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Résumé

Dans le domaine de la santé, l’analyse des données est un enjeu fort dans l’amélioration des
prises en charge, la prévention des maladies ou l’adaptation des thérapies à chaque patient.
Initialement, cette analyse de données est basée sur des méthodes statistiques telles que
les statistiques descriptives et inférentielles, afin de découvrir de nouvelles connaissances
dans les données. L’apparition de l’apprentissage automatique a permis de nouveaux
cas d’usages grâce à son pouvoir prédictif. Son essor a également été favorisé par des
applications aux retombées positives. Cependant, les modèles prédictifs sont qualifiés de
boite fermées à cause de leur complexité, leur architecture ou de leur statut propriétaire.
Comprendre leur fonctionnement et leur prédiction est alors critique, notamment dans les
domaines sensibles.

Le domaine de l’Explicabilité du Machine Learning (XML) a émergé afin d’expliquer
le comportement des modèles prédictifs et leurs prédictions. Deux approches s’opposent
entre les modèles intrinsèquement interprétables et les méthodes post-hoc d’explication.
Les modèles interprétables ont des structures pouvant être directement analysées, tels
que les arbres ou les règles de décisions. Les méthodes post-hoc agnostiques, à l’opposé,
s’appliquent sur des modèles déjà entraînés pour expliquer leur fonctionnement et leurs
prédictions. Les méthodes post-hoc agnostic d’explication locale permettent notamment
d’expliquer individuellement chaque prédiction, quelque soit le modèle. Ces méthodes
populaires subissent cependant de nombreuses critiques quant à leur efficacité, leurs hy-
pothèses restrictives et la nécessité de privilégier les modèles interprétables dans les do-
maines sensibles. Cependant, ces derniers peuvent devenir boite-fermée à cause de leur
complexité ou pour des raisons propriétaires. Les méthodes post-hoc sont alors la seule
alternative restante actuellement pour expliquer les prédictions.

Pour intégrer les explications post-hoc dans des applications médicales, plusieurs prob-
lématiques se posent autour des forces et des faiblesses des explications locales, de leur
analyse et de leur utilisation par des personnels de santé non-experts en modèle prédictif.
Le comportement et les limites des méthodes explicatives sont un point critique lors de
leur utilisation, notamment dans les domaines sensibles. De plus, afin de comprendre les
liens entre les prédictions, le modèle et les données, les explications peuvent être vues
comme de nouvelles données à analyser et à explorer. Enfin, dans le cadre d’applications
métiers, les utilisateurs finaux sont souvent peu impliqués dans la conception des appli-
cations intégrant des modèles prédictifs et des explications.

Dans cette thèse, nous contribuons à l’amélioration et l’implémentation des explica-
tions dans le domaine de la santé sous quatre axes. Premièrement, nous dressons un
état de l’art du domaine, des méthodes post-hoc locales et leurs évaluations, des dif-
férentes utilisations des explications et des tests réalisés avec des utilisateurs. Puis, nous
améliorons la méthode d’explication locale Coalitionnelle et la comparons à la littérature
afin de mettre en lumière leurs forces, faiblesses et limites. Nous montrons les meilleurs
contextes d’utilisation de chaque méthode et qu’un gap existe encore pour les larges jeux
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de données. Ensuite, nous proposons une approche d’analyse des explications basée sur
le clustering afin d’extraire des informations sur le modèle, les données et les prédictions,
offrant des perspectives d’analyse de ces explications. Enfin, nous étudions, en définis-
sant les besoins des utilisateurs, comment implémenter efficacement les explications dans
des applications médicales, en combinant plusieurs approches et des analyses statistiques.
Nous proposons ainsi notre protocole de tests utilisateurs évaluant l’apport des explica-
tions pour des professionnels de santé, réalisé en collaboration avec des experts métiers.
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Summary

In healthcare, data analysis is a powerful tool for improving treatment, preventing disease
and adapting therapies to individual patients. Initially, this data analysis was based on
statistical methods, such as descriptive and inferential statistics, to discover new knowl-
edge in the data. The emergence of machine learning has opened up new possibilities
thanks to its predictive power, its growth being boosted by applications with positive
results and outcomes. However, predictive models are often described as closed-boxes
because of their complexity, architecture or proprietary design. Understanding how they
work and how they predict is therefore critical, particularly in sensitive fields like health-
care.

The field of Explainable Machine Learning (XML) has arisen to explain the behaviour
of predictive models and their predictions. There are two main approaches: intrinsi-
cally interpretable models and post-hoc explanation methods. Intrinsically interpretable
models have structures that can be directly analysed, such as trees or decision rules. Post-
hoc methods, on the other hand, are applied to already trained models to explain their
behaviour and prediction. In particular, local explanation agnostic post-hoc methods ex-
plain each prediction individually, whatever the model. However, these popular methods
are often criticised for their effectiveness, restrictive assumptions and the need to favour
interpretable models in sensitive areas. However, these interpretable models can become
closed-boxes due to their complexity or for proprietary issues. Post-hoc methods are then
the only alternative currently available to explain the predictions.

When integrating post-hoc explanations into medical applications, several issues arise
concerning the strengths and weaknesses of local explanations, their analysis and their
use by healthcare personnel who are not experts in predictive models. The behaviour and
limitations of explanatory methods are critical points when used, particularly in sensi-
tive areas. In addition, to understand the links between modelling, data and predictions,
explanations can be seen as new data to be analysed and explored. Finally, in medi-
cal applications, end users are often rarely involved in the application development and
integration of explanations, making the explanations’ contribution challenging to assess.

In this thesis, we contribute to improve and implement explanations in the healthcare
domain in four areas. First, we review the current state of the art, including domain
definitions, intrinsically interpretable models, post-hoc local explanation methods and
their evaluations. We also describe the different uses of explanations and the tests carried
out with domain expert users.

We then improve the local Coalitional explanation method and compare seven local
attributive explanation methods to highlight their strengths, weaknesses and limitations.
We show the best contexts for using each explanation method depending on the charac-
teristics of the datasets and the predictive model based on six metrics and more than 300
open datasets and that a gap still exists for large datasets.

We then propose an approach for analysing explanations to discover insights into the
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model, data and predictions. We show that clustering explanations offer better groups
of instances than clustering raw data for several families of clustering, offering positive
outlooks for analysing explanations.

Finally, we detail our implementation of explanations in medical applications. By
defining user needs and the purpose of explanations, we study how to present and analyse
them efficiently by combining several explanations and statistical analysis approaches. Fi-
nally, we present our user-testing protocol for evaluating the contribution of explanations
for healthcare professionals, created in collaboration with medical experts.
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Chapter 1

Introduction

1.1 Research Context
In France, since 2019, the Health Data Hub has been building a unique database of French
healthcare data thanks to the collaboration of 56 stakeholders. The project currently
brings together 10 different national databases, including health insurance data, death
data, hospital data and medico-economic data on breast cancer, rare diseases and COVID-
19. In 4 years, more than 7,000 personal health data analysis projects have been launched
via the Health Data Hub, with the attraction growing year on year 1.

In healthcare, data analysis presents a twofold challenge. (1) In medical research, data
analysis is usually used for exploratory purposes. It is used to create hypotheses about the
links and causality between medical data and a diagnosis to improve pathology detection,
management or survival rate (Sidey-Gibbons and Sidey-Gibbons, 2019). (2) In every-
day practice, data analysis supports the administrative process and the organisation of
care pathways, helps to prevent undesirable events and implements preventive measures,
to improve patient health and ensure that the right therapeutic protocols are applied.
Batko and Ślęzak (2022) defines 8 major fields of application for medical data analysis:
diagnostic support, therapeutic support, precision medicine (or personalised medicine),
preventive medicine, telemedicine, health population support, medical research and cost
reduction.

Initially, data analysis was carried out using classical statistical tools, such as descrip-
tive statistics, inferential statistics and exploratory data analysis techniques. However,
these approaches, although still useful today, focus on producing knowledge about known
data (such as data descriptions and distributions, correlations, causality, trends, etc).
With the emergence of Machine Learning, a paradigm shift has occurred to predict the
behaviour of unseen data. Machine Learning (ML) is a field of Artificial Intelligence (AI)
defined as "a computer program, learning from experience E with respect to some class
of tasks T and performance measure P if its performance at tasks in T, as measured by
P, improves with experience E" (Mitchell, 1997). It uses mathematical and statistical
approaches to build algorithms capable of ’learning’, of generalising behaviour in data
to improve their performance in solving a task, without being explicitly programmed.
Compared to classical statistical analysis where variables are compared in pairs, ML al-
lows non-linear relationships between attributes to be detected and all attributes to be
considered together. Machine learning is usually divided into three categories, based on

1https://www.health-data-hub.fr/ (last visit date: December 5, 2023)
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1.1. RESEARCH CONTEXT 2

the feedback given to the algorithm during learning: supervised learning, unsupervised
learning and reinforcement learning. Typically in healthcare, supervised learning is used
as data can be labelled (Jiang et al., 2017; Rajpurkar et al., 2022). This learning type
refers to training algorithms with datasets containing both inputs and labels, the ex-
pected outputs. Through iteration, algorithms will learn to predict outputs based on the
inputs and correct their error by comparing the predictions with the labels, optimising
a loss function on unseen data. An optimal, well-trained algorithm will then be able to
predict the output for new inputs that it has never seen before. Flexible and well-tuned
models often outperform simpler statistical models in performances on unseen data, and
ensembles of different models often further outperform individual models (Rokach, 2010).
During this thesis, only supervised learning on tabular data was used and taken into
consideration. It derives from the current primacy of this scope in real-world healthcare
applications (Sidey-Gibbons and Sidey-Gibbons, 2019).

The paradigm shift, from the production of knowledge to the search for predictive per-
formance on unseen data, has added value to the understanding of data. Indeed, being
able to predict unseen data correctly implies an understanding of the invisible and un-
derlying patterns in the data. Linking all attributes together and discovering non-linear
relationships between them can unlock a new approach to data analysis. The notion
of prediction, particularly in precision medicine, as an aid to diagnostic and therapeu-
tic decision-making, is also a significant and powerful contribution of ML. It can provide
healthcare professionals with additional assistance in their day-to-day practice. Moreover,
following visible success in predictive tasks from all medical specialities, ML techniques
have attracted the interest of healthcare professionals, clinicians and health researchers
(Jiang et al., 2017; Sidey-Gibbons and Sidey-Gibbons, 2019; Rajpurkar et al., 2022; Batko
and Ślęzak, 2022).

Unfortunately, the quest for performance in predicting unseen data has led to the
creation and use of increasingly complex ML models, pushing their transparency and in-
terpretability into the background. Models with few structural restrictions, such as neural
networks and gradient-boosted trees, have replaced models that are more interpretable
because they are structurally restricted, such as decision rules or linear models. In intrin-
sically interpretable models - also known as glass-box or open-box models -, the individual
components can be analysed individually and easily linked to understandable concepts.
For example, the coefficients of a linear regression can be extracted, linked to specific in-
puts and interpreted more or less in isolation. Also, a terminal leaf of a decision tree can
be described by a sequence of binary operations leading to a specific prediction. In con-
trast, complex, closed-box models are difficult to analyse into understandable individual
components, making them more complex to interpret and explain (Molnar, 2022a). Since
they make medical decisions for patients’ health, medical professionals need to understand
and evaluate the predictive model, so that they can assess and appropriate the predictions
and explain to patients the decisions made using a tool incorporating Machine Learning.
The challenge is even greater given that most healthcare staff are not Machine Learning
specialists, which means that interpretations and explanations need to be simplified.

In recent years, research into Explainable Machine Learning (XML) has re-emerged in
response to the increasing demand for prediction explanations and transparency in ML
models. The terms Explainable IA (XAI), Interpretable ML (IML), Interpretability and
Explainability often overlap and multiple definitions and uses of each terminology co-exist

2
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in the literature (Broniatowski, 2021). One consensus is that these fields seek to extract
insights from the models and understand the reasons behind the predictions made. Along-
side intrinsically interpretable models, post-hoc methods have emerged to explain/inter-
pret closed-box models. Post-hoc methods refer to methods applied to already-trained
ML models, with no impact on the training. Especially, agnostic post-hoc explanation
method brings together all the methods that can be applied whatever the ML model,
as opposed to model-specific explanation methods. In addition, post-hoc methods can
have a global or local scope, depending on whether they explain the general behaviour of
the model or an individual prediction. This thesis focuses especially on the local post-
hoc explanation methods, to explain local prediction and provide healthcare professionals
support when using ML systems.

However, the use of explainability in high-risk domains, such as healthcare, is criticised
in favour of interpretability and intrinsically interpretable models (Rudin, 2019). The au-
thor states that high-risk domains require a way to challenge the model outputs, which
in turn requires understanding how the decision was made. Intrinsically interpretable
models would be the only way to produce 100% faithful explanations that align with
how the model truthfully works, and current post-hoc interpretations would be insuffi-
cient because they generally simplify relationships. Well-known limits of current post-hoc
explanations methods, like SHAP (Lundberg and Lee, 2017) and LIME (Ribeiro et al.,
2016), also mentioned how these methods are time-consuming and consider attributes
as independent, creating unwanted behaviours when attributes are correlated - which is
very common with real-world data (Garreau and von Luxburg, 2020; Kumar et al., 2020).
Explanation methods are also not widely evaluated and compared in the literature due
to their subjective nature, creating a gap in understanding their strengths and optimal
environments for use (Miller, 2019). The criticism from Rudin (2019) therefore focuses on
the choice of models, omitting the potential contribution of closed-box model explanations
compared to intrinsically interpretable models and their interpretation (Molnar, 2022b).
Interpretations of intrinsically interpretable models do not generally carry the same infor-
mation as post-hoc explanation methods. The former will focus on the structure of the
model itself. In contrast, post-hoc explanation methods can provide information on the
importance of variables and their impact on predictions, at the global level of the model
or locally for each prediction or minority sub-groups of data.

Although intrinsically interpretable models can perform similarly to complex models
and should be preferred wherever possible, ML models can become closed-boxes for rea-
sons other than performances alone. In medicine, many models are considered closed-box,
because they are proprietary and therefore inaccessible (Petersen et al., 2022). In the case
of proprietary models, even a decision tree would be a closed-box model, which needs to
be explained. Intrinsically interpretable models can also become closed-box as their com-
plexity increases, decreasing their interpretability. Post-hoc agnostic explanation methods
are then the only solution currently available to provide explanations to users and attempt
to explain the reasons for a prediction. The research and optimisation of post-hoc and
agnostic explanation methods is therefore an important area of research for managing the
current limitations of local post-hoc methods and for guaranteeing the reliability of ML
models. The explainability of ML models is a crucial point in the pursuit of "safe, robust,
reliable and fair ML systems" (Petersen et al., 2022), whatever the current or future level
of legal requirement for explainability.
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1.2 Problem Statement
Given the context, criticisms and limitations mentioned above, we can raise the following
problem: How ML explanations can be provided to non-ML-expert medical
professionals for predictive analysis?

This can be broken down into three key issues, which are the main focus of this thesis:

1. How can we manage local post-hoc explanations behaviours, strengths and limita-
tions?

2. How explanations can highlight the behaviour of the analysed data through the
predictive model by identifying localities (prototypical or atypical)?

3. How can we efficiently provide explanations to medical end-users, who are not ML-
experts?

1.3 Manuscript Outline
This manuscript is divided into four chapters, three with proposals to address the above
issues.

Chapter 2 presents a review of the literature on explainability. We detail the defini-
tional issues surrounding explainability and interpretability and the classification of the
various existing methods. We describe the intrinsically interpretable models and post-hoc
explanation methods in the literature, especially those relevant to this thesis, as well as
their limitations and the existing evaluation and comparison metrics. We then discuss
the various uses of explanations as a final tool or as new data to be explored. Finally,
we provide an introduction to the user tests carried out to evaluate the explanations for
end-users.

Chapter 3 covers our contribution to the coalitional explanation method improvement
and the evaluation and comparison of local post-hoc attributive explanation methods. We
focus on the first issue by taking into account the current limitations of local attributive
methods to optimise one and highlight each local attributive XML method behaviour
through our evaluation. We complete our contribution with two medical examples to
illustrate the explanations of local attributive methods.

Chapter 4 presents our work on local explanations analysis as a new data space.
To gain insight into the second issue, we define our analysis framework centred around
explanation clustering and evaluate it for several clustering methods against clustering
and raw data analysis. We illustrate how explanation clustering can be applied to medical
data and used by healthcare professionals.

Chapter 5 details our contribution to the last issue, with the implementation of expla-
nations in medical applications. This contribution focuses on how to efficiently display
and analyse explanations to provide them to end medical users and on an experimen-
tal protocol for carrying out user tests to evaluate the contribution of explanations for
healthcare professionals.

Finally, Chapter 6 summarises our contribution to the XML research domain and
discusses the main research perspectives.
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In the last decades, Machine Learning (ML) has become a standard for making de-
cisions, automating tasks, and exploring and analysing data. More and more domains
use these techniques for scientific applications, recommendation systems, fraud detection,
speech recognition or virtual assistants. Successful applications can be seen in ecology
with predictions of water reservoir levels (Obringer and Nateghi, 2018), in streaming plat-
forms with film recommendations (Zhou et al., 2021), in biology for monitoring marine
wildlife (Dujon et al., 2021), in banking to prevent card fraud (Ali et al., 2022), in health
care for preventing diseases like heart failure (Nagavelli et al., 2022), improving imaging
diagnosis (Litjens et al., 2017), or better-managing patient flows (El-Bouri et al., 2021).
However, the inability to understand how ML works and makes predictions -called the
closed-box effect- becomes alarming in sensitive fields. The risks resulting from an error
in the predictive model do not have the same impact and are not considered in the same
way in medical, judicial or financial domains (Lipton, 2018). A mistake in a medical robot
performing surgeries will have far more consequences than an error in a film recommen-
dation. A new field of study, the interpretability/explainability of models, has therefore
emerged, focusing on the problems of understanding ML predictions and closed-box mod-
els, with multiple overlapping terminology: eXplainable ML (XML), Interpretable ML
(IML), eXplainable AI (XAI), Interpretability, Explainability.

This chapter covers the main concepts concerning the explainability of modelling pre-
dictions, its uses and user evaluation of explanations. Section 2.1 discusses the definitions
of explainability and interpretability. It presents different explainability methods and
ways of comparing them. Section 2.2 shows how local explanations are used for their
intended purpose or as new data. Finally, Section 2.3 discusses the evaluation of local
explanations by users, both for the construction of user experience and the results of the
literature.

2.1 How to explain predictions ?

2.1.1 On defining human comprehension of Machine Learning
The principal assumption behind explainability and interpretability is that more trans-
parent, interpretable and explainable models lead to users understanding and trusting the
intelligent system (Miller, 2019). It can also help to uncover causal structure, get help-
ful information about and from the model, or offer legal right to prediction explanations
(Lipton, 2018).

But since the rise of explainability and interpretability, one main criticism is the lack
of one formal definition, with multiple definitions arising at the same time (Lipton, 2018;
Murdoch et al., 2019; Molnar, 2022a; Flora et al., 2022). In linguistics, "interpretation"
aims to enable communication between people who speak different languages, whilst "ex-
planation" attempts to describe the causes, context and consequences of a thing the way
it is, or of a process the way it takes place. Both can be complementary, as explanations
may need interpretation to be understandable. In this direction, Roscher et al. (2020)
describe interpretability as "the capability of making sense of an obtained ML model"
and explainability as "revealing the underlying causes to the decision of an ML method".
However, both terms are often used interchangeably although they do not have the same
semantic meaning. Miller (2019) then defined explainable AI as "explanatory agent re-
vealing underlying causes to its or another agent’s decision making", interpretability as

7



2.1. HOW TO EXPLAIN PREDICTIONS ? 8

"the degree to which an observer can understand the cause of a decision" and equate in-
terpretability and explainability. This definition of interpretability mixes the linguistic
definitions of explanation and interpretation and the explainable AI one introduces the
notion of another agent involved in the process of explaining. However, defining and
measuring human/observer understanding raises a significant problem. Kim et al. (2016)
shortcut this drawback by clarifying interpretability as "the degree to which a human
can consistently predict the model results". On the other hand, some papers defined in-
terpretability as understandability or intelligibility, with open- or glass-box models as
opposed to incomprehensible closed-box models (Lou et al., 2013). Interpretability then
refers to understanding how the model works based on its structure. A third approach
was defined by Montavon et al. (2018) and Ribeiro et al. (2016) by using interpretability
for the general strategy of understanding a model when explainability is used for a single
prediction. Montavon et al. (2018) defined an interpretation as "the mapping of an ab-
stract concept (e.g. a predicted class) into a domain that the human can make sense of",
where a domain can be images or texts, that human can readily understand, and an ex-
planation is "the collection of attributes of the interpretable domain, that have contributed
for a given example to produce a decision (e.g. classification or regression)". Ribeiro et al.
(2016) also defined "explaining a prediction" as "providing a qualitative understanding of
the relationship between the instance attributes and the model predictions". Finally, a
more global definition of interpretability was set by Murdoch et al. (2019) as the "extrac-
tion of relevant knowledge from a machine-learning model concerning relationships either
contained in data or learned by the model".

By taking into account semantics and established definitions, especially Roscher et al.
(2020); Lou et al. (2013), in this thesis, I will use terms as follows:

• explainability for extracting knowledge about an interpretable or uninterpretable
model and its decisions and explaining its behaviour

• interpretability for open-box models -or glass-box models- that can be readily un-
derstood without additional method

• explanations for explanations of individual predictions

To classify and categorise the numerous methods that have appeared over the years,
a classification has been established based on three main characteristics (Lipton, 2018;
Burkart and Huber, 2021; Vilone and Longo, 2021; Linardatos et al., 2021):

Intrinsic or post-hoc. Each method can be classified according to whether explain-
ability is obtained by the model itself or by an external method applied to the model.
Intrinsic means that models are transparent, glass-box, due to their inner structure, such
as linear models, decision trees or decision rules. This refers to what has been defined
as interpretability. On the contrary, post-hoc explainability refers to methods applied to
the models after training to extract knowledge about their behaviour. These methods
can also be applied to intrinsic interpretable models. Methods based on Shapley Values
(Štrumbelj and Kononenko, 2008) or Permutation attributes (Fisher et al., 2019) are part
of post-hoc methods.

Model-specific or agnostic. This distinction makes it possible to separate methods
according to whether they can be applied to all models or just one. A model-specific
method can be applied to only one model type and used only in that specific case. The
intrinsic interpretability of models is model-specific since they use properties of the models
themselves, such as weights in the case of linear regression, and cannot be applied to all

8
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other types of models. In contrast, a "model-agnostic" method is usually applicable to
all predictive models, as it analyses the input/output pairs of the model to produce
explanations. These methods do not have access to the model properties and are applied
after the model has been trained (i.e. post-hoc methods).

Local or global methods. Methods can be classified based on how they consider
the model to explain. The global approach focuses on understanding the entire model
at once. This approach requires knowledge of both the trained model and the training
data. It is based on a holistic view of the model and aims to understand the importance
of each attribute and how they interact to produce a prediction. In application, this
approach is challenging because human beings cannot mentally picture space in more
than three dimensions. To overcome this problem, the local approach focuses on a point
of interest, a single instance, and describes the model locally around this point to reduce
the overall complexity of the model. This approach makes it possible to understand
the factors influencing a prediction and can be more accurate than global explanations
(Ribeiro et al., 2016; Guidotti et al., 2018).

These categories efficiently describe all the actual explainability methods, even if they
overlap in some characteristics. Two main methods classes can be identified in the liter-
ature: intrinsically interpretable models (which are global, model-specific and intrinsic),
and post-hoc agnostic methods.

2.1.2 Intrinsically Interpretable Models
In this section, we briefly discuss the "intrinsically interpretable models" as they are used
to build local post-hoc model-agnostic explainability methods and can be a first step into
interpretability and explainability.

The field of intrinsically interpretable models existed for many years before closed-box
problems appeared in ML. Linear regression and rule-based ML models are standard pre-
21st century models and fall into this category due to their inner structure. Intrinsically
interpretable models are often defined as the easiest way to achieve explainability (Molnar,
2022a).

In ML, Linear regressions model the relationship between attributes and a target by a
linear predictive function. For each instance of the dataset, the relationship is described
as a sum of weighted attributes:

Definition 2.1. Linear Regression
Let xi be the value of the i − th attribute, βi the learned coefficient for the i − th

attribute, β0 the intercept and ϵ the remaining error. The target y is defined as:

y = β0 + β1x1 + ... + βnxn + ϵ

Coefficients can be used to interpret the model and how each attribute influences
the model predictions. For classification tasks and more complex data, adaptations of
linear regressions exist as Logistic Regression, Generalized Linear Models and Generalized
Additive Models. Thanks to their linearity, all are easy to understand and intrinsically
interpretable. Logistic regression also offers a probability for categories. These models
are widely used in academic fields such as medicine, biology, epidemiology, environmental
sciences and behavioural science, where the need to interpret the link between attributes
and targets is strong (Hastie et al., 2009).

9
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Tree-based algorithms, such as Decision Trees, represent the relationship between
attributes and labels by partitioning the data space. One attribute recursively partitions
the data space into two by maximising the dissimilarity between the two new partitions.
Based on these thresholds, called nodes, the instances are divided into groups called
leaves, with each instance belonging to only one leaf. These partitions can be graphically
represented by one tree, starting with the root node and following each node like a boolean
condition until a final leaf that defines the prediction. This characteristic makes Decision
Trees interpretable, easy to understand and intuitive for human comprehension.

Figure 2.1 represents a decision tree trained on the well-known Iris Dataset, with
default parameters from the sklearn library1. Iris Setosa, in orange, can be separated from
other classes based on the petal length. Iris Virginica (purple) and Versicolor (green) are
then defined based on the petal width and petal and sepal length. Only the sepal width
attributes were not used to build this decision tree.

petal length (cm) ≤ 2.45
gini = 0.6667

samples = 150
value = [50, 50, 50]

class = setosa

gini = 0.0
samples = 50

value = [50, 0, 0]
class = setosa

True

petal width (cm) ≤ 1.75
gini = 0.5

samples = 100
value = [0, 50, 50]
class = versicolor

False

petal length (cm) ≤ 4.95
gini = 0.168

samples = 54
value = [0, 49, 5]
class = versicolor

petal length (cm) ≤ 4.85
gini = 0.0425
samples = 46

value = [0, 1, 45]
class = virginica

petal width (cm) ≤ 1.65
gini = 0.0408
samples = 48

value = [0, 47, 1]
class = versicolor

petal width (cm) ≤ 1.55
gini = 0.4444
samples = 6

value = [0, 2, 4]
class = virginica

gini = 0.0
samples = 47

value = [0, 47, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

gini = 0.0
samples = 3

value = [0, 0, 3]
class = virginica

sepal length (cm) ≤ 6.95
gini = 0.4444
samples = 3

value = [0, 2, 1]
class = versicolor

gini = 0.0
samples = 2

value = [0, 2, 0]
class = versicolor

gini = 0.0
samples = 1

value = [0, 0, 1]
class = virginica

sepal length (cm) ≤ 5.95
gini = 0.4444
samples = 3

value = [0, 1, 2]
class = virginica

gini = 0.0
samples = 43

value = [0, 0, 43]
class = virginica

gini = 0.0
samples = 1

value = [0, 1, 0]
class = versicolor

gini = 0.0
samples = 2

value = [0, 0, 2]
class = virginica

Figure 2.1: Example of a Decision Tree trained on the Iris Dataset.

Decision Rules are based on combinations of IF/THEN conditions to make classifi-
cation predictions. Like with conditionals in algorithms, the structure can be defined
as:

”IF the condition is met THEN a certain prediction is made.”
Multiple conditions can be combined with an AND. This structure is intuitive for humans
as it is close to the natural way of reasoning, with only relevant attributes used for the

1https://scikit-learn.org/stable/index.html
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modelling. To enhance comprehensibility, conditions can be hierarchised in a decision list
or organised in a non-overlapping decision set.

Table 2.1 describes decision rules computed by the SkopeRules algorithm 2 on the Iris
Dataset (Gardin et al., 2019). Skope Rules is an algorithm that computes decision rules
based on random forest. To represent the three classes, 3 out of 4 attributes are used:
petal length and width and sepal length. Again, sepal length is not used, as for the deci-
sion tree. Precision and Recall are metrics about the rules.

Label Rules Precision Recall
Setosa Petal length <= 2.45 1.0 1.0

Versicolor Sepal length > 4.95 & Petal length <= 5.35
& Petal width <= 1.75 & Petal width > 0.80

1.0 0.97

Virginica Petal width > 1.65 0.95 0.92

Table 2.1: Example of Decision Rules for the Iris Dataset.

Unfortunately, there are limitations to the intrinsic interpretation of these models and
their use in modelling complex data (which is usually the case with real-world data). Their
internal structure, which allows them to be interpretable, also becomes a weakness. For
linear models, their linearity allows to model only linear relationships and dependence or
correlation between attributes are not taken into account. Models also have limited per-
formances caused by this restrictive hypothesis, and complex adaptations of Generalised
Additive Models (GAM) and Generalised Linear Models (GLM) are made at the cost of
reduced interpretability. The analysis of weights can also be counter-intuitive since each
weight depends on the importance of all the other attributes. This analysis is further com-
plicated with logistic regression models since the interpretation is multiplicative rather
than additive. Unlike linear models, Decision trees and rules are appropriate when the
relationship between attributes and labels is non-linear or when attributes interact. Only
to fail to model linear relationships as numeric attributes are, implicitly or not, discre-
tised. Decision Trees can also be unstable due to their high reliance on training data, as
small changes in the data might completely change the final Trees (Breiman et al., 1984).
Another limitation is that complex data often leads to complex models, even for intrinsic
interpretable ones. This results in trees with significant depth, a large number of weights
to analyse for linear models or numerous rules with a wide range of conditions for deci-
sion rules models. This complexity can hinder the interpretation of these models, which
then become closed-box models. Moreover, intrinsically interpretable models can also be
closed-box models when they are proprietary -i.e. the one creating the model reserves the
rights to use, modify or share. Then, only predictions are reachable and the structure of
the model is unknown, thus non-interpretable. Finally, intrinsically interpretable mod-
els are not optimal for high performance. They are outperformed by more complex and
less interpretable versions like Boosted Trees Ensemble, Random Forest, Neuronal and
Convolutional Networks.

While intrinsically interpretable models can provide a first approach and an excellent
overview when modelling data, the known limitations and the need for high performances
lead to focus on another type of explanation applicable to all models: post-hoc agnostic
methods.

