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cherish. Finally, I want to thank Anäıs Fabre for always being by my side and for being

such a brilliant economist. This thesis would not have come to light without your unfailing

support, your continuous input, and your invaluable help. I hope to continue learning from

you as much as I have for the past nine years.

2



Overview

This thesis is composed of three chapters that have two main objectives: (i) broaden our

understanding of the empirical content of two-sided matching models by developing novel

methodological tools and (ii) apply these tools to get a thorough understanding of the causes

and consequences of spatial inequalities in access to skilled teachers and provide concrete

policy recommendations.

The research methods used in this thesis build on the empirical industrial organization

literature by studying how data on observed choices can be used to recover the fundamental

primitives governing agents’ decisions. More specifically, I study how labor supply and de-

mand map into equilibrium sorting on the labor market through the lens of two-sided match-

ing models. I then explore the empirical content of these models and investigate whether the

preferences of participating agents can be identified and estimated from data on observed

matches. When the data permits, I also leverage research designs relying on less stringent as-

sumptions in complement with model-based methods to identify the key primitive parameters

of interest.

In the first chapter of this thesis titled “Two-Sided Matching Without Transfers: A Uni-

fying Empirical Framework”, I develop a unifying static framework of one-to-one and many-

to-one matching without transfers and investigates how data on realized matches can be

leveraged to identify and estimate preferences of participating agents. I find that, under par-

simonious assumptions on preferences, one can only identify the joint surplus function both

in the one-to-one and many-to-one case. I reconcile this finding with seemingly contradictory

results from the literature. I then propose ways to overcome this negative result both in the

one-to-one and many-to-one matching case making these tools applicable to a wider range of

settings, such as marriage or labor markets.

In the second chapter titled “Teacher Compensation and Structural Inequality: Evidence

from Centralized School Choice in Peru” and co-authored with Matteo Bobba, Gianmarco

León-Ciliotta, Christopher Neilson and Marco Nieddu, we show that increasing teacher com-

pensation in remote schools is effective at reducing spatial inequalities in student achievement

and provide tools to design such policies in a cost effective way. Leveraging an unconditional

change in the structure of teacher compensation in Perú, we first provide causal evidence

that a 30% increase in salaries in rural locations attracted higher quality teachers which

translated into an average increase in student test scores of 0.33-0.38 standard deviations.
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We then use detailed data on job postings and applications to identify and estimate teachers’

labor supply elasticities under minimal assumptions. This allows us to design a procedure

that systematically delivers the wage schedule that shifts labor supply such as to reach a

given social objective at a minimal cost. We use these tools to design two cost-effective wage

bonus policies that would either (i) attract at least one certified teacher in each school or (ii)

close the urban-rural gap in teacher quality.

Finally, in the third and last chapter titled “Labor Market Dynamics and Teacher Spatial

Sorting”, I provide a unifying explanation for the lack of supply of skilled teachers in remote

locations. To do so, I build an empirical model of dynamic two-sided matching to link

teachers’ and schools’ preferences with equilibrium sorting and job-to-job flows. I show that

this mapping is invertible such that preferences can be identified and estimated from observed

matches. Taking these tools to panel data on the assignment of public teachers in Peru, I

show that the spatial disaggregation of labor demand coupled with the concentration of labor

supply in cities imply the existence of a spatial job ladder. As a result, low quality teachers

get displaced in remote schools and move toward urban schools by climbing up the ladder

once they have accumulated experience and skills. Labor mobility thus magnifies the urban-

rural gap in teacher quality by one third. I then show that dynamic wage contracts can

largely mitigate this effect by fostering teacher retention.

4



Contents

1 Two-Sided Matching Without Transfers: A Unifying Empirical Framework 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.2 Normalizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Data and Sampling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Characterization of the Limit Economy . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Opportunity Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Limit of Conditional Choice Probabilities . . . . . . . . . . . . . . . . 21

1.4.3 Inclusive Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4.4 Fixed Point Characterization for Inclusive Values . . . . . . . . . . . 23

1.4.5 Limit of Distribution of Matched Characteristics . . . . . . . . . . . . 26

1.5 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.1 Identification Joint Surplus . . . . . . . . . . . . . . . . . . . . . . . 27

1.5.2 Homogeneous preferences . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.5.3 Exclusion restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.5.4 Unobserved Preference Heterogeneity . . . . . . . . . . . . . . . . . . 30

1.5.5 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.6 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.6.1 Convergence of Conditional Match Probabilities . . . . . . . . . . . . 32

1.6.2 Convergence of ML Estimator . . . . . . . . . . . . . . . . . . . . . . 34

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5



Appendices 37

1.A Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.A.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.A.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.A.3 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.A.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

1.A.5 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2 Teacher Compensation and Structural Inequality: Evidence from Central-

ized Teacher School Choice in Peru 61

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3 Context and Institutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

2.3.1 Inequality of Education Inputs . . . . . . . . . . . . . . . . . . . . . . 69

2.3.2 Contracts, Wages, and Sorting of Public School Teachers . . . . . . . 71

2.3.3 Policy Changes to Compensation in Rural Locations . . . . . . . . . 75

2.4 Causal Effects of the Increase in Compensation . . . . . . . . . . . . . . . . 77

2.4.1 Regression Discontinuity Design . . . . . . . . . . . . . . . . . . . . . 77

2.4.2 Teacher Choices over Job Postings . . . . . . . . . . . . . . . . . . . 79

2.4.3 Teacher Sorting Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4.4 Student Achievement . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.4.5 Additional Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.5 An Empirical Model of Teacher Preferences . . . . . . . . . . . . . . . . . . 90

2.5.1 Utility and Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . 90

2.5.2 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . 92

2.5.3 Estimation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

2.5.4 Model Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

2.6 Counterfactual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

2.6.1 Evaluation of the Actual Wage Policy . . . . . . . . . . . . . . . . . . 100

2.6.2 Alternative Wage Policies . . . . . . . . . . . . . . . . . . . . . . . . 103

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6



Appendices 111

2.A Additional Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.A.1 Descriptive Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

2.A.2 RD Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

2.A.3 Teacher School Choice Model . . . . . . . . . . . . . . . . . . . . . . 134

2.B Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

2.B.1 School Preferences Satisfy the Substitute Condition . . . . . . . . . . 137

2.B.2 Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

3 Labor Market Dynamics and Teacher Spatial Sorting 139

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.2 Context and Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.2.1 Institutional Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

3.2.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

3.3 Descriptive Evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

3.3.1 Spatial Sorting and Mobility . . . . . . . . . . . . . . . . . . . . . . . 148

3.3.2 Spatial Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

3.4 Empirical Model of Dynamic Two-Sided Matching . . . . . . . . . . . . . . . 151

3.4.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

3.4.2 Linking Primitives to Equilibrium Sorting . . . . . . . . . . . . . . . 157

3.5 Identification and Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.5.1 Sampling Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

3.5.2 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3.5.3 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

3.6 Empirical Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

3.7.1 Preferences and the Spatial Job Ladder . . . . . . . . . . . . . . . . . 174

3.7.2 Model Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

3.7.3 Counterfactuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

Appendices 187

3.A Additional Tables and Figures . . . . . . . . . . . . . . . . . . . . . . . . . . 187

7



3.B Context & Data: Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

3.B.1 Additional Institutional Details . . . . . . . . . . . . . . . . . . . . . 197

3.B.2 Data Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

3.C Value Added Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

3.D Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.D.1 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.D.2 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 208

3.D.3 Definition Ψwt and Ψmt . . . . . . . . . . . . . . . . . . . . . . . . . . 210

3.D.4 Proof of Theorem 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

3.E Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

3.E.1 Convergence of Matching Frequencies . . . . . . . . . . . . . . . . . . 231

3.E.2 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

3.F Alternative Model: Irreversible Matches . . . . . . . . . . . . . . . . . . . . 235

3.F.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

3.F.2 Linking Primitives to Equilibrium Sorting . . . . . . . . . . . . . . . 237

3.F.3 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

3.F.4 Proof Theorem F.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

8



Chapter 1

Two-Sided Matching Without

Transfers: A Unifying Empirical

Framework

Abstract. This paper provides a unifying framework of one-to-one and many-to-one match-

ing without transfers and investigates how data on realized matches can be leveraged to

identify preferences of participating agents. I find that, under parsimonious assumptions

on preferences, one can only identify the joint surplus function both in the one-to-one and

many-to-one case. While this negative identification result was already established for the

one-to-one case, I reconcile this finding with the recent literature showing that preferences are

separately identified when having data on many-to-one matchings. I find that these positive

identification results are mostly driven by restrictions imposed on preferences rather than

the additional identification power made available through the many-to-one structure of the

data. I then show that by imposing similar restrictions on preferences, one can recover iden-

tification of preferences both in the one-to-one and many-to-one case. Finally, I show that

the additional data brought by many-to-one matchings can alternatively be used to estimate

more precisely the distribution of unobserved preference heterogeneity.
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1.1 Introduction

Two-sided matching models with non-transferable utility are key to understand how central-

ized clearinghouses allocating jobs, college seats, public housing or deceased-donor kidneys

are organized and how one should design them (Roth (2018), Agarwal and Budish (2021)).

They are also essential tools to predict the impact of policies aiming at affecting how agents

sort in such markets (Agarwal (2017)). However, this requires to know ex-ante the pref-

erences of participating agents which are difficult to infer from observed sorting patterns

only. In matching markets, agents’ opportunities depend on preferences of agents from the

other side. Thus, developing a revealed preference approach based on realized matches is

not straightforward in the absence of prior information about preferences of one side of the

market.1

The goal of this paper is to provide a unifying framework of one-to-one and many-to-

one matching without transfers and investigate what can be identified from data on realized

matches, when preferences of both sides of the market are unknown. I show that, under

parsimonious assumptions on preferences, one can identify the joint surplus function both in

the one-to-one and many-to-one case. However, I find that preferences of participating agents

cannot be separately identified from the surplus function. Knowing the joint surplus is enough

to simulate matching outcomes under various counterfactual scenarios. However, it does not

allow us to characterize key objects, such as labor supply elasticities, that solely depend

on individual preferences. While this negative identification result was already known for

the one-to-one case (Menzel (2015)), it is at odds with the recent literature which highlights

that data on many-to-one matching brings additional information that can separately identify

preferences (Diamond and Agarwal (2017), He et al. (2021)). This suggests that these positive

identification results are mostly driven by other restrictions imposed on preferences, rather

than the additional identification power made available through the many-to-one structure

of the data. In light of this result, I show that by imposing similar restrictions on preferences

one can recover identification of preferences both in the one-to-one and many-to-one case,

expanding the scope of what can be learned from data on one-to-one matches. Finally, I show

that the additional data brought by many-to-one matchings can still be useful to estimate

more precisely the distribution of unobserved preference heterogeneity.

1While such information is sometimes available in college admissions or school choice mechanisms (Agarwal
and Somaini (2020)), preferences of both sides of the market are usually unknown.
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To perform this analysis, I build on Menzel (2015) to develop a model of two-sided

matching where one side is composed of firms and the other side is composed of workers.

Each side is characterized by a large set of observed and unobserved attributes. I embed both

the one-to-one and many-to-one framework in this model by assuming that each firm has an

exogenous finite number of open vacancies, which is larger or equal than one. I impose three

assumptions on the payoff functions and the equilibrium: (i) the systematic and unobserved

part of the payoff functions are additively separable, (ii) the unobserved taste shocks are

iid with type-I upper tail and (iii) the observed matching is stable. While (i) and (iii) are

commonly used in the literature, (ii) departs from Diamond and Agarwal (2017) and He

et al. (2021) by restricting the class of distributions taste shocks can follow for tractability

purposes. However, (ii) remains nested in the broader classes they consider implying that

the generality of the non identification result derived in this paper is not affected. On the

other hand, I do not restrict preferences to be homogeneous and the number of agents on

one side of the market to be fixed at the cost of allowing for multiple equilibria.

As in Menzel (2015), I consider that we observe a random sample of realized matches from

a single large market where the number of participating firm and workers grows to infinity.

Sorting patterns are thus collapsed into the limit of the joint distribution of matched char-

acteristics. Under the assumptions described above, I characterize the mapping between this

limit joint distribution function and agents’ payoff functions in four steps. First, I show that

stability implies that each worker is matched to its preferred firm among the set of firms that

would be willing to hire her. Similarly, each firm is matched to its preferred group of workers

among the set of workers that would be willing to work there. This implies that we can rein-

terpret the realized matches as the outcome of two discrete choice models with unobserved

and endogenous choice sets, and where firms choose many alternatives. Second, I abstract

away from this complexity and derive the limit of workers and firms’ conditional choice prob-

abilities under arbitrary exogenous choice sets. Third, I introduce choice sets’ endogeneity

and show that the information necessary to characterize conditional choice probabilities can

be summarized into sufficient statistics called inclusive values. Finally, I show that these

sufficient statistics converge to the unique solution of a fixed point problem which explicitly

links agents’ preferences and choice sets. This implies that all stable matches are observa-

tionally equivalent and that the limit joint distribution of matched characteristics can be

expressed as a function of agents’ payoff functions and inclusive values.

11



By inverting the mapping between the observed sorting and agents’ preferences, I find

that, without additional data or restrictions on preferences, one can only identify the joint

surplus from data on realized matches. This shows that the additional data brought by

many-to-one matchings does not help to separately identify agents’ preferences. I then show

that when the systematic part of the payoff functions is common to all workers/firms (as in

Diamond and Agarwal (2017)), one can separately identify preferences from the joint surplus

both in the one-to-one case and many-to-one case. Similarly, I find that under appropriate

exclusion restrictions (as in He et al. (2021) and Agarwal and Somaini (2022)), one can also

recover preferences in the one-to-one case and many-to-one case. I then propose a maximum

likelihood estimator that can be tractably used for a parametric version of this framework.

Finally, I validate the theoretical limiting results and test the performance of the estimation

procedure proposed through Monte Carlo simulations. I find that having data on many-

to-one matches allows to estimate more precisely the distribution of random coefficients,

mirroring a similar result found for discrete choice models in Berry et al. (2004).

This paper contributes to the literature on empirical models of two-sided matching. One

strand of this literature investigates what can be inferred from data on reported preferences

within centralized allocation mechanisms (see Agarwal and Somaini (2020) for a review).

These methods allowed, for example, to make progress in understanding how school choice

mechanisms should be designed (Abdulkadiroğlu et al. (2017), Kapor et al. (2020)). How-

ever, in many instances, such data is not available and the econometrician can only rely on

realized matches to learn about participating agents’ preferences. A large literature exam-

ines what can be identified from sorting patterns in models of matching with transferable

utility (TU) (Choo and Siow (2006), Fox (2010), Gualdani and Sinha (2019), Galichon and

Salanié (Forthcoming)). However, only a handful of papers consider the same problem in

the non-transferable utility (NTU) case (see Agarwal and Somaini (Forthcoming) for a re-

view). Menzel (2015) shows that, under parsimonious assumptions on preferences and when

matching is one-to-one, only the joint surplus is identified. To circumvent this negative re-

sult, Diamond and Agarwal (2017) find that, by restricting preferences to be common to all

agents from the same side, one can separately identify preferences with data on many-to-one

matches. He et al. (2021) and Agarwal and Somaini (2022) show that, by instead considering

a many-to-one matching market where the number of agents on one side is fixed while the

other side grows large, exclusion restrictions are sufficient and necessary in order to identify

12



preferences from realized matches. This paper contributes to this literature by providing a

unifying empirical framework of one-to-one and many-to-one matching and reconciling the

results previously derived in the literature. I find that these recent positive identification re-

sults are mostly driven by the extra structure imposed on preferences and not by the inherent

additional information brought by having data on many-to-one matches. This means that

such methods would also work when having data on one-to-one matches which expands the

scope of what can be learned from these models by making them more broadly applicable.2

The rest of the paper is organized as follows. Section 2.2 introduces the preference model

along with the equilibrium concept. Section 1.3 defines the objects that are observed in

the data and the sampling process that identifies them. Section 1.4 establishes the link

between the limit joint distribution of matched characteristics and the primitives of the

model. Section 1.5 discusses identification and estimation in the base model, as well as under

a various set of additional restrictions on preferences. Section 1.6 displays results from Monte

Carlo simulations.

1.2 Model

I consider a large two-sided matching market where the number of agents on both sides grows

to infinity. I start by introducing the relevant parts of the model in the finite economy before

defining the asymptotic sequence that characterizes the limit economy.

Throughout this section, I refer to one side of the market as workers and the other side

as firms. Workers are indexed by i ∈ I where I = {1, ..., nw} and firms are indexed by j ∈ J
where J = {1, ..., nm}. I nest both the one-to-one and many-to-one matching framework by

allowing each firm j to have a finite and exogenous number q ≥ 1 of open vacancies.3 I define

the matching function µw which maps the set of available workers to their matching outcome,

which is either their matched employer or the option to remain unmatched. Similarly, µm

maps the set of available firms to their matching outcome, which is a set of length q including

their matched employees as well as the option to leave any open vacancy unfilled.

For instance, consider a given worker i and firm j with q = 2. µw(i) = j means that

2In many empirical settings, such as centralized labor clearinghouses or college admissions, firms often
open only one vacancy, making Diamond and Agarwal (2017) unapplicable, and the number of agents on
both sides of the market is large, making He et al. (2021) and Agarwal and Somaini (2022) unapplicable.

3Allowing for each firm j to open a different number of vacancies qj does not affect the main results of
the analysis.
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worker i is matched with school j whereas µm(j) = {i, l} means that firm j is matched with

workers i and l. Similarly, µw(i) = 0 means that worker i chooses to stay unmatched, while

µm(j) = {l, 0} means that firm j is matched with worker l but leaves one of its vacancies

unfilled. Note that all elements of the model nest Menzel (2015), which corresponds to the

one-to-one case q = 1.

1.2.1 Preferences

Firms and workers are characterized by their observed attributes which collapse into two

vectors of random variables xi and zj. I define their probability distribution functions as

w(x) and m(z) which have support X and Z, respectively. I specify the utility that worker

i gets from being matched with firm j as:

Uij = U(xi, zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

Vij = V (xi, zj) + σϵij

ϵij and ηij are worker-firm specific unobserved preference shocks and are assumed to be

additively separable from the systematic part of the payoffs. I also assume that firms’ prefer-

ences over groups of workers are responsive (Roth and Sotomayor (1992)). This implies that

knowing firms’ preferences over individual workers is enough to infer firms’ preferences over

groups of workers. Under this assumption, the preferred group of q workers for a given firm

is composed of its q individually preferred workers.4 I impose the following restrictions on

the unknown functions U and V and the distribution of unobserved taste shocks.

Assumption 1 (i). U and V are uniformly bounded in absolute value and p ≥ 1 times

differentiable with uniformly bounded partial derivatives in X × Z.

(ii). ϵij and ηij are iid and drawn independently from xi and zj from a distribution with

absolutely continuous c.d.f. G(s) and density g(s). The upper tail of the distribution G(s) is

of type I with auxiliary function a(s) = 1−G(s)
g(s)

.

4Note that this rules out potential complementarities in preferences over workers. Relaxing this assumption
would substantially complicate the analysis given that a stable equilibrium might not even exist in this case.
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Assumption 1.(i) is a standard regularity condition which ensures that the functions U

and V are well behaved. Assumption 1.(ii) deserves more discussion. It first assumes that

observables are independent of unobserved preference shocks. This is usual in discrete choice

models but might be particularly strong if we consider a market where prices are set en-

dogenously. However, validity of this assumption can be restored through a control function

approach, conditional on having an exogenous price shifter available.5 Assumption 1.(ii) also

imposes restrictions on the upper tail of the distribution of ϵ and η but leaves the lower

tail unrestricted. As the number of workers and firms will grow to infinity, the number of

independent draws of ϵ and η will also grow. All values of ϵ and η located in the lower

tail of their distribution will thus be inconsequential in determining which alternative is the

most preferred. As in Menzel (2015), I thus assume that G belongs to a class of distributions

which might have different lower tails but for which the upper tail is type I extreme value dis-

tributed.6 Note that this class of functions encompasses most of the parametric distributions

traditionally used in discrete choice models. For the Gamma distribution or the Gumbel

distribution, this assumption holds for a(s) = 1. For the standard normal distribution, this

holds for a(s) = 1
s
.

1.2.2 Normalizations

For the limit economy to predict sorting patterns that are consistent with the finite economy,

I make several additional assumptions. First, I specify the utility of the outside option as:

Ui0 = σ max
k=1,...,J

ηi0,k

V0j = σ max
k=1,...,J

ϵ0j,k

As in Menzel (2015), I then impose the following normalizations on the asymptotic sequence:

Assumption 2 The asymptotic sequence is controlled by n = 1, 2, ... and we define:

(i). nw = [exp(γw)n], nm = [exp(γm)n]

(ii). J = [n1/2]

(iii). σ = 1
a(bn)

where bn = G−1(1− n−1/2)

5For example, Agarwal (2015) uses competing hospitals’ Medicare reimbursements to instrument for wages
in the labor market for medical residents.

6This class of distribution is also called the domain of attraction of the Gumbel distribution (Resnick
(1987))
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Assumption 2.(i) allows to control flexibly the relative sizes of each side of the market

through the parameters γw and γm. Even if the size of each side converges to infinity, we can

still allow for the mass of agents on one side to be larger than the other side and vice versa.

Assumption 2.(ii) makes sure that the probability that workers stay unmatched or that firms

keep one vacancy empty does not become degenerate in the limit. If the size of the outside

option does not grow with the size of the market, the probability that it becomes dominated

by an alternative option will tend to one given that taste shocks have unbounded support.

Assumption 2.(iii) controls the scale of the unobserved shocks such that both unobserved and

systematic parts of the payoffs jointly determine agents choices in the limit. Given that U

and V are bounded and that the support of the taste shocks is unbounded, U and V would

become irrelevant in the limit without this restriction. More specifically, if G is Gumbel,

then bn ≍ 1
2
log(n) and σn = 1. If taste shocks are standard normal, bn ≍

√
log n and σn ≍ bn

and for Gamma distributed taste shocks, bn ≍ log(n) and σn = 1.

1.2.3 Equilibrium

For the remainder of the paper, I refer to a matching as µ which collects µm and µw and

summarizes the matching outcome of each agent. To rationalize the matching we observe

and link it to the primitives of our model, I assume that the match is stable.

Definition 1 For a given q ≥ 1, a matching µ is stable if and only if for all i = 1, ..., nw

and j = 1, ..., nm:

(i) Individual rationality: Uiµw(i) ≥ Ui0 and Vlj ≥ V0j for all l ∈ µm(j).

(ii) No blocking pairs: There exist no pair i, j such that Uij > Uiµw(i) and Vij > mini′∈µm(j) Vi′j.

A match is stable if agents weakly prefer their match rather than staying unmatched and if

there is no worker-firm pair that would prefer be matched together instead of their current

match partners. This assumption is typically used in centralized matching markets as it rules

out the presence of mismatches due to frictions. Note that, for q > 1, this definition is valid

only under the assumption that firms’ preferences over groups of workers are responsive.7

Responsiveness also ensures the existence of a stable match and of the worker-optimal/firm-

optimal stable matches for q > 1 (Roth and Sotomayor (1992)).8 However, when firms’

7For q = 1, µm(j) is a singleton for all j such that mini′∈µm(j) Vi′j = Vµm(j)j . We thus recover the same
definition as in Menzel (2015).

8The worker-optimal stable match is the most preferred stable outcome from the workers’ perspective
and the least preferred stable outcome from the firms’ perspective. On the contrary, the firm-optimal stable
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preferences are heterogeneous, many stable matches can exist and their number grow with

the size of the market. I impose no restrictions on which stable outcome is reached in the

data. Throughout the rest of the paper, I thus refer to any arbitrary stable match as µ∗. I

also define the worker-optimal stable match as µW and the firm-optimal stable match as µM .

1.3 Data and Sampling Process

I assume that we observe a sample of realized matches randomly drawn from the limit econ-

omy. Observed sorting patterns collapse into the matching frequency distribution function.

I define this distribution in the finite economy as the function Fn which gives the expected

number of groups of q workers with observable characteristics (x1, x2, ..., xq) matched with

firms with observable characteristics z:

Fn(x1, ..., xq, z;µ) =
1

Jq+1

1

q!

nw∑
i1=1

...
nw∑
iq=1

nm∑
j=1

P (xi1 ≤ x1, ..., xiq ≤ xq, zj ≤ z, µm(j) = {i1, ..., iq})

Normalizing by q! avoids counting the same matched group several times. Alternatively, for

firms with observable characteristics z matched to k < q workers with observable character-

istics (x1, x2, ..., xk), Fn is defined as:

Fn(x1, ..., xk, ∗, z;µ) =

1

Jk+1

1

k!

nw∑
i1=1

...
nw∑
ik=1

nm∑
j=1

P (xi1 ≤ x1, ..., xik ≤ xk, zj ≤ z, µm(j) = {i1, ..., ik} ∪ {0}q−k)

Finally, for firms with observable characteristics z leaving all their vacancies empty and

unmatched workers with observable characteristics x, Fn is defined as:

Fn(∗, z;µ) =
1

J2

nm∑
j=1

P (zj ≤ z, µm(j) = {0}q)

Fn(x, ∗;µ) =
1

J2

nw∑
i=1

P (xi ≤ x, µw(i) = 0)

match is the most preferred stable outcome from the firms’ perspective and the least preferred stable outcome
from the workers’ perspective.
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I then denote F the limit of the distribution function Fn as the size of the market n grows

to infinity. I also define the joint density of matched characteristics f which is the Radon-

Nikodym derivative of the limiting measure F .

From there, I link this limiting joint density f to the density of matched characteristics

that would arise under various sampling schemes. I assume that the sampling process draws

individuals from the population regardless of whether they are firms or workers. One obser-

vation is thus composed of this individual alone, if it is unmatched, or along with its matched

partners otherwise. Assuming that q = 1, the probability that a matched individual is se-

lected by this sampling process is thus twice the probability that an unmatched individual

is selected. Indeed, a matched pair could be selected either by drawing the corresponding

firm or worker. For any q ≥ 1, the probability that a matched individual is selected will

thus depend on the number of other workers matched to the same firm. Indeed, if a firm

is matched with three employees, the probability that any of them is selected is four times

the probability that a single agent is selected. I thus define the joint density function arising

from this sampling process as:

h(x1, ..., xq, z) =
(q + 1)f(x1, ..., xq, z)

exp{γw}+ exp{γm}

where h(x1, ..., xq, z) is the mass of firms with observable z matched with q workers with

observed characteristics (x1, ..., xq) arising from the sampling scheme defined above and

exp{γw}+exp{γm} is the total mass of workers and firms available in this economy. Similarly,

I define:

h(x1, ..., xk, ∗, z) =
(k + 1)f(x1, ..., xk, ∗, z)
exp{γw}+ exp{γm}

h(x, ∗) = f(x, ∗)
exp{γw}+ exp{γm}

h(∗, z) = f(∗, z)
exp{γw}+ exp{γm}

where h(x1, ..., xk, ∗, z) is the mass of firms with observable z matched with k workers with

observed characteristics (x1, ..., xk), and h(x, ∗) with h(∗, z) are the mass of unmatched work-

ers and firms. This establishes a direct link between f and h. The next section focuses on

linking f with agents’ payoff functions.
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1.4 Characterization of the Limit Economy

This section characterizes f , the limiting joint distribution of matched characteristics, as a

function of the primitives of the model. The proof follows the same steps as Menzel (2015)

and shows how each intermediary result generalizes to q > 1. First, I show that stability

implies that the realized matches can be interpreted as the outcome of two discrete choice

models with endogenous and unobserved choice sets. These choice sets are called opportunity

sets and depend on preferences of the other side of the market and which stable match is

selected. Second, I consider a simplified economy where opportunity sets would be observed

and exogenous and derive the limit of the conditional matching probabilities. Third, I show

that, the assumption imposed on the distribution of the tails of the unobserved preference

shocks implies that we can use inclusive values as sufficient statistics to simplify the problem.

These inclusive values collapse all the information contained in opportunity sets needed to

characterize conditional matching probabilities. Finally, I show that these inclusive values

can be represented as the approximate solution of a fixed point problem making explicit

the relationship between agents’ opportunity sets and preferences. This fixed point problem

has a unique solution in the limit, which implies that all stable matches are observationally

equivalent. I then characterize f as a function of agents’ payoff functions and inclusive values.

1.4.1 Opportunity Sets

Given a match µ∗, I define the opportunity set of a worker as the set of firms that would be

willing to hire her instead of one of its current matched employees. Similarly, the opportunity

set of a firm is the set of workers that would be willing to quit its current employer to accept

a position there. Formally, I define the opportunity set faced by a given worker i ∈ I under

a match µ∗ as:

Mi(µ
∗) = {j ∈ J : Vij ≥ min

i′∈µ∗
m(j)

Vi′j}

Similarly, I define the opportunity set of firm j ∈ J as:

Wj(µ
∗) = {i ∈ I : Uij ≥ Uiµ∗

w(i)}
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I then define:

Ui,(k)(Mi(µ
∗)) = max{min{Uij : j ∈ K} : K ⊂Mi(µ

∗) ∪ {0} and |K| = k}

Vj,(k)(Wj(µ
∗)) = max{min{Vij : i ∈ K} : K ⊂ Wj(µ

∗) ∪ {0}k and |K| = k}

where Ui,(k)(Mi(µ
∗)) denotes the kth highest element of {Uij′ : j

′ ∈Mi(µ
∗)∪ {0}}. Note that

Ui,(1)(Mi(µ
∗)) = maxj′∈Mi(µ∗)∪{0} Uij′ . The first important result follows:

Proposition 1 For any given q ≥ 1, a match µ∗ is stable if and only if for all i = 1, ..., nw

and j = 1, ..., nm:

Uiµ∗
w(i) = Ui,(1)(Mi(µ

∗)) and ∀l ∈ µ∗
m(j), Vlj ≥ Vj,(q)(Wj(µ

∗))

See Appendix 1.A.1 for a proof of this result. Proposition 1 states that a match µ∗ is stable

if and only if each worker i = 1, ..., nw is matched to her preferred alternative among her

opportunity set and each firm j = 1, ..., nm is matched to the qth highest ranked alternatives

among its opportunity set. This implies the following corollary:

Corollary 1 For a given stable match µ∗ and any worker i and firm j:

(i). j = µ∗
w(i) ⇐⇒ i ∈ µ∗

m(j) ⇐⇒ Uij ≥ Ui,(1)(Mi(µ
∗)) and Vij ≥ Vj,(q)(Wj(µ

∗))

(ii). 0 ∈ µ∗
m(j) ⇐⇒ V0j ≥ Vj,(q)(Wj(µ

∗))

(iii). µ∗
w(i) = 0 ⇐⇒ Ui0 ≥ Uj,(1)(Mi(µ

∗))

This corollary states that a stable match µ∗ can be rewritten as the outcome of two

discrete choice models where each agent’s choice set is its opportunity set. This equivalence

establishes a link between the observed matching and the primitives of the model. However,

opportunity sets are unobserved and endogenous objects as they depend on µ∗ and on the

preferences of agents from the other side of the market. Additionally, characterizing the

probability of being among a given firm’s qth most preferred workers is not standard when

q > 1. Deriving the limit of conditional matching probabilities is thus not straightforward.
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1.4.2 Limit of Conditional Choice Probabilities

To simplify the analysis, I consider here arbitrary exogenous opportunity setsMi = {1, ..., J}
and Wj = {1, ..., J}. From Corollary 1, we know that conditional matching probabilities can

be characterized as two-sided conditional choice probabilities:

P(j = µw(i)|xi, zj) = P(Uij ≥ Ui,(1)(Mi) and Vij ≥ Vj,(q)(Wj)|xi, zj)

= P(Uij ≥ Ui,(1)(Mi)|xi, zj)× P(Vij ≥ Vj,(q)(Wj)|xi, zj)

The limit of these conditional choice probabilities have the following expression:

Proposition 2 Under Assumption 1 and 2, as J → ∞ for a given finite q ≥ 1 and for all i

and j:

JP(Uij ≥ Ui,(q)(Mi)|xi, zj) −→ exp(U(xi, zj))×
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)q]

P(Ui0 ≥ Ui,(q)(Mi)|xi) −→
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)q]
See Appendix 1.A.2 for a proof of this result. Proposition 2 generalizes the Logit formula

to cases where agents make many unranked choices among an infinite number of alternatives.

For q = 1, we recover the usual Logit formula derived in Menzel (2015). Note that the

Independence of Irrelevant Alternatives (IIA) property still holds for q > 1. This has several

implications regarding how one can allow for realistic substitution patterns. Imposing the

distribution of ϵ and η to be normal would not change this result as the normal distribution

has a type-I upper tail. To avoid this problem, one can alternatively introduce unobserved

preference heterogeneity for observed characteristics through the use of random coefficients.

Note that the CCP of choosing a particular alternative j would converge to zero if we do

not weight it by J , the rate at which the total number of alternatives increases. Lemma 1

in Appendix 1.A.3 establishes that the size of opportunity sets increases at a rate
√
n which

justifies Assumption 2.(ii).

1.4.3 Inclusive Values

I now introduce that opportunity sets are actually endogenous and unobserved. Endogeneity

arises as shifting worker i’s taste shocks could make her prefer another feasible firm to its
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current match. This could then trigger a chain of rematches that could potentially affect

her own opportunity set. This problem is even more salient in the context of many-to-one

matching as changing firm j’s taste shocks could trigger at most q chains of rematches, which

increases the probability that this ends up changing firm j’s opportunity set. However, as

in Menzel (2015), I find that, as the size of the market increases, the probability for such an

event to occur vanishes to zero. This result stems mostly from two implications of Proposition

2: (i) the probability that firm j rematches with a specific worker i vanishes to zero as the size

of opportunity sets increase to infinity and (ii) the probability of choosing the outside option

instead, which would terminate such a chain of rematches, is non degenerate in the limit.

This result is formalized in Lemma 2 in Appendix 1.A.3 where a more detailed discussion

and proof can be found.

From this, I then show that the dependence between taste shocks and opportunity sets

vanishes in the limit. This means that the distribution of taste shocks conditional on op-

portunity sets converges to their marginal distribution g. However, this claim can only be

proven for the opportunity sets derived from the extremal matchings. The distribution of

taste shocks conditional on opportunity sets is only well defined for the extremal matchings,

given that they are the only stable matchings that always exist irrespective of the size of

the market. Again, this result is formalized in Lemma 3 in Appendix 1.A.3. This means

that we can use this result along with Proposition 2 to bound9 the CCPs conditional on the

opportunity sets that would arise under the firm-optimal stable match µM as follows:

n1/2P(Uij ≥ Ui,(1)(Mi(µ
M))|xi, zj, (zk)k∈Mi(µM ),Mi(µ

M)) (1.1)

≤ exp{U(xi, zj)}
1 + n−1/2

∑
k∈Mi(µM ) exp{U(xi, zk)}

+ o(1)

n1/2P(Vij ≥ Vj,(q)(Wj(µ
M))|xi, zj, (xl)l∈Wj(µM ),Wj(µ

M)) (1.2)

≥ exp(V (xi, zj))×

[
1−

(
n−1/2

∑
l∈Wj(µM ) exp{V (xl, zj)}

1 + n−1/2
∑

l∈Wj(µM ) exp{V (xl, zj)}

)q]
+ o(1)

Similar bounds can be computed for the worker-optimal stable match µW where the direction

of the inequalities is reversed. In Equation 1.1 and 1.2, n−1/2
∑

k∈Mi(µW ) exp{U(xi, zk)} and

9Note that we only provide bounds given that there are several potential stable matches µ∗ such that
Mi(µ

∗) =Mi(µ
M ) and Wj(µ

∗) =Wj(µ
M ).
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n−1/2
∑

l∈Wj(µM ) exp{V (xl, zj)} serve as sufficient statistics that collapse all the information

contained in opportunity sets which is needed to approximate CCPs. These objects are called

inclusive values.

More generally, I define worker i’s inclusive value given a realized stable match µ∗ as:

I∗wi = n−1/2
∑

j∈Mi(µ∗)

exp(U(xi, zj))

Similarly, I define firm j’s inclusive value given µ∗ as:

I∗mj = n−1/2
∑

i∈Wj(µ∗)

exp(V (xi, zj))

I also define IMwi and IMmj as the inclusive values that would arise under the firm-optimal

stable match and IWwi and IWmj as the inclusive values that would arise under the worker-

optimal stable match.

Of course, in practice, inclusive values are unobserved and we do not know which stable

match is selected. The rest of this section shows that the inclusive values arising from any

stable match µ∗ can be approximated by the solution of a fixed point problem which has a

unique solution in the limit.

1.4.4 Fixed Point Characterization for Inclusive Values

I first show that, for any q ≥ 1, inclusive values arising from the firm-optimal and worker-

optimal stable match can be approximated by expected inclusive value functions (Menzel

(2015)). I first rewrite IMwi as:

IMwi =
1

n

nm∑
k=1

exp{U(xi, zk)} ×
√
n1{k ∈Mi(µ

M)}

=
1

n

nm∑
k=1

exp{U(xi, zk)} ×
√
n1{Vik ≥ Vk,(q)(Wk(µ

M))}

The inclusive value of a given worker is determined by the set of firms that would accept her,

which in turn depends on the preferences of all firms as well as their opportunity sets. Using
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Equation 1.2, I then show that:

IMwi ≥ Γ̂M
w (xi) + op(1)

where Γ̂M
w is the firm-optimal expected inclusive value function of workers which is defined

as:

Γ̂M
w (xi) =

1

n

nm∑
k=1

exp{U(xi, zk) + V (xi, zk)} ×
[
1−

(
IMmk

1 + IMmk

)q]
Similarly, using Equation 1.1, I show that we can approximate IMmj as follows:

IMmj ≤ Γ̂M
m (zj) + op(1)

where Γ̂M
m is the firm-optimal expected inclusive value function of firms which is defined as:

Γ̂M
m (zj) =

1

n

nw∑
l=1

exp{U(xl, zj) + V (xl, zj)}
1 + IMwl

Note that similar bounds can be established for the inclusive values that would arise under

the worker-optimal stable match:

IWwi ≤ Γ̂W
w (xi) + op(1) and IWmj ≥ Γ̂W

m (zj) + op(1)

A formal exposition and proof of this result can be found in Lemma 4 in Appendix 1.A.3.

The inclusive value of a given worker can be approximated by a function of firms’ preferences

and inclusive values. Similarly, the inclusive value of a given firm can be approximated by

a function of workers’ preferences and inclusive values. Hence, the two-sided nature of the

problem gives rise naturally to a fixed point problem characterizing these inclusive values. I

define the fixed point mappings as follows:

Ψ̂w[Γm](x) =
1

n

nm∑
k=1

exp{U(x, zk) + V (x, zk)} ×
[
1−

(
Γm(zk)

1 + Γm(zk)

)q]

Ψ̂m[Γw](z) =
1

n

nw∑
l=1

exp{U(xl, z) + V (xl, z)}
1 + Γw(xl)
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From there, I show, using Lemma 4, that for any x ∈ X and z ∈ Z:

Γ̂M
w (x) ≥ Ψ̂w[Γ̂

M
m ](x) + op(1) and Γ̂M

m (z) ≤ Ψ̂m[Γ̂
M
w ](z) + op(1) (1.3)

Γ̂W
w (x) ≤ Ψ̂w[Γ̂

W
m ](x) + op(1) and Γ̂W

m (z) ≥ Ψ̂m[Γ̂
W
w ](z) + op(1) (1.4)

In addition, the firm-optimal stable match is unanimously preferred by firms while the worker-

optimal stable match is unanimously preferred by workers (Roth and Sotomayor (1992)). This

implies that Mi(µ
M) ⊂ Mi(µ

∗) ⊂ Mi(µ
W ) and Wi(µ

W ) ⊂ Wi(µ
∗) ⊂ Wi(µ

M) which means

that for all i and j:

IMwi ≤ I∗wi ≤ IWwi and IWmj ≤ I∗mj ≤ IMmj

This in turn implies that for all (x, z):

Γ̂M
w (x) ≤ Γ̂∗

w(x) ≤ Γ̂W
w (x) and Γ̂W

m (z) ≤ Γ̂∗
m(z) ≤ Γ̂M

m (z)

Using Equation 1.3 and 1.4, we can thus show that, for any stable matching µ∗:

Γ̂∗
w(x) = Ψ̂w[Γ̂

∗
m](x) + op(1) and Γ̂∗

m(z) = Ψ̂m[Γ̂
∗
w](z) + op(1) (1.5)

which concludes the proof that inclusive values arising from any given stable match µ∗ can

be approximated by the solution of a fixed point problem.

I now introduce the population equivalent of the fixed point problem described in Equation

3.3:

Γ∗
w = Ψw[Γ

∗
m] and Γ∗

m = Ψm[Γ
∗
w] (1.6)

where

Ψw[Γm](x) =

∫
exp(U(x, s) + V (x, s) + γm)×

[
1−

(
Γm(s)

1 + Γm(s)

)q]
m(s)ds

Ψm[Γw](z) =

∫
exp(U(s, z) + V (s, z) + γw)

1 + Γw(s)
w(s)ds

This population fixed point problem has a unique solution and the approximate solution of

the finite sample fixed point problem converges to it. This is stated in the following result:

Theorem 1 Under Assumption 1 and 2 and for any q ≥ 1:
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(i). The mapping (log Γw, log Γw) 7→ (logΨm[Γw], log Ψw[Γm]) is a contraction.

(ii). The fixed point problem described in Equation 1.6 always has a unique solution Γ∗
m,Γ

∗
w.

(iii). For any given µ∗, I∗wi −→ Γ∗
w(xi) and I

∗
mj −→ Γ∗

m(zj) for all i and j.

A proof of this result can be found in Appendix 1.A.3. Theorem 1 has several implications.

First, it implies that for any q ≥ 1 and for any arbitrary stable match µ∗, inclusive values

converge to the same limit. This means that all stable matches are observationally equivalent

in the limit both in the one-to-one and many-to-one case. This implies that we do not need

to have any information about the equilibrium selection mechanism nor do we need to impose

restrictions on preferences to ensure that there is a unique stable match10 to infer preferences

from observed sorting. Second, it implies that, for any q ≥ 1, we can use inclusive value

functions as sufficient statistics to characterize CCPs as functions which only depend on

agents’ observable characteristics. Additionally, we know that the fixed point mappings

are contractions which means that solving for inclusive value functions is computationally

feasible.

1.4.5 Limit of Distribution of Matched Characteristics

Finally, using Theorem 1, I characterize the limit of the conditional matching probabilities

as follows.

Proposition 3 (i) For any firm j with q ≥ 1 vacancies and any group of workers i = 1, ..., k

where k < q:

Jk+1P(µm(j) = {1, ..., k} ∪ {0}q−k|(xi)ki=1, zj) −→
k! exp

{∑k
i=1 U(xi, zj) + V (xi, zj)

}
∏k

i=1 (1 + Γ∗
w(xi)) (1 + Γ∗

m(zj))
k+1

(ii) For any firm j with q ≥ 1 vacancies:

Jq+1P(µm(j) = {1, ..., q}|(xi)qi=1, zj) −→
q! exp

{∑q
i=1 U(xi, zj) + V (xi, zj)

}
∏q

i=1(1 + Γ∗
w(xi))(1 + Γ∗

m(zj))
q

10Assuming that firms’ preferences are homogenous, as in Diamond and Agarwal (2017), makes the stable
match unique (Roth and Sotomayor (1992)). Similarly, when we assume that there is a continuum of students
matching with a fixed number of colleges, as in He et al. (2021) and Agarwal and Somaini (2022), there exists
a unique stable match (Azevedo and Leshno (2016)).
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P(µm(j) = {0}q|zj) −→
1

1 + Γ∗
m(zj)

A proof of this result can be found in Appendix 1.A.4. The probability that a given match

is formed is thus positively correlated with the total match surplus
∑q

i=1 U(xi, zj)+V (xi, zj).

However, it is negatively correlated with inclusive values as they grow with the size of the

set of other potential matching opportunities. It can also be noted that the rate at which

these quantities converge to their limits depend on q. The larger is q the slower convergence

is. This introduces a trade-off as increasing q might bring additional identification power at

the cost of introducing bias due to approximation errors. From this, I characterize the limit

joint distribution of matched characteristics:

f(x1, ..., xk, ∗, z) =
exp

{∑k
l=1 U(xl, z) + V (xl, z) + kγw + γm

}
Πk

l=1(1 + Γ∗
w(xl))(1 + Γ∗

m(z))
k+1

m(z)Πk
l=1w(xl)

f(x1, ..., xq, z) =
exp

{∑q
l=1 U(xl, z) + V (xl, z) + qγw + γm

}
Πq

l=1(1 + Γ∗
w(xl))(1 + Γ∗

m(z))
q

m(z)Πq
l=1w(xl)

f(x, ∗) = exp(γw)w(x)

1 + Γ∗
w(x)

f(∗, z) = exp(γm)m(z)

1 + Γ∗
m(z)

Where f(x1, ..., xk, ∗, z) is the mass of firms with observable z matched with k workers

with characteristics (x1, ..., xk), f(x1, ..., xq, z) is the mass of firms with observable z matched

with q workers with characteristics (x1, ..., xq), f(x, ∗) is the mass of unmatched workers with

characteristic x and f(∗, z) is the mass of unmatched firms with observable z.

1.5 Identification and Estimation

1.5.1 Identification Joint Surplus

From the expression of f derived in the previous section, we can show that:

f(x1, ..., xk, ∗, z)
f(x1, ..., xk−1, ∗, z)

=
exp

{
U(xk, z) + V (xk, z) + γw

}
(1 + Γ∗

w(xk))(1 + Γ∗
m(z))

w(xk)
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Inverting this mapping finally gives us:

U(xk, z)+V (xk, z) = log f(x1, ..., xk, ∗, z)−log f(x1, ..., xk−1, ∗, z)−log f(xk, ∗)−log
f(∗, z)

exp(γm)m(z)

Given that we can identify f directly from the data, as was discussed in Section 1.3, this

implies that we can identify the surplus function U + V . Similarly, we can express inclusive

values as functions of the distribution of the characteristics of unmatched individuals:

Γ∗
w(x) =

exp(γw)w(x)

f(x, ∗)
− 1

Γ∗
m(z) =

exp(γm)m(z)

f(∗, z)
− 1

However, we cannot express U as a function of f separately from V and vice versa. This

result is formalized in the following proposition.

Proposition 4 Under Assumption 1 and 2 and for any q ≥ 1:

(i) The joint surplus function U+V and the inclusive value functions Γ∗
w and Γ∗

m are identified

from the limiting joint distribution of matched characteristics f .

(ii) Without further restrictions, we cannot separately identify U and V .

This means that the additional data available when q > 1 does not bring any additional

information which would be useful to separately identify individual preferences from the joint

surplus. This is in sharp contrast with Diamond and Agarwal (2017) and He et al. (2021)

which find that preferences can be separately identified with data on many-to-one matching.

This suggests that these positive identification results mostly rely on the extra assumptions

they impose on preferences rather than the additional information made available by the

many-to-one structure of the data. This would mean that, by using similar restrictions, we

could thus achieve similar positive identification results even for q = 1. The goal of the

remainder of this section is to verify this claim.

1.5.2 Homogeneous preferences

I mimic the framework developed in Diamond and Agarwal (2017) by assuming that the

systematic part of the payoff functions is homogeneous across individuals. I thus define the
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utility that worker i gets from being matched with school j as:

uij = U(zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

vij = V (xi) + σϵij

Additionally, I assume that there exists x̄ such that V (x̄) = 0. Note that this framework

differs from Diamond and Agarwal (2017) on two dimensions. Taste shocks are heterogeneous

and iid over i, j and the class of distribution to which they belong is more restrictive. Under

these assumptions, it is immediate to see that we can recover U and V from the joint surplus

as U(z) + V (x̄) = U(z). I state the following result:

Proposition 5 Under Assumptions 1 and 2 and for any q ≥ 1, the payoff functions U and

V are identified from the limiting joint distribution of matched characteristics f .

This shows that a similar positive identification result as the one derived in Diamond

and Agarwal (2017) can actually be achieved for both q > 1 and q = 1 by using similar

restrictions on preferences. In fact, this suggests that their non identification result for q = 1

is mostly driven by the assumption they impose on the correlation structure of the unobserved

taste shocks. As is pointed out by the authors, assuming that taste shocks are common to

all agents from the same side makes the unique stable match perfectly assortative along

these unobserved tastes. This creates an endogeneity problem. It thus becomes necessary

to have data on at least two-to-one matching in order to have an additional measurement of

these sorting patterns that would allow to disentangle the effect of observed and unobserved

preferences. In the framework developed in this paper, this problem does not exist given that

taste shocks are iid across individuals. In the limit, conditional matching probabilities are

uniquely determined by observable characteristics even when q = 1.

1.5.3 Exclusion restrictions

As in He et al. (2021) and Agarwal and Somaini (2022), I assume that a set of variables

affecting the utility of one side can be excluded from the utility of the other side. I define
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the utility that worker i gets from being matched with firm j as:

Uij = U(xi, zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

Vij = V (xi, zj) + g(wi) + σϵij

I additionally assume that g is increasing in w and that limw→∞ g(w) = ∞.11 I also assume

that there exists w̄ such that g(w̄) = 0. Under these assumptions, we can state the following

result:

Proposition 6 Under Assumptions 1 and 2 and for any q ≥ 1, the payoff functions U , V

and g are identified from the limiting joint distribution of matched characteristics f .

A proof of this result can be found in Appendix 1.A.5. Similarly to the argument used

in He et al. (2021) and Agarwal and Somaini (2022), increasing w shifts the probability that

a given firm becomes available which allows us to disentangle the role of firms’ and workers’

preferences in determining the sorting patterns we observe.12 This argument also holds for

q = 1 and the many-to-one structure of the data does not help in making this additional

source of identification more salient. Note that we do not need here to have preference shifters

for both sides of the market as in Agarwal and Somaini (2022) and He et al. (2021). As the

joint surplus is already identified in the absence of exclusion restrictions, we only need to

identify preferences of workers to recover preferences of firms from the surplus.13

1.5.4 Unobserved Preference Heterogeneity

In light of the previous results, one can wonder how we could use the additional information

made available by data on many-to-one matching, if not for disentangling preferences from

the joint surplus. Using a similar argument as what is used in the discrete choice literature, I

11This is similar to Assumption 2 in Agarwal and Somaini (2022).
12The identification argument only works at infinity as the match has not a fixed cutoff structure as in He

et al. (2021) and Agarwal and Somaini (2022). As both the number of firms and workers grow to infinity in
our case, the cutoffs grow to infinity as the size of the market grows.

13In Agarwal and Somaini (2022) and He et al. (2021) it is not clear whether the joint surplus is identified
in the absence of exclusion restrictions. Further work could determine whether it is only the case when taste
shocks have type-I upper tails.
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claim that having data on several decisions made by the same firm allows to know more about

the unobserved ”type” this firm belongs to. More specifically, if we were to assume that firms

have an unobserved individual and heterogeneous taste for a given worker characteristic xi,

having more than one measurement of given firm j’s choice would be useful to pin it down.

This is analogous to what is argued by Berry et al. (2004) who show that estimating random

coefficients from a cross section of observed choices often fails when having only the first

ranked choice of each consumer. Having at least the second choice of each consumer allows

to disentangle what drives observed choices between random coefficients and unobserved

taste shocks. A similar argument could apply with data on many-to-one matching given that

we observe several workers matched to the same firm. I investigate in Section 1.6, whether

such gains could also be achieved in a matching market setting thanks to the many-to-one

structure of the data.

1.5.5 Estimation

Given that the identification proof is constructive, one could construct naturally a non-

parametric estimator for the joint surplus function U + V and the inclusive value functions

Γ∗
w and Γ∗

m. However, this would quickly become intractable as the dimensionality of x and

z increases.

I instead consider a parametric version of this framework where I define the payoff func-

tions as U(x, z;θ) and V (x, z;θ). I assume that U and V are known for all (x, z) up to a

vector of unknown parameters θ. Assume that we observe a random sample of K individ-

uals, drawn from the sampling scheme described in Section 1.3, along with their respective

matches. For a given observation k, we observe a vector (x1(k), ..., xq(k), z(k)) which has a

different structure depending on the type of match we observe. For an unmatched worker,

which is indexed by w(k) = 0, I record its characteristics in x1(k) and encode the other

variables as missing. For an unmatched firm, which is indexed by m(k) = 0, I record its

characteristics in z(k). And for a firm matched with a group of workers of size n, indexed by

m(k) = n, I record the characteristics of all matched workers along with the characteristic

of the matched firm in (x1(k), ..., xn(k), z(k)) and encode the rest as missing. We can then
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construct the following sample average log-likelihood:

L(x, z;θ) =
1

K

K∑
k=1

1{w(k) = 0}h(x(k), ∗,θ) + 1{m(k) = 0}h(∗, z(k),θ)

+ 1{m(k) = 1}h(x1(k), ∗, z(k),θ)

+ 1{m(k) = 2}h(x1(k), x2(k), ∗, z(k),θ)

+ ...

+ 1{m(k) = q}h(x1(k), ..., xq(k), z(k),θ)

where h is the joint density of matched characteristics under the sampling scheme described

in Section 1.3. Of course, calculating the likelihood function for a given parameter θ first

involves solving for the fixed point problem described in Equation 1.6 to derive the inclu-

sive value functions. This can be achieved by setting up an inner loop that will apply the

contraction mapping until convergence. The estimator proposed is then defined as:

θ̂ = argmax
θ∈Θ

L(x, z;θ)

Asymptotic inference for θ̂ is then standard as long as the size of the sample is not too large

relative to the size of the overall economy. As is pointed out in Menzel (2015) and Diamond

and Agarwal (2017), the inherent structure of matching markets could introduce dependence

between observations. A bootstrap procedure could then be used for inference (Diamond and

Agarwal (2017), Menzel (2021)).

1.6 Monte Carlo Simulations

In this section, I perform several Monte Carlo simulations in order to assess: (i) the validity of

the convergence results derived in Section 1.4 and (ii) the validity of the estimation strategy

proposed in Section 1.5.

1.6.1 Convergence of Conditional Match Probabilities

Consider a simple model where q = 2 and U(x, z) = V (x, z) = 0 for all (x, z) ∈ X × Z. In

this example, we can easily solve for the fixed point problem described in Equation 1.6 given
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Table 1.1: Monte Carlo: Convergence of Matching Frequencies and Inclusive Values

n
Unmatched
Workers

Firms with One
Unfilled Vacancy

Firms with Two
Unfilled Vacancies

Iw Im

20 0.5894 0.6778 0.2339 0.7617 0.5343

50 0.5714 0.6712 0.2290 0.8007 0.5365

100 0.5608 0.6661 0.2285 0.8245 0.5350

200 0.5521 0.6621 0.2279 0.8406 0.5344

500 0.5449 0.6588 0.2273 0.8546 0.5313

1000 0.5418 0.6577 0.2263 0.8611 0.5320

2000 0.5389 0.6561 0.2268 0.8662 0.5335

Model 0.5321 0.6527 0.2267 0.8794 0.5321

Notes. This table reports the average share of unmatched firms and workers in each period taken over 200 sample draws for different
sample sizes n.

that inclusive value functions collapse to a fixed number which does not vary with (x, z).

