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Abstract

An essential challenge for the climate science community is to provide trustful
information about the local impacts of global warming. Climate models are the
main tool to study climate evolution according to human activities and greenhouse
gas emissions scenarios. They are a numerical representation of the Earth System.
Global climate models (GCM) produce worldwide simulations at too low resolution
to correctly represent extreme meteorological events that strongly impact our so-
cieties. Today we use dedicated regional climate models (RCM) that transform a
global low-resolution simulation into a high-resolution one over an area of interest.
Nevertheless, the high resolution of those models implies a (much) higher cost that
strongly limits the number of those climate simulations and, thus, the necessary
exploration of the different sources of uncertainties.

The present work aims to propose a strategy to recreate, at low-cost, high-
resolution simulations from low-resolution ones. The RCM-emulator introduced here
aims to estimate the downscaling function included in a RCM using the recent de-
velopment of neural networks. This study introduces the concept of RCM-emulator
and presents a framework to build, train, and evaluate it. The main result of this
study is that the RCM emulator is a credible approach to take up this challenge.
Indeed it shows an excellent ability to create realistic high-resolution temperature
and precipitation fields, consistent with the low-resolution simulation it downscales.
We also study the applicability of the tool the various low-resolution simulations.
Moreover, this work also highlights the decisive advantage of using RCM simulations
to learn this relationship as it allows to explore future climates and poorly known
regions.

The conclusions of this study open the door to further development and various
promising applications. Indeed, the RCM-Emulator makes possible the production
of robust messages about the local impacts of climate change. Moreover, another
significant result of this work is that the emulator performance relies strongly on the
calibration set. It is then essential to design the best simulation set to have the most
robust emulator implying maybe to revisit the way of choosing which simulation to
make with a RCM.
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Résumé

Un des grands défis pour la communauté scientifique du climat est de produire
une information fiable concernant les impacts locaux du changement climatique
global. Les modèles de climat sont les principaux outils pour étudier son évolution
en fonction de scénarios liés aux activités humaines et émissions de gaz à effet de
serre. Les modèles de climat globaux (GCM) produisent des simulations couvrant
l’ensemble du globe à des résolutions trop faibles pour représenter correctements cer-
tains évênements météorologiques extrêmes qui impactent fortement nos sociétés.
Aujourd’hui, nous utilisons des modèles de climat régionaux (RCM) pour trans-
former une simulation globale à basse résolution en simulation à haute résolution
sur une zone géographique d’intérêt. Cependant, la haute résolution de ces modèles
implique des coûts de calcul très élevés limitant le nombre de simulations réalisables
et donc l’exploration nécessaire des différentes sources d’incertitudes.

Le présent travail a pour objectif de proposer une stratégie pour créer à moin-
dre coût, des simulations haute résolution à partir d’autres à basse résolution. Le
RCM-emulateur, introduit ici, cherche à estimer la fonction de descente d’échelle
incluse dans un RCM en utilisant notamment les récents développement concernant
les réseaux de neurones. Cette étude introduit le concept de l’émulateur et présente
un cadre pour le construire, l’entrâıner et l’évaluer. Le résultat principal de cette
étude est que l’émulateur est une approche crédible pour relever ce défi. En effet, il
montre une excellente capacité à créer des champs de température et précipitation
à haute résolution cohérent avec la simulation basse résolution d’origine. Nous
étudions aussi son applicabité à differentes simulation basse resolution. Ce travail
met aussi en évidence l’avantage décisif d’utiliser des simulations RCM pour appren-
dre cette relation puisque cela permet d’explorer des climats futurs et des régions
mal observées.

Les résultats de cette étude ouvrent la porte à de nouveau développements mais
aussi à diverses applications prometteuses. En effet, le RCM-emulateur rend possible
la production de messages robustes concernant les impacts locaux du changement
climatique. De plus, un autre résultat important de ce travail est l’importance du
jeu de données d’apprentissage sur les performances de l’émulateur. Il est essentiel
de définir le meilleur ensemble de simulation pour construire un émulateur robuste
ce qui implique peut-être de revoir la manière de choisir quelle simulation faire avec
un RCM.
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modèles de climat. Le pari était risqué et je l’en remercie le plus sincèrement du
monde de l’avoir pris. Pendant ces 4 années il a eu la patience de me former aux
enjeux de la modélisation climatique, de me transmettre un bout de son experience
sur les modèles regionaux et la curiosité de se confronter aux obscures réseaux de
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les portes du CNRM au printemps 2018 et qui a poussé pour faire de moi le premier
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indispensable à cette thèse. Mes parents qui m’ont toujours permis d’avancer dans
les meilleurs conditions et toujours soutenus dans mes différents projets. Mes frères
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impacté car elle m’a supporté au quotidien pendant 3 ans, et je suis bien placé pour
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Chapter 1

Introduction

1.1 What is Climate?

1.1.1 Definition
Climate is what you expect, weather is what you get.

Andrew John Herbertson

Defining climate can be delicate. The best way to understand it is maybe to
differentiate it from the weather. Climatology and meteorology are two different
disciplines looking at the same object but at different time scales. The object is
the Earth system and, more specifically, its atmosphere component. Meteorology
uses the current knowledge of the atmospheric processes and the observation of the
previous and actual atmospheric conditions to eventually predict the weather for the
next hours and days. The system is by nature chaotic (Lorenz, 1963). The smallest
differences in the initial conditions1 can lead to a radically different evolution of the
atmospheric circulation. The chaotic nature of the atmospheric system limits the
weather prediction to a maximum of two weeks.

The climatology goes beyond these short time variations. Climatology is directly
linked to statistics and probabilities. It aims to comprehensively describe the dis-
tribution of the possible weather that can be encountered in a given region and
period of time. It does not look at the weather of a given day but at all weathers
observed over decades in a region to understand the mean state of the local climate,
its variability, its seasonal evolution or the extremes of climate events, for example.
More practically, the climate, such as the weather, is described through variables
and quantities like temperature, humidity, wind or cumulative precipitations. The
typical period length to study the climate is 30 years (as defined by the World Me-
teorological Organization). It allows having enough samples of weather to obtain
some robust statistical properties. The climate of a region depends on many factors
like the latitude, surrounding topography, distance to the sea, presence of a lake or
forest etc..

In this context, climate change is the transformation of the statistical distribution
of the variables describing the climate. Proving it is establishing the statistical

1i.e. the atmospheric conditions at a given time t marking the beginning of the experiment.
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Chapter 1. Introduction

Figure 1.1: Climate system representation, extracted from IPCC 4th Assessment Re-
port2(AR4 Solomon et al, 2007).

difference between two periods of time, taking into account the internal variability
of the climate due to its chaotic nature.

