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Abstract

This paper examines how the structure of communication networks
in�uences learning and social welfare when participants have di¤erent
prior opinions and face uncertainty about an external state. We ana-
lyze a game in which players form links to exchange opinions on the
state and reduce their uncertainty. The players hold imperfectly corre-
lated subjective priors on the state. Therefore, their opinions transmit
their private signals with frictions, termed interpretation noise. Net-
work clustering facilitates learning by eliminating this interpretation
noise. Therefore, the egalitarian e¢ cient network is: a complete com-
ponent if the interpretation noise is su¢ ciently high, and a �ower oth-
erwise. This network constitutes a Nash equilibrium. These �ndings
establish a link between a key feature of social networks (clustering)
and the quality of learning through network communication, o¤ering
a potential explanation for the prevalence of clustering in real-world
social networks.
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1 Introduction

Social networks contribute to di¤usion of information and behaviors (Durlauf,

2004; Goyal 2007; Jackson, 2008; Topa and Zenou, 2015). Examples in the

literature include the adoption of new product or technology, health-related

behaviors, vote, school performance and delinquent behavior. A growing ev-

idence suggests that the speed and distance of di¤usion through the network

depend on its features (see Jackson 2014 for a systematic discussion).

One key characteristic of social networks is clustering: the tendency of

people�s contacts to also be connected to each other, forming tightly knit

groups (Jackson, 2008; Goyal 2007). Previous studies have shown that this

aspect of networks helps explain various phenomena1 such as altruism (Jack-

son et al. 2012), cooperative behavior (Coleman 1988, Bloch et al. 2008,

Lippert and Spagnolo 2011, Jackson et al. 2012, Ali and Miller 2016), em-

ployment (Ruiz-Palazuelos et al. 2023), or the di¤usion of certain behaviors

(Granovetter 1973, Centola and Macy 2007, Centola 2010, Beaman et al.

2021). Furthermore,2 variations in clustering across networks can shed light

on the inequalities in economic outcomes among their members (Lindenlaub

1These �ndings suggest strategic reasons for clustering alongside the fact that it may
be easier to connect with friends of friends than with strangers (Jackson and Rogers 2005;
Acemoglu et al. 2014).

2Centola and Macy (2007) argue that clustering can facilitate the propagation of be-
haviors that require social reinforcement to be adopted (e.g., new technologies) but may
hinder the spread of phenomena where a single contact with an infected node is enough
to induce contagion (e.g., diseases). Empirical evidence supports this theory (see Centola
2010, Chami et al. 2017, or Beaman et al. 2021). In a related context, Alatas et al. (2016)
also �nd that clustering positively a¤ects information aggregation.
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and Prummer 2020). However, the reason behind its prevalence and its im-

pact in other contexts remain largely unexplored (Jackson et al. 2017).3

This paper examines how network structure in communication networks

in�uences learning and social welfare when participants possess di¤erent prior

opinions and face uncertainty about the external state, suggesting a poten-

tial explanation for the prevalence of clustering in real-world social networks.

We consider a game in which the players have subjective imperfectly corre-

lated priors on some relevant state of nature. They build network links,

receive private signals on the state and truthfully announce their posterior

expectations to direct network neighbours in two successive communication

rounds. A player�s disutility is measured by subjective posterior variance (his

remaining uncertainty about the state after communication).

Network clustering enables learning without frictions (termed interpre-

tation noise) which are created by a player�s uncertainty about the other

players�priors. The reason is that a player can deduce priors by neighbours

without distant connections from their reactions to previous announcements

by common network neighbours.

We use this insight to analyze networks that are e¢ cient according to

Rawlsian criterion: a network is e¢ cient if it minimizes the loss of its least

happy member. Since players�disutility is measured by the posterior variance

of their beliefs about the state of nature (their uncertainty), a network is

e¢ cient if it minimizes the highest variance among the players. We �nd that

the e¢ cient network is composed of completely connected clusters if the

interpretation noise is su¢ ciently high (see Figure 3). Otherwise, it is the

3We are extremely grateful to the anonymous referee for suggesting that we add this
paragraph, alongside other helpful suggestions.
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network commonly termed a�ower (see Figure 4). We prove that the e¢ cient

network constitutes a Nash equilibrium.

Our results establish a relationship between a fundamental aspect of social

networks (clustering) and the quality of learning through network commu-

nication in uncertain environment with di¤erentiated prior beliefs. This is

particularly relevant in contexts such as learning about the relative merits

of di¤erent public policies or the adoption of innovations (e.g., technology,

drugs, or products). In these scenarios, di¤erences in prior beliefs can create

barriers to learning, and clustering helps mitigate these barriers. This e¤ect

o¤ers a potential explanation for the widespread occurrence of clustering in

real-world social networks.

Studying Bayesian learning in networks is recognized as challenging due

to complexities involved in belief updating (Jackson 2008).4 We achieve

tractability through two simplifying assumptions. First, we assume that

a player holds the following, possibly misspeci�ed, beliefs about his distant

network: if his two local neighbours have a common distant connection he at-

tributes this connection to either neighbour (but not both). Second, we focus

on arbitrarily small correlation of priors.5 We show numerically that our re-

sults may hold when both assumptions are relaxed, that is, when the players

know their local and distant network and the correlation of their priors takes

higher (but not too high) values. Furthermore, Rawlsian e¢ ciency criterion

4In our framework, learning from neighbours with distant connections (termed open
neighbours) is complicated, because a player needs to account for various correlations in
his neighbours� announcements. First, both successive announcements by some neigh-
bour re�ect his prior. Second, announcements by a pair of neighbours re�ect their priors
which are correlated. Furthermore, their second announcements may both re�ect the �rst
announcement by their distant common neighbour.

5Notice that it is not equivalent to ignoring correlations in announcements entirely.
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may be replaced with (more common) utilitarian e¢ ciency criterion.

Related literature. We study networks, built in a decentralized man-

ner, and their e¢ ciency which connects our work to sizable economic liter-

ature on strategic network formation (see surveys in Bloch and Dutta 2010;

Goyal 2007; Jackson 2005, 2008). This literature considers a variety of net-

work formation protocols. Bala and Goyal (2000) consider unilateral network

formation: a player links to any other player at a cost, and he receives some

bene�t from connections. Hojman and Szeidl (2008) show that for a class

of bene�ts exhibiting decreasing returns to scale and decaying with network

distance (which includes the bene�ts from information transmission with

frictions), the unique Nash equilibrium is a periphery-sponsored �star�. We

model frictions in information transmission. Clustering helps reduce these

frictions, which is speci�c to our model.

Learning through links following the network formation stage brings us to

the literature on rational learning on a given network. Much of this literature

has focused on asymptotic learning, showing that Bayesian agents can learn

asymptotically if the network is common knowledge (see Gale and Kariv

2003; Mueller-Frank 2013). Li and Tan (2020) consider rational asymptotic

learning when communicating agents believe that their local network is the

entire network. Such beliefs create double counting of signals coming from

distant neighbours, which clustering helps avoid. Asymptotic learning is

possible if the network is a tree-like union of clusters. Unlike this literature,

we focus on �nite-horizon learning and we provide a closed-form expression

for the quality of learning depending on the network architecture. Clustering
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improves learning because interconnected players can deduce each other�s

(imperfectly correlated) priors from reactions to earlier announcements

This idea is due to Sethi and Yildiz (2012). They attribute public dis-

agreement to di¤erentiated priors and show that there is no scope for dis-

agreement in �integrated societies�where everyone hears each other�s opin-

ions.

Endogeneity of our communication network connects us to Sethi and

Yildiz (2016). They study how learning with subjective priors shapes ob-

servation patterns (represented by an oriented dynamic network). In their

setting, however, the priors are independent and better learning of neigh-

bours�priors is achieved through repetitively soliciting opinions by the same

individual(s), not through clustering.

The remainder of the paper is organized as follows. Section 2 presents

our model. Section 3 relates a player�s disutility to the network architecture

under two simplifying assumptions and veri�es that the expression we �nd

provides a fair approximation for a player�s disutility when these assumptions

are relaxed. Section 4 studies egalitarian e¢ cient networks. Section 5 proves

that the egalitarian e¢ cient network constitutes a Nash equilibrium, and

numerically checks the robustness of this result.

