WORKING PAPERS

June 2024
"A simple calculus of sums of powers"

Olivier Perrin

A simple calculus of sums of powers

Olivier Perrin* ${ }^{*}$

June 17, 2024

Abstract

We introduce a new and simple method for computing the sums $S_{p}(n)=\sum_{i=1}^{n} i^{p}$, without induction nor a priori knowledge of the Bernoulli numbers.

keywords: Bernoulli polynomials, Bernoulli numbers, sums of powers

1 Introduction and notations

Let p and n be two natural integers, and we note

$$
\begin{equation*}
S_{p}(n)=\sum_{i=1}^{n} i^{p} \tag{1}
\end{equation*}
$$

that we call the Bernoulli sum of order p, with the convention $S_{p}(0)=0$. We recall

$$
\begin{aligned}
& S_{0}(n)=n \\
& S_{1}(n)=\frac{n^{2}}{2}+\frac{n}{2} \\
& S_{2}(n)=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6} \\
& S_{3}(n)=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{2}}{4}
\end{aligned}
$$

There exists a general formula, proved for instance in [1]

$$
\begin{equation*}
S_{p}(n)=\frac{1}{p+1} \sum_{k=0}^{p} C_{p+1}^{k} B_{k} n^{p+1-k} \tag{2}
\end{equation*}
$$

[^0]where the C_{p+1}^{k} 's, $0 \leq k \leq p$, are the binomial coefficients and the B_{k} 's, $k \in \mathbb{N}$, are the (modified) Bernoulli numbers; $B_{0}=1, B_{1}=\frac{1}{2}, B_{2}=\frac{1}{6}, B_{3}=$ $0, B_{4}=\frac{-1}{30}, \ldots$ These modified Bernoulli numbers can be obtained by induction as follows
$$
B_{0}=1 ; \quad \text { and for } k \geq 1: \quad B_{k}=\frac{1}{k+1} \sum_{j=0}^{k-1} C_{k+1}^{j} B_{j}(-1)^{k+1-j} .
$$

We recall that the classical Bernoulli numbers are obtained with the following induction

$$
B_{0}=1 ; \quad \text { and for } k \geq 1: \quad B_{k}=\frac{-1}{k+1} \sum_{j=0}^{k-1} C_{k+1}^{j} B_{j} .
$$

The only difference is that in our (modified) case $B_{1}=1 / 2$ instead of the classical $B_{1}=-1 / 2$. If we set $B_{k}=B^{k}(B$ power $k), k \in \mathbb{N}$, we can use the Newton's binomial formula in a formal way for writing equality (2) like this

$$
\begin{equation*}
S_{p}(n)=\frac{1}{p+1}\left((B+n)^{p+1}-B^{p+1}\right) . \tag{3}
\end{equation*}
$$

2 Main result: a simple iterative calculus of $S_{p}(n)$

We extend the formula (2) to any real number x, so that we get the polynomials $S_{p}: x \mapsto S_{p}(x)$ with

$$
S_{p}(x)=\frac{1}{p+1} \sum_{k=0}^{p} C_{p+1}^{k} B_{k} x^{p+1-k},
$$

keeping in mind that the meaning of $S_{p}(x)=\sum_{i=1}^{x} i^{p}$ is valid only for $x \in \mathbb{N}$.
For instance, the polynomials S_{p}, for $p=0,1,2,3$, are defined by

$$
\begin{aligned}
S_{0}(x) & =x, \\
S_{1}(x) & =\frac{x^{2}}{2}+\frac{x}{2}, \\
S_{2}(x) & =\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}, \\
S_{3}(x) & =\frac{x^{4}}{4}+\frac{x^{3}}{2}+\frac{x^{2}}{4},
\end{aligned}
$$

Then, let us consider a modified version of the Bernoulli polynomials as follows

Definition 2.1 The (modified) Bernoulli polynomials are the unique sequence of polynomials $B_{p}, p \in \mathbb{N}$, such that $B_{0}=1$ and for all p

$$
\begin{aligned}
B_{p+1}^{\prime} & =(p+1) B_{p} \\
\int_{0}^{1} B_{p}(x) d x & =1
\end{aligned}
$$

The first four Bernoulli polynomials are defined for any real x by

$$
\begin{aligned}
B_{0}(x) & =1 \\
B_{1}(x) & =x+\frac{1}{2} \\
B_{2}(x) & =x^{2}+x+\frac{1}{6} \\
B_{3}(x) & =x^{3}+\frac{3 x^{2}}{2}+\frac{x}{2}
\end{aligned}
$$

More generally, for all $p \in \mathbb{N}$

$$
\begin{equation*}
B_{p}(x)=\sum_{k=0}^{p} C_{p}^{k} B_{k} x^{p-k} \tag{4}
\end{equation*}
$$

Compared to the classical Bernoulli polynomials, the only difference here is that the coefficient of the second highest degree term, x^{p-1}, is positive instead of being negative. The corresponding modified Bernoulli numbers satisfy

$$
\begin{equation*}
B_{p}=B_{p}(0) \tag{5}
\end{equation*}
$$

Equalities (4) and (5) are proved like in [1] for the classical Bernoulli polynomials and numbers. Finally, it is easy to verify that for all real x

$$
\begin{equation*}
S_{p}(x)=\frac{B_{p+1}(x)-B_{p+1}(0)}{p+1} \tag{6}
\end{equation*}
$$

Consequetly, for all natural integer $n \geq 1$

$$
\begin{equation*}
S_{p}(n)=\frac{B_{p+1}(n)-B_{p+1}(0)}{p+1} \tag{7}
\end{equation*}
$$

Note that this last equality is formally equivalent to (3), more precisely

$$
B_{p+1}(n)=(B+n)^{p+1}
$$

Thus, from Definition 2.1, for all $p \geq 1$

$$
S_{p}^{\prime}(n)=\frac{B_{p+1}^{\prime}(n)}{p+1}=B_{p}(n)=p S_{p-1}(n)+B_{p}(0)
$$

from which we deduce our main result

Proposition 2.1 For all $p \geq 1$, and all $n \in \mathbb{N}-\{0\}$

$$
S_{p}(n)=\int_{0}^{n} p S_{p-1}(x) d x+B_{p}(0) n,
$$

For instance, $\int_{0}^{n} 2 S_{1}(x) d x=\int_{0}^{n}\left(x^{2}+x\right) d x=\frac{n^{3}}{3}+\frac{n^{2}}{2}$. We thus find again that

$$
S_{2}(n)=\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6} .
$$

Remark that the factor B_{p} can be obtained by idenfication because $S_{p}(1)=$ 1. For the above example

$$
B_{2}=\frac{1}{6}=S_{2}(1)-\frac{1^{3}}{3}-\frac{1^{2}}{2} .
$$

In conclusion, we have introduced an easy method for computing all the Bernoulli sums $S_{p}(n)$ without induction, nor a priori knoweledge of the Bernoulli numbers. We just need to know how to compute iteratively the integrals, from 0 to n, of functions $x \mapsto x^{i}, i>0$.

References

[1] Gay, L. \& Lemonnier, F. (2013). Fascinants nombres de Bernoulli. Lecture dirigée par Bernard Le Stum, Université de Rennes 1 - ENS Ker Lann. https://perso.eleves.ensrennes.fr/people/florian.lemonnier/documents/rapportBer.pdf

[^0]: *Toulouse School of Economics, France, E-mail: olivier.perrin@tse-fr.eu
 ${ }^{\dagger}$ Université Toulouse Capitole