2https://github.com/scikit-learn-contrib/skope-rules
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2.1.3 Post-hoc Agnostic Explainability Methods
Post-hoc agnostic explainability methods have become more important in the literature
over the last ten years (Linardatos et al., 2021). They aim to explain the relationships
between attributes and prediction, an intuitive approach to human understanding. Each
prediction is seen as a result of the impact of all the attributes in the data as models are
trained on data to make predictions. One of the strengths of these methods is that only
the prediction function and the data are requested. Models remain closed-box, facilitating
applications in fields where the model cannot be shared for security reasons.

With post-hoc methods, models can be studied globally or locally, depending on the
goal and the information wanted. Global methods aim to describe the average model
behaviour over all the instances to understand the data behaviour with the model. They
are mainly based on analysing the effect of each attribute over all the predictions. For
example, Partial Dependence Plots show the marginal effect of one or two attributes on the
prediction (Friedman, 1991) and Permutation attribute Importance shows how predictions
change when attribute values are swapped (Breiman, 2001; Fisher et al., 2019).

On the other hand, local methods have been popular in recent years, as explaining
each prediction is useful in applications, intuitive and easy to understand. Their pop-
ularity also comes from their instance-level accuracy, which allows finer differences to
be detected between all instances. Local explanations can take multiple forms, such as
attributive influences or explanations by examples and counterfactual instances. Example-
based explanations relate to other instances of the dataset to explain the prediction, by
selecting similar instances or by computing the minimum changes to switch prediction for
counterfactual explanations. In this thesis, we focus on explanations by local attributive
influences and methods, as it allows more specific analysis than global ones and as the
main goal in the medical field is to understand how ML modelling makes each patient
prediction. These methods produce a vector of weights to represent the contribution of
each attribute to the prediction for a single instance, called influences. The magnitude
and sign of the influence provide information about the strength of this contribution. A
high magnitude indicates an attribute with a significant impact on the prediction. The
influence sign then defines whether the effect goes in the direction (+) or against (-) the
model’s basal value - the default prediction for a new instance without any other knowl-
edge about it. These methods can also be additive, meaning that, for each instance, the
sum of its influences approximates the difference between the instance prediction and the
average prediction of the model over the dataset. In this way, local attributive methods
make it possible to explain the prediction and the knowledge learned by the closed-box
model, regardless of their correctness. It is then possible to measure the variations in pre-
dictions, the attributes responsible for the variations and the magnitude of their influence
to compare the results of several models and illustrate how these models have learned.

Figure 2.2 shows an example of local explanations on the Indian Pima Diabetes
dataset3, made with SHAP on a trained Random Forest. The prediction that this per-
son, a single instance, has diabetes is 0.86. The attributes contributing the most to the
prediction are Glucose, Pregnancies, BMI and Age. Only the BMI attribute contributes
"against" the prediction, i.e. for the model, BMI value decreases the risk of diabetes. For
the model, high glucose levels are the main reason for the high prediction of diabetes.

3https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database
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Figure 2.2: Local explanation example for a single instance of the Indian Pima Diabetes
dataset.

Shapley Values explanations The first local attributive additive method was based
on Shapley values and described in Štrumbelj and Kononenko (2008, 2010, 2014). In
cooperative game theory, Shapley values distribute the contribution to the payoff equitably
between the players in a coalition (Shapley, 1952). In ML, the gain can be linked to the
prediction made by the model and the players to the attributes. The influence of each
attribute is computed based on its impact on the prediction for each coalition of attributes.
Shapley values are then "the average marginal contribution of an attribute in all possible
coalitions [of attributes]" (Štrumbelj and Kononenko, 2010).

Definition 2.2. Shapley values explanations
Let A be the set of attributes in the dataset, aj the j-th attribute, and ∆ the differ-

ence between the expected prediction for a combination of attributes S and the expected
prediction in the absence of data, with f̂ the prediction function of the ML model. The
influence ϕj ∈ ℜ of the attribute j for the instance x is defined as:

ϕj(x) =
∑

S⊆A\{aj}

|S|!(|A| − |S| − 1)!
|A|! (∆S∪{aj}(x)−∆S(x))

∆S(x) = f̂S(x)− f̂(∅)

Thus, for each instance, for each attribute, the Shapley value corresponds to the
difference between the prediction with and without this attribute, penalised according to
the size of the coalitions of attributes for all possible attributes coalitions. For example,
with a 3-attribute dataset [A, B, C], the influence of the attribute A will be :

ϕA(x) = 1
3∆A + 1

6(∆AB −∆B) + 1
6(∆AC −∆C) + 1

3(∆ABC −∆BC)

. To compute the prediction with and without data, a data perturbation mechanism is
used to simulate the absence of data. For each attribute or group of attributes, values are
replaced by another value extracted randomly from the attribute values set. Perturbations
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can also be done by sampling from the marginal distribution of the attribute values or by
retraining the modelling without the attribute or group of attributes of interest.

The explanation method based on Shapley values is called the Complete method.
However, this method is expensive to compute, with an exponential complexity concerning
the number of attributes in the dataset.

LIME LIME is a well-known local attributive explanation method for tabular data,
images and text, described in Ribeiro et al. (2016). LIME uses local surrogate models
to locally approximate a complex closed-box model and, for each instance, explain the
influence of each attribute on the prediction. For each instance to be explained, LIME
generates new data in a close neighbourhood and computes the predictions of these new
instances with the closed-box model. An interpretable model, usually a linear model, is
trained with the new dataset. The surrogate model is then used to explain the prediction
of the instance of interest in the form of a weight vector associating each attribute with
its influence on the prediction. The influences are obtained mathematically according to
the following formula:

Definition 2.3. LIME
Let x be one instance of the dataset, g the surrogate interpretable model, G the set

of potential interpretable models, Ω(g) the complexity of the model g, f̂ the predictive
function of the closed-box model, πx the proximity measure between x and the sampled
instances z, and L the cost function between g and f̂ . The explanation for the instance x
is obtained with:

ϕ(x) = argmin
g∈G

L(f̂ , g, πx) + Ω(g)

The aim is to minimise the cost function between the two models to reach a substitu-
tion model representative of the original model and simple to interpret. One advantage
of the cost function is the ability to assess how reliable the surrogate model is locally
in explaining the closed-box model. In addition, the open choice between different sur-
rogate models means that the explanations can be adapted to the users based on the
interpretable model they understand best.

The full implementation of LIME is available on GitHub: https://github.com/
marcotcr/lime.

SHAP The SHapley Additive exPlanations method (SHAP) (Lundberg and Lee, 2017)
is an alternative to LIME and the Complete method, working on improving computation
time and explanation precision, especially for tree-based models (Lundberg et al., 2020).
It combines LIME (Ribeiro et al., 2016) and Shapley values (Štrumbelj and Kononenko,
2014), along with other methods from the literature (Lipovetsky and Conklin, 2001; Bach
et al., 2015; Datta et al., 2016; Shrikumar et al., 2017), in a unique framework to produce
local attributive additive explanations. As in LIME, the main idea is to create perturba-
tions in the data and to use a linear model to approximate the change in the prediction.
Linking local surrogate and Shapley value, data perturbations are employed to simulate
the absence of an attribute and avoid retraining the complex model without the attribute
of interest to compute the Shapley values.

Definition 2.4. SHAP Explanation
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Let ϕj ∈ ℜ be the influence of the attribute j based on Shapley value, M the maximum
coalition size, z′ ∈ 0, 1M the vector designating the attributes in the coalition and ϕ0 =
EX(f̂(x)) with f̂ the prediction function of the closed-box model. The surrogate model g
producing explanations is defined as :

g(z′) = ϕ0 +
M∑

j=1
ϕjz

′
j

For each coalition of attributes z′, attribute values are replaced with another value
from the marginal distribution of the data to simulate the absence of these attributes
based on the function hx(z′) = z where hx : {0, 1}M → Rp. The function hx maps 1’s
to the corresponding value from the instance to explain x. For tabular data, it maps
0’s to the values of another instance sampled from the data, based on the data marginal
distribution. This means that SHAP equates "attribute value is absent" with "attribute
value is replaced by random attribute value from data", creating a new dataset Z (Molnar,
2022a).

This dataset Z is used to fit the surrogate linear model g that is optimised based on
the following loss function :

Definition 2.5. SHAP Loss function
Let Z be the perturbed dataset, g the surrogate model, f̂ the prediction function of the

closed-box model, hx the mapping SHAP function, πx(z′) the function weighting z′.

L(f̂ , g, πx) =
∑

z′∈Z

[f̂(hx(z′))− g(z′)]2πx(z′)

The main difference between LIME and SHAP lies in how both weigh the samples in
the function πx(z′). When LIME based the weight on the distance between the original
instance and samples, SHAP is based on the weight the coalition would get in the Shapley
value estimation.

Definition 2.6. SHAP weight kernel
Let M be the maximum coalition size and |z′| the number of "present" attributes in

vector z′. The weight of the coalition z′ is defined as :

πx(z′) = (M − 1)(
M
|z′|

)
|z′|(M − |z′|)

Finally, based on Definition 2.4 with a linear surrogate model optimised with Defini-
tions 2.5 and 2.6, the influences are the coefficient ϕj of the linear surrogate model.

SHAP also provides information about the global behaviour of the model by aggregat-
ing local influences. Global and local explanations aim to be consistent together as they
have the same foundation. SHAP includes an agnostic explainer, KernelSHAP, as well as
model-specific explainers, such as TreeSHAP, LinearSHAP or DeepSHAP for tree-based
models, linear models and deep models respectively.

The full implementation of SHAP is available on GitHub: https://github.com/
slundberg/shap.
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K-depth method The K-depth method approximates the Complete method, based
on Shapley Values (Ferrettini et al., 2020a). It aims to reduce the complexity and the
computation time while keeping explanations accurate and the agnostic characteristic of
the Complete method. This method decreases the number of coalitions used to compute
Shapley values by considering only coalitions smaller than k. By using only a subset of
all the coalitions, the method keeps the interdependence of attributes but eliminates the
broadest coalitions that are expensive to compute and have less impact. Influences are
defined as :

Definition 2.7. K-depth method
Let A be the set of attributes in the dataset, aj the j-th attribute, k the maximum length

of a coalition, ∆ the difference between the expected prediction for x for a combination
of attributes S and the expected prediction in the absence of data, with f̂ the prediction
function of the ML model. The influence ϕj ∈ ℜ of the attribute j for an instance x is
defined as:

ϕj(x) =
∑

S⊆A\{aj}, |S∪{aj}|≤k

|S|!(|A| − |S| − 1)!
k × (|A| − 1)! (∆S∪{aj}(x)−∆S(x))

∆S(x) = f̂S(x)− f̂(∅)

This method is thus naive since interesting coalitions of attributes can be arbitrarily
eliminated.

Coalitional method Another agnostic attributive explanation method based on Shap-
ley values was then introduced to smartly take the interdependence of attributes into
account and solve some restrictions of SHAP. The Coalitional method uses grouping meth-
ods such as Principal Component Analysis (PCA), Spearman correlation factor (Spear-
man) and Variance Inflation Factor (VIF) to select from amongst all the possible combi-
nations of attributes those that would be the most interesting for explanations (Ferrettini
et al., 2020a,b). These groups are then used as coalitions to compute Shapley values as
in the Complete method. The influence of each attribute is defined as its impact on the
prediction only on these groups of attributes, approximating the Complete method and
reducing the computational time. With these grouping methods, groups do not have to
be exclusive, meaning that one attribute can be on multiple coalitions. Grouping methods
are also defined with a threshold parameter α that changes the number and size of at-
tribute coalition to prioritise a lower computational time or a higher accuracy. Influences
are computed similarly to the Shapley values in the Complete method, only by modifying
the attributes coalitions in parameters.

Definition 2.8. Coalitional method
Let G be a pre-computed coalition of attributes, A the set of attributes in the dataset,

aj the j-th attribute, G{aj} the subset of G containing the coalitions of attributes g ∈ G
such as aj ∈ g, ∆ the difference between the expected prediction for x for a combination
of attributes S and the expected prediction in the absence of data, with f̂ the prediction
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function of the ML model. The coalitional influence ϕj ∈ ℜ of the attribute j for an
instance x is defined as:

ϕi(x) =
∑

g′⊆g\{aj},g∈G{aj}

|g′|!(|g| − |g′| − 1)!∑
g∈G{aj} |g|!

(∆g′∪{ai}(x)−∆g′(x))

∆S(x) = f̂S(x)− f̂(∅)

The full implementation of Coalitional-based method is available on GitHub: https:
//github.com/kaduceo/coalitional_explanation_methods.

Limitations of the local attributive explanations methods Although all these
local attribution methods are popular or promising, they present limitations regarding
complexity, calculation time, accuracy, applicability or their restrictive hypotheses. First,
the Complete method has an exponential complexity regarding the number of attributes,
which stops these methods from being used with large datasets. A well-known limitation
of LIME, which also applies to SHAP, is the restrictive hypothesis on which LIME is
based, such as local linearity and attribute independence caused by sampling that im-
pacts the precision of both methods (Slack et al., 2020; Garreau and von Luxburg, 2020;
Kumar et al., 2020). Biased classifiers can fool explainability methods, whose problem is
even more accentuated on LIME (Slack et al., 2020). For LIME and SHAP, defining the
locality around an instance of interest can also be a challenge, as the fit of the surrogate
model has a significant impact on the accuracy of the explanations (Laugel et al., 2018) as
well as their stability (El Shawi et al., 2019; Alvarez-Melis and Jaakkola, 2018). Moreover,
computation time is still higher for other models than tree-based models (Van den Broeck
et al., 2022). For each method, the choice of the main hyperparameters is then a challenge
in itself, especially for non-expert (Garouani et al., 2022): the number of perturbed sam-
ples and the kernel width for LIME, the data used to create perturbed samples and the
number of perturbed samples for SHAP, the k for K-depth method, the α-threshold for
Coalitional methods. To the best of our knowledge, no papers explore the hyperparame-
ters of all these methods and their impact on explanations. Finally, explanations from all
methods can be misinterpreted, even more with users who are not experts in data science,
as explanations are highly linked to the current set of attributes, the coalitions taken into
account, the sampling step or the quality of the surrogate model.

Table 2.2 sums up information about local attributive explanation methods. All meth-
ods are post-hoc, allow a global approach by combining local explanations and are mostly
agnostic. Differences in when to use them lie mainly in the type of data accepted by the
methods and the ML tasks they can be applied. On tabular data and classification tasks,
K-depth and Coalitional suggest approaches keeping the attributes interdependence when
computing explanations, unlike SHAP and LIME. Coalitional method is therefore long to
compute and suffers from hyperparameters complex to optimise. In Chapter 3, especially
Section 3.2, we will focus on optimising the Coalitional method to offer a strong candidate
to rival SHAP and LIME.

2.1.4 On comparing explainability methods
Because of the subjective nature of explanations, there is no consensus on objective math-
ematical ways to evaluate the explanations. Comparative studies between local explain-
ability methods are available, such as El Shawi et al. (2019); Ferrettini et al. (2020b);
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XML Post-hoc Scope Model Data ML Task
Hyper

parameters
Attributes

dependence
Computation

time
Shapley
Values

✓
Local
Global

Agnostic Tabular Classification None ✓ ∗ ∗ ∗

LIME ✓
Local

Global ≈
Agnostic

Tabular
Images
Texts

Classification
Regression

Numerous
Complex

✗ ∗

Kernel
SHAP

✓
Local
Global

Agnostic
Tabular
Images
Texts

Classification
Regression

Few
Complex

✗ ∗∗

Tree
SHAP

✓
Local
Global

Specific
Tabular
Images
Texts

Classification
Regression

One
Easy

✗ ∗

K-depth ✓
Local
Global

Agnostic Tabular Classification One
Easy

✓ ∗

Coalitional ✓
Local
Global

Agnostic Tabular Classification Few
Complex

✓ ∗∗

Table 2.2: Characteristics and limitations of the different methods of attributive local
explanations

Duell et al. (2021). Most works focused only on SHAP and LIME when comparing local
methods. Duell et al. (2021) compared LIME, SHAP and Scoped Rules (Anchors) using
attribute importance ranking. However, they used a single metric with a single prediction
model on a single dataset, which limits the generalisability of their results. In Ferrettini
et al. (2020b), the Coalitional method was compared with LIME and SHAP considering
computation time and accuracy score. Their results showed that their proposal is com-
petitive with the literature. El Shawi et al. (2019) compared six local model-agnostic
explanation techniques using custom quantitative measures on two tabular and two text
datasets. From these experiments, no single method stood out for all metrics and all
datasets. According to the metrics considered, each method has its strengths and weak-
nesses, the choice being dependent on both the user’s goal and dataset content.

One challenge is then to define what is a good explanation and how to show mathe-
matically their relevance. Miller (2019) indicated that evaluating explainability methods
is very subjective and that there was no consensus to propose relevant metrics. Nev-
ertheless, the author summarised criteria for good human-friendly explanations such as
contrastiveness, social adaptation, focus on the abnormal, truthfulness or consistency
with prior beliefs. They presented their work as general guidelines for objectively defining
the relevant explanations. Robnik-Šikonja and Bohanec (2018) also defined properties
for individual explanations to help characterise good explanations, like accuracy, fidelity,
representativity, understandability or consistency. Explanations that comply with these
properties can be seen as correct to the model or the data, trustworthy and easy to under-
stand for the end-users. However, all these characteristics are mainly subjective and not
defined mathematically, and how to measure them is not unmistakable. The definition of
an acceptable explanation can also differ based on the end-user, the application domain,
and the objectives when using explanations, making it difficult to objectively assess the
quality of the explanations (Miller, 2019).

Other papers defined more precise metrics to evaluate explanations and applied them
to use cases. El Shawi et al. (2019) described similarity, bias detection, execution time,
and trust as quantitative measures to evaluate explanations. These metrics are generic as
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the authors aimed to compare different explainability techniques on several tabular and
text datasets. However, only an intuitive description of the metrics is provided, with no
mathematical implementation, making it challenging to reuse them.

As we focus on local additive explainability methods producing one vector of attribute
influences for each instance, quantitative metrics can be used to evaluate and compare
explanations based on their influence vectors, sometimes referred to as attributive-based
metrics. In particular, in Nguyen and Martínez (2020), authors defined monotonicity
and effective complexity to evaluate explanations quality. Monotonicity is particularly
interesting as it assesses the relationship between the values of an explanation and its
expectations. Effective complexity relates to conciseness by estimating the minimum
number of attributes necessary for one explanation.

Robustness is another frequently mentioned metric in the literature, defined as the
capacity of the explanation to be similar when inputs are similar. Several mathematical
formulations of this metric exist, based on how authors determine what similarity means
and how to compute it (Alvarez-Melis and Jaakkola, 2018). These multiple implementa-
tions produce metrics efficient to evaluate each explanation method specifically. However,
it can be confusing to compare measures that have not been calculated in the same way
or to find inconsistent definitions of the same metrics.

Another approach is to compare the evaluated methods to a baseline and measure
the error between the two. This technique compares multiple explainability methods at
once, based on the same metric as long as the methods produce similar outputs (Ferrettini
et al., 2020a,b; Carmichael and Scheirer, 2021). The error is computed as the distance
between the baseline and each method, allowing the use of any existing distance metric
that can be applied to all the methods to be evaluated. Although this approach solves the
problem of finding a metric relevant to all explanations, it raises the problem of defining
a trustable and consensual baseline.

Comparing explainability methods seems to be a problem of its own, as no consensual
methodology exists. Multiple metrics are subjectively defined in the literature, some-
times without mathematical translation (Robnik-Šikonja and Bohanec, 2018; Nauta et al.,
2023). By contrast, some metrics, such as robustness, have several mathematical descrip-
tions, making it difficult to use them optimally. Another challenge also lies in finding
a metric that applies to all the methods to be compared, especially as metrics mainly
measure the explanations themselves and not their usability or practicability. The lack of
unified metrics and the differences between explainability methods mean that only similar
ones can be easily benchmarked, thus increasing the complexity of selecting metrics and
evaluating and comparing explanations (Alvarez-Melis and Jaakkola, 2018; Nauta et al.,
2023; Yeh et al., 2019). Nevertheless, comparisons of the different XML methods are
necessary to assess their performances and the limits of their use. Explainability methods
deserve to be studied to make a reliable assessment of the strengths and weaknesses of
each method and of each approach - local or global, attributive or by example, in partic-
ular. In Chapter 3, Section 3.3, we will focus on evaluating the local attributive methods
in the most exhaustive possible way, based on a large collection of datasets, multiple ML
models and metrics evaluating both explanations quality and practicability.
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2.2 How explanations are used ?
The rise of the local attributive explainability methods previously seen has led to numer-
ous real-life applications, particularly in hospitals and care centres. Using ML capabilities
in healthcare provided an alternative for cost-effective and sustainable healthcare systems
as ML can outperform human analytical thinking (Rao et al., 2022). A specific character-
istic of the medical field is that it is guided by moral principles such as beneficence, respect
for human autonomy, prevention of harm, justice, privacy and transparency, which med-
ical ML must respect. Existing regulations already require safety, robustness, reliability,
privacy, security, transparency, explainability and nondiscrimination properties (Petersen
et al., 2022). This section explores two areas of explanation use: explanations as a final
tool and explanations as new exploration data.

2.2.1 Explanations as a final tool
Decision support tools have then been improved through explainability so that healthcare
staff can understand the decision provided. Antoniadi et al. (2021) retrieved almost one
hundred scientific publications in major conferences and journals about Clinical Decision
Support Systems (CDSS) with XML methods. The authors focused on the context of
XML use in CDSS. They defined that CDSS must be trustworthy, easy to understand and
positively augment the human decision-making process to be effective for practical use.
Explainability is perceived as essential for achieving these objectives, even if scepticism
about these new techniques persists. The challenge remains how to present explanations
in an informative, efficient and clinically meaningful way. In Rao et al. (2022), LIME
and SHAP appeared to be the best way to implement explainability in healthcare as they
are model-agnostic and local, making both model and predictions understandable. In
the medical context, with applications for medical professionals, local explanations match
the need for information about each patient individually. In the literature of SHAP and
LIME applications in healthcare decision support tools, local explainability is also used
with multiple aims more than understanding the prediction for one patient: uncovering
risk factors for one disease and comparing them against the known literature (Barda
et al., 2020; Jiang et al., 2023; Monsarrat et al., 2022), explaining outcomes coherently
by selecting informative explanations (Oh et al., 2021) or defining patient profile sharing
similar characteristics (Excoffier et al., 2022b; Cooper et al., 2021; Lee et al., 2022).
These uses also appeared in medical research, introducing local explainability as a tool
for understanding the model, comparing the explanations with the medical literature and
retrieving potential new information about a disease.

However, providing individual explanations without a more general context seems in-
sufficient to improve the effectiveness of the user’s decision-making. Indeed Weerts et al.
(2019) showed that displaying local explanations along with a prediction for a single in-
stance did not significantly enhance the utility for the user as opposed to prediction alone.
Moreover, Zhang et al. (2020) indicated that local explanations alone slightly decreased
the user understanding compared to showing model prediction alone (as users can misin-
terpret the explanations). Moreover, knowing all the local explanations of a dataset does
not guarantee a complete data understanding since there are as many explanations as
instances in the original raw dataset, with the difficulty of finding explainability patterns
in this new dataset. It may be helpful to provide a broader view to help understand a
particular situation in the dataset, to know whether it is a usual case or a more atypical
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one.

2.2.2 Explanations as new exploration data
With the idea of going one step further than just the explanations provided by explain-
ability methods, explorations of explanations have appeared, centred either on attributes
or instances. The former shows the global effect of a single attribute or the interactions
between at least two attributes on each dataset instance, as done in Barda et al. (2020).
It focuses on attributes of the dataset to understand how the model links the raw data
and the prediction, based on the explanations. It gives a global view of the model under-
standing of the dataset and can help assess explanatory trends for a given population.

With LIME, Ribeiro et al. (2016) also introduced a method for recommending in-
stances from explanations, the Submodular Pick method, called SP-LIME. Based on a
global measure of attribute importance that uses explanations, the instances that best
cover the attributes in the dataset are selected to highlight a set of representative in-
stances, provide global information and help users trust the model and its predictions.
Sangroya et al. (2020) proposed an amelioration of SP-LIME by guiding instance selec-
tion through Formal Concept Analysis. The idea of selecting instances to understand
global behaviour is applied for glaucoma analysis in Kamal et al. (2022). SP-LIME se-
lect four representative instances, one for each different glaucoma severity level. Authors
found that SP-LIME provides trustworthy and understandable results for medical ex-
perts so that clinicians and patients can understand the decision-making process and the
risk-factor characteristics for different glaucoma severity levels.

One limit of these two approaches is the inability to detect groups of instances sharing
common or conversely very different characteristics. That is why the instance-centred
approach can help the user to contextualise a new particular instance explanation with
a larger group. To offer users a global view of explanations, papers have focused on ag-
gregating instances and describing the explanation groups created (Alkhatib et al., 2023;
Excoffier et al., 2022b; Cooper et al., 2021; Lee et al., 2022). Another advantage of this
approach is the ability to suggest a restricted number of instances to analyse as a prior-
ity for end-users. Depending on the selection method used, it would then be possible to
highlight the representative instances with significant explanatory power on one hand and
the principal instances whose behaviour differs from the general behaviour on the other.
These instances could give context to the user to better understand the explanations.

One well-known method for aggregating similar data is clustering. These techniques
create clusters/subgroups of data related to the distance between them. Clusters can help
to find relationships between instances based on their similarities. Based on a COVID-19
dataset, Cooper et al. (2021) tried to identify better clusters based on KernelSHAP values.
Rather than clustering the original dataset, called raw data, they trained a classification
model, computed the KernelSHAP values for each instance and performed DB-SCAN clus-
tering on these influences. They showed better identification of clusters with influences
than raw data and graphically pictured the cluster differences using UMAP, a well-known
reduction dimension technique. With clinical and biological data from COVID-19 hos-
pital patients, Excoffier et al. (2022b) uncovered the COVID-19 typology of patients to
identify those most at risk of aggravation during their hospital stay. ML combined with
Explainability methods was used to highlight the most significant attributes and build an
aggravation risk score. Then, clustering techniques on explanations aggregated patients
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and defined three clusters of patients that appear to be consistent with three distinct risk-
score levels. Instance recommendations based on the medoid of each cluster also allowed
an in-depth study of each subgroup’s characteristics.

These two papers explored the hypothesis of using influences to acquire more knowl-
edge about the data on specific medical examples. However, no article formally evaluated
the contribution of explanation clustering in general. Despite their positive conclusions,
these papers only used a single dataset with a single XML method, without generalising
the approach or comparing findings with other local attributive XML methods.

Another approach for aggregating instances was proposed in Alkhatib et al. (2023) and
used pattern mining methods to create characterisation rules. Association rules mining
was applied to local explanations to define some aggregation of instances through their
shared characteristics. Results showed better results than other methods creating dis-
crimination rules from explanations available in the literature. However, the experiments
did not compare the rules derived from the explanations with the rules from raw data to
assess whether using explanations was beneficial.

At the margin of this thesis, research also exists on the use of explanations in the
context of attribute selection. Multiple papers (Man and Chan, 2021; Verhaeghe et al.,
2023; Xiaomao et al., 2019; Liu et al., 2022) introduced how to use local explanations for
attribute selection, by proposing new framework or methods. Methods were compared
to well-known attribute selection methods like the Mean Decrease Accuracy approach.
Results showed that the explainability methods produced better outcomes for attribute
selection than the methods in the literature.

Finally, with the rise of explainability applications, ML research looked beyond simply
explaining the ML model. Several papers in the last year have covered use cases using
ML explainability for multiple purposes: attribute selection, clustering, and instance
recommendations. Influences are considered like new inputs for finer analysis, either
directly in the ML pipeline with attribute selection or afterwards to gain a more in-depth
and concise understanding of the ML model and the underlying data. In Chapter 4, with
the idea of using explanations as a new data space to explore, we propose a first global
data exploration approach based on clustering and evaluate it with a large collection of
datasets and multiple clustering algorithms.

However, the proliferation of concrete uses for explanations raises the question of
the lack of formal user testing and evaluation of explanations from the point of view of
their use by users. Little to no user testing is also available in the medical field for the
use of explanation, and even less when adding explanation exploration like clustering or
explanation selection.

2.3 Are explanations useful for end-users ?
Among all the articles on explainability via local methods, only a minority belongs to
the user testing category. The main focus is still on creating new approaches, evaluating
them and applying them. Most XML methods are evaluated only through proxy tasks
(i.e. without human implication) with only 22% of XML papers from major conferences
including human user study and 23% of them with application-domain experts -around
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5% of the analysed papers- (Nauta et al., 2023). Even if proxy-task is time and cost-
saving, easier to set up and easily scalable (Doshi-Velez and Kim, 2018), that kind of
evaluation cannot evaluate the pertinence of explanation for users in real applications.
Then, Antoniadi et al. (2021) stated that user tests and studies to understand user needs
were insufficient in the literature, especially in the medical field. To bridge the gap
between XML research and real-world application, Srinivasan and Chander (2020) also
recommended including humans in the loop and adopting user-centred approaches in 4
out of 6 recommendations. The development of adequate real applications requires the
implementation of user experience evaluation to improve the user experience.

XML tests involving humans can be separated into two types (Doshi-Velez and Kim,
2018): application-grounded evaluation and human-grounded evaluation. Application-
grounded evaluation involves domain experts in real-world applications to evaluate if
the XML method works with the end-users for a particular task and prove that the
system delivers on its intended tasks (Antunes et al., 2008). In contrast, human-grounded
evaluations use a simplified task with users who are not necessarily domain experts. This
evaluation is suitable for testing the general quality of explanations with a large pool of
users.

Building a user experience requires several framework elements to be defined according
to the research question so that the study is relevant and appropriate (Nunes and Jannach,
2017; Chromik and Schuessler, 2020):

• What data are collected?: Quantitative, qualitative or both. Quantitative can be
objective metrics like the accuracy of participant prediction, score before or after ex-
position to explanations, the answer time with or without explanations, or subjective
metrics using Likert-scales to assess participants’ opinions about the usefulness of
the explanations, their understanding, their interest, and their acceptance. Qualita-
tive evaluation can be performed with open-response questions, direct or participant
observations, interviews, written documents, and videos.

• How to define groups of users?: a single group, one group with and one group with-
out the subject of study, groups with multiple alternatives. A well-used distinction
is then made with studies between-subjects that evaluate the differences between
groups of participants and within-subjects studies assessing the differences within
participants using multiple alternatives.

