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Abstract

In this paper, we analyse the impacts of climate change, in particular greenhouse
gases on people’s life quality in general, and physical and mental health in particular.
These outcomes are taken from the Survey of Health, Ageing and Retirement in
Europe which took place from 2004 to 2019. We provide a wealth of evidence that
shows the adverse impacts of greenhouse gases emission. For instance, doubling the
amount of carbon dioxide emission would reduce the quality of life of a person aged
50 by 3.8 percent. The effects on mental health are more noticeable than those on
physical health. These effects are, however, not constant across ages. Middle-aged
people are more vulnerable than older ones.
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1 Introduction

Over the past decades, we have observed more and more the footprints of climate change.
Glaciers have shrunk, sea level have risen and longer, more intense heat waves have been
occurring at alarming rate. Emissions of greenhouse gases (GHG) from human activi-
ties are responsible for approximately 1.1°C of warming since 1850-1900 (IPCC, 2021).
Moreover, most Europeans living in urban areas in low and middle-income countries are
exposed to the levels of air pollution above the WHO guidelines (Watts et al., 2017). It
is then vital to our existence to understand the relationship between GHG emissions and
the economically relevant outcomes, from economic growth to human health. Assessing
this “damage function” is central to academics and policymakers if they are to provide
policy implications to mitigate the impacts of climate change in the future.

This paper aims to provide evidence on the “social cost of carbon”, which is the
marginal damage costs of climate change. These costs would be the key inputs in design-
ing the optimal Pigouvian taxes or carbon pricing. The first attempt to measure these
costs was to rely on cross-section variation. A notable example is Mendelsohn, Nordhaus
and Shaw (1994). A crucial assumption in this approach is the optimized use of lands by
the owners. As a result, the self-reported value of land would reflect the contribution of
weather. A regression framework would then reveal the marginal effect of climate vari-
ables. The main problem of this approach is identifying the causal relationship between
climate change and economic outcomes. While there might be a large correlation between
them, the estimates will be biased by the many confounding factors that are very likely
to be omitted.

Recently, a new approach has emerged to mitigate the omitted variable problem. This
approach makes use of the panel data and calls on using the year-to-year climate variables
to identify their effects. The identification strategy is to rely on the within-unit year-to-
year variations in both the climate change and the economic variable of interest. We will
follow this approach to answer the following research questions: What are the effects of
greenhouse gases emission on human quality of life? Do they have adverse effects on our
health, both physically and mentally? Is there a particularly vulnerable group, especially
among the aging population?

In answering these questions, we contribute to the literature on a number of fronts.
The first dimension is the measure of climate change. Temperature is often used as such
measure. Dell, Jones and Olken (2012) show that rising temperature would reduce out-
put and economic growth, putting political stability at risk. It also affects negatively
our capabilities and productivity. Using the test scores of American high school students
between 2001 and 2014, Park et al. (2020) find that hot temperatures leading to the ex-
ams would reduce students’ scores. Other measures such as sea-level or natural disasters
are also considered. For instance, Shah and Steinberg (2017) show that rainfall is an
important determinant of the opportunity costs of schooling, which then determines in-
vestment in human capital. However, these measures are often not exogenous (Nordhaus,
2017). Indeed, they are likely to be the product of human activities, in particular, GHG
emissions. For this reason, we take this variable as our measure of climate change.

By choosing GHG emission as the measure of climate change, our paper can be re-
garded as a reduced-form regression of measuring the social costs of carbon. The complete
recipe for measuring such costs would consist of three steps. First, we need to establish
the link between GHG emissions and concentrations, or the amount of a particular gas



in the air. They are measured in part per million, or sometimes per billion. One part
per million is equivalent to one drop of water diluted into about 13 gallons of liquid.
An example of this type of study is Pacala and Socolow (2004). Second, a model has
to be formulated to convert these concentrations into changes in temperature (see, for
example, Weitzman, 2009). The final step is to identify the causal relationship between
temperature (or other climate variables) and the economic outcomes, as we have seen
above.

In addition to the measure of climate change, we also contribute to the literature with
measures of economic outcomes. Most of the literature focuses on how climate change
would affect agricultural and industrial outputs, and economic growth. To rule out the
reverse causation, these papers mostly rely on the Integrated Assessment Models (IAM).
Some of the most well-known models used by the United States Environmental Protection
Agency are the Dynamic Integrated Climate—Economy (DICE) model (Nordhaus, 2008);
the Climate Framework for Uncertainty, Negotiation and Distribution (FUND) model
(see, for example, Anthoff and Tol, 2009); and the Policy Analysis of the Greenhouse
Effect (PAGE) model (Hope, Anderson and Wenman, 1993). In these models, all the
climate variables and the outcomes of interest are included in an integrated setup to
mitigate the reserve causation concern.

Different from these papers, we focus on the impacts of climate change on human
health. With this outcome, reverse causation is unlikely to be a major concern. This
creates a huge advantage in our analysis. Indeed, we do not have to rely on complicated
ITAM models, which often require extensive datasets and restrictive assumptions (Nord-
haus, 2017). By contrast, we can make use of the individual fixed effects (FE) to mitigate
the other source of endogeneity which is the problem of omitted variables.

Our paper is related to a growing literature that makes use of human health. To
measure human health, one can use the mortality rate. Deschénes and Greenstone (2011)
find that each additional day of extreme heat increased the annual age-adjusted mortality
rate by 0.11 percent. Similar statistics are also found in Barreca (2012) and Curriero
et al. (2002). Deryugina et al. (2019) show that increase in the PM 2.5 exposure for
one day resulted in more deaths. Heutel, Miller and Molitor (2017) find that cold days
are more deadly than hot days. Goenka, Liu and Nguyen (2021) highlight economic and
health losses due to disease and pollution externalities in a neoclassical growth framework
and show that socially efficient outcomes have higher pollution than competitive ones,
questioning hopes of a green recovery. Another measure is infant health. Hot days led
to a decline in birth weight by up to 0.009 percent (Deschénes, Greenstone and Guryan,
2009). Exposure to natural disasters such as hurricanes in Texas increased the probability
of newborns being born with abnormal conditions or complications (Currie and Rossin-
Slater, 2013).

Our contribution is to bring a wealth of evidence on the effects of climate change on
different dimensions of human health. Instead of the mortality rate, our outcomes are
the self-reported quality of life, as well as the self-reported human health, both physically
and mentally. Most of the results are found in the public health literature. For example,
Hanson et al. (2008) find that extreme heat led to an increase in hospital admissions for
mental and behavioral disorders. Periods of drought are associated with a reduction in
life satisfaction (Carroll, Fritjers and Shields, 2009).

To the best of our knowledge, we are one of the first to link the emissions of multiple
types of greenhouse gas emissions, including carbon dioxide, methane and nitrous oxide



emissions, to the various dimensions of life quality, including physical and mental health.
It is reported that air pollution in Europe caused nearly half a million premature deaths
per year (World Health Organization, 2015). When natural disasters lead to the loss of
life and resources, or the disruption of their normal life (e.g. relocation), or the discon-
nection of social support and networks, people could have the mental problems including
post-traumatic stress disorder (PTSD), depression, anxiety and suicidality (U.S Global
Change, 2016). Heat waves would cause mood disorders and anxiety (American Psycho-
logical Association, 2017). As a result, there is some link between rising temperatures
and suicidal rates (Burke et al., 2018). B. et al. (2013) recorded that among the flood
victims, 20% had been diagnosed with depression, 28.3% with anxiety and 36% with
PTSD. There are amble evidence that drought is connected to suicide (Deshpande, 2002;
Hanigan et al., 2012; Sarma, 2004; Guiney, 2012). Our paper provides the quantitative
evidence that is consistent with previous findings. More precisely, we find that doubling
the amount of carbon dioxide emission would reduce the quality of life of a person aged
20 by 12 percent. This result is robust to various specifications, including the alternative
report of emissions and the diverse types of emissions.

