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1 Introduction

Many choice models incorporate agent expectations about attributes of the choice set. For
example, when choosing health insurance, individuals form expectations of their future
health status (Einav et al., 2010); when purchasing vehicles, they anticipate future fuel costs
(Hausman, 1979); and when deciding on educational programs, they consider expected
future wages (Arcidiacono et al., 2020). In most applications of such choice models, the
researcher formulates the expectations agents form about future attributes and uses these

formulations in the estimation of the choice model.

Whenever the researchers’ formulation of the expectation differs from how the agent
forms expectations, the estimation of preferences is biased. Dickstein and Morales (2018)
describe the bias from misspecified informational assumptions and propose to set identify
preferences by relying on the specification of a minimal information set shared by all
agents. In this paper, we present two new approaches to handle unobserved information
sets when estimating choice models. First, we develop a model that can flexibly account for
agents’ information structures. The model we propose is estimable with individual-level
and market-level choice data and is point-identified with both data types. Similar to Cunha
et al. (2005), we exploit the variation between different information variables observed
by the researcher and potentially used by agents to make choices. Second, we develop a
novel moment-inequality approach that relies on assumptions different from the minimal

information set assumption and is compatible with market-level choice data.

We specify that agents’ indirect utility depends on an attribute over which they form
expectations using available information. For example, in automobile choice, the attribute
is fuel costs, and consumers might use variables such as stated fuel economy, fuel type,
and fuel price to form their expectations about fuel costs. We allow individuals to be
heterogeneous in which information variables they use. When we estimate such a model,
we commonly do not observe the underlying information structure of consumers. Typically,
the researcher makes an assumption, such as perfect foresight, and uses the resulting
prediction of the attribute in the choice model. For instance, Grigolon et al. (2018) assumes
consumers form fuel cost expectations with perfect foresight about fuel economy, mileage,
and fuel prices at the moment of purchase. However, whenever the researcher’s assumption
deviates from the actual expectations of consumers, there is a nontrivial measurement bias

problem.

We start our approach by changing the assumptions about the information sets relative

to Dickstein and Morales (2018). Rather than assuming a shared minimal information



set across decision-makers, we assume that the researcher observes the ex-post outcome
of the attribute (e.g., fuel costs, export profits, out-of-pocket costs, wages) and a set of
information variables that agents can potentially use to form expectations. We transform
the ex-post product attributes observed by the researcher into a conditional expectation
function of a finite number of observed information variables. We then generate all
possible combinations of these information variables to create a set of discrete information
types, each type associated with a single conditional expectation function. This approach
builds on the intuition of Bonhomme et al. (2022) to approximate unobserved continuous

heterogeneity with discrete groups.

We then plug in the set of conditional expectation functions into the choice model and
estimate it as a finite mixture (i.e., latent class) model, a common statistical approach in
econometrics (see Compiani and Kitamura (2016) for an overview of applications). The
choice model consists of a finite number of information types, each with a specific condi-
tional expectation function about the future attribute. Whenever each of the information
types present in the data-generating process is included in our finite number of types, we
show that we can point-identify the preference parameters. The key identifying variation
comes from the observed heterogeneity in the information variables. We approximate
the unobserved agent information structure by exploiting the combination of different
potential interactions of information. While previous plug-in approaches resulted in
biased preference estimates, our plug-in approach is consistent because we can flexibly

approximate the unobserved information structures.

In settings with market-level data, our estimation procedure is related to Berry and
Jia (2010). However, our model includes information-specific covariates that share a
common coefficient across different information types. This introduces an endogeneity
issue requiring information-specific instruments for resolution. We find that the information
variables themselves are weak instruments because they do not capture the nonlinearity
through which information affects choices well. Therefore, we adopt instruments from
Chamberlain (1987) that, by construction, allow us to extract the necessary information-
specific variation from the data for identification. Following Reynaert and Verboven (2014),
we use a two-stage approach to estimate our parameters of interest. Simulations show that

our finite mixture model provides consistent estimates.

Our approach has several advantages. First, by estimating the fraction of each in-
formation type, the model is flexible enough to detect over-specification in information
heterogeneity and to examine the content of agents’ information sets. For instance, if the

data-generating process (DGP) does not contain an information type wrongly included in



the model by the researcher, the fraction of the corresponding type is estimated to be zero.
Second, our estimation procedure extends standard demand estimation tools, allowing the
researcher to control for attribute endogeneity (e.g., for prices) and random coefficients in
preferences, including the preference for the uncertain attribute. The model also allows us
to estimate the implications of counterfactual changes in the information structure relevant
to evaluating information-oriented policy.

Next, we provide a novel moment inequality approach that relies on fewer assumptions
while still being compatible with individual- and market-level data. In settings with
prevalent latent individual-specific information, it might be a strong assumption that
we can specify all potential information variables agents can use. Instead, we prove
identification by bounding the observed choices by the type-specific market shares of a
single information type, similar to the approach in Gandhi et al. (2013). We assume that we
know the information set of a single type in the data. For example, we assume that some
individuals predicting the fuel consumption of vehicles only rely on fuel price comparisons.
This allows us to estimate the conditional expectation of the uncertain attributes of these
individuals and their prediction error. We show that knowledge of a single information
type is sufficient to set identify parameters whenever we can specify an instrument selecting
observations in the data where the observed information type has extreme errors. A feasible
instrument is the specification of a cut-off for extreme values of the estimated prediction
errors of the observed type. Such selection at extremes is also used in D’Haultfceuille et al.
(2018). Contrary to the finite mixture approach, we do not need to specify all possible
information sets, nor do we need to assume shared minimal information as in Dickstein
and Morales (2018). We show theoretically and in simulations that we can set-identify the

utility parameters from a single information type.

We apply our approach to two empirical settings. First, we replicate the estimation of
exporter choices between destination countries in Dickstein and Morales (2018). The data
contains firm-level export choices. We apply our framework by using the observed ex-post
profits in the data and estimate conditional expectations firms have about these profits using
combinations of information variables provided in the original data. We assume that we
capture every potential information type in the DGP and specify a finite mixture maximum
likelihood model. We first replicate that a naive perfect foresight plug-in estimator is biased
compared to the set-identified parameters from a moment inequality approach based
on the shared minimal information set across exporters. However, our model with the
information mixture yields parameter estimates with overlapping confidence intervals to

those from the minimal-information set identification approach. Our estimation approach



directly reveals which information types explain the observed export choices in the data.
We confirm that all information types that receive positive weights in the estimation results
use the minimal information set specified in Dickstein and Morales (2018). The most
prevalent information type additionally uses the number of existing exporters to form their

expectations of future export profits.

In a second application, we revisit the estimation of fuel cost valuation in Grigolon
et al. (2018). As explained above, this literature makes strong assumptions about the
exact expectations consumers form regarding fuel costs and plugs in a perfect foresight
prediction of fuel costs in the choice model. We apply our model by using the perfect
foresight prediction of the fuel costs, but, instead of plugging in this prediction directly
in the choice model, we estimate a conditional expectation function for every possible
combination of the underlying information variables. We then specify the model as a finite
mixture of all the possible information types and estimate their weights and preferences.
We find that the estimated coefficient on fuel costs in Grigolon et al. (2018) is substantially
biased upwards, and our results show no evidence that the data is generated by the perfect
foresight type. We find that car buyers either form expectations based on comparisons

between cars or on a rough comparison between fuel types.

Our paper adds to the structural empirical literature that models choices in situations
where agent information plays a role. The minimal common information set approach
with set identification is expanded in a model of physicians’ choices when prescribing
drugs (Dickstein et al., 2024), and in migration (Porcher et al., 2024). Our paper contributes
by making a different assumption on the information structure, allowing us to achieve
point identification and providing a novel moment inequality approach compatible with
market-level data. Other applications, such as Arcidiacono et al. (2020); Brown and Jeon
(2024); Vatter (2024), exploit specific individual-level data about the information formation
of decision-makers, such as survey evidence or quality ratings. We contribute by specifying
a model where researchers only need to observe the realization of the uncertain attribute
and the set of potential information variables agents use to form expectations. Abaluck and
Compiani (2020) prove choice data alone can be sufficient to identify preferences when
consumers are uncertain about attributes. By relying on more structure and observed
information variables, our approach allows us to estimate both preferences and the
unobserved information structure compatible with the data. Bergemann et al. (2022) studies
how to make counterfactual predictions in a setting where Bayesian individuals hold
latent information that is unobserved by researchers. Our approach is consistent with any

mental model to form expectations as long as we can specify it as a conditional rational



expectation.

Our method can be interpreted as a generalization of the approach summarized by
Cunha et al. (2005) and Cunha et al. (2010), which have been used in several empirical
settings, for example, Houmark et al. (2024) and Aucejo and James (2021). This approach
consists of formulating how information factors enter the decision problem of agents
and separating error terms (noise). Across choices, noise should be independent of the
information if the researcher correctly specifies the information. Their method can be
used to test several information sets against each other. Our approach differs in that we
estimate the distribution of information that fits the data best. However, the intuition
is similar. In a DGP with a single homogeneous information set, our procedure would
put 100% of the weight on the single correct information set because putting weight on
alternative information sets would not improve the criterion function. Our approach is
more general in three ways. First, the procedure selects the information sets that best
explain the choices from every possible information set. This automates the researcher
testing a specific information set against each other. Second, our approach allows for
heterogeneity in the information sets used by agents that are identical in observables
through the mixture function. Third, our approach is readily applicable to multinomial
choice settings, market-level data sets, and different types of agents’ prediction problems
as it does not require the explicit specification of the bias stemming from misspecified

information.

Our paper is structured as follows. Section 2 presents the choice model. Section 3
explains estimation issues stemming from the unobserved information structure. Section
4 introduces the finite mixture approach. Section 5 introduces the moment inequality
approach. Section 6 explains estimation, including the specification of the moments to
identify the information type shares. Section 7 presents simulation results. Section 8
presents the two empirical applications.

2 Choice Model

There are T markets indexed by t € 7 = {1, ..., T}. In each market ¢ there are N; decision-
makers indexed by i € Ny = {1,..., N;}. Each individual i chooses one option indexed by
jeJ ={01,...,]} where j = 0 denotes the outside option. We assume that the indirect

experience utility that individual i derives from option j in market ¢ is given by

ujjr = Xjtp + v&ijt + Cjt + €ijt, (1)



where Xj; € RX1 is a vector of choice characteristics, gijt € Risan uncertain choice attribute
that can be individual-specific and its actual value is realized only after the choice is made,
Gjt € Ris the characteristic of option j that researchers cannot observe, and €;j; € R is an
idiosyncratic taste shock that is i.i.d. distributed across all options j for each individual i in
market t and follows a Extreme Value Type-I (EVT1) distribution. The indirect utility of the
outside option is normalized as u;p; = €jo;. The vector of preference parameter of interest is
0= (7).

Denote individual i’s decision variable d;;;. We define d;;; = 1 if the decision-maker
chooses option j in market t and d;j; = 0 otherwise. Individual i faces uncertainty about
attribute g;;; when making decisions and chooses the option j that offers the highest

expected utility in market ¢:
dip =1 {5[uijt’1it] > %?(6[”ij/t|zit]} , (2)

where Z;; denotes individual i’s information set about market ¢t and £]-|Z;] is agent i’s
conditional expectation operator reflecting her beliefs. We allow the information set to be
individual-specific to capture the information heterogeneity in the population. We assume
individuals make rational expectations and, hence, £[A|Z;;] = E [A|Z;;] for any random
vector A, where E is the empirical expectation from the data.