1.1.2 Climate System
The climate system is the interactive system of 5 major components: the atmo-

sphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. This
whole system is directly dependent on external forcings3 like the sun, which is the
most influential. It is the primary source of energy on Earth. Because it affects the
planet unequally, it creates temperature gradients, putting the atmosphere and the
ocean in movement to redistribute this heat. The poles are cooler because they re-
ceive less radiation but also because the ice reflects the radiation from the sun. This
significant gradient between the poles and the tropics creates atmospheric circula-
tion. The land surfaces (lithosphere) also play an essential role as they evaporate
water differently, absorb or reflect solar radiation, or because of the topography, all
these interactions impact atmospheric circulation.

2IPCC Assessment Reports are the well known reports about knowledge on climate change and
its impacts. IPCC is an intergovernmental organisation to which thousands of people contribute.
The volunteer authors of those reports review the thousands of scientific papers published each
year to provide a comprehensive summary of what is known about the drivers of climate change,
its impacts and future risks, and how adaptation and mitigation can reduce those risks.

3External agent that impacts the system while being outside.
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1.1. What is Climate?

The global ocean covers 71% of the Earth. It is the primary climate regulator
through permanent interactions with the atmosphere. It receives, stocks and trans-
ports the sun’s energy. The oceanic circulation transports heat from the tropical
regions to the higher latitudes. The cold water from these regions gets denser and
dives into the deep ocean. Those mechanisms combined with the surface wind are
the start of the reasons behind ocean circulation. The time scale of these transfers
varies from season or year for the tropical regions to centuries for the profound water
changes. Oceans also play a significant role in the water cycle. Heated by the sun,
the surface water evaporates continuously, is transported by atmospheric currents,
condensates in clouds, and precipitates over land or ocean. Freshwater exchanges
with the atmospheres, land surfaces or the cryosphere create a gradient of density
in the ocean, also contributing to the ocean circulation. Because of its much slower
circulation, the ocean generally impacts the atmospheric circulation at longer times
scales.

The atmosphere contains a mix of gases. Among them, some trace gases interact
with the sun’s radiations. This is the greenhouse effect. The atmosphere directly
reflects a third of the sun’s radiations in space. The system absorbs the rest, which
is then re-emitted by the atmosphere and the land surface. The greenhouse gases
(GHG, e.g.carbon dioxide, methane, ozone or water vapour) absorb the infrared ra-
diation from inside and outside the system and re-emit them in all directions. These
radiations are then trapped in the system and warm the planet to a temperature
adapted to support life.

1.1.3 Natural variability and climate change
Since the work of Lorenz (1963), it is common knowledge that the atmosphere is

a chaotic system. It is sensitive to any change in the initial conditions making it the
most unstable component of the climate system. The climate research community
often refers to this chaotic aspect of the system as the natural or internal variability
of the system in opposition to the external forcing.

Natural climate variability encompasses various processes driving the variability
at different time scales. Williams et al (2017) retraces the different kinds of mecha-
nisms behind internal atmospheric variability. It goes from the turbulence induced
by the diurnal cycle or rapid air-sea interactions, which have immediate impacts
on the atmosphere, to multiyear oscillations coupling atmosphere and ocean circu-
lations such as the El-Nino phenomena. The critical point here is that naturally,
the climate system greatly varies, following different modes impacting local climates
differently and at different time scales. This chaotic nature has strong impact on
the way to predict weather and to model climate requiring probabilist or ensembles-
based approach.

On top of the atmospheric variability, some natural external forcing might strongly
influence the system. Volcanoes’ eruptions emit gases absorbing the sun’s radiations
and cooling the atmosphere. For example, The Mount Pinatubo eruption in 1991
caused a cooling of the global temperature of half a degree for the following months.
The variations in the sun radiations received by the Earth due to the sun itself or
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Chapter 1. Introduction

changes in the Earth’s orbit also impact climate as they modify the quantity of
energy received by the system.

Human activity also influences the climate system and plays the role of anthro-
pogenic external forcing. Modifying land surfaces for agriculture or creating large
urban areas has apparent consequences on the local climate but can also have reper-
cussions at larger spatial scales. Since the industrial revolution, human activities
have emitted a considerable amount of greenhouse gases. The concentration of car-
bon dioxide in the atmosphere increased by 150% compared to the levels of 1750,
methane has more than doubled ( + 260 %) and the nitrous oxide increased by 123%
(cf. Figure 1.2). The increase in greenhouse gas concentration modifies the compo-
sition of the atmosphere. It warms the planet as it reinforces the greenhouse effect4.
The speed of the atmospheric changes induced by human activities is unprecedented
in Earth’s history and has alarmed the scientific community for decades. The inter-
national community decided to merge efforts to evaluate the impact of this GHG
increase on our climate. The main tools used to do so are climate models.

Figure 1.2: Evolution of the main greenhouse gas concentration over million year. IPCC
AR6, Masson-Delmotte et al (2021), chap5. The reader should notice here that the x-axis
is not linear.

4The warming process due to GHG emissions is more complex, in particular including positive
feedback loops, but we keep it simple here as it is not the purpose of this manuscript.
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1.2. Climate modelling

Figure 1.3: Scheme of a GCM.

1.2 Climate modelling
Climate models are numerical tools representing the climate system. The interest

in such models is double. They allow a better understanding of the system by
realising numerical experiments impossible to run in the real world. Furthermore,
they permit the exploration of other climates by modifying some components to
reconstruct past periods or to make projections about future climates.

1.2.1 What is a climate model?
There is a wide variety of climate models. Simple climate models represent part

of the system at the global scale, like the system’s energy balance. Such models are
used to assess the global temperature according to the CO2 concentration in the
atmosphere, for example. In this work, I will focus only on more complex models
that aim to represent the entire system. The starting idea of such models is to
represent the time evolution of the atmosphere.

The atmospheric circulation is represented by the equations of fluid mechanic
theory, respecting the physical laws of mass and energy conservation. The atmo-
sphere is divided into small cubes (or meshes or grid points) in which the equations
are solved from one time step to the other as well as interactions with the surround-
ing cubes. The grid is three-dimensional in order to represent both horizontal and
vertical exchanges. At each time step and in each mesh, the model returns climatic
variables like temperature, humidity or wind. A similar numerical representation of
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oceanic circulation is done with a dedicated model. The atmospheric and oceanic
models are then coupled to represent the interactions between the two components.

Following the same principle, land surfaces, continental hydrology cycle and sea
ice exchanges with the atmosphere and ocean are represented by dedicated mod-
els and coupled with the atmosphere and ocean components. These are the main
components of the so-called General Circulation Models or Global Climate Models
(GCMs). Besides, the model receives external forcing, like the truth climate sys-
tem. The sun radiations entering the system or the greenhouse gas concentrations
or emissions resulting from anthropogenic activities are given as input to the model.

The complexity of GCMs is constantly increasing to represent better each phys-
ical or chemical process playing in each system component. The most recent and
complex models are called Earth System Models. They target to represent the entire
carbon cycle. For example, they represent the life of aerosols (suspended particles
in the atmosphere): their formation, transportation by wind, and interaction with
radiations, clouds or precipitation. The representation of land and biosphere is also
more accurate: different types of vegetation are represented as they play a signifi-
cant role in the system through photosynthesis or evapotranspiration processes.