This results in Γ∗
w = 0.8794 and Γ∗

m = 0.5321. I also compute the limit matching frequencies:

P
(
Ui0 ≥ U∗

i,(1)

)
−→ 0.5321

P
(
V0j ≥ V ∗

i,(1)

)
−→ 0.2267

P
(
V ∗
i,(1) > V0j ≥ V ∗

i,(2)

)
−→ 0.6527

To verify the validity of the large market approximation, I first simulate n individuals along

with their taste shocks over the individuals from the other side of the market ϵij and ηij

for all (i, j). I then use the worker-proposing Deferred Acceptance algorithm to get the

worker-optimal stable match. Finally, I compute the empirical matching frequencies and the

inclusive values under this stable match and check whether they converge to their theoretical

limits as n grows large. Table 1.1 displays the result of this exercise. Both the inclusive values

and the matching frequencies converge to their theoretical limits. This table also shows that

the limit economy is a relatively good approximation even when the size of the market is

moderately large.
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Table 1.2: Monte Carlo: Estimation without Random Coefficient

q = 1 q = 2 q = 3

n θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3
100 0.989 1.048 0.511 0.942 1.053 0.494 0.944 1.051 0.457

(0.309) (0.374) (0.231) (0.202) (0.334) (0.173) (0.159) (0.372) (0.152)

200 0.999 0.962 0.487 0.957 1.047 0.486 0.951 1.045 0.468

(0.223) (0.236) (0.150) (0.155) (0.229) (0.121) (0.125) (0.236) (0.113)

500 0.991 0.997 0.497 0.976 1.018 0.479 0.966 1.013 0.476

(0.153) (0.155) (0.101) (0.101) (0.153) (0.082) (0.082) (0.143) (0.071)

1000 0.989 0.992 0.500 0.987 1.009 0.486 0.974 1.005 0.485

(0.108) (0.111) (0.069) (0.066) (0.102) (0.055) (0.060) (0.097) (0.047)

Model 1 1 0.5 1 1 0.5 1 1 0.5

Notes. This table reports the average and standard deviation of the ML estimator of θ for different values of q taken
over 200 sample draws for different sample sizes n.

1.6.2 Convergence of ML Estimator

I now evaluate the performance of the estimator proposed in Section 1.5 through two Monte

Carlo exercises. In the first exercise, I consider the following simple parametric framework:

Uij = θ1zj + ηij and Vij = θ2xi + θ3xizj + ϵij

and estimate θ on simulated data. To do so, I draw n individuals along with their observed

characteristics xi and zj drawn from a standard normal distribution. I draw the taste shocks

ϵij and ηij from the Gumbel distribution and set θ = (1, 1, 0.5) to compute Uij and Vij

for all (i, j). I then derive the worker-optimal stable match using the Deferred Acceptance

algorithm. Finally, I estimate θ and repeat this process 200 times to report the mean and

standard deviation of θ̂ over the sample draws. Table 1.2 shows that the estimator seems to

converge to its true value as the size of the market increases given that the mean converges to

the true value while the standard deviation vanishes. We can also see that, while increasing

q lowers the variance of the estimator, it also seems to introduce bias. This is consistent

with Proposition 3, given that the joint conditional matching probabilities converge to their

theoretical limits at a slower rate when q increases. There is thus a trade off involved as

increasing q allows to have a more precise estimator, given that we are using more information,

but might introduce distortions as conditional matching frequencies converge to their limit

at a slower rate.
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Table 1.3: Monte Carlo: Estimation with Random Coefficient

q = 1 q = 2 q = 3

n θ̂1 θ̂2 θ̂3 P(θ̂3 = 0) θ̂1 θ̂2 θ̂3 P(θ̂3 = 0) θ̂1 θ̂2 θ̂3 P(θ̂3 = 0)

100 1.006 0.997 0.300 0.485 0.995 0.992 0.311 0.280 0.976 0.990 0.267 0.315

(0.334) (0.352) (0.363) - (0.217) (0.307) (0.260) - (0.168) (0.265) (0.234) -

200 1.037 0.969 0.286 0.425 0.993 0.965 0.317 0.210 0.964 0.960 0.327 0.110

(0.191) (0.206) (0.301) - (0.152) (0.208) (0.224) - (0.113) (0.195) (0.169) -

500 0.995 0.974 0.294 0.310 0.992 0.970 0.350 0.065 0.991 0.977 0.389 0.025

(0.125) (0.130) (0.256) - (0.086) (0.122) (0.146) - (0.068) (0.128) (0.116) -

1000 1.007 0.963 0.348 0.115 0.995 0.981 0.405 0.005 0.995 0.981 0.414 0

(0.100) (0.101) (0.190) - (0.060) (0.086) (0.105) - (0.056) (0.077) (0.073) -

Model 1 1 0.5 - 1 1 0.5 - 1 1 0.5 -

Notes. This table reports the average and standard deviation of the ML estimator of θ for different values of q taken over 200
sample draws for different sample sizes n.

In a second exercise, I now consider the following parametric framework:

Uij = θ1zj + ηij and Vij = θ2xi + θ3xiνj + ϵij

where νj is unobserved and follows a N (0, 1). In this example, I assume that there is un-

observed heterogeneity in schools’ tastes over xi which is parametrized through a normal

distributed random coefficient with mean θ2 and standard deviation θ3. I then follow sim-

ilar steps as for the first exercise to get the mean and the standard deviation of the ML

estimator of θ for different values of q and different sizes of the economy n. Note that to

approximate the integral over νi to compute the conditional matching probabilities, I use a

Gaussian-Hermite quadrature (Judd (1998)). Table 1.3 shows that θ̂ converges to its true

value as n increases. However, the standard deviation of the random coefficient θ3 is poorly

estimated when q = 1. Even with large n, θ̂3 is equal to 0 in 11% of the cases. Given that

the log-likelihood function is symmetric around θ3 = 0, this indicates that it is maximized

while being not differentiable at this point. In this case, traditional inference breaks down

and this estimator is not informative. Although this issue also arises for q = 2 and q = 3

when n is small, we can see that as q increases this is less likely to happen. In fact, increasing

q from 1 to 2 is already enough to drastically reduce the probability of estimating θ3 to 0.

This indicates that having data on two-to-one matching is already enough to bring additional

identification power necessary to pin down the distribution of random coefficients. This mir-

rors the result found in Berry et al. (2004) which shows that having data on consumers’
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second choices allows to estimate random coefficients more easily.

1.7 Conclusion

This paper develops a unifying empirical framework of one-to-one and many-to-one matching

without transfers to understand what can be inferred on agents’ preferences from observed

sorting in such markets. I impose few restrictions on preferences and assume that the observed

matching is stable. Stability allows me to rewrite the model as a two-sided discrete choice

model with endogenous and unobserved choice sets. I use a sufficient statistics approach

to take into account choice sets’ endogeneity and characterize agents’ conditional choice

probabilities. This allows me to form a clear mapping between the joint distribution of

matched characteristics and agents’ payoff functions.

I then show that we can identify the joint surplus from both one-to-one and many-to-

one matching data. However, without further restrictions, individual preferences are not

identified. While this negative identification result was already established in the one-to-one

case, the literature has argued that many-to-one matchings can bring additional information

which would allow to separately identify preferences from the joint surplus. I find that these

positive identification results are ultimately not driven by the availability of such additional

information but mostly by the extra assumptions imposed on preferences.

I then argue that, by imposing similar restrictions on preferences, one can extend these

positive identification result to the one-to-one matching case. More specifically, by either

assuming that the systematic parts of the payoffs is homogenous across individuals (as in

Diamond and Agarwal (2017)) or under appropriate exclusion restrictions (as in He et al.

(2021) and Agarwal and Somaini (2022)), one can separately identify preferences from the

joint surplus both in the one-to-one and many-to-one case. Finally, I show that the additional

information brought by the many-to-one structure of the data can instead be used to estimate

more precisely the distribution of random coefficients in a parametric framework.
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Appendices

1.A Proofs

1.A.1 Proof of Proposition 1

Suppose first that µ is not stable. This could imply first, by definition of stability, that there

exists a pair (i, j) such that Uij > Uiµw(i) and Vij > mini′∈µm(j) Vi′j. This would mean that

there exists a pair (i, j) such that j ∈Mi(µ) and Uij > Uiµw(i) which contradicts that Uiµw(i) =

maxj′∈Mi(µ)∪{0} Uij′ . This could also imply that Ui0 > Uiµw(i) or V0j > mini′∈µm(j) Vi′j. In

the first case, this would contradict that Uiµw(i) = maxj′∈Mi(µ)∪{0} Uij′ . In the second case,

this would mean that there exist a l ∈ µm(j) such that V0j > Vlj which contradicts that

Vlj ≥ Vj,(q)(Wj(µ)).

Now, suppose that for a given i, Uiµw(i) < maxj′∈Mi(µ)∪{0} Uij′ . This means that there exist

a firm k ∈ Mi(µ) ∪ {0} such that Uik > Uiµw(i). If k = 0, this immediately contradicts

stability. If k ∈ Mi(µ), this implies that there exist a firm k such that Vik ≥ mini′∈µm(k) Vi′k

and Uik > Uiµw(i). If Vik = mini′∈µm(k) Vi′k, this implies that k = µw(i) and we reach a contra-

diction. Otherwise, we have that Uik > Uiµw(i) and Vik > mini′∈µm(k) Vi′k which contradicts

stability.

Finally, suppose that for a given j and for a given l ∈ µm(j), Vlj < Vj,(q)(Wj(µ)). This

means that there exist a worker s such that s ∈ Wj(µ) ∪ {0} and Vsj > Vlj. If s = 0, this

contradicts stability. If s ∈ Wj(µ), this implies that Usj ≥ Usµw(s) and Vsj > Vlj. Again, we

restrict ourselves to the case where j ̸= µw(s) which implies that Usj > Usµw(s) and Vsj > Vlj

which contradicts stability. This concludes the proof.
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1.A.2 Proof of Proposition 2

I first consider the case q = 2. The proof for q = 1 can be found in Menzel (2015). I

start by decomposing in two terms the conditional probability that Uij is above or equal

Ui,(2)(Mi) where Mi = {0, ..., J}. I remove the dependence on Mi for simplicity such that

Ui,(q)(Mi) = Ui,(q) for all q. I also rewrite Uij = uij + σηij for simplicity.

P(Uij ≥ Ui,(2)|(uik)Jk=1) = P(Uij ≥ Ui,(1)|(uik)Jk=1)

+ P(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1)

The first term is known already and is the conditional choice probability for q = 1. The

second term can be expressed as the probability that there exists one alternative preferred

to j but that j is preferred to the rest:

P(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫ J∑
k=1

P(Uik > Uij, Uij ≥ Uil, l ∈ I − {k, j}|(uik)Jk=1, ηij = s)g(s)ds

=

∫ J∑
k=1

(1−G(σ−1(uij − uik) + s))
∏

l∈I−{k,j}

G(σ−1(uij − uil) + s)g(s)ds

=

∫ J∑
k=1

1−G(σ−1(uij − uik) + s)

G(σ−1(uij − uik) + s)

2J∏
l=1

G(σ−1(uij − uil) + s)
g(s)

G(s)
ds

As in Menzel (2015), I then do the change of variables s = aJt + bJ where aJ = a(bJ) and

bJ = G−1(1− J−1/2) and multiply by J on both sides:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫
1

J

J∑
k=1

J(1−G(aJ(uij − uik + t) + bJ))

G(aJ(uij − uik + t) + bJ)

× exp

(
1

J

2J∑
l=1

J logG(aJ(uij − uil + t) + bJ)

)
JaJg(aJt+ bJ)

G(aJt+ bJ)
dt

Following Resnick (1987) and under Assumption 1 we can show that:

J(1−G(aJ(uij − uik + t) + bJ)) → e−(uij−uik+t)

G(aJ(uij − uik + t) + bJ) → 1
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J logG(aJ(uij − uil + t) + bJ) → −e−(uij−uik+t)

JaJg(aJt+ bJ)

G(aJt+ bJ)
→ e−t

We thus have under Assumption 1:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫
1

J

J∑
k=1

e−(uij−uik+t) exp

(
− 1

J

2J∑
l=1

e−(uij−uik+t)

)
e−tdt+ o(1)

=

∫
1

J

J∑
k=1

e(uik−uij) exp

(
− 1

J

2J∑
l=1

e−te(uik−uij)

)
e−te−tdt+ o(1)

I then do a final change of variable s = e−t such that we get:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫ +∞

0

1

J

J∑
k=1

e(uik−uij) exp

(
− 1

J

2J∑
l=1

se(uik−uij)

)
sds+ o(1)

=
1

J

J∑
k=1

e(uik−uij)

(
1

J

2J∑
k=1

e(uik−uij)

)−2

+ o(1)

=
1

J

J∑
k=1

euik
exp(uij)(

1
J

∑2J
k=1 exp(uik)

)2 + o(1)

=
exp(uij)

1 + 1
J

∑J
k=1 exp(uik)

×
1
J

∑J
k=1 exp(uik)

1 + 1
J

∑J
k=1 exp(uik)

+ o(1)

From this we can finally show that:

JP(Ui,(1) > Uij ≥ Ui,(2)|xi, (zk)Jk=1) =
exp(U(xi, zj))

1 + 1
J

∑J
k=1 exp(U(xi, zk))

×
1
J

∑J
k=1 exp(U(xi, zk))

1 + 1
J

∑J
k=1 exp(U(xi, zk))

+ o(1)

which implies that:

JP(Ui,(1) > Uij ≥ Ui,(2)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

We know from Menzel (2015) that:

JP(Uij ≥ Ui,(1)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds
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So we can conlude that:

JP(Uij ≥ Ui,(2)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
(
1 +

∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)
Following similar steps, we can prove that:

P(Ui0 ≥ Ui,(2)|xi) −→
1

1 +
∫
exp(U(xi, s))m(s)ds

×
(
1 +

∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)
To illustrate how this iterates to any q, I write here the proof for q = 3. Similarly, we want

to characterize the probability that there exists two alternatives preferred to j but that j is

preferred to the rest:

P(Ui,(2) > Uij ≥ Ui,(3)|(uik)Jk=1)

=

∫
1

2

J∑
k=1

J∑
m=1
m̸=k

P(Uik > Uij, Uim > Uij, Uij ≥ Uil, l ∈ I \ {k,m, j}|(uik)Jk=1, ηij = s)f(s)ds

=

∫
1

2

J∑
k=1

1−G(σ−1(uij − uik) + s)

G(σ−1(uij − uik) + s)

J∑
m=1
m ̸=k

1−G(σ−1(uij − uim) + s)

G(σ−1(uij − uim) + s)

2J∏
l=1

G(σ−1(uij − uim) + s)
g(s)

G(s)
ds

=

∫
1

2

1

J

J∑
k=1

J(1−G(σ−1(uij − uik) + s))

G(σ−1(uij − uik) + s)

1

J − 1

J∑
m=1
m ̸=k

(J − 1)(1−G(σ−1(uij − uim) + s))

G(σ−1(uij − uim) + s)

× exp

(
1

J

J∑
l=1

J logG(σ−1(uij − uil) + s)

)
Jg(s)

G(s)
ds

=

∫
1

2

1

J

J∑
k=1

e−(uij+t−uik)
1

J − 1

J∑
m=1
m ̸=k

e−(uij+t−uim) exp

(
− 1

J

2J∑
l=1

exp−(uij + s− uil)

)
e−tdt+ o(1)

=

∫
1

2

1

J

J∑
k=1

e(uik−uij)
1

J − 1

J∑
m=1
m ̸=k

e(uim−uij) exp

(
−e−t 1

J

2J∑
l=1

exp(uil − uij)

)
e−te−te−tdt+ o(1)

=

∫ +∞

0

1

2

1

J

J∑
k=1

e(uik−uij)
1

J − 1

J∑
m=1
m ̸=k

e(uim−uij) exp

(
−s 1

J

2J∑
l=1

exp(uil − uij)

)
s2ds+ o(1)

=
1

J

J∑
k=1

e(uik−uij)
1

J − 1

J∑
m=1
m ̸=k

e(uim−uij) ×

(
1

J

2J∑
l=1

exp(uil − uij)

)−3

+ o(1)
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=
exp(uij)

1
J

∑2J
k=1 exp(uik)

×
1
J

∑J
k=1 exp(uik)

1
J−1

∑J
m=1
m ̸=k

exp(uim)(
1
J

∑2J
l=1 exp(uil)

)2 + o(1)

=
exp(uij)

1 + 1
J

∑J
k=1 exp(uik)

×

(
1
J

∑J
k=1 exp(uik)

1 + 1
J

∑J
k=1 exp(uik)

)2

+ o(1)

From this we then have that:

JP(Ui,(2) > Uij ≥ Ui,(3)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
( ∫

exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)2

We can thus conclude that:

JP(Uij ≥ Ui,(3)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
3∑

k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)k−1

P(Ui0 ≥ Ui,(3)|xi, zj) −→
1

1 +
∫
exp(U(xi, s))m(s)ds

×
3∑

k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)k−1

To prove this result for any q, I derive the limit of the following conditional probability:

P(Ui,(q−1) > Uij ≥ Ui,(q)|(uik)Jk=1)

Following the same steps, the probability that there exists q − 1 alternatives preferred to j

but that j is preferred to the rest can be expressed as:

P(Ui,(q−1) > Uij ≥ Ui,(q)|(uik)Jk=1)

=

∫
1

(q − 1)!

J∑
j1=1

...

J∑
jq−1=1

jq−1 /∈{j1,...,jq−2}

P(Uij1 > Uij , ..., Uijq−1
> Uij , Uij ≥ Uil, l ∈ I \ {j1, ..., jq−1, j}|(uik)Jk=1, ηij = s)f(s)ds

which results in:

JP(Ui,(q−1) > Uij ≥ Ui,(q)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
( ∫

exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)q−1
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We can thus derive the following result:

JP(Uij ≥ Ui,(q)|xi, zj) −→
exp(U(xi, zj))

1 +
∫
exp(U(xi, s))m(s)ds

×
q∑

k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)k−1

=exp(U(xi, zj))×
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)q]

P(Ui0 ≥ Ui,(q)|xi, zj) −→
1

1 +
∫
exp(U(xi, s))m(s)ds

×
q∑

k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)k−1

=

[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫
exp(U(xi, s))m(s)ds

)q]
This concludes the proof of Proposition 2.

1.A.3 Proof of Theorem 1

I start by proving part (i) and (ii) of Theorem 1. As in Menzel (2015), I first restrict the

space of functions to which the solutions to the fixed point problem described in Equation 1.6

can belong. Namely, I show that we can restrict ourselves to a Banach space of continuous

functions.

Assume that there exists a pair of functions Γ∗
w and Γ∗

m that solve the fixed point problem.

By definition of Ψw and using that Γ∗
m ≥ 0, we have for any q ≥ 1:

Γ∗
w(x) = Ψ[Γ∗

m](x) =

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γ∗
m(s)

1 + Γ∗
m(s)

)q]
m(s)ds

≤
∫

exp{U(x, s) + V (x, s)}m(s)ds

≤ exp{Ū + V̄ }

where Ū and V̄ are the upper bounds of the functions U and V , respectively. Given that this

bound holds also for q = 1, this implies that we can bound similarly Γ∗
m(x) ≤ exp{Ū + V̄ }.

I now establish continuity of the solutions Γ∗
w and Γ∗

m. By definition, I rewrite:

Γ∗
w(x) = Ψw[Ψm[Γ

∗
w]](x)
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=

∫
exp{U(x, s) + V (x, s)}

[
1−

( ∫ exp{U(t,s)+V (t,s)}
1+Γ∗

w(t)
w(t)dt

1 +
∫ exp{U(t,s)+V (t,s)}

1+Γ∗
w(t)

w(t)dt

)q]
m(s)ds

Similarly, I write:

Γ∗
m(z) = Ψm[Ψw[Γ

∗
m]](z)

=

∫
exp{U(t, z) + V (t, z)}

1 +
∫
exp{U(t, s) + V (t, s)}

[
1−

(
Γ∗
m(s)

1+Γ∗
m(s)

)q]
m(s)ds

w(t)dt

Since U and V are continuous and all the integrals are nonnegative, Ψw[Ψm[Γ
∗
w]] and Ψm[Ψw[Γ

∗
m]]

are also continuous which establishes continuity of the solutions Γ∗
w and Γ∗

m. Differentiability

of Γ∗
w and Γ∗

m also follows from differentiability of U and V which is stated in Assumption 1.

We can thus restrict the spaces in which Γ∗
w and Γ∗

m belong to a Banach space of nonnegative

bounded continuous functions that I call C∗.

Consider now two pairs of functions (Γw,Γm) and (Γ̃w, Γ̃m) belonging to C∗ × C∗. I first

rewrite:

logΨw[log Γm](x) =

∫
exp{U(x, s) + V (x, s)}

[
1−

(
exp{log Γ∗

m(s)}
1 + exp{log Γ∗

m(s)}

)q]
m(s)ds

Given that Ψw and Ψm are Gâteaux differentiable, I use the mean value inequality to establish

that:

∣∣∣∣∣∣ log Ψw[Γm](x)− log Ψw[Γ̃m](x)
∣∣∣∣∣∣

∞

≤ sup
a∈[0,1]

∣∣∣∣∣∣d log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ log Γm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞

where we can write:

d log Ψw[log Γm](x) = − 1

Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

1 + Γm(s)

(
Γm(s)

1 + Γm(s)

)q

m(s)ds

Rearranging this expression gives the following:

d log Ψw[log Γm](x) =− 1

Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γm(s)

1 + Γm(s)

)q]
× q(Γm(s))

q

(1 + Γm(s))q+1 − (Γm(s))q − (Γ∗
m(s))

q+1
m(s)ds
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Since Γ∗
m has to be positive, we can show that:

q(Γm(s))
q

(1 + Γm(s))q+1 − (Γm(s))q − (Γm(s))q+1
=

q(Γm(s))
q∑q+1

k=0
(q+1)!

k!(q+1−k)!
(Γm(s))k − (Γm(s))q − (Γm(s))q+1

=
q(Γm(s))

q∑q−1
k=0

(q+1)!
k!(q+1−k)!

(Γm(s))k + q(Γm(s))q

≤ q(exp{Ū + V̄ })q∑q−1
k=0

(q+1)!
k!(q+1−k)!

(exp{Ū + V̄ })k + q(exp{Ū + V̄ })q
:= λq

This implies that:

|d log Ψw[log Γm](x)| ≤
λq

Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γ∗
m(s)

1 + Γ∗
m(s)

)q]
m(s)ds

= λq ≤ 1

From this, I conclude that:

sup
a∈[0,1]

∣∣∣∣∣∣d log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞

≤ λq

which implies that:

∣∣∣∣∣∣ log Ψw[Γm](x)− log Ψw[Γ̃m](x)
∣∣∣∣∣∣
∞

≤ λq

∣∣∣∣∣∣ log Γm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞

Given that this holds for any q ≥ 1, I conclude that the mapping (log Γw, log Γm) 7→
(logΨw[Γm], log Ψm[Γw]) is a contraction which proves claim (i) of Theorem 1. The proof

of part (ii) is a direct implication of the Banach fixed point theorem.

Before proving part (iii) of Theorem 1, intermediary steps are needed. In what follows,

I first prove that the size of opportunity sets grow at a rate
√
n for any q ≥ 1. From

this, I then show that the dependence between opportunity sets and taste shocks under the

extremal matchings vanishes as n grows to infinity. I then use this result to show that we

can approximate inclusive values arising from any stable match by inclusive value functions

which have an approximate fixed point representation. I then finally prove that the solution

to the finite sample fixed point problem converges to the unique solution of the population

fixed point problem which concludes the proof of Theorem 1.(iii).
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Rate of Size of Feasible Choice Sets

Define, for a given stable matching µ∗, the number of firms feasible to worker i and the

number of workers feasible to firm j as:

J∗
wi =

nm∑
j=1

1{Vji ≥ Vj,(q)(Wj(µ
∗))} and J∗

mj =
nw∑
i=1

1{Uji ≥ Ui,(1)(Mi(µ
∗))}

Similarly, define the number of firm that worker i would accept and the number of workers

that firm j would accept:

L∗
wi =

nm∑
j=1

1{Uji ≥ Ui,(1)(Mi(µ
∗))} and L∗

mj =
nw∑
i=1

1{Vji ≥ Vj,(q)(Wj(µ
∗))}

To characterize the limit of the conditional matching probabilities, we need to know at which

rate these objects grow. Menzel (2015) showed that for q = 1, we can bound each of these

by quantities that grow at a rate
√
n. I show that this extends to any q > 1 by proving the

following:

Lemma 1 Under Assumptions 1 and 2 and for any stable matching µ∗, we have for any

finite q ≥ 1:

n1/2 exp(−V̄ + γm)

1 + exp(Ū + V̄ + γw)
≤ J∗

wi ≤ n1/2 exp(V̄ + γm)

n1/2 exp(−Ū + γw)

1 + exp(Ū + V̄ + γm)
≤ J∗

mj ≤ n1/2 exp(Ū + γw)

n1/2 exp(−Ū + γm)

1 + exp(Ū + V̄ + γm)
≤ L∗

wi ≤ n1/2 exp(Ū + γm)

n1/2 exp(−V̄ + γw)

1 + exp(Ū + V̄ + γw)
≤ L∗

mj ≤ n1/2 exp(V̄ + γw)

for each i = 1, ..., nw and j = 1, ..., nm with probability approaching 1 as n→ ∞.

Proof: I rely on two important observations:

(a). We can bound, for any q ≥ 1, Vj,(q)(Wj(µ
∗)) from above by Vj,(1)(Wj(µ

∗)) and similarly

Ui,(q)(Mi(µ
∗)) by Ui,(1)(Mi(µ

∗)) for all i = 1, ..., nw and j = 1, ..., nm.

(b). As in Menzel (2015), we can define exogenous sets W̄j = {i : Uij ≥ Ui0} and M̄i = {j :
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Vij ≥ V0j} such that Wj(µ
∗) ⊂ W̄j and Mi(µ

∗) ⊂ M̄i as well as W
◦
j = {i : Uij ≥ Ui,(1)(M̄i)}

and M◦
i,(q) = {j : Vij ≥ Vj,(q)(W̄j)} such that W ◦

j ⊂ Wj(µ
∗) and M◦

i,(q) ⊂Mi(µ
∗).

A first important result is that (a) implies that for any q > 1, M◦
i,(1) ⊂ M◦

i,(q) ⊂ Mi(µ
∗).

From this, I construct the following bounds on J∗
wi:

J◦
wi =

nm∑
j=1

1{j ∈M◦
i,(1)} ≤

nm∑
j=1

1{j ∈Mi(µ
∗)} ≤

nm∑
j=1

1{j ∈ M̄i} = J̄wi

from there, using Proposition 2, we can show that:

E[J̄wi|xi, z1, ..., znm ] =
1

J

nm∑
j=1

exp{V (xi, zj)}
1 + 1

J
exp{V (xi, zj)}

+ o(1) ≤ nm

J
exp{Ū}+ o(1)

which implies under Assumption 2 that:

E[J̄wi] ≤ n1/2 exp{V̄ + γm}+ o(1)

Following the same steps as Menzel (2015) we can then show that the variance of J̄wi converges

to zero which implies that:

n−1/2(J̄wi − E[J̄wi]) → 0

We have thus established that J∗
wi ≤ n1/2 exp{V̄ + γm} with probability approaching 1 as

n→ ∞. Following the same steps, we can show symmetrically that:

J∗
mj ≤ n1/2 exp{Ū + γw}

L∗
wi ≤ n1/2 exp{V̄ + γm}

L∗
mj ≤ n1/2 exp{Ū + γw}

with probability approaching 1 as n → ∞. We now consider the lower bound J◦
wi. We can

again use Proposition 2 to show that:

E[J◦
wi|(xl)l∈W̄j

, z1, ..., znm ] =
1

J

nm∑
j=1

exp{V (xi, zj)}
1 + 1

J

∑
l∈W̄j

exp{V (xl, zj)}
+ o(1)

≥ nm

J

exp{−V̄ }
1 +

J̄mj

J
exp{V̄ }

+ o(1)
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Using the higher bound for J∗
mj derived just above and Jensen’s inequality, we can finally

show that:

E[J◦
wi] ≥ n1/2 exp{−V̄ + γm}

1 + exp{V̄ + Ū + γw}
+ o(1)

Following Menzel (2015) we can then also show that the variance of J◦
wi converges to zero

which implies that:

n−1/2(J◦
wi − E[J◦

wi]) → 0

This establishes that J∗
wi ≥ n1/2 exp{−V̄+γm}

1+exp{V̄+Ū+γw} with probability approaching 1 as n → ∞.

Following the same steps, we can show that symmetrically, we have:

J∗
mj ≥ n1/2 exp{−Ū + γw}

1 + exp{V̄ + Ū + γm}

L∗
wi ≥ n1/2 exp{−Ū + γm}

1 + exp{V̄ + Ū + γm}

L∗
mj ≥ n1/2 exp{−V̄ + γw}

1 + exp{V̄ + Ū + γw}

with probability approaching 1 as n→ ∞. This concludes the proof of Lemma 1.

Exogeneity of Feasible Choice Sets

We now need to show that as n → ∞, the dependence between agents taste shocks and

opportunity sets vanishes. Again, a proof exists for q = 1 in Menzel (2015) but I show that

this result extends to q > 1.

For the rest of the proof, I define the following set of indicator functions E∗
ij = 1{i ∈

Wj(µ
∗)} and D∗

ij = 1{j ∈ Mi(µ
∗)} for all workers i = 1, ..., nw and firms j = 1, ..., nm. The

first result to establish is that the probability that changing one availability indicator affects

another agents’ opportunity set converges to zero as n → ∞ for any q ≥ 1. I first prove the

following result:

Lemma 2 Suppose Assumption 1 and 2 hold and suppose we change one availability indi-

cator E∗
ij exogenously to Ẽij = 1 − E∗

ij and then iterate the deferred acceptance algorithm

from this point until convergence. Denote the resulting availability indicators {Ẽlk, D̃lk : l =

1, ..., nw, k = 1, ..., nm}. We have for any q ≥ 1 and any worker l and firm k:

47



(i). P(D̃l ̸= D∗
l |D∗

l , D
∗
ij = 0) = P(Ẽk ̸= E∗

k |E∗
l , D

∗
ij = 0) = 0

(ii). There exist constants ā <∞ and 0 < λ < 1 such that:

P(D̃l ̸= D∗
l |D∗

l , D
∗
ij = 1) ≤ n−1/2 ā

1− λ

P(Ẽk ̸= E∗
k |E∗

l , E
∗
ij = 1) ≤ n−1/2 ā

1− λ

The same result holds for an exogenous change of Dij to D̃ij = 1−Dij.

Proof: Suppose we change E∗
ji exogenously to Ẽji = 1−Eji and that we iterate the deferred

acceptance algorithm from this stage. This will only trigger a chain of rematches if this affects

the indirect utility of either i or j. Suppose D∗
ij = 0 and that E∗

ij = 0 meaning that firm

j is not feasible to worker i and vice versa. Suppose now that Ẽji = 1 − E∗
ij = 1, meaning

that suddenly worker i’s preference for firm j increase such that worker i becomes feasible

for firm j. This will not affect the indirect utility of firm j nor worker i given that firm j is

not feasible to worker i. This change will thus not trigger a chain of rematches. A similar

argument can be used in the case where E∗
ij changes from 1 to Ẽji = 1 − E∗

ij = 0. This

establishes part (i) of Lemma 2 and does not depend on the value of q.

Now suppose that D∗
ij = 1 such that if Ẽji = 1 − E∗

ij = 1, now firm j and worker i will

want to rematch together or if Ẽji = 1−E∗
ij = 0 firm j and worker i will break their current

match. This will trigger a chain of rematches than can potentially cycle back to worker i

or firm j’s opportunity set. I start by showing that, for any q > 1 at each step s of these

subsequent rematches, there is at most one indicator in the vector D
(s)
l corresponding to a

firm k with E
(s)
lk = 1 that will change. The idea of the proof is the following: suppose that a

given worker l matched to firm k in step (s−1) becomes unavailable to firm k in step s. This

firm will then replace this worker by the next qth ranked feasible applicant, which will only

change the availability indicator of this firm to this newly hired worker. On the other hand,

if a given worker becomes available to a firm while this firm prefers this worker to one of its

top q matched employees, then it will replace the qth ranked worker by this new employee,

making this firm unavailable to the kicked out employee. In both cases, this will only change

at most one availability indicator among the workers who are willing to match with this firm.

Note that at each of these steps, there is a chance that the chain is terminated if the next qth

ranked feasible worker is the outside option. A similar argument can be used symmetrically
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from the workers perspective by replacing q by 1.

The rest of the proof now consists in bounding the probability that the chain is terminated

by either (a) firm k or worker l preferring the outside option to any other option in their

opportunity set or (b) a change in availability indicators of worker k Dk. I define µs the

state of the match in iteration s of the deferred acceptance algorithm following an exogenous

change of Eji to Ẽji = 1 − Eji. The first step bounds the probability that the chain is

terminated by the outside option at stage s.

I start from the following observation: given that P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk) ≥ P(Vlk >

Vk,(1)(Wk(µ
s))|xl, zk) and that W ◦

k,(1) ⊂ W ∗
k ⊂ W̄k, we have from Proposition 2 and Lemma 1

that for any firm k and worker l:

P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk) ≥ P(Vlk > Vk,(1)(W̄k)|xl, zk)

= n−1/2 exp(V (zk, xl))

1 + 1
J

∑
i∈W̄k

exp(V (zk, xi))
+ o(1)

≥ n−1/2 exp(V (zk, xl))

1 + exp(Ū + V̄ + γw)
+ o(1)

This implies that, conditional on D∗
i and as n approaches infinity:

P(V0k > Vk,(q)|D∗
i , xi, zk) ≥

1

1 + exp(Ū + V̄ + γw)
=: ps

Following now the same steps as Menzel (2015), we have, by Bayes law that:

P(V0k > Vk,(q)|D∗
l , D̃

(s)
lk = 1, xl, zk) ≥

Lps
L̄(1− ps) + Lps

where L̄ and L are respectively the upper and lower bounds on L∗
mj taken from Lemma 1.

From there, we finally get that:

1− P(V0k > Vk,(q)|D∗
l , D̃

(s)
lk = 1, xl, zk) ≤

L̄ exp(Ū + V̄ + γw)

L̄ exp(Ū + V̄ + γw) + L
=: λ < 1

This essentially means that the probability that the chain is not terminated at stage s is

bounded away from 1.

Now we bound the probability that the chain leads to a change in Dl at stage s. We can
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thus bound the following probability using Proposition 2 and Lemma 1:

P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk)

≤ P(Vlk > Vk,(q)(W
◦
k,(1))|xl, zk)

= n−1/2 exp(V (zk, xl))

1−( 1
J

∑
i∈W ◦

k,(1)
exp(V (zk, xi))

1 + 1
J

∑
i∈W ◦

k,(1)
exp(V (zk, xi))

)q
+ o(1)

≤ n−1/2 exp(V (zk, xl))

[
1−

(
J◦
mk

J
exp(−V̄ )

1 +
J◦
mk

J
exp(−V̄ )

)q]
+ o(1)

≤ n−1/2 exp(V (zk, xl))

[
1−

(
exp(−V̄ − Ū + γw)

1 + exp(−V̄ − Ū + γw) + exp(Ū + V̄ + γm)

)q]
+ o(1)

≤ n−1/2 exp(V̄ ) + o(1)

This implies that for n sufficiently large, we have:

P(D̃
(s)
l ̸= D∗

l |D∗
l , D̃

(s)
lk = 1, xl, zk)

≤ n−1/2 exp(V̄ )L̄

n−1/2 exp(V̄ )L̄+ L
≤ n−1/2 exp(V̄ )

L̄

L
= n−1/2ā

Using the law of total probability, we can thus bound as n→ ∞ the conditional probability

that D̃l ̸= D∗
l :

P(D̃l ̸= D∗
l |D∗

l ) ≤
∞∑
s=1

λsn−1/2ā ≤ n−1/2ā

1− λ

which proves part (b) of Lemma 2.

From there, I state the main result that the dependence between taste shocks and agents’

opportunity sets vanishes as n → ∞ for any q ≥ 1. I first define the joint distribution of

ηi = (ηi1, ..., ηinm)
′, ϵj = (ϵ1j, ..., ϵnwj)

′ and the availability indicators DW
i , EW

j , DM
i , EM

j

corresponding to the worker-optimal and the firm-optimal stable matches. Note that I con-

sider these two specific matches since the worker-optimal and firm-optimal stable matches

are defined with probability 1 conditional on the realization of the taste shocks ηi and ϵj.

Indeed, the distribution of availability indicators arising from an arbitrary stable match

D∗
i would not be well defined. I also define: DW

i,−j = (DW
i1 , ..., D

W
i(j−1), D

W
i(j+1), ..., D

W
inm

)

and E−i,j = (EW
1j , ..., E

W
(i−1)j, E

W
(i+1)j, ..., E

W
nwj) with analogous notations for the firm optimal
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match. I then define the conditional c.d.f.s:

GW
η|D(η|d) = P(ηi ≤ η|DW

i = d), d ∈ {0, 1}nm

GW
η,ϵ|D,E(η, ϵ|d, e) = P(ηi ≤ η, ϵj ≤ ϵ|DW

i,−j = d, E
W
−i,j = e), d ∈ {0, 1}nm−1, e ∈ {0, 1}nw−1

with analogous definitions for the firm-optimal stable match and associated p.d.f.s gWη|D and

gWη,ϵ|D,E. The main result is the following:

Lemma 3 Under Assumption 1 and 2, we have:

(i). gWη|D and gMη|D satisfy:

lim
n

∣∣∣gWη|D(η|DW
i )

gη(η)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η|DM
i )

gη(η)
− 1
∣∣∣ = 1

(ii). gWη,ϵ|D,E and gMη,ϵ|D,E satisfy:

lim
n

∣∣∣gWη|D(η, ϵ|DW
i,−j, E

W
−i,j)

gη,ϵ(η, ϵ)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η, ϵ|DM
i,−j, E

M
−i,j)

gη,ϵ(η, ϵ)
− 1
∣∣∣ = 1

The same results holds for the firm side of the market.

Proof: Let gWη,D be the joint p.d.f. of taste shocks and availability indicators under the

worker optimal stable match. We can rewrite, by definition of a conditional density:

gWη|D(η|DW
i )

gη(η)
=

gWη,D(η,D
W
i )

gη(η)P (DW
i )

=
P (DW

i |ηi = η)gη(η)

gη(η)P (DW
i )

=
P (DW

i |ηi = η)

P (DW
i )

I then follow similar steps as in Menzel (2015) to show that:

∣∣∣P (DW
i |ηi = η)

P (DW
i )

− 1
∣∣∣ ≤ sup

η1,η2

∣∣∣P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1
∣∣∣

such that I only need to bound the probability that shifting ηi from η1 to η2 changes worker

i’s opportunity set. This insight does not depend on q. We know from Lemma 2 that

changing an availability indicator will trigger a chain of rematches that could change worker
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i’s opportunity set with probability less than n−1/2ā
1−λ

as n approaches infinity. Here, we can

show that shifting agent i’s taste shocks would trigger at most two chains of rematches.

Indeed, if the shift in taste shocks makes agent i prefers firm l with Dil = 1 instead of her

current employer firm j, this changes both Eij from 1 to 0 and Eil from 0 to 1. Thus, this

would trigger two chains of rematches where both firm j and the worker which was displaced

from firm l by worker i would need to find a new match. We can thus conclude that:

P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1 ≤ 2
n−1/2ā

1− λ

as n→ ∞ which can be shown to hold also in absolute value. As the right hand side converges

to 0 as n → ∞, this proves the first part of claim (i). Now consider the symmetrical case

where we would shift firm j’s taste shocks. Following a similar argument, we can see that

this would create at most 2q chains of rematches. Indeed, assuming that such a shift in

firm j’s taste shocks would make it want to replace all of its q employees, this implies that

the q workers which were let go along with the (potentially) q firms which lost one of their

employees would need to find a new match. This implies that:

P (EW
j |ϵj = ϵ1)

P (EW
j |ϵj = ϵ2)

− 1 ≤ qn−1/2 2ā

1− λ

as n→ ∞ which can be shown to hold also in absolute value. As the right hand side converges

to 0 as n→ ∞, this proves the first part of claim (i).

For part (ii), note that the argument can be extended in a similar way. If you change

both firm j and worker i’s taste shocks this can trigger at most 2(q + 1) chains of rematches

such that we can bound the probability of a shift in opportunity sets by (q + 1)n−1/2 2ā
1−λ

which can be made arbitrarily close to 0 as n approaches infinity.

Bounds for Inclusive Values

Since I have established exogeneity of opportunity sets under the firm-optimal and worker-

optimal stable matches, the rest of the analysis focuses on characterizing the limit of inclusive

values that arise under these extremal matchings. As in Menzel (2015), I show that both

converge to a unique limit, implying that inclusive values arising from any stable matching

also converge towards this limit.
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I define IWwi = Iwi(µ
W ) and IWmj = Imj(µ

W ) the inclusive values that arise from the worker-

optimal stable match. Similarly, I define IMwi and I
M
mj as the inclusive values that arise from

the firm-optimal stable match such that for any stable match µ∗, we have IWwi ≥ Iwi(µ
∗) ≥ IMwi

and IWmj ≤ Iwi(µ
∗) ≤ IMmj. I state the following result:

Lemma 4 Under Assumption 1 and 2:

(i). For all i = 1, ..., nw and j = 1, ..., nm:

IMwi ≥ Γ̂M
wn(xi) + op(1) and IMmj ≤ Γ̂M

mn(zj) + op(1)

where the analogous result holds for the worker-optimal stable match with the side of inequal-

ities reversed.

(ii). If the weight functions ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

x, then

sup
x∈X

1

n

nm∑
j=1

ω(x, zj)(I
M
mj − Γ̂M

m (zj)) ≤ op(1)

and

inf
z∈Z

1

n

nw∑
i=1

ω(xi, z)(I
M
wi − Γ̂M

w (xi)) ≥ op(1)

The analogous conclusion holds for the worker-optimal stable match where the sign of the

inequalities is reversed and if ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

z.

Proof: I first show that we can bound conditional choice probabilities given an opportunity

set arising from a stable match using the extremal matchings. I first define the conditional

probability that worker i chooses firm j given the realization of opportunity set MM arising

from the firm-optimal stable match:

ΛM
w (x, z,MM) = P(Uij ≥ Ui,(1)(M

M
i )|MM

i =MM , xi = x, zj = z)

Similarly, I define the equivalent object from firm j’s perspective:

ΛM
m (x, z,WM) = P(Vij ≥ Vj,(q)(W

M
j )|WM

j = WM , xi = x, zj = z)
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I also define the conditional choice probabilities under exogenous opportunity sets as:

Λw(x, z,M) = P(Uij ≥ Ui,(1)(M)|xi = x, zj = z)

Λm(x, z,W ) = P(Vij ≥ Vi,(q)(W )|xi = x, zj = z)

As there are several stable matches such that M∗
i =MM

i and W ∗
j = WM

j we can show that:

JΛM
w (x, z,MM

i ) ≤ JΛw(x, z,M
M
i ) + op(1)

JΛM
m (x, z,WM

j ) ≥ JΛm(x, z,W
M
j ) + op(1)

Similarly, we have:

JΛW
w (x, z,MW

i ) ≥ JΛw(x, z,M
W
i ) + op(1)

JΛW
m (x, z,WW

j ) ≤ JΛm(x, z,W
W
j ) + op(1)

Using Proposition 2, we can then show that for i = 1, ..., nw, l1 = 1, ..., nm and l2 ̸= l1:

E[J(DM
il1

− ΛM
m (xi, zl1 , I

M
ml1

))|IMml1
, xi, zl1 ] → 0

and

E[J2(DM
il1

− ΛM
m (xi, zl1 , I

M
ml1

))(DM
il1

− ΛM
m (xi, zl2 , I

M
ml2

))|IMml1
, IMml2

, xi, zl1 , zl2 ] → 0

Therefore, since under Assumption 1, we know that exp(U(xi, zj)) is bounded, we can thus

conclude that:

Var

(
1

n

nm∑
k=1

exp{U(xi, zk)}J(DM
ik − ΛM

m (xi, zk, I
M
mk))

)
→ 0

which implies that:

1

n

nm∑
k=1

exp{U(xi, zk)}J(DM
ik − ΛM

m (xi, zk, I
M
mk)) = op(1)
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Given that from Proposition 2:

JΛM
m (x, z,WM

j ) ≥ exp{V (x, z)}

[
1−

(
IMmj

1 + IMmj

)q]
+ op(1)

This implies that:

1

n

nm∑
k=1

exp{U(xi, zk)}
(
JDM

ik − exp{V (xi, zk)}
[
1−

(
IMmk

1 + IMmk

)q])
≥ op(1)

which proves the first claim of part (i) of Lemma 4. From firm j’s perspective, I show using

the same arguments that:

1

n

nw∑
l=1

exp{V (xl, zj)}J(EM
lj − ΛM

w (xl, zj, I
M
wl )) = op(1)

which implies, using Proposition 2:

1

n

nw∑
l=1

exp{V (xl, zj)}
(
JEM

lj − exp{U(xl, zj)}
1 + IMwl

)
≥ op(1)

This prove part (i) of Lemma 4. Note that analogous arguments can be used to bound

inclusive values arising from the worker-optimal stable match.

Part (ii) follows from part (i) of the Lemma and the boundedness condition on ω which

implies pointwise convergence. The Glivenko-Cantelli condition on ω then implies uniform

convergence. This concludes the proof of Lemma 4.

The next step consists in establishing uniform convergence with respect to Γw ∈ Tw and

Γm ∈ Tm of the fixed point mappings Ψ̂w and Ψ̂m to their population counterparts. I define:

Ψ̂w[Γm](x) =
1

n

nm∑
j=1

ψw(zj, x; Γm)

where ψw is defined as:

ψw(zj, x; Γm) = exp{U(x, zj) + V (x, zj)}
[
1−

(
Γm(zj)

1 + Γm(zj)

)q]
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Similarly, I define:

Ψ̂m[Γw](z) =
1

n

nw∑
i=1

ψm(z, xi; Γw)

where ψm is defined as:

ψm(z, xi; Γw) =
exp{U(xi, z) + V (xi, z)}

1 + Γw(xi)

I define the class of functions Fw : {ψw(., x; Γm) : x ∈ X ,Γm ∈ Tm} and Fm : {ψm(., x; Γw) :

x ∈ X ,Γw ∈ Tw}.

Lemma 5 Under Assumption 1:

(i). The classes of functions Fw and Fw are Glivenko-Cantelli.

(ii). As n→ ∞:

(Ψ̂w[Γm](x), Ψ̂m[Γw](z)) → (Ψw[Γm](x),Ψm[Γw](z))

uniformly in Γw ∈ Tw, Γm ∈ Tm and (x, z) ∈ X × Z.

Proof: Under Assumption 1, exp{U(x, z) + V (x, z)} is Lipschitz in x and z such that this

class of functions is Glivenko-Cantelli. Γm and Γw are bounded and have bounded p ≥ 1

derivatives which makes the class of functions Fw ∪Fm Glivenko-Cantelli. Finally, note that

the transformation ψm(g, h) = g
1+h

is bounded and continuous since h and g are bounded

and continuous and h ≥ 0. Similarly, the transformation ψw(g, h) = g
[
1−

(
h

1+h

)q]
is also

bounded and continuous for any q ≥ 1. Theorem 3 in van der Vaart and Wellner (2000)

implies claim (i) of Lemma 5. Part (ii) of Lemma 5 is a direct implication of part (i).

Proof of Theorem 3.1 (iii)

I finally turn to the proof of part (iii) of Theorem 1. I first apply Lemma 4 to show that for

any q ≥ 1:

Γ̂M
w (x) =

1

n

nm∑
j=1

exp{U(x, zj) + V (x, zj)}

[
1−

(
IMmj

1 + IMmj

)q]

≥ 1

n

nm∑
j=1

exp{U(x, zj) + V (x, zj)}

[
1−

(
Γ̂M
m (zj)

1 + Γ̂M
m (zj)

)q]
+ op(1)
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Similarly, I show that:

Γ̂M
m (z) ≤ 1

n

nw∑
i=1

exp{U(xi, z) + V (xi, z)}
1 + Γ̂M

w (xi)
+ op(1)

Analogous bounds can be formed for the inclusive value functions of the worker-optimal

stable match. We thus have that:

Γ̂M
w ≥ Ψ̂M

w [Γ̂M
m ] + op(1) and Γ̂M

m ≤ Ψ̂M
m [Γ̂M

w ] + op(1)

Γ̂W
w ≤ Ψ̂W

w [Γ̂W
m ] + op(1) and Γ̂W

m ≥ Ψ̂W
m [Γ̂W

w ] + op(1)

Given that Ψ̂w[Γm] and Ψ̂m[Γw] are nonincreasing and Lipschitz continuous in Γm and Γw,

we have:

Γ̂M
w ≥ Ψ̂M

w [Γ̂M
m ] + op(1) ≥ Ψ̂M

w [Ψ̂M
m [Γ̂M

w ]] + op(1)

Thus for any pair of functions (Γ∗
w,Γ

∗
m) solving the fixed point problem:

Γ∗
w = Ψ̂w[Γ

∗
m] + op(1) and Γ∗

m = Ψ̂m[Γ
∗
w] + op(1)

we thus have:

Γ̂M
w ≥ Γ∗

w + op(1) and Γ̂M
m ≤ Γ∗

m + op(1)

However, we know that the mapping Ψ̂ is a contraction in logs, which means that it has a

unique fixed point (Γ∗
w,Γ

∗
m). We also know, by definition, that:

Γ̂M
w ≤ Γ̂W

w and Γ̂M
m ≥ Γ̂W

m

which implies that:

Γ∗
w + op(1) ≥ Γ̂W

w ≥ Γ̂M
w ≥ Γ∗

w + op(1)

Γ∗
m + op(1) ≤ Γ̂W

m ≤ Γ̂M
m ≤ Γ∗

m + op(1)

which in turn implies that:

Γ̂M
w = Γ∗

w + op(1) and Γ̂M
m = Γ∗

m + op(1)
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Γ̂W
w = Γ∗

w + op(1) and Γ̂W
m = Γ∗

m + op(1)

Combining this with Lemma 3, this gives us for all i = 1, ..., nw and all j = 1, ..., nm:

IMwi = Γ∗
w + op(1) and IMmj = Γ∗

m + op(1)

IWwi = Γ∗
w + op(1) and IMmj = Γ∗

m + op(1)

Note that given that inclusive value functions that would arise under any stable match

µ∗ defined as I∗wi and I
∗
mj are such that IMwi ≤ I∗wi ≤ IWwi and IMmj ≥ I∗mj ≥ IWmj the equality

written above holds also for any I∗wi and I
∗
mj.

I have shown that inclusive values can be approximated by the solution of the finite

sample fixed point problem. Lemma 5 finally implies that the solution of the finite sample

fixed point problem converges towards the solution of its population equivalent. This proves

Theorem 1.(iii).

1.A.4 Proof of Proposition 3

Assume that firm j is matched with a group of k = 2 workers and that we want to characterize

the limit of the following CCP:

P(µm(j) = {i, l} ∪ {0}q−2|xi, xl, zj)

We can rewrite it as follows:

P(Uij ≥ Ui,(1)(Mi(µ
∗)), Ulj ≥ Ul,(1)(Ml(µ

∗)), Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

+ P(Uij ≥ Ui,(1)(Mi(µ
∗)), Ulj ≥ Ul,(1)(Ml(µ

∗)), Vlj > Vij > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Uij ≥ Ui,(1)(Mi(µ
∗))|xi, zj)× P(Ulj ≥ Ui,(1)(Mi(µ

∗))|xl, zj)

×
[
P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ

∗))|xi, xl, zj) + P(Vlj > Vij > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

]
We can then decompose the rank ordered CCPs as follows:

P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Vij ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj)× P(Vlj ≥ Vj,(1)(Wj(µ

∗) \ i)|xi, xl, zj)
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× P(V0j ≥ Vj,(1)(Wj(µ
∗) \ {i, l})|xi, xl, zj)

In the limit, removing one arbitrary alternative from opportunity sets does not affect inclusive

values:

n−1/2
∑

i∈Wj(µ∗)\{l}

exp{V (xi, zj)} = n−1/2
∑

i∈Wj(µ∗)

exp{V (xi, zj)} − n−1/2 exp{V (xl, zj)}

= n−1/2
∑

i∈Wj(µ∗)

exp{V (xi, zj)}+ op(1) = I∗mj + op(1)

We can thus conclude that:

P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Vij ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj)× P(Vlj ≥ Vj,(1)(Wj(µ

∗))|xi, xl, zj)

× P(V0j ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj) + o(1)

Which, using Proposition 2 and Theorem 1, implies that:

n2P(µm(j) = {i, l} ∪ {0}q−2|xi, xl, zj) −→
2 exp{U(xi, zj) + U(xl, zj) + V (xi, zj) + V (xl, zj)}

(1 + Γ∗
w(xi))(1 + Γ∗

w(xl))(1 + Γ∗
w(zj))

3

where Γ∗
w and Γ∗

m are the solutions of the fixed point problem described in Equation 1.6. To

extend to proof to any k, a similar argument applies, except that the number of rank ordered

CCPs becomes k!. This proves part (i) of Proposition 3.

A similar argument can be used to prove part (ii).

1.A.5 Proof of Proposition 6

From Theorem 1 and Proposition 2, we know that for any q ≥ 1 and for a given finite w:

n−1/2P(Uij ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w) → exp (U(x, z))

1 + Γ∗
w(x,w)

and

JP(Vij ≥ Vj,(1)(Wj(µ
∗))|xi = x, zj = z, wi = w) → exp (V (x, z) + g(w))

1 + Γm(z)
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where Γ∗
m and Γ∗

w solve the following fixed point problem:

Γ∗
w = Ψw[Γ

∗
m] and Γ∗

m = Ψm[Γ
∗
w] (1.7)

where

Ψw[Γm](x,w) =

∫
exp(U(x, s) + V (x, s) + g(w) + γm)×

[
1−

(
Γm(s)

1 + Γm(s)

)q]
m(s)ds

Ψm[Γw](x) =

∫ ∫
exp(U(s, z) + V (s, z) + g(t) + γw)

1 + Γw(s, t)
wx(s)ww(t)ds

However, as w goes to infinity, we have that:14

lim
w→∞

P(Vij ≥ Vj,(q)(Wj(µ
∗))|xi = x, zj = z, wi = w) = 1

This implies that:

lim
wi→∞

n−1/2Iwi =

∫
exp{U(x, s) + γm}m(s)ds

which in turn implies that:

lim
w→∞

nP(Uij ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w) =

exp (U(x, z))

1 +
∫
exp{U(x, s) + γm}m(s)ds

Similarly,

lim
w→∞

nP(Ui0 ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w) =

1

1 +
∫
exp{U(x, s) + γm}m(s)ds

Taking the log of these ratios separately identifies U from the joint surplus. Given that

the joint surplus is identified for finite w, we can then recover V + g. V can be separately

identified by evaluating V + g at w̄.