• How to evaluate users’ expertise level?: expertise in ML, explainability, of the
dataset; measured by Likert-scale, by the users or by the study supervisor. Exper-
tise level can be significant to evaluate, as experts and novices may have different
preferences regarding the provided explanations, as shown in Ramberg (1996).

Several user experiments were conducted to assess the impact of local post-hoc ex-
planation methods on domain experts. We focus on four human-grounded experiments,
including two in the medical field, summarised in Table 2.3. Weerts et al. (2019) aims
to show if local post-hoc explanations, here SHAP explanations, are helpful for domain
experts to assess the correctness of positive prediction. Experiments were conducted with
159 students with basic knowledge of explainable ML, split into three groups. User tasks
were evaluated through the qualitative analysis of participant written reasoning with and
without explanation and the quantitative analysis of participant performances. Results
showed no significant differences in performances when explanations were available, even
though the explanations influenced the participants’ reasoning. However, some limits
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arise as only SHAP was evaluated among all local post-hoc explainability methods and
the task was a simplified task performed by undergraduate or graduate computer sci-
ence students. The experiment setup does not seem to suit the initial purpose of the
article, which was to assess the impact of the explanations for domain experts. In Jesus
et al. (2021), a payment fraud detection task performed by three domain experts was
used to evaluate and compare three local post-hoc explainability methods, TreeSHAP,
TreeInterpreter and LIME. Tests were performed in three steps, with different access to
information: data only; data and modelling prediction; data, modelling prediction and
explanations. Explanations were displayed after a transformation into natural language,
with the name of the attribute and its original value and a square of colour based on
how they contribute to the fraud risk: green for negative contribution as they lower the
risk score, red for positive contribution increasing the risk. Explanations were not in
their original attribute-contribution/influences form and the value of the contribution was
not mentioned in the user interface. Participants were evaluated through quantitative
objective and subjective metrics on all steps: decision time, participants’ accuracy, re-
call, false positive rate and participants’ perception of explanations usefulness, relevance
and pertinence to faster decision using 5-point Likert scales. Results showed that adding
modelling predictions and explanations significantly reduces the decision time, especially
with TreeInterpreter. Explanations also increased the participant’s agreement over the
same data. However, the participants’ accuracy dropped significantly when the modelling
prediction was added to the data, and neither predictions nor explanations significantly
enhanced the user efficacy. Each explainer was also perceived differently by participants
in terms of relevance, usefulness and diversity. TreeInterpreter was the explainer with
the most positive answer while LIME had significantly worse results than SHAP and
TreeInterpreter when asking if the explainer helped the user review faster. However, the
results were mixed, perhaps due to the limited number of participants, their very high
level of expertise, the distinct data presented to each participant and the presentation of
local explanations without the influence values for each attribute.

In the medical field, Diprose et al. (2020) and Daudt et al. (2021) studied the impact
of explainability with ML risk calculator on domain experts, respectively for pulmonary
embolism and cervical cancer.

In Diprose et al. (2020), 170 physicians completed a survey about their understanding,
explainability and trust in ML outputs, with or without explainability. The authors aimed
to investigate the association between physician understanding of modelling predictions,
their ability to explain the decision to patients and their willingness to trust the modelling
using multiple explainability methods. Physicians were divided into four groups, each
group with the control modelling output without explainability, one of the two global
explainability methods and one of the two local explainability methods. Global meth-
ods were Variable importance and Individual conditional expectation, and local methods
were LIME and Shapley Values. After each output (control with no explainability, global
explainability and local explainability), physicians were asked whether the modelling pre-
diction made sense to them on a 4-point Likert scale, whether they would be able to
explain the decision to their patients (yes/no response) and whether they would follow
the modelling prediction (yes/no response). Results showed a statistically significant re-
lation between physicians’ understanding of modelling output with explainability, their
confidence in explaining to patients and their trust to follow modelling decisions for all
explainability methods. A significantly higher proportion of physicians favoured global or
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local explanations over only the modelling output and no explanations. When compar-
ing explainability methods, physicians significantly preferred local explanations to global
methods thanks to the simplicity of the visualisation, the specificity of the explanation
and the confirmation of clinical knowledge even if it did not influence physician behaviour.
The results may be slightly tempered, however, since 76% of the doctors already found
the prediction of the model to be trustworthy even without explanation. In addition,
the order of outputs was always the same (no explanations, global explanations, local
explanations), possibly favouring local explanations. The high performance of the model
may also positively bias physicians’ confidence in the risk scores. Based on these results
and the differences in experts’ and non-experts’ behaviour, we can hypothesise that the
explanations may be of greater benefit to users who already have some knowledge of data
analysis and/or knowledge in the application domain.

Daudt et al. (2021) aimed to assess the explanations impact on different users, based
on their level or domain of expertise, and their confidence and understanding of modelling
results. They evaluated explanations on two different domains, one critical and one non-
critical, to investigate differences in users’ behaviours and confidence. Users are divided
into three groups: Layman for users that used AI products without being ML experts,
Domain Expert for users that are professionals in the domain from whom data are ex-
tracted (here medical experts), IA Expert for users who design ML algorithms and/or
explainability methods. SHAP, LIME and Permutation Importance were qualitatively
evaluated through questionnaires. Users had to review explanations and also gave their
feedback about the important attributes without seeing explanations. In a critical do-
main, the medical domain, users answered that SHAP and LIME helped them the most
to understand the results, especially AI Experts. LIME helped more than SHAP only
for Layman users. When asked about their preferred methods, Layman and AI Experts
responded LIME while SHAP was selected by Domain Experts. However, all users had
the worst results with LIME when asked about the attributes that most influence the
diagnosis based on explanations and the best results with Permutation Importance. This
last method seems to be the best one for domain experts, while Layman and AI Experts
performed better with SHAP. In comparison, in sports -the non-critical domain studied in
Daudt et al. (2021)-, SHAP showed the best result at helping understand the results, Per-
mutation Importance at determining the most influential attributes and LIME was chosen
as the most helpful method. Only Layman users had different results, by favouring the
Permutation Importance. Users then reacted differently based on their expertise and the
application domain, as already seen in Diprose et al. (2020). The limits of this study lie
in the absence of the full questionnaires to understand how users’ perception is retrieved,
along with information about how explanations are displayed, to counter potential bias
when explainability methods are always shown in the same order, as previously seen.

In addition to the previously mentioned limits, validating explanations with users
can unintentionally combine the evaluation of explanation correctness with evaluating
the correctness of the predictive model. Leavitt and Morcos (2020), therefore, plead for
“clear, specific, testable, and falsifiable hypotheses” that dissociate the evaluation of the
explainability method from the predictive model. The evaluation of explanations via user
tests, as crucial as they are, are not in themselves self-evident, with clear and general
protocols, and several pitfalls can disrupt the creation and implementation of valuable
and optimal tests. The domain, the user level of expertise, and the type of explanations
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seem the first steps to efficient user testing.

Paper Goal Task XML method Users Expertise
Experimental
conditions

Weerts et al. (2019)

Evaluate the XML utility
for the prediction’s

assessment for
domain-experts

Simplified evaluation
of positive prediction

SHAP 159 Students, Basic
XML knowledge

2 groups : predictions
with or without XML

Jesus et al. (2021)

Isolate the impact of
gradually providing

different levels
of information

Payment fraud
detection

TreeSHAP, LIME,
TreeInterpreter

3 Fraud analysts
(domain-experts)

3 steps :
(1) Data Only
(2) Data+ML score
(3) Data+score+XML

Diprose et al. (2020)

Investigate the relation
between prediction

understanding,
ability to explain

decision and ML trust

Health Risk
Calculator

2 globals:
Permutation variable

importance, Individual
conditional expectation

2 locals: Shapley
Values, LIME

170
General

Practitioners
(domain experts)

4 groups: 1 global &
1 local method
(1) Data Only
(2) Data + global
(3) Data + local

Daudt et al. (2021)
Evaluate the explanations
for different types of users

(critic and non-critic domains)

2 tasks :
Cervical cancer,

FIFA Man of
the Match

SHAP, LIME,
Permutation
Importance

49 & 46

3 types:
Layman,

Domain experts,
IA experts

All participants
review the
three methods

Table 2.3: Overview of the user tests reported

2.4 Conclusion
In the field of explainability, the state of the art shows a proliferation of research, in de-
signing new methods, evaluating them, using them and testing them in real-life situations.
This research field is especially relevant as existing regulations and recommendations, and
those currently being drafted, tend to impose transparency on the decisions made by au-
tomatic algorithms, particularly in Europe and in the medical field (European General
Data Protection Regulation4, European AI Act5, Report "The impact of artificial intel-
ligence on the doctor-patient relationship"6, Recommendation "Artificial intelligence in
health care: medical, legal and ethical challenges ahead"7, UNESCO "Recommendation on
the Ethics of Artificial Intelligence"8).

However, several limitations have been raised previously, and this thesis proposes to
address them as follows:

1. On local attributive explainability methods. To the best of our knowledge, the
Coalitional method is the only one other than Shapley values to keep attribute cor-
relations and use smart coalitions to compute explanations. However, this method
depends on a hard-to-setup parameter to select useful coalitions and lacks a de-
tailed evaluation against popular methods such as LIME and SHAP. In Chapter 3,
we propose an upgrade to the Coalitional method to tackle the initialisation param-
eter problem and present results from a complete benchmark of this method against
SHAP, TreeSHAP and LIME. We also provide recommendations on which method
is best to use, depending on the data and the desired precision of the explanations.

4https://eur-lex.europa.eu/eli/reg/2016/679/oj
5https://www.europarl.europa.eu/doceo/document/TA-9-2023-0236_FR.html
6https://www.coe.int/en/web/bioethics/report-impact-of-ai-on-the-doctor-patient-

relationship
7https://pace.coe.int/en/files/28813
8https://unesdoc.unesco.org/ark:/48223/pf0000380455
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2. When using and evaluating explainability, local explanations do not ap-
pear to support user decision-making as much as expected. Moreover,
some research on specific datasets used local explanations for further analysis of
the underlying data with promising results. In Chapter 4, we propose to explore
explanations as a new data space to reveal complex data patterns and better under-
stand both the modelling and the original dataset. We add clustering to a complete
explainability framework and investigate the idea of studying separately instances
well and unwell predicted by the modelling.

3. XML User experimentation shows mixed results mostly due to limita-
tions in the experimental protocol, low number of participants or unclear
hypotheses, especially in the medical domain. User needs and expectations
are also unwell-defined, leading to unsuitable and incomplete user interfaces. In
Chapter 5, we propose an approach to integrate explainability in medical user in-
terfaces to understand the data, their modelling and the predictions. We work on
enhancing the understandability, usability, actionability and tractability of expla-
nations for users. We build a user experiment protocol for healthcare professionals
and students to assess the contribution of explanations and explanations analysis -
clustering and similar patients.
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3.1 Introduction
Limitations of current approximation methods of the Complete method highlighted in
Chapter 2 indicate that potential interactions between attributes must be better taken into
account. Combination of correlated attributes should be avoided as possible to minimise
the complexity, thus computation time, while staying at high accuracy compared to the
Complete method. To this end, Ferrettini et al. (2020b) propose several grouping methods
based on Principal Component Analysis (PCA), Spearman correlation factor (Spearman)
and Variance Inflation Factor (VIF). Reverse methods -based on either Spearman or VIF
grouping methods- that only gather uncorrelated attributes were also developed since
groups only formed of highly correlated attributes contain mostly redundant information.
Explanations through influence for each attribute of the dataset are then computed using
coalitional influence, which takes as parameters the list of groups generated by a grouping
method.

This chapter will provide an in-depth look at coalition methods, followed by our con-
tribution to their improvement in Section 3.2. We will evaluate the coalition methods
against the literature in two steps in Section 3.3: first, against SHAP and Shapley-based
methods and then against more local attributive methods like LIME and variation of
SHAP. Finally, we provide two medical examples of how to interpret and use local ex-
planations and explore local attributive explanation methods hyperparameters in 3.4 and
propose recommendations on the best approach to use, depending on the data and the
desired precision of the explanations in Section 3.5.

The work mentioned in this Chapter has been published in the following articles:
Ferrettini, Escriva, Aligon, Excoffier, and Soulé-Dupuy (2021); Doumard, Aligon, Escriva,
Excoffier, Monsarrat, and Soulé-Dupuy (2022, 2023).

3.2 On optimising the Coalitional methods

3.2.1 The original coalition method
The Coalitional method proposed by Ferrettini et al. (2020a,b) is based on the identifi-
cation of attributes having interactions between them to obtain a grouping, for example
G = {{a1, a3}, {a2, a5, a8}, {a4}...}. With such groupings of attributes, it becomes pos-
sible to consider only the attributes of a subgroup, without having to consider every
possible attribute combination like in the Complete method. It is important to note that
the groups do not necessarily have to be exclusive, which means an attribute ai can be
found in multiple groups of G.

Definition 3.1. Coalitional method
Let G be a pre-computed coalition of attributes, A the set of attributes in the dataset,

ai the i− th attribute, G{ai} the subset of G containing the coalitions of attributes g ∈ G
such as ai ∈ g, ∆ the difference between the expected prediction for x for a combination
of attributes S and the expected prediction in the absence of data, with f̂ the prediction
function of the ML model. The coalitional influence ϕi ∈ ℜ of the attribute i for an
instance x is defined as:

ϕi(x) =
∑

g′⊆g\{ai},g∈G{ai}

|g′|!(|g| − |g′| − 1)!∑
g∈G{ai}

|g|! (∆g′∪{ai}(x)−∆g′(x))
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∆S(x) = f̂S(x)− f̂(∅)

Given the fact that we can set a maximum cardinal c for our subgroups, the complexity
is now, in the worst case, O(2c ∗ m

c
∗ l(m, x)) ≈ O(m ∗ l(m, x)) with m the number of

attributes in the dataset. This method calculates fewer groups than the k-depth method
described in Section 2.1 but tries to make up for it by only grouping the attributes related
to each other. To determine which attributes seem to be related and build the coalitions of
attributes G, several types of coalition strategies are proposed below, based on well-known
correlation calculation and dimension reduction techniques: PCA, VIF and Spearman.

It should also be noted that the following group generation strategies depend only on
the correlation between attributes, expressed as an α-threshold, and not on the ML model
used. It is unnecessary, therefore, to re-generate the groups when switching to another
ML model as opposed to any SHAP-based method that must be completely re-trained
for any new model, even if it only differs from the previous one by a slight change in a
hyperparameter.

3.2.1.1 PCA-based coalition

The main principle of a Principal Component Analysis (PCA) is to reduce a dataset to its
simplest expression in terms of attributes. In other words, if the dataset is considered a
multidimensional matrix, the PCA aims to reduce its dimensionality as much as possible.
To do that, the different attributes of the dataset are combined linearly, the result being a
new set of attributes, each new attribute being a linear combination of the previous ones.

Our reasoning, for this approach, is to consider the set of combined attributes (sum-
marised by the new attribute of the PCA) as a group of influence.

Given a dataset D = (A, X) composed of a set of m attributes A = {a1, ..., an}, and a
set of instances X where x ∈ X, x = {x1, ..., xm} with ∀i ∈ [1..m], xi ∈ ai. We can apply
a PCA which produces a new dataset D′ = (A′, X ′) such as A′ = {a′

1, ..., a′
p} with each

new attribute being a linear composition of the previous attributes: ∀i ∈ [1, ..., p], a′
i ∈

A′, ∃{β1, ..., βm} ∈ Rm, a′
i = β1 ∗ a1 + ... + βm ∗ am.

Given this set of factors β1, ..., βm, for each attribute, we consider each factor as an
evaluation of the importance of the attributes in the group. We can then constitute a
coalition of attributes by exploiting the groups formed by the most important factors.
This gives us the algorithm 1. For the sake of simplicity, we consider each a′ ∈ A′ as a
vector of its βi factors.

3.2.1.2 VIF-based coalition

The Variance Inflation Factor (VIF) is an estimation of the multicollinearity of the at-
tributes of the dataset regarding a given target attribute.

Given a dataset D = (A, X), the VIF value of a ∈ A is calculated by running a
standard linear regression with a as the target for the prediction. Then, given R the
coefficient of determination of the linear regression, we have:

V IF (a) = 1
1−R2 (3.1)

It is commonly accepted that a VIF superior to 10 indicates strong multicollinearity
of the attribute with other attributes of the dataset. This threshold of 10 is arbitrary
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Algorithm 1 PCA-based coalition extraction.
Input: a threshold α and the set of attributes A′ of the PCA
Output: σ a coalition of attributes

1: σ ← {}
2: for all a′ ∈ A′ do ▷ for each attribute generated by the PCA.
3: g ← {} ▷ g, a new possible group
4: βmax ← max(a′ = β1, ..., βm) ▷ find the most important attribute
5: for all βi ∈ a′ do
6: if βi ≥ βmax ∗ (1− α) then
7: add ai to g ▷ the attribute is included in the group if close to the max
8: end if
9: end for

10: add g to σ
11: end for
12: return σ

but considered a standard in numerous publications (Makki, 2019). Moreover, when an
attribute is removed from the dataset, the VIF of the attributes multicollinear with it
decreases. Then, we can automatically detect groups of attributes by calculating the VIF
of each attribute (considered as a target) of the dataset and then comparing them with
a new VIF calculation with an attribute removed. For this purpose, we consider two
possible approaches:

• Considering as a priority the calculation of strongly multicollinear groups of at-
tributes: Those are groups of attributes with a dependency on one another. In the
context of this approach, attributes whose VIF varies strongly when an attribute is
removed from the dataset are considered part of the group.

• Considering as a priority the calculation of weakly or non-multicollinear groups
of attributes: Given the fact that correlated attributes tend to bring the same
information to the model, it may be preferable to prioritise groups for which the
addition or removal of an attribute changes greatly the information brought by the
group.

These two approaches are named VIF coalition and Reverse-VIF coalition, respec-
tively. This gives us the algorithm 2, for the VIF coalition. The Reverse-VIF coalition
can be obtained simply by replacing the condition for adding an attribute to a group
by if newvifs(a′) > oldvifs(a′) × (1 − t × 0.05). This supplementary ratio of 0.05 has
been obtained by preliminary experiments, which showed that just keeping the 1− t fac-
tor led to a generation of all the possible subgroups, which defeated the principle of an
approximation.

3.2.1.3 Spearman-based coalition

A limit of the VIF is the sole consideration of multicollinearity, while a correlation be-
tween attributes might not be linear. This problem is addressed through the Spearman
correlation coefficient, which takes into account non-linear correlations. Spearman be-
ing not multicollinear, the calculation of the correlation between attributes has to be
done by pairs. Thus, the method consists in generating the matrix of all the correlations
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Algorithm 2 VIF-based coalition extraction.
Input: a threshold α, the set of attributes of the dataset A and a function V IF (A)

calculating the array of all the VIF of all the subsets of a set of attributes
Output: σ a coalition of attributes

1: σ ← {}
2: vifs← V IF (A) ▷ calculating the initial VIFs of the attributes
3: for all a ∈ A do
4: g ← {}
5: add a to g
6: new_vifs← V IF (A\a)
7: for all a′ ∈ (A\a) do
8: if new_vifs(a′) < vifs(a′)× (0.4 + α) then
9: add a′ to g

10: end if
11: end for
12: add g to σ
13: end for
14: return σ

of each pair and then deciding which attributes are part of a group. For this method,
we have the same two possibilities as for the VIF method: we can either prioritise the
calculation of strongly correlated attributes or on the contrary, prioritise groups of non-
correlated attributes. These two approaches are named respectively Spearman coalition
and Reverse-Spearman coalition.

Given a dataset D = (A, X), with A = {a1, ..., am} the correlation matrix C is obtained
by computing the Spearman correlation coefficient of each attribute couple: C(1, 2) =
corr(a1, a2). Thus C is symmetrical and has 1 as the value of its whole diagonal. For each
line i of the matrix C, we consider as grouped with ai the attributes strongly (or weakly)
correlated with ai, for the Spearman coalition (or the Reverse-Spearman coalition).

The algorithm 3 details the Spearman Coalitional explanation method. If the most
correlated attribute has a coefficient less than 0.1, a is considered as a singleton thanks
to the condition max(corrmat(a)) > 0.1. The Reverse-Spearman Coalitional explanation
method can be obtained by replacing the condition for adding an attribute to a group
by corrmat(a, a′) < min(corrmat(a))+max(corrmat(a))×αandmin(corrmat(a)) < 0.5.
This adds the least correlated attributes up to a threshold: if the attribute least correlated
to a has its Spearman correlation to a superior to 0.5, we consider the attribute a as a
singleton.

3.2.2 Improvements on the coalition method
In its first version, all Coalitional methods depended on an α-threshold to determine the
size of the attributes coalitions. It is almost the only hyperparameter of the method, other
than choosing the Coalitional strategy. To evaluate the impact of alpha on the results and
performances of the Coalitional methods, we study the size and number of the coalition
groups created, depending on the chosen α and the dataset number of attributes.

Figure 3.1 and 3.2 compare the average number and average size of the groups of
attributes generated by Coalitional methods for several α-thresholds. The average number
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Algorithm 3 Spearman-based coalition extraction.
Input: a threshold α, the set of attributes of the dataset A, and a function spearman(A)

calculating the matrix of all the absolute Spearman correlation coefficient of all the
subsets of a set of attributes. a max and min functions which returns the maximum
and minimum of a matrix line.

Output: σ a coalition of attributes
1: σ ← {}
2: corrmat← spearman(A) ▷ calculating the correlation matrix
3: for all a ∈ A do
4: g ← {}
5: for all a ∈ A do
6: if corrmat(a, a′) > max(corrmat(a)) × (1 − α) and max(corrmat(a)) > 0.1

then
7: add a′ to g
8: end if
9: end for

10: add g to σ
11: end for
12: return σ

of groups varies considerably according to the grouping strategy. PCA strategy produces
more groups than other methods, for all α values, and differences are more visible when
the number of attributes in the dataset increases. The impact of α on the number of
clusters seems also dependent on the grouping method: differences between α = 0.01 and
α = 0.4 are greater with PCA than with Reverse-Spearman for all number of attributes.
Similar behaviours are seen with the size of the groups, with gaps based on the grouping
strategy and the α value. The size of the groups increases proportionally with the number
of attributes with Reverse-Spearman and Reverse-VIF strategies when the size remains
similar with PCA and Spearman strategies. Differences based on the α are also greater
for both Reverse strategies. Globally, Reverse-VIF generates few large groups, whereas
PCA generates many small groups. These differences impact the number of distinct
combinations of attributes taken into account for the explanations computation.

To evaluate the impact of these differences in the creation of coalition groups, we
compute and study the average complexity of the groups of attributes in Figure 3.3. We
define the complexity as the ratio between the number of distinct attribute combinations
for a coalitional strategy and an alpha-threshold and the total number of distinct attribute
combinations, equal to 2M − 1 where M is the number of attributes. We obtain a ratio
between 0 and 1, representing the fraction of all the possible attribute combinations taken
into account to compute explanations. A value close to 1 indicates that the generated
group list is similar to the Complete method. A low value indicates that the group
list is closer to the linear, thus less complex and faster to compute. As expected from
previous results, the PCA method generates on average the fewest distinct coalitions of
attributes for all α-threshold while the Reverse-VIF methods generate the most complex
ones. Changes in α-threshold have a more significant impact on complexity for the Reverse
strategies. When the number of attributes increases, Reverse strategies have a complexity
near half the complete, especially with α-thresholds above 0.2, while PCA and Spearman
have a decreasing complexity due to the low mean size of each attributes group shown in
Figure 3.2.
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Figure 3.1: Mean number of groups for Coalitional methods depending on α-threshold
and number of attributes.

To illustrate this phenomenon, Figure 3.4 displays the evolution of the complexity
for the groups generated by four Coalitional methods for a particular dataset with seven
attributes. The linear complexity is thus equal to 7 while the Complete method one is
27 − 1 = 127. We study the evolution of the number of distinct subgroups, so the com-
plexity, of the coalitions created by each grouping method for α ∈ [0, 1]. There is a clear
difference between the evolution of each grouping method confirming that the α-threshold
can not be set at the same value for all methods. To reach the complexity of the complete,
the α-threshold needs to be set to 0.22 for Reverse-VIF, 0.64 for PCA and 0.85 for both
Spearman strategies. If we focus on the complexity, if one wants a 25%-complexity (i.e. a
number of distinct subgroups equal to 0.25× 127 ≈ 63), the α-threshold for the Reverse
VIF method would be equal to about 0.08, whereas for Spearman it would be about 0.42.

To sum up, the group characterisation for Coalitional methods shows that the groups
differ greatly depending on the α-threshold and the grouping method. This behaviour
can raise a limit when using the Coalitional methods to choose hyper-parameters. It
can also complicate the experimental setup for evaluating and benchmarking the different
Coalitional strategies in appropriate and fair conditions. We improve the Coalitional
methods described in Section 3.2.1 by relying on the proportion of the Complete method
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Figure 3.2: Mean size of groups for Coalitional methods depending on α-threshold and
number of attributes.

complexity rather than the α-threshold. Then, if a short calculation time is required, the
proportion can be set at 10% whereas it can be set at 50% if calculation time is not an
issue and more precise results are needed.

Our approach is based on a dichotomic search to find the most appropriate α value
for the chosen complexity, as described in Algorithm 4.

Originally, the dichotomic search works to find a value in an ordered interval by suc-
cessively dividing the interval into two parts and selecting the interval containing the
searched value. In our case, the two limits of the interval are unknown: depending on the
grouping strategy, α can be any positive number or a number ∈ [0, 1[. Then, we decided
to adapt the dichotomic search by initialising an α value compatible with all grouping
methods and limiting the research to a maximum number of iterations rather than find-
ing the perfect solution. Thus, at each iteration, we compare the wanted complexity to
the complexity with the current threshold and update the α value. As we cannot split
the interval in two as in the original dichotomic search to change the α value, we added
or subtracted half the α value to virtually create intervals for searching for the optimal
α value. We also keep the nearest result in case the algorithm does not find a perfect
solution and the maximum iteration is reached. Indeed, unlike the original dichotomic
search, finding a solution is not guaranteed as the numbers of distinct subgroups, so the
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Figure 3.3: Mean complexity proportion compared to Complete method complexity for
Coalitional methods depending on α-threshold and number of attributes.

possible complexity values, are not a continuous range as we can see in the example in
Figure 3.4. The logic behind it is relatively trivial: Each time an attribute is added to a
group, the number of distinct sub-groups increases according to the number of attributes
already present in the group and if the attribute is already in other coalitions. For exam-
ple, for a dataset containing four attributes {A, B, C, D} and with no possible attribute
redundancy:

• If attribute A is added to group {B}, the number of possible subgroups increases
from 1 to 3: each singleton plus the combination of A and B.

• If the attribute A is added to the group {B, C}, then the number of possible sub-
groups increases from 3 to 7: the subgroups {A}, {A, B} and {A, B, C} are added
to the subgroups already possible.

In our case, as the groups are not exclusive, an attribute can be redundant between
several groups. So identical subgroups may appear several times when all the possible
subgroups are calculated. Continuing with the previous example, with the following coali-
tion: {{A, B}, {A, C, D}}. The group {A, B} gives the subgroups {A}, {B}, {A, B} and
the group {A, C, D} the subgroups {A}, {C}, {D}, {A, C}, {A, D}, {C, D}, {A, C, D}.
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Figure 3.4: Evolution of complexity of Coalitional methods depending on α-threshold.

Group {A} is then redundant in the list of possible subgroups with these coalitions. The
number of distinct subgroups is then equal to 9, not 10, and the complexity as we cal-
culate it is equal to 9/(24 − 1) = 0.6. It may be impossible to achieve a complexity of
10/(24 − 1) = 0.67 using our grouping strategies to compute coalitions. A complexity
equal to 0.6 may then be the nearest, so best, complexity we can have.

Our algorithm for the optimal α-threshold search ends in three configurations, ensuring
that the algorithm ends when an optimal solution is found and that an infinite while loop
does not occur:

• The initialised α is already the optimal solution.

• An optimal α threshold is found during the iterations.

• The maximum iteration is reached, and the nearest solution found is returned.

Finally, our version of the Coalitional methods retains the advantage of building groups
independently of the ML model used.

3.3 On evaluating the Coalitional methods against
the literature

In this section, we evaluate the Coalitional methods in their updated version in two
different experimental setups. First, we compare the optimised Coalitional method against
literature methods based on Shapley values. We benchmark multiple grouping strategies
for three different percentages of complexity and analyse their explanations against the
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Algorithm 4 Searching of the optimal α-threshold based on the complexity percentage.
Input: a complexity percentage p, the set of attributes of the dataset A, a grouping

function grouping, a function count that returns the number of distinct possible
subgroups based on a list of groups, and a number of maximum iteration µ.

Output: the best α threshold found
1: α← 0.5
2: σ ← grouping(A, α)
3: complexity ← 2lenght(A) − 1 ▷ Compute the total complexity
4: n← ceiling(p× complexity) ▷ Compute the wanted complexity
5: n_subgroups← count(σ)
6: n_subgroupsbest ← n_subgroups
7: if n_subgroups = n then ▷ Initial verification
8: return α
9: end if

10: i← 0
11: while i < µ do
12: if n_subgroups < n then
13: α← α + α

2
14: else if n_subgroups > n then
15: α← α− α

2
16: end if
17: σ ← grouping(A, α)
18: n_subgroups← count(σ)
19: if n_subgroups = n then
20: return α
21: end if
22: if |n_subgroups− n| < |n_subgroupsbest − n| then
23: n_subgroupsbest ← n_subgroups
24: αbest ← α ▷ Keep the most optimal solution in memory
25: end if
26: i← i + 1
27: end while
28: return αbest

Complete method (Štrumbelj and Kononenko, 2010), the k-depth method (Ferrettini et al.,
2020a), KernelSHAP (Lundberg and Lee, 2017) and TreeSHAP (Lundberg et al., 2020).
In a second step, we evaluate the most promising Coalitional method with more datasets,
ML models and metrics and added two more literature XML methods to the comparison:
LIME (Ribeiro et al., 2016) and one variation of TreeSHAP.

3.3.1 Against Shapley-based XML methods
In this experiment, published in Ferrettini et al. (2021); Escriva et al. (2022), we aim
to evaluate our improved Coalitional methods against similar XML methods from the
literature, those based on the Shapley-values, especially as SHAP is one of the most-used
explanation methods. We aim to compare them on a large collection of datasets in a
similar setup, explicitly detailed below.

