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We develop the procurement analogue to an all-pay auction for an independent pri-
vate values model with identical distributions. In this all-receive procurement auction
(ARPA), suppliers simultaneously submit bids. Suppliers with bids below (above) the
reserve are paid their bids (are paid and produce nothing). The supplier with the largest
bid below the reserve produces the good. With appropriately chosen reserves, which
decrease in the number of suppliers, the ARPA is efficient and, given increasing virtual
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1 Introduction

The pandemic and ongoing geopolitical tensions have led policy makers and business leaders
to call for more resilient supply chains. Typically, reducing reliance on a single, low-cost, but
often distant, supplier involves trading off higher costs against a lower risk that the supply
chain breaks down. This raises the question of how sustainable efforts to increase domestic
production and on-shoring will be. To address this question, we develop procurement auction
formats that involve no tradeoff in terms of expected payoffs, yet increase the resilience of
the supply chain. Of particular interest is the procurement analogue of the all-pay auction,
which we call all-receive procurement auction (ARPA).

We study a standard procurement model with independent private values in which a
buyer with known value wants to procure one unit from a set of suppliers who draw their
costs independently from a common, known distribution. In the ARPA, suppliers submit
bids simultaneously. All suppliers with bids not exceeding the reserve set by the procurer are
paid their bids, and the supplier with the largest bid below the reserve is asked to produce
the good. Suppliers with bids above the reserve are paid nothing and are never asked to
produce. Like first-price and second-price procurement auctions (FPPA and SPPA), with
appropriately chosen reserves, the ARPA is efficient and, if the cost distribution exhibits
increasing virtual types, an optimal procurement auction. By the payoff equivalence theorem,
the ARPA, FPPA and SPPA thus induce the same interim and thus the same ex ante
expected payoffs for the suppliers and the same expected payoff for the buyer.

Another feature of the ARPA is that the buyer’s total payment is spread across all
suppliers with bids below the reserve. Consequently, relative to other two formats, the
ARPA increases suppliers’ liquidity. As we show by considering liquidity shocks, occurring
at the end of the game and not anticipated in the auction, this has the advantage of allowing
more suppliers to survive a liquidity shock than the FPPA and SPPA. Specifically, there are
conditions under which a liquidity shock eliminates all suppliers in the FPPA and SPPA,
while in the ARPA it only eliminates the supplier that is selected to produce. Under other
conditions, either all or all but the selected producer survive in the ARPA and only the
winner in the FPPA and SPPA survives the liquidity shock. With the ARPA, the buyer can
thus make the supply chain more resilient—and in particular preserve competition among
suppliers—without any sacrifice in expected payoffs.

We moreover show that, with appropriate adjustments of the rules to allow ironing (My-
erson, 1981), the payoff equivalence and resilience properties of the ARPA extend to the
case in which the virtual cost is not globally monotone; in the process, we also show how
to adjust the rules of the FPPA and SPPA to permit ironing. However, the ARPA and its
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adjusted variant may degrade the liquidity of the supplier selected to produce. A general-
ization of the ARPA that mitigates this concern, at the expense of some resilience, would
be multiple-receive procurement auctions, in which only a subset of suppliers are paid their
bids (with the ARPA and the FPPA being extremal special cases). Interestingly, as we show
in an extension, multiple-receive procurement auctions do not necessarily exhibit a mono-
tone equilibrium and can therefore fail to be payoff equivalent to more standard formats. In
further extensions, we derive the direct mechanism that is maximally resilient without ever
degrading suppliers’ liquidity, and address possible concerns about the susceptibility of the
ARPA to collusion—showing in particular that the ARPA can actually be less susceptible
to collusion than the other formats.

The auction literature is, evidently, too vast to review here; see, for example, Krishna
(2010) for an authoritative overview. Revenue equivalence between different auction for-
mats was first observed by Vickrey (1961, 1962) with the driving force behind it, and the
deeper result of payoff equivalence, uncovered by Riley and Samuelson (1981) and Myerson
(1981). We develop the procurement equivalent to the all-pay auction, the ARPA, and show
that, with an appropriate reserve, it is payoff equivalent to standard formats like the FPPA
and SPPA. While we do not analyze the design of (optimal) mechanisms in the presence
of liquidity constraints, which is the subject of papers such as Ganuza (2007) and Arve
and Martimort (2024), we analyze the robustness of fixed and otherwise equivalent auction
formats to unanticipated liquidity shocks.

In what follows, in Section 2, we introduce the setup and the formal definition of the
ARPA. In Section 3, we derive the suppliers’ equilibrium behavior in the ARPA. Implemen-
tation of the optimal procurement mechanism via the ARPA is studied in Section 4. Section
5 introduces and analyzes liquidity shocks, and Section 6 provides additional discussion and
concludes the paper.

2 Setup

There is one buyer, with single-unit demand and value v > c, and n ≥ 2 suppliers, each
drawing its cost independently from a continuous distribution F with density f and support
C ≡ [c, c].1 The buyer and the suppliers are all risk neutral; they have quasilinear utility, and
the value of their outside option is 0.

In an all-receive procurement auction (ARPA) with reserve R, all suppliers simultaneously

1A supplier’s production cost c can be interpreted either as the opportunity cost of selling an existing
asset or as the financial cost of producing an asset or service. For the analysis in Sections 3 and 4, these
two interpretations are equivalent. However, for some of the analysis and results in Section 5 on resilience
to liquidity shocks, which specification is used matters.
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submit bids.2 If all bids (strictly) exceed R, the procurement is unsuccessful and there are
no payments or production. Otherwise, each supplier i with a bid Bi ≤ R is paid Bi, and
the supplier with the highest bid produces. If ties occur among the highest bidders below
R, then the supplier that has to produce is selected uniformly randomly from among these
bidders. This format inherits from the all-pay auction that each agent’s transaction price is
what it bids. There is however a notable difference between the sale and the procurement
contexts. For sale auctions, all-pay and first-price formats have in common that the highest
bidder wins. In the procurement context, the ARPA selects the highest bidder as supplier,
whereas a FPPA or SPPA selects instead the lowest bidder. Because incentive compatibility
requires an agent’s selection probability to be decreasing in its cost, this in turn implies that,
in the ARPA, equilibrium bids are decreasing in costs.

3 Suppliers’ response

We first show that the ARPA elicits a unique symmetric response from the suppliers. For
any c ∈ C, let

Pn(c) ≡ [1− F (c)]n−1

denote the probability that n − 1 suppliers have costs higher than c and, for any r ∈ (c, c]

and c ∈ [c, r], define

Bn (c; r) ≡ Ec−i
[min{c−i, r} | min c−i > c]Pn(c) = cPn (c) +

∫ r

c

Pn (x) dx, (1)

and
Rn (r) ≡ Ec[min{c, r}] = Bn (c; r) = c+

∫ r

c

Pn(x)dx. (2)

Observe that Rn(r) < r because c +
∫ r

c
[1 − F (x)]n−1dx < c +

∫ r

c
dx = r and that Rn(r) is

decreasing in n because the integral decreases in n.
We have:

Proposition 1. For any r ∈ (c, c], the ARPA with reserve R = Rn (r) induces a unique
symmetric Bayesian Nash equilibrium, in which every supplier with cost c ≤ r bids Bn (c; r)

and every supplier with cost c > r refrains from bidding. This equilibrium replicates the
allocation of the FPPA and SPPA with reserve r.

2Without a reserve, the ARPA would have no equilibrium, as any bidder would find it optimal to submit
an infinite bid. But this is not different from an all-pay auction in which, without a reserve (typically taken
to be zero), bidders would optimally submit an infinitely negative bid.
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Proof. Take r ∈ (c, c] as given and consider an ARPA with reserve Rn(r). Standard argu-
ments imply that in any symmetric equilibrium, (i) suppliers produce with positive proba-
bility if and only if their cost does not exceed a cost threshold, which we denote by r̂ ∈ [c, c],
and (ii) for a supplier with cost c ≤ r̂, the probability of being selected is Pn(c) and the
bid function B(c) is continuous and differentiable. For c ≤ r̂, we thus have, by incentive
compatibility, c = argmaxĉ B(ĉ) − cPn(ĉ). The first-order condition, evaluated at c = ĉ,
yields 0 = B′(c)− cP ′

n(c), leading to

B(c) = k + cPn(c) +

∫ r̂

c

Pn(x)dx= k +Bn (c; r),

for some constant k. Furthermore, because the lowest type produces with probability 1, it
cannot be induced to submit any other bid than the maximal one, Rn(r). Thus, B(c) =

Rn(r) = Bn (c; r), implying that k = 0. The threshold type r̂ must moreover be indifferent
between bidding and not, Bn(r̂; r)− r̂Pn(r̂) = 0, which implies that r̂ = r. It follows that a
supplier with cost c ∈ [c, r] submits a bid B(c) = Bn(c; r) ≤ Rn(r).

To establish sufficiency of the first-order condition, denote by U(c, ĉ) the utility of a type
c that submits the bid Bn(ĉ; r). We have:

U(c, ĉ) = Bn(ĉ; r)− cPn(ĉ)

and
∂U(c, ĉ)

∂ĉ
= (ĉ− c)P ′

n(ĉ),

which is positive for ĉ < c and negative for ĉ > c because P ′
n < 0. Thus, the first-order

condition characterizes the unique maximum.
To conclude the proof, recall that a FPPA or SPPA with reserve r induces suppliers with

costs less than or equal to r to submit bids that are increasing in their types and less than
or equal to r, ensuring that the lowest-type supplier produces whenever its cost is less than
or equal to r, and no suppliers produce when the lowest type is greater than r, generating
the same allocation as the ARPA with reserve Rn(r). ■

The equilibrium bidding strategy is decreasing in the supplier’s cost: B′
n(c; r) = P ′

n(c)c <

0. This occurs because a higher-cost supplier is less likely to be selected, and is therefore
willing to accept a lower (unconditional) payment. (For an illustration, see Supplemental
Appendix Figure C.1(a).) Furthermore, a supplier with cost r bids Bn(r; r) = Pn(r)r and
thus obtains a zero payoff, as it is asked to produce with probability Pn(r), in which case it
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incurs the cost r. Let
Un(c; r) ≡ Bn(c; r)− cPn(c)

denote the resulting expected payoff for a supplier with cost c ∈ [c, r], which thus satisfies
Un(r; r) = 0. Because the ARPA bid function is decreasing in c, the highest bid is submitted
by the supplier with the lowest cost: maxcBn(c; r) = Bn(c; r). Hence, the reserve R in the
ARPA that corresponds to a reserve r in a FPPA or SPPA is R = Bn(c; r) = Rn(r), which
satisfies Rn(r) = r for r = c and Rn(r) ∈ (c, r) for r ∈ (c, c].