The cube size is a determinant parameter in a climate model. As mentioned
earlier, some climate processes can be highly local such as the formation of clouds
or the occurrence of rain. Therefore, the smaller the cube, the finer is the represen-
tation of the system since the fluids mechanic equations are more precisely resolved.
However, small cubes imply more cubes, so more equations to solve, more variables
to estimate and save, and more computational resources. The model resolution (the
grid point size) results from a compromise between the precision of the model, its
complexity5 and the available computing resources. GCMs have mostly a horizontal
resolution of about one to two hundred kilometres. It implies that some mechanisms
cannot be simulated. Empirical or physical parametrisations are set to represent the
effects of not represented processes on the model variable at the meshes scale. The
resolution of the model grid and the choices of those parameters explain a large part
of the differences between climate models.

1.2.2 Climate simulations

Climate models can be used for different purposes. If we put aside a better
understanding of the processes, there are two main applications of climate models:
exploring the past or the future. First, it is used to create climate reanalysis. They
reconstruct the recent climate history by combining climate models and all available
observations (in-situ records and satellite). They the best estimate of the true
atmospheric circulation of the last decades. They are widely used in the scientific
community since they are continuous and homogeneous in space and time and match
local observations. They are notably used to evaluate climate models, especially
for non-observed variables. In a further extent, Global Climate Models are used
to reconstruct past climates for which no records exist. This is paleoclimatology,

5i.e. the number of climate system components that are represented.
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Figure 1.4: Illustration of two types of models ensembles exploring two different sources
of uncertainty.

combining climate models and the study of geological sediments. Studying ancient
climates is necessary to understand the situation where we are know.

Second, climate models are widely used to create future climate projections. The
idea is to study the effects of human activities and related evolving emissions on the
system. Such simulations generally start at the beginning of the industrial revo-
lution (1850). They are pushed to a few centuries after today, even if the most
studied period is the end of the current century. The study of climate change com-
pares a future climate with either pre-industrial or more recent climates (generally
1981-2010). Nevertheless, there is considerable uncertainty from multiple sources
associated with such simulations.

1.2.3 Different sources of uncertainties in climate projec-
tions.

Climate models are far from being perfect. Even in the most complex model, it
is impossible to represent all processes, bringing some uncertainty to the accuracy
of the representation. We also mentioned above the role of resolution or parameters
choices in the differences between models. The answer to this first source of uncer-
tainty is the multiplication of the number of models. Many global climate models
are developed in many research centres worldwide. Each of them is wrong in its way.
Since the mid-’90s, the scientific community decided to merge the efforts and build
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Figure 1.5: Time evolution of the main greenhouse gas concentration in the 4 RCP
scenarios. From AR5, Tignor (2013).

great models intercomparison exercises called CMIP (Coupled Model Intercompar-
ison Project). The aim is to build large ensembles of climate simulations from the
existing models. Comparing models built by different teams who made different
choices brings robustness. It helps to identify the weaknesses and the strengths of
each model. Moreover, if all models agree on a given message, it gets more trustable.
Figure 1.4 illustrates the time series of a multi-model ensemble. In Figures 1.6 and
1.7, commented later on, the straight line shows the multi-model mean and the
shaded area represents a measure of the model ensemble spread.

The second source of uncertainty is brought by the internal (or natural) variabil-
ity of the climate and so of the models. Indeed, climate models aim to reproduce the
chaotic dynamic of the climate system, so the simulations are highly dependent on
the initial conditions fixed at the beginning of the simulation. In order to take into
account the possible impact of the internal variability, the same climate models are
run multiple times with the same configuration and external forcing but different
initial conditions. These multiple simulations are members of the model ensemble.
To a larger extent, SMILEs (Single Model Initial-condition Large Ensemble) are
vast ensembles of climate model members (more than 30). The number of studies
using such ensembles has primarily increased over the last decade, and they help to
quantify the model’s internal variability. Maher et al (2021) proposes an overview
of the application of SMILEs.
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Figure 1.6: Global surface temperature evolution in the CMIP5 ensemble. From Knutti
and Sedláček (2013).

The last source of uncertainty concerns the future evolution of human activities.
In order to answer this uncertainty, the climate community established different sce-
narios of greenhouse gas emissions. The scenarios are determined according to key
drivers such as demography, economy trajectories etc. Following these scenarios,
tables of greenhouse gas concentrations are used to drive the climate models.

CMIP exercises comport several members of several GCMs driven by different
scenarios of human emissions. CMIP56 is the fifth generation of global climate mod-
els ensemble used for the fifth report of the IPCC published in 2014, Tignor (2013).
CMIP5 regroups about 50 climate models, resulting into about 1000 long-term sim-
ulations (i.e. at least 20th and 21st centuries). Four main scenarios were chosen
to drive CMIP5 models after 2006, while the historical part is driven by a recon-
struction of historical greenhouse gas emissions. The RCP2.6, RCP4.5, RCP6.0 and
RCP8.5 scenarios have been introduced in Meinshausen et al (2011) and are named
accordingly to the level of global radiative forcing induced by the GHG concentra-
tions they reach in 2100. The four scenarios have similar trajectories until 2030 and
then diverge, as shown in Figure 1.5. The RCP2.6 is the most “optimistic” one, as
it peaks around 2030 and then projects a slow reduction of the CO2 concentration
while the methane concentration diminishes drastically to reach mid-20th century
levels before 2100. The RCP8.5 corresponds to an exponential increase in GHG
until the end of the 21st century. The two others are intermediate scenarios. Figure

6The models used in this work are from CMIP, which is why CMIP5 scenarios and figures are
presented here.
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Figure 1.7: Illustration of the time evolution of the global surface temperature in CMIP6
model with and without anthropogenic greenhouse gas emissions. From IPCC AR6,
Masson-Delmotte et al (2021).

1.6 shows the global surface warming projected for the different scenarios. The solid
line shows the model’s mean, and the shaded area shows the model spread. CMIP6
is the most recent CMIP exercise and had been used in the sixth IPCC assessment
report (AR6,2021/22, Masson-Delmotte et al, 2021). It regroups about 70 models
and more than a thousand simulations. New scenarios have been defined under
“Shared Socioeconomic Pathways” (SSPs).

Besides historical and scenario-based projections, CMIP exercises include other
kinds of experiments. For example, one consists in running the model on the histor-
ical period (1850-2006 for CMIP5, -2014 for CMIP6), removing the GHG emissions
due to human activities. Figure 1.7, extracted from the AR6 summary for policy-
makers, shows the experiment’s results on the CMIP6 models. This figure is a good
illustration of the use of large ensembles. Here all models agree that the observed
global temperature warming is not due to the climate’s internal variability or natu-
ral forcings. The observed temperature time series fits in the range of simulations
as a single realisation among the possible ones. The variety of models ensembles
establishes the range of possibilities.

