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COUPLINGS OF BROWNIAN MOTIONS WITH

SET-VALUED DUAL PROCESSES ON RIEMANNIAN

MANIFOLDS

by Marc Arnaudon, Koléhè Coulibaly-Pasquier
& Laurent Miclo

Abstract. — The purpose of this paper is to construct a Brownian motion (Xt)t⩾0 taking
values in a Riemannian manifold M , together with a compact set-valued process (Dt)t⩾0 such
that, at least for small enough FD-stopping time τ > 0 and conditioned by FD

τ , the law
of Xτ is the normalized Lebesgue measure on Dτ . This intertwining result is a generalization of
Pitman’s theorem. We first construct regular intertwined processes related to Stokes’ theorem.
Then using several limiting procedures we construct synchronous intertwined, free intertwined,
mirror intertwined processes. The local times of the Brownian motion on the (morphological)
skeleton or the boundary of each Dt play an important role. Several examples with moving
intervals, discs, annuli, symmetric convex sets are investigated.

Résumé (Couplage des mouvements browniens avec des processus duaux à valeurs ensembles
sur des variétés riemanniennes)

L’objectif de cet article est de construire un mouvement brownien (Xt)t⩾0 à valeurs dans
une variété riemannienne M conjointement avec un processus à valeurs ensembles (Dt)t⩾0, de
telle sorte qu’au moins pour tout temps d’arrêt τ > 0 assez petit dans la filtration FD engendrée
par (Dt)t⩾0, la loi de Xτ conditionnée par FD

τ est la mesure riemannienne conditionnée sur Dτ .
Ce résultat d’entrelacement est une généralisation du théorème de Pitman. Nous commençons
par construire des processus entrelacés réguliers par le biais du théorème de Stokes. Puis en uti-
lisant différentes procédures de limites, nous construisons des processus entrelacés synchrones,
libres et miroirs. Les temps locaux du mouvement brownien sur le squelette (morphologique)
ou sur la frontière jouent des rôles importants. Nous étudions plusieurs exemples consistant en
des intervalles, des disques, des anneaux et des ensembles convexes symétriques.
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1. Introduction and main results

Markov intertwinings were introduced by Rogers and Pitman [20] to give a direct
proof of the famous relation between the Brownian motion and the Bessel-3 pro-
cess due to Pitman [18]. These relations were next used by Yor and his coauthors
(see e.g. [23, 6]) to get identities in law and by Diaconis and Fill [9] to construct
strong stationary times. For a historical account of the subsequent development of
the Markov intertwining technique, consult for instance Pal and Shkolnikov [17].

At an algebraic level, a Markov intertwining relation is a (directed) weak similar
relation, from a Markov semi-group (P t)t⩾0 on a measurable state space (M,M) to
another Markov semi-group (Pt)t⩾0 on a measurable state space (M,M), consisting
of a Markov kernel (called the link) Λ from (M,M) to (M,M) such that

(1.1) ∀ t ⩾ 0, P tΛ = ΛPt,

in the sense of the composition of Markov kernels. Depending on non-degeneracy
properties of Λ, such a relation is more or less strong. Especially when Markov semi-
groups are described by their generators, (1.1) is often replaced by

(1.2) LΛ = ΛL,

where L and L are respectively the generators of (P t)t⩾0 and (Pt)t⩾0. But then one
has to be more careful with the meaning of generators (e.g. in the sense of martingale
problems) and their domains, in particular the domains are transported via (1.2).

To be more useful from a probabilist point of view, it is convenient to convert (1.2)
into a coupling between (Xt)t⩾0 and (Xt)t⩾0, two Markov processes respectively
associated to L and L (called the dual and primal processes), so that the following
relations hold for the conditional laws:

(1.3) ∀ t ⩾ 0, L(Xt|X [0,t]) = Λ(Xt, ·).

In addition, one asks that (Xt)t⩾0 can be constructed from (Xt)t⩾0 in an adapted
way, meaning

(1.4) ∀ t ⩾ 0, L(X [0,t]|X) = L(X [0,t]|X[0,t]).

Yor was wondering about such couplings between some piecewise linear Markov
processes and squared Bessel processes, in order to simplify his approach to certain
properties of the former processes similar to those of the latter, see the end of the
introduction of [23].
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Couplings of Brownian motions with set-valued dual processes 475

Such couplings are crucial for the constructions of strong stationary times, as
explained by Diaconis and Fill [9] in a discrete time and finite setting. More pre-
cisely, in this situation X is an ergodic Markov chain with invariant probability π

and X is a Markov chain absorbed in a unique point. A strong stationary time τ
for (Xt)t⩾0 is a finite stopping time for (Xt)t⩾0 (and some independent randomness)
such that τ and Xτ are independent and Xτ is distributed according to π. Taking
into account (1.3) and (1.4), one can see that the absorption time for (Xt)t⩾0 is a
strong stationary time for (Xt)t⩾0.

Strong stationary times are important for two reasons (cf. Diaconis and Fill [9]):
– They enable to sample exactly the invariant probability π, contrary to the usual

approximations provided by Monte Carlo techniques.
– They provide a probabilistic alternative to functional analysis approaches for

the quantitative investigation of convergence to equilibrium. More precisely, for any
strong stationary time τ , we have

∀ t ⩾ 0, s(L(Xt), π) ⩽ P[τ > t],

where the separation discrepancy s(µ, π) between two probability measures µ and π

is defined by

s(µ, π) := ess sup
π

(
1− dµ

dπ

)
(where dµ/dπ is the Radon-Nikodym density). The separation discrepancy dominates
the total variation norm and gives positivity properties of µ with respect to π. In the
context of convergence to equilibrium, it is very difficult to estimate the discrepancy
of s(L(Xt), π) via functional inequality techniques (see e.g. the book [5] of Bakry,
Gentil and Ledoux).

In the objective of constructing strong stationary times via intertwining duality,
there are particular dual processes (Xt)t⩾0 which are taking values in M, the set
of measurable subsets of M , but in general M is only a subset of M, consisting in
some regular subsets. The absorption set is the whole set M . The heuristic goal of
intertwining duality is then to construct random subsets Xt ⊂ M such that Xt is
already at equilibrium in Xt, for all t ⩾ 0, in such a way that X is itself Markovian
and ends up covering the whole state space M .

In the diffusion context, set-valued intertwining dual processes started to be con-
structed in Fill and Lyzinski [11] and [15]. In [8], set-valued dual processes for diffu-
sions on Riemannian manifolds were identified as stochastic perturbations of mean-
curvature flows. But the coupling of primal and dual processes were not considered
in [8] and this is our present goal, mainly for Brownian motions on Riemannian mani-
folds. As we will see, there are numerous ways to construct such couplings (this is true
in more general contexts, see [16] for the diversity of such couplings in a finite frame-
work), but none of them is immediate and they are related to fine geometric features
of the evolving subsets, such as their skeletons. We are thus to consider synchronous
intertwined, free intertwined, mirror set-valued intertwined dual processes.
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The reader must be warned that, as it stands now in the context of multidimen-
sional diffusions, the set-valued dual processes are not defined up to the absorption
time (except in symmetric settings), and as a consequence the same will be true for
our couplings, which will be defined only up to some positive stopping times. We hope
to investigate this point in future works, to end the construction of strong stationary
times for Brownian motion on compact Riemannian manifolds, which remains our
remote motivation. Other motivations for the couplings of primal and dual processes
in the context of diffusions can be found in Machida [13] and [16].

Let us now present more precise definitions. Here the state space M is a d-di-
mensional complete Riemannian manifold. Denote respectively by ρ, µ and µ, the
Riemannian distance, the Lebesgue measure on M and the corresponding (d − 1)-
Hausdorff measure. The main objective of this paper is to construct couplings of
primal diffusions processes with their set-valued dual intertwined processes. This will
partially solve Conjecture 6 in [8] in the case of Brownian motion (Xt)t⩾0 and sto-
chastic modified mean curvature flow (Dt)t⩾0 (which were generically denoted (Xt)t⩾0

above). This conjecture says that an intertwined construction in the sense of Defini-
tion 1.1 is always possible.

Definition 1.1. — Consider a Markov processD = (Dt)t∈[0,τ ], with values in compact
subsets of M and continuous with respect to the Hausdorff topology, and where τ is
an a.s. positive stopping time in the filtration FD of D, serving as a lifetime for D.
We say that a Brownian motion X = (Xt)t⩾0 in M and D are intertwined when for all
bounded FD-stopping time τ ′ smaller than τ , conditioned on FD

τ ′ , Xτ ′ has uniform
law in Dτ ′ (and in particular Xτ ′ ∈ Dτ ′). More generally, for any FD-stopping time τ̃
smaller than τ , we say that X and D are τ̃ -intertwined when X and (Dt)t∈[0,τ̃ ] are
intertwined.

This is a generic definition, below stronger topologies on subsets of M will be
considered. Note that the above lifetime is not necessary the explosion time, i.e., the
exit time from all compact sets for the considered topology. In the infinite dimensional
state space of D, compactness does not seem an appropriate notion.

Also notice that τ̃ -intertwining prevents (Xt)t⩾0 to have a lifetime smaller that τ̃ .
So we will never have to consider the lifetime of (Xt)t⩾0.

Our main results are Theorems 2.8, 2.12, 3.5 and 4.1 presenting such joint con-
structions of the primal Brownian motion (Xt)t⩾0 and the dual domain-valued (Dt)t⩾0

processes. The coupling of Theorem 2.8 which is proved to be intertwined in Theo-
rem 2.12, consists of the infinite-dimensional stochastic differential equation (2.6),
based on a function f : (x,D) 7→ f(x,D) which is a deformation of the signed
distance from x ∈ M to the boundary of the domain D (see Assumption (2.2) for
the precise requirements). Theorem 3.5 is obtained by specifying some functions f
approximating the distance to boundary. Given the trajectory (Xt)t⩾0 of the Brown-
ian motion, we construct the domain evolution (Dt)t⩾0 using the local time of (Xt)t⩾0

on the skeletons of (Dt)t⩾0 and the mean curvatures of the normal foliations of these
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domains (see (3.19)). Functions f approximating the null function lead to Theo-
rem 4.1, where the prominent role is played by the local time at the boundary. This
situation is in some sense opposite to the previous one, since the driving Brownian
motion of (Dt)t⩾0 is now independent from (Xt)t⩾0, while it is as correlated as it
can be in Theorem 3.5. These theoretical results are illustrated by the fundamental
examples of Section 5. First we recover the intertwining relation between the real
Brownian motion and the three-dimensional Bessel process. Next we deal with rota-
tionally symmetric manifolds. Finally we present the application of our results to
symmetric convex domains in the plane, even if the detailed proofs are deferred to [2].

To come back to our initial motivation, assume that (Xt)t⩾0 and (Dt)t⩾0 are inter-
twined, where the lifetime τ is the hitting/covering time by D of the whole state
space M . If furthermore τ is finite (typically true when M is compact), then the
Riemannian measure can be normalized into a probability (called the uniform distri-
bution, which is invariant and reversible for the Brownian motion (Xt)t⩾0) and τ is a
strong stationary time for (Xt)t⩾0. In this situation, the tail distributions of τ provide
quantitative estimates for the speed of convergence of the Brownian motion toward
equilibrium, in the separation sense. These estimates will need geometric ingredients
such as Ricci bounds and it will be interesting to see how they will enter the game.

The needs for couplings between primal and dual processes of a Markovian inter-
twining relation is illustrated by [3], where strong stationary times τn are constructed
for the n-dimensional sphere (when the subset-valued dual is starting from a single-
ton), satisfying

E[τn] ∼
ln(n)

n

and for any r > 0,

lim
n→∞

P
[
τn > (1 + r)

ln(n)

n

]
= lim
n→∞

P
[
τn < (1− r)

ln(n)

n

]
= 0.

2. Intertwined dual processes: existence in connection with
Stokes’ formula

In this section we make a construction of intertwined processes (Xt)t⩾0 and (Dt)t⩾0

based on the Stokes’ Formula (2.1) below. Consider a compact domain D in M with
C2 boundary. Let f : D → R a C2 function such that ∇f |∂D = ND the normal
inward vector on boundary. Then by Stokes’ formula, for any C2 function g : D → R,

(2.1) −
∫
∂D

gdµ =

∫
∂D

g⟨∇f,−ND⟩ dµ =

∫
D

g∆f dµ+

∫
D

⟨∇g,∇f⟩ dµ.

For α ∈ (0, 1), denote by D2+α the set of compact connected subsets D of M with
C2+α boundary. It will be more convenient to work with this state space (endowed
with its natural topology) than with the larger one considered in Definition 1.1. Let
us even restrict it further:

We fix a point o ∈M for convenience.
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Definition 2.1. — For a given α ∈ (0, 1), ε > 0, we denote by Fα,ε the set of
D ∈ D2+α such that

– D ⊂ B(o, 1/ε) the Riemannian ball centered at o with radius 1/ε;
– ρ(∂D, S(D)) ⩾ ε, where S = S(D) is the skeleton of D (see appendix A for

details);
– ρ(∂D, Sout(D)) ⩾ ε, where Sout(D) is the outer skeleton of D, i.e., the skeleton

of (D)c;
– the coefficients of the α-Hölderianity of the second fundamental form of ∂D are

bounded by 1/ε.
The set Fα,ε will serve as the state space of the set-valued process (D̃t)t∈[0,τε] and
τε ∈ (0,+∞] will be the exiting time from Fα,ε. This process will be a diffusion, i.e., a
Markov process with continuous trajectories (for the topology inherited from D2+α),
and its generator L̃ will be defined later in (2.8). We extend the trajectory (D̃t)t∈[0,τε]

by taking D̃t = D̃τε for any t > τε. It amounts to imposing that L̃ vanishes outside
Fα,ε. It is possible to define in the same way (D̃t)t∈[0,τ) on D2+α (which coincides
with ∪ε>0F

α,ε), where τ is the exiting time from D2+α. But it will be more convenient
for us to work with a process with an infinite lifetime (to be able to apply Proposition
D.3 in Appendix D) and whose set of values has a boundary which is well-separated
from the skeleton.

Let β ∈ {0, α}. For D0 ∈ D2+β and δ > 0 small enough, a δ-neighborhood of D0

is defined as follow:

(2.2) V
2+β
δ (D0) :=

{
int(exp∂D0

(f)), f ∈ C2+β(∂D0), ∥f∥C2+β(∂D0) < δ
}
,

where for f ∈ C2+β(∂D0)

exp∂D0
(f) :=

{
expx(f(x)N

D0(x)), x ∈ ∂D0

}
(exp being the exponential map in M), and int(exp∂D0

(f)) is the relatively compact
open subset of M with boundary exp∂D0

(f).
Let η(∂D0) > 0 be the maximal radius for a tubular neighborhood of ∂D0

on which the signed distance to ∂D0 is regular. Alternatively, η(∂D0) is the dis-
tance between ∂D0 and the union of inner and outer skeleton of D0. Notice that
δ < η(∂D0) guarantees that all elements of V

2+β
δ (D0) are regular deformations of

D0. Also notice that all elements D of Fα,ε have η(∂D) ⩾ ε. The map which to{
f ∈ C2+β(∂D0), ∥f∥C2+β(∂D0) < δ

}
associates D ∈ V

2+β
δ (D0) via (2.2) is one-to-one

since for such a D, the corresponding function f is characterized by the fact that at
a point z of ∂D which projects onto π(z) ∈ ∂D0, f(π(z)) is the signed distance from
∂D0 to z, positive when z ∈ D0. This is a particular case of [7, Th. 1.5].

We identify two domains D1, D2∈V
2+β
δ (D0) with the functions f1, f2∈C2+β(∂D0)

such that D1 = int{exp∂D0
(f1)} and D2 = int{exp∂D0

(f2)} and we define a local
distance

(2.3) dβ,D0
(D1, D2) := ∥f1 − f2∥C2+β(∂D0).
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Assumption 2.2
– The function

f :M × Fα,ε −→ R

(x,D) 7−→ f(x,D) = fD(x)

is a C2+α function in the two variables (the differential in D is in the sense of Fréchet
with respect to the above local Banach structure defined by the distances dα,D). The
functions fD satisfy ∥∥∇fD∥∥∞ ⩽ 1,

and coincide with the signed distance to the boundary ρ+∂D (positive inside D and
negative outside) in a neighbourhood of ∂D. The functions fD have bounded Hes-
sian, uniformly in D ∈ Fα,ε. Furthermore, we assume that the coefficients of the
α-Hölderianity of HessfD are uniformly bounded over Fα,ε.

– There exists a positive integer m and a C1 map

σc :M × Fα,ε −→ Γ(TM ⊗ (Rm)∗)

(x,D) 7−→ σc(x,D) = σDc (x) ∈ L(Rm, TxM),

where Γ(TM ⊗ (Rm)∗) denotes the set of sections over M of TM ⊗ (Rm)∗ and
L(Rm, TxM) is the set of linear maps from Rm to TxM , such that the linear map

σD(x) : R× Rm −→ TxM

(w0, w) 7−→ w0∇fD(x) + σDc (x)(w)

satisfies

∀x ∈ D, σD(σD)∗(x) = IdTxM .