Consider now the relation between bidding strategies. In a FPPA with reserve r ∈ C, a
supplier with cost c ≤ r bids

bFPPA
n (c; r) ≡ c+

∫ r

c
Pn(x)dx

Pn(c)
.

Consequently, we have
Bn(c; r) = Pn(c)b

FPPA
n (c; r). (3)

This is the same relationship as between an all-pay and a first-price auction, where, as is well
known, the bid in the all-pay auction is equal to the bid in the first-price auction multiplied
by the probability of winning. For example, for F uniform on [0, 1] and r = 1, we have
bFPPA
n (c; 1) = c+ 1−c

n
and Bn(c; 1) = (1− c)n−1(c+ 1−c

n
).

In particular, as a supplier with cost c is selected with probability 1, it bids the same
amount in the ARPA and the FPPA; hence, Rn(r) = Bn(c; r) = bFPPA

n (c; r). As the latter is
decreasing in n, the same applies to Rn(r) (for an illustration, see Figure C.1(b) in the Sup-
plemental Appendix). Furthermore, as bids are decreasing in c in the ARPA and increasing
in the FPPA, all bids in the FPPA weakly exceed all bids in the ARPA, as illustrated in
Supplemental Appendix Figure C.2.

Finally, by construction, for any r ∈ (c, c], Bn(c; r) is continuous and decreasing in c

and satisfies Bn(c; r) = Rn(r) > c and Bn(r; r) = Pn(r)r < r. Hence, there exists a unique
c̃n(r) ∈ (c, r) such that

Bn(c; r) ⋛ c if and only if c ⋚ c̃n(r). (4)

This means that suppliers with costs below c̃n(r) make a profit even if called upon to produce,
whereas suppliers with costs above c̃n(r) make a profit only if they do not have to produce
(and make a loss otherwise). Because Bn(c; r) is decreasing in n and increasing in r, c̃n(r)
is also decreasing in n and increasing in r (see Supplemental Appendix Figure C.3).
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4 Optimal procurement auctions

Let
γ(c) ≡ c+

F (c)

f(c)
.

denote the virtual cost of a supplier with cost c. We begin with the case in which γ is
increasing (the regular case hereafter), before addressing the case in which it is not.

4.1 The regular case

When γ is increasing (e.g., when the reverse hazard rate F/f is itself increasing), we can
define

r∗ ≡ γ−1(min{v, c}).

As is well known, in this regular case, the mechanism that maximizes the buyer’s expected
payoff (the optimal mechanism hereafter) selects a supplier with cost c with probability Pn(c)

if c ≤ r∗, and probability 0 otherwise. Moreover, it can be implemented using an FPPA or
SPPA with reserve r∗ (see Supplemental Appendix A for details). It follows from Proposition
1 that it can also be implemented using an ARPA with an appropriate reserve:

Corollary 1. If γ (c) is increasing in c, then the optimal mechanism can be implemented
using an ARPA with reserve R∗

n ≡ Rn (r
∗) .

In the case of ARPA, the optimal reserve is therefore decreasing in the number of suppli-
ers. This comparative static contrasts with the case of a FPPA or SPPA, where the optimal
reserve is independent of the number of suppliers, but it is the same as for the efficient and
the optimal all-pay selling auction.3

4.2 The nonregular case

Consider now the case in which γ is not strictly monotone in c.4 The optimal mechanism
then selects agents on the basis of the ironed virtual cost function γ, which is continuous,
nondecreasing, and differs from γ only on a set of so-called ironing intervals.5 Specifically,

3To see the latter, consider for instance the case in which n buyers draw their values independently from
F with support [0, 1] and density f , and the auctioneer’s opportunity cost of selling the good is c ∈ (0, 1).
The reserve of the efficient all-pay auction is then F (c)n−1c, whereas the reserve of the optimal all-pay
auction, assuming increasing virtual values, is F (r̃)n−1r̃, where r̃ is such that r̃− 1−F (r̃)

f(r̃) = c. Both reserves
are decreasing in n.

4The virtual cost function is locally increasing at c because γ′(c)|c=c = 2. Hence, it is either increasing
everywhere (the regular case) or not strictly monotone (the nonregular case).

5This is the procurement analogue of the optimal selling mechanism; see Myerson (1981). For a practical
implementation of the optimal selling mechanism, see Condorelli (2012).
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there exists K ≡ {1, . . . , K} and {ck, ck}k∈K, satisfying c1 < c1 < · · · < cK < cK , such that
γ(c) = γk ≡ Ec[γ(c) | c ∈ Ik] for c ∈ Ik ≡ [ck, ck], and γ(c) = γ(c) for c /∈ ∪k∈KIk. Note that
the ironing intervals, and hence γ(·), do not depend on the number of bidders. We illustrate
the ironing of a nonmonotone virtual cost function in Figure 1.

(a) Nonregular distribution

f (c)

0. 0.2 0.4 0.6 0.8 1.
c0.

0.5

1.

1.5

2.

(b) Ironed virtual cost function

γ(c)

γ(c)

0 0.2 0.6 1c1 c1
c

1

2

3

γ1

Figure 1: Nonregular cost distribution and its ironed virtual cost function. Assumes f(c) = Beta(c; 2, 8)/2+
Beta(c; 6, 2)/2, which has one ironing interval [c1, c1] = [0.420, 0.821] and one ironing parameter γ1 = 1.404.

The optimal reserve price may not be unique if v = γk for some k ∈ K, as the designer
is then indifferent about including or not suppliers with c ∈ Ik.6 Without loss of generality,
we break ties in favor of social surplus and include these suppliers; we thus choose

r∗ = max{c ∈ [c, c] | γ(c) ≤ v},

illustrated in Figure 2(a). Let K(v) ≡ {k ∈ K | ck ≤ r∗} and I(v) ≡ ∪k∈K(v)Ik refer to the
included ironing intervals.

For k ∈ K(v) and ci ∈ Ik, the probability of selecting supplier i is positive but must
not vary with ci. In addition, if multiple agents have the lowest ironed virtual cost, then,
without loss of generality, we uniformly randomly select one of these suppliers.7 We show in
Supplemental Appendix B.1 that the probability of selecting supplier i is then equal to

P n(k) ≡ Ec [Pn (c) | c ∈ Ik] .

6This is the procurement analogue to the observation made by Bulow and Roberts (1989) for the problem
faced by a monopoly producing with constant marginal costs.

7Because they have the same ironed virtual cost, any other cost-independent tie-breaking rule, such as
prioritizing agents on the basis of their names or identities, would work as well. Breaking ties uniformly
randomly paves the way towards existence of a symmetric equilibrium.
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The selection probability for a supplier with cost c is therefore:

P ∗
n(c) ≡


Pn(c) if c ∈ [c, r∗] \ I(v),

P n(k) if c ∈ Ik for k ∈ K(v),

0 otherwise,

(5)

as illustrated in Supplemental Appendix Figure C.4.
By the payoff equivalence theorem, the expected payoff of a supplier with cost c, denoted

U∗
n(c), is, using U∗

n(c) = 0,

U∗
n(c) =

∫ r∗

c

P ∗
n(x)dx.

We amend the ARPA to implement the optimal procurement in the nonregular case,
referring to the amended mechanism as the ARPA∗. By construction, the ARPA∗ must
induce a supplier with cost c < r∗ to bid β∗

n(c) ≡ P ∗
n(c)+U∗

n(c). Like the selection probability,
the bid function is constant over any ironing interval, and jumps down at both ends of the
interval: for k ∈ K(v),

β−
n (k) ≡ lim

c→c−k

β∗
n(c) > βn(k) ≡ β∗

n(ck) = β∗
n(ck) > β+

n (k) ≡ lim
c→c+k

β∗
n(c),

as illustrated in Figure 2(b).

(a) ARPA∗ maximum participating type

r s.t. γ(r)=v

0. 0.5 1. 1.5 2. 2.5 3.
v0

1

c1

c1

r*

(b) ARPA∗ bid function

β2
*(c)

β6
*(c)

c c1 c1 r* c
c

β2
-(1)

β2
+(1)

β2(1)

β6(1)

R2
*

R6
*

βn
*

Figure 2: Maximum participating type in the ARPA∗ and the ARPA∗ bid function for a nonregular cost
distribution. Panel (b) assumes v = 2, which implies r∗ = 0.941, and n ∈ {2, 6}. Both panels assume
f(c) = Beta(c; 2, 8)/2 + Beta(c; 6, 2)/2, which is shown in Figure 1(a).

The rules of the ARPA∗ are the same as in the ARPA with reserve R∗
n ≡ β∗

n(c), with the
caveat that, for selection purposes, any (off-path) bid, i.e. any b between βn(k) and β+

n (k),
for k ∈ K(v), is treated as b′ = βn(k). With this adjustment, we have:

8



Proposition 2. In the ARPA∗ with reserve R∗
n, there exists a symmetric Bayesian Nash

equilibrium, in which every supplier with cost c ≤ r∗ bids β
∗
n(c) and every supplier with

cost c > r∗ refrains from bidding. This equilibrium implements the optimal procurement
mechanism.

