees over the 40 years we study: (1) large-scale invest-
ments in education that raise the pool of skilled (and cheap) labor, and (2) the active use of FDI
policy to attract manufacturing plants under foreign ownership.

We find that the manufacturing growth miracle would not have happened in the absence of
the estimated doubling in human capital per worker, because labor would have been more
expensive in this economy and manufacturing plants are far more sensitive to higher wages
than the rest of the economy. To gauge the importance of policy in driving overall human
capital increases, we then evaluate Indonesia’s largest school construction program (INPRES)
through the lens of the model. Building on micro-empirical evidence on the wage effects (Duflo
2001, 2004), the scale of the program (Akresh, Halim, and Kleemans 2023), and the slow labor
market integration of treated cohorts, we show that by 2015, the program accounts for roughly
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10% of the overall manufacturing output growth that is due to human capital per worker
increases in the economy.

In contrast, for FDI, we find that manufacturing output in 2015 would have only been 8% lower
in the complete absence of foreign-owned entrants, while we find that regulatory changes in
FDI policy in the late 1980s may potentially account for 85% of the overall effect of FDI on
manufacturing. Taken together, this still means that most growth by far stems from structural
forces related to demographics. Thus, a somber conclusion based on these results – partly
resonating related work on the Indian growth miracle (Bollard, Klenow, and Sharma 2013) – is
that policy matters less for growth than we might think.

Related literature

We contribute to four main strands of literature. First and most importantly, we complement
the growth and macro development literature by studying a model of firm dynamics where
growth is driven by the combination of changes in exogenous fundamentals and transition
growth. This is in contrast to a firm dynamics literature that has mostly analyzed development
differences through differences in steady states.3 Much fewer papers study transition growth
with firm dynamics (e.g. Buera and Shin 2013; Moll 2014; Akcigit, Alp, and Peters 2021; Rug-
gieri 2022; Asturias et al. 2023; Lanteri, Medina, and Tan 2023). We add to this literature by
(1) allowing for further changes in fundamentals along the transition and by (2) estimating
this model on the micro data along the transition without assuming that the economy is at a
steady state at any point in time. Quantitatively, we find that the combination of both sources
of growth matters. Not only are initial transition growth and changes in fundamentals im-
portant for growth, but the economy is always far away from its (time-varying) steady state,
questioning the usefulness of either comparing steady states or focussing on transitions in the
absence of further changes in fundamentals. Apart from the methodological differences, Buera
and Shin (2013) and Asturias et al. (2023) are the most closely related in their focus on under-
standing growth miracles. Our results mainly differ from Buera and Shin (2013) in that we find
no role for reductions in frictions and misallocation – their main driver of transition growth
– but rather a key role for plant and worker demographics in driving transition growth. We
return to Asturias et al. (2023) below.

Second, both modeling and key results in this paper relate to the recent quantitative spatial,
trade and migration literature, which focus on frictional worker mobility and trade while ab-
stracting from firm dynamics. For example, the idea that transitions take long and the econ-
omy is persistently far away from its steady state resonates with recent findings from Allen and
Donaldson (2020) and Kleinman, Liu, and Redding (2023). This literature relates to and builds
on the seminal work of Caliendo, Dvorkin, and Parro (2019) who also study the combination of
changes in exogenous fundamentals and transition growth. In contrast to Caliendo, Dvorkin,
and Parro (2019), tractability in our case does not come from dynamic hat algebra techniques
and we estimate all time-varying model fundamentals. Slow transitions in our paper and this
literature share common causes: low and highly dispersed exit (moving) probabilities and
slow input adjustments.

3While the literature on firm dynamics with a development focus is too vast to cite, overviews are for example
given by Hopenhayn (2014) and Restuccia and Rogerson (2017) for misallocation, Ulyssea (2020) for informality
and Alessandria, Arkolakis, and Ruhl (2021) for trade.
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Third, we contribute more generally to the Quantitative Macroeconomics literature by show-
ing how to tractably estimate the model directly on the observed transition path in the data,
identify the model entirely on plant-level data and only use macro moments for model vali-
dation, an approach that we see as closely aligned to a growing literature that moves “from
micro to macro” (see the overview in: Buera, Kaboski, and Townsend 2023). The “equilibrium
estimation” methods that ensure tractable estimation – enforcing the observed path of equi-
libria throughout the estimation and Euler CCC estimation – are used in other literatures, but
have not yet seen wider application in the Macroeconomic literature.4 We find the equilibrium
estimation approach to be particularly suited for studying a path of time-varying equilibria,
since we can also tractably estimate entire paths of time-varying parameters. While estima-
tion methods that require to first solve the model may offer more flexibility on the choice of
moments that identify parameters, they often have to strongly restrict the parameter space.

At last, our paper also relates to the literature on growth and productivity dynamics. Our
results of selection-driven aggregate productivity growth in Indonesian manufacturing mir-
rors similar results in Brandt, Van Biesebroeck, and Zhang (2012) for China and Asturias et
al. (2023) for Chile and Korea. We add to these papers by establishing the result of selection-
driven productivity growth in a non-parametric setting that nests a larger class of growth mod-
els including various endogenous growth models.

The rest of the paper is structured as follows. The next section presents the main empirical
evidence. Section 2.3 develops the model and discusses identification, estimation and model
validation. In Section 2.4, we quantify the main drivers of growth. The last section concludes.

2.2 Empirical evidence

In this section, we introduce the Indonesian data and key facts about the Indonesian growth
experience that motivate the subsequent model.

2.2.1 Data

Our primary data comes from the plant-level Annual Manufacturing Survey, collected by In-
donesia’s Central Bureau of Statistics. It covers only medium- to large-sized manufacturing
plants by surveying all formal manufacturing establishments with more than 20 employees.
The survey contains detailed and consistent annual information on standard plant-level char-
acteristics from 1975 to 2015, a period of 41 years. It covers between roughly 7,500 to 30,000
plants per year. Throughout, we draw on reported information on plants’ age (based on birth
year), industry (up to 5-digit) and ownership (including foreign ownership). On the produc-
tion side, we draw on plants’ capital stock, value-added revenue, and the number of workers
(including paid and unpaid workers) and wage bill (including contributions and in-kind com-
pensation) which are separately reported for production and non-production workers. Unfor-
tunately, capital is only reported starting in 1990. All variables denoted in Indonesian Rupiah

4The idea of estimating models on the observed path of equilibria in Macroeconomics dates at least back to
Hansen and Singleton (1982). More recent research that conditions estimation on the observed path of equilibrium
prices can for example be found in the literature following Caliendo, Dvorkin, and Parro (2019). In a recent working
paper, Humlum (2022) exploits these two estimation steps in a similar general model framework of growth and
firm dynamics, although entirely different context of industrial robot adoption in Denmark.
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are deflated to real values using the aggregate CPI and normalized to the year 2010. For aggre-
gate data, we further combine the GGDC 10-sector and Economic Transformation databases
for Indonesia, which capture time-consistent aggregate sectoral employment and output series
over the time period 1960-2012 (Timmer, de Vries, and De Vries 2015) and 1990-2018 (Kruse et
al. 2023) respectively. We refer to this data as the GGDC series throughout. In Appendix 2.A.1,
we discuss in detail the data cleaning and homogenization steps we take to ensure consistency
of all datasets over time.

There are two important data limitations. First, while the data is in principle a census of plants
with 20 or more workers, in practice the census misses plants. This shows up in discontinu-
ous jumps in new plant entry during years of the economy-wide Economic Census in 1975,
1985, 1995 and 2006. In those years, plants are added that were previously missed, either
because they were small and made the cutoff, or newly entered. For the subsequent analy-
ses, this means that aggregate changes often show discontinuous drops in census years and
should actually look more smoothed out. Given that we observe the census in 1975, the initial
distribution is correctly reported. Furthermore, this does not bias results that are based on
within-plant variation. Our data also misses plants because of non-reporting, either because
plants miss to report in some years or because we are forced to drop a plant-year entry due to
misreporting (see Appendix 2.A.1). We treat these missing entries as missing at random and
specifically account for missing entries in our structural model. We correct our measurements
of plant entry and exit by denoting plant entry as the first time when a plant identifier enters
the panel and plant exit if we do not observe a given plant identifier at any future time period
(see: Appendix 2.A.1).

The second main data limitation is with respect to the coverage of our data. As we show
in Appendix 2.A.2, while our dataset misses the approximately 99% of Indonesian manufac-
turing plants that have less than 20 workers, most of these plants are characterized by self-
employment with a modal plant size of one to two workers. After cleaning, our manufac-
turing data captures between 25-30% of total manufacturing employment and value-added
output as based on the GGDC data, with shares increasing over time (Figure A.1). We think of
small scale manufacturing as a separate sector given robust evidence that there are few transi-
tions between small and larger scale manufacturing (e.g. Poschke 2013; Van Biesebroeck 2005;
Schoar 2010) and most plants that enter our panel have only recently been established. For
example, the median age of plants that newly enter our plant panel is only two years. The
focus in this paper is thus on how relatively large plants and their dynamics drive aggregate
economic growth. In the model and results parts, we explicitly model the entire economy,
taking into account that our data only captures a time-varying share of output in the overall
economy.

2.2.2 Four key facts of growth

We now highlight four key facts that shed light on the Indonesian growth experience. The
first two facts relate to changes in the entire plant distribution and the importance of slow
adjustment processes. Fact 3 and 4 document changes in the drivers of productivity growth
and the absence of improvements in the allocation of resources over time.
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Figure 2.1: Evolution of aggregate and sectoral employment and output

Notes: (Economy-wide) Total gives the aggregate of the GGDC data. Panel refers to the Indonesian manufacturing
plant census (1975-2015, 20+ workers). All series are normalized by their respective value in the first year. (A) and
(B) use value-added output. Dashed vertical lines denote the onset of the Asian Financial Crisis in 1997.

Rapid economic growth coincided with changes in the plant distribution

As the 4th most populous country in the world, Indonesia underwent a dramatic process of
economic development over the past 50 years, a few key features of which are reported in
Figure 2.1. Between 1975-2015, GDP per worker increased more than five-fold (Panel B), driven
by a 15-fold increase in output (Panel A) and roughly a tripling of the working population
(Panel C). Manufacturing contributed importantly to this aggregate growth: output grew 30-
fold and the manufacturing employment share more than doubled (Panel D).

The period 1975-2015 can be divided into two main growth regimes that are separated by the
Asian Financial Crisis in 1997. The pre-crisis period captures a period of rapid labor-intensive
industrialization, including the period 1987-1994 that Hausmann, Pritchett, and Rodrik (2005)
characterize as a growth acceleration. Most of the total worker flows into manufacturing hap-
pen before 1997 and manufacturing grows far more rapidly than the rest of the economy. Fast
growth in the aggregate working population is also a defining feature of the pre-crisis period
with an average annual growth rate of 3%, 70% higher than in the post-crisis period. Based on
our census of medium- and large-sized plants, the rise of manufacturing rapidly takes off in the
first half of the 1980s and industrialization peaks with the Asian Financial Crisis as evidenced
by manufacturing employment and output shares (Panel D). After the Asian Financial Crisis,
which started in 1997 and hit manufacturing mostly in 1998, the economy experienced lower
total output growth that was due to substantially lower growth in plant entry and employment
and – as we will show further below – by higher plant-level productivity growth.

These aggregate changes went in hand with systematic changes among manufacturing plants.
As evidenced in Figure 2.2, the rapid increase in the total number of workers in manufacturing
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Figure 2.2: Evolution of average plant size and number of plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Panel A: Workers
include paid and unpaid workers. Dotted lines give 95% bootstrapped confidence intervals and solid blue line
gives best linear fit. Panel B: Jumps in 1985, 1995 & 2006 are explained by Economic Census years.

Figure 2.3: Evolution of employment distribution over time

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Only showing years
1975, 1985, 1995, 2005 and 2015. Panel A: Vertical lines give 25th, 50th, 75th, 90th and 95th percentiles. Bunching at
99 workers starts in 2013, after the passing of the 2012 Worker Safety Law that binds for establishments with 100+
workers. Panel B: Share of employment in plants with more than X workers.

is met with a doubling of the average number of workers in manufacturing plants (Panel A)
and a four-fold increase in the number of manufacturing plants. In both cases, most of the
gains were already reached by 1997. Importantly, the entire plant distribution changed sys-
tematically over time. Specifically, Figure 2.3 shows that the right tail of the plant employment
distribution systematically thickened over time – a key feature of the development process that
has been highlighted for firms (rather than establishments) across and within countries (Chen
2022; Choi et al. 2023; Poschke 2018). Panel B shows that the employment share in plants
with more than 50 workers increased by roughly 15%, while the employment share in plants
with more than 500 workers increased by more than 50%.5 The increase in the right tail of the
employment distribution is a main driver of the increase in the average plant size over time.

5We report this metric as it is a simple transformation of the Pareto tail, which is also robust to left-censured
data. We report the corresponding secular decline in Pareto tail coefficients in Appendix 2.A.2. We find systematic
changes in the Pareto coefficient, both in the cross-section (which is not in line with a common Pareto distribution)
and over time (which is not in line with traveling wave equilibria).
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Figure 2.4: Plant life cycle growth by birth cohort

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Workers include paid
and unpaid workers. Plant age is based on reported year of establishment. Panel B normalizes each entry by the
cohort-specific average plant size of plants below age 5 (as in Hsieh & Klenow 2014). Note that each cohort over
time is an unbalanced panel as only surviving plants stay in the panel and there is (limited) plant entry as plants
make the cutoff of 20 workers to be included in the census.

Adjustment processes can account for changes in the plant distribution

We now show evidence for three slow adjustment processes that can respectively account for
increases in the plant size, the mass of plants and the right tail of the plant size distribution.

The aging of the plant distribution We start by showing that the slow aging of the plant
distribution – average plant age increased by 40% since 1975 – can explain average plant size
increases. The reason is that plants enter small and grow over their life cycle. Figure 2.4 plots
life-cycle growth profiles across different cohorts of surviving manufacturing plants. Plants
enter roughly with a similar average number of workers, which grows with plant age. Plants
that survive at least 20 years have about twice as many workers as new entrants; in comparison
and as documented in Hsieh and Klenow (2014), manufacturing plants in the US that survive
for that long are about six times as large as new entrants.6

A benefit of our panel data is that we can show that the increase in the average size of surviving
plants is mostly driven by within-plant growth rather than selection (larger plants being more
likely to survive). Figure 2.5 Panel A shows average year-to-year within-plant growth by age.
Young plants grow their employment quickly, with growth declining slowly as plants become
older, average growth running out after around 20 years. Panel B reports the relative contribu-
tion of survivor growth to average plant size increases by age using the following accounting
identity:

L̄a − L̄a−1︸ ︷︷ ︸
∆avg plant size

≡ NS
a

Na
(L̄S

a − L̄S
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+
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a
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(
1
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− 1

Na−1

)
︸ ︷︷ ︸

Net reallocation

(2.1)

6The numbers are not perfectly comparable, because of the cutoff of 20 workers in the Indonesian data. If
young plants in the US data are smaller, this overestimates the difference across countries, while plants that stay
below 20 workers in the US data bias downward.
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Figure 2.5: Within-plant (survivor) growth in employment

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Sample restricted
to survivors and plants for which plant age is defined (N = 543,586). Panel A: Average annual growth in total
number of workers (paid + unpaid) across plants by age, weighted by a plant’s previous employment. Panel B:
Relative contribution of survivor growth to average plant size growth based on accounting identity in Equation 1
and dividing by the left-hand side to obtain relative contributions.

where S refers to the set of surviving plants from age a − 1 to age a, E refers to entering
plants (which exist because of the size threshold in our data) and X refers to exiting plants.
The contribution of survivors, entry and exit respectively measure their average size weighted
by their share in the population of plants. The net reallocation effect is driven by changes in
the total number of plants over age: if exit outweighs entry (as in our case) then workers are
reallocated towards fewer plants, mechanically increasing average plant size. We find that for
young plants, growth by survivors explains all of the increase in average employment across
plants, while selection as given by the remainder dominates the total effect after age 10-15.

Together, this evidence implies that average plant size crucially depends on where the age
distribution of plants is; since the initial distribution of plants in the newly emerging manu-
facturing sector in 1975 featured mostly young plants, average plant size was small. Despite
the rapid entry of new plants, plants became older and hence larger over time. For example,
average plant age increased by 40% between 1975 to 2006 (the last year in which plant age was
reported in the survey). Figure A.5 also shows how the entire age distribution shifted right
over time.

It takes time for entry and exit dynamics to play out Next, we highlight a basic driver of
slow entry and exit dynamics that can partially account for the observed four-fold increase in
the mass of plants: low entry and exit rates. The idea is simple: the young manufacturing
sector in 1975 features few plants and if only few potential entrepreneurs move into and out
of entrepreneurship, it takes time to build up a mass of plants. For example, suppose there is
a fixed mass of potential entrepreneurs and entry and exit rates into entrepreneurship are the
same. Then the long-run (steady state) share of entrepreneurs is 1/2, but if the economy starts
with no entrepreneurs, it can take many years to get close to the steady state. For entry and
exit rates at 7.9% – equal to the average exit rate across all years and plants in our data7 – it

7This exit rate is substantially lower than the 14-18% documented for informal establishments in Vietnam (Mc-
Caig and Pavcnik 2021) and slightly smaller than the 8.3% documented for small establishments across 12 devel-
oping countries (McKenzie and Paffhausen 2019). Within manufacturing, exit rates also seem to decline with plant
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Figure 2.6: Reduced-form transition dynamics implied by initial plant size distribution

Notes: Predicted changes in distribution based on exercise taking discretized initial plant size distribution (# of
workers) in 1975 and transition matrix giving conditional probabilities of moving from one plant size bin to another
for years 1975-1976. Predictions iterate on initial discretized distribution with fixed transition matrix. Predicted
(constant growth) instead enforces transition matrix incorrectly enforcing constant growth taking average plant
size growth for 1975-1976.

already takes the economy 14 years to reach just 90% of the long-run steady state. While we
do not generally observe potential entrants and thus cannot study entry rates without further
assumptions, in the Appendix we show additional evidence for slow exit processes. Specifi-
cally, Figure A.8 shows that exit rates only slowly decrease with plant productivity and that
exit rates do not increase with aggregate shocks such as the Asian Financial Crisis. This is in
line with growing evidence that stagnant firms in developing countries tend to survive longer
compared to firms in developed countries (e.g. Hsieh and Klenow 2014; Akcigit, Alp, and
Peters 2021; Eslava, Haltiwanger, and Pinzon 2022).

It takes time to grow large plants At last, we show that a lack of large plants in the 1970s
and the fact that it takes time to grow large plants can jointly explain the slow fattening of the
right tail of the employment distribution. We do so by considering the following exercise. Take
as the starting point the initial employment distribution of plants Φ0 in 1975 and discretized
in X = 10 different size bins. Each bin captures the fraction of plants with this number of
workers. We now follow individual plants and compute the probability of moving from one
bin to the other between 1975 and 1976, which we summarize in the transition matrix P of
dimension X2. We predict changes in the distribution by iterating on the initial distribution
using the fixed transition matrix: Φ̂t+τ = Φ0 · P τ . Figure 2.6 shows that the exercise explains
50% of average plant size increases (A) and 70% of the increases in the employment share of
plants with more than 500 workers (B) over time. The reason is that in 1975, the distribution
lacks large plants in comparison to the stationary distribution implied by the employment
growth observed between 1975 and 1976 and it takes time to grow large plants. The exercise
predicts that it takes 25 years to reach 90% of the steady state average plant size, broadly
capturing the speed at which plant growth plays out over time.

The exercise is robust to a number of concerns which we address in Appendix 2.A.3.8 Im-

size, explaining a lower exit rate of 6.2% across all US manufacturing (e.g. Clementi and Palazzo 2016) and broadly
similar exit rates for all manufacturing plants in India and Mexico (Hsieh and Klenow 2014).

8Specifically, we show similar results when allowing for entry and exit, taking any other starting years in the
1970s and that the slow filling up of the right tail of the employment distribution holds for any other year-to-year
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portantly, the exercise cannot distinguish the drivers of employment growth. The transition
matrix Pt,t+1 only gives a reduced-form summary of plant employment growth subject to any
frictions and growth drivers that are present between time t and t + 1, which may include
adjustment frictions, changes in wages or productivity growth. The next two subsections thus
focus on two key determinants of within-plant employment growth: productivity growth and
plant-level hiring frictions.

Productivity growth and selection

What is the role of productivity growth in the Indonesian growth experience and how much
productivity growth is explained by the better selection of plants? In this section, we show
that aggregate productivity increased roughly 3.5-fold between 1975 to 2015. However, the
underlying drivers of this productivity growth differ fundamentally across Indonesia’s two
main growth periods: during the period of rapid labor-intensive industrialization (1975-1997),
all of the aggregate productivity gains are driven by the selection of more productive plants,
while aggregate productivity gains during the period after the Asian Financial Crisis are al-
most entirely driven by within-plant productivity gains. We obtain these results by standard
production function estimation (Ackerberg, Caves, and Frazer 2015; Demirer 2020) and then
separately identifying the productivity improvements that come from the better selection of
plants versus within-plant productivity improvements.

Estimating productivity Following the literature, we estimate a standard value-added Cobb-
Douglas production function in capital k and efficiency units of labor h:

yit = xith
θjt
it k

αjt

it (2.2)

with θjt + αjt ≤ 1 giving the output elasticities of labor and capital in sector j at time t and
xit capturing plant-level productivity. As a baseline and in line with our subsequent dynamic
model, we start with common output elasticities across manufacturing industries, but discuss
further industry variation below. We estimate the labor and capital output elasticities sepa-
rately for each year allowing for both inputs to be potentially fully dynamically chosen, which
means that at this point we can remain agnostic about the frictions that determine plant input
choices and changes in these frictions over time. Specifically, we draw on the control function
approach in Demirer (2020), which is close in spirit to the standard control function value-
added production function estimation based on Ackerberg, Caves, and Frazer (2015), but does
not require intermediate inputs (also see: Gandhi, Navarro, and Rivers 2017). We provide a
discussion and an identification proof adapted to our setting in Appendix 2.A.5, but the in-
tuition of identification is as follows: exploiting the assumption that productivity follows a
first-order Markov process, conditional on previous input choices and output, the ranking of
current inputs identifies the ranking of productivity innovations, which can be used to con-
struct a control function for (unobserved) productivity in the output regression.

transition matrix that can be constructed between 1975 and 2015. An important caveat that we cannot address is
that due to the discretization, the exercise would also give an increase in the plant size if all plants were simply
growing at a constant rate. The red lines in Figure 2.6 report changes with a counterfactual transition matrix
enforcing average employment growth rates between 1975 to 1976 across all plants. While observed within-plant
employment growth is far from constant, the alternative exercise still shows that it is easy to overestimate the
growth in the right tail.
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Results and more details on the estimation are shown in Appendix 2.A.5. Before we discuss the
results, it is important to highlight that we estimate the production function on available rev-
enue data. This comes with the standard limitations that we only identify revenue elasticities
and revenue-based productivity and cannot distinguish between productivity and demand
nor identify changes in markups.9

We find no systematic changes in estimated output elasticities over time and very standard val-
ues for the output elasticity of labor close to 2/3. Importantly, the estimated output elasticity of
labor is substantially larger than the median plant-level labor share (≈ 0.45) and the aggregate
labor share in manufacturing (≈ 0.25). In a frictionless model with Cobb-Douglas production,
plants would equalize cost shares and revenue elasticities. In the next section, we provide
evidence on frictions for labor choices that could rationalize this difference. Our subsequent
model then quantitatively accounts for these large differences. We find smaller estimates for
the capital output elasticity than generally found in the literature, which – as we discuss in
Appendix 2.A.5 – is likely due to attenuation bias from measurement error in observed capital.
A lower capital output elasticity means that observed (mismeasured) variation in capital has
smaller effects on output and we further show that mismeasurement of the capital elasticity is
not biasing our estimates for labor.

Selection versus plant-level productivity growth Next, we quantify how much of the pro-
ductivity improvements across plants are driven by the selection of more productive plants
versus within-plant productivity growth. For this, we assume that plant-level productivity is
the product of a common, potentially endogenous, aggregate technology component zt that
improves the productivity of all plants and an idiosyncratic productivity shock sit: xit ≡ ztsit.
This setup allows us to separate shared technology growth in zt, selection on idiosyncratic
productivity sit and within-plant growth in sit, and nests the productivity side of many ex-
ogenous as well as endogenous growth models in the literature.10 In this setup, we provide
a novel non-parametric identification approach that separates the path of zt from sit (up to a
normalization of z0).

To understand why separate identification of selection and technology growth is difficult in

9Using separate information on prices and quantities, the previous literature has highlighted the important
role of demand for driving firm growth (Hottman, Redding, and Weinstein 2016; Foster, Haltiwanger, and Syver-
son 2016; Eslava and Haltiwanger 2020) and an important part of what we subsequently call “productivity” likely
captures demand. We return to this issue when discussing model counterfactuals where the distinction between
demand and productivity is key. Also, revenue-based productivity measures may be preferred in the Indonesian
context where large changes in product quality bias quantity-based productivity estimates (see Atkin, Khandelwal,
and Osman (2019) for the argument and Hill (2000) for a discussion of strong quality improvements in Indonesian
manufacturing). Relatedly, we also do not identify changes in mark-ups, which usually requires separate informa-
tion on prices and quantities (Bond et al. 2021). Studying changes in markups and its drivers over the course of
development is an exciting direction of future research, but beyond the scope of this paper.

10Specifically, the setup nests standard neoclassical growth models that feature exogenous aggregate produc-
tivity growth and firm selection (e.g. Luttmer 2007; Clementi and Palazzo 2016) as well as endogenous growth
models that feature a common endogenous growth component such as Romer (1990) or models where Gibrat’s law
holds and productivity growth is independent of firm size (Klette and Kortum 2004; Atkeson and Burstein 2010;
Restuccia and Bento 2015; Peters 2020).
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the first place, let us start by looking at log changes in average productivity over time:
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where log(x) ≡ x̃ denotes variables in logs. Changes in average productivity x̃it only identify
growth in technology z under the special case that average changes in productivity s̃ among
survivors as well as changes in average productivity s̃ between exiting and entering plants
exactly cancel out. These terms capture two important selection biases. The entry and exit
terms capture a “static” compositional selection bias that leads to overestimates of aggregate
technology changes as long as less productive plants are more likely to exit and entering plants
are positively selected on productivity. Focusing instead on within-plant changes in produc-
tivity deals with the “static” selection bias, but still leaves a term capturing average changes in
idiosyncratic productivity among surviving plants. We call this term the “dynamic” selection
bias, which generally biases estimated aggregate technology changes downwards if produc-
tivity sit is persistent. Intuitively, if surviving plants are selected based on good histories of
productivity realizations sit, then they are more likely to mean revert in the future.

Non-parametric identification in our setup means that we make no functional form assump-
tions on the arbitrarily time-varying path of aggregate technology zt, the productivity shock
process sit, nor on the plant entry and exit processes that drive endogenous selection. For
expositional purposes, we provide an idea of the identification and estimation approach and
relegate the precise technical assumptions, a detailed identification proof and further estima-
tion details to Appendix 2.A.6. Identification of changes in zt relies on two sets of assumptions.
The first assumption ensures that the productivity shock process sit has a stationary distribu-
tion. Technically, we assume that sit follows the same underlying general first-order, ergodic
Markov process across plants and time, allowing for flexible forms of error dependence. The
stationary distribution is useful because if we could reweight changes in observed productiv-
ity xit among the – potentially highly selected – set of surviving plants based on the stationary
distribution of sit, the “dynamic” selection bias exactly cancels out. That is, Ei∆s̃it is exactly
equal to zero at the stationary distribution of s. The second set of assumptions ensures that
such a stationary distribution can always be constructed using the observed data, restricting
the degree of selection at exit. Specifically, we require that (1) plants’ exit decisions are not
based on future productivity shock realizations, and (2) there is no sharp productivity cutoff
at which all plants would exit, so that there is always common support that allows an appro-
priate reweighting of the distribution. The latter can be empirically tested and – as shown in
Figure A.8 Panel B – finds strong support in the Indonesian data.

With the assumptions in hand, the only remaining difficulty is how to construct the weights
of the stationary distribution and solve for the time path of changes in zt. Here, we first solve
“forward” for the stationary distribution by starting with equal weights over the initial dis-
tribution. Whenever a plant selectively exits, we pass on their weight to plants with similar
productivity who did not exit using a standard Kernel estimator, creating a synthetic panel
among surviving plants that is “representative” of the underlying process of s. For time grow-
ing large – no matter how selected the initial distribution is – one can thereby identify appropri-
ate weights over the selected set of producing plants that recovers the stationary distribution
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Figure 2.7: Aggregate manufacturing technology estimates

Notes: Panel A: Aggregate technology estimates, showing the main estimator (explained in the data) as well as the
within estimator (that only controls for selection, but not mean reversion) and aggregate productivity (measured as
value-added-weighted average productivity). Panel B: Corresponding growth rates in aggregate technology. The
main and within estimators both use (weighted) median changes in plant-level productivity. Further details in the
text.

of s (up to a common scaler z). We then move “backwards” from the last period T to identify
the path of zt: initially normalizing zT , we start with a guess over zT−1, compute the weighted
changes in productivity between T − 1 and T based on the stationary distribution of s in T − 1

and solve for the implied zT . This implies finding a root in zT−1. Iterating on this procedure
until z0 recovers the entire path.

Figure 2.7 shows the estimated path of technology using the full sample and baseline produc-
tivity estimates. Over the entire 40-year period, technology improves little, being less than
5% higher in 2015 than in 1975. However, this masks important changes over time. Specifi-
cally, technology actually declined strongly throughout the 1970s, remained almost constant
throughout the 1980s and 1990s and then saw rapid growth of roughly 4% per year since the
year 2000. At the same time, aggregate productivity – measured as the value-added-weighted
average productivity across plants – increased roughly 3.5-fold by 2015 and increased by 75%
by the time of the Asian Financial Crisis in 1997. Together, this means that the sources of
productivity growth fundamentally differed over the two Indonesian growth periods: plant
selection rather than shared technology growth drove more than all of the productivity gains
during Indonesia’s period of rapid labor-intensive industrialization (1975-1997), while the pat-
tern reversed after the year 2000, with common technology growth explaining more than 90%
of the aggregate productivity gains. These estimates – especially after the Asian Financial
Crisis – are driven by within-plant productivity growth of surviving plants. Pre-1997, true
technology growth is lower than the unweighted within-plant productivity growth because of
positive mean reversion that can be explained by the presence of many young and low pro-
ductive plants that mean revert upwards in their productivity shocks. Post-1997, positive and
negative mean reversion roughly balance out, explaining the similar growth paths of the main
and within estimators. In Appendix 2.A.6 we further discuss what could be driving these large
changes in the role of aggregate technology over time.

The allocation of resources did not improve over time

At last, we look at measures of the misallocation of resources over time. We start with an
accounting-based decomposition of growth in Indonesian manufacturing. Using the previ-
ously assumed production structure and separation of plant-level TFP into an aggregate tech-
nology and idiosyncratic productivity component, we can write growth in manufacturing out-
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put as:11
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whereNt tracks the number of active plants. Total output is the combination of the state of fac-
tor accumulation and aggregate TFP. Aggregate TFP, in turn, can be further decomposed into
aggregate technology and – following Olley and Pakes (1996) – a combination of average pro-
ductivity and a covariance term that captures whether resources in the economy are allocated
towards the most productive plants. Since the covariance is affected by common trends in its
inputs such as changes in the sample size, Figure 2.8) plots the correlation of plant-level pro-
ductivity and resource shares, which is robust to common trends and simply the normalized
covariance. Panel A and B show this measure of the allocation of resources for the full sam-
ple of plants and only for surviving plants that already operated in 1975, normalizing each by
the first year. Each panel additionally plots the cross-sectional correlation within industries.12

Across all plants, the allocation of resources actually deteriorated over time, while it remained
stable for survivors, indicating that the deterioration is driven by the entry of small plants.
As further documented in Appendix 2.A.7, this result also holds within a balanced panel and
separately within each cohort of entering plants between 1970 to 1999.

In Appendix 2.A.7, we also report changes in the dispersion of marginal revenue products of
capital and labor over time, which maps to changes in misallocation in the literature building
on Hsieh and Klenow (2009).13 Again, we find that, if anything, the dispersion of measured
marginal revenue products (even within 5-digit industries) tends to increase over time. Thus,
based on our estimates and in contrast to Buera and Shin (2013), we find little evidence for an
undoing of misallocation being a feature of growth in Indonesia.