2 Basic model.

Set M of m players, indexed with i 2 f1; ...;mg, build a network in order to

communicate through its links.
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Network formation. We consider simultaneous and unilateral net-

work formation protocol.6 For simplicity, we model the cost of connection

as an opportunity - rather than a direct cost, assuming that each player is

endowed with a given connection capacity. Naturally, the players�connection

capacities may di¤er (some people are better at forming friendships than oth-

ers) and these di¤erences may shape the network they build. We put aside

these di¤erences in order to focus on the e¤ect of anticipated learning on

the network architecture: each player can connect with at most n 2 N other

players,7 naturally we focus on n 6 m� 1.
Player i chooses a subset of players Li � M , jLij 6 n with whom he

connects. A pair of players becomes connected if at least one of them links

to the other. Each pro�le of linking choices (L1; ...; Lm) induces undirected

network g. We use common notation gij 2 f0; 1g for an indicator of a link

between players i and j in network g: gij = 1 indicates that players i and j

are connected. We let player i be connected with himself, that is, gii = 1.

We use common notations8

Ni = fj 2M j gij = 1g

for the local network neighbourhood of player i and di = jNij for his �degree�.

We use notations

N 0
i = [

j2Ni
NjnNi

6Appendix I shows that our results may hold under an alternative protocol with in-
vestments in links.

7Nevertheless, the e¢ cient equilibrium network has unequal degree distribution for a
wide range of parameter values.

8Here and below, we do not re�ect network-dependence of network-dependent variables
for notational convenience.
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for the distant (distance-2) network neighbourhood of player i,9 and d0i = jN 0
i j

for the number of his distant connections.

Players�priors and signals. When the network is built, the players

receive independent private signals

si = x+ "i, where "i � N(0; � 2)

on the relevant state of Nature x � N(0; 1).

Initially, the players have heterogenous imperfectly correlated priors about

the state x. Di¤erentiated priors re�ect di¤erentiated manners in which the

players process new information. Say, each player i considers a subset of

available historical facts to be relevant for understanding the state. His es-

timator of the state conditional on this subset of facts is his prior pi (see

discussion in Sethi and Yildiz, 2012).

Player i�s prior pi is his private information and he cannot directly com-

municate this information to the other players (he cannot describe to the

others the way in which he thinks). However, it is commonly known that the

players�priors are distributed according to a joint normal distribution:

p = (p1; ...; pm)T � N(0; �2�), (1)

where � is m by m variance-covariance matrix with the following elements:10

�jl =

�
1 if j = l;
� if j 6= l.

9We do not introduce any notations for more distant connections because we will con-
sider only two rounds of communication.
10We assume that all o¤-diagonal elements of the variance-covariance matrix � are the

same. The alternative assumption would complicate expressions we use in the numerical
part of our analysis, without altering our results qualitatively. The analytical part of our
study focuses on arbitrarily weak (but not zero) correlation of priors (see below).
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For concreteness, we assume that correlation � is positive (following inter-

pretation of di¤erentiated priors by Sethi and Yildiz, 2012, each player i

assigns a positive probability to any other player j paying attention to some

historical facts which i considers relevant).

Conditional on his prior pi, player i believes that the law of (x; (pj)j2Mni; ("j)j2M)

denoted Pi is a multidimensional normal distribution given by

Pi = N (pi; 1)
N (�pi1; b�)
N (0; � 2I)
where 1 = (1; 1;...; 1)T , I denotes m by m identity matrix and b� is m by m

matrix with the following elements:

b�jl = ��2(1� �2) if j = l;
�2�(1� �) if j 6= l:

Hereafter, Li denotes the law (or conditional law) of some variable under Pi,

Ei denotes the expectation under Pi , Vi denotes the variance under Pi and

Ci denotes the covariance under Pi.

Communication. Our communication protocol follows Sethi and Yildiz

(2012) and earlier literature on public (dis)agreement. However, we reduce

communication channels to network links. Furthermore, we assume that the

number of communication rounds is �nite, to re�ect the players�impatience.

This makes our analysis technically challenging,11 so we limit communication

to two rounds (t = 1; 2). This limitation comports nicely with Mobius et al.

(2015) who �nd that information travels no further than two steps in the

conversation network.
11The analysis of the case in which the number of communication rounds is unlimited is

simpli�ed by the following fact: any player learns all distributed information if the players
form a circle or a wheel (details available upon request).
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Hence, after receiving their signals on the state, the players communicate

with local network neighbours in discrete time periods. In each period they

simultaneously announce their true beliefs summarized by an estimator of

the state (they cannot transmit the set of �tagged�announcements received

from their neighbours or announce their priors).12

The �rst announcement Ai;1 by player i to his network neighbors is his

estimator of the state conditional on his private signal:

Ai;1 = Ei (x j si) .

After the �rst round of communication, player i rationally updates his beliefs

upon the announcements received from his local network neighbours. His

second announcement Ai;2 is his expectation of the state conditional on his

private signal and the �rst announcements by his local neighbours:

Ai;2 = Ei (x j si, fAj;1 j j 2 Nig) .

Payo¤s. After the second round of communication with his neighbours,

player i updates, once again, his beliefs about the state and the other play-

ers�priors. We assume that his disutility or loss is equal to his remaining

uncertainty about the state x, measured by his subjective posterior variance

of the state:

li(g) = Vi (x j si, fAj;t j j 2 Ni; t = 1; 2g , bg) , (2)

12If strategic communication is allowed for, truthful communication is an equilibrium.
That is, when all players truthfully announce their estimate of the state during either round
of communication, and believe the others to do the same, no player has the incentives to
deviate by sending a message di¤erent from his true estimate of the state during some
round of communication. Indeed, following such deviation he learns the same information
from his neighbours�messages as when he does not deviate, as long as they believe him
to tell the truth and react accordingly.
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where bg refers to the players�beliefs about their network g (see the details in
the following paragraph). For example, we could think of player i taking pri-

vate action resulting in a loss which is equal to the perceived squared distance

between his action and the optimal action given by the state x. Notice that

a payo¤ equal to a constant less loss (2) measures a player�s con�dence in

his action, which comports nicely with the psychological literature indicating

con�dence in private actions as a source of happiness (see Maslow, 1943).

Beliefs about network. A player�s updating after the second round

of communication is complicated by the need to account for various correla-

tions: Successive announcements by i�s neighbour j are correlated because

they both re�ect j�s prior. All announcements by i�s neighbours j and l are

correlated because they re�ect their priors which are correlated. Further-

more, j and l may have common neighbour r on the distance from i which

creates an additional source of correlation in their second announcements.

For tractability, we assume that the players hold the following, possibly

misspeci�ed, beliefs bg about their network g.13 Any player i knows his local
neighbourhood. However, if his neighbours j and l are both linked with player

r on distance 2 from i, player i accounts for only one of these links, either

between r and j or between r and l (it does not matter for the payo¤which of

the two links is accounted for). While being purely technical, this assumption

may be motivated by sociological evidence of erroneous perception of distant

networks (see references in Li and Tan 2020, Dessi et al. 2016). One typical

error is overestimation of one�s own centrality, including the betweenness

13We derive our analytical results under this behavioral assumption. However, in the
numerical part of our analysis, we assume that the players perfectly know their network.
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centrality (Kumbasar et al. 1994) which comports nicely with ignorance of

distant common friendships.14

Weakly correlated priors. The above behavioral assumption regard-

ing beliefs about distant network does not su¢ ce to deliver tractability. We

achieve tractability by focusing on arbitrarily small correlation of priors (we

numerically check robustness of our results for higher values of correlation).

Note that this is not equivalent to ignoring this correlation entirely because

player i is �undoing�his neighbours�priors using his own prior and so are his

neighbours. This allows player i to learn the priors and signals by neighbours

without distant connections, as we discuss in the following section.

3 Network architecture and disutility.

This section relates a player�s loss (2) to the network architecture. We begin

with dividing the set of player i�s neighbours into two subsets. Set

N i = fj 2 Ni j Nj � Nig

of closed neighbours having only common connections with player i and set

�
N i = NinN i

14Betweenness centrality of player i is de�ned as the ratio of the number of shortest
paths between a pair of players that pass through player i divided by the total number of
such paths, summed over all possible pairs of players di¤erent from i. Suppose player i
has two neighbors, j and l, who are not directly connected but are both connected to some
player r outside i�s neighborhood. By ignoring commonality of this connection, player i
reduces the number of shortest paths from j to l, which leads to an overestimation of his
own betweenness centrality. For example, consider a ring network with four players: i,
j, l, and r, connected as described above. The betweenness centrality of player i in this
network is 1

6 . However, when player i ignores one of the links - either between players j
and r, or between players l and r - his perceived betweenness centrality increases to 2

3 .
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of open neighbours with at least one connection outside i�s neighbourhood.

It is convenient to introduce notations di =
��N i

�� and �
di =

���� �N i

���� for the
number of i�s closed- and open neighbours.