Remark 2.3. — The first condition of Assumption 2.2 implies that

∇fD|∂D = (∇ρ+∂D)|∂D(= ND) and

∆fD|∂D = (∆ρ+∂D)|∂D(= −hD),
(2.4)

where hD stands for the mean curvature on ∂D: at x ∈ ∂D, hD(x) is the trace of the
second fundamental form of ∂D, it can alternatively be described as the sum of the
principal curvatures in 2-planes directions containing ND(x). The sign convention is
that hD > 0 when D is convex. It also implies that the functions fD are uniformly
Lipschitz and have uniformly bounded Laplacian. Also, for fixed x ∈ ∂D, varying D
successively along a field K normal to the boundary ∂D and along ND for the second
derivative:

⟨∇f(x, ·),K⟩(x) = −⟨ND(x),K(x)⟩ and

∇df(x, ·)
(
ND, ND

)
= 0,

where ∇df(x, ·) is the Hessian of f in the second variable.
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The second condition of Assumption 2.2 implies that for all u ∈ TxM ,

∥u∥2 = ⟨u,∇fD(x)⟩2 +
m∑
i=1

⟨u, σDc (x)(ei)⟩2

for e1, . . . , em an orthonormal basis of Rm. In particular, if x ∈ ∂D, taking u =

∇fD(x) = ND(x), we get since ∥ND(x)∥ = 1:

(2.5) 0 = ⟨∇fD(x), σDc (x)(ei)⟩, i = 1, . . .m.

Proposition 2.4. — Assumption 2.2 can always be realized, with any α ∈ (0, 1) and
ε > 0.

Proof. — We begin with remarking that for D ∈ Fα,ε, ρ(∂D, S(D)) ⩾ ε. In particular,
the distance to ∂D is C2+α on Dε := {x ∈ M, ρ(x, ∂D) < ε}. Let hε be an odd
smooth nondecreasing function from R to R+ such that hε(r) = r for r ∈ [0, ε/2],
hε(r) = (3/4)ε for r ⩾ ε and ∥h′ε∥∞ ⩽ 1. Then fD := hε ◦ ρ+∂D satisfies all the
requirements of the first condition of Assumption 2.2. Then for constructing σDc we
proceed as in [4, Prop. 3.2], where m+ 1,∇fD, (σDc (e1), . . . , σ

D
c (em)) here is denoted

m,σ1, (σ2, . . . , σm) there. The wanted regularity in D is easily checked. □

Let (Wt)t⩾0 and (Wm
t )t⩾0 two independent Brownian motions with values respec-

tively in R and Rm.
The equation we are interested in writes in Itô form for all y ∈ ∂Dt:

(2.6)
{

dXt =
(
∇fDt(Xt) dWt + σDt

c (Xt) dW
m
t

)
,

d∂Dt(y) = NDt(y)
(
dWt +

(
1
2h

Dt(y) + ∆fDt(Xt)
)
dt
)
,

started at a compact domain D0 with C2+α boundary and X0 such that L (X0) =

U (D0), where U (D0) is the uniform probability measure on D0. This assumption is
essential and will be made all along the paper. The notation d∂Dt(y) = (d∂Dt)(y)

stands for an infinitesimal move of the boundary ∂Dt at point y and is rigorously
presented in Appendix B, see (B.3). The second equation in (2.6) and (2.7) below are
stochastic differential equations in D2+α, and a geometric way to represent stochastic
partial differential equations locally defined in Cα,2+α([0,∞)×∂D0). Similar equations
can be found in [12, App. A.2].

In fact, as in Definition 2.1, the evolution equation (2.6) is implicitly considered
only up to the a.s. positive exit time τε of Fα,ε for some fixed α ∈ (0, 1), ε > 0, after
which the process is assumed not to move.

In (2.6), the processes (Dt)t⩾0 and (Xt)t⩾0 are fully interacting, since the evolution
of one of them depends on the other one. In particular, they are not Markovian by
themselves in general.

Another subset-valued process (D̃t)t⩾0 will be interesting for our purposes. It is
a solution to the evolution equation

(2.7) ∀ t ⩽ τ̃ε, ∀y ∈ ∂D̃t, d∂D̃t(y) = N D̃t(y)
(
dW̃t+

(1
2
hD̃t(y)− µ∂D̃t(∂D̃t)

µ(D̃t)

)
dt
)
,
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where (W̃t)t⩾0 is a real-valued Brownian motion and where τ̃ε is the exit time from
Fα,ε.

Notice that the equation for (D̃t)t⩾0 does no longer depend of (Xt)t⩾0, so if the
solution is unique, (D̃t)t⩾0 will be Markovian. It is [8, Eq. (44)] (up to a time scaling
by 2). Theorem 40 of [8] (where (44) has been rewritten as (79)) proves local existence
of a solution. The second term in the right of (2.7) is the one of mean curvature flow
(with 1/2 in front of it). The first term is a stochastic perturbation, uniform in the
normal direction. The equation for stochastic front propagation in [12] has exactly
these two terms. The last term in our equation is also uniform in the normal direction.
It can be seen as a conditioning which prevents the solution to implode. One of the
main goals of this article will be to prove that the solution to the second equation
in (2.6) has same law as the solution to (2.7).

Theorem 2.5. — Fix α ∈ (0, 1) and ε > 0. Then (2.7) admits a unique global solution.
In particular the process (D̃t)t⩾0 is Markovian.

Proof. — The proof is a consequence of[8, Th. 22]. It can be found in Appendix C. □

To describe the generator L̃ of (D̃t)t⩾0 we must introduce the following notations.
For any smooth function k on M , consider the mapping Fk on D2+α by

∀D ∈ D2+α, Fk(D) :=

∫
D

k dµ.

For any k, g ∈ C∞(M) and any D ∈ D2+α, define

L̃ [Fk](D) := µ∂D(k)
µ∂D(∂D)

µ(D)
− 1

2
µ∂D(⟨∇k,ND⟩),(2.8)

Γ
L̃
[Fk, Fg](D) :=

∫
∂D

k dµ

∫
∂D

g dµ.(2.9)

Next consider A the algebra consisting of the functionals of the form F :=

f(Fk1 , ..., Fkn), where n ∈ Z+, k1, ..., kn ∈ C∞(M) and f : R → R is a C∞ mapping,
with R an open subset of Rn containing the image of D2+α by (Fk1 , ..., Fkn). For
such a functional F, define

(2.10) L̃ [F] :=

n∑
l=1

∂jf(Fk1 , ..., Fkn)L̃ [Fkl ] +
n∑

j,l∈J1,nK

∂j,lf(Fk1 , ..., Fkn)ΓL̃
[Fkj , Fkl ].

To two elements of A, F := f(Fk1 , ..., Fkn) and G := g(Fg1 , ..., Fgm), we also associate

(2.11) Γ
L̃
[F,G] :=

∑
l∈JnK,j∈JmK

∂lf(Fk1 , ..., Fkn)∂jg(Fg1 , ..., Fgm)Γ
L̃
[Fkl , Fgj ].

Remark 2.6. — To see that the above definitions are non-ambiguous, since a priori
they could depend on the writing of F ∈ A under the form f(Fk1 , ..., Fkn) and similarly
for G, see [8, Rem. 2]. More generally, the forms of (2.10) and (2.11) are consequences
of the diffusion feature of L̃ , for more on the subject, see e.g. the book of Bakry,
Gentil and Ledoux [5].
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Remark 2.7. — In the above considerations, L̃ was defined on D2+α, but from now
on, L̃ will stand for the restriction of this generator to Fα,ε and will be zero on
D2+α ∖ Fα,ε, in accordance with Definition 2.1. Similarly, all stochastic differential
equations will be valid only up to the stopping time τε (which was defined after
Definition 2.1) or τ̃ε (defined after (2.7)).

The interest of Assumption 2.2 comes from the following result:

Theorem 2.8. — Let (x,D) 7→ fD(x) and (x,D) 7→ σDc (x) satisfy Assumption 2.2.
Then equation (2.6) has a solution (Xt, Dt)t⩾0 started at D0 ∈ Fα,ε, X0 ∼ U (D0).

Proof. — We begin to prove the existence of a diffusion with modified drift, and then
we will get the result by change of probability. The modified equation writes

(2.12)



d∂Dt(y) = NDt(y)
(
dŴt +

(1
2
hDt(y)− µ∂Dt(∂Dt)

µ(Dt)

)
dt
)
,

dXt =
(
∇fDt(Xt)

[
dŴt −

(µ∂Dt(∂Dt)

µ(Dt)
+ ∆fDt(Xt)

)
dt
]

+ σDt
c (Xt) dW

m
t

)
,

for (Ŵt)t⩾0 and (Wm
t )t⩾0 independent Brownian motions. Notice that the first equa-

tion is the same as (2.7). Thus due to Theorem 2.5, (Dt)t⩾0 is a diffusion process with
generator L̃ . Then given (Dt)t⩾0, the equation for (Xt)t⩾0

dXt =
(
∇fDt(Xt)

[
dŴt −

(µ∂Dt(∂Dt)

µ(Dt)
+ ∆fDt(Xt)

)
dt
]
+ σDt

c (Xt) dW
m
t

)
can also be solved, since the coefficients in front of dŴt and dWm

t are Lipschitz,
σD(σD)∗(x) = IdTxM and ∆fD is bounded and uniformly Hölder continuous (due
to Assumption 2.2). Notice that Xt remains in Dt, since when Xt ∈ ∂Dt, we have,
using (2.5) which yields on boundary ⟨NDt(Xt), σ

Dt
c (Xt)dW

m
t ⟩ = 0,

d(ρ+∂Dt
(Xt)) = ⟨∇ρ+∂Dt

, dXt⟩ −
1

2
hDt(Xt) dt− ⟨d∂Dt(Xt), N

Dt(Xt)⟩

= ⟨NDt(Xt), dXt⟩ −
1

2
hDt(Xt) dt− ⟨d∂Dt(Xt), N

Dt(Xt)⟩ = 0,

where we used (2.12) and (2.4). We also have no covariation since the martingale part
of d∂Dt acts on the normal flow only, and any normal flow

r 7−→ D(r) := {x ∈M, ρ+(x) ⩾ r}

satisfies ρ+∂D(r)(x) = ρ+∂D(0)(x)− r for x ∈ D(0) and |r| small, (see Appendix A).
Once we have a solution to (2.12), make by Girsanov theorem a change of proba-

bility such that (Wt,W
m
t )t⩾0 is a Brownian motion where

Wt := Ŵt −
∫ t

0

(µ∂Ds(∂Ds)

µ(Ds)
+ ∆fDs(Xs)

)
ds.

We get a solution to (2.6) in the new probability. □
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Proposition 2.9. — Let (Dt)t⩾0 satisfy

d∂Dt(y) = NDt(y)
(
dWt +

(1
2
hDt(y) + bt

)
dt
)
, ∀y ∈ ∂Dt

for some Brownian motion (Wt)t⩾0 and some adapted locally bounded real-valued
process bt. Let µt = µDt be the Lebesgue measure on Dt and µt = µDt = U (Dt) =

µDt/µ(Dt). Denote by µt = µ∂Dt the Lebesgue measure on ∂Dt and µt = µ∂Dt =

µ∂Dt/µ(Dt). Let k be a smooth function of M . Then

(2.13) dµt(k) = −µt(k) dWt −
1

2

(
2btµt(k) + µt

(
⟨dk,NDt⟩

))
dt

and

(2.14) dµt(k) = (−µt(k) + µt(k)µt(∂Dt)) dWt −
1

2
µt

(
⟨dk,NDt⟩

)
dt

+ (µt(∂Dt) + bt) (−µt(k) + µt(k)µt(∂Dt)) dt.

In particular, if bt = −µt(∂Dt) we get

(2.15) dµt(k) = (−µt(k) + µt(k)µt(∂Dt)) dWt −
1

2
µt

(
⟨dk,NDt⟩

)
dt.

Proof. — Let us first work at fixed time t ⩾ 0. Denote D = Dt and adopt the
corresponding notations presented in Appendix A. For k a smooth function on M

and r ∈ R sufficiently close to 0 so that ∂D(r) (defined in (A.3) and (A.4)) is a
smooth manifold without boundary, let

F (r, k) =

∫
D(r)

k dµ.

We have

F (r, k) =

∫
∂D

(∫ τ(y)

r

k (ψ(s)(y)) e−
∫ s
0
hD(ψ(u)(y)) du ds

)
µ(dy)

with τ(y) the hitting time of S(D) by the inward normal flow started at y (defined
in (A.1)) and ψ(s)(y) := ψ(0, s)(y) := expy(sNy) defined in (A.5). The mapping hD
is defined in (A.7) and is an extension of the mean curvature on the boundary ∂D:
it corresponds to the mean curvature for the foliation induced by the ∂D(r), r ∈ R
sufficiently small. With this formulation we can differentiate with respect to r, to
obtain

F ′(r, k) = −
∫
∂D

k(ψ(r, y))e−
∫ r
0
hD(ψ(s)(y) ds µ(dy).

Differentiating again we get

F ′′(r, k) = −
∫
∂D

(⟨dk, ∂rψ(r, y)⟩ − (kh)(ψ(r, y))) e−
∫ r
0
hD(ψ(s)(y)) ds µ(dy).

In particular,

F ′(0, k) = −µ(k) and F ′′(0, k) = µ(kh− ⟨dk,N⟩).
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This allows us to compute

d(F (Wt, k)) = F ′(Wt, k) dWt +
1

2
F ′′(Wt, k) dt

and then, since dWt and ⟨d∂Dt, N
Dt⟩(·) differ only by a finite variation process

dµt(k) =

∫
∂Dt

−k(y)
〈
d∂Dt(y), N

Dt(y)
〉
+

1

2

(
khDt −

〈
dk,NDt

〉)
(y)µt(dy).

This yields

dµt(k) =

∫
∂Dt

k(y) (−dWt − bt dt)−
1

2
⟨dk,NDt⟩(y)µt(dy) dt,

which gives (2.13). In particular, taking k ≡ 1 we obtain

(2.16) dµ(Dt) = µt(∂Dt)(−dWt − bt dt).

Now we can compute

dµt(k) = d
( µt(k)
µ(Dt)

)
=

1

µ(Dt)
dµt(k)−

µt(k)

µ(Dt)2
dµ(Dt) +

µt(k)

µ(Dt)3
d ⟨µ(D·)⟩t −

1

µ(Dt)2
d ⟨µ·(k), µ(D·)⟩t

=
1

µ(Dt)
dµt(k)−

µt(k)

µ(Dt)2
dµ(Dt) +

µt(k)

µ(Dt)3
µ(∂Dt)

2dt− 1

µ(Dt)2
µt(k)µt(∂Dt)dt

= −µt(k) (dWt + bt dt)−
1

2
µt(⟨dk,NDt⟩) dt+ µt(k)µt(∂Dt)(dWt + bt dt)

+ µt(k)µt(∂Dt)
2 dt− µt(k)µt(∂Dt) dt.

This yields (2.14). □

Denote τε the exiting time of (Dt)t⩾0 from Fα,ε. As in Definition 2.1 we stop
(Xt, Dt)t⩾0 at τε.

Proposition 2.10. — Any solution of equation (2.6) stopped at τε is a Markov process
solution to a martingale problem associated to a generator L acting in the following
way: for any g, k smooth functions on M and

Fk(D) :=

∫
D

kdµ,

we have for (x,D) ∈M × Fα,ε,

(2.17) L (gFk)(x,D) = −g(x)∆fD(x)µ∂D(k)− 1

2
g(x)µ∂D(⟨∇k,ND⟩)

+
1

2
Fk(D)∆g(x)− µ∂D(k)⟨∇g,∇fD⟩(x).

Proof. — From (2.6) and (2.13) with bt = ∆fDt(Xt) we have

dFk(Dt) =− µ∂Dt(k)
(
dWt +∆fDt(Xt) dt

)
−1

2
µ∂Dt

(
⟨∇k,NDt⟩

)
dt.
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This implies that

L (Fk)(x,D) = −µ∂D(k)∆fD(x)− 1

2
µ∂D

(
⟨∇k,ND⟩

)
,

and the covariation of g(Xt) and Fk(Dt) is ΓL [g, Fk](Xt, Dt) dt with

ΓL [g, Fk](x,D) = −µ∂D(k)⟨∇g,∇fD⟩(x).

Consequently, using

L (gFk)(x,D) = g(x)L (Fk)(x,D) + Fk(D)
1

2
∆g(x) + ΓL [g, Fk](x,D),

we get (2.17). □

It is possible to extend the description of L to more general functions on M×Fα,ε

(it vanishes on its complementary set), by replacing Fk in (2.17) by a mapping F

from A, as presented before Theorem 2.8.
Let (Pt)t⩾0 be the Markovian semi-group associated to the processes (Xt, Dt)t⩾0

solution to (2.6) stopped at τε. This semi-group is associated to L in the weak sense
of martingale problems, as described in Appendix D.