We now specify the agent’s information at the decision-making stage. We assume
that, when making decisions, individuals observe the choice characteristics Xt and éjt,
and their taste shocks €;j;. However, the attribute g;j; is unknown to individuals at the

decision-making stage. Given this setup, we specify the decision-maker’s information set as

Tir = Wit AXjt}jeg, {Cittje A€ijitieq o), (3)
where W;; is the set of information variables that individual i uses to form predictions for
the uncertain attribute g;;;. Specifically, we define the set W;; as a collection of choice-specific
information variables k,j; € R, i.e., Wit = {kujt} mem, je7, Where M; is the index set
of information variables used by the individual i to form her expectations of g;;;. Since
each individual may use different information variables to predict the uncertain attribute,
the set M, can be individual-specific. For instance, one individual may have an index
set M; = {1,2} and uses two information variables kyj; and kyj (i.e.,, Wi; = (kyji, kajt)) to
predict the uncertain attribute, while another individual i may have M; = {3} and uses
kj; instead (i.e., Wy; = (ksj;)). Note that the realized values of the information variables

kuj: can vary across choices j and markets ¢.

At the decision-making stage, individual i needs to predict the uncertain attribute

gijt based on her information set Z;; as gf].t =E [gi]-t ‘Iit} . We further assume that agents’
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rational expectations only depend on the observable part of the information set Z;;, that
is, unobservable content of the information set {{jt }je 7, {€ijt } je.s does not help the agent

forecast the uncertain attribute, i.e.,

8%t = E [8ijt| Zit) = E [ijt| Wit {Xjt e ] - (4)
This implies that agents” predictions gf].t are not correlated with the unobserved attribute

&ji. For simplicity, we omit {Xj; };cs from the conditional expectation and assume that
agents only use W;; to form their predictions in the rest of the paper.

Given (1), (3), and (4), we specify agent i’s expected utility from choice j in market t as
iy = Euije| L] = XjeP + v8i + Cjt + €ije- (5)

The expected utility of the outside good remains the same as the indirect utility uj;,, =
ujor = €jot- We decompose the expected utility (5) into the sum of three components: a
mean utility term ¢;; = X1 + ¢j; common to all decision-makers; an individual-specific

utility term p;j; = 'ygfjt, and an individual error term €;;;.!

From the perspective of researchers, we observe a random sample of T markets. For
each market t, we observe choice characteristics X; = {Xj}jcs but not ¢t = {Cjt}ics-
Our main challenge is that we do not observe the expected values of the uncertain
attribute gy = {g fjt }ienn jes that agents use when making decisions. Instead, as we conduct
analysis ex-post the decision-making process, we observe the realized values of the
uncertain attribute g; = {g;jt }icn;, je7- We also observe a list of K; information variables,
Kt = {(kijt, ..., kyjt) }je 7, that individuals can potentially use to form their expectations.

Regarding the outcome variables, researchers can observe individuals” choices with dif-
ferent data granularities: researchers may observe individual-level choices d; = {dijt Yie Nojed
or market-level proportions of each option sj; = {sj; } jc 7 that aggregate individuals’ choices.
Our objective is to consistently estimate the preference parameters 6 based on the observed
data {d; or s¢, Xt, g+, Kt }1e7 and explore the content of individuals’ information sets. We

close this section with two illustrative examples of data from different aggregation levels.

Example I Researchers observe the individual-level data {di]'t, Xit, 8jts Kt}ier. For
instance, this corresponds to the export market in Dickstein and Morales (2018) where
researchers observe each Chilean firm i” export decisions d;;; to different countries j given
the year-sector t. The utility function u;;; specified in Equation (2) corresponds to exporter
i’s profit that depends on some observed attributes Xj; such as the distance between
Chile and the destination country dist;. The profit also depends on the export revenue

10ur approach is compatible with any other individual unobserved utility terms, such as random
coefficients.



gijt that is uncertain to exporters at the decision-making stage. Each exporter i needs to
form predictions about the revenue E [gijt |Zit] based on their information sets Z;;.2 If the
individual error term ¢;;; is EVT1 distributed, we obtain the individual choice probability:

exp (3 +785)
1+ )y exp (6 + 7).

Pr(dijt =1|Zy) = (6)

Example II Researchers observe the market-level data {s;, X, ¢, KCt }1<7. This corre-
sponds to the regular data of demand estimation models described in Berry (1994) and
Berry et al. (1995). Researchers observe the market shares of different car models sj;. For
example, Grigolon et al. (2018) use this type of data to estimate consumers’ valuation of
fuel costs. The utility function u;;; specified in Equation (2) corresponds to consumer i’s
utility from purchasing a car j in the year-country t. The utility depends on some observed
attributes Xj;, such as the price pj; of the car. It also depends on the future fuel costs g;j;
that are uncertain to consumers at the decision-making stage. Each consumer i predcits the
future fuel costs [E [g,-]'t |Iﬁ} based on their information sets Z;;. Given the EVT1 distributed
errors €;j;, the predicted market share s;; is an integral of the individual choice probabilities
over the distribution of the heterogenous predictions:

exp <(5jt + "ygfjt)
sit(0;0) = /E ;
i 1+ Zj:l exp <5]'t + 'ygf].t

where 6y = (614,...,0) € R/ denotes the mean utility vector in market t.

) dF(gfjt)/ (7)

3 Estimation Issues from an Unobserved Information Struc-

ture

3.1 Bias in Estimates of Preference Parameters

In this section, we discuss the estimation bias that results from not correctly specifying
the information agents use when making choices. We present the bias when researchers
have market-level data sj;. See Dickstein and Morales (2018) for a presentation with

individual-level data d;j;.

Let us focus on the parameter oy which measures individuals’ valuation of the expected

2In Dickstein and Morales (2018), the observed list of information variables K; corresponds to the minimal
information set that every exporter uses to predict the uncertain revenue. Thus, the observed list K; is a
subset of each exporter’s information sets, i.e., K; C Tijs.

8



attribute g7;,. Our main challenge is the unobserved expectations gj;, in the decision
utility. The value of such expectations gfjt =E [gi]'t ’Zit] depends on the individual-specific
information set Z;; that agents use to forecast the uncertain attribute g;;;. Hence, resolving
the unobserved expectations requires us to answer: What information do individuals
use when forming predictions? A typical assumption that researchers often make is that
individuals have perfect foresight. Thereby assuming that the unobserved expectations g7,
coincide with the ex-post realizations of g;;: and circumventing the issue of unobserved

expectations.

For simplicity, consider a simple demand model for homogeneous agents, i.e., gi;y =
g]?t, gijt = &jt, and the decision-maker predicts gj; up to an error gj; = gft + ¢j;. The correctly

predicted market share s;; in Equation (7) becomes
exp (X]'t,B + ’yg]‘?t + (;r]'t)
1+ Y exp (thﬂ +78j + Cjt)

Following Berry (1994), we obtain the following linear equation that relates the observed

Sjt(5t;9) =

(8)

market shares with covariates:
In(sjt/s0t) = XjeP + v8ji + Gjt
= X+ vgjt — vej + G ©)
= XjtB+ gt + e
where the last line combines the decision-maker’s prediction error with the product-market-
specific residual: {jy = —yejt + &jt.

Under the perfect foresight assumption, researchers would regress market shares on the
realized attributes X, gj; as stated in the last line of Equation (9). However, that equation
shows that the perfect foresight assumption introduces a bias through the expectational
errors ¢j;. Indeed, gj¢ = &7, + ¢ implies that E[ejt|gjt] # 0, such that gj; correlates with ¢j;
and biases the estimation of the parameter -y. Because Cov(gj, ¢j;) > 0 there will be an
upward bias (in absolute value) in the estimation of the preference parameter -, implying

an overestimated valuation of expected attributes.

Wooldridge (2010) defines this to be a regular measurement error problem that could
be potentially addressed with instrumental variables (IVs). To illustrate the idea, con-
sider the following example when the uncertain attribute is defined as a sum of three
information variables gj; = kyjt + kaj+ + kji, while the agent only knows the first two
information variables kqj; and kjj; when making predictions. We assume that the infor-
mation variables are not correlated with the structural error ¢j;. Individuals’ expectations

are g]e.t = E[gji|kijt, kojt] = kqje + koje + Elksj¢|k1jt, k2ji], and their expectational errors are

9



ejt = gjt — g;t = ksjt — E[ksj¢|k1jt, kojt]. If researchers observe the information variable kyj¢,
it could serve as an IV if it is correlated with the endogenous regressor g;; but uncorrelated
with the expectational errors. This requires kyj; to be uncorrelated with k3;;.3

The validity of this IV approach depends on the researcher’s ability to identify rel-
evant information variables for each individual information set, which becomes nearly
equivalent to observing the information structure. Furthermore, individual informational
heterogeneity leads to a non-linear model that is non-separable in the individual-level
heterogeneity. Linear IV approaches are not directly applicable in this setting.

3.2 Partial Identification

In this section, we show that the market-level data {s;, X, g+, Kt };e7 cannot point identify
 and discuss what restrictions are needed to achieve point and partial identification,
respectively. Dickstein and Morales (2018) show that the demand model described in
Section 2 with the individual-level data {d;, X}, g, Kt } 17, is not point identified.

For simplicity, we assume that § = Ok, ¢j; = 0, Vj, t, and the observed list of information
variables KCj; contains only one random variable. The parameter of interest hence reduces
to the scalar y and the observed data reduces to {s¢, gt, Kt } ;e 7 None of the conclusions in

the proof of the proposition below depend on these simplification assumptions.

Proposition 1 The parameter <y is partially identified in the model described in Section 2 and the
observed data {s¢, gt, KCt } e

The proof is in Appendix A. The intuition is straightforward. One cannot identify the
parameter -y that reflects agents’ preferences associated with the unobserved predictions gf]- ;
when the information structure is not observable. We show that under mild specification
assumptions, the parameter of interest y can be point-identified if we know the variance of
the distribution of unobserved expectations. The minimal information set assumption in
Dickstein and Morales (2018) is not enough for point identification since it only represents
the common knowledge of the information distribution and provides no knowledge
about its variance. We need to impose restrictions on how the distribution of unobserved
expectations varies across individuals to identify <. In the finite mixture approach in Section
4, we achieve point-identification by approximating the complete unobserved information
structure. Alternatively, we show that limited knowledge of the extremal properties of the

3For related reasons, Cunha et al. (2005) require observed information factors to be uncorrelated with
unobserved information factors.
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unobserved information structure also allows us to identify our parameter of interest vy
without specifying the entire population’s information structure. This requires weaker
assumptions on the unobserved information structure. However, such inference based
on the extremal information can only partially identify <. This motivates our moment

inequality approach in Section 5.

4 Finite Mixture Model

We present a semi-parametric approach based on the idea of observing an exhaustive
set of information variables. We propose a two-step finite mixture model to solve the
unobserved expectations problem in a setting with heterogeneous information. In the
tirst step, we construct conditional expectations based on combinations of information
variables to predict the uncertain attribute g. This results in a set of possible conditional
expectation functions individuals might be using to form their expectations about the
attribute. Importantly, this step does not assume the existence of a minimal information set
and allows for a flexible information structure. Next, we fit these predicted conditional
expectations as informational types in a finite mixture model. The conditional expectation
functions are observed to vary with different information variables, informing the researcher
about the proportion of information types generating the observed choice patterns in the
data.