The above classi�cation of i�s neighbours into closed and open is relevant

because i can perfectly learn the priors and signals of his closed neighbours

by observing their reactions to the �rst announcements they receive (Sethi

and Yildiz, 2012).

Lemma 1 Any player i learns private signal sj and prior pj by any closed

neighbour j 2 N i.

The argument by Sethi and Yildiz (2012) reproduced in Appendix B goes

along the following lines. Consider some player i with at least one closed

neighbour j. By standard formula for Gaussian updating (see Appendix A),

j�s �rst announcement is a linear combination of j�s prior pj and j�s private

signal sj (the higher the variance � 2 of the signal, the higher weight is put

on the prior):

Aj;1 = Ej[xjsj] = �2

1+�2
pj +

1
1+�2

sj. (3)

After the �rst round of communication, player j updates his beliefs upon

the �rst announcements received from his neighbours. His second announce-

ment is a linear combination of his own �rst announcement, the sum of his

neighbours��rst announcements and his prior pj (see details in step 2 of

Appendix B):

Aj;2 = Ej
�
x j sj; fAr;1gr2Njnfjg

�
= (1� �j(dj � 1))Aj;1+

�j (1 + �
2)

P
r2Njnfjg

Ar;1 � �j� 2�(dj � 1)pj, where (4)
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�j =
1

(1+�2)(1+�2�2(1��))+(dj�1)(1+(1+�2)�2�2(1��)�) .

Because player j is a closed neighbour by player i, player i �hears�the �rst

announcements by all j�s neighbours. Therefore, player i can deduce j�s prior

pj from j�s second announcement, and then deduce j�s private signal sj from

j�s �rst announcement. Note that such deduction would be impossible if the

correlation of priors was zero (consider parameter � in equation (4) being

equal to zero).

Let us now describe learning from open neighbours (details are presented

in Appendix C). Consider some player i with at least one open neighbour j 2
�Ni. From the �rst announcement by player j , which is a linear combination

of j�s prior and j�s signal, player i deduces j�s signal with noise associated

with i�s uncertainty regarding j�s priors:

esj;1 = (1 + � 2)Aj;1 � � 2p = x+ "j + � 2 (pj � p) , (5)

where p = Ei
�
pj j fprgr2 �Ni

�
= �

1+�(di�1)

X
r2 �Ni

pr. (6)

The second announcement by player j is a linear combination of his own �rst

announcement, the sum of his neighbours��rst announcements and his prior

pj. From this announcement player i deduces signals by j�s neighbours with

whom i is not connected, once again with noise associated with uncertainty

about their priors and j�s priors:

esj;2 = x+ 1
djni

0@ X
r2NjnNi

"r + �
2
X

r2NjnNi

(pr � p)� � 2�(dj � 1)(pj � p)

1A ,
(7)

where djni = jNj nNij .
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Now, consider all open neighbours by player i. Without loss of generality,

let us index them with

j 2
�
di + 1; ...; di

	
. (8)

Let est = (esdi+1;t;...; esdi;t) be the vector of signal deduced from their announce-
ments in round t = 1; 2 of communication. By equations (5) and (7),

Li(x; es1; es2j fsj; pjgj2 �Ni) = N ��1;� v v1T

v1 �

��
, where (9)

� = Ei
�
x j fsjgj2 �Ni

�
= �2

�2+di
pi +

1
�2+di

X
j2 �Ni

sj (10)

v = Vi
�
x j fsjgj2 �Ni

�
= �2

�2+di
, (11)

and � is a square symmetric matrix of size 2
�
di with elements speci�ed in

Appendix C on step 3. By standard formula for Bayesian updating, to �nd

player i�s loss, we need to �nd the sum of elements of the inverted matrix �.

A combination of our assumption regarding beliefs on distant network and

arbitrarily small correlation of priors allows us to represent matrix � as a

sum of two matrixes of dimension 2�di: matrix vI1T (with elements equal to

v) of rank 1 and a diagonal matrix zG. This decomposition enables us to

invert matrix � (Miller 1981) and �nd the loss by player i.15

Proposition 1 (network architecture and a player�s disutility). The

loss by player i in network g is determined by- and decreasing in- two para-

meters of network architecture: (i) the total number of his local and distant

15Because the correlation � is positive, we treat the signals deduced by player i from the
messages by his open neighbors jointly, compute the elements of the variance-covariance
matrix � and set � to be arbitrarily small in the �nal stage. The outcome is equivalent to
treating these signals as independent. That is, player i learns from his open neighbors as
if he ignored the correlations in their priors.
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neighbours di + d0i and (ii) the number of his closed neighbours di:

li(g) =
�2(1+�2�2)

�2(1+�2�2)+(di+d0i)+�2�2di
. (12)

Notice that closed neighbours are more valuable than either open or dis-

tant neighbors.16 The reason is that a player learns the priors by his closed

neighbours while he remains uncertain about those by his open or distance-2

neighbours. Term �2� 2 measuring the noise associated with this uncertainty

is called interpretation noise.

Performance of approximation (12) in generalized setting. We

check numerically whether equation (12) is a good approximation for the

value of loss de�ned by equation (2) if the players know their network and the

correlation of their priors takes any value between 0 and 1, termed hereafter

the generalized setting.

We consider all possible 9589 networks of m = 8 players with individual

connection capacity n = 2.17 Figure 1 plots the approximation of loss given

by equation (12) against the exact value of loss (2) for all players in all these

networks, �xing di¤erent values of correlation �.

16This e¤ect is due to a positive (although arbitrarily small) correlation of the players�
priors. Indeed, if that correlation was equal to zero, player i�s loss would depend only
on the joint number of his direct and distant connections. Speci�cally, it would be given
by equation (12) with di being replaced by 1, because the noise created by a player�s
uncertainty about the other players� priors would be added to all signals deduced by
player i from his neighbours�messages and only one signal (his own) would be free from
this noise.
17The choice m = 8, n = 2 is dictated by computational feasibility. Indeed, the number

of possible networks grows exponentially in the number of players m. Suppose that indi-
vidual connection capacity n is equal to 2. Then, the number of di¤erent networks (up to
isomorphism) is: 153 if m = 6; 955 if m = 7 and 9589 if m = 8.
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Figure 1: Performance of approximation (12)
(m = 8, n = 2, � 2 = �2 = 1).

We note that approximation (12) performs well for su¢ ciently small val-

ues of �,18 and it tends to overestimate the loss for higher values of �.

Figure 2 presents statistical measure of the quality of approximation:

boxplot of the ratio of approximation (12) over the exact value of (2). We

observe, for example, that for � = 0:35, three quarters of the ratio lies in the

interval between 1 and 1:08, and approximation (12) performs even better

for smaller values of �.

18The performance of our approximation for � = 0 is imperfect because equation (12)
computes the loss by a player with misspeci�ed beliefs regarding distant common friend-
ships.
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Figure 2: Performance of approximation (12), boxplot: m = 8, n = 2,
� 2 = �2 = 1.

4 The e¢ cient network.

This section uses Proposition 1 to study which network a social planner

we would like to see build in the network formation stage. For the sake

of tractability, we take egalitarian e¢ ciency criterion (Rawls�criterion): a

network is e¢ cient i¤ it minimizes the loss by its least happy member.19

Note that such criterion may be justi�ed by the fact that any player can �nd

himself in the role of the least happy player in the network.

We denote the set of all feasible networks with G, the set of e¢ cient

networks with

G� = argmin
g2G

�
max
i2M

li (g)

�
19We will check numerically that our results are likely to hold if we use more common

utilitarian e¢ ciency criterion.
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and the set of the least happy players or �losers�of network g with

L(g) = argmax
i2M

li (g) .

Candidate e¢ cient networks. Before proceeding with formal analy-

sis, let us try to gain some insight as to which networks are likely to be

e¢ cient. By Proposition 1, the e¢ cient network maximizes a combination of

the joint number of local and distant neighbours by the least happy player i

and the number of his closed neighbours, with the weight of closed neighbour

being increasing in the interpretation noise �2� 2.

Consider the extreme values of the interpretation noise. Suppose �rst,

that it approaches in�nity. Then, it is most important to maximize the

number of closed neighbours by the least happy player, suggesting that a

network composed of complete components of sizes as equal as possible20 is

e¢ cient.

Suppose, for concreteness, that the number of players m and a player�s

connection capacity n are such that the players can be divided into completely

connected components of equal size:21

there exists l 2 N such that m = (2n+ 1)l. (13)

An example of such network is depicted in Figure 3.