The misallocation dynamics shown in Figure 2.8) are a function of changes in plants’ produc-
tivities and how inputs reallocate across plants. To shed light on these dynamics at the micro-
level, we are interested in how plants’ inputs respond to changes in productivity. Figure 2.9
shows how plants’ labor and capital shares evolve as a response to a positive and permanent
productivity shock of at least 20% – roughly equal to the 75th percentile of within-plant pro-
ductivity changes. We use a standard staggered differences-in-differences design (Callaway
and Sant’Anna 2021) that is particularly suited here, because it captures plant-level dynamic
responses while controlling for time and plant fixed effects that ensure that results are nei-
ther driven by aggregate shocks in specific years nor by fixed differences across plants such
as differences across industries or even plant-specific production functions. Given selective
plant entry and exit and resulting composition biases from estimating treatment effects on un-

11The proof can be found in Appendix 2.B.4.
12Specifically, we proceed similar as in Gopinath et al. (2017): we first estimate the correlation across plants in

a given industry and year and then construct the weighted average correlation across industries using the indus-
try’s average share in manufacturing value added as an industry-specific time-invariant weight. Using the same
weights when aggregating across industries ensures that within-industry estimates reflect purely variation within
industries over time.

13There are important limitations to interpreting changes in the covariance between measured revenue produc-
tivity and input shares as changes in misallocation. For example, in Hsieh and Klenow (2009), an efficient allocation
implies zero correlation between TFPR and the input share. We note that revenue productivity in our model is not
equal to TFPR in Hsieh and Klenow (2009), but instead much more closely correlated with their measure of TFPQ.
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Figure 2.8: Evolution of cross-sectional correlation of plant productivity and input share

Notes: Input shares are computed based on Cobb-Douglas aggregator. Within-industry results based on first es-
timating the correlation across plants in a given industry and year and then constructing the weighted average
correlation across industries using the industry’s average share in manufacturing value added as a time-invariant
weight. All series are normalized by the first year.

Figure 2.9: Event study: Input share responses to a permanent productivity shock

Notes: Treatment defined by permanent productivity shock of 20 percent change that does not revert back, neither
before nor after treatment. Event study following Callaway & Sant’Anna (2021) estimated on balanced panel of
treated plants and with all non-treated plants as control, event time zero gives first period of treatment, effects at
-1 normalized to zero by assumption. Sample for capital share is restricted to post 1990 due to data availability.
Details in the text.

balanced panels, Figure 2.9 reports estimated dynamic treatment effects for different balanced
panels.14

Plants’ labor shares drop by more than 20 percentage points in the first year of treatment and
recover slowly over time as plants respond by increasing hiring. In Appendix 2.A.8, we further
show that the slow labor share adjustments are indeed driven by slow hiring rather than wage
increases. In a model with the above production side but where plants can adjust employment
without constraints, there should be no response in the labor share, indicating frictions in ad-
justing labor. Quantitatively, these frictions are large: For example, the average “treatment”
shock is roughly 40%, so that a plant with an initial labor share of 0.7 would not adjust labor at
all in the first year of a large productivity increase. In contrast, estimated dynamic responses

14The treatment effects are estimated with all non-treated plants as control. Event time zero gives the first
period of treatment, while treatment effects in event time -1 are normalized to zero by assumption. Apart from
the 20% cutoff, the treatment definition also ensures we identify a permanent productivity shock by ruling out
shocks followed and preceded by productivity changes of more than 10% per year and ruling out an accumulation
of shocks over multiple periods that undo the shock at period 0. E.g. if we look at an event window from -3 to 2,
then productivity at -3 cannot be more than 10% apart from the pre-level at -1 and productivity at 2 cannot be more
than 10% apart from productivity at event 0. This does not restrict input shares. The rapid observed declines in
the sample sizes are due to the high observed volatility of productivity, making it difficult to identify permanent
shocks in the data.
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for capital are much noisier and we cannot reject that capital shares immediately recover af-
ter the first year. For both inputs, we find no evidence for pre-trends, pointing away from
an anticipation of productivity shocks. Taken together, volatile plant-level productivity and
slow labor adjustments thus offer an explanation as to why the allocation of resources did not
improve over time.

2.3 Structural model

While the four empirical facts document important changes in the economy and distribution
of manufacturing plants over time (Fact 1), entry and exit dynamics that shape the selection
of plants (Facts 2, 3 & 4), and the importance of slow plant-level adjustment processes (Facts 2
& 4), the empirical evidence is not sufficient to quantify the drivers of the Indonesian growth
miracle. In particular, it does not allow us to quantify the aggregate effects of policy changes
separately from transition growth. For this, we now build a model of plant dynamics and
growth in the tradition of Hopenhayn (1992). In the model, plants face idiosyncratic risk in
their productivity and choose capital and labor inputs subject to labor adjustment costs and a
simple financing constraint that rationalize slow plant-level adjustments (Facts 2 & 4). Plants
face fixed costs that drive endogenous entry and exit, which in turn drives aggregate selection
dynamics (Fact 3).

The model features a time-varying growth path which is driven by three endogenous forces:
changes in the input distribution, changes in the productivity distribution due to a combina-
tion of exogenous technology growth and plant selection, and changes in (mis)allocation as
given by their joint distribution. All three forces are driven by the race between transition
growth and by changes in model fundamentals that induce new transition growth. Changes
in model fundamentals include changes in labor supply, potential entrants, technology, adjust-
ment frictions and taxes. We further embed the model of plant heterogeneity into a two-sector
general equilibrium model to capture changes in the rest of the economy and the endogenous
reallocation of labor across sectors over time. The potential of transition growth at any point
in time is given by the current distribution of plants encoding the history of the economy and
future growth potential as given by current model fundamentals and expectations over the
future. We follow the growth literature in treating the growth path as deterministic and by
assuming that agents have perfect foresight over aggregate changes in the economy.

2.3.1 Model Setup

The model economy is set in discrete time indexed by t = 1, 2, .... We assume that Indonesia is
a small open economy vis-a-vis the rest of the world and has access to world capital markets
at interest rate r∗. There are two sectors of production: Manufacturing (M) and the rest-of-
the-economy (R). Both sectors produce the same homogeneous, perfectly substitutable good,
which serves as numeraire. Manufacturing features heterogeneous plants whose endogenous
mass and distribution are time-varying, while we model the rest-of-the-economy as a simple
representative firm whose exogenous technology and endogenous labor demand change over
time. Labor is inelastically supplied by households which choose in which sector to work.
Labor markets in both sectors are fully competitive. There is a government that levies a val-
ued added and a corporate income tax, the two main corporate tax instruments in Indonesia.
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We assume the government levies these taxes and redistributes revenue back to households.
Similarly, we assume that all plant profits are simply transferred back to households.

Manufacturing

The manufacturing sector is composed of risk-neutral plants that are heterogeneous in their
productivity sit. Each period, plants choose capital k and labor h on spot markets to pro-
duce output, while facing idiosyncratic risk over their future productivity sit and time-varying
changes in the economy. We denote plants’ payoff-relevant aggregate state of the economy, in-
cluding perfect anticipation of future changes in aggregates by Ωt and make its components
more explicit below. A plant’s output yit and taxable profits πit at time t are given by:

yit(sit, zt, hi,t, ki,t) = ztsith
θ
itk

α
it (2.4)

πt(sit, hi,t, ki,t; zt, wt) = (1− τCt )
(
(1− τV AT

t )yit(sit, zt, hi,t, ki,t)− wthi,t −Rtki,t
)

(2.5)

where the production function is as in Section 2.2.2, τV AT
t gives the Indonesian value-added

tax and τCt the corporate income tax that is levied on taxable profits. Given the frictions in
this economy, both tax instruments generally distort input choices. Rt gives plants’ capital
borrowing rate, which is equal to the deposit rate rt plus depreciation δ assuming competitive
rental markets. Idiosyncratic risk sit follows a Markov process of order one. We further assume
that sit is exogenous and independent of aggregate technology zt. For zt, we leave the path
unrestricted, but assume it is exogenous.

What drives slow plant adjustments? We assume that plants face labor adjustment costs. These
capture, for example, managerial time constraints that arise from the time it takes to hire, fire
and reorganize production tasks, a key constraint for plant growth in developing countries
(Bloom et al. 2013, 2020).15 Following the literature, we model them as follows (e.g. Cooper,
Gong, and Yan 2018; Cooper, Haltiwanger, and Willis 2015):

AC(hi,t−1, hi,t) =


F+ + c+0 (hi,t − hi,t−1) +

c+1
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht > ht−1

0 if ht = ht−1

F− + c−0 (hi,t−1 − hi,t) +
c−1
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht < ht−1

(2.6)

where F are fixed adjustment costs that capture overhead in dealing with hiring (F+) or firing
(F−) and c0 captures per worker hiring and firing costs. Importantly, there are convex adjust-
ment costs whose importance is captured by c1 and which capture costs of growing (c+1 ) or
shrinking (c−1 ) plants quickly. Convex adjustment costs are key to explain the slow growth of
plants over time and are a key determinant of the speed of transition growth. We allow all
costs to be asymmetric to accommodate that firing and hiring is often regulated differently. At
last, we index all adjustment costs in terms of wages since wage indexation provides a simple
way to let costs grow with the economy. Besides this indexation, in the baseline model, we

15In Appendix 2.B.1, we provide a simple microfoundation in terms of the costs of scarce managerial time to
show how organizational changes induce convex costs. An alternative interpretation of convex adjustment costs
is given in labor search models where they are rationalized via convex (reduced-form) hiring or vacancy posting
costs (e.g. Bilal et al. 2022; Coşar, Guner, and Tybout 2016)). The key difference is that adjustment costs in search
models become partly functions of equilibrium outcomes such as market tightness. We abstract from this general
equilibrium mechanism here given that the primary focus of the paper is on longer run growth dynamics and not
business cycle variation in unemployment and market tightness.
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Figure 2.10: Timing in time t for manufacturing firms.

assume that adjustment cost parameters are fixed over time, but the model and estimation can
accommodate time-varying parameters and we return to this point in later sections.

On top of adjustment costs, we assume that plants face a standard financing constraint that
captures underdeveloped financial markets, in line with a large Macro Finance literature that
emphasizes their importance (e.g. Buera and Shin 2013; Midrigan and Xu 2014; Moll 2014).
Specifically, we assume the following working capital constraint:

wthit ≤ κt(1− τV AT
t )yit (Working capital constraint) (2.7)

As we show in Appendix 2.B.2, the constraint can be microfounded as a simple limited en-
forcement problem whereby plants may want to run deficits in order to grow their workforce,
but cannot commit to repaying. Limited contract enforcement due to a weak judicial system
then leads to the borrowing constraint in equilibrium. κt then captures the probability that
the judicial system will enforce the contract, with higher κt mapping to stronger institutions
and a less binding constraint. The reason that plants may want to run deficits to grow their
workforce is that in the presence of convex adjustment costs it is costly to build up a plant’s
workforce quickly, so that even less productive plants may want to run deficits to build up
their workforce hoping for good future productivity realizations.

The timing of manufacturing production is summarized in Figure 2.10. At the beginning of a
period, incumbents observe their current productivity and make production decisions. Plants’
payoff-relevant aggregate state is given by: Ωt ≡ {zt, wt, r

∗}∞t . After production takes place,
incumbent plants incur a fixed cost of production cFi,t, upon which plants decide whether they
want to continue producing (and pay cFi,t) or permanently exit (as in Clementi and Palazzo
2016). The fixed cost is drawn from a distribution G, which we assume to be Gumbel with
scale and variance parameters (µXt , σXt ). A larger variance in the fixed costs rationalizes more
overlap in the labor and productivity distributions of surviving and exiting plants. The exit
decision of the plant depends on the plant’s expected future value, the cost shock as well as
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the costs of closing down the plant (as in Hopenhayn and Rogerson 1993):

max
{
βE[VM (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt]− cFi,t,−CE(hi,t)

}
(2.8)

where VM gives the continuation value of an incumbent plant and CE(hi,t) the costs of closing
down the plant. The above maximization problem implicitly defines plant i’s survival prob-
ability that the operating cost draw cFi,t is lower than its future expected continuation value:
λ(si,t, hi,t; Ωt) ≡ P

(
x ≥ cFi,t

)
= G

(
x
)

where x ≡ βE[VM (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt] +CE(hi,t).

The ex-ante value of an incumbent manufacturing plant can be written in recursive form ac-
cording to:

VM (si,t, hi,t−1; Ωt) = max
hi,t≤h̄,ki,t

{
π(sit, hi,t, ki,t; zt, wt)− wtACt(hi,t−1, hi,t) + λ(si,t, hi,t; Ωt)

{
− Ec[c

F
it |stay(si,t, hi,t; Ωt)] + βE

[
VM (si,t+1, hi,t,Ωt+1)|si,t, hi,t,Ωt+1

]}}
(2.9)

Plants have a common discount factor β = 1/(1 + r∗), which is pinned down by the world
interest rate. The presence of adjustment costs and financial constraints in combination with
productivity dynamics makes this a dynamic problem since plants take into account that con-
temporaneous changes in their inputs influence adjustment and financing costs in the future.

Next, we consider endogenous plant entry. As visualized in Figure 2.10, each period there is
a cohort of potential entrants (PE) of measure |PE|t. Each potential entrant draws a random
entry cost cEit from a distribution P , which they need to pay in case they start producing. Again,
we assume that entry costs follow a Gumbel distribution with scale and variance parameters
(µEt , σ

E
t ). Potential entrants differ in their idiosyncratic productivity sit and their initial labor

hi,t, which they know when making the entry decision for producing in period t. The initial
heterogeneous level of labor and productivity is key to capture that there is plant entry of many
small as well as some very large plants that matter in the aggregate. It also accounts for the fact
that we only observe and model plants with 20 or more workers. The exogenous distribution
of potential entrants is given by PEt(ht, st), which is time-varying due to exogenous reasons
such as demographic changes that have been shown to be key for explaining variation in firm
creation over time (Bernstein et al. 2022; Karahan, Pugsley, and Şahin 2019; Liang, Wang, and
Lazear 2018). Potential entrant i with entry cost shock cEit enters if its net value is positive:

VPE(si,t, hi,t; Ωt) = max
{
VM (si,t, hi,t; Ωt)− cEit , 0

}
(2.10)

where we have normalized the outside option to zero. Similar to exit, this gives the following
mapping P

(
VM (si,t, hi,t; Ωt) ≥ cEit

)
= P

(
VM (si,t, hi,t; Ωt)

)
. Note that in this specification the

initial mass and distribution of entrants is endogenous, but entrants only start making input
choices the period after they entered. A time-varying distribution of potential entrants also
allows us to deal with plant entry jumps in years of the economic census as we further discuss
in the estimation section. We denote the endogenous mass of entry for each state (ht, st) in
period t by µ(ht, st), which is a function of Ωt. Similarly, we define bym(ht, st) the endogenous
mass of producing plants for each state (ht, st) in period t. With slight abuse of notation, denote
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by Mt the set of producing plants at time t.

Rest-of-the-economy

We model the rest-of-the-economy parsimoniously as a representative firm with a decreasing
returns to scale (DRS) production function:

Y R
t = At

(
HR

t

)θR with θR ∈ (0, 1) (2.11)

where At is time-varying TFP, HR
t gives labor employed and θR gives the output elasticity

in the rest-of-the-economy. Decreasing returns to scale ensure that economy-wide wages can
be affected by changes in manufacturing. The rest-of-the-economy sector takes as given pro-
ductivity At and the wage rate wt and chooses optimal labor demand maximizing per period
profits: πRt (At, wt, τt) = Y R

t (At) − (1 + τRt )wtH
R
t , subject to labor demand wedges τRt . Labor

demand is then given by:

HR∗
t =

(
θRAt

(1 + τRt )wt

) 1
1−θR

(2.12)

Labor demand wedges in the rest-of-the-economy are a simple way to capture observed varia-
tion in the labor intensity of output and one can think of them as changes in labor frictions. At

captures changes in technology of the rest-of-the-economy. We allow bothAt and τRt to change
over time, but treat them as deterministic and exogenous paths.

Households

There is a continuum of households j that are characterized by their exogenous household-
specific efficiency units of labor hjt and whose exogenous mass at time t is denoted by Lt.
Households supply labor inelastically so that the aggregate labor supply is given by Ht =∫
j hjtdj. Changes in Lt and Ht

Lt
capture changes in the working population and education

per worker respectively. We abstract from consumption-savings decisions by assuming that
households are hand-to-mouth, simply consuming their labor income yjt net of transfers from
the government and plant profits Tjt: cjt = yjt + Tjt.16 Households allocate their labor supply
across both sectors based on maximizing labor income: yjt = max{hjtwM

t , hjtw
R
t }.

Equilibrium

We assume that the observed growth path in the data is characterized by a path of per-period
perfect foresight Recursive Competitive Equilibria.

Definition 5 (Model fundamentals.). Model fundamentals at time t capture all exogenous model
parameters, processes and distributions as given by:

ΘF
t = {θ, α, δ, F−, c−0 , c

−
1 , F

+, c+0 , c
+
1 , {At, τ

R
t , Ht, PEt, zt, τ

C
t , τ

V AT
t , κt, µ

X
t , σ

X
t , µ

E
t , σ

E
t }∞t }.

We further denote by Θ̄F
t the modified set of model fundamentals where all fundamentals are fixed to

16We only make this assumption to fix ideas. Given the small open economy setup, the domestic supply of
capital is inelastic to changes in domestic savings behavior such that the production side – which is the focus of this
paper – would look exactly the same if heterogeneous households would instead solve a savings and consumption
choice. Given inelastic labor supply, the model is also isomorphic to one with uniform labor income taxes in both
sectors.
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their value at time t forever. At last, denote by ΘF
t \ {x = x̄} the modified set of model fundamentals

where only model fundamental x is changed to x̄.

Definition 6 (Initial distribution.). The distribution of surviving plants from period t − 1 gives the
initial distribution at time t and is denoted by St.

A path of perfect foresight Recursive Competitive Equilibria starting at time t is then given
by model fundamentals ΘF

t , an initial distribution St, and endogenous sequences of prices
{wt, r

∗}∞t , corresponding quantities and distribution of producing plants {mt}∞t such that each
period τ ∈ [t,∞):

1. The rest-of-the-economy sector statically chooses optimal labor demand maximizing prof-
its taking as given productivity Aτ , the wage wτ and labor demand wedges τRτ .

2. Manufacturing plants choose optimal labor and capital demand.

3. Potential entrants optimally make entry and incumbents optimally make exit decisions.

4. Households inelastically supply total laborHτ and optimally allocate labor across sectors
to maximize labor income.

5. The aggregate wagewτ adjusts to ensure that the labor market clears: Hτ = HR
τ (wτ , Aτ , τ

R
τ )+∑

i∈Mτ
h(siτ , hi,τ−1; Ωτ )

6. The government runs a balanced budget by levying a value added and corporate income
tax and redistributing revenue back to households.

7. The capital market clears every period such that international capital supply equals do-
mestic capital demand:

∑
i∈Mτ

k(siτ , hi,τ−1; Ωτ ) = KINT
τ .

8. The mass of active plants in τ and previous aggregate state Ωτ−1 is equal to surviving
plants from τ − 1 plus endogenous new entrants:

∀(sτ , hτ ) : m(sτ , hτ ; Ωτ ) =
∑

sτ−1,hτ−1

(
1h∗=hτP[sτ |sτ−1]λ(sτ−1, hτ−1; Ωτ−1)×

m(sτ−1, hτ−1; Ωτ−1)
)
+ µ(sτ , hτ )

(2.13)

9. The goods market clears each period such that total production is either consumed or
exported: Yτ =

∑
i∈Mτ

yi,τ + Y R
τ = Cτ + NXτ where NXτ = EXPτ − KINT

τ are net
exports.17

The observed growth path features a combination of changes in model fundamentals that
move the economy’s steady state and transition growth as the economy is trying to catch up
to this steady state. We now formalize these concepts.

Definition 7 (Balanced Growth Path (BGP) and Steady State (SS)). Along a BGP, underlying
technology in both sectors (At, zt) and the endogenous wage grow at the same constant rate, while all
remaining model fundamentals and the endogenous distribution of plants stays constant (see details in

17Note that we have implicitly treated all entry costs, fixed costs and adjustment costs as shadow costs here, as
they neither directly enter labor market clearing nor the aggregate resource constraint.
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Appendix 2.B.3). A steady-state is a BGP for which the growth rate is zero. Both BGP and steady-
state are uniquely defined by model fundamentals ΘF that admit a BGP/SS.18

Definition 8 (Transition path). The unique perfect foresight transition path starting at t towards
a BGP is defined by an initial distribution St and model fundamentals ΘF

t (which admit a BGP), and
gives a path of equilibrium wages over the transition.19

In Section 4, we use the model to separately quantify the role of transition growth from changes
in the steady state.

2.3.2 Estimation

The model captures a race between changes in model fundamentals and the distribution of
plants (over the state space) trying to catch up to these changes. We now take this model
to the data and show how to disentangle changes in the distribution from changes in model
fundamentals. Estimation proceeds in three main steps, while an additional step is needed for
model counterfactuals. The first step identifies equilibrium prices – only wages in our case – in
the data. We take an equilibrium estimation approach (Hotz and Miller 1993; Bajari, Benkard,
and Levin 2007; Caliendo, Dvorkin, and Parro 2019), which means that we treat our model
as generating the equilibrium wage path we observe in the data. We can thus treat the path
of equilibrium wages as fixed throughout the estimation and only need to solve for changes
in the equilibrium wage path for counterfactuals. This greatly simplifies the estimation as it
avoids solving for the equilibrium path of the model during the estimation. In the second step,
we identify the distribution over the entire state space of the economy over time and use this
to back out related model fundamentals such as the initial distribution. The third step then
solves for remaining fundamentals that are related to the dynamic input and exit choices of
plants drawing on observed choices of plants conditional on the state space. In this step, we
also need to make an explicit assumption about the evolution of model fundamentals beyond
the time frame of our data. To conduct model counterfactuals, we further back out model
fundamentals that are not needed to solve the baseline economy, such as fundamentals of the
rest of the economy.

With each estimation step, we enforce more model structure and assumptions, making pa-
rameter identification very transparent. An important benefit of our approach is that we can
directly draw on the production function and aggregate technology estimates discussed in Sec-
tion 2.2.2 whose identifying assumptions nest our model. Table 2.1 provides an overview of
the estimation steps and all model fundamentals and estimates. We now discuss each step in
more detail. Given the larger number of model fundamentals, we focus throughout on the
most important parts and relegate details to Appendix 2.B.5.

18Uniqueness depends on the uniqueness of the individual policy functions and the unique mapping between
policies and prices. We treat our numeric algorithm as formally defining the equilibrium refinement conditions
sufficient for uniqueness.

19Uniqueness of the transition path can be proven via contraction mapping arguments over the path of price
expectations. Again, our numeric algorithm for the transition gives a unique path for perfect foresight equilibria
and we treat this as formally defining the equilibrium refinement conditions sufficient for uniqueness.
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Table 2.1: Overview of parameter identification and estimation

Object Description Type Identification idea Value Details
Parameterization:

r∗ World interest rate F Risk-free rate 0.04
δ Depreciation rate F Standard 0.1
τCt Corporate tax F Official rate 0.2 Section A.2.4
τV AT
t VAT F Official rate 0.1 Section A.2.4

Estimation:
Step 1:

θ Prod function F Control function 0.694 Section 2.3.2
α Prod function F Control function 0.03 Section 2.3.2
wt Wage path E ∆i(wthit)/lit Fig. 12 Section 3.2.2
κt Borrowing constraint F Max labor share 1.7 Section A.2.4

Step 2:
zt Techn path F ∆iproductivityit Fig. 8 Section 2.3.2

P(s′|s) Transition matrix F Obs. transitions Section 3.2.2
Init distrib F Obs. survivors Section 3.2.2

Et Entrants E Obs. entry Section 3.2.2
Step 3:

Adj costs F Euler CCC Table 2 Section 3.2.2
Cost ratio Fixed cost F Euler CCC Table 2 Section 3.2.2
Cost level F Match mass 2015 Section 3.2.2

For counterfactuals:
At, θR, τ

R
t Rest-of-Economy F First-order condition Section A.2.4

Entry costs F Section A.2.4
PEt Potential Entrants F Entrants + entry proba Section A.2.4

Details: Types are: F(undamental) and E(quilibrium object). The former stay fixed in counterfactuals,
the latter change endogenously. If applicable, reported standard errors correct for multi-step estimation
procedure and cluster at the plant-level by using block bootstrap across all estimation steps (This is cur-
rently still work in progress).
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Step 1: Equilibrium wage estimation

In the first step, we estimate the path of equilibrium wages that clear labor markets in each pe-
riod. While prices could in principle be directly observed in the data, based on our model, we
only observe plants’ wage bills (wthit), which are a combination of the wage and the quantity
of labor. We are only interested in changes over time and thus normalize the level of initial
wages w0 to unity. Ideally, we would like to capture changes in the wage by looking at wage
changes for a worker whose efficiency units of labor remained constant. This would for ex-
ample avoid any assumptions on how workers with different skills select across plants. In the
absence of worker-level data that spans the entire time period, we instead draw on changes
in within-plant per worker wages for similar job types, exploiting that the Indonesian data re-
ports wages and the number of workers separately for production and non-production work.
Our identification strategy for the wage allows for arbitrary sorting of workers with differ-
ent skills not only across plants but also across different job types within plants, but restricts
changes in the skill sorting within job types over time. Formally, we assume that plant i uses
on average the same skills per worker within job types k: hkit/l

k
it = αk

i · εkit. εkit allows job types
within plants to vary in their skill intensity around αj

i over time. With standard restrictions on
εkit, this ensures that wages are identified from:

Ei

[
log(wt+1h

k
it+1/l

k
it+1)− log(wth

k
it/l

k
it)
]
= log(wt+1)− log(wt)

As our estimate of changes in wages, we use median within-plant-worker-type changes in
wages, weighting observations by the average of total workers of type k between t and t +

1, ensuring that wages are identified from median wage changes of workers (not plants). If
anything, we think this estimator overestimates wage increases, because (1) any increase in
within-worker human capital (e.g. on-the-job learning) will be attributed to increases in the
wage, and (2) the estimates are for surviving plants, which might see more wage growth.

Figure 2.11 plots the estimated real wage series in the data. Our preferred estimator uses wage
bills for production workers only, as production workers are relatively homogeneous and thus
the identifying assumption is more likely to hold. For completeness, we also report estimated
wage series using non-production workers and pooling all workers. Our estimates show that
wages per efficiency unit of labor increased by more than 85% over the 40-year period with
important variation over time. Given that the average wage bill per manufacturing worker
increased roughly 4-fold in the data, these estimates imply that the average manufacturing
worker in 2015 was about 2.2x more efficient than the average manufacturing worker in 1975.
We find this a reasonable estimate given the large educational gains of Indonesian workers
observed over this period. As external validation, Gathen (2021) also finds a similar wage
increase from separate estimates on Indonesian worker data between 1998 and 2015.

Step 2: Mapping the entire distribution over the state space

In the second step, we map any plant in our data to the state space of our model: (hit−1, sit, wt, zt).
While our data captures a discrete number of plants, we treat this mass as continuous for the
estimation. This allows us to identify changes in the entire distribution of plants over the state
space over time, which is crucial to determine the potential for transition growth. Specifically,
we use this mapping to identify two key model fundamentals – the productivity process and
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Figure 2.11: Evolution of estimated real wage in Indonesian manufacturing

Notes: Based on within-task changes in the wage bill per worker by task (production and non-production). Data:
Indonesian manufacuring census (1975-2015, 20+ workers).

the initial distribution – and an equilibrium object which changes in counterfactuals: the dis-
tribution of entrants.

To identify the state space, we draw on the wage estimates from Step 1, which together with a
plant’s wage bill (wthit) identifies hit−1. To obtain plant productivity and technology, we draw
on the identification and estimation approach from Section 2.2.2, which hold under weak as-
sumptions on exit and input choices. Having identified plant productivity sit (up to a normal-
ization of zt), we estimate the dynamic process of sit by discretizing s and then estimating the
transition matrix P(s′|s) non-parametrically using (pooled) within-plant productivity changes
in the data. The transition matrix is a fundamental of the economy and is identified based on
within-plant changes in productivity conditional on previous productivity, and only requires
that all productivity states are observed with positive probability at some point.20

Next, we exploit the state space mapping to identify the initial distribution of surviving plants
over (si,t, hi,t−1;Ω) in 1976. While our data starts in 1975, the first year for which we can
identify hi,t−1 is 1976. We treat this initial distribution as a model fundamental, implicitly
assuming that in any counterfactual, initial survivors do not anticipate any changes to the
baseline equilibrium paths of wages and technology prior to 1976. The main benefit of directly
taking the initial distribution from the data is that we can remain agnostic about its origins and
allow the data to reveal the initial degree of misallocation. A downside is that if the model does
not capture all mechanisms of dispersion over the state space, the initial distribution may look
more “misallocated” than it actually is; leading to overestimating model-implied transition
dynamics.

At last, the state space mapping also allows us to identify time-varying entrant distributions
E(st, ht;Ω), which are equilibrium objects but related to the fundamental potential entrant dis-
tributions via: PEt(st, ht;Ω) = Et(st, ht;Ω)/PE(st, ht;Ω), where PE(.) gives the entry proba-
bility, which is a function of the model-implied value of entering as well as the parameters of
the entry cost distribution. For the model estimation along the baseline equilibrium path, we
treat these equilibrium entrant distributions as fixed. Our approach implies that the baseline

20While an imperfect ex-post test, we check ergodicity of the implied idiosyncratic productivity process sit
by verifying that all states in the discretized transition matrix can be eventually reached. In Appendix 2.B.5, we
provide details on the discretization of productivity and labor, which we rely on for numerically solving the model
and counterfactuals.
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model exactly replicates observed plant entry. This is in contrast to plant-level exit and labor
demand decisions, for which our estimation approach allows the model to fail.

Step 3: Estimating the dynamics of the model

Step 3 reveals the remaining parameters of the economy that are needed for the baseline model:
fixed cost parameters that govern entry and exit decisions as well as adjustment cost param-
eters that govern how plants make dynamic labor choices. This step enforces more model
structure, particularly on how plants make dynamic input, exit and entry choices, and how
plants form expectations over the future. We separate this section into two parts with the first
part only exploiting optimal plant-level choices across consecutive periods, while the second
part also enforces long-run expectations.

Euler equation CCC estimation We identify most remaining parameters by exploiting ob-
served exit and labor input choices conditional on the state space, drawing on standard con-
ditional choice probability (CCP) and continuous conditional choice (CCC) Euler estimation
techniques (Hotz and Miller 1993; Bajari, Benkard, and Levin 2007). Taking first-order condi-
tions with respect to labor from the incumbent’s value function above and directly plugging
in the envelope condition, we obtain the following Euler equation:

0 =
∂π(si,t, kit, hi,t, zt)

∂hi,t︸ ︷︷ ︸
Labor wedge

− wt
∂Ch(hi,t, hi,t−1)

∂hi,t︸ ︷︷ ︸
Current marginal adj costs

+
∂λ(si,t, hi,t,Ωt)

∂hi,t

{
−g̃(si,t, hi,t,Ωt) + βE

[
V (si,t+1, hi,t,Ωt+1)|si,t, hi,t,Ωt

]}
︸ ︷︷ ︸

Marginal benefit on survival

+ λ(si,t, hi,t,Ωt)

{
−∂g̃(si,t, hi,t,Ωt)

∂hi,t
+ βE

[
−wt+1

∂Ch(hi,t+1, hi,t)

∂hi,t
|si,t, hi,t,Ωt

]}
︸ ︷︷ ︸

Marginal benefits on future costs

(2.14)

where we have used g̃(si,t, hi,t,Ωt) to denote the expected fixed cost conditional on surviving
to emphasize that it is a function of the state space.

The Euler equation, which holds for any plant that is optimally adjusting labor, says that plants
should equalize today’s marginal product of labor with the marginal costs of labor and current
as well as future labor adjustments. Adjustment costs give a natural explanation for why there
is a “wedge” between the static marginal product and the marginal costs of labor (Hsieh and
Klenow 2009). For our estimation purposes, the important features of the Euler equation are
that it holds along the transition, and that it gives a nonlinear equation in observable plant-
level choices (exit and input choices) and parameters that govern survival probabilities as well
as adjustment costs. Specifically, marginal adjustment costs are a function of adjustment cost
parameters. The tricky terms are expected and marginal expected fixed costs, marginal sur-
vival probabilities and the expected future continuation value. As we show in Appendix 2.B.6,
the Gumbel distribution for the fixed costs ensures that we can analytically invert all of these
terms as functions of observed survival probabilities and parameters of the Gumbel distribu-
tion.
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Appendix Table B.1 presents the non-linear least squares (NLS) estimation results and Ap-
pendix 2.B.6 gives the exact estimating equation and estimation details. The Euler equation
flexibly identifies marginal adjustment costs. Intuitively, linear adjustment costs are identified
from the observed labor wedge across plants and the probability of switching between shrink-
ing and growing as determined by the volatility of the estimated productivity process. Convex
costs instead scale with the labor growth and are thus identified from the variation in within-
plant labor demand growth across periods, again conditioned by the observed volatility of the
productivity process. We find sizable adjustment costs – especially convex costs on growing
– that rationalize why even productive plants (with a high labor wedge) conditional on previ-
ous plant employment do not grow faster. Quantitatively, our estimates imply that growing
a plant’s workforce by 20% within a year – a growth rate slightly above the 75th percentile
– leads to adjustment costs that are about 75% of the previous wage bill. Informed by faster
observed shrinking conditional on productivity, convex costs on shrinking are estimated to be
less than half as big. We also estimate that a plant pays almost 75% of a new worker’s annual
wage in the form of hiring costs, which is identified from the high observed wedge between the
marginal product and wage and the high volatility of productivity that make any investments
in the workforce risky. In Appendix 2.B.6, we also report time-varying estimates of adjustment
costs. If anything, we find that convex adjustment costs tend to increase over time beyond
what is implied by increases in the wage, pointing away from a reduction in frictions driving
Indonesian growth.