There are plenty of evidence pointing to the adverse effects of air pollution on people
physical health. For instance, air pollution can affect lung development (Wang et al.,
2019), impair the blood vessel function (Riggs et al., 2020), and lead to cancer (Niehoff
et al., 2019). Again, our paper contributes to this literature by adding more evidence
quantitatively. We show that air pollution affects negatively physical health. A 100 per
cent rise in the amount of carbon dioxide emissions, for example, would lower the physical
health score of a 20 year-old by 10 percent.

Despite the growing awareness of the impacts of air pollution, there are still limited
studies of its effects on mental health. Newbury et al. (2021) established a link between
air pollution exposure to the increased use of mental health service in London, United
Kingdom. However, as they acknowledge, the use of mental health service is a proxy
for the mental health problems. This proxy is influenced by other uncontrolled factors
including the health care capacity and risk evaluations. Perhaps the most related to our
study is Carroll, Fritjers and Shields (2018) where they exploit a recent Chinese Family
Panel Studies and anlyse the impacts of the concentration of very fine particulate matter
(PM2.5). What they found is a significant effect of air pollution on people mental illness.
We extend their study by looking at a wide range of of mental illness, including the 12
types of illness such as depression, suicidality, sleep problems, irritability and fatigues.
Out of these 12 types of mental illness, we find the negative effect of air pollution on 11
of them, except for having guilty feelings where the effect was insignificant.

Another contribution of our paper is to look for the vulnerability indicators as far
as the impacts of climate change are concerned. In the literature, these indicators are
often income (Dohrenwend et al., 1992), gender (Deryugina et al., 2020) or some health
conditions (A. et al., 2016). In this research, we delve into the effects of GHG emissions
on mental and physical health, with a specific emphasis on aging. As people age, they
encounter more physical and mental health issues, and the risk of adverse outcomes in-
creases as these deficits accumulate. The accumulation of health deficits has been found
to be linked to various factors such as unhealthy lifestyles, occupational hazards, and en-
vironmental influences (Schiinemann, Strulik and Trimborn, 2017, Strulik, 2018, Strulik,
2022). By compiling these accumulated deficits into a single index variable known as the
frailty index Mitnitski AB (2002) and Rockwood and Mitnitski (2006) showed that it is



possible to measure overall health status in the elderly population.

Studies in the literature provide a mixed picture. While Deryugina et al. (2019)
show that the negative effect of pollution increases with age, Salcioglu, Basoglu and
Livanou (2007) find that young people are more vulnerable. Our finding is that the
effect of greenhouse gases is stronger among middle-aged people than the older ones.
For instance, for every additional age, the effect of doubling the level of carbon dioxide
emission decreases by 0.5 percentage points.

The rest of the paper is organized as follows. In sections 2 and 3 , we will present
the theoretical framework and data used in our research. We lay out our identification
strategy in Section 4 and report our results in Section 5. Section 6 concludes the paper.

2 Theoretical Framework

In this section, we present a simple framework to formalize testable hypotheses about
the potential effects of GHG emissions on human quality of life. The model incorporates
a quality of life component associated with GHG emissions, health spending, and other
control factors.

For each country, an individual 7 in period ¢ has a state of health, d;;, which is
produced by
digy1 = f(t, dig, Mg, Xt, Zi),t=0,1..00.

In this production function, health status depends on health spending m;, the global
level of GHG emission X;, and other variables discussed below. We utilize the health
deficit model proposed by Dalgaard and Strulik (2014), which models physical health in
terms of physiological health deficits to quantify the value of life, following the approach
of Hall and Jones (2007). Suppose that the state of health is measured by accumulated
health deficits, represented by the equation

dipy1 = dig + pir(diy — Zymiy + X3)

in which the parameter yu; represents the intrinsic rate at which health deficits accumu-
late for an individual . It reflects the biological and physiological differences among
individuals that influence how quickly they age. Factors such as genetics, lifestyle, and
pre-existing health conditions can all contribute to variations in p;. The accumulation
of health deficits can be slowed by health expenditures, while X; captures environmental
influences as an increasing function of GHG emissions. The variable Z; may influence the
health deficit of an individual, such as GDP, population, education, or medical technolog-
ical level of the country. For the empirical analysis, we will use GDP and life expectancy
as proxies for Z;, as these variables are available in the data. As GHG emissions could
affect human life at the aggregate level, it is treated as exogenous to each individual in
the data sample.

We use the natural aging rate, pu;, to characterize the aging process in our model.
Individuals are heterogeneous with respect to p;, meaning that each person experiences
aging at a different rate. This heterogeneity in aging rates allows us to capture the diverse
impacts of GHG emissions on health outcomes across the aging population.

Besides the usual consumption, the utility of an individual u(c; 4, d;;) depends on the
health deficit. Let s;; = s(d;¢, X;) denote the survival probability that is decreasing
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in health deficit and decreasing in GHG emissions. Therefore, GHG emissions affect
the quality of life in two ways, either by increasing the health deficit or by increasing
mortality. The individual’s welfare is

Z Bs(dig, Xo)u(cir, diy)-
t=0

Given income y; ¢, the individual will choose the level of consumption and health spending
that maximize the well-being subject to the budget constraint. Let V' denote the value
function. Given X; and Z;, the Bellman equation is defined by

Vi(di 1| X, Zy) = max {s(di, Xi)u(cir, di) + Vg1 (digs1| Xir1, Zea) }

Ci,t, TNt

s.t

Vit — Cig — Miy = 0
dipy1 = dig + pie(diy — Zymiy + Xy)

d; is given.

Let A\; be the Lagrange multipliers on the budget constraint. Define the Lagrangian
function

L=5(diy, Xe)u(ciy,dig) + BV (di 1) + M(Yir — Cip — Miy).

The first order conditions for £ w.r.t control and state variables read

3<di,ta Xt)uc(ci,t7 mi,t) = M, (1)
8Vt+1 8f<dit>mitaXta Zt)

’ : = \. 2

ﬁadi,t-i-l amm ! ( )

8f(d7«, 1M, 7X 7Zt) —
Where fm(di,t,mi,t,Xt, Zt) = b e B — _,ui,tZt'

omg ¢
In order to get a closed-form solution, let’s assume that u(c; s, d;;) = In(c;t) — ad, ;.
Since the health deficit is a function of X, we can assume that, ultimately, survival
depends solely on emissions. Thus, the survival rate can be expressed as s = e 7%t. We
guess the value function in the form:

V(diﬂg) — A —|— Bd@t,

where A and B are constants to be determined. Given fd—‘; = B, the equation 2 becomes

At = BB Zs.

Substitute \; back into the condition 1 we get

eV Xt
Cit

" BBuiZy’

and
e X

- ﬁBlﬁi,tZt.

mit = Yit — Cit = Ui



Given the optimal values of ¢;; and m;;, substitute back into the Bellman equation:

A+ Bdi,t =e N [_Bdi,t — X — ln(ﬁBMi,tZt) - adi,t]

e Xt
+ 3 <A + B |:di,t + pis(die — Zi(yin — m) + Xt>:|>

which implies

A+ Bdy = BA+ e " (= Xy — n(BBpisZy)) + BB Zeyis — BBl Xy — prige” "™
— (e (B +a) + BB + BBuy,) dy.

Balancing the coefficients of d;; we get
B=—(8+a)e ™ = BB(1+ piy)- (3)
Balancing the constant term yields
A=e (=X, —In(BBpuisZ;)) + BA — BBy Xe + BB Ziyis. (4)

Solving for B from the identity (3) we get

B+ a)e X
1+ 81+ Hit)

Substituting into the equation (4) we get

— ,u‘i,te_"/Xt

Xt [ _ _ —Be VXt (B+a)pi 1 Zs . Be VXt (B+a)pit (Zeyi i —Xe)
e ( 71X ln< T+ B+ B, T+ B+ B
1-0

Given A, B, we obtain the closed-form solution of the value function V(d;;) = A+
Bd; ;.