20The di¤erence between the sizes of any pair of components is at most 1.
21Analysis without any restrictions on m and n is available upon request; Appendix G

provides partial analysis relevant for our numerical results as well as illustrative examples.
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Figure 3: Complete component
network (m = 20, n = 2).

Hereafter, a network composed of completely connected components of

size 2n+1 is called complete component network and is denoted with c. The

players can build it as follows: divide into groups of size 2n+ 1; each group

forms a circle; each player in a circle connects to n players on his right.

Now, suppose that the interpretation noise �2� 2 approaches zero. Then,

it is most important to maximize the total number of neighbours by the least

happy player, while maximization of his closed neighbours is the secondary

objective. The following network seems a good candidate for being e¢ cient.

It is composed of the central �hub� h connected to everyone (hence, the

highest possible total number of neighbours m is delivered to any player):

fih = 1 8 i 2M ,
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and m� 1 peripheral players divided into interconnected �petals�:

Ni = Nj for any i 6= h and for any j 2 Nin fhg .

Once again, for concreteness, suppose that m and n are such that the size

of one petal (termed the �large petal�) is 2n and the size of the remaining

petals (termed �small petals�) is 2n� 1:

there exists k 2 N such that m = 2n+ 1 + (2n� 1)k. (14)

Following common terminology, we will call such network a �ower and denote

it with f . It can be built as follows: 2n players and the central hub form

a circle and each player connects to the next n players on his right. The

remaining (2n� 1)k players divide into k groups of size 2n� 1. Each group

forms a circle. Each player in a circle connects to the central hub and n� 1

players on his right. An example of �ower network is depicted in Figure 4.

Figure 4: Flower network
(m = 20, n = 2).
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Parameter speci�cation. Hereafter, we focus on the situation in which

the number of players m and the individual connection capacity n satisfy

equations (13) and (14).22

The following section shows that the e¢ cient network is either the com-

pete component network or the �ower, depending on the magnitude of inter-

pretation noise.

Characterization of the e¢ cient network. We show, �rst, that the

�ower is the most e¢ cient among all networks in which the least happy player

has at least one open neighbour.

Lemma 2 Suppose that some network is egalitarian e¢ cient and one of its

least happy members has an open neighbour. Then, this network is the �ower.

Formally, if g 2 G� and 9 i 2 L (g) such that di > di then g = f .

Constructive proof in Appendix D relies on the observation that any

closed neighbour by any least happy i shall be at least as �happy� as i.

Using this observation, the fact that a player can build, at most, n links and

that network g is e¢ cient, we prove that the closed neighbourhood by player

i is a completely connected subgraph of size 2n � 1. Furthermore, i and his

closed neighbours share one open neighbour or �hub�who connects them to

all other players. Hence, they can be visualized as a small petal. We proceed

with considering another least happy player outside i�s neighbourhood, would

such player exist, to frame another small petal connected to the same hub,

and so on until all the least happy players are organized in small petals

22Full analysis of complementary cases is available upon request. A part of it is presented
in Appendix G.
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connected to the central hub. The remaining players, all connected to the

central hub, have a closed degree of at least 2n. It is feasible i¤ they form a

petal of size 2n. By this construction, g is the �ower.

By Lemma 2, the most e¢ cient network is either �ower f or some net-

work g in which any looser i has only closed neighbours. Network c is such

a network maximizing the number of closed neighbours by its least happy

member (see details in Appendix E). By Proposition 1, network c is more

e¢ cient than the �ower f i¤

�2� 2 > m�(2n+1)
2

. (15)

Proposition 2. The egalitarian e¢ cient network is either the �ower or com-

plete component network depending on the magnitude of the interpretation

noise:

G� =

8<:
fcg if �2� 2 > m�(2n+1)

2
,

fc; fg if �2� 2 = m�(2n+1)
2

,
ffg otherwise.

Numerical robustness check. We continue to considerm = 8 players

with connection capacity n = 2. Note that Proposition 3 does not apply

directly to this example because parameter restriction (13) fails. It is feasible

to build the �ower network depicted in Figure 5:
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Figure 5: �ower network
(m = 8, n = 2).

At the same time, it is impossible to divide the players into completely

connected components of size 2n + 1 = 5. The network maximizing the

number of closed neighbours by the least happy player is composed of two

complete components of size 4 (termed hereafter in this section as clustered

network).

The extension of Proposition 2 (in Appendix G.2) shows that the e¢ cient

egalitarian network is: the �ower network depicted in Figure 5 if �2� 2 < 4,

clustered network if �2� 2 > 4, or both these networks when �2� 2 = 4. We

check the robustness of this prediction in a setting where the players know

their network, and the correlation of their priors is not arbitrarily weak. We

consider either egalitarian- or (more common) utilitarian-e¢ ciency criterion.

We normalize signal�s variance as � 2 = 1 (hence, the interpretation noise

is measured with �2) and let � take values in set f0:1; 0:2; 0:35; 0:5; 0:7; 0:9g

and compare losses by the least happy player across all possible 9589 networks

of size 8.23

23Recall that we count di¤erent networks up to isomorphism.
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Figure 6, left image depicts losses by the least happy player across all

possible networks for � = 0:35 (the �gures for smaller values of � are sim-

ilar). The loss by the least happy player in the �ower network is marked

with red dotted line. The loss by the least happy player (any player) in the

clustered network is marked with dashed horizontal line. We observe that

the most e¢ cient egalitarian network is the �ower if the interpretation noise

�2 lies below some threshold and clustered network otherwise suggesting the

robustness of our theoretical prediction. Figure 6, right image depicts av-

erage losses suggesting that our results may extend to utilitarian e¢ ciency

criterion.

Figure 6: Loss in di¤erent networks of size 8: by the
least happy player (left); average normalized to

component�s size (right).

Figure 7, shows that our results fail for su¢ ciently high values of �,24

for either egalitarian e¢ ciency criterion (three upper �gures) or utilitarian

e¢ ciency criterion (three lower �gures).

24It seems that the threshold for our calibration lies somewhere in between 0:35 and 0:4.
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Figure 7: Performance of di¤erent networks for relatively high
values of correlation �.

Indeed, when the correlation � is relatively high and the interpretation

noise �2 is relatively low it becomes most important for a player to have as

many local neighbours as possible.25 Therefore, the e¢ cient network (accord-

ing to either egalitarian- and utilitarian e¢ ciency criteria) is such as depicted

in Figure 8:

25Recall that we consider the generalized setting in which the players know their network.
In this setting local open- and distant connections are equivalent for a player�s disutility.
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Figure 8: Most e¢ cient (according to either
egalitarian- or utilitarian-criterion) network

when � 2 f0:5; 0:7; 0:9g and �2 is
su¢ ciently low.

5 The e¢ cient Nash equilibrium network.

Proposition 2 tells us which network the social planner would like to see built

depending on the magnitude of the interpretation noise. However, it is not

guaranteed that the players are going to build the e¢ cient network in Nash

equilibrium.

We verify �rst that �ower f is a Nash equilibrium (see Appendix F for

details). Indeed, by Proposition 1, a player�s deviation from the strategy

pro�le leading to formation of �ower f is pro�table only if it increases either

the number of his closed neighbours or the total number of his local and

distant neighbours. In the �ower network, any unilateral deviation (weakly)

decreases either of these numbers.

Furthermore, complete component network c is an equilibrium whenever

it is e¢ cient. The reason is that when the interpretation noise lies above

threshold (15), a player in one component of network c does not want to
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replace a link with a player in his component, (loosing thereby 2n closed

neighbours), by a link with a player in a di¤erent component (gaining thereby

one open- and 2n distant neighbours).

Proposition 3. The network in Proposition 2 constitutes the most e¢ cient

Nash equilibrium.

Appendix H provides numerical robustness check of this result, showing

that proposition 3 may still hold when our simplifying assumptions are re-

laxed, that is, the correlation of players�priors is not arbitrarily small and

they perfectly know their network.

Naturally, the game may have other Nash equilibria. However, the e¢ -

ciency may be used as a re�nement.

6 Conclusion.

We have modeled formation of a communication network by players with

incomplete information about the relevant state of nature and heterogenous

weakly correlated prior beliefs about it. We have found that clustering deliv-

ers a signal-extraction bene�t, and therefore the egalitarian e¢ cient network

exhibits a high degree of clustering. We have shown, furthermore, that this

network constitutes a Nash equilibrium.

Our results suggest that in situations characterized by uncertainty and

diversity of prior beliefs, such as adoption of new agricultural technology,

network clustering enables individuals to acquire more robust and precise

knowledge about uncertain events. They also provide some insight into the

prevalence of clustering in real-world social networks.