Proof. The incentive compatibility of the optimal mechanism ensures that, for any c ∈ C,
bidding β∗

n(c) (weakly) dominates any other bid in β∗
n(C). It remains to show that doing so

also dominates any unexpected bid, that is, any bid in [−∞, β∗
n(r)) or in [β+

n (k), β
−
n (k)] \

{βn(k)}, for k ∈ K(v). To see this, it suffices to note that: (i) any bid b ∈ [−∞, β∗
n(r))

(resp., b ∈ [β+
n (k), βn(k))) is dominated by b′ = β∗

n(r) (resp., b′ = βn(k)), which yields the
same selection probability, namely, 1 (resp., P n(k), thanks to the adjustment brought to
the ARPA∗ selection rule) but a larger payment; (ii) likewise, any bid b ∈ (βn(k), β

−
n (k))

is dominated by b′ = β−
n (k), which again yields the same selection probability (namely,

Pn(cn(k))) but a larger payment; and (iii) bidding b = β−
n (k) yields approximately the same

payoff as bidding slightly above β−
n (k). ■

5 Resilience to liquidity shocks

The question of why a procurer should use an ARPA or ARPA∗ rather than a standard
format such as the FPPA or SPPA (or the appropriately adjusted formats FPPA∗ and SPPA∗

defined below for the nonregular case) is a natural one. To address it, we extend the model
and assume that suppliers are liquidity constrained and exposed to liquidity shocks that are
not anticipated. We provide conditions under which the ARPA and ARPA∗ afford resilience
to liquidity shocks in the sense that they permit a competitive supply structure to survive
where none of the other formats does. In this thought experiment, we keep fixed the direct
mechanism that a given auction format implements—efficient or optimal procurement—and
merely ask which format is more resilient in the sense just defined. In particular, this is not
an exercise in designing optimal mechanisms in the face of liquidity constraints and liquidity
shocks.

As mentioned in footnote 1, production costs can alternatively be interpreted as (i)
opportunity costs of selling an existing asset or as (ii) the financial cost of producing an
asset or service. To fix ideas, for the remainder of this section, we stick to interpretation
(ii), that is, the liquidity of a supplier decreases when it is selected to produce. Specifically,
we stipulate that suppliers are initially cash constrained and can moreover be hit by an
industry-wide liquidity shock ε > 0, which occurs after procurement and production. To
ensure that bidding is not affected by the possibility of a liquidity shock, we assume that
the probability of the shock occurring is 0, to be interpreted as the limit of a very small
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shock probability. The eventual cash holding, once the procurement and liquidity shocks
have been realized is pi − ci − ε̃ for an agent with liquidity shock ε̃ ∈ {0, ε} who is paid pi

and has to produce the good at cost ci, and pi − ε̃ for the same agent if it does not have to
produce. Finally, suppliers who end up with negative liquidity go bankrupt.

We will say that an auction format preserves competition if the event that two or more
suppliers survive the liquidity shock occurs with positive probability.

5.1 Survival in efficient procurement auctions

We begin by considering the case of efficient procurement auctions, in which in equilibrium
the supplier with the lowest cost produces with probability 1, provided this cost is below v.
The FPPA and SPPA with reserve r = min{v, c} are efficient, as is the ARPA with reserve
Rn(r), and this holds independently of whether γ is increasing.

Given r, if ε ≤ Rn(r) − c, there exists a unique c̃ε(r), defined by Bn(c̃ε(r); r) − c̃ε = ε,
such that the supplier selected to produce in the ARPA survives after a liquidity shock if
and only if its cost is less than or equal to c̃ε. If, instead, ε > Rn(r)− c, then the producer
never survives a liquidity shock in the ARPA (nor in the FPPA or SPPA, as we will see).
Similarly, if ε ≤ Rn(r), then a supplier that does not produce survives a liquidity shock in
the ARPA if and only if its cost is less than or equal to c̃ε(r) ≡ B−1

n (ε; r), with the inverse
being taken with respect to the first argument of Bn(c; r).

In contrast, in the FPPA and SPPA, only the winning supplier has a chance to survive
a liquidity shock, and it moreover does so only if its cost is low enough. In particular, for
the FPPA, if ε ∈ (Rn(r)− c, Rn(r)), then a liquidity shock kills all suppliers in the FPPA,8

but in the ARPA it kills only the supplier that produces and the suppliers with costs above
B−1

n (ε; r). For smaller liquidity shocks, the supplier that produces in the FPPA survives only
if its cost is less than c̃′ε(r), defined by bFPPA

n (c̃′ε(r); r)−c̃′ε = ε. Because Bn(c; r) < bFPPA
n (c; r)

holds for any c > c (see (3)), we have for any ε ∈ (0, Rn(r) − c), c̃′(r) > c̃(r). This implies
that for liquidity shocks of this form, the supplier that is selected to produce is more likely to
survive in the FPPA than in the ARPA. However, because suppliers that do not produce are
paid nothing in the FPPA or, for that matter, the SPPA, only the ARPA has the potential
to preserve competition.

Summarizing, we have:

Proposition 3. Assume r = min{v, c} and let the liquidity shock ε tend to 0. In the FPPA
and SPPA with reserve r, only one supplier—the winner—survives a liquidity shock. In

8Recall that Rn(r) = bFPPA
n (c; r); hence, if ε > Rn(r) − c, a liquidity shock kills the winning supplier

even if it has the lowest possible cost, c.
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the ARPA with reserve Rn(r), the supplier that produces survives with probability 1 − [1 −
F (c̃n(r))]

n, and every other supplier with a cost c < r survives.

Obviously, if v < c, then suppliers with c > v are excluded, regardless of the auction
format. If, instead, v ≥ c, then a liquidity shock kills all non-selected suppliers in a FPPA
or SPPA, and none of them in the ARPA.

Because c̃n(r) is decreasing in n, it is not a priori clear whether the probability that
the producing supplier survives the liquidity shock when ε → 0 increases or decreases in n

because, for a fixed c, 1− [1−F (c)]n increases with n. As shown in Supplemental Appendix
Figure C.5, if costs are uniformly distributed, then the probability that the producing sup-
plier survives such a liquidity shock decreases in n. However, numerical results suggest that
it is bounded from below by 1/2.

5.2 Survival in optimal procurement auctions

We now extend the resilience analysis to optimal procurement auctions. In the regular
case, Proposition 3 extends directly to optimal procurement auctions with r replaced by
r∗ = γ−1(min{v, c}). For the nonregular case, we first need to identify variants of the
FPPA and SPPA, referred to as FPPA∗ and SPPA∗, that implement the optimal mechanism
characterized in Section 4.2. In doing so, we hold constant the central features of these
formats, namely that the winning supplier is paid its bid in a FPPA and that an SPPA
endow suppliers with dominant strategies to bid truthfully.

For the FPPA∗, we seek to generate a symmetric Bayesian Nash equilibrium in which a
supplier with cost c < r∗ bids βFPPA∗

n (c), equal to β∗
n(c)/P

∗
n(c); contrary to β∗

n(c), this bid
function jumps up at both ends of any relevant ironing interval, as illustrated in Supplemental
Appendix Figure C.6. The rule of the FPPA∗ is the same as that of a FPPA with reserve
r∗, except that for selection purposes, any (off-path) bid b ∈ [limc→c−k

βFPPA∗

n (c), βFPPA∗

n (ck)),
for k ∈ K(v), is treated as b′ = βFPPA∗

n (ck).9

Similarly, the rule of the SPPA∗ is the same as that of the SPPA, unless the second-lowest
bid is in Ik, for some k ∈ K(v). In that case, if the lowest cost is also in Ik, then one of the
bidders in Ik is selected uniformly randomly and paid ck. If, instead, the lowest bid is less
than ck, then the lowest bidder is selected and paid

pm(k) ≡
1

m+ 1
ck +

m

m+ 1
ck,

9The argument establishing that βFPPA∗

n (c) constitutes a symmetric response to the FPPA∗ is similar to
that for the ARPA∗.
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where m is the number of bids in Ik. As in the usual second-price auction, truthful bidding
is a dominant strategy in the SPPA∗.10 It then follows from the description of the SPPA∗

that it implements the optimal selection probabilities. Furthermore, incentive compatibility,
together with the fact that a supplier with c > r∗ obtains zero payoff, ensures that a supplier
with cost c obtains U∗

n (c).
With these adjusted formats in hand, we have:

Proposition 4. Assume r = r∗ and let the liquidity shock ε tend to 0. Among the auction
formats SPPA, FPPA, and ARPA, only the ARPA preserves competition, and among the
auction formats SPPA∗, FPPA∗, and ARPA∗, only the ARPA∗ preserves competition.

Proof. In the SPPA and FPPA, as well as in the SPPA∗ and FPPA∗, at most one bidder
receives a payment, and so only that bidder has a positive probability of surviving a liquidity
shock. In the ARPA, two bidders survive, for example, whenever there are two bidders with
costs below c̃n(r). Similarly, in the ARPA∗, two bidders survive, for example, whenever there
are two bidders with costs c such that c < β∗

n(c), which occurs with positive probability. ■

As this proposition indicates, when suppliers have low liquidity, if the buyer wants to
preserve competition, then the ARPA (or ARPA∗) is a forced move because neither first-
price nor second-price formats can “save” competition.

Although the propositions in this section apply for ε → 0, for larger values of ε, it is still
the case that in the FPPA and SPPA (and FPPA∗ and SPPA∗), at most one supplier survives.
In contrast, in the ARPA, all suppliers survive a shock of size ε whenever all suppliers’ costs
c satisfy ε ≤ Bn(c; r) ≤ Rn(r) and the lowest cost is less than c̃ε (and analogously for the
ARPA∗). In that sense, ε → 0 is a best-case scenario for the first-price and second-price
formats.

6 Discussion

In this section, we discuss alternative auction formats, address collusion concerns, and pro-
vide concluding remarks.

6.1 Multiple-receive procurement auctions and maximal resilience

With the FPPA, the symmetric equilibrium bids are increasing in and exceed costs, imply-
ing that no supplier ever regrets ex post being selected to produce; in contrast, with the
ARPA the equilibrium bids are decreasing in and eventually fall below costs, implying that

10See Supplemental Appendix B.2 for details.
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the individual rationality constraint can be violated ex post for the selected supplier.11 On
the other hand, the ARPA has desirable resilience properties. To balance ex post partici-
pation and resilience concerns, one avenue is a multiple-receive procurement auction, where
in equilibrium the m ∈ {1, . . . , n} bidders with the lowest costs are paid their bids and the
lowest-cost bidder is selected to produce—the FPPA corresponding to m = 1, and the ARPA
to m = n.

The above description of the auction rule is unorthodox, in that it relies on agents’ types
rather than bids. However, without knowing whether the equilibrium bidding strategy is
increasing (as for the FPPA) or decreasing (as for the ARPA), this unorthodoxy cannot be
avoided. If the bidding strategy is increasing (resp., decreasing), then the m lowest (resp.,
highest) bids will be paid and the lowest (resp. highest) bidder asked to produce. Interest-
ingly, and maybe unfortunately, we show in Supplemental Appendix B.3 that a monotone
equilibrium bidding strategy need not exist for m ∈ {2, . . . , n− 1}.