Solving the baseline model The Euler equation only identifies the ratio between the level
and scale of the fixed cost distribution that determine plant exit. To separately identify the
level, we solve the model and match one moment in the data and model: the mass of plants in
2015, assuming that the census is complete for that year. The estimated level and scale of the
fixed cost distribution rationalize average exit rates and the low but positive correlation with
underlying productivity and size.

Solving the model introduces two issues that are common to equilibrium estimation approaches.
First, by requiring to solve for plants’ value functions, we need to make an explicit assumption
on long-run expectations of plants after the year 2015 when our data ends. We assume that af-
ter 2015, plants expect to be on a balanced growth path with manufacturing technology grow-
ing at the average rate at which it grew in the preceding ten years.21 Given that technology in
manufacturing grew strongly since 2000, this assumption implies optimistic expectations, in
line with low exit and strong observed plant growth in the years prior to 2015.

The second issue for the equilibrium estimation is that enforcing revealed equilibrium prices
along the estimation of the baseline economy does not guarantee that these prices actually
clear markets in our model over time. We ensure consistency – informed by our specific con-
text and data availability – by treating the observed data as correctly revealing prices, but not
necessarily correctly revealing aggregate labor demand and supply. As discussed in Section
2.2.1, our data does not correctly reveal aggregate labor demand and supply due to mis- and
non-reporting and as explicitly taken into account in our measure of plant exit. We thus use the

21We provide technical details on the BGP and how to solve for the stationarized value function in 2015 in
Appendix 2.B.3. An alternative would be to solve for a continued transition towards a long-run BGP by making
explicit assumptions on how all fundamentals evolve after 2015. We do not follow this approach, because it adds
substantial additional computational costs while requiring similarly strong assumptions.
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Figure 2.12: Baseline model fit

Notes: All graphs report results for manufacturing only and for each panel, both series are normalized to the initial
level in the data. Average size is reported in efficiency units of labor. Selection (measuring average productivity),
input distribution (the sum of the Cobb-Douglas aggregator of capital and labor) and covariance (the covariance
between plant productivity and the share in inputs as given by the Cobb-Douglas aggregator) refer to the three
corresponding terms in the growth accounting identity introduced in Section 2.

model-implied aggregate labor demand and supply for the baseline growth path and enforce
the implied fundamentals that ensure market clearing for all future model-based counterfactu-
als. This is how our approach also ensures that counterfactuals are consistent with the baseline
model economy.

2.3.3 Evaluating model fit

To assess how well the model fits the data over time, we revisit three main results from Section
2.2. Having estimated the model on micro moments, we start out by moving from “micro to
macro”, evaluating the model’s aggregate predictions. We then validate how well the model
matches plants’ dynamic input choices and changes in the entire plant distribution over time.

Figure 2.12 shows how the baseline model fits the mass of plants, aggregate output in manu-
facturing and the three main endogenous components that we used in Section 2.2.2 to formally
decompose manufacturing growth. For completeness, we also plot the evolution of the aver-
age plant size as measured in efficiency units of labor. The model closely tracks the more than
30-fold increase in manufacturing output over time, including rapid growth in the absence of
technology improvements until the Asian Financial Crisis, the decline during the crisis and the
fast post-crisis growth. Overall, the model tends to slightly underestimate output at the plant
level given the higher model-implied mass of plants.

The accounting identity helps to understand why the model fits the aggregate data well and
where the model underperforms. First, as the main component of aggregate output growth,
the model closely tracks the distribution of labor and capital across the endogenous plant dis-
tribution over time. Neither total labor demand, the total number of plants over time (apart
from the first and last year) nor the distribution of inputs is hit by construction. The model cap-
tures the right degree of slow labor accumulation across the entire plant size distribution over
time, which can be even more clearly seen from looking at the average plant size. Secondly,
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Figure 2.13: Model validation: Event study and changes in distribution

Notes: Left graph replicates event study exactly as in Section 2 using simulated data from model growth path. Right
graph gives changes in the employment distribution (using efficiency units of labor) for model versus data. For
both data and model, wage bills are used and divided by (same) estimated wage path.

the model tracks well the evolution of average productivity across plants, capturing well the
endogenous selection of plants over time. If anything, the model overpredicts productivity
growth in the early years and underpredicts towards the end. This can be in part explained
by a too fast productivity convergence implied by the estimated productivity process, stem-
ming from frequent temporary productivity shocks that lead to overestimating productivity
transitions. At last, the model also performs reasonably well on the most difficult part: the
endogenous evolution of the joint distribution of productivity and inputs, as captured by the
covariance term. Here, the model captures the decline in the covariance over time, as many
small and productive plants enter and resources only reallocate slowly due to sizable adjust-
ment frictions.

Next, we are interested in whether the model is also in line with the micro-level labor dy-
namics. Figure 2.13 Panel A shows the same estimated event study as in the data, using the
exact same treatment definition and sample restrictions but now using simulated data from
our baseline model from 1976 to 2015. The event study results align well. Both pre-trend, the
exact magnitude of the treatment effect at impact and the slow recovery of the labor share fol-
low the data. We also note that the balanced sample restrictions imposed in the data lead to
very similar sample sizes in the simulated data indicating that we identify similarly selected
sets of plants (which received a rare permanent productivity shock).

At last, Figure 2.13 Panel B compares model-implied versus observed changes in the entire
employment distribution of plants over time. In 1976, the first year that our model predicts
plant decisions, the distributions are still largely indistinguishable. Over time, the employment
distribution moves strongly to the right with average employment increasing almost 4-fold
and the mass of the distribution shifting from a strong left tail towards the right. The model
tracks this overall change well, but slightly overpredicts the right tail. Importantly, we do not
see a marked deterioration of the distribution even after 40 years of endogenous evolution.

2.4 Quantifying the drivers of aggregate growth

Using the estimated model, we now quantify the drivers of growth. Specifically, we quan-
tify (1) the importance of initial transition growth, (2) the continuing importance of transition
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Figure 2.14: Growth from initial conditions

Notes: Results for counterfactual where economy evolves only based on initial conditions (all fundamentals fixed
to initial level). All graphs report results for manufacturing only. Average size is reported in efficiency units of
labor. Selection (measuring average productivity), input distribution (the sum of the Cobb-Douglas aggregator of
capital and labor) and covariance (the covariance between plant productivity and the share in inputs as given by
the Cobb-Douglas aggregator) refer to the three corresponding terms in the growth accounting identity introduced
in Section 2.

growth over the course of development, and (3) the role of policy. We present each in turn.

2.4.1 Initial conditions and the role of transition growth

We start by quantifying the importance of transition growth based on the initial economy at
the onset of the Indonesian growth miracle in 1976. How much would the 1976 economy have
grown purely from transition growth in the absence of any further changes in model funda-
mentals? For this, we start from the initial economy with the initial distribution M1976, fix
initial model fundamentals Θ̄F

1976 to their value in 1976 and solve for the perfect foresight tran-
sition path (see Section 2.3), which includes solving for a counterfactual path of equilibrium
wages that clears the labor market over time as the initial distribution of plants transitions
towards the steady state distribution defined by Θ̄F

1976.

Figure 2.14 highlights the resulting counterfactual growth in manufacturing. Overall output in
manufacturing increases roughly 12-fold over time, accounting for 42% of the overall output
gains compared to the baseline (model) economy. The reason is that young and small plants –
which dominate the initial distribution and new entrants – gradually hire more workers and
increase their productivity through a combination of productivity convergence and the exit of
less productive plants. At the same time, entry consistently exceeds exit and the mass of plants
gradually doubles over time. The increase in workers across manufacturing plants is mostly
driven by the reallocation of labor from the rest of the economy: in the absence of observed
changes in the aggregate labor supply and technology in the rest of the economy, the model
predicts that Indonesia would have seen a manufacturing miracle with manufacturing labor
and output shares reaching close to 30% over 40 years (in contrast to observed shares of less
than 10%). Average plant size increases far more rapidly because in the absence of productivity
improvements in the rest of the economy, aggregate wages stay almost 40% lower than in the
baseline economy. Hence, initial conditions explain more than all of the increase in the average
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plant size over time, with cheap labor being the main driving force. Looking at changes in the
entire distribution, Figure C.2 highlights that the increase in the average plant size is indeed
driven by a movement in the right tail, which forms slowly because it takes time to grow large
plants and the initial distribution lacks large plants, in line with the empirical evidence in
Section 2.2.2.

What about economy-wide effects? Aggregate output per worker increases by roughly 25% by
2015 in this counterfactual economy, explaining 5.2% of the close to 6-fold increase in aggre-
gate output per worker observed between 1976 and 2015. However, this comparison may be
unfair given that a large part of the 6-fold increase in aggregate output per worker is driven
by changes in the rest of the economy, not by manufacturing. In the end, manufacturing in
our data captures less than 10% of aggregate output in the economy. We thus also consider a
counterfactual in which only the rest of the economy fundamentals change as observed, but
manufacturing fundamentals and the initial distribution of manufacturing plants stay fixed to
their values in 1976. Using this counterfactual to “purge” the effects of changes in the rest of
the economy and isolate the effects of changes in manufacturing only, we find that initial tran-
sition growth accounts for all (117%) of the aggregate output per worker gains that are due to
changes in manufacturing by 2015.

2.4.2 The never-ending race: Transition growth remains important

As evidenced in the previous section, even in the absence of further changes in model funda-
mentals, transition dynamics – due to slow labor hiring and firing and slow plant entry and
exit dynamics – take decades to play out. A key question is whether the Indonesian economy
runs out of transition growth over time as new changes in model fundamentals provide new
potential for transition growth. We find that the quantitative answer to this question is no.
We show this result by revisiting the previous exercise but instead of computing the transi-
tion path based only on the initial distribution in 1976 and initial model fundamentals Θ̄F

1976,
we compute the perfect foresight transition paths for each year between 1976 and 2015 start-
ing from that year’s initial distribution and model fundamentals Θ̄F

t . This gives a total of 40
different counterfactual transition paths with their corresponding counterfactual equilibrium
wage paths and plant distributions. As a measure of the transition potential, we then calculate
for each transition path the number of years it takes to reach 90% of the (time-varying) steady
state manufacturing output. Figure 2.15 shows that it takes the 1976 economy 26 years to come
close to the steady state if fundamentals were to remain constant at Θ̄F

1976. On average, it takes
about 20 years and, importantly, the number of years to come close to the steady state does not
systematically decline and – if anything – increases over time.

This race between catching up to the steady state and changes in the steady state itself can only
be studied in a model that features both transition growth and changes in fundamentals and
we find strong quantitative evidence that due to the combination of large and frequent changes
in fundamentals and slow transition dynamics, the Indonesian economy does not get closer to
its time-varying steady state. Large demographic changes and policy changes pre-1975 also
provide a simple explanation for why the initial Indonesian economy in 1976 was far away
from its steady state. At last, potential for transition growth may not always provide a positive
force for economic growth; in fact, after 40 years of demographic changes, the mass of plants
in 2015 is above its steady state and transition growth is now negative as the mass of plants
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Figure 2.15: Distance to steady state over time

Notes: Years to reach 90% of the steady state manufacturing output for each transition path over 1976-2015. Each
year’s perfect foresight equilibrium transition path starts from that year’s initial distribution and fixes fundamen-
tals of that year over the transition. Best linear fit includes 95% CIs. Jumps are partly driven by census years in
which potential entrant distributions change more strongly.

slowly declines along the transition – an important consequence of an aging population.

2.4.3 The role of policy

While the Indonesian growth experience is driven by a never-ending race of transition growth
and changes in model fundamentals that induce new transition growth, the question is how
government policy enters. The simple answer is: policy drives part of the changes in model
fundamentals. Thus, to evaluate the effect of policy, we need to link changes in policies to
changes in model fundamentals. In this section, we show how to do this by focussing on
two specific but very important Indonesian government policy changes since 1975: education
reform that maps to changes in human capital (and thus aggregate effective labor supply),
and changes in Indonesia’s foreign direct investment (FDI) policy that map to changes in the
distribution of potential foreign entrants over time. In both cases, we first quantify the overall
effect of changes in the specific model fundamental and then quantify the (relative) effect that
can be attributed to specific policy changes. We show that overall changes in human capital
were large and a necessary condition for Indonesia’s manufacturing take-off, but observed
education policies only explain 5% of this effect. In contrast, we find that the overall growth
effects of FDI in Indonesian manufacturing were modest, but that observed changes in FDI
policy explain up to 85% of its effects.

The role of cheap labor & the INPRES school construction program

What are the economy-wide and manufacturing growth effects of dramatic increases in hu-
man capital in the Indonesian economy? Over the period 1976 to 2015, our estimates sug-
gest that human capital per worker Ht/Lt increased by 220%. To quantify the overall effects
of human capital increases, we consider a counterfactual in which the Indonesian economy
had not seen any human capital per worker increases over time. That is, we consider a
counterfactual growth path where we start from the initial distribution in 1976 and a coun-
terfactual path of model fundamentals with a modified path for the aggregate labor supply:
ΘF

1976 \ {Ht/Lt = H1976/L1976}∞t . To quantify the extent to which policy contributed to the
overall increases in human capital, we evaluate the effects of a particular educational policy
change. Namely, we evaluate the largest school construction program in Indonesia’s history
and one of the largest in the world: the 1970s INPRES school construction program. The pro-
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Figure 2.16: The role of education in Indonesia’s manufacturing growth.

gram successfully led to increases in schooling and wages (see: Duflo 2001; Akresh, Halim,
and Kleemans 2023). We assume the program only affected the Indonesian economy through
its effects on human capital. To quantify the effects of the INPRES program, we consider a
counterfactual in which all gains in human capital materialized except the ones that were due
to the INPRES program. For this we construct a counterfactual path of aggregate human cap-
ital in the absence of the INPRES program, drawing on existing estimates on the wage effects
of the program (which map to marginal changes in human capital), the known scale of the
program and the increasing share of treated cohorts over time (details in Appendix 2.C.2).

Overall, we find that the estimated 220% increase in human capital per worker increased ag-
gregate output per worker by 26.5% in 2015. The seemingly small aggregate effect is explained
by output in the rest of the economy being less dependent on labor, as captured by a low es-
timated labor elasticity. Figure 2.16 visualizes the quantitative effects that increases in human
capital had on manufacturing growth over the period 1976-2015. Manufacturing growth in
Indonesia relied heavily on the cheap labor that increases in human capital brought; in the
absence of this effective increase in the supply of labor (“No Education”), wages would have
roughly doubled and Indonesia would not have developed a successful manufacturing sector,
with manufacturing output and its employment share not even reaching 1/4 of their histori-
cal level. Average plant size would have only increased marginally over time, far less plants
would have entered and far more would have exited. The INPRES program only accounts for
a small share of these effects, roughly driving 5% of the aggregate output per worker gains
from increases in human capital. Figure 2.16 shows that the effect on manufacturing output,
the mass of producing plants and overall hiring, is approximately twice as big as the aggregate
effects. This is because manufacturing is more sensitive to labor costs than the rest of the econ-
omy. Furthermore, the positive effects of the INPRES program slowly increase over time as
more cohorts of Indonesians that benefited from the new-built schools enter the labor market.

The role of foreign ownership and FDI policy

Next, we look at the role of foreign direct investment in manufacturing, which we define as the
foreign ownership of manufacturing plants. Foreign-owned manufacturing plants are quan-
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titatively important, accounting for roughly 30% of manufacturing output in 2015 (see Figure
C.3 in Appendix 2.C.3) and the aggregate importance of foreign ownership increased steadily
since the late 1980s. FDI policy primarily affects the entry of foreign-owned plants, since
ownership shares are highly persistent and most variation in foreign ownership is across, not
within plants. We thus assume that FDI only affects the Indonesian growth experience through
changing the distribution of potential entrants – a model fundamental that is robust to time
variation in the incentives to enter – and consider counterfactual growth paths in which we
only change the path of potential entrant distributions. Again, we want to separately quantify
the effects of FDI and the relative effect that changes in observed FDI policy had on FDI. For
this, we separate the distribution of potential entrants at any point in time into the distribution
of potential foreign entrants and potential domestic entrants enforcing model-consistent entry
decisions. We then construct a counterfactual path of potential entrant distributions without
foreign entrants. To capture the effect of policy, we consider important regulatory changes in
FDI policy in 1987. Specifically, we exploit variation in potential foreign entrant distributions
right before and after the reform to measure the effect of policy and use the estimated effect to
construct a counterfactual path of potential foreign entrant distributions in the absence of the
FDI policy change (details in Appendix 2.C.3).

We find that FDI helped manufacturing growth, but did not play a transformative role. Specif-
ically, the entry of foreign-owned manufacturing plants explains 7.5% of the aggregate output
per worker gains due to manufacturing growth and we estimate that manufacturing output
and the manufacturing employment share would be 8% lower in 2015 in the absence of FDI.
The reason for this rather small effect is that given a high estimated supply of domestic poten-
tial entrants, the downward pressure on labor demand and wages due to the disappearance of
foreign entrants leads to an elastic response of domestic entry in general equilibrium that mit-
igates some of the negative effects of losing FDI. In contrast to the case of education policy, we
find that changes in FDI policy potentially explain most of the overall growth effects from FDI.
Specifically, changes in FDI policy potentially explain a four- to five-fold increase in potential
entry and these changes in FDI policy in turn explain 85% of the overall growth effects from
FDI.

2.5 Conclusion

This paper studied the drivers of growth miracles. Building on 40 years of plant-level man-
ufacturing panel data for Indonesia, we motivated a model in which rapid growth is driven
by a combination of transition growth and changes in fundamentals that are dominated by
worker and plant demographics. We showed how to tractably estimate this model on the ob-
served growth path using standard plant-level data and without assuming that the observed
economy is at a steady state at any point in time. We found that transition growth is key:
42% of the observed manufacturing output growth is simply explained by initial conditions in
1975 – dominated by young and small manufacturing plants – providing ample opportunities
for catch-up growth. Transition growth also does not become less important over time be-
cause important demographic changes in the economy induce further potential for transition
growth.

Since our model and estimation framework maps directly to observed time-varying aggre-
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gate growth and its micro-level drivers of endogenous changes in the distribution of plants,
it is particularly suited to study the dynamic growth effects of observed policy. This link is
important not only to better validate macroeconomic models of growth, but also to study the
aggregate growth and general equilibrium effects of policy – effects that are rarely identified in
micro-empirical policy evaluations. In this paper, we only started looking at this by showing
how to use the estimated model to evaluate the dynamic growth effects of two important In-
donesian policies: education reform and changes in FDI policy. Based on our results, a somber
conclusion – partly resonating related work on the Indian growth miracle (Bollard, Klenow,
and Sharma 2013) – is that observed policy mattered less for growth than we might think.
Instead, we find that Indonesian growth was mostly driven by structural forces related to de-
mographics. This does not mean that policy necessarily plays no role. In fact, in Appendix
2.C.4 we consider two sets of reduced-form policies – a reduction in (convex) labor adjustment
frictions and an increase in annual technology growth – that both would have doubled Indone-
sian manufacturing output by 2015, an even more remarkable manufacturing miracle closer to
experiences in countries such as China and Malaysia. Future research should further unpack
what drives changes in adjustment costs, technology growth or the pool of potential entering
plants and link these closer to policy.
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Appendices

2.A Data and Empirical Evidence

2.A.1 Data cleaning details

In the following subsection, we describe in detail the data cleaning steps we take to ensure
that the data is consistent over time and that results are not driven by different forms of mea-
surement error. The main data cleaning steps relate to cleaning plant-level labor (wage bill and
workers) and output (value added) over time. We further discuss how we deal with “dynamic”
outliers (e.g. unrealistic within-plant jumps in value added or the wage bill) and observations
with extreme labor shares that pose numerous problems for the estimation and computation
of the model. Besides these mentioned cleaning steps, we also drop a few clear outliers, such
as when the plant ID is misreported or missing or when magnitudes of multiple reported vari-
ables are impossible. (Give details on final cleaning: How does raw data differ from cleaned
data). At last, we report details on how we clean the capital series, industry codes and measure
plant entry and exit.

Cleaning labor and the labor wage bill

The manufacturing census consistently reports a plant’s total number of workers (including
paid and unpaid) as well as separately the number of paid versus unpaid workers and the
number of production and non-production (including managerial) workers. The main clean-
ing step we apply to ensure consistency over time is to drop all plants with less than 20 total
workers (which is enforced by BPS starting in 1990, but not before), drop plants that report zero
paid workers or that report more paid workers than total workers. This step drops slightly less
than 2% of plant-year observations with dropped observations concentrated before 1990. We
also identify a bunching at 99 workers in the years 2013-2015 (roughly 3-4% of plants), which
we interpret as true bunching driven by actual policy changes and thus do not correct.22

For the structural model, we build on a plant’s reported total wage bill. This variable is the sum
of the total wage bill for other workers and for production workers. In principle, it includes
all payments to labor, including in-kind transfers, overtime pay, bonuses and social contri-
butions (e.g. pension and accident allowances). Since the survey asks about current workers
and doesn’t separately ask about severance pay, we treat the reported wage bill as excluding
severance pay.

22For example, Indonesia introduced an occupational safety and health regulation in 2012 that was targeted
at manufacturing firms and mandates any workplace with more than 100 workers to implement additional work
safety measures.
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We take three main cleaning steps for the reported wage bill. First, we correct systematic mis-
reporting for the year 2011. Looking at the evolution of the distribution of the total wage bill
across years, we find that 2011 is the only clear outlier with the only bimodal wage distribution
across all years. In 2011, the bottom 20% of observations show exactly the same per worker
wage at an unrealistically low level that is below the bottom 1% of observations in 2010 and
2012 and roughly 50 times lower than the average minimum wage in 2011. Given that these
are well-defined misentries, the remainder of the distribution is well-behaved and we observe
most plants before and after 2011, we opt for imputing misentries using within-plant averages
across 2010 to 2012, enforcing linear growth for 2011.

Second, we correct for misreporting in the wages for non-production workers. Non-production
workers account for roughly 16.5% of overall employment in our data. However, 17% of
plant-year observations reportedly employ zero non-production workers. This also means
that plants may not always report all managerial workers, which is likely if the managerial
staff partly owns the establishment (and is thus not formally employed). To the extent that all
payments to managerial workers should be counted as labor costs, the Indonesian data may
significantly underestimate labor costs. We cannot correct for this form of underreporting.
However, we can correct for the following: About 10% more plant-year observations report
zero wage payments to non-production workers than plant-year observations reporting zero
non-production workers. That is, there are plants that report employing non-production work-
ers, but paying them no wages. This could be in part due to some plants reporting managerial
staff who receive remuneration other than wages or due to plants simply not reporting non-
production worker wages. In any case, we think it is better to impute wages here, using plants’
reported wages for production workers and the average year-specific pay gap across produc-
tion and non-production workers for plants that report both wages. We find that wage premia
for non-production workers were around 90% in 1975 and declined to around 20% in 2015. In
the end, the overall importance of this correction is small, because the correction only applies
to a small number of observations.

In the third and last cleaning step, we correct the total reported wage bill across periods where
the exact questions and components of the total wage bill changed. While plants were asked
consistently to report total payments including cash and in-kind wages, pensions and other
social contributions between 1975-1995, survey questions changed most notably between 2001-
2003, 2004-2010 and 2011-2015. Looking at changes in the distribution of reported total wage
bills, the 2004-2010 period appears to be the most problematic period in which total wages are
systematically underreported vis-a-vis the other periods.

We correct for changes in the measurement of the total wage bill over the period 2004-2010
by exploiting within-plant changes in reported wage bills across changes in the measurement
period (from 2003 to 2004 and from 2010 to 2011) and further utilizing information across
different types of workers and the reporting of the number of workers by type. Plants i re-
port xjit, the total reported wage bill for worker type j in period t. Specifically, we assume
that: xjitm = wth

j
itϵ

j
itτ

j
m, where wt is the wage (in line with our model), hjit are plant-worker-

type-specific efficiency units of labor, ϵjit captures idiosyncratic measurement error and τ jm is
systematic underreporting that is constant within a worker-type and within the measurement
period m where the same questions to elicit the worker-type-specific wage bill are asked. We
assume that τ jm ∈ (0, 1] for the period 2004-2010 and unity otherwise.
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Our approach separately identifies wages from the measurement error τ jm across time and thus
allows to correct for an important part of measurement error that leads to the underestimation
of the total wage bill and a time inconsistent measure of the wage bill. For separate identifica-
tion, we assume that over two consecutive periods, plants use the same average human capital

within types of worker: hj
it

ljit
=

hj
it+1

ljit+1

= αj
i . This allows some plants to specialize on high pro-

ductive production workers or other plants to specialize on low productive managerial staff,
but restricts changes in the average human capital within plant-worker-types. As long as the
plant-specific number of workers by type are reported either without measurement error or
with constant plant-worker-type measurement error, the assumption allows to identify:

Ei

xj
i,t+1,m

lji,t+1,m

xj
i,t,m

lji,t,m

≡ Ei

x̃ji,t+1,m

x̃ji,t,m
=
wt+1

wt
Ei

ϵjit+1

ϵjit

Within measurement periods m, one can show that under realistic magnitudes for the mea-
surement error, the following holds:23

Ei

x̃ji,t+1,m

x̃ji,t,m
≈ wt+1

wt

Across measurement periods, separate identification of the change in measurement and the
wage is impossible without further assumptions. To see this, write:
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where we have made use of the same approximation as above. Even then, changes in the
measurement error across measurement periods cannot be separately identified from wage
changes. To solve this issue, we interpolate wages from wage growth in the previous period
and the next period (for which measurement does not change), assuming that wages grow
smoothly over time.

In our case, we set τ jm = 1 for all measurement periods except the period 2004-2011. To identify
τ jm′ for 2004-2011, we are now actually over-identified, because we can identify the measure-
ment error from variation between 2003-2004 or from 2010-2011. We choose to use 2003-2004
because 2010-2011 featured a change in the minimum wage in Indonesia, which partly ex-
plains a large increase in plants’ total wage bills and we do not know how to separate this
change from a change in the measurement. Following this approach, we find that τ jm′ ≈ 0.94,
similar when restricting to production workers only or when looking at all workers. We en-

23Specifically, a first-order Taylor series approximation around the mean of the measurement errors
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. With a second-order Taylor series approximation, we get: Ei
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]
. Plugging in realistic measurement error, the 2nd-order correction is very

small. For example, if measurement error within plants is positively correlated (which is the likely case), then the
two correction terms go in opposite directions. Furthermore, both the covariance term and the variance term are
close to zero for reasonable magnitudes of measurement error.
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force the production worker correction across all plants for the measurement period 2004-2011
(which means that their wage bills get upward corrected by 1/τ jm′ , a correction of roughly 6%).

Cleaning output / value-added

Throughout the paper, we use a consistent definition of value-added output. This definition
coincides with how the Indonesian statistical agency (BPS) constructed value-added output
for some, but not all years. Specifically,

Value-addedit ≡ Gross incomeit − Intermediatesit

where Gross incomeit ≡ Gross salesit+electricity salesit+revenue from industrial servicesit+
other incomeit +∆value of semi-finished productsit and Intermediatesit ≡ Raw materialsit +
Total fuel/electricity expendituresit + Other expensesit. All inputs in the accounting identi-
ties are reported in their current values of Rupiah, which we deflate to 2010 constant Rupiah
based on the aggregate CPI. We start by dropping observations with missing or negative gross
income, which are less than 0.5% of observations.

Next, we construct a time-consistent measure of intermediates. The main issue is that inter-
mediates are likely underreported since the survey only asks for specific categories of expen-
ditures and intermediate expenditures have likely become more complex over time, leading
plants to underreport parts of their expenditures. This leads to an overestimate of value-added
output and an underestimate of capital and labor cost shares at the plant-level. We correct in-
termediate expenditures in two steps.

In the first step, we look at one main expenditure category of intermediate inputs for which
we know that time inconsistency is an issue. Specifically, Other expensesit are reported in-
consistently over time because not all components of other expenses are enumerated in every
year. In the following, we describe the components of Other expensesit and how we impute
them consistently across plants over time. In the years with the most detailed survey questions,
Other expensesit (Xit in short) are the sum of three components (indexed by c): (1) expenses for
other goods (consisting of packaging, spare parts and stationary), (2) manufacturing services,
repair and maintenance, and (3) remaining other expenses (with detailed subcomponents for
some years). We improve the measure of intermediate expenditures by imputing these three
subcomponents in cases where they are missing. Similar to the components of the labor wage
bill, we deal with underreporting of other expenses by exploiting within-plant differences in
reporting around years with changes in survey questions. We separately impute missing frac-
tions of each of the three components of other expenses, using further information on subcate-
gories j within components c, bringing all series to the most complete level of reporting in the
years 2006 and 1996/1997.

Specifically, we assume that ∀c, j : Xicjt = αicjYit. That is, any other expense category (or
subcategory) is a plant-subcategory-specific fraction of gross income Yit. Since expenditures
for specific subcategories are systematically missing in some years, but gross income Yit is
reported for all years, we impute complete missing subcategory expenditures as follows: For
plants that we observe across different measurement periods, we impute their expenditure
shares from average within-plant expenditure shares around the time of missing. For example,
expenses for other goods are missing between 1998 and 2005, which we impute using the
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plant average of plant-specific expenditure shares in 1997 and 2006 together with plant-year-
specific gross income Yit. This ensures within-plant consistency and allows for plant-category-
year-specific variation in expenditures. For plants for which we do not observe expenditures
in other years, we use the aggregate category-specific expenditure share around the time of
missing.

On top of this, we correct reported expenditures for the remaining other expenditures for the
period 1975-1984 in which the reported series is clearly underreported in comparison to post
1985. For this correction, we again proceed separately for plants that we observe across mea-
surement periods and for plants that we do not, using either the average within-plant differ-
ence in reported ratios or the ratio of aggregate expenditure shares across the two measurement
periods as correction factors.

Overall, this first step of cleaning intermediate inputs ensures more time consistency, but does
not have a sizable effect on overall intermediate expenditures. In the second step of correcting
intermediate expenditures, we deal with the sizable remaining decline in the intermediate ex-
penditure share across plants over time. For example, the aggregate intermediate expenditure
share declines by more than 10 percentage points from roughly 0.65 in 1980 to 0.525 in 2015
(mostly driven by a decline in the raw material input share). We expect that a major part of
this decline is in fact measurement error. One simple reason could be that plants use more
processed intermediate inputs, which they do not fully report as “raw materials”. To distin-
guish this driver from industrial composition effects (e.g. industries relying on intermediate
inputs declining in relative importance over time), we construct the following correction: We
regress log(ϕijt/(1 − ϕijt)) = αj + αt + ϵijt where ϕijt is the intermediate expenditure share
of plant i in 5-digit industry j at time t. We use the log odds ratio to ensure that any cor-
rection we implement gives expenditure shares that are bounded between zero and one. αj

and αt capture industry and time fixed effects. We interpret αt as our time-varying bias term,
using α1975 as the normalization factor (for which the bias is zero). Controlling for industry
fixed effects ensures that the bias terms do not capture variation in intermediate expenditure
shares from changes in the industrial composition. Corrected intermediate input shares are
then given by ϕ̃ijt = exp(αj+α1975+ ϵijt)/(1+exp(αj+α1975+ ϵijt)). The correction maintains
plant-level variation in intermediate expenditure shares and delivers both within-plant and
aggregate time consistency. To ensure that the regression is well-specified, we initially drop
observations with non-positive intermediate inputs or value added as well as observations
with missing value added. This drops less than 2% of observations. After the correction, we
recompute intermediate expenditures and value added.

Identifying problematic outliers: jumps and extreme labor shares

The last important cleaning step we take, is to identify problematic outliers that are likely
misentries and would have an outsized role on the model estimation and inference.