There are several natural extensions of our model, such as a longer com-
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munication horizon, which we leave beyond the scope of this paper. On the

applied side, we hope that the established relationship between the quality

of information di¤used through the network and its architecture may help

network-based targeting, at least when the quality of learning through net-

work is important for adoption.
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Appendix A: Technical review.

The notations in this section are independent from the rest of the paper.

Mean and Variance of a linear combination of Gaussian variables

Consider K random variables xk � N(�k; �
2
k), k = 1; :::; K and a set of

constants f�kgk=1:::K .

KX
k=1

�kxk � N(�; �2), where � =
KX
k=1

�k�k and �
2 =

KX
k=1

�2k�
2
k.

Conditional multivariate normal distribution Consider n-dimensional

colomn-vector of random variables x distributed normally with mean � and

n-by-n variance-covariance matrix �: x � N (�;�). Consider the following

partition of x, � and �:

x =

�
x1
x2

�
, � =

�
�1
�2

�
, � =

�
�11 �12
�21 �22

�
,

where x1 is k-dimensional colomn-vector, x2 is (n� k)-dimensional colomn-

vector, �1 is k-dimensional colomn-vector, �2 is (n� k)-dimensional colomn-

vector, �11 is k-by-k matrix, �12 is k-by-(n� k) matrix, �21 is (n� k)-by-

k matrix, and �22 is (n� k)-by-(n� k) matrix. Suppose that realization
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of the latter (n� k) components of vector x is known: x2 = a. Then,

(x1 j x2 = a) � N
�b�; b��, where

b� = �1 + �12��122 (a� �2) , (16)

b� = �11 � �12��122 �21. (17)

Matrix inversion Consider n-by-n matrix A. The inverse matrix is

A�1 =

�
(�1)i+j Ai;j

detA

�
,

where Ai;j is the (i; j)-adjunct of matrix A, that is, the determinant of a

matrix received from A by removing row i and column j. In particular,0BB@
a b ::: b
b a :::
::: ::: b
b ::: b a

1CCA
�1

=

= 1
(a�b)(a+b(n�1))

0BB@
a+ (n� 2)b �b ::: �b

�b a+ (n� 2)b :::
::: ::: �b
�b ::: �b a+ (n� 2)b

1CCA :
(18)

We introduce the following notation for the sum of elements of matrix A:

Sum(A) = etAe:

35



Note that the sum of elements of matrix (18) is equal to:

Sum

0BB@
a b ::: b
b a :::
::: ::: b
b ::: b a

1CCA
�1

= n
a+b(n�1) : (19)

Furthermore, by Miller (1981),

(H +G)�1 = G�1 � 1
1+tr(HG�1)G

�1HG�1; (20)

where matrices G and H have the same dimension, matrix G+H is nonsin-

gular and rk(H) = 1.

Appendix B: proof of Lemma 1 (Sethi and
Yildiz, 2012).

Consider some player i with at least one closed neighbour j.

Step 1 speci�es j�s �rst announcement. The vector (x; sj) is distribued

according to the following law

N
��
pj
pj

�
;

�
1 1
1 1 + � 2

��
:

By equations (16) and (17), conditional law of x given sj under Pj is

Li(xjsj) = N
�

�2

1+�2
pj +

1
1+�2

sj;
�2

1+�2

�
,

hence, Aj;1 is given by equation (3). Player i deduces j�s signal sj from
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announcement Aj;1 with noise � 2 (pj � Ei(pj j pi)) associated with i�s uncer-

tainty regarding j�s priors:

(1 + � 2)Aj;1 � � 2Ei(pj j pi) = sj + � 2 (pj � Ei(pj j pi)) , (21)

where Ei(pj j pi) = �pi.

Step 2 speci�es j�s second announcement. Let us index player j�s neighbours

but himself by r 2 f1; ...; dj � 1g. Consider the second period of communica-

tion. Recall equation (21). The state x and player j�s signals are distribued

by the following law:

Lj

0BBBBB@
x

x+ "j
x+ "1 + �

2 (p1 � �pj)
...

x+ "dj�1 + �
2
�
pdj�1 � �pj

�

1CCCCCA = N

0BBBBBB@

0BBBBBB@
pj
...
...
...
pj

1CCCCCCA ,
0BBBBBB@
1 � � � � � � � � � 1
... 1 + � 2 1 � � � 1
... 1
...

... �(1)

1 1

1CCCCCCA

1CCCCCCA
where �(1) is dj � 1 by dj � 1 matrix with elements

(�(1))r;l =

�
1 + � 2 + � 4�2 (1� �2) if r = l;
1 + � 4�2� (1� �) if r 6= l;

r = 1;...; di � 1, and l = 1;...; di � 1.

By equations (16) and (17),

Lj((x; x+ "1 + � 2 (p1 � �pj) ; ...; x+ "dj�1 + � 2
�
pdj�1 � �pj

�
)tjsj) =

N
 
sj+�

2pj
1+�2

1;

 
�2

1+�2
�2

1+�2
1T

�2

1+�2
1 e�(1)

!!
;
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where e�(1) is dj � 1 by dj � 1 matrix with elements
�e�(1)�

r;l
=

(
�2

1+�2
+ � 2 + � 4�2 (1� �2) if r = l;

�2

1+�2
+ � 4�2� (1� �) if r 6= l; (22)

where r = 1;...; dj � 1 and l = 1;...; dj � 1.

By equations (18), (19), (20) and (22),

Sum
�e�(1)��1 = dj�1

�2+�4�2(1��)+(dj�1)
�

�2

1+�2
+�4�2(1��)�

� : (23)

By equations (21), (23) and (16), Aj;2 is given by equation (4).

Step 3 completes the proof. By de�nition of set N i, player i �hears� the

�rst announcements fAr;1gr2Nj by all j�s neighbours. Therefore, player i can

deduce j�s prior pj from j�s second announcement (??), and then j�s private

signal sj from his �rst announcement (21).

Appendix C: proof of Proposition 1.

Step 1 speci�es player i�s beliefs about the state conditional on the signals

and priors by his closed neighbours. Let us index i�s closed neighbours but

himself with j 2
�
1; ...; di � 1

	
.
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Li

0BBBBB@
x

x+ "i
x+ "1
...

x+ "di�1

1CCCCCA = N

0BBBBBB@

0BBBBBB@
pi
...
...
...
pi

1CCCCCCA ,
0BBBBBB@
1 � � � � � � � � � 1
... 1 + � 2 1 � � � 1
... 1 1 + � 2 1
...

...
...

1 1 1 � � � 1 + � 2

1CCCCCCA

1CCCCCCA
(24)

By equation (18), 0BBB@
1 + � 2 1 � � � 1
1 1 + � 2 1
...

...
1 1 � � � 1 + � 2

1CCCA
�1

=

1

�2(�2+di)

0BBB@
� 2 + di � 1 �1 � � � �1

�1 � 2 + di � 1 �1
...

...
�1 �1 � � � � 2 + di � 1

1CCCA .
(25)

By equations (24), (25), (16) and ((17)

Li(xj fsjgj2 �Ni) = N (�; v) , (26)

where � is given by equation (10) and v is given by equation (11).

Step 2 speci�es player i�s beliefs about the priors by players outside his closed

neighbourhood conditional on the signals and priors by his closed neighbours.

Recall that the vector of priors p is distributed according to distribution (1).

Let us order the players�priors so that the subvector of priors

pjN i
= (pi; p1; ...; pdi�1)
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comes the last. Let us denote the variance-covariance matrix of vector pjN i

by �jN i
(this is, di by di matrix with elements 1 on the main diagonal and �

elsewhere). By equation (18),

�
�jN i

��1
= 1

(1��)(1+�(di�1))

0BBB@
1 + �

�
di � 2

�
�� � � � ��

�� 1 + �
�
di � 2

�
��

...
...

�� �� � � � 1 + �
�
di � 2

�
1CCCA :

(27)

Let pjgnN i
be the vector of priors of all players outside N i. Equation (6)

follows from equations (1), (27) and (16). By equations (1), (27) and (17),

w = Vi
�
pr j fpjgj2 �Ni

�
= �2(1��)(�di+1)

1+�(di�1)
, (28)

� = Ci
�
pr; pl j fpjgj2 �Ni

�
= �2�(1��)

1+�(di�1)
, (29)

where r 2MnN i and l 2Mn
�
N i [ fkg

�
.

Step 3 speci�es the elements of variance-covariance matrix � in equation

(9). Recall indexation (8). We denote conditional variance (11) by v and

conditional expectation (10) by �. We also introduce notations

drni = j(Nr nNi)j and d(r\l)ni = j(Nr nNi) \ (Nl nNi)j, r 6= l.