14The probability that an option is in workers’ opportunity sets only goes to 1 when making the shifter w
go to infinity. In He et al. (2021) and Agarwal and Somaini (2022) this is not the case as cutoffs are fixed
and finite since the number of ”colleges” or ”products” is fixed. As both the number of firms and workers
grow to infinity in our case, the cutoffs grow to infinity as the size of the market grows.
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Chapter 2

Teacher Compensation and Structural

Inequality: Evidence from Centralized

Teacher School Choice in Peru

with Matteo Bobba, Gianmarco Leon-Ciliotta, Christopher Neilson and Marco

Nieddu

Abstract. This paper studies how increasing teacher compensation at hard-to-staff schools

can reduce inequality in access to qualified teachers. Leveraging an unconditional change in

the structure of teacher compensation in Perú, we first show causal evidence that increas-

ing salaries at less desirable locations attracts teachers who score 0.45 standard deviations

higher in standardized competency tests, leading to an average increase in student test scores

of 0.33-0.38 standard deviations. We then estimate a model of teacher preferences over local

amenities, school characteristics, and wages using geocoded job postings and rich application

data from the nationwide centralized teacher assignment system. A policy that sets compen-

sation at each job posting taking into account teacher preferences is more cost-effective than

the actual policy in terms of reducing structural inequality in access to learning opportunities,

and it possibly enhances the efficiency of the education system.
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2.1 Introduction

Children born in remote and rural communities face significant disadvantages in achieving

comparable levels of academic achievement as their peers born in urban areas (World Bank,

2018). Part of these wide inter-regional disparities reflect structural and historically persistent

differences across geographic areas. Current policies can contribute to further widening the

gap in the formation of human capital if the pre-existing inequality is not compensated for

(Glewwe and Muralidharan, 2016). Key policies that reduce inequalities in access to key,

high quality, educational inputs, i.e., teachers, are at the forefront of policy and academic

discussions, yet mechanisms designed to ensure that high performing teachers accept positions

in disadvantaged areas are still relatively under explored.1

In this paper, we study how inequality in the access to learning opportunities is amplified

or reduced by policies that shape the geographic distribution of teachers. We shed light on

this question in the context of Perú, a developing country with a heterogeneous geography

and a population that is characterized by different languages, cultures, and ethnicities. In this

diverse setting, rigidities that affect wage setting in the public sector (e.g., collective bargain-

ing agreements) leads teachers sort on non-pecuniary aspects of employment (Rosen, 1986)

thereby reinforcing the stark inequality in school inputs across rural and urban communities.

We study the impact of a recent policy reform that significantly increased compensation

at hard-to-staff schools in rural areas. We use a combination of a regression discontinuity

design and an empirical model of teacher school choice to characterize the effects of the policy

and the underlying mechanisms through which it affects teacher sorting. Higher compensa-

tion at rural schools increases the supply of qualified teachers and improve student learning

outcomes, and the gains are larger for under-achieving students. Despite the positive effects

of increased compensation, we show that the current policy is both inefficient –since it fails

to account account for teachers’ heterogenous preferences over job postings– and not large

enough to effectively undo the inequality of initial conditions that hard-to-staff schools and

their communities face.

We then turn to investigate whether it is possible to redesign the compensation policy

to achieve a more equitable allocation of teachers at a lower cost. To do so, we use the

1There is ample evidence that teachers matter for student outcomes in e.g., the US (Chetty et al., 2014a;
Jackson, 2018), Ecuador (Araujo et al., 2016), Pakistan (Bau and Das, 2020) and Uganda (Buhl-Wiggers et
al., 2017).
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estimates of teacher preferences and information on school vacancies to characterize a menu

of counterfactual wage schedules that can further enhance teachers sorting toward disadvan-

taged locations without modifying the current assignment mechanism. We finally use our

framework to assess the relative cost-effectiveness of additional policy instruments that may

complement wage incentives, such as investing in rural school/community infrastructure or

increasing the local supply of teachers in disadvantaged areas.

We begin our empirical analysis by presenting descriptive evidence on the structural divide

in school inputs and academic outcomes between rural and urban areas. Administrative data

on school infrastructure, teacher qualifications, and student achievement show large gaps

between rural and urban schools. Job amenities (or the lack thereof) is one of the main

reason why rural schools have limited capacity to attract competent teachers. Using detailed

data of teachers’ preferences over job postings, we provide direct supporting evidence for

this hypothesis and show that job applications are highly skewed towards vacancies in urban

areas. Conversely, the school system is hard-pressed to staff many small rural public schools

scattered throughout the poorest parts of the country. The scarcity of teachers applying

for jobs at rural schools could be due to several factors, including insufficient compensation

(Jackson et al., 2014).

Against this backdrop, the government implemented a policy that increased compensation

for teaching positions in rural public schools, and its allocation was based on a coarse set

of school and community attributes. We exploit discrete jumps in teacher compensation at

specific thresholds of the local population to show causal evidence that, while higher wages

significantly increased the demand for vacancies in rural locations, this did not translate into a

higher share of vacancies being filled. Importantly though, teachers who chose positions that

offer higher wages have scored significantly higher (0.45σ) on the national competency test,

compared to those who chose lower-paying positions in otherwise similar teaching positions.

We show that the increase in teacher quality in high-wage schools does not come at the

expense of a reduction of qualified teachers just below the eligibility threshold for the rural

wage bonus (or more broadly from other schools that don’t offer the wage bonus, see Sections

2.4.5 and 2.5.4). Importantly, these effects are observed only for teachers who were assigned

through a centralized mechanism that follows transparent and strict priority rules (contract

teachers). As found in other settings (Duflo et al., 2015; Estrada, 2019), the local institutions

determining how teachers are evaluated and assigned are an important necessary condition
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for the effectiveness of human resource policies in the public sector.

The increase in teacher compensation also spurs better student academic achievement in

math and language (0.3σ and 0.35σ, respectively). This is only true for schools that had

an available teaching position in the recruitment drives we analyze, even though incumbent

teachers were also paid more. This evidence confirms that that higher wages do not prompt

an effort response from incumbent teachers, mirroring recent findings that show that un-

conditional wage increases do not affect student outcomes in a setting where most teachers

are public servants with permanent contracts (de Ree et al., 2018). In our context, instead,

a large proportion of school vacancies targeted by the wage reform are filled by contract

teachers, which is a common feature of teacher labor markets in Latin America and Africa.

This feature creates significant flexibility in the labor market thus allowing wage incentives

to play an important role in attracting higher quality teachers and consequently improving

student outcomes. Higher wages have a more pronounced effect on reducing the proportion

of students who score in the the first two deciles of the test score distribution, while the

effects are smaller in magnitude and relatively uniform for better-performing students. This

evidence suggests that policies that incentivize teachers sorting toward disadvantaged areas

can be effective from an equity and efficiency point of view.

Our regression-discontinuity estimates provide credible causal evidence on the local effects

of the policy, which may or may not hold more generally (e.g., in the presence of other wage

bonuses and/or equilibrium sorting effects). To evaluate the policy away from the eligibility

cutoffs, we estimate an empirical model of teacher school choice and construct counterfactual

assignments in the absence of the policy. We estimate the model parameters taking advantage

of teachers’ revealed preferences observed in the contract-teacher assignment mechanism.

The system follows a serial dictatorship algorithm where job applicants are ranked by their

competency scores and sequentially assigned to their preferred school among those that still

have an open vacancy. Together with detailed information on every school vacancy, teacher

characteristics, and final assignments, this setting is ideal for estimating a flexible model of

heterogeneous teacher preferences over wages and job attributes (Agarwal and Somaini, 2020).

The model is able to replicate the main features of the data, including the spatial sorting of

teachers, the local effects around the wage discontinuity, and broader trends along the support

of the variables that characterize rural areas (e.g., locality population and proximity to the

provincial capital). The estimated preference parameters quantify key trade-offs between
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wages and local amenities, school characteristics, teacher-school match effects, or moving

costs. Importantly, teachers belonging to ethnic minorities who predominantly reside in

rural areas are more willing to work at schools in communities from their own ethnolinguistic

group, thus requiring a lower compensation to staff these positions.

The model of teacher school choice provides a rich perspective on the effects of the re-

cent reform of the wage schedule on teacher’s spatial distribution. By comparing simulated

assignment outcomes with and without the increase in compensation, we can characterize

the policy effects on teacher sorting away from the discontinuities generated by the eligibility

cutoffs of the reform. We show that, while most of the impact of the policy on teacher quality

happens close to the population threshold, its effect on the share of filled vacancies seems

spatially concentrated in less desirable locations that are farther away from the cutoffs. The

evidence drawn from the estimated model also indicates that wage bonuses generate, on net,

a positive reallocation effect across the entire country, which is explained by the inflow of

applicants who are matched to a school vacancy due to the wage incentives.

The changes in predicted teachers’ utility with and without the increase in compensation

are markedly heterogenous within geographic areas that pay the same wage, indicating large

scope for improvement in the targeting design of the current policy. We thus turn to the

evaluation of alternative compensation schemes using a matching-with-contracts framework

(Hatfield and Milgrom, 2005). In this framework, we maintain the allocation mechanism that

is currently in place for contract teachers (deferred acceptance, DA) and allow schools to in-

crease the wages they offer sequentially until they fill their vacancies, either unconditionally

or conditionally on the quality of the assigned teacher. We characterize the school-optimal

stable allocation under a generalized DA algorithm and show that a policy that sets com-

pensation at each job posting using the information generated by the matching platform is

more efficient in terms of reducing structural inequality in access to learning opportunities.

In comparison, a rigid system that ignores teacher preferences will indirectly reinforce such

inequalities.

While flexibly incorporating information on teacher preferences, the counterfactual policy

achieves the same objectives of the current system of wage bonuses at a much lower cost for

the government. We also find that filling every school with at least one teacher would require

a lower budget (in terms of the total wage bill) than the current policy. However, shifting

the supply of highly qualified teachers towards hard-to-staff schools is significantly more
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costly. Given the existing stock of prospective teachers and school vacancies, it would take

almost seven times the current budget to assign a teacher in every school with the median

competency level of urban areas in the status quo. This result can be explained by the fact

that such policy objective would require many unassigned and high-quality applicants to

accept a teaching position within the system. Investing in local infrastructures in our setting

would entail achieving our policy objectives at total costs that are 20-30 percent lower. Place-

based incentives aimed at enhancing the pool of teachers in locations where the supply is

relatively scarce would entail saving 40 percent of the total cost of the policy that assigns

a teacher in every school. This last result highlights the predominant roles of moving costs

and of the ethnolinguistic match effects in explaining teacher preferences over job postings

in our setting.2

Given that the returns to having a high quality teacher are more pronounced at the lower

end of the distribution of learning outcomes, our findings suggest that there is large scope

for efficiency gains with respect to the current policy by reallocating more qualified person-

nel towards remote rural locations. Putting together the regression-discontinuity estimates

and the policy counterfactual simulations, we estimate that the share of under-performing

students in the most disadvantaged locations would decrease from 80 percent to at least 50

percent, at the same total cost for the government.

This paper contributes to a growing literature that uses equilibrium models to study the

implications of compensation policies on the spatial distribution of teachers (Boyd et al., 2013;

Tincani, 2021a; Biasi et al., 2021a). Our results expand the literature evaluating teacher

wage setting policies in developed and developing countries. There is large body of work

studying the effectiveness of pay-for-performance schemes.3, while relatively fewer studies

consider policy effects of unconditional wage increases on teacher turnover (Clotfelter et al.,

2008) and student outcomes (de Ree et al., 2018; Pugatch and Schroeder, 2018; Cabrera and

Webbink, 2020). Our work contributes to this literature by providing well identified reduced

form estimates of the effects of unconditional wage increases on the distribution of quality

teachers across regions and their effects on educational outcomes. Further, our structural

estimates allow us to go beyond the policy evaluation and provide counterfactual estimates

2Ajzenman et al. (2021) show evidence that teacher applications to hard-to-staff schools can also be
influenced by information interventions or behavioral nudges.

3See for example Muralidharan and Sundararaman (2011); Barrera-Osorio and Raju (2017); Gilligan et
al. (2022); Leaver et al. (2021a); Brown and Andrabi (2020).
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on the effects of alternative compensations policies.

More broadly, we contribute to the recent literature studying different personnel and

organizational policies in the public sector (Finan et al., 2017). For instance, Dal Bo et al.

(2013) show that increased compensation for public sector positions in Mexico led to a larger

pool of applicants, and a higher quality of hired employees. In Uganda, Deserranno (2019a)

finds that higher financial incentives attract more applicants and increase the probability of

filling vacancies while crowding out pro-socially motivated health workers. We complement

this literature by incorporating a empirical market design approach (Agarwal and Budish,

2021), which leverages matching platforms to study the design of compensation schemes for

public school teachers. This approach, which was pioneered by Agarwal (2015,0), provide

important insights into the potential for improving the equity and efficiency of public service

provision through its effects in the reallocation of high-quality public employees.

2.2 Data

In this paper, we combine several administrative data sources from the Ministry of Education

of Perú over the period 2015-2018. While the resulting dataset spans the universe of public-

sector teachers and schools, we restrict our analysis to primary schools for two reasons. First,

secondary schools are much less prevalent in rural areas. Public schools serve 74% of the

primary school enrollment countrywide. In rural communities (i.e., those with less than 2,000

inhabitants), public schools are generally the only option.4 To the extent that the geographic

distribution of schools is key to understanding disparities in access to competent teachers, we

need to focus on primary schools that are well represented throughout the country. Second, in

primary schools, all students in a classroom are taught by a single teacher, instead of having

one teacher for each subject. This setup allows us to more precisely match students and their

teachers, and estimate the effect of the newly assigned teachers on student achievement in

the empirical analysis in Section 2.4.

Our first data source is the centralized teacher job application and assignment system.

This dataset includes information on all job vacancies posted at every public school in the

country during the first two rounds of the national recruitment of public sector teachers

(2015 and 2017), the scores in the standardized evaluations for every applicant, and detailed

4There are more than 6,000 public primary schools in rural areas catering to 98 percent of school-aged
children in 2015.
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information on all the steps of the job application process that we discuss in Section 2.3.2.

Figure 2.A.1 shows some relevant individual-level correlates of teacher performance in the

standardized test. During the first (second) national recruitment drive, 64,000 (72,000)

applicants competed for 18,000 (25,500) vacancies in primary schools. Table 2.A.1 reports

basic descriptive statistics on applicants across types of contracts in the public sector. About

8% of the applicants report no prior teaching experience (neither in the public sector nor in

the private sector). More than one-fourth of the applicants in our sample report speaking

Quechua or Aymara as their main language, thus likely belonging to the ethnic groups that

are concentrated in the Andean highlands, while an additional 2% belong speak one of the

many other languages spread in the Amazon forests.5

Our second administrative data source is the teacher occupation and payroll system

(NEXUS). This is a longitudinal dataset collected and maintained by the Ministry of Edu-

cation, which contains the complete records of all teachers employed in the public sector. In

particular, the dataset includes individual identifiers for all teachers, the school in which they

work (but not the specific grade), and the type of contract/position they hold (permanent or

contract, number of hours, etc.). This information is collected at the start, middle, and end

of each school year, allowing us to precisely trace both the school of origin (if any) and the

school of destination (if any) for each applicant to the national recruitment drives. About

two-third of the applicants had previously been employed as public sector teachers.

We obtain data on school and locality characteristics from the national school census.

These data include information on the number of students, school infrastructure (libraries,

computers, classrooms, sports facilities), and staff (teaching and administrative) at each

school. Additionally, the dataset includes information on local amenities, e.g., access to basic

services (electricity, sewage, water source) and infrastructure (community phone, internet,

bank, police, public library). This information is reported annually by school principals.

Table 2.A.2 reports basic descriptive statistics for some key school characteristics for urban

and rural areas, respectively.

Our fourth data source is the administrative records on student academic outcomes. The

Evaluación Censal de Estudiantes (ECE) is a national standardized test that covers curricular

knowledge of math and language (Spanish). The test is administered by the Ministry of

5The information on the main language spoken by the applicants is only available for the 2015 recruitment
drive.
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Education at the end of every school year at selected grades at both public and private

schools with an enrollment of more than five pupils. We have access to individual test scores

from 2014–16 and 2018 for fourth grade students in public primary schools (widespread floods

in the country led the government to cancel the 2017 exams).

Finally, in collaboration with the Ministry of Education, we administered an online survey

among the applicants to the permanent teaching positions during the 2015 centralized job

application process. The response rate is slightly below 20% (5,553 applicants), and observ-

able teacher characteristics of respondents are not different from those that did not respond.

Among several questions on teachers’ application decisions, we asked applicants to rank the

their preferred school’s characteristics. As shown in Panel B of Table 2.A.3, 44% of teachers

say “being close to home” is one of the key characteristics guiding their preference ranking.

Other often cited attributes of the teaching job are prestige, safety and “cultural reasons”.

While “prestige” is admittedly a somewhat vague concept, “cultural reasons” mainly refers

to ethnolinguistic similarities between teachers and the communities where the schools are

located. Interestingly, distance and prestige are disproportionately appreciated by teachers

who scored the highest grades (top quartile) in the centralized test, compared to the aver-

age teacher. These survey results partly motivate the empirical model that we propose and

estimate in Section 2.5.

2.3 Context and Institutions

2.3.1 Inequality of Education Inputs

Perú is a country that spans a vast and varied geography, which includes mountainous areas

in the Andes, the Amazon forest, and coastal regions. It is composed of culturally and

linguistically diverse people, who have lived under extractive systems of governance as a

Spanish colony. The legacy of colonial institutions and policies is one of the root causes of

current structural inequalities. These previous policies were often targeted to the highlands

and jungle regions, where most of the natural resources are located. Currently, those areas

show high poverty rates and a large concentration of indigenous people.

Over the last decade, the government has undertaken several efforts to improve educa-

tional outcomes in poor, rural areas, such as implementing a large-scale conditional cash

69



transfer program, investing in school infrastructure projects, and improving access to drink-

ing water and sewage (Bertoni et al., 2020). However, large differences still exist in the access

to educational inputs such as school infrastructure. In Table 2.A.2 we document some dif-

ferences between schools in urban and rural areas across a broad set of indicators of schools,

teachers, students, and community characteristics. Schools in rural areas predominantly hold

(90%) mixed classes, with a single teacher serving students of several grades at the same time.

About one-third of the rural schools lack access to basic services such as running water or

electricity.

Figure 2.1 documents the stark differences in teacher quality and student achievement

between urban and rural primary schools. Panel A shows that teachers at rural public

schools are half as likely to pass the requirements set by the government for permanent

teachers (“competent teachers”), and are twice as likely to lack teaching credentials (non-

certified teachers).6 Panel B of Figure 2.1 displays students’ academic performance on the

national standardized evaluation in two subjects – Spanish and math. Approximately one in

four students enrolled in rural schools are classified as performing below the basic curricular

requirements in either of the two subjects, whereas the corresponding shares in urban schools

are only around 5%.

Figure 2.A.2 shows the geographic distribution of competent teachers across provinces

alongside the corresponding distribution of student test scores. Competent teachers are heav-

ily concentrated in the richer, coastal cities, while they are nearly absent in the highlands and

the inner amazonian regions (Panel A). The spatial variation in students’ achievement out-

comes, shown in Panel B of Figure 2.A.2, is almost a mirror image of the spatial distribution

of competent teachers across the country.

We document inequality in schooling inputs and outputs across Perú. While local ameni-

ties and school infrastructures likely reflect structural differences between urban and rural

areas, the unequal spatial distribution of teacher quality suggests a margin where policy can

play an important role. To better understand the reasons behind the current allocation of

6Competent teachers are defined in Figure 2.1 as those who attain a score of at least 60% in the curricular
and pedagogical knowledge module of the standardized test used to both screen and recruit teachers (see Sec-
tion 2.3.2). Subject competency test have shown to correlate with teacher value added and other dimensions
of teacher quality in several contexts (Bold et al., 2017; Estrada, 2019; Gallegos et al., 2019; Araujo et al.,
2020). For the Peruvian case, Bertoni et al. (2021) document strong correlations between various measures
of teaching effectiveness and the score in the curricular and pedagogical knowledge module of the evaluation
test.
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Figure 2.1: Teachers and Students in Urban Vs. Rural Areas

a) Teachers b) Students

Notes: These figures show different summary statistics about teachers and students in urban and rural areas. Panel A
shows, separately for rural and urban schools, the average share of teachers classified as competent based on the curricular
and pedagogical knowledge of their subjects of specialization and the average share of teachers who lack teaching certifications.
Panel B shows how academic performance in the Spanish and math modules of the national standardized evaluation differs
between students of urban and rural schools. Table 2.A.2 in the Appendix presents a broader set of indicators for school and
community-level characteristics across urban and rural areas.

teachers across different geographic areas, we now describe the institutions that govern the

labor market for public school teachers.

2.3.2 Contracts, Wages, and Sorting of Public School Teachers

Public school teachers in Perú are hired under two distinct types of contracts. Permanent

teachers (docentes nombrados) are civil servants with stable employment conditions (i.e.

indefinite contracts). Alternatively, teachers can be hired by the central administration to

work at a specific school for an academic year as contract teachers (docentes contratados).

This contract has the option of being renewed for up to one more year, conditional on being

approved by the school’s administration. Short-term contracts are routinely used in most

education systems around the world and are often designed as entry-level positions in the

teaching career.7 In our setting, about one out of five primary school instructors in urban

areas is hired as a contract teacher, while these contracts are more widespread in rural areas,

where they reach almost half of the labor force in the most remote schools.

7Research in India and Kenya shows that locally hired teachers on annual contracts have better perfor-
mance, and their students score higher in standardized test scores (Muralidharan and Sundararaman, 2011;
Duflo et al., 2015), although in Kenya these gains tend to vanish when the contracts are administered by the
government, rather than by a non-government organization (Bold et al., 2018).
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The compensation of public-school teachers in Perú depends on (i) the type of contract

(permanent or contract teacher), (ii) seniority, and (iii) specific location or school charac-

teristics. In 2016, the base monthly wage for primary-school teachers under a short-term

contract was S/ 1,396 (US$ 402), while that for permanent teachers was S/ 1,550 (US$ 447),

although more experienced permanent teachers can earn up to S/ 4,043 (US$ 1330). Addi-

tional wage bonuses are given to all teachers (irrespective of the contract) working in specific

types of schools, such as multi-grade or single-teacher schools, or schools located in disad-

vantaged communities.8 According to the national household survey (ENAHO 2016), the

earnings of primary school teachers are ranked second to last among the liberal professions

in Perú, followed only by translators and interpreters. Nationally representative survey data

on teachers (ENDO 2014) document that the average monthly wage for teachers working in

primary schools in the private sector is approximately S/ 950. Only private school teachers

in the top ten percent of the distribution earn more than the base wage of a teacher in the

public sector.

Permanent and contract teachers in Perú were recruited in a decentralized fashion until

2015. As in most countries, regional and local level officials often had significant discretion

in teacher hiring and allocation decisions (Bertoni et al., 2019; Estrada, 2019). In an effort

to make the process more transparent and meritocratic, the Ministry of Education estab-

lished a nation-wide recruitment process in which school-level job postings and teacher job

applications are processed on a single, centrally-managed platform. The first national re-

cruitment drive took place in 2015, followed by another round in 2017. Teachers recruited

through the 2015 and 2017 drives started teaching in the 2016 and 2018 academic years

(March-December), respectively.

The recruitment process is structured in two phases.

Permanent teacher recruitment. Every vacancy for permanent teachers across all edu-

cation levels are posted in a centralized platform. The opening of each of these positions

depend on previous retirements and transfers and the ability of local governments to secure

8Figure 2.A.3 shows the different wage bonuses, which vary between 4% (bilingual school) and 36%
(extremely rural locations, as defined in Section 2.3.3) of the monthly base wage. Schools can satisfy multiple
criteria (e.g. multi-grade and bilingual), in which case the bonuses are cumulative. Accredited bilingual
teachers are eligible for an additional bonus of S/ 100. There are also some compensation adjustments
throughout the year, such as a holiday bonus, which usually represents less than 5% of the total monthly
wage. The wage bonuses for multi-grade and single-teacher schools were cancelled in 2017 and reinstated in
2020.
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permanent funding for the position. Applicants are required to have a teaching accreditation

(i.e. a teacher degree) and to have taken the standardized competency evaluation.9 Those

who correctly answer at least 60 percent of the questions in each of the three parts of the test

are eligible for a permanent position, and can in turn submit a ranked-order list of school

preferences of up to five available positions within a given school district.10 In our data, about

10% of the applicants are eligible for a permanent teaching position. Once preferences are

submitted, teachers move on to a decentralized stage of evaluation in which each school in-

terviews a short-list of the highest scoring teachers who express a preference for that vacancy.

In this second evaluation, teachers are given another score based on their performance in a

typical class that they have to teach and an in person interview with the principal and other

school stakeholders. Additionally points can be also assigned based on their CV. Permanent

positions are finally allocated based on an overall score that comprise the competency test

and the decentralized evaluation.

Short-term/contract teacher recruitment. The goal of this stage is to fill as many of

the remaining positions with a certified teacher. About half of the applicants who cleared

the bar to be eligible for permanent positions eventually participated in this round of the

assignment mechanism. These are mostly teachers who were not selected for their preferred

positions and thus opted for a temporary position. Importantly, these teachers are not

systematically different to those who are assigned to a permanent position (see Table 2.A.1).

Unlike the assignment of permanent teachers, short-term teaching positions are allocated

through a serial dictatorship algorithm. In this mechanism, school preferences are taken

to be a strict ranking of teachers’ competency scores. Applicants sequentially (starting by

the highest ranked) choose from the list of open vacancies in a given school district. Once

a vacancy is filled, it is eliminated from the list of the available options in that district,

and the next lower-ranked teacher is allowed to pick her preferred option. This iterative

process continues until all vacancies are filled, or until the lowest-ranked teacher in each

school district is allowed to choose among the remaining vacancies. After the first round

9The test is divided into three modules, which carry different weights in the total score: logical reasoning
(25 percent), reading comprehension (25 percent), and curricular and pedagogical knowledge (50 percent).

10In the 2015 screening and recruitment process, candidates were allowed to rank a maximum of five
schools. This constraint was removed from 2017 onwards, and applicants were free to submit an unlimited
number of options. In total there are 218 school districts. There is substantial within-district variation in
the rural status of the school vacancies. For the average school district, 71 percent of vacancies are in rural
locations. In 33 school districts all available vacancies are in urban locations (15 percent).
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of the matching process, unassigned applicants are given another chance to choose among

the remaining open vacancies from other districts. Positions that are not filled through the

serial dictatorship mechanism are eventually filled through a decentralized secondary market,

where non-certified teachers are also included.11

Figure 2.2 shows data from the applications to primary-school vacancies, showing teach-

ers’ preferences for different types of schools. While 80% of schools in urban areas are ranked

first by at least one applicant to a permanent position, vacancies posted in rural areas re-

ceive significantly fewer applications – nearly half of rural schools are never even ranked in

applicants’ preference lists. As a result, more than two-thirds of job vacancies for permanent

positions remain unfilled in rural schools, while three-fourths of vacancies are filled in urban

schools through the centralized assignment mechanism. Panel B considers the sample of con-

tract teacher positions by plotting the quintiles of the priority indices for the positions that

are filled in the serial dictatorship algorithm. Short-term teaching vacancies in urban areas

are in higher demand, as more than half of these postings get filled by teachers ranked in the

top 20% of the pool of applicants in their respective school districts whereas the distribution

of the assigned teachers at short-term vacancies in rural areas is clearly more skewed toward

less qualified personnel (as measured by the competency score). Overall, the centralized as-

signment process fills almost 90 percent of short-term vacancies in urban areas and slightly

less than 80 percent of short-term vacancies in rural areas.12

We conclude that the spatial inequality in access to qualified teachers displayed in Panel

A of Figure 2.1 can be (at least in part) explained by teachers’ preferences and choices over

locations. Teachers in poor rural areas face numerous challenges: scarcity of basic school

inputs, lack of services and public goods, few local amenities, and (for some) being far from

friends and family. To the extent that wage-setting protocols do not compensate for the lack

of these amenities, these jobs will be less attractive. Indeed, the data on job postings and

teacher rank-order applications show that applications are skewed toward positions in urban

areas, and the system is hard-pressed to staff the roughly 14,000 positions in rural public

schools in the poorest parts of the country. As a consequence, many of these vacancies are

11Over 53,000 applicants for short-term teaching positions (88%) were not assigned within the first two
(centralized) rounds of the 2015 assignment mechanism. More than three-quarters of them re-applied in the
2017 assignment mechanism.

12While on average there are seven applicants per vacancy within the centralized application platform, there
are more than two vacancies per applicant in indigenous communities in the forest inlands, which explain the
reason why these vacancies are more likely to remain unfilled (50% vs. 21% in the overall sample).
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Figure 2.2: Teacher Choices over Job Postings

a) Permanent Teachers b) Contract Teachers

Notes: This figure depicts the demand for teaching positions in rural and urban schools. Panel A plots the relative share
of schools by the highest preference received, so that “ranked first” means that at least one teacher from among all applicants
ranked it as number one, “ranked second” means that no teachers ranked the school as number one, but at least one teacher
ranked it as number two, and so forth. Similarly, the grey bar indicates the relative share of schools that were not mentioned in
any of the permanent teacher rankings. Panel B plots the priority order (grouped in quintiles of the teacher competency score)
in which a short-term position is filled, together with the share of vacancies that remained unfilled (not filled by a certified
teacher). The numbers are obtained by pooling the data from the two recruitment drives from 2015 and 2017.

eventually filled using short-term contracts by teachers who, on average, have competency

scores that are 0.5 standard deviations lower than those assigned to urban schools, while the

remaining portion are filled by non-certified teachers through the decentralized secondary

market.

2.3.3 Policy Changes to Compensation in Rural Locations

The government recently implemented a reform to the wage bonus that significantly increased

teacher compensation at positions in select rural schools. The new policy established three

distinct categories of rurality according to the school locality’s population and its proximity

to the provincial capital (see Figure 2.3). The population of the locality is measured by

population counts in the latest available census (2007). Travel time from the locality to the

provincial capital is used as a proxy for how remote a community is, and it is computed based

on the school’s GPS coordinates, the types roads available at the time of the measurement,

and the most frequent modes of transport. Extremely Rural schools are those in localities

with less than 500 inhabitants, and for which it takes more than 120 minutes to reach the

province capital. The second category of schools, labeled as Rural, is reserved for either:

(a) schools in localities with less than 500 inhabitants and are located between 30 and 120
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Figure 2.3: The Distribution of Rural Schools and the Wage Bonuses

Notes. This figure shows the spatial distribution of rural primary schools along the two dimensions that determine assignment
of the rural wage bonus. Extremely Rural schools are the dark blue dots, Rural are light blue and Moderately Rural schools

are green.

minutes from the province capital, or (b) schools in localities with 500–2,000 inhabitants that

are farther than 120 minutes from the province capital. The third category of Moderately

Rural schools are either: (c) in localities with 500–2,000 people that are within 120 minutes

of the province capital, or (d) in localities with less than 500 inhabitants which are within 30

minutes of the province capital. All other schools are classified as Urban, and are therefore

not entitled to the wage bonus.

Rurality bonuses were first introduced in January 2014, and only permanent teachers

were eligible to receive them. In August 2015, the wage bonuses were extended to contract

teachers. Importantly, these changes were only announced briefly before they were actually

implemented (in August, i.e. in the middle of the school year) and thus right before the first

centralized recruitment drive (October 2015), which marks the start of our study period. The

bonus for Extremely Rural schools is fairly generous: for contract teachers, it ranges between

25 and 36 percent of the base wage, depending on the school year considered (contract teacher

wages increased from S/ 1,396 in 2016 to S/ 2,000 in 2017); for permanent teachers, it ranges

between 25 and 32 percent of the base wage.

Figure 2.3 displays a scatter plot of the distribution of the 25,000 rural primary schools

in Perú over the population (x-axis) and the proximity to the provincial capital of the com-

munities where the schools are located (y-axis). There is a large mass of schools around both
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the time cutoffs (30 minutes and 120 minutes from the provincial capital) and the population

cutoff (500 inhabitants) for the rural wage bonuses. As the localities become more remote,

schools are more likely to be located in communities that are small and predominantly fall

into the Extremely Rural category. Likewise, for localities with populations above 1,000 in-

habitants, there are more communities that are closer to the provincial capitals (Moderately

Rural).

2.4 Causal Effects of the Increase in Compensation

2.4.1 Regression Discontinuity Design

Offering higher wages for positions at rural locations could potentially lead to better student

outcomes through two main mechanisms. On the one hand, at the extensive margin, higher

wages could attract more and higher-quality teachers. On the other hand, higher levels of

compensation may also motivate incumbent and newly hired teachers to exert higher levels

of effort. Our empirical analysis identifies the causal effects of unconditional wage increases

on teacher application behavior, teacher selection, and student outcomes. We do this by

exploiting the classification rules of the rural wage bonus, and compare (i) the characteristics

of teachers who choose/are assigned to a position at a high vs low paying school, and (ii)

student test scores between schools that offer high vs low compensation to their teachers.

Additionally, to discern whether changes at the extensive or at the intensive margin of teacher

quality can explain the effect of the wage reform on students’ academic achievement we

can compare student outcomes in schools with and without open vacancies in the national

recruitment drives.13

The introduction of the rural wage bonus may generate incentives for school principals

and administrators to manipulate the information used to determine bonus eligibility. The

population threshold is based on census data, and as such, it is difficult to manipulate,

whereas the time-to-travel measure is gathered by inspectors from the Ministry of Education,

who physically go to the schools and take the GPS coordinates of the school’s location. The

procedure was originally done in 2014 and then repeated in 2017 to account for possible

13Table 2.A.7 shows that there is no effect of the wage bonus on the probability that a school has an open
position for permanent or contract teachers. Figure 2.A.4 displays scatter plots similar to the one reported
in Figure 2.3 for schools with and without vacancies in the national recruitment drives of 2015 and 2017,
respectively.
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changes in the transportation network. By the time the information was to be updated, the

previous measurement had become public information, and hence some schools located just

below the 120-minute threshold may have gained eligibility to the S/ 500 wage bonus by

slightly manipulating the GPS measurement. The data shows that there is a significantly

larger mass of schools that falls just above the time-to-travel threshold for the assignment

process that took place in 2017, while there are no significant jumps in the density of schools

at the population threshold for either of the years of interest (see Figures 2.A.6, 2.A.7, and

2.A.8).14

We thus rely on the population-based assignment rule as the only source of exogenous

variation in teacher wages for this part of the analysis. Table 2.A.5 shows the estimated wage

increases explained by crossing the population threshold. Contract teachers in localities with

slightly less than 500 inhabitants earn on average over S/ 250 more than those in localities

that are just above the cutoff. This represents an increase in the monthly wage of about 13

percent. The corresponding average increase in wages for newly recruited permanent teachers

(i.e., no experience) due to the rural bonus reform is S/ 225, or 11 percent of their monthly

wage.15

Given continuity of potential outcomes around the population cutoff, the following spec-

ification identifies the effect of a higher wage bonus:16

yjt = γ0 + γ11(popjt < popc) + g(popjt) + δt + ujt, (2.1)

where yjt is an outcome variable for school j at time t, g(·) is a flexible polynomial in the

population of the locality of the school at both sides of the population cutoff, δt denotes time

indicators for the specific year of the recruitment drive (included only for teachers’ outcomes),

14While the locality population is a good predictor for the eligibility to the rural wage bonus in both years,
time-to-travel in 2015—which we observe to be less prone to manipulation—does not help predict the policy
eligibility status in 2017 and therefore doesn’t provide useful variation for estimating the effects of the wage
bonus in 2017 (see Figure 2.A.9). An alternative strategy would be to limit the sample to observations that
are above the 120-minute time-to-travel cutoff, however, this implies conditioning on a partially manipulated
variable. This sample restriction would also exclude a large portion of schools, and in particular, some located
in the lower-right quadrant of Figure 2.3, thereby missing relevant variation in wages in the data.

15These effects are unconditional weighted averages –pooled across school years– of the different wage
increases induced by crossing the population cutoff from above for different values of the time-to-travel
variable.

16Table 2.A.6 shows that pre-determined school and locality-level covariates are smooth around the popu-
lation threshold, with point estimates that are very small and not statistically different from zero in all but
five cases for 2015, and in all cases for 2017 (29 covariates considered).
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and ujt is an error term clustered at the school×year level for teachers’ outcomes and clustered

at the school level for students’ outcomes (that we observe in only one year, see Section 2.4.4).

The parameter of interest is γ1, which represents the average outcome difference between

schools, teachers, or students in localities that are just above or below the population cutoff,

and therefore that are marginally eligible to receive (or not) an unconditional increase of

about 15% in teacher wages. We estimate γ1 non-parametrically using the robust estimator

proposed by Calonico et al. (2014) through bias-corrected local linear regressions that are

defined within the mean squared error optimal bandwidths.

We exclude from the estimation sample all urban and rural schools in localities within

30 minutes of the province capital since for them, crossing the population cutoff does not

lead to an increase in the bonus. We further restrict the sample to schools with non-missing

observations for the different outcome categories considered in our analysis. We present all

the results pooling the data from the two recruitment drives from 2015 and 2017. The results

split by year are shown in Tables 2.A.8 and 2.A.9 and are broadly consistent with the patterns

described in the main text.17

2.4.2 Teacher Choices over Job Postings

We start by showing how teachers’ application behavior is affected by higher wages, providing

direct evidence on the effects of wage increases on teachers’ labor supply decisions. We

document graphical evidence of the threshold crossing effects separately by job applications

for permanent and short-term teaching positions. Panel A of Figure 2.4 documents clear

evidence that applicants for permanent teaching positions are more likely to include in their

applications schools in localities with a population just below the cutoff (eligible for a higher

wage bonus), as opposed to options just above (not eligible for a higher wage bonus). Away

from the cutoff, the observed positive correlation between teachers’ choices over job postings

and the population of the community is consistent with the notion that the population

captures some valuable amenities in the locality.

Panel B considers the choices over job posting for contract teachers. As in Section 2.3.2,

we infer teachers’ preferences over positions from choices observed in the serial dictatorship.

To do this, we normalize the ranking in which a position is chosen within a school district,

17The main estimates reported in this section are robust to alternative specifications and estimation choices.
The results of these specification checks are reported in Figures 2.A.10 and 2.A.11.
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Figure 2.4: Teacher Choices over Job Postings

a) Stated Preferences, Permanent Teachers b) Revealed Preferences, Contract Teachers

c) Competency Score, Permanent Teachers d) Competency Score, Contract Teachers

Notes. This figure shows how applicants’ preferences and quality vary based on the difference between the 500-inhabitants
cutoff and the population of the community where the school is located. Panels A and C focus on the assignment process
of permanent teachers. In Panel A the outcome variable is a dummy equal to one if a school was mentioned in at least one
application, while in Panel C the outcome variable is the standardized (total) score obtained in the centralized test by the
newly-assigned permanent teacher. Panels B and D are analogous to A and C for the assignment process of contract teachers.
Panel B uses as outcome variable the priority in which a vacancy was chosen in the serial dictatorship mechanism (normalized
so that it takes value from zero to one), while Panel D uses the standardized score obtained in the centralized test by the
newly-assigned contract teacher. Each marker indicates the average of the outcome variable within each bin, defined following
the IMSE-optimal evenly spaced method by Calonico et al. (2015). Solid lines represent the predictions from linear regressions
estimated separately for observations to the left and to the right of the cutoff.

so that the index takes the value of zero if the position is filled last and one if the position is

filled first. Short-term positions that are just below the population cutoff get filled at higher

priority order when compared to those above the cutoff, which again indicates that the wage

bonus increases the demand for these positions.
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Table 2.1 reports the corresponding regression-discontinuity (RD) estimates from the

empirical specification in equation (2.1) using data at the school/vacancy level. In Column (1)

the dependent variable is either an indicator that takes the value of 1 if a school was mentioned

in at least one application for a permanent teaching position (Panel A) or the normalized

priority index at which a short-term position is filled (Panel B). In the neighborhood of the

population discontinuity defined by the MSE-optimal bandwidth (RD sample), the average

school is mentioned in 76% of permanent teacher rankings. This proportion increases by

19 percentage points for schools that offer higher wages. Similarly, the average short-term

position in localities with a population slightly above 500 inhabitants is filled by a teacher

ranked in the 37th percentile (1− 0.63) of the score distribution of applicants, while schools

that offer a wage bonus manage to fill the position with an applicant in the 24th percentile

(1− 0.63− 0.13).

The priority index of contract teachers reported in Column (1) and the competency scores

for both permanent and contract teachers reported in Column (3) of Table 2.1 are defined

for the subset of the open vacancies that got filled in the centralized stages of the matching

process. To deal with this potential endogenous selection into the sample, we report RD

bounds below the point estimates using the approach outlined in Gerard et al. (2020). The

bounds are in general quite tight, thereby suggesting that the censorship in the density of

the observations due to the fact that some vacancies remain unfilled is inconsequential for

the RD estimates.

The evidence presented in this subsection show that vacancies at schools that receive a

higher wage bonus become more desirable: They are requested more often by applicants for

permanent positions and are filled faster by contract teachers. The increased competition

for vacant positions can lead to an increase in the quality of applicants who select into these

higher-paying jobs and/or an increase in the quantity of teachers matched to those rural

vacancies. In turn, we explore these potential margins of response to the wage reform in the

next subsection.

2.4.3 Teacher Sorting Patterns

A first-order objective of the centralized assignment system is to fill as many position as

posible. If the vacancies go unfilled, schools either recruit teachers without credentials or

increase the workload for the existing teachers at the school, presumably reducing their
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Table 2.1: Teacher Choices and Sorting

Panel A: Sample of Permanent Teachers

(1) (2) (3)

Stated Preferences Vacancy filled Competency score

High Bonus 0.188 0.026 -0.037

(0.069) (0.074) (0.155)

Bounds [-.302; .205]

Mean dep. var. (Low Bonus) 0.755 0.371 -0.080

Bandwidth 166.986 169.330 259.213

Schools 835 847 830

Observations 1009 1725 1167

Panel B: Sample of Contract Teachers

(1) (2) (3)

Revealed Preferences Vacancy filled Competency score

High Bonus 0.130 0.051 0.483

(0.036) (0.048) (0.124)

Bounds [.116; .138] [.391; .5]

Mean dep. var. (Low Bonus) 0.634 0.900 0.063

Bandwidth 150.781 159.432 152.768

Schools 836 935 851

Observations 1917 2199 1955

Notes. This table reports the effect of crossing the population threshold on different outcomes. Panel A uses the
sample of permanent teachers. In Column (1) the outcome variable is a dummy equal to one if a school was mentioned
in at least one application, while in Column (2) is an indicator for whether the vacancy was filled by a certified teacher
in the assignment process for permanent teachers. The regression displayed in the last column uses the standardized
competency score obtained by the teachers in the centralized test as outcome variable. Panel B focuses on the selection
process of contract teachers. Column (1) shows the effects on the rank in which a vacancy was chosen in the deferred
acceptance mechanism (normalized so that it takes values from zero to one), while Columns (2) and (3) are analogous
to those from Panel A. Cells report the bias-corrected regression-discontinuity estimates obtained using the robust
estimator proposed in Calonico et al. (2014). Regressions are defined within a mean-square error optimal bandwidth
(BW), reported at the bottom part of the table. In Column (1) of Panel A and in Column (3) the sample is restricted
to vacancies that were actually filled by a certified teacher. In those cases, the table also reports the RD bounds
estimated using the procedure developed in Gerard et al. (2020). The table also reports the mean of the dependent
variable computed within the interval (−BW, 0] (Low Bonus). Standard errors are clustered at the school×year level.

effectiveness. Column (2) of Panel A in Table 2.1 presents regression-discontinuity estimates

for the probability that a vacancy is filled in the selection process of permanent teachers, while

Panel B shows analogous estimates for contract teachers. Permanent teacher positions that

offer higher wages are not more likely to be filled, compared to those offering lower wages.

For contract teachers, instead, we find a positive but not statistically significant effect of

higher wages on the probability that a vacancy is filled. This evidence can be reconciled with

the “local” nature of the estimates shown here. While it may be the case that higher wages

induce some teachers to accept a position in a more disadvantaged location, this margin of
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response to the wage bonus may be active elsewhere in the spatial distributions of schools

shown in Figure 2.3. Indeed, 90% of the rural vacancies are filled in the low bonus areas of the

RD sample. In Section 2.6.1, we address this issue directly by simulating the global sorting

patterns triggered by the system of wage bonuses currently in place using the estimated

model of teachers’ preferences that we discuss in Section 2.5.

We next investigate whether the observed boost in competition for high-paying positions

in extremely rural locations leads to an increase in teacher quality, as measured by the com-

petency score used to define priorities in the assignment algorithm. The two-sided nature

of the assignment process for permanent teachers may possibly explain the small and in-

significant effects of a higher wage bonus on the quantity and quality of realized matches in

Extremely Rural schools, as reported in Figure 2.4 (Panel C) and in Column (3) of Table

2.1 (Panel A). Figure 2.5 shows estimates reflecting the preferences and final assignments of

permanent teachers (Panel A) and contract teachers (Panel B) for the different quintiles of

the test score distribution. Schools offering higher bonuses are more likely to be included

in the ranked-order lists of more competent teachers (light blue line in Panel A). However,

this change in demand triggered by the wage incentives does not translate into a dispropor-

tional assignment of higher quality teachers in these schools (dark blue line in Panel A). The

decentralized stage of the assignment mechanism may have potentially undone the positive

sorting toward disadvantaged locations induced by higher wages.

Both the graphical evidence displayed in Figure 2.4 (Panel D) and the RD estimates in

Column (3) of Panel B of Table 2.1 show that contract teachers who select into schools that

offer a higher wage bonus have higher competency scores, on average, than those who choose a

position in another rural school. The magnitude of the effect is 0.48 standard deviations of the

distribution of the competency score, a very large effect, which points towards quantitatively

important sorting implications within the assignment system. The magnitude of the effect is

consistent with the fact that a larger proportion of teachers in the top two quintiles of the test

score distribution disproportionally sort into higher paying positions (see Panel B of Figure

2.5). To put this magnitude in perspective, the average gap in teachers’ competency between

Extremely Rural schools and other rural schools is approximately 0.3 standard deviations,

whereas the average gap between rural and urban schools is about 0.5 standard deviations.

In sum, a higher wage bonus targeted at disadvantaged locations shifted applications

toward schools offering both permanent and short-term positions. This change in teachers’
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Figure 2.5: Wage Bonuses and the Selection of Competent Teachers

a. Permanent Teachers b. Contract Teachers

Notes. The figure displays the effect of crossing the population threshold on different measures of the demand for teaching
positions and the resulting quality of the recruited teachers. Circles in panel A indicate the point estimates from a set of regression
of the form of Equation (2.1) where the dependent variable is either a dummy equal to one if a school was not mentioned in
any application for a permanent teaching position or a set of binary indicators for whether the school was mentioned by at
least a teacher whose score falls into the quintile of the distribution of the competency score reported on the x-axis. Similarly,
diamonds in Panel A and B are the point estimates from a set of regressions where the dependent variable is either a dummy
equal to one if a teaching position remained unfilled, or was filled by a non-certified teacher, or a set of binary indicators for
whether the vacancy is filled by a teacher whose score falls into the quintile of the distribution of the competency score reported
on the x-axis. Markers and vertical lines indicate the robust bias-corrected regression-discontinuity estimates and confidence
interval (at the 90% level) obtained using the robust estimator proposed in Calonico et al. (2014).

labor supply does not seem to significantly affect the probability of creating new matches.

While for permanent teachers this result is arguably due to the design of the assignment

mechanism, for contract teachers it can be explained by the fact that there is little scope for

a substantial increase in the share of filled vacancies at the margin. Increased compensations

in rural schools leads, instead, to a large inflow of more competent teachers for short-term

positions.18

2.4.4 Student Achievement

To the extent that contract teachers account for nearly half of the teaching positions in the

RD sample (where each school has three teachers, on average), the increased quality of new

teachers documented in the previous subsection may generate substantial improvements in

student learning outcomes. We document this effect by implementing the same empirical

strategy we used to identify the causal effect of compensation on teachers’ outcomes. Hence,

18This evidence is consistent with recent findings reported in Agarwal (2017), which document that the
primary effect of financial incentives were to increase the quality, not numbers, of medical residents in rural
America.
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we compare student test scores in schools in localities that have less than 500 inhabitants

with those with a slightly larger population. In Table 2.2 we report separate results for

standardized test scores in Spanish (Panel A) and math (Panel B) administered to fourth

graders three years after the policy change. We focus on test scores collected at the end of

the 2018 academic year, since this increases the likelihood that any given cohort of students

in fourth grade has been exposed to teachers recruited through the centralized system after

the introduction of the rural wage bonuses.19

Recall that wage bonuses apply to both incumbent and newly recruited teachers in an

eligible school. Higher wages may therefore also affect the behavior of the teachers who

started working in the school before the introduction of the centralized recruitment drive or

the bonuses. To separate this effort margin from the selection effects of the wage bonuses,

we compare schools offering higher vs lower bonuses among those that did not have an open

teaching vacancy to fill in the 2015 or 2017 recruitment drives. Column (1) shows the RD

estimate of the cumulative learning gains for this subsample. The point estimates are very

small and statistically insignificant, suggesting that there is no effort response to higher wages

for incumbent teachers. In Column (2), we focus instead on the subsample of schools with

an open vacancy in 2015 and/or 2017, for either permanent or contract teacher positions.

Students in these bonus-eligible schools performed much better in Spanish and math, with

effect sizes of 0.3-0.35 standard deviations.

The evidence in Columns (1) and (2) of Table 2.2 suggests that the recruitment effect of

the wage bonus documented in Section 2.4.3 is the main driver of the observed increase in

student test scores. Consistently with the fact that higher wages do not affect the selection

of permanent teachers, in Column (3) we document that in schools with open vacancies only

for permanent teachers the effect of higher wages on student performance is very small and

statistically insignificant.20

Finally, in Column (4) of Table 2.2 we consider the subsample of schools with an open

vacancy for short-term teaching positions in the 2015 and/or 2017 centralized recruitment

19As mentioned in Section 2.2, the data available does not allow us to precisely match teachers to classes
within a school, and hence we are unable to isolate the precise effect of having a better teacher (due to higher
wages) in the classroom.

20As most of the permanent positions that remain unfilled in the assignment process are later posted as
vacancies for a contract teacher (see Section 2.3.2), the sample that we use in Column (3) of Table 2.2 excludes
schools that, besides having had a vacancy for a permanent position, also had an opening for a short-term
position.
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Table 2.2: Wage Bonus and Student Achievement

Panel A: Dependent Variable is Spanish Test (z-score)

No vacancy Vacancy

(1) (2) (3) (4)

Any vacancy Permanent teacher Contract teacher

High Bonus 0.001 0.327 -0.012 0.330

(0.160) (0.130) (0.195) (0.139)

Mean dep. var. (Low Bonus) -0.471 -0.469 -0.383 -0.491

Bandwidth 123.388 104.702 173.915 113.922

Schools 368 662 286 615

Observations 3916 9386 3355 8893

Panel B: Dependent Variable is Math Test (z-score)

No vacancy Vacancy

(1) (2) (3) (4)

Any vacancy Permanent teacher Contract teacher

High Bonus 0.028 0.378 -0.016 0.483

(0.177) (0.144) (0.249) (0.160)

Mean dep. var. (Low Bonus) -0.436 -0.408 -0.296 -0.417

Bandwidth 125.996 108.117 162.799 101.104

Schools 379 691 274 561

Observations 4014 9698 3196 8146

Notes. This table reports the effect of crossing the population threshold on student achievement in Math and Spanish. In all
columns, the outcome variable is the standardized 2018 test scores in Spanish (Panel A) and Math (Panel B) for students in
fourth grade. The sample in Columns (1) and (2) is split based on whether the school had an open vacancy (of any type) in
the 2015 and/or 2017 centralized recruitment drives. In Column (3) and (4), the sample is further restricted to schools that
had vacancies for permanent or contract teachers, respectively. Each cell reports the bias-corrected regression-discontinuity
estimates obtained using the robust estimator proposed in Calonico et al. (2014). Regressions are defined within a mean-square
error optimal bandwidth (BW), reported at the bottom of the table. The table also reports the mean of the dependent variable
computed within the interval (0,+BW ) (Low Bonus). Standard errors are clustered at the school level.

drives. Consistently with the substantial increase in the competency level of newly recruited

contract teachers, students in schools that receive higher wages perform much better in the

Spanish and math achievement tests relative to students in schools that had contract teacher

vacancies but were not eligible for the wage bonus. The effect sizes on student performance

are very similar to the effect of higher wages on teacher competency scores, as shown in Panel

B of Table 2.1. The magnitudes of the standardized effects reported in Column (4) Table 2.2

imply an increase of 7% in Spanish scores and of 11% in Math scores, relative to the local

averages (in levels) at the right-hand side of the population cutoff (low bonus).

We further explore the relative effects of the recruitment of a more competent teacher

along the test score distribution. Panel A in Figure 2.6 displays the relative shares computed
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Figure 2.6: Wage Bonus and Composition Effects on Student Achievement

a. Shares at Population Cutoff b. RD Estimates

Notes. Panel A reports the relative shares of students by decile of the distribution of the average score in Spanish and math,
separately for schools located to the right (Low Bonus) and left (High Bonus) of the population cutoff. Bars and vertical lines
depicted in Panel B indicates the corresponding bias-corrected regression-discontinuity estimates of crossing the population
threshold and the associated confidence intervals at the 90% level (Calonico et al., 2014). The sample includes schools with an
open position for contract teachers.

at both sides of the population threshold by the deciles of the average score in Spanish and

math. Higher wages have a more pronounced effect on reducing the proportion of students

who score in the the first two deciles of the test score distribution, while the effects are

smaller in magnitude and relatively uniform for better-performing students. In Panel B of

Figure 2.6 we confirm these asymmetric match effects between the newly-assigned teachers

and students using the deciles of the average score as dependent variables in separate RD

regressions.

2.4.5 Additional Evidence

One potential concern with the identification of our main estimates is that the observed

threshold-crossing effect could possibly violate SUTVA, whereby high-quality teachers who

end up choosing a school in a locality with slightly less than 500 inhabitants would have

otherwise chosen a school in a somewhat more populated locality. While a priori this may

be an issue, we argue that it is not warranted in our setting. First, it is important to remark

that differently sized localities are not necessarily geographically close to one another. In fact

the median geodesic distances between the three closest below-cutoff schools and the schools

just above the cutoff for the sample of contract teachers are approximately 10km, 20km, and

30Km, respectively (see Figure 2.A.5 for the full distribution).
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Figure 2.7: Wage Bonus and the Origin of Newly Recruited Teachers

a. Shares at Population Cutoff b. RD Estimates

Notes. Panel A displays the relative shares (computed at the population cutoff) of the contract teachers who are assigned
through the assignment mechanism based on the location of the previous schools recorded in the teacher occupation and payroll
system (NEXUS), separately for schools located to the right (Low Bonus) and left (High Bonus) of the population cutoff. Panel
B reports the effect of crossing the population threshold on the probability that the vacancy is filled by a teacher whose previous
location falls into the population bin indicated in the x-axis. The sample includes all contract teacher vacancies assigned to a
certified teacher in the 2015 and 2017 processes. Bars report the bias-corrected regression-discontinuity estimates along with
confidence intervals at the 90% level obtained using the robust estimator proposed in Calonico et al. (2014).

Second, Panel A in Figure 2.7 shows the relative shares of the assigned applicants at both

sides of the population threshold by the size of the localities of the schools where they were

previously teaching (if any). The share of teachers who were working in a school located

just above the 500-inhabitant population cutoff is small (4-5%) and it does not seem to vary

between schools that are eligible for a high bonus and a low bonus. The estimates displayed

in Panel B of Figure 2.7 confirms this visual pattern, showing fairly precise zero sorting effects

for teachers who were previously working in schools located around the population cutoff (i.e.

the 400-500 and the 500-600 population bins).

Third, in the next Section we estimate teacher preferences over wages and job attributes

in order to properly construct counterfactual assignments in the absence of the wage bonus

policy. We show in Figure 2.A.13 simulation-based evidence that is inconsistent with potential

SUTVA violations around the population cutoff that determines eligibility to the higher wage

bonus (see Section 2.5.4).