The repartition of the total uncertainty among the three sources we defined be-
fore is an essential topic with multiple studies trying to establish it. Lehner et al
(2020), following the framework set in Hawkins and Sutton (2009), assessed this
question using seven SMILEs models and both CMIP5 and six ensembles. Figure
1.8 shows the study’s results for the global scale temperature. Over the first decades,
internal variability is the primary source of uncertainty. It is followed by the model
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uncertainty and scenario uncertainty, which becomes the leading one from the mid-
century. We can notably see that internal variability plays no role in the global
temperature uncertainty after some decades.

1.3 Regional climate change information
Various mechanisms operating at different time scales can modify the amplitude of
the regional-scale response of temperature, and both the amplitude and sign of the

response of precipitation, to human influence (high confidence).
IPCC AR6, Working Group I, (Masson-Delmotte et al, 2021), Chapter 10.

If climate change is a global phenomenon, its impacts vary from one region to
the other. Worldwide, the consequences of global warming are already impacting
societies. In order to conduct studies on the impacts on agriculture or hydrological
cycle, for example, it is crucial to produce climate change information at regional
scales. The regional scale varies from a few thousand kilometres for sub-continental
regions such as the Mediterranean basin to some kilometres representing cities, val-
leys or coastal climates. In the rest of this manuscript, we will also talk about local
scales to refer to those small areas that share the same climate and where climate
change information is needed to set up adaptation strategies.

Global climate models have a resolution of about 100 to 200 km. Several studies
have demonstrated the difference between nominal resolution and effective resolu-
tion. The nominal resolution is the one we defined earlier; it corresponds to the
actual size of the grid points. The effective resolution of the model is the resolution
where the model is reliable. Klaver et al (2020) concludes that the effective reso-
lution of a model is about 3 to 5 times its nominal resolution. This is too coarse
to account for local drivers of regional climate correctly. Thus, GCMs provide, at
best subcontinental information on climate change. For example, in the last CMIP
exercises, models agree on more precipitation over Northern Europe in winter and
a drier summer over southern Europe at the end of the century for the RCP4.5
scenario and above.

Nevertheless, impact studies and adaptation policies necessitate much higher res-
olution. The higher resolution brings a better representation of processes parametrised
in GCMs, and a better representation of local drivers such as mountains, coastlines,
towns, great lakes or islands. The solution brought by the community is to downscale
the GCM simulations. Two great families of downscaling have appeared: dynamical
and statistical downscaling.

1.3.1 Dynamical downscaling
Dynamical downscaling relies on another kind of climate model called Regional

Climate Models (RCMs), which focus only on a regional domain. Regional climate
modelling is quite a recent activity as it appeared about 30 years ago. Dickinson et al
(1989) and Giorgi and Bates (1989) introduced the first RCM in the late 80s. Since
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Figure 1.8: Figure and legend from Lehner et al (2020): (a–c) 10-year running means of
global annual mean temperature time series from (a) SMILEs, (b) CMIP5 and (c) CMIP6,
with observations (Rohde et al., 2013) superimposed in black, all relative to 1995–2014. For
SMILEs, the ensemble mean of each model and the multimodel average of those ensemble
means are shown; for CMIP the polynomial fit for each model and the multimodel average
of those fits are shown. (d–f) Illustration of the sources of uncertainty in the multimodel
multi-scenario mean projection. (g–i) Fractional contribution of individual sources to
total uncertainty. Scenario uncertainty in SMILEs in (g) is taken from CMIP5, since not
all SMILEs offer simulations with multiple scenarios. (d–i) In all cases, the respective
multimodel mean estimate of internal variability (Imean) is used.
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Figure 1.9: Scheme of dynamical downscaling process, from Giorgi (2019)

then, the number of studies including an RCM never stopped increasing. Hereafter,
we review some key conceptual and technical points of RCMs.

Concept and technique

Regional climate models are numerical models based on the same concept as
global models, except that they run on a limited area domain such as Europe (cf
Figure 1.9)7. It allows them to run at higher resolution, between 10 and 50 km. The
regional climate model is embedded or nested in a GCM simulation to ensure the
transfer of information with the global scale. We say that the GCM drives or forces
the RCM. Figure 1.9 illustrates the nesting scheme. RCMs generally have a temporal
resolution of less than half an hour. At each time step, the RCM receives information
about general circulation outside its domain from the GCM simulation thanks to a
set of lateral boundary conditions (LBC). LBCs are contain the main atmospheric
variables: the vertical distribution of moisture, temperature, zonal and meridional
wind components in the vertical, and surface pressure. They are extracted from the
GCM driving simulation and transmitted to the RCM in the so-called buffer zone (cf
Fig. 1.9) thanks to some relaxation technique (Davies and Turner, 1977). LBCs are
generally stored every 6hrs in the GCM simulation and interpolated to match the
RCM temporal and spatial resolution. The sea surface temperature (SST), the sea
ice cover, the aerosols and greenhouse gas forcings from the driving GCM simulation
are also given as input to the RCM.

RCMs have a higher resolution than the driving GCM. The first RCM was in-
troduced to downscale a 500km resolution GCM over the Yucca mountains in the

7An other family of RCMs are global models with a stretched grid allowing a higher resolution
over a specific domain. However, for simplicity we do not consider them here
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United States of America in the late 90s. It had a horizontal resolution of 70km.
Nowadays, thanks to a significant improvement in computational efficiency, most
GCMs have a resolution of about 100 to 200km, with some reaching higher res-
olutions close the 50km, with computational costs still allowing to run numerous
long-term simulations. RCMs simultaneously increased their resolution to 10 to
25km. The ratio between the GCM and RCM resolution is an important param-
eter to ensure the accuracy of the downscaling, and it should stay below 12 times
(Denis et al, 2003). Moreover, RCMs include their land surface scheme at a higher
resolution than the GCM to take better account of local land surface characteristics
(reliefs, littoral, land-use).

The nesting technique of the RCM is a widely debated topic, and various meth-
ods have been developed. The one described above is called one-way nesting. The
RCM receives at its boundary regular information from the GCM but does not feed
back to it. Inside its domain, the RCM develops its internal physics and dynamics.
However, at large scales8 the RCM should not deviate from the GCM simulation. It
is designed to add realistic sub-GCM grid scale details but not to correct or modify
the GCM global circulation. It implies using good GCMs in order to get good high-
resolution RCM simulations. However, it depends strongly on the domain size. In
a large domain, the boundary control is less strong, and the RCM is more suscepti-
ble to developing its own large scales (Laprise et al, 2008; Miguez-Macho et al, 2004).