We start with “dynamic” outliers by which we refer observations that are outliers within the
time series of an individual plant. We treat a plant-year observation as a dynamic outlier if
the total wage bill or value added output series (Xit in the following) of an individual plant
sees a sizable one-time jump after which it reverts directly back. We consider two different
measures: the year-to-year within-plant change Xit

Xit−1
and the year-to-year within-plant quan-

tile difference qt(Xit) − qt−1(Xit−1). For both measures, we first identify a potential outlier
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if any of the two measures is below the 10th or above the 90th within-year percentile for the
respective measure. For example, we classify the following observation a potential outlier: Be-
tween 1993 and 1994, a plant’s quantile of value added output changed by more than the 90th
percentile of this year’s distribution of value added output quantile changes. We classify any
potential outlier as an actual outlier only if the following year is also identified as a potential
outlier whose change goes in the opposite direction.24 This ensures to identify jumps, while the
initial and final level do not need to coincide, allowing for plant-, time- and variable-specific
drifts. Big one time changes are explicitly not counted as outliers, treating them as true shocks.
We drop any dynamic outlier that we detect through this procedure. Note that this procedure
also identifies observations that change back and forth multiple times in a row as outliers as
long as their changes are very large. In total, this procedure drops almost 10% of plant-year
observations and roughly 10% of total reported value added.

The second and last cleaning step we take is to drop observations with extreme labor shares.
These are observations with reported labor shares below 5% and above 500% (roughly differ-
ing from the median labor share of 50% by a factor of 10). Extreme labor shares are likely a
combination of overreported value added and underreported wage bills and these observa-
tions have a sizable impact on aggregates. They make up roughly 3% of observations, but
account for 41% of total reported value added. While we think that many of these plant-year
observations with large value added are correctly classified as being “granular” in their im-
portance for output (e.g. many of these plants consistently report being large over time), their
exact value added output and wage bills are likely mismeasured.

Cleaning capital

For cleaning plants’ self-reported capital stock, we draw on the cleaning steps in Cali, Le
Moglie, and Presidente (2021), which is the most thorough attempt at cleaning the Indonesian
manufacturing plant capital series that we are aware of. The cleaning steps draw in part on
the perpetual inventory method (PIM). Details can be found in Cali, Le Moglie, and Presidente
(2021).

Cleaning industry codes

Industry classifications changed over time, starting with ISIC 2 in 1975 and moving to ISIC
3, ISIC 3.1 and ISIC 4 by the end of our data period. For harmonization, we start by fix-
ing a plant’s first reported 5-digit industry (the most disaggregated level reported). While
plants may reasonably change industries over time, we opt for fixing industries to have a
time-consistent plant-level measure of industry. We then build backward correspondences at
the 2-, 3-, 4- and 5-digit industries respectively using within-plant changes in industry classi-
fications across changes in classification systems (that is, correspondences that map from later
year classifications to earlier ones). For plants that enter later, we enforce these within-plant
correspondences. In the case of one-to-many mappings (e.g. the same industry code in ISIC
3.1 maps to different codes in ISIC 3), we enforce the most common one. Note that this only
matters for plants that are not observed previously. In the case of no linking (e.g. a plant enters
in ISIC 4 with a code that has no observed backward linkage), we check codes manually and
use official crosswalks. In the cases where we think that industries are truly “new”, we simply

24We do this separately by measure so the identification of an outlier is based on within-measure changes only.
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create a new industry code. In the end, we are left with 140 unique 5-digit industry codes, 120
of which are initial ISIC 2 codes and 20 codes are new industries. At the 2-digit level, we have
9 different industries.

Plant entry and exit

In principle, classifying entry and exit should be straightforward: whenever a plant with a
new panel identifier enters our panel, we would record this as plant entry and whenever that
plant reports in t but does not report in t+1, we would record the plant as having exited at the
end of t. In practice, this classification would inflate plant entry and exit because occasional
non-reporting is common. This is because of actual non-reporting and – as described above
– because we explicitly drop plant-year observations with misreported entries. We thus only
classify a plant as having exited if we do not observe reporting by the plant at any future time
period. Similarly for entry, we only count the plant as entering if it is the first time the plant
identifier has entered the panel. This difference is quantitatively important: the unconditional
exit rate drops almost by half from around 14% to 7.9% if we follow our classification. As we
discuss in the main text, 7.9% is close to other exit rates reported for India, Mexico and the US
(e.g. Hsieh & Klenow 2014).

Where and how does this matter and could this new classification bias results differentially
over time? Throughout the analyses, we mostly draw on within-plant changes that are robust
to compositional changes due to entry and exit. In the structural model, we explicitly continue
modeling plants that are non-reporting but non-exiting, correcting for (some forms of) differ-
ential non-reporting over the state space. Bias does arise from non-reporting or misreporting
that is correlated with the state space for certain estimation steps. For example, estimating con-
ditional exit probabilities clearly suffers from bias if measured exit probabilities are biased over
the state space. Two potential issues may be particularly important in our case: non-reporting
due to the cutoff of 20 workers and that our measure of exit may inflate exit towards the end
of our data because we cannot distinguish permanent exit from temporary non-reporting. We
think that both issues likely introduce biases that are small in magnitude.

As for the cutoff of 20 workers, the issue would be particularly problematic if plants regularly
moved back and forth over the threshold or if plants with more than 20 workers moved per-
manently below the threshold, which we would wrongly classify as plant exit. We do not think
that these are important issues in the Indonesian data. For example, few plants shrink and as
we show in the main text, plants with 20 workers become relatively less important vis-a-vis
larger plants over time. Also, given that pre-1990, plants often continue reporting even if they
move below 20 workers, we find that movements around the threshold are rare. As for the
classification of exit towards the end of the sample, we note that non-reporting actually seems
to decline over time and 2015 (the last year of the data) is a census year in which enumeration
is most complete.

2.A.2 Further main descriptives

Figure A.1 reports the evolution of the share of employment and value-added output that is
captured by the Indonesian manufacturing plant census (1975-2015) in comparison to aggre-
gate manufacturing value-added output and employment as reported in the GGDC 10-sector
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Figure A.1: Representativeness of manufacturing panel over time

Notes: Evolution of the employment and value-added output share captured by the Indonesian manufacturing
plant census (1975-2015) in comparison to aggregate manufacturing value-added output and employment as
reported in the GGDC 10-sector database (1975-2012) and the Economic Transformation Database (1990-2018).
Straight lines report (unweighted) time averages. The black dotted line highlights the Asian Financial Crisis.

database (1975-2012) and the Economic Transformation Database (1990-2018).25 The series
tend to increase over time, which captures the fact that medium- to large-size manufactur-
ing plants become more important over time. However, there is important variation in the
shares over time that is not well-captured by a simple secular increase in the importance of
medium- to large-sized manufacturing plants. In the model, we allow for the time-varying
importance of the rest-of-the-economy, and differentially so for output and employment, in-
cluding the part of manufacturing that our data misses. Note that for output, the increase
is much stronger if we do not clean the value-added series, because a few plant entries can
have an outsized effect on total value-added (e.g. for only a minimally cleaned output series,
we found that the output share of our manufacturing data can increase to up to 80% by 2015,
entirely driven by a few plant entries).

In the main text, we also report that our manufacturing panel misses 99% of manufacturing
plants in Indonesia. This is based on information on a random five percent sample of all manu-
facturing establishments from the Indonesian Economic Census in 2006 reported in Hsieh and
Olken (2014). We also verify that our micro-data is consistent with capturing all manufacturing
plants with more than 20 workers. For example, based on the 2006 census sample (as reported
in Hsieh and Olken (2014)), manufacturing plants with more than 50 workers should capture
34% of total manufacturing employment, while this figure is 32% based on employment in
our micro-data (29.5% after cleaning) and taking the aggregate sectoral employment from the
GGDC 10-sector database as denominator. Given that the manufacturing plant panel includes
new plants based on the Economic Census, coverage is more complete after Economic Census
years.

25We merge the latter two series consistently over time by enforcing the more recent vintage and aligning all
series before 1990 to be consistent with the evolution after 1990. Specifically, for each variable, we take the ratio of
the GGDC10 and ETD series in 1990 to be the amount that the 1990 GGDC series needs to be adjusted by. We then
similarly correct each year from 1975 to 1990 by a correction factor that equals unity in 1975 (no correction in 1975),
is equal to the full correction in 1990 and is taken from an equal-spaced, smoothed series in the years between.
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Figure A.2: Evolution of aggregate and sectoral employment and output (in logs)

Notes: (Economy-wide) Total and GGDC are based on joining the GGDC 10-sector Database (1975-2012) and the
Economic Transformation Database (1990-2018). Panel refers to the Indonesian manufacturing plant census (1975-
2015, 20+ workers). All series are normalized by their respective value in the first year. (A) and (B) use value-added
output.

Next, Figure A.2 reports the evolution of aggregates in the Indonesian economy, showing the
series in logs to better visualize how growth rates changed over time.

For completeness, Figure A.3 reports the full year-to-year evolution of employment shares for
different plant sizes.

We further report estimated Pareto tail coefficients for the manufacturing data in Figure A.4.
We follow Chen (2022) in constructing two simple, but alternative measures of the Pareto tail.
Let F (x, t) be the CDF of the underlying distribution of plant employment, and f the density
function. Then F̃ (x, t) ≡ 1−F (x, t) denotes the fraction of plants with size greater than x, and
F̃ emp(x, t) ≡

∫∞
x ydF (y, t) the total employment in plants with size greater than x. In addition,

let TL be the employment size threshold for large plants and TS for small plants. Assuming
that F (x, t) follows a Pareto distribution with shape parameter kt, we have:

kt = 1− log
F̃ emp(TL)

F̃ emp(TS)
/log

TL
TS

Alternatively,

kt = −log F̃ (TL)
F̃ (TS)

/log
TL
TS

In both cases, Pareto tails can be computed in the absence of knowing the employment share or
fraction of plants below 20 workers, because these shares cancel out. Panel A reports estimated
Pareto coefficients for different thresholds TL for the employment share measure, while Panel
B reports the estimated Pareto coefficients for the same thresholds TL but for the number of
plants instead.
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Figure A.3: Evolution of employment shares in large Indonesian manufacturing plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers.

Figure A.4: Evolution of Pareto tail coefficients

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers.

In accordance with the main text, we estimate Pareto tails by decade in 1975, 1985, 1995, 2005
and 2015. The overall trend in Pareto tails is consistent for different measures and different
thresholds TL: the tail of the employment distribution grows markedly thicker over time.
However, there are important differences both across measures and across different thresholds,
which is not in line with a common Pareto distribution in the cross-section. The quantitative
implications are also very different for the two different measures, because Pareto tails below
1 imply that not even the mean of the distribution is defined.

Figure A.5 reports changes in the plant age distribution over time. Average plant age increased
by roughly 40% between 1975 and 2006. While the 1975 plant distribution does feature very old
plants, by far most plants are very young. In contrast, 30 years later, the plant age distribution
is far more equally distributed, featuring more medium-old plants and relatively fewer very
young plants.

2.A.3 Additional results for iterating on initial distribution

In this subsection, we provide further results on the reduced-form exercise of iterating on the
discretized initial plant distribution. We start out by showing that 1975 and 1976 are good
starting years, and if anything, give conservative estimates. We then show that results are very
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Figure A.5: Evolution of the age distribution across plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Only showing data for
years 1975, 1985, 1995,2006. The last year is 2006, because 2006 is the last year where plant age is separately asked
in the survey. After 2006, we only observe plant age for surviving plants, biasing estimates of the cross-sectional
age distribution.

similar when accounting for entry and exit.

Results are similar when varying transition matrices and averaging transition matrices over
multiple years. From an historical point of view, taking 1975 as the starting year and 1975
and 1976 as the initial years from which we construct the reduced-form transition matrix, is
conservative, because (1) the two years fall in between the two periods of growth accelerations
identified by Hausmann, Pritchett, and Rodrik (2005) for Indonesia (which are dated to 1967-
1974 and 1987-1994 respectively), and (2) they are not affected by any notable labor or financial
market reforms and predate the major tax reform of 1976 (see: Hill 2000). This is not to say that
the 1970s were economically without important events. Oil prices rose dramatically in 1973
and inflation became a major macroeconomic issue that was followed by interest rate hikes
and ceilings on commercial bank credit in 1974 (Hill 2000, 294). There were also important
export-promoting trade policy reforms throughout the 1970s, but during a time in which In-
donesia was still a very closed economy. Based on World Bank national accounts data, exports
made up around 22% of GDP in 1975 whose share actually slightly decreased from 1975 to
1976, alleviating the concern that the growth between 1975 and 1976 is purely driven by trade
reforms.

Figure A.6 shows that taking transition matrices for any other starting year (e.g. 1985 as start-
ing year for 1985-1986 transitions) gives, if anything, stronger results than the ones reported
for 1975 and 1976. Most years see much more growth in the average plant size and the employ-
ment share of large plants. Importantly, all years show an eventual increase in the employment
share of large plants, giving credence to the idea of a tail that slowly fills up. Furthermore, any
other starting year in the 1970s would have given much stronger results. E.g. taking transi-
tions between 1976 and 1977 would have explained 67% of the average size increase and 96%
of the employment share increase over time. We also considered averaging transition matrices
across multiple years and obtained very similar results.

Next, we considered two variations on the exercise to account for entry and exit. To begin with,
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Figure A.6: Reduced-form transition dynamics from initial conditions in 1975 and all year-to-
year transition matrices

Notes: Reduced-form transition dynamics implied by initial plant size distribution in 1975, but taking transition
matrices from each year-to-year pair in the data.

note that entry and exit is potentially very important, especially if entering plants differ from
exiting plants. Of the roughly 6,800 plants with more than 20 workers operating in 1975, less
than 12% were still operating in 2015. On the other hand, as shown in Figure 2, the number
of active plants increased by a factor of 4 between 1975 and 2015. This means that the vast
majority of active plants in 2015 did either not exist or was not captured in the 1975 census. To
capture the role of entry and exit, we amend the previous exercise by including a state-0 which
captures inactive plants or potential entrants. This means that both the initial distribution is
defined over an additional state-0 and the transition matrix will feature transitions into (exit)
and out of state-0 (entry). To construct the new transition matrix, we can use observed entry
and exit flows. Since transition matrix entries are computed as the share of flows from bin x in
period t into any other bin in period t + 1, we can readily compute transitions from an active
state to an exit state. However, we cannot directly compute entries from inactivity, because
the baseline is fundamentally undetermined. We do not know how many inactive or potential
plants there are. This means we can also not directly compute the new initial distribution
that includes the measure of plants in state-0. Since both the transition matrix and the initial
distribution depend on the number of inactive plants, this number cannot be identified from
observables in the first two periods alone. In theory, we can pin down the initial number of
inactive plants by enforcing that the transition matrix stays constant over time and by feeding
in another moment, the change in the number of plants between 1976 and 1977. However,
the initial periods saw an initial decrease in the number of plants between 1975-1976 and a
subsequent increase between 1976-1977. To match this pattern, we would have to enforce a
negative transition matrix entry for staying inactive.

To avoid this, while giving almost indistinguishable results, we instead assume that the share
of inactive plants that stay inactive is 0. This identifies the transition matrix and we then con-
sider two additional exercises where we keep this transition matrix fixed. In the first version of
the exercise with entry and exit, we simply iterate on the initial distribution and the transition
matrix. This keeps the total number of plants (inactive + active) constant, while introducing
interesting entry and exit dynamics that directly affect the evolution of the plant size distri-
bution over time. Results for this exercise are given by the lines “Entry + Exit” in Figure A.7.
While the long-run results are almost unchanged to the previous results, introducing entry and
exit does speed up transition dynamics considerably, providing a much better out-of-sample
fit for the early transition period. This is driven by observed exiting plants being smaller and
less productive than observed new entrants in 1976. With a positive share of inactive plants
staying inactive each period would slow these predicted transition dynamics down.

In the second version of the exercise with entry and exit, we additionally vary the number
of plants that enter each period. Specifically, we exactly match the increase in the number
of active plants over time as shown in Figure 2.2, while taking information on new entrants
and exits only from 1975 and 1976. In contrast to the previous exercise with entry and exit,
here we do take limited information on future plant entry and thus it does not lend as well to
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Figure A.7: Reduced-form transition exercise with entry and exit

Notes:

Figure A.8: Main plant exit patterns

Notes: Panel A: Residualized by 5-digit industry fixed effects. Standard errors are two-way clustered by industry
and year. Results show 95% confidence bands and blue line gives unconditional average. Panel B: Labor productiv-
ity is measured as value added per worker, residualized by 5-digit industry-year fixed effects. Vertical lines report
25th, 50th, 75th, 90th and 95th percentiles respectively.

predicting future changes in the plant size distribution. However, this exercise gives a more
complete picture of the importance of entry and exit observed in the data. Results are given by
the lines denoted “Entry + Exit Growth” in Figure A.7. The series again behave very similarly
as before, but we can more clearly see that important year-to-year fluctuations in the real data
series are driven by entry shocks. For example, the inclusion of many more plants in 1985 had
important medium- to longer-run effects on the evolution of the size distribution.

2.A.4 Further details on exit behavior

Here, we provide evidence that exit behavior only varies little with plant productivity and
does not clearly respond to aggregate shocks. Figure A.8 Panel A shows that exit rates vary
quite strongly over time, but are not straightforwardly affected by measurable aggregate eco-
nomic shocks. For example, exit rates actually decreased during the Asian Financial Crisis
in 1998 & 1999. To focus only on within-industry variation, we residualize exit rates by 5-
digit industry fixed effects here. Figure 5 Panel B shows productivity distributions of exiting
and surviving plants using value added per worker as a simple measure of (labor) produc-
tivity and only using within-industry-time variation by residualizing the measure by detailed
5-digit industry-year fixed effects. Surviving plants are more productive on average than exit-
ing plants, but given strong overlap in the two distributions, most plants do not exit because
of their productivity. A dynamic implication of this difference is that much of plant exit is not
driven by productivity so that it takes time for unproductive plants to leave the economy and
productivity improvements from selective exit take time to materialize.

2.A.5 Details and robustness for production function estimation

We start out by proving formal identification of the production function for the different cases
(static vs. dynamic capital, time variation in production functions, industry heterogeneity). We
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then discuss our estimation strategy and provide detailed estimation results for the case with
full flexibility on the time variation in production functions but without industry heterogene-
ity. In the last part, we then consider the case of industry heterogeneity.

Identification of production function

We have the following setup. Log output by firm i at time t is given by

yit = xit + f(hit, kit)

where xit is productivity, hit is labor input, kit is capital and the price of the homogeneous
production good is normalized to unity throughout. We leave f() unspecified here to make
clear that the identification proof is non-parametric. In the estimation and model, we assume
that f() is Cobb-Douglas. We also suppress industry variation here, but identification extends
naturally to the case with industry variation in production functions. We start with the more
general case where both capital and labor are chosen dynamically and then discuss the simpler
case when capital is statically chosen.

Following the literature, we assume that in the case of dynamic capital input choices, capital
is pre-determined. The input choices can then be written as non-parametric functions of the
relevant state-space:

hit = fh(hit−1, kit, xit,Ωt)

kit = fk(kit−1, hit−1, xit−1,Ωt−1)

where we have specified in which sense capital is pre-determined. For notational simplic-
ity, we drop the dependence on Ωt throughout, because identification arguments are cross-
sectional. At last, productivity follows a general first-order Markov process with

xit = fx(xit−1, uit) with uit|xit−1 ∼ U(0, 1)

where uit is an innovation. This representation follows the Skorohod representation of random
variables and is without loss of generality (see Demirer 2022). Output, labor and capital are
strictly monotonic in productivity, which imposes weak regularity conditions on the produc-
tivity process xit, such that each can be inverted for productivity:

∂y

∂x
> 0 =⇒ xit = f−1

y (h, k, y,Ωt) (2.15)

∂h

∂x
> 0 =⇒ xit = f−1

h (h−1, h, k,Ωt) (2.16)

∂k

∂x
> 0 =⇒ xit−1 = f−1

k (k, k−1, h−1,Ωt−1) (2.17)

We now adapt the identification proof by Demirer (2020):

h = fh(h−1, k, fx(x−1, u)) = fh(h−1, k, fx(f
−1
y (h−1, k−1, y−1), u)) = f̃h(h−1, k, k−1, y−1, u)

u = Fh|h−1,k,k−1,y−1
(h|h−1, k, k−1, y−1)

Intuitively, two firms with the same current capital, previous labor, previous capital and pre-
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vious output, but different today’s labor differ only in innovation to productivity. Using the
identified u, we can then identify the production function using the control function fx(x−1, u)

for unobserved productivity x:

y = f(h, k) + fx(x−1, u) = f(h, k) + fx(f
−1
y (h−1, k−1, y−1), u)

A semi-parametric regression of y on the known function f(h, k) of observables and a non-
parametric term in observables/identified terms (h−1, k−1, y−1, u) identifies the output elastic-
ities of interest.

In the case where capital is chosen statically (e.g. via a frictionless rental market), the identi-
fication approach simplifies. Specifically, dependence on k drops out in the sense that input
choices are now given by:

hit = fh(hit−1, xit,Ωt)

kit = fk(hit−1, xit,Ωt) = fk(hit, xit,Ωt)

Output and labor are strictly monotonic in productivity such that:

∂y

∂x
> 0 =⇒ xit = f−1

y (h, y,Ωt) (2.18)

∂h

∂x
> 0 =⇒ xit = f−1

h (h−1, h,Ωt) (2.19)

Identification is then given by:

h = fh(h−1, fx(x−1, u)) = fh(h−1, fx(f
−1
y (h−1, y−1), u)) = f̃h(h−1, y−1, u)

u = Fh|h−1,y−1
(h|h−1, y−1)

Now, without dependence on capital, two firms with the same previous labor and previous
output, but different today’s labor differ only in innovation to productivity. Using the identi-
fied u, we can then identify the production function using the control function fx(x−1, u) for
unobserved productivity x:

y = f(h, k) + fx(x−1, u) = f(h, k) + fx(f
−1
y (h−1, y−1), u)

A semi-parametric regression of y on the known function f(h, k) of observables and a non-
parametric term in observables/identified terms (h−1, y−1, u) identifies the output elasticities
of interest.

Production function estimation with time-variation but no industry variation

In the following, we report our production function estimation results. We start by showing
results based on the sample from 1990 until 2015, which includes data on plant-level capital.
We then discuss estimates from 1975-1990 and estimates with further industry heterogeneity.
Importantly, (1) the estimated elasticities for labor are not biased by excluding capital, and (2)
the estimated capital elasticities post-1990 are very low, meaning that any choice on how to
model capital has only very small effects on productivity estimates.
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Figure A.9: Estimated capital and labor output elasticities for each year between 1990-2015

Notes: Panel A gives estimates based on a static choice of capital, Panel B gives estimates assuming capital is
dynamically chosen. The latter requires to drop year 1990 in the estimation, because the estimator requires previous
capital choices. Horizontal lines give average estimates over time. Grey dotted lines give 95 percent confidence
bands (note that standard errors are not yet corrected for the two-stage estimation).

Figure A.9 reports estimated capital and labor elasticities. Panel A gives estimates based on as-
suming that capital is statically chosen, while Panel B allows capital to be dynamically chosen.
The estimates assume a common production function across manufacturing industries, but al-
low for fully flexible elasticities over time. Allowing for time-series variation is important, be-
cause policy functions are generally time-varying if the economic environment changes so that
pooling estimates across years without allowing input choices to vary over time is model in-
consistent. Elasticity estimates are remarkably stable and do not show a clear trend over time.
Estimates are also very similar whether one assumes static or dynamic capital input choices.
For example, the average estimated labor elasticity varies by less than 5% across the two differ-
ent estimators (from 0.726 to 0.694). Furthermore, the estimated labor elasticity is close to 2/3,
a common value in the literature. Note, however, that this is in a context where both the ag-
gregate labor share in manufacturing (around 0.25) and the median labor share (around 0.54)
are substantially below the estimated elasticities. Our model accounts for this systematic dif-
ference. Estimated capital elasticities are much lower than commonly estimated/used values
in the literature and we discuss this point further below.

Elasticity estimates for each year are based on the following estimation steps: In the first step,
we flexibly estimate the rank (taking the empirical cumulative distribution function) of labor
conditional on previous labor and previous output. From this estimate, we then back out
a monotonic transformation of the productivity innovation u as the difference between the
observed and estimated rank. In the second step, we then estimate a log-log regression in
capital and labor on output, but flexibly controlling for the different components of the control
function (the estimated u and previous labor, output and capital). The dynamic and static
capital estimators differ only in the variables that we condition on in each of the two estimation
steps. For both estimators and both estimation steps, we draw on generalized additive models
(GAMs) as a flexible and robust way to estimate semi-parametric models (Hastie 2017). We
obtain very similar results when choosing flexible polynomial regressions.

Given our estimation approach, why are capital elasticity estimates so low? We think the main
reason here is a standard attenuation bias in the capital elasticity estimates given substantial
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Figure A.10: The effects of alternative estimates of capital elasticities

Notes: Left: Evolution of capital shares based on the capital series in Cali, Le Moglie, and Presidente (2021). For
better comparability, using also their real value added series which deflates output by sector-specific prices. To
construct capital shares, assume that rental rate is 14 percent (interest rate of 4 percent and depreciation of 10 per-
cent) and value added tax is 10 percent. Right: Estimated labor elasticities when assuming that capital is statically
chosen and its output elasticity is fixed at the median from Cali, Le Moglie, and Presidente (2021), which is 0.207.

measurement error in observed plant-level capital. Apart from the control function term, the
second step estimation is a standard linear regression in capital, so that any classical mea-
surement error in capital will attenuate the estimated capital elasticity. Why do we suspect
measurement error in the capital series? As reported in Cali, Le Moglie, and Presidente (2021),
one common issue in the reported plant-level capital series is misreporting in the units, which
exactly shows up as a log-additive measurement error. Apart from such unit misreporting,
capital – as is well known – is also more susceptible to misreporting because it is a stock that
not all plants necessarily keep track of (in contrast to cost flows such as the labor bill). Infer-
ring changes in the stock directly from reported investments and assumptions on capital-type-
specific depreciation rates (as is done in perpetual inventory methods and the capital series
based on Cali, Le Moglie, and Presidente (2021) that we draw on), can mitigate some of this
measurement error but unlikely all.

Besides attenuation bias from noisy capital reporting, the capital series likely also suffers from
more systematic biases that complicate their use. To show this, we consider the case where
capital is chosen statically in which case we can directly make use of plants’ first-order con-
ditions instead of estimating the capital elasticity from the output regression. This first-order
approach does not generally suffer from attenuation bias because one can estimate capital elas-
ticities from average or median capital shares, which are robust to log-additive measurement
error. Specifically, the static capital input choice conditional on the assumed production struc-
ture implies the standard condition:

αjt =
(rt + δt)kit
(1− τy)ptyit

where αjt gives the potentially industry-time-specific capital elasticity, (rt + δ) gives the com-
petitive rental rate of capital, τy gives a value-added tax and ptyit gives plant revenue.26 Figure
A.10 (left) plots changes in median capital shares over time. Capital shares more than halved
between 1990 and 2015, which would also imply a halving of capital elasticities in the case
of static capital choices. This seems unlikely, among others because of global capital-biased
technological change, the advent of industrial robots and a running out of labor intensive in-
dustrialization in Indonesia. Also, in the case of adjustment frictions, one would have expected

26If observed capital features log-additive measurement error (k̃it = kε), then, Ei
(rt+δt)k̃it
(1−τy)ptyit

= αjt.
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Figure A.11: Estimated output elasticities of labor for each year between 1975-2015

Notes: Dynamic and static k report previously estimated labor elasticities. Only labor shows estimates based on
the assumption that the production function only features labor. Static k (FOC) assumes that the capital choice is
static and enforces the average estimated capital elasticity from the Dynamic k estimator (which nests the static k
estimator) from 1990-2015.

an increase in the capital share as the economy is catching up, not a decline. More likely, we
think plants systematically underreport new capital investments and we might overestimate
depreciation of existing capital.27 Taking noisy capital estimates together with systematic mis-
reporting, it is hard to trust the Indonesian plant-level capital series. We thus choose to stick
with the low estimated capital elasticities for the baseline model and results, which implies that
observed capital variation has very small effects on plant output and labor decisions. Still, to
gauge how sensitive our estimates are to low capital elasticities, Figure A.10 (right) also reports
estimated labor elasticities in case where we enforce the much higher capital elasticity based
on the median capital share. We find that estimated labor elasticities are almost unchanged
when assuming such a higher capital elasticity.

Next, we consider production function estimation for the period 1975-1990 for which we lack
data on capital. We follow two different approaches to understand whether there have been
important changes in production functions over time. In the first approach, we simply as-
sume that the production function does not feature capital and estimate only labor elasticities
from 1975-2015, comparing this to the estimated labor elasticities estimated with capital data
from 1990-2015. In the second approach, we assume a static choice for capital and enforce
the estimated capital elasticities from before. As shown in Figure A.10, we find that for both
approaches estimated labor elasticities are very similar to estimates after 1990 and that they
are remarkably stable and do not show a clear trend over time. We interpret this as strong
evidence that production functions did not systematically change over time.

Production function estimation with industry variation

We now consider industry-level variation in production functions. (Show 2 results: 1. Test for
equality across industries. 2. Check how correlated productivity estimates are)

27Of course, one may also explain a strong decline in estimated revenue elasticities by changes in markups.
However, the required magnitude of such markup changes also seems unrealistic. Through the lens of a standard
monopolistic competition model, the difference in estimated revenue elasticities would translate to a roughly 100
percentage point increase in the markup. That is, if a product is sold at 50% above marginal cost, it would now be
sold at 150% above marginal cost.
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2.A.6 Details and robustness for aggregate technology estimates

In this section, we give a formal identification proof, estimation details for separating aggre-
gate technology from idiosyncratic productivity and a discussion of the drivers of technology
growth. To simplify the exposition, in the following we will denote the logarithm of a vector by
lower letter cases. Hence, in slight deviation from the exposition in the main paper, we assume
that productivity for plant i at time t is given by: Yit = Ztexp(sit). So that the log-additive form
is: yit = zt + sit(sit−1). The average of within-plant changes in log productivity is then:

1

NS
t,t−1

∑
i∈NS

t,t−1

∆yit = zt − zt−1︸ ︷︷ ︸
∆z

+
1

NS
t,t−1

∑
i∈NS

t,t−1

∆sit

︸ ︷︷ ︸
Avg mean reversion of survivors

Identification

Proposition 5 (Main identification result). Under the following four assumptions:

1. (Common first-order stationary Markov process) s follows the same general first-order, sta-
tionary ergodic Markov process for all i & t.

2. (Selective exit). The decision to exit after period t can flexibly depend on observables and un-
observables Xit as well as productivity sit, but may not depend on future productivity sit+1.
Specifically,

P(exit) = f(Xit, sit, zt) with Pt(exit) ⊥⊥ si,t+1|si,t

3. (No complete exit over s) Pt(exit|sit) < 1 ∀s ∈ Supp(s)

4. (Connected support in s) For each period t, there exists at least a subset of the support of s
in that period which is fully contained in the support of all s in all future periods. Formally:
∀t,∃St ⊂ Supp(sit) for which St ⊂ ∪τ>tSupp(siτ ).

the path zt ∀t is identified given some normalization zτ for some τ ∈ [0, T ] and max t ≡ T → ∞.

Proof. To already convey the idea of a suitable estimator for the time path of zt, let us proof
Proposition 1 constructively. Identification proceeds sequentially in two fundamental steps. In
the first step, I show identification of the density of the stationary distribution of s, which
is identified for t → ∞. In the second step, the density of the stationary distribution is
used to identify the path of zt backwards by starting at some final time T . The density of
the stationary distribution is key because it can be used to construct weights under which a
weighted difference ∆yit exactly identifies ∆zt. Specifically, there exist weights ωs such that∑

i∈NS
T+1,T

ω(siT )(siT+1− siT ) = 0 (where
∑

i ωs(si) = 1). These weights recover the stationary

distribution of s. Denote by fSS(s) the density of the stationary distribution at s and by ft(s)
the density of the distribution of s at time t. Assuming that this distribution shares the support
of the stationary distribution, we have:

lim
N→∞

N∑
i∈NS

t+1,t

fSS(sit)

ft(sit)

(
log(sit+1)− log(sit)

)
= 0

The weights are thus defined by ωs(sit) ≡ fSS(sit)
ft(sit)

and are a function of the unknown den-
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sity function of the stationary distribution of s. To identify the density fSS(s), start with the
distribution of plants at t0 over known yi0. The idea is to follow survivors (as they follow
the process for s), while replacing exiting plants with plants that stay in the panel that have
similar yit. More formally, denote the initial set of plants by N0 where each plant is given a
uniform weight ω̃i0 = 1

N0
. We are interested in updating N . For this, pass on the weight of

each surviving plant and redistribute the weight of each plant that exits to close plants around
them.28 This gives N1. Updating in this way allows to eventually pass on weight to plants that
have entered the economy, even if they have entered in an arbitrarily selective way. As t→ ∞,
surviving plants will eventually populate the entire support of s and this procedure gives a
synthetic sample N∞ with weights ω̃i∞(si∞) that directly identify the density fSS(s).