4.1 Finite Mixture Approximation of the Information Structure

We propose a semi-parametric finite mixture model to approximate the distribution of
unobserved individual-specific expectations F( gfjt). Our key assumption that restricts the

distribution of heterogeneous expectations is the following:

Assumption 1 The set of observed information variables Kt = {(kjt, . .., kg,jt) } je 7 represents
a set of information variables that individuals can use to form their expectations gi;. No other
information is available to form predictions Sijt

This assumption restricts the composition of individual’s information set to observable
information variables. In a sense, it is the opposite of the minimal information set assumption
in Dickstein and Morales (2018). Instead of assuming that we know the minimal set of
observed information variables used by all individuals, we assume that we know the set of

all potential information variables that any individual can use to form their expectations.

11



Based on Assumption 1, we can collect all the combinations of information variables
in the set K; to construct the set of information types potentially existing in the data.
Suppose that all individuals use at least one information variable, then the total number of
information types, indexed by K3, is given by K3 = ):]If 21 (I%) = 2K2 _ 1 where K; is the
number of observed information variables in the list KC;.# Each information type, indexed
by k € {1,...,K3}, corresponds to a specific information set Wj; that can be used by some
individuals. Relating the type-specific information set to the individual-specific information
set, we have W;; € Ufi 1 Wi, Vi. This framework nests the perfect foresight case when there
is only one information type using the ex-post value g;;; as the information variable. This
discretization allows us to account for individual heterogeneity in information through a

finite and countable number of information types.

Given the information set Wy, we can compute the expectation gy, = E [8ijt| Wit for
each information type x. We further assume that

Assumption 2 The functional form of the conditional expectation E[g;;s| W] is correctly speci-
fied.5

Assumption 3 Denote the fraction of each information type x in the population by ¢y, the
distribution of unobserved expectations F( gf].t) is approximated by a finite mixture of the expectation
distributions F( gijt) across all information types «:

K3
F(gfjt) ~ Z 4’KF(gfcjt)/
x=1

where the fraction parameters satisfy Zf 3 1P =1,¢¢ € [0,1].

The idea of Assumption 3 follows from the well-known result in statistics that finite
mixture models can approximate any arbitrary distribution under sufficient regularity
conditions (McLachlan and Peel, 2004; Ghorbanzadeh et al., 2017; T. Tin Nguyen and
McLachlan, 2020). This idea has been widely used in economic applications (see Compiani
and Kitamura (2016) for a survey). For instance, both Berry and Jia (2010) and Bonhomme
et al. (2022) approximate the unobserved distribution of preference heterogeneity with a
finite mixture while we focus on approximating the unobserved distribution of heterogenous

information (and choice attributes gf].t here).

“We can also allow for an information type that does not use any information variable.

5In practice, we estimate with various specifications of the conditional expectation and select the one
that best fits the observed correlation between the predicted attribute Sijt and the information variables W,
which allows us to minimize the approximation error.

12



Incorporating this finite mixture model into the demand system, we can rewrite the
choice probability Pr(d,'jt = 1|Z;;) in Equation (6) (when researchers have individual-level
data) or the market share sj; in Equation (7) (when researchers have market-level data) as a
discrete sum of type-specific choice probabilities:

oS exp(djt + 18;)
Pr(dljt = 1|Ilt) g Z 4);{ K]t

: —, (10)
k=1 1+ Zj:l eXp(5]'t + ')’g;(]'t)
and
Ks K exp(djr + 185t
sit (01, 81; @) = Z Pkt (0, &t 0) = Z Px ! ’ (11)
/ k=1 ! ‘ k=1 1+ Z]j'zl eXp(5]~t + ’)’gi]'t)

where s,j; is the choice probabilities of the information type x, 5 = {J;t }je 7 is the vector
of mean utilities, ¢, = { gijt} je is the vector of expected attributes for the information
type x, §§ = {8% }x=1,.. K, is the ] x K3 matrix of expected attributes for all information
types. The vector of parameters extends to ® = (€', ¢')’ where 6 is a vector of preference
parameters and ¢ = {¢x}«=1,. k, is a vector of fraction parameters characterizing the
distribution of individuals” heterogeneous information. The fraction parameters ¢ capture
the information heterogeneity in the distribution of unobserved expectations, which drives
heterogeneity in choices. Hence, each fraction parameter ¢« can also be interpreted as the
probability that an individual i, choosing the option j, belongs to a specific information

type k.

The choice probabilities in Equation (10) and (11) impose semi-parametric restrictions on
the shape of the distribution of unobserved expectations. Specifically, we impose restrictions
on the unknown variance of the information distribution by specifying a discrete number
of values of the type-specific expectations g ;. However, our specification remains flexible
compared to the perfect foresight assumption or a single information set approach as we
allow for the presence of different information types and estimate the fractions ¢ from the

impact of information heterogeneity on individuals” choices.

Example Assume that the uncertain attribute is constant across individuals. i.e., gij; = gjt,
and that g;; can be decomposed into two observed information variables as gj: = kyj; + kajt-
The set of observed information variables is hence K; = {k; its ijt}; the number of
information variables is K, = 2 and the number of information types is K3 = 2Kz —1 = 3.
Denote the three information types as k = A, B, C. The information sets for each type are
War = {kijt}, War = {kaji}, and Wey = {kijt, kaji }, respectively. Each information type
forms the expectations gf;].t as follows: gfq].t = kujt + E[koj|kujel, gijt = kojs + Elkyjt|kojt], and
8¢cjt = kijt + kajt = gjr- Thus, the information type C corresponds to the perfect foresight
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type. The market share in Equation (11) now writes

(61,8 ©) = (PAexg@jt +87?qut) N Bexp(5jt +e’)ig‘§jt) N Cexp( it +'ch]t)
(%1, 8541:9) D (01, 854 6) D(6t, 8¢ 9)
exp(Jjt + (ke + Elkoje|k1j¢])) o exp(0j; + 7 (kajt + Elkyj¢ekaje]))
! D (01, 8741 9) ? D (61, 8%, 6)
CeXp(ijt +78jt)
D (61, 86,:0)

where the second equation plugs in the expectations with observed information variables
and D(6¢, 85;,0) =1+ Z]Izl exp(éjt + ’ygijt) is the exponential of the inclusive value of the
information type «.

4.2 Identification

We start by establishing identification of the fraction parameters ¢. Given the identified
fraction parameters ¢, the identification of the remaining parameters is standard. We
focus on the case where researchers only have aggregate market-level data since it is more
challenging to identify the distribution of idiosyncratic expectations with market-level
data. The individual-level data case can be treated similarly.

421 Identification of the Information Heterogeneity ¢

Proposition 2 The information heterogeneity parameters ¢ are identified in market t if the following
(sufficient) conditions hold:

1. The matrix of type-specific choice probabilities Ay = {ijt} jeJ; k=1,...Ks has full column rank,
where K3 is the number of information types.

2. The number of inside goods ] is at least K3 — 2.

3. The fraction parameters ¢ are constant across options j.

Proof. In each market ¢, one can write a system of | + 1 equations (including the outside
option) using Equation (11) as A;¢ = s;, where the vector ¢ € RXs and

510t S20t --- SK30t 50t
Ay ={sttjegin=t, = | 1 1 .t |, s =
(J+1)xK3 (J+1)x1
Sl]t 52]t cen SK3]t S]t

14



It is clear then that there exists a unique vector of fractions ¢ that solves A;¢ = s; in each

market ¢, if the square matrix A;At is invertible.®

One sufficient condition to identify information parameters ¢ is that the matrix A;
has full column rank (with more rows than columns, i.e., ] +1 > K3). In this case, we
need at least | = K3 — 1 options (excluding the outside option) to identify those fraction
parameters ¢.” m

The full column rank requirement implies that variations across columns (i.e., type-
specific choice probabilities s;;) are crucial for the identification of ¢. All columns consist
of the same choice set J and differ only in terms of the type-specific expectations g .
Thus, the choice variation caused by the information heterogeneity identifies ¢.

We highlight that the identification argument above holds within each market ¢.
Thus, variations across markets are not necessary to identify the information structure ¢.
Consequently, the information parameters ¢ can be market-specific ¢; if there is enough
variation in expectations gfc].t across types and options for identification. Additionally,
the number of information types K3 can also be market-specific if we observe different
information variables across markets. In our empirical application, we assume constant
fraction parameters ¢ across markets, hence observations from different markets improve

estimation by increasing the sample size. 8

Our framework allows for testing the content of agents” information sets. Given an
information type x, we can test whether the information variables in the set Wy, are relevant
for forming expectations. If the fraction parameter ¢ is significantly different from zero, it
implies that the information variables in the set J; are used by some individuals to form

their expectations. This test can be conducted for each information type «.

4.2.2 Identification of the Preference 0

Once the information structure ¢ is identified, we are back to a typical demand estimation
setting, and we can extend the model in Equation (11) to account for additional preference

heterogeneity, e.g., by introducing random coefficients B; and 7;. With knowledge of

®One can add the summation restriction on fraction parameters Zfil ¢ = 1 into the system of equations
and adjust the matrices Ay, s; accordingly. A similar identification condition can be derived.

7If we consider the summation restriction on fraction parameters, Zfi 1 ¢« = 1, exact identification can
be achieved with K3 — 2 options (excluding the outside option).

8In practice, a constant fraction assumption implies that each market contains the same proportion ¢y of
individuals that use a specific set of information variables (e.g., {k1, k2 }). However, this does not imply that
the same proportion of individuals has the same expectations across markets as the value of information
variables {kj,k;} still varies across both markets and options.
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¢, the market share system is invertible, and thereby, identification of the parameters 6
follows Berry and Haile (2014). Identifying the distribution of random coefficients relies on
variation across markets, which does not rely on the information heterogeneity as long as

the fraction parameters ¢ are constant across markets.

4.2.3 Discussion

Finally, we discuss disentangling preference heterogeneity from information heterogeneity
in our model. The preference heterogeneity is captured by the random coefficients on the
standard linear parameters  and on the valuation of expected attributes <. It restricts
the distribution of preference parameters. The objective of using random coefficients is
to break the Independence of Irrelevant Alternatives (IIA) assumption of regular logit
models, which does not solve any measurement error problem described in Section 3. By
contrast, the information heterogeneity is captured by the fraction parameters ¢ and the
plug-in expectations g Jt that characterize the distribution of individuals” heterogeneous
information. It restricts the distribution of the regressor gf]-t in the demand system. The
objective of modeling the information heterogeneity is to approximate the unobserved
information distribution F( gf]-t) with a finite mixture, which solves the measurement error
problem.

It is often difficult to distinguish preference and information heterogeneity because
one cannot attribute decisions to a strong preference for an option, or owing specific
information about that choice. We propose that this identification problem can be overcome
with two additional assumptions. First, we need to be able to recover the specific effect of
information on choice. We do this using the rational expectation assumption and exploiting
both within- and cross-market variations to capture the way decision-makers use different
information to predict the uncertain attribute. Second, we need to disentangle information
from preferences. Here, we assume that preferences are stable across options and markets
while information variables realize differently across options and markets. This allows us
to identify the distribution of information separately with the distribution of preferences.
The difficulty with disentangling preferences and information is also discussed in papers
that deal with unobserved choice sets. See Barseghyan et al. (2021) or Molinari (2020) for

more examples.
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5 Moment Inequalities with Extremal Information

The semi-parametric finite mixture model developed so far relies on the specification of a
complete set of information variables that any agent might use as stated in Assumption 1.
The mixture model has two limitations. First, there is a curse of dimensionality: the number
of information parameters ¢ increases exponentially with the number of information
variables. Second, researchers might not be able to posit an exhaustive set of information
variables. The mixture model will be biased when agents have latent information not

included by the researcher among the potential information variables.