Let (D̃t)t⩾0 be a diffusion process with generator L̃ stopped outside Fα,ε, started
at D̃0 = D0 (due to Theorem 2.5, this process can be obtained as a solution to the
evolution equation (2.7)), ν̃t its law at time t and let

νt(dD, dx) := ν̃t(dD)U (D)(dx).

Proposition 2.11. — We have for all smooth functions g, k on M :

(2.18) ∂tνt(gFk) = νt(L (gFk)).

Proof. — Integrating (2.17) in x with respect to the uniform law µD := U (D) in D

yields

(2.19) − µD
(
g∆fD

)
µ∂D(k)− 1

2
µD(g)µ∂D(⟨∇k,ND⟩)

+
1

2
Fk(D)µD(∆g)− µ∂D(k)µD(⟨∇g,∇fD⟩).

By Stokes theorem,

µD
(
g∆fD + ⟨∇g,∇fD⟩

)
= µ∂D

(
g⟨∇fD,−ND⟩

)
= −µ∂D(g),

so the expression (2.19) writes

H(D) := µ∂D(k)µ∂D(g)− 1

2
µD(g)µ∂D(⟨∇k,ND⟩) + 1

2
Fk(D)µD(∆g).

On the other hand,

νt(gFk) = ν̃t[µ
Dt [g]Fk],

which implies that

(2.20) ∂tνt(gFk) = ∂tν̃t(
(
µDt(g)Fk

)
= ν̃t

(
L̃

(
µDt(g)Fk

))
.
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By (2.15),

L̃
(
µDt(g)

)
= −1

2
µ∂Dt(⟨∇g,NDt⟩),

so, taking into account (2.9),

L̃
(
µDt(g)Fk

)
= µDt(g)L̃ (Fk) + FkL̃

(
µDt(g)

)
+ Γ

L̃

[
µDt(g), Fk

]
= µDt(g)

{
µ∂Dt(k)µ∂Dt(∂Dt)−

1

2
µ∂Dt(⟨∇k,NDt⟩)

}
− 1

2
µDt(k)µ∂Dt(⟨∇g,NDt⟩)

−
(
−µ∂Dt(g) + µDt(g)µ∂Dt(∂Dt)

)
µ∂Dt(k)

= −1

2
µDt(g)µ∂Dt(⟨∇k,NDt⟩)− 1

2
µDt(k)µ∂Dt(⟨∇g,NDt⟩) + µ∂Dt(g)µ∂Dt(k).

But µDt(∆g) = −µ∂Dt(⟨∇g,NDt⟩) and Fk(Dt) = µDt(k), so

H(Dt) = L̃ (µDt(g)Fk),

which together with (2.20) proves (2.18). □

Theorem 2.12. — Let (x,D) 7→ fD(x) and (x,D) 7→ σDc (x) satisfy Assumption 2.2.
Consider a solution (Xt, Dt)t⩾0 to equation (2.6) started at D0∈Fα,ε, X0∼U (D0).
Then for all t ⩾ 0, (Dt, Xt) has law νt, implying that (Xt)t⩾0 and (Dt)t⩾0 are τε-inter-
twined. Moreover (Dt)t⩾0 is a diffusion with generator L̃ .

Proof. — Let us now prove that for any t ⩾ 0, Pt transports ν0 into νt, where
(Pt)t⩾0 is the semi-group introduced after the proof of Proposition 2.10. Consider
the map

G(g, k, t)(s) = νs (Pt−s(gFk)) , s ∈ [0, t].

We compute

G(g, k, t)′(s) = (∂sνs) (Pt−s(gFk))− νs (∂tPt−s(gFk))

= νs (L Pt−s(gFk))− νs (L Pt−s(gFk)) = 0,

where we used Proposition 2.11 in the first term of the second line, and Proposition D.3
in Appendix D to justify the differentiations (as well as the fact that

L Pt−s(gFk) = Pt−sL (gFk)

is bounded to be able to use differentiation under the integral νs). So we get
G(g, k, t)(0) = G(g, k, t)(t) which rewrites as

ν0Pt(gFk) = νt(gFk),

More generally, by similar arguments, we can replace in this formula Fk by any
mapping F from A. This in turn implies that ν0Pt = νt.

To finish, by iteration, we see that if X0 ∼ µD0 then (Dt)t⩾0 has the same finite
time marginals as (D̃t)t⩾0, proving that (Dt)t⩾0 is a diffusion with generator L̃ . □
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3. Intertwined dual processes: a generalized Pitman theorem

In this section we will consider the case where fD is the distance to boundary.
It is not covered by Section 2 since distance to boundary is not smooth, it is singular
on the skeleton of D. We will make an approximation of it, and then go to the limit
in law.

Let (W̃t)t⩾0 be a real-valued Brownian motion and (D̃t)t⩾0 be the solution of (2.7)
started at D̃0, with driving Brownian motion (W̃t)t⩾0.

Assumption 3.1. — Fix α ∈ (0, 1) and ε > 0. There exists a closed bounded subset
F̃α,ε of Fα,ε in which the process (D̃t)t⩾0 a.s. takes its values, such that the map
D 7→ S(D) is continuous from F̃α,ε with the C2 metric to K(M), the set of compact
subsets of M endowed with the Hausdorff metric. Moreover, Brownian motions with
probability one never hit the singular part of S(D̃t).

Conjecture 3.2. — We conjecture that Assumption 3.1 is always realized, for any
α ∈ (0, 1), ε > 0, D̃0 ∈ Fα,ε.

Notice that [1, Th. 1.1] proves the first part of the conjecture, i.e., the continuity of
D 7→ S(D), in the case where M = Rd endowed with a possibly varying Riemannian
metric. All examples in Section 5 together with the study of the motion of the skeleton
in Appendix B make us believe that Conjecture 3.2 is true. In particular, Section 5.4
provides a large class of examples in R2 which do not reduce to finite dimensional
processes, some of them having infinite lifetime. They are characterized by the fact
that the motion of skeleton can be explicitly described. The considered skeletons have
sufficient number of symmetries. For simplicity we considered n-branches skeletons,
but we could consider trees with as many ramifications as we want. We could also
replace R2 by the hyperbolic plane or the two dimensional sphere, as well as dimen-
sion 2 by higher dimension. All these situations would furnish true infinite dimensional
set-valued processes, some of them with completely describable skeleton.

However a better knowledge of skeletons is necessary to solve the conjecture in the
general situation. We believe that the process (S(D̃t))t⩾0 takes its values in a set of
regular stratified spaces, and that it has absolutely continuous variation in this space.

Let us begin with some preparatory results. To describe the approximation of
ρ(x, ∂D) we are interested in, let us introduce some notations.

– Let (x,D) 7→ ℓε(x,D) := (hε ◦ ρ∂D)(x) where hε ≡ 1 in [0, ε/2], hε ≡ 0 in
[3ε/4,∞) and hε is smooth and nonincreasing in [0,∞). When D is fixed by the
context, we will denote ℓε(x) := ℓε(x,D).

– For any δ ∈ (0, ε), let φδ : R+ → R be a nonnegative function with support
in [0, δ], such that the mapping Rd ∋ u 7→ φδ(|u|) is smooth and

∫
Rd φδ(|u|) du = 1

(in the sequel, | · | will stand for the usual Euclidean norm or for the Riemannian
norm on any tangent space of M , depending on the context).

– Let gδ be a smooth, 1-Lipschitz and odd function defined on R, with gδ(r) = r

on [0, ε/4], 0 ⩽ gδ(r) ⩽ r for any r ⩾ 0, and gδ(r) = cδr on [3ε/8,∞), for an
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appropriate constant cδ ⩽ 1 very close to 1 that will be defined below in (3.2).
We write ρδ(x, ∂D) := gδ(ρ(x, ∂D)).

The approximation of ρ(x, ∂D) we choose is

fδ(x,D) = ℓε(x,D)ρδ(x, ∂D) + (1− ℓε(x,D))

∫
TxM

φδ(|v|)ρδ(expx(v), ∂D) dv(3.1)

(where dv stands for the Lebesgue measure on TxM).
Define

e(δ) := sup{|||(∇ exp)(u)]|||, x ∈ B(o, 1/ε), u ∈ Bx(0, δ) ⊂ TxM},

where ∇ exp(u) : TxM → Texpx(u)
M is the covariant derivative of exp with respect

to the base point, ||| · ||| is the operator norm, when TxM and Texpx(u)
M are endowed

with their Euclidean structures, and Bx(0, δ) is the open ball in TxM with center 0

and radius δ. Recall that ε is fixed as in Assumption 3.1. The previously mentioned
constant cδ is given by

(3.2) cδ := e−1(δ)(1− δ∥∇1ℓε∥∞).

Notice that cδ does not depend on D and is as close as we want to 1. More precisely,
we have

Lemma 3.3. — There exists two constants C ′
1, C

′′
1 > 0, depending only on ε, such that

for δ > 0 sufficiently small,

0 ⩽ e(δ)− 1 ⩽ C ′
1δ, |cδ − 1| ⩽ C ′′

1 δ.

Proof. — The inequalities of the first line are well-known properties of the exponential
mapping. The second bound follows, since ∥∇1ℓε∥∞ = ∥h′ε∥∞ is independent of D
(and of order 1/ε). □

From the second bound, we can and will assume that the function gδ is furthermore
chosen so that gδ(r) converges uniformly to r on compact sets of R+, as well as the
corresponding derivatives up to order 2 as δ ↘ 0. In addition, we choose δ > 0

sufficiently small so that the map (x, y) 7→ exp−1
x (y) is well-defined and smooth in the

δ-neighborhood the diagonal of B(o, 1/ε) × B(o, 1/ε). Then, for any x ∈ M , we can
rewrite (3.1) under the form

fδ(x,D) = ℓε(x,D)ρδ(x, ∂D)

+ (1− ℓε(x,D))

∫
M

φδ(| exp−1
x (y)|)ρδ(y, ∂D) J exp−1

x (y)dy,

where J exp−1
x is the absolute value of the determinant of the Jacobian of exp−1

x (·).
The interest of all these preparations is:

Proposition 3.4
For all δ > 0 sufficiently small, the function (x,D) 7→ fδ(x,D) := fDδ (x) has the

following properties
– fδ satisfies the conditions of Assumption 2.2;
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– there exists C1 > 0 such that ∀D ∈ F̃α,ε and x ∈ D, we have

(3.3) |fδ(x,D)− ρ(x, ∂D)| ⩽ C1δ;

– the differential and the Hessian of fδ with respect to the second variable D satisfy
∀D ∈ F̃α,ε, ∀x ∈ D ∖ S(D), for all vector fields K normal to ∂D:

(3.4) ⟨d2fδ(x,D),K⟩ ⩽ C4∥K∥∞ and ∥∇2d2fδ(x,D) (N∂D, N∂D)∥ ⩽ C4

for a C4 not depending on x,D, δ. The second term is the second derivative along the
inward normal flow on D.

Proof. — We first prove ∥d1fδ(x,D)∥ ⩽ 1, d1 denoting the differential with respect
to the first or the x variable. For x ∈ B(o, 1/ε) we have

d1fδ(x,D) = ℓε(x,D)d1ρδ(x, ∂D)

+ (1− ℓε(x,D))d1

(∫
TxM

φδ(|u|)ρδ(expx(u), ∂D) du

)
+ d1ℓε(x,D)

∫
TxM

φδ(|u|) (ρδ(x, ∂D)− ρδ(expx(u), ∂D)) du.

Notice that if x′ is close to x and ıx,x′ : TxM → Tx′M is the parallel transport along
the minimal geodesic from x to x′, then∫

Tx′M

φδ(|u|)ρδ(expx′(u), ∂D) du =

∫
TxM

φδ(|u|)ρδ(expx′(ıx,x′(u), ∂D) du.

Taking the differential with respect to x′ at x′ = x and using ∇x′ |x′=xıx,x′ = 0 by
definition of parallel transport yields

d1

(∫
TxM

φδ(|u|)ρδ(expx(u), ∂D) du

)
=

∫
TxM

φδ(|u|)d1ρδ((∇ exp)(u), ∂D) du.

If ρ(x, ∂D) ⩽ ε/2 then ℓε(x,D) = 1, ∇ℓε(x,D) = 0 and

∥d1fδ(x,D)∥ ⩽ ℓε(x,D)∥d1ρδ(x, ∂D)∥ ⩽ 1.

If ρ(x, ∂D) ⩾ ε/2 then for δ ⩽ ε/8, we have ρ(expx(u), ∂D) ⩾ 3ε/8 for u ∈ TxM with
|u| ⩽ δ. It follows

∥d1fδ(x,D)∥ ⩽ ℓε(x)e
−1(δ) (1− δ∥d1ℓε∥∞)

+ (1− ℓε(x))

∫
TxM

φδ(|u|)cd∥(∇ exp)(u)∥ du

+ ∥d1ℓε(x)∥∞
∫
TxM

φδ(|u|)δ du

⩽ 1.

It is easily checked that the function fδ satisfies the other properties of Assumption 2.2.
Let us check that it also satisfies (3.3).
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We have

(3.5) fδ(x,D)− ρδ(x, ∂D)

= (1− ℓε(x,D))

∫
TxM

φδ(|u|) (ρδ(expx(u), ∂D)− ρδ(x, ∂D)) du,

which implies
|fδ(x,D)− ρδ(x, ∂D)| ⩽ δ.

On the other hand,

|ρ(x, ∂D)− ρδ(x, ∂D)| ⩽ (1− cδ)max (2/ε, 3ε/8) ⩽ C ′′′
1 δ

for some constant C ′′′
1 > 0 (depending on ε). This yields (3.3) with C1 := 1 + C ′′′

1 .
For proving (3.4), we take a vector field K(y) = k(y)N(y), y ∈ ∂D and compute

⟨d2ρ(x, ∂D),K⟩ = ⟨−N(P (x)),K(P (x))⟩ = −k(P (x)),

where P (x) is the projection of x onto ∂D, and

∇2d2ρ(x, ∂D) (N∂D, N∂D) = 0.

Remarking that ∥d2ℓε(x,D)∥ is bounded by ∥h′ε∥∞, we get (3.4) via a straightforward
computation. □

Theorem 3.5. — Fix D0 = D̃0 ∈ F̃α,ε and let X0 ∼ U (D0). Under Assumption 3.1,
there exists a pair (Xt, Dt)t⩾0 of τε intertwined processes in the sense of Defini-
tion 1.1, such that the process (Dt)t⩾0 satisfies

(3.6) d∂Dt(y) = NDt(y)
(〈
dXt, N

Dt(Xt)
〉
+

(1
2
hDt(y)− hDt(Xt)1Dt∖St(Xt)

)
dt

− 2 sin(θSt(Xt)) dL
St
t (X)

)
.

Here θSt(x) = π/2−φSt(x), φSt(x) being the angle between the orthogonal line to St
at x and any of the two minimal geodesics from ∂Dt to x ∈ St (recall St is the
regular skeleton of Dt, see Appendix A). In other words θSt(x) is the smallest angle
between St and the geodesics. The process LSt is the local time of Xt at St := S(Dt):

(3.7) LSt
t (X) = lim

β↘0

1

2β

∫ t

0

1{Xs∈Sβ
s } ds,

Sβs being the thickening of the regular part of Ss in normal direction, of thickness β
in both directions.

Remark 3.6. — Compared to Section 2 with fD replaced by distance to boundary
ρ∂D, we have outside the skeleton SD

∇ρ∂D(x) = ND(x) and ∆ρ∂D(x) = −hD(x)

and we will see that on the moving skeleton St = SDt :

“∆ρ∂Dt
(Xt) dt” = −2 sin(θSt(Xt)) dL

St
t (X).
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Proof. — Under Assumption 3.1, Proposition 3.4 allows us to construct for each δ > 0,
intertwined processes (Xδ

t , D
δ
t )t⩾0 started at (Xδ

0 , D
δ
0) = (X0, D0), associated with the

functions fDδ , stopped at τ δε , the exit time from F̃α,ε. We have from Equation (2.6)

(3.8) d∂Dδ
t (y) = NDδ

t (y)
(
dW δ

t +
(1
2
hD

δ
t (y) + ∆f

Dδ
t

δ (Xδ
t )
)
dt
)

for some Brownian motion W δ
t . On the other hand, from Proposition 2.11 and (2.1),

(Dδ
t )t⩾0 satisfies equation (2.7):

d∂Dδ
t (y) = NDδ

t (y)
(
dW̃ δ

t +
(1
2
hD

δ
t (y)− µ∂D

δ
t (∂Dδ

t )

µ(Dδ
t )

)
dt
)
,

where W̃ δ
t is the FDδ

t −Brownian motion

(3.9) dW̃ δ
t = dW δ

t +∆f
Dδ

t

δ (Xt) dt+
µ∂D

δ
t (∂Dδ

t )

µ(Dδ
t )

dt.