Increased competition for vacant positions can lead to an increase in the quality of appli-

cants who select into higher-paying teaching jobs either by selecting a larger pool of prospec-

tive teachers into the public sector or by reallocating existing competent teachers from urban

or other rural schools toward Extremely Rural locations. To show that the selection margin
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Table 2.3: Wage Bonus and the Selection of New Entrant Teachers

All Age Private sector experience

(1) (2) (3) (4) (5)

<30 ≥30 Yes No

High Bonus 0.047 0.042 0.004 0.051 -0.003

(0.038) (0.017) (0.031) (0.028) (0.025)

Mean (Low Bonus) 0.156 0.033 0.127 0.093 0.066

Bandwidth 139.031 155.634 159.715 135.421 168.192

Schools 801 911 935 776 993

Observations 1917 2151 2199 1869 2311

Notes. This table reports the effect of crossing the population threshold on the selection of new entrant teachers.
In Column (1), the outcome variable is a binary indicator for whether the vacancy is filled by a teacher who was not
previously teaching in any public school (new entrant teacher). In Columns (2) to (5), the outcome variable is the
interaction between the new entrant indicator and a set of additional characteristics of the assigned teacher. Cells
report the bias-corrected regression-discontinuity estimates obtained using the robust estimator proposed in Calonico
et al. (2014). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at the bottom
part of the table. The table also reports the mean of the dependent variable computed within the interval (−BW, 0]
(left-hand-side of the cutoff). Standard errors are clustered at the school×year level.

is active in our context, and hence that the results are not entirely driven by teachers sorting

within the public education system, we focus on the subset of applicants who were not pre-

viously teaching in any public school. As mentioned above, these new entrants in the system

represent a non trivial share of the assigned applicants who earn a position as contract teacher

in our data. In Table 2.3 we show RD estimates on the pure selection effect of a higher wage

bonus for the new entrants in the public sector, which is relatively large and positive (but

noisy). This effect can be explained by a large and more precisely estimated inflow of recent

graduates (column 2) as well as by applicants who had prior teaching experience in private

schools (column 4).

Overall, the evidence suggests that the effect of the wage bonus on teachers’ sorting

patterns is not merely a zero-sum game. We reconsider this issue in Section 2.6.1 in the

context of the estimated model of teacher preferences (see Figures 2.12-2.13). These findings

provide further support for the notion that positive net inflows from the outside option partly

explain the overall reallocation patterns induced by the current system of wage bonuses.

We conclude this Section by ruling out alternative mechanisms through which the wage

bonus may affect student outcomes. For example, wage bonuses could affect student achieve-

ment by changing the size and composition of the teaching staff. However, Table 2.A.10

shows that the wage reform has small and statistically insignificant effects on the number

of teachers, the relative share of permanent and contract teachers, and student-to-teacher
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ratios. Alternatively, teachers may be more likely to stay in their jobs for longer periods in

the presence of the wage bonus, although Table 2.A.11 shows that wage bonuses do not affect

retention rates during the study period.21

Taken together with the results shown in Table 2.2, this evidence strongly suggests that

the inflow of more competent teachers mostly explains the large improvements in learning

outcomes for the students enrolled in higher-bonus schools. While there may be an effort

margin due to the wage incentives for the newly recruited teachers, the evidence reported in

Table 2.A.12 documents little if no composition effects along teachers’ observable character-

istics. This seems to suggest that selection based on unobserved traits such as intrinsic or

extrinsic motivation is unlikely to operate in this setting.

2.5 An Empirical Model of Teacher Preferences

2.5.1 Utility and Preferences

Following the discrete choice literature, we specify an empirical model of teachers’ prefer-

ences that flexibly capture substitution patterns between school or local amenities and the

compensation offered at every specific job postings throughout the country. We model the

(indirect) utility that teacher i gets from being matched with school j as:

vij = αiwj + β
′
izj + δ

′dij + λ
′mij + ϵij, (2.2)

where wj is the wage posted at school j in thousands of Peruvian Soles and zj is a vector

of locality and schools’ characteristics that generate variation in teachers’ utility across job

postings. The vector zj contains a poverty index, an infrastructure score at the locality

level capturing the overall level of amenities associated to a given area, a polynomial in the

population of the locality of the school and the time-to-travel (in hours) between the locality

of the school and the province’s capital.22 It also includes a set of indicator variables for

21The effect on retention rates between academic years is partly mechanical, since these are temporary
positions with a duration of one or two years.

22The poverty index is an asset-based measure of poverty at the individual level (poverty score) com-
puted by the Ministry of Economy and Finance that we aggregate at the locality level. The infrastructure
score collapses a set of indicators measuring infrastructure quality at the locality level through a multiple
correspondence analysis (see Panel D of Table 2.A.2).
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whether a given school belongs to specific regimes that determine eligibility for other wage

bonuses such as multi-grade, single-teacher, bilingual, and/or to the specific geographic areas

(see Figure 2.A.3).

We account for the fact that individual-specific factors may affect the extent to which

teachers’ labor supply vary with respect to wages and other school or locality characteristics.

For example, men may be more sensitive to wages than women due to gender norms and/or

gender differences in outside options. Similarly, teachers at an early stage of their profes-

sional life may be more or less sensitive to wages and other local amenities due to life cycle

considerations or career concerns. We flexibly capture such patterns through the vectors αi

and βi, which are defined as:

βi = γ0 + Γ1xi,

αi = α0 +α
′
1xi + σνi,

where xi is a vector of indicator variables for teacher characteristics, such as gender, ex-

perience, residential location, and competency and Γ1 is a matrix of coefficients, which is

conformable with xi and zj. We also include νi, a log-normally distributed random coeffi-

cient capturing unobserved preference heterogeneity for wages which would not be accounted

for by xi. The presence of heterogenous preferences in our model generates flexible sub-

stitution patterns between wages and other school and locality characteristics that are key

to interpreting the role of the wage schedule as well as school and locality amenities in the

counterfactual analysis that we present in Section 2.6.

In addition to the fairly rich structure of preferences for the different school-level factors

specified above, the discrete choice model described by equation (2.2) features two different

sources of match-specific preference heterogeneity. Moving costs and other costs associated

to switching jobs are captured by dij, a vector of linear splines in the geodesic distance

between the location of school j and teacher i, as measured by the location of the school

where this teacher was working in the previous academic year. For novice teachers we use the

location of the university/institute from which they recently graduated. For the remaining

non-novice teachers with no prior experience in the public sector (new entrants) we use the

locality of residence in 2013. Alternatively, dij may also reflect the fact that applicants may

not be aware of all the available positions across the entire country and/or of their specific

91



attributes—especially those far away from their location (see Panel B of Table 2.A.4). In

this case, the parameter vector δ should be interpreted as a combination of moving/switching

costs as well as the probability that a given job posting lies within teacher i’s consideration

set.

The vector mij contains ethnolinguistic match effects, indicating whether teacher i’s

indigenous native language (if any) and school j’s secondary language of instruction (if any)

coincide. These capture language barriers that teachers might face when working in a school

from a different ethnolinguistic group and, more broadly, any specific taste for living in a

community with shared cultural traits. In settings with rich ethnolinguistic diversity, such

as in Peru, these type of match effects may be particular relevant to characterize the current

population of applicants (see Section 2.2). To avoid sparseness in the data, beyond the two

most prominent ethnolinguistic groups (Quechua and Aymara) we consider the two most

popular and well-defined indigenous groups of the Amazonian regions, the Ashaninka and

Awajun, and lump together all the remaining minorities into one residual category.

All residual unobserved tastes of teacher i for school j are captured in the ϵij term that is

assumed to be distributed iid across i and j through a Gumbel distribution with normalized

scale and location. Finally, we include all private schools that are not part of the centralized

assignment mechanism or any other labor market opportunity not observed in the data as

being part of the outside option.

We specify the utility of the outside option as:

vi0 = η0 + η
′
1qi + ϵi0, (2.3)

where qi is a rich set of characteristics for teacher i. These characteristics include gender,

experience in both the public and the private sector, ethnicity, the competency score, the

population of the place of residence, and the time-to-travel between the provincial capital

and the place of residence.

2.5.2 Identification and Estimation

We observe data on teachers’ choices over job postings from two sources. The first data

source is the rank-ordered lists of applications for permanent positions. The second source of

information is the realized match for short-term positions given teachers’ competency scores

92



and choice of school district. We choose to estimate the discrete choice model presented in

the previous subsection using exclusively the second source of information for several reasons.

First, the vast majority of applicants are not eligible for a long-term position and among the

10% of teachers that do qualify, half either reject all offers or do not get any and eventually

participate in the assignment mechanism for short-term positions (see Table 2.A.1). Second,

and perhaps more importantly given our previous finding that wage bonuses do not affect

the sorting outcomes of permanent teachers, studying the behavior of this sub-population

becomes less relevant for the purpose of the optimal targeting of wage bonuses aimed at

reducing inequalities in the allocation of public-sector teachers in Perú. Finally, the design

of the assignment mechanism for permanent positions gives rise to incentives for teachers not

to report their preferences truthfully in the submitted rank-order lists. Our survey elicits

preferences over job postings that are unconditional on the institutional constraints of the

application system. Almost one third of the surveyed teachers do not apply to their most

preferred school, which clearly indicates the presence of strategic considerations in our setting

(see Table 2.A.4). Learning about teachers’ preferences from the available data on the rank-

ordered lists would require more involved methods and additional data that go beyond the

scope of this paper.23

None of these issues arise when focusing on contract teachers. Recall from Section 2.3.2

that within each administrative unit (school district), contract teachers are ranked based on

their competency score and are sequentially assigned to their preferred school among the

options that still have open vacancies. This procedure is iterated until all vacancies are

filled and/or all teachers are assigned. Given the structure of the assignment mechanism,

we assume that the realized matching equilibrium is stable, meaning that teachers would

not be accepted by a school that they strictly prefer with respect to their current match.

The assignment mechanism, indeed, directly implies that the match is stable within each

school district. Overall stability might be compromised if teachers do not correctly predict

in which school district their preferred feasible school is located. However, the presence of

an aftermarket that assigns the remaining unfilled vacancies mitigates these concerns.

23Beyond a model of supply and demand, the complex nature of the assignment process would require
taking into account that teachers might have biased beliefs regarding their admission chances (Kapor et
al., 2020), which we don’t observe in our data. It would also be important to carefully model the dynamic
incentives between permanent positions and short-term positions that necessarily arise due to the sequential
nature of the assignment mechanism. This extension is outside of the scope of the current project and is left
for future research.
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Stability implies that the observed match between schools and teachers can be interpreted

as the outcome of a discrete choice model with individual-specific choice sets that depend

only on teachers’ competency scores (Fack et al., 2019). Under the distributional assumptions

stated in Section 2.5.1, we can thus write the following log-likelihood function for the n

teachers who apply to short-term positions through the centralized application system:

L(θ) =
1

n

n∑
i=1

log

{∫ ∞

0

(
exp ṽiµ(i)∑

k∈Ω(si)∪{0} exp ṽik

)
dF (νi)

}
, (2.4)

where µ(i) is the school assignment of each teacher i, Ω(si) is the feasible choice set,

which depends on teacher i’s competency score si, and ṽij is the deterministic component of

the indirect utility function in (2.2). The term inside the brackets of equation (2.4) is the

conditional probability that teacher i chooses school j from her feasible choice set, which is

also a function of the cumulative distribution function of the log normal distribution, F (·).
We compute the integral in (2.4) numerically using a Gaussian-Hermite quadrature (Judd,

1998).

In this model, preference parameters θ are identified if (i) the observable characteristics

(wj, zj ,dij ,mij ,xi, qi) are independent of both taste shifters ϵij and the random coefficient νi

and (ii) the feasible choice sets Ω(si) are independent from the taste shifters ϵij conditional on

observables. The first assumption implies that the set of observables has to be rich enough

such that residual preference heterogeneity can be modeled as an exogenous shock. This

might be problematic if, for instance, we believe that we are omitting a set of relevant variables

that would be correlated with wages.24 However, given that wages are set exogenously via

deterministic rules and that we are controlling flexibly for all relevant wage determinants, we

are confident that this assumption is reasonable in our setting. The second condition may

not hold if there is a possibility that the decision by teacher i to accept or reject a given

job posting may trigger a chain of acceptance or rejections by other teachers that may feed

back into teacher i’s set of feasible schools (Menzel, 2015). Preference cycles of this sort are

ruled out in our setting, since schools rank applicants according to the same criterion (i.e.

the competency score). Another potential concern that may arise in this setting is that some

24In the context of the centralized matching between residents and hospitals in the US, Agarwal (2015)
employs a control function approach to deal with the potential endogeneity between salaries and unobserved
program characteristics. The approach relies on the availability of an instrument that is excludable from the
preferences of the residents.

94



schools of a specific type zj may be unreachable to low scoring teachers. To mitigate these

concerns and restore full support, as a proxy for teacher quality in the model, we include

in the xi vector a discrete measure of curricular and pedagogical knowledge, instead of the

total competency score that determines priorities in the system (see Section 2.3.1).

2.5.3 Estimation Results

Panel A of Table 2.4 reports selected preference estimates for relevant school and locality

characteristics such as wages, poverty, infrastructure, and indicators for whether a school is

multigrade or single teacher. The full set of estimated parameters of the model described in

Equation (2.2) is presented in Table 2.A.13. The estimated preferences for wages (αi) are

heterogeneous along both observed and unobserved dimensions. For example, male applicants

are much more responsive to compensations than females. Applicants living in urban areas

and more competent teachers are also more sensitive to changes in wages, which is consistent

with the fact that living in cities is more expensive and that ability and/or effort are likely

to determine wage sensitivity. We do not find any significant heterogeneity with respect to

teaching experience in the public-sector, suggesting that many different channels may be at

play that are potentially cancelling each other out. For instance, career concerns for novice

teachers may push down the wage coefficient while at the same time life-cycle considerations

are consistent with a positive correlation between experience and the sensitivity to the wage

posted in a given location.

The large and significant standard deviation of the random coefficient νi displayed in

Panel A of Table 2.4 indicates the presence of substantial unobserved taste heterogeneity

with respect to wages that is not explained by the observed teacher characteristics included

in the model. Figure 2.8 displays the wage elasticities implied by the estimates of the model.

These estimates combine both observed and unobserved sources of preference heterogeneity

with respect to the wages posted at each vacancy, and they range from close to 0 to around

6, with a global average of 2.19. Several interesting patterns emerge from these distributions.

For instance, increasing wages seems to be a more prominent “pull” factor for attracting

teachers in rural schools than in urban schools. This result highlights the trade-off between

amenities, which are more scarce in rural areas, and wages, implying that wages enter more

prominently into teachers’ compensating differentials.

Preference estimates for other job characteristics (βi) are also displayed in Panel A of Ta-
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Table 2.4: Model Estimates – Selected Parameters

Panel A: Wage (α) and School/Locality Characteristics (β)

Wage Poverty Score Infrastructure Multigrade Single Teacher

0.815 (0.120) -0.201 (0.035) -0.054 (0.054) -0.237 (0.119) -0.786 (0.192)

× Male 0.611 (0.157) 0.115 (0.032) -0.060 (0.048) 0.019 (0.099) 0.519 (0.137)

× Experience ≥ 4 yrs 0.070 (0.053) 0.097 (0.036) 0.132 (0.052) -0.284 (0.118) 0.020 (0.181)

× Urban 0.115 (0.061) -0.060 (0.044) 0.036 (0.068) 0.009 (0.170) -0.125 (0.242)

× Competent 0.170 (0.067) -0.065 (0.047) 0.198 (0.076) -0.782 (0.185) -0.752 (0.351)

Std. Deviation (σ) 0.560 (0.053)

Panel B : Teacher-School Match Effects

Ethnolinguistic Match (λ) Switching/moving Costs (δ)

Quechua × Quechua 1.488 (0.158) Distance < 20km -0.187 (0.003)

Aymara × Aymara 1.375 (0.537) 20km < Distance < 100km -0.033 (0.001)

Ashaninka × Ashaninka 2.243 (0.558) 100km < Distance < 200km -0.018 (0.001)

Awajun × Awajun 2.086 (1.020) 200km < Distance < 300km -0.017 (0.002)

Other × Other 0.995 (0.113) Distance > 300km -0.002 (0.000)

Notes. This table displays selected estimates and standard errors (in parentheses) of the parameters of the model described
in Equation (2.2). Panel A shows the estimated coefficients associated to a selected set of schools/locality characteristics
while Panel B shows estimated preferences for geographical proximity as well as the interaction between schools’ language
of instruction and teachers’ own native language. The data used contains choices of the pool of 59,949 applicants (note
that 500 applicants are left out due to missing data) that participated in the allocation of short-term contracts for public
primary schools in 2015. Estimates are obtained by maximizing the likelihood described in Equation (2.4) where the integral is
computed numerically in an inner loop via a Gaussian-Hermite quadrature. Table 2.A.13 displays the full set of the estimated
coefficients.

ble 2.4. The estimates show that on average teachers have a strong distaste for localities with

high levels of poverty, for schools that are multigrade, or those with a single teacher. These

patterns are more evident among competent and more experienced teachers, which suggests

that complementary policies aiming at broadly improving school and locality infrastructures

may be effective at reducing spatial inequalities in the allocation of public-sector teachers.

Panel B of Table 2.4 displays the ethnolinguistic match effects and the effect of the

geodesic distance between teachers and schools. The magnitudes of the estimated parameters

show that both play a very important role in teachers’ choices over schools. Figure 2.9 doc-

uments heterogeneity across applicants in terms of the implied wages needed to compensate

teachers from moving farther away from where they live (Panel A) as well as their willingness

to pay for being assigned to a school offering a bilingual education that corresponds to the

own ethnolinguistic group (Panel B). Moving costs are estimated to be substantial in our

context. It would take on average 2.75 times the current base wage to make teachers willing

to move 50km. away from where they currently live.25 Similarly, the average teacher who

25As mentioned in Section 2.5.1, the estimated preference parameters for distance may also capture ap-
plicants’ limited awareness about job postings that are located farther away from their current locations.
Overall, the high sensitivity to distance found here is consistent with recent evidence that draws directly
from the rank-ordered lists of permanent teachers in Perú (Bertoni et al., 2019).
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Figure 2.8: Wage Elasticities

a) Teacher Characteristics b) School Characteristics

Notes. This figure depicts the distribution of the wage elasticities which are computed using the estimates from Table 2.4.
These elasticities give the % change in the conditional probability that teacher i chooses school j, which we denote Pij , resulting

from a 1% increase in the wage proposed in school j:
∂Pij

∂wj

wj

Pij
= αiwj(1−Pij). Panel A plots the distribution of this elasticity

for different groups of teachers (all, competent, and male), while Panel B displays heterogeneity of this distribution with respect
to the rurality of schools’ locality.

speaks a native language would be willing to pay up to the amount of the base wage in order

to teach in a school from her own ethnolinguistic group, with higher willingness-to-pay for

the minority groups such as Ashaninka or Awajun. To the extent that these minorities are

mostly located in rural areas with school vacancies that are in excess demand for bilingual

teachers, place-based policies aimed at leveraging these strong match-specific effects (both

ethnic and geographic) might be a promising alternative to wage incentives as a way to

enhance the local supply of teachers.

2.5.4 Model Validation

In this subsection we assess the validity of our model by evaluating how well its estimated

parameters predict some key moments in the data. In particular, it is important to test

the empirical plausibility of the estimated wage elasticities from Figure 2.8, given that the

counterfactual analysis in Section 2.6 will mainly rely on those preference parameters. To

do so, we verify the consistency between the sorting patterns predicted by the model and

the estimated effects at the 500-inhabitant population threshold for eligibility of the rural

bonus discussed in Section 2.4. The predicted size of the effects in teacher sorting outcomes

can be used for model validation since its magnitude would be entirely explained by the
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Figure 2.9: Match Effects

a) Moving Costs b) Willingness to Pay

Notes. Panel A plots the estimated distributions of the cost incurred by teachers when moving away from their previous
location by 10km, 20km and 50km, respectively. These figures are computed using the estimates of the distance spline
coefficients and the random coefficient on wages displayed in Table 2.4. Panel B plots the estimated distributions of the

willingness to pay (in multiple of the base wage) for indigenous teachers to get assigned to (bilingual) schools with secondary
language of instruction that is the same as their own language.

estimated wage elasticity. We thus simulate teachers’ choices using the estimated preference

parameters, replicate the RD analysis on simulated data, and compare the resulting estimates

with those obtained with the actual data. In addition, we assess the overall fit of the model

in terms of the global sorting patterns by the degree of remoteness of the localities where

schools are situated.

Figure 2.10 shows the corresponding estimates of this exercise along with the associated

95% confidence intervals. The evidence reported in Panel A documents that the estimated

model seems to predict very well the different sorting patterns as induced by the wage bonuses

that we observe in the data. This validation exercise alleviates concerns about the potential

correlation between wages and unobserved school characteristics (see Section 2.5.2). This is

even more reassuring given that the rural bonus policy explains only a small portion (less

than 10%) of the total variation in wages across job postings that is used to identify the wage

coefficient in the choice model. The evidence shown in Panel B further confirms that our

model precisely replicates the negative gradient between the proximity of the locality to the

provincial capital and the share of filled vacancies. We provide additional measures of model

fit in Figure 2.A.12.

We finally use the estimated model to provide supporting evidence for the RD analysis.
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Figure 2.10: Comparing RD Estimates, Observed Sorting and Simulated Data

a) Threshold Crossing Effects (pop.=500) b) Share of Filled Vacancies by Remoteness

Notes. Panel A in this figure shows the estimated RD jump in vacancy filled, teacher score and the teacher priority in-
dex at the 500 locality population threshold both in the actual data and in the simulated data. The simulated assignment is
generated by running the serial dictatorship algorithm using predicted utilities computed from the estimates of Table 2.4 as
well as a randomly drawn set of taste shocks ϵij . Panel B compares the share of vacancies filled in the actual data and in the
simulated data depending on how far the schools posting the vacancies are located from the provincial capital.

More precisely, we use the model to evaluate whether the concerns about a possible violation

of SUTVA, i.e., the possibility that high-quality teachers who sort into bonus-eligible schools

would have chosen schools just above the population thresholds in the absence of the bonus,

are warranted in our setting. We do this by simulating a counterfactual assignment with no

rural wage bonuses and compare the resulting sorting patterns with the status quo scenario

(i.e., with bonuses). Figure 2.A.13 shows RD charts based on these simulations. We find no

systematic differences in teacher competency scores at the cutoff under the no-rural-bonus

regime (Panel A), as expected. The introduction of bonuses at the 500-inhabitants threshold

(Panel B) generates a discrete jump in teacher quality, which is comparable to the results in

Panel D of Figure 2.4. More importantly, the intercepts and the slopes of the interpolating

lines above the cutoff, that is, for schools in the low-bonus regime are virtually identical

under the counterfactual and the status-quo regimes. This evidence is fully consistent with

SUTVA.
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2.6 Counterfactual Analysis

2.6.1 Evaluation of the Actual Wage Policy

Public-sector teachers who work in schools with a specific set of locality and school charac-

teristics receive additional compensations that vary between 4% and 36% of the base wage

(see Figure 2.A.3). The rural wage bonuses studied in Section 2.4 are part of this larger

incentive scheme. We use the estimated preference parameters from the model in the previ-

ous Section to evaluate the effects of the overall system of wage bonuses currently in place

for the universe of public sector teachers in Perú. Unlike the estimates discussed in Section

2.4, the structure of the model allows us to evaluate the policy effects away from the RD

threshold, thus gaining a broader perspective on the equilibrium effects of wage bonuses on

teacher sorting.

In order to generate our counterfactual of interest, we first run the serial dictatorship

algorithm in which teachers are assigned to short-term positions using their estimated pref-

erences but in the absence of any wage bonuses (including the rurality bonuses).26 Panel A

in Figure 2.11 plots the percentile of desirability, as measured by local averages in the median

utility predicted by the model without any wage bonus in each school. The model estimates

imply that we would need to offer the average teacher a wage that is 3.5 times higher than

the base wage in order to make her indifferent between a school located in the first and in the

last percentiles of desirability. The desirability index monotonically decreases with the dis-

tance to the provincial capital whereas it is only weakly correlated with the population of the

locality. Schools located close to the cutoffs for eligibility to the rural bonus are not the least

desirable, suggesting that some (if not most) of the effect of the wage bonus may actually

show up more prominently in localities that are away from these cutoffs. This is confirmed

by Panel B, which displays the cell-averages of the percentage changes in predicted utility

between the status-quo (which include all the wage bonuses) and the ”no bonus” counterfac-

tual from Panel A. Changes in utility are heterogenous within the Extremely rural category,

indicating large differences in the initial conditions of the schools that receive the same S/

26The school-specific and locality-specific determinants of the other wage bonuses are highly correlated with
both dimensions of rurality (distance to provincial capital and population). Figures 2.A.14-2.A.15 separately
show the impacts of the other wage bonuses (vis-a-vis the no-bonus scenario) and those of the rural bonus
(vis-a-vis the other-bonus scenario) along the support of the univariate distributions of population and the
time-to-travel to the provincial capital. The results suggest that the bulk of the policy effects on sorting
outcomes are almost entirely driven by the rurality bonus.
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Figure 2.11: Fitted Teacher Utility

a) No Bonus b) Wage Bonus

Notes. Panel A plots the average percentiles of the median predicted utility associated with each vacancy from the esti-
mates reported in Table 2.A.13 for a fine grid in the population and distance to provincial capital space (each cell is 50×30).
Panel B reports the average percentage changes in the median utility between the status quo and the counterfactual scenario
with no wage bonuses.

500 rural bonus.

We next use the estimated preferences to simulate the allocation of teachers into schools

under the counterfactual scenario where we remove all wage bonuses and compare it to the

allocation obtained under the status quo with the system of wage bonuses actually in place.

While the first two columns of Table 2.5 document some aggregate patterns related to each

of these two assignments, in Figure 2.12 we display the spatially disaggregated differences

between the actual wage bonus policy and the no bonus scenario. Each cell in the figure is

defined by discrete values of population and time-to-travel. Most of the positive effects of the

wage-incentive policy manifest in schools in localities with less than 500 inhabitants and that

are farther than 120 minutes away from provincial capitals, which is due to the targeting and

the magnitudes of the rural bonus. Consistently with the evidence reported in Section 2.4,

the effects are not symmetric for the two sorting outcomes. Panel A shows that wage bonuses

achieve a higher proportion of filled vacancies. These effects are relatively small and they do

not vary systematically across the population threshold associated with the eligibility of the

rural bonus, as shown by the vertical line in the figure. Indeed, the effects of the wage bonus

appear more pronounced in very remote schools (i.e., in the upper left corner of Figure 2.12).

Panel B instead shows larger effect sizes, with most of the effect on teacher quality that is

concentrated in schools just below the population cutoff and near the time-to-travel cutoff
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Figure 2.12: Policy Effects on Teacher Sorting

a) Share of Filled Vacancies b) Teacher Competency Score

Notes. This Figure uses simulated assignment data computed by running the serial dictatorship algorithm with predicted
utilities using the estimates from Table 2.4 as well as a randomly drawn set of taste shocks ϵij . For each outcome variable, we
compute kernel-weighted averages in the population and distance to provincial capital between the assignment simulated under
the actual policy and a counterfactual scenario with no wage bonuses.

where the data is more concentrated (see Figure 2.3)

Importantly, our results further show that the effects of the wage bonus policy are positive

across most of the support of the population and time-to-travel variables, alleviating the

concern that the compensation policy generates a zero-sum reallocation. This is explained by

the inflow (outflow) of teachers from (to) the outside option. We document these composition

effects in Figure 2.13. Panel A compares the empirical density of the wage elasticity for

assigned teachers under the no-bonus scenario with the corresponding distributions for those

who choose a position under the actual system of wage bonuses and who would have otherwise

(i.e. without bonuses) chosen the outside option, and for those who choose the outside option

with the wage bonuses and would have otherwise been matched to a school vacancy in the

absence of bonuses. As expected, the distribution of the wage elasticity for applicants who are

drawn into short-term teaching jobs first-order stochastically dominates the distribution of

the applicants who are displaced and/or pushed toward the outside option due to the wage

incentives (p-value<0.001). Panel B displays the average percentage changes in selected

characteristics between the two sub-populations of teachers who enter and exit as a result

of the wage incentives with respect to the average levels of those who are matched without

wage bonuses. The Inflows with Bonus are disproportionally more likely to be male, which is

consistent with the higher wage elasticity of this sub-group of applicants shown in Figure 2.8.

102



Figure 2.13: The Effect of the Wage Bonus on the Selection of Teachers

a) Distributions of Wage Elasticity b) % Change in Teacher Characteristics

Notes. Panel A of this Figure plots the empirical PDFs of the wage elasticity for the assigned teachers in the counterfactual
scenario without any wage bonuses, along with (i) the Inflows with Bonus which are pulled out from the outside option thanks
to the wage bonus policy and (ii) the Outflows with Bonus which are crowded out to the outside option because of the wage
bonus policy. Panel B plots the percentage change in the average characteristics of the individuals belonging to these two
groups with respect the assigned teachers under the no-bonus scenario.

They are also less competent (based on the discrete measure of curricular and pedagogical

knowledge used in the model) and less experienced, when compared to the pool of existing

teachers. Instead, when compared to the Outflows with Bonus, they are (slightly) more

competent and more experienced.

2.6.2 Alternative Wage Policies

The evidence in Section 2.4.4 shows that policies that incentivize teachers sorting toward

disadvantaged areas can increase efficiency along with equity given that competent teachers

are more effective on low achieving students. In the last part of our analysis, we investi-

gate whether we can achieve a more equitable allocation of teachers by redesigning the wage

bonus policy. We focus on two independent policy goals that target either the extensive or

the intensive margin of teachers’ sorting outcomes, as discussed in Section 2.6.1. Objective

(i) is having at least one filled vacancy in each school. Objective (ii) is to recruit at least

one high-quality (i.e., above the median teacher in urban areas) teacher in each school.27

Policy objective (i) and (ii) are equivalent, the only difference being that the set of appli-

27This threshold implies that objective (ii) mimics the size of the estimated effects of the wage bonus policy
on teacher competency scores reported in Section 2.4.3—i.e. 0.45 standard deviations above the overall sample
mean.
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cants considered is not the same. The aim of this exercise is to determine what would be

the cheapest wage bonus policy that achieves either objective (i) or (ii) under the actual

assignment mechanism in place for contract teachers.

We consider a counterfactual economy where schools are allowed to propose different

wages to teachers (Kelso and Crawford, 1982; Hatfield and Milgrom, 2005). We restrict the

pool of available applicants to the set of high quality teachers under policy objective (ii).28 To

be consistent with the institutional framework, we impose that schools have to pay the same

wage to all the teachers they hire. We then use the estimated preference parameters from

Section 2.5 in order to infer how teachers rank each school-wage allocation, and we embed the

policy objectives defined above into schools’ preferences over each possible allocation through

the following two assumptions:

(A1) For a fixed wage, we assume that schools have the same preferences as in the actual

assignment mechanism. Teachers are individually ranked by test scores and the most

preferred group of q teachers is the one composed of the q best scoring teachers.29

Schools cannot leave a vacancy empty if a teacher would be willing to fill it at that

wage.

(A2) We assume that schools have lexicographic preferences when ranking two allocations

with different wages. Keeping all slots empty is dominated by any other allocation at

any given wage. Otherwise, schools will always prefer the allocation with the lowest

wage.

These preferences satisfy the substitute condition. The proof is provided in Appendix

2.B.1. We thus leverage the seminal result in Hatfield and Milgrom (2005) that shows that a

stable set of contracts always exists in the proposed mechanism. There exists an allocation

such that there is no school-teacher pair that would prefer to break their match and rematch

together under any proposed wage. These stable contracts form a lattice where the largest

and smallest elements are the school-optimal stable allocation and the teacher-optimal stable

allocation, respectively. We can either use the school-proposing generalized DA algorithm or

the teacher-proposing generalized DA algorithm to reach one or the other allocation.

We now state our main result. The proof is provided in Appendix 2.B.2:

28This restriction implicitly requires that there are enough high quality teachers to fill at least one vacancy
per school.

29Hence, preference over groups of teachers are responsive (Roth and Sotomayor, 1992).
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Proposition 1 Under assumptions (A1)-(A2):

(i) The wage schedule and allocation resulting from the school-proposing generalized DA al-

gorithm reaches each of the policy objectives (i) and (ii) at the lowest cost conditional

on stability.

(ii) The allocation reached by the algorithm is implementable under the actual assignment

mechanism by fixing wages to the accepted wage in each school.

Hence, we can use the school proposing generalized DA algorithm to derive the cost-

efficient wage bonus policy that would achieve either policy objective (i) or (ii) under the

assignment mechanism currently in place in Peru.30

Table 2.5 presents summary statistics for counterfactual compensation policies, for both

matching outcomes as well as the implied cost of the wage bonuses. As a benchmark, the first

two columns replicate the exercise performed in the previous subsection on the evaluation of

the actual wage bonus scheme. The actual policy has been effective at increasing the share of

schools with filled vacancies as well as the overall quality of the recruited teachers (Panel A).

While most of the benefits accrue to schools in Extremely Rural locations, other rural schools

also benefit on average, while urban schools do not suffer any losses in matching outcomes.

This evidence is consistent with the spatially disaggregated patterns depicted in Figure 2.12,

whereby positive net inflows from the outside option partly explain the overall reallocation

effect induced by the actual system of wage bonuses.

We explore a battery of counterfactual assignments computed under the matching-with-

contracts algorithm described above (Optimal Policy in Table 2.5). The third and seventh

columns show that by flexibly incorporating information on teacher preferences, the counter-

factual policy derived under Proposition 1 achieves the same objectives of the actual system

of wage bonuses at a much lower cost—23% of the total cost for objective (i) (one-filled va-

cancy per school) and 12% for objective (ii) (one high-quality teacher per school). Attracting

competent teachers is significantly more costly than merely filling vacancies. While the coun-

terfactual policy shown in the fourth column would fill at least one vacancy in every school at

30One could potentially reach the same objectives at a lower total cost by making a subset of schools
deviate from the optimal stable allocation and increase wages. Such deviations may be optimal from the
point of view of the overall system, illustrating a classic trade-off between stability and (aggregate) efficiency
generated by the presence of externalities in two-sided matching markets. Under policy objective (ii), the
allocation and wages derived are cost-efficient when considering the set of high quality teachers only. Any
additional cost incurred by hiring low quality teachers is not taken into account.
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Table 2.5: Counterfactual Policy Evaluation

Policy Objective One Filled Vacancy per School One High-Quality Teacher per School

Wage Schedule
No

Bonus
Actual
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Optimal
Policy

Additional Features
Actual
Alloca-
tion

Equal
Ameni-
ties

Targeted
Supply
Increase

Actual
Alloca-
tion

Equal
Ameni-
ties

Targeted
Supply
Increase

Panel A: Matching Outcomes

% Filled Schools 70.84 81.85 81.85 100 100 100 72.95 100 100 100

in Extremely Rural 55.43 75.99 75.99 - - - 59.42 - - -

in Rural 78.88 85.03 85.03 - - - 79.94 - - -

in Moderately Rural 84.73 88.36 88.36 - - - 85.11 - - -

in Urban 88.47 87.97 87.97 - - - 88.47 - - -

% Schools w. HQ Teacher 31.47 38.15 34.12 37.11 41.25 36.57 38.15 100 100 100

in Extremely Rural 16.39 28.36 21.06 23.90 29.40 22.14 28.36 - - -

in Rural 30.85 35.49 32.29 34.35 44.53 35.33 35.49 - - -

in Moderately Rural 40.46 44.85 41.22 43.51 48.09 43.89 44.85 - - -

in Urban 58.23 57.31 58.72 63.15 58.86 63.22 57.31 - - -

% Unassigned Teachers 90.45 88.85 88.85 87.51 87.44 87.30 90.09 84.84 84.86 84.82

% Unassig. HQ Teachers 85.28 82.28 84.32 83.24 81.80 83.46 82.28 59.37 59.50 59.37

Panel B: Wage Bonus (in millions of Soles)

Total Cost 0 2.35M 0.55M 1.85M 1.26M 1.12M 0.29M 16.46M 13.64M 16.07M

Share of Total Cost

in Extremely Rural - 0.794 0.848 0.787 0.781 0.743 0.867 0.619 0.588 0.619

Dist.∈ [0, 400min] - 0.683 0.592 0.274 0.226 0.349 0.798 0.445 0.419 0.448

Dist.∈ [400, 800min] - 0.216 0.265 0.244 0.228 0.266 0.167 0.238 0.239 0.238

Dist.> 800min - 0.102 0.142 0.481 0.546 0.385 0.035 0.317 0.342 0.315

in Rural - 0.159 0.113 0.120 0.102 0.143 0.099 0.218 0.213 0.217

in Moderately Rural - 0.039 0.022 0.031 0.023 0.040 0.026 0.058 0.063 0.058

in Urban - 0.008 0.016 0.062 0.094 0.074 0.009 0.105 0.137 0.106

Notes. This table displays the outcomes of different allocations that would result from counterfactual wage bonus policies
under the assignment mechanism currently in place in Peru. For each counterfactual scenario, Panel A, describes the matching
outcome by showing, by rurality category, the share of schools with at least one filled vacancy, the share of schools with at least
one high-quality teacher, and the share of teachers in the outside option. Panel B displays the distribution of the counterfactual
wage bonuses. No Bonus depicts the counterfactual scenario without all the bonuses currently in place. Actual Policy details
the actual allocation and wage bonus policy. The remaining columns Optimal Policy describe the stable allocations and
associated wage schedules resulting from the procedure described in Proposition 1 for both policy objectives.

a lower cost than the actual policy, it would take a total cost that is almost seven times the

budget of the actual policy to fill every school with a teacher with the median competency

level of urban areas in the status quo (eighth column). This can be explained by the fact that

such objective would entail attracting approximately 4,000 high-quality applicants from the

outside option. The share of unassigned high-quality teachers goes from 82% in the second

column two to 59% in the eighth column.

Panel B of Table 2.5 further characterizes the spatial distribution of the wage bonuses.

While the actual wage bonus policy is heavily skewed toward schools in the Extremely Rural

category, the most remote localities (Distance>800 minutes), which according to Figure 2.11

are also the least desirable for teachers, receive only 10% of the bonuses. The counterfactual
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policy, instead, targets those very remote localities more aggressively with almost half of the

bonuses for achieving objective (i) and one-third of the bonuses for objective (ii). Urban

localities receive almost no wage bonuses under the actual policy, but they are assigned a

fair share of those (10% of the total cost) under the counterfactual policy when it comes to

attracting high-quality teachers. This result may be explained by the fact that some urban

localities may lack infrastructures and amenities that competent teachers value (see Table

2.4), which is reinforced by the upward pressure on wages due to competition among schools

for relatively scarce high-quality teachers.

We next use our framework to assess the relative cost-effectiveness of additional policy

instruments that may complement wage incentives in reducing spatial inequalities in the al-

location of public-sector teachers. On the demand side, we remove all structural inequalities

by considering a scenario where all the locality and school characteristics that potentially ex-

plain teachers’ preferences are equalized across the country. Investing in local infrastructures

in our setting would entail saving between 20% and 30% of the total cost in order to achieve

the two policy objectives. An alternative policy consists in training prospective teachers to

increase the pool of local applicants in the most disadvantaged locations. The counterfactual

simulations shown in Table 2.5 mimic this supply-side intervention by “cloning” the four

teachers who are most closely located to each of the 500 schools that propose the highest

wages under the optimal policy. This gives a total of 2,000 new teachers –i.e., a 3% increase

with respect to the overall number of applicants. Place-based incentives aimed at enhanc-

ing the local supply of teachers would entail saving 40% of the total cost that is needed to

achieve objective (i). This result highlights the predominant roles of moving costs and of

the ethnolinguistic match effects in explaining teachers’ preferences over job postings in our

setting (see Figure 2.9).31

It is also possible to selectively target the counterfactual bonus policy by allowing only

a pre-specified subset of schools to increase wages. For example, one could be interested in

knowing what would be the cost-efficient way of filling at least one vacancy or recruiting

one high-quality teacher in every school belonging to a given quantile of the distribution

of the proximity to the provincial capital. Figure 2.14 plots the results of this exercise.

The cost-effective frontiers are concave, suggesting that achieving our policy objectives is

31The supply-side policy does not specifically target the overall quality of the pool of matched teachers.
Hence, it is not surprising that there are no cost-advantages for achieving objective (ii) under this counter-
factual.
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Figure 2.14: Cost-Effective Frontiers

a) Optimal Policy b) Actual Policy

Notes. Panel A plots the total cost of the optimal policy targeting groups of schools which location’s belong to different
deciles of the remoteness distribution. Panel B plots the share of filled schools with at least one filled vacancy and the share of
schools with at least one high quality teacher by decile of the remoteness distribution.

more expensive when targeting the most remote locations. This is consistent with the results

reported in Panel B, which document that the actual policy is falling short on both objectives

within those areas.

Panel A of Figure 2.14 confirms the findings reported in Panel B of Table 2.5, namely

that attracting high-quality teachers is more challenging than filling vacancies, and hence we

see that the associated cost of the policy grows large very rapidly. However, by targeting

the schools in the bottom decile of the proximity distribution, the counterfactual policy

dramatically improve on the actual policy for the intensive-margin objective at the same cost

in terms of the wage bonuses (see the light-blue line in Panel A). Only 5% of the schools in

the bottom decile of the proximity distribution have a high-quality teacher under the actual

policy (see Panel B), compared to 100% of these schools in the counterfactual scenario.

There is, therefore, large scope for improvement in the actual policy by reallocating re-

sources towards specific locations when it comes to fulfilling both policy objectives. Evidence

on the concavity of the achievement production function with respect to the appointment of

a high-quality teacher (see Figure 2.6) documents that students in the most remote schools

are likely to be those that benefit the most from policies aimed at leveling the playing field.

In these schools, a back-of-the-envelope calculation based on the RD estimates suggests that

the share of students in the bottom two deciles of the test score distribution would decrease
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from 80% under the actual policy to less than 50% in the counterfactual policy regime at the

same total cost for the government.32

2.7 Conclusion

Teachers are a central input to the education production function and better teachers have

been shown to positively affect student outcomes, both in the short term and in the medium

term (Chetty et al., 2014a,0). Providing qualified teachers with the right set of incentives

to (re-)locate across the country may be one promising alternative to improve education

opportunities in relatively disadvantaged areas.

Three distinctive features of our setting allow us to study teacher compensation policies

and their potential for mitigating the deep and historical inequality in Peru; a large devel-

oping country characterized by a wide array of heterogeneity in geography, language, and

ethnicity. First, the government uses a centralized matching platform that acts as a market

clearinghouse between prospective teachers and school vacancies. Second, we rely on high-

quality administrative data that link information on (i) job openings for all public schools in

the country, (ii) detailed records on job applications for the universe of public-sector teachers,

and (iii) student achievement in standardized tests. Third, the introduction of a wage bonus

policy for positions in hard-to-staff schools with replicable and arbitrary cutoff rules provides

a credible source of variation to study the effects of teacher compensation on geographic

sorting.

Our first contribution is to show causal evidence that increasing teacher pay at disadvan-

taged locations has important selection effects. We find that unconditional wage increases

are successful in attracting more competent teachers to public schools. We also document

that students in schools that offer higher wages perform significantly better in standardized

achievement tests. This effect can be mostly explained by large improvements at the bot-

tom of the distribution of student test scores, and it is entirely driven by the inflow of new

teachers across schools. In fact, the policy effect on student outcomes is large and significant

32This estimate is likely to be a lower bound since the corresponding simulated effects on teacher quality
of the counterfactual policy vis-a-vis the actual policy are 2-3 times larger than the corresponding threshold-
crossing effects reported in Section 2.4. The average of the standardized teacher competency scores for the
schools in the first decile of the proximity distribution is -0.72 under the actual policy and it goes up to 0.50
in the counterfactual policy. Analogously, the average share of filled vacancies for the schools in these remote
locations goes from 36.2% under the actual policy to 96.8% in the counterfactual policy.
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for schools that had openings during the period when the policy was in place, while it is

estimated to be a precise zero in schools where no new openings were available, reinforcing

the argument that the selection mechanism is the driver of the results.

We then turn to quantify the way teachers trade off wages with local school and commu-

nity amenities by leveraging geocoded data on applications and job postings from the cen-

tralized assignment system. The model estimates shed light on the channels through which

teachers sort across locations and provide key insights on alternative policy levers beyond

wage incentives that may be effective in reducing inequality in access to qualified teachers. In

our model, teachers have heterogeneous preferences for locality and school amenities that are

unequally distributed throughout the country. While wage profiles are rigid and do not fully

take take into account these trade offs, more competent teachers seem to be more sensitive

to compensation.

Overall, the evidence presented here suggests that policymakers can increase equity in

the market for public-sector teachers through wage policies that take into account teacher

heterogenous preferences while at the same time enhancing the efficiency of the overall system.

We implement this insight by recasting the current assignment algorithm in a more general

matching framework in which schools can sequentially post higher wages in order to achieve

a more equal access to (high-quality) teachers across the country. The resulting alternative

wage schedules are more cost-effective than the actual policy implemented in Perú and can

help reduce structural inequality in access to learning opportunities. In comparison, a rigid

system that ignores teacher preferences will indirectly reinforce such inequalities.

Many organizations routinely employ algorithmic pricing strategies that effectively ac-

count for demand and supply considerations in real time. Our study illustrates the untapped

potential of leveraging this approach in the context of the public sector. By incentivizing

sorting toward jobs or locations where working conditions are less appealing compensation

policies can feasibly alter the spatial distribution of public-sector employees. These consider-

ations can be relevant in a variety of other settings that typically feature rigid wage profiles,

whereby such reallocation process is likely consequential for the quality, equity, and efficiency

of public good provision.
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Appendices

2.A Additional Figures and Tables

2.A.1 Descriptive Evidence

Table 2.A.1: Applicant Characteristics

Only contract Contract + permanent Only Permanent

Mean Sd Mean Sd Mean Sd

Age 37.72 6.934 34.50 5.802 34.48 5.465

Female 0.698 0.459 0.837 0.369 0.696 0.460

Indigenous 0.300 0.458 0.119 0.324 0.189 0.391

University degree 0.289 0.453 0.454 0.498 0.415 0.493

Curricular knowledge 40.29 13.17 67.95 6.578 70.04 7.408

Competency score 89.81 24.65 145.2 11.11 148.1 12.45

New entrant 0.344 0.475 0.313 0.464 0.166 0.372

Experience Private > 0 0.776 0.417 0.737 0.440 0.868 0.339

Experience Public > 0 0.448 0.497 0.739 0.439 0.619 0.486

Previous school: Urban 0.321 0.467 0.673 0.469 0.499 0.500

Previous school: Extremely rural 0.291 0.454 0.0852 0.279 0.189 0.391

Previous school: Rural 0.255 0.436 0.133 0.340 0.188 0.391

Previous school: Moderately rural 0.132 0.339 0.108 0.311 0.124 0.330

Number of teachers 119490 7630 8916

Notes. This table reports the summary statistics for the applicants to the 2015 and 2017 centralized teacher assignment
system. Applicants are split in three groups: i) applicants to the contract teaching positions only; ii) unassigned applicants
to the permanent teaching positions who applied to a contract teaching position; iii) applicants to the permanent teaching
positions (assigned). The information on whether the applicant speaks a Peruvian indigenous language (Indigenous) is
available for the first round of the assignment system only (2015). Newentrant is a dummy variable that takes value 1 if the
teacher has not been employed as public sector teacher (i.e. she was not observed in NEXUS teacher occupation and payroll
system) before the teacher assignment process. The (self-reported) information on applicants’ prior teaching experience in
public and private schools is collected at the time of the application.
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Table 2.A.2: School and Locality Characteristics

Rural schools Urban Schools

Mean Std. Dev. Mean Std. Dev.

Panel A: School characteristics

Number of students 40.16 (45.89) 339.9 (262.0)

Bilingual school 0.249 (0.432) 0.00864 (0.0926)

Single-teacher school 0.393 (0.488) 0.0151 (0.122)

Multigrade school 0.466 (0.499) 0.0868 (0.282)

Number of teachers 5.092 (4.050) 24.59 (13.58)

% of permanent teachers 0.677 (0.468) 0.807 (0.394)

% of certified contract teachers 0.164 (0.371) 0.114 (0.317)

% of non-certified contract or other teachers 0.158 (0.365) 0.0790 (0.270)

% of competent teachers 0.210 (0.407) 0.386 (0.487)

Panel B: Student characteristics

Math test scores (std) -0.438 (1.005) 0.125 (0.962)

Math test scores: % Below basic 0.233 (0.423) 0.0681 (0.252)

Math test scores: % Proficient 0.147 (0.354) 0.285 (0.452)

Spanish test scores (std) -0.568 (0.924) 0.162 (0.961)

Spanish test scores: % Below basic 0.223 (0.416) 0.0513 (0.221)

Spanish test scores: % Proficient 0.141 (0.348) 0.368 (0.482)

Panel C: School infrastructure

No water 0.311 (0.463) 0.0355 (0.185)

No electricity 0.233 (0.423) 0.0127 (0.112)

Cafeteria 0.284 (0.451) 0.211 (0.408)

Computer 0.619 (0.486) 0.932 (0.252)

Kitchen 0.392 (0.488) 0.372 (0.483)

Internet 0.186 (0.389) 0.912 (0.283)

Library 0.207 (0.405) 0.564 (0.496)

Sport facility 0.190 (0.392) 0.614 (0.487)

Gym 0.0126 (0.111) 0.118 (0.323)

Stadium 0.00268 (0.0517) 0.0419 (0.200)

Panel D: Locality infrastructure

Electricity 0.803 (0.398) 0.997 (0.0553)

Sewage 0.259 (0.438) 0.915 (0.279)

Library 0.0166 (0.128) 0.430 (0.495)

Doctor 0.324 (0.468) 0.869 (0.338)

Internet access point 0.0554 (0.229) 0.845 (0.362)

Village phone 0.0498 (0.218) 0.0928 (0.290)

Drinking water 0.582 (0.493) 0.945 (0.228)

Notes. This table reports the summary statistics for the universe of rural and urban primary schools in Peru over
the period 2016-2018. The first panel describes the baseline characteristics of each type of school (size, bilingual span-
ish/indigenous language curriculum) for the year 2016, and the teaching staff composition (pooling together the post-
recruitment drives years 2016 and 2018). The second panel summarizes students’ achievement in the 2016 and 2018
standardized test. The third and the fourth panel describes the quality and quantity of school infrastructures and locality
amenities, as measured by the 2016 school census.
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Table 2.A.3: Applicant Survey (Participation and Choice Attributes)

All Teachers Score in Top Quartile

Rank Rank

1st 2nd 3rd In Top 3 1st 2nd 3rd In Top 3

Panel A: Why did you apply to the centralized assignment mechanism? (% of respondents)

Career 33.77 30.35 20.57 84.69 33.73 29.97 21.35 85.05

Stability 51.08 17.04 14.76 82.88 50.66 18.26 13.92 82.84

Formation Opportunities 9.63 29.15 21.81 60.59 9.57 26.73 20.32 56.62

Better Wage Opportunities 2.08 9.51 23.84 35.43 2.14 11.41 22.75 36.30

Social Benefits 1.04 7.78 7.96 16.78 1.10 7.00 7.58 15.68

Prestige 1.71 4.28 7.19 13.18 1.62 3.24 7.73 12.59

18 mil Soles Incentive 0.69 1.89 3.87 6.45 1.18 3.39 6.33 10.90

Panel B: What are the most important characteristic for your ranked choices? (% of respondents)

Close to House 44.17 11.66 8.00 63.83 49.77 13.22 8.76 71.75

Safe 10.66 24.19 19.25 54.10 7.65 24.50 19.35 51.50

Well Connected 9.69 20.62 20.20 50.51 8.23 18.70 19.67 46.60

Prestige 17.92 14.12 12.29 44.33 21.13 15.77 12.68 49.58

Cultural Reasons 10.61 9.67 12.31 32.59 7.58 9.45 12.61 29.64

Good Infrastructure 2.02 8.40 12.86 23.28 1.81 7.23 11.83 20.87

Good Students 1.24 4.52 6.08 11.84 0.84 4.36 5.95 11.15

Possibility other Jobs 1.93 3.72 4.90 10.55 1.62 4.10 4.71 10.43

Career 1.76 3.10 4.09 8.95 1.36 2.67 4.44 8.47

Notes. This table displays the share of the 5,553 survey respondents that chose the corresponding answers to Question A
and B. The first three columns show which answer they chose and how they ranked them (by order of importance) while
column 4 shows the share of respondents that listed the corresponding choice in their top 3 reasons. The last four columns
display the same results for respondents that scored above the top quartile of the test score distribution for tenured teachers.
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Table 2.A.4: Applicant Survey (Strategy and Information)

All Score in Top Quartile

Panel A: Strategic behavior (% of respondents)

Preferred school in concurso 63.36 61.37

If preferred school in concurso, which rank?

Ranked 1st 84.26 88.93

Ranked 2nd 6.28 3.51

Ranked 3rd 2.31 1.32

Ranked 4th 0.71 0.66

Ranked 5th 0.95 0.66

Not Ranked 5.48 4.93

If not ranked first, why?

High demand and score too low 64.91 41.82

Remuneration not attractive 3.51 5.45

Other 31.58 52.73

Panel B: Information about first choice (% of respondents)

Had prior information about first choice 50.97 54.01

Does your first choice benefit from wage
bonus?

Yes 16.42 15.08

No 54.53 62.69

Do not know 29.04 22.23

Expected wage - actual wage (in %) -11.02 -8.97

Notes. This table displays the answers of the 5,553 survey respondents to the corresponding questions.
The last columns displays the same results for respondents that scored above the top quartile of the test
score distribution for tenured teachers.
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Figure 2.A.1: Teacher Characteristics and Standardized Competency Scores

Notes: This figure shows OLS estimates and the associated 95 percent confidence intervals of the effect of individual teacher
characteristics on the standardized competency score undertaken by all the applicants for a primary school vacancy in the
context of the national recruitment drive in 2015 (see Section 2.3.2).
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Figure 2.A.2: Geographic Distribution of Teacher Competency and Student Achievement

a) % Competent Teachers b) % of Proficient Students

Notes: This figure depicts the geographical variation in the share of competent teachers (panel A) and the share of proficient
students (panel B) within each province of Peru. Proficient students are defined as those who attain a proficient (Satisfactorio)
achievement level in Math and/or Spanish. Similarly, competent teachers are defined as those who attain at least 60% of correct
answers in the curricular and pedagogical knowledge module of the standardized test. The reported shares are obtained by
pooling the data across two school years (2016 and 2018).
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Figure 2.A.3: The Different Wage Bonuses for Disadvantaged Schools

Notes. This figure shows the monetary amount in Peruvian Soles for the different wage bonuses implemented by the Government
as of December 2015. Vraem correspond to schools located in the Valle de los Rios Apurimac, Ene y Mantaro which is extremely
poor and under the control of drug cartels. Frontera categorizes schools that are close to the frontier of the country.
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Figure 2.A.4: The Distribution of Rural Schools over Population and Remoteness

a) Schools with Vacancies in 2015-2017

b) Schools without Vacancies in 2015-2017

Notes: This figure shows the spatial distribution of rural primary schools along the two dimensions that determine the assign-
ment of the wage bonus. Extremely Rural schools are the purple dots, Rural are light blue and Moderately Rural schools are
green.
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Figure 2.A.5: Distance from Schools Just Above the Population Cutoff

Notes: This figure plots the CDF of the distance in Kilometers for the four closest below-cutoff schools from schools just above
the cutoff. The sample includes schools with an open position for contract teachers during the 2015 and 2017 recruitment drives.
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2.A.2 RD Evidence

Figure 2.A.6: Manipulation charts

a. Population (2015) b. Population (2017)

c. Time-to-travel (2015) d. Time-to-travel (2017)
Notes.