A:

2.1 Impacts on quality of life

Proposition 1. i) Higher greenhouse gas emissions and increased rates of natural ag-
ing generally lead to a lower quality of life. i) Moreover, the detrimental effects of air
pollution are more pronounced among younger age groups.

Proof i) Let Q = —%—Z > 0 denote the change in well-being associated with the

change in health deficit. That is, ) represents the quality of life related to physical
health deficits, where an increase in health deficits results in an increase in well-being.

It follows from the first-order conditions that

R S(di,taXt>uc(Ci,taXt)J fm(di,tami,th Zt)
Vv TV
quality of life effect marginal cost



The optimal allocation sets health spending and consumption at each age to equate the
marginal benefit of life quality to its marginal cost.

Equation(5) can be rewritten as follows:

5<di,ta Xt)uc(ci,ta Xt)

BQucn = =2

This equation implies that the discounted value of quality of life is affected by GHG emis-
sions through their impact on survival probability, the marginal utility of consumption,
the marginal cost of health expenditures, and the natural health deficit accumulation
process.

Given the closed form solution of V', we obtain

oV (B+a)e X

d 1+ B(1+ py)

We get the partial derivative of ) with respect to X; is:

0Q _  (Bra)eX
oxX, 71 + B(1 + pie)

<0

and the partial derivative of () with respect to p;; is:

0Q __ BB+a)e™

Opie (14 B(1+ piy))?

Therefore, the quality of life (Q;;) decreases as GHG emissions (X;) increase. The
denominator 14 (14 ;) indicates that as u; increases, the quality of life (@) decreases.
Therefore, higher GHG emissions(X;) and higher rates of natural aging (u;;) generally
lead to a lower quality of life. These findings are corroborated by the empirical tests
presented in Table 2 in the following section.

We implement some simulations to support for these findings. We assume some rea-
sonable values for the parameters values «, 3, v, Z;, ¥it, and p;—1 -1 and simulate @, H
over a range of X,y values.

Parameter Value Description

o 0.5 Climate sensitivity coefficient
Ié] 0.6 Discounting factor

0l 0.1 Emission induced death rate
Z 1.0 GDP

Yt 0.5 Income

-1 0.2 Previous health status and age

The simulation results from Figure 1 and Figure 2 highlight the intricate interactions
and impacts of GHG emissions on health-related quality of life (Q;;) across different
age groups. In the Figure 2, the colors range from dark to light, where darker shades
represent more negative values of the partial derivative, and lighter shades represent
less negative values. As X, increases, );; declines exponentially, suggesting that aging
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populations may experience a more pronounced deterioration in physical health under
worsening environmental conditions. Furthermore, the influence of y; ; on @); ; underscores
the compounded vulnerability of older adults, as these factors can either mitigate or
exacerbate the adverse effects of environmental stressors.

Simulation of Q with respect to X; Simulation of @ with respect to y; ;

P+ Braen
— O=tomEeaq 080 — O

09
og
07
06
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o 2 4 6 8 10 000 025 050 075 100 125 150 175 200
X Mt

Figure 1: Impacts of Emission and Age on Life quality

ii) We are interested in
9%Q
aXta,ui,t
as the marginal effect of age on marginal health related-life quality of emission. Regression
use the interaction terms between air pollution and the age groups to characterize this
relation.

Note that
0Q B (B+ oz)e’VXt

a_Xt B _71 + B(1 + pie)

Hence

’Q (Bt a)pe ™

= 1
0X Oy B+ w02

> 0.

Therefore the marginal effect of emission on health related life quality g—)%(u) is a
decreasing convex function of p as shown in the Figure 3.

The Figure 3 illustrates the second partial derivative of () with respect to X; and p; ;.
This represents how the marginal effects of age (u;) influence the marginal life quality
impact of emissions (X;). The analysis reveals that the sensitivity of life quality to
changes in emissions is significantly higher for younger individuals with lower s, ;. As age
increases, the impact of emissions on life quality diminishes, as indicated by the positive
and decreasing trend of #ﬁu. This aligns with empirical findings in the next sections
that show younger populations are more adversely affected by air pollution. The positive
coefficients of interaction terms between air pollution and age groups highlight that the
detrimental effects of pollution are more pronounced among younger age groups. The
visualization underscores the necessity of targeted interventions to mitigate air pollution,
particularly to safeguard the life quality of younger individuals who are more vulnerable
to its effects. This analysis, supported by the simulation, emphasizes the importance of
reducing emissions to improve overall life quality, with a particular focus on protecting
younger demographics.



simulation of @ with respect to X and 1 +
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Figure 2: Effects of @ on X and p

2.2 Impacts on physical health

In this section, we assume the physical health status H of an individual as a decreasing

function of health deficit: H

T 1+6d
where H ., is the maximum possible health status and the positive constant 6 represent-
ing how quickly health deficits impact health status.

Proposition 2. Higher greenhouse gas emissions and increased rates of natural aging
generally lead to a lower physical health.
Proof. Using optimal health expenditure value from (2) to get

e_’VXt

— )+ X
ﬁB:ui,tZt) t]

divyr = dig + pisldie — Zi(yir —

Substituting B from (3) , the final expression for d; ;41 is:

1+ 5(1 + ,ui,t)
BB+ o)

i1 = dig + pipdie — i1 ZeYiy — + i Xy
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Figure 3: Marginal effects of age on marginal life quality of emission

Therefore, the physical health H is given by

Hmax
1446 (di,t + pipdie — i e ZiYis — % + Mz‘,tXt>

Hi,t+1 =

Taking derivative of H w.r.t GHG emissions X we have
8Hi,t+1 _ Hmaxeﬂi,t
0xX, ; 2
¢ (1 +0 (di,t + i — i ZeYi — % + ,ui,tXt>>

This partial derivative shows that the physical health capital decreases as GHG emis-
sions increase, given that § > 0 and p;; > 0. The rate of decrease is influenced by (u; ;)
and the other factors such as GDP, mortality, health expenditure affecting health deficits.

To qualify the impact across aging population, we derive

148
OH; i1 Hyax0 (di,t — ZtYis — ey T Xt)

a 7 i 2
Hist (1 +0 (di,t + pipdie — i ZeYis — % + ,Uz‘,tXt>>

This partial derivative shows that the physical health H;,;, decreases as the natural
aging rate p;, increases and emission is high enough. The rate of decrease is influenced
by the previous health deficit d;;, income y; ,, GHG emissions X, and other factors such
as GDP or medical technological level of the country Z,.

These findings are confirmed by the empirical tests presented in Table 3 in the next
section.

The analysis and visualization of the partial derivatives g—g and %—IZ provide insightful

findings on the impact of GHG emissions and aging on physical health capital. The
colors range from dark to light, where darker shades represent lower (more negative)
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values of the partial derivative, and lighter shades represent higher (less negative or
closer to zero) values. The plot of g—g demonstrates that as GHG emissions increase,
the physical health capital decreases, highlighting the detrimental effects of pollution
on health. This relationship is further influenced by factors such as the natural aging
rate, GDP, mortality, and health expenditure. Similarly, the plot of %—Is reveals that as
the natural aging rate increases, the physical health capital decreases, particularly when
emissions are high. This decrease is affected by previous health deficits, income, and
other socioeconomic factors. The plot on the right shows that, given a fixed aging rate,
physical health decreases with higher emissions. The lowest value of %—’Z ranges from
—40 to —36. By comparing data from different regions, we can observe how variations
in emissions and aging rates impact physical health differently across these areas. Such
comparisons can help identify region-specific challenges and inform targeted interventions
to mitigate the adverse effects of emissions on health. The analysis is implemented in the
next section.