A remarkable fact about all (Xδ
t , D

δ
t )t⩾0 is that their marginals are constant in

law: for the second marginal we use Proposition F.2 which states that the martingale
problem associated to L̃ is well posed, and this implies uniqueness in law. Notice that
also ((Dδ

t )t⩾0, τ
δ
ε ) is constant in law since τ δε is a functional of (Dδ

t )t⩾0 independent
of δ. As a consequence, the family

(3.10)
(
(Xδ

t , D
δ
t ,W

δ
t , W̃

δ
t ,W

δ,m
t )t⩾0, τ

δ
ε

)
is tight (in (3.10) the Brownian motions (W δ

t )t⩾0 and (W δ,m
t )t⩾0 are the ones defined

by equation (2.6)). Denote by

(3.11)
(
(Xt, Dt,Wt, W̃t,W

m
t )t⩾0, τε

)
a limiting point. Let us prove the intertwining.

Using Proposition 2.11, for any smooth functions g and k on M , for any t ⩾ 0,

E[g(Xδ
t )Fk(D

δ
t )] = E

[
E[g(Xδ

t )Fk(D
δ
t )|FDδ

t ]
]

= E[U (Dδ
t )(g)Fk(D

δ
t )] = E

[Fg(Dδ
t )

F1(Dδ
t )
Fk(D

δ
t )
]

and passing to the limit yields the intertwining.
This property of (Dδ

t , W̃
δ
t )t⩾0 being constant in law passes to the limit, and we

have

d∂Dt(y) = NDt(y)
(
dW̃t +

(1
2
hDt(y)− µ∂Dt(∂Dt)

µ(Dt)

)
dt
)
.

We need to work with real-valued processes: we have from (2.16), for all δ > 0,

(3.12)
∫ t

0

dµ(Dδ
s)

µ(∂Dδ
s)

= −W δ
t −

∫ t

0

∆1fδ(X
δ
s , D

δ
s) ds.

This together with (3.9) yields

(3.13) d∂Dδ
t (y) = NDδ

t (y)
(
−dµ(D

δ
s)

µ(∂Dδ
s)

+
1

2
hD

δ
t (y) dt

)
.
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Again by constancy in law:

d∂Dt(y) = NDt(y)
(
−dµ(Ds)

µ(∂Ds)
+

1

2
hDt(y) dt

)
.

So to prove our result we only need to prove that

(3.14)
∫ t

0

dµ(Ds)

µ(∂Ds)
= −Wt +

∫ t

0

hDs(Xs) ds+

∫ t

0

2 sin
(
θSs(Xs)

)
dLSs

s (X)

and that

(3.15) Wt =

∫ t

0

⟨NDs(Xs), dXs⟩.

Let us prove (3.15). In all this paragraph we consider M as isometrically embedded
in some Euclidean space. In particular we are allowed to integrate vector quantities.
We use the fact that dXδ

t ⊗ dW δ
t converges in law to dXt ⊗ dWt (where ⊗ stands

for bracket of semimartingales). But dXδ
t ⊗ dW δ

t is equal to ∇1fδ(X
δ
t , D

δ
t ) dt. Then

by Lemma G.1 applied to ∇1fδ(X
δ
t , D

δ
t ) (which is uniformly bounded) and U =

{(x,D), x /∈ S(D)} defined in (G.1) we see that the integral of ∇1fδ(X
δ
t , D

δ
t ) dt

converges to the one of NDt(Xt) dt. But almost surely NDt(Xt) has norm 1 dt-a.e.,
implying that dWt = ⟨NDt(Xt), dXt⟩.

Let us now establish (3.14). It will be a consequence of the convergence as δ → 0

of (fδ(Xδ
t , D

δ
t ))t⩾0 to (ρ(Xt, ∂Dt)t⩾0.

Write the Itô formula for fδ(Xδ
t , D

δ
t ):

(3.16) d
(
fδ(X

δ
t , D

δ
t )
)
= ⟨d1fδ(Xδ

t , D
δ
t ), dX

δ
t ⟩+

1

2
∆1fδ(X

δ
t , D

δ
t ) dt

+ ⟨d2fδ(Xδ
t , D

δ
t ), d∂D

δ
t ⟩+

1

2
∇2d2fδ(X

δ
t , D

δ
t )(d∂D

δ
t , d∂D

δ
t ) dt

+ ⟨∇2d1fδ(X
δ
t , D

δ
t ), d∂D

δ
t ⊗ dXδ

t ⟩.

From Proposition 3.4, possibly by extracting a subsequence,

(3.17)
(
fδ(X

δ
t , D

δ
t )
)
t⩾0

L−−−→ (ρ(Xt, ∂Dt))t⩾0 .

From (3.5) we get for i = 1, 2,

difδ(x,D)− diρδ(x, ∂D)

= −diℓε(x,D)

∫
TxM

φδ(|u|) (ρδ(expx(u)), ∂D)− ρδ(x, ∂D)) du

+ (1− ℓε(x,D))

∫
TxM

φδ(|u|) (diρδ(expx(u)), ∂D)− diρδ(x, ∂D)) du.

From this we see that d1fδ(·, D) converges, locally uniformly outside S(D), to
d1ρ(·, ∂D) with respect to the distance d0 of Appendix G. We obtain, with
Lemma G.1, possibly by again extracting a subsequence, that

(3.18)
(∫ t

0

⟨d1fδ(Xδ
s , D

δ
s), dX

δ
s ⟩
)
t⩾0

L−−−→
(∫ t

0

⟨d1ρ(Xs, ∂Ds), dXs⟩
)
t⩾0

.
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More precisely, we have a sequence of martingales converging in law to a martingaleMt

which is a Brownian motion by [25, Th. 3]. For identifying the limiting martingale,
we use the convergence of ⟨d1fδ(Xδ

s , D
δ
s), dX

δ
s ⟩ ⊗ dXδ

s to dMs ⊗ dXs obtained again
by [25, Th. 3] (here again we use an isometric embedding of M). But Lemma G.1
proves that the limit is equal to ∇1ρ(Xs, ∂Ds) ds, yielding (3.18).

Next we prove that

(3.19)
(∫ t

0

⟨d2fδ(Xδ
s , D

δ
s), d∂D

δ
s⟩
)
t⩾0

L−−−→
(∫ t

0

⟨d2ρ(Xs, ∂Ds), d∂Ds⟩
)
t⩾0

.

The argument is similar except that as we see with (3.8), the drift part of d∂Dδ
s is

not well controlled as Xδ
t approaches the skeleton. So one cannot proceed exactly the

same way. But fortunately, for x outside a 3ε/4-neighbourhood of ∂D and outside
S(D), we have

(3.20) ⟨d2fδ(x,D), N |∂D⟩

= cδ

∫
TxM

φδ(|u|)⟨−N (P (expx(u)) , N (P (expx(u))⟩ du = −cδ,

where cδ is defined in (3.2). This together with (3.13) suggests to write∫ t

0

⟨d2fδ(Xδ
s , D

δ
s), d∂D

δ
s⟩ =

(∫ t

0

⟨d2fδ(Xδ
s , D

δ
s), d∂D

δ
s⟩+ cδ

∫ t

0

⟨NDδ
s , d∂Dδ

s⟩
)

− cδ

∫ t

0

⟨NDδ
s , d∂Dδ

s⟩.

The second line clearly converges. The right hand side in the first line can be written∫ t

0

ℓ̃ε(X
δ
s , D

δ
s)

〈
d2fδ(X

δ
s , D

δ
s) + cδN

Dδ
s , d∂Dδ

s

〉
with (x,D) 7→ ℓ̃ε(x,D) := (h̃ε ◦ ρ∂D)(x) where h̃ε ≡ 1 in [0, 3ε/4], h̃ε ≡ 0 in [ε,∞)

and h̃ε is smooth and nonincreasing in [0,∞).
With this last integral we can proceed as for (3.18), after passing to the limit, and

since limδ→0 cδ = 1, we get (3.20).
Similarly we obtain the two following convergences for the second derivatives:

(3.21)
(∫ t

0

∇2d2fδ(X
δ
s , D

δ
s)(d∂D

δ
s , d∂D

δ
s)

)
t⩾0

L−−−→
(∫ t

0

∇2d2ρ(Xs, ∂Ds)
(
N(P ∂Ds(Xs), N(P ∂Ds(Xs)

)
ds

)
t⩾0

≡ 0,

where P ∂Ds(Xs) is the orthogonal projection of Xs on ∂Ds (which is defined ds-almost
everywhere),

(3.22)
(∫ t

0

⟨∇2d1fδ(X
δ
s , D

δ
s), d∂D

δ
t ⊗ dXδ

t ⟩)
)
t⩾0

L−−−→
(∫ t

0

⟨∇2d1ρ(Xs, ∂Ds), d∂Ds ⊗ dXs⟩
)
t⩾0

≡ 0,
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since d1ρ(Xs, ∂Ds) = +⟨NDs(Xs), ·⟩ which implies that the covariant derivative in
the second variable with respect to NDs is equal to 0. On the other hand, by the
Itô-Tanaka formula (see Proposition E.1 in Appendix E using that ρ(x, ∂D) is almost
everywhere the minimum of two smooth functions) together with Assumption 3.1
which allows to only consider the regular skeleton, together with Theorem B.1 which
says that the latter has absolutely continuous variation (useful for the term dLSt

t (X)),
we have

(3.23) d (ρ(Xt, ∂Dt))

= ⟨d1ρ(Xt, ∂Dt), dXt⟩ −
1

2
hDt(Xt)1Dt∖St(Xt) dt+ ⟨d2ρ(Xt, ∂Dt), d∂Dt⟩

+ 0 + 0− sin
(
θSt(Xt)

)
dLSt

t (X).

Using (3.16), (3.17), (3.18), (3.19), (3.21), (3.22), (3.23) we obtain that

(3.24)
(∫ t

0

∆1fδ(X
δ
s , D

δ
s) ds

)
t⩾0

L−−−→
(∫ t

0

−hDs(Xs)1Ds∖Ss
(Xs) ds−

∫ t

0

2 sin
(
θSs(Xs)

)
dLSs

s (X)

)
t⩾0

.

It remains to pass in the limit as δ goes to zero in (3.12), to deduce (3.14). □

Remark 3.7. — From (3.23), it can be deduced that

d (ρ(Xt, ∂Dt))

=
1

2

(
hDt(Xt)1Dt∖St

(Xt)− hDt
(
P ∂Dt(Xt)

))
dt+ sin

(
θSt(Xt)

)
dLSt

t (X).

Indeed, (3.15) implies that

⟨d1ρ(Xt, ∂Dt), dXt⟩ = dWt

and due to (3.19), we have

⟨d2ρ(Xt, ∂Dt), d∂Dt⟩ = lim
δ→0

⟨d2ρ(Xδ
t , ∂D

δ
t ), d∂D

δ
t ⟩

= lim
δ→0

−dW δ
t −

(
∆1fδ(P

∂Dδ
t (Xδ

t ), D
δ
t ) +

1

2
hD

δ
t (P ∂D

δ
t (Xδ

t ))
)
dt,

where we used (3.12) in conjunction with (3.13).
Taking into account (3.24), we identify the last limit with

−dWt +
(
hDt(Xt)1Dt∖St

(Xt)−
1

2
h(P ∂Dt(Xt))

)
dt+ 2 sin

(
θSt(Xt)

)
dLSt

t (X).

4. Intertwined dual processes: decoupling and reflection on boundary

In this section we consider another canonical and extremal situation, the case
where fD vanishes almost everywhere. More precisely, it is the limiting situation
where fD is constant outside a ε-neighbourhood of the boundary. This situation is
completely opposite to the one of Section 3 where the coupling is maximal.
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Theorem 4.1. — There exists a pair (Xt, Dt)t⩾0 of τε-intertwined processes in the
sense of Definition 1.1 satisfying

(4.1) d∂Dt(y) = NDt(y)
(
dWt +

1

2
hDt(y)dt− dL∂Dt

t (X)
)
,

where (Xt)t⩾0 is a M -valued Brownian motion started at uniform law in D0, (Wt)t⩾0

is a real-valued Brownian motion independent of Xt, (L∂Dt
t (X))t⩾0 is the local time

of (Xt)t⩾0 on the moving boundary (∂Dt)t⩾0.

Remark 4.2. — Equation (4.1) can be considered as a limiting case of (2.6). Here
Assumption 3.1 is not needed since the morphological skeleton of D does not play a
role, and the map D 7→ ∂D is already sufficiently regular.

Proof. — The proof is quite similar to the one of Theorem 3.5, but with another
family of functions fDδ , namely fDδ := hδ ◦ ρ∂D where hδ is defined in the proof of
Proposition 2.4: hδ is a smooth nondecreasing function from [0,∞) to R+ such that
hδ(r) = r for r ∈ [0, δ/2], hδ(r) = (3/4)δ for r ⩾ δ and ∥h′δ∥∞ ⩽ 1. But here, as ε is
fixed, we will let δ ↘ 0. Again we construct for each δ > 0, an intertwined processes
(Xδ

t , D
δ
t )t⩾0 stopped at τ δε . Again all (Xδ

t , D
δ
t )t⩾0 are tight, and a limiting process

(Xt, Dt)t⩾0 stopped at τε provides an intertwining. The proof of (4.1) goes along the
same lines as the one of (3.6). □

We end this section with another canonical construction, where the functions fDδ
approximate −ρ∂D.

Theorem 4.3. — Under Assumption 3.1, there exists an intertwining (Xt, Dt)t⩾0

stopped at τε, satisfying

d∂Dt(y) = NDt(y)
(
−
〈
dXt, N

Dt(Xt)
〉
+

(1
2
hDt(y) + hDt(Xt)1Dt∖St(Xt)

)
dt

+ 2 sin(θSt(Xt)) dL
St
t (X)− 2dL∂Dt

t (X)
)
.

Proof. — It is completely similar to the ones of Theorems 3.5 and 4.1. □

5. Some fundamental examples

5.1. Real Brownian motion and three-dimensional Bessel process. — We come
back to the case where M = R. Assume that the Brownian motion X starts from 0
(to respect rigorously the above framework, X should start from the uniform distri-
bution on D0 := [−ε, ε] and next we should let ε go to 0+). Due to the invariance
by symmetry of (3.6), for any t > 0, Dt remains a symmetric interval, let us write it
[−Rt, Rt]. In this simple setting, we have NDt(·) = −sign(·) on R∖ {0}, hDt = 0 and
St = {0}, for any t > 0. Thus (3.6) writes

(5.1) dRt = sign(Xt)dXt + 2dLt,
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where (Lt)t⩾0 is the local time of X at 0. Namely we get that

∀ t ⩾ 0, Rt =

∫ t

0

sign(Xs) dXs + 2Lt = |Xt|+ Lt

by Tanaka’s formula. It is well-known that (Rt)t⩾0 is a Bessel process of dimension 3
(see e.g. [19, Chap. 6, Cor. 3.8]). In particular the signed distance ρ+∂Dt

to ∂Dt (chosen
to be positive inside Dt) is given by

∀ t ⩾ 0, ρ+∂Dt
(Xt) = min(Xt +Rt, Rt −Xt).

But except at time t = 0, this quantity is always positive: a.s. Xt never touch the
boundary of Dt for t > 0. Indeed, if for some t > 0 we have |Xt| = Rt, we deduce
that Lt = 0, namely a contradiction, since X0 = 0.

In particular, we see that the intertwining coupling we have constructed is different
from the one proposed by Pitman [18], which is a.s. touching (the upper) boundary
repeatedly. Instead we end up with the intertwining dual constructed in [16] via
stochastic flows. It is mentioned there how to deduce the classical Pitman’s dual, via
Lévy’s theorem.

Here is an alternative approach. While Equation (5.1) is obtained from approxi-
mating x 7→ |r − x| outside an ε-neighbourhood of 0 when D = [−r, r] by smooth
functions fD satisfying Assumption 2.2, we are able to recover Pitman theorem by
rather approximating x 7→ −x in D = [−r, r] outside the only ε-neighbourhood of −r.
In the limit of (2.6) as ε goes to zero, on the one hand we have

1{Xt ̸=Rt}dRt = dXt,

on the other hand we have Xt+Rt ⩾ 0, so that Xt+Rt is the solution to the Skorohod
problem associated to 2Xt. We get

Rt +Xt = 2Xt − 2 min
0⩽s⩽t

Xs,

which is equivalent to

Rt = Xt − 2 min
0⩽s⩽t

Xs.

The answer to the question: what would be a symmetric construction with local
time at the two ends of [−Rt, Rt] is given by Theorem 4.3. We obtained intertwined
processes with

Rt = −
∫ t

0

sign(Xs) dXs − 2L0
t (X) + 2L0

t (R−X) + 2L0
t (R+X).