The second step of the proof takes the identified density fSS(s) and works backwards from
time T . Normalizing the final value zT , one can show that zT−1 solves a fixed point problem.
Specifically:∑
i∈NS

T,T−1

ωŝT−1(zT−1)(yiT−yiT−1) = zT−zT−1+
∑

i∈NS
T,T−1

ωŝT−1(zT−1)(siT−ŝiT−1(zT−1)) = zT−zT−1

where the last equality holds only if the guess zT−1 is correct. It thus gives a nonlinear equa-
tion in zT−1 (since the weights and the right-hand side depend on zT−1). One can iterate on
this procedure to identify the path of zt backwards. At any point in time t < T − 1, one
can also alternatively guess zT−1 and instead of using weights at all, estimate the bias term∑

i∈NS
T,T−1

(siT − ŝiT−1(zT−1)) directly using future survivors with similar s. This alternative
relaxes the assumption of a common support with the stationary distribution and instead only
requires that we can build a sample with similar survivors – requiring a much weaker con-
nected support.

Estimation

Estimation proceeds along the lines of the constructive identification proof. In the first step,
one sequentially builds the synthetic panel with weights ωs(sit) (which sum to 1 in each year).
In principle, one can use any standard matching estimator for passing on the weight for ex-
iting plants. We find that a Kernel matching estimator works well, because matching is only
based on one variable and the Kernel estimator distributes the weight widely across multiple
observations, reducing variance.29

One can then estimate fSS(s) using observed s in the last period T and constructed weights
ω̂s(siT ). Any standard density estimator such as a Kernel density estimator works here. To
reduce variance, one can also estimate fSS(s) on the last x periods (where x is at the discretion
of the researcher). In general, for any fixed T , the bias on the estimated weights is increasing
in the persistence of the process as well as in the distance of the initial distribution from the
stationary distribution. That is, for large T and low persistence, one can use more periods in the
end to estimate fSS(s).30 Once the density is estimated, one can then proceed by sequentially

28As N → ∞ and the assumption that exiting probabilities are always strictly lower than one, there always
exists a plant that is arbitrarily close to an exiting plant.

29Note that one can readily match based on further variables such as detailed industries to minimize the risk of
model misspecification.

30A formal treatment of optimally solving this trade-off is beyond the scope of this paper.
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Figure A.12: Evolution of key exporter statistics

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers and reported export
shares (out of total value-added).

estimating the path zt. For each period t and for each guess of zt, this means one has to estimate
ft(sit(ẑt)). Again, any standard density estimator works here. One can then construct the
weights according to: ωst(sit) ≡ fSS(sit)

ft(sit)
. Alternatively, one can choose not to use weights

and instead directly estimate the bias from mean reversion. In that case, one can again use any
kind of matching estimator to match plants in twith productivity s(ẑt) to future survivors with
similar s. The variance in the bias estimate reduces with the number of matched plants such
that one to many matches are recommended. As before, a Kernel-based matching estimator is
a natural choice here. In either the approach with weights or with an estimated bias term, one
then finds zt that solves the fixed point problem, requiring a standard root finder. We have not
formally proven uniqueness of the root, but in practice, we found no issue of a multiplicity
of roots. In principle, any (weighted) moment of within-plant changes in productivity that
preserves scalar multiplicity can be used for the estimation. In practice, we use (weighted)
median changes in productivity as the median is less susceptible to outliers. Results are similar
when taking the weighted average.

The drivers of aggregate technology

We now discuss the potential drivers of the estimated aggregate technology growth path. First,
through the lens of standard endogeneous growth models such as Romer (1990), the increase in
technology growth after the year 2000 could be driven by overall human capital improvements
and a better integration into global markets. However, there seems to be no sharp change in
human capital improvements nor in the integration into global markets. For example, Figure
A.12 shows that the share of manufacturing output that is exported stays very stable around
20% and the fraction of plants that are exporting also remained flat since the mid 1980s.

Alternatively, the patterns may be in line with models of learning and imitation (e.g. Perla,
Tonetti, and Waugh 2021), whereby the initial entry of many new and relatively unproductive
plants lowered productivity growth and the subsequent better selection of plants increased the
productivity growth from learning and imitation. While this may be an underlying driver of
technology growth, we only find a very weak correlation between contemporaneous changes
in aggregate technology and the evolution of average plant productivity (or other moments of
the productivity distribution).
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Figure A.13: Evolution of cross-sectional correlation of plant productivity and input share

Notes: Input shares are computed based on a Cobb-Douglas aggregator as explained in the text. For within-industry
results, we first estimate the correlation across plants in a given industry and year and then construct the weighted
average correlation across industries using the industry’s average share in manufacturing value added as a time-
invariant weight. All series are normalized by the first year.

The increase in technology growth may also be in line with the recent theory in Ottonello and
Winberry (2023) whereby constrained firms initially invest in factor accumulation and only
later in activities that increase productivity. Given that we find little empirical evidence for
capital deepening, only little plant-level labor deepening in the sense of rising labor shares
and strong increases in financial access in the run-up to the Asian Financial Crisis, we are
rather skeptical that this mechanism can explain large changes in aggregate technology. Still,
given the limitations on the capital series and limited evidence on plant-level investments in
technology, we cannot rule out that this mechanism is an important driving force of technology
growth.

At last, since we cannot distinguish between productivity and demand drivers, changes in
demand may also be an important driver of the patterns we observe. For example, the Asian
Financial Crisis shows up as a more than 20% drop in technology, which is likely to be at
least partly demand-driven. In line with this interpretation, Figure A.12 shows that plant-
level exports almost completely plummet in 1998. Decreases in technology may also be partly
explained by decreases in demand as the economy grows richer and consumers switch their
demand towards services (e.g. Alder et al 2019, Comin et al 2021).

2.A.7 Additional results on changes in misallocation

In this section, we report two sets of additional results. First, we show additional evidence on
the evolution of the covariance and correlation of plant-level productivity and input shares.
Figure A.13 shows additional evidence on the correlation for a balanced panel of plants and
for each cohort of plants between 1970 and 1999. We construct the balanced panel by selecting
all plant-year observations between 1975 and 1990 for which the plant operated in 1975 and
in 1990 and for which we observe more than 10 observations (to avoid dropping all plants for
which individual years are missing or had to be dropped). Extending the time frame would
drop too many plants.

For completeness, Figure A.14 also plots the covariance instead of the correlation. For the full
sample, this covariance also does not increase over time due to the entry of small plants. For
surviving plants, the covariance increases strongly. This is mechanical, because the sample
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Figure A.14: Evolution of cross-sectional covariance of plant productivity and input share

Notes: Input shares are computed based on a Cobb-Douglas aggregator as explained in the text. For within-industry
results, we first estimate the covariance across plants in a given industry and year and then construct the weighted
average covariance across industries using the industry’s average share in manufacturing value added as a time-
invariant weight. All series are normalized by the first year.

Figure A.15: Evolution of cross-sectional variation in marginal revenue products

Notes: Evolution of cross-sectional standard deviation in marginal revenue products of labor and capital following
Hsieh and Klenow (2009) and Gopinath et al (2017).

shrinks over time, which naturally leads input shares to increase. Also, average productiv-
ity strongly increases among surviving plants, adding an additional trend. The correlation is
robust to such common trends.

The second set of results is on an alternative measure of the allocation of resources. Figure
A.15 reports changes in the dispersion of marginal revenue products of labor and capital; a
sign of misallocation in the static model of Hsieh and Klenow (2009). Most importantly, we
do not find any evidence for a decreasing dispersion in marginal revenue products over time,
which could be linked to an “undoing of misallocation” that drives economic growth. Instead,
we find evidence for an increase in the dispersion over time. Most of these increases happen
after the Asian Financial Crisis in 1997. We think that the measured increases in the dispersion
of marginal revenue products are at least in part driven by changes in measurement. We refer
the interested reader to the discussion of measurement changes further above.
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Figure A.16: Further event study results for worker shares

Notes: Worker share measured as ratio of number of workers over value added. Treatment definition as in main
event study.

2.A.8 Further event study evidence

In this section, we report event study results for hiring responses (in contrast to the labor share
responses). We stick to the same treatment definition as previously. To study the dynamic hir-
ing responses of plants to a permanent positive productivity shock, we look at the worker share
(# worker / value added) instead of the labor share (wage bill / value added). The concern of
looking at the labor share is that a positive productivity or demand shock at the plant level
may lead workers to bargain for higher wages to share in the profit gains. If these bargaining
gains slowly accumulate, then we misattribute slow increases in the labor share to labor ad-
justment frictions. Figure A.16 shows that this concern is unwarranted. Plants actually slowly
increase hiring, analogously to the labor share.

2.B Model and Estimation

2.B.1 Adjustment costs as costs of managerial time

In the following, we show that adjustment costs can be microfounded as costs of scarce man-
agerial time. Our goal is to make explicit how adjustment costs can capture the time constraints
of a manager working at a plant and to show why it makes sense to write adjustment costs in
terms of the costs of labor wt.

Suppose a plant owner solves the following problem:

V (si,t, hi,t−1,Ωt) = max
hi,t

{
yit(sit, hi,t; zt)− wtht − wtT (hi,t, hi,t−1)

+ λ(si,t, hi,t,Ωt)
{
−Ec[cF |stay] + βE

[
V (si,t+1, hi,t; Ωt+1)|si,t, hi,t; Ωt

]}}

where T (hi,t, hi,t−1) gives the managerial time needed to implement changes in the workforce.
We denote T (hi,t, hi,t−1) in terms of the efficiency units of a worker such that we can express
the manager’s time cost in terms of the wage wt. One can think of wtT (hi,t, hi,t−1) as the actual
compensation that managers receive or as a combination of compensation and opportunity
costs of managerial time.
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Time costs are due to two main managerial tasks: (1) the task of hiring and firing, and (2) the
task of reorganizing production. Conditional on the task, we think of a single unit of the task
as requiring always the same amount of time (e.g. signing one contract always takes a fixed
amount of time), but the total units needed depends on the organization and the amount of
hiring. Hiring and firing requires (c+F , c

−
F ) units of time for each unit of labor hired or fired

∆h ≡ |hit − hit−1|. This time comes from filling out paperwork, signing the contracts and
adding the worker to the books. Policies that affect the paperwork that plants need to fill out,
will change these costs.

Next, for any workers the plant hires or fires, managers need to assign and explain changes in
worker tasks. Both for hiring and firing, we assume that managerial time to assign and explain
new worker tasks is proportional to the percentage change in the workforce. We assume this
is for different reasons in the case of hiring and firing and thus the unit cost of changes in the
workforce for hiring and firing can differ. For hiring, the plant hires hit − hit−1 workers who
they need to explain their new task. The proportional time cost in the case of hiring comes from
the possibility that each new worker can also learn from their coworkers. However, in the case
of relatively many new hires, each new hire can learn from relatively fewer coworkers, thus
increasing the time that the manager needs to add. In the case of firing, jobs may potentially
not simply disappear, but need to be reorganized. In this case, the managerial time costs of
reorganizing scale with the number of lost jobs hit−1 − hit (for which replacements need to
be found) and are proportional to the percentage change in the workforce because this is the
amount of time the manager needs to reexplain jobs to all existing workers.

In the end, the entrepreneurial time costs Th are then given by the functional form reported in
the main text:

Tt(hi,t−1, hi,t) =


c+0,t(hi,t − hi,t−1) +

c+1,t
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht > ht−1

0 if ht = ht−1

c−0,t(hi,t−1 − hi,t) +
c−1,t
2

(
hi,t−hi,t−1

hi,t−1

)2
hi,t−1 if ht < ht−1

(2.20)

Note that the main text also features fixed costs that can easily be rationalized by fixed time
costs of managers whenever there is a change in the organization.

2.B.2 Microfoundation of working capital constraint

The microfoundation of the working capital constraint can be derived from a standard limited
enforcement problem (e.g. as in Buera and Shin 2013). Assume that plant managers need to
first pay their workers before being able to produce and they do so by borrowing the entire
wage bill wthit with a financial intermediary. For simplicity, suppose further that the time be-
tween production and paying the wage bill is ε → 0 such that the costs of borrowing go to
zero. Suppose further that the plant manager – after paying their workers and producing –
could decide to run away with a fraction 1

κ̃t
of the borrowed resources wthit. Isomorphically,

the plant manager runs away with all of the resources, but is caught with probability 1
κ̃t

. We
assume that the only punishment in case of successful evasion is that the financial intermedi-
ary can now sue the plant manager and claim (part of) the output of the plant in period t. We
assume that the claim is proportional to plant output net of value-added tax. Importantly, the
plant manager never loses access to the plant and is not excluded from any future economic

143



activity, ensuring that the constraint remains a static problem. In equilibrium, the financial in-
termediary will lend wthit only to the extent that no plant manager will renege on the contract,
implying the financing constraint:

wthit ≥ κtyit

2.B.3 Stationarized value function and balanced growth path after 2015

After 2015, we assume that plants expect wages, all costs and aggregate productivity to rise
at the same growth rate (1 + g) over time. This allows to capture realistic future growth in
a parsimonious way and is in line with the entire economy being on a balanced growth path
after 2015. An alternative would be to only enforce constant growth in costs and productivity
and then solve for the actual endogenous wage path after 2015 that clears labor markets after
2015. This would require further assumptions on how other fundamentals in the economy
evolve (e.g. wedges and technology in the rest of the economy and aggregate labor supply)
and feature a continued transition towards an eventual balanced growth path (as long as as-
sumptions on the changes in future fundamentals allow for a balanced growth path). Given
that the growth path after 2015 is not identified, we think that our approach strikes a good
balance between realism and parsimony.

The value function in 2015 (denoted by T and suppressing dependence on ΩT for expositional
clarity) writes:

VM
T (si,T , hi,T−1) = max

hi,T∈[h,h̄]

{
zT si,Th

θ
i,Tk

α
i,T − wThi,T − (r + δ)ki,T − wTAC(hi,T , hi,T−1)+

λ(si,T , hi,T )
{
−Ec[cF |stayi,T ] + βE

[
VM (si,T+1, hi,T )|si,T , hi,T

]}}
(2.21)

In the following, we show that under the right normalization and assuming constant growth
for all costs and productivity, we can write: VM

T (si,T , hi,T−1) = ṼM (si,T , hi,T−1)z̃T , which im-
plies that we can solve for VM

T (si,T , hi,T−1) by first solving for the stationary ṼM (si,T , hi,T−1)

and then renormalizing by z̃T . To show this, we proceed in two steps. First, we find the nor-
malizing factor z̃T , which needs to grow at a constant rate (1 + g). We do so by deriving the

optimal static capital choice: k∗i,T =
(

α
r+δzT si,Th

θ
i,T

) 1
1−α . Plugging the capital choice into the

value function gives:

VM
T (si,T , hi,T−1) = max

hi,T∈[h,h̄]

{
z

1
1−α

T si,Th
θ
i,T

(
α

r + δ
si,Th

θ
i,T

) α
1−α

− wThi,T−

z
1

1−α

T (r + δ)

(
α

r + δ
si,Th

θ
i,T

) 1
1−α

− wTAC(hi,T , hi,T−1)+

λ(si,T , hi,T ; ΩT )
{
−Ec[cF |stayi,T ] + βE

[
VM (si,T+1, hi,T )|si,T , hi,T

]}}
(2.22)

from which we can see that for output and capital to grow at a constant rate, we need that
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z
1

1−α

T ≡ z̃T grows at a constant rate. Dividing through by z̃T gives the deflated value function
ṼM (si,T , hi,T−1):

ṼM (si,T , hi,T−1) = max
hi,T∈[h,h̄]

{
si,Th

θ
i,T

(
α

r + δ
si,Th

θ
i,T

) α
1−α

− wT

z̃T
hi,T−

(r + δ)

(
α

r + δ
si,Th

θ
i,T

) 1
1−α

− wT

z̃T
AC(hi,T , hi,T−1)+

λ(si,T , hi,T ; ΩT )

{
−
Ec[cF |stayi,T ]

z̃T
+ βE

[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T

]}}
(2.23)

where we have made use of the constant growth in z̃:

VM
T+1(si,T+1, hi,T )

z̃T
=
VM
T+1(si,T+1, hi,T )

z̃T+1

z̃T+1

z̃T
= (1 + g)ṼM (si,T+1, hi,T )

In the second step, we need to prove that all other aggregate time-varying components also
grow at the same rate. In the deflated value function, output and capital do not depend on
time-varying aggregates anymore. All terms featuring wages require that wages grow at the
same rate (1 + g), such that wT

z̃T
= w̃ is a constant. The trickier parts are λ(si,T , hi,T ; ΩT ) and

Ec[cF |stayi,T ]. We prove that λ(si,T , hi,T ; ΩT ) does not depend on time ΩT if all costs grow by
the same rate and that expected fixed costs Ec[cF |stayi,T ] grow at the same rate (1 + g).

Using the analytic formula for the survival rate, it is easy to see that the survival rate does not
vary with time-varying aggregates as long as µxT and σxT grow at the same rate (1 + g):

λ(si,T , hi,T ; ΩT ) = exp

−exp

−
βE
[V M (si,T+1,hi,T ,ΩT+1)

z̃T
|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T


= exp

(
−exp

(
−
βE
[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T

))
(2.24)

At last, we use the analytic formula for the expected fixed costs to show that they indeed grow
at the same rate (1 + g):

Ec[cF |stayi,T ]

z̃T
=βE

[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
λ(si,T , hi,T )−

σxT
z̃T

Γ

(
0, exp

(
−
βE
[
(1 + g)ṼM (si,T+1, hi,T )|si,T , hi,T ,ΩT+1

]
− µxT

z̃T
σxT
z̃T

))
(2.25)

which does not depend on aggregate time-varying components.
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2.B.4 Formal derivation of main accounting identity

We can start by giving a formal derivation of the main accounting identity that we use to
validate our model.

Yt ≡
∑
i

yit

=
∑
i

ztsitf(xit) =
∑
i

ztsitf(xit)

∑
i f(xit)∑
i f(xit)

= zt ∗
∑
i

f(xit) ∗
∑
i

sit
f(xit)∑
i f(xit)

= zt ∗
∑
i

f(xit) ∗
∑
i

(sit − s̄t + s̄t)

(
f(xit)∑
i f(xit)

− 1

Nt
+

1

Nt

)
= zt ∗

∑
i

f(xit) ∗
[
s̄t +Ntcov

(
sit,

f(xit)∑
i f(xit)

)]

ln(Yt) = ln(zt) + ln

(∑
i

f(xit)

)
+ ln

(
s̄t +Ntcov

(
sit,

f(xit)∑
i f(xit)

))

2.B.5 Details on estimation

In this section, we provide further details on the model estimation.

Taxes

In the following, we discuss how we map Indonesian corporate income and value added taxes
(VAT) over the period 1975-2015 to our model economy. In both cases, we assume that tax rates
are constant over time and uniform across firms/plants. This is a very accurate mapping for
the VAT, but less accurate for the corporate income tax rate. Throughout, we abstract from the
very important topic of tax evasion and enforcement, but we discuss the empirical evidence
on this.

We start with the simpler VAT, which we fix in the model economy to a constant 10%, the rate
which was officially introduced in 1985 and has remained unchanged in place until now (see:
Gillis 1985; Hill 2000; Basri et al. 2021). Officially, the only exemptions are on exports, which
we do not model and thus abstract from and there were higher luxury product rates in place
that we also abstract from. The VAT replaced an older sales tax that was in place between
1951-1985, whose rates varied from 5 to 20%, but with most sales subject to a 10% rate (Lent
and Ojha 1969, 537). Enforcement of the sales tax before 1985 was almost absent, leading to
widespread evasion (e.g. see: Gillis 1985), but the introduction of the VAT greatly improved
(self-)enforcement and reduced evasion (Hill 2000; Basri et al. 2021), so that our assumption of
a flat 10% rate seems reasonable (at least since 1985).

Changes in the corporate income tax rates are slightly more complicated, with major reforms
in 1985 and 2009. We simplify our analysis by assuming a fixed 20% corporate income tax rate
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across firms and over time. Before 1985, many different tax rates were in place, including top
marginal rates at 45%, which were non-enforced (Gillis 1985). With the 1985 reforms, corporate
income rates were reduced and homogenized, with the maximum marginal rate capped at
35% (Gillis 1985). Between 1985 and 2009, the corporate income tax rates followed a 3-tiered
schedule of different marginal tax rates defined over taxable profits (see: Gillis 1985; Basri et al.
2021). The different cutoffs and marginal rates were varied slightly over time, adjusting in part
to inflation. For example, in 1985, a tax rate of 15 percent applied to the first IDR 10 million,
25 percent to the next IDR 40 million, and 35 percent on any taxable profits in excess of IDR 50
million (Gillis 1985). By 2009, as documented in Basri et al. (2021), a rate of 10 percent applied
for the first IDR 50 million in taxable income; a rate of 15 percent applied for the next IDR 50
million; and a rate of 30 percent applied on all taxable profits over IDR 100 million. After 2009,
the corporate income tax system moved to a flat 25 percent rate, with a more complicated
schedule of discounts based on gross income that led to effective tax rates below 25 percent
(see Basri et al. (2021) for details). Tax evasion and enforcement for the corporate tax rate
posed a larger problem than for the VAT, especially before 1985 but also after (Hill 2000, 51f.;
Basri et al. 2021). In the end, our 20% flat tax rate assumption tries to parsimoniously capture
average effective corporate income tax rates, while abstracting from important temporal and
cross-sectional variation.

Estimation of borrowing constraint

To identify the borrowing constraint κt, note that the working capital constraint writes as:

wthit

(1− τV AT
t )yit

≤ κt

The left-hand side of this constraint is a tax-adjusted labor share, which is directly observable.
The constraint gives an inequality so that in the absence of measurement error in wthit or
(1− τV AT

t )yit:

κt = max
i

(
wthit

(1− τV AT
t )yit

)
for i→ ∞

as long as the constraint is strictly binding for any plant. It is easy to see that the constraint will
always bind for some plants as long as there is a non-zero chance for large productivity losses
and plants face some positive costs of adjusting labor. The bigger problem is that any estimator
based on the maximum observed adjusted labor share will be strongly influenced by outliers
and individual measurement error in the labor share. As we discuss in more detail in the data
cleaning Appendix, changes in the survey questions over time is one reason why we expect
systematic variation in the maximum reported labor share over time that is independent of
actual changes in the borrowing constraint κt. We thus give up on identifying variation in κt
over time. Instead, we opt for a robust estimator of κ, taking the 95th percentile of the observed
adjusted labor share. Based on this estimator, we find that κ = 1.7.

Discretization details

We discretize productivity and labor. Specifically, we choose 30 grid points for idiosyncratic
productivity, which we select based on quantiles of the productivity distribution. We choose
more quantiles at the right tail of the distribution as these high productivity plants are key for
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the aggregate economy. Non-parametrically estimating the transition matrix of idiosyncratic
productivity is quantitatively important as other oft-used processes such as an AR(1) log-
normal process cannot replicate empirically observed productivity dynamics (e.g. see Ruiz-
García (2019)). We discretize efficiency units of labor ht−1 on a grid of 1000 points that we
choose based on equal spaced quantiles, ensuring that the entire labor distribution is well rep-
resented. Specifically, we choose the bottom 990 grid points based on quantiles (ensuring that
all plants in the data can be mapped to the grid) and then use the last 10 grid points to extend
the upper bound for labor to allow plants in the model to grow beyond what we observe in
the data.

Fundamentals needed for model counterfactuals

Two key sets of model fundamentals are not needed for solving the baseline model, because
they are linked to reduced-form statistics that are treated as fixed along the baseline equilib-
rium path: the path of potential entrant distributions and the fundamentals of the rest-of-the-
economy including aggregate labor supply. For model counterfactuals, however, all funda-
mentals are needed, so we now discuss their identification.

The potential entrant distributions can be related to objects of the baseline equilibrium path:
PEt(st, ht;Ω) = Et(st, ht;Ω)/PE(st, ht;Ω), where Et(st, ht;Ω) is the identified path of entrant
distributions and PE(st, ht;Ω) = P

(
VM (si,t, hi,t; Ωt)

)
gives the path of entry probability dis-

tributions. The latter is a function of the incumbent’s value function, which we directly obtain
from the baseline model computation, and the entry cost distribution P . Since the potential
entrant distributions and the entry cost distribution are not separately identified, we make the
identifying assumption that the entry cost distribution is the same as the fixed cost distribution
governing plant survival.31

The time path of aggregate labor supply is given by the sum of aggregated labor supply in the
two sectors of the economy: Ht = HR

t +HM
t . Total labor supply in manufacturing HM

t is iden-
tified from aggregating up plant-level labor demand hit over the computed equilibrium path.
To obtain HR

t , we use the total observed number of workers lRt in the Rest of the Economy and
map this to the total efficiency units of labor in R accounting for differential worker selection
across sectors in Indonesia.32

For the rest-of-the-economy, we can directly identify θR and the sequences of At and τRt . For
this, take plant first-order conditions to obtain: θR

(1+τRt )
=

wthR
t

yRt
. We use observed yRt and can

construct wth
R
t to obtain the left-hand side. We assume that wedges behave such that the

average of the right-hand side over time is exactly equal to θR. Labor wedges τRt are backed

31Given that plant entry and survival likely depend on similar economic forces (e.g. similar outside options for
not running a plant), we think this gives a reasonable estimate. We also think this gives a conservative estimate of
potential entry because most plants survive, implying that most potential entrants also enter. The assumption is a
form of normalizing the distribution of potential entrants and is more general than normalizing the total number
of potential entrants as often done in entry models (see Aguirregabiria 2021, Chp. 5).

32Specifically, we use the estimates of wage differences and worker selection across rural agriculture and urban
non-agriculture from Hicks et al. (2017) for Indonesia. This leads us to estimate that average efficiency units of labor
are roughly two times larger in M than in R. Hicks et al. (2017), using worker-level panel data from Indonesia,
find that non-agricultural jobs earn about 2.5 times higher income than agricultural jobs, but that around 80% of
this earnings gap is explained by selection as captured by individual-specific fixed effects. Through the lens of our
model, this implies that manufacturing workers have on average more efficiency units of labor. We enforce the
point estimates of Hicks et al. (2017) across all time periods.

148



out such that the previous equation holds exactly. Given θR and hRt , we can simply back out
the sequence At using: At = yRt /

(
HR

t

)θR .

2.B.6 Details on Euler estimation

In this subsection, we provide more details on the Euler estimation procedure we use and
derive all main results.

Derivations for Gumbel distribution

We start out by showing that the Gumbel distribution for fixed costs allows closed-form ex-
pressions for the survival probability and the conditional expectation of fixed costs. For ex-
positional clarity, we suppress dependence on the aggregate state Ωt, but note that all objects
generally depend on the aggregate state.

λ(si,t, hi,t) =exp

(
−exp

(
−(x(sit, hit)− µxt )

σxt

))
(2.26)

Ec[cF |stay] ≡ g̃(si,t, hi,t) =x(sit, hit)λ(si,t, hi,t)− σxt Γ

(
0, exp

(
−(x(sit, hit)− µxt )

σxt

))
(2.27)

where x(sit, hit) ≡ βE
[
V (si,t+1, hi,t)|sit, hit

]
and Γ() gives the incomplete Gamma function.

That is, in principle, Ec[cF |stay] depends not only non-linearly on the parameters {µxt , σxt },
but also depends directly on the unknown expected future value x. However, given that the
continuation value x is simply an invertible function of (observable) λ(si,t, hi,t), we can rewrite
the term to substitute for x:

g̃(si,t, hi,t) =µ
x
t λ(si,t, hi,t)− σxt

{
ln (−ln (λ(si,t, hi,t)))λ(si,t, hi,t) + Γ (0,−ln (λ(si,t, hi,t)))

}
≡µxt g̃1(si,t, hi,t)− σxt g̃2(si,t, hi,t)

We will use these equations and the invertibility of exit rates for continuation values through-
out.

Identification details

In the following, we derive the estimating Euler equation and then discuss identification. To
derive the estimating Euler equation, we exploit the invertibility of exit rates as shown above
and simplify terms to rewrite the Euler equation only in terms of observables and model pa-
rameters:

0 =
∂y(si,t, kit, hi,t, zt)

∂hi,t
− wt − wt

∂Ch(hi,t, hi,t−1;wt)

∂hi,t
+

λ(si,t, hi,t)βE
[
−wt+1

∂Ch(hi,t+1, hi,t;wt+1)

∂hi,t
|si,t, hi,t

]{

1− λ(si,t, hi,t) + ln
(
λ(si,t, hi,t)

)[µxt
σxt

(2λ(si,t, hi,t)− 1)− Γ (0,−ln (λ(si,t, hi,t)))−

ln
(
− ln

(
λ(si,t, hi,t)

))
(2λ(si,t, hi,t)− 1)− λ(si,t, hi,t)

∂Γ (0,−ln (λ(si,t, hi,t)))
∂λ(si,t, hi,t)

]}
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Given the estimating Euler equation, we can now discuss the identification of the parameters.
We discuss each of the three sets of parameters in turn.

Linear and convex adjustment cost parameters: Without giving a full identification proof, one
can see that the Euler equation generally identifies marginal adjustment costs ∂Ch(hi,t,hi,t−1;wt)

∂hi,t

non-parametrically. Given our functional form assumption on adjustment costs, linear costs
c0 & convex costs c1 are identified as follows: c0 adds as a fixed wedge between the marginal
product and the marginal costs of labor, but any adjustments today save on adjustments to-
morrow. Thus, linear costs are pinned down by the observed labor wedge across plants and
the probability of switching between shrinking and growing as determined by the volatility of
the productivity process. Asymmetric linear costs are identified from the differential behavior
of growing and shrinking plants. The convex costs c1 instead scale with labor growth and are
thus identified from the variation in within-plant labor demand growth across periods, again
conditioned by the observed volatility of the productivity process. Low labor demand growth
despite a high labor wedge will point to strong convex adjustment costs. Again, asymme-
try here is identified from differential growth and shrinking (conditional on the productivity
process and the state).

Fixed adjustment costs: The Euler equation does not identify fixed costs F+ & F− since they
do not enter marginal adjustment costs. However, we note that fixed costs are identified from
the (time-varying) distribution of plants that are not adjusting and for whom the Euler equa-
tion does not hold. The idea is that the more plants choose to not change their labor inputs (as
we condition on previous labor and vary productivity), the higher the implied fixed costs. In
the data, driven by the choice of focussing on efficiency units of labor, we do not see any plant
that remains strictly inactive. We can thus not rule out that fixed costs are zero and fix them
to zero throughout. We also note that in a previous version of the paper, we estimated fixed
costs indirectly by solving for the model equilibrium path and also found them to be noisily
estimated around zero. In cases where one might be particularly interested in fixed costs of ad-
justment that induce inaction – such as the sluggish responses to aggregate shocks – we think
it is best to either work directly with the number of workers or at least work with the nominal
wage bill.

Cost parameters (exit): One can immediately see that the Euler equation only identifies the
ratio µx

t
σx
t

. The reason is that the Euler equation captures the marginal effect of changes in labor
demand on the survival probability, which only depends on the ratio of the level and disper-
sion of costs. What variation in the data identifies this cost ratio? While the dependence in
the Euler Equation looks daunting, the cost ratio is jointly disciplined by the size of the labor
wedge, the dispersion in survival probabilities and the size of marginal adjustment costs next
period over current labor demand. Given empirically estimated survival probabilities, one can
see that a higher cost ratio generally increases the labor wedge.33 Thus, high observed labor
wedges push towards lower cost ratios.

33This is as long as marginal adjustment costs tomorrow are negative, since
λ(si,t, hi,t)ln(λ(si,t, hi,t)) (2λ(si,t, hi,t)− 1) is generally negative (since survival probabilities are generally
higher than 0.5 and ln(λ(si,t, hi,t)) < 0).
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Estimation details

The estimation proceeds in two stages. In the first stage, we estimate reduced-form survival
probabilities λ(si,t, hi,t,Ωt) and dynamic labor input choices h(hit−1, sit,Ωt) conditional on the
state space. In the second stage, we enforce these reduced-form objects to estimate the Euler
equation for the structural parameters of interest.