39



3.3. ON EVALUATING THE COALITIONAL METHODS AGAINST THE
LITERATURE 40

3.3.1.1 Experimental protocol

Our tests are realised with the data available on the Openml platform (Vanschoren et al.,
2014). We select the biggest collection of datasets 1 on which classification tasks have been
run. We also consider two classification ML models: Random Forest and Support Vector
Machine (SVM) with the non-linear Radial-Basis-Function (RBF) kernel. Experiments
are conducted using Python 3.7.9 with the Scikit-Learn version 1.0.1 implementation on
both models 2. We use default values for model hyperparameters. Due to the heavy
computational cost of the Complete method -considered the reference of our experiments-
we select the datasets with at most nine attributes.

Thus, a collection of 243 datasets is obtained. Table 3.1 details the number of datasets
and statistics about the number of instances for each number of attributes. We can see
that the number of instances varies greatly depending on the number of attributes in our
collection of datasets. This could impact the comparison of XML methods behaviours
when the number of attributes in the datasets is considered. We would then adapt the
evaluation metrics when required.

# of attributes 1 2 3 4 5 6 7 8 9 All
# of datasets 3 21 44 25 38 26 34 28 24 243
Mean insts # 724 736 1688 560 843 600 456 750 479 760
Median insts # 130 138 475 264 250 229 294 310 281 277
Min insts # 40 27 44 23 38 15 40 34 52 15
Max insts # 2001 5456 10386 5456 7129 3107 4052 4177 1473 10386

Table 3.1: Statistics of the OpenML dataset collection for a given number of attributes.

For each dataset and model, we generate the explanations for each Coalitional method
described in Section 3.2, for each instance of the 243 datasets: PCA Coalitional, Spearman
Coalitional, Reverse-Spearman Coalitional, VIF Coalitional and Reverse-VIF Coalitional.
We also compute the explanations for the following literature methods: the Complete
method for the baseline, K-depth method, KernelSHAP and TreeSHAP. The Coalitional
explanations are generated using the different group generation methods based on a per-
centage of the total complexity of 10%, 25% or 50% (small complexity resulting in less dis-
tinct subgroups, and high values in more subgroups). We generate the possible subgroups
with these three different values of complexity to study the impact on the computation
speed and accuracy of the method.

To compare the different explanation methods, we consider the explanation results as
a vector of attribute influences noted ϕ(x) = [i1, ..., im] with m the number of attributes
in the dataset. Thus, each of the attributes ak is given an influence ik ∈ [0, 1] by the
method ϕ : ∀k ∈ [1..m], ik = ϕak

(x), with x an instance of the dataset. We then define a
difference between two vectors of influences i, j as the Euclidean distance:

D(i, j) =
√√√√ m∑

k=1
(ik − jk)2

Considering this formula, we define an error score based on the difference between an
explanation method and the Complete method.

1Available in https://www.openml.org/s/107/tasks
2https://scikit-learn.org/stable/
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Definition 3.2. Error with regards to the Complete method
With X the instances of a given dataset, n the instances number and m the number

of attributes. Let D(i, j) be the distance metric as defined in Equation 3.3.1.1, ϕ(Xi) be
the influence produced by an explanation method ϕ for a given instance Xi and a given
ML model, and ϕC(Xi) the influence given by the Complete method for the same model
and same instance. We define the mean error of the explanation method as:

err(ϕ, X) = 1
n

n∑
i=1

1
m

D(ϕ(Xi), ϕC(Xi))

We generate the error score of every explanation method, allowing us to compare their
performances across the different collected datasets. Each error score is the distance of
one of the Coalitional methods from the Complete method. Thus, a lesser error indicates
a more precise estimation of the Complete method.

To compare methods, we also consider the time needed to explain a set of data, called
computation time. This includes all the steps of each method to explain all the instances
of the dataset, without optimisation: the time to compute the influences for all the
instances of the dataset, plus the time to determine the coalitions of attributes of interest
in the coalitional and k-depth methods. Since the number of instances impacts the total
computation time for a dataset, each computational time is normalised by dividing by
the number of instances in the dataset to compare times per instance.

All experiments were run on an AMD Ryzen 3700 processor with 8 x 3.6 GHz cores
and 32 GB of RAM.

3.3.1.2 Results

To have an overview of the methods performances, we average the error compared to the
Complete method and the computation time globally, thus independently of the number
of attributes in the datasets. Therefore, it gives us a single representation, called Per-
formance Map, with the computation time normalised by one of the Complete method
on the horizontal axis, and the error for the Complete method on the vertical axis. The
Complete method is thus placed on the point with coordinates (1, 0). All the methods
are then placed above the Complete method and methods placed at the left of the Com-
plete method have lower computation time than the complete, while those placed at the
Complete method right are slower to compute.

First, we compare the Coalitional methods against each other to evaluate their per-
formances on all datasets. Figure 3.5 shows the mean results across the two ML models
- Random Forest and RBF-SVM - of the five grouping strategies for the three percent-
ages of complexity. PCA 50% have the smallest error compared to the Complete method
since it is the method furthest down. It is also the slowest one, with a calculation time
almost equal to that of the Complete method. Reverse-VIF and VIF 10% are the fastest
ones with a time of half the complete, with also the largest error. VIF and Reverse-VIF
perform least well overall, although Reverse-VIF 50% performs as well as Spearman 50%,
Reverse-Spearman 50% and PCA 25%. Based on all percentages, on both ML models,
the best Coalitional methods seem to be PCA and Spearman. PCA is better than Spear-
man for the error metric, but slower. PCA 25% and Spearman 50% have closed results,
meaning that PCA achieve the accuracy of Spearman for lower complexity percentages,
but at the cost of computation time.
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Figure 3.5: Performance maps for the Coalitional methods, mean results on both ML
models.

To study more in-depth the impact of the grouping strategies, we also display the
Performance Map for each ML model and add the k-depth XML method to compare
results. As the number of attributes and instances in a dataset has a strong impact on
the performance, we binary split the collection of datasets. The first part includes datasets
that have relatively few instances (strictly less than 500) or attributes (strictly less than
6), whereas the second one only includes datasets with a higher number of instances (at
least 500) and attributes (at least 6). There are 213 datasets in the first set and 30 in the
second one.

Figure 3.6 shows the results for the Random Forest model for four Coalitional methods
-PCA, Spearman, Reverse Spearman and Reverse VIF as VIF method was excluded based
on the previous results- and the k-depth methods -from linear to Complete method. The
left sub-graph shows the results for the first set containing datasets with few attributes
or instances and the sub-graph on the right indicates results for more complex datasets
as described previously.

As before, Coalitional methods show strong results. PCA 50% have a computation
time equivalent to a 3-depth but have an error close to the 4 or 5-depth for both sets.
Similarly, all Coalitional methods with a complexity of 25% are in terms of computation
time closer to the 2-depth while being as accurate as the 3-depth. This highlights that
Coalitional methods generate smarter groups with less useless or redundant information
than k-depth, thus being more efficient.

Figure 3.7 shows the Performance Maps for the SVM model for both sets of datasets.
Unlike Random Forest, there is a clear difference between the results for the two sets.
For smaller datasets -either in terms of an attribute or instance number- some Coalitional
methods are longer to compute than the Complete one. This is because the time taken
to find the appropriate α-threshold with the bisection method is too large relative to
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Figure 3.6: Performance maps for two sets of datasets for Coalitional methods for Random
Forest.

the global computation time, which also includes training models for explanations and
influences computation for each attribute. In the case of small datasets, the Complete
method seems the best one, as the computation time is not as important as with large
datasets - since its complexity is exponential.

Nevertheless, for larger datasets, the performances of Coalitional methods are satis-
fying. Indeed, in a similar way to Random Forest results, Coalitional methods with a
50%-threshold are mostly faster to compute than 4-depth method for the same error com-
pared to the Complete method -especially PCA which is efficient. Spearman and PCA
with a 25% threshold are very efficient as well, with a computation time between those
of 2-depth and 3-depth while being more accurate than 3-depth.

Based on these three analyses, PCA and Spearman methods seem the most promising
ones to compete against the literature. Figure 3.8 displays the Performance Map of
two coalitional methods, with the k-depth method -from linear to Complete method-,
KernelSHAP and TreeSHAP. Results are the mean ones across both ML models, except
for TreeSHAP which can only be computed on the Random Forest model. The sub-graph
on the left displays the KernelSHAP method, which gives poor results, being slower
than the Complete method and with an accuracy between the 3-depth and the 4-depth.
This method flattens the rest of the graph, thus the sub-graph on the right without
KernelSHAP. This is a major inconvenience since it suggests that interpretability with
models that are not tree-based -then TreeSHAP is unusable- would often be intractable
in practice. Nevertheless, TreeSHAP method is still on average slower to compute than
the complete, despite being specially designed for tree-based models, and the accuracy
is near the KernelSHAP, 3-depth, 4-depth ones. Coalitional methods then out-performed
the SHAP ones in this experiment. These bad results when computing the influences for
all instances seem to be the reason behind the implementation of a Kmeans in the SHAP
library, to summarise the instances when computing influences with SHAP methods 3.

3The documentation of this functionality was set available mid-2020 after the experiments for this

43



3.3. ON EVALUATING THE COALITIONAL METHODS AGAINST THE
LITERATURE 44

Figure 3.7: Performance maps for two sets of datasets for Coalitional methods for SVM.

3.3.2 Against local attributive methods
In this second experiment, published in Doumard et al. (2022, 2023), we aim to benchmark
local XML methods from the literature -LIME, KernelSHAP, TreeSHAP and Coalitional
methods- within the parameters recommended by the documentation on a large collec-
tion of datasets. We want to measure the theoretically well-known limitations of these
methods, discussed in Section 2.1.3. We aim to identify how each method behaves in dif-
ferent ML modelling and data dimensionality setups - both at the instance and attribute
levels - by providing insight into computational time, attribute importance, robustness,
readability and clusterability of explanations. In this thesis, we will focus on comparing
the Coalitional methods with the other local XML methods.

3.3.2.1 Experimental protocol

To compare explanation methods, we apply them to a wide range of 304 datasets avail-
able on OpenML4. Due to computational constraints of explanation methods, we only
considered datasets with at most 13 attributes and a maximum of 10 000 instances. We
also only considered classification tasks to use comparable predictive models and metrics.
We describe the amount and size of datasets per number of attributes in Table 3.2. We
can see that the number of instances varies greatly. This could impact XML methods’ be-
haviours, so the comparison, when the number of instances and attributes in the datasets
is considered.

For modelling these data, we choose four widely used types of ML models for classifi-
cation: Logistic Regression (LR), Support Vector Machines (SVM), Random Forests (RF)
and Gradient Boosted Machines (GBM). For the first three models, we use the Python
library scikit-learn version 1.0.1. For GBM, we use the Python library XGBoost version

article was done. Moreover, no paper was found on the reliability of using Kmeans to optimise the
computational time of SHAP.

4www.openml.org
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Figure 3.8: Performance maps of two coalitional methods, k-depth method, KernelSHAP
and TreeSHAP.

1.5. We use default values for model hyperparameters. For explanation methods, we use
Python libraries shap 0.40 and lime 0.2.0.1.

To explain the prediction of these models, we select four different explainability meth-
ods, described in Section 2.1.3, not including the Complete method used as a reference.
In particular, we use one coalitional-based method: the Spearman method with a com-
plexity threshold of 25%. Regarding SHAP, we use the model-agnostic KernelSHAP on
all datasets. As this method is slow to execute if we use the whole dataset as back-
ground samples for permutations, we choose to follow SHAP recommendation5 by doing
a K-Means clustering on the input dataset and then taking the centroids as background
samples. We choose K = 10 clusters for each dataset. In addition, for the two tree-based
predictive models XGBoost and Random Forests, we use the model-specific method Tree-
SHAP by two implementations. The first one determines SHAP values with background
samples, similar to KernelSHAP but optimised for tree-based methods. We use the whole
dataset as background samples for this method. The second one approximates SHAP
values by considering the trees structures and does not need background samples in in-
put. We name it TreeSHAPapprox. Last, we consider LIME, which requires a number of
perturbed samples to be created to explain each instance. We choose to set this number
to 100 samples for all datasets.

All experiments were run on an Intel Xeon Gold 6230 processor with 125 GB of RAM
using Python 3.9.7. All runs are performed on a single CPU core for optimisation and
replicability.

To evaluate the performances of explanation methods and compare them over a wide
range of datasets, we use six different metrics that only consider the influence values
computed by each explainability method. In all the following definitions, let X be a given
dataset with n instances and m attributes, and ϕ an explanation method that can be
applied to each instance of the dataset given an ML model (that we omit for conciseness).

5KernelSHAP documentation includes a recommendation to use K-Means algorithm to
speed up computation time https://shap-lrjball.readthedocs.io/en/latest/generated/shap.
KernelExplainer.html
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Number of
Attributes

Number of
Datasets

Number of instances
Min Max Mean

1 5 130 9100 3079
2 21 52 5456 901
3 43 60 9989 1729
4 23 96 8641 1016
5 35 62 7129 941
6 27 51 9517 949
7 33 54 4052 499
8 32 52 8192 1473
9 23 52 1473 484

10 37 57 5473 712
11 8 66 4898 942
12 12 123 8192 1175
13 5 178 506 293

All datasets 304 51 9989 1035

Table 3.2: Description of the collection of OpenML datasets used for experiments.

Computation time The first metric is the time needed for a given method to compute
the local influences for the whole dataset, divided by the dataset number of instances.
This includes all the steps in each method: the time to initialise the method, compute the
influences for all the instances of the dataset and determine the coalitions of attributes of
interest in the Coalitional method. Since the number of instances impacts the total time
for a dataset, each computational time is normalised by dividing the time by the number
of instances in the dataset to compare times per instance.

Error The second one is a quantification of the average deviation of the influence given
by a method from the Complete method. It is the same error metric as in 3.3.1, defined
in Definition 3.2.

Area Under Curve The third metric is inspired by the principle of effective complex-
ity defined in Nguyen and Martínez (2020). However, it benefits from the absence of any
parameter. It evaluates the conciseness of an explanation given the distribution of at-
tribute importance. Attribute importance - the mean absolute value of influence assigned
to instances for a given attribute- is ranked in decreasing order and then the cumulative
sum is calculated. For example, in a dataset with 2 attributes, if a method gives 80% of
the importance to the most important attribute (and so 20% to the second), it would have
a cumulative importance proportion vector of 0, 0.8, 1. We can then define the normalised
Area Under Curve (AUC) as:

Definition 3.3. Area under the cumulative attribute importance curve
Let C ∈ [0; 1]m+1 be the cumulative importance proportion vector given by an expla-

nation method over a dataset, with Ci the total importance proportion taken by the i-th
most important attributes and m the number of attributes. We define the area under the
cumulative attribute importance curve as:

AUC(X) = 1
m

m−1∑
i=0

Ci + Ci+1

2
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This metric shows whether an explanation method favours the attribution of great
importance to a few attributes or, on the contrary, a more homogeneous distribution
among a larger number of attributes. As this cumulative sum is sorted by decreasing
value, this value is bound between 0.5 and 1. A value of 0.5 means that the explanation
method gives the same importance to all attributes while a value of 1 means that the
explanation method gives non-zero influences only to a single attribute, explaining the
model predictions with a single attribute.

Robustness The fourth metric is a measure of the robustness of the method. A method
is robust if similar instances lead to similar explanations. Formalised in Alvarez-Melis and
Jaakkola (2018), we use the discrete version of the local Lipschitz estimation.

Definition 3.4. Robustness (local Lipschitz estimation)
Let Nϵ(Xi) = {Xj ∈ X|∥Xi − Xj∥ ≤ ϵ} be the ϵ-neighbourhood of the instance Xi,

with ϕ(Xi) the explanation vector associated to the instance Xi.

L̃X(Xi) = max
Xj∈Nϵ(Xi)≤ϵ

∥ϕ(Xi)− ϕ(Xj)∥2

∥Xi −Xj∥

A high value of L̃X(Xi) means that the explanation method is not robust for the
instance Xi over the dataset X, and a low value means that the explanation is robust for
the instance Xi over the dataset X. We average this value over all instances of a dataset
to get the value of the metric for a method for a dataset.

Readability The fifth metric is the global explanation readability. It is inspired by the
monotonicity metric defined in Nguyen and Martínez (2020), but rather than looking at
the correlation between the absolute values of the attributions and the expectations -that
we cannot compute-, we look at the correlation between the data values and the influences
for an attribute. Even if the explanations are calculated for each instance, we want these
explanations to make sense when comparing one to another. To evaluate that, we look at
the relationship between the value of an attribute, and the value of the explanation for
this attribute, for all instances using the Spearman correlation coefficient r.

Definition 3.5. Readability
Let A be the set of attributes in the dataset, m the number of attributes, ai ∈ Rn be the

i-th attribute, ϕ(ai) ∈ Rn the explanation vector for the attribute ai on all the instances
and r(i, j) the Spearman correlation coefficient of two vectors of equal size. We define the
readability of an explanation method over a dataset as:

R(A) = 1
m

m∑
i=1
|r(ai, ϕ(ai))|

In Figure 3.9, we show a visual example of what we consider readable or unreadable
according to our definition.
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(a) Readable explanation (b) Unreadable explanation

Figure 3.9: Examples of readable and unreadable explanations. Each dot corresponds
to an instance. On the compact representation (right of each sub-figure), the colour
represents the attribute value in the dataset.

Clusterability The sixth and last metric measures the pairwise attribute interaction
as captured by the explanations. To do that, for each pair of attributes within a global
explanation, we use a clustering method to create a partition of the explanation of all
instances for the pair of attributes, and then evaluate the quality of the clustering created
this way. We average this value over all pairs of attributes and name this metric (2-
dimensional)-clusterability:

Definition 3.6. Clusterability
Let ϕ(ai) ∈ Rn the explanation of each instance for the i-th attribute, m the number

of attributes, K a clustering function, and S an evaluation function for a clustering. We
define clusterability as:

Cl(X) = 2
m ∗ (m− 1)

∑
i,j∈[1,...,m]

i ̸=j

S(K(ϕ(ai), ϕ(aj)))

A high clusterability score means that the explanation method draws relationships
between pairs of attributes for their joined contribution to the predictions. For our ex-
periments, we use K-Means as the clustering method and the Silhouette score as the
clustering quality measure.

3.3.2.2 Results

In this section, following the methodology previously described, we present the results
in two ways. To begin with, we aim to compare the four additive methods with one
another, focusing on the Coalitional method. Then, with a similar methodology, we want
to identify the impact of the predictive model on specific explanation methods and show
if the behaviour of the Coalitional method differs from the other methods.

Supplementary data referenced through the rest of the section are available on Github6.
Note that the approximate version of TreeSHAP is not shown for the Error and Robustness
metrics because its implementation forces its SHAP values to be in log odds instead of
probabilities, making it impossible to compare to other methods as we cannot compute
distances.

6https://github.com/EmmanuelDoumard/local_explanation_comparative_study
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Additive method comparison
Computation time We show in Figure 3.10 the evolution of the computation time

of each method for each predictive model, averaged over datasets that share the same
number of attributes. Error bars are also displayed for each mean time value. LIME,
having a linear complexity with the number of attributes, is computationally expensive
compared to other methods in low dimension (few attributes) but is less expensive than
Coalitional-based methods and KernelSHAP in higher dimensions. LIME also seems to
have very low inter-dataset time variability, resulting in smaller error bars on the graph.
Spearman and Complete methods show an exponential complexity with the number of
attributes, having high execution time in high dimensions, but they have a similar execu-
tion time with other methods in low dimensions. Spearman method execution time seems
naturally correlated to the Complete method execution time, taking a fraction of the time
(roughly 25%) of the Complete method. KernelSHAP, despite a limitation on the number
of background samples, have a high execution time in high dimensions, comparable to
Spearman and Complete methods for non-tree-based methods. For tree-based methods,
KernelSHAP is slower in low dimensions, but faster in high dimensions than Spearman
and Complete methods. Last, both TreeSHAP methods seem to have constant execu-
tion time per instance no matter the number of attributes, despite TreeSHAP having the
greater variability of all XML methods. The approximate tree path-dependent version of
TreeSHAP has the lowest execution time per instance.

Figure 3.10: Execution time of each method per instance, averaged by number of at-
tributes, for each model

Error Regarding the error, Figure 3.11 shows the average absolute difference in influ-
ence between each method and the Complete method (reference). First, we can see that
overall, the more attributes there are in a dataset, the closest (measured by the second
metric) the influences are to the Complete method. This is probably because usually, the
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more attributes there are, the less influence amplitude each attribute has in the prediction.
We also note that methods are ranked the same way over all the models. In low dimension
(less than six attributes), KernelSHAP is the closest to the Complete method, followed
by Spearman, while LIME is the farthest. In higher dimensions, Spearman becomes more
precise than KernelSHAP. TreeSHAP (both the approximate and the data-dependent
version) is more precise than KernelSHAP, but still less precise than Spearman in high
dimensions.

Figure 3.11: Mean absolute difference of each method with the Complete, averaged by
number of attributes, for each model

AUC We show in Figure 3.12a the graphical representation of an example of the cumu-
lative attribute importance proportion. The figure shows the averaging of the cumulative
importance proportion of the most important attributes for the 37 datasets having ten
attributes. This way, for each predictive model and each method, we obtain a curve from
which we compute the third metric: the AUC of the curve. We see in the figure that some
methods present steeper curves than others. For example, with Logistic Regression and
SVM, LIME gives less proportion of the total importance to the few first most-important
attributes, compared to coalitional-based and SHAP methods. For tree-based models,
we see that SHAP, no matter the method, gives much more importance to the first few
most important attributes than LIME, the Complete or Coalitional methods. Finally,
Spearman Coalitional and Complete methods have close results, almost indistinguishable.
According to the method for computing AUC illustrated in Figure 3.12a, we represent
the average values of AUC for datasets from 2 to 13 attributes for each ML model and
explanation method in Figure 3.12b. For all models, we can see that SHAP methods tend
to produce influences with a higher AUC compared to other methods. This means that
SHAP methods tend to assign most of the attribute importance to fewer most important
attributes, while other methods tend to distribute the attribute importance more uni-
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formly over all attributes. Spearman Coalitional and Complete methods seem to generate
similar AUCs for attribute importance. Finally, LIME tends to produce influences with
lower AUCs for non-tree-based methods, while it produces AUCs closer to the Spearman
Coalitional method for tree-based methods.

(a) Example of AUC for datasets with ten at-
tributes

(b) Average AUC for all datasets

Figure 3.12: (a) Most-important attributes cumulative importance proportion by method,
for each model, for datasets with ten attributes. (b) AUC of each method, averaged by
the number of attributes, for each model

Robustness Regarding robustness, we show in Figure 3.13 the local Lipschitz esti-
mates for each model, grouped by method. We used the formula 3.4 with ϵ = 0.3. We
show in supplementary data that different values of ϵ did not change the relative order of
results. Overall, the explanation method does not impact the robustness so much, except
for LIME with the Logistic Regression and SVM models, for which the method is far less
robust. We can also see that the Spearman Coalitional method is slightly less robust than
the Complete method and SHAP methods, the TreeSHAP method being the most robust.

Readability Figure 3.14, similarly, represents the readability for each model, grouped
by method. The explanation method does not impact so much readability. The Complete
and Spearman Coalitional methods have a slightly lower readability than the other ones.
It means that the link between an attribute and its explanations tends to be less obvious
with these methods than with the others. This is possibly due to the coalitional nature of
these methods: by focusing on coalitions, these methods are often able to capture complex
interactions between multiple attributes, meaning that the marginal contribution of an
attribute is too complex to be explained only by the attribute value. Conversely, since the
attributes are considered independent by the SHAP and LIME methods, some attributes
can concentrate the contribution to a prediction and virtually erase the contribution of
the attributes to which they were initially correlated.

Clusterability Finally, we show in Figure 3.15 the two-dimensional clusterability of
the methods applied to each model. We can see that LIME has significantly lower clus-
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Figure 3.13: Local Lipschitz estimate for each model, grouped by method. Each box
represents the results aggregated for all datasets. The white dot represents the mean
value. Due to far outliers, we cropped the plot at L̃X(X) = 4

Figure 3.14: Readability for each model, grouped by method. Each box represents the
results aggregated for all datasets. The white dot represents the mean value.

terability than the other methods, which have similar clusterability. It means that LIME
tends to capture fewer interactions between pairs of attributes by groups of instances.
This may be due to the discretisation imposed by LIME on each attribute independently
of the others.

Machine Learning model explanations comparison
Computation time We show in Figure 3.16 the computational time per instance

needed to compute the explanations of each predictive model for each explanation method.
We can see that LIME execution time has almost no inter-model variability: the compu-
tation time per instance is the same no matter the model. For the other methods, the
ranking of the method computational performances according to the model is roughly the
same, from slowest to fastest: Random Forests, XGBoost, SVM and Logistic Regression.
SVM has overall higher variability, presenting steeper curves and higher error bars. SVM
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Figure 3.15: Clusterability for each model, grouped by method. Each box represents the
results aggregated for all datasets. The white dot represents the mean value.

even presents outlying results when applied to KernelSHAP in higher dimensions. Over-
all, we do not observe any specific behaviour in terms of calculation time depending on the
model used, except for TreeSHAPapprox where Random Forests are faster to compute.
This may be related to the fact that TreeSHAPapprox only considers tree structures, as
Random Forests tree structures are simpler than XGBoost ones. Spearman Coalitional
method has a similar behaviour as the Complete method. In general, the faster a model
is to train and predict values and the simpler it is, the faster the explanations are to
compute, no matter the method.

Error We present in Figure 3.17 the error for each method for each model. The figure
does not present the results for TreeSHAPapprox because the only relevant model for this
method is Random Forests, there is no other model to compare the results with. For
the three model-agnostic methods (LIME, KernelSHAP and Spearman Coalitional), the
Logistic Regression and SVM models generate the most precise explanations compared
to the Complete method on the same models. We can see that the explanations based
on Logistic Regression are usually more precise than the SVM ones, especially in low
dimensions. XGBoost explanations are less precise than Random Forest ones, except for
the Spearman Coalitional method (similar results are observed). Overall, it seems that
the simpler the model, the more precise it is in regards to the Complete method.

AUC Regarding the AUC, we present all the results in Figure 3.18. We observe that
for LIME and KernelSHAP, there is no significant difference between the AUC of the
model explanations. However, for the Spearman Coalitional and Complete methods, we
can see a clear separation between tree-based methods and non-tree-based methods: the
latter have higher AUC than the others. When using Spearman Coalitional and Complete
methods, this means that one should be aware that different models may yield different
importance distributions over the attributes. For the tree-specific methods, we can see
that XGBoost generates explanations with slightly higher AUCs than Random Forests on
average.

Regarding robustness, readability, and clusterability, we use the same graphs presented
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Figure 3.16: Execution time of each model per instance, averaged by the number of
attributes, for each method

in the previous part to analyse the impact of the model on the explanations regarding
these three metrics.

Robustness We look at Figure 3.13 to compare the robustness of the methods ap-
plied to each model. We confirm that, except for LIME, the Logistic Regression and SVM
models produce much more robust explanations than the Random Forests and XGBoost
models for all XML methods. This is probably tied to the complexity of the models. On
one hand, a more complex model is usually harder to explain even for model-agnostic
explanation methods, and on the other hand, a more complex model leads to highly non-
linear functions, meaning that instances that are close to each other may have different
predictions and therefore, different explanations.

Readability For readability, Figure 3.14 shows that the explanations made on the
Logistic Regression model are much more readable than the ones on the other models.
Explanations made on the SVM model fall between the Logistic Regression and the tree-
based models in terms of readability for most explanation methods. This is probably
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Figure 3.17: Mean absolute difference of each method with the Complete, averaged by
number of attributes, for each model

because simpler models tend to draw relationships between individual attributes and the
output without necessarily considering the interaction between attributes, producing ex-
planations that can be read attribute by attribute.

Clusterability Finally, we look at the clusterability of the explanation applied to the
ML models by looking at Figure 3.15. We can see that all models have similar cluster-
ability between them. This may indicate that the model is not important in determining
particular sub-populations of explanations by pairs of attributes, or that it depends more
on the considered dataset than on the model.

3.4 Medical examples and exploration of explanation
methods’ hyperparameters

In this section, we provide two medical examples with two different objectives. First, an
example of how to use and interpret explanations with a dataset on the COVID-19 disease
published in Ferrettini et al. (2021). Then, an exploration of local attributive explanation
methods hyperparameters and behaviours on the SA-Heart dataset, published in Doumard
et al. (2023). Our global objective is to focus on specific examples that a user could face
while analysing their data and building or using explainability tools.

3.4.1 Medical Example: Covid-19 dataset
In this example, we show one use of our Coalitional methods on a real use case dataset
and for specific instances from this dataset. We explore what exploring explanations
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Figure 3.18: AUC of each model, averaged by number of attributes, for each method

could mean for medical professionals. We also include the most used explanation method,
KernelSHAP, for comparison.

As seen in Section 2.1, the quality of an explainability method is a subjective concept
and it would be difficult to theorise measures to assess what constitutes good explainabil-
ity. Nevertheless, some criteria exist in the literature to evaluate individual explanations
(Robnik-Šikonja and Bohanec, 2018). Properties such as fidelity and comprehensibility
can help non-experts to evaluate and compare individual explanations, thus explanation
methods. Fidelity represents the ability of an explanation to approximate the prediction of
the "closed-box" model and comprehensibility evaluates the ability of users to understand
the explanations.

The use case dataset concerns the SARS-COV2 - also called COVID-19 - epidemic
outbreak in France during the 2020 Spring. Data collection complied with the European
GDPR rules and consists of anonymised medical information of 409 patients with Covid-
19 virus hospitalised at the Centre Hospitalier Intercommunal de Créteil 7 between March

7The use-case dataset was acquired in collaboration with the Centre Hospitalier Intercommunal de
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and May 2020. The primary binary outcome consists of the deterioration of the patient’s
state of health during their stay, also called aggravation. Deterioration was defined as the
occurrence of septic shock or acute respiratory distress syndrome, the need for mechanical
ventilation or resuscitation during hospitalisation, or in-hospital mortality. Out of the 409
patients, 176 of them had a deterioration in their health state, i.e. 43% of the data set.
Each patient profile is established upon the patient’s arrival at the hospital. Available
information consists of 10 attributes such as basic characteristics (age and gender), exam
results of Chest Computed-Tomography (CT) scan severity, and comorbidities like cancer,
type-2 diabetes, obesity, intellectual disability, and cardiovascular disease. For this use
case, a Random Forest model and the Spearman Coalitional method with a complexity
threshold of 25% are used. The model has an accuracy of 74% with an 80% precision and
a 69% recall.