5.2. Brownian motion and disks in rotationally symmetric manifolds. — This is
the simplest example since the skeleton is never hit by the Brownian motion. Consider
a complete d-dimensional manifold with d ⩾ 2, rotationally symmetric around a point
o ∈M . Denote by (r,Θ) polar coordinates with r(x) = ρ(o, x) and

ds2 = dr2 + f2(r) dΘ2
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the metric in polar coordinates. Then the radial Laplacian is

∆r =
∂2

(∂r)2
+ b(r)

∂

∂r
with b = (d− 1)(ln f)′.

We will investigate set-valued processes (Dt = B(o,Rt))t⩾0 where B(o, r) is the
open geodesic ball centered at o, with radius r. The skeleton of B(o,Rt) is the point o.

Let (Xt)t⩾0 be a Brownian motion in M satisfying X0 ∼ U (D0) for some D0 =

B(o, r0). Denote by ρt := r(Xt) the radial part of Xt. Then

dρt = dβt +
1

2
b(ρt) dt, ρ0 ∼ U f ((0, r0)),

where (βt)t⩾0 is a real Brownian motion and

U f (dr) :=
f(r)∫ r0

0
f(s) ds

dr.

The evolution equation (3.6) for Dt shows by symmetry that for all t ⩾ 0, Dt =

B(0, Rt) for some real-valued process (Rt)t⩾0. Moreover it writes

dρt = dβt +
1

2
b(ρt) dt,

dRt = dβt +
[
−1

2
b(Rt) + b(ρt)

]
dt.

(5.2)

Proposition 5.1. — The system of equations (5.2) has a solution up to explosion time
of (Rt)t

τD := inf{t ⩾ 0, Rt ̸∈ (0,∞)},

which satisfies for all t < τD,

(5.3) 0 < ρt < Rt.

The corresponding set-valued process (Dt = B(o,Rt))t⩾0 is solution to equation (3.6),
and in particular, for all FD-stopping time τ ,

L (Xτ |FD
τ ) = U (Dτ ) as well as L (ρτ |FD

τ ) = U f ((0, Rτ )).

Proof. — We only have to check (5.3). By (5.2),

d(Rt − ρt) =
1

2
[b(ρt)− b(Rt)] dt,

which vanishes on {Rt = ρt}, and since b is smooth, if ρ0 < R0, then ρt < Rt for all
times. □

5.3. Brownian motion and annulus in 2-dimensional rotationally symmetric man-
ifolds. — Let M be a complete 2-dimensional Riemannian manifold, rotationally
symmetric around a point o ∈ M . Denote by (r, θ) polar coordinates with r(x) =

ρ(o, x) and

ds2 = dr2 + f2(r) dθ2
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the metric in polar coordinates. Then the radial Laplacian is

∆r =
∂2

(∂r)2
+ b(r)

∂

∂r
with b = (ln f)′.

If 0 ⩽ r− ⩽ r+, let

A(r−, r+) := {x ∈M, r− ⩽ r(x) ⩽ r+} if r− < r+, A(r−, r+) := ∅,

the closed annulus delimited by the radius r− and r+.
In the following we will investigate set-valued processes Dt = A(R−

t , R
+
t ). The

skeleton of A(R−
t , R

+
t ) is the circle

St = C(o,R0
t ) with R0

t :=
1

2
(R−

t +R+
t ).

Let Xt be a Brownian motion in M satisfying X0 ∼ U (D0) for some D0 = A(r−0 , r
+
0 ).

Denote by ρt := r(Xt) the radial part of Xt. Then

dρt = dβt +
1

2
b(ρt) dt, ρ0 ∼ U f ((r−0 , r

+
0 )),

where (βt)t⩾0 is a real Brownian motion and

U f ((r−0 , r
+
0 ))(dr) :=

f(r)∫ r+0
r−0

f(s) ds
dr.

The evolution equation (3.6) for (Dt)t⩾0 shows by symmetry that for all t ⩾ 0,
Dt = A(R−

t , R
+
t ) for some real-valued processes R−

t ⩽ R+
t . Moreover it writes

dρt = sign(ρt −R0
t ) dWt +

1

2
b(ρt) dt,

dR+
t = dWt +

[
−1

2
b(R+

t ) + sign(ρt −R0
t )b(ρt)

]
dt+ 2L

R0
t

t (ρ),

dR−
t = −dWt +

[
−1

2
b(R−

t )− sign(ρt −R0
t )b(ρt)

]
dt− 2L

R0
t

t (ρ),

R0
t =

1

2

(
R−
t +R+

t

)
,

(5.4)

and these equations imply

dR0
t = −1

4

[
b(R+

t ) + b(R−
t )

]
dt.

Proposition 5.2. — The system of equations (5.4) has a solution up to explosion time

τD := inf{t ⩾ 0, (R−
t , R

+
t ) ̸∈ (0,∞)2},

which satisfies for all t < τD,

R−
t ⩽ ρt ⩽ R+

t .

The corresponding set-valued process (Dt = A(R−
t , R

+
t ))t⩾0 is solution to equa-

tion (3.6), and in particular, for all FD-stopping time τ ,

L (Xτ |FD
τ ) = U (Dτ ) as well as L (ρτ |FD

τ ) = U f ((R−
τ , R

+
τ )).
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Proof. — Fix ε > 0 and α ∈ (0, 1). We will first solve the system of equations until
the exit time τε and then let ε↘ 0. Let us construct functions fDδ (x) which satisfies
equation (3.1). It will be easier here because there is no need of functions ℓε and gδ.

For δ ∈ (0, ε), let φδ : R → R be the function with support equal to [−δ/2, δ/2],
satisfying for −δ/2 < r < δ/2:

φδ(r) :=
1

c(δ)
exp

(
− 1

(δ/2)
2 − r2

)
with c(δ) :=

∫ δ/2

−δ/2
exp

(
− 1

(δ/2)
2 − s2

)
ds,

and let
signδ : R −→ R

r 7−→ −1 + 2

∫ r

−∞
φδ(s) ds.

The functions φδ and signδ are both smooth and Lipschitz, and they respectively
approximate δ0 and sign. For 0 < r− < r+ satisfying r+ − r− ⩾ 2ε, defining
r0 := 1

2 (r
− + r+), for x ∈ A(r−, r+) let

fA(r−,r+)(x) = f(x, r−, r+) = g(r(x)),

with g(r) = g(r, r−, r+) =

∫ r

r−
−signδ(s− r0) ds.

Clearly f(x, r−, r+) is 1-Lipschitz in the first variable. A computation shows that

∂r+g(r, r
−, r+) =

∫ r0

−ε
φδ(v) dv and ∂r−g(r, r

−, r+) = −
∫ ε

r−r0
φδ(v) dv,

and thus g and f are 1-Lipschitz. Then the vector N := N∂A(r−,r+) is equal to

−1{r(x)=r+}∂r+ + 1{r(x)=r−}∂r− ,

so that

⟨∇f,N⟩ ≡ 1 and ∇df(N,N) ≡ 0.

This yields an elementary proof of the properties of Proposition 3.4. We can use
Theorem 3.5 to solve equation (5.4) until the stopping time τε.

We are left to prove that τε ↗ τD a.s. as ε↘ 0. This is a direct consequence of the
fact that the volume of A(R−

t , R
+
t ) is a time changed Bessel process of dimension 3

(by [8, Th. 5]), proving that A(R−
t , R

+
t ) cannot collapse onto its skeleton. □

Remark 5.3. — After the hitting time of 0 by R−
t , the processes can continue to

evolve under the regime of Section 5.2.

We recover from Proposition 5.2 a result from [15] stating that ([R−
t , R

+
t ])t⩾0 is an

intertwining dual process for the real diffusion (ρt)t⩾0. In particular, we deduce that
if (ρt)t⩾0 is positive recurrent and if +∞ is an entrance boundary, then ([R−

t , R
+
t ])t⩾0

reaches [0,+∞] in finite time and this finite time is a strong stationary time for
(ρt)t⩾0, see [15] for more details.
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5.4. Brownian motion and symmetric convex sets in R2. — In this section we take
M = R2 endowed with the Euclidean metric. For any integer n ⩾ 2, let Gn the group
of isometries of R2 generated by the rotation of angle 2π/n and the symmetry with
respect to the horizontal axis. Consider a smooth strictly convex bounded set D̃0 ⊂M

with smooth boundary, stable by the action of Gn. Let us investigate the evolution
of (D̃t)t⩾0 solution to (2.7). Notice that it is the first example where we really have
to deal with infinite dimensional processes. By conservation of the convexity by the
normal and mean curvature flows, D̃t will stay convex. It will also stay symmetric.
All the results of this subsection are proved in [2].

Proposition 5.4. — Assume that its skeleton has the form S̃0 = GnH̃0, H̃0 being an
horizontal interval H̃0 = [0, x̃0]×{0} for some x̃0 > 0 (an example of such a set when
n = 2 is the interior of an ellipse, the skeleton being the interval between the two
foci). The skeleton of D̃t always takes the form S̃t = GnH̃t with H̃t = [0, x̃t]×{0} an
horizontal interval.

The right endpoint (x̃t, 0) in the horizontal axis of the skeleton S̃t satisfies
dx̃t
dt

=
ρ2((x̃t, 0), ỹt)

2
(hD̃t)′′(ỹt),

ỹt being the point of ∂D̃t in the horizontal line with the greatest abscissa, and the
second derivative being calculated with curvilinear coordinates on ∂D̃t. Notice that
(hD̃t)′′(ỹt) ⩽ 0, proving that the process S(D̃t) is monotonically decreasing.

Let us return to the general situation of Gn-symmetric (D̃t)t⩾0. The investigation
of the lifetime of the solution to (2.7) is not easy. In [2] we prove that the lifetime
is the time when D̃t meets its skeleton S̃t. We have no example where D̃t meets its
skeleton S̃t in finite time. The next proposition yields examples where the lifetime is
infinite, together with nice properties related to the symmetry group Gn.

Proposition 5.5

(1) The process
(
µ∂D̃t(∂D̃t)/µ(D̃t)

)
0⩽t<τ̃

is a supermartingale.
(2) Define the entropy Ẽntt as the integral of ρt log ρt with respect to the curvilinear

abscissa in ∂D̃t, ρt being the curvature of ∂D̃t. Assume S̃0 is Gn-symmetric with
n ⩾ 3. Then the entropy process

(
Ẽntt

)
0⩽t<τ̃

is a supermartingale.
(3) Assume S̃0 is Gn-symmetric with n ⩾ 7. Then τ̃ = ∞ a.s. Consequently,

when S0 is Gn-symmetric with n ⩾ 7, Equation (4.1) for the decoupled (Xt, Dt)t⩾0

provides an intertwining with infinite lifetime. If moreover the skeleton S0 of D0 has
the form S̃0 = GnH̃0, H̃0 being an horizontal interval H̃0 = [0, x0] × {0} for some
x0 > 0, Equation (3.6) for the full coupled (Xt, Dt)t⩾0 provides an intertwining with
infinite lifetime.

Appendix A. An integration by parts on domains with boundary

Our goal here is to obtain an extension of Stokes’ formula on a domain with a
smooth boundary, for functions which degenerate on the skeleton. We take the op-
portunity to recall this notion, as well as related geometric concepts.
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Let M be a d-dimensional Riemannian manifold and D ⊂ M a compact and
connected domain with smooth boundary ∂D. For y ∈ ∂D, let N(y) be the inward
normal vector. Denote by S′ the inward (morphological) skeleton of D: S′ is the set
of points in D such that (i) the distance to ∂D is not smooth and (ii) there are points
around them where the distance to ∂D is smooth with a non vanishing gradient.
Denote

(A.1) τ(y) = inf{t > 0, expy(tN(y)) ∈ S′}.

Let S be the set of regular points of S′, which we can describe as follows: if x ∈ S,
then there exists a unique pair (y1, y2) of distinct points from ∂D such that

(A.2) x = expy1 (τ(y1)N(y1)) = expy2
(
τ(y2)N(y2)

)
.

We have τ(y1) = τ(y2), and for i = 1, 2, the differential at (τ(yi), yi) of the map
R+ × ∂D ∋ (t, y) 7→ expy(tN(y)) is nondegenerate. The set S is a codimension 1

submanifold of M and S′∖S has Hausdorff dimension smaller than or equal to d−2.
It is the union of the focal set which is the set of points x = expy(τ(y)N(y)) such that
(t, y′) 7→ expy′(tN(y′)) is degenerate at (τ(y), y), and the union of the sets defined
like S but with strictly more than two points y1, y2, y3,... For r ⩾ 0, let

(A.3) D(r) = {z ∈ D ∖ S′, ρ∂D(z) ⩾ r},

where ρ is the Riemannian distance. The set D(r) is a (possibly empty) manifold
with smooth boundary ∂D(r) on which one can define an inward normal N(y) and
an orientation by parallel transporting oriented basis of ∂D along normal geodesics.
So we have for all y ∈ D ∖ S′: N(y) = ∇ρ∂D(y).

We will also need the sets D(r) for all r ∈ R. We will let for r < 0

(A.4) D(r) = {z ∈M, ρ+∂D(z) ⩾ r},

where ρ+∂D is the signed distance to ∂D, positive inside D, negative outside D.
Define for s, t ∈ R

ψ(s, t) : ∂D(s) −→ ∂D(t)

y 7−→ expy ((t− s)N(y))
(A.5)

and ψ(t) = ψ(0, t). We will indifferently write ψ(t)(x) = ψ(t, x). The function ψ(s, t)

is not defined for all points of ∂D(s) because we ask ψ(s, t)(y) ∈ ∂D(t), nor is N(·).
However for |s| and |t| small it is a map, defined for all y ∈ ∂D(s), and is is also a
diffeomorphism with inverse ψ(t, s).

We have for 0 ⩽ s ⩽ t, ψ(t) = ψ(s, t) ◦ ψ(s), which implies

(A.6) detTψ(t) = detTψ(s, t)× detTψ(s).

Notice that thanks to the orientation of the sets ∂D(r) we get an orientation of D∖S′

by adding N as first vector to oriented basis, consequently detTψ is well defined and
always positive. It is well-known that

(A.7) d

dt

∣∣∣
t=s

detTψ(s, t)(y) = −h(y),
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where h(y) is the inward mean curvature of ∂D(s) (the minus sign of the right-hand
side of (A.7) insures that h is non-negative on ∂D(s) when D(s) is convex). This
together with (A.6) yields

d

dt

∣∣∣
t=s

detTψ(t)(y) = −h (ψ(s)(y)) detTψ(s)(y)

and consequently, using ψ(0) = id and detTψ(0) ≡ 1,

detTψ(t)(y) = exp

(∫ t

0

−h (ψ(s)(y)) ds
)
.

Denote by µ the volume measure of D and by µ the volume measures of the manifolds
∂D(s) and of S. Then

(A.8) µ(D) =

∫ ∞

0

µ (∂D(r)) dr.

But for r ⩾ 0

µ (∂D(r)) =

∫
∂D

detTψ(r)(y)µ(dy),

with convention detTψ(r)(y) = 0 if r ⩾ τ(y). We get

µ (∂D(r)) =

∫
∂D

exp

(
−
∫ r

0

h(ψ(s)(y)) ds

)
1{r<τ(y)} µ(dy),

which yields with (A.8)

µ (D) =

∫
∂D

(∫ τ(y)

0

exp

(
−
∫ r

0

h(ψ(s, y)) ds

)
dr

)
µ(dy).

More generally, for a measurable function g : D → R bounded below,∫
D

g dµ =

∫
∂D

(∫ τ(y)

0

g (ψ(r, y)) exp

(
−
∫ r

0

h(ψ(s, y)) ds

)
dr

)
µ(dy).

Applying this formula to the function gh which we assume to be bounded below or
integrable, we get by integration by parts∫

D

gh dµ =

∫
∂D

(∫ τ(y)

0

−g (ψ(r, y)) d
dr

exp

(
−
∫ r

0

h(ψ(s, y)) ds

)
dr

)
µ(dy)

=

∫
∂D

[
−g (ψ(r, y)) exp

(
−
∫ r

0

h(ψ(s, y)) ds

)]τ(y)
0

µ(dy)

+

∫
∂D

(∫ τ(y)

0

⟨dg,N⟩ (ψ(r, y)) exp
(
−
∫ r

0

h(ψ(s, y)) ds

)
dr

)
µ(dy)

=

∫
∂D

g(y)µ(dy)−
∫
∂D

g(ψ(τ(y), y))e−
∫ τ(y)
0 h(ψ(u,y)) du µ(dy)

+

∫
D

⟨dg,N⟩ dµ.