We start with the estimation of conditional survival probabilities and labor input choices. To
flexibly estimate both, we draw on generalized additive models for their combination of flex-
ibility and robustness in estimating semi-parametric functional forms. However, subsequent
parameter estimates are very similar when using flexible polynomial regressions in the first
stage instead. We start with survival probabilities, which – through the lens of the model – are
a nonlinear, time-varying function in current labor and productivity. They are time-varying
because exit decisions depend on the aggregate state space through current wages and ag-
gregate productivity as well as through perfect foresight over future wages and aggregate
productivity. We estimate survival probabilities as the combination of year fixed effects and
semi-parametric functions in labor, productivity and their interaction. In general, we find that
the estimated survival probabilities make sense while improving on a simple linear model
in labor, productivity and year fixed effects. Specifically, the GAM achieves an adjusted R2

that is roughly 13% higher than the linear model and produces survival probabilities that are
increasing in productivity.

For labor input choices, we instead estimate the GAM as the combination of year fixed effects
and semi-parametric functions in previous labor, productivity and their interaction.34 The ad-
justed R2 of our GAM is around 96%, driven by the huge explanatory power that previous
labor has for current labor. In fact, a simple linear regression of previous labor on current
labor already reaches R2 = 0.95 with a coefficient of auto-correlation close to unity. Hence,
a policy function that simply says to stick with past labor already explains observed labor
choices extremely well. Through the lens of the model and the Euler equation, in the presence
of sufficient productivity variation, this already points to large adjustment costs. However, to
identify adjustment cost parameters, we require that the estimated policy functions also show
variation across productivity, since changes in productivity conditional on previous labor vary
the returns to adjusting labor. Figure B.1 plots the policy functions implied by our estimated
GAM. Panel A varies previous labor and fixes productivity at the median, while Panel B varies
productivity but fixes previous labor at the median. We find that policy functions are mono-
tonic in productivity (in line with the model), but nonlinear such that labor is declining more
strongly for low productivities and increasing more strongly for high productivities.

In the second stage, we enforce these reduced-form objects to estimate the Euler equation for
the structural parameters of interest. For this stage, we follow the CCP literature in impos-
ing our model structure. This means that we impose the same discretized state space as in
our model and the same process of idiosyncratic productivity to ensure that the Euler esti-

34We also looked at more flexibility in how policy functions could vary in labor and productivity over time
(beyond a simple year fixed effect), however, we found this to give less robust results. The reason is that such
higher flexibility is more likely to predict more erratic differences in input choices over consecutive years, which
“violate” the smoothing motive implied by the Euler equation and which can then only be rationalized by extreme
adjustment cost parameters. We believe that if the underlying data has less measurement issues (that are driven by
common aggregate components) and is maybe taken from an economic environment where there are less changes
over time, it is more feasible to allow for more flexibility in how policy functions can change over time.
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Figure B.1: Step 1 of CCC estimation: flexibly estimated labor input choices

Notes: Panel A gives labor choices over previous labor (fixing productivity at the unconditional sample median).
Panel B gives labor choices over productivity (fixing previous labor at the unconditional sample median). Dotted
lines give unconditional sample medians.

mation gives parameter estimates that are fully consistent with our model. We also impose
CCC-estimated input choices for plants at time t and for all states in t + 1 conditional on the
plant’s state in t, greatly reducing the noise in the estimation: this means that for a plant with
labor hit−1 and sit, we do not use observed hit and hit+1, but instead the predicted values
ĥit(sit, hit−1,Ωt) and ĥit+1(sit+1, ĥit,Ωt+1), where the latter is over all possible s to be able to
compute the expectation term.35

We think it is important to briefly mention the computational gains here. An important step
in the estimation is that we follow Bajari, Benkard, and Levin (2007) in exploiting the fact
that adjustment cost parameters enter linearly in the problem, which is due to the linearity
of the marginal adjustment cost specification and due to plants’ risk neutrality. Practically,
this means that we can compute all expectation terms outside the parameter loop, greatly
speeding up the parameter estimation. It is important to highlight the computational gains
from this step alone: We can estimate parameters from both steps in less than 2 minutes on
a standard personal computer and moving to annually estimated parameters (increasing the
number of parameters by a factor of 40) can sometimes even be faster – the reason is that the
pre-computed terms all stay the same and instead of estimating X parameters on N data points,
we now separately estimate X parameters on N/T data points T times, which one can even
parallelize.

We estimate structural parameters via nonlinear least squares (NLS). We do so by assuming
that the Euler equation can be written as: f(Θ) + ηit = 0, where ηit is model misspecifica-
tion error or additive measurement error and Θ is the vector of parameters. Table B.1 reports
estimated results. Table B.2 separately estimates parameters for the period before the Asian Fi-
nancial Crisis and for the period after. One can see that estimated adjustment cost parameters

35An alternative to our approach would be to directly use observed plant-level future labor adjustments as
noisy realizations of expected labor adjustments, without enforcing model-based expectations (e.g. Hall 1979). Our
approach is closer to our model, greatly reducing noise in the estimation, which is particularly problematic for the
estimation of convex costs that disproportionately react to outliers. However, this makes our estimation approach
– as other CCC/CCP estimators – more susceptible to model misspecification.
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Table B.1: Main Euler estimation results

Parameters Estimates Std error 95% CI

c+0 0.735 0.010 [0.715,0.755]
c+1 36.656 0.059 [36.54,36.772]
c−0 0.000 0.011 [-0.022,0.022]
c−1 12.593 0.073 [12.45,12.736]

Cost ratio -0.366 0.004 [-0.374,-0.358]

Details: Pooled across all consecutive plant-year ob-
servation pairs (N = 358,240). Adjustment cost parame-
ters are restricted to be (weakly) positive and the cost ra-
tio is bounded between -0.577 and -0.366 to ensure that
median and mean costs are sufficiently far apart and ra-
tionalize dispersion in exit probabilities. Inference for
corner solutions should be treated with care. Standard
errors are not yet corrected for the multi-stage estima-
tion.

Table B.2: Euler estimation results: Pre vs. Post Crisis

Parameters Estimates Std error 95% CI
Pre-1997 Post-1999 Pre-1997 Post-1999 Pre-1997 Post-1999

c+0 0.635 0.731 0.008 0.013 [0.619,0.651] [0.706,0.756]
c+1 28.590 38.495 0.098 0.069 [28.398,28.782] [38.356,38.63]
c−0 0.000 0.000 0.006 0.013 [-0.012,0.012] [-0.025,0.025]
c−1 7.206 15.605 0.167 0.088 [6.879,7.533] [15.433,15.777]

Cost ratio -0.366 -0.366 NaN 0.004 [NaN,NaN] [-0.374,-0.358]

Details: Pooled across all consecutive plant-year observation pairs (N = 136,918 for pre, N =
209,075 for post). Adjustment cost parameters are restricted to be (weakly) positive and the cost ratio
is bounded between -0.577 and -0.366 to ensure that median and mean costs are sufficiently far apart
and rationalize dispersion in exit probabilities. Inference for corner solutions should be treated with
care. Standard errors are not yet corrected for the multi-stage estimation.

are considerably higher post-1999 than before. At last, we also estimate adjustment costs at an
annual level. Figure B.2 shows the yearly estimated convex adjustment costs and shows that
they tend to increase over time.

2.B.7 Further model validation exercises

In this section, we show further model validation results. Specifically, Figure C.1 shows the
distribution of labor shares. A key feature of the data, which the model captures, is that while
average labor shares increase when holding productivity constant, the large observed shifts in
productivity due to selection and productivity convergence imply that increasingly more pro-
duction is concentrated in more productive plants. These productive plants, however, have
substantially lower labor shares, in part because they were surprised by positive productiv-
ity shocks and adjust labor only slowly, and in part because they avoid large labor increases
anticipating future mean reversion in productivity. Together, this implies that the aggregate
labor share is low and remains low over time, with the median labor share even declining in
the data. Apart from the decline in the median labor share, the model correctly captures these
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Figure B.2: Annually estimated convex adjustment costs. Details in text.

Figure C.1: Changes in the entire distribution: baseline model versus data.

distributional changes.

2.C Counterfactuals and results

2.C.1 Further results on decomposing the drivers of growth

Figure C.2 reports the evolution of the employment distribution in the baseline (model) econ-
omy versus the counterfactual (model) economy where only initial conditions in 1976 play out
over time (and all other fundamentals in 1976 are fixed).

2.C.2 Details on INPRES evaluation

This section provides further details on the model-based evaluation of the INPRES school con-
struction program. We start out with more details on how we interpret the program through
the lens of the model, how the program’s effects map into changes in model fundamentals and
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Figure C.2: Evolution of employment distribution: baseline model versus initial conditions
counterfactual

Notes: Details in the text.

how we identify counterfactual fundamentals of the economy had the INPRES school con-
struction program not been implemented. In the second part, we then provide more detailed
results on the model-based evaluation of the INPRES program.

We assume that the program’s direct effect only goes through improving children’s education
as measured by human capital h in the model. We can be agnostic about how schools raised
human capital, capturing a combination of changes along the extensive margin (some children
are induced into going to school in the first place), intensive margin (some children stay longer
in school) and quality margin (more schools and teachers meant smaller classroom sizes and
closer proximity that may provide additional time for learning). We assume that overall demo-
graphic changes are not affected. The direct effects of changes in human capital then induce a
number of endogenous changes in the model. Specifically, the increase in human capital puts
downward pressure on wages and drives up labor demand both in the rest of the economy
and across all manufacturing firms. Increases in human capital also have an effect on the en-
dogenous entry and exit of firms, but we assume that this only happens through input costs.
Specifically, we rule out that increases in education may have a direct effect on entrepreneurial
choices and the distribution of potential entrants. Given that the policy only had measur-
able effects on primary and secondary schooling outcomes and that entrepreneurs in larger
manufacturing firms are more likely to have tertiary education, we think this is a reasonable
assumption.

Formally, we model the INPRES program as changing individual-level human capital, which
aggregates up to aggregate human capital Ht over time. While the model allows for individ-
uals being differentially affected by the school construction program and also differentially
select into different sectors, the general equilibrium results only depend on the change in ag-
gregate human capital. Denoting by Lt the evolution of the number of workers (which we
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assume to be unaffected by the program), we need to know the average effect of the program
on human capital per worker. Through the lens of the model, the average treatment effects es-
timated via differences-in-differences exactly capture the average differences in human capital
h induced by the INPRES program for workers who were treated by the program, netting out
aggregate changes in the wage. We can rewrite the effect of the overall program on wages as
the combination of three separate effects that have been estimated in the literature: the effect
of the program on school construction, school construction on years of education and years of
education on wages. We further simplify the setup by assuming that we can treat the three
terms as separate expectations (which is true under homogeneous treatment effects or when
the shocks driving variation in the treatment effects are independent):

E
[

∂wage
∂program

]
= E

[
∂wage

∂years of schooling
∂years of schooling
∂no. of schools

∂no. of schools
∂program

]
= E

[
∂wage

∂years of schooling

]
︸ ︷︷ ︸

≈0.1 (Chaisemartin & d’Haultfoeille ’18)

E
[
∂years of schooling
∂no. of schools

]
︸ ︷︷ ︸

≈0.25 (Akresh et al ’21)

E
[
∂no. of schools
∂program

]
︸ ︷︷ ︸

1.98 (per 1k children; direct measure)

Following Akresh, Halim, and Kleemans (2023), we assume from this that the program on av-
erage increased years of schooling by half a year for individuals of any treated cohort. We
further follow Akresh, Halim, and Kleemans (2023) by assuming that individuals join the
workforce at age 18 and that differences in human capital induced by the program are con-
stant over a person’s life, in line with one-time educational gains. The primary schools built
by the INPRES program between 1973-1979 are for children between the ages of 7-12 years,
such that children fully treated by the INPRES program first joined the labor force by 1984. As
in the existing literature, we assume that all cohorts born after 1968 benefit from the INPRES
program. This assumes that the last cohort that we observe in 2015 still benefited from INPRES
schools in 2009 (their last year of primary school).36 To avoid having to deal with partial treat-
ment, we further assume that cohorts before 1968 did not benefit from the program. Through
the lens of our model, the INPRES program thus led to variation in aggregate human capital
over the period 1986 to 2015.

We use the following steps to construct counterfactual paths of aggregate human capital in the
absence of the INPRES program:

1. Start from aggregate human capital Ht given by model

2. For each year t between 1975 and 2015:

• count share of working population affected by INPRES treatment (ϕTt ) & get aggre-
gate human capital without INPRES: H̃t = Ht ∗ (1 − ϕTt ) + Ht ∗ ϕTt ∗ 1

β̃
where β̃ is

the corresponding average treatment effect of the program (here: assume that this
is 1.05 given as above)

We thus implicitly assume that all cohorts have the same average human capital. This is un-
likely, but in the absence of better worker-level estimates of human capital, this is the best we
can do. Still, we think that there are two biases that push in opposite directions so that we

36The program initially planned for the INPRES-built schools to last for 20 years, however, Akresh, Halim, and
Kleemans (2023) note that most even exist 40 years later. Our assumption implies that the maximum age for an
INPRES school in our data is 36 years, well in line with the age range of INPRES schools.
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think the overall bias may not be too strong. First, younger cohorts likely have more human
capital, which means we overestimate human capital in the absence of the INPRES program
H̃t. At the same time, individuals likely experience human capital increases over their life cy-
cle such that young cohorts have less experience and less human capital, biasing our results in
the opposite direction.

To construct the path of ϕTt we draw on representative and harmonized population census data
that we retrieve via IPUMS. For each available census wave t ∈ {1980, 1985, 1990, 1995, 2000, 2005, 2010},
we construct the share of working age individuals (between 18-65) who have been born in 1968
or later, which gives ϕTt . For the years in between, we extrapolate from the previous census
wave assuming there is no differential mortality risk. The treated share in the working pop-
ulation is zero before 1986 and then - due to baby-boom cohorts - increases rapidly to almost
20% by 1990, 50% by 2000 and 75% by 2015.

Applying this time path, we find that the INPRES program raised the annual economy-wide
level of human capital by 3.6% by 2015. While important, this effect only accounts for less than
2% of the more than doubling of human capital per worker that we estimated over the entire
time period from 1975-2015. These numbers also explain the model-based aggregate effects of
the INPRES program that we find.

2.C.3 Details on FDI policy counterfactual

In this section, we provide further details on the model-based evaluation of attracting more
foreign-owned plant entrants in Indonesian manufacturing. We start out with more details on
the entry of foreign-owned plants, how we interpret this variation and map it to the model,
how regulatory changes on FDI map to changes in model fundamentals and how we identify
counterfactual fundamentals of the economy had Indonesia’s FDI policy been different. In the
second part, we then provide more detailed results on the model-based evaluation.

We start out by showing variation in ownership across Indonesian manufacturing plants over
time. In Figure C.3 we plot the share of total manufacturing output that is owned either by
the state (central + local govt), private domestic or foreign owners. We construct this by sum-
ming up all value-added output across plants but taking plants’ reported ownership shares as
weights. The main movement can be observed in the decline of state ownership from around
30% in 1975 to around 5% in 2015 and the rise of foreign ownership. The domestic private sec-
tor is by far the largest actor and owns between 60-70% of all manufacturing production. If we
were instead to look at the share of plants, we find that more than 90% are fully domestically
owned, which is stable over time. Again, we find that state ownership declines over time and
foreign ownership increases, making up almost the entire remainder of 10% by 2015.

For the role of FDI policy, we are specifically interested in the effect on plant entry. Plant
entry is particularly important, because most variation in foreign ownership shares is across
and not within plants as plant-level ownership shares are relatively constant.37 Figure C.4
thus reports evidence on the importance of foreign ownership among new entering plants.38

37For example, the variation in foreign ownership explained by plant fixed effects is 78% and the persistence in
foreign ownership as measured by an AR(1) regression is ρ ≈ 0.9. Restricting only to plants that were ever foreign
owned gives slightly lower numbers with the R2 ≈ 0.6 and ρ ≈ 0.77.

38We define new entering plants as plants that enter the panel for the first time. While foreign-owned plants
are larger and unlikely to not make the cutoff of 20 workers, we want to make sure to compare foreign- and non-
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Figure C.3: Evolution of ownership shares for Indonesian manufacturing plants

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. Figure reports the
fraction of total manufacturing output that is owned by the state (either local or central government), domestic
private owners or foreign owners measured by summing up all value-added output of plants and weighting plants’
output by their respective reported ownership shares.

Within a given year, foreign-owned plants (those that are majority foreign owned) make up
around 3.8% of entering plants, but they account for 18-19% of total output among entrants.
Entrants with some foreign ownership are almost always close to fully foreign-owned with
average ownership shares around 80% and the median at 95%. Figure C.4 also documents im-
portant variation across time - variation that we exploit for identifying the effect of FDI policy.
Specifically, the Indonesian FDI regulatory regime turned increasingly restrictive throughout
the 1970s, forbidding 100% foreign ownership and banning FDI entirely in some sectors of the
economy (see: Hill 2000). This policy regime reverted only in the second half of the 1980s with
simplifications and more transparency over existing restrictions introduced in 1987. In 1992,
100% foreign ownership was permitted again and the 1990s saw increasing attempts at luring
foreign manufacturing plants. We can see some of these changes in observed entry, including
a marked increase in the absolute and relative weight of foreign entrants between 1990 and the
Asian Financial Crisis in 1997. We also see a correlation of these policy changes with the ag-
gregate ownership series, with the importance of foreign ownership increasing steadily from
10% in the late 1980s up to 35% by 2015.

We exploit this policy variation to study the influence of changes in foreign direct investment
policy in the Indonesian growth experience. We proceed as follows: We first identify the dis-
tribution of actual foreign entrants, which - through the lens of the model - is a reduced form
object that masks the underlying distribution of potential foreign entrants. To take out the vari-
ation in foreign entry that is purely explained by changes in the economic conditions that make
entry more or less attractive, we proceed as before and use the model-identified, time-varying
entry probabilities to invert for potential foreign entry distributions. In the next step, we are
interested in whether FDI policy changes can account for changes in these potential foreign
entry distributions over time. To do so, we compare the period of “restrictive FDI” from 1975-

foreign-owned plants correctly. To this end, we further impose the restriction that the plant has to be younger
than 10 years (which is the spacing of the censuses). The sample of entrants without the age restriction looks very
similar.
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Figure C.4: Evolution of the entry of plants with foreign ownership

Notes: Data based on Indonesian manufacturing plant census (1975-2015) with 20+ workers. In both Panels, the
output measures aggregate up value-added across plants, with Majority summing up output for entering plants
who are at least 50 percent foreign-owned, and Weighted summing up output based on the respective ownership
share. Number of plants instead constructs the share and absolute increase based on the total number of majority-
foreign-owned plants.

1986 with the period of “FDI promotion” from 1987-1997. Given the known data limitations of
annual variation in entry (e.g. the bunching of entry around census years), we aggregate the
potential entry distributions within each of the two time periods. Luckily, the census waves
do not fall in a year between, so that there is no ambiguity in how to attribute entrants. We
then compare changes in these two aggregated potential entrant distributions. For simplicity,
we measure the effect of changes in the FDI policy on changes in potential foreign entrants by
comparing the weighted mass of potential entrants across the two periods, taking as weights
either the plants’ value added or employment at entry.39

2.C.4 Making a (more impressive) Growth Miracle

In this part of the Appendix, we move away from Indonesia’s historical growth experience
and ask whether and how Indonesia could have experienced a more impressive manufactur-
ing growth miracle, closer in comparison to the experiences of countries such as China or
Malaysia. For this, we study two important policy levers that both have sizable growth ef-
fects, but play out differently over time. Specifically, we look at reduced-form policy changes
that either reduce (convex) labor adjustment frictions or increase the annual growth in aggre-
gate technology in manufacturing, but deliver the same long-run growth in manufacturing
output.40

39We thus only use the time series variation and not a differences-in-differences identification design. The
model-based trend correction should ensure the validity of the approach and we do not think that it is credible to
compare foreign entrants to domestic entrants in a differences-in-differences design, because changes in domestic
entrants (e.g. due to changes in demographics) may likely show very different trends. An alternative with a DiD
design would be to compare potential entrant distributions across different countries or across different industries
that were differentially treated by the regulatory regime. This is an interesting approach that we leave for future
work.

40To reduce labor adjustment frictions, we consider a policy package that reduces both linear and convex adjust-
ment costs. For the linear hiring and firing costs, we consider a hiring subsidy for each new hire of around 25% of
the annual wage bill. Changes in convex costs are harder to map directly to tangible policies. Given our microfoun-
dation in terms of scarce managerial time and talent, we think of them as policies that improve managerial quality
in the economy such as training programs. We consider a feasible policy mix that halves the estimated convex cost
parameters (for hiring and firing) – in line with the lower end of annually estimated adjustment cost parameters
that we find in the data. For aggregate technology in manufacturing, zt, we consider a policy that raises its annual
growth by a constant rate to the degree that manufacturing output in 2015 is the same as in the adjustment cost
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Figure C.5: Main miracle economy counterfactuals.

Figure C.5 shows how the manufacturing miracle would have played out differently in the
two alternative scenarios that both see a doubling of manufacturing output by 2015 compared
to the baseline miracle economy. As expected, lower adjustment costs lead to faster hiring
and thus faster transitions such that output growth is initially higher. With lower adjustment
costs, far more large manufacturing plants emerge, driving up the average plant size. Growth
in manufacturing technology, on the other hand, makes all plants more productive, leading to
more entry and less exit of small plants, a stronger left tail and a much lower covariance of
idiosyncratic productivity and resources.

counterfactual.
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Chapter 3

Dysfunctional Firm Dynamics and
Mexico’s Dismal Productivity
Performance

Oscar Fentanes1 & Santiago Levy 2

Abstract

Over the last three decades, Total Factor Productivity growth in Latin America has disap-
pointed and informality persisted. To shed light on this outcome, we exploit a unique database
(by Latin American standards) for Mexico, a country where manufacturing exports grew from
seven to 33 per cent of GDP, but labor informality barely changed, firm informality increased,
and TFP growth was negative. We construct a twenty-year panel and analyze firm dynamics
from two perspectives, the formal-informal and the sector composition of the economy. In the
first case we show that high productivity formal firms exited; surviving firms hardly grew, and
their productivity fell because more informalized than formalized; and entrants were less pro-
ductive than survivors, mostly because of large informal entry. In the second case we show that
while manufacturing performed relatively better than services and commerce, its contribution
to TFP was modest because informality persisted in this sector; and that despite spectacular
export growth, the country de-industrialized. We document that for TFP, the formal-informal
composition of the economy is more important than its sector composition. While our insights
are based on Mexican data, they extend to countries in Latin America and other regions char-
acterized by large informal sectors.

JEL Codes: O17, O11, O54

Keywords: Productivity, informality, misallocation, Latin-America
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3.1 Introduction

Barring East Asia, from 1990 to 2019 factor accumulation in Latin America was faster than in
any other region of the world, but average annual TFP growth was (-) 0.08 per cent (Fernández-
Arias and Fernández-Arias, 2021). In parallel, Latin America was characterized by large and
persistent informality (Gasparini and Tornarolli, 2009; Maurizio, 2021). This outcome is puz-
zling because, with a few exceptions (like Argentina and Venezuela), after the “lost decade” of
the 1980s, most countries achieved macroeconomic stability and carried out many reforms to
increase efficiency.

Mexico is a salient example of this puzzle. During the 1990s it created various regulatory
agencies to increase domestic competition; privatized more than one thousand state-owned
enterprises; and signed fourteen free trade agreements with over fifty countries including,
notably, one with Canada and the United States. As a result of these reforms, manufacturing
exports almost quintupled, from 7% of GDP in 1990 to 33% in 2019. Mexico now exports more
manufactures than the rest of Latin America combined. However, between 1990 and 2019, TFP
contracted at an annual rate of (-) 0.5%, labor informality barely changed and, as documented
below, firm informality increased.

Mexico also provides a good case study to shed light on this puzzle, because it is the only
country in the region that for over two-decades has collected data on firms of all sizes and
formality status in all sectors. This data allows to follow the patterns of entry, survival, growth
and exit of individual firms, measure their productivity and factor shares, and reconstruct the
path of aggregate TFP. The study of firm dynamics sheds light on why, despite many efficiency-
enhancing reforms, TFP stagnated. In the end, during the period considered, Mexico’s econ-
omy was subject to two contradictory forces: on one hand, measures to improve efficiency like
the ones listed above. On the other, chiefly but not only, flawed tax, labor, social insurance and
contract enforcement institutions, that persistently distorted the allocation of capital and labor
across firms (Levy, 2018).

In this paper we document that the second set of forces prevailed. After classifying firms by
size and formality status, we present stylized facts on resource allocation and market shares in
the aggregate and at a very detailed sector level (six-digits of the North American Industrial
Classification System, NAICS). We show that firm informality became more widespread, that
productivity differences between formal and informal firms increased across manufacturing,
services and commerce, and that the distributions of firm productivity and firm size polarized.

Next, we construct a twenty-year panel of firms and extend the Olley-Pakes productivity de-
composition proposed by Melitz and Polanec (2015) to study firm dynamics from two com-
plementary perspectives. The first one focusing on the formal-informal segmentation of the
economy; the second one on the differences between manufactures, the sector most directly
impacted by the trade liberalization measures, and services and commerce. These decompo-
sitions lead to the four main conclusions of our paper: first, despite the efficiency-enhancing
reforms, informality persisted and was the main proximate reason behind the fall in TFP. Sec-
ond, while manufacturing experienced productivity gains, these were modest because some
informal firms survived, and new ones entered into the sector. Third, despite the fact that ser-
vices and commerce experienced productivity losses, their share in total resources increased;
manufacturing shrank even though it was the higher productivity and better performing sec-
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tor. And fourth, all-in-all, misallocation increased within and across sectors.

We also take advantage of our panel to focus on surviving firms and study their patterns of
growth. We first document that, contrary to expectations, more firms transited from formal to
informal status than in the opposite direction. Second, that very few informal firms formalized
and became more productive. Third, that while the average size of surviving firms increased,
their productivity fell. Finally, we show that calculations of firm growth obtained from firms’
age-size profile using data from one period only, as in Hsieh and Klenow (2014), overestimate
firm growth. Firms in Mexico hardly grow, particularly medium and large ones.

To the best of our knowledge, this is the first paper that performs a dynamic productivity de-
composition for a Latin American country classifying firms by formality status and sector.3

This allows our paper to relate to four strands of the literature. First, the one associating the
firm size distribution and development. Bento and Restuccia (2017) document that there is a
positive correlation between aggregate TFP and average firm size; and Poschke (2018) docu-
ments that as countries per capita GDP increases, average firms size increases as well and the
right tail of the firm productivity distribution thickens. We show, however, that when firm
dynamics are dysfunctional, average firm size can increase without aggregate TFP gains, as
average size is driven up by the entry of a few large firms, while the survival and entry of
small and unproductive firms thickens the left tail of the productivity distribution, driving
aggregate TFP down.

Second, we relate to the misallocation literature as in Restuccia and Rogerson (2008) and Hsieh
and Klenow (2009). Developing countries, particularly those in Latin-American, present sig-
nificant misallocation (Pagés-Serra, 2010; Busso et al., 2012; Lederman et al., 2014; Álvarez
et al., 2018). While sudden reforms might initiate a process of massive resource reallocation,
contradictory forces might act as a bottleneck (Buera and Shin, 2013). Our paper shows that, at
least in the case of Mexico, these contradictory forces can not only slow down aggregate TFP
but contract it, undoing the benefits of measures to improve efficiency.

Third, we speak to the literature on informality (reviewed by (La Porta and Shleifer, 2014;
Ulyssea, 2018)). Static cross-country comparisons suggests that informality becomes less im-
portant with development (La Porta and Shleifer, 2014). Our paper, however, shows that infor-
mality can persist and, by lowering aggregate TFP, slow down GDP growth. Finally, we speak
to the literature on premature ’de-industrialization’, as in Rodrik (2016), and document a case
where despite a spectacular increase in manufacturing exports, the share of manufactures in
GDP falls.

While our paper is based on Mexican data, it offers insights on the relation between sector
composition, informality, and TFP, that are likely relevant to other countries in Latin American
and elsewhere characterized by institutional arrangements that also result in a large informal
sector.

The rest of the paper proceeds as follows. Section 3.2 briefly discusses the institutions gen-
erating Mexico’s formal-informal divide and their impact on resource allocation. Section 3.3

3Eslava et al. (2022) construct a 30-year panel of firms for Colombia. Unfortunately, their data only cover
manufacturing and exclude firms with 10 or fewer workers, leaving out most informal firms. Nevertheless, they
find that the “up or out” patterns found in the United States are much weaker in Colombia as a result of the survival
of small unproductive plants and much weaker selection of new ones; an important result that helps to understand
why TFP underperforms in that country, and that is consistent with our findings.
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describes the data, the construction of the panel, and the criteria to classify firms. Section 3.4
shows stylized facts on resource allocation and market shares. Section 3.5 discusses our esti-
mates of firm productivity and carries out comparisons across firm size, sector and formality
status. Section 3.6 presents the results of the Olley-Pakes decomposition when firms are classi-
fied by formality status. Section 3.7 focuses on surviving firms to discuss the relation between
firm size, firm growth, and productivity. Section 3.8 presents the Olley-Pakes decomposition
when firms are classified by sector. A back-of-the-envelope calculation in section 3.9 shows
that in the absence of informality Mexico would have experienced positive TFP growth. Sec-
tion 3.10 presents our conclusions.

3.2 Brief note on informality and resource allocation

Many institutions in Mexico stand behind the fact that almost 60% of workers and 90% of firms
are informal (as defined below), but three stand out (Levy, 2018). First, the legal distinction be-
tween salaried and non-salaried workers. The former are hired under a relation of dependency
and subordination to work a fixed number of hours in the tasks dictated by a boss/firm, in ex-
change for a remuneration proportional to the time worked (salary). The latter can work on
their own; or be associated with firms but without a relation of subordination, need not work a
fixed number of hours, and are remunerated through various schemes: on a piece-meal basis,
profit-sharing, or a commission per unit produced or sold.

Firms and workers in salaried contractual relations must jointly contribute to a fixed bundle of
social insurance programs including health, pensions, housing, day care, and other benefits. In
addition, firms must pay workers at least the minimum wage, cannot dismiss them at will, and
when they can, incur in large severance payments.4 On the other hand, firms and workers in
non-salaried contractual relations are not subject to these regulations, and workers can access
an unbundled set of health, pensions, day care, and related benefits financed from general tax
revenues. The same holds for self-employed workers (one-person firms).

Because workers undervalue the benefits of IMSS, they and the firms that hire them are de
facto taxed, generating incentives to evade these contributions and, in parallel, income taxes.
On the other hand, non-salaried workers are subsidized because the costs of their social insur-
ance benefits do not have to be internalized in the contract between them and the firm, nor
the contingent costs of dismissal regulations. Further, remunerations can be lower than the
minimum wage and firms are not obligated to withhold workers’ income taxes (Levy, 2018).

Given Mexico’s context of imperfect enforcement, some firms hire salaried workers without
contributing to IMSS. As a result, the labor force divides into two categories: salaried workers
hired legally (formal), and non-salaried workers together with salaried workers hired illegally
(informal). Importantly, the latter can access to the same social insurance benefits that non-
salaried workers receive, so that the implicit subsidy extends to them and, indirectly, the firms
that hire them.

4Firms and workers contribute to IMSS (the Spanish acronym for Mexico’s social security institute), to Infon-
avit (the housing institute) and to the Afores (the private administrators of retirement pension funds). Minimum
wages are enforced by the Labor Ministry. Dismissals are regulated by labor tribunals. Henceforth we refer to all
these agencies as IMSS, in the understanding that this includes Infonavit, the Afores, the Labor Ministry and labor
tribunals.
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Taxation is the second institution behind the formal-informal divide. Firms pay income taxes
under two regimes depending on their annual sales. If they are below approximately US$100,000,
firms qualify to a preferential regime where taxes are two percent of sales (under the chapter
for individuals). If sales exceed that threshold, firms are in the general regime, where taxes
are 30 percent of profits (under the chapter for corporations).5 Only firms with non-salaried
workers can qualify for the preferential regime because those hiring salaried workers must
register as a corporation (or cooperative). These asymmetries are accentuated by the fact that
firms producing approximately 20% of the consumption basket are exempt from VAT on final
sales, and firms producing an additional 26% of that basket are also exempt from VAT on inter-
mediate inputs; and by the fact that firms in the preferential regime cannot issue VAT receipts
to firms in the general regime, thus limiting their sales to final consumers or other firms in
the preferential regime. The upshot is that firms with non-salaried workers and sales below
the threshold, aside from having no social insurance, minimum wage or dismissal obligations,
face a very low burden of income taxation and, depending on the good produced, do not have
to charge VAT on their sales or pay it on their inputs.

The third institution is associated with the regulation of commercial and credit contracts. Most
firms in Mexico, particularly small ones, do not register as a corporation, where the assets of
the firm are separated from the assets of the owners; indeed, many are family firms in the
sense that owners and workers are relatives, with non-salaried contractual relations between
them. On one hand, registering excludes them from the preferential regime of the income
tax law, and in any event the costs of doing so are high (transaction costs, notaries). On the
other, the benefits, like access to commercial bank credit, may be low because when contract
enforcement depends on slow and often corrupt courts, banks substantially undervalue firms’
collateral, particularly if they are small, limiting their access to credit.