We now turn to a partial identification approach to make valid inferences about
preferences without specifying a comprehensive set of information variables. We contribute
by deriving novel moment inequalities based on evaluating choices when the information
is at extreme values. The approach is compatible with market-level data (while previous
moment inequality approaches, such as those based on shared minimal information, are
only compatible with individual-level data). The cost of relaxing Assumption 1 is that
we cannot restrict the distribution of individuals” expectations, and many unobserved
information types could explain the data. Thus, we only have partial identification as
illustrated in Section 3.2.

We argue that partial knowledge about the expectation distribution, in particular its
properties on the extremums, is sufficient to set identify the preference parameters 6.° This
partial identification requires the researcher to observe at least the information set of a
single information type existing in the data and for that type to be the extremal information

e at some realizations of the information variables.
typ
For any instruments Zj;, we define conditional moment inequalities as
E [mmax(sjtr gjt/ th; 9)
Mumin (Sjt, Sjts Xjt; 0)

where the two moment functions are defined as

s

jt 2 O/ (12)

Sit
Mmax (Sjt, gjt, Xj1; 0) = —log S_Z)t —ymax {egi } +78jt + Xjtp + jt,
. (13)
St .
mmin(sjt/gjt/ th}Q) = log S_Z)t + 7 min {eKjt} —78jt — Xjtp — Gjt-

Let © denote the set of all possible parameter values 8 and ©( denote the subset of
those values consistent with the conditional moment inequalities defined in (12), we have

Theorem 1 Let 0* be the true parameter defined in the model (11). Then 6* € ©.

°D’Haultfceuille et al. (2018) presents a similar idea to solve selection bias by focusing on extremal points.
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Theorem 1 states that the extremal moment inequalities are consistent with the true
parameter value 6*. We provide an intuitive explanation of Theorem 1 below. The formal

derivation is in Appendix B.

For ease of illustration, we rewrite inequalities (13) as two bounds for the observed
log-ratio of market shares log :—étt

—7ymin {exjt} +8jr + Xjp + &t < log z—z; < —ymax {exit} + 8t + X+ Cir.  (14)
Inequalities (14) illustrate that the extremum ratios of choice probabilities are characterized
by individuals who commit extremal errors when predicting the uncertain attribute g;;.
The inequalities provide an upper (lower) bound of the log-share ratio with the maximum
(minimum) expectational errors that agents commit. These inequalities mirror those found
in Gandhi et al. (2013) who employed linear conditional inequalities with market-level data
to perform robust inference in contexts featuring zero market shares. The two sides of the
inequality (14) are not redundant. Holding fixed all parameters except y and assuming
without loss of generality that v < 0, the right-hand side of (14) is decreasing in y and
hence identifies an upper bounds on <. The left-hand side is a lower bound on 7.

Figures 5a and 5b graphically illustrate the power of our inequalities (14) in identifying
the correct values of the parameter y. The right-hand side of (14) is plotted in blue while the
left-hand side in green. The observed middle part of (14) is plotted in red. Given the true
parameter value g = —1.5, Figure 5a shows that the maximal error pseudo-type in blue
always bounds the market share ratio from above while the minimal error pseudo-type in
green bounds the data from below. However, given a wrong parameter value y = 2 # v,
our inequality is violated, which will then rule out such wrong parameter value from the
identified set @ ,, as depicted in Figure 5b.

Inequalities in (14) are not estimable since they contain unobserved terms ¢, max {eK]'t}
and rrgn {eKjt}. Our objective is to express them with observed data by implementing
appropriate instruments Zj;. Regarding the unobserved attribute §;;, we assume it has a
zero-mean E [¢j|Z;| = 0 conditional on regular instruments Zj; = {X; }.1° For simplicity,
we assume 7y < 0 in the following discussion.

To build intuition for the selection at extremes, we start with an example that re-

lies on computing the unobserved errors at observed extremal points to obtain val-

ues for [E [mKax {eK]'t} \Z]'t] and E [rrgn{exjt} |th] For the sake of the example, as-

1Qur approach can account for cases where the observed attribute vector X;; contains endogenous
attributes such as prices that are correlated with the unobserved attribute ¢;;. Then one needs to include

extra instruments such as regular price instruments Zﬁ into the instrument set Z;; = {Xj, Zﬁ}
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sume the uncertain attribute g;; € [a,b], type-specific expectations it € [c,d] and
that the researcher observes a,b,c,d."" This implies the prediction errors have bounds
exjt = &jt — &xjr € [a—d, b —c]. This leads to the following identification assumption:

Assumption 4 We assume that a,b, c,d are observed by the researcher and denote the bounds
of the uncertain attribute gy € |a,b] and type-specific expectations it € [c,d] so that
max {exit} ,min {exjt} € [a—d,b—c|. Wealso assume E [$3| Zj¢| = 0 where Zj; = {Xj;}.

Assumption 4 imply the following moment functions:
Sjt

Sit
Mmin(Sjt, gjt, Xji; 0) = log S_Z)t +7(a—d) —gjr — X,
which are easy to implement but can lead to large identified set when the differences a — d

and b — c are large.

The example above illustrates that the key to deriving estimable inequalities is to find
tight bounds for the unobserved expectations E [mgx {exit} |th] ,E [n}(m {exit} ]th} It
is difficult to recover the full distribution of the maximum (minimum) errors max {ext}
(min {ej; }) and then compute the corresponding conditional expectations. However, it is
poKssible to observe data points where the extremal errors are dominated by one single
type conditional on a selection instrument Z]St. Focusing on those specific observations
and knowing the information set of that single type allow us to recover the unobserved
expectations E [m;?x {exit} |th} ,E [mKin {eit} |Z jt] . Taking the maximum errors for illus-
tration, a proposal for an instrument is an indicator variable capturing when the value of
one single type xmax’s error exceeds a certain threshold a i.e., Z]% = {exmax]‘t > a}.12 When
individuals of type xmax make the largest prediction error, i.e., Chmaxjt = Cxits Yk, we can

recover the unobserved expectations IE [mgx {exit} |Z]5t] =E [ekmaxjt|ZjSt} :

11]f the researcher specifies each information type correctly, i.e., there is no unobserved information
variable or information type, then the assumption that the researcher observes c, d is valid. However, when
there are concerns of misspecification, researchers may not observe correct values of ¢, d. In this latter case,
we can, for instance, arbitrarily specify extreme values of ¢, d that are robust to potential misspecification
issues. Alternatively, we can assume that agents do not make extreme predictions beyond the scope of the
ex-post observations gj; so that type-specific expectations are also bounded by the same values gf(jt € [a,b].

12Recall that expectational errors are defined as et = gjr — g5 it where the observed ex-post attribute is a
function of observed (and unobserved if there are concerns of misspecification) information variables in the
set Kt ie., gjt = fg(Kt) and the type-specific prediction is a function of information variables in the subset
Wit C Ky ie., g° it = fee(Wkt). Thus, we can express the type-specific error as a function of information

variables e,y = f.(K}). Then a sufficient condition for the selection e j; > 4 can be an information variable
kjt, dominating the type kmax’s error, exceeds a certain threshold 4, i.e., Z].St = {k]-t > a}.
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This approach requires the researcher to observe the information set of at least a
single information type and to be able to select observations where that information type
makes extreme errors using a selection instrument Z ]St Adding regular instruments for the

unobserved attribute j;, the instrument set becomes Z;; = {th, Z]St} We formalize our

approach as:

Assumption 5 Let kmax, Kmin denote the two extremal information types, conditional on the

L S S S
observed selection instruments Z: it VAR jt max jt

type Kmax predicts the uncertain attribute gj; with the largest error exjy = gjt — g5 jt among all
S

max jt

respectively. Conditional on Z the maximum

the information types «, for option j in market t, i.e., ey it | Z = max eyt | VA The
K

max jt*
minimum type Kmin is defined similarly. We assume that
(i) We observe at least one information set Wy, for some individuals that exist in the data.

(ii) The observed information type xo is the extremal type Kmax (Kmin) at data points selected by

. S S
the instrument Zmaxjt (Zminjt)'
(iii) E [Zjt| Zt] = 0 where Zjy = {Xjt, Z3 . i zs . i

Assumptions 5 imply the following moment functions:
Sjt
mmax(sjt/ gjt/ th; 9) = - lOg SL + ’Ygimax]'t + th'B’
S (15)
Mmin(Sjt, jt, Xj1;0) = log s VSieminit — Xith
Where gimaxjt - g]t B eKmant and giminjt - g]t o eKminjt'

The selection instrument implies that our inference is only based on a subsample of
observations. When information variables vary strongly over markets, we expect to obtain

more precise confidence regions as it allows us to select more observations where particular

information variables are very different from others.

Consider fuel costs as a practical example. We observe fuel prices and fuel economy,
and we might assume that when fuel prices are extreme, individuals predicting fuel costs
by relying solely on fuel economy information make more pronounced errors than any
other information type. We only need to assume that some information types are making
a prediction based on fuel economy and that one of these information types” prediction

errors is larger than any other error when fuel prices are above or below a threshold.
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6 Estimation

6.1 Finite Mixture Approach
6.1.1 Estimation with Individual-level Data

Given individual-level data, we estimate our parameters of interest with the maximum
likelihood. The likelihood function is
d;j 1—d;;
L£(0)d, ) =] [Pr(dij = 1|Zi; ©)]"" [1 — Pr(d;j = 1|Z;; ©)] " (16)
ijt
where the choice probability Pr(d;;; = 1|Z;; ©) is defined in Equation (10).

6.1.2 Estimation with Market-level Data

We propose to extend the GMM approach based on Berry et al. (1995), which leverages on
the assumption of mean independence of the structural errors ¢, E [Cjt|th] = 0, where
Zj € R4 represents the vector of Ky instruments. The estimation algorithm searches
over parameter vectors © to minimize a criterion function based on unconditional sample

moment conditions formed between the structural errors §j; and the instruments Zj;.

Given a value for the parameters ¢, we can employ a contraction mapping to recover the
mean utility terms J; from the observed market shares s;. Next, we regress the mean utility
Jt on the product characteristics X; (including endogenous prices p;) to obtain the residuals.
These residuals serve as estimates of the structural errors ¢;(®) = (st — X¢p), which

enables us to compute the GMM objective function that we minimize with constraints:

min §(©)'Z'WZg(0)

K3
subject to Z $=1,¢¢ €10,1],

x=1
where the vectors and matrices are stacked over all markets t, W is a K4 X K4 squared

weighting matrix.

We assume that the K; observed product characteristics Xj; and K; information variables

kyj+ are mean independent of the structural error. Our identification condition writes

E [glX, (e} 2| = 0. (17)

When there are endogenous regressors, such as prices, among the observed regressors X;, we can use
some observed exogenous cost shifters and calculate the BLP instruments and differentiation IVs, denoted as

K2 Zﬁ] —0.