Define the map
φ : ∂D −→ S′

y 7−→ ψ(τ(y), y).
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For z = ψ(τ(yi), yi) ∈ S (i = 1, 2) define θ(z)∈ (0, π/2] the angle between the vector
N(ψ(τ(yi)−, yi)) and the skeleton S. In the sequel we assume that θ(z) ̸= π/2 (the
case θ(z) = π/2 is simpler to deal with and Proposition A.1 is always valid). Notice
that this angle does not depend on i, this is a consequence of z ∈ S staying at the
same distance to y1 and y2 by infinitesimal variation. For later use, let also θ(z) = 0

when z ∈ S′ ∖ S. Let us prove that for z = ψ(τ(yi), yi)) ∈ S,
(A.9) detTψ(τ(yi), yi) = sin θ(φ(yi)) detTφ(yi), i = 1, 2.

Set y = y1. Let e1 = N(y), eS1 = N(ψ(τ(y)−, y)), NS(z) the normal to S at z such
that ⟨NS(z), eS1 ⟩ > 0, let e′′ = (e3, . . . , ed) be a family of orthonormal normalized
vectors in Ty∂D such that letting e2 = ∇τ(y)/∥∇τ(y)∥ (we have ∇τ(y) ̸= 0, since
θ(z) ̸= π/2), e′ := (e2, e

′′) is an orthonormal basis of Ty∂D, let (eS)′′ = (eS3 , . . . , e
S
d )

be an orthonormal basis of Tyφ(Vect(e′′)), let eS2 such that (eS)′ := (eS2 , . . . , e
S
d ) is an

orthonormal basis of TzS. Finally let eθ2 ∈ TzM be such that ⟨eθ2, N(z)⟩ < 0 (eθ2 and
NS(z) are not orthogonal, since θ(z) ̸= π/2) and (eS1 , e

θ
2, (e

S)′′) is an orthonormal
basis of TzM . Figure 1 shows the configuration of eS1 , NS(z), eS2 and eθ2 on an example
of dimension 2.

∂D

e1

e2

eθ2

eF1

eF2

NS(z)

θ

S

Figure 1. The vectors eS1 , NS(z), eS2 and eθ2.

In the sequel we will denote for instance

Tφ(e′) =

Tφ(e2)...
Tφ(ed)

 ,

so that ⟨Tφ(e′), (eS)′⟩ will be the matrix of all scalar products. We have
⟨Tφ(e′), (eS)′⟩ = ⟨dτ, e′⟩⟨∂tψ(τ(y), y), (eS)′⟩+ ⟨Tψ(e′), (eS)′⟩

=

(
⟨dτ, e2⟩⟨∂tψ, eS2 ⟩+ ⟨Tψ(e2), eS2 ⟩ ⟨Tψ(e2), (eS)′′⟩
⟨dτ, e′′⟩⟨∂tψ, eS2 ⟩+ ⟨Tψ(e′′), eS2 ⟩ ⟨Tψ(e′′), (eS)′′⟩

)
.

Let us simplify and make more explicit this expression. We have ⟨dτ, e′′⟩ = 0. Also
eθ2 ⊥ (eS)′′ and eS2 ⊥ (eS)′′ so eS2 ∈ Vect(eS1 , e

θ
2) and more precisely

eS2 = cos(θ(z))eS1 + sin(θ(z))eθ2.
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On the other hand Tψ(e′) ⊥ eS1 which implies

⟨Tψ(e′), eS2 ⟩ = sin(θ(z))⟨Tψ(e′), eθ2⟩.

Also ⟨∂tψ, eS2 ⟩ = cos(θ(z)). We arrive at

det⟨Tφ(e′), (eS)′⟩ = sin θ(z) det

(
⟨Tψ(e2), eθ2⟩ ⟨Tψ(e′′), eθ2⟩

⟨Tψ(e2), (eS)′′⟩ ⟨Tψ(e′′), (eS)′′⟩

)
+ cos θ(z) det

(
⟨dτ, e2⟩ 0

⟨Tψ(e2), (eS)′′⟩ ⟨Tψ(e′′), (eS)′′⟩

)
= sin θ(z) detTψ + cos θ(z)⟨dτ, e2⟩det⟨Tψ(e′′), (eS)′′⟩.

For the last equation we used the fact that detTψ = det⟨Tψ(e′), (eθ2, (eS)′′)⟩, since e′
and (eθ2, (e

S)′′) are orthonormal bases. Note that by definition, ⟨Tψ(e′′), eθ2⟩ = 0, so
we also get detTψ = det⟨Tψ(e′′), (eS)′′⟩ × ⟨Tψ(e2), eθ2⟩. On the other hand, we have

⟨dτ, e2⟩ = ⟨Tψ(e2), eθ2⟩ cot θ(z).

Indeed, note that

0 =
〈
Tφ(e2), N

S
〉
= ⟨dτ, e2⟩

〈
eS1 , N

S
〉
+

〈
Tψ(e2), N

S
〉

= ⟨dτ, e2⟩ sin(θ(z))− cos(θ(z))
〈
Tψ(e2), e

θ
2

〉
,

where the last term is obtained by taking into account that Tψ(e2) is parallel to eθ2.
This is the change of length of the geodesic needed to stay in S. We obtain

detTφ = sin θ(z) detTψ + cos θ(z) cot θ(z) detTψ

=
sin2 θ(z) + cos2 θ(z)

sin θ(z)
detTψ.

This yields (A.9).
We arrived at∫
D

gh dµ =

∫
∂D

g(y)µ(dy)−
∫
∂D

g(ψ(τ(y), y)) detTψ(τ(y), y)µ(dy)

+

∫
D

⟨dg,N⟩ dµ.

This yields with (A.9)∫
D

gh dµ =

∫
∂D

g(y)µ(dy)−
∫
∂D

g(φ(y)) sin θ(φ(y)) detTφ(y)µ(dy)

+

∫
D

⟨dg,N⟩ dµ.

Using the change of variable y 7→ φ(y) and the fact that all z ∈ S is equal to φ(yi),
i = 1, 2, we obtain the key formula

Proposition A.1. — With the above notations, for any smooth function g defined
on D such that gh is integrable or bounded below, we have:∫

D

gh dµ =

∫
∂D

g(y)µ(dy)− 2

∫
S

g(z) sin θ(z)µ(dz) +

∫
D

⟨dg,N⟩ dµ.

J.É.P. — M., 2024, tome 11



Couplings of Brownian motions with set-valued dual processes 505

Appendix B. Moving sets

In this section we describe how to move a domain with smooth boundary by defor-
mation of its boundary. We also investigate the deformation of its skeleton. The
deformation we will consider will have a general absolutely continuous finite variation
part, together with a very specific martingale part and singular finite variation part.
First we introduce some notation.

For a domain D0 with smooth boundary ∂D0 and α > 0, define the map ψ = ψD0

by
ψ : (−α, α)× ∂D0 −→M

(s, y) 7−→ expy
(
sN(y)

)
.

Here N = ND0 is the inward normal defined in Section A. We take α sufficiently
small so that ψ is a diffeomorphism on its range which we will call D0,α. Consider a
moving domain t 7→ Dt started at D0. We assume that the deformation is sufficiently
regular so that for all t ⩾ 0, we can write Dt as

Dt = {ψ([ft(y), τD0
(y)], y), y ∈ ∂D0}

with τD0
(y) defined in (A.1), ψ([ft(y), τD0

(y)], y) := {ψ(s, y), s ∈ [ft(y), τD0
(y)]}, and

t 7→ ft(y) a semimartingale with values in (−α, α), smoothly depending on y. In par-
ticular, the skeleton S′

0 of D0 satisfies S′
0 ⊂ Dt. In other words, Dt is the union of rays

ψ([ft(y), τD0(y)], y) orthogonal to ∂D0 at y (notice that all ψ([ft(y), τD0(y)), y) are
disjoint). Alternatively, Dt is also the interior of the set exp∂D0

(f) described in (2.2)
with ft instead of f . Also, in the special case where the real valued semimartingale
t 7→ ft(y) = ft does not depend on y, then we have

(B.1) Dt = D0(ft),

where D0(r) is defined in (A.4). In this situation, the skeleton is not moving, at least
as long as ∂Dt remains smooth (i.e., until ∂Dt hits the inner skeleton S′

0 or the outer
skeleton of D0), and t 7→ ft can be allowed to be a semimartingale with singular
continuous drift.

When t 7→ ft(y) depends on y the situation is more complicated and we like to use
a more convenient and intrinsic description of the motion of Dt. More precisely, we
will describe it by the motion of its boundary via semimartingales (Yt(y))t⩾0 indexed
by y ∈ ∂D0, satisfying Y0(y) = y and the Itô equation in manifold with respect to
the Levi Civita connection ∇

(B.2) dYt(y) = d∇Yt(y) = NDt(Yt(y))
(
HDt(Yt(y)) dt+ dzt

)
,

where HDt is a smooth function on ∂Dt (which later on will be chosen to be hDt/2,
where hDt is the mean curvature of ∂Dt) and (zt)t⩾0 is a real valued continuous semi-
martingale. Recall that formally d∇Yt(y) is a vector which writes in local coordinates
(y1, . . . , yd) with the Christoffel symbols Γij,k:

d∇Yt(y) =
(
dY it (y) +

1

2
Γij,k(Yt(y)) d⟨Y

j
t (y), Y

k
t (y)⟩

)
Di(Yt(y)),
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where Di(Yt(y)) is the vector ∂/∂yi taken at point Yt(y). Since the semimartingale
(zt)t⩾0 does not depend on y, the Itô equation is equivalent to the Stratonovich one:
indeed, using (B.1) the Itô to Stratonovich conversion term is

1

2
∇NDt (Yt(y))dztN

Dt(·) dzt =
1

2
∇NDt (Yt(y))N

Dt(·) d⟨z, z⟩t = 0

since NDt(Yt(y)) is the speed at time a = 0 of the geodesic a 7→ ψDt(a, Yt(y)).
We assume that Equation (B.2) has a strong solution for all times, possibly by

stopping it, and that a.s. for all times the map y′ 7→ Yt(y
′) is a diffeomorphism from

∂D0 to ∂Dt. Since dYt(y) represents the motion of ∂Dt, writing Yt(y′) = y and using
the diffeomorphism property, equation (B.2) rewrites as

(B.3) d∂Dt(y):=dYt(y
′) = NDt(y)

(
HDt(y) dt+ dzt

)
.

In other words, our equations are driven by two vector fields (HD(y)ND(y))y∈∂D and
(ND(y))y∈∂D, and the stochastic part is in front of the second one. All the set-valued
processes considered in this paper satisfy this assumption.

We can obtain the random functions ft : ∂D0 → R from the semimartingales
(Yt(y

′))t⩾0 with the following procedure. The orthogonal projection πt : ∂Dt → ∂D0

is a diffeomorphism, and by definition of ψ, we have

Yt(y
′) = ψ

(
ft(πt(Yt(y

′)), πt(Yt(y
′))

)
,

yielding

ft(πt(Yt(y
′)) =

(
ψ−1

)
1
(Yt(y

′))

with
(
ψ−1

)
1

the first coordinate of ψ−1. Writing y = πt(Yt(y
′)) and using the diffeo-

morphism properties, we get

ft(y) =
(
ψ−1

)
1
(π−1
t (y)).

Consequently, the real-valued semimartingale (ft(y))t⩾0 solves the Stratonovich equa-
tion

◦dft(y) = T
(
ψ−1

)
1
(◦dπ−1

t (y)),

which is impossible to work with. This is why we will always consider the formula-
tion (B.3).

Let us now investigate the motion of the skeleton St under this motion of Dt.
First we remark that by local inversion theorem, at regular points of the skeleton, the
variation in Stratonovich sense is linear and the sum of all variations of the concerned
point at the boundary. As we already remarked, the motion dzt does not change St, so
this together with the linearity just mentioned implies that we have a finite variation
of the skeleton.

Recall the situation of (A.2) in Section A. We consider a domain D, x ∈ S, y1, y2
the two elements of ∂D such that expy1 (τ(y1)N(y1)) = expy2 (τ(y2)N(y2)), with
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τ(y1) = τ(y2). For i = 1, 2, we will consider a variation of the minimal geodesic from yi
to x, represented by a Jacobi field Ji satisfying Ji(0) ∈ TyiM , J1(1) = J2(1) ∈ TxM ,

Ji(0) = λiN(yi) + J⊥
i (0), J ′

i(0) = λ′iN(yi) + (J⊥
i )′(0),

with J⊥
i orthogonal to N(yi). The motion of S corresponding to the motion of y1

and y2 will be represented by J1(1). Since S has a boundary, the observation of the
orthogonal part to S of J1(1) is not sufficient.

Let γi be the projection on M of Ji. It is the geodesic in time 1 from yi to x

(as usual in the computations of Jacobi fields, the speed is not normalized). Denote
Ni(x) = γ̇i(1)/∥γ̇i(1)∥. Recall that the angle between Ni(x) and TxS is θ(x) ∈ (0, π/2].
We will also let

(B.4) NS
1 (x) =

1

2 sin θ(x)
(N1(x)−N2(x)).

Figure 2 shows the configuration of the points x, y1, y2 and the vectors N1(x), N2(x),
NS

1 (x). The vector NS
1 (x) is is the normal vector to S at point x, in the same side

as N1(x).

∂D

y1

y2

θ(x)

N1(x)

N2(x)

x θ(x)

D

S

NS
1 (x)

Figure 2. The points x, y1, y2 and the vectors N1(x), N2(x), N
S
1 (x).

We will consider variations of geodesics with same final value:

J1(1) = J2(1) = λNS
1 (x) + JT1 (1)

for some λ ∈ R, where JT1 (1) ∈ TxS. Writing λNS
1 (x) = λ

2 sin θ(x) (N1(x) − N2(x)),
we have

⟨J1(1), N1(x)⟩ =
λ

2 sin θ(x)
(1− cos(2θ(x)) + ⟨JT1 (1), N1(x)⟩

= λ sin θ(x) + ⟨JT1 (1), N1(x)⟩

and

⟨J1(1), N2(x)⟩ = − λ

2 sin θ(x)
(1− cos(2θ(x)) + ⟨JT1 (1), N2(x)⟩

= −λ sin θ(x) + ⟨JT1 (1), N2(x)⟩.
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On the other hand we require that the variation of length of the two geodesics are
the same. This writes as

⟨J1(1), N1(x)⟩ − ⟨J1(0), N(y1)⟩ = ⟨J2(1), N2(x)⟩ − ⟨J2(0), N(y2)⟩

or

λ sin θ(x) + ⟨JT1 (1), N1(x)⟩ − λ1 = −λ sin θ(x) + ⟨JT1 (1), N2(x)⟩ − λ2,

which finally, with ⟨JT1 (1), N1(x)−N2(x)⟩ = 0, yields λ = (λ1 − λ2)/2 sin θ(x), so the
normal variation of S is given by

(B.5) ⟨J1(1), NS
1 (x)⟩NS

1 (x) =
λ1 − λ2
2 sin θ(x)

NS
1 (x).

Next we will compute the tangential displacement JT (1) of x in S. As we will see
later, we will only need a Jacobi field J1 such that J⊥

1 (0) and (J⊥
1 )′(0) are known and

J1(0) = λ1N(y1), i.e., J⊥
1 (0) = 0.

So we know J⊥
1 (1): and

J⊥
1 (1) = J

(
1, 0, (J⊥

1 )′(0)
)
,

where J(1, u, v) is the value at time 1 of the Jacobi field J with J(0) = u and J ′(0) = v.
From

J1(1) = JT1 (1) + ⟨J1(1), NS
1 (x)⟩NS

1 (x),

J1(1) = J⊥
1 (1) + ⟨J1(1), N1(x)⟩N1(x),

we get

(B.6) JT1 (1) = J⊥
1 (1) + ⟨J1(1), N1(x)⟩N1(x)− ⟨J1(1), NS

1 (x)⟩NS
1 (x).

On the other hand we have
⟨J1(1), N2(x)⟩ = ⟨J⊥

1 (1), N2(x)⟩+ ⟨J1(1), N1(x)⟩⟨N1(x), N2(x)⟩,
⟨J1(1), N2(x)⟩ = ⟨J1(1), N1(x)⟩ − (λ1 − λ2),

where the second equation is a direct consequence of (B.5). Subtracting the second
equation to the first one yields

(1− cos(2θ(x)))⟨J1(1), N1(x)⟩ = ⟨J⊥
1 (1), N2(x)⟩+ λ1 − λ2.

Replacing ⟨J1(1), N1(x)⟩ in (B.6) and after simplification, using (B.4) and (B.5), we
finally obtain the horizontal displacement

(JT1 )(1) = J⊥
1 (1) +

1

4 sin2 θ(x)

(
2⟨J⊥

1 (1), N2(x)⟩N1(x) + (λ1 − λ2)(N1(x) +N2(x))
)
.

We are now in position to write the motion of the skeleton St when the motion
of the boundary is given by (B.3). For x ∈ St with corresponding points y1 and y2
in ∂Dt,

(B.7) dS⊥
t (x) =

1

2 sin θSt(x)

(
HDt(y1)−HDt(y2)

)
NSt

1 (x) dt,
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which has finite variation. Observe that, as already mentioned, the term dzt disap-
pears.