The figure displays the empirical densities with the corresponding confidence intervals for two running variables (population
and time-to-travel) for each of the years in which the teacher recruitment drive was conducted (2015 and 2017). The density is
computed using the local-polynomial estimator proposed in Cattaneo et al. (2020), and the figures show the 95% confidence
intervals. The sample includes all schools with a permanent or contract teacher opening in the corresponding year.
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Figure 2.A.7: Manipulation Charts - Schools with a Vacancy for Permanent Teachers

a. Population (2015) b. Population (2017)

a. Time-to-travel (2015) b. Time-to-travel (2017)

Notes. The figure displays the empirical densities with the corresponding confidence intervals for two running variables
(population and time-to-travel) for each of the years in which the teacher recruitment drive was conducted (2015 and 2017).
The density is computed using the local-polynomial estimator proposed in Cattaneo et al. (2020), and the figures show the
95% confidence intervals. The sample includes only schools with a permanent teacher opening in the corresponding year.
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Figure 2.A.8: Manipulation Charts - Schools with a Vacancy for Contract Teachers

a. Population (2015) b. Population (2017)

a. Time-to-travel (2015) b. Time-to-travel (2017)

Notes. The figure displays the empirical densities with the corresponding confidence intervals for two running variables
(population and time-to-travel) for each of the years in which the teacher recruitment drive was conducted (2015 and 2017).
The density is computed using the local-polynomial estimator proposed in Cattaneo et al. (2020), and the figures show the
95% confidence intervals. The sample includes only schools with a contract teacher opening in the corresponding year.
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Figure 2.A.9: First Stage for Different Years and Treatment Status

a. Treatment 2017; RV: population 2015 b. Treatment 2015; RV: population 2017

c. Treatment 2015; RV: time-to-travel 2017 d. Treatment 2017; RV: time-to-travel 2015

Notes. The figures show the probability that a school is classified as Extremely Rural in each year (2015 and 2017) plotted
against the two different running variables (Population and time-to-travel) for the opposite year (2017 and 2015, respectively).
The regression lines are computed using linear and quadratic polynomials.
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Figure 2.A.10: Robustness to Alternative RD Specifications – Teacher Outcomes

a. Stated Preferences, Permanent teachers b. Revealed Preferences, Contract teachers

c. Competency score, Permanent teachers d. Competency score, Contract teachers

Notes. The figure shows how the applicants’ preferences and quality vary based on the distance from the population threshold.
Panels A and C focus on the assignment process of permanent teachers. In Panel A the outcome variable is a dummy equal
to one if a school was mentioned in at least one application, while in Panel C the outcome variable is the standardized (total)
score obtained in the centralized test by the newly-assigned permanent teacher. Panels B and D are analogous to A and C for
the assignment process of contract teachers. Panel B uses as outcome variable the rank in which a vacancy was chosen in the
serial dictatorship mechanism (normalized so that it takes value from zero to one), while Panel D uses the standardized score
obtained in the centralized test by the newly-assigned contract teacher. Markers indicate the robust bias-corrected regression-
discontinuity estimates obtained using the robust estimator proposed in Calonico et al. (2014). Regressions are defined within
different specifications for the optimal bandwidths. These are: i. one common mean-square error (MSE) optimal bandwidth
(BW: mserd); ii. two different MSE-optimal bandwidths, above and below the cutoff (BW: msetwo); iii. one common MSE-
optimal bandwidth for the sum of regression estimates (BW: msesum); iv. one common coverage error rate (CER) optimal
bandwidth (BW: cerrd); v. two different CER-optimal bandwidths, above and below the cutoff (BW: certwo); vi. one common
CER-optimal bandwidth for the sum of regression estimates (BW: cersum). Vertical lines indicate confidence intervals (at
the 95% level) obtained from different estimation procedures: heteroskedasticity-robust plug-in residuals (CLUSTER: no);
cluster-robust plug-in residuals (CLUSTER: plug-in); cluster-robust nearest neighbor (CLUSTER: NN). The vertical dotted line
separates estimates based on whether they are obtained from regressions where the unit of observation is the student (on the
left) or the school (on the right). In the latter case, the outcome variables are school-level averages
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Figure 2.A.11: Robustness to Alternative RD Specifications – Student Outcomes

a. Spanish scores, Any vacancy b. Math scores, Any vacancy

c. Spanish scores, Short-Term vacancy d. Math scores, Short-Term vacancy

Notes. This figures shows the effect of crossing the population threshold on student achievement under different specifications.
The outcome variable is the average of the standardized 2018 test scores in Math and Spanish for students in the fourth grade.
The sample includes schools that had an open vacancy for contract teachers the 2015 or 2017 centralized recruitment drive.
Markers indicate the robust bias-corrected regression-discontinuity estimates obtained using the robust estimator proposed in
Calonico et al. (2014). Regressions are defined within different specifications for the optimal bandwidths. These are: i. one
common mean-square error (MSE) optimal bandwidth (BW: mserd); ii. two different MSE-optimal bandwidths, above and
below the cutoff (BW: msetwo); iii. one common MSE-optimal bandwidth for the sum of regression estimates (BW: msesum);
iv. one common coverage error rate (CER) optimal bandwidth (BW: cerrd); v. two different CER-optimal bandwidths, above
and below the cutoff (BW: certwo); vi. one common CER-optimal bandwidth for the sum of regression estimates (BW: cersum).
Vertical lines indicate confidence intervals (at the 95% level) obtained from different estimation procedures: heteroskedasticity-
robust plug-in residuals (CLUSTER: no); cluster-robust plug-in residuals (CLUSTER: plug-in); cluster-robust nearest neighbor
(CLUSTER: NN). The vertical dotted line separates estimates based on whether they are obtained from regressions where
the unit of observation is the student (on the left) or the school (on the right). In the latter case, the outcome variables are
school-level averages
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Table 2.A.5: Wage increases around the population cutoff

Panel A: Permanent teacher

(1) (2) (3)

Low bonus High bonus Average

High Bonus 23.321 369.796 224.931

(17.861) (27.099) (29.931)

Mean dep. var. (Low Bonus) 2012.572 2107.689 2061.620

Bandwidth 149.828 307.458 222.189

Schools 361 1146 1181

Observations 599 2340 2365

Panel B: Contract teacher

(1) (2) (3)

Low bonus High bonus Average

High Bonus 45.537 386.965 255.993

(11.026) (33.834) (34.418)

Mean dep. var. (Low Bonus) 1906.026 1956.918 1928.570

Bandwidth 144.376 183.205 178.720

Schools 467 537 1042

Observations 827 1462 2434

Notes. This table reports the effect of crossing the population threshold on the wages of permanent (Panel A) and contract
teachers (Panel B). In all columns, the outcome variable is the gross salary, which includes both the baseline wage and the bonuses.
In Column (1), the sample includes only schools in rural locations whose travel time to the provincial capital is between 30 and 120
minutes, so that crossing the 500 inhabitant cutoff from above implies moving from a Moderately Rural to a Rural area. Similarly,
in Column (2) the sample includes only schools in rural locations whose travel time to the provincial capital is above 120 minutes,
so that crossing the 500 inhabitant cutoff from above implies moving from a Rural to an Extremely Rural area. In Column (3),
the sample is the union of that in Column (1) and (2): it includes all schools in rural locations whose travel time to the provincial
capital is above 30 minutes. Cells report the bias-corrected regression-discontinuity estimates obtained using the robust estimator
proposed in Calonico et al. (2014). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at the
bottom part of the table. The table also reports the mean of the dependent variable computed within the intervals (0,+BW )
(right-hand-side of the cutoff) and (−BW, 0] (left-hand-side of the cutoff). SE are clustered at the school level. *** p< 0.01, **
p<0.05, and *p<0.10.
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Table 2.A.6: Covariate Smoothness around the Population Cutoff

2015 2017

(1) (2) (3) (4) (5) (6)
Any vac. Permanent Contract Any vac. Permanent Contract

School characteristics
Number of students -2.912 5.555 -18.543 -1.045 -4.498 -3.479

(10.290) (11.990) (11.635) (6.499) (8.513) (6.736)
Indigenous language students -0.038 -0.052 -0.056 0.017 -0.042 0.014

(0.097) (0.143) (0.108) (0.067) (0.087) (0.075)
% indigenous language students -0.022 0.028 -0.030 -0.008 -0.040 0.015

(0.085) (0.112) (0.103) (0.046) (0.066) (0.065)
% proficient students (math) 3.863 -0.939 4.796 1.331 -4.160 2.993

(3.144) (7.601) (3.305) (3.477) (3.511) (3.722)
% proficient students (spanish) 6.294 5.182 8.202** -2.264 -5.437 0.278

(4.070) (5.609) (4.114) (3.775) (4.073) (4.049)
Village amenities
Electricity 0.062 0.011 0.012 0.026 -0.043 0.058

(0.090) (0.126) (0.083) (0.053) (0.064) (0.068)
Drinking water 0.260** 0.231 0.309** 0.110 0.174 0.144

(0.132) (0.173) (0.150) (0.083) (0.115) (0.101)
Sewage 0.179 0.067 0.171 -0.022 -0.030 -0.001

(0.115) (0.153) (0.127) (0.070) (0.097) (0.080)
Medical clinic 0.056 0.030 0.066 0.000 -0.069 0.001

(0.107) (0.151) (0.122) (0.082) (0.100) (0.091)
Meal center 0.186** 0.246** 0.146 0.069 0.113 0.075

(0.087) (0.117) (0.101) (0.081) (0.093) (0.085)
Community phone -0.007 -0.059 -0.036 -0.034 -0.033 -0.086

(0.093) (0.135) (0.114) (0.069) (0.091) (0.075)
Internet access point 0.054 0.153* 0.070 0.022 -0.004 0.024

(0.058) (0.084) (0.079) (0.051) (0.059) (0.062)
Bank 0.023* 0.000 0.031* 0.010 0.005 0.013

(0.013) (0.000) (0.016) (0.007) (0.008) (0.009)
Public library 0.018 -0.059 0.019 -0.004 0.002 0.006

(0.032) (0.049) (0.043) (0.023) (0.030) (0.016)
Police -0.079 -0.161 -0.094 -0.056 -0.124 -0.078

(0.082) (0.118) (0.097) (0.063) (0.089) (0.067)
School amenities
Distance from district municipality (min.) -27.579 99.432 -17.468 78.389 83.076 101.385

(112.029) (171.377) (128.940) (138.805) (173.709) (169.936)
Teachers room -0.033 0.016 -0.095 -0.074 -0.177** -0.069

(0.072) (0.095) (0.084) (0.066) (0.075) (0.072)
Sport pitch -0.033 0.023 -0.041 0.002 -0.033 0.020

(0.087) (0.098) (0.090) (0.059) (0.067) (0.069)
Courtyard -0.061 -0.010 -0.096 -0.116 -0.074 -0.104

(0.092) (0.107) (0.100) (0.080) (0.087) (0.081)
Administrative office -0.010 -0.130 -0.094 0.056 0.032 0.048

(0.101) (0.155) (0.128) (0.077) (0.102) (0.094)
Courtyard 0.002 0.001 0.001 -0.009 -0.025 0.002

(0.004) (0.001) (0.005) (0.014) (0.023) (0.004)
Computer lab -0.004 -0.023 -0.048 0.050 0.006 0.070

(0.087) (0.122) (0.113) (0.074) (0.099) (0.083)
Workshop -0.002 -0.006 -0.020 0.010 -0.013 0.002

(0.036) (0.066) (0.037) (0.029) (0.033) (0.033)
Science lab 0.030 0.043 0.029 0.040 0.006 0.049

(0.062) (0.090) (0.076) (0.042) (0.043) (0.050)
Library 0.044 -0.115 0.007 0.094 0.076 0.044

(0.104) (0.159) (0.134) (0.071) (0.102) (0.095)
At least a personal computer 0.030 0.045 0.043 0.075 0.125 0.103

(0.082) (0.118) (0.094) (0.073) (0.091) (0.074)
Electricity 0.173 0.145 0.179 0.106 0.072 0.124

(0.114) (0.147) (0.132) (0.075) (0.093) (0.083)

Notes. This table studies whether schools in localities just above or below the population threshold differ in terms of village and school amenities (as
of 2013). Columns (1) to (3) focus on the 2015 assignment process, with schools split based on whether they had at least a permanent (column 2) or
contract (column 3) vacancy (the sample in column 1 is the union of column 2 and 3). Columns (4) to (6) are the analogous of columns (1)-(2) but
focus on the 2017 assignment process. Cells report the bias-corrected regression-discontinuity estimates obtained using the robust estimator proposed
in Calonico et al. (2014). Regressions are defined within a mean-square error optimal bandwidth. Robust SE in parentheses.*** p< 0.01, ** p<0.05,
and *p<0.10.
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Table 2.A.7: Probability of Openings around the Population Cutoff

All Permanent teacher Contract teacher

(1) (2) (3) (4) (5) (6)

Vacancy # Vacancies Vacancy # Vacancies Vacancy # Vacancies

High Bonus -0.012 -0.119 0.004 -0.046 -0.011 -0.116

(0.041) (0.138) (0.041) (0.091) (0.043) (0.134)

Mean dep. var. (Low
Bonus)

0.480 0.954 0.253 0.461 0.399 0.764

Bandwidth 237.233 184.699 165.436 173.385 228.761 183.478

Observations 5912 4221 3763 3929 5612 4195

Notes. This table reports the effect of crossing the population threshold on the probability that vacancy is posted (and
their number) in the 2015 or 2017 assignment process. In column (1) the outcome variable is a dummy equal to 1 if the
school had at least a vacancy (of any type), while in column (2) is the number of open vacancies. Columns (3)-(4) and
(5)-(6) are the analogous of columns (1)-(2) but focus only on permanent and contract teachers vacancies, respectively. Cells
report the bias-corrected regression-discontinuity estimates obtained using the robust estimator proposed in Calonico et al.
(2014). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at the bottom part of the
table. The table also reports the mean of the dependent variable computed within the intervals (0,+BW ) (right-hand-side
of the cutoff) and (−BW, 0] (left-hand-side of the cutoff). SE are clustered at the school level. *** p< 0.01, ** p<0.05,
and *p<0.10.
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Table 2.A.8: Monetary Incentives and Teacher Selection (2015)

Panel A: Permanent teacher

(1) (2) (3)

Stated Preferences Vacancy filled Competency score

High Bonus 0.095 -0.108 0.372

(0.085) (0.148) (0.384)

Bounds [.246; .246]

Mean dep. var. (Low Bonus) 0.793 0.526 0.245

Bandwidth 238.248 209.055 152.735

Schools 552 445 170

Observations 552 604 215

Panel B: Contract teacher

(1) (2) (3)

Revealed Preferences Vacancy filled Competency score

High Bonus 0.153 0.101 0.664

(0.062) (0.073) (0.199)

Bounds [.118; .181] [.466; .74]

Mean dep. var. (Low Bonus) 0.616 0.869 -0.113

Bandwidth 156.897 200.982 144.348

Schools 402 587 365

Observations 667 978 614

Notes. This table reports the effect of crossing the population threshold on different outcomes. Panel A uses the sample of
permanent teachers. In Column (1) the outcome variable is a dummy equal to one if a school was mentioned in at least one
application, while in Column (2) is an indicator for whether the vacancy was filled by a certified teacher in the assignment
process for permanent teachers. The regression displayed in the last column uses as outcome variable the standardized total
score obtained by the teachers in the centralized test. In Columns (3) the sample is restricted to vacancies that were actually
filled by a certified teacher. Panel B focuses on the selection process of contract teachers. Column (1) shows the effects on
the rank in which a vacancy was chosen in the deferred acceptance mechanism (normalized so that it takes value from zero to
one), while Columns (2) to (3) are analogous to those from Panel A. Cells report the bias-corrected regression-discontinuity
estimates obtained using the robust estimator proposed in Calonico et al. (2014) and their bounds estimated using the procedure
developed in Gerard et al. (2020). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at
the bottom part of the table. The table also reports the mean of the dependent variable computed within the interval (−BW, 0]
(left-hand-side of the cutoff). Standard errors are clustered at the school×year level. *** p< 0.01, ** p<0.05, and *p<0.10.
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Table 2.A.9: Monetary Incentives and Teacher Selection (2017)

Panel A: Permanent teacher

(1) (2) (3)

Stated Preferences Vacancy filled Competency score

High Bonus 0.258 0.084 -0.044

(0.090) (0.083) (0.218)

Bounds [-.517; .408]

Mean dep. var. (Low Bonus) 0.735 0.329 -0.169

Bandwidth 151.059 166.276 160.587

Schools 603 669 328

Observations 603 1240 446

Panel B: Contract teacher

(1) (2) (3)

Revealed Preferences Vacancy filled Competency score

High Bonus 0.119 0.020 0.380

(0.042) (0.059) (0.151)

Bounds [.111; .119] [.359; .362]

Mean dep. var. (Low Bonus) 0.642 0.912 0.169

Bandwidth 165.307 158.194 178.439

Schools 815 805 866

Observations 1401 1438 1482

Notes. This table reports the effect of crossing the population threshold on different outcomes. Panel A uses the sample of
permanent teachers. In Column (1) the outcome variable is a dummy equal to one if a school was mentioned in at least one
application, while in Column (2) is an indicator for whether the vacancy was filled by a certified teacher in the assignment
process for permanent teachers. The regression displayed in the last column uses as outcome variable the standardized total
score obtained by the teachers in the centralized test. In Columns (3) the sample is restricted to vacancies that were actually
filled by a certified teacher. Panel B focuses on the selection process of contract teachers. Column (1) shows the effects on
the rank in which a vacancy was chosen in the deferred acceptance mechanism (normalized so that it takes value from zero to
one), while Columns (2) to (3) are analogous to those from Panel A. Cells report the bias-corrected regression-discontinuity
estimates obtained using the robust estimator proposed in Calonico et al. (2014) and their bounds estimated using the procedure
developed in Gerard et al. (2020). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at
the bottom part of the table. The table also reports the mean of the dependent variable computed within the interval (−BW, 0]
(left-hand-side of the cutoff). Standard errors are clustered at the school×year level. *** p< 0.01, ** p<0.05, and *p<0.10.

130



Table 2.A.10: Monetary Incentives and Teaching Staff Composition

Permanent Vacancy Short-term Vacancy

(1) (2) (3) (4) (5) (6)

# Teachers Student/Teacher % Permanent # Teachers Student/Teacher % Contract

High Bonus 0.124 -0.095 0.083 -0.537 0.052 -0.045

(0.345) (0.182) (0.043) (0.372) (0.184) (0.036)

Mean dep. var.
(Low Bonus)

6.572 2.668 0.543 6.562 2.598 0.411

Bandwidth 172.891 144.740 238.703 147.124 164.956 193.869

Observations 1033 835 1599 1152 1282 1568

Notes. This table reports the effect of crossing the population threshold on the number and the composition of teaching staff in
schools that had an open vacancy in the 2015 or 2017 assignment process. The sample in columns (1) to (3) includes schools that had
vacancies for permanent teachers. In column (1) the outcome variable is the total number of teachers, in column (2) is the students
to teachers ratio, while in column (3) is the share of permanent teachers. Columns (4) to (6) are the analogous of columns (1)-(3) for
schools that had vacancies for contract teachers. Cells report the bias-corrected regression-discontinuity estimates obtained using the
robust estimator proposed in Calonico et al. (2014). Regressions are defined within a mean-square error optimal bandwidth (BW),
reported at the bottom part of the table. The table also reports the mean of the dependent variable computed within the intervals
(0,+BW ) (right-hand-side of the cutoff) and (−BW, 0] (left-hand-side of the cutoff). SE are clustered at the school level. *** p<
0.01, ** p<0.05, and *p<0.10.
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Table 2.A.11: Monetary Incentives and Teachers’ Retention

Permanent teachers Contract teachers

(1) (2) (3) (4)

Within-year Between-years Within-year Between-years

High Bonus 0.014 0.012 0.003 -0.005

(0.020) (0.026) (0.007) (0.013)

Mean dep. var. (Low Bonus) 0.905 0.099 0.970 0.919

Bandwidth 200.427 150.910 174.360 142.533

Schools 1366 998 2021 1613

Observations 5606 4187 19553 15908

Notes. This table reports the effect of crossing the population threshold on the within- and between-years retention of contract
and permanent teachers. In column (1) the outcome variable is a dummy equal to one if the teaching position is filled by the
same permanent teacher at the beginning (March) and the end (December) of a school year. In column (2) it is a dummy equal
to one if the position is filled by the same teacher for two consecutive years (the teacher in school year t is the same teacher
observed in year t−1). Columns (3) and (4) are the analogous of columns (1) and (2) for contract teaching positions. The sample
includes all the teaching positions in rural Peru over the period 2016-2018 that are observed for at least two consecutive years.
Cells report the bias-corrected regression-discontinuity estimates obtained using the robust estimator proposed in Calonico et al.
(2014). Regressions are defined within a mean-square error optimal bandwidth (BW), reported at the bottom part of the table.
The table also reports the mean of the dependent variable computed within the interval (?BW,0] (left-hand-side of the cutoff).
SE are clustered at the school×year level. * p¡ 0.01, p¡0.05, and *p¡0.10.
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Table 2.A.12: Monetary Incentives and the Characteristics of Contract Teachers

(1) (2) (3) (4) (5)

Female Age Experience Indigenous Univ. Degree

High Bonus 0.109 -1.302 -0.009 -0.006 0.075

(0.060) (0.864) (0.024) (0.127) (0.054)

Mean dep. var. (Low
Bonus)

0.578 37.363 0.950 0.358 0.294

Bandwidth 138.955 158.719 170.756 192.227 182.079

Schools 794 930 1007 1149 1072

Observations 1761 2115 2165 853 2306

Notes. This table reports the effect of crossing the population threshold on several teachers’ characteristics. These
are a female dummy (column 1), age (column 2), a dummy taking value 1 for teachers with at least 3 years of teaching
experience (column 3), a dummy equal to 1 if the teacher speaks a Peruvian indigenous language (column 4), an
indicator for university or technical institute education (column 5). The sample includes all contract teacher vacancies
assigned in the 2015 and 2017 processes, regardless of whether they were assigned to certified or non-certified teachers.
In column (4) the sample includes only vacancies assigned during the 2015 assignment process, as the same information
is not available for 2017. Cells report the bias-corrected regression-discontinuity estimates obtained using the robust
estimator proposed in Calonico et al. (2014). Regressions are defined within a mean-square error optimal bandwidth
(BW), reported at the bottom part of the table. The table also reports the mean of the dependent variable computed
within the intervals (0,+BW ) (right-hand-side of the cutoff) and (−BW, 0] (left-hand-side of the cutoff). SE are
clustered at the school×year level. *** p< 0.01, ** p<0.05, and *p<0.10.
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2.A.3 Teacher School Choice Model

Table 2.A.13: Preference Estimates

Panel A: School/Locality Characteristics

Wage Poverty Score Infrastructure Multigrade Single Teacher

0.815 (0.120) -0.201 (0.035) -0.054 (0.054) -0.237 (0.119) -0.786 (0.192)

× Male 0.611 (0.157) 0.115 (0.032) -0.060 (0.048) 0.019 (0.099) 0.519 (0.137)

× Experience ≥ 4 0.070 (0.053) 0.097 (0.036) 0.132 (0.052) -0.284 (0.118) 0.020 (0.181)

× Urban 0.115 (0.061) -0.060 (0.044) 0.036 (0.068) 0.009 (0.170) -0.125 (0.242)

× Competent 0.170 (0.067) -0.065 (0.047) 0.198 (0.076) -0.782 (0.185) -0.752 (0.351)

Std. Deviation 0.560 (0.053)

Bilingue Vraem Frontier

-0.747 (0.123) -0.409 (0.284) -0.747 (0.123)

× Male 0.011 (0.113) -0.234 (0.187) 0.270 (0.142)

× Experience ≥ 4 -0.290 (0.112) 0.009 (0.247) 0.047 (0.155)

× Urban -0.050 (0.166) 0.017 (0.404) -0.135 (0.319)

× Competent -0.732 (0.473) -0.233 (1.063) -0.048 (0.299)

× Lives in Vraem 0.521 (0.208)

Rural Wage Bonus Determinants (polynomial)

log(Pop) 0.228 (0.301) Time3 -0.000 (0.000)

Time -0.207 (0.097) Time × log(Pop) -0.002 (0.028)

log(Pop)2 -0.054 (0.031) Time2 × log(Pop) -0.002 (0.000)

Time2 0.011 (0.003) Time × log(Pop)2 0.007 (0.002)

log(Pop)3 0.002 (0.001)

Panel B: Teacher-School Match Effects

Ethnolinguistic Match Geographical Proximity (spline)

Quechua × Quechua 1.488 (0.158) Distance < 20km -0.187 (0.003)

Aymara × Aymara 1.375 (0.537) 20km < Distance < 100km -0.033 (0.001)

Ashaninka × Ashaninka 2.243 (0.558) 100km < Distance < 200km -0.018 (0.001)

Awajun × Awajun 2.086 (1.020) 200km < Distance < 300km -0.017 (0.002)

Other × Other 0.995 (0.113) Distance > 300km -0.002 (0.000)

Panel C: Outside Option

Constant 2.740 (1.197) Quechua 0.527 (0.116)

Male 0.840 (0.271) Aimara 0.214 (0.454)

Score -0.205 (0.036) Ashaninka -0.564 (0.646)

Age 0.019 (0.005) Awajun -0.026 (0.913)

Experience -0.043 (0.005) Other Amazonas -0.473 (0.067)

Private Exp > 0 0.195 (0.054) Time -0.059 (0.008)

log(Pop) 0.115 (0.011)

Notes. This table displays estimates and standard errors (in parentheses) of the parameters of the model described in Equation 2.2.
Panel A shows the estimated coefficients associated to a selected set of schools/locality characteristics while Panel B shows estimated
preferences for geographical proximty as well as the interaction between schools’ language of instruction and teachers own native
language. The data used contains choices of the pool of 59,949 applicants (note that 500 applicants are left out due to missing data)
that participated in the allocation of short-term contracts for public primary schools in 2015. Estimation is done via maximizing the
likelihood described in Equation 2.4 where the integral is computed numerically in an inner loop via a Gaussian-Hermite quadrature.
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Figure 2.A.12: Model Fit with Respect to the Competency Scores of the Assigned
Teachers

Notes. This figure uses simulated assignment data which is generated by running the serial dictatorship algorithm using
predicting utilities computed from the estimates from Table 2.4 as well as a randomly drawn set of taste shocks ϵij . It then
compares the average score of teachers assigned to vacancies observed in the actual data and the simulated data depending on
the associated school’s distance to the provincial capital and locality population.

Figure 2.A.13: Simulated Threshold-Crossing Effects With and Without Wage Bonus

a) Without Rural Wage Bonus b) With Rural Wage Bonus

Notes. This figure uses simulated assignment data which is generated by running the serial dictatorship algorithm using
predicting utilities computed from the estimates from Table 2.4 as well as a randomly drawn set of taste shocks ϵij . The
counterfactual scenario depicted in Panel A is computed assuming the presence of all the existing wage bonuses except the S/
500 rural wage bonus for localities with population smaller than 500 inhabitants and time-t-o-travel distance to the provincial
capital higher than 120 minutes.
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Figure 2.A.14: The Effect of the Wage Bonus on Vacancy Filled

Notes. This figure uses simulated assignment data which is generated by running the serial dictatorship algorithm using
predicting utilities computed from the estimates from Table 2.4 as well as a randomly drawn set of taste shocks ϵij . It then
compares, along the population and distance to provincial capital dimension, the average score of teachers assigned to
vacancies under three counterfactual scenarios: (a) under the current policy, (b) in the absence of all wage bonuses, (c) in the
absence of rural wage bonuses only.

Figure 2.A.15: The Effect of the Wage Bonus on Teachers’ Competency Scores

Notes. This figure uses simulated assignment data which is generated by running the serial dictatorship algorithm using
predicting utilities computed from the estimates from Table 2.4 as well as a randomly drawn set of taste shocks ϵij . It then
compares, along the population and distance to provincial capital dimension, the share of vacancies filled under three
counterfactual scenarios: (a) under the current policy, (b) in the absence of all wage bonuses, (c) in the absence of rural wage
bonuses only.
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2.B Proofs

2.B.1 School Preferences Satisfy the Substitute Condition

Denote the set of all possible contracts X = S × T ×W where S is the set of schools, T

the set of teachers we consider and W the set of wages that schools can propose. Under

objective (i), we assume that T is the set of all teachers whereas we restrict T to be the set

of high quality teachers under objective (ii). We assume that wages range discretely from

the minimum wage proposed to teachers in Peru to an arbitrarily large upper bound.

Consider X ′ a subset of X. Define Cs(X
′) and Rs(X

′) the chosen set and the rejected set

of school s. We assume WLOG that Cs(X
′) is not empty. Otherwise this would imply, under

(A1), that X ′ is also empty. Define w∗ the wage offered in Cs(X
′) and define t∗ as the teacher

with the lowest test score in Cs(X
′). Under (A2), we know that w∗ has to be the lowest wage

offered in any of the contracts in X ′. Consider now that we add an additional contract to

X ′ such that X ′′ = X ′ ∪ {(s, t, w)}. Under (A2), we know that if w < w∗ the new chosen

set will be Cs(X
′′) = {(s, t, w)} and the rejected set will be Rs(X

′′) = Rs(X
′) ∪ Cs(X

′).

If w > w∗, the chosen set does not change Cs(X
′′) = Cs(X

′) and the rejected set becomes

Rs(X
′′) = Rs(X

′) ∪ {(s, t, w)}.
If w = w∗, two cases may arise.

• If the size of Cs(X
′) is strictly smaller than school s capacities, under (A1), we have

that Cs(X
′′) = Cs(X

′) ∪ {(s, t, w)} and Rs(X
′) = Rs(X

′′).

• If the size of Cs(X
′) is equal to school s capacities (school s is at max capacity),

under (A1) we have: (i) Cs(X
′′) = Cs(X

′) and Rs(X
′′) = Rs(X

′) ∪ {(s, t, w)} if t is

ranked lower than teacher t∗, or (ii) Cs(X
′′) = Cs(X

′) \ {(s, t∗, w)} ∪ {(s, t, w)} and

Rs(X
′′) = Rs(X

′) ∪ {(s, t∗, w)} if t is ranked higher than t∗.

In any case, Rs(X
′) ⊆ Rs(X

′′).

2.B.2 Proposition 1

Under (A1)-(A2) stability implies that every school fills at least one vacancy for policy objec-

tive (i) and every school is matched with at least one high-quality teacher for policy objective

(ii). Assuming that a given school has not reached the targeted policy objective would con-

tradict stability given that schools would be willing to increase wages until they do so. Also,
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we know that the school-proposing generalized DA algorithm gives the stable allocation max-

imizing the individual welfare of the schools. This means that, conditional on stability, the

sum of the wages offered is minimal, which proves part (i) of Proposition 1.

Given the wages offered, the matching outcome is stable also with respect to the priorities

used in the initial mechanism. This implies that the same allocation can be implemented in

the initial mechanism by fixing wages to the derived accepted wages, which proves part (ii)

of Proposition 1.33

33Under policy objective (ii), a similar argument applies when restricting the set of applicants to high
quality teachers. However, given that low quality teachers have a lower priority than high quality teachers
in the current mechanism, we can treat the allocation of the remaining vacancies to low quality applicants
separately in order to simulate the equilibrium.
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Chapter 3

Labor Market Dynamics and Teacher

Spatial Sorting

Abstract. This paper provides a unifying explanation for the lack of supply of skilled

teachers in remote locations. I build an empirical model of dynamic two-sided matching to

link teachers’ and schools’ preferences with equilibrium sorting and job-to-job flows. I show

that this mapping is invertible such that preferences can be identified and estimated from

observed matches. Taking these tools to panel data on the assignment of public teachers in

Peru, I show that the spatial disaggregation of labor demand coupled with the concentration

of labor supply in cities imply the existence of a spatial job ladder. Low quality teachers get

displaced in remote schools and move toward urban schools by climbing up the ladder once

they have accumulated experience and skills. Labor mobility thus magnifies the urban-rural

gap in teacher quality by one third. Dynamic wage contracts that foster retention can largely

mitigate this effect.

3.1 Introduction

Many public and private services are provided locally and require the presence of a skilled

workforce on-site. In such labor markets, the distribution of workers across locations has

important welfare consequences. Unequal access to essential services such as education,

childcare or healthcare directly contributes to spatial inequalities. Moreover, geographical

differences in the overall quality of local services and amenities are key drivers of the spatial
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distribution of human capital, creating a feedback loop that would reinforce existing inequal-

ities (Diamond and Gaubert, 2022). Understanding what drives worker sorting and mobility

across locations is thus a first-order concern.

This paper studies this question in the context of the provision of an essential local public

service: education. Teachers are key inputs of school quality (Rivkin et al., 2005) and strong

predictors of students’ later outcomes (Chetty et al., 2014b). Evidence of heterogeneous

teacher effects further reveals that low ability students can potentially benefit more from

being exposed to good teachers (Ahn et al., 2021; Bobba et al., 2022). This implies that an

unequal access to skilled teachers can harm both equity and efficiency. However, analyzing

sorting and mobility in teachers’ labor markets is challenging as (i) wages are often set

through collective bargaining and do not adjust to local labor market conditions and (ii)

positions are often allocated through frictionless centralized clearinghouses. Job search or

spatial equilibrium models are not tailored to such settings as they rely on wages to clear local

labor markets or search frictions to rationalize sorting and job-to-job flows (Diamond, 2016;

Moscarini and Postel-Vinay, 2018). Instead, an emerging literature has relied on empirical

models of two-sided matching to study the role of workers’ idiosyncratic preferences over

job attributes in shaping sorting when prices are fixed (Agarwal, 2015; Bobba et al., 2022;

Bates et al., 2022). Yet, these papers abstract away from labor market dynamics, making

the analysis of sorting and mobility incomplete.

This paper bridges these literatures by incorporating dynamics into an empirical model

of two-sided matching. It then applies these novel tools to study the causes of teacher

spatial sorting and mobility and their consequences on spatial inequalities in access to skilled

teachers.

I make several methodological and empirical contributions. First, I build a model of dy-

namic two-sided matching with non-transferable utility where forward-looking agents repeat-

edly meet in a single market and form matches according to their idiosyncratic preferences

and expectations about their future matching opportunities. I propose a tractable large mar-

ket approximation yielding an analytical solution to the model which directly maps agents’

preferences into sorting and job-to-job transitions. Second, I show that this mapping is in-

vertible such that the preferences of participating agents can be nonparametrically identified

from data on realized matches. Third, I take this methodology to panel data on the alloca-

tion of public teachers in Peru and show that (i) the spatial disaggregation of labor demand,
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(ii) the concentration of labor supply in cities and (iii) the presence of home bias in teachers’

preferences, lead to the existence of a spatial job ladder. As a result, low quality teachers

get displaced in remote locations, creating a wide urban-rural gap in teacher quality, and

move toward urban schools once they have accumulated experience and skills, which further

magnifies this gap by one third. Finally, I show that dynamic wage contracts can reduce

inequalities in access to skilled teachers by incentivizing teacher retention.

I start the analysis by leveraging countrywide panel data on the centralized allocation of

public teachers in Peru. I document that remoteness is highly predictive of teacher sorting as

high-skilled teachers concentrate in urban schools, while low-skilled teachers mostly work in

remote locations. Teachers working in remote locations switch from job-to-job at a high rate

to get closer to urban centers. This implies that teacher attrition rates in remote villages are

three times greater than in cities. Movers are, on average, of higher quality than those who

replace them. Labor market dynamics thus seem to largely reinforce spatial inequalities in

teacher quality and student achievement.

To understand what drives local labor demand and supply and how they translate into

equilibrium sorting and career paths, I develop an empirical model of dynamic two-sided

matching without transfers. Teachers and schools meet repeatedly in a single market over

several time periods. The observed characteristics of both sides evolve endogenously ac-

cording to their matching decisions. Agents are forward-looking and form preferences over

observed and unobserved job/teacher attributes. I impose few assumptions on preferences

and beliefs: (i) the systematic and unobserved part of the payoff functions are additively

separable, (ii) the unobserved taste shocks are iid with a type-I upper tail and (iii) agents

have rational expectations about their future match payoffs. I extend the concept of stabil-

ity, widely used in static empirical models of two-sided matching, to this dynamic setting.

I assume that the observed match in each period is stable with respect to teachers’ and

schools’ lifetime utility and that beliefs about future aggregate states are consistent with

their realizations.

To map preferences into sorting, I build on the static framework of Menzel (2015) and

leverage the implications of stability in a large market setting where the number of agents on

both sides grows to infinity. Stability implies that, in each period, each teacher is matched

to her preferred job among the set of jobs that would be willing to hire her and vice versa.

We can thus reinterpret the realized matches as the outcome of two dynamic discrete choice
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models with unobserved and endogenous choice sets. Under the assumption that shocks have

a type-I upper tail, I show that the information contained in choice sets, that is necessary

to characterize conditional choice probabilities, can be summarized into sufficient statistics

called inclusive values. In the limit economy, inclusive values converge to the unique solution

of a fixed-point problem, which explicitly models the dependence between preferences and

choice sets. This allows us to derive an analytical expression for the equilibrium conditional

choice probabilities and map preferences into sorting.

I show that the mapping between preferences and observed sorting is invertible. The joint

surplus function can be nonparametrically identified from data on realized matches. Under

appropriate exclusion restrictions or with the availability of additional data, preferences can

be separately identified from the joint surplus. I provide these results in two settings: (i)

finite horizon and nonstationarity of preferences and aggregate states and (ii) infinite horizon

and stationarity. I then propose a maximum likelihood estimator that can be tractably used

for a parametric version of this framework.

Equipped with this methodology, I identify and estimate teachers’ and schools’ preferences

from data on observed matches within the centralized assignment procedure in Peru. To

separately identify preferences from the joint surplus, I use additional data on how schools

rank the applicants they interview. The estimated preference parameters indicate that (i)

geographical proximity to home is highly predictive of teachers’ preferences and (ii) schools

highly value observed measures of teacher quality, such as experience. This results in the

existence of a spatial job ladder. As labor demand is widely scattered while teachers’ home

location is concentrated in cities, fact (i) implies that teachers have a strong distaste for

remote locations putting rural schools at the bottom of the ladder and urban schools at

the top. As the number of jobs located in urban centers is limited, fact (ii) implies that

excess supply is rationed based on quality such that high-skilled teachers concentrate in

cities while low-skilled teachers are matched to remote schools. The spatial job ladder also

has important consequences on labor market dynamics. Teachers accumulate experience and

human capital throughout their career and climb up the ladder by matching closer to home.

As a consequence, rural schools fail to retain skilled teachers and sustain disproportionately

low levels of teaching experience and quality. Overall, I estimate that teacher mobility along

the spatial job ladder explains one third of the urban-rural gap in teacher quality.

I then investigate the effectiveness of dynamic wage contracts aimed at slowing down labor
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mobility and mitigating its adverse effects on spatial inequalities through retention bonuses.

To do so, I simulate the equilibrium response to a policy that would impose a minimum

contract length in exchange for appropriate compensation to prevent teachers from moving

up the ladder. If compensation is too low, this policy creates large shortages as it forces

teachers to commit and prevents them from rematching ex-post. This highlights a key trade

off between recruitment and retention in the presence of a job ladder. Bonuses that would

negate this adverse sorting effect amount to a 20-40% wage increase depending on the contract

length.

I conclude the analysis with a thought experiment simulating the equilibrium in a coun-

terfactual scenario where teachers’ home locations would be scattered across the country

instead of being concentrated in cities. As proximity to home is no longer associated with

proximity to cities, the spatial job ladder collapses. Teachers still aim to match close to

home but face little competition for these positions. Consequently, high quality teachers are

no longer disproportionately matched to urban schools. The rate at which teachers switch

jobs drops by half. Job-to-job flows are no longer directed from rural schools toward urban

schools which shuts down urban-rural inequalities in attrition. This suggests that designing

policies targeting the root causes of the existence of the spatial job ladder, such as investing

in training local teachers, might be more effective than aiming at slowing down its symptoms

through recruitment or retention policies.

Related literature

This paper relates and contributes to several strands of the literature. First, I contribute to

a growing literature at the intersection of industrial organization and econometrics studying

the empirical content of two-sided matching models with non-transferable utility (NTU).1

Several papers investigate, in a static setting, how preferences of participating agents can be

identified from reported preferences (Fack et al., 2019; Agarwal and Somaini, 2020) or realized

matches (Menzel, 2015; Diamond and Agarwal, 2017; He et al., 2021; Agarwal and Somaini,

2022; Ederer, 2022). Yet, there are few equivalent results for models of dynamic two-sided

matching, despite being increasingly studied in the matching theory literature.2 A handful

1Following the seminal work of Choo and Siow (2006), a large literature on empirical models of two-
sided matching with transferable utility (TU) has evolved separately (Fox, 2010; Galichon and Salanié, 2022;
Gualdani and Sinha, 2019).

2See Baccara and Yariv (2021) for a survey of this rapidly growing literature.
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of papers study waitlist mechanisms (Agarwal et al., 2021; Waldinger, 2021; Verdier and

Reeling, 2022) or include dynamics in college admissions/school choice models (Larroucau

and Rios, 2020). However, these papers study priority-based assignment mechanisms where

the preferences of one side of the market are known ex-ante. This paper contributes to

this literature by building an empirical model of dynamic two-sided matching where the

preferences of both sides of the market are unknown. It extends the concept of stability

to a dynamic setting to map preferences into sorting and show that preferences can be

nonparametrically identified from data on realized matches.

Second, I contribute to a large literature in labor and urban economics studying the causes

and welfare consequences of spatial skill sorting (Moretti, 2013; Diamond, 2016; Diamond

and Gaubert, 2022). I provide a unifying explanation for the lack of access to local services

requiring skilled labor in remote areas. As labor demand is inherently spatially scattered in

these markets while human capital concentrates in cities, the presence of home bias generates

the existence of a spatial job ladder, which has drastic consequences on spatial sorting and

mobility. The tools provided in this paper could help understand the causes and welfare

consequences of important phenomenons such as the existence of medical deserts. I also

contribute to the literature studying sorting and labor mobility through on-the-job search

models (Moscarini and Postel-Vinay, 2018) by showing that labor market dynamics can

alternatively be rationalized by a frictionless dynamic two-sided matching model.3

Third, I contribute to a recent literature on equilibrium models of the teachers’ labor

market (Tincani, 2021b; Biasi et al., 2021b; Bates et al., 2022; Bobba et al., 2022). These

papers study teacher sorting through static models of two-sided matching. I provide a general

framework nesting the existing approaches and derive conditions under which preferences are

nonparametrically identified from realized matches. I also show the importance of labor

market dynamics in shaping teacher sorting, which is typically ignored in this literature.

Fourth, I relate to a large body of work in the economics of education studying the causes

and consequences of teacher attrition (Boyd et al., 2005; Falch and Strøm, 2005; Falch, 2011;

Hanushek et al., 2016; Bonhomme et al., 2016). This paper provides a unifying framework

to study teacher sorting and mobility. I show that attrition is mostly caused by teachers

leaving rural schools by climbing up the spatial job ladder. I then provide new evidence on

3This raises the question of whether search frictions and idiosyncractic preferences over job attributes can
be separately identified from matched employer-employee data in typical search models. I plan to investigate
this in future work.
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the costs of attrition by quantifying its role in shaping urban-rural inequalities in access to

skilled teachers.

Finally, this paper relates to a literature in public economics studying the design of

incentives to recruit and retain civil servants in underprivileged areas. Several papers explored

the role of wage incentives on recruitment, effort and retention but found mixed results on

retention (Deserranno, 2019b; Leaver et al., 2021b; Bobba et al., 2022). Instead, I explore the

effect of dynamic wage contracts designed to increase retention. I show that these policies

can have strong adverse effects on recruitment if teachers are not properly compensated for

the implied lack of flexibility. This highlights a trade off between recruiting and retaining

workers in the presence of a job ladder.

Overview

Section 3.2 briefly describes the institutional setting and the data. Section 3.3 presents

relevant descriptive evidence. Section 3.4 introduces the equilibrium model and characterizes

the mapping between preferences and sorting. Section 3.5 states the main identification

results. Sections 3.6 and 3.7 discuss the empirical strategy and the results. Section 3.8

concludes.

3.2 Context and Data

In this section, I briefly describe the different types of contracts under which teachers can be

employed and how the centralized clearinghouse allocating teaching positions is organized. I

then give a short summary of the different sources of data used throughout the paper.

3.2.1 Institutional Setting

Public teachers in Peru can be hired under two types of contracts. Temporary contracts last

at least one year and can be renewed up to a second year. Permanent contracts can last

indefinitely and are akin to usual civil servant contracts. Temporary contracts are paid a fixed

rate that does not vary with experience. Permanent teachers can get promoted throughout

their career to higher ranks in the civil servant scale system to get higher wages.4 On the

4Promotions are awarded through a national standardized evaluation and a decentralized evaluation made
by a committee evaluating teachers’ performance and professional career.
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lowest scale, permanent teachers are paid the same wage as temporary teachers. On the

highest scale, permanent teachers are paid 75% more. In an effort to make remote schools

and schools with difficult teaching conditions more attractive, the Ministry of Education

provides wage bonuses to teachers working in schools belonging to a predetermined set of

categories (see Appendix 3.B.1 for more details). However, the overall spatial variation in

wages induced by this bonus scheme remains very limited.5

Since 2015, the allocation of new teaching positions is organized through a biennial cen-

tralized clearinghouse. All teachers without a permanent contract seeking a position have

to go through this process.6 The allocation is organized into three steps that take place at

the end of the academic year from November to January. First, all applicants participate

in the national competency exam, which assesses their skills and curricular knowledge. If

their score falls above a given threshold, teachers become eligible for permanent contracts.

Second, eligible applicants participate in the allocation of permanent positions. Teachers

form an unconstrained list of choices within the same province and are then interviewed by

their three top schools.7 Schools then make offers to their preferred candidates. Finally, all

remaining teachers participate in the allocation of temporary contracts. In this step, schools

are passive and cannot express their preferences. Teachers are ranked according to their test

score and choose among the set of available positions by order of priority. Finally, schools

which did not manage to recruit anyone can resort to hiring non-certified teachers through

temporary contracts. More details about the test and the timing of the allocation mechanism

are available in Appendix 3.B.1.

3.2.2 Data

I combine several sets of administrative data provided by the Ministry of Education in Peru

to create a unique record of teachers’ movements across schools throughout their careers.

Most importantly, I observe teachers repeatedly applying through the centralized assignment

5Table 3.A.2 shows summary statistics on various job characteristics. One standard deviation in wages
corresponds to only 16% of the minimum wage.

6Permanent teachers seeking to get transferred to another school need to go through a separate decen-
tralized procedure.

7As schools cannot interview more than ten applicants, capacity constraints are rationed using test scores
as priorities.
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platform, allowing for a deeper investigation of the causes of these movements.8 I briefly

describe these data sources below.9

Teacher assignment data: I observe a panel including all positions and teachers employed

in the public sector in Peru from 2015 to 2021. For each teacher in each year, I know in

which position they work, which type of contract they hold and which wage they receive.

I supplement these data with additional sources of information on jobs and teachers (see

Appendix 3.B.2 for details on the data construction). First, I link teachers national ID to

the Household Targeting System (SISFOH) data containing information about their poverty

status, education level and, most importantly, their home location. It also allows me to link

each teacher to other members of their household and know their marital status, whether they

have children and whether they live with their parents. Second, I link each job to the School

Census containing a wide set of locality and school characteristics. I observe whether a given

locality has access to basic amenities such as water and electricity. I also have information

about the precise geolocalization of the school and the level of poverty and rurality of its

locality.

Centralized assignment data: I have access to detailed information about the biennial

countrywide centralized assignment of new teaching positions from 2015 to 2019. I observe

the universe of participating applicants and positions in each step of the mechanism. The

dataset contains information on applicants’ test scores at the national competency exam.

I also have access to detailed information on the allocation of permanent positions. In

particular, I observe the set of applicants each school interviews and how they rank them.

The dataset also records the final match for both temporary and permanent contracts in

each year. Finally, and key to my analysis, this dataset can also be linked to the teacher

assignment data in order to track applicants and positions across years.

Note that the teacher assignment data and centralized assignment data do not necessarily

overlap. The centralized assignment data contains information about the set of applicants and

vacancies that end up staying unmatched and thus do not appear in the teacher assignment

data. The teacher assignment data contains information about applicants already holding

a permanent contract and non-certified teachers who are not allowed to participate in the

8Bobba et al. (2022) use similar data but do not exploit the panel dimension of the data and abstract
away from the role of labor dynamics.

9I restrict the analysis to public primary education. Primary schools are evenly distributed across the
country while secondary schools are sometimes missing in remote locations. Teachers’ spatial sorting is thus
a more salient concern for primary education.
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centralized allocation mechanism.

3.3 Descriptive Evidence

Jobs are geographically scattered across locations which greatly differ in their level of re-

moteness and amenities (see Table 3.A.2). One quarter of positions are located more than

four hours away from the provincial capital. One third of the available positions are located

in schools that have no access to electricity or water. In contrast, teachers’ home locations

are concentrated in cities: 82% of applicants live in a provincial capital (see Table 3.A.3).

In this section, I provide suggestive evidence that this creates an imbalance between local

supply and demand, which shapes teacher spatial sorting and mobility and translates into

spatial inequalities in teaching quality.

3.3.1 Spatial Sorting and Mobility

I first leverage data on the centralized assignment mechanism to document how teachers

sort across locations, in the cross-section, based on observed measures of teacher quality.

Panel A of Figure 3.1 plots the relationship between teachers’ test scores and the distance

between their matched school and the provincial capital. I find that high scoring teachers are

disproportionately matched to schools located close to urban centers. Specifically, teachers in

the top decile of the score distribution work on average 45 minutes away from the provincial

capital, while teachers in the bottom decile work 6 hours away. This pattern is not driven by

spatial disparities in the quality of local workers as low scoring teachers live close to urban

centers, on average.

I then document how teachers move across locations throughout their careers using the

panel structure of the data. Among the set of teachers who started a new job in 2016, 40%

switched jobs at least twice over the period 2016-2021. This number decreases to 25% for

teachers starting in urban areas in 2016 while it increases to 60% for teachers starting in

remote locations. Panel B of Figure 3.1 plots the time trend of the remoteness of teachers’

matched schools. I find that as teachers switch jobs, they also switch locations and pro-

gressively move closer to urban centers. The rate at which they move increases with the

remoteness of their starting job. Teachers who start in remote locations get closer to the

provincial capital by almost three hours. In contrast, teachers who already start in proximity
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Figure 3.1: Sorting and Movements Across Locations

a) Sorting b) Job-to-Job Transitions

Notes. This figure uses the teacher assignment data. Panel A plots binned averages of the distance (in hours) between
applicants’ home location and the provincial capital as well as applicants’ matched location and the provincial capital. Each bin
is equally spaced using vigintiles of the distribution of teachers’ test scores. Panel B plots the evolution of the distance between
teachers’ matched schools and the provincial capital over the period 2016-2021 for three groups of teachers starting at different
levels of remoteness in 2016.

to urban centers do not get closer by switching jobs.

These patterns suggest that teachers have a distaste for remoteness, potentially creating

an imbalance between local labor supply and demand. Excess supply in urban locations seems

to be rationed through observed measures of teacher quality such as test scores. As a result,

low-quality teachers work temporarily far from urban centers and switch from job-to-job at

a high rate to move closer to cities.

3.3.2 Spatial Inequalities

Teacher spatial sorting and movements across locations have direct consequences on the

distribution of teaching quality across space. The sorting patterns described in Figure 3.1

directly imply that teachers working in remote schools are less qualified than teachers working

in cities. Panel A of Figure 3.2 shows the resulting urban-rural gap in teacher test scores.

Teachers working in the provincial capital score on average 1.3 standard deviations higher

than teachers working in very remote schools located more than 6 hours away from the

provincial capital. Similarly, the magnitude and direction of the job-to-job flows described

in Figure 3.1 imply that schools located in rural areas face high attrition rates. Panel B of

Figure 3.2 shows that between 2016 and 2018, the teacher attrition rate in schools located

in remote villages is 50 percentage points higher than in schools located in the provincial
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Figure 3.2: Spatial Inequalities

a) Teacher Test Score b) Transition 2016-2018

Notes. This figure uses the teacher assignment data and documents urban-rural inequalities in teacher test scores and in the
type of job transitions between 2016 and 2018. Panel A shows the average test score of matched teachers for several bins of the
distance to the provincial capital. Panel B shows the share of teachers that stayed in the same school, moved to another school
or quit teaching in the public sector for several bins of the schools’ distance to the provincial capital.

capital.

It has been widely documented that teacher attrition negatively affects student learning

through disruption and the resulting loss of experience (Hanushek et al., 2016). I provide

descriptive evidence in line with these results. I compare movers with the teachers who re-

placed them in 2018 over several dimensions. Table 3.1 shows that movers are significantly

more experienced than newcomers. Eleven percent of newcomers have no prior experience.

Newcomers are 6 percentage points more likely to be non-certified. I also find that movers

score on average 0.16 standard deviations higher at the national exam compared to newcom-

ers. This is quite substantial as this corresponds to 12% of the urban-rural gap in teacher

test scores.

As the literature points out that observable measures of teacher quality can be poor pre-

dictors of teacher value added (Rockoff, 2004), I also provide additional evidence in Appendix

3.C that movers are of significantly higher value added than newcomers. To do so, I follow

Chetty et al. (2014a) and estimate teacher value added using matched teacher-classroom

data. I find that movers’ value added is 0.10 standard deviations higher than newcomers.

This corresponds to 50% of a standard deviation in value added which is quite substantial.

This result is consistent with evidence of large value added gains through experience in the

early stages of teachers’ careers (Rockoff, 2004; Rivkin et al., 2005; Araujo et al., 2016).

Overall, these findings suggest that teacher sorting and mobility have important conse-
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Table 3.1: Movers vs. Newcomers

Movers Newcomers Difference

Competency Score 0.545 0.389 0.156 (0.017)

Non-certified 0.125 0.181 0.056 (0.006)

Value Added 0.057 -0.042 0.099 (0.031)

Experience

No Experience 0 0.109 -0.109 (0.004)

Between 1 and 2 years 0.166 0.190 -0.024 (0.006)

Between 3 and 5 years 0.308 0.250 0.058 (0.007)

Between 6 and 10 years 0.271 0.187 0.084 (0.007)

Above 10 years 0.123 0.083 0.040 (0.005)

Notes. This table uses the centralized assignment data to compare the temporary teachers that
moved to a different school between 2016 and 2018 to the teachers that were hired to replace them
in 2018 over several dimensions. Details on how value added is estimated are in Appendix 3.C.

quences on spatial inequalities. Schools located in remote areas fail to attract high-quality

teachers and face high attrition rates. As movers are replaced by teachers of lower experience

and quality, labor market dynamics sustain and exacerbate spatial inequalities in teaching

quality and student achievement.

The suggestive evidence presented in this section highlights the need for further investi-

gation on the causes of teacher spatial sorting and mobility. More specifically, it is crucial

to understand (i) how teachers trade off geographical proximity against other job/locality

characteristics and (ii) how schools ration excess labor supply. To do so, I develop next a

general model of dynamic two-sided matching mapping teachers’ and schools’ preferences

into equilibrium sorting and job-to-job flows.10

3.4 Empirical Model of Dynamic Two-Sided Matching

In this section, I build on Menzel (2015) and develop a general model of dynamic two-

sided matching with non-transferable utility incorporating the following features. First, an

empirical model of teachers’ and schools’ preferences able to quantify how agents trade off a

potentially large set of job and teacher attributes. Second, state variables that evolve over

10As reallocation entails costly migration decisions, embedding these decisions within a dynamic framework
is crucial to disentangle moving costs from taste for specific locality characteristics such as amenities or
remoteness (Kennan and Walker, 2011).
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time depending on agents’ matching decisions. Third, forward-looking agents that anticipate

the effect of their current action on the future. Finally, an equilibrium concept mapping

these elements into sorting and job-to-job flows.

This section is divided into two parts. I first describe the environment, the preference

model and introduce the equilibrium concept. Then, I characterize the mapping between

preferences and realized sorting.