ZP, to solve the endogeneity issue. The identification condition rewrites IE {éj it Xt {Fomje } L
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However, we argue that regular information variables are not strong instruments to
identify the preference parameter oy and information parameter ¢ in our model. The reasons
are twofold. First, identification of the information structure ¢ relies on the variations of
the market shares across information types, i.e., the impact of plug-in expectations g% j On
choices sj;. Consequently, it is not the information variable per se but those type-specific
expectations that provide exogenous variations for identification. The expectation g ;, is a
non-linear function of the information variable k,j; and our model in Equation (11) is also
non-linear in the expectation g7 T Therefore, we need a non-linear IV to pick out the right
variation in this conditional expectation. Second, our model in Equation (11) is specified
with all the information types implied by the Assumption 1 while some of the plug-in
types may not exist in the data. In this case, there is no reason to believe that the irrelevant
information variables satisfy the mean independence assumption, which creates a weak IV
issue. Both reasons suggest that we need to construct non-linear instruments that provide
exogenous variations reflecting the impact of expectations on choices and are robust to

over-saturated irrelevant information types.

We find that in applications Chamberlain’s (optimal) instruments (Chamberlain, 1987)
work well to address the non-linearities through its statistical form as derivatives tar-
geting each parameter. These instruments correspond to the expected Jacobian matrix
E [E)gg_é/@) ‘ Z]-f] of the structural error ¢ with respect to the parameter vector ©, conditional
on exogenous variables Zj;. First, it constructs the required exogenous variations via a
non-linear operator (i.e., the conditional expectation) on plain instruments Zj; such as
information variables. Second, as first derivatives, they are tailored to each parameter ¢
and 7. If there is an irrelevant information type x, then one can expect that the derivative
of the structural error with respect to that irrelevant parameter ¢y is asymptotically zero.
In other words, Chamberlain’s instruments select out irrelevant types based on data
by assigning negligible weights to moments associated with non-existing types while
favoring other regular moments. This helps smooth the objective function and ensures
consistent estimates. To summarize, plug-in expectations combined with the finite mixture
approximation achieve the identification of the parameters y and ¢, while Chamberlain’s

instruments serve as strong instruments to consistently estimate parameters.

Reynaert and Verboven (2014) highlight the performance of Chamberlain’s instruments

in identifying nonlinear parameters and provide a procedure to compute an empirical

“The unknown expectation form [E matters to construct a strong IV. In practice, we plot the joint and
conditional distribution between the ex-post attribute and information variables to acquire knowledge about
the potential shape of those conditional expectations giﬂ. Then we experiment with different forms of

expectations such as linear, kernel, polynomial of degree two and random forest models.
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approximation of these instruments. Following their work, our estimation involves a
two-stage process. We first estimate the model using regular instruments (X, {km]'t}izz )
in the first stage. Then, we compute Chamberlain’s instruments as the expected value of
the derivatives of the structural error §; with respect to the parameters (¢',y)’ conditional
on the first stage’s regular instruments. These derivatives are evaluated at the first-stage
estimates and mean utility terms. Finally, we estimate the model again in a second stage

leveraging Chamberlain’s instruments.

6.2 Moment Inequalities Approach

The estimation procedure consists of three steps. First, we specify the information set Wi+
for the observed extremal information type xo, estimate her predictions g, i =E it Wrot]
and the associated prediction errors e, j;. Second, we form the instrument Z].St that selects
observations where the prediction errors ey ;; reach their extreme values. Finally, we
adapt the general conditional moment inequality framework of Andrews and Shi (2013)
to estimate the confidence region for our parameter of interest based on the conditional

moment inequalities defined in (15).15

7 Simulations

We conduct simulations to illustrate the performance of our finite mixture approach and
the moment-inequalities with market-level data. The simulations highlight the importance
of Chamberlain’s instruments and showcase that we can find an informative set with the

moment inequality approach.

7.1 Setup

Our simulation is based on the example described in Section 4.1 with three information
types. We simulate 1000 datasets, each consisting of T = 25 markets and | = 10 products.
The indirect utility is defined as

uijp = Po + BxXjt — apjr + gt + Cjt + Eijr-

15Recent work in Andrews et al. (2023) and Cox and Shi (2023) have expanded the set of inference
procedures that can be done in settings with linear conditional moment inequalities, but applying Andrews
and Shi (2013) have been sufficient to obtain reasonable results in our simulations.
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The product characteristic is uniformly distributed x;; Y U(1.5,2.5). We simulate the price

pjt = 1+ zjt + vjs to be exogenous where the cost shifter z; i U(0,1) and the cost shock

Vit S U(—0.25,0.25). The uncertain attribute is assumed to be constant across individuals

gijt = gjt and equals the sum of two observed information variables g;; = kijt + kajy.
The two information variables are independent of each other. The first information

variable is uniformly distributed k1 Y U(0, 1) with expectation [E[kq ;| = 0.5 and variance

Varlkyj] = 1/12. The second follows a log-normal distribution log (k2;j;) NN (0,1) with

expectation [E[kzj;| = exp(0.5) and variance Varl[ky;] = e(e — 1) where e is Euler’s number.

The demand shifters are uniformly distributed ¢ u U(—1,1). The demand shocks follow

an EVT1 distribution. The preference parameters are 6 = (B, Bx, &, 7) = (1,1,1.5,—-1.5)".

There are three information types in the simulations, indexed by x = A, B, C, where
the information set of each type is Wa; = {kiji}, Wat = {kojt}, and Wer = {kqjt, kaji }-
The proportion of each information type is ¢4 = 0.15,¢p = 0.5,¢c = 0.35. Given this
information structure, the average market share of the outside option is around 21.7%. Each
information type forms the expectations gf(].t as follows: gfq]-t = kyjt + Elkoje|k1j¢], 5 it =
kajt + E[kyj¢|koj], and gecjt = kijt + kojs = gj+- Here, the information type C corresponds to a
perfect foresight type. The expectations g% it the expectational errors ey, and the variances
of the expectational errors Var(e,;j) are as follows:

Types Expectations Expectational errors Error variances
A &t = kaje + exp(0.5) eajr = kojy —exp(0.5) e(e—1)

B g%jt = k2jt +05 epjt = kljt — 0.5 1/12

C  sep=kijrthiy=gp ecir=0 0

Furthermore, we extend this dataset of three information types to allow preference
heterogeneity with random coefficients on the valuation of expected attributes -y. The
random coefficient is specified as y; = 7y + 0,v; where v = —1.5 and ¢, = 0.5. The
distribution of 'yl 1s constructed by 500 draws of v; from the standard normal distribution
and we have 7; KN (—1.5,0.25). To ensure that this setup generates a similar average
market share of the out51de option as the previous data, we adjust the distribution of the
exogenous attribute xj; ~ U(Z 3). The average market share of the outside option is around
19.42% in such datasets.

Finally, we simulate a third data that only contains two information types x = B, C with
fractions ¢p = 0.4, ¢pc = 0.6 to test if our method can recover consistent estimates even
when there are fewer information types in the data than specified. The average market

share of the outside option is around 17.57% in such datasets.
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Table 1: Demand Estimation in the Three-type Monte Carlo Simulation

Three-Type Three-type & RC
Regular IV Chamberlain’s IV Chamberlain’s IV
param. true est. st.err.  bias est. st.err.  bias est. st.err.  bias

@ ) ®) (4) ©) (6) ) ®) ©) (10 (D

Bo 1 088 (0228 0.2  1.00 (0023) 000 097 (0435 0.03
B 1 101 (©o021) -0.01 101 (o0os) -0.01  1.00 (0133 0.00
P 15 151 (o016) -0.01 150 (000s) 0.00 150 (0.123) 0.00
¢a 015 014 (0021 001  0.15 (0003 0.00  0.15 (0.024) 0.00
5 0.5 046 (0.089) 0.04 050 (0.008) 0.00 048 (0.093) 0.02
c 0.35 040 (0.028) -005 035 (0.104) 0.00 037 (0.099) -0.02
v 15 -142 (176 -008  -1.51 (0009 0.01 -149 (0.115 -0.01
o 0.5 048 (0.124) 0.02

7.2 Simulation of Finite Mixture Approach

We estimate the model without preference heterogeneity using the GMM two-step proce-
dure described in Section 6. Specifically, we employ regular instruments in the first stage
and calculate the approximated Chamberlain’s instruments for parameters -y and ¢ based
on the first stage estimates following Reynaert and Verboven (2014).1 Then, we replace
the information variables kyj;, koj; in the set of regular instruments with Chamberlain’s

instruments in the second stage.

When estimating the dataset with preference heterogeneity, it is crucial to include
strong instruments to obtain consistent estimates. We find that the first-stage estimates
are usually heavily biased due to the lack of strong instruments, affecting the quality of
the Chamberlain’s instruments in the second stage. To address this issue, we implement
a three-step procedure by constructing Chamberlain’s instrument twice. We calculate a
second-stage Chamberlain’s instruments based on the first-stage estimates and use those to

construct a third-stage Chamberlain’s instruments for estimation in the final stage.

Table 1 displays the estimation results in one simulated data where all three information
types are present in the DGP. Columns (3)-(8) show that the bias of estimates using
Chamberlain’s instruments is smaller than those using regular instruments. Especially
for the intercept, information parameters ¢ and valuation of the expected attribute v, the
bias is significantly reduced when using Chamberlain’s instruments. This justifies the

Chamberlain’s instruments as strong instruments. As expected, the standard errors are

16Specifically, regular instruments in our simulation are (constant, Xit, Pjts Kijts kzjt)~
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Table 2: Demand Estimation in the Two-type (B, C included) Simulation

regular IV Chamberlain’s IV
param. true est. st.err.  bias est. st.err.  bias
1) @ ®G) @) ) (6) @) ®)
Bo 1 4.02 (0.243) -3.02 1.06 (0.168) -0.06
Bx 1 092 (0.183) 0.08 1.01 (0.084) -0.01
X 1.5 1.57 (0.139) -0.07 1.51 (0.083) -0.01
ba 0 0.01 (0.011) -0.01 3.30E-04 (0.004) 0.00
B 0.4 0.80 (0.059) -0.40 0.43 (0.032) -0.03
¢Pc 0.6 0.19 (0.107 0.41 0.57 (o0.111) 0.03
v -1.5 -3.30 (0.245) 1.80 -1.55 (0.086)  0.05

smaller when using Chamberlain’s instruments, indicating an increase in efficiency. Those
results are robust in Columns (9)-(11) where we introduce preference heterogeneity with

random coefficients on the valuation of the expected attribute .

Table 2 displays the estimation results in the data where only information types B and
C are present while we estimate the data with an over-specified model that includes all
three types. As the information type A is missing in the DGP, we expect that the estimate
of its fraction ¢4 is not significantly different from zero. Columns (3)-(5) show that the
regular instruments fail to solve the endogeneity issue. Similar to Table 1, the estimates
of the intercept, information parameters ¢ and valuation of the expected attribute 7y are
heavily biased. Using Chamberlain’s instruments reduces significantly the bias and results
in smaller standard errors. Especially in column (6), the estimated fraction ¢4 is negligible
in scale and not statistically significant. This indicates the absence of the type A in the
DGP. By plotting the GMM objective function, we observe that the regular instruments
lead to a problematic objective function with multiple local minima, as shown in Figure 1.
However, the GMM objective function becomes well-behaved when using Chamberlain’s
instruments, as depicted in Figure 2, further supports the effectiveness of Chamberlain’s

instruments.