Alternatively, any given nonincreasing allocation (or selection) rule P̃n(c), together with
associated informational rents, can be implemented in a way that compensates the selected
supplier for the cost of production. Specifically, this implementation asks every supplier
to report its cost; any bidder with a reported cost c is paid

∫ c

c
P̃n(x)dx and, if selected to

produce, is additionally paid c. To see that this induces truthful reporting in a Bayesian
Nash equilibrium, observe that the expected payoff of a bidder with cost c that reports ĉ is∫ c

ĉ

P̃n(x)dx+ P̃n(ĉ)(ĉ− c),

whose derivative with respect to ĉ is P̃ ′
n(ĉ)(ĉ − c). Thus, the first-order and second-order

conditions are satisfied at ĉ = c. This implementation clearly maximizes resilience, as it
always satisfies the individual rationality constraints ex post and pays every bidder the
maximum amount possible, subject to this constraint and subject to implementing this
selection rule.

6.2 Susceptibility to collusion

The susceptibility of various auction formats to collusion has been a frequent topic in the
literature. The general view is that second-price formats are more susceptible to collusion
than first-price formats (see, e.g., Kovacic et al., 2006). In the case of the ARPA, a collusive
scheme might attempt to have the lowest-cost supplier submit the highest admissible bid,

11This partly mirrors a property of the all-pay auction, where ex post individual rationality is always
violated for all but the winning bidder.
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with all others submitting bids slightly below that, thereby securing the highest payment for
all bidders. However, a number of factors mitigate the vulnerability of the ARPA to collusion,
including the fact that the reserve is there substantially lower, and a strong incentive for
the supplier designated to produce to deviate to a lower bid in order to avoid incurring the
production cost.

To make things precise, consider the setup of Iossa et al. (2024), in which, in each period
over an infinite horizon: (i) a buyer with value v seeks to purchase in two identical markets,
in which two suppliers draw costs independently (across suppliers, markets, and time); (ii)
all agents discount the future according to a common discount factor δ ∈ [0, 1); and (iii) bids
submitted in one period are observed prior to the next period. Collusion takes the form of a
market allocation in which, for each market i = 1, 2, supplier i is the designated supplier and
the other supplier bids slightly less aggressively—detected deviations being punished with
reversion to competitive bidding in both markets forever.

If the auction format is a FPPA with reserve r, then the designated supplier bids slightly
below the reserve if its cost lies below the reserve and at cost otherwise, whereas the non-
designated supplier bids the reserve if its cost lies below it and at cost otherwise. If the
auction format is a SPPA with reserve r, then the designated supplier bids its cost and the
nondesignated supplier bids the reserve if its cost lies below it, and at cost otherwise. As
shown in Iossa et al. (2024), consistent with intuition, collusion is profitable in both the
FPPA and SPPA, and the SPPA is more susceptible to collusion in the sense of having a
lower critical discount factor such that collusion is sustainable.

For the ARPA, at least two collusive schemes are potentially relevant. In the first one,
given the reserve R2(r), the designated bidder bids R2(r) and the nondesignated bidder bids
slightly below R2(r), regardless of their respective costs; both bidders are then paid R2(r),
and the designated bidder incurs the production cost. In the second scheme, the designated
bidder bids R2(r) when its cost is less than R2(r) and bids its cost otherwise, whereas the
nondesignated bidder bids slightly below R2(r) when its cost is less than

ĉ(r) ≡ R2(r)

1− F (R2(r))
,

and bids its cost otherwise.12 In the second scheme, the designated bidder with cost c receives
max{0, R2(r) − c}, the nondesignated bidder with cost c < ĉ(r) has an expected payoff of
R2(r)− [1− F (R2(r))]c, and the nondesignated bidder with a higher cost receives zero.

12In a third variant, the designated bidder bids R2(r) when its cost is less than R2(r) and bids its cost
otherwise, and the nondesignated bidder bids slightly below R2(r) regardless of its cost. Our simulations
suggest that this variant is dominated in terms of profitability and sustainability by at least one of the other
variants.
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There are a number of ways in which the ARPA is less vulnerable to collusion than the
FPPA and SPPA (see Supplemental Appendix D for details). First, if the hazard rate is
monotone, collusion is always profitable in the FPPA and SPPA (Iossa et al., 2024, Lemma
1); in contrast, it is not necessarily profitable in the ARPA. For example, if F (c) = cs on
[0, 1] with s ∈ (0, 1/2), and r = 1, then ARPA collusion is not profitable under either variant.
This is because the payment R2(r) that the colluding bidders receive approaches zero as s

approaches zero, and so collusive payments are outweighed by the inefficiency associated
with collusion.

Second, collusion in the ARPA can, in some settings, be harder to sustain than in the
other formats. Indeed, to be sustainable, the short-term gain from deviation should be
sufficiently lower than the long-term loss from reverting to competition. With the ARPA,
the short-term gain from deviation can be quite high, and the long-term loss quite low. For
instance, in the first scheme, a designated bidder with cost c has a short-term gain of c

because it avoids production by deviating;13 and for uniformly distributed costs on [0, 1], the
long-term loss for the second scheme is always below that of the FPPA and SPPA.14 Thus,
the ARPA can be less susceptible to collusion than the other formats—for specific settings,
however, it can be more susceptible (see Supplemental Appendix D.5).

Finally, while market allocations in the FPPA and SPPA ensure that trade occurs when-
ever it would occur under competition, i.e., if and only if at least one supplier has a cost
below the reserve r, this is not the case in the ARPA for r < c. In variant 1, trade always
occurs, which means that there is trade even when both suppliers have costs in (r, c] and
so there would be no trade under competition. In variant 2, there is trade when both costs
are in (r, c] and the nondesignated supplier’s cost is less than ĉ(r), and there is no trade
when the designated supplier’s cost is in (R2(r), r) and the nondesignated supplier’s cost is
in (ĉ(r), c), even though in that case there is a supplier with cost below r.

Thus, while the ARPA, like other auction formats, is potentially vulnerable to collusion,
it does not appear to be significantly more vulnerable than other commonly used auction
formats.

6.3 Concluding remarks

Motivated by the recent upsurge of interest in supply chain resilience, this paper proposes a
new family of auction formats, called all-receive procurement auctions, in which all suppliers
with bids below the reserve are paid their bids and the highest bidder is selected to produce.

13In the second scheme, the most profitable deviation is by a designated supplier with cost R(c) that
deviates to a bid below that of the nondesignated supplier, for a gain of F (ĉ(r))R(r).

14See supplemental appendix D.
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These formats are payoff equivalent to standard formats such as the first-price and second-
price procurement auction and permit implementing both efficient and optimal procurement
auctions. Because in equilibrium more suppliers are paid than in the standard formats, the
liquidity holdings of the suppliers that are not selected to produce are larger than in the
standard formats, making them more resilient to certain forms of nonanticipated liquidity
shocks. Because they are payoff equivalent, all-receive procurement auctions may afford
resilience without any cost to the procurer.

Rather than paying multiple suppliers while having a single supplier produce, a procurer
might consider spreading production across multiple suppliers. This would allow the buyer to
obtain parts of the input even if a subset of the suppliers fail to deliver, for example, because
of a breakdown in their production facility or problems associated with shipment. Notwith-
standing the intuitive appeal, multisourcing of this form is inefficient in independent private
values models and not optimal in the regular case because, with probability one, a single
supplier has the lowest (virtual) cost. Consequently, under these conditions, multisourcing
comes at a cost to the procurer. However, without regularity, multisourcing becomes optimal
without any cost to the procurer because rather than breaking ties randomly among suppliers
with the lowest ironed virtual cost to select a single supplier to produce, ties can equiva-
lently be broken to have each of the suppliers involved in the tie produce the same fraction
of the total. While away from efficiency, our focus has been on profit-maximizing auctions,
in general (i.e., without sufficiently strong regularity) ironing and tie-breaking remain part
of the procurement mechanisms that maximize a convex combination of social surplus and
the buyer’s profit, provided that the weight on the latter is positive. Thus, multisourcing for
the purpose of increasing supply chain resilience can be optimal quite generally.

16



References
Arve, M. and D. Martimort (2024): “Auctioning Long-Term Projects under Financial Con-

straints,” Review of Economic Studies.

Bulow, J. and J. Roberts (1989): “The Simple Economics of Optimal Auctions,” Journal of
Political Economics, 97, 1060–90.

Condorelli, D. (2012): “What Money Can’t Buy: Efficient Mechanism Design with Costly Sig-
nals,” Games and Economic Behavior, 75, 613–624.

Ganuza, J.-J. (2007): “Competition and Cost Overruns in Procurement,” Journal of Industrial
Economics, 633–660.

Iossa, E., S. Loertscher, L. M. Marx, and P. Rey (2024): “Coordination in the Fight against
Collusion,” American Economic Journal: Microeconomics, 16, 224–261.

Kovacic, W. E., R. C. Marshall, L. M. Marx, and M. E. Raiff (2006): “Bidding Rings
and the Design of Anti-Collusive Measures for Auctions and Procurements,” in Handbook of
Procurement, ed. by N. Dimitri, G. Piga, and G. Spagnolo, Cambridge and New York: Cambridge
University Press, 381–411.

Krishna, V. (2010): Auction Theory, Elsevier Science, Academic Press.

Myerson, R. B. (1981): “Optimal Auction Design,” Mathematics of Operations Research, 6, 58–73.

Riley, J. G. and W. F. Samuelson (1981): “Optimal Auctions,” American Economic Review,
71, 381–392.

Vickrey, W. (1961): “Counterspeculation, Auction, and Competitive Sealed Tenders,” Journal of
Finance, 16, 8–37.

——— (1962): “Auctions and Bidding Games,” in Recent Advances in Game Theory, Princeton,
NJ: Princeton University Press, vol. 29, Princeton Conference Series, 15–27.

17



Supplemental Appendix

to accompany

“All-receive procurement auctions”

by
Simon Loertscher, Leslie M. Marx, and Patrick Rey

April 15, 2025

This Supplemental Appendix contains supplemental details and illustrations. Appendix
A provides mechanism design foundations for the optimal auction. Appendix B provides
supplemental details for some points made in the paper. Appendix C provides supplemental
illustrations. Appendix D provides supplemental details for the analysis of collusion.