Hoers Heean
X T
010 000 010 - -8
-0.04 -1z
008 008
-0.08 -16
-0.12 -20
006 006
3 -016 3 -24
-0.20 -28
004 004
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002 -0.28 002 -36
} T T T T 1 -032 -40
o 2 4 3 8 10 0 2 4 3 8 10
Xe Xe

Figure 4: Impact of emission on physical health across aging populations

2.3 Impacts on mental health

In the literature, physical health has often been mathematically modeled in terms of
health deficits, as shown in Dalgaard and Strulik (2014), Strulik, 2018, and Mitnitski AB
(2002). However, modeling the dynamics of mental health is more challenging, making it
difficult to derive an explicit equation to quantify the impact of climate change on mental
health. In this paper, we propose a proxy for assessing the impact of climate change on
mental health

Denote P, ; = %%j the effect of climate change on the quality of life related to physical
health. In our model, utility V is derived from health, it essentially reflects how health
impacts the overall quality of life. We define the impact of climate change on the quality
of life related to mental health, M,;, as the residual impact of climate change on overall

quality of life, W, = g—)‘é, after accounting for the impact on physical health, expressed
as

8V 8Qi,t _ dA + d(Bd%t) GQM

0X, 0X, dX, e 0X;

It follows from the value function V' = A + Bd, 4, the derivative ;—)‘?t is

My = Wiy — Py =
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<ﬁﬂi,t(a + ) (V(Xe = Zyia) — 1) = v(Xey + pig + In <_Ztﬂg;;:,(tj‘;€-)f_Xt7>)<B:ui,t + 6+ 1)> e
(B =1)(Bpiz+ B +1)

Thus Miﬂg =

(Bralar+ BYV(X = Zugia) = 1) = Y (X + g+ In (LD (54 1)) e Xor
(8= 1)(Bpas + B+ 1)

(B+a)ye e (B4 a)e X

LB+ B T TR B )

+diy

Also, it follows from the value function V' we get the physical health related quality

of life
CdQiy (B4 a)ye
* dX;, L+ B8+ Buiy
Therefore, mental health related quality of life is defined as M;, = W;, — P, =

P,

—ZBui s (a+B)e” Xt — Xy
<5Hz‘,t(a + B8) (Xt = Zyyia) = 1) — v(Xey + pie + In ( z Bgﬂz(t'i‘—;i)l >)(B,ui,t +6+ 1)) et

(8 = 1) (Bpis+ B +1)
_pBtape™ (Bt a)e
e ) B M T Bt )

To determine the impact of emissions on mental health, we calculate the partial
derivative of M, with respect to X;:

cTT o T E

OMy _ (O du—1_ DY _y,
0X,

where:

<B,Ui,t(04 + B)(V( Xy — Zyyiy) — 1) — y( Xy + piy +1n (_Ztﬂgzzyii;@fi}m))(ﬁui,t + 8+ 1)>
(8 —1)(Buig +B+1)
C=14+8+PBpir, D=pi1(B+a), E=14+P0(14 ).

. : OMiy o 1 . . .
The negative sign of aXl;t indicates that an increase in GHG emissions leads to a

decrease in mental health for quality of life. The terms O and D are influenced by
various factors such as aging rate (u;.), GDP (Z;), previous health status and other
socio-economic variables, indicating a complex interplay between emissions and mental

health.

The theoretical framework derives the equations to illustrate potential mechanisms
through which emissions can affect physical health, mental health in relation to quality
of life, thus highlighting a possible empirical strategy.

Our main variables of interest for the estimation, @, H, P, M, will be functions of
observable variables such as GHG emissions (X), health spending (m), mortality rate
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coefficient (7), and control variables (Z), including GDP and population. The unob-
served income and the natural health deficit accumulation process of individuals will be
accounted for as individual fixed effects in the empirical model.

The model also highlights that the effect of GHG emissions X; on health varies across
different aging rates characterized by the heterogeneity of j;;. These equations include
an interaction term involving GHG emission levels and aging rate, p;, and X;, suggesting
that the effect of GHG emissions on quality of life varies across different aging rates. This
hypothesis will be examined in the subsequent sections.

3 Data

3.1 Survey of Health, Ageing and Retirement in Europe

The first main dataset used in our research is the Survey of Health, Ageing and Retirement
in Europe (SHARE) dataset. More than 140,000 people, aged 50 or over, from 28 countries
across Europe and Israel participated in this survey. From 2004 to 2020, 8 waves of
questionnaires were conducted. In total, we have nearly 350,000 observations.

In this survey, the respondents were asked to report their life quality. The method
to measure life quality is the Control, Autonomy, Self-realization, and Pleasure (CASP)
scale (Hyde et al., 2003). This method is based on the four dimensions of need. They are
control (i.e. the ability to actively intervene in one’s environment), autonomy (i.e. the
right of an individual to be free from the unwanted interference of others), self-realization
and pleasure (i.e. the active and reflexive processes of being human). In total, there
are 19 questions (see Table A). The responses were coded as Often (3), Not often (2),
Sometimes (1) and Never (0). Items 1, 2, 4, 6, 8 and 9 were reverse coded. The answers
were then combined to obtain one composite score, the CASP-19 index. The range of this
index is from 0, which indicates a complete lack of quality of life, to 57, which indicates
total satisfaction across four domains: control, autonomy, self-realization, and pleasure.
In our analysis, the minimum score is 12 and the maximum score is 48. The mean score
is 37 with a standard deviation of 6.3 (see Table 1).

In addition to the life quality, respondents also rated their physical health status.
Questions in this domain were based on the 36-item Short Form (SF-36) Survey (see
the Appendix). The survey contains information regarding physical and mental health.
Answers were coded by a five point Likert scale, from 1 (Excellent) to 5 (Poor). More
information about the SF-36 can be found in Ware and Gandek (1998). In the SHARE
dataset that we employ here, only the first question was retained. This question asked the
general health of the respondents and considered as an indicator of their physical health.
The average answer in our dataset is 3.2 with a standard deviation of 1 (see Table 1).

Finally, our data reports the 12 dimensions of mental health used according to the
EURO depression scale (EURO-D). The scale was originally developed to derive a com-
mon depression symptoms scale from various instruments on late-life depression used in
different European countries (Prince et al., 1999). The 12 dimensions are depression,
pessimism, suicidality, sleep, interest, appetite, fatigue, irritability, concentration, guilt,
enjoyment, and tearfulness. Respondents were asked if they experienced any of these
mental health problems (see Table C).
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3.2 Frailty index

The richness of the our data allows us to investigate the impact of climate change on
frailty. It is a prevalent problem with increasing age. We follow Fried et al. (2001) to
calculate the frailty index. It is defined as the presence of more than 2 of the following
health problems: Exhaustion, Shrinking, Weakness, Slowness and Low Activity. We
adopt their model with our dataset following the literature (Santos-Eggimann et al.,
2009, Salaffi et al., 2021). More precisely, Exhaustion was picked up if the respondent
answered "Yes" to the following question "In the last month, have you had too little
energy to do things you wanted to do?". He(she) would be subject to Shrinking if they
responded with a diminution in desire for food to the question "What has your appetite
been like?". Weakness was identified as having more than 3 arm function and fine motor
limitations. If the respondent had more than 2 mobility limitations the Slowness was
flagged. Finally, Low Activity was assigned to respondents who answered "one to three
times a month" or "hardly ever or never" to the question "How often do you engage in
activities that require a low or moderate level of energy such as gardening, cleaning the
car, or going for a walk?"

Based on the answers of the respondents, each of these five dimensions was recorded
as a binary state (i.e. Exhaustion or not). We treated the refusal to answer or no answer
as missing data. Given that Fried et al. (2001) categorize frailty as having at least 2
of the 5 problems, we classified the respondents as follows. The respondents with zero
points (i.e. no problem whatsoever) were coded as non-frail. If they had no more than
two points (i.e. no more than two problems), they were pre-frail. Having three or more
points were classified as frail. In addition to quality of life, physical health and mental
health, we will use the frailty index as another indicator of people’s health and investigate
how it was related to emissions.