Figure 3.19 and 3.20 give the average absolute influence of each attribute, with or
without taking into account the class predicted by the model, for the Spearman Coalitional
25% and KernelSHAP method respectively. Age and Chest scan severity are the two
most important attributes for both methods, with Chest scan severity having a greater
impact on aggravation class. This shows a coherence between the medical reality and both
explanation methods. Indeed, a high Chest scan severity is strongly associated with an
aggravation of the health state as shown in Francone et al. (2020). Both methods also have
different results for other attributes, such as cardiovascular disease, cancer and mental
disability that have on average almost no impact with KernelSHAP and all attributes have
on average a higher influence with the Spearman Coalitional method. Taking into account
classes, the average influences for both classes are relatively similar using KernelSHAP,
except for the age and severity of the chest CT scan. With the Spearman Coalitional
method, the average influences of ageusia anosmia, diabetes and insulin treatment are
dissimilar. For older patients with high chest scanner severity, type-2 diabetes, insulin
treatment, or ageusia anosmia, the model is likely to predict a higher risk of deterioration
with Spearman Coalitional since the average absolute influence of these attributes is higher
for the aggravation class.

All these behaviours from our model are coherent with the clinical literature about
COVID-19 (Zheng et al., 2020). In contrast, with the KernelSHAP method, the near-zero
average influences for some attributes are inconsistent with known risk factors.

Figure 3.19: Mean absolute influence for each attribute with Spearman Coalitional 25%
method. (left) for both classes, (right) for each class separately.

Créteil. Therefore, we greatly acknowledge the managers and physicians involved in this project. https:
//www.chicreteil.fr/
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Figure 3.20: Mean absolute influence for each attribute with KernelSHAP method. (left)
for both classes, (right) for each class separately.

Another important point of the explanations is the fidelity and ease of understanding
and interpreting them. Although very subjective, these parameters are essential to take
into account in the medical field, since a lack of fidelity to the model and understanding
of the explanations can lead to wrong decision-making and consequences for the health
of patients. To evaluate this, one instance of each class from the Covid-19 dataset was
randomly drawn to describe and evaluate the explanation of the KernelSHAP and the
Spearman Coalitional method. Figures 3.21 and 3.22 show the influence of each attribute
for these patients, whose descriptions are given below. Patient A is a 54-year-old obese
person with no clinical signs of infection in their chest CT scan. This patient also has
insulin treatment and signs of ageusia or anosmia. The two methods find that the value
of Chest CT scan severity and age for this patient contributes the most to the prediction
of non-aggravation while their gender, their symptoms of anosmia and ageusia, their
obesity and their insulin treatment go against the prediction. The explanations allow
us to understand that this patient has many risk factors and that the non-aggravation
prediction comes mainly from the absence of severity of the chest CT scan and the patient’s
age. However, for the KernelSHAP method, the absence of cardiovascular disease goes
against non-aggravation prediction while it contributes to the prediction for the Spearman
Coalitional method. This seems contrary to medical knowledge about COVID-19 (Zheng
et al., 2020) since cardiovascular disease is a risk factor. The absence of disease should
therefore be in favour of a non-aggravation of the patient’s state of health.

Figure 3.21: Influences of patient A with KernelSHAP and Spearman Coalitional 25%.

Patient B is a 76-year-old person with type-2 diabetes, insulin treatment, and ageusia
anosmia. The severity of their chest CT scan is 4 out of 4 which is a critical value. For
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KernelSHAP method, the chest scan severity is way more important than other attributes
in the prediction. For Spearman Coalitional method, even if the severity of the chest
CT scan is significant, the presence of insulin treatment, the patient’s gender and age
are important. The absence of cancer, cardiovascular disease, intellectual disability, and
obesity goes against the prediction, while there is no impact with KernelSHAP method.
Spearman Coalitional explanations are slightly more contrasted than KernelSHAP ones.

For this use case, the two methods are easy to understand as they are based on the
same additive strategy. For both methods and both examples, influences approximate
closely model predictions and therefore have a high fidelity. However, this fidelity is only
local, as methods only explain individual instances. Moreover, based on the clinical liter-
ature about COVID-19 (Zheng et al., 2020), the explanations from Spearman Coalitional
method seem more consistent for comorbidities. Finally, the Complete method dataset
was computed in 51 seconds with the Spearman Coalitional method when it took more
than 18 minutes for the KernelSHAP method, for similar results.

Figure 3.22: Influences of patient B with KernelSHAP and Spearman Coalitional 25%.

3.4.2 Medical Example: SA-Heart dataset
SA-Heart is a dataset extracted from a larger database of South Africans detailed in a 1983
study (Rossouw et al., 1983). The extracted dataset is a retrospective sample of males in a
heart-disease high-risk region of the Western Cape, South Africa. The dataset is composed
of 462 individuals for 10 attributes. The main objective is to predict the binary target
attribute ’CHD’, a coronary heart disease, according to 9 explanatory factors: tobacco
(cumulative consumption tobacco), age (at the onset), LDL (low-density lipoprotein
cholesterol), adiposity (estimation of the body fat percentage), obesity (through the
body mass index), family (family history of heart disease, present or absent), alcohol
(current alcohol consumption), SBP (systolic blood pressure) and type-A (Type-A be-
haviour scale). After model training, the different explanatory profiles obtained between
the different methods of explanation are compared. By considering a reflection on the
end-user side, the health care practitioners, explanatory profiles should be used 1) at the
population level (global explanations), for example, to highlight high-risk patient profiles,
develop new prevention programs, develop new physio-pathological hypotheses but also
2) at the instance level (local explanations), for personalised medicine.

For conciseness, we limit the analysis to a single Machine-Learning model. We choose
Random Forests, as every explanation method that we consider applies to it. We present
the results with SVM, Logistic Regression and XGBoost models in supplementary data.
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In Table 3.3, we show the values of each metric on the SA-Heart dataset. To enforce
the robustness of the results, we calculated the explanations 10 times for each method and
averaged the metrics. TreeSHAP looks promising, giving the best score in AUC, Robust-
ness and Clusterability while maintaining correct performances in Computation Time,
Error and Robustness. Confirming trends seen in the previous section, Spearman Coali-
tional is the most precise method compared to the Complete method, the approximate
version of TreeSHAP is the fastest, and LIME produce the most readable explanations.

LIME Complete Spearman KernelSHAP TreeSHAP TreeSHAPapprox
Time per instance 0.062 0.141 0.036 0.061 0.011 <0.001
Error 0.046 0.000 0.026 0.034 0.029 0.033
AUC 0.604 0.560 0.550 0.623 0.625 0.614
Readability 0.686 0.499 0.427 0.679 0.652 0.621
Robustness 0.116 0.099 0.146 0.086 0.080 0.095
Clusterability 0.460 0.485 0.506 0.521 0.522 0.520

Table 3.3: Metrics applied to explanations of Random Forests on SA-Heart

To compare the explanations of the different additive methods, we look at global
explanations given by each method. We use SHAP-like representations to visualise global
explanations by aggregating local explanations on the same representation. This way,
we build different figures. The first one, in Figure 3.23, represents a global explanation
of the predictive model, given by each explanation method, by plotting the explanation
profile of each attribute on a separate line. For each method, the attributes are sorted
in decreasing attribute importance, the top one being the most contributing attribute on
average, while the bottom one being the least contributing attribute on average. For each
attribute, each dot represents an individual from the dataset, its colour representing the
value of the associated attribute. Its position on the x-axis represents the contribution of
the attribute to the prediction of this individual, and overlapping dots are spread on the
y-axis.

Figure 3.23: Summary plots of each method on the SA-Heart dataset

We can see that most of the attributes have similar ranking among the different meth-
ods: tobacco and age are the two most important attributes except for the Spearman
Coalitional method which ranks age 5th. On the opposite side, alcohol, SBP, and type-A
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are always in the 4 least important attributes. These attributes have also similar ex-
planation profiles. Conversely, some other attributes exhibit more marked differences
depending on the methods. The most important difference is observed in the binary at-
tribute family history of heart disease. This attribute is assigned fairly low importance by
the coalitional-based method, relatively high importance (3rd most important attribute)
by SHAP methods, and very high importance by LIME (most important attribute).
Obesity and adiposity have also different influences depending on the method: obesity
is ranked second least contributing by LIME and SHAP, but more important by the
coalitional-based methods. It is important to note that obesity and adiposity are highly
correlated (Spearman correlation r=0.72). We hypothesise that it may be the reason for
such differences. Overall, the three SHAP methods give similar explanations and have
almost identical rankings of the attributes. From a global perspective, we can also see
that SHAP and LIME present a more homogeneous "gradient" of colours for the expla-
nations, whereas coalitional-based methods present mixed-up colours in the explanations.
This means that LIME and SHAP explanations are more locally monotonic, in the sense
that the influence value of an attribute for an individual is more locally correlated to the
value of the attribute for LIME and SHAP than it is for coalitional-based methods. This
also illustrates well the values of readability seen in Table 3.3.

The second visualisation that we present is Partial Dependence Plots (PDP). PDPs
focus on the relationship between an attribute and the influence of this attribute on
the model prediction by plotting each pair of attributes and influence values on a 2-
dimensional axis. We compare the PDPs of several important attributes in Figure 3.24.

Looking at the PDPs for the age attribute, we show that LIME seems to form clusters
of points around specific cut-off age values. To a lesser extent, this phenomenon can also
be seen in the other SHAP methods. Conversely, coalitional-based methods have similar
PDPs and do not seem to find such cut-offs. However, it seems to be a special behaviour
of the explanation at specific ages. For example, subjects around 50 years have a marked
lower contribution of this attribute to the prediction of the presence of coronary heart
disease than people even slightly younger or older. This may hint at an over-fitting of
the ML model that would not have been captured by the other explanation methods.
The explanation of the tobacco attribute also largely differs among explanation methods.
Where all the methods agree on attributing a low value to non-smoking individuals, the
evolution of the contribution varies with the quantity of tobacco. Once again, LIME and
SHAP explanations seem to find a cut-off value for tobacco consumption, of around 7 and
9 respectively, while coalitional-based methods capture a non-monotonic, more complex
relationship.

We also look at adiposity PDPs. Once again, the three SHAP explanations are close
to each other. Interestingly, they capture a non-monotonic relationship between the
attribute and the outcome, giving people around 30% of adiposity a higher influence for
this attribute (in absolute value) than people close to this value. This relationship seems
to be captured to a lesser extent by coalitional-based methods, but not captured at all
by LIME. We also note that the Complete and Spearman Coalitional influences are more
scattered, which means that more variance exists amongst subjects of the same adiposity
for these methods than for the others.

Lastly, looking at obesity PDPs, LIME and SHAP methods find a negative relation-
ship between obesity and CHD prediction. This seems counter-intuitive, as obesity is a
strongly known comorbidity factor of cardiac disease. As previously mentioned, obesity
and adiposity are strongly correlated (r=0.72), and this may be the reason for such ob-
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Figure 3.24: Partial dependence plots of age, tobacco, adiposity and obesity for each
method

servation. Furthermore, we have mentioned in section 2.1.3 that SHAP works under the
hypothesis that attributes are independent, but with such correlation, it is very unlikely
that obesity and adiposity are independent. To better understand the relationship be-
tween these two attributes, as found by the methods, we plot in Figure 3.25 the influence
values of adiposity and obesity given by each method.

The Complete and Spearman Coalitional methods seem to find a positive correlation
between the influences of the two attributes: when an individual is assigned a high in-
fluence value for obesity, a high influence value for adiposity is usually assigned, and
conversely. We can even distinguish two clusters of individuals: one for individuals that
have a high influence value for both attributes and one for individuals that have a low
influence value for both attributes. Such patterns are not found by LIME or SHAP, thus
confirming the lack of ability of these methods to consider dependent attributes. This
shows the limits of clusterability as a global metric to evaluate explanations. As seen
in Table 3.3, on this dataset, the three SHAP methods have an overall higher cluster-
ability than coalitional-based methods. However, when we consider pairs of attributes
individually, we see that coalitional-based methods can capture clusters that SHAP fails
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Figure 3.25: Influence value of adiposity against the influence value of obesity

to capture.
On a more global scale, we see that LIME and SHAP produce explanations that are

easier to read at first glance compared to Complete and Spearman Coalitional explana-
tions. However, LIME and SHAP seem to capture different cut-offs and relationships,
and it is hard to confirm such values without further biological knowledge. Coalitional-
based methods seem to produce explanations that are harder to read on a global scale,
but more precise at an individual level and able to take into account the dependencies
between attributes. PDPs for all attributes are available in supplementary data.

3.4.2.1 Hyper-parameter exploration

Most explanation methods have several parameters that can change the way the expla-
nations are generated, and so their values. Previously, we showed results for a single set
of parameters for each method. In this section, we present new results on the SA-Heart
dataset by taking different values of several parameters. For conciseness, we present the
results for only a single model, Random Forests, although we observe similar results on
the other models as well.

LIME The first parameter we investigate is one of LIME most important parameters:
the number of samples drawn from the distribution to generate the local linear model to
explain an instance. Its default value is 5000, but as the computation time scales linearly
with this number, we limited this number of samples to 100 in our previous experiments.
In Figure 3.26, we visually show the effect of different values of this parameter on the
explanations.

We can immediately see that the number of samples impacts the global explanations for
the dataset. However, looking at the relative importance of the attributes, knowing they
are sorted in descending importance from top to bottom, we can see that this parameter
does not change the attribute importance so much. As the number of samples increases,
we can see for each attribute that LIME explanations are grouped by attribute values
around specific influence values. This creates vertical stripes that get thinner when the
number of samples increases for each explanation. To have a better visualisation of this
phenomenon, we look at the partial dependence plot of the age attribute in Figure 3.27.
LIME tends to discretise the age values, with the influence values becoming increasingly
grouped and homogeneous as the number of samples increases. This goes to an extreme
case when taking 10 000 samples, with the same influence values for an entire age group.
As we see the age category of an individual defines almost entirely the influence value given
by LIME for this attribute. This can be an incorrect explanation, as this would mean that
the model does not consider any interaction between the age and other attributes to make
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Figure 3.26: Summary plot of the explanations given by LIME on the SA-Heart dataset
with different values for the number of samples drawn to create the local model for each
explanation.

a prediction, while we know that Random Forests use tree depth and node successions
to take into account the relationship between attributes. This would also mean that the
model does not have enough granularity to consider the attributes as continuums and
instead considers only categories, which again is certainly incorrect regarding Random
Forests. However, when looking at the relationship between the number of samples and
the local Lipschitz estimate in Figure 3.28, the robustness increases with the number of
samples per explanation. This underlines the limits of robustness and, to a broader extent,
the limits of objective metrics to evaluate the explanations. Despite being systematically
measurable on all the explanations, they must be taken as a whole to qualify and compare
explanations. Human and expert reading is always necessary to validate the quality of
the explanations.

Figure 3.27: Partial dependence plot of the explanations given by LIME for the attribute
age on the SA-Heart dataset with different values for the number of samples drawn to
create the local model for each explanation.

Another important parameter for LIME is the kernel width. With LIME, the kernel
weights the sampled instances by their distance from the instance to be explained to create
the local surrogate linear model. The farthest the drawn sample is from the instance, the
less weight it has in the local linear model. This enforces the notion of locality for the
linear model and the higher the kernel width, the less local the linear model is. Visani et al.
(2022) insist on the trade-off between stability (the equality of the local model coefficient
through repeated trials) and adherence (the R2 performance of the local model). The
article shows that the value of the kernel width mainly determines these trade-offs. The
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Figure 3.28: Local Lipschitz estimate of LIME explanations on the SA-Heart dataset
according to the number of samples drawn for each explanation.

base value is 0.75×
√

d with d the number of attributes (2.25 for the SA-Heart dataset)8.
Figure 3.29 shows a partial dependency plot for the age attribute for different values of
kernel width. We observe very similar results for each attribute (which can also be seen
in the supplementary figures).

Figure 3.29: Partial dependence plot of the explanations given by LIME for the attribute
age on the SA-Heart dataset with different values for the kernel width.

We can see that the main impact of the kernel width is the amplitude of the expla-
nations: lower values of kernel width result in flattened values of influence that mix in
an unreadable fashion, while higher values of kernel width lead to the usual "boxes" that
LIME creates for the explanations. The default value (2.25 for SA-Heart) seems to be on
the higher end. This could mean that the default value of kernel width makes the linear
model not local enough, giving high weight to samples far from the instance we want to
explain. For this dataset and model, a more appropriate kernel width value may be closer
to 1.

Spearman Coalitional For the Spearman Coalitional method, we look at its single
parameter: the proportion of subsets of attributes (or coalitions) taken into account to
compute the influences. This parameter is called complexity rate and goes from 0 excluded
(we need at least a coalition) to 1 included. A complexity of 1 gives the same algorithm as

8LIME documentation: https://lime-ml.readthedocs.io/
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the Complete method. Figure 3.30 show the partial dependence plot of the age attribute
for different complexity values. Once again, we see very similar behaviour to the other
dependence plots.

Figure 3.30: Partial dependence plot of the explanations given by the Spearman Coali-
tional method for the attribute age on the SA-Heart dataset with different values for the
complexity rate.

We can see that a higher complexity produces less scattered explanations. However,
after 0.5, the change is barely visible. We can conclude that the complexity effectively
controls the degree of approximation, and on this dataset and model, the Spearman Coali-
tional method with a complexity of 0.25 is a good approximation of the Complete method,
and it is a good approximation for rates of 0.5 and more.

SHAP Next, we look at the KernelSHAP method. With this method, a so-called
"background" dataset must be used to provide relevant samples to train the XML method.
However, this can slow down the process considerably as it creates samples around each
background instance. As advised by the documentation, if the method takes too much
time to compute, we can use a clustering method (namely KMeans) to extract the few
most relevant samples in the training dataset to represent the data distribution. We
then refer to this number of "most relevant samples" as "Number of background samples".
Figure 3.31 show the age attribute dependence plot for different values of the number of
background samples.

Figure 3.31: Partial dependence plot of the explanations given by the KernelSHAP
method for the attribute age on the SA-Heart dataset with different values for the num-
ber of background samples.

We can see that even with two background samples, the explanations are already close
to the one with ten background samples and that there is almost no difference between 3,
5 and 10 background samples. Although this depends on the number of samples and the
distribution of the dataset, we can still hypothesise that we can significantly reduce the
number of background samples with the KMeans algorithm to reduce the time required
for the method to compute explanations.
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Finally, we examine the number of samples obtained from the distribution (based on
the background samples mentioned above) by creating perturbations. This parameter is
called nsamples and its default value is 2d + 2048, with d the number of attributes in
the dataset (2066 for the SA-Heart dataset)9. We show in Figure 3.32 the age attribute
dependence plot for different values of nsamples.

Figure 3.32: Partial dependence plot of the explanations given by the KernelSHAP
method for the attribute age on the SA-Heart dataset with different values for the num-
ber of drawn samples.

As we increase the number of samples, we can see that we quickly reach a plateau
at around 300 nsamples. Under this value, we can still see the shape of the explanation,
but we can also see many samples that are given an influence of 0, which is incorrect.
Nevertheless, we can firmly say that the default value (2066) is too many samples for this
dataset and model. We can reduce this number a lot to compute the explanations.

Overall, we find that the impact of the parameters depends on the method, and each
parameter has a different effect. Spearman Coalitional has a main parameter that can
control the trade-off between the degree of approximation and the computation time of the
method. KernelSHAP and LIME have several parameters, allowing the user to control
the robustness, computation time and locality of the explanations to some extent, but
they require good knowledge of the explanation method.

3.5 Recommendations for the use of local attributive
explanation methods

In this section, we propose some recommendations to use each local attributive explana-
tion method, based on the results from all our experiments. For simplification’s sake, we
refer to the explanations produced by the local explanation methods when summarised
for all the data as ‘global explanations’.

Table 3.4 summarises the advantages and drawbacks of each method studied. Overall,
in all our experiments, we highlight that coalitional-based methods should better produce
precise local explanations while SHAP should be better at creating coherent and easily
interpretable global explanations. It is also confirmed by the fact that SHAP tends
to assign more importance to fewer attributes than other methods, producing global
explanations that are more concise but potentially hiding other attribute contributions
and inter-dependencies. Spearman Coalitional explanations are overall slightly less robust
than the other methods and are negligibly less readable. LIME has several drawbacks, one
of the most distinguishable being its tendency to miss the interactions between attributes
and complex influences. Regarding method parameters, each method offers a different

9KernelSHAP documentation
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Method name Advantages Drawbacks

Coalitional
based

Complete
Consider feature
interdependence

Exact shapley values Slow in high dimension
Global explanations
can be hard to read

Spearman Parameter α to control
the level of approximation

Less robust on
tree-based models

LIME
Fast in high dimension

Various parameters to control
robustness and locality trade-offs

Slow in low dimension
Low quality explanations

Tends to miss non linear and
non monotonic influences

Not robust with simple models
Can miss relationship between pairs of features

SHAP
KernelSHAP

Easy to interpret
global explanations

Various parameters
Approximations may

be inprecise

Slow in high dimension
TreeSHAP Very fast in low

and high dimensions
Tree-based models

specificTreeSHAPapprox

Table 3.4: Summary table of advantages and drawbacks of each method

Figure 3.33: Road map for the most appropriate use of methods

number and types of parameters. Spearman Coalitional α allows users to easily control
the trade-off between computation time and degree of approximation. LIME numerous
and complex parameters allow a fine-tuning of the method but require extensive knowledge
of LIME behaviour regarding these parameters and the model and dataset considered.
The KernelSHAP parameters are similar to those of LIME but appear to induce less
significant changes in the explanations obtained, which makes it possible to use them to
reduce the computation time without degrading the quality of the explanations.

We use all the results presented to show a simplified road map as a decision tree in
Figure 3.33 to help readers find the most suitable explanation method according to their
datasets and objectives.

In this figure, the high dimensions represent the number of attributes in the studied
dataset. Indeed, there is no "hard" cut-off to define when it goes from low to high di-
mensions. In our experiments, we can consider this cut-off somewhere between 11 and 15
attributes, depending on the dataset complexity, the computational time and the mate-
rial available. "Accurate tree-based model" represents the ability to train a satisfactory
(defined by the users’ objectives) tree-based model on the dataset. The model can then be
explained thanks to the optimisation in TreeSHAP. If the desired model is not tree-based,
we advise the user to look at KernelSHAP and LIME parameters to reduce the number
of background samples and perturbation samples until the explanations are computed in
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a reasonable time. However, we warn about the potential loss of precision and robustness
induced by such method approximations.

Finally, we show that SHAP and LIME can make significant approximations in some
cases and that Coalitional and Complete methods cannot be executed in a reasonable
time in high dimensions. This leaves a space for high-dimensional precise explanations
that are not yet addressed to our knowledge.

3.6 Conclusion
This Chapter presents an improved version of the already-existing Coalitional method.
We work on the hyper-parameters of the method to propose a simpler-to-use version. We
use a dichotomic search to find the optimal value of the existing α-threshold. We base
our Coalitional method on the wanted complexity in the attributes coalitions to optimise
the explanations.

Then, we provide a large set of experiments to benchmark local attributive explanation
methods and recommendations on when to use each method. Our findings indicate that
there is not a single method that is the most appropriate for every usage. Therefore, this
thorough analysis allowed us to identify the strengths and limitations of each method. Our
improved version of the Coalitional methods well-perform against well-known methods
from the literature by allowing an acceptable computation time while maintaining a high
precision of explanations. Regarding other explanation methods, the Complete is the
most accurate but suffers from a very long computational time. On the contrary, LIME
and SHAP methods offer a more intelligible global view of feature effects. We have also
seen that the choice of the predictive ML model does not impact the general behaviour of
the explanation methods much. However, except with LIME, simpler predictive models
tend to produce more readable and robust explanations, but tree-based models allow for
TreeSHAP use which is more efficient.

The greatest problem arises when a high dimension (i.e., a high number of attributes) is
involved, as is often the case in statistics and ML. In this case, the exponential complexity
of Coalitional-based methods makes them too long to compute. Indeed, the worst-case
scenario is the need for high-precision local explanations in high dimensions since there is
a clear lack of methods addressing this problem in the current literature. Another problem
is that computing the Complete influences as the baseline becomes near impossible with
larger attribute numbers. Thus, it isn’t easy to monitor the performance of our different
methods with this baseline. A possible way to address this problem could be first to run a
global attribute importance study for large datasets using methods such as Permutation
Importance that is model agnostic, or Gini Importance for tree-based models. Then use
this information to compute influences only for the most important attributes during the
individual explanation generation.

Finally, we provide two medical examples to illustrate how to use, interpret and ex-
plore explanations. These examples show how explanations can behave in real-world
applications and how different XML methods can produce explanations easier or harder
to understand. In the next chapter, we will explore the explanations exploitation as new
data to discover new information about the data and its modelling.
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Chapter 4

Explanations as a new data space:
exploring explanations through
clustering
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4.1 Introduction
Local explanations are increasingly used in AI-assisted tools to offer more information than
a single prediction (Antoniadi et al., 2021). Their popularity is due to the instance-level
accuracy of these explanations, which links the impact of each attribute to the prediction
made for each instance and allows differences to be detected between all instances. Yet,
providing only local influences seems insufficient to improve decision-making efficiency.
Indeed Weerts et al. (2019); Zhang et al. (2020) show that displaying influences along
with an individual prediction did not significantly enhance the utility and understanding
for the user as opposed to prediction alone. Moreover, knowing all the local explana-
tions of a dataset does not guarantee a complete data understanding since there are as
many explanations as instances in the original raw dataset, with the difficulty of finding
explainability patterns in this new dataset.

In this context, we hypothesise that XML influences can be seen as a new data space
that can be explored and used as a basis for further analysis. Indeed, these influences
represent ideally the importance of each attribute for the task at hand in an ML model
and may convey less noise or spurious indicators than the original space as only the most
significant information is preserved this way. Influence analysis is thus a good candidate
to identify the main trends in the dataset, i.e. the characteristic relationships between
the attributes.

In this Chapter, we propose a new framework for data exploration that, instead of
analysing raw data space, focuses on the analysis of relations between XML influences in
Section 4.3. As such, this work can be perceived as a contribution to the novel domain of
Actionable XAI (Holzinger et al., 2020), which considers actionable concepts, measures,
and metrics for explainable learning and reasoning to improve data analysis or ML models
based on explanations. As a first contribution in this direction, we introduce in this
chapter a thorough analysis of the benefit of XML influence space for data exploration
based on clustering algorithms. The main benefit of our approach is that, by reducing
perturbations in the description of instances via explanations, we expect to achieve better
cluster quality than in the original raw data space with more homogeneous subgroups
of influences. In turn, these clusters will help identify and understand the relationship
between the data and its use by the ML model. Clustering approaches are also the
most straightforward approach for understanding the behaviour of the modelling and the
underlying dataset. To the best of our knowledge, this is the first work that studies in a
general framework the benefits of using local influences as a new input for clustering to
identify more informative and homogeneous groups.

In Section 4.4, we extensively evaluate our approach on 104 datasets paired with mul-
tiple local attributive XML methods and clustering techniques for a large variety of cluster
numbers, to compare the use of raw data and influences. We detail our research ques-
tions and hypothesis, the metrics used to evaluate the clusters’ quality and Specifically,
we propose an in-depth study for the K-medoid clusters quality to show the efficiency
of considering influences space even for misclassified instances and ML models with low-
performances. We finally evaluate the clustering of explanations when the optimal number
of clusters is used for each clustering technique, on multiple local attributive XML meth-
ods to evaluate our proposal in a best scenario use case. We also discuss the advantages
of our approach in a broader context, linking results from clustering with knowledge from
modelling and explanation methods.

The work mentioned in this Chapter has been published in the following articles: Es-
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criva, Aligon, Excoffier, Monsarrat, and Soulé-Dupuy (2023a); Cugny, Doumard, Escriva,
and Wang (2023).

4.2 Prerequisites: Analysis of clustering algorithms
According to Jain et al. (1999), clustering consists of the unsupervised classification of
patterns (being data items, attributes vectors, time series, graphs) into groups called
clusters. This problem is complex since there are no unique criteria to assess the quality
of a grouping. For example, internal criteria such as Davies-Bouldin index (Davies and
Bouldin, 1979) ensure that groups are compact and well-separated but impose to shape the
clusters as hyper-spheres, similar to the well-known Silhouette index (Rousseeuw, 1987).
External criteria such as (Adjusted) Rand Index (Hubert and Arabie, 1985) assess the
quality of the grouping with a ground-truth knowledge that is to be known beforehand.
Even if an evaluation criterion is known, clustering is an NP-hard problem since one
would have to build all partitions for all possible numbers of clusters to determine the
best clustering (Jain and Dubes, 1988). As such, there exist a large variety of clustering
algorithms (Jain, 2010) depending if they produce a disjoint partition of the dataset such
as k-means (MacQueen, 1965) or k-medoid (Kaufman and Rousseeuw, 1990), a fuzzy
or soft partition (Bezdek, 1981) or a dendrogram that is a nested set of partitions such
as in the hierarchical clustering (Kaufman and Rousseeuw, 1990). Jain (2010) identifies
new trends for clustering algorithms such as the introduction of semi-supervision to take
into account expert knowledge when available (Bilenko et al., 2004; Vu et al., 2012).
Other challenges involve dealing with large-scale datasets or streams (Labroche, 2014)
or proposing efficient co-clustering approaches that build a clustering of instances and
attributes at the same time (Parsons et al., 2004). In our work, we focus first on simple
use cases of data exploration, thus avoiding the impact of streams or external constraints
on our experiments. Finally, another recent tendency in clustering is related to the use of
deep architecture to build end-to-end clustering systems that go from data representation
to clustering in a single algorithm. The most well-known approaches in this context are
DEC (Deep Embedded Clustering) and its variants (Xie et al., 2016). We are not going to
focus on these types of approaches either as they build their own embedding that would
defect, to some extent, the interest of our study to compare the raw data space with the
attribute influence space. However, one important aspect of clustering is the metrics that
define the topology of the space and that are generally attached to the geometry of the
clusters. To preserve a variety of cluster shapes, we will consider in our work, clustering
approaches relying on minimisation of variance in Euclidean space (k-means, k-medoids,
hierarchical clustering with Ward criterion (MacQueen, 1965; Kaufman and Rousseeuw,
1987; Ward Jr and Hook, 1963)), Gaussian Mixture Models that leverage the constraint of
uniform variance of k-means (Dempster et al., 1977), a Mahalanobis distance that leverage
variance and correlation between attributes to discover anisotropic clusters (Mahalanobis,
1936) and finally, a density-based algorithm (HDB-SCAN, based on DB-SCAN algorithm)
that can find any type of cluster shape (Ester et al., 1996; McInnes and Healy, 2017).