A variant of the classical one-way nesting allowing controlling the eventual RCM
deviation is called spectral nudging (Waldron et al, 1996; Von Storch et al, 2000).
Such a method constrains the RCM stronger, ensuring a better consistency with the
GCM large scale. It is the same as one-way nesting but also controls the large scales
on top of the domain. Above a given altitude, the RCM atmosphere large scales are
controlled to follow the GCM information for some key variables (e.g. temperature,
moisture or wind components). The soundness of spectral nudging has been widely
debated in the literature. Some studies argue that it limits the RCM internal pro-
cesses too much, creating inconsistent dynamics or failing to represent some local
extremes (Alexandru et al, 2009; Separovic et al, 2012; Rummukainen, 2010; Castro,
2005). Even if multiple studies have shown that with the appropriate settings, the
spectral nudging technique increases the consistency with the driving GCM simula-
tion without evident deterioration of the local processes (Sanchez-Gomez et al, 2009;
Lucas-Picher et al, 2016; Colin et al, 2010), most RCM simulations are performed
following the classical one-way nesting methodology. Two-way nesting simulations
have also been performed with the RCM feeding back to the GCM simulation. Such
experiments did not show a strong regional to global impact, except for specific
regions like the poles (Giorgi, 2019) and the tropics (Lorenz and Jacob, 2005). Be-
sides, their extremely high costs are a severe brake on their use.

Such as GCMs, the development of RCM goes in three directions: a better
8The larges scales are challenging to define. We consider them in this manuscript to match the

effective resolution of the GCM, where the GCM is doing a good job. However, the closer we go
to the surface, the more the resolution impacts the quality of the representation. So we consider
the large scales in opposition to the local scales where the RCM aims to add value. When we refer
to large scales in this manuscript, we mean the high altitude general circulation of the atmosphere
represented by variables at low resolution and low-pressure levels.
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model content (improved parametrisation), a better consideration of the different
components of the climate system and an increase in resolution to represent better
the most local processes. There has been a strong development of Atmosphere-Ocean
coupled RCM with some including biogeochemistry representation in both land and
ocean (called RCSM or RESM, Somot et al, 2008; Sevault et al, 2014; Sitz et al,
2017; Sein et al, 2015). Interactive models for the representation of aerosols have
also been developed as these particles have a substantial impact on local climates
and global warming (Nabat et al, 2014). On the other hand, the last decade has
seen the apparition of Convection Permitting Models (CPMs, or CP-RCMs) (Prein
et al, 2015; Ban et al, 2021; Lucas-Picher et al, 2021; Caillaud et al, 2021). They are
regional climate models running at a resolution between 2 and 5km, and allowing
the numerical solving of the deep convection, responsible for local storms. In order
to respect a reasonable resolution ratio, CPMs are most of the time nested into
RCMs simulations. It is then a two-step nesting.

RCMs ensembles

Regional Climate Models constitute a novel source of uncertainty. They are a
modelling step more with different choices in the nesting method, parameters set-
tings or the complexity of the model. Such as GCMs, the choice of the RCM is then
a source of uncertainty. In order to take into account all sources of uncertainties, it
is necessary to create RCMs ensembles or matrices, where several GCMs simulations
drive several RCMs over the same regional domain and period (Déqué et al, 2012).
Because of the GCM uncertainties, it is necessary to take GCM simulations driven
by different scenarios and several members of the same Scenario-GCM pairs. It
leads to 4 dimensional [Scenario, GCMs, Member, RCM] matrices. Moreover, inter-
nal variability plays a preponderant role at regional scales and regarding some local
and extreme events. Ideally, hundreds to thousands of RCMs simulations would be
needed in a given region to cover those uncertainties at the maximum and therefore
provide a reliable local climate information. However, here comes the most signifi-
cant limitation of dynamical downscaling. Even if they have a limited area domain,
the high resolution implies much more grid points and much higher computational
costs. For example, a global grid at 150km resolution includes about 30 thousand
points. In comparison, a large European domain at 12km includes about 200 thou-
sand of them, which must be multiplied by the altitude levels (between 50 to 100).
Moreover, RCM have a higher temporal resolution which also increase their costs.
The number of long-term RCM simulations is much more limited than the GCMs
with the existing computational resources.

Facing this issue, the scientific community, especially in Europe, created ensem-
ble projects similar in spirit to the CMIP exercises. PRUDENCE (Déqué et al,
2007) and ENSEMBLES (Déqué et al, 2012) projects successively contributed to
the creation of the first European RCM-GCM matrices at 50km and 25km resolu-
tion. Similar exercises have been raised for the different continents leading to the
CORDEX initiative (Giorgi and Gutowski, 2015). It aims to coordinate the Re-
gional Downscaling activities worldwide to provide a coherent and reliable source of
downscaled information. The different regional communities regroup around some
well-defined domains. For each domain, the participants agree on a simulation pro-
tocol to coordinate the production of downscaled simulations. For example, GCMs
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Figure 1.10: EURO-CORDEX matrix, October 2022.

are selected according to their performance and spread of future projections. Each
participant picks some GCMs to downscale among this list. The idea is to explore
at maximum among the available and realistic GCMs. A minimum number of sce-
narios to downscale or the allowed nesting technique are also defined in advance.
The aim of such exercises is, for a given region, to coordinate the filling of RCM-
GCM-Scenario matrices to explore the possible evolution of local climates.

The production of CORDEX simulations is done in three steps. First, all par-
ticipating RCMs perform a perfect condition simulation with LBCs from reanalysis
over a recent period (1980-present). This simulation, called evaluation simulation,
is essential to evaluate the RCMs against observations. Second, the RCMs are used
to downscale the historical (1950-present) simulations from the selected GCMs. It
helps validate the RCM driven by GCM simulations by comparing the climatology
ad variability with the evaluation run. It also serves as a reference to assess the
eventual changes induced by global warming, as the third steps consist of downscal-
ing GCM projections under various scenarios over a future period running until 2100.

EURO-CORDEX is the most collaborative community and filled up the biggest
matrix (cf Fig 1.10 Vautard et al, 2020; Coppola et al, 2021). It includes 13 RCMs,
8 GCMs from CMIP5 and 3 RCP scenarios (2.6, 4.5 and 8.5). After more than ten
years of coordinated efforts on the potential 312 projection simulations, only a hun-
dred have been performed. On this number, we should also account for the historical
and evaluation simulations, which lead to a number of about 170 simulations. This
is largely more than any other CORDEX domain, but still, it is insufficient. Indeed
the matrix is highly unbalanced, and only a fifth of the existing CMIP5 GCMs are
considered. Evin et al (2019) showed that an unbalanced or too weak matrix could
lead to a wrong estimation of future changes.

Moreover, in these exercises, internal variability is rarely explored. In the EURO-
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Figure 1.11: Sub-continental uncertainty decomposition in RCM ensemble, from Evin
et al (2021).