7.3 Simulation of Moment Inequality Approach

For ease of computation, we slightly change the setup in 7.1 and simulate one single dataset,
consisting of T = 5000 markets and | = 10 products, that only contains two information

types. The indirect utility now excludes the price variable and is defined as

uijp = Po + PxXjt + vgjt + Cjt + €iji-
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Table 3: Simulation Results with ko = A

Bo Bx % Num. Obs.

True values 1 1 -1.5
95% confidence intervals 1 [0.33,1.17] [-1.73,-1.03] 4 995

The product characteristic is normally distributed x;; YN (4,1). The uncertain attribute
is assumed to be product-market specific g;;; = gj+ and equals the sum of the three
observed information variables gj; = kij + kajs + k3jt. The three information variables
are independent of each other. The first information variable is normally distributed
kit XN (5,1). The second follows a Student distribution of degree of freedom 50 i.e.,
kajt " T(50). The third follows a normal distribution k3j; ESBN (0,0.5) The demand shifters
are uniformly distributed ¢ S U(—1,1). The demand shocks follow an EVT1 distribution.
The preference parameters are 6 = (B, Bx,v)" = (1,1, —1.5)".

There are two information types in the simulations, indexed by ¥ = A, B, where the true
information set of each type is Wa; = {k; jt}, Wge = {kljt, kajt, k3]-t}. The proportion of each
information type is ¢4 = 0.40,¢p = 0.60. Each information type forms the expectations
gf(jt as follows: gqut = kujt + Elkoj¢|k1j¢] + E[kzj|k1je], and g%jt = kijt + kajt + k3j;. Here, the
information type B corresponds to a perfect foresight type.

Furthermore, we can allow the researcher to have a partially mis-specified information
set. Here, we assume that the researcher specifies that the information set of each type is
War = {ky it} Wg = {k1jt, kajt }- Thus, the researcher does not observe all the information
that individuals use to form expectations. Specifically, the information type B has more
information about the options than researchers assume they have. The mixture model in
Section 4 will be biased in this setting. We show that our moment inequality approach can

deliver informative and precise bounds for the parameters of interest.

We estimate the moment inequalities in (15) using the information type A as the
observed type ko defined in Assumption 5. We select observations where type A’s
prediction errors ey4j; are above the 90th percentile g9 (and below the 10th percentile gq.1)

of its empirical distribution. The selection instruments are hence Zliax it = {e Ajt = 909}

-
and Zminjt = {eA]-t S %.1}-
Table 3 presents the simulation results. Our moment inequality approach provides

informative and precise bounds. We discuss the impact of selecting different observations
on the estimated confidence regions in Appendix C.
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8 Empirical Applications

We bring the finite mixture framework to the setting of two empirical papers: Dickstein and
Morales (2018) (with individual-level data) and Grigolon et al. (2018) (with market-level
data).

8.1 What Do Exporters Know?

Dickstein and Morales (2018) studies the information structure of exporters in Chilean
manufacturing sectors using moment inequalities based on a minimal information set
shared by all exporters. Rather than assuming a minimal information set, our key identifi-
cation Assumption 1 requires that the observed list of information variables allows us to

construct every information type among the exporters.

We show that the finite mixture method can provide estimates close to the original
paper’s confidence sets without using moment inequalities. Second, by estimating the
fraction of each information type in the mixture, we can directly infer the distribution of
exporters” information types. We can not only answer the question “What do all exporters
know?” but also estimate the prevalence of different information types in the data. Finally,
through this application, we demonstrate our method can be easily adapted to cases where

richer individual-level data is available.

8.1.1 Model

A firm 7 located in Chile makes the decision d;j; on whether to export to a foreign country j
in year t. Her decision is defined as
dip =1 {E [nijt’xZ'jt/ dist;, Vijt] >0},

where 77;;; is the profit of firm i from exporting to country j in year ¢, Jjj; is the information
set that firm i uses in year ¢ to predict the potential revenue 7;;; from exporting to country
J, dist; is the distance between Chile and a destination country j, and v;j; is the demand
shock. The profit is defined as the difference between the revenue 17*113#, scaled by the
demand elasticity 7 calibrated at 7 = 5, and the fixed cost of export f;j;. The fixed cost
fijt = Bo + Padist; + vyj; is specified as a linear function of the distance dist; and the demand

shock vjj;. We can rewrite the decision rule above as

dijp =1 {’7_1113 [Tijt|x7ijt] — Bo — Badist; — vijy > 0} i
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The demand shock is assumed to follow a normal distribution v;;;|(J;jt, dist;) N (0,02),
which allows us to obtain a probit form of the probability that firm i exports to a destination

j in year ¢, conditional on the information set J;;; and the distance dist; as follows

Pr(dij = 1| Ty, dist;; 0) = @ [0_1 <17_11E [t Tiit] — Bo — ,Bldist]-)] , (18)
where ®(-) denotes the CDF of the standard normal distribution and the parameter of
interest is 6 = (Bo, f1,0)’".

The export revenue r;;; takes the role of the uncertain attribute g;;; in our model.
However, we do not observe the revenue 7;;; of a firm i if she does not export to the
destination j in year t. To deal with the issue, Dickstein and Morales (2018) further specifies
the potential revenue as a function of the observed domestic revenue r;; of firm i in year ¢:

Tijt = QjtTipe + Cijt,

where the revenue shifter aj; is a sufficient statistic of how destination-specific supply and
demand factors rescale the value of the domestic revenue to the (counterfactual) potential
export revenue 7;j;, and e;j; is the error term. We follow their approach and estimate
the revenue shifter using data on firms that have exported to the destination j in year t.
The paper further assumes that the unobserved error term has a zero conditional mean
Ej [eijt | Tijts Tints fz’jt] = 0. Consequently, we take a7, as the uncertain attribute g;j; in our
model.

Dickstein and Morales (2018) discuss the role of five observed information variables:
distance dist;, last year’s domestic revenue r;;;_1, last year’s aggregate revenue Rj;_1
from all firms that have exported to the destination j, last year’s revenue shifter a;; 1,
and the number of firms Nj;_; that have exported to the destination j in year f — 1.
They assume all exporters know the first three information variables and construct the
minimal information set Z.;Tt’ = {dist]-, Tini—1, R]-t_l}. We retain their minimal information
set and use the last two variables a; 1 and Nj;_1 to construct the information types. We
construct K3 = 4 information types, indexed by x« = A, B, C, D, where the information
set of each type is Wy = {distj, rip—1, Rjp—1}, Wp = {dist;, rips—1, Rj—1,ajs—1}, We =
{dist;, rips—1, Rjt—1, Njt—1}, and Wp = {dist;, rips_1, Rjt—1,&js—1, Njt_1}, respectively.

8.1.2 Estimation

The data used for estimation is an unbalanced panel of N = 266 Chilean firms’ decisions
dijt in the food and chemical product sectors from 1996 to 2005, i.e., T = 10. The destination
choice set contains J¢ = 22 countries in the chemical sector and J/ = 34 countries in the
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food sector. On average, 38% of the firms have at least exported to one country in a given
year. Each firm exports to 4 — 5 countries on average in the chemical sector and 6 — 7 in the
food sector. To summarize, in each sector in year ¢, we observe all firms’ export decision
djjt, their domestic revenue 7y, the export revenue 7;;; of firms who have exported to the
destination j and the list of information variables Kjj; = (dist;, rips—1, Rjt—1, &jt—1, Njt—1)-

Given individual-level data, we separately estimate the export decision in each sector
with the maximum likelihood. In this context, the likelihood function (16) becomes
£(®|d, IC, diSt) = 1_[ [Pr(di]'t = 1|1Cijt/ dist]-; @)]diﬁ [1 — Pr(d,']'t = 1|,Ci]'t/ diSt]'; @)]1_dijt ,
ijt
and the choice probability Pr(d;; = 1|K;j;, dist;; ©) is specified as

K3
Pr(dy; = 1Ky dist;; ©) = Y@ [0 (7' [ari| Wi] — Bo — Badist;) |, (19)
K

where the fraction parameters satisfy the constraint 2,153 ¢ = 1,¢¢ € [0,1] and the
parameter vector is © = (Bo, B1, 7, $a, $5, ¢c, $p)’

When bringing the likelihood function (19) to the data, we need to calculate the type-
specific expectations of the potential export revenue [E [txjtr,-ht|WK} . However, we do not
know the shape of the conditional expectation operator.”” We calculate the conditional
expectation with a non-linear exponential specification following Dickstein and Morales
(2018). For instance, the expectation of the potential export revenue in information type A,

i.e., the minimal information type, is

E [ajerine|Wa] = exp (va1In(dist;) + ya2log(rine—1) + va3log(Rji-1)) , (20)
where we first run anon-linear regression of the ex-post export revenue a ;7 on information
variables In(dist;), log(7iy+—1),log(Rj;—1) and obtain the estimated coefficients § 41, § a2, § a3-
Then we predict the unobserved expectation as

E [ajirine[Wa] = exp(§a1 In(dist;) + Fazlog(rini—1) + Fa310g(Rjt—1)).
We repeat this calculation for each information type x. The only difference between our
calculation and Dickstein and Morales (2018) is that we do not include any intercept term
¥x0 in (20).1® We find an exponential shape by plotting the correlation between the predicted
attribute aj;7;,; and the information variables Wy, which justifies that the functional form

7In the simulation exercise, we assume the two information variables are independent and the type-
specific expectations reduce to a single information variable with an additional constant, which allows us to
know correctly the conditional expectations.

BIndeed, when estimating Equation (20) with intercept 49, we find that the estimated coefficients
41, ¥2, 93 are positive but all smaller than 1, while the estimated intercept 4y is negative and much larger in
absolute value (around —5). This issue exists in the estimation for all information types, which makes the
predicted expectations E [K]'tl’l'ht \ WK} close to 0 for any information type x, making them indistinguishable.
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Table 4: Parameter Estimates for Entry Decision in the Chemical Sector

Estimator o Bo B1 ba ¢B ¢c ¢p
Panel A. Parameter Estimates
(1) Perfect foresight 1,038.6 745.3 1,087.8
(413) (291) (422)
(2) Minimal information 395.6 298.3 447.1
111) 73) (129)
(3) Finite Mixture 124.7 95.5 210.7 0.15 1.17E-12 056 0.29
1) 1) (25) 0.048)  (0.092)  (0.078) ()

Panel B. Confidence Intervals
Methods robust to unobserved information structure

(4) Moment inequality [85.1,115.9] [62.8,81.1] [142.5,194.2]
(5) Finite Mixture [104.1,1454]  [73.6,117.5] [162.5,259]
Simple plug-in estimators

(6) Perfect foresight [229.3,1848.0] [175.6,1314.9] [260.4,1915.1]
(7) Minimal information [178.1,613.0]  [154.8,441.7]  [193.6,700.6]

we use to estimate the unobserved conditional expectations should be able to minimize the

approximation error.