4.3 Influence-based clustering framework
With the idea of exploring explanations as completely new data, clustering techniques
are the most straightforward to gain insight and challenge our hypothesis. Clustering
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is a common tool of exploratory data analysis and statistical data analysis to discover
interesting patterns in data. In this section, we detail our influence-based clustering
framework.

Figure 4.1 shows the step-by-step process to cluster instances based on their influences:

1. A machine learning model is trained with raw data and predicts classes of all the
instances from the raw dataset.

2. A local attributive XML method explains the trained model. Users can choose the
data used as input for the method. Influences are computed to explain why the ML
model made such predictions.

3. A clustering algorithm is used on influences to create homogeneous groups of in-
stances to detect their important attributes based on the modelling. Users can
define the number of clusters they want to compute.

Figure 4.1: Our proposed Framework for explanation exploration.

In this framework, various elements can be modified according to user preferences.
Any classification model can be used in Stage 1, as they are all designed to compute
predictions. Stage 3 allows any clustering method that produces a disjoint partition of
the dataset.

In Stage 2, the framework is designed to accept local attributive XML methods. These
influences are represented as tabular data, where each instance has a value associated
with each attribute. We directly use these influences data as input for the clustering step.
Influences are valuable because they provide additional information that the raw data does
not: the link between the modelling predictions and the dataset attributes. Compared
to raw data, explanations produced by local attributive XML methods have the same
unit across all attributes, thus avoiding any problem of value ranges. Another advantage
is that influence values are less noisy since the ML model mainly focuses on attributes
relevant to the underlying predictive task and excludes information not explained by
the complex attributes interaction, hence the relevance of carrying out clustering. For
supervised tasks, local attributive XML methods usually generate a dataset for each class
with identical dimensions as the raw data. For example, if the raw data consists of
n instances and m attributes and the supervised task is a multi-class problem with c
classes, the generated dataset (also called the influence dataset) is shaped as a tensor
with n×m× c dimensions. To have an influence dataset with the same dimension as raw
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data (n×m) one can only select a single class and its associated influences. For example,
regarding binary classification, the positive class is often chosen as the class of interest
for influences.

An additional and optional step is to select a particular subset of the data for clus-
tering. Indeed, it is possible to study the instances correctly and incorrectly classified by
the model separately via instance clustering. Considering the model predictions against
the data labels, the influences are separated into two distinct groups before being clus-
tered. Two different sets of clusters are then proposed to the users. This option can have
several advantages. Since the influences represent the model decisions, separating the
instances can provide new knowledge. Studying the well-classified instances can help to
identify their characteristic patterns by removing noise and outliers from the misclassified
instances. This can give a more accurate idea of general patterns, for example, to check
that there is no bias in the dataset. Regarding misclassified instances, they may cover
different realities. They can be outliers in the data and not correspond to the general
behaviours without bias or error. However, misclassified instances may also constitute
a particular sub-group of the data that is worth studying. For example, this would be
the case of children with some types of cancers usually associated with older people.
Due to age, the model may misunderstand this subgroup, as there are few children with
non-pediatric cancers, or the input variables may be insufficient to identify this subgroup.
However, it is necessary to study this subgroup to understand whether there is any specific
behaviour in this subgroup and ultimately understand the overall dataset. Separating the
instances can therefore allow the exploration of new patterns that can be invisible if all
the data were kept. This may be even more important for influences because of their
direct link to the model. Indeed, when the model prediction is incorrect, the influences
reflect this error and are directly impacted by the wrong prediction of the model.

The full implementation of our proposal is available here: https://github.com
/kaduceo/XAI-based-instance-selection. The source code will evolve with future works.
Additional materials are also available.

4.4 Evaluation of our framework
In this section, we describe the experiments carried out to show the value of our framework,
and more broadly of explanation clustering. We have focused on four different research
questions (RQ) to show the usefulness of clustering explanations.

• RQ1. Does clustering explanations produce better-quality clusters than raw data
clustering?

• RQ2. Does explanation clustering give effective results (even ?) for low-performance
models?

• RQ3. How do misclassified instances behave when clustered based on their expla-
nations?

• RQ4. Are there differences in cluster quality between XML methods for clustering
explanations?

Based on these questions, we expect that clustering explanations will be beneficial for all
clustering techniques and local XML methods included in the experiment. We hypothe-
sise that this approach is also relevant for low-performance models, and that clustering
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misclassified instances can provide important clusters to study alongside well-classified
instance clusters. Finally, we speculate that Shapley-based XML methods -SHAP, Tree-
SHAP and Spearman Coalitional- will be better for clustering explanations than LIME.

Thus, to support our hypothesis, we will first compare several clustering techniques for
multiple local attributive explanation methods on various numbers of clusters for answer-
ing RQ1. Secondly, based on the best clustering method, we will compare the clustering of
explanations - from multiple local explanation methods - separately for models with high
and low performances to relate to RQ2, and then for instances well- or mis-classified by
the models for RQ3. Finally, to bring awareness about RQ4, we will compare the locale
XML methods clustering based on the optimal number of clusters for multiple clustering
techniques and the corresponding clusters’ qualities.

Part of this work was made in collaboration with the University of Tours, with the
participation of Tom Lefrere and Manon Martin as Master 1 internships and Nicolas
Labroche as one of their co-supervisors.

4.4.1 Experimental protocol
Clustering algorithms For our experiments, we select six clustering techniques to
compare them and to achieve diversity in terms of clustering techniques families: three
partitioning clustering, one hierarchical clustering, one density-based clustering and one
modelling model-based clustering. As both raw data and influences data are tabular data
of the same dimensions, clustering can be easily applied to both datasets without adapting
the clustering method to a specific input.

First, we use the K-medoids algorithm (Kaufman and Rousseeuw, 1987). K-medoids
assign data to k clusters iteratively based on their distance to a centroid point. This
central point is always an instance from the dataset. Each iteration tries to maximise the
distance between points from different clusters and minimise the distance inter-cluster.
The number of clusters k is pre-defined. In this experiment, we chose two distinct distance
metrics: the Euclidean distance and the Mahalanobis distance. The second one considers
correlations between variables and is suitable for data following a multivariate distribution.
We also use the k-means algorithm (MacQueen, 1965). We can expect some differences as
prototypes representative of clusters may not necessarily be part of the original instances
with k-means. However, due to its continuous representation of prototypes, k-means can
reach better compactness and separability between clusters when compared to k-medoids
at the expense of the interpretability of cluster prototypes.

For these three clustering methods, to ensure the stability of the clustering, we use k-
means++ for the initialisation -and the equivalent kmedoid++ for the Kmedoid clustering.
Based on these initialisation methods, our results have shown to be very consistent from
one run to the next. For this reason, the paper only shows one result for each of these
approaches even though there might exist a small variability due to the non-deterministic
nature of the choice of the initial clusters.

Agglomerative Nesting (Agnes) is a hierarchical clustering method mentioned in Kauf-
man and Rousseeuw (1990). Hierarchical clustering creates a hierarchy of clusters and
therefore a pre-specified number of clusters is not required if one wants the complete
hierarchy. A number can be specified to extract the clusters from one level of the hier-
archy. Agglomerative clustering works in a bottom-up manner: at first, each instance is
considered as a single-element cluster and at each iteration, the two most similar clusters
are combined. The similarity between elements is based on their distance, the Euclidean
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distance being the default distance. Agglomerative clustering is good at identifying small
clusters thanks to its bottom-up approach and clusters are persistent over runs. We use
the Ward linkage to choose the pair of clusters to merge.

HDBSCAN (McInnes and Healy, 2017; McInnes et al., 2017) is a popular hierarchical
density-based clustering technique. Based on the density in some space, HDBSCAN
groups together the points where the density is high (i.e. the points closely packed, that
have many neighbours). Density is defined based on the distance between points and
HDBSCAN performs multiple iterations of clustering for all possible density scales. This
allows the detection of meaningful clusters in data of varying densities and the robustness
to parameter selection, as opposed to DBSCAN. HDBSCAN is stable over runs and
resistant to noise and outliers. This clustering technique does not require a pre-specified
number of clusters.

Expectation-Maximum clustering algorithm (EM) was proposed by Dempster et al.
(1977) to cluster points based on statistical modelling and data distribution. EM clus-
tering assigns data points to clusters iteratively to maximise the overall probability or
likelihood of the data. Unlike other clustering methods, EM is a soft clustering technique:
each point has a probability of belonging to each cluster, rather than a single assigned
cluster. In our case, we assign instances to the cluster with the highest probability.

Datasets and classification task We use 104 datasets from an Open ML collection1

(Vanschoren et al., 2014) that meet the following criteria: binary classification, more
than 100 instances, more than four attributes and at most nine attributes due to the
computational cost of producing influences. Table 4.1 details statistics about the datasets
used.

Table 4.1: Statistics of the experimental datasets based on the number of attributes.

Number of attributes 4 5 6 7 8 9 All
Number of datasets 14 25 17 16 15 17 104
Mean number of instances 465 1197 654 554 650 503 670
Min number of instances 125 100 100 108 130 100 100
Max number of instances 1372 7129 3107 4052 4177 1473 7129

Binary classification is chosen to facilitate the interpretation of influences. We consider
that all influences are based on class 1. In this case, influences represent the impact of
each attribute on the probability of the instance being in class 1. We train a Random
Forest model (RF) with a Grid Search Cross-Validation to optimise hyperparameters.
This model was chosen to test tree-specific explanation methods while keeping a limited
number of hyperparameters to avoid overfitting (compared to boosted trees). Only to
evaluate the performances of the modelling, each dataset is divided into train and test
sets according to the 75%/25% ratio. Table 4.2 shows the performances of all the models
trained in our experiments. Models are trained adequately to capture most information
of the dataset. The mean and median balanced accuracy are respectively 0.79 and 0.85,
meaning most models can accurately classify test instances. Some models also have very
low accuracy, the minimum being 0.42. When we separate models based on an accuracy
threshold set to 0.8, high-accuracy models have a median balanced accuracy of 0.92,

1Available in https://www.openml.org/s/107/tasks
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whereas low-accuracy models have a median of 0.6. This distinction between the models
will be used for the experiments related to RQ2, to show whether the approach works
whatever the performance of the models.

Table 4.2: Statistics of models trained. Balanced accuracy and percentages of true
and false instances are presented for the 104 datasets and separately based on the 0.8
accuracy threshold. For true and false instances, the median number of instances is
presented along with the percentage.

Balanced Accuracy % of True instances % of False instances
Models (#) Median Min Max Median Min Max Median Min Max
All (104) 0.85 0.42 1.0 94% (307) 61% 100% 6% (21) 0% 39%
Acc ≥ 0.8 (60) 0.92 0.81 1.0 97% (404) 85% 100% 3% (11) 0% 15%
Acc < 0.8 (44) 0.60 0.42 0.79 82% (252) 61% 98% 18% (62) 2% 39%

We also study the number of instances well classified and misclassified by the ML
modelling in Table 4.2. In all experiments, we call true instances well-classified instances,
referring to True positive and True negative terms. False instances is then related to False
positive and False negative instances, so misclassified instances. We use three different
separations of data: all instances together, only true instances and only false instances.
For the experiments about RQ3, as we separate true and false instances, we choose not
to evaluate high-accuracy models on false instances as there are not enough instances
in most datasets to create clusters and properly evaluate them and compare the results.
Then, when studying false instances, we only work with models with low accuracy as the
number of false instances is higher and sufficient. Also, the number of true instances is
adequate to perform clustering for all models.

Explainability methods For exhaustive purposes, we choose four different local at-
tributive XML methods to compute influences: KernelSHAP -called SHAP- (Lundberg
and Lee, 2017), TreeSHAP (Lundberg et al., 2020), LIME(Ribeiro et al., 2016) and Spear-
man Coalitional method (Ferrettini et al., 2021). As explained in Chapter 3.5, each XML
method provides influences with different strengths and disadvantages. Thus, we want
to study the relevance of using local influence clustering compared to raw clustering in a
global way.

Setting the number of clusters To define the number of clusters, we used two dif-
ferent setups. First, to strictly compare the clustering methods to answer RQ1, we use
multiple percentages of the total number of instances in the dataset as the number of
clusters. We will also use these percentages for RQ2 and RQ3 when evaluating the im-
pact of the model performances and the classification. We use the following percentages:
1%, 2%, 3%, 4%, 5%, 10%, 20%, 30%, 40% and 50%. The number of clusters is then
ncluster = p ∗ ninstances with p the selection percentage between 0 and 1 and a minimum
number of two clusters. As the size of the datasets varies greatly as shown in Table 4.1,
we prefer to select a percentage rather than fixed numbers of instances to take into ac-
count the diversity of the datasets. As we first aim to show how clustering on influences
exhaustively performs against the raw data, multiple percentages per dataset can show
how cluster quality evolves without looking for the optimal number of clusters (which may
be different for each method). For RQ1 -so RQ2 and RQ3-, we only use the parametric
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clustering approach -Partitioning clustering methods (K-medoids and K-means), Agnes
and EM- which allows us to change the number of clusters and exclude HDBSCAN. Then,
to study the differences in raw and each XML data spaces clustering for RQ4, we will
compute the optimal number of clusters and use the Silhouette score (Rousseeuw, 1987)
as the metric that automatically selects the optimal number of clusters when needed.

Let i be an instance of the dataset D assigned to the cluster CI , C the set of c clusters,
n the number of instances in the dataset D, and d() a distance function.

a(i) = 1
|CI | − 1

∑
j∈CI ,i ̸=j

d(i, j)

b(i) = min
J ̸=I

1
|CJ |

∑
j∈CJ

d(i, j)

s(i) = b(i)− a(i)
max(b(i), a(i))

Silhouette = 1
n

∑
i∈D

s(i) (4.1)

For a range of cluster numbers, each score is computed and the highest value is chosen
as the optimal cluster number. In case of a tie (which is unlikely given the workings of
the metrics), we take the first value. We defined a range between 2 and 30 clusters to
compute the optimal number. The Silhouette score was used for the parametric clustering
approaches only, as HDBSCAN automatically compute its optimal number of clusters.

Comparison to ground-truth labels Finally, we evaluate if clusters are well-defined
and manage to group similar instances and separate dissimilar instances based on their
a-priori labels. We select two external clustering metrics, Entropy and Purity. With
external metrics, class labels are needed as metrics assess the distribution of labels within
clusters to evaluate how clusters and labels are related and how clusters manage to group
similar instances. Entropy measures the distribution of labels in a cluster, i.e. the ability
of the algorithm to differentiate between data that do not have the same "real" class.
A perfect entropy means all instances from the same class are in the same clusters. In
addition, Purity measures the relative size of the majority class in a cluster to evaluate
its dominance over other classes. Perfect purity describes that each cluster has only one
class. These two metrics give values between 0 and 1. A perfect clustering will usually
have an entropy equal to 0 and a purity equal to 1. These metrics are defined as follows
(Conrad et al., 2005):

E(Ck) = − 1
log q

q∑
i=1

ni
k

nk

log ni
k

nk

Entropy =
K∑

k=1

nk

n
E(Ck)

P (Ck) = 1
nk

max
i

(ni
k) Purity =

K∑
k=1

nk

n
P (Ck)

where Ck is a particular cluster of size nk, q is the number of class in the dataset, K the
number of clusters and ni

k is the number of instances of the ith class assigned to the kth
cluster.
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4.4.2 Results
In this section, we describe the results of the experiments by first comparing multiple clus-
tering methods either based on the clusters of influences from XML methods or obtained
from raw instances, in relation to RQ1. We then study the impact of model perfor-
mances and data classification on the cluster quality to answer RQ2 and RQ3, for SHAP
and Spearman Coalitional for the K-medoid clustering. The fourth part shows how XML
methods perform against each other for K-medoid, Agnes and HDBSCAN clustering when
searching for the optimal number of clusters to gain insight into RQ4.

4.4.2.1 On comparing the explanations clustering from multiple family of
techniques

Figures 4.2 display the purity and entropy values for all percentages of selection, on raw
and influences data, for K-medoids with Euclidean and Mahalanobis distance and K-
means. The three clustering methods have almost identical behaviours. Clusters have
better purity and entropy for Spearman Coalitional, SHAP and TreeSHAP methods.
LIME and Raw have worse results, especially in entropy where differences with other
explanation methods are greater.

Figure 4.3 shows the mean purity and entropy for the Agnes and EM clustering
method. Results are identical to the ones with partitioning clustering techniques: ex-
planations methods produce clusters with better quality than Raw data. LIME is below
other explanation methods in terms of clusters’ quality, nearest to Raw results than other
XML results.

Figure 4.4 shows the clusters’ quality for all clustering techniques for SHAP and LIME
Explanations. We exclude TreeSHAP and Spearman Coalitional as their results are iden-
tical to the SHAP ones. For all explanations, as described before, all clustering methods
based on distance have similar results. In entropy, K-medoids with the Mahalanobis dis-
tance have slightly worse results than the other clustering approaches using the Euclidean
distance. These differences are therefore not statistically significant. Agnes and EM also
have almost identical results to K-medoids and K-means.

Our results show that multiple families of clustering techniques - partitioning, hierar-
chical and modelling model-based - perform well in clustering explanations. Mean Purity
and Entropy are better than with Raw data, indicating that clusters are more mean-
ingful relative to the labels of instances, answering RQ1 and confirming our hypothesis.
Only LIME explanations produce clusters of lower quality. However, since all the other
explanation and clustering methods produce better clusters, this difference is probably
due more to LIME than to any problem with the proposed approach. Noticeably, LIME
exhibits a slightly higher variability in its explanation (Visani et al., 2022) that may not
fully ensure that neighbours in the original space share close attribute influence represen-
tations. Moreover, LIME tends to generate too general explanations (Laugel et al., 2018;
Alvarez-Melis and Jaakkola, 2018) that might be less accurate (depending on the shape of
the original decision boundary) than those proposed by other methods. All these aspects
can lead to the observation that LIME attribute influence space is under-performing for
clustering, related to our hypothesis of RQ4.

The performance of all these clustering techniques is valuable as they can have other
advantages outside the boundaries of our approach and experiments. Hierarchical cluster-
ing shows the instances’ relationships in the clustering process, which can be used to work
around clusters. Density-based clustering can be used to detect prototypes and outliers
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Figure 4.2: Comparison of clustering quality for partitioning clustering techniques: K-
medoids with Euclidean and Mahalanobis distance and K-means.

differently from other methods. EM clustering can allow the study of the attributes’ im-
portance for each cluster and their interpretation based on the distribution and variance
of attributes in each cluster.

4.4.2.2 Impact of models performances on clusters quality

Based on the previous results, we will focus in this experimental step on the K-medoids
with Euclidean distance to evaluate the impact of model performances on the clusters’
quality.

When comparing raw data clusters to the influence ones, for all instances, Figure 4.5
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Figure 4.3: Comparison of clustering quality for Agnes and EM clustering.

shows raw data clusters have lower purity and greater entropy than other clusters, regard-
less of the model performance, the percentages or the XML methods, as we have already
seen previously. When we compare results based on model performances, purity is higher
for high-performance models for raw data and influences clustering and the differences
between methods seem similar. For entropy, results are also better for high-performance
models. However, differences between methods are even greater when the model has an
accuracy greater than 80%. For low-performance models, Spearman Coalitional influences
clustering has the lowest entropy, followed by SHAP and TreeSHAP -which have almost
the same entropy-, and then by LIME and Raw. With high-performance models, SHAP
and TreeSHAP have similar entropy to Spearman Coalitional, even slightly better ones,
and the differences with LIME and Raw are more visible.

To relate to our RQ2, this indicates that clustering explanations from models with low
performance provide clusters with one majority class -from the purity metric- but that
instances from the same class are dispatched between clusters -then the high entropy.
Also, we expect that clusters have a lower purity and entropy when models have a lower
accuracy, whatever the data or cluster percentages. Indeed, when the model performance
is poor while the model is adequately trained, this may indicate that the data is less
generalisable or of lower quality. The consequences are a higher proportion of misclassified
instances, impacting the explanations. This hypothesis seems to be reflected in the quality
of the clusters created.

To gain insight into the pertinence of clustering explanations even for low-performance
models, we take into account only the true instances (the instances well predicted by the
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Figure 4.4: Comparison of clustering quality for each clustering technique, for SHAP and
LIME explanations.

Figure 4.5: Comparison of K-medoid clustering for XML methods trained on all instances.
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model) to compare the cluster quality of the two subsets of models. Figure 4.6 displays
the true instances clusters’ quality for models with low and high performances. In Purity,
both subsets of models have high, almost perfect, purity, especially for high percentages
of clusters. LIME and Raw have lower Purity than SHAP and TreeSHAP for both model
performances, and all four have similar purity across all models. Spearman Coalitional is
the only XML method with a different behaviour based on model performances. For low-
performance models, Spearman Coalitional has a purity similar to SHAP methods, while
is near Raw and LIME and lower for high-performance models than for low-performance
models. In entropy, almost the same behaviour appears for all raw and XML methods. For
all models, SHAP, TreeSHAP and Spearman Coalitional have lower entropy than LIME
and Raw. Spearman Coalitional has also a slightly worse entropy for high-performance
models, although it is still better than LIME and Raw.

Figure 4.6: Comparison of K-medoid clustering for low- and high-performance models on
"true" instances.

Based on these results and our RQ2, clustering explanations from low-performance
models give worse results than for high-performance models. However, the quality of the
clusters may be sufficient, particularly in terms of purity, to analyse and extract relevant
information from them. This point is supported by the analysis of true instances, where
cluster quality is similar and high whatever the performance of the models.

Moreover, we can compare XML methods based on cluster quality, to support the
RQ4 hypothesis. Although all are attributive methods with similar global behaviour,
the calculated influences appear to be sufficiently different to produce dissimilar cluster
results, especially in entropy. Clusters based on LIME have purity and entropy close to
the clusters based on raw data, making this XML method the one with the worst results.
More than evaluating clustering on only true instances, comparing all subgroups must be
useful to show more differences between XML methods.
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4.4.2.3 Impact of using different data subgroups for clustering

In this subsection, we aim to show in which circumstances well-classified or misclassified
instances can be used to produce clusters of good quality (or not), notably in the worst
case (degraded accuracy on a set of misclassified instances). We want to see if well and
unwell instances behave differently when they are clustered together or separately and the
impact of using only specific subgroups of data, to support our RQ3 hypothesis. As in
the previous step, we focus only on the Kmedoids clustering technique. We also show the
results for only Spearman Coalitional and SHAP XML methods as TreeSHAP is almost
identical to SHAP, and LIME have the worst results.

Figure 4.7 and 4.8 show the cluster quality for the three data modalities, with in-
fluences respectively from SHAP and Spearman Coalitional. For both XML methods,
clusters have better quality with only the true instances than with all the instances of the
dataset, especially for low-performance models.

Figure 4.7 shows little difference in cluster quality for SHAP between all instances and
true instances subgroups for models with high accuracy. Both metrics give good -high for
purity, low for entropy- and almost equal results for both modalities. Influences from true
instances produce almost perfect clusters even with low cluster percentages and are little
affected by the model accuracy. As models with high accuracy have fewer false instances,
their influences may only produce noises for the clustering. Removing them gives slightly
better global results, as clusters have better entropy. For models with low accuracy, there
are more differences between the subgroups, presumably because the proportion of false
instances is greater. The all instances and true instances subgroups have a 0.4 difference
in entropy and a 0.1 difference in purity for almost all percentages. The false instances
subgroups also have similar purity and better entropy as the all instances subgroups.
Separating true and false instances to study them separately produces more homogeneous
and coherent clusters for SHAP than keeping all instances together, especially on low-
accuracy models. With these models, the number of false instances is higher, and they
often represent behaviours not caught by the model.

For the Spearman Coalitional method, Figure 4.8 reveals a similar overall behaviour
to SHAP regarding the cluster quality depending on the subgroups, especially on high-
accuracy models and on the true instances subgroups. However, for low accuracy models
and unlike SHAP, there are some differences when using only false instances. The false
instances subgroups have slightly higher purity and lower entropy, especially on low per-
centages. The different use of input data by both methods can explain this behaviour.
SHAP uses the input to produce perturbations for the model, creating new instances
and studying a larger area of the data space than just the input data (here, the false
instances). In contrast, Spearman Coalitional does not produce any perturbations and
uses the input data as is to explain the model. The data space is then smaller and,
therefore, less exhaustive. Using only false instances may lead to influences more precise
for this subgroup, compared to using all instances or instances with perturbations, hence
the difference between the two subgroups for Spearman Coalitional and the difference
with SHAP. Moreover, for low-accuracy models, clusters from true instances and false
instances subgroups are better than the clusters from all instances.

Globally, the cluster quality is degraded when considering all instances. Since purity
checks the proportion of the majority class in each cluster and entropy how labels are
dispatched across the clusters, grouping instances misclassified with well-classified ones
logically lowers the cluster purity. With false instances, we analyse cases where the
model fails to generalise or describe the data correctly. As influences represent the model
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Figure 4.7: Comparison of K-Medoid clustering of SHAP influences.

decision, influences of misclassified instances may have lower quality than true instances
influences and can bring noise to them. They may, however, be representative of why the
model does not generalise and understand these data. Thus, these clusters can indicate
where the problems lie in the data or the model. Concerning our RQ3, results are mixed
as the clusters’ quality with misclassified instances is not similar to the ones with well-
classified instances. However, information may be extracted from these instances and
their explanations to understand the model, and separating the instances according to
their prediction gives valuable results.

These two figures also show that different XML methods can lead to clusters with dis-
tinct qualities or behaviours based on the data subgroups selected. Spearman Coalitional
seems slightly better at clustering false instances than SHAP. And SHAP at clustering
true instances, especially for high-performance models. These methods can then produce
diverse and meaningful clusters to understand the modelling and dataset. Based on the
subgroup of data studied, one method may also be preferable to another depending on
the context. This seems consistent with the findings of Chapter 3.5, where depending on
the dataset, the interdependence of attributes, the dimensionality or the model, one XML
method can be more efficient than others. The same reasoning seems to apply here, sup-
porting our RQ4 hypothesis, where according to the subgroup studied, one XML method
can be better than the others.

4.4.2.4 On comparing the optimal number of clusters and the related clusters
performances

When clusters are used in real-world applications, one important constraint is the number
of clusters to compute. Too few clusters can result in inconsistent groups of instances with
strong disparities, making it impossible to study them effectively. On the contrary, too
many clusters can make it too complex to study all the clusters, resulting in a scattering of
information and too much specificity in the information uncovered, without highlighting
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Figure 4.8: Comparison of K-medoid clustering of Spearman Coalitional influences.

the most important information. In both cases, time can be wasted due to the lack of
clarity and usefulness of the clusters. Evaluating clusters in a setup with their optimal
number of clusters is another important step to confirm the pertinence of our approach
and evaluate the performance differences between each XML method.

For this experiment step, we keep one method previously evaluated per family to
compare how the clusters on all raw data and influences behave in terms of quality: K-
medoid for partitioning, Agnes for hierarchical and EM for modelling. With HDBSCAN
for density-based techniques, this selection allows a diversity of clustering techniques to
study the impact of the optimal number of clusters on cluster quality and how explana-
tions clustering performs in this setup, to explore more deeply our RQ4. As previously
said, the optimal number of clusters for K-medoids, Agnes and EM was computed with
the Silhouette Score, defined in Definition 4.1. HDBSCAN is non-parametric and auto-
matically defines the optimal number of clusters for each dataset.

Table 4.3 shows the mean optimal number of clusters for each clustering method and
each type of data. The standard deviation is shown in parenthesis and Student statistical
tests were performed between Raw data clustering and each XML data clustering.

Globally, no clustering method stands out from the others in terms of the number
of clusters. Agnes and EM are the only two with greater numbers of clusters for Raw
than for all explanation methods, with Agnes producing significantly fewer clusters with
explanations from all methods than with Raw. EM produces similar numbers of clusters
for Shapley-based XML methods - Spearman Coalitional, SHAP and TreeSHAP -, slightly
less than with Raw data, without this difference being significant. K-medoid and HDB-
SCAN produce more clusters with Shapley-based XML methods than with Raw data,
with significant differences for SHAP and TreeSHAP with K-medoid, and for the three
Shapley-based XML methods for HDBSCAN.

LIME is the only XML method with significant differences from all clustering methods.
The optimal number of clusters for LIME is significantly lower than with Raw data. This
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Kmedoid AgNes EM HDBScan
Raw 6.83 (8.73) 11.09 (12.15) 8.45 (10.43) 6.30 (5.06)
SHAP 9.61 (11.34) * 5.68 (7.59) *** 6.44 (8.28) 9.99 (6.83) ***
LIME 3.32 (3.91) *** 3.55 (4.61) *** 3.44 (4.38) *** 4.41 (2.70) ***
Spearman 7.35 (10.17) 7.02 (9.91) ** 6.24 (8.70) 7.89 (6.53) *
TreeSHAP 9.37 (11.29) * 6.24 (8.39) *** 6.36 (8.39) 9.04 (6.45) ***

Table 4.3: Mean and std of the optimal clusters number for each XML method and clus-
tering techniques. For Kmedoid, AgNes and EM, the number is based on the Silhouette
Score. P-values are represented as follows: (*) p < 0.05, (**) p < 0.01, (***) p < 0.001.

can be due to LIME discretisation behaviour studied in Chapter 3.4.2. As influence
values are close for a range of raw values, influences may be grouped more easily and with
fewer clusters. However, as mentioned above, a small number of clusters can lead to the
aggregation of very disparate instances in terms of labels. Then, the significant results
in the number of clusters are not an indicator of better explanations or better clustering
with LIME and this study of the optimal number of clusters alone did not assess the
quality of these clusters.

In this direction, Table 4.4 shows how each Raw and XML clustering performs against
each other based on the quality of the clusters. For each type of data, for each clustering
method, with clusters computed based on the optimal number, we retrieve the number of
times each one has the best entropy and purity - the highest purity and lowest entropy.

Purity Entropy
Kmedoid AgNes EM HDBScan Kmedoid AgNes EM HDBScan

Raw 14 22 17 7 14 10 15 29
SHAP 29 21 34 21 28 29 24 28
LIME 9 7 9 11 17 21 21 20
Spearman 32 40 36 25 52 49 52 47
TreeSHAP 31 32 32 35 31 28 30 34

Table 4.4: Number of times each XML method performs best for four clustering methods
(highest purity and lowest entropy) over the hundred datasets. In the event of a tie,
each XML method gets one point and the best score is shown in bold for each clustering
method.