CORDEX matrix, in most cases, only one GCM member is downscaled. Leduc et al
(2019); von Trentini et al (2019) use a SMILE ensemble to assess the role of the
internal variability in future projection. Both studies confirm that the internal vari-
ability is more substantial at local scales, and CORDEX ensembles should better
explore this aspect. The constitution of high resolution (2 to 25 km) large ensem-
bles accounting for all sources of uncertainties is one of the biggest challenges of the
regional climate community (Giorgi, 2019; Rummukainen et al, 2015).

Various studies proposed statistical approaches to fill up Scenario-GCM-RCM
matrices (Déqué et al, 2007, 2012; Christensen and Kjellström, 2022; Evin et al,
2019). These methods are based on variance decomposition (ANOVA) and allow
us to estimate the proportion of the different sources of uncertainties. Among the
others, Evin et al (2019, 2021) propose a Bayesian ANOVA model to deal with an
unbalanced matrix. Figure 1.11 illustrates the variance decomposition results for
temperature and precipitation in winter and summer over three large European re-
gions. Compared with the fractional uncertainty decomposition from Figure 1.8, the
RCM is added, as well as the interaction terms between GCM, RCM and RCP sce-
narios. The results are comparable with the GCM uncertainty analysis, the internal
variability role is decreasing through time, conversely to the scenario uncertainty.
Regarding specific variables/seasons/regions, the uncertainty brought by the RCM
can be equivalent to the one from the GCM. The internal variability seems to be
more critical when looking at smaller regions. It is confirmed in Evin et al (2019),
which conducts the same analysis at very local scales, in 4 French mountain massifs
of the Pyrenees and Alps. The results show that internal variability is the largest
source of uncertainty for temperature until the second half of the century, while for
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Orography of the EURO-CORDEX domain at typical GCM, RCM and 
CPM resolution

GCM resoltuon, 1.4° ~ 150km
RCM resolution 0.11° ~ 12km CPM resolution 2.5km

ALPS domain

km

Figure 1.12: Illustration of typical resolutions for GCM, RCM and the very high reso-
lution CPMs.

precipitation, it vastly overcomes all other sources all along the period.

A well-known example of RCM added value: Extreme precipitation over
the Alps

The better representation of complex terrains such as reliefs, coastlines or is-
lands due to the higher resolution implies a better simulation of the local climate as
these are important drivers, and their interaction with the atmospheric circulation
is better represented. It is the first source of added value that benefits all variables.
Careto et al (2022) showed, for example, the added value of RCM over the Iberian
Peninsula regarding temperature. Nevertheless, the substantial and most recognised
added value of RCM concerns the representation spatial and temporal behaviour of
precipitation.

Multiple studies have shown that RCMs with higher resolution represent better
the extreme precipitations over the Alpine region. Torma et al (2015) and Fantini
et al (2018) notably showed that the CORDEX simulations containing the Alps
recreate well the entire distribution of precipitation, both studies based on different
scores of distribution similarity (Kolmogorov-Smirnoff and Kullback-Leiber). Fig-
ure 1.13 (a) illustrates the better representation of the mean daily rainfall by RCM.
It is not shown here, but Torma et al (2015) shows that the added value of RCM
is still visible at the GCM scale when interpolating (upscaling) the high-resolution
simulation on the GCM grid. The second part of the figure shows that this better
representation can modify the local climate change response signal. Indeed Giorgi
et al (2016) showed that the RCM ensemble agreed on an increase of precipitation
over the top of the Alps while the GCM ensemble simulated a strong uniform de-
crease of prediction. The authors found the RCMs projection more accurate, as
they match with recent trends, and the underlying process checked with other vari-
ables is credible. The evaluation of climate models and RCMs in a climate change
context cannot be empirical. Here is the strength of RCMs, the complete analysis
of underlying physical processes is possible, and the credibility of the scenario can
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Figure 1.13: (a) Summer mean precipitation over the Alps, comparison of RCM and
GCM ensembles with versus the observed mean, from Torma et al (2015); Giorgi (2019).
(b) Projection of summer precipitation changes in GCM and RCM ensembles, extracted
from Giorgi et al (2016); Giorgi (2019).
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Figure 1.14: Extreme precipitation distribution. The plots show the returned CDF
zooming on the extreme quantiles. It compares a CPM (AROME, 2.5km) and its driving
RCM (ALADIN63, 12km) with two observations set, at 8km resolution and at 1km.

be addressed. Besides, like for GCMs, the agreement of multiple GCM-RCM pairs
bring robustness to the result.

Recent literature (Fumière et al, 2020; Berthou et al, 2020; Ban et al, 2021)
have shown that the use of higher resolution CPMs largely improves the representa-
tion of extreme precipitations compared with 12km resolution RCMs. Figure 1.14,
extracted from Fumière et al (2020) compares the distribution of extreme precipi-
tation for a CPM model and its driving RCM versus two sets of observation. We
can see that the CPM reproduces until the highest quantiles of the high-resolution
observations. Caillaud et al (2021) shows that CPMs can recreate realistic objects
of extreme precipitation thanks to a good representation of hourly rainfall. The
time evolution and movements, the intensity and the frequency of the objects are
well represented by the evaluated model in the evaluation running mode. The future
projections indicate an intensification of such extreme events, but such findings need
to be confirmed by ensemble studies.

More on the RCM vs GCM large scales inconsistencies

Laprise et al (2008) propose an original evaluation of regional climate models fol-
lowing a set of 4 fundamental tenets that represent the initial paradigm of dynamical
downscaling:

• Tenet 1: RCMs are capable of generating small-scale features absent in the
driving fields supplied as lateral boundary conditions ;

• Tenet 2: The small scales that are generated have the appropriate amplitudes
and climate statistics ;
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• Tenet 3: The generated small scales accurately represent those that would be
present in the driving data if it were not limited by resolution;

• Tenet 4: In performing dynamical downscaling, RCM generated small scales
are uniquely defined for a given set of LBC.

The study easily validates the two first tenets, while the two last are mostly
invalidated. Indeed, as mentioned earlier, the RCM is not fully deterministic and
tends to derive from the large driving scale creating its own climatology. Moreover,
several studies (Sanchez-Gomez et al, 2009; Lucas-Picher et al, 2008) have shown the
impact of the initial conditions on the internal variability of the model, confirming
the non-verification of tenet 4. Nevertheless, in climate studies, the deterministic
property is not necessary, as only the statistical representation of the local climate
is really of interest. Laprise et al (2008) proposes a last tenet which is declined in 3
versions as there is little consensus in the community. It concerns the modification
of large scales by the RCM :

• Tenet 5a: The large scales are unaffected within the RCM domain;

• Tenet 5b: The large scales may be improved owing to reduced truncation
and explicit treatment of some mesoscale processes with increased resolution
within the RCM domain;

• Tenet 5c: The scales larger than or comparable to the RCM domain are de-
graded because the limited domain is too small to handle these adequately.