A Optimal auction design

We characterize here the mechanism that maximizes the buyer’s expected payoff. Let Pi(ci)

denote the expected probability that supplier i is selected as supplier and Ti(ci) denote its
expected payment when its cost is ci. Supplier i’s expected gain can then be expressed as

Gi(ci) = Ti(ci)− ciPi(ci).

Standard arguments imply that the mechanism is incentive-compatible if and only if, for
every supplier i, Pi (·) is continuous and nonincreasing and, for every ci ∈ C,

Gi(ci) = Gi(c̄) +

∫ c̄

ci

Pi(c) dc. (A.1)

The buyer’s expected payoff U can be expressed as the total expected surplus,
∑n

i=1

∫ c̄

c
(v−

ci)Pi(ci) dF (ci), minus the suppliers’ total expected gains,
∑n

i=1

∫ c̄

c
Gi(ci) dF (ci):

U =
n∑

i=1

∫ c̄

c

[(v − ci)Pi(ci) −Gi(ci)] dF (ci)

=
n∑

i=1

∫ c̄

c

[
(v − ci)Pi(ci)−

∫ c̄

ci

Pi(c) dc

]
dF (ci)−

n∑
i=1

Gi(c̄).
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Obviously, it is optimal for the buyer to set Gi(c̄) = 0 for every i ∈ {1, . . . , n} to
minimize the suppliers’ expected gains. Using Fubini’s theorem, we can then rewrite the
buyer’s expected payoff as

U =
n∑

i=1

(∫ c̄

c

(v − ci)Pi(ci)f(ci)dci −
∫ c̄

c

∫ c̄

ci

Pi(x)f(ci)dxdci

)
=

n∑
i=1

(∫ c̄

c

(v − ci)Pi(ci)f(ci)dci −
∫ c̄

c

Pi(x)F (x) dx
)

=
n∑

i=1

∫ c̄

c

(
v − ci −

F (ci)

f (ci)

)
Pi(ci)dF (ci) .

Finally, for c ∈ Cn, let P̂i (c) denote supplier i’s probability of being selected, as a function
of all suppliers’ costs, c = (c−i, ci) = (c1, ..., cn). We thus have:

Pi(ci) =

∫ c̄

c

· · ·
∫ c̄

c

P̂i(c−i; ci) dF−i(c−i),

and the buyer’s expected payoff can be expressed as:

U =
n∑

i=1

∫ c̄

c

(
v − ci −

F (ci)

f (ci)

)
Pi(ci)dF (ci)

=
n∑

i=1

∫ c̄

c

(
v − ci −

F (ci)

f (ci)

)[∫ c̄

c

· · ·
∫ c̄

c

P̂i (c−i; ci) dF−i (c−i)

]
dF (ci)

=
n∑

i=1

∫ c̄

c

· · ·
∫ c̄

c

(
v − ci −

F (ci)

f (ci)

)
P̂i (c) dF (c1) · · · dF (cn)

=

∫ c̄

c

· · ·
∫ c̄

c

n∑
i=1

(
v − ci −

F (ci)

f (ci)

)
P̂i (c) dF (c1) · · · dF (cn)

= Ec

[ n∑
i=1

(v − γ (ci))P̂i (c)
]
,

where the final equality uses

γ (c) ≡ c+
F (c)

f (c)
.

Hence, ideally the auction designer would like to maximize, for every c ∈ Cn,

n∑
i=1

(v − γ (ci))P̂i (c) .
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The probabilities P̂i (·) must satisfy the feasibility constraints P̂i (·) ≥ 0 and
∑n

i=1 P̂i (·) ≤
1. Ignoring incentive constraints, the buyer would therefore not procure if v < mini∈N γ (ci),
and otherwise would like to select the supplier with the lowest γ (ci). Let

P̂ ∗
i (c) =

 1 if γ (ci) < min {minj ̸=i γ (cj) , v} ,

0 otherwise,

denote this unconstrained solution. Finally, for every supplier i, let

P ∗
i (ci) ≡

∫ c̄

c

· · ·
∫ c̄

c

P̂ ∗
i (ci; ci) dF−i(c−i)

denote the resulting interim expected selection probability.
Related to Corollary 1, building on the analysis above, if γ (·) is increasing, the uncon-

strained solution selects the lowest-cost supplier if its cost lies below r∗ ≡ min {γ−1 (v) , c̄},
and does not select any supplier otherwise:

P̂ ∗
i (c) ≡

 1 if ci < min {minj ̸=i cj, r
∗} ,

0 otherwise.

The resulting expected selection probability is then symmetric and given by

P ∗
i (ci) = P ∗ (ci) ≡

 Pn (ci) if ci < r∗,

0 otherwise.

If instead γ (·) is not everywhere increasing, then the unconstrained solution does not
have the monotonicity property required for incentive compatibility. The optimal allocation
then relies on an “ironed” version of the virtual cost, γ̄(c), which is nondecreasing, continuous,
and coincides with γ(c) whenever γ̄(c) is increasing (see Myerson, 1981). Specifically, there
exists a sequence of K = |K| “bunching” ranges (or “ironing intervals”) Ck ≡ [c(k), c(k)], for
k ∈ K satisfying {ck, ck}k∈K with c ≤ c1 < c1 < c2 < · · · < cK−1 < cK < cK ≤ c, such that:

• γ̄ (c) = γ (c) for c /∈ ∪k {Ck};

• γ̄ (c) = γ (ck) = γ (ck) ≡ γk for c ∈ Ck; and

•
∫ ck
ck

[γ̄ (c)− γ (c)] dF (c) = 0.
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The optimal mechanism is then such that:

P̂ ∗∗
i (c) =

 1 if γ̄ (ci) < min {minj ̸=i γ̄ (cj) , v} .

0 otherwise.

implying:1

P ∗∗
i (ci) = P ∗∗(ci) ≡

∫ c̄

c

· · ·
∫ c̄

c

P̂ ∗∗
i (c−i; ci) dF−i(c−i),

and:
T ∗∗
i (ci) = T ∗∗(ci) ≡ ciP

∗∗(ci) +

∫ c̄

ci

P ∗∗(c) dc,

By construction, P̂ ∗∗
i (·; ci) and P ∗∗

i (ci) are constant in any range ci ∈ Ck; from incentive-
compatibility, T ∗∗

i (ci) is thus also constant in any such range. By contrast, outside these
ranges, P̂ ∗∗

i (·; ci), P ∗∗
i (ci), and T ∗∗

i (ci) are all decreasing in ci.

B Supplemental details

B.1 Derivation of P n(k)

P n(k) =
n−1∑
k=0

(
n− 1

k

)
[1− F (ck)]

n−1−k [F (ck)− F (ck)]
k

k + 1

=
n−1∑
k=0

(n− 1)!

k! (n− 1− k)!
[1− F (ck)]

n−1−k [F (ck)− F (ck)]
k

k + 1

=
1

n [F (ck)− F (ck)]

n−1∑
k=0

n!

(k + 1)! [n− (k + 1)]!
[1− F (ck)]

n−(k+1) [F (ck)− F (ck)]
k+1

=
1

n [F (ck)− F (ck)]

n∑
k=1

n!

k! (n− k)!
[1− F (ck)]

n−k [F (ck)− F (ck)]
k

=
1

n [F (ck)− F (ck)]

(
n∑

k=0

(
n

k

)
[1− F (ck)]

n−k [F (ck)− F (ck)]
k − [1− F (ck)]

n

)
=

[1− F (ck)]
n − [1− F (ck)]

n

n [F (ck)− F (ck)]
.

1 By construction, P̂ ∗∗
i (c) is symmetric, implying that P ∗∗

i (ci) is also symmetric: P̂ ∗∗
i ((c−i,j , cj) ; ci) =

P̂ ∗∗
j ((c−i,j , ci) ; cj) and P ∗∗

i (c) = P ∗∗
j (c) for any i ̸= j ∈ {1, . . . , n}.
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Further, we have:

Ec [Pn (c) | c ∈ Ik] =

∫ ck

ck

[1− F (c)]n−1 f (c)

F (ck)− F (ck)
dc

=
[1− F (ck)]

n − [1− F (ck)]
n

n [F (ck)− F (ck)]

= P n (k) .

B.2 Dominant strategies in the adjusted SPPA

As noted, truthful bidding is a dominant strategy in the SPPA∗. The usual reasoning ensures
that, compared with bidding at cost, no supplier can benefit from bidding below cost, or from
bidding above cost when the second-lowest cost does not lie in I(v).2 Hence, to establish
dominant strategy incentive compatibility (DIC), we only need to check that a supplier with
cost c cannot benefit from bidding b > c when m > 0 next-lowest costs lie in Ik, for some
k ∈ Kv. If c ∈ Ik, then any b ∈ Ik yields the same payoff as bidding c, and any b > ck would
prevent the supplier from being selected, and is thus dominated by bidding c. Consider now
a bidder with cost c ≤ ck that is paid p when bidding below ck. By bidding in Ik, the supplier
would be selected with probability 1/(m + 1) and paid in that case ck. DIC thus requires
p− c ≥ ck−c

m+1
. This constraint is tightest at c = ck because the derivative with respect to c of

the right-hand side, −1/(m + 1), exceeds that of the left-hand side, −1. Setting p = pm(k)

thus satisfies DIC with equality for the cost ck and with a strict inequality for all lower costs.

B.3 Details for multiple-receive auctions

In this appendix, we now briefly elaborate on the scope and challenges for using multiple-
receive procurement auctions. For this purpose, we focus on ex post efficiency and assume
that v ≥ c.

For there to be an equilibrium in which paying the m lowest or highest bidders means
paying the m suppliers with the lowest costs, the equilibrium bid function needs to be strictly
monotone. While this is, evidently, the case for m ∈ {1, n} regardless of the distribution,
whether it holds for any m ∈ {2, . . . , n − 1} depends on the distribution, as we show next.
This suggests that the scope for using multiple-receive procurement auctions to implement
the efficient allocation, while striking a different balance between ex post participation con-
straints and resilience, comes with a caveat.