Considered jointly, these institutions are principally responsible for three outcomes: first, firms’
face different labor costs depending on the contractual status of their workers. Second, firms
with non-salaried workers or hiring salaried workers illegally are de facto subsidized (as long
as they are small), while firms hiring salaried workers legally are taxed. And third, the size
distribution of firms is biased towards smallness. As a result, firms with very different pro-
ductivities can coexist in the same (narrowly defined) market.

In other words, the institutions that give rise to the formal-informal division of economic activ-
ity de facto misallocate resources. That said, other institutions also contribute to misallocation
in Mexico: the exercise of monopoly power by a few large private firms, uncompetitive and
at times corrupt public procurement practices by government agencies, and uncompetitive
behavior by state-owned enterprises in the energy sector.

Jointly, during the last three decades the institutions that generate misallocation in Mexico
operated in the opposite direction vis-à-vis the efficiency enhancing reforms promoted over
the same period. In this paper we do not identify the individual impact of any of these factors
on resource allocation and TFP, positive or negative. Rather, we focus on the effect of all of
them at the same time, as reflected in the data captured by the Economic Census. Our paper
therefore does not focus on causality, but on measuring the net impact of a large number of
contradictory policies affecting the behavior of firms and workers during the period studied

5Levy (2018) shows that this dual tax regime generates a large discontinuity in firms’ after-tax profit functions,
implying that increasing sales is not profitable, unless the increase is very large.
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here.

3.3 Definitions and data

3.3.1 Definitions

We define formal firms as those that pay at least one peso in social insurance contributions to
IMSS. This definition encompasses firms cheating along the extensive margin (not enrolling all
of their workers with IMSS), the intensive margin (under declaring their wages), or both. It also
encompasses firms mixing salaried and non-salaried workers, as long as they pay something
to IMSS for their salaried workers. Further, some firms in Mexico sub-contract some or all of
their salaried workers. Unfortunately, the census data does not allow to verify whether firms
providing workers to sub-contracting firms in turn comply with their obligations to IMSS. Here
we assume that they do, at least partly, and classify firms that sub-contract as formal. Clearly,
our definition of firm formality is very generous. But it is appropriate for our purposes because
it implies that the firm is registered with IMSS, is subject to labor regulations, is obligated to
pay income taxes under the general regime and, when appropriate, can issue VAT receipts on
its sales.6

There are two types of informal firms. Non-compliant ones, hiring salaried workers but not
paying anything to IMSS. And legal ones, those engaged only with non-salaried workers, and
thus not required to pay anything to IMSS or comply with regulations on dismissal or mini-
mum wages.7

We also classify firms by size, measured by number of workers: very small, 1 to 5; small, 6 to
10; medium, 11 to 50; and large, 51 or more. The classification is attuned to Mexico’s context
and differs from the one used in other OECD countries, where large firms have at least 100
workers.

Firms’ formality status matters for two reasons: social protection and productivity. It matters
for social protection because it speaks to the social benefits that their workers are entitled to.
But it matters for productivity because it determines firms’ flow and contingent costs of labor,
their access to institutions in charge of contract enforcement, and sometimes their tax regime.
Differently put, formality status impacts critical dimensions of firm behavior like which tech-
nologies to adopt, the number of workers to hire and their contractual modalities (including
whether to comply fully or partly with the Law), the sources of finance, the range of clients,
the ability to adjust to output or technology shocks, and so on.

The formal-informal labels are usually motivated by social protection considerations and can
cause confusion when applied to firms. Because our focus here is on productivity, we could
avoid them altogether and instead refer to two types of firms. First, those that hire salaried

6Busso et al. (2012) separate firms between those that comply fully and partially with their obligations towards
IMSS, and those that mix salaried and non-salaried workers. They show that the productivity of these intermediate
cases is similar to that of the formal firms defined here, allowing us to use a simpler classification.

7Thus, informality is not equivalent to illegality. In fact, as shown below, the majority of informal firms are
legal. This differs from other countries, like Brazil, where firm informality implies firm illegality (Ulyssea, 2018).
The fact that a large segment of informal economic activity is legal indicates that informality in Mexico is not mostly
the result of imperfect enforcement; it is more complex than that and is associated with the institutions discussed
in section 3.2.
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workers, pay IMSS, are subject to regulations on minimum wages and dismissal and the pro-
visions of the corporate tax regime, and can issue VAT receipts to other firms. And second,
those that hire salaried workers but break the Law and pay nothing to IMSS nor observe la-
bor regulations; or have non-salaried workers, do not have to pay anything to IMSS, may pay
taxes under the preferential regime but may not issue receipts for VAT, and are not bound by
regulations on dismissal or minimum wages. But because this language is more cumbersome,
we use the better-known formal-informal labels in the understanding that they are short-hand
expressions for the very different circumstances faced by firms.

3.3.2 Data

Every five years, Mexico’s statistical institute produces an Economic Census collecting data
from firms of all sizes in urban areas operating in a fixed premise (walls, ceiling). Here we use
the censuses from 1998 to 2018.8 The Census classifies firms into sectors at the six-digit level
of the NAICS. In the 2018 Census there were 981 sectors, a very detailed level of aggregation
which allows to compare the productivity of firms producing very similar goods.

The Census captures a large number of firms: 2.8 million in 1998, 3.0 in 2003, 3.7 in 2008,
4.2 in 2013 and 4.7 in 2018. Importantly, despite its broad coverage, the Census leaves out a
substantial amount of economic activity. For instance, the 2018 Census only captures 52% of
total employment, an indication of the large number of workers and firms carrying out their
activities in mobile premises in the streets of Mexico’s cities.9 In this paper we focus on firms in
manufacturing, services, and commerce, which in the 2018 Census represent 98% of all firms,
91% of employment, 66% of capital, and 629 out of the 981 six-digit sectors of the NAICS.

The Census reports the value of the capital owned by firms and the payments made for renting
capital goods from other firms. To produce a homogeneous measure of capital, we capitalize
payments for rented capital (at 10%) and add them to firms’ own capital. In turn, value added
is corrected to incorporate payments made by firms for renting capital goods. The Census
divides capital into three components: buildings and constructions, transport equipment, and
machines. We have price indices for each over the 20-year period considered here and express
firms’ capital stock in constant prices of 2013.

We measure labor input as the value of payments to people working in the firm, including firm-
owners and those hired by honorarium. This measure captures differences in remunerations
associated with differences in individuals’ schooling and skills. We use the consumer price
index to express labor input in prices of 2013. The Census reports the number and payments
to workers, but not payments to firm-owners and personnel hired under honorarium. We
impute the latter using the median wage of workers in firms in the same six-digit sector.10

8Unfortunately, the 1993 Census cannot be used because its sector classification differs from the NAICS, which
was adopted by Mexico as of the 1998 Census. In the text we refer to firms, although the Census collects data on
establishments; that said, 99.7% of firms in Mexico only have one establishment (Levy, 2018).

9The Census captures firms in localities of 2,500 or more inhabitants, where over 80% of Mexico’s population
lives. It excludes firms in smaller localities and in rural areas, and firms in larger localities that do not have a fixed
premise: street markets and the like. Employment in rural areas and the public sector represent less than 20% of the
total, so urban employment in mobile premises is large, approximately 28% of the total. The point is that there are
many more firms in Mexico than captured in the Census, although it is not possible to determine the exact number.

10Including firm-owners in labor input is quite important since many informal firms are family enterprises
with two to three people including the owner. Workers hired under honorarium are few, but we consider them
to better approximate labor input in a context where the contractual structure of firms is heavily influenced by
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Finally, we also have price indices for value added at the three-digit level classification of the
NAICS. For our TFP decompositions we assign firms into 67 three-digit sectors, 21 in manufac-
turing, 30 in services and 16 in commerce. Using the corresponding price indices, we compute
firm value added in constant prices of 2013.

3.3.3 Panel of firms

Firms in the 2008, 2013 and 2018 censuses have a unique identifier generated by Mexico’s
statistical institute, allowing to construct a panel for this ten-year period. To extend it back
to 1998, we take advantage of the fact that all censuses register firm age, name, legal status,
six-digit sector, and detailed location (up to street block).

In a previous paper, we developed an algorithm to match firms in the 1998, 2003 and 2008
censuses based on these characteristics; see Busso et al. (2018). In the simplest case, if a firm in
the 2003 census has the same location, legal status, name and six-digit sector than a firm in the
1998 census, and is 5 years older, we consider it to be the same firm.11

We evaluate the accuracy of our procedure comparing the results of the algorithm matches
between the 2008 and 2013 census with the actual matches using the unique firm identifier
given by the statistical institute. Our procedure matches exactly 96% of all firms. Missing
matches refer to very small firms, as small, medium, and large ones are matched with 100%
accuracy.

In sum, we construct a 20-year panel combining the exact 2008-2018 panel with the 1998-2008
almost-exact panel. We next identify firm exit, entry, and survival over the 20-year period
and within each 5-year period. Because the volume of information is extremely large, in what
follows we only present the results for the 20-year period and descriptive statistics for 1998
and 2018.

3.4 Stylized facts: resource allocation and market shares

Table 3.1 shows the size and formal-informal composition of firms in 1998 and 2018. Two well-
known facts are confirmed. First, the size distribution is strongly skewed towards smallness as
90% of firms have at most 5 workers and less than 1% have more than 50. Second, most firms
are informal, and informality is inversely correlated with size.

Two less well-known facts are also shown in Table 3.1: first, more than 60% of all firms are
informal but legal; the majority of them very small and not registered as a corporation.12 Sec-
ond, firm informality increased between 1998 and 2018, mostly as a result of an increase in

the institutions discussed in section 3.2. We prefer the median rather than the mean wage since the latter can be
influenced by outliers. Imputations are done at the six-digit level to reflect as much as possible the specifics of each
sector.

11The procedure works in most cases, but not all because sometimes there are minor variations in the name. For
instance, a firm may appear in the 1998 Census under the name “Muebles de Madera Don Pedro” and in the 2003
one as “Muebles de Madera D. Pedro”. In this case, even if the name does not match exactly, we consider it to be the
same firm, as long as the other characteristics (age, location, six-digit sector) match. We thank Mexico’s statistical
institute for giving us access to the detailed firm records. (Muebles de madera stands for wood furniture.)

1288% of firms in the 2018 Census were not registered as a corporation. While the census has no direct infor-
mation, it is very likely that most of them are family firms, in the sense that owners and workers are relatives, a
situation consistent with the absence of salaried contractual relations.
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Table 3.1: Firm size and formal-informal composition, 1998 vs. 2018 (Percentage shares)
1998

Formal
Informal Informal and

Totaland legal non-compliant
1-5 9.84 66.95 13.87 90.67
6-10 3.22 0.56 0.84 4.62

11 - 50 3.22 0.18 0.31 3.72
51+ 0.95 0.01 0.03 0.99

Total 17.23 67.7 15.07 100
2018

1-5 5.1 62.93 21.74 89.77
6-10 2.84 0.63 2.16 5.64

11 - 50 2.65 0.25 0.77 3.67
51+ 0.87 0.02 0.04 0.93

Total 11.45 63.83 24.71 100
Notes: authors’ calculations with Census data.

the number of informal and non-compliant firms. In 2018, one out of every four firms hired
salaried workers illegally.

Figure 3.1 shows that the increase in firm informality was widespread. Each dot represents a
six-digit sector, the horizontal axes measures the share of informal firms (legal or non-compliant)
in the total number of firms in that sector in 1998, and the vertical one the same share in 2018.
As it turns out, 524 out of the 629 dots are above the 45-degree line, indicating that in most
sectors the share of informal firms increased. Further, the color of the dots shows that this
occurred in 208 out of 253 sectors in manufacturing, 106 out of 136 in commerce, and 210 out
of 240 in services.

Figure 3.1: Firm informality at the six-digit sector level

Notes: authors’ calculations with Census data.
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Table 3.2 synthesizes information on employment, capital and value added; in each case, shares
add to 100%. Resources moved in opposite directions between 1998 and 2018: employment
in informal firms increased (all in non-compliant ones) and capital decreased, implying that
formal ones became more capital intensive. There was little change in the contribution of
formal and informal firms to value added, but there was substantial change in its composition
within formal firms: large ones increased their share from 61 to 66% while the share of the rest
fell.

Table 3.2: Resources and value added (Shares)
1998 2018

Employment in:
formal firms 67.6 61.58

informal and legal firms 21.82 20.77
informal and non-compliant firms 10.58 17.65

Capital in:
formal firms 80.43 85.62

informal and legal firms 8.73 5.85
informal and non-compliant firms 10.83 8.53

Value added in:
formal firms 84.58 85.66

informal and legal firms 6.97 5.34
informal and non-compliant firms 8.45 9

Notes: authors’ calculations with Census data.

To consider changes at the six-digit level, we repeat the exercise shown in Figure 3.1 and find
that the share of employment in informal firms increased in 473 out of the 629 sectors, the share
of capital in 327, and the share of value added in 409. In other words, in the majority of sectors
resources shifted towards informal firms.

Table 3.3 provides information on market shares, with the market defined as the gross value
of domestic and export sales. The aggregate market share captured by formal firms increased
marginally; a result due to manufacturing, as it fell in services and commerce.13 At the six-digit
level, the market share of informal firms increased in 408 out of the 629 sectors.

Table 3.3: Market shares
Formal Informal Total

1998 2018 1998 2018 1998 2018
Manufacturing 78.9 87.4 21.1 12.6 100 100

Commerce 74.4 70.8 25.6 29.3 100 100
Services 75.4 69 24.6 31 100 100

Total 76.3 77.5 23.7 22.5 100 100
Notes: authors’ calculations with Census data.

Summing up: between 1998 and 2018 there were contradictory changes in resource allocation,
value added and market shares. In the aggregate, the share of informal firms increased as did
the share of employment in those firms, while the share of capital fell. In parallel, the market

13The increase in the market share of formal firms in manufacturing is probably explained by the growth in
exports. However, the 1998 census does not separate domestic from export sales so we cannot verify this. That
said, recall that substantial economic activity is excluded from the census, mostly by informal firms in mobile
premises. There is no data to measure their sales, but most likely the market share captured by informal firms
exceeded 23%.
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share of informal firms in manufactures fell, increased in services and commerce, and was
practically constant in the aggregate. At the six-digit level changes were also heterogenous
but in most sectors informality increased as measured by the share of firms, employment,
capital, market share and value added. Within formal firms, large ones became more capital-
intensive and produced a larger share of value added. Within informal ones, non-compliance
increased. Altogether, these results indicate that between 1998 and 2018 a small number of
large formal firms absorbed a larger share of capital and generated an increasing share of value
added. A substantially larger number of small firms, mostly informal, absorbed more labor
and produced a smaller share of value added.

3.5 Firm productivity by size, sector and formality status

3.5.1 Measurement of firm productivity

We follow Levinsohn and Petrin (2003) to measure firm productivity, applying the correction
for functional dependence developed by Ackerberg et al. (2015). Consider the model:

V Aijt = cj + µjLijt + βjKijt +Ωijt + eijt (3.1)

where V Aijt stands for value added of firm i in sector j at time period t, Lijt for labor, Kijt for
capital, Ωijt for technical efficiency observed by the firm (but not by the econometrician) and
eijt is a normally distributed error term (all variables in logs). We assume that Lijt is chosen in
period t but Kijt in t− 1, and that Ωijt follows the Markov process:

Ωijt = g(Ωijt−1) + uijt (3.2)

We use intermediate inputs mijt as proxy for technical efficiency Ωijt. In parallel, we assume
that current intermediate inputs are a function of current technical efficiency, capital and labor,
and are adjusted immediately after an efficiency shock uijt is realized, so:

mijt = mt(Ωijt, Lijt,Kijt) (3.3)

Wheremt(Ωijt, Lijt,Kijt) is strictly increasing in Ωijt. Inverting the functionmt(Ωijt, Lijt,Kijt)

and denoting π(.) = m−1(.), equation (3.1) now becomes:

V Aijt = cj + µjLijt + βjKijt + πt(Ωijt, Lijt,Kijt) + vijt (3.4)

Following Ackerberg et al. (2015), all coefficients in (3.4) are estimated simultaneously.

We drop all firms with zero capital, labor, or negative value added and use the STATA code
written by Rovigatti and Mollisi (2020) to estimate these regressions with data from the 1998,
2003, 2008 and 2018 censuses.14 We interpret the estimated values of βj and µj as the structural
parameters of each sector’s production function. The estimation does not assume that βj + µj

14All coefficients are significant at the 95% confidence level; the tables with the detailed results are available
from the authors.
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= 1, so returns can vary across sectors. Because we only have price indices for value added at
the three-digit level, we assume that βj and µj apply to all firms in that sector.

With the estimated values of βj and µj , we compute the (log) productivity of firm i in sector j
as:

Pijt = V Aijt − µjLijt − βjKijt (3.5)

Finally, note that (3.5) is a revenue-based measure of productivity, reflecting the firm’s tech-
nical efficiency and the price received for its output. Clearly, when there is monopoly power,
(3.5) will overstate productivity; a situation that may happen with a few large firms in services
and commerce. Despite this possible bias, (3.5) is our preferred measure because it allows to
compare firm productivity across and not only within-sectors and does not require assump-
tions about the elasticity of firms’ demand functions or constancy of returns to scale. In any
event, to test the robustness of our measure, we also computed measures of firms’ physical
and revenue productivity following Hsieh and Klenow (2009), denoted TFPQ and TFPR.
We find that in 1998 the correlation between (3.5) and TFPQ and TFPR was 0.95 and 0.86,
respectively; and in 2018, 0.95 and 0.87.

3.5.2 Formal-informal productivity differences by size and sector

Table 3.4 calculates the differences in mean productivity between formal and informal firms in
1998 and 2018, separating them by sector and size. These are obtained as the coefficients of an
OLS regression where formal firms are the omitted variable, and where we control by 3-digit
sectors. 15

The message from Table 3.4 is clear: regardless of how firms are classified, on average formal
ones are more productive. Note that differences diminish with size and that, considering all
firms, the difference in average productivity increased from 128% in 1998 to 139% in 2018.

3.5.3 Productivity distributions

Figure 3.2 presents the distribution of Pi in 1998 and 2018.16 In both years, the median of the
formal distribution is higher than the informal. The median of the complete distributions in
2018 is 7% higher than in 1998.

While the median and the mean of the formal productivity distributions in both years are
higher than those of the informal distributions, there is considerable overlap between them.
This implies that some informal firms have higher productivity than some formal ones; in fact,
as we show below, some informal firms are very productive. The point here is that Mexico’s
informal sector is very heterogeneous, and that some firms may be informal not to avoid the

15The coefficients result from the OLS regression Pi = α + βDi + γs + εi, where Di = 1 is informal and
Di = 0 otherwise and γs are controls for 3-digit sectors. The regression is equivalent to a mean test of productivity
differences between formal and informal firms. All coefficients are statistically significant at the 95% confidence
level.

16These are the distributions of Pi of firms in all sectors. Levy (2018) constructs similar distributions for 1998
and 2013 from the envelope of the 6-digit sector distributions of TFPRi. The moments of those distributions are
very similar to the ones in Figure 3.2. The result that the formal and informal productivity distributions overlap,
but that the mean and median of the formal distribution is to the right of the informal one is robust, as is the result
that overtime measures of dispersion increased (see below).
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Table 3.4: Average productivity gap of informal firms relative to formal ones

By sector
All Manufacturing Services Commerce

1998
Informal (-) 1.282 (-) 1.461 (-) 1.090 (-) 1.386

s.e. [0.0020] [0.0048] [0.0030] [0.0031]

Obs. 2,546,761 317,879 867,590 1,361,292
R2 0.201 0.28 0.201 0.177

2018
Informal (-) 1.394 (-) 1.485 (-) 1.233 (-) 1.508

s.e. [0.0019] [0.0057] [0.0030] [0.0028]

Obs. 4,045,080 403,573 1,621,465 2,020,042
R2 0.208 0.181 0.151 0.244

By size
1 – 5 6 – 10 11 – 50 51+

1998
Informal (-) 1.087 (-) 0.698 (-) 0.681 (-) 0.515

s.e. [0.0024] [0.0071] [0.0109] [0.0348]

Obs. 2,313,982 116,286 92,151 24,342
R2 0.137 0.233 0.215 0.395

2018
Informal (-) 1.134 (-) 0.586 (-) 0.591 (-) 0.254

s.e. [0.0027] [0.0046] [0.0068] [0.0219]

Obs. 3,600,639 245,315 157,920 41,206
R2 0.126 0.37 0.274 0.415

Notes: authors’ calculations with Census data. Coefficients correspond to β in the model: Pi = α+ βDi + γs + εi.

Law, but because they consider that non-salaried contracts with their workers are the best fit
for their business model.

Panel (a) of Figure 3.3 overlaps the 1998 and 2018 distributions and panels (b) and (c) magnify
the tails, below log one productivity and above log five. Between 1998 and 2018 the mean
increased from 2.90 to 2.96 (or 6%), the standard deviation from 1.25 to 1.34, and the differ-
ence between firms in the 90th/10th percentiles from 3.14 to 3.26. Clearly, the productivity
distribution polarized.

Panels (b) and (c) show that polarization resulted from a fattening of both tails, as the share of
firms in each increased. Note that while the left-tail is almost wholly populated by informal
firms, the right one is populated by a mix of both, and in fact in 2018 almost half of Mexico’s
high productivity firms were informal. Note that mean productivity fell in the left tail while it
increased in the right one, again highlighting the polarization of the productivity distribution.

Figure 3.3 provides an initial insight to understand why TFP fell in Mexico between 1998 and
2018. On one hand, the number of high productivity firms doubled. A few of these survived
since 1998 but, as we show below, the majority were new entrants. Regardless, these were
the expected results from the measures to improve resource allocation. On the other, despite
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Figure 3.2: Formal-informal firm productivity distributions

(a) 1998 (b) 2018

Notes: authors’ calculations with Census data.

these measures, the number and share of low productivity firms also increased, and their aver-
age productivity fell. The balance yields a 6% increase in the mean between 2018 and 1998 and
implies an annual growth rate of the simple average firm productivity of 0.3%; quite unimpres-
sive, but at least positive. However, this result ignores changes in resource allocation among
firms and, unfortunately, when this is considered as we do in the next sections, it is reversed.

3.6 Dynamic Olley-Pakes TFP decomposition: formal versus infor-
mal firms

3.6.1 Decomposition

We begin writing the expression for TFP subject to analysis. Let:

rij = K
βj

ij · Lµj

ij (3.6)

R =
∑
j

∑
i

rij (3.7)

vi =
ri
R

;
∑
i

vi = 1 (3.8)

so that rij are the resources captured by firm i in sector j, R is total resources, and vi is the
resource share corresponding to the ith firm. TFP is the weighted average of firm productivity
Pi, where the weights are the share of resources captured by each, vi:

TFP ≡
∑
i

vi · Pi (3.9)

Expression (3.9) serves to make two points: first, TFP depends on the joint distribution of Pi
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Figure 3.3: 1998 and 2018 productivity distributions with amplified tails

(a) All firms

(b) Low productivity firms (c) High productivity firms

Notes: authors’ calculations with Census data.

and vi. Second, it is additively decomposable, so one can compute TFP adding subsets of firms
with their respective factor shares classified with different criteria.

Melitz and Polanec (2015), henceforth M-P, develop a methodology, labelled the dynamic
Olley-Pakes productivity decomposition, to identify the contribution of firm exit, survival,
and entry to the change in TFP between two periods, denoted here 1 and 2 (rather than 1998
and 2018, to simplify notation). Let X , S and E denote the set of exiting, surviving, and enter-
ing firms. Further, let n1(= nS +nX) and n2(= nS +nE) be the number of firms in the first and
second period. TFP in each period is then:

TFP1 = vS1 · PS1 + vX · PX (3.10)

TFP2 = vS2 · PS2 + vE · PE (3.11)

where vS1 =
∑

nS
vi1 is the share of resources captured by surviving firms in period 1, PS1 =∑

nS
(vi1/vS1) · Pi1 their weighted productivity, vX =

∑
nX

vi the share of resources in exiting
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firms, PX =
∑

nX
(vi/vX)·Pi their weighted productivity, and vS1+vX = 1. Similar expressions

apply for period 2, except that entering firms replace exiting firms, and vS2 + vE = 1.

M-P show that:

∆TFP = TFP2 − TFP1 = vX · (PS1 − PX) + (PS2 − PS1) + vE · (PE − PS2) (3.12)

This is a very intuitive expression. The first term in the RHS measures the contribution of
exiting firms to ∆TFP . It is positive if they are less productive than surviving firms in the
first period, with the magnitude of the effect depending on the share of resources released by
exiting firms, vX . The second term captures the contribution of surviving firms and is positive
if their weighted productivity increases. The last term measures the contribution of entering
firms: they increase TFP if they are on average more productive than surviving ones in the
second period, with the magnitude of the effect depending on the share of resources captured
by them, vE .

Expression (3.12) has a standard Schumpeterian interpretation: TFP increases if low produc-
tivity firms (relative to those that survive) die, if those that survive improve their performance,
and if the ones that enter are more productive than the ones that survived. If all three condi-
tions hold, there is Schumpeterian “creative destruction”, and TFP unambiguously increases.
If some do not, the net effect depends on the magnitude of each.

Expression (3.12) can be extended to separate between formal and informal entering and ex-
iting firms, with F and I denoting each (where, quite naturally, vXF + vXI + vS1 = 1 and
vEF + vEI + vS2 = 1):

∆TFP = [vXF · (PS1 − PXF ) + vXI · (PS1 − PXI)] + (PS2 − PS1)+

[vEF · (PEF − PS2) + vEI · (PEI − PS2)] (3.13)

To separate the term for surviving firms between formal and informal ones, note that firms can
change status between periods: formal ones may remain formal (denoted here FF) or may turn
informal (denoted FI); and similarly, informal firms may formalize, IF, or may remain in formal,
II. Note as well that vFF1 + vFI1 + vIF1 + vII1 = vS1 and similarly for period 2. Letting factor
shares within surviving firms be bFF1 = vFF1/vS1 and so on (so that bFF1+bFI1+bIF1+bII1 = 1

and similarly for period 2), we have:

PS2 − PS1 = (bFF2 · PSFF2 + bFF1 · PSFF1) + (bFI2 · PSFI2 + bFI1 · PSFI1)+

(bIF2 · PSIF2 + bIF1 · PSIF1) + (bII2 · PSII2 + bII1 · PSII1) (3.14)

where the P ’s on the RHS of (3.14) are the weighted average of the productivity of each type
of surviving firm in each period, where the weights are the factor shares captured by each.
Substituting (3.14) in (3.13) we obtain the formula used in our calculations.
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3.6.2 Panel of firms, firm productivity, and factor shares

Table 3.5 displays firm exit, survival, and entry between 1998 and 2018. The first row shows
that there were 439,521 formal firms in 1998, of which 343,389 exited before 2018. Of the re-
maining 96,132 firms that were formal in 1998 and survived to 2018, 58,280 continued as formal
(FF) and 37,852 changed their status to informal (FI). In parallel, 424,208 formal firms entered.
Considering these, plus the formal ones that survived as formal, together with the 19,539 infor-
mal firms that survived but formalized (from the second row), yields a total of 502,027 formal
firms in 2018. The second row is read similarly.

We highlight two facts in Table 3.5: first, 82% of the firms present in the market in 1998 exited
before 2018, and 88% of those present in 2018 entered after 1998. Differently put, there was a
lot of firm churning. That said, these figures underestimate churning because firms that en-
tered after 1998 but exited before 2018 are not considered. In fact, using the data from the 2003,
2008 and 2013 censuses, it turns out that between 1998 and 2018 5.4 million firms exited and
6.9 million entered (an average of 285,000 and 364,000 per year, respectively). But even these
figures underestimate churning because firms that enter and exit between two contiguous cen-
suses are excluded (say, one that entered in 2005 but exited in 2007), and because the census
only captures firms in urban areas in fixed premises. The point here is that firm churning in
Mexico is substantially larger than what Table 3.5 suggests.

Table 3.5: Firm dynamics by formality status
Starts Exit Survival Entry Ends
1998 Total Change type 2018

FF 58,280
Formal 439,521 343,389 96,132 424,208 502,027

FI 37,852
IF 19,539

Informal 2,107,240 1,737,305 369,935 3,154,805 3,543,053
II 350,396

Total 2,546,761 2,080,694 466,067 3,579,013 4,045,080
Notes: authors’ calculations with Census data.

The second fact is that among surviving firms, 12% changed status, the majority towards in-
formal. Among those that were formal, 39% survived and informalized, while among those
that were informal, only 5% formalized. For every firm that changed from informal to formal
status, almost two changed in the opposite direction. Differently put, the idea that informal
firms that survive formalize is not supported in the Mexican data, even over a 20-year period.

3.6.3 Productivity decompositions

Table 3.6 shows factor shares and the weighted productivity of formal and informal exiting,
surviving and entering firms. Substituting these values in equations (3.13) and (3.14) we obtain
a key result: between 1998 and 2018 TFP fell by 7.4%, implying an annual growth rate of (-)
0.3%.17

17As a check on our results, we computed the change in aggregate TFP calculating the Solow residual from an
aggregate production function using national accounts data. Setting the index of TFP at 1.00 in 1998, its value in
2018 was 0.899 (a fall of 9.1%). This can be contrasted with our findings using the O-P decomposition where, again
setting the index of TFP at 1.00 in 1998, results in a value of 0.936 in 2018 (a fall of 7.4%). These results are very
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What explains this dismal performance? Begin with exit. Since vXF (PS1 − PXF ) = 0.095,
the exit of formal firms contributed to increase TFP; and since vXI(PS1 − PXI) = 0.262, so
did the exit of informal ones, in fact, significantly more. Altogether, exit by itself would have
contributed to raise TFP by 35.7%, clearly a good outcome. That said, note that some exiting
formal firms had higher productivity than some surviving informal ones (i.e., PXF > PSI , and
by a large margin). If those exiting formal firms had survived, and those informal surviving
ones exited, the exit process could have made a larger contribution to raise TFP. So, while exit
helped, it was still problematic because relatively productive firms exited.

Table 3.6: Factor shares, firm productivity by formality status and ∆TFP

Factor shares Weighted firm productivity Contrib.
1998 2018 1998 2018 to TFP

Exit
Formal vXF = 0.510 PXF = 4.449 0.095

Informal vXI = 0.160 PXI = 2.998 0.262
All vX = 0.671 PX = 4.103 0.357

Surv.

FF vSFF1 = 0.270 vSFF2 = 0.172 PSFF1 = 4.837 PSFF2 = 4.786 0.027
FI vSFI1 = 0.024 vSFI2 = 0.011 PSFI1 = 4.379 PSFI2 = 4.204 (-) 0.097
IF vSIF1 = 0.008 vSIF2 = 0.007 PSIF1 = 4.269 PSIF2 = 4.304 0.038
II vSII1 = 0.026 vSII2 = 0.016 PSII1 = 2.913 PSII2 = 2.876 (-) 0.012

All vS1 = 0.328 vS2 = 0.206 PS1 = 4.634 PS2 = 4.590 (-) 0.044

Entry
Formal vEF = 0.570 PEF = 4.496 (-) 0.054

Informal vEI = 0.223 PEI = 3.096 (-) 0.333
All vE = 0.793 PE = 4.102 (-) 0.387

Total 1.000 1.000 4.273 4.199 (-) 0.074
Notes: authors’ calculations with Census data.

Survival is more problematic. Its contribution to TFP was negative because the weighted pro-
ductivity of survivors fell (PS2 < PS1). This fall reflects asymmetric behavior across the four
firm statuses and is discussed in more detail in the next section but, all in all, surviving firms
reduced TFP by 4.4%.

Entry is the most problematic. While formal entrants were more productive than informal
ones (PEF > PEI ) and attracted more resources (vEF > vEI ), they were less productive than
survivors (PEF < PS2); as a result, their contribution to ∆TFP was negative, (-) 5.4%. The
same occurred with informal entrants, and by a much larger margin, (-) 33.3%. If the resources
channeled to entrants had instead been allocated to survivors, TFP would have increased. In
other words, it would have been better if new investments and new hirings had been allocated
to expand existing firms rather than to create new ones, particularly informal ones, and the fact
that this did not happen speaks volumes to the obstacles that Mexican firms face to grow.18

Very poor selection of entrants was the single most important factor behind the fall in TFP,
reducing it by 38.7%, substantially larger than the negative contribution of survival (as noted,

close. The slightly larger fall in the first case is probably due to the fact that the whole economy is more informal
than the segment captured in the Census.