3.3 World Bank - Our World in Data

The second dataset concerns the emission of greenhouse gases. Here we make use of two
sources of information. The first source of information is the World Bank Development
Indicators. Not only does it report the carbon dioxide (CO2) emissions by metric tons
but it also provides the CO2 emission equivalents of other GHG emissions, including
methane emission and nitrous oxide emission. These variables are crucial not only for
robustness checks but also give us a fuller picture of the effects of climate change.

A problem with the World Bank data is that information from the latest years is miss-
ing. In particular, we do not have emissions data in 2019. To complement this dataset,
and also to provide further robustness check, we employ a second source of information
which is the database provided by Our World in Data (https://ourworldindata.org/). In
both our sources of information, data on GHG, methane and nitrous oxide emissions
were taken from the CAIT Climate Data Explorer, under the Climate Watch Project
(https://www.climatewatchdata.org/). The difference between the two data sources
comes from the sourcing of CO2 emissions. While the World Bank still relies on the
CAIT database, Our World in Data refers to the Global Carbon Project which releases
a new update of CO2 emissions annually. More importantly, they have updates on CO2
emissions up to 2020.
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Table 1: Summary Statistics

(1) (2) (3) (4) (5)
Variables Observations Mean Standard deviation Min Max
Main outcomes
Life quality 313,219 37.29 6.306 12 48
Physical health 341,633 3.179 1.069 1 D
Mental health
Depression 282,464 0.396 0.489 0 1
Pessimism 281,857 0.170 0.376 0 1
Suicidality 281,904 0.0688 0.253 0 1
Guilt 281,845 0.0809 0.273 0 1
Sleep 282,680 0.348 0.476 0 1
Interest 282,320 0.0940 0.292 0 1
Irritability 282,395 0.276 0.447 0 1
Appetite 282,929 0.0881 0.283 0 1
Fatigue 282,389 0.355 0.478 0 1
Concentration 281,883 0.180 0.384 0 1
Enjoyment 282,146 0.128 0.334 0 1
Tearfulness 282,390 0.246 0.431 0 1
World Bank data
Carbon dioxide 295,891 7.736 2.694 3.248 18.68
Methane 295,891 21,299 21,462 220 74,530
Nitrous oxide 295,891 11,505 12,526 40 45,570
Total Greenhouse gases 295,891 209,642 229,256 2,010 952,110
Our World in Data
Carbon dioxide 342,610 176.3 205.5 1.559 887.1
Methane 229,421 22.14 21.90 0.540 74.53
Nitrous oxide 229,421 11.99 12.85 0.300 45.57
Total Greenhouse gases 229,421 199.1 215.5 10.05 931.3
Covariates
Population 342,610 2.368e+-07 2.534e+07 437,935  8.352e+07
GDP 296,860 8.741e+11 9.941e+11 1.454e+10 3.827e+12
Life expectancy 340,672 80.49 2.071 74.63 83.70
Health spending 295,891 8.968 1.702 5.151 11.90
Age 342,594 67.33 10.22 22 106
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4 Methodology

We implement our identification strategy in the following form:

li fe—quality; = Bo+ [ r*ghge*xageic+Pox ghga+Bsxageiq+Lax Xa+n4+nc+m+€ice (6)

In this equation, life — quality;. is the self-reported life quality (in log term) of an
individual ¢ living in country c at time ¢. This life quality is scored over 4 dimensions:
control, autonomy, self-realization, and pleasure. The overall score is then used in our
analysis (see, Hyde et al., 2003).

The variable ghg.; denotes the log of the total GHG emission, as well as the emission
of its components, including CO2, methane and nitrous oxide gases. To control for factors
that might affect the quality of life of our respondents, we include a vector of the country-
time specific variables X.. This vector contains the factors that might influence the
quality of life, including population, GDP, health spending and life expectancy. Crucially,
we include the individual fixed effect to control for all personal specific differences. With
this inclusion, we compare the life quality within one specific individual over different
exposures to GHG emissions. To apply this technique, we had to drop all the individuals
who participated only once in the survey.

To address the heteroskedasticity concern, we cluster at the country level which is
the level of variation in our treatment variable. Our coefficient of interest is that of the
interaction term ghge * age;;. This coefficient 3; tells us how GHG emissions affect the
respondents in different brackets of ages. Indeed, we expect the coefficient of GHG emis-
sions (3, to be negative, which indicates a negative impact. As a result, if 3; is positive,
the adverse impact of GHG emissions subsides with age. In other words, the middle-aged
respondents would suffer more from polluted air than their older counterparts.

For robustness checks, we employ different treatment variables. More precisely, in
addition to the total GHG emissions, we also employ the various components of emissions,
including carbon dioxide, methane and nitrous oxide emissions. To be consistent, all of
the emissions are scaled in equivalents of carbon dioxide emissions.

To further investigate the impacts on human health, we also employ one specification
that replaces life quality with self-reported physical health in Equation 7. This variable
takes 5 possible values, from 1 (Excellent) to 5 (Poor). To be consistent with the life
quality variable in Equation 6, we rescale this variable so that high value indicates good
health.

physical — health;.: = Bo+ 1% ghget * ageict + Pa* ageiet + B3 % Xet + 05 + 1 + 1 + €t (7)

Finally, we look at the various dimensions of mental health problems in Equation 8.
These dimensions are depression, pessimism, suicidality, sleep, interest, appetite, fatigue,
concentration, enjoyment, and tearfulness. The dependent variable in Equation 8 is a
binary variable that indicates whether the respondent experienced one of the mental
health problems above.

mental — healthi, = By + 1 * ghger * ageicr + P * ageict + B3 % Xer + 1 + e + 1 + €5 (8)
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5 Benchmark results

5.1 The effects on the quality of life

Table 2 reports the regression results of Equation 6 using the World Bank data. The main
regressor is the level of carbon dioxide emissions. In Columns 1 and 2, the dependent
variable is the general quality of life. In Columns 3 and 4, the outcome is the physical
health of the respondents. In all columns, we control for several country-year characteris-
tics. They proxy for the size of the country (population), the level of development (GDP),
the health care system (health spending), and the general health status (life expectancy).
Moreover, the individual fixed effect is included in all columns. Essentially, we exploit
the within-student variation in the level of emissions. All the errors are adjusted for
clustering at the country level to allow for the possibility that the errors within a group
(i.e. a country) are correlated.

Results in Column 1 shows that in general, more carbon dioxide emissions led to a
lower quality of life. For a person aged 20, a 100 per cent rise in the level of carbon
dioxide emissions resulted in a drop of 12 per cent in the life quality score!, an equivalent
of two-thirds of the standard deviation?. Interestingly, it subsides with ages. For every
additional age from the perspective of a person aged 20, the effect was lowered by 2.9 per
cent®. This reduction varies with age. The older the person is, the bigger the reduction
is. For a person aged 40, the reduction would be 5.7 per cent.

In Column 2, besides the individual fixed effect, we include the country fixed effect
to control for all the time-invariant country related characteristics. For instance, people
in one country could have higher life quality in general than in other countries. The
estimates are similar to what was found in Column 1. For a typical person aged 20, a
100 per cent rise in the level of carbon dioxide resulted in a drop of 12 per cent in the
life quality. Results in this Column also confirm what was found in Column 1, namely
the effect decreases with ages. For every additional age from the perspective of a person
aged 20, the effect dropped by 2.9 per cent. This reduction is more pronounced with the
elderly. For a person aged 40, the reduction would be 5.7 per cent for every additional
age.

In Column 3, together with the individual fixed effect, we include the time fixed effect
to control for all the time variant factors. For instance, some global events such as the
death of Osama Bin Laden in 2011, the founder of al Qaeda, could have had a significant
effect on the feelings of global residents. Again, the emissions of carbon dioxide affected
negatively the life quality of everyone. For a person aged 20, a 100 per cent rise in the
level of emissions of carbon dioxide resulted in a 13 per cent fall in their life quality score.
But if that person was 1 year older, the drop was only 12 per cent.