Even if equilibrium bidding is monotone for all m, because it is increasing for m = 1 and

2Recall that Ik is the k-th ironing interval, and we define K(v) ≡ {k ∈ K | ck ≤ r∗} and I(v) ≡ ∪k∈K(v)Ik.
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decreasing for m = n, to determine the rules of the auction, the designer will need to know
for which values of m the bid function is increasing (decreasing). The approach we take is,
therefore, akin to reverse auction theory—we first assume that a monotone equilibrium exists
in which either the m lowest or m highest bidders are paid, and then we verify whether the
assumption is correct and, if so, determine the appropriate auction rules. For m ∈ {1, . . . , n}
and c ∈ [c, c], let

qm,n(c) ≡
m−1∑
i=0

(
n− 1

i

)
F (c)i[1− F (c)]n−1−i

denote the probability that no more than m− 1 draws among n− 1 are less than c. Notice
that q1,n(c) = [1− F (c)]n−1 = Pn(c) and qn,n(c) = 1. Moreover, we have qm+1,n(c) > qm,n(c)

for any m < n and c ∈ (c, c).
In a symmetric equilibrium with bid function βm,n(c), a supplier with cost c maximizes

βm,n(ĉ)qm,n(ĉ)− Pn(ĉ)c.

As usual, this has to be maximized at ĉ = c, yielding

βm,n(c) =
cPn(c) +

∫ c

c
Pn(x)dx

qm,n(c)
.

Because q1,n(c) = Pn(c), we have β1,n(c) = c +
∫ c
c Pn(x)dx

Pn(c)
, which is increasing, as it should

be, because it is the equilibrium bid function in a FPPA. Similarly, because qn,n(c) = 1,
βn,n(c) = cPn(c) +

∫ c

c
Pn(x)dx, which is the (decreasing) ARPA bid function. Moreover,

because qm,n(c) decreases in m, βm,n(c) decreases in m, in line with the hypothesis that
decreasing m reduces the scope that a selected supplier’s participation constraint is violated
ex post.

Lemma B.1. For n ≥ 2 and m ∈ {1, . . . , n},

β′
2,n(c) =

(n− 1)(1− F (c))n−3f(c)

(q2,n(c))2

(
−c(1− F (c))n−1 + (n− 2)F (c)

∫ c

c

(1− F (x))n−1dx

)
.

Proof. We have
Pn(c)

qm,n(c)
=

1∑m−1
i=0

(
n−1
i

) [
F (c)

1−F (c)

]i ,
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which is decreasing in c for m > 1. The derivative of βm,n is

β′
m,n(c) = c

[
Pn(c)

qm,n(c)

]′
−

q′m,n(c)

qm,n(c)

∫ c

c
Pn(x)dx

qm,n(c)
.

The first term is negative and the second is negative, which with the negative sign makes it
positive. Focusing on the case of m = 2, q2,n(c) = (1 − F (c))n−2(1 − F (c) + (n − 1)F (c)),

q′2,n(c) = −(n− 1)(n− 2)F (c)(1− F (c))n−3f(c), and
[

Pn(c)
q2,n(c)

]′
= −(n−1)(1−F (c))2n−4f(c)

(q2,n(c))2
, so

β′
2,n(c) = c

−(n− 1)(1− F (c))2n−4f(c)

(q2,n(c))2
−

q′2,n(c)

q2,n(c)

∫ c

c
Pn(x)dx

q2,n(c)

=
(n− 1)(1− F (c))n−3f(c)

(q2,n(c))2

(
−c(1− F (c))n−1 + (n− 2)F (c)

∫ c

c

(1− F (x))n−1dx

)
,

which completes the proof. ■

Using Lemma B.1, for uniformly distributed costs, β2,n(c) is decreasing. This means that
for uniformly distributed costs, the multiple-receive procurement auction that pays the 2

highest bidders and selects the highest bidder to produce has a monotone equilibrium.
However, there are distributions such that this is not the case. For example, for F (c) =

√
c

with support [0, 1], β2,n(c) is nonmonotone for n ≥ 3. To see this, note that using Lemma
B.1, for the case of F (c) =

√
c, we have

β′
2,n(c) = −(n− 1) (−

√
c (n2 − 7n+ 4) + 2c(n− 2)n− 2n+ 4)

2n(n+ 1) (
√
c(n− 2) + 1)

2 ,

where β′
2,n(0) =

2−3n+n2

n+n2 , which is positive for n > 2, and β′
2,n(1) =

−1
2(n−1)

, which is negative
for n ≥ 2, establishing that β2,n(c) is not monotone for this case. This is illustrated in Figure
B.1.
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(a) β1,4 with F (c) =
√
c

β1,4(c)

0.0 0.2 0.4 0.6 0.8 1.0
c

0.2

0.4

0.6

0.8

1.0

(b) βm,4 with F (c) =
√
c for m ∈ {2, 3, 4}

β2,4(c)

β3,4(c)

β4,4(c)

0.0 0.2 0.4 0.6 0.8 1.0
c

0.02

0.04

0.06

0.08

0.10

0.12

Figure B.1: Bid functions βm,n(c) for n = 4 and m ∈ {1, 2, 3, 4} assuming F (c) =
√
c with support [0, 1].

One can also show that the expression for β′
2,n(c) in Lemma B.1 is positive for F (c) =

√
c

with support [0, 1] and n ∈ {3, . . . } if c = 0, but negative if c = 1. Thus, for F (c) =
√
c and

n = 4, we require m of at least 3 to have a monotone decreasing bid function.

C Supplemental illustrations

C.1 Illustration of the ARPA bid function and reserve.

In Figure C.1, will illustrate the ARPA bid function and reserve.

(a) ARPA bid function (r = 0.75)

B2(c;r)

B6(c;r)

c crR2(r)R6(r)
cc

c

r

R2(r)

R6(r)

Bn

(b) ARPA reserve

R2(r)

R6(r)

c c
rc

c
Rn

Figure C.1: Illustration of the ARPA bid function and reserve. Panel (a) shows the ARPA equilibrum bid
strategy for r = 0.75 and n ∈ {2, 6}. Panel (b) shows the ARPA reserve corresponding to a second-price or
first-price procurement reserve of r. Assumes uniformly distributed costs on [0, 1].
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C.2 Illustration of the comparison between FPPA and ARPA bid

functions

A supplier with cost c bids the same amount in the ARPA and in the FPPA. In the ARPA,
bids are decreasing in c, but in the FPPA are increasing in c. As a result, all bids in the
FPPA weakly exceed all bids in the ARPA. This is illustrated in Figure C.2.

b2
FPPA(c;r)

B2(c;r)

c crR2(r)
cc

c

r

R2(r)

Figure C.2: Comparison of the ARPA and FPPA bid functions. Assumes r = 0.75 and uniformly distributed
costs on [0, 1].

C.3 Illustration of the interim expected payoffs and threshold type

in the ARPA

As discussed in Section 3, there exists a unique c̃n(r) ∈ (c, r) such that Bn(c; r) ⋛ c if and
only if c ⋚ c̃n(r). This means that suppliers with costs below c̃n(r) make a profit even if
called upon to produce, whereas suppliers with costs above c̃n(r) make a profit only if they
do not have to produce (and make a loss otherwise). Because Bn(c; r) is decreasing in n and
increasing in r, c̃n(r) is also decreasing in n and increasing in r. This is illustrated in Figure
C.3.
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(a) ARPA interim expected payoffs (r = 0.75)

U2(c;r)

U2(c;r) given win

U2(c;r) given lose

crc2(r)
c0

R2(r)

U2

(b) Threshold type for payoff sign

c2(r)

c6(r)

c c
rc

c
cn

Figure C.3: Panel (a): interim expected payoffs in the ARPA for r = 0.75 and n = 2; Panel (b): threshold
type c̃n(r) for n ∈ {2, 6} such that, conditional on producing the good, interim expected payoffs are positive
for lower types and negative for higher types. Assumes uniformly distributed costs on [0, 1].

C.4 Illustration of the selection probability in the optimal mecha-

nism

As defined in equation (5), P ∗
n(c) is the selection probability for a supplier with cost c in the

optimal mechanism with uniform random tie-breaking. It is illustrated in Figure C.4.

P2
*(c)

P6
*(c)

c c1 c1 r* c
c

P2(1)

P6(1)

1
Pn
*

Figure C.4: Selection probability P ∗
n(c) in the optimal mechanism for a nonregular cost distribution. Assumes

f(c) = Beta(c; 2, 8)/2 +Beta(c; 6, 2)/2, which is shown in Figure 1(a), and r∗ = 0.9409, which is optimal for
v = 2.

C.5 Illustration of the survival rate in the ARPA

In Figure C.5, we illustrate the survival rate in the ARPA, which is discussed in Section 5.1.
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1-(1-F(c ))n

c

1 2 3 4 5 6 7 8 9 10
n0.

0.2

0.4

0.6

0.8

1.

Figure C.5: Threshold type c̃ such that Bn(c̃; c) − c̃ = 0 and the probability, 1 − (1 − F (c̃))n, that the
producing supplier survives a small liquidity shock in the ARPA. Assumes uniformly distributed costs on
[0, 1] and r = c.

C.6 Illustration of the adjusted FPPA

In Figure C.6, we illustrate the equilibrium bid functions in the adjusted FPPA, which is
defined in Section 5.2.

β2
FPPA*

(c)

β6
FPPA*

(c)

c c1 c1 r* c
cc

c
r*

βn
FPPA*

Figure C.6: FPPA∗ bid function assuming f(c) = Beta(c; 2, 8)/2 + Beta(c; 6, 2)/2, which is shown in Figure
1(a), and r∗ = 0.9409, which is optimal for v = 2.

D Details for analysis of collusion

D.1 Framework

We consider the framework of Iossa et al. (2024). There are two identical markets. A buyer
operates in both markets and has value v for one unit of the good in each market in each
period over time. There are two suppliers 1 and 2, with costs drawn from distribution F with
density f over the support [c, c] and increasing reversed hazard rate F (c)/f(c). Cost draws
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are independent across suppliers, markets, and time. All agents are risk neutral with quasi-
linear utility, and discount the future according to the common discount factor δ ∈ [0, 1).
Bids are observed at the end of each period.