40



By equation (26),

Li

0BBBBBBBBBBBBBBB@

x
x+ "di+1+

�
pdi+1�p

�
� 2

...
x+ "di+(pdi�p) � 2

x+ 1
ddi+1ni

X
r2Ndi+1nNi

("r + (pr � p) � 2)�
�
�
ddi+1

�1
�

ddi+1ni
� 2
�
pdi+1 � p

�
...

x+ 1
ddini

X
r2NdinNi

("r + (pr � p) � 2)�
�(ddi�1)
ddini

� 2 (pdi � p)

1CCCCCCCCCCCCCCCA
=

N

0B@
0B@ �
...
�

1CA ,
0B@ v : : : v
... �1;1 �1;2
v (�1;2)

T �2;2

1CA
1CA ,

(30)

where: � is given by equation (10), v is given by equation (11),

(�11)r;l =

�
v + � 2 + � 4w if r = l;
v + � 4� if r 6= l;

(�12)r;l =

8<: v + � 4
�
� � �(dr�1)

drni
w
�
if r = l;

v + � 4�
�
1� �(dl�1)

dlni

�
if r 6= l;

(�22)r;r = v +
�2

drni
+ �4

drni

h
w
�
1 + �2(dr�1)2

drni

�
+ �

�
drni � 1� 2�(dr � 1)

�i
;

(�22)r;l = v + �
2 d(r\l)ni
drnidlni

+ w� 4
d(r\l)ni
drnidlni

+� �4

drnidlni

�
drnidlni � d(r\l)ni � �(drni(dl � 1) + dlni(dr � 1)) + �2(dr � 1)(dl � 1)

�
;

r; l 2
�
di + 1; ...; di

	
, r 6= l.
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Step 4 speci�es the elements of the variance-covariance matrix � in equation

(9) in the simpli�ed setting. Recall that we focus on � ! 0, which implies

that w ! �2 and � ! 0. Recall, furthermore, that player i believes that

d(r\l)ni = 0. By Step 3, the elements of matrix � are given by the following

set of equations:

�r;l =

8<:
v + z; if r = l 6 di;
v + z

drni
; if r = l > di;

v if r 6= l,
(31)

where, according to indexation (8), indices r and l take values in set�
di + 1; ...; di; ...; di + 2

�
di

�
,

v is given by equation (11), and

z = � 2
�
1 + � 2�2

�
. (32)

Step 4 completes the proof. By set of equations (31),

� = H + zG;

where H = vI1T ,

Gr;l =

8<:
1 if r = l 6 di;
1
drni

if r = l > di;

0; if r 6= l
and z is given by equation (32). Note that rk(H) = 1. In order to use

equation (20), we �nd:

�
H (zG)�1

�
r;l
=

�
v
z

if l 6 di;
v
z
dlni if l > di;

(33)
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1 + tr(H (zG)�1) = 1 + 'v; (34)

where ' =
�
di+d

0
i

z
; d0i = jN 0

i j (35)

�
(zG)�1H (zG)�1

�
r;l
=

8>><>>:
v
z2

if r 6 di and l 6 di;
v
z2
dlni if r 6 di and l > di;

v
z2
drni if l 6 di and r > di;

v
z2
drnidlni if r > di and l > di.

(36)

By equations (20) and (33)-(36),

Sum (H + zG)�1 = '� '2v
1+'v

= '
1+'v

. (37)

By construction (standard properties of conditional independence) and equa-

tions (17) and (37),

Vi(x j si, fAj;t j j 2 Ni; t = 1; 2g) =
Vi(x j fpj; sjgj2N i

, fesj;1; esj;2g
j2

�
N i

) = v
�
1� v1T (�)�11

�
=

v
�
1� v '

1+'v

�
= v

1+'v
.

Appendix D: proof of Lemma 2.

Step 1 shows that if f 2 G and g 2 G�, then di > 2n � 1 for any i 2 M .

Indeed, suppose (by contradiction) that exist i 2M with di < 2n� 1, then,

di < 2n�1. By true inequality ni 6 m and Proposition 1, li (g) < max
i2M

lj (f),

hence g =2 G�.

Step 2 proves that closed neighbourhood by any least happy player i is a

completely connected subgraph of size 2n� 1, that is,

Nr = Ni for any i 2 L (g) any r 2 N i and any g 2 G. (38)
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Consider i 2 L (g) and r 2 N i. By de�nition of N i, Ni � Nr, hence,

dr + d
0
r 6 di + d

0
i and dr 6 di. However, Ni � Nr, means that there exist

j 2 NinNr. If j 2 Ni, then dr < di. Otherwise, dr + d0r < di + d0i. In either

case, by Proposition 1, lr (g) < li (g), which contradicts to i 2 L (g).

Step 3 proves that for any g 2 G�, if there exist i 2 L (g) such that �di > 0

then di 6 2n� 1. Suppose, by contradiction, that there exist i 2 L (g) such

that �di > 0 and di > 2n. By statement (38), Nr = Ni for any r 2 N i. It

takes
di(di�1)

2
> n

�
di � 1

�
links to interconnect all players in N i and 2n�di

links to connect them to i�s open neighbour(s). At the same time, players in

Ni can build ndi links. Therefore,

n
�
di � 1

�
+ 2n�di 6 ndi, which implies �di 6 1.

Suppose that �di = 1. Call h the unique open neighbour by i common with

i�s closed neighbours. Consider MnNi. Let R = jMnNij. Players in MnNi

can build nR links of which at least one link goes to player h. Hence, their

average degree is 2nR�1
R

< 2n, which implies that there exist player j 2MnNi

such that dj 6 2n�1, and so either dj < 2n�1 or dj+d0j 6 2n�1. In either

case, by Proposition 1, lj(g) > max
i2M

li (f), hence g =2 G� (a contradiction).

Step 4 proves that for any g 2 G�, and for all i 2 L (g) such that �di > 0,
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di = 2n� 1 and

di + d
0
i = m: (39)

Consider i 2 L (g) such that �di > 0. By Step 3, di 6 2n� 1. By Proposition

1, di = 2n � 1 and di + d0i = m (if di < 2n � 1 or di + d0i < m, then

li(g) > max
i2M

lj (f), which contradicts g 2 G�).

Step 5 shows that if g 2 G� and there exist i 2 L (g) such that �di > 0 then

�di = 1. Indeed, by step 3 and statement (38), all 2n � 1 players in N i are

interconnected, which leaves capacity to build at most one 1 link per player

and 2n� 1 links with other players overall. At the same time, by statement

(38), all 2n�1 players in N i are connected to each of the players in
�
Ni, which

requires �di (2n� 1) links. Hence, players in
�
Ni build at least

�di (2n� 1)� (2n� 1) =
�
�di � 1

�
(2n� 1)

links to players in N i, which leaves them with a possibility to build at most

�din�
�
�di � 1

�
(2n� 1) 6 2n� 1� �di (n� 1) (40)

links to m� 2n players in MnNi. Suppose that �di > 2. Then the right-hand

side of inequality (40) is weakly below 1. That is, players in
�
Ni build at most

one link to players inMnNi. At the same time, by equation (39), each player
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in MnNi is connected to at least one player in
�
Ni, which requires m � 2n

links. By inequality (40), all but one player inMnNi use at least one of their

hands to connect to at least one of the players in Ni. Hence, their average

degree is at most

2(n(m�2n)�(m�2n�1))+m�2n
m�2n = 2n� 1 + 1

m�2n .

Therefore, there exist player j 2MnNi such that dj 6 2n� 1 and �dj > 0, so

dj 6 2n� 2. By Step 1, g =2 G� (a contradiction).

Step 6 shows (by construction) that if g 2 G� and there exist i 2 L (g) such

that �di > 0 then g = f . By statement (38), for any player i 2 L (g), we

can visualize i and his closed neighbours as a �petal�. By Steps 4 and 5,

player i and his closed neighbours have one common open neighbour, say, h

connected with all players in MnNi. Consider m � 2n players in MnNi. If

there exist player i1 2 (MnNi)\L (g), then, di1 = 2n�1 and by Steps 3 and

4, di1 = 2n, di1 + d
0
i1
= m and Nj = Ni1 for all j 2 N i1 . We can therefore

visualize i1 and his closed neighbours as the second petal connected to the

�rst petal through h. Applying this argument repetitively, we end up with

a the situation in which any player not organized in a petal yet has closed

degree of at least 2n and is connected to h.
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We denote the set of these remaining players with R. Note that by

construction, none of the players in set R receives links from the players

organized in the above petals. Therefore, relatively high degree by each of

them is achieved through their own linking capacity plus possibly that of the

central hub h. Players in setR and hub h together can build n (jRj+ 1) links,

increasing their own sum of degrees by 2n (jRj+ 1).26 The hub h receives jRj

links. The average degree by the players in set R is therefore equal to

P
di

i2R
jRj =

2n(jRj+1)
jRj + 1. (41)

Recall that it shall exceed 2n+ 1, which implies

jRj 6 2n. (42)

However, by construction of small petals, true equation jgj = m and equation

(14), we �nd

jRj > 2n+ (2n� 1)l, (43)

where 0 6 l 6 m � 1. By equations (42) and (43), jRj = 2n. This means

that the hub h and 2n players in set R are interconnected, forming the large

petal.