Finally, in Column 4, we have the fully fledged specification where the individual,
the country and the time fixed effects are all included. Similar findings to the ones in
Columns 1,2 and 3 are shown here. For a person aged 20, doubling the level of carbon
dioxide emissions would reduce their life quality score by 13 percent. Getting 1 year
older, the effect for this person would be only 12 percent.

160.005*20*ln(2)—0.288*[77,(2) = 0.88

20.12 % 37.19/6.36 = 0.68
30.005  In(2)/0.12 = 0.029
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Table 2: Carbon dioxide emissions and the quality of life

0 2) @) @
Dependent variable: Life quality
In(CO2 emission)*age ~ 0.005%**  0.005%**  0.005%** 0.005%*%
(0.001) (0.001) (0.001) (0.001)
In(CO2 emission) -0.288*** (). 288***  _().205%H* -0.295%**
(0.073) (0.073) (0.075) (0.075)
age -0.009***  _0.009***  (0.004*** 0.004*#*
(0.003) (0.003) (0.001) (0.001)
In(GDP) 0.013 0.013 0.036 0.036
(0.056) (0.056) (0.053) (0.053)
In(population) 0.149 0.149 0.113 0.113
(0.144) (0.144) (0.146) (0.146)
In(life expectancy) -1.059*  -1.059* -1.292% -1.292*
(0.612) (0.612) (0.720) (0.720)
In(health spending) 0.081%* 0.081%* 0.065 0.065
(0.045) (0.045) (0.055) (0.055)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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5.2 Physical health

In this section, we aim to understand how carbon dioxide emissions affect our respondents.
More precisely, instead of focusing on the life quality score which is a more general term,
we investigate the impact of carbon dioxide emissions on their physical health. In other
words, we calculate the estimates from the Equation 7.

Results are reported in Table 3. Note that the physical health was scored from 1
(Excellent) to 5 (Poor). To be consistent with the life quality score when high score
means high quality, we calculate the inverse of the physical health in log terms. The
estimates in Column 1 show that in general, people’s physical health deteriorated with
the level of carbon dioxide emissions. For a person aged 20, doubling the amount of
carbon dioxide emissions reduced their physical health score by 6.9 per cent. It is lower
than the effect of carbon dioxide emissions on the general life quality that we revealed in
Table 2.

Similarly to the general life quality, the effect moderates with ages. For this same
person, every additional age would bring down the effect by 5 per cent. This reduction
would be even higher for more senior residents. For instance, every additional age would
bring down the effect by 10 per cent for a person aged 30.

In Column 2, we include the country fixed effect. All the estimates are similar. A
20 year-old person would have the physical health score reduced by 6.9 per cent if the
amount of carbon dioxide emissions doubled. If he was 1 year older, the reduction would
be only 6.6 per cent. In other words, the effect was 5 per cent lower.

In Column 3, we include the time fixed effect. The effect of a rise of 100 per cent
in the level of carbon dioxide emissions was a 2.3 per cent fall in the physical health
score. More importantly, this effect becomes smaller when the person gets older. For a
20 year-old person, every additional age would reduce the effect by 11 per cent.

And finally, in Column 4, we employ a full fledge model where all the fixed effects,
including the individual, the country and the time fixed effects are included. We have the
same finding as in Table 3. In general, carbon dioxide emissions had an adverse effect on
people physical health. However, this effect becomes smaller with more senior residents.

5.3 Mental health

In addition to physical health, our data set also reports the status of people’s mental
health. It allows us to investigate how carbon dioxide emissions would affect their mental
health. There is some evidence that greenhouse gas emissions increased the frequency of
droughts from 12% to up to 60% (Stocker et al., 2013; Marvel et al., 2019). And we know
that droughts could lead to suicidal thoughts (Deshpande, 2002; Hanigan et al., 2012;
Sarma, 2004; Guiney, 2012). Therefore, it is important to find direct evidence that air
pollution affects mental illness which is still very limited in the literature.

In this section, we report the estimates from Equation 8. We have a wide range of
mental health issues, including depression, suicidality, sleep problems, pessimism, irri-
tability, fatigues, etc. Results are reported in Tables 4a, 4b, and 4c. The dependent
variables are the indicators that the respondents did not experience one of the mental
health issues. In all specifications, all the fixed effects, including the individual, the coun-
try and the time fixed effects are included. All the errors are adjusted by clustering at
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Table 3: Carbon dioxide emissions and physical health

0 @) 3) )
Dependent variable: Physical health score
In(CO2 emission)*age ~ 0.005**  0.005**  0.004** 0.004**
(0.002) (0.002) (0.002) (0.002)
In(CO2 emission) -0.200 -0.200 -0.114 -0.114
(0.139) (0.139) (0.138) (0.138)
age -0.020%%%  -0.020%**  0.077H** 0.077#**
(0.005) (0.005) (0.003) (0.003)
In(GDP) -0.002 -0.002 0.029 0.029
(0.113)  (0.113)  (0.104) (0.104)
In(population) 0.020 0.020 0.041 0.041
(0.201) (0.201) (0.157) (0.157)
In(life expectancy) 0.216 0.216 1.107 1.107
(0.806) (0.806) (1.133) (1.133)
In(health spending) 0.043 0.043 -0.032 -0.032
(0.049) (0.049) (0.055) (0.055)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 284380 284380 284380 284380
R-squared 7 7 701 701

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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the country level.

Column 1 in Table 4a shows that in general, people felt more depressed when exposed
to air pollution. For instance, for a person aged 40, a 100 per sent increase in the amount
of carbon dioxide emissions led to a rise in the probability of having a depression 16
percentage point*. Younger people felt more of the effects than their elders. A 20-year
old person would feel more depressed by 24 percentage points higher.

Air pollution made people feel pessimistic about the future (Column 2 in Table 4a).
A person aged 20 would have his probability of feeling blue about the future increase by
24 percentage points. However, an older person would feel less effect from air pollution.
With the same rise in pollution, a person aged 40 would have his probability of feeling
pessimistic increase by 15 percentage points.

Our analysis reveals that people started having suicidal thoughts when the environ-
ment was more polluted (Column 3 in Table 4a). Take a person aged 50 for example. He
would have his probability of having suicidal thoughts increase by 9 percentage points.
Younger people thought about suicides more often. With the same rise in the amount
of carbon dioxide emissions, a 20-year old person would have a probability of thinking
about suicide increase by 13 percentage points.

Air pollution led to people having troubles in their sleeping, although the effect is less
significant both statistically and economically (see Column 4 against Columns 1, 2, and
3 in Table 4a). They imply that a person aged 20 would have more sleeping problems by
2 percentage points when the emissions of carbon dioxide doubled.

Table 4b reports more negative effects of air pollution. In Column 1, we find that
a person aged 50 would be 9 percentage points less likely to have an interest in things.
More importantly, young people would be even more likely to lose interests. The effect
on a 20 year-old person was a 22 percentage points.

In Column 2, we see that people were more bothered with air pollution. A person
aged 20 would be 2 percentage points more likely to be irritated when the level of carbon
dioxide emissions rose by 100 per cent. Air pollution also resulted in the loss of appetite.
Column 3 reports that it was 5 percentage points more likely that a person aged 50 would
lose his appetite due to a 100 per cent rise in carbon dioxide emissions. It is even more
striking with younger people. For a 20 year-old, the likelihood would be 16 percentage
points more.

People felt more tired mentally with air pollution. In Column 4, we find that the
probability that a 50 year-old felt less energy to do things rise by 13 percentage points
with a 100 per cent rise in pollution. Again, younger people felt more strained when the
environment deteriorated. For instance, the rise in probability for a 30 year-old was 27
percentage points.