3.4.1 Model

Throughout this section, I refer to one side of the market as teachers and the other side

as schools. I assume that matching is one-to-one meaning that each school only opens

one vacancy. Alternatively, we can consider jobs as separate entities such that matching

is one-to-one by design. To simplify the analysis, I use a large market approximation to

obtain a tractable analytical expression linking primitives to equilibrium sorting. I start

by introducing the relevant parts of the model in the finite economy before defining the

asymptotic sequence that characterizes the limit economy.

Timing

I consider a repeated matching game where a set of schools and teachers meet in a single

market in each period. An extension considering the opposite polar case where matches are

irreversible is in Appendix 3.F. Time is discrete and indexed by t = 1, ..., T . I assume that

T ∈ [1,∞] meaning that the model nests both the static case T = 1, which corresponds

to Menzel (2015), and the infinite horizon case T = ∞. For simplicity, I assume that the

set of participating agents and schools is fixed over time. However, this framework can be

extended to settings where agents enter and exit the market sequentially in an exogenous way.

Teachers are indexed by i ∈ I = {1, ..., nw} and schools are indexed by j ∈ J = {1, ..., nm}.
In each period t, a matching is formed summarized by the functions µwt, which maps I to

J ∪{0} and µmt, which maps J to I ∪{0} where 0 is the option of staying unmatched. The

resulting matching is summarized in µ = (µwt, µmt)
T
t=1.

Teacher i and school j are characterized in each period t by a set of observed characteristics

which are collected into two vectors xit and zjt. I fix the probability distribution functions

of their initial value xi1 and zj1 as w1(x) and m1(z) with support X1 and Z1 and assume

that they are exogenous. Individual states evolve stochastically over time depending on
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agents’ matching decisions µ through the Markov transition probability distribution functions

wt+1(xit+1|xit, zµwt(i)t) and mt+1(zjt+1|xµmt(j)t, zjt). I denote separately m0t+1(zjt+1|zjt) and
w0t+1(xit+1|xit) the transition probability distribution functions for agents choosing to stay

unmatched. Throughout the rest of the paper, I drop the index t from the functions w, w0,

m and m0 for simplicity. Finally, individual matching decisions in period t aggregate into

the probability distribution functions of observed states wt+1 and mt+1 as follows:

wt+1(x,µ) =

∫
Xt

∫
Zt

w(x|s, h)ft(s, h)dhds+
∫
Xt

w0(x|s)ft(s, ∗)ds

mt+1(z,µ) =

∫
Xt

∫
Zt

m(z|s, h)ft(s, h)dhds+
∫
Zt

m0(z|h)ft(∗, h)dh

where ft(x, z), ft(x, ∗) and ft(∗, z) are, respectively, the joint probability distribution func-

tion of the characteristics of matched teachers and schools, of unmatched teachers and of

unmatched schools in period t. A formal definition of these functions is in the next subsec-

tion.

Preferences and Beliefs

Agents are forward looking and anticipate how their current decision affects their lifetime

utility. I define the lifetime utility that teacher i gets from being matched with school j in

period t as:

Uijt = Ut(xit, zjt) + σηijt + βw

∫
U it+1(xit+1)w(xit+1|xit, zjt)dxit+1

whereas the lifetime utility that school j gets from being matched with teachers i in period

t is defined as:

Vijt = Vt(xit, zjt) + σϵijt + βm

∫
V jt+1(zjt+1)m(zjt+1|xit, zjt)dzjt+1

Agents’ lifetime utility is first composed of a flow utility, which agents enjoy from their match

in period t. It includes a systematic part Ut(xit, zjt) and Vt(xit, zjt), where the functions

(Ut, Vt) are unknown, and unobserved shocks (ηijt, ϵijt) which are assumed to enter additively.

σ is a normalizing sequence which is defined later. I impose the following assumptions on

these objects.
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Assumption 1 (i) Ut and Vt are uniformly bounded in absolute value and p ≥ 1 times

differentiable with uniformly bounded partial derivatives in X × Z for all t.

(ii) ϵijt and ηijt are drawn independently from xit and zjt from a distribution with absolutely

continuous c.d.f. G(s) and density g(s). The upper tail of the distribution G(s) is of type I

with auxiliary function a(s) = 1−G(s)
g(s)

.

Assumption 1.(i) is a standard regularity condition which ensures that the functions Ut

and Vt are well-behaved. Assumption 1.(ii) imposes restrictions on the upper tail of the

distribution of ϵijt and ηijt but leaves the lower tail unrestricted. As the number of teachers

and schools grows to infinity, the number of independent draws of ϵijt and ηijt also grows.

All draws of ϵijt and ηijt from the lower tail of their distribution thus become inconsequential

in determining which is the most preferred school or teacher. As in Menzel (2015), I assume

that G belongs to a class of distributions which has a type I extreme value distributed upper

tail.11 Note that this class of functions encompasses most of the parametric distributions

traditionally used in discrete choice models. For the Gamma distribution or the Gumbel

distribution, Assumption 1.(ii) holds for a(s) = 1. For the standard normal distribution, it

holds for a(s) = 1
s
.

Agents’ lifetime utility is then composed of a continuation value. Teachers and schools

internalize that their matching decisions affect their future states and thus their future pay-

offs. This continuation value is the discounted sum of future expected payoffs. I assume that

teachers discount future utility at a rate βw, while schools discount at a rate βm. I define

U it+1 and V jt+1 as agents’ expectations about Uiµt+1(i),t+1 and Vµt+1(j)j,t+1 conditional on their

future state variables. As agents only observe their current states, I integrate this object over

the transition distribution functions m and w. I impose the following assumptions on U it+1

and V jt+1.

Assumption 2 For each period t, each teacher i = 1, ..., nw and each school j = 1, ..., nm:

U it+1(x) = ESt [Uiµt+1(i),t+1|xi,t+1 = x] and V jt+1(z) = ESt [Vµt+1(j)j,t+1|zj,t+1 = z]

11This class of distribution is also called the domain of attraction of the Gumbel distribution (Resnick
(1987))
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where St is the information set of participating agents in period t:

St = {(m̃s)
T
s=t, (w̃s)

T
s=t, G, (Us)

T
s=t, (Vs)

T
s=t}

Assumption 2 states that agents have rational expectations about the lifetime utility they

will get from their future match conditional on their future state. Agents have incomplete

information about the exact realization of the future observed and unobserved states of other

participants. Instead, I assume that they know the distribution of taste shocks and the pay-

off functions for all subsequent periods. I also assume that they form beliefs (m̃s)
T
s=t, (w̃s)

T
s=t

about the probability distribution functions of future aggregate states (ms(µ))
T
s=t, (ws(µ))

T
s=t.

I assume that individual agents are atomistic and internalize that their decisions only influ-

ence their own future state and not the future aggregate states.

Normalizations

For the limit economy to predict sorting patterns that are consistent with the finite economy,

I make a few technical assumptions. First, I specify the utility of the outside option as

follows:

Ui0t = σ max
k=1,...,J

ηi0,k + βw

∫
U it+1(xit+1)w0(xit+1|xit)dxit+1

V0jt = σ max
k=1,...,J

ϵ0j,k + βm

∫
V jt+1(zjt+1)m0(zjt+1|zjt)dzjt+1

I then assume that the size of the market is denoted by n and impose the following normal-

izations on the asymptotic sequence:

Assumption 3 The asymptotic sequence is controlled by n = 1, 2, ... and we define:

(i) nw = [exp(γw)n], nm = [exp(γm)n]

(ii) J = [n1/2]

(iii) σ = 1
a(bn)

where bn = G−1(1− n−1/2)

Assumption 3.(i) allows to flexibly control the relative sizes of each side of the market

through the parameters γw and γm. Assumption 3.(ii) guarantees that, in each period t, the

probability that teachers or schools stay unmatched does not degenerate to zero in the limit.

If the size of the outside option does not grow with the size of the market, the probability

that it becomes dominated by an alternative option will tend to one given that taste shocks
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have unbounded support. Assumption 3.(iii) controls the scale of the unobserved shocks

such that both the unobserved and systematic parts of the payoffs jointly determine agents’

choices in the limit. Given that Ut and Vt are bounded and that the support of taste shocks

is unbounded, Ut and Vt would become irrelevant in the limit without this restriction. More

specifically, if G is Gumbel, then bn ≍ 1
2
log(n) and σn = 1. If taste shocks are standard

normal, bn ≍
√
log n and σn ≍ bn and for Gamma distributed taste shocks, bn ≍ log(n) and

σn = 1.

Equilibrium

To rationalize the observed matching and link it to the primitives of the model, I impose the

following equilibrium assumptions.

Assumption 4 The match µ is such that, for all i = 1, ..., nw and j = 1, ..., nm in each

period t:

(i) Individually rational in period t: Uiµwt(i)t ≥ Ui0t and Vµmt(j)jt ≥ V0jt.

(ii) No blocking pairs in period t: There exists no pair (i, j) such that Uijt > Uiµwt(i)t and

Vijt > Vµmt(j)jt.

(iii) Consistent beliefs about aggregate states:

w̃t+1(x) = wt+1(x,µ) =

∫
Xt

∫
Zt

w(x|s, h)ft(s, h)dhds+
∫
Xt

w0(x|s)ft(s, ∗)ds

m̃t+1(z) = mt+1(z,µ) =

∫
Xt

∫
Zt

m(z|s, h)ft(s, h)dhds+
∫
Zt

m0(z|h)ft(∗, h)dh

Assumption 4 (i) and (ii) impose that the outcome of the match is stable in each period t

given agents’ lifetime utility. This means that there should exist no teacher-school pair that

would prefer to break their current match to rematch together instead. Note that I impose

no restriction on preferences such that within a single period there could exist many different

stable outcomes (Roth and Sotomayor, 1992). I define the teacher-optimal stable match in

period t as µW
t and the firm-optimal stable match in period t as µM

t . Assumption 4 (iii)

imposes that agents’ beliefs about the distribution of future aggregate states are consistent

with the actual realized equilibrium distributions.
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3.4.2 Linking Primitives to Equilibrium Sorting

Equilibrium sorting and job-to-job transitions are summarized by the joint distributions

of matched characteristics in each period t. I define this distribution for a given random

matching µt from a finite economy indexed by n as follows:

Fnt(xit, zjt|µt) =
1

n

nw∑
i=0

nm∑
j=0

P(xit ≤ x, zjt ≤ z, µwt(i) = j)

I then denote Ft the limit of the distribution function Fnt as the size of the market n grows

to infinity. I also define the joint density of matched characteristics as ft. The goal of this

section is to express ft as a function of the primitives of the model.

The proof is divided in four steps. First, I show that stability implies that the realized

matches in each period can be interpreted as the outcome of two dynamic discrete choice

models with endogenous and unobserved choice sets called opportunity sets. Second, I con-

sider a simplified economy with observed and exogenous choice sets and derive the limit of

conditional choice probabilities. Third, I show that the information contained in opportunity

sets which is necessary to characterize conditional choice probabilities can be summarized into

sufficient statistics called inclusive values. Finally, I show that, in the limit, these inclusive

values converge to the unique solution of a fixed point problem. This allows to characterize

conditional choice probabilities and, in turn, ft as a function of agents’ payoff functions.

Opportunity Sets

Given an arbitrary match µ, I define the opportunity set of a teacher in period t as the set

of schools that would be willing to hire her instead of its currently matched employee in the

same period. Similarly, the opportunity set of a school is the set of teachers that would be

willing to quit their current employer to work there. Formally, I define the opportunity set

faced by a given teacher i ∈ I in period t given a match µ as:

Mit(µ) = {j ∈ J : Vijt ≥ Vµmt(j)jt}

Similarly, I define the opportunity set of school j ∈ J as:

Wjt(µ) = {i ∈ I : Uijt ≥ Uiµmt(i)t}
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I state the first important result:

Proposition 1 Consider a match µ∗ satisfying Assumption 4, for all i = 1, ..., nw and j =

1, ..., nm:

(i) For all t = 1, ..., T :

Uiµ∗
wt(i)t

= max
k∈Mit(µ∗)∪{0}

Uikt and Vµ∗
mt(j)jt

= max
l∈Wjt(µ∗)∪{0}

Vljt

(ii) Under Assumption 2, for all t < T :

U it+1(x) = ESt

[
max

k∈Mit+1(µ∗)∪{0}
Uikt+1|xit+1 = x

]

V jt+1(z) = ESt

[
max

l∈Wjt+1(µ∗)∪{0}
Vljt+1|zjt+1 = z

]
See Appendix 3.D.1 for a proof of this result. Proposition 1.(i) states that a match

µ∗
t is stable if and only if each teacher i ∈ I is matched to her preferred school among

her opportunity set and each school j ∈ J is matched to its preferred teacher among its

opportunity set. Proposition 1.(ii) thus follows immediately from (i). This result implies

that an equilibrium match µ∗ can be rewritten as the outcome of two dynamic discrete

choice models where each agent’s choice set is its opportunity set. The characterization of

optimal choices within dynamic discrete choice models has been extensively studied and used

in a variety of settings. However, existing results cannot be transposed to this problem as

opportunity sets (i) depend on agents’ preferences and are thus unobserved and (ii) depend

on the overall equilibrium match and are thus potentially endogenous. The rest of the proof

shows that these two issues can be circumvented thanks to a large market approximation.

Conditional Choice Probabilities

To simplify the analysis, I start by characterizing the limit of conditional choice probabilities

(CCPs) and expected future payoffs under arbitrary exogenous choice sets and by fixing the

aggregate states distributions. I assume that Mit = {1, ..., J} and Wjt = {1, ..., J} for all t

and I fix mt and wt for all t.

Proposition 2 Consider a given teacher i ∈ I. Under Assumption 1-3 we have:
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(i) For all t, as J → ∞:

JP(Uijt ≥ Uikt, k = {0, 1, ..., J}|xit, zjt) −→

exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫
exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

P(Ui0t ≥ Uikt, k = {0, 1, ..., J}|xit) −→

exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫
exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

(ii) For all t:

U t+1(x) = log

(
exp

{
βw

∫
U t+2(s)w0(s|x)ds

}
+

∫
exp

{
Ut+1(x, h) + βw

∫
U t+2(s)w(s|x, h)

}
mt+1(h)dh

)
+ log(J) + γ + o(1)

where γ ≈ 0.5772 is Euler’s constant. See Appendix 3.D.2 for a proof of this result. The

same result holds symmetrically for the school side. Proposition 2 shows that, under the

assumption that unobservables have a type-I upper tail, CCPs converge to the usual Logit

formula when the number of alternatives grow to infinity. Similarly, expectations about future

payoffs can be computed using the logsum formula commonly used in dynamic discrete choice

models with type-I errors.12

Note that the conditional choice probability of choosing a particular alternative j would

converge to zero if we do not weight it by J , the rate at which the total number of alternatives

increases. Lemma 1 in Appendix 3.D.4 establishes that the size of opportunity sets increases

at a rate
√
n which justifies Assumption 3.(ii).

12These CCPs exhibit the independence of irrelevant alternatives (IIA) property which limits the model’s
ability to allow for flexible substitution patterns. Introducing unobserved discrete types or random coefficients
to relax this assumption is possible.
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Inclusive Values

I now introduce that opportunity sets are unobserved and endogenous and show that the

implications of Proposition 2 allow us to tackle both of these issues.

Endogeneity arises as shifting teacher i’s unobserved preferences in a given period t could

affect her own opportunity set by triggering a chain of rematches. As in Menzel (2015), I find

that, as the size of the market increases, the probability for such an event to occur vanishes

to zero. This result stems from two implications of Proposition 2: (i) the probability that

school j rematches with a specific teacher i vanishes to zero as the size of opportunity sets

increases to infinity and (ii) the probability of choosing the outside option instead, which

would terminate such a chain of rematches, is nondegenerate in the limit. This implies that

the dependence between taste shocks and opportunity sets vanishes in the limit. Note that

this claim can only be proven for the opportunity sets derived from the school-optimal and

teacher-optimal stable matchings µM
t and µW

t . The distribution of taste shocks conditional

on opportunity sets is only well defined for the extremal matchings, given that they are the

only stable matchings that always exist irrespective of the size of the market. This result is

formalized in Lemmas 2 and 3 in Appendix 3.D.4.

I now consider a sequence of school-optimal stable matches µM . As opportunity sets’

endogeneity vanishes in the limit for extremal matchings, we can then use Proposition 2 (i)

to bound13 teachers’ CCPs in period t, assuming that we would observe the corresponding

opportunity set Mit(µ
M
t ) and future expected payoff function U

M

it+1:

n1/2P(Uijt ≥ max
k∈Mit(µM

t )∪{0}
Uikt|xit, zjt, (zkt)k∈Mit(µM

t ),Miτ (µ
M
t ), U

M

it+1) ≤ (3.1)

exp

{
Ut(xit, zjt) + βw

∫
U

M

it+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U

M

it+1(s)w0(s|xit)ds

}
+ n−1/2

∑
k∈Mit(µM

t )

exp

{
Ut(xit, zkt) + βw

∫
U

M

it+1(s)w(s|xit, zkt)ds

} + o(1)

Similar bounds can be computed for a sequence of teacher-optimal stable match µW where

the direction of the inequality is reversed. The same result also holds for the school side with

the direction of the inequality reversed. Using Proposition 2 (ii), we can also bound agents’

expectations about their match payoff under a sequence of school-optimal stable matches µM

13Note that I only provide bounds given that there are several potential stable matches µ∗
t such that

Mit(µ
∗
t ) =Mit(µ

M
t ) and Wjt(µ

∗
t ) =Wjt(µ

M
t ).
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as follows:

U
M

it (x) ≥ log

(
exp

{
β

∫
U

M

it+1(s)w0(s|x)ds
}

(3.2)

+ n−1/2
∑

k∈Mit(µM
t )

exp

{
Ut(x, zkt) + β

∫
U

M

it+1(s)w(s|x, zkt)ds
})

+
1

2
log(n) + γ + o(1)

where again similar bounds can be computed for the teacher-optimal stable match and for

the school side with the direction of the inequality reversed.

In Equations (3.1) and (3.2), n−1/2
∑

k∈Mit(µM
t ) exp

{
Ut(xit, zkt)+βw

∫
U

M

it+1(s)w(s|xit, zkt)ds
}

serves as a sufficient statistic that collapses all the information contained in opportunity sets

which is needed to approximate CCPs and expectations about future payoffs. These objects

are called inclusive values. More generally, I define teacher i’s inclusive value given a sequence

of realized matches µ∗ as:

I∗wit = n−1/2
∑

k∈Mit(µ∗
t )

exp

{
Ut(xit, zkt) + βw

∫
U

∗
it+1(s)w(s|xit, zkt)ds

}

Similarly, I define school j’s inclusive value given µ∗ as:

I∗mjt = n−1/2
∑

l∈Wjt(µ∗
t )

exp

{
Vt(xlt, zjt) + β

∫
V

∗
jt+1(s)m(s|xlt, zjt)ds

}

I also define IMwit and I
M
mjt as the inclusive values that would arise under a sequence of school-

optimal stable matches µM in period t and IWwit and I
W
mjt as the inclusive values that would

arise under a sequence of teacher-optimal stable matches µW in period t.

Fixed point characterization

Inclusive values are unobserved as we do not observe opportunity sets, we do not know which

stable match is selected and we do not know agents’ expectations about future match payoffs.

The rest of the proof shows that the inclusive values arising from an equilibrium match µ∗

can be approximated by the solution of a fixed point problem.

I first show that, as in the static case (Menzel (2015)), inclusive values arising from a

sequence of school-optimal and teacher-optimal stable matches in a given period t can be
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approximated by expected inclusive value functions. I rewrite IMwit as:

IMwit =
1

n

nm∑
k=1

exp

{
U(xit, zkt) + βw

∫
U

M

it+1(s)w(s|xit, zkt)ds

}
×
√
n1{k ∈Mit(µ

M
t )}

=
1

n

nm∑
k=1

exp

{
U(xit, zkt) + βw

∫
U

M

it+1(s)w(s|xit, zkt)ds

}√
n1{Vikt ≥ max

l∈Wkt(µ
M
t )∪{0}

Vlkt}

The inclusive value of a given teacher is determined by the set of schools that would accept

her, which in turn depends on the preferences of all schools as well as their opportunity sets.

Using the school analogous of Equation (3.1), I thus show that:

IMwit ≥ Γ̂M
wt(xit) + op(1) and IMmjt ≤ Γ̂M

mt(zjt) + op(1)

where Γ̂M
wt and Γ̂M

mt are the school-optimal expected inclusive value function of teachers and

schools in period t which are defined as:

Γ̂M
wt(xit) =

1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U

M

it+1(s)w(s|xit, zkt)ds+ β
∫
V

M

kt+1(s)m(s|xit, zkt)ds

}
exp

{
β
∫
V

M

kt+1(s)m0(s|zkt)ds
}
+ IMmkt

Γ̂M
mt(zjt) =

1

n

nw∑
l=1

exp

{
Ut(xlt, zjt) + Vt(xlt, zjt) + β

∫
U

M

lt+1(s)w(s|xlt, zjt)ds+ β
∫
V

M

jt+1(s)m(s|xlt, zjt)ds

}
exp

{
β
∫
U

M

lt+1(s)w0(s|xlt)ds

}
+ IMwlt

where I define U
M

it+1 and V
M

jt+1 as follows:

U
M

it+1(x) = log

(
exp

{
β

∫
U

M

it+2(s)w0(s|x)ds
}
+ IMwit+1

)

V
M

jt+1(z) = log

(
exp

{
β

∫
V

M

jt+2(s)m0(s|z)ds
}
+ IMmjt+1

)
Note that similar bounds can be established for the inclusive values that would arise

under the teacher-optimal stable match:

IWwit ≤ Γ̂W
wt(xit) + op(1) and IWmjt ≥ Γ̂W

mt(zjt) + op(1)

A formal exposition and proof of this result can be found in Lemma 4 in Appendix 3.D.4. The
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inclusive value of a given teacher can be approximated by a function of schools’ preferences

and inclusive values. Similarly, the inclusive value of a given school can be approximated by

a function of teachers’ preferences and inclusive values. Hence, the two-sided nature of the

problem gives rise naturally to a fixed point problem characterizing these inclusive values.

Dynamics add a layer of complexity as expectations about future payoffs depend on future

inclusive values. There is thus dependence between inclusive values within and across periods.

The rest of the proof entails characterizing this fixed point problem and showing that

inclusive values arising from an equilibrium match µ∗ can be approximated by its solution. I

define the fixed point mappings as follows:

Ψ̂wt[Γ](x) =
1

n

nm∑
k=1

exp
{
Ut(x, zkt) + Vt(x, zkt) + β

∫
U t+1[Γ](s)w(s|x, zkt)ds+ β

∫
V t+1[Γ](s)m(s|x, zkt)ds

}
exp

{
β
∫
V t+1[Γ](s)m0(s|zkt)ds

}
+ Γmt(zkt)

Ψ̂mt[Γ](z) =
1

n

nw∑
l=1

exp
{
Ut(xlt, z) + Vt(xlt, z) + β

∫
U t+1[Γ](s)w(s|xlt, z)ds+ β

∫
V t+1[Γ](s)m(s|xlt, z)ds

}
exp

{
β
∫
U t+1[Γ](s)w0(s|xlt)ds

}
+ Γwt(xlt)

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)

V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
I then show that for a given equilibrium match µ∗, for any x ∈ X and z ∈ Z in each

period t:

Γ̂∗
wt(x) = Ψ̂wt[Γ̂

∗](x) + op(1) and Γ̂∗
mt(z) = Ψ̂mt[Γ̂

∗](z) + op(1) (3.3)

meaning that inclusive values in period t arising from an equilibrium match µ∗ can be ap-

proximated by fixed points of the mappings Ψ̂wt, Ψ̂mt. To characterize the limit of inclusive

values, I then consider the limit version of this fixed point problem:

Γwt = Ψwt[Γ] and Γmt = Ψmt[Γ] ∀t (3.4)

where Ψwt and Ψmt are defined in Appendix 3.D.3. The final step of the proof shows that

this population fixed point problem has a unique solution and that the approximate solution

of the finite sample fixed point problem converges to it. This is stated in the following result:

Theorem 1 Under Assumption 1-4:
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(i) The mapping (logΓw, logΓm) 7→ (logΨm[Γ], logΨw[Γ]) is a contraction.

(ii) The fixed point problem described in Equation (3.4) always has a unique solution Γ∗
m,Γ

∗
w.

(iii) For any equilibrium µ∗, I∗wit −→ Γ∗
wt(xit) and I

∗
mjt −→ Γ∗

mt(zjt) for all i, j and t.

The complete proof of this result can be found in Appendix 3.D.4. Theorem 1 has several

implications. First, it implies that for any arbitrary equilibrium match µ∗, inclusive values

converge to the same limit. Consequently, even if there might exist several matches which

satisfy the equilibrium conditions in Assumption 4, all are observationally equivalent in the

limit. Second, it implies that we can easily characterize conditional choice probabilities as

inclusive value functions can be derived by iterating a contraction mapping.

Main result

From Theorem 1 and Proposition 2, we can fully characterize analytically the equilibrium of

the model as a function of teachers’ and schools’ payoff functions. The limit joint density of

matched characteristics ft can be derived from the limit of conditional choice probabilities

and has the following expression:

ft(x, z)

wt(x)mt(z)
=

exp

{
Ut(x, z) + Vt(x, z) + β

∫
U

∗
t+1(s)w(s|x, z)ds+ β

∫
V

∗
t+1(s)m(s|x, z)ds+ γw + γm

}
(
exp

{
β
∫
U

∗
t+1(s)w0(s|x)ds

}
+ Γ∗

wt(x)

)(
exp

{
β
∫
V

∗
t+1(s)m0(s|z)ds

}
+ Γ∗

mt(z)

)

ft(x, ∗)
wt(x)

=

exp

{
β
∫
U

∗
t+1(s)w0(s|x)ds+ γw

}
(
exp

{
β
∫
U

∗
t+1(s)w0(s|x)ds

}
+ Γ∗

wt(x)

)

ft(∗, z)
mt(z)

=

exp

{
β
∫
V

∗
t+1(s)m0(s|z)ds+ γm

}
(
exp

{
β
∫
V

∗
t+1(s)m0(s|z)ds

}
+ Γ∗

mt(z)

)
where ft(x, ∗) and ft(∗, z) are, respectively, the density of the characteristics of unmatched

teachers and unmatched schools. I define the equilibrium expected future payoff functions

U
∗
t+1 and V

∗
t+1 recursively as:

U
∗
t+1(x) = log

(
exp

{
β

∫
U

∗
t+2(s)w0(s|x)ds

}
+ Γ∗

wt+1(x)

)
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V
∗
t+1(z) = log

(
exp

{
β

∫
V

∗
t+2(s)m0(s|z)ds

}
+ Γ∗

mt+1(z)

)
and the equilibrium aggregate states distribution w∗

t and m∗
t as:

w∗
t (x) =

∫
Xt

∫
Zt

w(x|s, h)ft−1(s, h)dhds+

∫
Xt

w0(x|s)ft−1(s, ∗)ds

m∗
t (z) =

∫
Xt

∫
Zt

m(z|s, h)ft−1(s, h)dhds+

∫
Zt

w0(x|s)ft−1(∗, h)dh

To simulate the equilibrium in practice, one first needs to solve for inclusive values given

the specified payoff functions, the initial aggregate distribution of states m1 and w1 and the

transition distribution functions. From there, it is then possible to construct Uijt and Vijt

given a simulated set of taste shocks ϵ and η. To reach a stable match and simulate the

equilibrium in a given period t, any version of the Deferred Acceptance algorithm can be

used as they are observationally equivalent. Monte Carlo simulations testing the validity of

the convergence results derived in this section can be found in Appendix 3.E.

3.5 Identification and Estimation

The previous section built an equilibrium model of dynamic two-sided matching and provided

a tractable way to map preferences into sorting. This section shows that this mapping can

be inverted such that one can identify and estimate preferences from observed sorting.

3.5.1 Sampling Process

I assume that the available data is a random sample of a panel of individuals from the

population regardless of whether they are schools or teachers. One observation in a given

period t is thus composed of this individual alone, in the case where it is unmatched, or along

with its matched partner otherwise. The probability that a matched individual is selected by

this sampling process is thus twice the probability that an unmatched individual is selected.

The joint density function of matched characteristics ht arising from this sampling process

relates to ft in the following way:

ht(x, z) =
2ft(x, z)

exp{γwt}+ exp{γmt}
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where ht(x, z) is the mass of schools with observed characteristics z matched with teachers

with observed characteristics x in period t arising from the sampling scheme defined above

and exp{γw} + exp{γm} is the total mass of teachers and schools available in this economy.

Similarly, I define:

ht(x, ∗) =
ft(x, ∗)

exp{γw}+ exp{γm}

ht(∗, z) =
ft(∗, z)

exp{γw}+ exp{γm}

where ht(∗, z) is the mass of unmatched schools with observed characteristics z and ht(x, ∗)
is the mass of unmatched teachers.

I also assume that we observe the aggregate distribution of observed states mt and wt as

this can be easily recovered from ft as follows:∫
Zt

ft(x, z)dz + ft(x, ∗) = wt(x) exp{γw}

∫
Xt

ft(x, z)dx+ ft(∗, z) = mt(z) exp{γm}

Finally, I assume that the Markov transition density functions m, m0, w and w0 can be

directly identified from data on observed state transitions.

3.5.2 Identification

The primitives of the model that we do not observe and wish to identify and estimate from

the data are the payoff functions (Ut)
T
t=1 and (Vt)

T
t=1 and the discount factors βw and βm.

We know from the literature on dynamic discrete choice models that intertemporal prefer-

ences cannot be identified from observed choices without further assumptions (Magnac and

Thesmar (2002)).14 I thus fix the value of the discount factors from now onward. Similarly,

I cannot allow for T = ∞ while having a nonstationary setting. I thus consider two polar

cases: (i) T <∞ and nonstationarity and (ii) T = ∞ and stationarity.

14Similarly, the flow utility of one alternative needs to be fixed in each period. This is already done through
normalizing the option of staying unmatched.

166



Finite horizon

Given the recursive structure of the problem, the identification argument in the finite horizon

case can be done by backward induction. Starting from the last period T , we can identify

the joint surplus as follows:

UT (x, z) + VT (x, z) = log

(
fT (x, z)

fT (x, ∗)fT (∗, z)

)
We can also identify Γ∗

wT and Γ∗
mT from the distribution of unmatched teachers and schools:

Γ∗
wT (x) =

wT (x) exp(γwT )

fT (x, ∗)
− 1

Γ∗
mT (z) =

mT (z) exp(γmT )

fT (∗, z)
− 1

UT and V T can then be computed by backward induction:

UT (x) = log(1 + Γ∗
wT (x)) + γ

V T (z) = log(1 + Γ∗
mT (z)) + γ

From there, we can then repeat the same steps to identify the inclusive value functions and

the joint surplus in period T−1. Finally, we iterate the procedure to identify the joint surplus

and the inclusive value functions in all periods t. This results in the following proposition.

Proposition 3 Under Assumption 1-4 and for T <∞:

(i) The joint surplus function Ut + Vt and the inclusive value functions Γ∗
wt and Γ∗

mt are

identified for all t from ft, the limiting joint distribution of matched characteristics in period

t.

(ii) Without further restrictions, we cannot separately identify Ut and Vt for all t.

We face a similar identification challenge as in the static case (Menzel, 2015) as preferences

are not separately identified from the joint surplus. However, note that this is not necessarily

a negative result. Given that the joint distribution of matched characteristics is solely driven

by the joint surplus, knowing the joint surplus is enough to perform counterfactuals where

we would change the distribution of teachers’ and schools’ observed attributes. Nevertheless,
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we might be interested in identifying and estimating preferences as these might be objects

of interest. Exclusion restrictions might be useful to disentangle preferences from the joint

surplus, as in the static case (Ederer, 2022). In the empirical analysis, I use additional

data on how schools rank the applicants they interview to disentangle teachers’ and schools’

preferences from the joint surplus.

Infinite horizon

To allow for T = ∞, I impose the following assumptions.

Assumption 5 (i) Stationarity of preferences: Ut = U and Vt = V for all t.

(ii) Stationarity of aggregate states distribution: mt = m and wt = w for all t.

Assumption 5 has the direct implication that inclusive value functions are also stationary

Γmt = Γm and Γwt = Γw for all t. As a consequence, U t = U and V t = V . However,

Assumption 5 (ii) is fairly restrictive as it forces aggregate states to remain on a predetermined

stationary path which might not be consistent with what the model predicts. Showing

existence of a stationary equilibrium which would satisfy consistency requirements is left for

future work. Assumption 5 then implies that we can write:

f(x, ∗)
w(x)

=

exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
(
exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
+ Γ∗

w(x)

)

=

exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
exp

{
U

∗
(x)− γ

} = exp

{
β

∫
U

∗
(s)w0(s|x)ds− U

∗
(x) + γ

}

From there, we can invert this mapping to recover U
∗
. We can follow the same steps to

recover V from f(∗, z). It is then immediate to see that we can identify U + V from f(x, z).

Proposition 4 Under Assumption 1-5 and for T = ∞:

(i). The joint surplus function U + V and the inclusive value functions Γ∗
w and Γ∗

m are

identified from the limiting joint distribution of matched characteristics in each period f .

(ii). Without further restrictions, we cannot separately identify U and V .
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Note that in the stationary case, a single cross section is sufficient to identify and estimate

U + V as the joint distribution of matched characteristics does not depend on t anymore.

However, this does not mean that dynamics do not play a role as agents still make forward

looking decisions.

3.5.3 Estimation

I consider a parametric version of this framework where I define the payoff functions as

U(x, z;θt) and V (x, z;θt) such that U and V are known for all (x, z) up to a vector of

unknown parameters θt. I assume that we observe a random sample of K individuals over

each period t, drawn from the sampling scheme described in Section 5.1, along with their

respective matches. For a given observation k in period t, we observe a vector (xt(k), zt(k))

which is encoded differently depending on the type of match we observe. For an unmatched

teacher, indexed by wt(k) = 0, I record its characteristics in xt(k) and encode zt(k) as missing.

Similarly, for an unmatched school, indexed by mt(k) = 0, I record its characteristics in zt(k)

and encode xt(k) as missing. For a matched teacher or school, indexed by mt(k) = wt(k) = 1,

I record their characteristics in (xt(k), zt(k)). We can then construct the following sample

average log-likelihood:

L(x, z;θ) =
1

KT

T∑
t=1

K∑
k=1

log
[
1{wt(k) = 0}ht(xt(k), ∗,θt) + 1{mt(k) = 0}ht(∗, zt(k),θt)

+ 1{mt(k) = 1, wt(k) = 1}ht(xt(k), zt(k),θt)
]

Calculating the likelihood function for a given parameter vector θ first involves solving the

fixed point problem described in Equation 3.4 to derive the inclusive values. This can be

achieved by setting up an inner loop which will apply the contraction mapping until conver-

gence. The estimator proposed is then defined as:

θ̂ = argmax
θ∈Θ

L(x, z;θ)

Asymptotic inference for θ̂ is then standard if the size of the sample is not too large relative to

the size of the overall economy. As noted in Menzel (2015) and Diamond and Agarwal (2017),

the inherent structure of matching markets could introduce dependence between observations.
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A bootstrap procedure could then be used for inference otherwise (Diamond and Agarwal,

2017; Menzel, 2021). Monte Carlo simulations testing the validity of the proposed estimation

strategy can be found in Appendix 3.E.

3.6 Empirical Strategy

The rest of the paper leverages the above general methodology to identify and estimate teach-

ers’ and schools’ preferences and investigate the determinants of the observed spatial sorting

and job-to-job flows. Before showing the results of the empirical analysis, I briefly describe

how I adapt the model to the context under study by defining the estimation sample, how

model primitives are parameterized and discussing the identification strategy.

Estimation Sample: Throughout the empirical analysis, I consider one side as being teachers

and the other side as jobs such that matching is one-to-one.15 I use several parts of the

centralized assignment data for identification and estimation. First, I use information on

the universe of applicants and positions that participate in the centralized allocation for the

academic years 2016, 2018 and 2020. This allows me to identify directly from the data the

distribution of aggregate states mt and wt for t = {2016, 2018, 2020}. I then use data on

realized matches following the sampling process described in Section 3.5 in order to identify

the joint distribution of matched characteristics ft for t = {2016, 2018, 2020}. Finally, I sup-
plement the analysis with additional data on how schools rank the applicants they interview.

This allows me to overcome the negative result highlighted in Proposition 3 by separately

identifying preferences from the joint surplus. As the horizon of the data is limited, I fix the

distribution of aggregate states and the payoff functions to be stationary from 2020 onward

and set the horizon of the model to T = ∞. This avoids assuming that the continuation

value of a match in 2020 is zero.

Permanent vs. Temporary Contracts : I consider the joint allocation of permanent and tem-

porary positions. Permanent contracts have several non-standard features that the model

needs to account for. Teachers are forced to stay at least three years in the first permanent

15In a static setting, observing the same school making several choices brings additional identification
power to pin down schools’ unobserved preference heterogeneity (Ederer, 2022). Investigating whether this
result also holds in a dynamic setting is left for future work.
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job they accept. Once a teacher accepts a permanent position, it can no longer participate in

the centralized allocation mechanism (see Appendix 3.B for more details). This has several

implications. First, this implies that choosing a permanent contract is a commitment to stay

at least three years in the same location. It is thus crucial to model how agents sort between

these two types of contracts in order to explain teachers movements across locations.16 Sec-

ond, this means that choosing a permanent position is a terminating action as teachers exit

the market if they do so. I thus specify the lifetime utility that teacher i gets from choosing

a permanent position j as follows:

Uijt = U(xit, zjt,θperm) + σηijt

while the utility that teacher i gets from choosing a temporary position k is defined as:

Uikt = U(xit, zkt,θtemp) + σηikt + βw

∫
U it+1(xit+1)w(xit+1|xit, zkt)dxit+1

Similarly, on the school side, I assume that accepting to match with a teacher with a

permanent contract is a terminating action. I thus define the utility that a school with a

permanent vacancy j gets from being matched with teacher i as:

Vijt = V (xit, zjt,γ) + σϵijt

As for temporary jobs, the allocation mechanism is priority-based and schools cannot express

their preferences, I assume that the utility that a school with a temporary vacancy j gets

from being matched with teacher l is:

Vljt = slt

where slt is teacher l’s test score in period t. This slightly simplifies the problem as we can

directly observe which temporary jobs are in teachers’ opportunity sets.

Parametrization Payoffs : As one time period spans two academic years, I first set the dis-

count factor βw to 0.9. The model aims to capture (i) how teachers trade off geographical

16Figure 3.A.2 shows that sorting across permanent and temporary contracts explains a large part of the
observed attrition patterns.
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proximity with other job characteristics such as wages and amenities and (ii) how schools

value observed measures of teacher quality. I thus parametrize teachers’ payoff function as

follows:

U(xit, zjt;θ) = θ0 + θ1wjt + a
′
jtθ2 + d

′
ijθ3 +m

′
ijtθ4 + z

′
jtθ5 + x

′
itθ6

Where wjt is the monthly wage offered in school j in year t, ajt is a vector of indicators

measuring the local level of amenities through the availability of a range of services such

as electricity, sewage, medical centers, internet and libraries, dij is a spline of the distance

between school j and teacher i’s home location and mijt is a set of dummies indicating if

teacher i’s current location is in the same region or province as school j. I also include other

teacher characteristics xit such as experience, marital status, gender and age as well as other

school/locality characteristics zjt part of the bonus scheme driving the variation in wages. I

then parametrize schools’ payoff function as:

V (xit, zjt;γ) = γ0 + s
′
itγ1 + e

′
itγ2 + z

′
jtγ3 + x

′
itγ4

Where sit is a vector of the different components of teacher i’s test score in period t, eit is a

vector of dummies dividing the experience level of teacher i in period t in discrete categories.

I also include various additional teacher and school characteristics in xit and zjt. Note that

I exclude wages, amenities and geographical proximity from schools’ preferences. I directly

test for these exclusion restrictions by estimating schools’ preferences separately and find that

we cannot reject that the parameters associated to these characteristics are jointly equal to

zero.

The main parameters of interest on the teacher side are (θ1, θ2,θ3,θ4). They quantify

the trade offs between wages, amenities and geographical proximity which drive how mobile

labor supply is. On the school side, the main parameters of interest are γ1,γ2 as they are

likely to explain how the demand side rations excess supply and thus how teacher quality is

distributed across locations.

Transition processes : I separate state variables evolving over time in several groups. I assume

that age and experience evolve deterministically and exogenously by getting incremented by

one every year. The competency score sit, which is contained in xit, evolves stochastically
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and exogenously. I assume that the transition distribution function of sit is conditionally

normal such that:

sit+1|xit, zjt ∼ N (x′
itβx + z′jtβz, σ

2)

I estimate (βx,βz) via an auxiliary linear regression and report the estimates in Table 3.A.4.

Finally, mijt evolves deterministically and endogenously. Each move across provinces or

regions updates teachers’ current location such that they internalize that moving again in

the next period might be costly.

Additional identifying variation: To overcome the negative result of Proposition 3 and sep-

arately identify teachers’ and schools’ preferences from the joint surplus, I use additional

data on how schools rank the applicants they interview. As the set of interviewees in each

school is determined by teachers’ rank-ordered list and priority index, schools’ choice sets

are independent of schools’ unobserved preferences by construction. Schools do not have

incentives to misreport their preferences at this stage as job offers are automatically sent in

order of the reported ranks. I thus assume that these rankings are truthful and use them to

construct the corresponding exploded logit conditional choice probabilities. The log of these

CCPs then enters additively in the log-likelihood derived in Section 3.5.17

Discussion of the stability assumption: While I cannot directly test whether the observed

matching is stable, several properties of the allocation mechanism, described in Section 3.2,

limit the presence of frictions that could lead to the existence of blocking pairs. First, the al-

location of temporary positions is implemented via serial dictatorship by sequentially asking

teachers to choose their preferred position by order of priority. This procedure is equivalent

to Deferred Acceptance and thus leads to a stable allocation. Second, the allocation of inter-

views for permanent positions is also done via serial dictatorship, which ensures that teachers

get interviewed by their preferred schools by order of priority, if they reveal their true prefer-

ences. Still, as the number of interviews per teacher is limited to three, two issues might arise:

(i) teachers might end up unmatched because they failed all their interviews while schools

with unfilled positions might be willing to hire them and (ii) teachers might anticipate this

17As this likelihood is not exact, I correct for standard errors using the standard formula for the asymptotic
variance of QMLE.
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possibility and try to avoid it by being strategic when forming their rank-ordered lists.18

To mitigate the first concern, the Ministry implemented an aftermarket such that all

unassigned permanent positions and teachers can meet and match in order to minimize

justified envy. Modeling potential mismatches generated by the second concern would be

challenging as this would entail having access to data on teachers’ beliefs about their chances

to succeed at the interviews and developing a dynamic model of strategic reporting where

preferences of both sides of the market are unknown. This is beyond the scope of the

available data and the proposed methodology and is left for future research. Instead, I

propose a test assessing the validity of the estimated parameters by leveraging the cutoffs

determining eligibility to permanent positions in a regression discontinuity design.19 Teachers

just above the cutoff have both permanent and temporary positions in their choice sets while

teachers just below the cutoff only have temporary positions in their choice sets. Comparing

the matching outcomes of these two groups allows to pin down how teachers trade off job

attributes depending on whether the position is permanent or temporary. I thus verify

whether the estimated model can replicate the threshold crossing effect on the characteristics

of teachers’ matched schools. Figure 3.A.4 shows that the model predictions match the

observed responses at the threshold. Eligible teachers are more likely to choose a permanent

position and are willing to trade off the benefits of permanent contracts with geographical

proximity.

3.7 Results

3.7.1 Preferences and the Spatial Job Ladder

I report in Panel A of Table 3.2 the estimated willingness to pay of teachers for amenities,

proximity to home and moving away from their current location. Consistently with the

migration literature, I find a large distaste for moving (Kennan and Walker, 2011). Teachers

would be willing to give up 309 USD from their monthly wage to avoid moving 10 kilometers

18Additionally, teachers might have ex-post justified envy if they refuse a permanent position and realize
ex-post that the available temporary positions are worse. To solve this issue, one could instead model the
allocation of permanent and temporary contracts sequentially and not jointly. However, the results derived in
Appendix 3.F show that these two models are observationally equivalent in the limit if teachers have rational
expectations about their future match payoffs when choosing a permanent contract.

19Using an external source of data to separately identify schools’ preferences using truthful rankings also
allows to mitigate these concerns.
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Table 3.2: Selected Preference Estimates

Panel A: Teachers’ Preferences (in monthly USD)

Amenities -

Electricity 97.67 (34.71)

Sewage 16.76 (12.79)

Library 29.41 (15.78)

Internet 15.96 (19.86)

Spline Distance from Home Location -

Slope < 20km -30.94 (1.96)

Slope ∈ [20km,100km] -7.11 (0.50)

Slope ≥ 100km -1.38 (0.10)

Moving Costs -

̸= Province -676.95 (51.43)

̸= Region -469.62 (57.21)

Panel B: Schools’ Preferences

Constant -0.488 (0.082)

Experience -

< 3 years -0.737 (0.041)

> 10 years 0.057 (0.040)

Competency Score -

Reading 0.669 (0.023)

Logic 0.571 (0.020)

Curricular Knowledge 1.397 (0.022)

Notes. This table shows selected estimates of θ and γ from the specification
of teachers and schools preferences. θ1 is normalized to one such that teachers’
preference estimates are expressed in terms of monthly willingness to pay in USD.

away from home. This is quite substantial as this corresponds to 61 % of the base monthly

teacher wage. Similarly, teachers’ willingness to pay to avoid moving out of their current

location is large. The cost of moving out of their current province is estimated at 677 USD

while the cost of changing regions is estimated at 1,146 USD. In comparison, the willingness

to pay for local amenities is quite small and ranges from 16 USD to 98 USD.20

To quantify how much these attributes explain the variation in teachers’ preferences,

I simulate teachers’ lifetime utility by drawing random Gumbel shocks and by using the

estimated parameters to compute their flow utility and continuation value for each job. I

20I report how the willingness to pay for different job attributes differ depending on whether the contract
is permanent or temporary, under the assumption that agents are myopic, in Table 3.A.5. I strongly reject
that θperm = θtemp which is equivalent to rejecting that agents are myopic, as permanent and temporary
contracts do not differ in the first years of employment.
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Figure 3.3: Spatial Job Ladder

a) Supply b) Demand

Notes. Panel A plot the relationship between the rank of teachers’ lifetime utility Uijt estimated using the results displayed
from Table 3.2 and the ranks of various job attributes such as: the distance between teachers’ home location and the school’s
locality, the wage offered by the schools and the level of local amenities. Panel B performs the same exercise and plot the ranks
of schools’ estimated utility Vijt against the ranks of teachers’ test scores for both temporary and permanent positions.

then plot the ranking of each job according to its predicted lifetime utility against its ranking

in terms of distance, amenities and wages. Panel A of Figure 3.3 shows that distance very

strongly predicts how teachers rank jobs. The correlation between the ranking with respect

to utility and the ranking with respect to distance is 0.68. On the other hand, I find that

wages and amenities are poor predictors of how teachers rank jobs. This implies that labor

markets are very local as labor supply is not mobile, which is consistent with the findings of

Manning and Petrongolo (2017).

Panel B of Table 3.2 shows the results of the estimation of schools’ preferences. I find that

schools highly value observed measures of teacher quality such as test scores and experience.

I investigate how much of the ranking of teachers with respect to schools’ utility can be

explained by their ranking with respect to test scores. Panel B of Figure 3.3 plots the

relationship between the two for both permanent and temporary jobs. Mechanically, the

relationship is one-to-one for temporary jobs, as test scores are used as priorities to allocate

seats. The relationship is also very strong for permanent jobs as the correlation between the

utility ranking and the test score ranking is 0.6.

Overall, the estimated preference parameters indicate that (i) geographical proximity

is highly predictive of how teachers rank the available jobs and (ii) schools mostly value

observed measures of teacher quality such as teachers’ test scores. These two facts have

strong implications for spatial sorting and inequalities.
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I first show that the combination of fact (i) with the concentration of teachers’ home

location in cities and the dispersion of jobs across the country, documented in Section 3.3,

implies the existence of a spatial job ladder. As teachers’ home location is concentrated in

cities, teachers’ distaste for working far from their home location implies a strong distaste for

schools located in remote areas. Additionally, as schools are geographically scattered, cities

offer very few positions compared to the total number of applicants. Overall, this implies

that remoteness becomes the main driver of how teachers rank the available jobs. This results

in the existence of a spatial job ladder where jobs located in remote areas are at the bottom

whereas jobs located in cities are at the top. As a result, schools in cities face excess supply

and are free to hire the teachers they prefer from the set of new applicants or poach their

preferred teachers from schools which are on a lower rung of the ladder.21 This has direct

implications on labor market dynamics, as teachers which start at the bottom of the ladder

switch jobs at a higher rate to climb up toward urban areas. Consequently, schools located

in remote areas face higher attrition rates than schools located in cities.

The extent to which the spatial job ladder translates into spatial inequalities in education

provision depends on which teacher attributes schools value. If schools would select teachers

at random, lucky teachers would be able to move to urban schools but this would not generate

unequal sorting with respect to teaching quality.22 Fact (ii) implies that urban schools ration

excess supply using observed measures of teacher quality such as test scores and experience.

Consequently, the spatial job ladder creates large spatial inequalities in teaching quality

through two channels. First, among the set of new applicants, urban schools systematically

select the highest scoring teachers while rural schools are left with the lowest scoring teachers.

Second, urban schools poach teachers who have accumulated sufficient experience and human

capital throughout their career from rural schools. The latter thus fail to retain skilled

teachers and sustain disproportionately low levels of teaching experience and quality.

Reducing spatial inequalities in teaching quality thus requires shutting down the mecha-

nisms through which the spatial job ladder operates or directly targeting the causes of the

21This contrasts with traditional models of the job ladder where productive firms offer higher wages to
poach skilled workers from unproductive firms (Moscarini and Postel-Vinay, 2018). In this setting, where
wage differentiation is very limited, the job ladder is instead determined by non-pecuniary factors such as
geographical location.

22Still, attrition would be higher in rural schools which could have a disruptive effect on student learning
and imply a net efficiency loss in teaching quality due to the loss of school specific experience. See Appendix
3.C for estimates of the net loss in teacher value added implied by a move from one school to another.
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existence of the spatial job ladder. Next, I use the tools developed in Section 3.4 along

with the estimated teachers’ and schools’ payoff functions to perform several counterfactual

experiments aiming at achieving these goals. Before doing so, I assess the credibility of

the equilibrium predictions generated by the model by testing its ability to predict patterns

consistent with the data.

3.7.2 Model Fit

I perform several checks to assess how well the model predicts the patterns generated by the

spatial job ladder. I first test whether the cross-sectional spatial sorting patterns predicted

by the model match the ones observed in the data. I then simulate job-to-job flows and

check whether the model can replicate the observed movements of teachers from rural to

urban areas.

To simulate the status quo equilibrium matching, I first derive U(xit, zjt, θ̂) and V (xit, zjt, γ̂)

for all t. I then randomly draw Extreme Value Type I taste shocks ϵijt and ηijt for all (i, j, t)

to construct the flow utilities. I solve the fixed point problem described in Equation 3.4 by

fixing the aggregate distributions of observables in 2016 as the baseline m1 and w1 to obtain

the equilibrium inclusive values for each agent. Given the inclusive values, I then compute

teachers’ continuation value from choosing a temporary contract. I then simulate forward

by constructing the lifetime utilities Uij1 and Vij1, deriving the teacher-optimal stable match

using the teacher-proposing Deferred Acceptance algorithm and updating teachers’ location,

experience, age and test scores using the estimated transition process. I then iterate this

procedure to simulate the entire non-stationary equilibrium path.

Panel A of Figure 3.4 shows a binned scatter plot of the relationship between teachers’

test scores and the remoteness of their matched school. The model is able to replicate the

rationing of excess supply through test scores and generate the strong negative relationship

between remoteness and test scores. Panel B of Figure 3.4 also shows that the model is able

to replicate sorting with respect to geographical proximity. Overall, this indicates that the

main drivers of spatial sorting are well captured by the estimated preferences.

Panel C and D of Figure 3.4 compare the career paths of teachers depending on where they

started on the spatial job ladder with their simulated counterparts. Specifically, I compare

the job-to-job flows from rural to urban areas as teachers climb up the ladder. I find that

the model captures the trend that teachers originally matched to rural schools climb the job
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Figure 3.4: Model Fit

a) Sorting: Remoteness b) Sorting: Distance

c) Job-to-Job Transitions: Data d) Job-to-Job Transitions: Model

Notes. This figure uses the centralized assignment data from 2016 to 2020 and compares realized sorting patterns and job-to-job
transitions with model predictions. Panel A plots averages of the remoteness of teachers’ matched schools based on equally
spaced bins of the distribution of teachers’ test scores both in the actual data and in the simulated equilibrium. Panel B shows
the result of a similar exercise using the distance between teachers’ matched schools and their home location. Panel C plots the
evolution over time of teachers’ matched schools observed in the data depending on the remoteness of the school in which they
started in 2016. Panel D plots the same trend using the job-to-job transitions simulated by the model.
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ladder by moving toward urban areas. The model is thus able to replicate the important

labor market dynamics that characterize the spatial job ladder.

3.7.3 Counterfactuals

In this section, I first quantify the gains of shutting down labor mobility along the job ladder

to isolate the role of labor market dynamics in explaining the observed urban-rural gap in

teaching quality. I then explore the effectiveness of retention policies that would prevent

teachers from climbing up the ladder. More specifically, I simulate the effect of imposing a

minimum contract length, which is a commonly used retention policy in the public sector.

Finally, I explore the equilibrium effects of tackling directly the root causes of the existence

of the spatial job ladder. To do so, I simulate equilibrium sorting and mobility under the

scenario where teachers’ home location would be scattered across the country instead of being

concentrated in cities.

Labor Market Dynamics and Spatial Inequalities

Teacher mobility likely contributes to a large extent to the urban-rural gap in teacher quality

as teachers matched to rural areas leave toward urban areas once they have accumulated

skills and experience. As shown in Section 3.3, movers are of significantly higher quality that

those who replace them as the job ladder rewards teachers with higher test scores and more

experience. To quantify how much of the urban-rural gap in teaching quality is explained

by labor mobility, I start by simulating the equilibrium path under a counterfactual scenario

where agents would have a very high preference for staying in their current job. Assuming

that µ∗
2016 is the equilibrium match under the status quo in 2016, I thus artificially increase

Uiµ∗
2016(i)t

for all teachers i and all subsequent years t > 2016 and simulate the long-run

equilibrium paths. This counterfactual exercise shuts down voluntary moves away from rural

areas such that rural schools no longer lose their most qualified and experienced teachers and

can benefit from the accumulation of human capital on-the-job.

Figure 3.5 plots the evolution of the urban-rural gap in teacher quality from 2016 onward

under this counterfactual. I find that shutting down labor mobility makes the urban-rural

gap in teacher test score sharply drops from 1.3 to 0.8 standard deviation in the long run.

This decline is stronger in the short run as the gap decreases by 0.1 standard deviation after
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Figure 3.5: Labor Market Dynamics and Spatial Inequalities

Notes. This figure shows the result of artificially increasing teachers utility for their matched school in 2016 in order to
quantify the share of the urban rural gap in teacher quality explained by teacher mobility. It plots the difference between the
average teacher score (in standard deviations) in schools located in cities and schools located more than six hours away from
the provincial capital along the transition path triggered by this counterfactual exercise over 60 years.

four years only.23

This exercise allows us to decompose the channels through which the spatial job ladder

fuels spatial inequalities in teaching quality by shutting down labor market dynamics. Schools

at the bottom of the ladder can now retain their highest skilled teachers while schools at the

top of the ladder, on the contrary, can no longer poach skilled teachers from rural schools.