Here we wrote dS⊥
t (x) for the normal variation of the regular skeleton. But as we

already remarked, since St is not a closed manifold, it can expand via the motion of
its boundary. So we have to investigate the horizontal motion dST (x).

Notice that J⊥
1 )′(0) is the perpendicular part of the time derivative of the speed

at y1 of the geodesic in time 1 from y1 to x. So from equation (B.3) we deduce the
rotation

(J⊥
1 )′(0) dt = ρS(y1)∇tN

Dt(y1) = −ρS(y1)∇HDt(y1) dt.

(in the right-hand side the gradient corresponds to the tangential gradient on ∂Dt,
recall that HDt is only defined on this hypersurface).

We conclude that the horizontal displacement of x is JT1 (1) dt

(B.8) JT1 (1) dt = J⊥
1 (1) dt+

1

4 sin2 θSt(x)

(
2⟨J⊥

1 (1), NDt
2 (x)⟩NDt

1 (x)

+ (HDt(y1)−HDt(y2))(N
Dt
1 (x) +NDt

2 (x))
)
dt,

where J⊥
1 (1)=J(1, 0,−ρS(y1)∇HDt(y1)). Again the process zt does not play a role.

To summarize, we have the following result for the evolution of St:

Theorem B.1. — When Dt evolves as (B.3)

(B.9) d∂Dt(y) = NDt(y)(HDt(y) dt+ dzt),

the regular skeleton St has the normal evolution (B.7)

(B.10) dS⊥
t (x) =

HDt(y1)−HDt(y2)

4 sin2 θSt(x)

(
NDt

1 (x)−NDt
2 (x)

)
dt

and the tangential evolution (B.8) which can be rewritten as

(B.11) dSTt (x) = pS(J
⊥
1 (1)) dt

+
(
−⟨J⊥

1 (1), NS
1 (x)⟩

2 sin θSt(x)
+
HDt(y1)−HDt(y2)

4 sin2 θSt(x)

)
(NDt

1 (x) +NDt
2 (x)) dt,

where pS denotes the orthogonal projection on TS, J⊥
1 (1)=J(1, 0,−ρS(y1)∇HDt(y1)),

and y1, y2 are defined in Figure 2.

Remark B.2. — The points y1 and y2 do not play the same role in Theorem B.1.
As formula (B.10) is symmetric in y1 and y2, formula (B.11) is not. The reason is
that if we assume the motion of y1 to be normal to the boundary ∂Dt and to have
speed given by (B.9), the motion of y2 has no reason to be normal to the boundary:
J⊥
2 (0) does not vanish.
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Appendix C. Doss-Sussman representation of Itô’s equation (2.7)

In this section we adapt the results of [8] to our notations. Let the stochastic mean
curvature flow be a solution of:

(C.1) ∀ t ∈ [0, τ), ∀ y ∈ Ct, d∂Dt(y) =
(
dWt +

1

2
hDt(y)dt

)
NDt(y),

where Ct := ∂Dt, starting at D0. Notice that contrarily to [8] we don’t have a term
√
2

in front of the Brownian motion, this explains the fact that we have put a normaliza-
tion factor 1/2 in front of the mean curvature term.

Let ∂Gt be a solution of

(C.2)
{
G0 = D0,

∂tx = α∂Gt,−Wt
(x)NGt(x), ∀ t ∈ [0, ε̃), ∀x ∈ ∂Gt,

for some ε̃ > 0 small enough, where α is defined by

∀ r > 0, ∀D ∈ Dr, ∀x ∈ C, αC,r(x) :=
1

2
hΨ(C,r)(ψC,r(x)),

and Ψ(C, r) is the normal (exterior) flow starting at C at time r (cf. [8, Chap. 3 & 4]
for the notations).

Similarly to the proof of [8, Th. 17], we show that Dt = Ψ(Gt,−Wt) is a solution
of the stopped martingale problem associated to the generator (D, L̃) where for f ∈
C∞(M) and Ff (D) =

∫
D
f dµ, ν = −N is the exterior normal

L̃Ff (D) :=
1

2

∫
∂D

⟨∇f, ν⟩ dµ = F 1
2∆f

(D).

Recall that the equation (C.2), is in fact a quasiparabolic equation with coefficients
that depend on trajectory of the Brownian motion (the meaning is trajectory by
trajectory). Similarly to [8, §4.1], we show that the solution of (C.2) have a regularity
C1+α/2,2+α, for all α < 1.

Proposition C.1. — Let ∂Gt be a solution of (C.2). Then ∂Dt = Ψ(∂Gt,−Wt) is a
solution of (C.1) in the Itô sense.

Proof. — Let x ∈ Ψ(∂Gt,−Wt), we have:

dΨ(∂Gt,−Wt)(x) = T1Ψ(∂Gt,−Wt)

( d
dt
∂Gt

)
(Ψ−1(∂Gt,−Wt)(x) dt

− νΨ(∂Gt,Wt)(x)dWt

=
(
dWt +

1

2
hΨ(∂Gt,−Wt)(x)dt

)
NΨ(∂Gt,−Wt)(x),

where in the first equality we use the Itô formula, the fact that t 7→ ∂Gt is of class
C1+α/2, (d2/d2r)Ψ(x, r) = 0, and in the second equality we used [8, Lem. 13], i.e.,
∂Dt is a solution in the Itô form:

(C.3)
{
d∂Dt(x) = (dWt +

1
2h

∂Dt(x)dt)N∂Dt(x),

x ∈ ∂Dt.
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□

Proposition C.2. — Conversely, if ∂Dt is a solution of (C.3) then ∂Gt = Ψ(∂Dt,Wt)

is a solution of (C.2).

Proof. — Let x ∈ ∂Ψ(∂Dt,Wt)

dΨ(∂Dt,Wt)(x) = T1Ψ(∂Dt,Wt)(◦d∂Dt)(x) + νΨ(∂Dt,Wt)(x)dWt

= T1Ψ(∂Dt,Wt)((dWt +
1

2
h∂Dtdt)N∂Dt)(x)

−NΨ(∂Dt,Wt)(x)dWt

=
(1
2
h∂Dt(Ψ−1(∂Dt,Wt)(x))N

∂Gt(x)dt
)

=
1

2
hΨ(∂Gt,−Wt)(Ψ(∂Gt,−Wt)(x))N

∂Gt(x)dt,

where we use that in this case, the Stratonovich differential is equal to the Itô’s
one (cf. Appendix B), i.e., ◦d∂Dt(x) = d∂Dt, and (d2/d2r)Ψ(x, r) = 0. So ∂Gt is a
solution of (C.2). □

By the uniqueness of the solution of (C.2) (cf. [8, Th. 22]) and the fact that it is
adapted to the filtration of B we deduce that the solution of (C.3) is unique and is a
strong solution. Similarly we have the uniqueness of the solution of

d∂Dt(x) =
(
dWt +

1

2
h∂Dt(x)dt−

µ(∂Dt)

µ(Dt)
dt
)
N∂Dt(x).

Moreover, since we could also make a change of time in the Itô equation, Equation (2.7)
has a unique strong solution.

Appendix D. Weak semi-group theory in the martingale problem sense

This theory has been developed in several books, see for instance Stroock and
Varadhan [22] or Ethier and Kurtz [10]. Here we present a minimal version suitable
for our purposes.

Let V be a measurable state space and consider Ω a set of trajectories from R+ to V .
The canonical coordinates on Ω are denoted by the Xt, for t ⩾ 0: for ω ∈ Ω, Xt(ω) is
the position at time t of ω. The set Ω is endowed with the sigma-field generated by
the Xt, for t ⩾ 0. Our first assumption is that the mapping

Ω× R+ ∋ (ω, t) 7−→ Xt(ω) ∈ V

is measurable, which usually means that “Ω is not too big”.
For t ⩾ 0, we define

Ft := σ(Xs : s ∈ [0, t]).

For t ⩾ 0, we will also need the time shift Θt associating to any ω ∈ Ω the trajectory
Θt(ω) defined by

∀ s ⩾ 0, Xs(Θt(ω)) = Xs+t(ω).

We assume that Θt(Ω) ⊂ Ω.
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A given family P := (Px)x∈V of probability measures on Ω is said to be Markovian
if for any x ∈ V and any t ⩾ 0, the image by Θt of Px conditioned by Ft is PXt .
In particular, it is assumed that P has the regularity of a Markov kernel from V to Ω.

From now on, we suppose that a Markovian family P is given. Let B be the space
of bounded and measurable functions defined on V . The semi-group P := (Pt)t⩾0

associated to P is the family of operators acting on B via

∀ t ⩾ 0, ∀ f ∈ B, ∀x ∈ V, Pt[f ](x) := Ex[f(Xt)].

The Markovianity of P implies at once the semi-group property

∀ s, t ⩾ 0, PtPs = Pt+s,

and in particular the elements of P commute.
A subclass R of “regular” functions that will be important for our purposes is that

defined by
R :=

{
f ∈ B : ∀x ∈ V, lim

t→0+
Pt[f ](x) = f(x)

}
.

Exceptionally in the above limit, we assumed that t ⩾ 0 (i.e., not only that t > 0),
so that, by definition, for any f ∈ R and x ∈ V , P0[f ](x) = f(x).

Let us observe that R is left stable by the semi-group:

Lemma D.1. — For any t ⩾ 0, we have Pt[R] ⊂ R. Thus for any given f ∈ R and
x ∈ V , the mapping

R+ ∋ t 7−→ Pt[f ](x)

is right continuous.

Proof. — Indeed, fix t ⩾ 0 and f ∈ R, we have for any x ∈ V and s ⩾ 0,

Ps[Pt[f ]](x) = Pt[Ps[f ]](x) = Ex[Ps[f ](Xt)]].

We have, for any s ⩾ 0, ∥Ps[f ]∥∞ ⩽ ∥f∥∞ (where ∥·∥∞ stands for the supremum
norm on B) and since f ∈ R, we get everywhere

lim
s→0+

Ps[f ](Xt) = f(Xt).

Dominated convergence implies that

lim
s→0+

Ex[Ps[f ](Xt)]] = Ex[f(Xt)] = Pt[f ],

as desired. □

The generator L associated to P is the operator

L : D(L) −→ R

defined in the following way: the space D(L) is the set of functions f ∈ R for which
there exists a function g ∈ R such that the process Mf,g := (Mf,g

t )t⩾0 defined by

∀ t ⩾ 0, Mf,g
t := f(Xt)− f(X0)−

∫ t

0

g(Xs) ds

is a martingale under Px, for all x ∈ V .
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Let us remark that g is then uniquely determined. Indeed, we have for any x ∈ V

and t ⩾ 0,

Ex[f(Xt)]− E[f(X0)]− E
[∫ t

0

g(Xs) ds

]
= 0.

Using Fubini’s lemma (applicable due to our measurability requirement on Ω) and
taking into account the definition of P , we get

Pt[f ](x)− P0[f ](x)−
∫ t

0

Ps[g](x) ds = 0,

namely, recalling that we required that g ∈ R,

(D.1) g = P0[g] = lim
t→0+

1

t

∫ t

0

Ps[g](x) ds = lim
t→0+

Pt[f ](x)− f(x)

t

(we came back to the usual convention that t > 0 in the above limit) and as a by-
product, we are assured of the existence of the latter limit.

We define L[f ] := g and Mf := Mf,g. The differentiation property (D.1) can be
extended into

Lemma D.2. — For any f ∈ D(L), x ∈ V and t ⩾ 0, we have

(D.2) ∂tPt[f ](x) = Pt[L[f ]](x).

Proof. — For any f ∈ D(L), x ∈ V and t, s ⩾ 0, we have

Ex
[
Mf
t+s −Mf

t

]
= Ex

[
Ex

[
Mf
t+s −Mf

t |Ft
]]

= 0.

We compute that

Mf
t+s −Mf

t = f(Xt+s)− f(Xt)−
∫ t+s

t

L[f ](Xu) du,

so that

Ex
[
Mf
t+s −Mf

t

]
= Pt+s[f ](x)− Pt[f ](x)−

∫ s

0

Pt+u[L[f ]](x) du.

Since L[f ] ∈ R, the mapping [0, s] ∋ u 7→ Pt+u[L[f ]](x) is right continuous, accord-
ing to Lemma D.1, and the same argument as in (D.1) enables to conclude that (D.2)
holds. □

We can now come to the main goal of this appendix:

Proposition D.3. — For any t ⩾ 0, D(L) is stable by Pt and on D(L) we have
LPt = PtL.

Proof. — Fix f ∈ D(L) and x ∈ V , the assertion of the lemma amounts to checking
that the process N := (Ns)s⩾0 defined by

(Ns)s⩾0 :=

(
Pt[f ](Xs)− Pt[f ](X0)−

∫ s

0

Pt[L[f ]](Xu) du

)
s⩾0

is a martingale under Px. Consider s′ ⩾ s ⩾ 0, we have to prove that

(D.3) Ex[Ns′ −Ns|Fs] = 0.
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The left-hand side is equal to

Ex
[
Pt[f ](Xs′)− Pt[f ](Xs)−

∫ s′

s

Pt[L[f ]](Xu) du
∣∣∣Fs]

= Ex
[
Pt[f ](Xs′−s ◦Θs)− Pt[f ](X0 ◦Θs)−

∫ s′−s

0

Pt[L[f ]](Xu ◦Θs) du
∣∣∣Fs]

= Ey
[
Pt[f ](Xs′−s)− Pt[f ](X0)−

∫ s′−s

0

Pt[L[f ]](Xu) du

]
,

where y = Xs. By Fubini’s lemma, the previous right-hand side can be written as

Ey [Pt[f ](Xs′−s)]− Ey [Pt[f ](X0)]−
∫ s′−s

0

Ey[Pt[L[f ]](Xu)] du

= Pt+s′−s[f ](y)− Pt[f ](y)−
∫ s′−s

0

Pt+u[L[f ]](y) du.

Taking into account (D.2), the last integral is equal to∫ s′−s

0

∂uPt+u[f ](y) du = Pt+s′−s[f ](y)− Pt[f ](y)

which ends the proof of (D.3). □

The advantage of the above approach is that it is quite sable by optional stopping,
as it is the case for martingales. Let us succinctly give a simple example in the spirit
of Section 2.

Assume that in the above framework, V is a metric space, endowed with its Borel
measurable structure, and that Ω is the set of continuous trajectories C(R+, V ). Fur-
thermore, we suppose that P is Fellerian, in the sense that it preserves Cb(V ), the
set of bounded and continuous real functions on V .

Let be given A ⊂ V a closed set. We consider τ the hitting time of A:

τ := inf{t ⩾ 0 : Xt ∈ A} ∈ R+ ⊔ {+∞}.

Define the “new” process X̃ := (X̃t)t⩾0 via

∀ t ⩾ 0, X̃t := Xt∧τ

and for x ∈ V , let P̃x be the image of Px by X̃, it is still a probability measure
on C(R+, V ). All notions corresponding to P̃ := (P̃x)x∈V , which is still a Markovian
family, receive a tilde. It appears without difficulty that R̃ is the set of functions f̃ ∈ B

such that there exists f ∈ R with f̃ coinciding with f on V ∖A. The domain D(L̃) is
the set of f̃ ∈ R̃ such that there exists f ∈ D(L) with f̃ coinciding with f on V ∖A.
In addition, we have

∀x ∈ V, L̃[f̃ ](x) =

{
L[f ](x) when x ̸∈ A,
0 when x ∈ A.

This expression does not depend on the choice of f , due to the fact that P is a
diffusion, i.e., that Ω = C(R+, V ), which implies that L is a local operator (see for
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instance [21, Th. 7.29], the authors are working with Euclidean spaces, but the result
can be extended to metric spaces).

According to (D.2) and Proposition D.3, we get

∀ f̃ ∈ D(L̃), ∀x ∈ V, ∀ t ⩾ 0, ∂tP̃t[f̃ ](x) = P̃t[L̃[f̃ ]](x) = L̃[P̃t[f̃ ]](x).

Such relations are not so obvious if we had chosen to work in a Banach setting
(cf. e.g. the book of Yosida [24]), considering for instance semi-groups acting on the
space Cb(V ) (endowed with the supremum norm), since in general L̃ would not nat-
urally take values in Cb(V ).

Appendix E. An Itô-Tanaka formula

Let M be a d-dimensional Riemannian manifold and D ⊂ M a compact and
connected domain with C2 boundary ∂D, and S be the regular skeleton of D, and
ρ+∂D the signed distance to ∂D, which is positive inside D and negative outside D.
The notations will be the same as in Appendix A.

Proposition E.1. — Let Xt a Brownian motion in M . We have the following Itô-
Tanaka formula:

dρ+∂D(Xt) = ⟨ND(Xt), dXt⟩ −
1

2
hD(Xt)dt− sin

(
θS(Xt)

)
dLSt (X),

in the above formula, ND(x) = ∇ρ+∂D(x) and −hD(x) = ∆ρ+∂D(x) for x /∈ S, and
define to be 0 elsewhere, LSt (X) is the local time defined as in (3.7).