Table 4c¢ brings more evidence of how air pollution affected people mentally. People
had difficulty in concentrating with air pollution. The probability that a 20 year-old
could not focus on what he/she was doing rose by 24 percentage points when the amount
of carbon dioxide doubled. The effect was more moderate for elderly. A person aged 50
only experienced a 6 percentage points rise in probability of concentration loss (Column

4Note that we reverse coded all the answers to be consistent with the analysis on life quality and
physical health. As a result, 0 means the respondents had the mental issues and 1 if not. Doubling
the amount of carbon dioxide would change the answers from 1 to e(40*0-007-0.537)xIn2 — ( 84 or a 16
percentage point drop.
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Table 4a: Carbon dioxide emissions and mental health

(1) (2) (3) (4)

Depression Pessimism  Suicidality Sleep
In(CO2 emission)*age  0.007***  0.008***  (.003*** 0.002
(0.001) (0.002) (0.001) (0.001)
In(CO2 emission) -0.537HFF*  _0.558%FF  _(.265%** -0.074
(0.118) (0.131) (0.069) (0.117)
In(GDP) 0.194** 0.273%#* 0.044 0.050
(0.073) (0.064) (0.044) (0.081)
In(population) -0.098 -0.293* -0.001 0.078
(0.218) (0.155) (0.111) (0.179)
In(life expectancy) -0.869 -0.215 -0.667 -0.341
(1.401) (0.909) (0.442) (0.699)
In(health spending) -0.006 0.100 -0.057 0.046
(0.093) (0.084) (0.038) (0.045)
Individual Fixed effect YES YES YES YES
Country Fixed effect YES YES YES YES
Time Fixed effect YES YES YES YES
N 222935 222309 222357 223161
R-squared %) 504 b33 .H88

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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Table 4b: Carbon dioxide emissions and mental health

(1)

(2)

(3)

(4)

Interest  Irritability Appetite Fatigue
In(CO2 emission)*age  0.008*** 0.0003 0.006%*** 0.012%%*
(0.001) (0.002) (0.001) (0.002)
In(CO2 emission) -0.529°7%%* 0.042 -0.378%** -0.809***
(0.100) (0.150) (0.062) (0.175)
In(GDP) 0.055 -0.031 0.058 0.018
(0.033) (0.094) (0.036) (0.126)
In(population) 0.090 -0.110 0.005 0.253
(0.070) (0.271) (0.086) (0.273)
In(life expectancy) -1.558%* 2.101* 0.115 0.218
(0.631) (1.133) (0.573) (1.529)
In(health spending) 0.064 0.053 0.026 0.052
(0.043) (0.113) (0.037) (0.116)
Individual Fixed effect YES YES YES YES
Country Fixed effect YES YES YES YES
Time Fixed effect YES YES YES YES
N 222764 222866 223378 222839
R-squared 445 522 461 .53

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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1).

We can see similar findings that air pollution affected people’s enjoyment and tearful-
ness in Columns 2 and 3. For instance, a 50 year-old would be 6 percentage points more
likely to cry when air pollution worsened by a 100 per cent. But for a person aged 20,
the effect was a rise of 13 percentage points. There is only one dimension (Guilt) that
we find no or little effect of air pollution, both in general and across ages (Column 4).

Table 4c: Carbon dioxide emissions and mental health

(1)

(2)

(3)

(4)

Concentration Enjoyment Tearfulness Guilt
In(CO2 emission)*age 0.008*** 0.0097*+* 0.004%+% -0.000
(0.001) (0.002) (0.001) (0.001)
In(CO2 emission) -0.5547%H* -0.547FFF _0.290%* 0.038
(0.104) (0.132) (0.092) (0.055)
In(GDP) 0.019 0.047 0.080* -0.026
(0.064) (0.075) (0.040) (0.043)
In(population) 0.276** 0.164 -0.062 0.091
(0.125) (0.151) (0.144) (0.103)
In(life expectancy) -0.894 -0.446 -1.026 0.281
(0.949) (1.025) (0.904) (0.695)
In(health spending) 0.151%* 0.054 -0.044 -0.078**
(0.058) (0.064) (0.050) (0.027)
Individual Fixed effect YES YES YES YES
Country Fixed effect YES YES YES YES
Time Fixed effect YES YES YES YES
N 222417 222585 222823 222311
R-squared .b31 447 .bH6 A76

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01

5.4 Frailty

Table 5 shows how greenhouse gas emission, in this case carbon dioxide emission, affects
the frailty index. To be consistent with previous tables, we use the non-frail index as
the dependent variable. In Column 1, we control for the individual fixed effect. This
effect accounts for all the characteristics that are specific to the individuals. Effectively,
we analyse how the variation of emissions had an impact on the frailty index within an
individual. Consistent with previous findings with the quality of life, physical health and
mental health, emissions in general had a negative impact on this health outcome. Indeed,

25



the coefficient of the log of carbon dioxide emission is significantly negative. Again, this
effect declines with age.

To account for the fact that the effect of emissions might vary with the location of the
respondents, we add the country fixed effect in Column 2. All the effects are unchanged,
which show that the results are not driven by the countries where the respondents live
in. In Column 3, we replace the country fixed effect with the time fixed effect. Column 4
reports the results with the full set of fixed effects. All the results are similar qualitatively.
In summary, Table 5 provides another evidence that emissions have negative impacts on
personal health, although the impacts gradually decline with age.

Table 5: Carbon dioxide emissions and frailty

Dependent variable: Non-frail index
0 @ © @
In(CO2 emission)*age 0.012 0.012 0.005*  0.005*
(0.007) (0.007)  (0.003) (0.003)

In(CO2 emission) -1.167* -1.167*  -0.395  -0.395
(0.501)  (0.591)  (0.241) (0.241)

age 0.079%FF  _0.079%%F  0.002  0.002
(0.014)  (0.014)  (0.006) (0.006)

In(GDP) 0595  -0.595  0.046  0.046
(0.508)  (0.508)  (0.218) (0.218)

In(population) 0.800 0.800 -0.502  -0.502
(1.187)  (1.187)  (0.415) (0.415)

In(life expectancy) 5.429 5.429 -0.353  -0.353
(3.747)  (3.747)  (2.169) (2.169)

In(health spending) 0.912**  0.912*  0.038  0.038
(0.354) (0.354)  (0.122) (0.122)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 285516 285516 285516 285516
R-squared .52 .52 .H62 .b62

Robust errors in parentheses

* p<0.1, ** p<0.05, *** p<0.01
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6 Robustness checks

In the previous section, we have provided the evidence that (i) air pollution has a negative
impacts on the life quality, physical and mental healths and (ii) young people suffered
more from air pollution than the elderly. In this section, we will provide further evidence
to check the robustness of these results. To save spaces, we only report the results
regarding life quality. The results related to physical health and mental health are similar
and can be provided by requests.

6.1 A different dataset

In our benchmark analysis, we used the emissions data from the World Bank. To check
if our findings are robust to the reported emissions, we employ an alternative source
of emissions provided by Our World in Data. Results are reported in Table 6. The
specifications in this table are similar to the ones applied in our benchmark Table 2.
More precisely, we use the carbon dioxide emissions as our main regressor. In all columns
the individual fixed effects are included. The country fixed effects are present in Columns
2 and 4, while the time fixed effects are included in Columns 3 and 4.

Compared to Table 2, the estimates in Table 6 point us to similar findings. Take
Column 1 for example. Doubling the amount of carbon dioxide emissions would lower
the life quality of a 50 year-old by 2 per cent. At the same time, younger people felt
more of the effect. A 20 year-old would see their life quality reduced by 4 per cent with
the same increase in emissions. These results confirm that our findings are robust to the
source of data.

6.2 Different types of emissions

There are essentially three types of greenhouse gases. Besides carbon dioxide (C'O3) that
we use in the benchmark case, there are also methane (C'Hy) and nitrous oxide (N2O).
In this section, we will test our results with these types of emissions. The procedure is
exactly the same as in our benchmark case that was reported in Table 2.