Overall, this exercise shows that labor market dynamics explain 38% of the existing urban-

rural gap in teacher quality. The remaining 62% are explained by initial unequal sorting in

2016 that cannot be offset by human capital accumulation on-the-job. This result highlights

the importance of labor market dynamics in explaining spatial sorting and inequalities, even

in a frictionless setting with rigid wages. It also suggests that there might be important

benefits in investing in retaining existing teachers rather than aiming at recruiting higher

quality teachers.

Evaluating Retention Policies

I then investigate the effectiveness of retention policies aiming at shutting down labor mobility

and its adverse effects on spatial inequalities. Using the estimated model, I simulate the effects

of removing teachers’ option to rematch by enforcing a minimum contract length. If agents

23This is driven by the fact that teachers test scores evolve more rapidly when they start from lower initial
values, as suggested by the estimates in Table 3.A.4.
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Figure 3.6: Compulsory Service Policy

a) Adverse Sorting b) Retention Bonuses

Notes. Panel A of this figure plots the share of filled vacancies for different bins of schools’ remoteness in the status quo and
under the counterfactual scenario where we would enforce a minimum contract length of four years. Panel B plots the effect of
enforcing this policy on the urban rural gap in teacher test scores (in standard deviations) along with the monthly wage bonuses
that would offset the adverse sorting effect shown in Panel A. The x-axis represents the minimum length of the contract.

were myopic, I find that this policy would reach the same results as described in Figure 3.5

and close the urban-rural gap in teaching quality by 38% in the long-run by stopping skilled

teachers from leaving rural schools. However, as agents are forward looking, teachers react

ex-ante to this policy and their labor market participation plunges creating large shortages.

Panel A of Figure 3.6 shows the share of filled vacancies under the status quo and under

the policy which would enforce a minimum contract length of four years. As this policy

forces teachers to commit and does not allow them to rematch and climb the ladder, they

prefer to wait until they get better matching opportunities in the future. This results in a

sharp drop in the share of filled vacancies. This finding highlights a key trade off between

recruitment and retention. In the presence of a job ladder, retention policies that make

rematching more difficult imply a significant decrease in the continuation value of accepting

a job and generate strong adverse sorting responses. To avoid the latter, such policies should

compensate workers for preventing them to improve their matching outcomes through job

switching.

I then compute the amount that should be given as compensation to avoid this adverse

sorting effect. I define the status quo match as µ∗ and compute the monthly wage bonuses

bi for each teacher i which solve the following equation:

Uiµ∗
t (i)t

= U(xit, zjt, θ̂) + θ̂1bi + ηijt + 0.9

(∫ ∫
U(x, z, θ̂)w(x|xit, zjt)m(z|xit, zjt) + θ̂1bi + γ
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+ 0.9

∫
U t+2(s)w(s|x, z)dsdxdz

)
The bonus bi solving this equation makes teacher i indifferent between matching to a school

for at least two years and matching to the same school for at least four years. Implementing

this retention bonus scheme thus avoids the adverse sorting effect documented in Panel A of

Figure 3.6. A similar equation can be formulated to compute the bonuses necessary to retain

teachers for an additional τ years. I denote the solution to these equations for teacher i bτi .

I compute bτi for τ ∈ {2, 4, 6, ..., 40} and plot its average for each τ in Panel B of Figure 3.6.

I also report the effect of this policy on the urban rural gap in teacher test scores measured

in standard deviations on the same figure. Imposing a minimum contract length of four years

would entail compensating teachers by a 100 USD bonus on their monthly salary on average.

This number gradually increases as the minimum contract length increases before reaching

a plateau of approximately 200 USD.24

Overall, this result shows that retention policies have large potential benefits in the long

run but come at a cost which should be benchmarked against other alternatives. I find

that this policy would reduce the urban-rural gap in teacher quality by 38% for an average

monthly cost of 200 USD per teacher, which corresponds to a 40% increase in their monthly

salaries.

Shutting Down the Spatial Job Ladder

The existence of the spatial job ladder is mainly caused by three factors: (i) teachers’ distaste

for moving far from home, (ii) the concentration of teachers’ home location in cities and

(iii) the geographical dispersion of schools. As the spatial job ladder is responsible for the

observed spatial inequalities, the most effective way of reducing inequalities would be to

target its fundamental causes. In this section, I take (i) and (iii) as given and explore, as

a thought experiment, what would be the consequences of shutting down (ii). To do so, I

perform a counterfactual exercise that randomly changes teachers’ home locations such that

they are scattered across the country. I randomly draw teachers’ new home location from

the set of localities in which schools are situated. I then simulate equilibrium sorting and

movements across locations.

24The concavity of the wage bonus scheme comes from the fact that agents discount the future at an
increasing rate.

183



Figure 3.7: Random Home Location

a) Sorting b) Job-to-Job Flows

Notes. This figure shows the results of a counterfactual experiment which would reallocate teachers’ home location randomly
across Peru. I randomly draw the location of each teacher from the list of localities in which school are situated and recompute
the equilibrium. Panel A plots binned averages of teachers matched school’s remoteness in the status quo and under this
counterfactual. Panel B plots the counterfactual evolution of the remoteness of teachers matched schools from 2016 to 2020
starting from different initial levels of remoteness.

Panel A of Figure 3.7 plots teacher sorting with respect to test scores and schools’ re-

moteness under this counterfactual exercise. I find that the spatial job ladder collapses. As

labor supply is scattered across the country, competition for local jobs disappears. Teachers

match overall close to home and no longer have a systematic distaste for remote schools.

High skilled teachers are thus no longer disproportionately matched to schools located in

cities. Labor market dynamics are also strongly affected. The rate at which teachers move

throughout the period 2016-2020 drops by half as low quality teachers are no longer sent

far from home. Panel B of Figure 3.7 shows that the direction of the flows also changes as

teacher no longer leave rural schools to get closer to urban centers. As a result, urban-rural

inequalities in teacher attrition disappear and rural schools can benefit from experience and

skill accumulation on-the-job. These results shows that designing policies targeting the root

causes of the existence of the spatial job ladder, such as investing in training local teachers,

might be more effective than aiming at slowing down its symptoms through recruitment or

retention policies.
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3.8 Conclusion

This paper investigates the causes of teacher spatial sorting and mobility and their con-

sequences on spatial inequalities in teaching quality. To this end, I develop an empirical

framework of dynamic matching without transfers. I assume that agents make forward-

looking matching decisions and that their payoff functions depend on a various set of job

and teacher attributes. I provide a tractable way to map teachers’ and schools’ preferences

into sorting and job-to-job flows. I then show that one can invert this mapping and identify

agents’ preferences from data on realized sorting.

Using this methodology, I then show the existence of a spatial job ladder. Teachers

concentrate in cities while jobs are scattered geographically. As teachers have a strong distaste

for moving, this creates excess supply in cities which is rationed using observed measures of

teacher quality. As a consequence, teacher quality is highly unequally distributed and teachers

working in remote areas leave toward urban areas as soon as they have accumulated enough

experience. Overall I find that labor mobility magnifies inequalities in teaching quality by one

third. Finally, I assess the effectiveness of retention policies aimed preventing teachers from

rematching along the job ladder. I find that this triggers a massive flow out of the teaching

profession such that the positive effects of retention are largely outweighed by the losses

incurred through teacher shortages. This highlights a key trade off between recruitment and

retention in the presence of a job ladder and shows that retention policies should compensate

for the implied lack of flexibility.
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Appendices

3.A Additional Tables and Figures

Table 3.A.1: Data Description

2016 2017 2018 2019 2020 2021

Panel A: Teacher Assignment Data

# Teachers 116,559 116,939 116,128 115,358 115,233 116,024

Permanent 94,162 89,604 91,683 90,889 89,106 87,507

Temporary 22,397 27,361 24,466 24,505 26,174 28,516

Panel B: Centralized Allocation Mechanism

# Test Takers 77,594 - 78,758 68,301 71,586 -

in Permanent Position Alloc. 6,770 - 9,777 5,905 4,005 -

in Temporary Position Alloc. 60,853 - 66,280 - 60,294 -

in Both 3,436 - 4,195 - 2,517 -

in None 13,407 - 6,896 - 9,804 -

# Vacancies 18,493 - 36,113 9,818 17,858 -

in Permanent Position Alloc. 6,460 - 13,620 9,818 5,014 -

in Temporary Position Alloc. 15,372 - 30,645 - 16,481 -

in Both 3,339 - 8,152 - 3,637 -

Notes. Panel A shows the total number of employed teachers in each year depending as well as the number of teachers
holding a temporary or a permanent contract. Panel B displays the number of participants to the national competency
test in each year it took place. It also shows the number of applicants and vacancy which participated in the allocation
of temporary and permanent positions.
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Table 3.A.2: Summary Statistics: Job Characteristics

Mean
Std.

Deviation
Min 25% Pctile 75% Pctile Max

Job Characteristics

Baseline Monthly Wage (USD) 537.286 50.234 507.614 507.614 532.995 799.492

Temporary 0.186 0.389 0.000 0.000 0.000 1.000

Multigrade 0.207 0.405 0.000 0.000 0.000 1.000

Single Teacher 0.0462 0.210 0.000 0.000 0.000 1.000

Bilingual 0.107 0.309 0.000 0.000 0.000 1.000

School Characteristics

Distance Prov. Capital (hours) 1.406 4.073 0.000 0.0609 1.144 72.000

Population 1143.708 2593.554 0.001 0.382 350.766 7567.716

Altitude (meters) 1506.684 1501.124 1.000 120.000 3104.000 5002.000

Local Amenities

Electricity 0.952 0.215 0.000 1.000 1.000 1.000

Water 0.853 0.354 0.000 1.000 1.000 1.000

Sewage 0.726 0.446 0.000 0.000 1.000 1.000

Medical Center 0.770 0.421 0.000 1.000 1.000 1.000

Internet 0.582 0.493 0.000 0.000 1.000 1.000

Bank 0.388 0.487 0.000 0.000 1.000 1.000

Library 0.303 0.460 0.000 0.000 1.000 1.000

Notes. This table uses the teacher assignment data to show summary statistics on the characteristics of the jobs filled in
2016. The baseline monthly wage does not contain experience bonuses.
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Table 3.A.3: Summary Statistics: Teacher Characteristics

Mean
Std.

Deviation
Min 25% Pctile 75% Pctile Max

Age 33.676 7.458 19.000 32.000 42.000 78.000

Female 0.707 0.455 0.000 0.000 1.000 1.000

Lives in Provincial Capital 0.819 0.385 0.000 1.000 1.000 1.000

Married 0.471 0.499 0.000 0.000 1.000 1.000

Total Test Score 97.672 29.895 0.000 74.500 119.500 191.500

Score 1: Reading 29.626 9.710 0.000 22.000 38.000 50.000

Score 2: Logical Reasoning 21.963 9.323 0.000 14.000 28.000 50.000

Score 3: Curricular Knowledge 46.083 15.881 0.000 35.000 57.500 97.500

Experience < 3 years 0.237 0.426 0.000 0.000 0.000 1.000

Experience > 10 years 0.130 0.337 0.000 0.000 0.000 1.000

Notes. This table shows summary statistics on the characteristics of the applicants to the centralized assignment platform
in 2017.
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Figure 3.A.1: Sorting and Movements Across Locations: Wages

a) Sorting

b) Job-to-Job Transitions

Notes. This figure uses the teacher assignment data to document teacher sorting and movements along other dimensions such
as wages and amenities. Panel A plots binned averages of the monthly wage teachers receive as well as the level of amenities
in the locality of their matched school based on their test scores. Bins are equally spaced based on vigintiles of the test score
distribution. Panel B plots the evolution of the wage received by teachers over the period 2016-2021 depending on where they
start in 2016. The purple line corresponds to teachers which start in schools located between 6 and 8 hours away from the
provincial capital. The blue line corresponds to teachers which start in schools located between 4 and 6 hours. The green line
corresponds to teachers which start in schools located between 2 and 4 hours.
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Figure 3.A.2: Temporary vs. Permanent Contracts

a) Sorting Temporary vs. Permanent

b) Transition 2016-2018: Permanent c) Transition 2016-2018: Temporary

Notes. Panel A of this figure uses the teacher assignment data to document how teachers sort across types of contract depending
on the distance of their matched school to the provincial capital. Panel B and C show, for both permanent and temporary
contracts, the share of teachers that stayed in the same school, moved to another school or quit teaching in the public sector for
several bins of the schools’ distance to the provincial capital.
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Table 3.A.4: Transition Process Test Scores

Estimate Std. Error

Constant 0.104 0.104

Teacher Characteristics

Test Score t 0.868 0.007

Female -0.008 0.011

Age < 30 0.102 0.011

Age > 50 -0.040 0.023

Experience < 3 -0.037 0.016

Exerience > 10 0.016 0.014

Married with kids -0.030 0.011

School Characteristics

Wage -0.040 0.042

Frontier -0.017 0.020

Bilingual 0.008 0.015

VRAEM -0.017 0.021

log(Population) -0.000 0.015

log(Population)2 0.001 0.002

log(Population)3 -0.000 0.000

Distance to Capital -0.003 0.008

Distance to Capital2 0.000 0.000

Distance to Capital3 -0.000 0.000

log(pop) × Distance 0.000 0.001

Notes. This table displays the estimates of the coefficients of the following
linear regression: sit+1 = x′

itβx + z′
µwt(i)t

βz + ϵit. The estimation sample

is composed of the set of teachers who took the test both in 2015 and 2017 as
well as the set of teachers who took the test both in 2017 and 2019. Test scores
are standardized to have mean 0 and standard deviation 1.
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Table 3.A.5: Teachers Preferences: Temporary vs. Permanent

Temporary × Permanent

Constant 356.22 (94.29) 4188.93 (504.84)

School/Locality Characteristics

Amenities 23.40 (7.02) 50.24 (35.34)

Bilingual -60.32 (10.51) -721.86 (55.22)

Frontera 20.01 (11.36) -15.71 (75.54)

VRAEM -91.25 (14.99) 144.13 (101.53)

Preference for Home

Dist (< 20km) -18.18 (0.50) -13.75 (2.50)

20km ≤ Dist < 100km -6.02 (0.14) -0.49 (0.62)

Dist ≥ 100km -0.63 (0.02) -0.56 (0.10)

Moving Costs

̸= Province -520.44 (14.39) 425.44 (50.34)

̸= Region -121.98 (14.34) -1006.74 (52.66)

Other Wage Determinants

log(Pop) 83.30 (20.42) -161.06 (125.39)

log(Pop)2 -14.48 (2.12) 19.70 (13.78)

log(Pop)3 0.54 (0.07) -0.81 (0.47)

Distance to Capital 90.43 (12.89) -277.86 (62.11)

Dist2 -0.66 (1.76) 0.42 (5.44)

Dist3 0.01 (0.08) 0.01 (0.24)

Dist × log(Pop) -9.40 (1.46) 25.52 (6.66)

Teacher Characteristics

Female -58.77 (5.75) -173.92 (40.28)

Urban -62.59 (7.83) -194.23 (68.31)

Married with kids -11.96 (5.36) 99.66 (34.66)

Age < 30 18.32 (5.65) 396.84 (35.24)

Age > 50 -47.80 (15.64) -141.33 (101.07)

Exp. < 3 14.68 (7.65) 20.88 (56.92)

Exp. > 10 -101.81 (8.55) 106.56 (52.92)

Notes. This table displays the estimates of θtemp and θperm − θtemp assuming that β = 0,
meaning that agents are myopic. The wage coefficient is normalized to 1 such that estimates
are expressed in monthly willingness to pay in USD. Standard errors are in parenthesis.
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Table 3.A.6: Preference Estimates: Schools

(1)

Constant -0.488 (0.082)

Female -0.349 (0.022)

Married with kids -0.038 (0.022)

Age < 30 0.128 (0.023)

Age > 50 -0.067 (0.089)

Experience < 3 -0.737 (0.041)

Experience > 10 0.057 (0.040)

Score 1: Reading 0.669 (0.023)

Score 2: Logic 0.571 (0.020)

Score 3: Curricular Knowledge 1.397 (0.022)

Notes. This table displays the estimates of γ which are
schools’ preference parameters defined in Section 3.6. Stan-
dard errors are in parentheses.
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Figure 3.A.3: Model Fit Spatial Sorting: Additional Figures

a) Amenities

b) Wages

Notes. This figure uses the centralized assignment data in 2018 and compares realized sorting patterns with model predictions.
Panel A plots averages of level of amenities of teachers’ matched schools based on equally spaced bins of the distribution of
teachers’ test scores both in the actual data and in the simulated equilibrium. Panel B shows the result of a similar exercise
with wages instead.
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Figure 3.A.4: Validation RDD: Eligibility Cutoff

Notes. This figure displays the effect of crossing the test score threshold determining eligibility to permanent contracts on
the probability to choose a permanent contract, the distance between teachers’ matched schools and their home location, and
the wage received from their matched schools. It computes these threshold crossing effects both in the actual data and in the
equilibrium match simulated by the model and compares them.

196



3.B Context & Data: Details

3.B.1 Additional Institutional Details

Contracts and Wages

Public teachers in Peru can be hired under two types of contract. Temporary contracts

last at least one year and can be renewed up to a second year, if both the school and the

teacher agree. After two years, the position is either destroyed, if the allocated budget was

fixed, or proposed again on the labor market. The same teacher could eventually teach in

the same position but would have to apply again to get hired. Permanent contracts can

last indefinitely. The coexistence of these two types of contracts is a common feature of civil

servants’ labor markets around the world. Permanent contracts are akin to usual civil servants

contracts which make the profession attractive by insuring teacherss against unemployment.

Temporary contracts are more precarious and are usually meant for schools to get a flexible

access to a larger pool of applicants and react to unexpected transfers and/or the creation

of new classrooms.

Wages are set by the government at the country level and vary along several dimensions.

Temporary contracts are paid a fixed rate which does not vary with experience. To make

the profession more attractive and keep up with inflation, the base monthly wage increased

gradually from S/1,396 (363.19$) in 2016 to S/2,000 (520.33$) in 2017 and S/2,200 (572.36$)

in 2019 to finally reach S/2,400 (624.39$) in 2021. Regarding permanent contracts, the pay

scale is divided in six categories and teachers can apply once a year for a promotion through

a centralized platform.25 At the highest scale, the wage is 75% higher than the starting

wage. Note that, at the exception of 2016 where it was S/1,550 (403.25$), the starting wage

is exactly similar to the base wage for temporary contracts and followed the same time trend.

A wage bonus scheme was implemented by the Ministry of Education in order to make

schools located in distressed areas or with worse teaching conditions more attractive. Teachers

handling several grades receive a monthly wage bonus of S/140, schools with a single teacher

provide a bonus of S/200, schools located in guerilla zones (VRAEM) provide a bonus of

S/300, schools located close to the country borders provide a bonus of S/100 and schools

which teach in several languages provide a bonus of S/50. Finally a set of wage bonuses

25Promotions are awarded through a national standardized evaluation and a decentralized evaluation made
by a committee which evaluates teachers’ performance and professional career.
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ranging from S/70 to S/500 based on arbitrary cutoff rules compensates teachers based on

the remoteness of the school’s locality. Bobba et al. (2022) use these threshold in a regression

discontinuity design to estimate the causal impact of increasing wages on recruitment and

student achievement.

Allocation Mechanism

To make the allocation process of teaching positions more transparent, the Ministry of Ed-

ucation switched from a decentralized to a centralized application system in 2015. The use

of centralized clearinghouses to allocate public sector jobs is becoming increasingly common

(Roth, 2018) as they allow to reduce search frictions by regrouping all offers and applicants

on the same market. The allocation of both temporary and permanent contracts is organized

sequentially between November and March. Note that once teachers get awarded a perma-

nent contract, they need to go through a separate procedure in order to be transferred to

another school.26

National Competency Test : Before teaching positions are allocated, all applicants take a

test evaluating their teaching competency. They get graded on three skills: (i) reading com-

prehension, (ii) logic reasoning and (iii) curricular knowledge. To be eligible for a permanent

position, a teacher should get a score of at least 30/50 in part (i) and (ii) of the test and a

score of a least 60/100 in part (iii) of the test. These are stringent requirements since only

9% of applicants end up being eligible (see Table 3.A.1).

Allocation of permanent positions : The Ministry first publishes the list of available posi-

tions. Teachers eligible for a permanent position then form a list of choices within the same

province.27 Applicants are then assigned for interviews to their preferred three schools, with

a total of 10 available slots per school.28 For schools that are oversubscribed, test scores are

used as priorities. Schools then interview and rank each applicant. Finally, they make offers

sequentially to their preferred applicants. All unassigned applicants can then participate to

an exceptional stage that allocates the remaining unfilled slots. At the end of this round,

unassigned teachers can decide to participate in the allocation of temporary positions which

takes place shortly after.

26Transfers are handled every year in a decentralized way. Priority in the transfer application system
depends on seniority and other criterias which are not made public by the Ministry of Education.

27The maximum length of the list went from five in 2015 to being unrestricted from 2017 onwards.
28In 2015, applicants were assigned to two schools maximum and there were 20 slots per school.
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Allocation of temporary positions : All ineligible applicants along with eligible applicants

which did not choose a permanent position participate in the allocation of temporary con-

tracts. Teachers choose first a province. Within each province, serial dictatorship is used

to assign teachers to schools using test scores as priorities. Schools do not have any role in

the allocation process and cannot express their preferences over applicants. As in the allo-

cation of permanent positions, unfilled vacancies are proposed to unassigned teachers from a

different province in an exceptional stage.

This mechanism took place every year from 2015 to 2021 except in 2016. Note that in

2018 and 2020, only permanent positions were proposed.

3.B.2 Data Construction

I combine several sources of data provided by the Ministry of Education in Peru to construct

the teacher assignment data and centralized assignment data described in Section 3.2.

Teacher occupation and payroll system (NEXUS): This dataset records annually each

teacher and its matched position over the period 2012-2021. I restrict the data to primary

school teachers which hold either a permanent or temporary contract. I exclude teachers

working in several jobs by acting as a temporary replacement for other teachers on leave.

Each teacher and position are identified by a unique ID which can be linked to other data

sources. Each position is linked to the corresponding school which is also identified by a

unique ID.

School census: This dataset contains information on a wide range of schools’ and localities’

characteristics. I observe detailed information on access to a wide range of services at the

locality level such as electricity, water, sewage, medical centers, libraries or internet. I also

observe the travel time between the locality and the closest provincial capital. I observe the

number of inhabitants in the locality. I know whether the school has a second language of

instruction, whether it has a single classroom. I also have access to the precise geocoordinates

of the locality.

Household Targeting System (SISFOH): This dataset comes from Bobba et al. (2022)

and contains information on the socio-economic status of the population of Peru in order to

better target social benefits. It regroups individuals into households and records their home

location, highest level of education, gender and their poverty status. I also observe their role

with respect to the head of the household meaning that I can identify if individuals have
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children, are married or live with their parents.

Survey Centralized Allocation: The Ministry of Education surveys all the applicants that

participate in the centralized allocation mechanism. I have thus additional information about

applicants’ level of experience in the public and private sector. I know which languages they

speak and in which university or institute they went.

Centralized Allocation Mechanism: This dataset contains all the details of each step of

the centralized allocation mechanism over the period 2015-2019. I observe the results of the

national competency test for each applicant. I observe the set of applicants and positions

participating in the allocation of permanent positions. I know where teachers apply, which

schools interview them, how schools rank them and the final match. Finally, I observed the

set of applicants and positions participating in the allocation of temporary positions. I do

not observed teachers’ final decision but I infer their match using the teacher assignment

data.

The teacher assignment data combines the NEXUS with the school census and the SIS-

FOH. The centralized assignment data combines the centralized allocation mechanism with

the survey, the SISFOH and the school census.
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3.C Value Added Model

I use data on the national evaluation of students in 2nd and 4th grade. I observe standardized

test scores in math and in Spanish and I can match each classroom to its corresponding

teacher. I can also match students to the SISFOH data to recover parental characteristics

such as their education level or their poverty status.

Following closely Chetty et al. (2014a), I assume that each student i in year t is assigned

to classroom c = c(i, t) and that each teacher j(c) is assigned to a classroom c. I restrict the

analysis to primary schools meaning that teachers only teach one class per year. I denote µjt

the value added of teacher j in year t normalized to have mean 0 and measured in student

test scores standard deviations. I allow value added to drift over time. Finally, I assume that

student i’s test score in year t A∗
it relates to value added in the following way:

A∗
it =X

′
itβ + µjt + θc + ϵit

where Xit includes a set of student, classroom and school characteristics, θc is an exogenous

shock at the classroom level and ϵit is an idiosyncratic shock at the student-year level. I as-

sume that the stochastic processes µjt and ϵit are stationary meaning that E[µjt|t] = E[ϵit|t] =
0, Cov(µjt, µjt+s) = σµs, Cov(ϵit, ϵit+s) = σϵs and Var(µjt) = σ2

µ for all t.

I estimate µjt using the following procedure. First, I estimate β by regressing test scores

A∗
it on Xit and teacher fixed effects αj. Estimating β using within-teacher variation avoids

attributing the teacher effect to variation inXit.
29 I then construct the following residualized

test scores:

Ait = A∗
it −X ′

itβ̂

and average them at the teacher-year level to construct Ajt = 1
n

∑
i∈{i:j=j(c(i,t))}Ait for all

j, t. Finally, I shrink these estimates by projecting Ajt on past residualized test scores A−t
j =

(Aj1, ..., Ajt−1). The estimator of VA µ̂jt can thus be written as:

µ̂jt =
t−1∑
s=1

ψsAjs

where ψ = (ψ1, ..., ψt−1) are the coefficients of the OLS regression of Ajt on A
−t
j . Note that

29Table 3.C.1 shows that not including teacher FE introduces severe bias in the coefficients associated with
classroom and school characteristics.
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I only use t− 1 to predict VA such that ψ =
σA,1

σ2
A

=
Cov(Ajt,Ajt−1)

Var(Ajt)
.

The results of the estimation of µ̂jt are displayed in Table 3.C.2. The auto-correlation ψ

is estimated at 0.466. To get a proper estimate for the standard deviation of value added

σµ = σA,0 in elementary schools, Chetty et al. (2014a) perform a non-linear extrapolation

from their estimates of σA,s for 1 ≤ s ≤ 7. However, I do not have access to test score data

prior to 2016 making the replication of this exercise impossible. As pointed out in Chetty et

al. (2014a), σA,0 ≥ σA,1 making
√
σ̂A,1 an estimator of a lower bound on σµ. I estimate this

lower bound to be 0.3 which is substantially larger than previous estimates.30

I then perform the usual checks for forecast unbiasedness of µ̂jt following Chetty et al.

(2014a). I first regress Ait on µ̂jt and find a coefficient of 1.030 with 95% confidence interval

[0.944, 1.116]. Standard errors are clustered at the school level. This regression should

give us a coefficient of 1 which is not rejected by the data. I then project Ait on parental

characteristics that are excluded from Xit such as socio-economic status and regress µjt on

this projection. I find a coefficient of 0.008 with a tight 95% confidence interval [0.002, 0.014]

meaning that we can rule out any substantial sorting of students across teachers based on

parental characteristics.31

To estimate the cost of attrition, I use teacher switching as a quasi-experiment as in Chetty

et al. (2014a) to test two hypotheses: (i) skills are not perfectly transferable across schools

and (ii) attrition implies a net loss for the origin school. If skills are perfectly transferable

across schools, switching to a different school after a long employment spell should have

no effect on value added. I assume that switching decisions are independent of unobserved

factors that could affect drift in value added. This rules out scenarios where teachers decide

to switch to a different school because they anticipate that they will have a higher value added

there. I then compare the difference in value added between 2016 and 2018 for teachers that

stayed in the same school with the same difference for teachers that moved to a different

school. To do so, I estimate β in the following two-way fixed effects regression:

µgt = αg + δt + βDgt + ϵgt (3.5)

30Chetty et al. (2014a) estimate σµ = 0.163 and Bates et al. (2022) estimate σµ = 0.249. This could be
explained by the fact that most other studies use data on urban districts while the data used in this paper
covers the universe of teachers in Peru. If high value added teachers are concentrated in cities, estimating
σµ in urban districts could understate its population value.

31I explore the relationship between µ̂jt and Ait as well as between µ̂jt and predicted scores using parental
SES non parametrically in Figure 3.C.1. To do this, I construct averages for 20 equal sized bins of value
added to get an approximation of the conditional expectation function.

202



where µgt = 1
Ngt

∑
j∈g µ̂jt, αg is a group fixed effect, δt is a time fixed effect and Dgt is

group g’s treatment status in period t. In this simple setting g ∈ {Movers, Stayers} and t ∈
{2016, 2018} and I assume thatDStayers,t = 0 for all t andDMovers,2016 = 0 andDMovers,2018 = 1.

In this setting, β corresponds to the ATT.

Table 3.C.3 shows the results of the estimation of β with standard errors clustered at the

teacher level. In Panel A, I estimate β conditional on movers having more than one year of

experience in the school they taught in before switching. I find that moving implies a net

loss of value added of 0.056σ corresponding to 26% of a standard deviation of teacher value

added. This is consistent with the hypothesis that skills are not perfectly transferable across

schools. As a placebo test, I consider movers with no prior experience in the schools they

were before switching in Panel B. They should not have accumulated school specific skills

prior to moving which is consistent with the zero effect found in Table 3.C.3. These results

show that job-to-job transitions imply a sizeable aggregate loss in value added.

I then perform a second exercise quantifying the loss in productivity following a move

at the school level. I find that leavers are substantially of higher quality than the teachers

who replace them. Using value added prior to moving I find a difference of 0.10 standard

deviation which corresponds to around 50% of a standard deviation in value added.
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Table 3.C.1: Value Added: Estimation of β

(1) (2)

Constant 0.781 (0.047) 0.559 (0.133)

t = 2018 0.020 (0.005) 0.023 (0.005)

Student Level Controls

Lagged Math Score 0.431 (0.006) 0.444 (0.005)

Lagged Math Score2 0.010 (0.002) 0.012 (0.002)

Lagged Math Score3 -0.027 (0.002) -0.029 (0.001)

Lagged Spanish Score 0.236 (0.005) 0.444 (0.005)

Lagged Spanish Score2 0.010 (0.002) 0.012 (0.002)

Lagged Spanish Score3 -0.012 (0.001) -0.029 (0.001)

Female -0.112 (0.005) -0.111 (0.005)

Age -0.071 (0.005) -0.052 (0.005)

Ethnicity: Quechua 0.045 (0.027) 0.058 (0.025)

Ethnicity: Native -0.022 (0.026) -0.036 (0.023)

Classroom Level Controls

Ethnicity: Quechua 1.657 (0.094) 0.379 (0.160)

Ethnicity: Native -1.303 (0.093) -0.478 (0.151)

Size 0.003 (0.000) -0.001 (0.001)

School Level Controls

Lagged Math Score -0.052 (0.018) -0.384 (0.073)

Lagged Math Score2 0.004 (0.016) -0.213 (0.058)

Lagged Math Score3 0.074 (0.016) 0.031 (0.045)

Lagged Spanish Score 0.245 (0.019) 0.483 (0.073)

Lagged Spanish Score2 -0.047 (0.015) 0.140 (0.057)

Lagged Spanish Score3 -0.001 (0.012) 0.038 (0.037)

Teacher FE ✗ ✓

Notes. This table displays the estimates of β from the linear regression of student
test scores on student, classroom and school characteristics described in Section 3.D.
Column 1 shows the results of this regression without teacher fixed effects. Column 2
includes teacher fixed effects. Standard errors are in parentheses
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Table 3.C.2: Value Added: Structural Parameters

Parameter Estimate Std. Error 95% CI

σA,1 0.089 0.005 [0.079, 0.100]

σA 0.192 0.007 [0.179, 0.205]

ψ 0.466 0.019 [0.446, 0.485]

Lower Bound σµ 0.300 0.009 [0.282, 0.316]

Notes. This Table displays the estimates of the structural parameters of the teacher
value added model described in Section 3.D.
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Figure 3.C.1: Value Added: Robustness Checks

a) Actual Score

b) Predicted Score using Parental SES

Notes. Panel A of this figure plot averages of the test score residuals Ait for 20 equally spaced bins of the forecasted teacher
value added. Panel B of plot averages of the test score residuals Ait projected onto parental socio-economic status for 20 equally
spaced bins of the forecasted teacher value added. The reported coefficients correspond to the slope of the blue line. Standard
errors are in parentheses.
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Table 3.C.3: Imperfectly Transferable Skills

Estimate Std. Errors 95% CI

Panel A: Past Tenure

ATE Movers: β -0.056 0.023 [−0.102,−0.011]

αStayers -0.005 0.004 [−0.014, 0.003]

αMovers -0.026 0.020 [−0.066, 0.024]

δ2018 0.004 0.005 [−0.005, 0.013]

Panel B: No Past Tenure

ATE Movers: β 0.004 0.018 [−0.031, 0.038]

αStayers -0.004 0.004 [−0.012, 0.005]

αMovers -0.021 0.014 [−0.048, 0.007]

δ2018 0.004 0.005 [−0.006, 0.013]

Notes. This table displays the results of the estimation of Equation (3.5). Panel A restricts the sample to
teachers which have been in the same school prior to 2016 for more than three years. Panel B restricts the
sample to teachers which have been in the same school prior to 2016 for less than three years. Standard errors
are clustered at the teacher level.
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3.D Proofs

3.D.1 Proof of Proposition 1

I first show that part (i) of Proposition 1 is a direct implication of Assumption 4 (i) and (ii),

i.e that the match is stable in period t.

Consider a match µt and suppose first that either Assumption 4 (i) or (ii) is violated such

that µt is not stable. First, suppose that (i) does not hold meaning that there exists a

teacher-school pair (i, j) such that Uijt > Uiµwt(i)t and Vijt > Vµmt(j)jt. This would mean that

j ∈ Mit(µt) and Uijt > Uiµwt(i)t which contradicts that Uiµwt(i)t = maxk∈Mit(µt)∪{0} Uikt. Now,

suppose that (ii) does not hold meaning that Ui0t > Uiµwt(i)t or V0jt > Vµmt(j)jt. In both cases,

this would contradict that Uiµwt(i)t = maxk∈Mit(µt)∪{0} Uik or Vµmt(j)jt = maxl∈Wjt(µt)∪{0} Vljt.

Now, suppose that for a given i, Uiµwt(i)t < maxk∈Mit(µt)∪{0} Uikt. This means that there

exists a school k′ ∈ Mit(µ) ∪ {0} such that Uik′t > Uiµwt(i)t. If k′ = 0 this immediately

contradicts stability. If k′ ∈ Mit(µ) this implies that Vik′t ≥ Vµmt(k′)k′t and Uik′t > Uiµwt(i)t.

If Vik′t = Vµmt(k′)k′t this implies that k′ = µw(i) and we reach a contradiction. Otherwise we

have that Uik′t > Uiµwt(i)t and Vik′t > Vµm(k′)k′t which contradicts stability. The argument is

symmetric for the school’s side.

Part (ii) of Proposition 1 is a direct consequence of part (i) and Assumption 2.

3.D.2 Proof of Proposition 2

As U t+1 is independent of ηijt under Assumption 1 and with exogenous choice sets, I treat it

as fixed and rewrite Uijt = uijt + σηijt for simplicity. The proof of part (i) of Proposition 2

is then identical to the proof of Lemma 3.1 in Menzel (2015).

P(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
P(Uijt ≥ Uikt, k ∈ I − {j}|(uikt)Jk=1, ηijt = s)g(s)ds

=

∫ ∏
k∈I−{j}

G(σ−1(uijt − uikt) + s)g(s)ds

=

∫ 2J∏
k=1

G(σ−1(uijt − uikt) + s)
g(s)

G(s)
ds
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As in Menzel (2015), I then do the change of variables s = aJh + bJ where aJ = a(bJ) and

bJ = G−1(1− J−1/2) and multiply by J on both sides:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
exp

(
1

J

2J∑
k=1

J logG(aJ(uijt − uikt + h) + bJ)

)
JaJg(aJh+ bJ)

G(aJh+ bJ)
dh

Following Resnick (1987) and under Assumption 1 we can show that:

J logG(aJ(uijt − uilt + h) + bJ) → −e−(uijt−uikt+h)

JaJg(aJh+ bJ)

G(aJh+ bJ)
→ e−h

We thus have under Assumption 1:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫
exp

(
− 1

J

2J∑
k=1

e−(uijt−uikt+h)

)
e−hdh+ o(1)

=

∫
exp

(
− 1

J

2J∑
k=1

e−he(uikt−uijt)

)
e−he−hdh+ o(1)

I then do a final change of variable s = e−h such that we get:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|(uikt)Jk=1) =

∫ +∞

0

exp

(
− 1

J

2J∑
k=1

se(uikt−uijt)

)
sds+ o(1)

=
exp(uijt)

1
J

∑2J
k=1 exp(uikt)

+ o(1)

From this we can finally show that:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|xit, (zkt)
J
k=1) =

exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+ 1

J

∑J
k=1 exp

{
Ut(xit, zkt) + βw

∫
U t+1(s)w(s|xit, zkt)ds

} + o(1)

which implies that:

JP(Uijt ≥ max
k=0,1,...,J

Uikt|xit, zjt) −→
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exp

{
Ut(xit, zjt) + βw

∫
U t+1(s)w(s|xit, zjt)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+
∫
exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

which finishes the proof of part (i) of Proposition 2.

Using similar steps as in McFadden et al. (1973), we can then show that:

E( max
k=0,1,...,J

Uikt|xit, (zkt)
J
k=1) = log

(
exp

{
βw

∫
U t+1(s)w0(s|xit)ds

}
+
1

J

J∑
k=1

exp

{
Ut(xit, zkt) + βw

∫
U t+1(s)w(s|xit, zkt)ds

})
+ log(J) + γ + o(1)

where γ is Euler’s constant. Under Assumption 1, we can finally apply the law of large

numbers to show that:

E( max
k=0,1,...,J

Uikt|xit, (zkt)
J
k=1) = log

(
exp

{
βw

∫
U t+1(s)w0(s|xit)ds

}
+

∫
exp

{
Ut(xit, h) + βw

∫
U t+1(s)w(s|xit, h)ds

}
mt(h)dh

)
+ log(J) + γ + o(1)

which concludes the proof of part (ii) of Proposition 2.

3.D.3 Definition Ψwt and Ψmt

Ψwt[Γ](x) =

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[Γ](s)w(s|x, h)ds+ β

∫
V t+1[Γ](s)m(s|x, h)ds

}
exp

{
β
∫
V t+1[Γ](s)m0(s|h)ds

}
+ Γmt(h)

mt[Γ](h)dh

Ψmt[Γ](z) =

∫
exp

{
Ut(h, z) + Vt(h, z) + β

∫
U t+1[Γ](s)w(s|h, z)ds+ β

∫
V t+1[Γ](s)m(s|h, z)ds

}
exp

{
β
∫
U t+1[Γ](s)w0(s|h)ds

}
+ Γwt(h)

wt[Γ](h)dh

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)
V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
wt[Γ](x) =

∫
Xt

∫
Zt

w(x|s, h)ft−1[Γ](s, h)dhds+

∫
Xt

w0(x|s)ft−1[Γ](s, ∗)ds
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mt[Γ](z) =

∫
Xt

∫
Zt

m(z|s, h)ft−1[Γ](s, h)dhds+

∫
Zt

m0(z|s)ft−1[Γ](∗, h)dh

3.D.4 Proof of Theorem 1

I start by proving part (i) and (ii) of Theorem 1. Throughout the rest of the proof I set

WLOG γw = γm = 0 and βw = βm = β for simplicity. I first restrict the space of functions

to which the solutions to the fixed point problem described in Equation (3.4) can belong.

Namely, I show that we can restrict ourselves to a Banach space of continuous functions.

Assume that there exists a set of 2 × T functions Γ∗
wt and Γ∗

mt for all t = 1, ..., T that solve

the fixed point problem. I start by showing that these solutions are bounded from above.

By definition of Ψwt and U t and using that Γ∗
mt ≥ 0 for all t, we can proceed by backward

induction and show:

Γ∗
wT (x) = ΨwT [Γ

∗](x) =

∫
exp{UT (x, s) + VT (x, s)}

1 + Γ∗
mT (s)

mT (s)ds

≤
∫

exp{UT (x, s) + VT (x, s)}mT (s)ds

≤ exp{Ū + V̄ }

where Ū and V̄ are the upper bounds of the functions Ut and Vt for all t, respectively. From

there we can bound U
∗
T as follows:

U
∗
T (x) = log (1 + Γ∗

wT (x))

≤ log
(
1 + exp{Ū + V̄ }

)
Similar bounds can be derived on the school side. We can then iterate this procedure and

bound ΓwT−1 and UT−1:

Γ∗
wT−1(x) =

∫
exp{UT−1(x, h) + VT−1(x, h) + β

∫
UT (s)w(s|x, h)ds+ β

∫
V T (s)m(s|x, h)ds}

1 + Γ∗
mT−1(h)

mT−1(h)dh

≤ exp

{
U + V + 2β log(1 + exp{U + V })

}
211



U
∗
T−1(x) = log

(
exp

{
β

∫
U

∗
T (s)w0(s|x)ds

}
+ Γ∗

wT−1(x)

)
≤ log

(
exp

{
β log

(
1 + exp{U + V }

)}
+ exp

{
U + V + 2β log

(
1 + exp{U + V }

)})

Boundedness of Γ∗
wt is thus implied by boundedness of U t+1 which is in itself implied by

boundedness of Γ∗
wt+1 and U t+2. By induction we can thus show that boundedness of Γ∗

wT

implies boundedness of Γ∗
wt for all t = 1, ..., T . The same argument applies to Γ∗

mt. Continuity

of Γ∗
wt and Γ∗

mt follows from continuity of U and V and that the integrals are nonnegative.

Differentiability of Γ∗
wt and Γ∗

mt also follows from differentiability of U and V which is stated

in Assumption 1. We can thus restrict the spaces in which Γ∗
wt and Γ∗

mt belong to a Banach

space of nonnegative bounded continuous functions which I call C.

I now turn to the proof that the mapping (logΓw, logΓm) 7→ (logΨm[Γ], logΨw[Γ]) is a

contraction. Consider two sets of functions Γ = (Γmt,Γwt)
T
t=1 and Γ̃ = (Γ̃mt, Γ̃wt)

T
t=1 belong-

ing to C2T . I show that there always exists a constant λ < 1 such that:

∣∣∣∣∣∣ logΨw[Γm]− logΨw[Γ̃m]
∣∣∣∣∣∣
∞

≤ λ
∣∣∣∣∣∣ logΓm − log Γ̃m

∣∣∣∣∣∣
∞

The mean value inequality for vector valued functions defined on Banach spaces implies that:

∣∣∣∣∣∣ logΨw[Γm](x)− logΨw[Γ̃m](x)
∣∣∣∣∣∣
∞

≤

sup
a∈[0,1]

∣∣∣∣∣∣D logΨw[a logΓm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ logΓm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞

where D logΨw are the Gateaux derivatives of logΨw. The rest of the proof consists in

showing that these derivatives are strictly bounded below 1.

Starting with t = 1, I rewrite logΨw1 such that:

logΨw1[logΓ](x) =

log

∫
exp

{
U1(x, h) + V1(x, h) + β

∫
U2[logΓ](s)w(s|x, h)ds+ β

∫
V 2[logΓ](s)m(s|x, h)ds

}
exp{β

∫
V 2[logΓ](s)m0(s|h)ds}+ exp{log Γ∗

m1(h)}
m1(h)dh
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where U2 and V 2 are defined as:

U2[logΓ](x) = log

(
exp

{
β

∫
U3[logΓ](s)w0(s|x)ds

}
+ exp{log Γw2(x)}

)

V 2[logΓ](z) = log

(
exp

{
β

∫
V 3[logΓ](s)m0(s|z)ds

}
+ exp{log Γm2(z)}

)
The Gateaux derivative of logΨw1 with respect to log Γm1 can be bounded in absolute value

as:∣∣∣∣∣− 1

Ψw1[Γ](x)

∫
Γm1(h)

exp{β
∫
V 2[Γ](s)m0(s|h)ds}+ Γm1(h)

×

exp
{
U1(x, h) + V1(x, h) + β

∫
U2[Γ](s)w(s|x, h)ds+ β

∫
V 2[Γ](s)m(s|x, h)ds

}
exp{β

∫
V 2[Γ](s)m0(s|h)ds}+ Γm1(h)

m1(h)dh

∣∣∣∣∣
≤ λ1

Ψw1[Γ](x)

∫
exp

{
U1(x, h) + V1(x, h) + β

∫
U2(s)w(s|x, h)ds+ β

∫
V 2(s)m(s|x, h)ds

}
exp{β

∫
V 2(s)m0(s|h)ds}+ Γm1(h)

m1(h)dh

= λ1

where λ1 is an upper bound of the ratio

Γ∗
m1(h)

exp{β
∫
V 2[logΓ](s)m0(s|h)ds}+ Γ∗

m1(h)
≤ ΓU

exp{βUU}+ ΓU
= λ1 < 1

A similar bound can be computed for the Gateaux derivative of logΨm1 with respect to

log Γw1.

I use a similar argument to show that the Gateaux derivative of logΨw1 with respect to

log Γmt for t > 1 can be bounded in absolute value by the upper bound of the following

expression:

β

∫
DmtV2[logΓ](s)m(s|x, h)ds− β

∫
DmtV2[logΓ](s)m0(s|h)ds

exp{β
∫
V 2(s)m0(s|h)ds}

exp{β
∫
V 2(s)m0(s|h)ds}+ Γ∗

m1(h)

where I define DmtV2 as the Gateaux derivative of V2 with respect to log Γmt. From there,

we can show that for all 1 < t < T :

DmtVt[logΓ](z) =
Γ∗
mt(z)

exp{β
∫
V t+1(s)m0(s|z)ds}+ Γ∗

mt(z)
≤ λ1 (3.6)
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From this result, we proceed by induction and show that for all 1 < t < T :

Dmt+1Vt[logΓ](z) = β

∫
Dmt+1V t+1[logΓ](s)m0(s|z)ds

exp{β
∫
V t+1(s)m0(s|z)ds}

exp{β
∫
V t+1(s)m0(s|z)ds}+ Γ∗

mt(z)

≤ βλ1
exp{βUU}

exp{βUU}+ ΓU
= βλ1λ2

We can iterate this procedure to show that for all 1 < t ≤ t′ < T :

Dmt′Vt[logΓ](x) ≤ βt′−tλ1λ
t′−t
2 < 1 (3.7)

For t′ = T we can easily verify that:

DmTVt[logΓ](x) ≤ βT−tλ21λ
T−t−1
2 < 1

This implies that we can bound from above the first term of the derivative of logΨw1 with

respect to log Γmt for all 1 < t < T by:

βt−1λ1λ
t−2
2 < 1

while the second term can be bounded by:

βt−1λ1λ
t−1
2 < 1

This implies that the difference between the two is strictly below 1. Similarly for t = T , we

can bound the first term from above by

βT−1λ21λ
T−3
2 < 1

while the second term can be bounded by:

βT−1λ21λ
T−2
2 < 1

Again, this holds symetrically for Ψm1. This finishes to show that the Gateaux derivatives

of logΨw1 and logΨm1 are strictly bounded below 1.
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I now consider logΨwt such that 1 < t < T . I rewrite logΨwt such that:

logΨwt[logΓ](x) =

log

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[logΓ](s)w(s|x, h)ds+ β

∫
V t+1[logΓ](s)m(s|x, h)ds

}
exp{β

∫
V t+1[logΓ](s)m0(s|h)ds}+ exp{log Γmt(h)}

mt[logΓ](h)dh

where U t+1, V t+1 and mt are defined as:

U t+1[logΓ](x) = log

(
exp

{
β

∫
U t+2[logΓ](s)w0(s|x)ds

}
+ exp{log Γwt+1(x)}

)

V t+1[logΓ](z) = log

(
exp

{
β

∫
V t+2[logΓ](s)m0(s|z)ds

}
+ exp{log Γmt+1(z)}

)
mt[logΓ](z) =

∫
Xt−1

∫
Zt−1

m(z|s, h)ft−1[logΓ](s, h)dhds+

∫
Zt−1

m0(z|s)ft−1[logΓ](∗, h)dh

and ft−1 can be expressed as follows:

ft−1(x, z) =

exp

{
Ut−1(x, z) + Vt−1(x, z) + β

∫
U t(s)w(s|x, z)ds+ β

∫
V t(s)m(s|x, z)ds

}
wt−1[logΓ](x)mt−1[logΓ](z)(

exp

{
β
∫
U t(s)w0(s|x)ds

}
+ exp{log Γwt−1(x)}

)(
exp

{
β
∫
V t(s)m0(s|z)ds

}
+ exp{log Γmt−1(z)}

)

ft−1(∗, z) =
exp

{
β
∫
V t(s)m0(s|z)ds

}
(
exp

{
β
∫
V t(s)m0(s|z)ds

}
+ exp{log Γmt−1(z)}

)mt−1[logΓ](z)

I first consider the derivative of logΨwt with respect to log Γmt−1 and write is as:

− 1

Ψwt[Γ](x)

∫
exp

{
Ut(x, h) + Vt(x, h) + β

∫
U t+1[Γ](s)w(s|x, h)ds+ β

∫
V t+1[Γ](s)m(s|x, h)ds

}
exp{β

∫
V t+1[Γ](s)m0(s|h)ds}+ Γmt(h)

× Dmt−1mt[Γ](h)

mt[Γ](h)
mt[Γ](h)dh

where I define Dmt−1mt as the derivative of mt with respect to log Γmt−1 which can be

written as:

Dmt−1mt[Γ](z) =

∫
Xt−1

∫
Zt−1

m(z|s, h)ft−1(s, h)

[
− Γmt−1(h)

exp{β
∫
V t(s)m0(t|h)dt}+ Γmt−1(h)

+
Dmt−1mt−1[Γ](h)

mt−1(h)

]
dhds
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+

∫
Z1

m0(z|h)f1(∗, h)
[
− Γmt−1(h)

exp{β
∫
V t(s)m0(t|h)dt}+ Γmt−1(h)

+
Dmt−1mt−1[Γ](h)

mt−1(h)

]
dh

≤ mt(z)

[
−λ1 +

Dmt−1mt−1[Γ](h)

mt−1(h)

]
Similarly, we can iterate once more and write using Equation 3.6

Dmt−1mt−1[Γ](z) =

∫
Xt−2

∫
Zt−2

m(z|s, h)ft−2(s, h)

[
β

∫
Dmt−1V t−1(s)m(t|s, h)dt

− β

∫
Dmt−1V t−1(s)m0(t|h)dt

exp{β
∫
V t−1(s)m0(t|h)dt}

exp{β
∫
V t−1(s)m0(t|h)dt}+ Γ∗

mt−2(h)

+
Dmt−1mt−2[Γ](h)

mt−2(h)

]
dhds

+

∫
Z1

m0(z|h)f1(∗, h)
[
β

∫
Dmt−1V t−1(s)m0(t|s, h)dt

− β

∫
Dmt−1V t−1(s)m0(t|h)dt

exp{β
∫
V t−1(s)m0(t|h)dt}

exp{β
∫
V t−1(s)m0(t|h)dt}+ Γ∗

mt−2(h)

+
Dmt−1mt−2[Γ](h)

mt−2(h)

]
dh

≤ mt−1(z)

[
βλ1 − βλ1λ2 +

Dmt−1mt−2[Γ](h)

mt−2(h)

]
Using Equation 3.7, we then iterate further:

Dmt−1mt−1[Γ](z) ≤ mt−1(z)

[
βλ1 − βλ1λ2 + β2λ1λ2 − β2λ1λ

2
2 +

Dmt−1mt−3[Γ](h)

mt−3(h)

]
≤ mt−1(z)

[
βλ1 − β2λ1λ

2
2 +

Dmt−1mt−3[Γ](h)

mt−3(h)

]

Given that Dmt−1m1 = 0 by definition and that λ1 < 1,λ2 and β < 1, we can thus conclude

by induction that:
Dmt−1mt−1[Γ](h)

mt−1(h)
< 1

which directly implies that:
Dmt−1mt[Γ](h)

mt(h)
< 1

and that the derivative of logΨwt with respect to log Γmt−1 is strictly bounded from above

in absolute value by 1. Similar steps can be used to show the same result for the Gateaux

derivative of logΨwt with respect to any log Γmt′ or log Γwt′ with t ̸= t′. Symmetrical results
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apply for logΨmt.

Overall this implies that:

sup
a∈[0,1]

∣∣∣∣∣∣D logΨw[a logΓm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞
< 1

which finishes to prove that there exists a constant λ < 1 such that:

∣∣∣∣∣∣ logΨw[Γm]− logΨw[Γ̃m]
∣∣∣∣∣∣
∞

≤ λ
∣∣∣∣∣∣ logΓm − log Γ̃m

∣∣∣∣∣∣
∞

I thus conclude that the mapping (logΓw, logΓm) 7→ (logΨw[Γ], log Ψm[Γ]) is a contraction

which proves claim (i) of Theorem 1. The proof of part (ii) is a direct implication of the

Banach fixed point theorem.

Before proving part (iii) of Theorem 1, intermediary steps are needed. In what follows,

I follow Menzel (2015) and first prove that the size of opportunity sets grow at a rate
√
n.

From this, I then show that the dependence between opportunity sets and taste shocks under

the extremal matchings vanishes as n grows to infinity. I then use this result to show that we

can approximate inclusive values arising from any stable match by inclusive value functions

which have an approximate fixed point representation. I then finally prove that the solution

to the finite sample fixed point problem converges to the unique solution of the population

fixed point problem which concludes the proof of Theorem 1.(iii).

Rate of Size of Feasible Choice Sets

Define, for a given stable matching µ∗
t , the number of schools feasible to teacher i and the

number of teachers feasible to school j in period t as:

J∗
wit =

nm∑
j=1

1{Vijt ≥ max
l∈Wjt(µ∗

t )∪{0}
Vljt} and J∗

mjt =
nw∑
i=1

1{Uijt ≥ max
k∈Mit(µ∗

t )∪{0}
Uikt}

Similarly, define the number of school that teacher i would accept and the number of teachers

that school j would accept:

L∗
wit =

nm∑
j=1

1{Uijt ≥ max
k∈Mit(µ∗

t )∪{0}
Uikt} and L∗

mjt =
nw∑
i=1

1{Vijt ≥ max
l∈Wjt(µ∗

t )∪{0}
Vljt}
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I now state the following result:

Lemma 1 Under Assumptions 1-3 and for any stable matching µ∗
t , we have:

n1/2 exp(−V̄ − βV
U
+ γm)

1 + exp(Ū + V̄ + βU
U
+ βV

U
+ γw)

≤ J∗
wi ≤ n1/2 exp(V̄ + βV

U
+ γm)

n1/2 exp(−Ū − βU
U
+ γw)

1 + exp(Ū + V̄ + βU
U
+ βV

U
+ γm)

≤ J∗
mj ≤ n1/2 exp(Ū + βU

U
+ γw)

n1/2 exp(−Ū − βU
U
+ γm)

1 + exp(Ū + V̄ + βU
U
+ βV

U
+ γm)

≤ L∗
wi ≤ n1/2 exp(Ū + βU

U
+ γm)

n1/2 exp(−V̄ − βV
U
+ γw)

1 + exp(Ū + V̄ + βU
U
+ βV

U
+ γw)

≤ L∗
mj ≤ n1/2 exp(V̄ + βV

U
+ γw)

for each i = 1, ..., nw and j = 1, ..., nm with probability approaching 1 as n→ ∞.