18Consider three examples, each linked to the institutions discussed in section 3.2. First, if a firm grows it may
need to change its contractual structure from non-salaried to salaried (for instance, to coordinate tasks among a
larger set of workers). This, however, would increase substantially its flow and contingent costs of labor. Second,
if firm growth implies crossing the threshold established in the tax code to qualify for the preferential regime, its
after-tax profits can fall. And third, to issue bonds or attract new shareholders to increase its capital, the firm
needs to be registered as a corporation and investors need to trust that their rights will be respected, a dubious
proposition in a context of imperfect contract enforcement, particularly when it comes to small firms. That said,
there may be other factors affecting firm growth, particularly of medium and large ones, like uncertain access to
energy or costly finance.
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4.4%). Selection at entry matters a lot because, as Table 3.5 shows, the vast majority of firms
in 2018 entered after 1998 and because, as Table 3.6 shows, by 2018 surviving firms only cap-
tured 20.6% of all resources (vS2) while entrants captured 79.3% (vE). In other words, over
the medium term, 20-years in this case, entry is key for TFP, and the fact that a lot of informal
firms entered with lower productivity than survivors punished TFP considerably. Very poor
selection at entry explains the fattening of the left-tail of the productivity distribution between
1998 and 2018 shown in Figure 3.3.

Further, note that even though informal entrants captured less than half of the resources than
formal entrants did (vEI < 0.5 · vEF ), they captured more than all survivors (vEI > vS2).
Moreover, their productivity was almost one-third lower than that of formal entrants (PEI ≈
0.68 · PEF ). In other words, informal entry mattered a lot. There is a lesson here: because
most informal firms are very small, and each one captures a practically insignificant share of
the economy’s resources, they are usually thought of as a second-order issue, at least from the
point of view of TFP. But this thinking is flawed because when added up these firms absorb a
lot of resources (22% in 2018!), and because their productivity is very low, pulling the economy-
wide average down.

The last column in Table 3.6 also allows to identify the contribution of formal and informal
firms to the change in TFP. Altogether, the exit, entry and survival of formal firms, including
those that formalized, increased TFP by 10.6%. In parallel, the exit, entry and survival of
informal firms, including those that informalized, reduced TFP by 18%. Netting them out
results in the 7.4% fall already noted. Clearly, the persistence of informal firms during this
time period was extremely damaging to TFP in Mexico.

One more result. The capital stock of the firms considered in Tables 3.5 and 3.6 increased by
100% between 1998 and 2018 and the labor force by 85%, so that aggregate K/L increased.
Nonetheless, TFP fell. Thus, contrary to what is at times stated, higher capital intensity does
not always translate into more productivity. In Mexico’s case, the increase in aggregate capital
intensity hides considerable differences between formal and informal firms. Surviving formal
firms became more capital intensive while surviving informal ones less; and entering formal
firms were three times more capital intensive than entering informal ones. In other words, the
formal sector became more capital intensive and the informal one less, but the weight of the
latter dominated from the perspective of TFP.

3.7 Firm size, firm growth, and productivity

3.7.1 Firm growth and productivity

A significant advantage of our twenty-year panel is that, by focusing on survivors, we can
observe the same firm in two time periods time and study the relation between firm growth
and productivity. Table 3.7 provides the relevant data. Altogether, surviving firms grew 16.5%,
from 8 to 9.3 workers over the 20-year period considered here, but their productivity fell by
4.4%. This result highlights the disconnect between changes in firm size and changes in pro-
ductivity that occurs in a context of large misallocation and is the product of different behavior
depending on firms’ transitions.

Firms that remained formal (FF) grew 20%, from 45.8 to 55.1 workers but their productivity fell,
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although by 5.1% over 20 years. Despite the fall in their productivity, these firms made a pos-
itive contribution to ∆TFP , as can be seen in the last column of Table 3.6. The reason is that,
within the set of surviving firms, they were the highest productivity ones and they attracted
resources from other firms with lower productivity (bSFF2 > bSFF1). In this case, resource re-
allocation within survivors compensated the disappointing productivity performance of firms
that survived as formal.

On the other hand, firms that informalized (FI) shrunk and their productivity fell by 17.5%;
clearly, it would have been better if they had died. Firms that formalized (IF) increased their
size considerably, by 39%, and their productivity, although again by a small amount, 3.5% over
20 years. Finally, those that stayed informal (II) grew 5% but their productivity fell by 3.7%;
again, it would have been better if they had died.

Table 3.7: Average firm size and (log) productivity of surviving firms
Average size Weighted (log) productivity

Number 1998 2018 % change 1998 2018 % change
FF 58, 280 45.8 55.1 20.3 4.837 4.786 (-)5.1
FI 37,852 7.6 6.1 (-)19.8 4.379 4.204 (-)17.5
IF 19,539 6.7 9.3 38.8 4.269 4.304 3.5
II 350,396 1.8 1.9 5.5 2.913 2.876 (-)3.7

All 466,067 8 9.3 16.2 4.634 4.59 (-)4.4
Notes: authors’ calculations with Census data.

Table 3.7 allows two observations. First, informality was a status that allowed firms that should
have exited to survive. Even though firms that survived as informal attracted very few re-
sources, their productivity was so low that they more than offset the modest contribution to
∆TFP from firms that survived as formal or formalized. And second, it is often stated that
“informal firms that survive formalize, grow, and become more productive”. Unfortunately,
in the case of Mexico this statement applies only to 19,539 out of the 369,935 firms that were
informal in 1998 and survived to 2018; the remaining 95% did not formalize or become more
productive.

3.7.2 Age-size profiles and firm growth

Figure 3.4 shows the relation between the size and age of surviving firms in 1998 (blue line)
and in 2018 (red line), and of all firms in 1998 (dotted blue line). The lower horizontal axes
depicts firms’ age in 1998 and the upper one the age of those that survived to 2018.

Studies that infer firm growth from firms’ age-size profiles with cross-sectional data, as in
Hsieh and Klenow (2014), focus on the dotted line and use data from all firms in that year. In
this case, one year old firms in 1998 were at point A and had on average 2.34 workers and, 20
years later, would be at point B, with an average of 7.55 workers (point B), implying that they
grew by 322%.

However, not all firms at point A survived 20 years and reached point B; in fact, most did
not. To measure firm growth properly, we need panel data from two periods and focus on
the same firms, that is, those that survive two decades, as captured by the solid blue and red
lines. Critically, firm growth is the vertical movement between the blue and red lines, not
the horizontal movement along the blue line. Point C represents one-year old firms in 1998,
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Figure 3.4: Firms’ age-size profiles

Notes: authors’ calculations with Census data.

meaning they entered in 1997; on average, they had 3.05 workers. In 2018 they were 21 years
old and were at point D with, on average, 4.42 workers, not at point E (12.96 workers). Thus,
one-year old firms in 1998 firms grew by 26.3% in 2018, far from the 322% implied by the
dotted line, or the 424% implied by moving along the blue solid line.

Because the vertical distance between the blue and red lines is fairly constant, firm growth is
decreasing in size. Firms with approximately 5 workers in 1998 had 6.1 in 2018, so they grew
22%; firms with approximately 12 workers in 1998 had 13 in 2018, so they grew 8.3%; and so
on. Importantly, firms with 15 or more workers in 1998 only grew 5%; an almost insignificant
amount considering that this occurred over two decades (an annual growth rate of 0.2%, less
than one tenth the average growth rate of GDP in that period!). The point here is that average
firm growth was caused mostly by very small and small firms, whose growth in percentage
terms is inevitable large, as they pass from 2 to 3 or 3 to 4 workers; medium and large ones
hardly grew.

3.7.3 Changes in average firm size and changes in productivity

Figure 3.5 depicts the same productivity distributions presented in Figure 3.3 but segmented
by ranges of size. For each size range, we show the share of firms in each tail, and to the left
of the distributions, the number of firms in each range, N , their average size, S, with totals in
black.

Various observations are relevant. First, recall from Table 3.5 that almost nine out of ten firms
present in 2018 did not exist in 1998, so that differences between these two decades mostly re-
flect exit and entry, not survival. Second, note that considering all firms, average size increased
from 4.8 to 5.6 workers, or almost 17% However, this was mostly accounted for by large firms:
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Figure 3.5: Productivity distributions by range of size

(a) 1998 (b) 2018

Notes: authors’ calculations with Census data.

253.3 workers in 2018 vs. 215.6 in 1998. Very small firms had almost the same number (1.9 vs.
1.8), and small and medium ones actually had fewer. In turn, recall that large surviving firms
hardly grew, so that the increase in their average size is explained mostly by entry, not growth.
In turn, this implies that practically all the increase in average firm size in these two decades
resulted from the entry of large firms.19

Third, it is evident that large firms are on average more productive: in both years they have the
smallest left tail and the largest right one. This supports the association commonly made be-
tween firm size and productivity. That said, it is also evident that the distributions by size
range overlap; a fact that points out that there are some very small firms (and small and
medium ones) with higher productivity than some large ones.20

Lastly, comparing the 1998 and 2018 distributions, note that the left tail contracted only for
large firms and expanded for all others. This asymmetric behavior provides further insights
into one of the main results of the Olley-Pakes decompositions presented before, namely, that
entry was the single most important factor that depressed TFP between 1998 and 2018. The
point here is that entry itself was heterogeneous: in the case of large firms, it increased size
and TFP, but for the rest, it did neither.

Although for confidentiality reasons we cannot identify them individually, it is very likely that
exporting firms are among the large high productive entrants, a result intimately associated
with the trade liberalization efforts mentioned in the introduction. The 2018 census reports
11,387 firms that are direct exporters, who are on average 51 times larger than the average
firm, 2.6 times more capital intensive, and pay 40% higher wages (Levy and Fentanes, 2022).
Of these, 74% entered in or after 1994, when the North American Free Trade Agreement began.

19As discussed before, very small and small surviving firms grew, but substantially more entered with a lower
size, so that their average size in 2018 was almost the same as in 1998: 1.9 vs. 1.8 for the case of very small firms,
and 7.3 vs. 7.5 in the case of small ones.

20In fact, in absolute numbers there substantially more very small high productivity firms than large ones. For
example, for 1998, 2.8% of 2,313,982 exceeds 41% of 24,342 (64,791 vs. 9,980).
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3.8 Dynamic Olley-Pakes decomposition: manufacturing versus ser-
vices and commerce

3.8.1 Firm dynamics and resource allocation

In this section we classify firms into manufacturing (denoted M) and services and commerce
(R, for rest). We again use expressions (3.13) and (3.14) to decompose ∆TFP , simply substi-
tuting M for F and R for I. Table 3.8, analogous to Table 3.5, describes firm dynamics (except
that in this case there are no changes of sector within survivors). By construction, the totals for
exit, survival and entry are the same as in Table 3.5. A key point to note is that over this period
the share of employment in manufacturing fell from 35.5 to 27.2%, and its share of capital from
45.4 to 40.5

Table 3.8: Firm dynamics by sector
Starts Exit Survival Entry Ends
1998 2018

Manufactures 317,879 270,236 47,643 356,597 404,240
Rest 2,228,882 1,810,458 418,424 3,222,416 3,640,840
Total 2,546,761 2,080,694 466,067 3,579,013 4,045,080

Notes: authors’ calculations with Census data.

3.8.2 Productivity decompositions

Table 3.9 presents factor shares, the weighted productivity of exiting, surviving, and entering
firms and the contribution of each to ∆TFP . Four observations are of interest. First, produc-
tivity in manufacturing is higher than in services and commerce and, more importantly, the
gap increased. Since the main difference between them is their exposure to international trade,
it is difficult to avoid the conclusion that the trade liberalization measures are mainly respon-
sible for the relatively better performance of manufactures. This conclusion is buttressed by
the asymmetries in the behavior of productivity among surviving firms: in manufacturing it
increased by 12.2% (= PSM2−PSM1), while in the other sectors it fell, by 20% (= PSR2−PSR1);
differently put, services and commerce fully account for the productivity fall among surviving
firms. It is also buttressed by the fact that in manufacturing, entering firms are more produc-
tive than exiting ones (PEM > PXM ), while the opposite occurs in services and commerce
(PER < PXR). And, finally, it is buttressed by the fact that entering firms are substantially
more productive in manufacturing than in services and commerce (PEM > PER).

In other words, overtime manufacturing behaved differently, better than services and com-
merce. That said, note that entering manufacturing firms are less productive than surviving
ones (PEM < PS2), a phenomenon due to the fact that entry of informal low productivity firms
into manufactures was large.21

Second, while manufacturing performed better, its factor share fell from 27.6% in 1998 (= vXM+

vSM1) to 26.1% in 2018 (= vSM2 + vEM ). This finding is clear evidence of misallocation across
21There were 317,879 manufacturing firms in 1998, 79,258 formal and 238,621 informal. Of these, 47,643 survived

to 2018, 16,346 formal and 31,297 informal. Among surviving firms, 5,999 transited from formal to informal, and
2,216 in the opposite direction. In parallel, 46,921 formal and 309,676 informal firms entered, yielding a total of
404,240 firms in 2018, 59,484 formal and 344,756 informal. Note that among surviving firms more transited from
formality into informality than vice versa; almost by a ratio of three to one.
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Table 3.9: Factor shares, firm productivity by sector and ∆TFP

Factor shares Weighted firm productivity Contribut.
1998 2018 1998 2018 to TFP

Exit
M vXM = 0.157 PXM = 4.246 0.061
R vXR = 0.513 PXR = 4.056 0.296

All vX = 0.670 PX = 4.103 0.357

Surv.
M vSM1 = 0.119 vSM2 = 0.088 PSM1 = 4.857 PSM2 = 4.979 0.363
R vSR1 = 0.209 vSR2 = 0.118 PSR1 = 4.507 PSR2 = 4.302 (-) 0.407

All vS1 = 0.329 vS2 = 0.206 PS1 = 4.634 PS2 = 4.590 (-) 0.044

Entry
M vEM = 0.173 PEM = 4.530 (-) 0.010
R vER = 0.620 PER = 3.980 (-) 0.378

All vE = 0.793 PE = 4.102 (-) 0.388
Total 1.000 1.000 4.273 4.199 (-) 0.074

Notes: authors’ calculations with Census data.

sectors, as the high productivity sector of the economy contracted. It also implies that from
the point of view of TFP, the performance of services and commerce is extremely relevant, and
that when they underperform, they punish TFP considerably.22

Third, contrasting Tables 3.6 and 3.9, it is clear that regardless of whether we consider exit,
survival, or entry, the differences in productivity between formal vs. informal firms are larger
than those between firms in manufacturing vs. services and commerce, and in all cases by large
margins. This observation is critical because it highlights that from the point of view of TFP,
the contractual differences between firms matter substantially more than their differences in
exposure to international trade. As we show below, TFP would increase much more in Mexico
closing the productivity gap between formal and informal firms than by closing it between
firms in manufactures versus the other two sectors.

Finally, we describe the contribution of each sector to ∆TFP . Exit in manufacturing raised TFP
by 6.1% while services and commerce by 29.6%. The exit of manufacturing firms contributed
little because their productivity was higher (PXM > PXR), and because the resources involved
were substantially smaller (vXM < vXR). In parallel, as noted, services and commerce fully
account for the 4.4% fall in productivity among survivors. Finally, firms in services and com-
merce almost fully account for the negative contribution of entry to ∆TFP : (-) 37.8% vs. (-)
1% for manufacturing; a result due to the fact that their factor share was higher (vER > vEM )
and the gap vis-à-vis the productivity of surviving firms was larger, that is, in absolute values,
(PS2 − PER) > (PS2 − PEM ). In the end, during the two decades considered here, manufac-
turing played a relatively modest role in the changes in TFP; services and commerce had the
upper hand.

3.8.3 Firm growth

We close this section discussing firm growth from the sector perspective, focusing again on
surviving firms. Note from Table 3.8 that out of the 466,067 surviving firms, only 47,643 are in
manufacturing (≈ 10%). With that observation, the horizontal axes in Figure 3.6 groups firms

22The share of manufactures in GDP fell from 18% in 1998 to 15.3% in 2018. Our results are consistent Rodrik’s
(2016) ‘premature deindustrialization’ hypothesis. What is notable in Mexico’s case is that deindustrialization
occurred despite the very successful performance of manufacturing exports.
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Figure 3.6: Size of surviving firms: manufacturing vs. services and commerce

Notes: authors’ calculations with Census data.

by sector and age in 1998 (between one and five years old, six and ten, and so on). The vertical
axes shows their size, given by the number of workers.

Considering firms in all sectors, average size increased by 16%, from 8 to 9.3 workers (Table
3.7). However, Figure 3.6 shows that the differences between manufactures and services and
commerce are dramatic and widened in these two decades. Average size in manufactures was
32.4 in 1998 and 42.3 in 2018, an increase of 30%; in contrast, in services and commerce it was
5.3 and 5.7, respectively, an increase of 7.5%. Differently put, the 16% increase in the size of
surviving firms was basically driven by manufactures (despite the fact they represented only
10% of survivors).

Thus, Figure 3.6 provides further evidence that manufactures behaved differently than services
and commerce. As shown before, it was the only sector to make a positive contribution to
∆TFP and, as shown here, firms grew substantially more. Unfortunately, as already noted,
manufactures was unable to increase its share of resources and despite its relatively better
performance, TFP fell.

3.9 Two back-of-the envelope calculations: formality vs. sector com-
position

What would have happened to TFP if between 1998 and 2018 the formal-informal segmenta-
tion of the economy had disappeared? Answering this question requires a model capturing
the impact of the institutions alluded to in section 3.2 on firm and worker behavior. Clearly,
changing them would impact occupational choices, the size distribution of firms, the dynam-
ics of entry, survival, and exit, the patterns of firm growth, and incomes and the size of the
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market, among many variables. An exceedingly difficult task not attempted here.

Rather, in this section we carry out two mechanical exercises. In the first one we assume that
between 1998 and 2018 the productivity of informal surviving firms converges to that of formal
surviving firms, and the productivity of entering informal firms equals that of entering formal
ones. The exercise is equivalent to a scenario where the market share of informal firms falls
from 24% to 0%, so that formal ones make all investments, hire all workers, and produce all
goods and services. In this scenario, between 1998 and 2018 TFP would have increased by
27%, for an annual growth rate of 1.2%.23 This result compares to the annual growth rate of (-)
0.3% estimated in section 3.6 and provides another angle on the extent to which informal firms
depress productivity growth.

In the second exercise we assume that between 1998 and 2018, the productivity of surviving
and entering firms in services and commerce converges to that of manufacturing. In this case,
TFP would have increased by 12.3%, less than half of the increase in the ‘no informality’ case.
This result is explained by the fact that in this case TFP continues to be punished by the pres-
ence of informal firms and supports the following observation: from the point of view of TFP,
the formal-informal composition of the economy matters substantially more than its sector
composition.

3.10 Conclusions

In this paper we exploited a very rich and, by Latin American standards, unique firm database,
to understand why, despite many reforms to increase efficiency and a boom in manufacturing
exports, TFP fell in Mexico in the last decades. We have six results: first, between 1998 and
2018 firm informality increased in the aggregate and in most six-digit sectors, productivity
differences between formal and informal firms widened, and the distribution of firm produc-
tivity polarized. In parallel, the market share of formal firms increased in manufacturing, fell
in services and commerce, and increased marginally in the aggregate, from 76 to 77%.

Second, using a 20-year panel to study firm dynamics, we find large churning: eight out of ten
firms present in 1998 exited before 2018 and nine out of ten in 2018 entered after 1998. How-
ever, this churning was useless as TFP fell 7.4%. Exit raised TFP because many unproductive
informal firms exited, although troublingly some higher productivity formal firms also exited.
Survival lowered TFP because, on balance, the productivity of surviving firms fell. Entry also
lowered TFP because many informal low productivity firms entered; in fact, very poor selec-
tion at entry was the single most important factor punishing TFP. All in all, firm dynamics
were dysfunctional.

Third, for each surviving informal firm that formalized, two surviving formal ones informal-
ized. Only 5% of surviving informal firms followed the expected path of “growing, formalizing
and becoming more productive”; the remaining 95% neither grew, nor formalized nor became
more productive. Further, formal firms that survived by informalizing became less productive.
Altogether, the relation between changes in size of surviving firms and changes in their pro-
ductivity was the opposite of what was expected, as average size increased but productivity

23This growth rate –though still lower than that observed in many East Asian countries– would have exceeded
that of Canada (0.26%) and the United States (0.66%) over the same period. In other words, rather than divergence,
there would have been convergence in TFP between Mexico and its Nafta partners.
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fell.

Fourth, the increase in average firm size between 1998 and 2018 was driven almost exclusively
by the entry of relatively few large firms. Surviving medium and large firms hardly grew, par-
ticularly in services and commerce, and many small firms entered. As a result, the distribution
of firm size also polarized.

Fifth, manufacturing behaved differently than services and commerce, as its TFP increased
while it fell in the other two sectors. That said, its performance was far from stellar because
despite the many measures promoted to increase efficiency, informal entry into manufacturing
continued. Moreover, its contribution to aggregate TFP was diluted because, despite being the
higher productivity sector, its share of resources fell.

Finally, we find that productivity differences between formal and informal firms are larger
than those between firms in manufacturing and other sectors, implying that from the point
of view of TFP, the formal-informal composition of the economy matters more than the sector
composition.

Our findings are based on the dynamic productivity decomposition proposed by Melitz and
Polanec (2015) to an economy with a large informal sector. As opposed to the “Solow residual”
obtained from an aggregate production function, the O-P decomposition studies the path of
TFP following the patterns of exit, survival and entry of individual firms. The Solow residual
is usually thought of as a black box; “a measure of our ignorance”. This contrasts with the O-P
decomposition, where changes in TFP are derived from the performance of individual firms;
in our case, over 6.5 million. The O-P decomposition sheds considerable light on the behavior
of TFP in Mexico because it highlights the critical role played by resource misallocation across
and within sectors.

When firms are classified by sector, the Olley-Pakes decomposition highlights the asymmetric
behavior of manufactures versus services and commerce, and calls attention to the fact that
while manufacturing TFP may increase, aggregate TFP can fall. While it is often the case
the data limitations preclude analysis of productivity in services and commerce, this finding
suggests caution when extrapolating the results of studies focused only on manufacturing. In
contexts of large misallocation, manufacturing TFP may increase while its share of resources
falls, and its positive contribution to aggregate TFP may be offset by the negative contribution
of other sectors, as was the case in Mexico.

In parallel, when firms are classified by formality status, the Olley-Pakes decomposition high-
lights the fact the TFP can increase in the formal sector and fall in the informal one. Again,
while it is often the case that data limitations preclude analysis of informal firms, this finding
suggests caution when extrapolating the results of analysis of TFP that focus only on formal
ones. Any individual informal firm is almost irrelevant; jointly they can make all the differ-
ence, as was also the case in Mexico.

Finally, the Olley-Pakes decomposition provides a useful complement to analyses of the im-
pact of individual policies on TFP. Undoubtedly, the advantage of these analysis is that they
carefully identify the impact of a single policy and the mechanisms through which it impacts
TFP. However, by focusing on an individual tree, they miss the interaction with other trees,
an extremely relevant consideration when other trees behave differently from the tree under
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study and may determine the fate of the forest. The point here is that to obtain a fuller under-
standing of the determinants of changes in aggregate TFP, we need both: studies of individual
policies with techniques that allow to identify causality, and studies of how multiple policies
interact and determine the overall outcome, even if one cannot identify the individual contri-
bution of each, as this paper attempted.

Our findings have substantive implications for policy in Mexico and, we would argue, for
countries with large informal sectors. First, they highlight that from the point of view of TFP,
the formal-informal segmentation of the economy is very costly, and that this segmentation
can persist and in fact increase even in the context of reforms like privatizations, creation of
regulatory bodies to promote competition, and trade liberalization.

Second, they reflect the inconsistent nature of the policymaking process in Mexico. At the end
of the day, the dysfunctional nature of its firm dynamics in the period studied here show that
the efficiency-enhancing reforms promoted since 1990 to increase TFP could not counteract
other forces in the economy operating in the opposite direction.24

Third, they highlight that, ignoring social protection issues, informality is a “market compe-
tition problem”. Informal firms survive or are continuously created because they can adapt
to shocks with more ease than formal ones; and because they are implicitly subsidized by the
dual nature of the Mexico’s social insurance architecture, and by special tax regimes. In paral-
lel, formal firms have more difficulty responding to shocks, and are implicitly taxed by flaws
in the social insurance regime and by enforcement of regulations proportional to firm size;
as well as hindered by a weak contracting environment. Because formal and informal firms
co-exist in most narrowly defined markets, the result is that competition is heavily distorted,
weakening the connection between firm size, firm growth, and productivity. The point here is
that this “market competition problem” could not be addressed by the privatization of state-
owned enterprises and the trade liberalization measures promoted by Mexico, including its
fourteen trade agreements; and was legally beyond the reach of the anti-trust authorities that
were created in parallel.

Fourth, our findings suggest that in countries with large informal sectors, policymakers need
to exercise care with policies that promote entrepreneurship. Entry of new firms should not
be an objective by itself; what matters is that entrants be better than incumbents. Across-the
board the board promotion of entry might result in the proliferation of informal firms that can
end-up hurting productivity.

Fifth, our findings indicate that successful export performance, particularly in manufacturing,
need not always be an ’engine of TFP growth’. This is not to say that manufacturing exports
are not welcome; they are, and without them Mexico’s productivity performance would have
been even more dismal. But it is to say that they cannot offset the institutions and policies that
generate the formal-informal divide. Mexico’s experience is thus a cautionary tale not in the
sense that countries with large informal sectors should not open to international trade, but in
the sense that, in parallel, they need to do much more to fully reap its benefits. Differently
put, trade reform or, for that matter, privatizations or anti-trust policies, are not a substitute
for tackling the roots of the formal-informal divide, and the first without the second can result

24Levy (2018) documents that between 1998 and 2018, tax, labor and social insurance regulations changed,
favoring informality, at the same time that the contracting environment faced by firms deteriorated.
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in a situation where a segment of the economy performs very well, and the rest stagnates.

Sixth, policymakers often pay large attention to manufacturing, hoping that improving its per-
formance will increase aggregate TFP: industrial or productive development policies, credit
from development banks, subsidies for R&D, free trade areas, and so on. However, our find-
ings underline the importance of focusing on services and commerce. These sectors can more
than offset manufacturing’s positive behavior, more so if their share of resources increases.
Differently put, to increase aggregate TFP, policymakers need to pay attention to services and
commerce, even if this is more challenging because informality in these sectors is more preva-
lent.

189



Bibliography
Ackerberg, D. A., Caves, K., and Frazer, G. (2015). Identification properties of recent produc-

tion function estimators. Econometrica, 83(6):2411–2451.

Álvarez, F., Eslava, M., Sanguinetti, P., Toledo, M., Alves, G., Daude, C., and Allub, L. (2018).
Red 2018. instituciones para la productividad: hacia un mejor entorno empresarial.

Bento, P. and Restuccia, D. (2017). Misallocation, establishment size, and productivity. Ameri-
can Economic Journal: Macroeconomics, 9(3):267–303.

Buera, F. J. and Shin, Y. (2013). Financial frictions and the persistence of history: A quantitative
exploration. Journal of Political Economy, 121(2):221–272.

Busso, M., Fazio, M., and Algazi, S. (2012). (in) formal and (un) productive: The productivity
costs of excessive informality in mexico.

Busso, M., Fentanes, O., and Levy, S. (2018). The longitudinal linkage of mexico’s economic
census 1999-2014.

Eslava, M., Haltiwanger, J., and Pinzón, Á. (2022). Job creation in colombia versus the usa:‘up-
or-out dynamics’ meet ‘the life cycle of plants’. Economica, 89(355):511–539.

Fernández-Arias, E. and Fernández-Arias, N. (2021). The latin american growth shortfall: Pro-
ductivity and inequality. Background paper for the.

Gasparini, L. and Tornarolli, L. (2009). Labor informality in latin america and the caribbean:
Patterns and trends from household survey microdata. Desarrollo y sociedad, (63):13–80.

Hsieh, C.-T. and Klenow, P. J. (2009). Misallocation and manufacturing tfp in china and india.
The Quarterly journal of economics, 124(4):1403–1448.

Hsieh, C.-T. and Klenow, P. J. (2014). The life cycle of plants in india and mexico. The Quarterly
Journal of Economics, 129(3):1035–1084.

La Porta, R. and Shleifer, A. (2014). Informality and development. Journal of economic perspec-
tives, 28(3):109–126.

Lederman, D., Messina, J., Pienknagura, S., and Rigolini, J. (2014). Latin American entrepreneurs:
many firms but little innovation. World Bank Publications.

Levinsohn, J. and Petrin, A. (2003). Estimating production functions using inputs to control
for unobservables. The review of economic studies, 70(2):317–341.

Levy, S. (2018). Under-rewarded efforts: The elusive quest for prosperity in Mexico. Inter-American
Development Bank.

Levy, S. and Fentanes, O. (2022). Nafta-usmca and wages in mexico. Brookings Institution.

Maurizio, R. (2021). Employment and informality in latin america and the caribbean: an insuf-
ficient and unequal recovery. ILO Labour Overview Series, Latin America and the Caribbean.

Melitz, M. J. and Polanec, S. (2015). Dynamic olley-pakes productivity decomposition with
entry and exit. The Rand journal of economics, 46(2):362–375.

190



Pagés-Serra, C. (2010). The age of productivity: Transforming economies from the bottom up.
Technical report, Inter-American Development Bank.

Poschke, M. (2018). The firm size distribution across countries and skill-biased change in en-
trepreneurial technology. American Economic Journal: Macroeconomics, 10(3):1–41.

Restuccia, D. and Rogerson, R. (2008). Policy distortions and aggregate productivity with
heterogeneous establishments. Review of Economic dynamics, 11(4):707–720.

Rodrik, D. (2016). Premature deindustrialization. Journal of economic growth, 21:1–33.

Rovigatti, G. and Mollisi, V. (2020). Prodest: Stata module for production function estimation
based on the control function approach.

Ulyssea, G. (2018). Firms, informality, and development: Theory and evidence from brazil.
American Economic Review, 108(8):2015–2047.

191


	couverture_these.pdf
	output_opt.pdf
	Building Up Local Productivity: Infrastructure and Firm Dynamics in Mexico
	Introduction
	Growth and infrastructure in Mexico
	Data
	The Economic Census
	The National Highways Network
	The National Infrastructure Plans

	Empirical evidence
	Main specification
	Outcomes
	Treatment and sample
	Validity
	Empirical results
	Robustness checks
	Discussion

	Model
	Geography
	Households
	Firms
	Local labor productivity
	Equilibrium

	Calibration
	Parameterization
	Labor and wage paths
	Model inversion
	Internal calibration
	Model validation

	Quantitative results
	Contribution of highways to welfare and growth
	A more ambitious infrastructure policy

	Conclusion

	Appendices
	Appendix: Data
	Appendix: Empirics
	Appendix: Model
	Agglomeration and congestion externalities
	Firm sorting


	Making a Growth Miracle: Historical Persistence and the Dynamics of Development
	Introduction
	Empirical evidence
	Data
	Four key facts of growth

	Structural model
	Model Setup
	Estimation
	Evaluating model fit

	Quantifying the drivers of aggregate growth
	Initial conditions and the role of transition growth
	The never-ending race: Transition growth remains important
	The role of policy

	Conclusion
	References

	Appendices
	Data and Empirical Evidence
	Data cleaning details
	Further main descriptives
	Additional results for iterating on initial distribution
	Further details on exit behavior
	Details and robustness for production function estimation
	Details and robustness for aggregate technology estimates
	Additional results on changes in misallocation
	Further event study evidence

	Model and Estimation
	Adjustment costs as costs of managerial time
	Microfoundation of working capital constraint
	Stationarized value function and balanced growth path after 2015
	Formal derivation of main accounting identity
	Details on estimation
	Details on Euler estimation
	Further model validation exercises

	Counterfactuals and results
	Further results on decomposing the drivers of growth
	Details on INPRES evaluation
	Details on FDI policy counterfactual
	Making a (more impressive) Growth Miracle


	Dysfunctional Firm Dynamics and Mexico's Dismal Productivity Performance
	Introduction
	Brief note on informality and resource allocation
	Definitions and data
	Definitions
	Data
	Panel of firms

	Stylized facts: resource allocation and market shares
	Firm productivity by size, sector and formality status
	Measurement of firm productivity
	Formal-informal productivity differences by size and sector
	Productivity distributions

	Dynamic Olley-Pakes TFP decomposition: formal versus informal firms
	Decomposition
	Panel of firms, firm productivity, and factor shares
	Productivity decompositions

	Firm size, firm growth, and productivity
	Firm growth and productivity
	Age-size profiles and firm growth
	Changes in average firm size and changes in productivity 

	Dynamic Olley-Pakes decomposition: manufacturing versus services and commerce
	Firm dynamics and resource allocation
	Productivity decompositions
	Firm growth

	Two back-of-the envelope calculations: formality vs. sector composition
	Conclusions