If the study invalidates tenet 5a, it is more difficult to assess whether the RCM
improves or degrades the large scales. This is still a hot topic in the regional climate
modelling community. The debate is intrinsically linked with the spectral nudging
debate mentioned earlier. Various recent studies have shown that the Euro-Cordex
ensemble largely underestimates the summer European warming projected by the
CMIP5 models (Boé et al, 2020; Ribes et al, 2022). Here again, the opinion diverges
on the soundness of this result. Some studies argue that the RCMs projection
is more reliable than GCM because they show less bias in the historical period
or because of the better representation of local physical processes impacting the
large scales (Bartók et al, 2017; Sørland et al, 2018). On the other hand, other
studies point out the absence of time-varying anthropogenic aerosols (Boé et al,
2020; Gutiérrez et al, 2020) and CO2 effect on vegetation (Schwingshackl et al,
2019; Boé, 2021) in most EURO-CORDEX simulations which would go in the line
of CMIP5 models. Lastly, with a dedicated modelling experiment, (Taranu et al,
2022) concludes that the aerosols play a significant role in these discrepancies but
also highlight the inconsistencies in physical parametrisations in GCM-RCM pairs.

1.3.2 Statistical Downscaling
The alternative to dynamical downscaling and RCMs relies on statistical ap-

proaches. Empirical/Statistical Downscaling (ESD) aims to estimate the link be-
tween high resolution observations (predictands, target, Y ) and large scale climate
variables (predictors X) (Maraun and Widmann, 2018; Maraun et al, 2010):

E(Y |X) = fΩ(X) (1.1)
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with E the common expectation and Ω represents a set of unknown parameters
estimated during the training or calibration phase. These methods focus mainly on
surface variables, such as temperature, wind or precipitation, essential for impact
studies. The model f will vary according to the variable to downscale. The set of
parameters Ω represents the local characteristics influencing the climate and will
depend highly on the location. This estimated relationship f is then applied to low
resolution global climate model outputs to reconstruct high-resolution climate infor-
mation. Over the last three decades, many methods have been proposed. Maraun
et al (2010) regroups ESD methods into three classes that we will detail below.

Perfect Prognosis

The perfect prognosis (PP) statistical downscaling methods aim to link a set of
observed large scale predictors (X = X1, X2, ..) and observed local target variable
Y at time t. Eq. 1.1 becomes then :

E(Yt|Xt) = fΩ(Xt) + ϵt (1.2)

With ϵ, the error term represents what is not explained by X. The development
of PP approaches includes three steps: selecting and preparing inputs (1), obtaining
a good9 dataset for Y (3), and choosing the statistical model (2). Accordingly, it
is necessary to calibrate the model, i.e. estimate the parameters Ω with the ob-
served data. Each Xt has a unique corresponding Yt, so the calibration is done
element-wise. The observed Yt is generally a meteorological station allowing long
period records. Recently, high-resolution gridded observational products have also
been used since their period extent starts to be long enough (Baño-Medina et al,
2020). The predictors Xt generally come from reanalysis that ensures homogeneous
and continuous data.

Predictors are chosen to describe the general atmospheric circulation. Tempera-
ture, altitude of given pressure levels (geopotential), humidity or wind components
are the most commonly used predictors (Gutiérrez et al, 2019). They can be con-
sidered at the surface level or higher altitudes. Multiple studies have shown that
the best set of predictors highly depends on the season and the location (Timbal
et al, 2009; Lemus-Canovas and Brands, 2020; Erlandsen et al, 2020). Moreover,
those predictors are high-dimensional 2D fields, and it is necessary to reduce their
dimension to suit most statistical models. Because of the high correlation between
neighbour points and between variables, the application of variance decomposition
methods such as Principal Components Analysis (PCA) helps to reduce the dimen-
sion drastically while keeping a maximum of information. Other methods taking
into account the predictand can be applied for the same purpose. The high spatial
variability of climate when it comes to very local scales, especially for precipitation,
implies building very local models or choosing common predictors for larger target
domain, which can degrade performance.

A wide range of statistical models has been proposed to estimate that relation-
ship. To keep it simple, we can regroup them through two big families: the transfer

9i.e. long, homogeneous
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functions (TF) and analogues approach (A) (Gutiérrez et al, 2019; Vaittinada Ayar
et al, 2015). The transfer functions methods generally rely on regression functions.
Multiple Linear function have been widely used to model temperature (Huth et al,
2015; Hertig et al, 2013; Gutiérrez et al, 2013) with various predictor selection tech-
niques. The highly skewed nature of precipitation distribution requires the use of
Generalized Linear Models (GLM) as they allow Y to follow a non-Gaussian dis-
tribution (San-Mart́ın et al, 2017). The linear model estimates a transformation
of the expected outcome ( see Eq 1.3). More complex regressions such as General
Additive Models (GAMs) that generalize GLMs to nonlinear models, Vector GLM
(Vrac et al, 2007a) or non-parametric regressions are existing alternatives.

g(E(Y |X)) = ω1X1 + ω2X2 + ...

with g the transformation function and ωi ∈ Ω the model weights.
(1.3)

Recent studies explored the application of machine learning algorithms, notably
deep neural network architecture (Vandal et al, 2019; Baño-Medina et al, 2020,
2021; Höhlein et al, 2020). The big advantage of such methods is their ability
to identify the appropriate predictors (Baño-Medina et al, 2020) and to deal with
high-dimensional inputs and outputs. Indeed, most TF methods are univariate
(single-site, single variable), while deep neural networks can easily produce maps
and can explore more than one variable. Neural networks are an essential part of
this work, and their functioning will be detailed in chapter 2, later in the manuscript.
Most methods do not account for ϵ, making them fully deterministic, but some are
stochastic since they propose an estimation of the variance or distribution parame-
ters (Cannon, 2008; Baño-Medina et al, 2020)

On the other hand, analog methods use the predictors Xt to find similar (ana-
log) atmospheric situations A(Xt) in the calibration set, such that the E(Yt|Xt) is
a weighted combinations of YA(Xt). Those methods have primarily been used in
weather prediction (Lorenz, 1969). Different variations on the way to evaluate the
distance between predictors or the way to combine the predictands exist (Dayon
et al, 2015; Maurer et al, 2010; Gutiérrez et al, 2013; Vaittinada Ayar et al, 2015).

Model Output Statistics (MOS)

MOS approaches aim to link model outputs to observed station records directly.
The idea is to find the function that transforms the model output distribution into
the station data distribution to fit the local climatology. MOS methods do not
imply predictor selection. The target variable low resolution model output is the
only predictor and it is taken from the closest grid point. Thus, MOS approaches
are quite simple to use. However, the relation is valid only for the calibration model,
as the biases are model dependent. Most of these methods are based on quantile
mapping algorithms, and a wide range of variants have been developed (Déqué
et al, 2007; Michelangeli et al, 2009; Štěpánek et al, 2016; Themeßl et al, 2012).
For precipitation, some methods comport two steps: the prediction of occurrence
first and then the amounts on wet days. This is, for example, the case of Volosciuk
et al (2017), which uses logistic regression to estimate the occurrence or not of rain
and a GLM to fit the parameters of a gamma distribution. The great majority of
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Figure 1.15: Example of weather generator (from Maraun et al, 2010; Vrac and Naveau,
2007) based on non-homogeneous Markov chains. The transition from one state to an-
other depends on the past state (hidden Markov model) and the atmospheric conditions.
Moreover, the amount of rain on a wet day is generated from a distribution dependent on
the atmospheric conditions.