Proof: As in Menzel (2015), we can define exogenous sets W jt = {i : Uijt ≥ Ui0t} and

M it = {j : Vijt ≥ V0jt} such that Wjt(µ
∗
t ) ⊂ W jt and Mit(µ

∗
t ) ⊂ M it as well as W ◦

jt =

{i : Uijt ≥ maxk∈M it(µ∗
t )∪{0}

Uikt} and M◦
it = {j : Vijt ≥ maxl∈W jt(µ∗

t )∪{0}
Vljt} such that

W ◦
jt ⊂ Wjt(µ

∗
t ) and M

◦
it ⊂Mit(µ

∗
t ).

From this, I construct the following bounds on J∗
wi:

J◦
wit =

nm∑
j=1

1{j ∈M◦
it} ≤

nm∑
j=1

1{j ∈Mit(µ
∗)} ≤

nm∑
j=1

1{j ∈M it} = Jwit

from there, using Proposition 2, we can show that:

E[Jwit|xit, z1t, ..., znmt] =
1

J

nm∑
j=1

exp{V (xit, zjt) + β
∫
V jt+1(s)m(s|xit, zjt)ds}

1 + 1
J
exp{V (xit, zjt) + β

∫
V jt+1(s)m(s|xit, zjt)ds}

+ o(1)

≤ nm

J
exp{V̄ + βV

U}+ o(1)

which implies under Assumption 3 that:

E[Jwit] ≤ n1/2 exp{V̄ + βV
U
+ γm}+ o(1)

Following the same steps as Menzel (2015) we can then show that the variance of Jwit
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converges to zero which implies that:

n−1/2(Jwit − E[Jwit]) → 0

We have thus established that J∗
wit ≤ n1/2 exp{V + βV

U
+ γm} with probability approaching

1 as n→ ∞. Following the same steps, we can show symmetrically that:

J∗
mjt ≤ n1/2 exp{Ū + βU

U
+ γw}

L∗
wit ≤ n1/2 exp{V̄ + βV

U
+ γm}

L∗
mjt ≤ n1/2 exp{Ū + βU

U
+ γw}

with probability approaching 1 as n → ∞. We now consider the lower bound J◦
wit. We can

again use Proposition 2 to show that:

E[J◦
wit|(xlt)l∈W jt

, (zkt)
nm
k=1] =

1

J

nm∑
j=1

exp{Vt(xit, zjt) + β
∫
V jt+1(s)m(s|xit, zjt)ds}

1 + 1
J

∑
l∈W jt

exp{V (xlt, zjt) + β
∫
V jt+1(s)m(s|xlt, zjt)ds}

+ o(1)

≥ nm

J

exp{−V̄ − βV
U}

1 +
Jmjt

J
exp{V̄ + βV

U}
+ o(1)

Using the higher bound for J∗
mj derived just above and Jensen’s inequality, we can finally

show that:

E[J◦
wit] ≥ n1/2 exp{−V̄ − βV

U
+ γm}

1 + exp{V̄ + Ū + βV
U
+ βU

U
+ γw}

+ o(1)

Following Menzel (2015) we can then also show that the variance of J◦
wit converges to zero

which implies that:

n−1/2(J◦
wit − E[J◦

wit]) → 0

This establishes that J∗
wit ≥ n1/2 exp{−V̄−βV

U
+γm}

1+exp{V̄+Ū+βV
U
+βU

U
+γw}

with probability approaching 1 as

n→ ∞. Following the same steps, we can show that symmetrically, we have:

J∗
mjt ≥ n1/2 exp{−Ū − βU

U
+ γw}

1 + exp{V̄ + Ū + βV
U
+ βU

U
+ γm}
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L∗
wit ≥ n1/2 exp{−Ū − βU

U
+ γm}

1 + exp{V̄ + Ū + βV
U
+ βU

U
+ γm}

L∗
mjt ≥ n1/2 exp{−V̄ − βV

U
+ γw}

1 + exp{V̄ + Ū + βV
U
+ βU

U
+ γw}

with probability approaching 1 as n→ ∞. This concludes the proof of Lemma 1.

Exogeneity of Feasible Choice Sets

We now need to show that as n → ∞, the dependence between agents taste shocks and

opportunity sets vanishes. As there taste shocks are independent across periods under As-

sumption 1, the dependence between unobserved preferences and opportunity sets can only

arise within period. The proof thus mirrors very closely Menzel (2015) which proves the same

result in the static case.

For the rest of the proof, I define the following set of indicator functions E∗
ijt = 1{i ∈

Wjt(µ
∗
t )} and D∗

ijt = 1{j ∈ Mit(µ
∗
t )} for all teachers i = 1, ..., nw and schools j = 1, ..., nm.

The first result to establish is that the probability that changing one availability indicator

affects another agents’ opportunity set converges to zero as n→ ∞. I first prove the following

result:

Lemma 2 Suppose Assumption 1-3 hold and suppose we change one availability indicator

E∗
ijt exogenously to Ẽijt = 1 − E∗

ijt and then iterate the deferred acceptance algorithm from

this point until convergence. Denote the resulting availability indicators {Ẽlkt, D̃lkt : l =

1, ..., nw, k = 1, ..., nm}. We have for any teacher l and school k:

(i). P(D̃l ̸= D∗
l |D∗

l , D
∗
ij = 0) = P(Ẽk ̸= E∗

k |E∗
l , D

∗
ij = 0) = 0

(ii). There exist constants a <∞ and 0 < λ < 1 such that:

P(D̃l ̸= D∗
l |D∗

l , D
∗
ijt = 1) ≤ n−1/2 a

1− λ

P(Ẽk ̸= E∗
k |E∗

l , E
∗
ijt = 1) ≤ n−1/2 a

1− λ

The same result holds for an exogenous change of Dijt to D̃ijt = 1−Dijt.

Proof: Suppose we change E∗
jit exogenously to Ẽjit = 1 − Ejit and that we iterate the
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deferred acceptance algorithm from this stage. This will only trigger a chain of rematches if

this affects the indirect utility of either i or j. Suppose D∗
ijt = 0 and that E∗

ijt = 0 meaning

that school j is not feasible to teacher i and vice versa. Suppose now that Ẽjit = 1−E∗
ijt = 1,

meaning that suddenly teacher i’s preference for school j increase such that teacher i becomes

feasible for school j. This will not affect the indirect utility of school j nor teacher i given that

school j is not feasible to teacher i. This change will thus not trigger a chain of rematches.

A similar argument can be used in the case where E∗
ijt changes from 1 to Ẽjit = 1−E∗

ijt = 0.

This establishes part (i) of Lemma 2.

Now suppose that D∗
ijt = 1 such that if Ẽijt = 1 − E∗

ijt = 1, now school j and teacher

i will want to rematch together or if Ẽijt = 1 − E∗
ijt = 0 school j and teacher i will break

their current match. This will trigger a chain of rematches than can potentially cycle back

to teacher i or school j’s opportunity set. I start by showing that, at each step s of these

subsequent rematches, there is at most one indicator in the vector D
(s)
l corresponding to a

school k with E
(s)
lkt = 1 that will change. The idea of the proof is the following: suppose that

a given teacher l matched to school k in step (s− 1) becomes unavailable to school k in step

s. This school will then replace this teacher by its most preferred feasible applicant, which

will only change the availability indicator of this school to this newly hired teacher. On the

other hand, if a given teacher becomes available to a school while this school prefers this

teacher to its matched employee, then it will replace them by this new employee, making this

school unavailable to the kicked out employee. In both cases, this will only change at most

one availability indicator among the teachers who are willing to match with this school. Note

that at each of these steps, there is a chance that the chain is terminated if the next preferred

feasible option is the outside option. A similar argument can be used symmetrically from

the teachers perspective.

The rest of the proof now consists in bounding the probability that the chain is terminated

by either (a) school k or teacher l preferring the outside option to any other option in their

opportunity set or (b) a change in availability indicators of teacher k Dk. I define µs
t the

state of the match in iteration s of the deferred acceptance algorithm following an exogenous

change of Eijt to Ẽijt = 1 − Eijt. The first step bounds the probability that the chain is

terminated by the outside option at stage s.

I start from the following observation: given that P(Vlkt > Vk,(q)(Wk(µ
s))|xl, zk) ≥

P(Vlk > Vk,(1)(Wk(µ
s))|xl, zk) and that W ◦

k,(1) ⊂ W ∗
k ⊂ W k, we have from Proposition 2
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and Lemma 1 that for any school k and teacher l:

P(Vlkt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt|xlt, zkt)

≥ P(Vlkt > max
l∈Wkt∪{0}

Vlkt|xlt, zkt)

= n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + 1
J

∑
i∈Wkt

exp(V (zkt, xit) + β
∫
V kt+1(s)m(s|xit, zkt)ds)

+ o(1)

≥ n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + exp(Ū + V̄ + βV
U
+ βU

U
+ γw)

+ o(1)

This implies that, conditional on D∗
i and as n approaches infinity:

P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt|D∗
i , xit, zkt) ≥

1

1 + exp(Ū + V̄ + βV
U
+ βU

U
+ γw)

=: ps

Following now the same steps as Menzel (2015), we have, by Bayes law that:

P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vljt|D∗
l , D̃

(s)
lkt = 1, xlt, zkt) ≥

Lps

L(1− ps) + Lps

where L and L are respectively the upper and lower bounds on L∗
mj taken from Lemma 1.

From there, we finally get that:

1−P(V0kt > max
l∈Wkt(µ

s
t )∪{0}

Vljt|D∗
l , D̃

(s)
lkt = 1, xlt, zkt) ≤

L exp(Ū + V̄ + βV
U
+ βU

U
+ γw)

L exp(Ū + V̄ + βV
U
+ βU

U
+ γw) + L

=: λ < 1

This essentially means that the probability that the chain is not terminated at stage s is

bounded away from 1.

Now we bound the probability that the chain leads to a change in Dl at stage s. We can

thus bound the following probability using Proposition 2 and Lemma 1:

P(Vlkt > max
l∈Wkt(µ

s
t )∪{0}

Vlkt)|xlt, zkt)

≤ P(Vlkt > max
l∈W ◦

kt∪{0}
Vlkt|xlt, zkt)

= n−1/2 exp(V (zkt, xlt) + β
∫
V kt+1(s)m(s|xlt, zkt)ds)

1 + 1
J

∑
i∈W ◦

kt
exp(V (zkt, xit) + β

∫
V kt+1(s)m(s|xit, zkt)ds)

+ o(1)

≤ n−1/2 exp(V̄ + βV
U
) + o(1)
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This implies that for n sufficiently large, we have:

P(D̃
(s)
l ̸= D∗

l |D∗
l , D̃

(s)
lkt = 1, xl, zk)

≤ n−1/2 exp(V̄ + βV
U
)L

n−1/2 exp(V̄ + βV
U
)L+ L

≤ n−1/2 exp(V̄ + βV
U
)
L

L
= n−1/2a

Using the law of total probability, we can thus bound as n→ ∞ the conditional probability

that D̃l ̸= D∗
l

P(D̃l ̸= D∗
l |D∗

l ) ≤
∞∑
s=1

λsn−1/2a ≤ n−1/2a

1− λ

which proves part (b) of Lemma 2.

From there, I state the main result that the dependence between taste shocks and agents’

opportunity sets vanishes as n→ ∞. I first define the joint distribution of ηi = (ηi1, ..., ηinm)
′,

ϵj = (ϵ1j, ..., ϵnwj)
′ and the availability indicators DW

i , EW
j , DM

i , EM
j corresponding to

the teacher-optimal and the school-optimal stable matches. Note that I consider these

two specific matches since the teacher-optimal and school-optimal stable matches are de-

fined with probability 1 conditional on the realization of the taste shocks ηi and ϵj. In-

deed, the distribution of availability indicators arising from an arbitrary stable match D∗
i

would not be well defined. I also define: DW
i,−j = (DW

i1 , ..., D
W
i(j−1), D

W
i(j+1), ..., D

W
inm

) and

E−i,j = (EW
1j , ..., E

W
(i−1)j, E

W
(i+1)j, ..., E

W
nwj) with analogous notations for the school optimal

match. I then define the conditional c.d.f.s:

GW
η|D(η|d) = P(ηi ≤ η|DW

i = d), d ∈ {0, 1}nm

GW
η,ϵ|D,E(η, ϵ|d, e) = P(ηi ≤ η, ϵj ≤ ϵ|DW

i,−j = d, E
W
−i,j = e), d ∈ {0, 1}nm−1, e ∈ {0, 1}nw−1

with analogous definitions for the school-optimal stable match and associated p.d.f.s gWη|D and

gWη,ϵ|D,E. The main result is the following:

Lemma 3 Under Assumption 1 and 2, we have:
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(i). gWη|D and gMη|D satisfy:

lim
n

∣∣∣gWη|D(η|DW
i )

gη(η)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η|DM
i )

gη(η)
− 1
∣∣∣ = 1

(ii). gWη,ϵ|D,E and gMη,ϵ|D,E satisfy:

lim
n

∣∣∣gWη|D(η, ϵ|DW
i,−j, E

W
−i,j)

gη,ϵ(η, ϵ)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η, ϵ|DM
i,−j, E

M
−i,j)

gη,ϵ(η, ϵ)
− 1
∣∣∣ = 1

The same results holds for the school side of the market.

Proof: Let gWη,D be the joint p.d.f. of taste shocks and availability indicators under the

teacher optimal stable match. We can rewrite, by definition of a conditional density:

gWη|D(η|DW
i )

gη(η)
=

gWη,D(η,D
W
i )

gη(η)P (DW
i )

=
P (DW

i |ηi = η)gη(η)

gη(η)P (DW
i )

=
P (DW

i |ηi = η)

P (DW
i )

I then follow similar steps as in Menzel (2015) to show that:

∣∣∣P (DW
i |ηi = η)

P (DW
i )

− 1
∣∣∣ ≤ sup

η1,η2

∣∣∣P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1
∣∣∣

such that I only need to bound the probability that shifting ηi from η1 to η2 changes teacher

i’s opportunity set. We know from Lemma 2 that changing an availability indicator will

trigger a chain of rematches that could change teacher i’s opportunity set with probability

less than n−1/2a
1−λ

as n approaches infinity. Here, we can show that shifting agent i’s taste

shocks would trigger at most two chains of rematches. Indeed, if the shift in taste shocks

makes agent i prefers school l with Dil = 1 instead of her current employer school j, this

changes both Eij from 1 to 0 and Eil from 0 to 1. Thus, this would trigger two chains of

rematches where both school j and the teacher which was displaced from school l by teacher

i would need to find a new match. We can thus conclude that:

P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1 ≤ 2
n−1/2a

1− λ

as n→ ∞ which can be shown to hold also in absolute value. As the right hand side converges
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to 0 as n→ ∞, this proves the first part of claim (i). The same result holds symetrically for

the school side.

For part (ii), note that the argument can be extended in a similar way. If you change

both school j and teacher i’s taste shocks this can trigger at most 4 chains of rematches such

that we can bound the probability of a shift in opportunity sets by n−1/2 4a
1−λ

which can be

made arbitrarily close to 0 as n approaches infinity.

Bounds for Inclusive Values

Since I have established exogeneity of opportunity sets under the school-optimal and teacher-

optimal stable matches, the rest of the analysis focuses on characterizing the limit of inclusive

values that arise under these extremal matchings. As in Menzel (2015), I show that both

converge to a unique limit, implying that inclusive values arising from any stable matching

also converge toward this limit.

I define IWwit = Iwit(µ
W
t ) and IWmjt = Imjt(µ

W
t ) the inclusive values that arise from the

sequence of teacher-optimal stable matches µW in period t. Similarly, I define IMwit and I
M
mjt

as the inclusive values that arise from the sequence of school-optimal stable matches µM such

that for any stable match µ∗
t , we have IWwit ≥ Iwit(µ

∗
t ) ≥ IMwit and I

W
mjt ≤ Iwit(µ

∗
t ) ≤ IMmjt for

all t. I state the following result:

Lemma 4 Under Assumption 1-3:

(i). For all i = 1, ..., nw and j = 1, ..., nm:

IMwit ≥ Γ̂M
wt(xit) + op(1) and IMmjt ≤ Γ̂M

mt(zjt) + op(1)

where the analogous result holds for the teacher-optimal stable match with the side of inequal-

ities reversed.

(ii). If the weight functions ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

x, then

sup
x∈X

1

n

nm∑
j=1

ω(x, zjt)(I
M
mjt − Γ̂M

mt(zjt)) ≤ op(1)

and

inf
z∈Z

1

n

nw∑
i=1

ω(xit, z)(I
M
wit − Γ̂M

wt(xit)) ≥ op(1)
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The analogous conclusion holds for the teacher-optimal stable match where the sign of the

inequalities is reversed and if ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

z.

Proof: I first show that we can bound conditional choice probabilities given an opportunity

set arising from a stable match using the extremal matchings. I first define the conditional

probability that teacher i chooses school j given the realization of opportunity setMM arising

from the school-optimal stable match:

ΛM
wt(x, z,M

M) = P(Uijt ≥ max
k∈MM

it ∪{0}
Uikt|(MM

iτ )
T
τ=t =MM , xit = x, zjt = z)

and the expectations about future match payoffs given future opportunity sets as:

U
M

t+1(x,M
M) = E

[
max

k∈MM
it+1∪{0}

Uikt+1|(MM
iτ )

T
τ=t+1 =MM , xit+1 = x

]

I also define the conditional choice probabilities and expectations about future payoffs in

period t under exogenous opportunity sets as:

Λwt(x, z,M) = P(Uijt ≥ max
k∈M∪{0}

Uikt|xit = x, zjt = z)

U t+1(x,M) = E
[

max
k∈M∪{0}

Uikt+1|xit+1 = x

]
As there are several stable matches such that M∗

i =MM
i and W ∗

j = WM
j we can show that:

JΛM
wt(x, z, (M

M
iτ )

T
τ=t) ≤ JΛwt(x, z, (M

M
iτ )

T
τ=t) + op(1)

U
M

t+1(x, (M
M
iτ )

T
τ=t+1) ≥ U t+1(x, (M

M
iτ )

T
τ=t+1) + op(1)

Using Proposition 2, we can then show that for i = 1, ..., nw, l1 = 1, ..., nm and l2 ̸= l1:

E
[
J

(
DM

il1t
exp

{
β

∫
U

M

it+1(s)w(s|xit, zl1t)ds
}

− ΛM
mt(xit, zl1t, (I

M
ml1τ

)Tτ=t) exp

{
β

∫
U

M

t+1(s, (M
M
iτ )

T
τ=t+1)w(s|xit, zl1t)ds

})∣∣∣∣(IMml1τ
)Tτ=t, xit, zl1t

]
→ 0
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and

E
[
J2

(
DM

il1t
exp

{
β

∫
U

M

it+1(s)w(s|xit, zjt)ds
}

− ΛM
mt(xit, zl1t, (I

M
ml1τ

)Tτ=t) exp

{
β

∫
U

M

t+1(s, (I
M
wiτ )

T
τ=t+1)w(s|xit, zl1t)ds

})
×DM

il2t
exp

{
β

∫
U

M

it+1(s)w(s|xit, zl1t)ds
}

− ΛM
mt(xit, zl2t, (I

M
ml2τ

)Tτ=t) exp

{
β

∫
U

M

t+1(s, (I
M
wiτ )

T
τ=t+1)w(s|xit, zl2t)ds

}
∣∣∣∣(IMml1τ

)Tτ=t, (I
M
ml2τ

)Tτ=t, (I
M
wiτ )

T
τ=t+1, xit, zl1t, zl2t

]
→ 0

Therefore, since under Assumption 1, we know that exp(Ut(xit, zjt)) is bounded, we can thus

conclude that:

Var

(
1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + β

∫
U

M
t+1(s, (I

M
wiτ )

T
τ=t+1)w(s|xit, zkt)ds

}
J(DM

ik − ΛM
mt(xit, zkt, (I

M
mkτ )

T
τ=t))

)
→ 0

which implies that:

1

n

nm∑
k=1

exp

{
Ut(xit, zkt)+β

∫
U

M

t+1(s, (I
M
wiτ )

T
τ=t+1)w(s|xit, zkt)ds

}
J(DM

ikt−ΛM
mt(xit, zkt, (I

M
mkτ )

T
τ=t)) = op(1)

Given that from Proposition 2:

JΛM
mt(x, z, (W

M
jτ )

T
τ=t) ≥

exp

{
Vt(x, z) + βm

∫
V

M

t+1(s)m(s|x, z)ds
}

exp

{
βm
∫
V

M

t+1(s)m0(s|x)ds
}
+ IMmjt

+ op(1)

This implies that:

1

n

nm∑
k=1

exp{Ut(xit, zkt)}

JDM
ikt −

exp

{
Vt(xit, zkt) + βm

∫
V

M

t+1(s)m(s|xit, zkt)ds
}

exp

{
βm
∫
V

M

t+1(s)m0(s|zkt)ds
}
+ IMmjt

 ≥ op(1)

which proves the first claim of part (i) of Lemma 4. Similar steps can be used to bound

inclusive values on the school side and for the teacher optimal sequence of stable matches.

Part (ii) follows from part (i) of the Lemma and the boundedness condition on ω which
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implies pointwise convergence. The Glivenko-Cantelli condition on ω then implies uniform

convergence. This concludes the proof of Lemma 4.

The next step consists in establishing uniform convergence with respect to Γwt ∈ Twt and

Γmt ∈ Tmt of the fixed point mappings Ψ̂wt and Ψ̂mt to their population counterparts. I

define:

Ψ̂wt[Γ](x) =
1

n

nm∑
j=1

ψwt(zjt, x;Γ)

where ψwt is defined as:

ψwt(zjt, x;Γ) =

exp

{
Ut(x, zjt) + Vt(x, zjt) + βw

∫
U t+1(s)w(s|x, zjt)ds+ βm

∫
V t+1(s)m(s|x, zjt)ds

}
exp

{
βm
∫
V t+1(s)m0(s|zjt)ds

}
+ Γmt(zjt)

Similarly, I define:

Ψ̂mt[Γ](z) =
1

n

nw∑
i=1

ψmt(z, xit;Γ)

where ψmt is defined as:

ψmt(z, xit;Γ) =

exp

{
Ut(xit, z) + Vt(xit, z) + βw

∫
U t+1(s)w(s|xit, z)ds+ βm

∫
V t+1(s)m(s|xit, z)ds

}
exp

{
βw
∫
U t+1(s)w0(s|xit)ds

}
+ Γwt(xit)

I define the class of functions Fw : {ψw(., x;Γ) : x ∈ X ,Γ ∈ T } and Fm : {ψm(z, ;Γ) : z ∈
Z,Γ ∈ T }.

Lemma 5 Under Assumption 1:

(i). The classes of functions Fw and Fw are Glivenko-Cantelli.

(ii). As n→ ∞ and for all t:

(Ψ̂wt[Γ](x), Ψ̂mt[Γ](z)) → (Ψwt[Γ](x),Ψmt[Γ](z))

uniformly in Γ ∈ T , and (x, z) ∈ X × Z.

Proof: Under Assumption 1, exp{U(x, z) + V (x, z)} is Lipschitz in x and z such that this

class of functions is Glivenko-Cantelli. Γmt and Γwt are bounded and have bounded p ≥ 1
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derivatives for all t which makes the class of functions T Glivenko-Cantelli. Finally, as m and

w are continuous densities and that U and V are continuous note that the transformation

ψm(g, h) =
g

1+h
is bounded and continuous since h and g are bounded and continuous and

h ≥ 0. Theorem 3 in van der Vaart and Wellner (2000) implies claim (i) of Lemma 5. Part

(ii) of Lemma 5 is a direct implication of part (i).

Proof of Theorem 3.1 (iii)

I finally turn to the proof of part (iii) of Theorem 1. I first apply Lemma 4 to show that for

any q ≥ 1:

Γ̂M
wt(xit) =

1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U

M

it+1(s)w(s|xit, zkt)ds+ β
∫
V

M

kt+1(s)m(s|xit, zkt)ds

}
exp

{
β
∫
V

M

kt+1(s)m0(s|zkt)ds
}
+ IMmkt

≥ 1

n

nm∑
k=1

exp

{
Ut(xit, zkt) + Vt(xit, zkt) + β

∫
U

M

t+1(s)w(s|xit, zkt)ds+ β
∫
V

M

t+1(s)m(s|xit, zkt)ds

}
exp

{
β
∫
V

M

t+1(s)m0(s|zkt)ds
}
+ Γ̂M

mt(zkt)

+ op(1)

Analogous bounds can be formed for the inclusive value functions of the teacher-optimal

stable match. We thus have that:

Γ̂M
wt ≥ Ψ̂M

wt[Γ̂
M ] + op(1) and Γ̂M

mt ≤ Ψ̂M
mt[Γ̂

M ] + op(1)

Γ̂W
wt ≤ Ψ̂W

wt[Γ̂
W ] + op(1) and Γ̂W

mt ≥ Ψ̂W
mt[Γ̂

W ] + op(1)

Given that Ψ̂wt[Γ] and Ψ̂mt[Γ] are nonincreasing and Lipschitz continuous in Γ, we have:

Γ̂M
wt ≥ Ψ̂M

wt[Γ̂
M ] + op(1) ≥ Ψ̂M

wt[Ψ̂
M [Γ̂M ]] + op(1)

Thus for any Γ∗ solving the fixed point problem:

Γ∗
wt = Ψ̂wt[Γ

∗] + op(1) and Γ∗
mt = Ψ̂mt[Γ

∗] + op(1)

we thus have:

Γ̂M
wt ≥ Γ∗

wt + op(1) and Γ̂M
mt ≤ Γ∗

mt + op(1)

However, we know that the mapping Ψ̂ is a contraction in logs, which means that it has a
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unique fixed point Γ∗. In addition, the school-optimal stable match is unanimously preferred

by schools while the teacher-optimal stable match is unanimously preferred by teachers (Roth

and Sotomayor (1992)). This implies that Mit(µ
M) ⊂ Mit(µ

∗) ⊂ Mit(µ
W ) and Wit(µ

W ) ⊂
Wit(µ

∗) ⊂ Wit(µ
M) which means that for all i and j:

IMwit ≤ I∗wit ≤ IWwit and IWmjt ≤ I∗mjt ≤ IMmjt

This in turn implies that for all (x, z):

Γ̂M
wt(x) ≤ Γ̂∗

wt(x) ≤ Γ̂W
wt(x) and Γ̂W

mt(z) ≤ Γ̂∗
mt(z) ≤ Γ̂M

mt(z)

which implies that:

Γ∗
wt + op(1) ≥ Γ̂W

wt ≥ Γ̂M
wt ≥ Γ∗

wt + op(1)

Γ∗
mt + op(1) ≤ Γ̂W

mt ≤ Γ̂M
mt ≤ Γ∗

mt + op(1)

which in turn implies that:

Γ̂M
wt = Γ∗

wt + op(1) and Γ̂M
mt = Γ∗

mt + op(1)

Γ̂W
wt = Γ∗

wt + op(1) and Γ̂W
mt = Γ∗

mt + op(1)

Combining this with Lemma 3, this gives us for all i = 1, ..., nw and all j = 1, ..., nm:

IMwit = Γ∗
wt + op(1) and IMmjt = Γ∗

mt + op(1)

IWwit = Γ∗
wt + op(1) and IMmjt = Γ∗

mt + op(1)

Note that given that inclusive value functions that would arise under any stable match µ∗
t

defined as I∗wit and I
∗
mjt are such that IMwit ≤ I∗wit ≤ IWwit and I

M
mjt ≥ I∗mjt ≥ IWmjt the equality

written above holds also for any I∗wit and I
∗
mjt.

I have shown that inclusive values can be approximated by the solution of the finite

sample fixed point problem. Lemma 5 finally implies that the solution of the finite sample

fixed point problem converges toward the solution of its population equivalent. This proves

Theorem 1.(iii).
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3.E Monte Carlo Simulations

To gain confidence in the validity of the theoretical results described in Section 3.4 and 3.5,

I perform two Monte Carlo exercises. First, I simulate data from a market with different

numbers of participating agents to verify whether empirical matching frequencies converge

to their theoretical limit. Then, I then evaluate the performance of the Maximum Likelihood

Estimator proposed in 3.5. I consider a market with three periods T = 3, normalize γw =

γm = 0, and set βw = βm = 0.9. I then specify the flow payoffs as U(x, z;θ) = θ1 + θ2z

and V (x, z;θ) = θ1 + θ3x for all t and set θ = (1, 1, 1). I assume that xi1 ∼ N (0, 1) and

zj1 ∼ N (0, 1). I assume the following laws of motion for x and z:

xit+1 =

xi1 + 1 if µwt(i) ̸= 0

xi1 if µwt(i) = 0
, zjt+1 =

zj1 + 1 if µmt(j) ̸= 0

zj1 if µmt(j) = 0

This simulates a setting where teachers and schools become less attractive when they stay

unmatched.

3.E.1 Convergence of Matching Frequencies

In this Monte Carlo exercise, I simulate data from the DGP described above for different

market sizes indexed by n. In order to simulate the equilibrium, I first solve the fixed point

problem described in Equation 3.4 to recover Γ∗
wt and Γ∗

mt and solve recursively for U t+1 and

V t+1 for t = {1, 2}. I then draw a set of taste shocks ϵijt and ηijt for each period and each

teacher-school pair and construct the lifetime utilities Uijt and Vijt. I then use the Deferred

Acceptance algorithm to recover the teacher-optimal stable match in each period. The goal

of this exercise is to evaluate whether the observed matching frequencies converge to their

limit. More specifically I will look at whether the share of unmatched teachers in each period

converges to its limit. Table 3.E.1 shows the results of this exercise. We can clearly see that

as the size of the market increases, the share of unmatched teachers observed in the simulated

data converges to its limit, which is displayed in the bottom line. This shows that, even with

moderate sample sizes, the limit economy seems to be a relatively good approximation for

the finite economy.
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3.E.2 Estimation

In this second experiment, I simulate data by following the same procedure for different

values of n. I then estimate θ using the procedure described in Section 3.5. Table 3.E.2

shows that the estimator is unbiased even with small sample sizes. It is also consistent given

that the standard deviation of the estimator decreases as the sample sizes increases.
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Table 3.E.1: Monte Carlo: Share of Unmatched teachers

n t = 1 t = 2 t = 3

20 0.2600 0.1870 0.2675

50 0.2439 0.1734 0.2447

100 0.2389 0.1640 0.2339

200 0.2314 0.1565 0.2237

500 0.2263 0.1509 0.2147

1000 0.2228 0.1469 0.2095

2000 0.2206 0.1432 0.2053

Model 0.2076 0.1384 0.1965

Notes. This table reports the average share of unmatched
schools and teachers in each period taken over 200 sample draws
for different sample sizes n.
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Table 3.E.2: Monte Carlo: MLE

n θ̂1 θ̂2 θ̂3

20 0.952 0.986 1.023

(0.475) (0.352) (0.334)

50 0.962 0.988 1.010

(0.292) (0.223) (0.204)

100 0.969 0.994 1.007

(0.192) (0.156) (0.140)

200 0.977 0.991 1.003

(0.133) (0.104) (0.105)

500 0.984 0.994 1.003

(0.088) (0.067) (0.063)

1000 0.992 0.995 1.002

(0.060) (0.047) (0.046)

True value 1 1 1

Notes. This table reports the average and standard deviation
of the ML estimator of θ over 500 sample draws for different
sample sizes n.
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3.F Alternative Model: Irreversible Matches

In this section, I present an alternative to the model discussed in Section 3.4. I consider a

setting where matches are irreversible and the match is stable in each period given agents’

continuation value of staying unmatched, as in Doval (2022), and show that all the results

derived in this paper extend.

3.F.1 Model

In this model, in each period t, agents can either decide to form a match with an agent from

the other side or decide to stay unmatched and wait to get better opportunities in period

t+ 1. The timing works as follows:

Period 1 : The set of teachers I1 and schools J1 arrive in the market. A matching µ1

occurs and all teachers i ∈ I1 that stay unmatched such that µw1(i) = 0 move on to the

second period. Similarly, all schools j ∈ J1 which choose to leave their slot empty such that

µm1(j) = 0 move on to the second period. I define the set of teachers that choose to stay

unmatched in period 1 as I0
1 (µ). Similarly I define the set of schools that choose to leave

their vacancy empty as J 0
1 (µ).

Period t: The set of teachers It and schools Jt arrive in the market along with the teach-

ers that chose to stay unmatched in the previous period I0
t−1(µ) and the schools that chose

to keep their slots empty in the previous period J 0
t−1(µ). We define the set of teachers

available in period t as It(µ) = It ∪ I0
t−1(µ) and the set of school available in period t as

Jt(µ) = Jt ∪ J 0
t−1(µ). A matching µt occurs and all teachers i ∈ It(µ) such that µwt(i) = 0

and schools j ∈ Jt(µ) such that µmt(j) = 0 participate in the next period. I define the set

of teachers that choose to stay unmatched in period t as I0
t (µ). Similarly, I define the set of

schools that choose to leave their vacancy empty as J 0
t (µ).

Period T : The set of teachers IT and schools JT arrive in the market along with the teachers

in I0
T−1 and the schools in J 0

T−1. We define the set of teachers available in period T as

IT (µ) = IT ∪ I0
T−1(µ) and the set of schools available in period T as JT (µ) = JT ∪J 0

T−1(µ).

From there a matching µT occurs and all teachers and schools choosing the outside option
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at this stage stay unmatched forever. The resulting matching is defined by µ = (µt)
T
t=1.

Firms and teachers are characterized by their observed attributes which collapse into

two vectors of random variables xit and zjt. I assume that the observed state variables of

the new entrants in period t are drawn from the probability distribution functions m◦
t and

w◦
t . I then assume that state variables evolve exogenously according to the Markov transition

distribution functions m and w. This implies that aggregate states according to the following

rule:

wt+1(x,µ) =

∫
Xt

w(x|s)ft(s, ∗)ds+ w◦
t+1(x)

mt+1(z,µ) =

∫
Zt

m(z|s)ft(∗, h)dh+ w◦
t+1(x)

I define the lifetime utility that teacher i gets from being matched with school j in period t

as:

Uijt = Ut(xit, zjt) + σηijt

whereas the lifetime utility that school j gets from being matched with teacher i in period t

is defined as:

Vijt = Vt(xit, zjt) + σϵijt

I then define the lifetime utility that teacher i gets from staying unmatched and that school

j gets from leaving its slot empty in period t as Ui0t and V0jt:

Ui0t = σ max
k=1,...,J

ηi0,k + βw

∫
U it+1(xit+1)w(xit+1|xit)dxit+1 − βw log(J)

V0jt = σ max
k=1,...,J

ϵ0j,k + βm

∫
V jt+1(zjt+1)m(zjt+1|zjt)dzjt+1 − βm log(J)

I then assume that Assumption 1-4 (ii) hold. I simply adjust 4 (iii) as the law of motion

for aggregate states is defined as above. I also slightly modify Assumption 3 (i) such that

|It| = [exp(γwt)n], |Jt| = [exp(γmt)n].
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3.F.2 Linking Primitives to Equilibrium Sorting

I follow the same steps as in Section 4.2. I define F for a given random matching µt from a

finite economy indexed by n as follows:

Fnt(xit, zjt|µt) =
1

n

∑
i∈It(µ)

∑
j∈Jt(µ)

P(xit ≤ x, zjt ≤ z, µwt(i) = j)

I then denote Ft the limit of the distribution function Fnt as the size of the market n grows

to infinity. I also define the joint density of matched characteristics as ft.

As in the standard setting, I define the opportunity set faced by a given teacher i ∈ It in

period t given a match µ as:

Mit(µ) = {j ∈ Jt : Vijt ≥ Vµmt(j)jt}

Similarly, I define the opportunity set of school j ∈ Jt as:

Wjt(µ) = {i ∈ It : Uijt ≥ Uiµmt(i)t}

The analogous of Proposition 1 follows directly from Assumption 4:

Proposition F.1 Consider a match µ∗ satisfying Assumption 4, for all i ∈ It and j = Jt:

(i) For all t = 1, ..., T :

Uiµ∗
wt(i)t

= max
k∈Mit(µ∗)∪{0}

Uikt and Vµ∗
mt(j)jt

= max
l∈Wjt(µ∗)∪{0}

Vljt

(ii) Under Assumption 2, for all t < T :

U it+1(x) = ESt

[
max

k∈Mit+1(µ∗)∪{0}
Uikt+1|xit+1 = x

]

V jt+1(z) = ESt

[
max

l∈Wjt+1(µ∗)∪{0}
Vljt+1|zjt+1 = z

]
The proof is identical to the proof of Proposition 1. This result implies that an equilibrium

match µ∗ can be rewritten as the outcome of two dynamic discrete choice models where each

agent’s choice set is its opportunity set. However, each alternative, except the option of

staying unmatched, is a terminating action.
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I characterize the limit of conditional choice probabilities (CCPs) and expected future

payoffs under arbitrary exogenous choice sets and by fixing the aggregate states distributions.

I assume that Mit = {1, ..., J} and Wjt = {1, ..., J} for all t and I fix mt and wt for all t.

Proposition F.2 Consider a given teacher i ∈ It. Under Assumption 1-3 we have:

(i) For all t, as J → ∞:

JP(Uijt ≥ Uikt, k = {0, 1, ..., J}|xit, zjt) −→

exp

{
Ut(xit, zjt)

}
exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
+
∫
exp

{
Ut(xit, h)

}
mt(h)dh

P(Ui0t ≥ Uikt, k = {0, 1, ..., J}|xit) −→

exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
exp

{
βw
∫
U t+1(s)w(s|xit)ds

}
+
∫
exp

{
Ut(xit, h)

}
mt(h)dh

(ii) For all t:

U t+1(x) = log

(
exp

{
βw

∫
U t+2(s)w0(s|x)ds

}
+

∫
exp

{
Ut+1(x, h)

}
mt+1(h)dh

)
+ γ + o(1)

where γ ≈ 0.5772 is Euler’s constant. Again, the proof is identical to the proof of Proposition

2. The same result holds symmetrically for the school side.

I now introduce that opportunity sets are unobserved and endogenous and show that

the implications of Proposition F.2 allow us to tackle both of these issues. Using the same

argument as in the standard case, Proposition F.2 implies that: (i) the probability that school

j rematches with a specific teacher i vanishes to zero as the size of opportunity sets increases

to infinity and (ii) the probability of choosing the outside option instead is nondegenerate

in the limit. This implies that the dependence between taste shocks and opportunity sets

vanishes in the limit.

I now consider a sequence of school-optimal stable matches µM . As opportunity sets’

endogeneity vanishes in the limit for extremal matchings, we can then use Proposition F.2
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(i) to bound teachers’ CCPs in period t, assuming that we would observe the corresponding

opportunity set Mit(µ
M
t ) and future expected payoff function U

M

it+1:

n1/2P(Uijt ≥ max
k∈Mit(µM

t )∪{0}
Uikt|xit, zjt, (zkt)k∈Mit(µM

t ),Miτ (µ
M
t ), U

M

it+1) (3.8)

≤
exp

{
Ut(xit, zjt)

}
exp

{
βw
∫
U

M

it+1(s)w(s|xit)ds

}
+ n−1/2

∑
k∈Mit(µM

t )

exp

{
Ut(xit, zkt)

} + o(1)

Similar bounds can be computed for a sequence of teacher-optimal stable match µW where

the direction of the inequality is reversed. The same result also holds for the school side with

the direction of the inequality reversed. Using Proposition F.2 (ii), we can also bound agents’

expectations about their match payoff under a sequence of school-optimal stable matches µM

as follows:

U
M

it (x) ≥ log

exp

{
β

∫
U

M

it+1(s)w(s|x)ds
}
+ n−1/2

∑
k∈Mit(µM

t )

exp

{
Ut(x, zkt)

}+ γ + o(1) (3.9)

where again similar bounds can be computed for the teacher-optimal stable match and for

the school side with the direction of the inequality reversed.

In Equations (3.8) and (3.9), n−1/2
∑

k∈Mit(µM
t ) exp

{
Ut(xit, zkt)

}
serves as a sufficient

statistic that collapses all the information contained in opportunity sets which is needed to

approximate CCPs and expectations about future payoffs.

I define teacher i’s inclusive value given a sequence of realized matches µ∗ as:

I∗wit = n−1/2
∑

k∈Mit(µ∗
t )

exp

{
Ut(xit, zkt)

}

Similarly, I define school j’s inclusive value given µ∗ as:

I∗mjt = n−1/2
∑

l∈Wjt(µ∗
t )

exp

{
Vt(xlt, zjt)

}

I also define IMwit and I
M
mjt as the inclusive values that would arise under a sequence of school-

optimal stable matches µM in period t and IWwit and I
W
mjt as the inclusive values that would
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arise under a sequence of teacher-optimal stable matches µW in period t.

Inclusive values arising from a sequence of school-optimal and teacher-optimal stable

matches in a given period t can be approximated by expected inclusive value functions. I

rewrite IMwit as:

IMwit =
1

n

∑
k∈Jt(µ)

exp

{
U(xit, zkt)

}
×

√
n1{k ∈Mit(µ

M
t )}

=
1

n

∑
k∈Jt(µ)

exp

{
U(xit, zkt)

}√
n1{Vikt ≥ max

l∈Wkt(µ
M
t )∪{0}

Vlkt}

The inclusive value of a given teacher is determined by the set of schools that would accept

her, which in turn depends on the preferences of all schools as well as their opportunity sets.

Using the school analogous of Equation (3.1), I thus show that:

IMwit ≥ Γ̂M
wt(xit) + op(1) and IMmjt ≤ Γ̂M

mt(zjt) + op(1)

where Γ̂M
wt and Γ̂M

mt are the school-optimal expected inclusive value function of teachers and

schools in period t which are defined as:

Γ̂M
wt(xit) =

1

n

∑
k∈Jt(µ)

exp

{
Ut(xit, zkt) + Vt(xit, zkt)

}
exp

{
β
∫
V

M

kt+1(s)m(s|zkt)ds
}
+ IMmkt

Γ̂M
mt(zjt) =

1

n

∑
l∈It(µ)

exp

{
Ut(xlt, zjt) + Vt(xlt, zjt)

}
exp

{
β
∫
U

M

lt+1(s)w(s|xlt)ds

}
+ IMwlt

where I define U
M

it+1 and V
M

jt+1 as follows:

U
M

it+1(x) = log

(
exp

{
β

∫
U

M

it+2(s)w0(s|x)ds
}
+ IMwit+1

)

V
M

jt+1(z) = log

(
exp

{
β

∫
V

M

jt+2(s)m0(s|z)ds
}
+ IMmjt+1

)
Note that similar bounds can be established for the inclusive values that would arise
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under the teacher-optimal stable match:

IWwit ≤ Γ̂W
wt(xit) + op(1) and IWmjt ≥ Γ̂W

mt(zjt) + op(1)

The proof follows the same steps as the proof of Lemma 4 in Appendix 3.D.4.

The rest of the proof entails characterizing the fixed point problem and showing that

inclusive values arising from an equilibrium match µ∗ can be approximated by its solution. I

define the fixed point mappings as follows:

Ψ̂wt[Γ](x) =
1

n

∑
k∈Jt(µ)

exp
{
Ut(x, zkt) + Vt(x, zkt)

}
exp

{
β
∫
V t+1[Γ](s)m(s|zkt)ds

}
+ Γmt(zkt)

Ψ̂mt[Γ](z) =
1

n

∑
l∈It(µ)

exp
{
Ut(xlt, z) + Vt(xlt, z)

}
exp

{
β
∫
U t+1[Γ](s)w(s|xlt)ds

}
+ Γwt(xlt)

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)
V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)

For a given equilibrium match µ∗, for any x ∈ X and z ∈ Z in each period t:

Γ̂∗
wt(x) = Ψ̂wt[Γ̂

∗](x) + op(1) and Γ̂∗
mt(z) = Ψ̂mt[Γ̂

∗](z) + op(1) (3.10)

meaning that inclusive values in period t arising from an equilibrium match µ∗ can be ap-

proximated by fixed points of the mappings Ψ̂wt, Ψ̂mt. To characterize the limit of inclusive

values, I then consider the limit version of this fixed point problem:

Γwt = Ψwt[Γ] and Γmt = Ψmt[Γ] ∀t (3.11)

where

Ψwt[Γ](x) =

∫
exp

{
Ut(x, h) + Vt(x, h)

}
exp

{
β
∫
V t+1[Γ](s)m(s|h)ds

}
+ Γmt(h)

mt[Γ](h)dh
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Ψmt[Γ](z) =

∫
exp

{
Ut(h, z) + Vt(h, z)

}
exp

{
β
∫
U t+1[Γ](s)w(s|h)ds

}
+ Γwt(h)

wt[Γ](h)dh

U t+1[Γ](x) = log

(
exp

{
β

∫
U t+2[Γ](s)w0(s|x)ds

}
+ Γwt+1(x)

)
V t+1[Γ](z) = log

(
exp

{
β

∫
V t+2[Γ](s)m0(s|z)ds

}
+ Γmt+1(z)

)
wt[Γ](x) =

∫
Xt

w(x|s)ft−1[Γ](s, ∗)ds+ w◦
t (x)

mt[Γ](z) =

∫
Zt

m(z|s)ft−1[Γ](∗, h)dh+m◦
t (z)

The final step of the proof shows that this population fixed point problem has a unique

solution and that the approximate solution of the finite sample fixed point problem converges

to it. This is stated in the following result:

Theorem F.1 Under Assumption 1-4:

(i) The mapping (logΓw, logΓm) 7→ (logΨm[Γ], logΨw[Γ]) is a contraction.

(ii) The fixed point problem described in Equation (3.11) always has a unique solution Γ∗
m,Γ

∗
w.

(iii) For any equilibrium µ∗, I∗wit −→ Γ∗
wt(xit) and I

∗
mjt −→ Γ∗

mt(zjt) for all i, j and t.

The complete proof of this result can be found in Appendix 3.F.4. Finally, from Theorem

F.1 and Proposition F.2, we can fully characterize analytically the equilibrium of the model

as a function of teachers’ and schools’ payoff functions. The limit joint density of matched

characteristics ft can be derived from the limit of conditional choice probabilities and has

the following expression:

ft(x, z)

wt(x)mt(z)
=

exp

{
Ut(x, z) + Vt(x, z) + γwt + γmt

}
(
exp

{
β
∫
U

∗
t+1(s)w(s|x)ds

}
+ Γ∗

wt(x)

)(
exp

{
β
∫
V

∗
t+1(s)m(s|z)ds

}
+ Γ∗

mt(z)

)

ft(x, ∗)
wt(x)

=

exp

{
β
∫
U

∗
t+1(s)w0(s|x)ds+ γwt

}
(
exp

{
β
∫
U

∗
t+1(s)w(s|x)ds

}
+ Γ∗

wt(x)

)
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ft(∗, z)
mt(z)

=

exp

{
β
∫
V

∗
t+1(s)m0(s|z)ds+ γmt

}
(
exp

{
β
∫
V

∗
t+1(s)m(s|z)ds

}
+ Γ∗

mt(z)

)
where ft(x, ∗) and ft(∗, z) are, respectively, the density of the characteristics of unmatched

teachers and unmatched schools. I define the equilibrium expected future payoff functions

U
∗
t+1 and V

∗
t+1 recursively as:

U
∗
t+1(x) = log

(
exp

{
β

∫
U

∗
t+2(s)w(s|x)ds

}
+ Γ∗

wt+1(x)

)

V
∗
t+1(z) = log

(
exp

{
β

∫
V

∗
t+2(s)m(s|z)ds

}
+ Γ∗

mt+1(z)

)
and the equilibrium aggregate states distribution w∗

t and m∗
t as:

w∗
t (x) =

∫
Xt

w(x|s)ft−1[Γ](s, ∗)ds+ w◦
t (x)

m∗
t (z) =

∫
Zt

m(z|s)ft−1[Γ](∗, h)dh+m◦
t (z)

3.F.3 Identification

The identification strategy follows the same steps as Section 3.5. I thus fix the value of the

discount factors and consider two polar cases: (i) T <∞ and nonstationarity and (ii) T = ∞
and stationarity.

Finite horizon

The identification argument in the finite horizon case can be done by backward induction.

Starting from the last period T , we can identify the joint surplus as follows:

UT (x, z) + VT (x, z) = log

(
fT (x, z)

fT (x, ∗)fT (∗, z)

)
We can also identify Γ∗

wT and Γ∗
mT from the distribution of unmatched teachers and schools:

Γ∗
wT (x) =

wT (x) exp(γwT )

fT (x, ∗)
− 1
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Γ∗
mT (z) =

mT (z) exp(γmT )

fT (∗, z)
− 1

UT and V T can then be computed by backward induction:

UT (x) = log(1 + Γ∗
wT (x)) + γ

V T (z) = log(1 + Γ∗
mT (z)) + γ

From there, we can then repeat the same steps to identify the inclusive value functions and

the joint surplus in period T−1. Finally, we iterate the procedure to identify the joint surplus

and the inclusive value functions in all periods t. This results in the following proposition.

Proposition F.3 Under Assumption 1-4 and for T <∞:

(i) The joint surplus function Ut + Vt and the inclusive value functions Γ∗
wt and Γ∗

mt are

identified for all t from ft, the limiting joint distribution of matched characteristics in period

t.

(ii) Without further restrictions, we cannot separately identify Ut and Vt for all t.

Infinite horizon

To allow for T = ∞, I impose Assumption 5 which implies Γmt = Γm and Γwt = Γw for all t,

U t = U and V t = V . This implies that we can write:

f(x, ∗)
w(x)

=

exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
(
exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
+ Γ∗

w(x)

)

=

exp

{
β
∫
U

∗
(s)w0(s|x)ds

}
exp

{
U

∗
(x)− γ

} = exp

{
β

∫
U

∗
(s)w0(s|x)ds− U

∗
(x) + γ

}

From there, we can invert this mapping to recover U
∗
. We can follow the same steps to

recover V from f(∗, z). It is then immediate to see that we can identify U + V from f(x, z).

Proposition F.4 Under Assumption 1-5 and for T = ∞:

(i). The joint surplus function U + V and the inclusive value functions Γ∗
w and Γ∗

m are
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identified from the limiting joint distribution of matched characteristics in each period f .

(ii). Without further restrictions, we cannot separately identify U and V .

3.F.4 Proof Theorem F.1

I will start by proving part (i) of Theorem F.1. A first step is to restrict the space of functions

in which the solutions to the fixed point problem described in Equation 3.11 can belong to.

Namely, I will start by showing to we can restrict ourselves to a Banach space of continuous

functions.

We start by constructing bounds for the solutions of this fixed point problem. Note that

for all t, we can see that Ψwt[Γm](x) ≥ 0 and Ψmt[Γw](x) ≥ 0 for all (x, z) which implies that

the solutions of this fixed point problem must be bounded from below by 0. To construct an

upper bound we first need to construct a lower bound on U t and V t. We proceed by backward

induction. We know that UT (x) = log(1 + ΓwT (x)) + γ which implies that UT (x) ≥ γ for all

x. Iterating this procedure, we can then show that UT−1(x) ≥ γ(1 + βw) and more generally

that U t+1(x) ≥ γ
∑T−t

τ=0 β
τ
w and V t+1(z) ≥ γ

∑T−t
τ=0 β

τ
m for all (x, z). We also know from

Assumption 1, that Ut and Vt are bounded from above. We can thus show that

Ψwt[Γm](x) ≤ exp{Ut + Vt}
γ
∑T−t

τ=1 β
τ−1
m

∀x ∈ X

Ψmt[Γw](z) ≤
exp{Ut + Vt}
γ
∑T−t

τ=1 β
τ−1
w

∀z ∈ Z

To prove continuity of the mappings Ψwt[Γm] and Ψmt[Γw] we proceed by backward

induction. Starting from t = T , we can rewrite ΨwT [Γm] as:

ΨwT [Ψm[Γw]](x) =

∫
exp{UT (x, s) + VT (x, s)}

1 +
∫ exp{UT (t,s)+VT (t,s)}

1+ΓwT (t)
wT [Γw](t)dt

mT [Ψm[Γw]](s)ds

which shows that continuity of the solution of ΓwT = ΨwT [Ψm[Γw]] follows directly from

continuity of UT and VT as stated in Assumption 1. From there we can infer that UT (x) is

also continuous and we know that it is a non negative function which implies that ΨwT−1[Γm]

will also be continuous. We can then iterate this argument to prove that the solutions of the

fixed point problem described in Equation 3.11 must be continuous and bounded functions.

We now turn to the proof that the mapping (logΓw, logΓm) 7→ (logΨm[Γw], logΨw[Γm])
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is a contraction. We will start by showing that for alternative sets of functions Γm = (Γmt)
T
t=1

and Γ̃m = (Γ̃mt)
T
t=1, there always exist a constant λ < 1 such that:

∣∣∣∣∣∣ logΨw[Γm]− logΨw[Γ̃m]
∣∣∣∣∣∣
∞

≤ λ
∣∣∣∣∣∣ logΓm − log Γ̃m

∣∣∣∣∣∣
∞

The mean value inequality for vector valued functions defined on Banach spaces implies that:

∣∣∣∣∣∣ logΨw[Γm](x)−logΨw[Γ̃m](x)
∣∣∣∣∣∣
∞

≤ sup
a∈[0,1]

∣∣∣∣∣∣D logΨw[a logΓm+(1−a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ logΓm(x)−log Γ̃m(x)
∣∣∣∣∣∣
∞

where D logΨw are the Gateaux derivatives of logΨw. I will thus characterize and bound

the following object for any t ∈ [0, 1] and any x ∈ X :

D logΨw[a logΓm + (1− a) log Γ̃m](x)

Note first that we can rewrite logΨwt[logΓm](x) as:

log

∫
exp

{
Ut(x, h) + Vt(x, h)

}
exp

{
β
∫
V t+1[logΓm](s)m(s|h)ds

}
+ exp{log Γmt(h)}

mt[logΓm](h)dh

where

mt[logΓm](z) =

∫
Zt

m(z|s)ft−1[logΓm](∗, h)dh+m◦
t (z)

V t+1[logΓm](z) = log

(
exp

{
β

∫
V t+2[logΓm](s)m(s|z)ds

}
+ Γmt+1(z)

)

ft−1[logΓm](∗, z) =
exp

{
β
∫
V

∗
t (s)m(s|z)ds

}
(
exp

{
β
∫
V

∗
t (s)m(s|z)ds

}
+ Γ∗

mt−1(z)

)mt−1[logΓm](z)

Using the same steps as in the proof of Theorem 1 (i), we can show that:

sup
a∈[0,1]

∣∣∣∣∣∣D logΨw[a logΓm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞
< 1

which implies that for any alternative sets of functions Γm = (Γmt)
T
t=1 and Γ̃m = (Γ̃mt)

T
t=1
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there always exist a constant λ < 1 such that:

∣∣∣∣∣∣ logΨw[Γm]− logΨw[Γ̃m]
∣∣∣∣∣∣
∞

≤ λ
∣∣∣∣∣∣ logΓm − log Γ̃m

∣∣∣∣∣∣
∞

Symmetrical arguments can be applied to find that there for any alternative sets of functions

Γw = (Γwt)
T
t=1 and Γ̃w = (Γ̃wt)

T
t=1 always exist a constant λ < 1 such that:

∣∣∣∣∣∣ logΨm[Γw]− logΨm[Γ̃w]
∣∣∣∣∣∣
∞

≤ λ
∣∣∣∣∣∣ logΓw − log Γ̃w

∣∣∣∣∣∣
∞

This concludes the proof of part (i) of Theorem F.1 and shows that the mapping (logΓw, logΓm) 7→
(logΨm[Γw], logΨw[Γm]) is a contraction.

Part (ii) of Theorem F.1 directly follows from part (i) and from the Banach fixed point

theorem. Part (iii) follows from the same steps as the proof of Theorem 1 (iii).
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