We consider three auction formats: FPPA or SPPA with reserve r ∈ (c, c], and ARPA
with reserve R (r), where R(r) is defined to be the same as R2(r) as defined in equation (2).
Thus, we have

R (r) ≡ c+

∫ r

c

[1− F (c)] dc = r − Φ (r) , (D.2)

where
Φ (r) ≡

∫ r

c

F (c) dc

is the primitive of F (·) satisfying Φ (c) = 0. By construction, R (r) ∈ (c, r) and is strictly
increasing in r in the range r ∈ (c, c]. Note that:3

R (r) > [1− F (r)] r. (D.3)

We begin by defining the competitive profit. Under a SPPA, a supplier with cost c obtains
an expected profit equal to:

πc(c; r) ≡ Ec̃ [max{0, π̂c(c; r)min{r, c̃} − c}] = 1c<r × π̂c(c; r),

where (using n = 2)

π̂c(c; r) ≡
∫ r

c

(c̃− c) dF (c̃) + [1− F (r)] (r − c)

= [(c̃− c)F (c̃)]rc −
∫ r

c

F (c̃) dc̃+ [1− F (r)] (r − c)

= (r − c)F (r)− [Φ (r)− Φ (c)] + [1− F (r)] (r − c)

= r − c− [Φ (r)− Φ (c)]

= R (r)−R (c) . (D.4)

Using the revenue equivalence theorem, under all three formats, the expected competitive
profit is:

πc (r) ≡ Ec [π
c (c; r)] =

∫ r

c

F (c) [1− F (c)] dc = Φ(r)− Φ2 (r) ,

3Indeed, for r = c we have R (c) = [1− F (c)] c (= c) and, for r > c:

d

dr
(R (r)− [1− F (r)] r) = [1− F (r)]− ([1− F (r)]− f (r) r) = f (r) r > 0.
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where

Φ2 (r) ≡
∫ r

c

F 2(c)dc = [F (c) Φ (c)]rc −
∫ r

c

Φ (c) dF (c) = F (r) (Φ (r)− Ec [Φ (c) | c ≤ r]) .

Total industry profit is then

ΠC (r) ≡ 2πc (r) = 2 [Φ (r)− Φ2 (r)] .

D.2 Market allocation

We consider collusion that takes the form of a market allocation. The general idea is that
in each market a designated supplier is selected as provider; the other bids slightly less
aggressively. In a FPPA with reserve r, the designated supplier bids slightly below the
reserve if its cost lies below it, and at cost otherwise; nondesignated supplier bids the reserve
if its cost lies below it, and at cost otherwise. In an SPPA with reserve r, the designated
supplier bids its cost; the nondesignated supplier bids the reserve if its cost lies below it, and
at cost otherwise.

We now turn to the ARPA with reserve R (r). We look for a collusive mechanism that
has the following features:

• each supplier is either active (bids weakly below the reserve) or inactive (bids strictly
above the reserve);

• active suppliers obtain (almost) R (r);

• when both suppliers are active, one of them (the designated supplier, hereafter) is
selected to be the provider;

• this is achieved by requiring the designated supplier to bid R (r) whenever active, and
the nondesignated supplier to bid slightly below R (r) whenever active.

We can distinguish two variants, depending on whether the designated supplier is always
active. If the designated supplier is always active, it obtains

R (r)− c.

The nondesignated supplier then obtains R (r) whenever active; hence, the most profitable
scheme has the nondesignated supplier also being always active (Variant 1 hereafter). If
instead the designated supplier is not always active, then the on-path incentive constraint
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(namely deviating from active to inactive) implies that it cannot be active when its cost
strictly exceeds R (r); conversely, whenever its cost lies below R (r), it is profitable for it to
be active. Hence, the most profitable scheme has the designated supplier being active if and
only if its cost lies below R (r). If active, the nondesignated supplier with cost c then obtains

R (r)− [1− F (R (r))] c = [1− F (R (r))] [ĉ (r)− c] ,

where
ĉ (r) ≡ R (r)

1− F (R (r))
.

Two subcases can therefore be distinguished:

• If ĉ (r) ≥ c̄, then the the most profitable scheme has the nondesignated supplier being
always active (Variant 2a hereafter).

• If instead ĉ (r) < c̄, then in addition to Variant 2a, there exists an alternative variant in
which the nondesignated supplier is not always active. The on-path incentive constraint
(namely deviating from active to inactive) then implies that it cannot be active when its
cost strictly exceeds ĉ (r); conversely, whenever its cost lies below ĉ (r), it is profitable
for it to be active. Hence, the most profitable scheme has the designated supplier being
active if and only if its cost lies below ĉ (r) (Variant 2b hereafter).

Summing-up, there are two relevant variants, and sometimes a third one. In Variant 1, the
designated supplier bids R (r) regardless of its cost, and obtains R (r)−c; the nondesignated
supplier bids slightly below R (r) regardless of its cost, and obtains R (r). In Variant 2a, the
designated supplier bids R (r) if its cost lies below R (r), in which case it obtains R (r)− c,
and at cost otherwise, in which case it obtains 0; the nondesignated supplier bids slightly
below R (r) regardless of its cost, and obtains R (r) − [1− F (R (r))] c. In Variant 2b (if
ĉ (r) < c̄), the designated supplier acts as in Variant 2a: it bids R (r) if its cost c lies below
R (r), in which case it obtains R (r) − c, and at cost otherwise, in which case it obtains 0;
the nondesignated supplier bids slightly below R (r) only if its cost lies below ĉ (r), in which
case it obtains R (r)− [1− F (R (r))] c, and at cost otherwise, in which case it obtains 0.
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D.3 Costs and benefits of collusion

FPPA and SPPA with reserve r

In the FPPA and SPPA, the designated supplier has expected payoff (with subscript P

standing for first/second-Price procurement auction)

πd
P (c; r) ≡ max{0, r − c} = 1c<r × π̂d

P (c; r),

where
π̂d
P (c; r) ≡ r − c > π̂c(c; r),

where the inequality stems from (D.4) and R′ (c) = 1− F (c) < 1,4 and

πd
P (r) ≡ Ec

[
πd
P (c)

]
= Φ(r) (> πc (r)).

The nondesignated supplier has expected payoff

πn
P (c; r) ≡ [1− F (r)]πd

P (c; r) = 1c<r × π̂n
P (c; r),

where
π̂n
P (c; r) ≡ [1− F (r)] (r − c) < π̂c (c; r) ,

where the inequality stems from

π̂c (c; r)− π̂n
P (c; r) =

∫ r

c

(c̃− c) dF (c̃) > 0,

and
πn
P (r) ≡ Ec [π

n
P (c; r)] = [1− F (r)]πd

P (r) (< πc (r)) .

The net benefit from collusion is constructed as:

ΠP (r) ≡ πd
P (r) + πn

P (r) = [2− F (r)] Φ (r) ,

ΠC (r) ≡ 2πc (r) = 2 [Φ (r)− Φ2 (r)] ,

∆P (r) ≡ ΠP (r)− ΠC (r) = 2Φ2 (r)− F (r) Φ (r) > 0, (D.5)

where the inequality stems from the monotonicity of the hazard rate (Iossa et al., 2024,

4Using (D.4), we have: ∂(r − c− π̂c(c; r))/∂c = R′(c)− 1 < 0; the conclusion then follows from r − c =
π̂c(c; r) = 0 for c = r.
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Lemma 1).5

ARPA with reserve R (r)

• Variant 1:

– the designated supplier bids R (r) regardless of its cost, and obtains R (r)− c;

– the nondesignated supplier bids slightly below R (r) regardless of its cost, and
obtains R (r).

• Variant 2a:

– the designated supplier bids R (r) if its cost lies below R (r), in which case it
obtains R (r)− c, and at cost otherwise, in which case it obtains 0;

– the nondesignated supplier bids slightly below R (r) regardless of its cost, and
obtains R (r)− [1− F (R (r))] c.

• Variant 2b (if ĉ (r) < c̄):

– the designated supplier acts as in Variant 2a: it bids R (r) if its cost c lies below
R (r), in which case it obtains R (r) − c, and at cost otherwise, in which case it
obtains 0;

– the nondesignated supplier bids slightly below R (r) only if its cost lies below ĉ (r),
in which case it obtains R (r)− [1− F (R (r))] c, and at cost otherwise, in which
case it obtains 0. [It may therefore still be active even when its cost exceeds the
reserve (namely, when its cost lies in (R (r) , ĉ(r)]), as the cost is incurred only if
the designated supplier’s cost exceeds the reserve; but contrary to Variant 2, the
nondesignated supplier is inactive when its cost lies in (ĉ (r) , c̄].]

In Variant 1, the designated supplier’s expected payoff is

πd
R1 (c; r) ≡ R (r)− c < π̂c(c; r),

5To see this, note that ∆P (c) = 0 and

∆′
P (r) = F 2(r)− f(r)Φ(r) = F (r)

∫ r

c

f(c)dc−
∫ r

c

f(r)F (c)dc =

∫ r

c

F (r)F (c)
( f(c)
F (c)

− f(r)

F (r)

)
dc > 0.
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where the inequality stems from (D.4) and c > R (c), and:6

πd
R1 (r) ≡ Ec

[
πd
R1 (c; r)

]
= R (r)−

∫ c

c

cdF (c) = R (r)−R (c) (≤ 0) .

The nondesignated supplier’s expected payoff is

πn
R1 (c; r) ≡ R (r) .

Thus, the net benefit from collusion is constructed as:

ΠR1 (r) ≡ πd
R1 (r) + πn

R1 (r) = 2R (r)−R (c) ,

∆R1 (r) ≡ ΠR1 (r)− ΠC (r) = 2R (r)−R (c)− 2 [Φ (r)− Φ2 (r)] . (D.6)

It follows that collusion in Variant 1 is profitable if and only if ∆R1(r) > 0. This is not
always the case. For example, for F (c) = cs and s ∈ (0, 0.5), ∆R1(c) < 0, in which case
collusion is not profitable under the ARPA, although it is profitable under the FPPA and
under the SPPA.

In Variant 2a, the designated supplier has expected payoff

πd
Ra (c; r) ≡ max {0, R (r)− c} = 1c<R(r) × πd

R1(c; r),

and

πd
Ra (r) ≡ Ec

[
πd
Ra (c; r)

]
=

∫ R(r)

c

[R (r)− c] dF (c) = Φ (R (r)) (< πc (r)) .

The nondesignated supplier has expected payoff

πn
Ra (c; r) ≡ R (r)− [1− F (R (r))] c = [1− F (R (r))] [ĉ (r)− c] ,

and:

πn
Ra (r) ≡ Ec [π

n
Ra(c; r)]

= [1− F (R (r))]

∫ c

c

[ĉ (r)− c] dF (c)

= [1− F (R (r))] [ĉ (r)−R (c)]

= R (r)− [1− F (R (r))]R (c) .