8.1.3 Results

Table 4 presents the estimation results of the export model in the chemical sector. Rows
(1) and (2) replicate the results from Dickstein and Morales (2018) using simple plug-in
estimators. The estimator in row (1) assumes all exporters have perfect foresight while
the one in row (2) assumes all exporters use the minimal information set. Our estimation
results using the finite mixture model with four information types are shown in row (3).
From the estimated fractions ¢y, we observe a significant share of information type A,
which uses the minimal information set, confirming the findings in Dickstein and Morales
(2018). Furthermore, we observe that firms are more likely to include the number of
exporters Nj; 1 in their information set, compared to only using the minimal information
set (P4 = 0.15 < pc = 0.56). Additionally, exporters are unlikely to use the revenue shifter
aj;—1 combined with the minimal information set, as $p = 1.17E — 12, which is negligible
and not statistically significant. Intuitively, information about the number of total exporters
is easier to obtain and use than the revenue shifter. When a firm knows the minimal
information set and wants to enhance it, their first choice might be to include the number

of exporters rather than calculating the revenue shifter. However, when a firm knows both
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the minimal information and the number of exporters, they are likely to further include
the revenue shifter (¢p = 0.29).

Panel B of Table 4 displays the confidence intervals for firms’ fixed cost estimates
&, Bo, B1. Row (4) borrows the confidence intervals estimated by Dickstein and Morales
(2018) using moment inequalities. We further calculate the confidence intervals for our
finite mixture model in row (5) and for the two simple plug-in estimators in rows (6) and
(7). We find that the simple plug-in estimators result in large and significantly different
confidence intervals compared to the moment inequality estimates in row (4). However,
our finite mixture confidence interval in row (5) is much more precise and overlap with

those obtained using moment inequalities. Figure 3 illustrates this graphically.

8.2 Consumer Valuation of Fuel Costs

Grigolon et al. (2018) studies the car purchase decision in the EU market. The authors
use a demand model that is rich in consumer heterogeneity to obtain consistent estimates
of consumers’ valuation of fuel costs. Specifically, they allow preference heterogeneity
using random coefficients and driving behavior (mileage) heterogeneity using an empirical
distribution. They provide quantitative evidence that consumers undervalue their expected
fuel cost when purchasing a vehicle. The paper adds to a large literature following Hausman
(1979) identifying the responsiveness of energy-consuming durables to energy expenses.
The literature has, so far, relied on a plug-in approach. The researcher specifies what
consumers expect about future energy consumption at the time of the purchase and
plugs in the expectation in the purchase decision model. If consumers form expectations
differently than what the researcher specified, these types of models suffer from the bias of

misspecified information structures discussed in Section 3.

Therefore, we extend Grigolon et al. (2018) and provide a more detailed analysis of
consumers’ valuation of the uncertain future fuel costs. Specifically, we investigate the
information variables consumers use to form their expectations of fuel costs. We recast the
problem in our framework and estimate a finite mixture of observed information types.
This allows us to obtain estimates of consumers’ valuation of their expected fuel costs
consistent with a much richer information structure and estimate which information types

are prevalent in the data.
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8.2.1 Model

A consumer i decides whether to purchase a car model j with engine variant k in market
(year-country) t. For simplicity, we omit the market subscript ¢t. Her decision utility is
defined as

wie = XkBi — ai(pje +vGijk) + Cjic + Eijies
where each car is defined based on its model j and engine type k, xj; is a vector of
observed car characteristics, pjx is the price, G;j is consumer i’s expected fuel cost, {;; is an
unobserved product attribute and € is the idiosyncratic valuation for the car, modeled as
an EVT1 random variable. The vector 7 is the consumer-specific coefficients on the car
characteristics, «; is the marginal utility of income and the expected fuel cost G;j accounts
for individuals” mileage heterogeneity. Specifically, it represents consumer i’s present

discounted value of expected future fuel costs for the car model j with engine variant k as

z]k =p ﬁ i €jk&ks
where p = Y°°_ (1 + )% is the capitalization coefficient that depends on the lifetime S of
the car and the interest rate r, " is consumer i’s annual mileage, e is the fuel consumption
of the car and g is the fuel price. Finally, the parameter v measures consumers’ future
valuation. If v < 1, consumers undervalue future payoffs G;j relative to the current payoff
Pijk-

Grigolon et al. (2018) assumes that consumers have perfect foresight of future fuel costs.
We relax this assumption and investigate what information consumers use to form their
expectations G;jx. We assume consumers know their mileage ", and we aim to estimate p.
We take the observed fuel efficiency ej; and fuel prices g as the information variables and
construct a mixture model of K3 = 3 information types, indexed by x = A, B, C, where the
information set of each type is W4 = {ej}, Wp = {g«}, and Wc = {ejx, 8« }, respectively.
We denote the product ejgx as the uncertain attribute gj; in our model. The expectations
of each information type is ¢ i = [Elejxgk|Wk]. The information type C corresponds to the
perfect foresight type that uses both fuel efficiency and fuel price to predict their fuel costs,
as specified in Grigolon et al. (2018).

Under these assumptions, we can compute the predicted market share for model j with

engine k as

(&0, 0 Zfl)x

k=1

/ exp(xB; — aipjic — a7y &y + Cik)
B 1+ Xk exp(xjBi — aipje — aivpp'Syj + Gjk)

where the vector of random coefficients f; = (B}, a;, yoB!")’ is assumed to be independent

dFg(B;0)|, (21)

of the taste shock ¢;j; and follows a distribution Fg(j8; 0) where 0 are means and (co)variance
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parameters to be estimated. The parameter vector of interestis ©® = (6/, ¢4, P, pc)’.

8.2.2 Estimation

The data used to estimate the market share system in Equation (21) is a panel of T markets,
defined as country-year combinations. The vector of product attributes in xj; includes
horsepower, size, and height of the car, whether the car is produced in a foreign country,

and a diesel dummy interacted by country dummy variables.
Following Grigolon et al. (2018), we further restrict the random coefficients with
i = B+ 2N,

where B* is the vector of mean valuations and ¥ is assumed to be a diagonal matrix with
the vector of standard deviations ¢* on the diagonal and v; follows a standard normal
distribution. The marginal utility of income is specified as inversely proportional to the
observed market’s income level y;, i.e., a; = a/y;. Individual mileage 7" is drawn from the
observed empirical mileage distribution. Given those restrictions, the parameter of interest

reduces to © = (B*, =¥, &, 70, p 4, P5, pc) .

Finally, the unobserved quality ¢jx; is assumed to be linearly additive as

Cike = &j + 8t + e
where ¢; are model-specific fixed effects and &; are market-specific fixed effects modeled as
country-specific fixed effects interacted with a time trend and a squared time trend. The
model is then estimated with GMM using the conditional moment restrictions

E [Cjkt|zt] =0,
where z; is a vector of instruments.

To deal with the unobserved shape of the conditional expectation operator g7 & =
Elejxgk| W], we use the random forest prediction as an approximation. This specification
should be able to minimize the approximation error since it is flexible enough to capture
the observed non-linear relationship between information variables and the expected fuel

costs, as displayed in Figure 3.

We first estimate the mixture model in Equation (21) without random coefficients,
ie., pf = B* using the standard two-step GMM. In the first stage, our instruments z
include observed product attributes xj;, cost shifters, BLP instruments and the realized
fuel costs gjk;. Then we follow Reynaert and Verboven (2014) to calculate the approximated
Chamberlain’s instruments for the fraction parameters ¢, and the undervaluation coefficient

7y based on first stage estimates and instruments. In the second stage, we replace the realized

34



fuel costs gjx by those Chamberlain’s instruments in z;.

When allowing preference heterogeneity, the regular two-step GMM fails to deliver
precise estimates in our mixture model (21). Indeed, our fraction parameters can be consid-
ered as additional “random coefficients” that characterize the information heterogeneity.
As analyzed in Reynaert and Verboven (2014), it is difficult to precisely estimate many
random coefficient parameters. Our simulation exercise in Section 7 shows that the quality
of the estimates is sensitive to the strength of the instruments. Besides, the strength of the
non-linear Chamberlain’s instruments depends on the first-stage estimates. To deal with
this interdependence dilemma and improve the efficiency of the estimates, we adopt a
one-step estimator that continuously updates the Chamberlain’s instruments, following
Bourreau et al. (2021). When minimizing the GMM objective function in the outer loop,
we employ Newton’s method with a numerical gradient. Our estimates are robust to the
alternative gradient-free Nelder-Mead simplex method used in Bourreau et al. (2021).

8.2.3 Results

Table 5 presents the estimation results of the demand model. The first three columns
replicate results from Table 3 in Grigolon et al. (2018) for comparison with our findings
displayed in columns (4)-(6). Our main result is that our estimates reject the perfect foresight
assumption used in the literature. Specifically, the estimated fraction of the perfect foresight
consumer type ¢c is negligible and not statistically significant across the three demand
specifications. Moreover, we find that more than half of the consumers use only fuel
efficiency to predict their future fuel costs, while the remainder rely solely on fuel price.
This finding is intuitive, as fuel efficiency is a direct attribute of the car and easy to observe
and use, whereas future fuel prices are uncertain and harder to predict. Finally, our results
show that the estimated undervaluation coefficient vy in Grigolon et al. (2018) has a large
upward bias. Indeed, our mixture model estimates 4 = 0.23 is much lower than the 0.91
estimated under the perfect foresight model. This suggests that accounting for consumers’
unobserved information about fuel costs is important in this setting. These findings align
with survey findings discussed in Levinson and Sager (2023), pointing out that consumers’
ex-post and ex-ante fuel costs differ substantially.
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Table 5: Parameter Estimates for Alternative Demand Models

Table 3 in Grigolon et al. (2018)

Finite Mixture

Logit RCLogit]l RC LogitII Logit RCLogit]l RC LogitII
) ) ©) (4) ) (6)
Panel A. Mean Valuations
Price/inc. (x) -4.52 -6.22 -5.33 -2.44 -4.45 -4.97
(0.19) (0.22) (0.21) (0.21) (0.21) (0.28)
Fuel costs/inc. (xyp) -39.03 -46.48 -47.11 -12.73 -18.54 -11.07
(1.41) (0.94) (9.22) (0.33) (0.64) (0.50)
Power (kW /100) 2.28 2.6 0.25 1.14 2.27 -1.87
(0.14) (0.17) (0.61) (0.14) (0.14) (0.17)
Size (cm?/10k) 13.25 16.69 16.77 14.36 15.79 14.39
(0.44) (0.48) (2.02) (0.41) (0.42) (1.37)
Height (cm/100) 3.00 4.45 5.19 3.05 3.87 5.59
(0.30) (0.32) (0.33) (0.26) (0.28) (0.18)
Foreign -0.83 -0.75 -0.89 -0.94 -0.84 -1.09
(0.02) (0.02) (0.04) (0.02) (0.02) (0.05)
Panel B. Fractions of Information Types
Fuel efficiency (¢4) 0.68 0.66 0.51
(0.02) (0.02) (0.04)
Fuel price (¢p) 0.32 0.34 0.39
(0.03) (0.03) (0.04)
Perfect foresight (¢c) 0.00 0.00 0.10
) ) )
Panel C. Standard Deviations of Valuations
Power (kW /100) 1.95 2.70
(0.25) (0.18)
Size (cm?/10k) 4.31 6.04
(2.04) (1.21)
Foreign 0.49 1.56
(0.43) (0.06)
Mileage distribution No Yes Yes No Yes Yes
Panel D. Valuations of Future Fuel Costs
Fuel costs/price (77p) 8.63 7.47 8.84 5.22 4.17 2.23
(0.55) (0.24) (1.77) ) ) )
Future val. 7 (r = 6%) 0.89 0.77 0.91 0.54 0.43 0.23
(0.06) (0.02) (0.18) ) ) )
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Figures