Regarding Purity, the best results vary depending on the clustering techniques and
the XML methods. Spearman Coalitional has the best results for K-medoids, Agnes and
EM. TreeSHAP is better than other XML methods for HDBSCAN to produce clusters
with high purity. Except with HDBSCAN clustering, LIME has the worst scores and is
below Raw clustering. LIME having low numbers of clusters seems to drastically impact
the purity metric, as instances of each label must be split into different clusters and no
single class must take the lead in each cluster, validating our RQ4 hypothesis. Conversely,
for the best purity, there seems to be no link between a high number of clusters and high
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entropy, since Spearman Coalitional and TreeSHAP are not always the methods with the
most clusters on average for the clustering techniques in which they perform best.

In entropy, Spearman Coalitional has the best results for all clustering methods. These
results also do not correlate with the lower or greater number of clusters for each clustering
technique. From these two analyses when the optimal number of clusters is considered,
Spearman Coalitional and TreeSHAP influences produce clusters with a higher quality
than Raw data. Even SHAP has good results, with high numbers of better purity and
entropy. This correlates with the results of our previous study with non-optimal numbers
of clusters based on percentages, supporting our RQ4. Comparing the results from K-
medoid, Agnes and EM with HDBSCAN shows that our approach is also valuable with
density-based and non-parametric clustering techniques.

Finally, when choosing a clustering technique and an XML method, one can choose the
best combination based on their clusters’ quality preferences. When minimising entropy
-i.e. creating clusters where instances with the same labels are in the same clusters-,
one can focus on Spearman Coalitional influences, whatever clustering method. Based
on purity and focusing on clusters with one majority label, a best practice can be to try
Spearman Coalitional and TreeSHAP with multiple clustering techniques to make the
most of explanation clustering.

4.4.3 Discussion
Clustering on XML influences showed better results than clustering on raw data, re-
gardless of the percentage/number of clusters or the performance of the modelling, espe-
cially for Shapley-based XML methods. This behaviour was seen in multiple clustering
techniques working differently around data to compute clusters. The influences seem to
contain information allowing a better clustering, probably by highlighting the most sig-
nificant attributes for each instance or removing noises from raw data. This finding seems
consistent with the results of Cooper et al. (2021) while showing a more global approach,
working with other XML methods than SHAP and a hundred of datasets.

Separating the instances correctly and incorrectly classified by the model also gives
better results than keeping all the instances together. Since the information in the two
subgroups is different, they each seem to create noise in the information of the other
subgroup. Indeed, the misclassified instances are often outliers or critical instances in
the dataset. Their behaviour is different from the general behaviour of the data, whereas
correctly classified instances follow the behaviour that the model detects. However, as
some misclassification may result from bias in a subgroup of the data or from the atypical
behaviour of that subgroup compared to the whole dataset, it is of great interest to study
them as a priority. When separating correctly and incorrectly classified instances, the
differences in cluster quality seem to be more pronounced with the Spearman Coalitional
method than with SHAP. The contribution seems to depend on the XML method used,
probably because of the calculation of influences since SHAP creates perturbations on
the instances and Spearman Coalitional keeps the input data as it is. A limit to these
subgroups’ separation is also the decrease of its relevance when the accuracy of the model
increases. Indeed, the number of false instances logically decreases with increasing accu-
racy. Creating an XML model and clusters with a low instance count does not make sense
and can only lead to data misunderstanding. However, as the accuracy increases, the false
instances become mostly outliers of the dataset or biased instances rather than subgroups
with their behaviours to analyse. Their small number can be analysed manually without
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any particular clustering method.
Explanations clustering being better than Raw clustering also emerges when focusing

on the optimal number of clusters for each dataset, clustering technique and explana-
tion type. Spearman Coalitional and TreeSHAP appear to be the best local explanation
methods to perform explanation exploration. The mean number of clusters also did not
correlate with a better purity or entropy across all the datasets. In this setup, LIME again
produce worse results than the other explanation methods, suggesting that LIME influ-
ences are not suitable for clustering, and data exploration through clustering. Shapley-
based methods then seem more reliable for exploration, as SHAP also perform well with
all clustering techniques.

Finally, the proposed approach also adds another use of influences. Clusters based on
influences can be used to focus on sub-groups of data to be studied. Clustering can be
combined with other approaches to understand the clusters created, like rule-based algo-
rithms or instance selection. As mentioned before, the inner properties of each clustering
technique can be used to explore clusters. Hierarchical clustering can be valuable for ex-
ploring similar influences and instances or how influences behave with different numbers
of clusters/on different hierarchical levels. The data distribution and variance in each
cluster from EM clustering can explain what attributes are important for each cluster
and may explain how clusters are built. Medoids from K-medoids can be used to select
representative instances and summarise each cluster. Density-based approach may allow
the discovery of prototypes from high-density clusters and outliers/critic instances from
low-density clusters, enhancing the understanding of the dataset and summarising it as
with medoids. Our results reinforce the idea that influences can be considered as new in-
puts for finer analysis on the ML modelling pipeline, to gain a more in-depth and concise
understanding of the ML model and the underlying data.

4.5 Conclusion
This Chapter details the work carried out on the use of explanations as a new set of
data to be explored. We propose a complete framework to analyse local explanations for
data exploration. We aim to discover categories of explanations, so instances, to study
them from a perspective other than the raw data and with the knowledge retrieved from
modelling.

We combine local attributive XML methods with clustering to explore the space of
influence data and uncover new insights about the explanations, the prediction, the mod-
elling and the dataset. We provide clusters of similar instances based on their explanations
to assist and improve data analysis based on explanations. We then add another use of
influences to the ones from the literature.

We provide a set of experiments to validate the valuable contribution of influence-based
clustering for multiple XML methods, clustering techniques families and varying numbers
of clusters. The clusters from the influence-based framework are more homogeneous and
of better quality whatever the XML methods and the clustering techniques used.

We prove that the explanations clusters are of good quality and pertinent, even for
low-performance models and misclassified instances. We show the advantages of splitting
the well- and misclassified instances by the model when studying a dataset as a whole, as
it highlights the most important subgroups of data and the behaviour of outliers simul-
taneously. We finally highlight the different behaviours of explanation clustering when
considering the optimal number of clusters and provide a medical example of how clusters
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of explanations can be used in real-world applications and support data analysis.
Based on our results, our approach could be extended for other supervised tasks. Clus-

ters can also help select informative instances and provide a small number of instances
to users. These instances can help to understand datasets and modelling using examples
rather than statistical information. Based on the different advantages of each cluster-
ing technique family, we can explore how to make the most of each cluster, to better
understand the explanations, the prediction, the modelling and the dataset.
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Explanations in user’s hands:
explanations for medical applications
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5.1 Introduction
Among the potential uses of explanations, a significant part involves their contribution
to the end-users of machine learning models. Providing appropriate information to help
users understand ML functions and decisions is one of the critical aspects of explanations.
However, user tests are often absent from evaluations of explanation methods and the
number of implementations of explanations in real-world applications documented in the
literature is limited (Liao et al., 2020). Bhatt et al. (2020) find that the majority of
explanation deployments are meant for machine learning engineers and to debug the
model itself, not for end-users and the persons affected by the model. Limitations to
providing explanations to end-users include the lack of framework on how to provide
explanations, the need for domain experts to evaluate explanations, the risk of spurious
correlations explanations, the lack of causal intuition, and the latency in computing and
showing explanations in real-time (Bhatt et al., 2020). Baniecki et al. (2023) also claim
that a closed-box machine learning model cannot be explained by only a single explanation
method, which highlights only one perspective of the model functions and decisions. They
define isolated explanations as "prone to misunderstanding, leading to wrong or simplistic
reasoning".

Based on the works in Liao et al. (2020); Baniecki et al. (2023), we focus on how
combining multiple explanations methods can lead to better application of explainability
for end-users in real-world applications. Based on our previous work, we hypothesise that
analysing explanations can also enhance their usability, actionability and tractability for
end-users, especially in user interfaces built for them.

In this Chapter, we want to emphasise the importance of users in the use of explana-
tions. In Section 5.2, we show how users’ understanding of explanations can be enhanced
with appropriate user interface and applications of explanations. We build question-driven
user interfaces displaying explanations and implement them in medical applications. We
show our creation process from the first mockups to the actual user interface and we
justify the combined use of several explainability methods, types of graphical and textual
visualisations and explanation-based analysis tools. In Section 5.3, we highlight how the
same dataset, modelling and explanations can be used in different setups, to also enhance
the understanding of explanations by users, and their usability and actionability. In our
case, we present one "real-world" medical application and one medical exploratory data
analysis on the selected dataset. Then, in Section 5.4, we describe our exhaustive ex-
perimental protocol for carrying out user tests, to assess the relevance and impact of the
explanations and their analysis. We expose our primary and secondary hypotheses, the
materials used - dataset, modelling and explanations -, and detail our methods: the se-
lection of users, the experimental design, the statistical techniques to evaluate our results
and the expected bias and limits we consider in our experiments.

Part of the work mentioned in this Chapter has been published in the following arti-
cles: Excoffier, Escriva, Aligon, and Ortala (2022a); Escriva, Doumard, Excoffier, Aligon,
Monsarrat, and Soulé-Dupuy (2023b)

5.2 Displaying explanations in medical applications
As part of my thesis, I work at Kaduceo company in the implementation of explainability
in medical applications aimed at hospitals and healthcare professionals. In this context,
we explore how multiple approaches of explanations, especially global and local, can be
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combined. We aim to give an overview of the modelling and the prediction, as medical
practitioners can easily and efficiently understand the model, the data and the prediction
for each patient. We also want users to be able to carry out their own analyses and
compare their expertise with the information extracted from the explanations.

5.2.1 Mock-ups design
To build our user interface, we combine multiple explanation approaches: (1) a global
approach to give the users an overview of the modelling and the data analysed, and
(2) a local approach to explain prediction for each patient precisely and enhance the
understanding of each patient.

For the global approach, based on the "XAI Question Bank" in Liao et al. (2020),
we select the question we want to answer thanks to explainability, based on our users’
needs. We build the first mock-up1 for global explanations in Figure 5.1 by focusing on
the following: "How does the system make predictions?". Especially, we focus on the
questions "What attributes does the system consider?", "How does attribute X impact the
predictions ?" and "What are the top attributes that determine its predictions?".

Visualisation 1 represents the beeswarm plot of the explanations, where each point
is one instance of the dataset. The colour range represents the attribute value in the
dataset, from low-value in blue and high-value in pink, and the X-axis represents the
influence value of the attribute. This information is completed by visualisation 2 which
displays the average influence for each attribute over the entire dataset. For qualitative
attributes, average influence can be displayed based on each category by clicking on the
attribute name. With these visualisations, we aim to summarise how attributes values and
influences interact based on the modelling and how each attribute impacts the predictions.

In addition to global explanations based on post-hoc explainability, we choose to focus
on classical statistical analysis with univariate and bivariate analysis. Visualisations 3 and
4 are Partial Dependence Plot (PDP) between the values of each attribute and respectively
the influence of the attribute or the prediction. These visualisations highlight for each
attribute the interaction between attribute values and the influences or the prediction, in
more detail than the previous visualisations 1 and 2. PDPs are known to be intuitive and
understandable, and the broad outlines of the model’s behaviour can be extracted from
these visualisations. Next, bivariate analysis is used to study the relationship between two
variables in the dataset, at both the raw data and influence levels. Firstly, the x and y axes
are used to position each instance according to the influence of the attributes of interest.
Secondly, the colours and sizes of the circles represent the raw values of the attributes.
This highlights the relationship between attributes in the raw data and the impact of
these relations in the explanations. Although less intuitive than simpler visualisation, it
is useful for discovering potential correlations between variables and analysing how the
explanations between these two variables behave.

Finally, we display patient profiles to summarise the dataset. These patients are se-
lected based on clusters computed on influences. These patients can be seen as prototypes
of the dataset, representative of the behaviour of groups of patients. It can help under-
stand the factors that are important for each group of patients, and therefore gain an
overview by looking at specific cases.

1Figures and diagrams in the Mock-ups only serve as examples, data between each visualisation are
unrelated.
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Figure 5.2 is the mock-up for local explanations, when focusing on a particular patient.
As for global explanations, we focus on providing diverse information to understand pre-
diction comprehensively and efficiently. Based on the "XAI Question Bank" (Liao et al.,
2020), we focus on the "Why?" and grasp some intuitions on "How to be that? (a different
prediction)" and "How to still be that? (the current prediction)". With local prediction,
we try to answer to "Why/how is this instance given this prediction?" especially "What
feature(s) of this instance determine the system’s prediction of it?"

First, we provide a view of the dataset and their prediction, to select the patient
of interest. When chosen, the user accesses the local explanation in visualisation 7 in
the mockup 5.2, where the influence of each attribute is shown and helps understand
which attributes contribute to the prediction for this particular patient. Visualisation 8
allows a deeper view by providing the average influence of each attribute for the predicted
class. The aim of combining these two visualisations is to help the user understand the
prediction for this patient and to position the explanations to other explanations for this
same prediction.

Then, we provide profiles of similar patients to give more context to the selected patient
and how some changes in attributes can change or not the prediction. We want to use the
idea of counterfactual explanations and minimal/maximal changes to change/conserve a
prediction while using existing examples in the dataset. This idea links to the questions
"How should this instance change to get a different prediction ?" and "What is the scope of
change permitted for this instance to still get the same prediction?" of the "XAI Question
Bank" (Liao et al., 2020), especially "What kind of instance gets the same prediction?" and
"What would the system predict for a different similar instance?". This section can also
be easily updated to display both similar and dissimilar patients, in terms of prediction
and/or raw data, to give an even more global overview of the modelling behaviour for
similar patients.

The highlighted patient is also linked to the possible actions displayed. Based on the
dataset and the prediction, we highlight attribute values that increase or decrease the
prediction probability. These actions can help define a therapeutic protocol for patients,
supplementing and summarising the information already gathered from explanations and
similar patients.

These mock-ups were implemented in Kaduceo company’s applications, and adapted
according to the modelling scenarios and the needs and preferences of the healthcare users.

5.2.2 Implementation in medical applications
Figure 5.3 shows the main user interface for model performances and global explanations,
on a task that computes the patients’ readmission risk based on their information and
their previous hospital stays. This page is displayed after the modelling training. The
top half of the interface summarises the model performances based on multiple well-
known metrics and visualisations for Machine Learning: F1 score, accuracy, AUC score,
Sensitivity, Specificity, Confusion Metric and ROC Curve. It aims to give the user insight
into how well the model performs on this task.

The model explanation part is then divided into the ranking of attributes by impor-
tance in the prediction and the main groups of patients identified. Attributes importance
ranking is displayed through text and visual representation. Each attribute can also be
explored more specifically, as seen in 5.4. This figure shows the interface accessible with
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the "See more" button, which displays the Partial Dependence Plot between the dataset
values and the influences for the attribute of interest.

The "main groups identified" section displays the information for the clusters com-
puted on influences. For each cluster, the average risk or readmission, the number of
patients in the clusters, the proportion of these patients in the total dataset and the most
important attributes of the clusters are directly visible in the interface. Then, thanks to
the "Variables" button, for each cluster, the 5 most important attributes with their values
and influences on the prediction and the influences of the central patient of the group
appear, as visible in Figures 5.5. This information can help understand each cluster and
important behaviours in the dataset.

Finally, Figure 5.6 shows how we implemented local explanation in the context of
predicting patients’ hospital stay duration. For each patient, we display the prediction
in days, the confidence in this prediction and, on the right, a chronology of the main
events that occurred during the hospitalisation. The local explanation is displayed along
with the patient information, to help understand the prediction and what attributes most
increase or decrease the prediction.

In summary, the implementation of explanations in current medical applications is a
challenge in itself, requiring mainly adaptations for each prediction task. An interesting
approach seems to be to combine several explanation approaches to provide the broadest
view to healthcare professionals and let them analyse the information with their medical
knowledge.

5.3 Analysis of medical ML explanations
More than only explaining a single prediction for one patient, we already show in Chapter
4 that explanations can also be used in exploratory data analysis. In this section, we use
medical exploratory data analysis to understand the modelling and retrieve new knowledge
from the data. On the same dataset, we aim to show how explanations can be used for
multiple purposes: risk stratification for precision medicine and exploratory analysis to
better understand disease and/or the behaviour of typical and atypical patients.

5.3.1 Materials & Methods
For this study, we use an open dataset, the Acute Inflammation dataset2. The Acute
Inflammation dataset was created to develop an expert system for urinary disease. It con-
sists of 120 patients, described by six attributes: Temperature (35°C-42°C), Occurrence
of nausea (yes-no), Lumbar pain (yes-no), Urine pushing (continuous need for urination,
yes-no), Micturition pain (yes-no) and Burning of urethra, itch, swelling of urethra outlet
(abbreviated as Urethra burning, yes-no). Each patient can have two different diseases of
the urinary system: acute inflammation of the urinary bladder (AIUB) and acute nephri-
tis of renal pelvis origin. Patients may suffer from both diseases simultaneously, so this
dataset is a multi-output problem. We only focus on the AIUB disease to have a binary
classification problem. Medical staff defined AIUB as "a sudden occurrence of pains in the
abdomen region and the urination in form of constant urine pushing, micturition pains
and sometimes lack of urine keeping. The temperature of the body is rising, most often not

2Dataset: https://archive.ics.uci.edu/ml/datasets/Acute+Inflammations
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Figure 5.1: Mock-up for global explanations for a medical application.
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Figure 5.2: Mock-up for local explanations for a medical application.

above 38C. The excreted urine is turbid and sometimes bloody" (Czerniak and Zarzycki,
2003).

In this dataset, 59 out of 120 patients have AIUB disease. Only the Temperature of
patient is a quantitative attribute while the five others were all binary variables. Table
5.1 indicates the main characteristics of the global, non-AIUB and AIUB populations.
Statistical tests were performed between Non-AIUB and AIUB. Results are presented with
mean and standard deviation for quantitative attributes, and numbers and proportions
for qualitative attributes which were all binary indicators. P-values were adjusted using
Bonferroni correction to control the family-wise error rate.
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Total Non-AIUB AIUB p-value
Nb patients 120 61 (50.8%) 59 (49.2%)

Quanti. Temperature 38.72 (±1.8) 39.15 (±1.9) 38.29 (±1.7) 0.0552
Quali. Nausea 29 (24.2%) 10 (16.4%) 19 (32.2%) 0.4224

Lumbar pain 70 (58.3%) 51 (83.6%) 19 (32.2%) <0.01 **
Urine pushing 80 (66.7%) 21 (34.4%) 59 (100.0%) <0.01 **
Micturition pain 59 (49.2%) 10 (16.4%) 49 (83.1%) <0.01 **
Urethra Burning 50 (41.7%) 21 (34.4%) 29 (49.2%) 0.8814

Table 5.1: Population characteristics.

On this dataset, we apply a three-step methodology, common to our two analysis
goals. This approach aims to analyse datasets through ML modelling and local explana-
tions. Based on the dataset of interest consisting of patients’ medical records and their
disease diagnosis, this method allows an understanding of interactions between patients’
characteristics and the disease.

(1) The first step consists of ML predictive modelling, to evaluate the risk of AIUB
disease for each patient based on the understanding of the complex statistical relation-
ship of the dataset. An XGBoost model, a boosted tree ensemble technique (Chen and
Guestrin, 2016), is used for its efficiency. We use a nested cross-validation (CV) procedure
to provide unbiased modelling (hyperparameters optimisation with an inner 5-fold CV)
and to evaluate performances and compute local explanations (through an outer 5-fold
CV). As for the model performances, there was an accuracy of 98.33%, a sensitivity of
96.72%, a specificity of 100% and an AUC ROC Score of 99.06%.

(2) Second step is the explanation of the modelling to provide individual explanations
of the prediction for each patient, corresponding to individual risk and protective fac-
tors. TreeSHAP (Lundberg et al., 2020), a local attributive XML method for tree-based
predictive models, is used to compute influence explanations.

(3) Last step consists of identifying subgroups of similar patients to discover local
patterns in the data and explain the subgroups’ characteristics. K-Medoids algorithm
(Park and Jun, 2009) is used for the clustering task to ensure robustness against outliers,
while the optimal number of groups was chosen with the Silhouette score. K-medoids
algorithm is used on the influence explanations from step (2), with the advantages of
taking into account the non-linear interactions discovered by the model while having all
features at the same unit.

5.3.2 Risk Stratification
This analysis is an exploration of healthcare risk stratification based on influences from
TreeSHAP. In healthcare, physicians need to link a patient to a more global context to
deliver the most relevant care. Care management through risk stratification (abbreviated
as RS) is thus commonly used in healthcare (Dera, 2019). It consists of the identification
of several groups, where patients in the same group have similar conditions and risk levels.
It also has been shown that physicians’ usefulness and confidence in such RS workflows is
the highest when it lets a large place for human presence and action (Ross et al., 2017).
Predictive tools, associated with explanations explorations, should be able to provide
explanations about the individual prediction and enable the user to contextualise the
observation and its related prediction: Is it a well-known or conversely an atypical case?
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Can it be linked to a more general group?. This medical use case would provide physicians
and medical staff a clearer view of the different profiles of patients, also called typologies,
so that they can adjust or create medical protocols that best fit the specific needs, either
in terms of condition and risk level, for each identified patient typology, to deliver the
most appropriate care for every patient efficiently.

The influence of each attribute is displayed in Figure 5.7. For each sub-graph, a
dot represents a single patient, with the attribute value on the x-axis and the associated
influence on the y-axis. Lumbar pain and an higher Temperature of patient were associated
with an lower risk of AIUB, while Occurrence of nausea, Micturition pains, Urine pushing
and Burning of urethra, itch, swelling of urethra outlet all increased the AIUB risk.

The optimal number of clusters using the Silhouette score is 7. The K-Medoid method
also allowed us to find out the most representative patient profile of each group to get a
clear view of their characteristics and specificity. Figure 5.8 indicates for each cluster its
most representative patient with the associated influences. For each cluster, the associated
title indicates the predicted probability of having AIUB and the number of patients in the
cluster. Attribute names are represented by their initials for the sub-graph not located
on the far left. Initial values of attributes are indicated after the hyphen. A positive
influence (represented in red for visual help) increases the AIUB risk. The population
is rather uniformly distributed among the clusters, indicating no atypical cases in the
dataset. Clusters are different in terms of risk level and risk factors. Indeed, even when
two clusters have close risk levels, they significantly differ when considering the risk factors.
Clusters 1, 2 and 3 have low levels of AIUB risk, with only one slight risk factor. Cluster
4 has two risk factors, including Micturition pains, a heavy risk factor. Cluster 5 has no
Micturition pains but three other risk factors. Clusters 6 and 7 had the highest risk level
with several risk factors.

To sum up, this exploration identified several medical cases in this context (i.e. the
different typologies of patients). Identified effects of attributes are coherent with medical
indications about AIUB given in the original paper (Czerniak and Zarzycki, 2003). Mixing
ML modelling and computation of attributes’ influences allow us to quantify and identify
both the risk level and the associated risk factors which were then used to construct the
final RS. It extends the use of influences (i.e. local explanations) to get a more efficient
view of the situation by identifying the existing typical subgroups that differ either in
their situation (risk level) or condition (protective and risk factors). The focus we also
made on the most representative case of each group (i.e. the medoid) gives an even clearer
understanding of the global situation. Moreover, this approach can help doctors to adapt
or create medical guidelines and protocols to best meet each group’s specific needs. For
example, using group decision rules, practitioners could associate a new patient with a
larger group and then provide that new patient with the appropriate care defined for that
specific group.

5.3.3 Exploratory data analysis
Exploratory data analysis techniques are meant to investigate data and discover patterns,
make and test hypotheses with the help of statistics, graphical representation, cluster-
ing or predictive tools. In particular, Bottom-Up approaches aim to find patterns and
gain insight by analysing data without making a-priori hypotheses (Morgenthaler, 2009;
Wirsch, 2014). Among the tools for exploratory data analysis, predictive approaches,
primarily through machine learning, have made it possible to capture more complex sta-
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tistical phenomena in the data that classical statistical techniques cannot understand.
Local explanations also allow investigation of the reasons behind the model prediction for
each instance.

Then, our objective is to apply a bottom-up exploratory data analysis approach on
a medical dataset, on both explanations and raw data, to highlight and compare the
knowledge retrieved in both data spaces. We show that explanations can allow a deeper
dataset investigation. This study can also show the usefulness of seeing explanations not
only as an outcome but also as a tool.

First, we focus on analysing raw data, statistically and based on the clusters created.
Then, we explore the TreeSHAP explanations for all the instances and the explanations
clusters. To understand clusters, decision rules are created with the Skope-Rules algorithm
(Gardin et al., 2019). Rules are computed to ensure perfect precision and recall of all rules:
all instances of the cluster respect the rule, and all instances respecting the rule belong
to the cluster.

Raw data Analysis Populations and statistical tests. Table 5.1 shows the main char-
acteristics of the dataset using raw data only, with results from statistical tests performed
on AIUB and non-AIUB patients. Three attributes are defined as statistically significant
to detect AIUB: Lumbar pain, Urine pushing and Micturition pain. Patients with lumbar
pain seem to have less AIUB while having urine pushing and micturition pain correlate
with an AIUB diagnosis.

Clustering and rule-based analysis. To create homogeneous groups of patients, one
method consists of performing clustering. The optimal number of clusters was 11, based
on the silhouette scores in Table 5.2. Table 5.3 shows the rules defined by Skope Rules to
describe each cluster. Rules have a median of 2.5 attributes per rule. All rules have perfect
precision and recall with a maximum of three attributes, which is a small enough number
of attributes to facilitate the interpretation of each rule. The most used attributes are
urethra burning and temperature with six distinct occurrences, both previously defined
as not significantly discriminating for AIUB diagnosis in Table 5.1. Only one cluster,
Cluster 2, uses only significantly discriminating attributes. Also, having eleven clusters
makes it challenging to easily understand the rules and clusters.

Table 5.2: Silhouette Score for multiple numbers of clusters for Raw data.

K 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Raw 0.56 0.44 0.37 0.42 0.46 0.51 0.54 0.54 0.56 0.57 0.56 0.56 0.56 0.56

XML analysis Local post-hoc explanations. Figure 5.9 shows the SHAP mean abso-
lute influences and the distributions of influences based on the attribute value. In the
distribution plot, the attributes are sorted in decreasing attribute importance from top
to bottom and each dot represents an instance from the dataset, its colour representing
the raw value of the attribute. The position on the x-axis represents the contribution of
the attribute to the prediction of this individual, and overlapping dots are spread on the
y-axis.

The three most important attributes were Micturition pain, Urine pushing and Tem-
perature. Micturition pain and Urine pushing increases the risk of having AIUB. On the
contrary, a higher temperature decreases the probability of having AIUB. In particular,
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Table 5.3: Decision Rules for clusters based on raw data, with the number of patients per
cluster and the mean percentage of AIUB-risk.

Rules Nb Mean %
1 Nausea = 1 & Urine pushing = 0 10 45.6
2 Lumbar pain = 0 & Urine pushing = 0 10 10.7
3 Nausea = 1 & Urethra burning = 1 9 72.2

4 Temperature < 39.85 & Micturition pain = 0
& Urethra burning = 1 10 13.0

5 Lumbar pain = 0 & Urethra burning = 1 20 97.1

6 Temperature < 38.95 & Temperature > 36.65
& Urine pushing = 0 13 11.0

7 Temperature < 38.95 & Lumbar pain = 0
& Micturition pain = 0 10 59.9

8 Nausea = 1 & Urine pushing = 1 & Urethra burning = 0 10 73.6
9 Temperature > 39.85 & Nausea = 0 & Urethra burning = 1 11 11.2
10 Lumbar pain = 0 & Micturition pain = 1 & Urethra burning = 0 10 97.1
11 Temperature < 36.65 & Urethra burning = 0 7 11.2

having urine pushing also seems to have less impact on the prediction than not having
urine pushing. In contrast, Nausea and Urethra burning have little to no impact on the
predictions. For nausea, SHAP describes that having them increases the risk of AIUB for
some patients and a subgroup of patients is identified.

Figure 5.10 shows the distribution of influences only for patients having Nausea. Look-
ing in detail at these patients, they all suffer from lumbar pain, micturition pain and
temperature above 40°C (which is higher than the dataset mean). There seems to be a
subgroup of patients with a strong relationship between these four attributes. Moreover,
for this subgroup of patients, there is a strong correlation between the attribute Urine
Pushing and the presence of AIUB: when patients have urine pushing, they have an AIUB;
when they do not have urine pushing, there is no AIUB. This subgroup is probably best
to study, as the nausea attribute may create a real-world bias due to its strong association
with other attributes in the dataset.

Clustering and rule-based analysis. As one subgroup is already discovered, clustering
can help to find other subgroups of interest. For clustering on SHAP influences, the
optimal number of clustering is set as 7, based on the silhouette score in Table 5.4. Table
5.5 shows rules defined by SkopeRules for clusters based on influences. These rules have
a median of two attributes per rule and focus mainly on statistically relevant attributes.
Only one decision rule consists of three attributes, and the most used attribute is Urine
Pushing, with five occurrences. As shown before for the "Nausea subgroups", this attribute
is the most important for patients with Nausea (clusters 4 and 6) and also for patients
with lumbar pain (clusters 3 and 5). Urine Pushing does not appear in rules only for
clusters 2 and 7, the two biggest clusters, where AIUB-risk is respectively very low and
very high. These clusters may be interesting to study from a medical point of view to
understand patients’ characteristics and why the Urine-pushing variable is not the most
relevant variable to distinguish them from other clusters. Also, although Micturition pain
is the most influential attribute for SHAP, it is not very present in the rules, mainly
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because this attribute seems replaced by the attribute Nausea in the clusters since there
is a strong link between having Nausea and Micturition pain.

Table 5.4: Silhouette Score for multiple numbers of clusters for XML data.

K 2 3 4 5 6 7 8 9 10 11 12 13 14 15
XML 0.59 0.59 0.52 0.62 0.69 0.76 0.74 0.69 0.63 0.61 0.61 0.61 0.62 0.67

Table 5.5: Decision Rules for clusters based on influences, with the number of patients
per cluster and the mean percentage of AIUB-risk.