6Note that R(c) = Ec[c].
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The net benefit from collusion is constructed as:

ΠRa (r) ≡ πd
R2 (r) + πn

Ra (r) = Φ (R (r)) +R (r)− [1− F (R (r))]R (c) ,

∆Ra (r) ≡ ΠRa (r)− ΠC (r)

= Φ (R (r)) +R (r)− [1− F (R (r))]R (c)− 2 [Φ (r)− Φ2 (r)] . (D.7)

Finally, in Variant 2b (if ĉ (r) < c̄), the designated supplier has the same expected payoff
as in Variant 2a. The nondesignated supplier’s expected payoff is

πn
Rb (c; r) ≡ max {0, R (r)− [1− F (R (r))] c} = 1c<ĉ(r) × πn

Ra(c; r),

and:

πn
Rb (r) ≡ Ec [π

n
Rb(c; r)] = [1− F (R (r))]

∫ ĉ(r)

c

[ĉ (r)− c] dF (c) = [1− F (R (r))] Φ (ĉ (r)) .

The net benefit from collusion is then constructed as:

ΠRb (r) ≡ πd
Rb (r) + πn

Rb (r) = Φ (R (r)) + [1− F (R (r))] Φ (ĉ (r)) ,

∆Rb (r) ≡ ΠRb (r)− ΠC (r)

= Φ (R (r)) + [1− F (R (r))] Φ (ĉ (r))− 2 [Φ (r)− Φ2 (r)] . (D.8)

D.4 Sustainability

We now consider the sustainability of collusion in the different formats. A market allocation is
sustainable in a procurement auction of type τ ∈ T ≡{P, F, S,R1, Ra,Rb} (with F standing
for F irst-price procurement auction, S standing for Second-price procurement auction, and
R standing for all-Receive procurement auction), if and only if

δ

1− δ
≥ λτ (r) ≡

SGτ (r)

LLτ (r)
, (D.9)

where SG(r) denotes the short-term gain from a deviation (see below), whereas LLτ (r)

denotes the (per-period) long-term loss of giving up collusion in the future. This condition
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can equivalently be expressed as:

δ ≥ δ̂τ (r) ≡
λτ (r)

1 + λτ (r)

In the FPPA and SPPA, the long-term loss is equal to:

LLF (r) = LLS (r) = ∆P (r) ,

where ∆P (r) is given by (D.5). Furthermore, the nondesignated supplier is the only one
that may be tempted to deviate, and its gain from a deviation is maximal when it has the
lowest possible cost, c.

Turning to the short-term gain, in a FPPA, the best deviation for the nondesignated
supplier consists in slightly undercutting the designated supplier’s collusive bid, which yields
a profit arbitrarily close to πd

P (c, r); hence:

SGF (r) ≡ πd
P (c, r)− πn

P (c, rj) = F (r) (r − c) . (D.10)

In an SPPA, the best deviation for the nondesignated supplier consists instead in bidding at
cost, which yields the competitive profit πc (c, r); hence:

SGP (r) ≡ πc (c, r)− πn
P (c, rj) = F (r) (r − c)− Φ (r) . (D.11)

To consider sustainability in the ARPA, we must consider the different variants. Under
Variant 1, the long-term loss is equal to:

LLR1 (r) = ∆R1 (r) ,

where ∆R1 (r) is given by (D.6). By construction, the nondesignated supplier best-responds
to the designated supplier’s collusive strategy; hence, the designated supplier is the only
one that may be tempted to deviate. Furthermore, the best deviation consists in slightly
undercutting the nondesignated supplier’s bid, so as to get paid (almost) R(r) but let the
nondesignated supplier be selected as provider. This gain is maximal when its cost is equal
to c; hence:

SGR1 (r) ≡ c.

Under Variant 2a, the long-term loss is equal to:

LLRa (r) = ∆Ra (r) ,
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where ∆Ra (r) is given by (D.7). For the designated supplier, the best deviation consists in
slightly undercutting the nondesignated supplier’s bid, so as to get paid (almost) R(r), but
let the nondesignated supplier be selected as provider; the resulting gain from the deviation
is as follows:

• for c ≤ R (r), the designated supplier was and remains active, but is no longer the
provider; the gain from the deviation is therefore equal to c;

• for c > R (r), in the absence of a deviation the designated supplier is inactive and,
thus, obtain zero payoff; by deviating, it gets paid (almost) R(r); the gain from the
deviation is therefore equal to R (r).

It follows that this short-term gain is maximal for c = R(r), where it is equal to:

SGd
Ra (r) ≡ R (r) .

For the nondesignated supplier, the best deviation consists in bidding above the reserve
(e.g., at cost) if its cost c lies above ĉ (r), so as to avoid the expected loss [1− F (R (r))] (ĉ (r)−
c); it follows that the short-term gain is maximal for c = c, where it is equal to:

SGn
Ra (r) ≡ max {[1− F (R (r))] (c− ĉ (r)), 0} .

As R (r) > (c ≥)0, it follows that the maximal short-term gain is equal to:

SGRa (r) ≡ max {R (r) , [1− F (R (r))] (c− ĉ (r))} .

Under Variant 2b, the long-term loss is equal to:

LLRb (r) = ∆Rb (r) ,

where ∆Rb (r) is given by (D.8). By construction, the nondesignated supplier best-responds
to the designated supplier’s collusive strategy; hence, the designated supplier is the only
one that may be tempted to deviate. Furthermore, the best deviation consists in slightly
undercutting the nondesignated supplier’s bid, so as to get paid (almost) R(r), but let the
nondesignated supplier be selected as provider whenever active; the resulting gain from the
deviation is as follows:

• for c ≤ R (r), the designated supplier was and remains active, but with probability
F (ĉ(r)), it is no longer the provider; the gain from the deviation is therefore equal to
F (ĉ(r)) c, which is increasing in c;
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• for c > R (r), in the absence of a deviation the designated supplier is inactive and,
thus, obtain zero payoff; by deviating, it gets paid (almost) R(r) and is selected as
provider with probability 1− F (ĉ(r)); the gain from the deviation is therefore R (r)−
[1− F (ĉ(r))] c, which is positive for c < ĉ (r) but decreasing in c.

It follows that the short-term gain is again maximal for c = R(r), where it is now equal
to:

SGRb (r) ≡ F (ĉ(r))R (r) .

To summarize, the question of sustainability depends on a comparison of SGτ (r)
LLτ (r)

to δ
1−δ

,
where the long-term loss and short-term gains are:

LL SG

FPPA 2Φ2(r)− F (r)Φ(r) F (r)(r − c)

SPPA 2Φ2(r)− F (r)Φ(r) F (r)(r − c)− Φ(r)

ARPA-V1 2R (r)−R (c)− 2[Φ(r)− Φ2(r)] c

ARPA-V2a Φ (R (r)) +R (r)− [1− F (R (r))]R (c)− 2[Φ(r)− Φ2(r)] max {R (r) , [1− F (R (r))] [c− ĉ (r)]}

ARPA-V2b Φ (R (r)) + [1− F (R (r))] Φ (ĉ (r))− 2[Φ(r)− Φ2(r)] F (ĉ(r))R (r)

We illustrate in Figure D.7 differences among the ARPA variants in terms of profitability
and threshold discount factors. Panel (a) shows that ARPA-V2b is profitable for all r but
that the other forms of ARPA collusion require r sufficiently large. For example, ARPA-V1
is profitable only for r > 0.3700. Panel (b) shows that the threshold discount factor for
sustainability of collusion is lowest for ARPA-V2b for r < 0.4730 and lowest for ARPA-
V1 for higher r. For sufficiently low r, even with δ = 1, collusion is only sustainable for
ARPA-V2b. For r > 0.3700, collusion is also sustainable for ARPA-V1 for sufficiently high δ

(collusion under format ARPA-V2a is dominated in terms of profitability and sustainability
by the other formats when costs are uniformly distributed on [0, 1]). As shown in Panel (c),
for the case of F (c) = cs, ARPA-V2a is no longer always dominated by ARPA-V2b, but
both ARPA-V2a and ARPA-V2b are dominated by ARPA-V1. For s < 0.5, collusion is not
profitable under the ARPA for any variant.
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(a) ARPA collusion profitability
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(b) ARPA threshold discount factor
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(c) ARPA threshold discount factor as distribution
varies
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Figure D.7: Panels (a) and (b) assume uniformly distributed costs on [0, 1]. Panel (c) assumes that F (c) = cs

on [0, 1] for s ∈ (0, 2] and r = 1.

D.5 Comparisons across auction formats

As mentioned in Section 6.2, the ARPA can be more or less susceptible to collusion than the
FPPA and SPPA depending on the setup.

As an example, consider the case of uniformly distributed costs on [0, 1]. The long-term
losses for the ARPA under Variants 2a and 2b are always below that of the FPPA and
SPPA, and the long-term loss for the ARPA under Variant 1 is below that of the FPPA and
SPPA for r < 0.3820 (Figure D.8(a)). The short-term gain for the ARPA under Variant
1 is always above that of the FPPA and SPPA, and the short-term gain for ARPA under
Variants 2a and 2b are greater than that of the SPPA (Figure D.8(b)). The result is that
under Variants 2a and 2b, the ARPA is always less susceptible to collusion (higher threshold
discount factor) than the FPPA and SPPA; and under Variant 1 is always less susceptible to
collusion than the SPPA and, for r < 0.5, is less susceptible than the FPPA (Figure D.8(c)).
Thus, regardless of the variant of ARPA collusion, the ARPA is less susceptible to collusion
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than the SPPA for all r and less susceptible than the FPPA for r < 0.5.

(a) Comparison of long-term losses
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(b) Comparison of short-term gains
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(c) Comparison of threshold discount factors
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Figure D.8: All panels assume uniformly distributed costs on [0, 1].

As another example, consider r = c and F (c) = cs on [0, 1]. In this case, as illustrated
in Figure D.9, ARPA collusion Variants 1 and 2 are less susceptible than the other formats
for s ∈ (0, 1), but under Variant 1, the ARPA is even more susceptible to collusion than the
SPPA for s > 1.234.
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Figure D.9: Comparison of threshold discount factors. Assumes that F (c) = cs on [0, 1] for s ∈ (0, 2] and
r = 1.
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