We present the results with methane emissions in Table 7a. With this type of emis-
sions, our results are still consistent. In all columns, the estimates are significant at 99 per
cent confidence and the signs are consistent with our benchmark results in Table 2. For
instance, in Column 4 when we apply the fully fledged specification, the rise in methane
emissions resulted in lower life quality for our respondents. More precisely, doubling the
amount of methane emissions reduced the life quality of a 20 year-old by 9 per cent. The
effect on older people is more moderate. A 40 year-old only saw their life quality reduced
by 7 per cent.

Similar results are also found with nitrous oxide emissions. In Table 7b, we find con-
sistent estimates with what we have found before. Again, we keep the same specifications
as in the benchmark Table 2. All the columns show that our results are robust to this
type of emissions. For instance, in Column 4, a person aged 20 would have their life
quality lowered by 6 per cent if the nitrous oxide emissions rose by 100 per cent. The
effect for a person aged 40 is a little lower at 5 per cent.

Finally, we report our results when the total amount of greenhouse gases emissions
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Table 6: Carbon dioxide emissions and life quality

(1) (2) (3) (4)

Dependent variable: Life quality

In(CO2 emission)*age  0.001*** 0.001***  0.002** 0.002**
(0.000) (0.000) (0.001) (0.001)
In(CO2 emission) -0.079*  -0.079*  -0.099* -0.099*
(0.044) (0.044) (0.055) (0.055)
age -0.009**  -0.009**  0.006*** 0.006***
(0.003) (0.003) (0.002) (0.002)
In(GDP) 0.064 0.064 0.078 0.078
(0.050) (0.050) (0.051) (0.051)
In(population) 0.111 0.111 0.118 0.118
(0.105) (0.105) (0.120) (0.120)
In(life expectancy) -0.327 -0.327 -0.218 -0.218
(0.698) (0.698) (0.862) (0.862)
In(health spending) 0.050%* 0.050%* 0.044 0.044
(0.028) (0.028) (0.037) (0.037)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by Our World in Data.

* p<0.1, ** p<0.05, *** p<0.01
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Table 7a: Methane emissions and the quality of life

0 @) 3) 1)
Dependent variable: Life quality
In(methane)*age 0.001***  0.001***  0.002%** 0.002%%**
(0.000) (0.000) (0.000) (0.000)
In(methane) -0.173%*%  _0.173%F*  _(.185%H* -0.185%**
(0.045) (0.045) (0.049) (0.049)
age -0.017***  -0.017***  -0.002 -0.002
(0.005) (0.005) (0.004) (0.004)
In(GDP) 0.081** 0.081** 0.090** 0.090**
(0.038) (0.038) (0.037) (0.037)
In(population) 0.217* 0.217* 0.231* 0.231*
(0.111) (0.111) (0.127) (0.127)
In(life expectancy) -0.256 -0.256 -0.093 -0.093
(0.744) (0.744) (0.895) (0.895)
In(health spending) 0.001 0.001 -0.009 -0.009
(0.026) (0.026) (0.034) (0.034)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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Table 7b: Nitrous oxide emissions and the quality of life

n o 6 )
Dependent variable: Life quality
In(nitrous oxide)*age ~ 0.001**  0.001**  0.001** 0.001**
(0.001)  (0.001)  (0.001) (0.001)
In(nitrous oxide) -0.085**  -0.085**  -0.108** -0.108**
(0.030)  (0.030)  (0.043) (0.043)
age -0.013**  -0.013**  0.002 0.002
(0.006)  (0.006)  (0.004) (0.004)
In(GDP) 0.079* 0.079*  0.097** 0.097**
(0.042)  (0.042)  (0.042) (0.042)
In(population) 0.113 0.113 0.124 0.124
(0.098)  (0.098)  (0.110) (0.110)
In(life expectancy) -0.549 -0.549 -0.453 -0.453
(0.737)  (0.737)  (0.786) (0.786)
In(health spending) 0.035 0.035 0.023 0.023
(0.024)  (0.024)  (0.031) (0.031)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01
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were used as the main regressor in Table 7c. Given all the types of emissions yielded
consistent results, it is no surprise that results in this Table are also in line with those in
Table 2. In other words, our findings are robust with all types of emissions.

Table 7c: Greenhouse gas emissions and the quality of life

(1) (2) (3) (4)

Dependent variable: Life quality

In(GHG)*age 0.001%%% 0.001***  0.002** 0.002**
(0.000) (0.000)  (0.001) (0.001)
In(GHG) -0.069 -0.069 -0.100 -0.100
(0.060) (0.060)  (0.074) (0.074)
age -0.018%*  -0.018%*  -0.005 -0.005
(0.007) (0.007)  (0.006) (0.006)
In(GDP) 0.064 0.064 0.082 0.082
(0.054) (0.054)  (0.054) (0.054)
In(population) 0.086 0.086 0.099 0.099
(0.107) (0.107)  (0.119) (0.119)
In(life expectancy) -0.365 -0.365  -0.293 -0.293
(0.673) (0.673)  (0.812) (0.812)
In(health spending) 0.057* 0.057* 0.047 0.047
(0.029) (0.029)  (0.038) (0.038)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

* p<0.1, ** p<0.05, *** p<0.01

6.3 Age groups

In the benchmark case, we interact emissions with ages to see the impacts of air pollution
across different ages. A particular feature in our dataset is that most of the respondents
in our survey are over 50s. The average age is 67 (see Table 1). As a result, there are
only a few observations of young respondents which might bias our results. To address
this issue, we group the respondents into the 20s, 30s, 40s, and so on.

Table 8 reports our results. In this Table, we replace the respondents’ age with their
age group that indicates whether they were in the 20s, 30s, 40s, etc. by the time they
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were surveyed. What we find is that the results in this Table are consistent with what
we unveiled in the previous Tables. The coefficients of carbon dioxide emissions are all
negative across all Columns. They imply that in general, air pollution lowered residents’
life quality. The coefficients of the interaction terms between air pollution and the age
groups are all positive. They show that the effects of air pollution on life quality are
more pronounced among younger groups. Moreover, by grouping the respondents into
age groups which essentially increases the number of observations in each age category, we
highlight the interactive effect of emissions and age. The coefficients of the interactions
are now more significant economically than those shown in the benchmark Table 2.

Table 8: Carbon dioxide emissions and the quality of life

) 2) 3) 0

Dependent variable: Life quality

In(CO2 emission)*age groups  0.031***  0.031***  0.030%** 0.030%**
(0.007) (0.007) (0.006) (0.006)
In(CO2 emission) -0.152%*%  -0.152**  -0.158** -0.158**
(0.064) (0.064) (0.063) (0.063)
age groups -0.060***  -0.060*** -0.059%** -0.059%**
(0.016)  (0.016)  (0.012) (0.012)
In(GDP) 0.016 0.016 0.038 0.038
(0.049)  (0.049)  (0.050) (0.050)
In(population) 0.143 0.143 0.108 0.108
(0.133)  (0.133)  (0.137) (0.137)
In(life expectancy) -0.747 -0.747 -0.977 -0.977
(0.509) (0.509) (0.674) (0.674)
In(health spending) 0.073 0.073 0.056 0.056
(0.045) (0.045) (0.051) (0.051)
Individual Fixed effect YES YES YES YES
Country Fixed effect NO YES NO YES
Time Fixed effect NO NO YES YES
N 254338 254338 254338 254338
R-squared 731 731 731 731

Note: Robust errors in parentheses. Emission data are provided by the World Bank Development Indicators.

¥ p<0.1, ¥* p<0.05, ¥** p<0.01
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7 Conclusion

We provide evidence that climate change, via the emission of greenhouse gases, has
adverse effects on our quality of life. We show that all types of greenhouse gases, from
carbon dioxide to methane and nitrous oxide reduce our life quality. Our work highlights
the impacts of these gases on human health, especially mental health. We also show that
the impacts vary across ages. Knowing these impacts would help us to understand the
social costs of carbon, which lead to the optimal design of the Pigouvian taxes or carbon
pricing. Our study is limited, however, by the lack of answers from people younger than
50 years of age. This will leave to future research when additional surveys are available.
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