Rules Nb Mean %
1 Temperature <= 38.89 & Urine pushing = 0 20 11.0
2 Micturition pain = 0 & Urethra burning = 1 21 12.0
3 Lumbar pain = 0 & Urine pushing = 0 10 10.7
4 Nausea = 1 & Urine pushing = 0 10 45.6
5 Lumbar pain = 0 & Urine pushing = 1 & Micturition pain = 0 10 59.9
6 Nausea = 1 & Urine pushing = 1 19 73.0
7 Lumbar pain = 0 & Micturition pain = 1 30 97.2

To sum up, both raw data and explainability methods detect patterns in the data,
subgroups of patients and information about the relationship between the AIUB disease
and patients’ symptoms. In addition to the information learned in the literature (Cz-
erniak and Zarzycki, 2003) and found in the raw data analysis, the explanation-based
data analysis allowed risk and protective factors to be identified more concisely. Rules
are mainly based on statistically significant attributes, adding interactions between at-
tributes, and with the target class, compared to raw data analysis. The smaller number
of clusters and attributes in each rule also simplifies the understanding of patient sub-
groups and the relationship of each attribute to the AIUB risk. With raw data, multiple
clusters have similar mean percentages of AIUB risk and almost identical patients. The
differences between these clusters are often based on attributes not important for de-
tecting AIUB. This behaviour can be beneficial to study the dataset in-depth, less for
discovering the attributes that truly impact the diagnosis of the disease and for capturing
concise knowledge. The conciseness provided by influences also makes it easier to assign
a new patient to a subgroup of patients to study their disease and risk factors. This
advantage comes from the ability of ML modelling to capture more complex relationships
than traditional statistical methods. Finally, the explanation data allowed the discovery
of relevant subgroups of patients, including those with nausea. This subgroup has strong
relationships between several attributes, and the presence of AIUB is based solely on the
attribute Urine Pushing, making its study engaging for understanding the mechanisms of
the disease in some patients. Finding this type of subgroup can help to investigate biases
in the dataset, especially around the attribute Nausea.

5.3.4 Discussions
Based on these two explorations of the Acute Inflammation dataset, similar conclusions
can be drawn: the results were obtained thanks to the explanations, and would not have
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been possible with the initial data alone. Using explanations appears a strong option
to consider when the final objective of the data analysis is either the construction of an
RS or patient profile discovery. In the second example, we show that combining raw
data and explanations adds significant value to exploratory data analysis. We want to
bear in mind that exploring the raw data, the model and the explanations can facilitate
users’ understanding and increase the contribution of the explanations by giving them
meaning. Explanations do not appear as data that is independent of the initial data but
as a complement and support to its understanding.

Finally, the proposed exploration should be applied and tested in more complex med-
ical contexts, with datasets having different characteristics, such as more observations,
more attributes, and more variability leading to lower model performances. Confronting
our analysis with medical experts is also necessary to ensure the relevance, tractability and
actionability of our experiments, interface design introduced in 5.2 and explanation-based
analysis.

5.4 Medical User Tests Protocol
This experimental protocol was created in collaboration with Julien May, a final-year
student at Toulouse Health University and Paul Monsarrat, Professor at Toulouse Health
University.

5.4.1 Purpose
In the existing literature described in 2.3, few domain experts are present in studies
evaluating the performance of explanations. While there are now many publications on
explainability, experiments on its contribution to an expert’s performance are rarer. With
this in mind, we have designed an experiment focused on medical experts, to evaluate the
interest and potential benefits that XML could bring to healthcare professionals, compared
with the contribution of AI alone. We also want to assess the value of the explanations
about the user’s level of expertise in the medical task used in the experiments.

Primary Hypothesis If we formulate the following two hypotheses:

• H0 (null hypothesis): The use of XML does not improve the accuracy and/or speed
of diagnosis for the medical expert compared to the use of data alone or combined
with machine learning.

• H1 (alternative hypothesis): The use of XML improves the accuracy and/or speed
of diagnosis for the medical expert compared with the use of data alone or combined
with machine learning.

The main objective of this study will therefore be to attempt to demonstrate that hy-
pothesis 1 is true and that the null hypothesis is false, or that the null hypothesis is not
shown to be false. For that, we define α, "the probability of the study rejecting the null
hypothesis given that the null hypothesis is true" (Dalgaard, 2008), to 0.05.

Secondary assumptions In addition, several secondary targets can be defined in the
form of the following queries, which we will attempt to answer:
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• Does the improvement in diagnosis accuracy and/or speed thanks to the explana-
tions differ according to the practitioner’s expertise?

• Is there an improvement in the accuracy and/or speed of diagnosis with the use of
data associated with the ML compared with the use of data alone?

• Is there a more significant improvement in the accuracy and/or speed of diagnosis
for patients misdiagnosed with the use of data alone?

• Do the medical expert and the SHAP method give the same order of importance to
the variables when making their diagnosis?

These secondary objectives are of interest to understand how medical experts react to the
predictions and explanations and to be able, if necessary, to adapt the explanations to
the medical experts after analysing the results.

5.4.2 Materials
To design this experiment, we chose an open dataset to ensure data reproducibility and
anonymity. We use the open dataset SA-Heart (Rossouw et al., 1983). It retrieves retro-
spective information about 462 South Africans from the heart-disease high-risk region of
the Western Cape. The main objective of this dataset is to predict the presence of coro-
nary heart diseases (CHD) according to nine attributes: tobacco (cumulative consump-
tion tobacco), age (at the onset), LDL (low-density lipoprotein cholesterol), adiposity
(estimation of the body fat percentage), obesity (through the body mass index), family
(family history of heart disease, present or absent), alcohol (current alcohol consump-
tion), SBP (systolic blood pressure) and type-A (Type-A behaviour scale).

Table 5.6 indicates the main characteristics of the global, non-CHD and CHD popula-
tions. Statistical tests were performed between Non-CHD and CHD. Results are presented
with mean and standard deviation for quantitative attributes, and numbers and propor-
tions for qualitative attributes which were all binary indicators. P-values were adjusted
using Bonferroni correction to control the family-wise error rate. Most of the attributes
are statistically significant to detect the two classes. Only the Alcohol, Obesity and Type-
A attributes are not significant to distinguish between the patients with or without CHD.
This feature - most attributes are significant between the classes - in the choice of the
dataset is motivated by the presence of patients with strong characteristics for detecting
coronary heart disease. This will make it easier to detect sick patients, particularly for
cardiology experts, and therefore polarise the effects of the explanations for doctors. In
addition, the presence of patients with strong characteristics of the disease and other pa-
tients with less strong characteristics may make it possible to detect a different impact of
the explanations.

For modelling the data, we train an XGBoost classifier with default parameters (Chen
and Guestrin, 2016) and achieve a 0.91 accuracy and 0.90 ROC-AUC score. We exclude
the Type-A attribute as modelling performances were better without it. Table 5.7 shows
additional classification metrics on each class for the trained models and the correspon-
dence between the predictions and the true labels on all the dataset instances (called
confusion matrix). It shows that the model has better performances in predicting the
"Non-CHD" class than the "CHD" class. However, the number of False positive and False
negative predictions are low based on the confusion matrix.

106



5.4. MEDICAL USER TESTS PROTOCOL 107

Total Non-CHD CHD p-value
Nb patients 462 302 (65.4%) 160 (34.6%)

Quanti. SBP 138.33 (±20.5) 135.46 (±18.0) 143.74 (±23.7) <0.01 **
Tobacco 3.64 (±4.6) 2.63 (±3.6) 5.52 (±5.6) <0.01 **
LDL 4.74 (±2.1) 4.34 (±1.9) 5.49 (±2.2) <0.01 **
Adiposity 25.41 (±7.8) 23.97 (±7.8) 28.12 (±7.1) <0.01 **
Type-A 53.1 (±9.8) 52.37 (±9.5) 54.49 (±10.2) 0.2394
Obesity 26.04 (±4.2) 25.74 (±4.1) 26.62 (±4.4) 0.2835
Alcohol 17.04 (±24.5) 15.93 (±23.5) 19.15 (±26.2) 1.0
Age 42.82 (±14.6) 38.85 (±14.9) 50.29 (±10.6) <0.01 **

Quali. Family 192 (41.6%) 96 (31.8%) 96 (60.0%) <0.01 **

Table 5.6: SA-Heart patients characteristics.

Prediction
Non-CHD CHD Precision Recall F1-Score

Tr
ue

La
be

ls Non-CHD 286 16 0.93 0.95 0.94
CHD 23 137 0.90 0.86 0.88

Table 5.7: Classification performance metrics and confusion matrix for the model trained
on the SA-Heart dataset.

For explanation, we use the TreeSHAP approach (Lundberg et al., 2020) and compute
explanations for all patients based on the probability of coronary heart disease. Figure
5.11 displays global explanations of the modelling, based on the local explanations.

5.4.3 Methods
Users The target population for the experiment is doctors, particularly in cardiology,
to assess the potential benefit of using explanations in association with ML. However,
having a population representative of the target population in this study is not easy. The
main reason for this is the work overload of French healthcare staff due to understaffing.
We will therefore be trying to recruit as many doctors as possible, as well as lecturers and
researchers from medical schools, ideally experts in cardiology, and final-year students
with two to three years of clinical experience, to increase our numbers. The eligibility
criteria for recruitment are as follows:

• be a doctor who has been trained or is in training;

• have cardiology knowledge;

• a minimum of two years of clinical experience.

The recruitment criteria lead to a population with a heterogeneous level of expertise.
To correct a potential bias linked to this heterogeneity, the experts will therefore be
clustered according to two criteria:
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• a subjective criterion regarding their level of expertise in cardiology;

• an objective criterion based on their status (cardiologist, doctor from other special-
ities, 6th-year student, professor-researcher in medicine faculty).

These clusters can be compared with the whole group of experts to measure an increase
or decrease in the criteria observed. This process will make it possible to measure the
impact of the explanations compared to the users’ expertise levels.

The target is to recruit at least 100 users, to have sufficient results to establish statistics
with a reasonably solid basis.

Experimental Design Each user will be randomly allocated 9 anonymised patients
from the dataset, whom they will see during three different trial phases explained below.
Each patient will also be monitored by 10 practitioners.

Each patient presentation will be subdivided into three modes, inspired by Jesus et al.
(2021):

• Mode 1 (Control mode): presentation of the patient with the data alone;

• Mode 2: presentation of the patient with the data and the ML result;

• Mode 3: patient presentation with data, ML result and associated explanations.

The patients will be randomly divided into three groups A, B and C, and the ex-
periments into 3 phases. During the first phase, patients in Group A will be presented
in Mode 1, those in Group B in Mode 2 and those in Group C in Mode 3. During the
second phase, patients in Group A will be presented in Mode 2, patients in Group B in
Mode 3 and patients in Group C in Mode 1. During the third phase, each group will be
presented in the remaining mode. Thus, during each phase, each practitioner will see 3
patients in mode 1, 3 in mode 2 and 3 in mode 3. He will see the same 9 patients in
each phase, each presented in a different mode to the others. At the end of the three
phases, each practitioner will have seen each patient in each mode with sufficient time -a
minimum of one week- between each phase to ensure that the data from one mode does
not influence the others. We will use Mode 1, where users only access the patient’s data,
as the control mode to access the impact of providing explanations and Mode 2 to isolate
the explanations’ impact from that of the ML modelling.

The phases will be spaced a few weeks apart, to avoid practitioners recognising their
patients from their data and being influenced in their diagnosis by a diagnosis previously
made in another phase.

During each experimental phase, practitioners will be asked the following queries via
an online questionnaire made with LimeSurvey3:

1. Self-assessment of the healthcare professional’s level of expertise in cardiology on a
scale of 1 to 10;

2. Query on the health professional’s situation: cardiologist, doctor from other spe-
cialities, 6th-year student, professor-researcher in medicine faculty;

3. Training: One mode 1 training patient, one mode 2 training patient and one mode
3 training patient. Queries about the user prediction, their trust levels from 0 to
10, their attributes ranking from most useful to least useful;

3https://www.limesurvey.org/
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4. Presentation of the 9 patients (3 according to mode 1, 3 according to mode 2 and
3 according to mode 3) ordered randomly, one after the other. Queries about the
user prediction, their trust levels from 0 to 10, their attributes ranking from most
useful to least useful;

5. Query about how the patients felt about the XML contribution.

As previously mentioned, we expect to have users with varying levels of expertise. So,
the first two queries enable us to characterise users to construct differentiated statistical
indicators. We also ask these queries at each phase to monitor how users’ self-assessments
can differ with time, as it is a subjective evaluation. Queries about expertise levels are
displayed to users as in Figure 5.12.

Then, for training and test queries, for each mode, we display the patient charac-
teristics along with the specific information for modes 2 and 3: ML prediction and ML
performances for mode 2, with global and local explanations, clusters rules and similar
patients from the same clusters added for mode 3. For each mode, users are asked if the
patient has a coronary disease with a yes/no query and their level of confidence in their
answer on a 10-point scale. Then, users are asked to rank the attributes from most to
least useful in determining whether the patient has coronary heart disease. The different
user interfaces for Mode 1, 2, and 3 are presented in Figures 5.13, 5.14 and 5.15.

At the end of each phase, users are asked to evaluate assertions based on 10-point
scales, about their opinion on the XML contribution. These statements are the following,
also displayed in Figure 5.16:

• I better understand patient data with explanations.

• I make a faster decision with explanations.

• Explanations are more confusing than helpful.

• I easily understand the explanations.

• Viewing similar patients is useful in making a decision.

• The model’s predictions are sufficient and explanations are unnecessary.

• Explanations are easy to use.

• Explanations are useful in reinforcing my decision.

• Explanations provide too much information.

• Explanations are coherent with my medical knowledge.

Evaluation Methods Based on our primary hypothesis, secondary assumptions and
experiment design, we want to mainly evaluate the users’ accuracy, the users’ response
speed, users’ confidence and the users’ feelings about explanations.

For users’ accuracy and response speed, we plan to compare, for each mode, the user
accuracy/time in predicting coronary heart disease. We want to assess how the average
accuracy/time of users changes as a function of mode, and whether the differences are
significant between each mode. We also want to split users based on their expertise
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level and their status to study if the average accuracy/time behaves differently for each
subgroup of users. More globally, comparisons of performances from each mode can be
performed with multiple focuses:

• comparison patient-focus: for each patient independently, how do users’ perfor-
mances vary?

• comparison user-focus: for each user, how does their performance vary between
modes?

• comparison expertise-focus: for each cluster of expertise, how does the expertise
impact the performances?

• comparison mode-focus: for each mode, how do performances vary between users?

• comparison classification-focus: how do users’ performances vary between each mode
depending on the correctness of the users’ prediction with data alone?

For each focus, statistics about the average accuracy/time will be calculated, as well as
p-values when relevant. These p-values will be used to validate or reject H0 and H1 based
on the previously defined α threshold of 0.05. We will also compute how many times
explanations improve users’ performances and their proportion among all the results.

To gain more insight into our secondary assumptions, we will use metrics on users’
confidence in their predictions, the ranking of variables and users’ perceptions of the
contribution of explanations. Based on the users’ confidence in their prediction, we will
compute statistics in the same fashion as for accuracy and response speed metrics and
relate these results to previous ones. With this confidence metric, we want to evaluate
the link between the confidence of the user and the mode, their performance for the task,
and their level of expertise.

For the ranking of attributes based on their usefulness for the user, we would first
compare how user responses differ for each mode for the same patient. We want to assess
the extent to which users change their ranking for the same patient according to the
different modes, particularly between modes 1 and 2, since no additional information on
the importance of the attributes is provided. Thus, based on the rankings for modes
1 and 2, we will be able to assess better the differences with mode 3 ranking and the
impact of explanations - i.e. the local importance of attributes. For this evaluation, we
will use the Kendall-Tau distance to compare the ranked lists (Kendall, 1948). For each
patient and each user, we will first compare the mode 1 and 2 rankings to evaluate the
inter-variability, then compare the mode 3 ranking to the two first modes and influences
to evaluate the impact of explanations. Finally, we will compare results based on the
expertise lever of the users.

Finally, to study the users’ feelings, we will evaluate the answers to the 10-point
scale queries. As mentioned in Norman (2010), parametric statistics are robust and can
be used on Likert scales even if the answers are ordinal, not normally distributed and
if the number of users is small. We will then study each query individually based on
the average response and the distribution of answers, using parametric tests to check
statistical significance between users with different expertise levels. We will also search
for correlations between the answers to multiple queries using the Pearson correlation
factor to see if users from the same expertise cluster have the same answers between all
queries.
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Expected bias and limits When designing the study, several challenges and potential
biases emerged:

• How to recruit healthcare professionals with an already busy schedule?

• How could we obtain as many responses (and therefore as much data) as possible
from each practitioner interviewed, without the survey being abandoned along the
way or carried out without the necessary care because it was too long?

• How can we avoid getting incorrect answers because of poor understanding or use
of the computer interface or the presentation or wording of the query?

• An increase in the practitioner’s performance could be observed when answering
due to learning and habituation, which would not be linked to any ML or XML
contribution. Habituation may also be observed for a particular patient if the dif-
ferent stages of the tests are carried out in succession, always in the same order
- in the case, for example, of displaying the data alone, then the ML results and
then the XML results, always in the same order. This habituation can impact the
contribution of each method - ML and XML - for users.

Some of the biases mentioned above are resolved in the following four ways. To
maximise the number and quality of responses simultaneously, we limit the time of the
experiment by limiting the number of patients studied by each user. If we consider that
the time needed to evaluate a patient is a maximum of 1 minute per mode and that we
propose 10 different patients to each user, then the experiment is limited to a 10-minute
duration per phase. In this way, we give priority to the quality of the results. This solution
also makes it easier to recruit people with busy schedules, since the duration of the test
will remain relatively short for each phase. However, there needs to be a sufficient ratio
between the number of users and the number of patients to ensure that the results can
be used for statistical analysis. Finally, as the test duration is short, the risk of users
adapting to the test is reduced.

Secondly, we divide the test mode into different phases so that users do not study all
the data in the same order for all patients and practitioners do not become accustomed to
each patient. A random allocation of each stage is set up to limit this bias. By separating
the stages, we limit the risk of practitioners distinguishing their patients from their data
and being influenced by a diagnosis previously made in another stage. This strategy
also contributes to reducing the length of the tests and therefore possibly improving the
quality of the practitioners’ responses.

To recruit healthcare professionals, we can also publish our questionnaire online and
share it on national mailing lists. Remove usability tests are as effective as in-lab tests
(Selvaraj, 2004). They remove geographical barriers and reduce the cost of meeting room
reservations and travel. The non-moderated nature of the tests may also allow real-
life user behaviour to be more spontaneous than in a moderated setting. However, the
upstream organisation and logistics of this type of test need to be taken into account,
as well as the lack of control over the profiles recruited and real-time support, and the
possible loss of additional insights.

Finally, to limit incorrect answers in the event of misunderstandings, training examples
are included before the test so users can familiarise themselves with the task. However,
these examples should not be too long to avoid a negative impact on the test.
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5.4.4 Discussion
This experimental protocol is designed to evaluate a local attributive explanation method
as extensively as possible, by proposing several analyses of the explanations to users and
by focusing on several areas when analysing the results. We also wanted a protocol that
could be adapted to several medical specialities and several types of users, so that the
tests could be extended in the future. There are also no constraints on the model used
or the local attributive explanation method evaluated. We focused on the limitations of
the literature described in Chapter 2.3 on the hypotheses, the number of participants
and their differences in expertise, and the confounding effects of machine learning and
explanations. We have clearly defined a primary hypothesis and secondary hypotheses,
also the statistical constraints for validating and rejecting the hypotheses. We hope to
increase the chances of recruiting users by splitting the test into several short phases
and offering this test to professionals with different levels of expertise in the task. We
compensate for confusion between the effects of model predictions and explanations by
temporally separating the presentation of each mode for each patient and by presenting
each mode in a random order.

This experiment design could also be extended to include more local attributive ex-
planation methods and make hypotheses comparing the effect of different explanation
methods. Based on the desired exhaustiveness of the experiment, constraints are to as-
sign patients and explanations to each user so that:

• One patient is seen by multiple users for each explainable method;

• One patient is seen by the same user for each explainable method;

• Each user views multiple patients for each explainable method;

Increasing the number of explanation methods also means guaranteeing a sufficient num-
ber of users. It is therefore possible to increase the number of phases, still following the
logic of separating the modes for each patient in the different phases, to increase the
number of patients seen by each user and guarantee a sufficient volume of results for
each method of explanation and patient to be able to validate or invalidate the hypothe-
ses. With these constraints, one could study how users are impacted by the explanations
globally and how differences in explanations impact the user for the same patient.

With a high volume of users in the experiment, the impact of the model accuracy
could also be estimated by providing two different model accuracies to the users in Mode
2. We could then see if the model accuracy and the user trust in the model impact the
confidence in the explanations and how users behave with explanations. This step could
also help to isolate the effect of the predictions and the effect of the explanations by
comparing the results between the two models.

Due to a lack of time, this experimental protocol has not yet been implemented. We
hope to be able to recruit users and carry out these user tests in the coming months.

5.5 Conclusion
This chapter details the work on explanations for medical users, both in terms of the user
interface and how the explanations can be used and analysed from different perspectives
- direct medical application or exploratory data analysis - and around user experiences to
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validate the reliability of our approach combining local and global explanations and their
analysis.

We have successfully implemented explanations in a medical application for health-
care professionals based on previously produced mock-ups. We used a question-based
approach, based on the questions that users want to answer via the explanations. We
designed an interface offering a range of graphical and textual information to ensure that
the information is conveyed regardless of the user’s viewing preferences. Our intuitive
approach also allows users to analyse the explanations provided themselves and combine
them with their medical knowledge to gain a critical view. This autonomy encourages
users to adhere to and use the explanations.

To reinforce the discussions around explanations for users, we have also proposed an
analysis of explanations under two different axes for the same dataset, to show that the use
of explanations can pursue several aims, which should not be overlooked when considering
the presentation of explanations to users. Using a dataset on urinary tract infections, we
have constructed a risk stratification study based on the explanations, which can be used
to personalise care for each profile of patients. Secondly, we used exploratory data analysis
techniques on the explanations to find new information on the patients in the dataset and
analyse the links between the data, the modelling and the disease.

Finally, based on the limitations of the literature on user testing in the field of ex-
planations, we propose a detailed experimental protocol to evaluate the impact of local
explanations for medical professionals. We define specific research hypotheses, evaluated
according to several focuses - patient, user, users’ level of expertise, users’ prediction ac-
curacy without explanations - and with objective and subjective metrics - decision speed,
decision accuracy and confidence, feelings and usefulness of each variable. We have set
up a method for analysing the results for each metric, based on statistical tests, and we
have provided information on the various biases and limitations expected and taken into
account during the creation of the experimental protocol. We have also considered possi-
ble future extensions to our protocol and hope to be able to start conducting tests with
the protocol presented in the coming months.
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Figure 5.3: User Interface for model performances and global explanations. This scenario
predicts the readmission risks for patients.
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Figure 5.4: User Interface for global explanations with focus on the "Age" Attribute.
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(a) Cluster 1 focus.

(b) Cluster 4 focus.

Figure 5.5: User Interface for the patients’ clusters in global explanations, with focus on
clusters 1 and 4.
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Figure 5.6: User Interface for local explanations. This scenario predicts the hospitalisation
stay duration for patients.
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Figure 5.7: Univariate view of each attribute’s effect.

Figure 5.8: Influences of patients corresponding to the medoids of the three identified
clusters.
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Figure 5.9: SHAP mean absolute influences and Distribution of influences for the trained
modelling.
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Figure 5.10: Distribution of SHAP influences for patients with nausea.
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Figure 5.11: Global explanation for the SA-Heart dataset, based on the TreeSHAP local
explanations. (top) Average influence per class. (bottom) Beeswarm plot, coloured by
feature values, with each point being a patient.

Figure 5.12: Queries for assessing the expertise levels of users.
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Figure 5.13: User interface for the Mode 1.
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Figure 5.14: User interface for the Mode 2.
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Figure 5.15: User interface for the Mode 3.
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Figure 5.16: User interface for the evaluation of the ten assertions.
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Chapter 6

Conclusion & Perspectives

6.1 Conclusion
The work in this thesis focuses on the explainability of Machine Learning model predic-
tions, and their possible uses, particularly for end-users in the medical field. Explanation
methods have grown quickly over the last few years and since the start of my thesis,
with increasing popularity, visible in the number of methods, articles, software currently
available and start-ups offering ML model explainability services. This growing interest,
and the importance of explainability, are easily understandable given the scale of current
applications of Machine Learning and its closed-box characteristic for many models. The
closed-box characteristic of many Machine Learning models is a crucial point in the ML
research field, and its application in sensitive areas. Today, from my point of view and
supported by French and European regulations1, it seems to me ethically questionable not
to provide explanations for the predictions of ML models in sensitive areas and/or areas
involving human or animal life. In these fields, local explanation methods, and more gen-
erally post-hoc methods, are backup alternatives for explaining complex, closed-box ML
models. Back-up as the methods in the literature are still based on restrictive hypothe-
ses -local linearity and attribute independence caused by data perturbations- which are
problematic in many complex and sensitive domains such as medicine. The proposed op-
timised version of the Coalitional method is therefore a good candidate for resolving these
limitations. In the course of this thesis, we have shown the usefulness of this method and
other existing attributive local methods for explaining predictions on numerous datasets
from different contexts and with various metrics. Unfortunately, limitations such as the
application to large datasets or the large-scale validation of explanations by users persist
in the current literature.

A good practice would therefore be, whatever the domain and when the data allow it,
to first relate to intrinsically interpretable models to certify that they are not sufficient
for the problem being addressed. In the opposite case, a closed-box model approach and
an explanation of this model by a combination of global and local explanatory approaches
is a potential solution. The existence of methods for explaining closed-box models should
not be a justification for using exclusively and automatically increasingly complex closed-
box ML models, where there is a risk of oversimplification and error in the explanations.

1European General Data Protection Regulation, European AI Act, Report "The impact of artificial
intelligence on the doctor-patient relationship", Recommendation "Artificial intelligence in health care:
medical, legal and ethical challenges ahead", UNESCO "Recommendation on the Ethics of Artificial In-
telligence"
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Especially if an intrinsically interpretable model such as a tree or decision rules would
have been sufficient, effective and interpretable models for modelling the data.

In this thesis, instead of developing new methods, we deliberately focused on opti-
mising and using existing methods rather than designing new ones. We work on the
Coalitional methods, on understanding the behaviour of these existing methods and on
how we can use explanations and make the most of them to efficiently deliver them to
end-users. Focusing on end-users is a major aspect of the future development of expla-
nations, to bring these new data face to face with the real world. To this end, we have
shown that exploratory analysis of explanations via clustering is a relevant approach,
whatever the performance of the model, the instance classification or the local attribu-
tive method used. This new data space offers possibilities to efficiently provide end-users
with explanations and explanation analyses to have the most positive impact possible.
The question-based approach and the analysis of explanations have been our basis for
integrating explanations in medical applications and proposing user interfaces adapted to
the medical users’ constraints of time, non-expertise in Machine Learning models and the
human lives potentially at stake. We have also proposed a full experimental protocol to
evaluate the relevance of the approach via explanation analysis, with end-users. Our idea
is that end-users can provide extensive feedback on the use, usability, reliability, compre-
hensibility and actionability of explanations and their analyses. It is therefore interesting
to have this twofold approach to explainability and end-users: generic and rigorous tests
in laboratories, to consolidate and enrich existing methods and large-scale applications
of explanations on various use cases with users in the field to observe the real-world be-
haviour of the approaches. Links between these two approaches would then be essential
to enrich them, for example via a user feedback loop to understand the problems in the
field on the one hand and the improvement of explanations and how they are provided to
users on the other hand.

Finally, this thesis offers a complete framework for explaining predictions, aimed at
healthcare workers, i.e. the end users, from the raw data to the user interface. Figure
6.1 displays the entire framework, with the proposals of this thesis. We built on the well-
known ML pipeline (step 1 in Figure 6.1) and the existing work on explainability to better
explain individual predictions (step 2). We add new steps to explore these explanations to
better understand them (step 3), and provide them to end-users (step 4). Multiple steps
of this new framework have already been validated by experimentation both on a large
collection of general open datasets and on specific medical datasets close to the real-world
environment.

Figure 6.1: Complete XML Framework for local explanations aimed at end-users.
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6.2 Perspectives
This thesis consists of several contributions to the research field of explaining the predic-
tions of Machine Learning models. However, research directions are still open to enrich
our work and research.

From a short-term perspective, carrying out user tests according to our experimental
protocol is a central point of our research. The results will form the basis of our future
theoretical work on the attributive local explanation methods, the analysis of the expla-
nation space and the improvement of our user interfaces. In addition, to further validate
the explanations, we want to explore the link between the performance of ML models
and the quality of the explanations. This work would involve exploring a performance
threshold below which local explanations would no longer be sufficiently reliable and ro-
bust, in addition to the performance constraints on the model that may be applied by the
application domains. We want to apply metrics currently used to compare explanations
between multiple XML methods on explanations built when the performances of one ML
model are degraded.

In explanation exploration, an important focus of our mid-term research will be the
search for links and new information in the data via explanations. We want to pursue our
work on explanation clustering, in particular by analysing and characterising the clusters
formed and looking for biases in the model and the data. This research would also aim to
gain a better understanding of the explanations, predictions, modelling and initial data.
Clustering based on influences may then help to understand why the model is wrong and
not just where the model is wrong, and allow for detecting bias in the data.

Through these axes of research, our long-term objective is dual.
Firstly, as already introduced in Cugny et al. (2023), we want to go further than just ex-
plaining predictions and integrate explanations into a complete data analysis framework
using ML and XML methods. In this way, we could imagine an efficient involvement of
explanations at all stages of the ML analysis. Explanations could be used upstream of
modelling for pre-processing as in Man and Chan (2021) and during modelling to select
a model and hyper-parameters as in Garouani et al. (2022). As we already proposed,
explanations can serve the analysis and understanding of predictions, the search for in-
formation and biases in the model and the data. Difficulties then lie in how to combine
all these researches in one ML analysis pipeline, explainable from start to end.
Secondly, we want to focus on integrating user feedback on explanations. This will en-
able us to identify inconsistencies between the model and users’ domain knowledge and
to focus the need for explanations on the end-users. This area would involve collecting
feedback, processing it and carrying out research to improve the data and modelling based
on this feedback. These two axes could also be linked to make the most of explanations
and end-users knowledge. Finally, our approach could be applied in fields such as aero-
nautics (e.g. analysis and prediction of incidents on aircraft for maintenance purposes)
or agronomy (e.g. risks of disease propagation on olive trees or seeds) with our research
team’s industrial partners.
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