Proof. — The formula is a consequence of the Itô formula outside the skeleton. Since
the non regular part of the skeleton has Hausdorff dimension smaller than or equal
to d − 2, it is not visited by the Brownian motion. So we only focus on the regular
skeleton. For all x ∈ S, the distance to the boundary is the minimum of two C2

functions f, g defined on some neighborhood U of x in M . The function f (resp. g )
is the distance function to a piece of ∂D containing y1 (resp. y2) as in (A.2). We have
locally,

ρ+∂D = f ∧ g =
1

2
(f + g)− 1

2
|f − g|.

Using Itô formula and Tanaka formula we have

dρ+∂D(Xt) =
1

2

(1
2
∆(f + g)(Xt)dt+ ⟨∇(f + g)(Xt), dXt⟩

)
− 1

2

(
sign((f − g)(Xt))d((f − g)(Xt)) + dL0,+

t ((f − g)(X.))
)
,

where

L0,+
t ((f − g)(X.)) = lim

ε→0+

1

ε

∫ t

0

1[0,ε]((f − g)(Xs))d⟨(f − g)(X), (f − g)(X)⟩s.

Since locally S = {f − g = 0} and µ(S) = 0, we have

dρ+∂D(Xt) =
1

2
1Xt /∈S∆ρ

+
∂D(Xt)dt+ 1Xt /∈S⟨∇ρ

+
∂D(Xt), dXt⟩ −

1

2
dL0,+

t ((f − g)(X.)).
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After changing the role of f and g we get

(E.1) dρ+∂D(Xt) =
1

2
1Xt /∈S∆ρ

+
∂D(Xt)dt

+ 1Xt /∈S⟨∇ρ
+
∂D(Xt), dXt⟩ −

1

2
dL0

t ((f − g)(X.)),

where

L0
t ((f − g)(X.)) = lim

ε→0+

∫ t

0

1

2ε
1[−ε,ε]((f − g)(Xs))∥∇(f − g)∥2(Xs) ds.

In Appendix A it is shown that for x ∈ S, ∥∇(f − g)(x)∥ = 2 sin
(
θS(x)

)
. Using the

flow (d/dt)γ(t) = −∇(f − g)(γ(t))/∥∇(f − g)(γ(t))∥2 that starts at y ∈ U , we get

{y ∈M : |f − g|(y) ⩽ ε} ⊂ {y ∈M : |dS(y)| ⩽
ε

2 sin (θS(γ(g(y))))
+ o(ε)},

where dS is the distance to S. On the other hand, using the minimal geodesic from S

to y ∈ U we get

{y ∈M : |dS(y)| ⩽ ε} ⊂
{
y ∈M : |f − g|(y) ⩽ 2ε sin

(
θS(PS(y))

)
+ o(ε)

}
.

Hence
dL0

t ((f − g)(X.)) = 2 sin
(
θS(Xt)

)
LSt (X.).

Together with (E.1), this yield the proposition. □

Appendix F. Uniqueness in law of L̃ diffusion

Let us consider the following generator L̂ of a stochastic modified mean curvature
flow. The action of this generator and its carré du champ on elementary observables
are defined as follows. For any smooth function k on M , consider the mapping Fk on
D2+α defined by

∀D ∈ D2+α, Fk(D) :=

∫
D

k dµ.

For any k, g ∈ C∞(M) and any D ∈ D2+α,
L̂ [Fk](D) := −1

2
µ∂D(⟨∇k,ND⟩) = F 1

2∆k
(D),

Γ
L̂
[Fk, Fg](D) :=

∫
∂D

k dµ

∫
∂D

g dµ.

Note that L̂ has the same carré du champ as the carré du champ associated to L̃ .
From now the generator L̂ is defined as in (2.10).

Proposition F.1. — The martingale problem associated L̂ is well-posed.

Proof. — We have already shown the existence result in [8], so it remains to prove the
uniqueness in law. Let us first consider the two-dimensional Euclidean case, namely
M = R2. For all λ ∈ R and for any function kλ ∈ vect(eλx, eλy) we have 1

2∆kλ(x, y) =
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(λ2/2)kλ(x, y). Let fλ((x, y), D) := kλ(x, y)Fkλ(D), for (x, y) ∈ R2 and D ∈ D2+α.
This function satisfies the following property:

L̂ fλ((x, y), D) = kλ(x, y)L̂Fkλ(D) = kλ(x, y)F 1
2∆kλ

(D) = kλ(x, y)Fλ2

2 kλ
(D)

=
λ2

2
kλ(x, y)Fkλ(D) =

1

2
∆kλ(x, y)Fkλ(D) =

1

2
∆fλ((x, y), D).

Let (Xt)t⩾0 be a R2-valued Brownian motion that starts at X0 = (x1, x2) ∈ R2 and
(D̂t)t⩾0 a L̂ diffusion that starts at D0 independent of (Xt)t⩾0. Even if we stop the
diffusion, we can assume that its lifetime is infinite and we add indicators as described
in Appendix D. For all 0 ⩽ s ⩽ t, we have

dfλ(Xt−s, D̂s)
m
= −1

2
∆fλ(Xt−s, D̂s)ds+ L̂ fλ(Xt−s, D̂s)ds

m
= 0.

Hence for all λ ∈ R we have

(F.1) E[fλ(Xt, D0)] = E[fλ(X0, D̂t)].

Since the left hand side of the above equation does not depend on the L̂ diffusion,
we get that for any L̂ diffusion (D̃t)t⩾0 that starts at D0:

E[fλ(X0, D̂t)] = E[fλ(X0, D̃t)],

and so
E[Fkλ(Dt)] = E[Fkλ(D̃t))].

In order to apply [10, Th. 4.2], we have to show that the above equation character-
izes the law of the one-dimensional distribution, i.e., we have to show that (Fkλ) is
separating in the space of probability measures on D2+α. This is equivalent to sep-
arate domains. Let A,B ∈ D2+α such that Fkλ(A) = Fkλ(B) for all λ ∈ R and
kλ ∈ ⟨eλx, eλy⟩, we have for all λ:∫

A

kλ(x, y)dµ =

∫
B

kλ(x, y)dµ.

After successive derivations in λ and evaluation at λ = 0, we get for all n ∈ N∫
A

xndµ =

∫
B

xndµ,

∫
A

yndµ =

∫
B

yndµ.

The above computations could be done also for k̃λ1,λ2 = eλ1x+λ2y, since 1
2∆k̃λ1,λ2 =

(λ21 + λ22)/2k̃λ1,λ2 , and after derivations in λ1, λ2 and evaluating at (0, 0) we get that
for all n,m ∈ N: ∫

A

xnymdµ =

∫
B

xnymdµ,

hence, using the boundary regularity, we get A = B.
We could also apply Stone-Weierstrass’ theorem to the function algebra generated

by the mappings (x, y) 7→ eλ1x and (x, y) 7→ eλ2y.
The proof is the same for all Euclidean spaces. If M is a compact manifold let

fλi
(X,D) := kλi

(X)Fkλi
(D),
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where λi is an eigenvalue of 1
2∆ and ki is the associated eigenfunction (respectively

the Neumann eigenvalue). By the same computation as above (F.1) is also valid for
the boundary reflecting Brownian motion), to get the conclusion we have to show that
(Fkλi

)i separates domains. Since (kλi
)i is an orthonormal basis of L2(µ) we get that

if A,B ∈ D2+α be such that for all i,

Fkλi
(A) = Fkλi

(B),

i.e., ⟨1A, kλi
⟩L2 = ⟨1B , kλi

⟩L2 , then 1A
L2

= 1B hence A = B.
For the complete manifold M , let Ωk be an exhaustion of M with a regular bound-

ary such that D0 ⊂ Ωk, and stop the L̂ diffusion when it hit Ωck and use the above
result for the manifold with boundary Ωk, we get the result by localization. □

Proposition F.2. — The martingale problem associated to L is well-posed.

Proof. — Let Dt be a L diffusion that starts at D0, defined on (Ω,FD,Q). We first
recall that there exist an enlargement of the probability space such that it carries a
one dimensional Brownian motion B such that for all k ∈ C∞(M)

(F.2) Fk(Dt) = Fk(D0) +

∫ t

0

L [Fk](Ds) ds+

∫ t

0

√
ΓL [Fk, Fk](Ds) dBs,

where
√
ΓL [Fk, Fk](D) :=

∫
∂D

k dσ, this is actually [8, Prop. 53]. Note that this pro-
cedure of enlargement ([19, Chap. V, Th. 1.7]) could be done by gluing the same inde-
pendent Brownian motion for each (Ω,FD,Q). We denote by (Ω̃, F̃D, Q̃) the enlarged
probability space. Since L is an h-transform of L̂ , namely

L [Fk] = L̂ [Fk] +
Γ

L̂
(F1, Fk)

F1
,

equation (F.2) becomes in a differential form

dFk(Dt)− L̂ [Fk](Dt)dt =

(∫
∂D

k dσ

)(
dBt +

µ∂Dt(∂Dt)

µ(Dt)
dt
)
.

Let

Mt = exp

(
−
∫ t

0

〈µ∂Ds(∂Ds)

µ(Ds)
, dBs

〉
− 1

2

∫ t

0

(µ∂Ds(∂Ds)

µ(Ds)

)2

ds

)
,

P|Ft
=MtQ̃|Ft

.

Using the Girsanov transform, Dt is solution of the L̂ martingale problem on the
probability space (Ω̃, F̃D,P). Since Q̃ =M−1P we get the uniqueness in law of the L

diffusion by Proposition F.1. □

Appendix G. Convergence in law: a key lemma

This Appendix is devoted to the adaptation to some domain-valued sequences of
processes, of [25, Lem. 4], which states stability of some time integrals under conver-
gence in law.
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Lemma G.1. — Let F̃ := F̃α,ε. We endow the set C
(
[0,∞),M × F̃

)
of continuous

paths with the two dissimilarity measures dβ, β ∈ {0, α}, defined as:
dβ

(
(x1, D1), (x2, D2)

)
= sup

t⩾0
ρ(x1(t), x2(t)) + sup

t⩾0
dβ,F̃ (D1(t), D2(t)),

where, for two domains D and D′,

dβ,F̃ (D,D′) =

{
dβ,D(D,D

′) ∧ dβ,D′(D′, D) ∧ ε if H(D,D′) < ε,

ε otherwise.

Here H(D,D′) is the Hausdorff distance between D and D′ and the distance dβ,D is
defined in (2.3).

Let (Xn
t , D

n
t , τ

n
ε )t⩾0 :=(Xδn

t , Dδn
t , τ

δn
ε )t⩾0 a subsequence of (3.10) converging in law

to the limit defined in (3.11) for the product of dα and the Euclidean distance in R+.
Let fn : (x,D) 7→fn(x,D) and f : (x,D) 7→f(x,D) be maps on M × F̃ with values

in some Euclidean space, and U an open set in M × F̃ for d0. Assume that:
(i) the random variables

∫∞
0

|fn(Xn
s , D

n
s )|p ds are uniformly bounded in probability

for some p > 1,
(ii) in the open set U , the functions fn converge locally uniformly to f with respect

to d0, and are d0-continuous,
(iii) for a.e. t ⩾ 0, (Xt, Dt) ∈ U .

Then
(
Xn
t , D

n
t ,

∫ t
0
fn(X

n
s , D

n
s ) ds

)
t⩾0

converges in law to
(
Xt, Dt,

∫ t
0
f(Xs, Ds) ds

)
t⩾0

for (dα, | · |).

Remark G.2. — In the applications we will always take
(G.1) U =

{
(x,D) ∈M × F̃ , x ∈ D ∖ S(D)

}
,

which is easily seen to be d0-open thanks to Assumption 3.1 on F̃ .

Proof. — We will follow the proof of [25, Lem. 4], but with several differences due to
infinite dimensional spaces. Set for n ∈ N, t ⩾ 0,

(G.2) Ant :=

∫ t

0

fn(X
n
s , D

n
s ) ds, At :=

∫ t

0

f(Xs, Ds) ds.

Condition (i) implies that the processes An are tight. To get the conclusion it is
sufficient to show that all the converging subsequences have the same limit. So assume
that

(Xn
t , D

n
t , A

n
t )t⩾0

L−−−→ (Xt, Dt, at)t⩾0,

and let us prove that (at)t⩾0 = (At)t⩾0. By Skorohod theorem we may realize all
processes

(Xn
t , D

n
t , A

n
t , Xt, Dt, at)t⩾0

on the same probability space (Ω,F ,P) in such a way that

(G.3) (Znt )t⩾0 := (Xn
t , D

n
t , A

n
t )t⩾0

a.s.−−−−→ (Xt, Dt, at)t⩾0 =: (Zt)t⩾0.

This means that Znt → Zt a.s. uniformly in t ⩾ 0.
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Fix ω ∈ Ω. Let t > 0 be such that (Xt(ω), Dt(ω)) ∈ U . For some ε′ > 0 we have
(Xs(ω), Ds(ω)) ∈ U for all s ∈ [t− ε′, t+ ε′]. The set

S := {(Xs(ω), Ds(ω)) , s ∈ [t− ε′, t+ ε′]}

is dα-compact in M × F̃ , so it has a dα-neighbourhood V included in U of the form

V =
{
(x,D) ∈M × F̃ , dα ((x,D), S) ⩽ ε′′

}
.

for some small enough ε′′ > 0. For n sufficiently large, (Xn
s (ω), D

n
s (ω)) ∈ V for all

s ∈ [t− ε′, t+ ε′]. On the other hand V is bounded for the distance dα. This implies
by Arzelà-Ascoli theorem that it is compact for the distance d0. We have the two
following facts, the first one being an assumption on the fn and f , the second one
being a consequence of the d0-compactness of V

(a) fn → f as n→ ∞ uniformly in (V, d0);
(b) f is uniformly continuous in (V, d0).

Then
sup

s∈[t−ε,t+ε]
|fn(Xn

s (ω), D
n
s (ω))− f(Xs(ω), Ds(ω))|

⩽ sup
s∈[t−ε,t+ε]

|fn(Xn
s (ω), D

n
s (ω))− f(Xn

s (ω), D
n
s (ω))|

+ sup
s∈[t−ε,t+ε]

∣∣f(Xn
s (ω), D

n
s (ω))− f(Xs(ω), Ds(ω))

∣∣.
Both terms in the right converge to 0, the first one by (a) and the second one by (b).
So we have by (G.3) and the above calculation{

(Ans (ω))s∈[t−ε,t+ε] →
(
as(ω)

)
s∈[t−ε,t+ε],

((Ans (ω))
′=fn(X

n
s (ω), D

n
s (ω)))s∈[t−ε,t+ε] →

(
f(Xs(ω), Ds(ω))

)
s∈[t−ε,t+ε],

both uniformly in s ∈ [t−ε, t+ε]. This implies that as(ω) is differentiable in (t−ε, t+ε)
with derivative f(Xs(ω), Ds(ω)) and in particular at t.

We have that for all t ⩾ 0, (Xt(ω), Dt(ω)) ∈ U a.s.. So for all t ⩾ 0,
d

dt
at(ω) = f(Xt(ω), Dt(ω)) a.s.

This implies that ω a.s.

(G.4) d

dt
at(ω) = f(Xt(ω), Dt(ω)) for a.e. t.

On the other hand we know by [14, Th. 10] that (at)t⩾0 is absolutely continuous:

(G.5) at(ω) =

∫ t

0

ℓs(ω) ds.

By Lebesgue theorem, ω a.s., for a.e. t ⩾ 0

(G.6) lim
ε↘0

1

2ε

∫ t+ε

t−ε
|ℓs(ω)− ℓt(ω)| ds = 0.

Equalities (G.4) and (G.5) imply that ω a.s.

lim
ε↘0

1

2ε

∫ t+ε

t−ε
ℓs(ω) ds = f(Xt(ω), Dt(ω)) for a.e. t.
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On the other hand∣∣∣∣ 12ε
∫ t+ε

t−ε
ℓs(ω)− ℓt(ω) ds

∣∣∣∣ ⩽ 1

2ε

∫ t+ε

t−ε
|ℓs(ω)− ℓt(ω)| ds,

so (G.6) implies that ω a.s. for a.e. t ⩾ 0

(G.7) lim
ε↘0

1

2ε

∫ t+ε

t−ε
ℓs(ω) ds = ℓt(ω).

Consequently, using (G.4) and (G.7), we get ω a.s. for a.e. t ⩾ 0

ℓt(ω) = f(Xt(ω), Dt(ω)).

Integrating we get ω-a.s. for all t ⩾ 0

at(ω) = At(ω) =

∫ t

0

f(Xs(ω), Ds(ω)) ds.

This together with (G.2) proves the lemma. □
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