26 jRj denotes the cardinality of set R, that is, the number of players in set R.
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Appendix E: proof of Proposition 2.

Step 1 shows that if g 2 G� and g 6= f , then any player i 2 L (g) belongs to a

completely connected component of size at least 2n. By Lemma 2, if g 2 G�

and g 6= f , then �di = 0 for any i 2 L (g). Hence, N 0
i = ?, and

ni = di < m. (44)

Because g 2 G�,

li(g) 6 min
j2M

lj(f). (45)

By equation (44), inequality (45), and proposition 1, di > 2n. Hence,

if g 2 G� and g 6= f then �di = 0 and di > 2n for any i 2 L (g) . (46)

By Step 2 in Appendix D, Nj = Ni for any j 2 N i.

Step 2 shows that if i 2M , then �di = 0, Nj = Ni for any j 2 N i and di > 2n.

By Step 1, the statement is true for any i 2 L (g). Consider MnL(g), that

is set M without the least happy players. If MnL(g) = ?, the statement of

Step 2 holds. Suppose MnL(g) 6= ?. By Step 1, jL(g)j > 2n. Therefore,

jMnL(g)j 6 m� 2n. Therefore, dk + d0k 6 m� 2n < m for any r 2MnL(g).

Because g 2 G� and g 6= f , lr(g) 6 min
j2M

lj(f) for any r 2 MnL(g). By

Proposition 1, dr > 2n for any r 2 MnL(g). At the same time, the average
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degree by players in MnL(g) is 2n (each player can build n links, each link

increases sum of degrees by 2). Therefore,

dr = dr = 2n for any r 2MnL(g). (47)

Suppose there exist r 2 MnL(g) and j 2 N r such that Nj � Nr. Then, r is

an open neighbour by j, which contradicts to statement (47).

Step 3 proves that if g 2 G� and g 6= f , then di 6 2n + 1 for any player

i in network g. Consider g 2 G�, g 6= f and some player i in network g.

By Step 2, all players in i�s closed neighbourhood are interconnected, which

takes
di(di�1)

2
links. These players can build only din links. Therefore,

di(di�1)
2

6 din,

which is equivalent to di 6 2n+ 1.

Step 4 shows that

G� =

8<:
fcg , if �2� 2 > m�(2n+1)

2

fc; fg , if �2� 2 = m�(2n+1)
2

ffg , otherwise.

Recall that it is feasible to build network c as follows: players divide into

groups of size 2n+1, 2n+1 players in a group form a circle and each player

connects to n next players on his right. By Steps 2 to 4, network c is the

49



most e¢ cient network in set Gnf . By Proposition 1, c is weakly more e¢ cient

than f i¤ inequality (15) is true.

Appendix F: proof of Proposition 3.

Step 1 shows that �ower network is a Nash equilibrium. Indeed, by equation

(14), �ower network may be build as follows: The players divide into groups

of which one has size 2n+1 and other k have size 2n�1. Players in the group

of size 2n + 1 interconnect, say, they form a circle and each player connects

to n players on his right. One player in this group is marked with index h.

Players in each group of size 2n � 1 form a circle. Each player connects to

n� 1 players on his right and to player h.

Consider a unilateral deviation by player i from the above strategy pro-

�le. By this deviation player i establishes a link with a player in a di¤erent

�petal�, scarifying a link with either one of the players in his petal or the

central hub. As a result, his total degree does not increases while his closed

degree decreases by 2n� 2 (he looses all closed neighbours but himself). By

Proposition 1, his loss goes up. Hence, �ower network is an equilibrium.

Step 2 by equation (13), network cmay be built as follows: The players divide

into groups of size 2n+ 1. Players in each group of size 2n+ 1 interconnect,
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say, they form a circle and each player connects to n players on his right.

2.1. Consider a unilateral deviation by player i form the above strategy pro-

�le. By this deviation player i establishes a link with a player in a di¤erent

component sacri�cing a link with a player in his component. Thereby, he

increases his total degree by 2n+1 and he decreases his closed degree by 2n

(he looses all closed neighbours but himself). By proposition 1, the deviation

is unpro�table i¤

�2� 2 > 1 + 1
2n
. (48)

Hence, network c is an equilibrium i¤ inequality (48) holds.

2.2. Let us show that equations (14) and (13) imply

1 + 1
2n
< m�(2n+1)

2
. (49)

By equation (14), inequality (49) is equivalent to

(2n� 1)k > 2 + 1
n
,

which holds for any k > 2. By equations (14) and (13)

(2n+ 1) (l � 1) = (2n� 1)k > 0,

which implies l > 2, hence, k > 2.
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Appendix G: di¤erent number of players and
connection capacity.

Propositions 2 and 3 were obtained under restrictions (14) and (13) on the

number of players m and a player�s connection capacity n. We can show that

if we relax these restrictions then either the �ower network or �ower-like net-

work(s) is/are e¢ cient and constitute(s) a Nash equilibrium provided that

the interpretation noise is su¢ ciently low (full analysis is available upon re-

quest). The following examples illustrate this claim. In all examples a player�s

connection capacity n is equal to 2.

G.1 Illustrative examples.

Examples G.1 and G.2 illustrate that when parameter restriction (14) holds

while parameter restriction (13) fails, �ower network f is the most e¢ cient

network constituting a Nash equilibrium (except if n = m = 1).

Example G.1. Suppose that m = 11. Note that parameter restriction (14)

holds, and it is, therefore, feasible to build �ower network with 2 petals of

size 2n� 1 = 3 and one petal of size 2n+ 1 = 5. At the same time, parame-

ter restriction (13) fails. The size of the smallest component in any network

composed of completely connected components is, at most, 3. Therefore, any
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such network is less e¢ cient than the �ower. Hence, the �ower is the unique

equilibrium network.

Example G.2. Suppose that m = 29. Then, parameter restriction (14) holds

and it is, therefore, feasible to build �ower network with 6 petals of size 3 and

one petal of size 5. At the same time, parameter restriction (13) fails and

it is, therefore, impossible to divide the players into completely connected

components of size 5 each. There are at least two networks composed of

completely connected components of size 4: network c1 composed of 6 com-

ponents of size 4 and one of size 5 and network c2 composed of 5 components

of size 5 and one of size 4. Flower network f is e¢ cient, outperforming ei-

ther network c1 or c2, i¤ the interpretation noise is weakly below threshold

m� 2n = 25 (note that this threshold lies above that in Propositions 2 and

3). Furthermore, while the �ower network f constitutes a Nash equilibrium,

this is not true for either network c1 or c2, because any player with an excess

connection capacity bene�ts from deviation.

Examples G.3 and G.4 illustrate that �ower-like network(s) is/are e¢ cient

and constitute a Nash equilibrium the interpretation noise is su¢ ciently low.

Example G.3. Suppose that m = 10. Parameter restriction (13) holds and
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it is therefore possible to build network c composed of two complete com-

ponents of size 5. At the same time, parameter restriction (14) fails and we

cannot build network f . However, we can build network ef termed hereafter
symmetric �ower which is depicted in Figure G.1. Propositions 2 and 3 hold

for �ower network f being replaced for symmetric �ower network ef .

Figure G.1: symmetric
�ower ef (m = 10, n = 2).

Example G.4. Suppose thatm = 9. Then, it is possible to build �ower-like

network termed generalized �ower, see Figure G.2. Note that alternatively

we could build �ower-like network with one petal of size 4 and two petals

of size 2. Either of these networks is e¢ cient27 and it constitutes a Nash

equilibrium when the interpretation noise lies below threshold 0:43.

27We could re�ne e¢ ciency criterion by requiring the number of losers to be minimal.
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Figure G.2: generalized �owers of level 2
(m = 9, n = 2).

G.2. Relaxing parameter restriction (13).

Let us keep parameter restriction (14) and relax parameter restriction (13).