Figure 1: GMM Objective Function with Regular IVs in the Two-type DGP (B, C included)
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Figure 2: GMM Objective Function with Chamberlain IVs in the Two-type DGP (B, C
included)
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Figure 3: Non-linear Relationship between Information Variables ejx;, gx; and Uncertain
Fuel Costs gjkt = €jkt X gkt
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Figure 4: 95% Confidence Intervals for the Chemical Sector
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Figure 5: Graphical Illustration of Inequalities
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Appendices

A Proof of Proposition 1

We denote F°(-) for distributions that can be directly observed or estimated and f(-)
for distributions containing any unobserved variables. The data {s;, gt, K¢ };c7 allows to
estimate the joint distribution F°(sj;, Kj;, gij¢) across i, j, and t. Without loss of generality,

we can write
Fo(sjt, Kit, gijt) = /ge f(dije(&ije), Kit, &ijt) 810 (22)
ijt

where the joint distribution f(d;;;( gf].t), Kit, &ij+) involves the unobserved individual choices
dij that is a function of the unobserved expectations gfjt. Equation (22) connects the
observed data with the unobserved variable. Using rules of conditional distributions, we

have
F(sjt, Kit, &ije) = /ge F il i, &G &ie) - [ (&t K Gije) - (&35t Kt ) - FO(KCje) A
ijt
’ 23)
where F°(K;j;) denotes the marginal distribution of Cj; and is observed in the data. Any
structure SY = {f-l/(dijt|Kjt,gfjt,gijt),fy (8ijtl it gfjt),fy(gfthC]'t)} is admissible provided
that it verifies the restrictions imposed in Section 2 and Equation (23). Section 2 implies the

logit form of f¥(dyjt| Kjt, g5y, giji) and we have:

exp(78ij;) dlﬂ exp(787;) s

# :

S dijel Kt 8ijes 8ije) = ——— — 1= —— :
L+)qexp (’Y&jt) 1+),_ exp (’Ygijt>

(24)

Next, we show that 7 is partially identified in a model with stricter assumptions than
those in Section 2. The idea is that if we can show partial identification in a more restrictive

model, then the model defined in Section 2 is also partially identified. Specifically, our
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additional assumptions are on the elements of Equation (23):

(

8 ~Nuge, o),

Wie = g5y + vije, 0ijel g5 ~ N (po, 03), (25)

| Siit = &G+ eijer eijel (85 0ije) ~ N(0,07),
where we maintain that expectational errors ¢;;; have a zero conditional mean, which is
a property by construction. Those assumptions allow us to further determine the terms
f (it Kje, 853¢) and fY (&5 [Kjr)-

First, the distribution of g;j;, given values of i = & 1s fully determined by the
distribution of ¢;j;, independently of Kj;. Thus, we have the following normal conditional

density:

f1(8ijt| Kje 8ie) = f¥(ijt | Kjt, &ijp = 8) = ! exp -3 (gijt_g>2 :
mee ey 02\/27 2 0?2

Second, by Bayes’ rule, we have
f(’Cjt|8fjt)f(gfjt)
f(Kje) 7
where f (K| gfjt) is determined by K| 8ijt ™ N (gf].t + 1o, 03), f(Kjt) is obtained with
| f(Kjtl g )dF (g5;,) where F(gf;,) is the CDF of NV (jige, (7;8), and f(g{;,) is also determined

F (&l Kje) =

by that normal distribution. Then we succeed in writing the right-hand side of Equation
(23) with the parameter v and other distribution parameters restricting unobservables

( gfjt, vjjt, ejj¢) from the system of assumptions (25).

Recall that our objective is to show that there exist empirical distributions F°(s it Kt gi]-t)

for which one can find at least two structures
S = {9, f (it Kie, 853e) f71 (85341 Kije) 3

SY2 = {2, f12(8ijtl Kt 853 ), (8731 Kje) 3
that satisfy Equations (23), (24), (25) and 71 # «¥2.
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Define g,y = 0ge&j;, such that Var( gf].t) = 1. We can rewrite equation (24) as

dijt 1—djj;

eXp('YUgfgfjt) - exp(fyo—geg;?jt)
1+ Z]]-:1 exp (’Y(Tgfgfjt> 1+ 2]121 exp <'yageg1?jt>

We can identify the unique 7y if we know oge.

fy(dithCjtfgfjugijf) =

To solve for oge, we can use the system of assumptions (25). We note that g;;; and Kj;
are jointly normal as each of them is a sum of normal variables. Their joint distribution can
be computed with observed data and reflects the information contained in the system of
assumptions (25). We can use the following three moments to summarize the parameters

involved in that joint distribution:*
(

2 2 2
Uy = Oge + 0,

2 _ 2 2
U’C — Uge + UU + 2p’l)gel

Pgk = 0?6 + Poge-

The LHS of this system of equations can be directly observed in the data. This is a linear
system with three equations and four unknowns (0’;6, 02,02, Poge), which is under-identified
and cannot solve for a unique (ng. Consequently, our model in Section 2 cannot be point

identified since a more restrictive model with an additional system of assumptions (25)

remains partially identified.

B Proof of Theorem 1

We focus on the demand model with market-level data defined in Equation (11). We begin
our derivation with an inequality that bounds the ratio of market shares with choice

probabilities of two extremal information types.?

YWe use e|(g°0v) ~ N(0,62) to compute Cov(v,e) = E[ve] — E[v]E[e] = E[E[ve|lg,0]] —
E [0] E [E [e|g%, v]] = E [vE [e|g%, v]] — E [v] X E [0] = E [v x 0] = 0. Similarly, Cov(g®,¢) = 0.

2The inequality, in general, relates the ratio of sums of sequences to the ratio of individual terms in the
sequences.
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Lemma 1 Let ¢ denote the fraction of an information type x = 1,..., Kz in the population, s;;
denote the probability of the information type x choosing any inside the option j, and s.o; denote the
probability of the information type x choosing the outside option 0. By definition, {¢x}, {sxj:} and

{sxot } are finite sequences of non-negative real numbers. We have:
. ) Skjt Sjt Skjt
mm{—]} < il < max{—] .
o USkot 50t KU Skot

Proof. Let M = max { ii"é tt } denote the maximum value of the ratio of type-specific choice
K KoKl

probabilities. For any information type x, we have ¢ysyji < M - ¢xsyor. Taking the summation

over the type index x on both sides of that inequality, we have Zfi 1 PxSkjt < M- Zfil Sx0ts

K3 A ,
which implies ;IK(;—Z;WSW < M = max {% } By Equation (11), the left-hand side of the
x—1 PrSx0t K KoK

latter inequality corresponds to the ratio of market shares for an inside option j and the

: : o Sit £ Pt (9t,831:9) Sjt PreSijt Sjt
outside option 0, i.e., =K . Thus, we have £ < max Besor | = TAX 500
0Ot ZK:1 (PKSKOt((St/git;G) 0t K Kk OK0t K x0t

The proof is similar for the other side of the inequality. m

Intuitively, the inequality relaxes the need for a complete specification of the component
types and mixing proportions that enter the market shares, instead allowing us to bound
parameters with extremal types. These inequalities become equalities when there is no
heterogeneity in information between types, suggesting that the bounds tighten in product
markets where informational differences play a smaller role, much like the identification at

infinity argument in Ciliberto and Tamer (2009).

Next, since the logarithm transformation of ratios is monotone, we can further linearize

Lemma 1 as:
. Sit
—y min {exjt} +78jt + Xjtp + &t < log S—(])t < —7ymax {exjt} +8jt + XjtB + Cjt,

which gives the moment inequalities in Equation (13).
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C How does Selection Impacts Estimated Confidence Re-

gions?

We estimate the moment inequalities in (15), assuming that both information types A and
B are correctly specified by the researchers. To compute the maximum and minimum

moment functions, we considered five different scenarios for selecting observations:

1. Only information type A is used in estimation.

2. Only information type B is used in estimation.

3. Both information types A and B are used in estimation.

4. Information type A (B) is used for the maximum (minimum) moment function.

5. Information type B (A) is used for the maximum (minimum) moment function.

In the first scenario, where only type A is used in the estimation, we select observations
where type A makes the largest (smallest) errors to compute the maximum (minimum)
moment functions. Among the 50 000 observations, 24 968 have type A as the maximum
type (with type B as the minimum for the same observations), and 25 032 have type A as
the minimum type (with type B as the maximum for the same observations). Since the
estimation procedure requires an equal number of observations for the maximum and
minimum moment functions, we randomly select 24 968 observations from the 25 032 data
points where type A makes the smallest error. The moment inequalities in (15) rewrite as

Mmax(sjt, gjt, Xji; 0) = — log S—Z)tt + 78 + Xjth + Gt
Mmin(Sjt, Sjt, Xj1;0) = log z—gtt — 784 — Xjth — Gjr-

The second scenario follows the same reasoning but plugs predictions from information
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type B in the moment functions. The moment inequalities in (15) rewrite as

Mmax (Sjt, jts Xjr; 0) = — log + Y8pjr + XjtB + Gjts

mmin(sjtzgjtr th} 0) = log S_Ot - vg‘éjt - thﬁ - (fjt-
In the third scenario, the entire sample is used for estimation. In our simulation of two
types, when type A is the maximum for one observation, type B is necessarily the minimum
for that same observation. Thus, each observation can be used twice, once for the maximum
and once for the minimum moment functions. The fourth scenario is similar to the third,

with each observation used twice. However, the focus is on the 24 968 observations where

type A is the maximum type. The moment inequalities in (15) rewrite as
Mmax (Sjt, jts Xjr;0) = — log + Y8uji + XjtP + Gjts
mmin(sjt,gjt,th;9) = 108 S_Ot - ’rg‘[;]-t - th,B - (:jt~
The fifth scenario mirrors the fourth but focuses on the 25 032 observations where type B
is the maximum type. The moment inequalities in (15) rewrite as
Mmax (sjt, jts Xjr; 0) = — log + Y8pj + XjtB + Gjts
mmin(sjtzgjtz th;e) = 108 S_Ot - vg‘};ﬁ - th,B - éjt-
After selecting the subsample, we estimate the confidence region for the preference
parameter 0 using a grid search method following Andrews and Shi (2013). To speed up
computation, we fix the intercept fp = 1 and estimate only the parameters 8, and . We

define a grid of 31 values for each parameter, with 8, ranging from —2 to 3 and < from —5

to 2. Then we interact with both parameters’ grids to form a final grid of 312 = 961 points.

Table 6 displays the simulation results. Comparing scenarios (1) and (2), we find that the
subsample using information type A estimates the upper bound for the positive parameter
Bx and the lower bound for the negative parameter y more precisely than the subsample

using information type B. When comparing scenarios (1) and (2) with scenario (3), we
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Table 6: Simulation Results

Bx 0% Num. Obs.

True values 1 -1.5

95% confidence intervals

(1) Only A [0.67,1.50] [-1.97,-1.27] 24 968
(2) Only B [0.67,2.83] [-3.60,-1.50] 24 968
(3) Both A, B [0.83,1.00] [-1.73,-1.50] 50 000
(4) Max. A, Min. B [-1.67,0.83] [-1.73,-1.50] 24 968
(5) Max. B, Min. A [0.83,1.00] [-1.73,-1.50] 25032

observe that using each observation to estimate both moment functions yields the most

precise confidence intervals for both parameters By, 7.
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