Without loss of generality there exist l 2 N [ f0g and q 2 N [ f0g, q 6 2n

such that

m = l(2n+ 1) + q. (50)

Note that by equation (14), l > 0. The main text focuses on q = 0. Suppose

that q > 0.

De�nition G.1. The set of networks composed of completely connected

components of which the smallest has size 2n is denoted

C = fg 2 C j for any i 2M : di > 2n and Ni = Nj for any j 2 Nig . (51)
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Proposition G.1. Suppose that m and n are such that parameter restriction

(14) holds. Suppose, furthermore, that q de�ned by equation (50) is positive.

Then,

G� =

8<:
C if q + l > 2n and �2� 2 > m� 2n,
C [ ffg if q + l > 2n and �2� 2 = m� 2n,
f otherwise.

Proof.

Step 1 shows that if q > 0 and

q + l > 2n, (52)

G� =

8<:
C, if �2� 2 > m� 2n
C [ ffg , if �2� 2 = m� 2n
ffg otherwise.

By Step 2 in Appendix E, any e¢ cient network di¤erent from f lies in set

C. Let us build a network in C maximizing the size of its smallest cluster.

To this goal, let us divide the total number of players m into groups of sizes

as equal as possible in the following way: Start with l groups of size 2n + 1

and one �residual� group of size q and repetitively move one player from

the largest existing group to the smallest one. After 2n � q 6 l steps, the

size of the residual group is 2n, hence, the di¤erence between the sizes of

any pair of groups becomes no higher than one. Once the procedure is over,

let the players in each group interconnect. Thereby, we form a network in

C. Potentially, we could build other networks in C by continuing the above
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procedure as long as the distribution of the clusters�sizes remains constant.

The size of the smallest cluster is 2n. By proposition 1, this network is weakly

more e¢ cient than f i¤

�2� 2 > m� 2n. (53)

Step 2 shows that when q > 0 and q + l < 2n, G� = f . Consider the

procedure described in Step 1. After l steps the size of the residual group is

still below 2n. If we continue the procedure until the distribution of groups�

sizes becomes constant, at least one group will have size 2n� 1.28 Hence, set

C is empty. By Step 2 in Appendix E the unique e¢ cient network is f .

Proposition G.2. If n = k = 1, the most e¢ cient equilibrium network

is that in proposition G.1. Otherwise, the most e¢ cient Nash equilibrium is

network f .

Proof.

Step 1. Suppose n = k = 1, so thatm = 4. By Step 1 in Appendix F, network

f (a �star�with three peripheral players connected to the central hub) is a

Nash equilibrium. Set C is a singleton. Its unique element is complete network

connecting 4 players. Trivially, it is a Nash equilibrium. Hence, Proposition

G.1 describes not only the most e¢ cient network but also an equilibrium

28Note that by equation (14) the size of the smallest cluster is weakly above 2n� 1.
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network.

Step 2. Suppose, from now on, that n+ k > 2. Suppose �rst, that inequality

(52) holds. By Proposition G.1, the e¢ cient network is either f or a network

is set C, depending on the magnitude of the interpretation noise. However, no

network in set C is a Nash equilibrium. Indeed, inequality (52) is equivalent

to q > 2n� l. Therefore,

m = l(2n+ 1) + q > 2n(l + 1), hence, m > 2n,

which implies that any network in set C has at least two components. Con-

sider the smallest component of network in set C. Its size is 2n. It takes

n(2n� 1) links to build it. At the same time, the players in this component

can build 2n2 links. Therefore, at least one of them has unused connection

capacity, which he can use to establish a link with a player in a di¤erent

component increasing thereby his total degree by at least 2n. By Proposi-

tion 1, this deviation is pro�table. By Step 1 in Appendix F network f is a

Nash equilibrium. By Step 2 in Appendix F, network f is the more e¢ cient

than any network in set GnC. Hence, network f is the most e¢ cient Nash

equilibrium.

Step 3. Suppose �nally that inequality (52) does not hold. Then, by Propo-
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sition G.1, the most e¢ cient network is f . By step 1 in Appendix F network

f is a Nash equilibrium. Hence, network f is the most e¢ cient Nash equilib-

rium.

Appendix H: numerical robustness check of
proposition 3.

Proposition 3 (as Proposition 2) does not apply when the number of players

is m = 8 and the individual connection capacity is n = 2 because parameter

restriction (13) is not satis�ed. Appendix G.2 shows that the most e¢ cient

Nash equilibrium is the �ower depicted in Figure 5, regardless of the magni-

tude of transmission noise. The reason is that the network composed of two

compete components with 4 players each is not an equilibrium because there

is unused connection capacity, hence, the incentives to deviate.

We check numerically whether this result may extend to the generalized

setting. We have seen that Proposition 2 may extend to the generalized

setting for su¢ ciently small values of � namely, � in set f0:1; 0:2; 0:35g. We

therefore focus on these values of �. As in the previous section, we keep � 2 =

1, and vary the interpretation noise �2. We consider a pro�le of strategies
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leading to formation of �ower f (proposed equilibrium) and show that no

player can bene�t from unilateral deviation.

The central hub cannot deviate in a pro�table way, as in the proposed

equilibrium he learns the signals of all the players and receives payo¤ 1
9
.

Figure H:1 depicts possible deviations by a peripheral player. Deviations

1 and 2 refer to a peripheral player from the small petal (for concreteness,

player 8). Deviations 3 and 4 refer to a peripheral player from the large petal

(for concreteness, player 5).

Figure H.1: Deviations by a peripheral
player from the proposed equilibrium.

Figure H.2 depicts the losses given by equation (2) by peripheral players 5

and 8 in the proposed equilibrium and under the above deviations, depending

on interpretation noise �2 for � = 0:35 (the �gures for smaller values � of are
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similar). We observe that both player 5 and player 8 have strong incentives

to comply with the proposed equilibrium strategy. Hence, the �ower network

is a Nash equilibrium.

Figure H.2: Losses by player 5 (right) and player 8 (left) in
the proposed equilibrium (red solid curve) and following
possible deviations (blue dashed and green dotted curves).

Appendix I: alternative network formation pro-
tocol.

Unilateral link formation may be viewed as an extremely asymmetric invest-

ments in links. This section illustrates that our results do not hinge on this

asymmetry. Following Hojman and Szeidl (2008), we modify network forma-

tion protocol as follows. The players simultaneously choose their investments

in links. Player i invests tji in link with player j. The link between i and j is

formed i¤ the joint investment by players i and j lies above a given threshold
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I:

tji + t
i
j > I.

Investments in links by player i are added to his disutility, hence his objective

is to minimize

eli(g) = li(g) + P
j2M

tji . (54)

We can prove that the e¢ cient network can be formed in equilibrium via

a pro�le of strategies involving strictly positive contributions from the hub

(available upon request). We illustrate our argument taking Example G.3 in

Section G.1 (m = 10 and n = 2). Suppose that � 2 = 1, �2 = 4. Propositions 2

and 3 hold with �ower f being replaced with the symmetric �ower ef depicted
in Figure G.1 (proof is available upon request). Let us prove that when I lies

in the interval [0:03, 0:1], symmetric �ower may be formed in equilibrium via

fully symmetric investments: any player invests I
2
in any of his links.

Note that loss (12) is convex in either the number of closed neighbours

and the joint number of local and distant neighbours:

@li(g)

@di
< 0, @

2li(g)

@d
2
i

< 0, @li(g)

@(di+d0i)
< 0, @2li(g)

@(di+d0i)
2 < 0.

Consider the central hub h. He can deviate from the proposed equilibrium

strategy by sacri�cing any subset of links, saving thereby sum I
2
multiplied
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by the cardinality of this subset. However, by the above convexity of loss (12)

in the number of closed neighbours dh it su¢ ces to check that h is not willing

to deviate at the margin. That is, he does not want to save sum I
2
loosing a

link with one of the peripheral players and thereby 3 closed neighbours. By

equation (12), it is true for any I 6 0:1.

Now consider a peripheral player i. He can deviate from the proposed

equilibrium strategy in three ways. First, he can save I
2
by sacri�cing a link

with one of his closed neighbours, loosing, thereby, all closed neighbours but

himself. Second, he can save I
2
by sacri�cing the link with the central hub and

losing thereby all closed neighbours but himself and all distant neighbours.

By equation (12), these deviations are unpro�table when I 6 0:1. The third

possible deviation is to link with distant player from a di¤erent petal so as

to gain one closed neighbour (recall that i perceives this player to be linked

only with the central hub). This is unpro�table for any I above 0:03.
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