MOS approaches are single site and single variable. Nevertheless, MOS methods
are similar in many points to Bias Correction techniques. Recent developments of
multivariate BC techniques (Robin et al, 2019; Vrac, 2018; François et al, 2020,
2021) could eventually be applied in statistical downscaling framework.

Weather Generator (WG)

Weather Generators are defined as stochastic models of meteorological variables
that explicitly model their marginal distribution and temporal dependence (Maraun
and Widmann, 2018). They regroup various models, including Markov chain or
auto-regressive models. The model parameters are fitted thanks to observed time
series. For instance, first-order Markov chains have been widely used to simulate
rain occurrence (Richardson, 1981; Katz, 1977; Wilby et al, 1998; Dubrovský et al,
2004) and are coupled with gamma distribution to model the precipitation amount.
Alternatively to the gamma distribution, some studies have used a mixture of ex-
ponential distribution (Keller et al, 2017).

In the downscaling framework, statistical changes from one period to the others
are evaluated in a climate model at the grid point corresponding to the observed
series. Those changes are then applied to the statistical model (Kilsby et al, 2007).
Another way is to include covariates from the climate model at different steps of
the statistical model. Figure 1.15 (from Maraun et al, 2010; Vrac and Naveau,
2007) illustrates such weather generator which can also be considered as a perfect
prognosis method.
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Evaluation and intercomparison studies

The fifth assessment report of the IPCC concluded that it is difficult to provide
a general assessment of ESD approaches performances because, among other things,
of the wide variety of approaches. In most studies mentioned above, ESD methods
are evaluated independently on their ability to reproduce a hidden set of observed
series. Some intercomparison studies exist, but they mainly focus on a particular
family of methods, such as MOS approaches in Gudmundsson et al (2012); Gut-
mann et al (2014). For this purpose, the VALUE framework (Maraun et al, 2015),
proposes a large intercomparison exercise over Europe, where different teams can
propose their downscaling methods. The VALUE project includes three steps. A
first perfect predictor experiment evaluates the methods versus observations using
reanalysis predictors. Then it plans the inter-comparison of the methods with GCM
historical (Experiment II) and future (Experiment III) simulations. At the date
where this manuscript is written, only the conclusions of the first experiment have
been published (Gutiérrez et al, 2019; Hertig et al, 2019; Soares et al, 2019; Maraun
et al, 2019a,b). Recently, Vaittinada Ayar et al (2015) proposed also an intercom-
parison of downscaling methods including both RCMs and ESD over Europe and
Bettolli et al (2021) one over South America in the CORDEX framework.

The general result of ESD approaches in perfect predictor experiments is that
a well-chosen and constructed model can fit the original data correctly. MOS ap-
proaches are generally simple to set up and provide good results. The performance
of PP methods relies a lot on predictor choice, and a very local model is preferable
to a large one. WG can recreate the correct statistics properties of the original
series but are unable (by construction) to create appropriate temporal and spatial
variability with, for example, the case of dry or hot/cold spells. More generally, the
representation of extreme values is more difficult (Hertig et al, 2019), even if some
methods perform better than others (Vaittinada Ayar et al, 2015). The critical point
is that no method seems to outperform another in all aspects. The second point
is that ESD methods can represent realistic high-resolution surface variables in the
present climate. Compared to RCMs, they often have fewer biases with respect
to observations, which seems logical since they use them for calibration. Vandal
et al (2019) or Baño-Medina et al (2020) propose an intercomparison of methods,
including recent machine learning algorithms. Neural Networks showed outstanding
accuracy in (1) dealing with gridded inputs and outputs and (2) reproducing well
the statistical properties of the target variables.

Because of the evident lack of future observations, it is difficult to assess whether
the estimated relationship between large and local scales holds in a future or different
climate. Indeed, applying ESD approaches to climate model projections relies on the
strong assumption that the relationship is stationary. In order to assess whether this
hypothesis holds or not, some studies have used an RCM as observations, following
a perfect model framework (Vrac et al, 2007b; Gutiérrez et al, 2013; Dayon et al,
2015; Lanzante et al, 2018; Erlandsen et al, 2020). f is estimated in the historic run,
and tested on future projections. All those studies conclude that ESD methods are
performing better in the historical period (where the relationship is learnt) than in
future, especially regarding extremes (Vrac et al, 2007b). Lanzante et al (2018) found
that the ESD method applied could not reproduce the RCM changes over mountains
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area and along the littorals, regions where the RCM bring added value thanks to
its high resolution. Gutiérrez et al (2013) also concludes that surface predictors are
preferable because of a changing relation between altitude and surface temperature.
Finally, Erlandsen et al (2020) finds that the calibration period and length are key
factors for the method’s accuracy. Besides the stationarity assumption, which seems
not to hold, this can be another substantial limitation for ESDs methods. If there
are numerous long-term records of observations in Europe and North America, it is
not the case for most places worldwide (Bettolli et al, 2021).

1.4 Objectives and scientific questions of this study.
We have seen in this introductory chapter that there is a strong need for reliable

information about local climate change to conduct impact studies and prepare adap-
tive strategies and policies. “Reliable” implies a proper exploration of the different
sources of uncertainties to assess what is very likely to happen or what is among the
possible. It is also essential to explore the extreme worst-case scenarios among the
possibles, as they imply huge societal costs.

Today the primary tool to study climate change is the family of global climate
models and earth system models. However, their coarse resolution does not allow
evaluation of the impacts at small scales. To answer this issue, two downscaling
communities have emerged to fill the gap between local climate and GCM large
scales. Empirical Statistical Downscaling methods present the decisive advantage
of being relatively not expensive and quite easy to set up. However, they suffer
some lack of trustability to reproduce future changes as they rely on the stationarity
assumption (Dixon et al, 2016). Besides, the calibration requires long-term records
of observations which are difficult to find in most places worldwide. On the other
hand, dynamical downscaling relies on regional climate models that are recognised
for their precise representation of local physical processes and simulate a realistic
local climate. For instance, they have good abilities to simulate extreme events,
dry/hot spells or heavy precipitations. However, their high expensive costs strongly
limit the exploration of the uncertainties.

In this context, this work aims to answer the strong challenge of producing re-
liable information on local climate change by reconciling these two fields. Indeed,
the strengths and limitations of each family of methods match the others pretty
well. This work aims to expand the number of high-resolution RCM simulations
regarding some specific variables. The idea is to learn, with a machine learning
algorithm, the downscaling function included in the RCM to apply it to other GCM
simulations. According to the definition given in Reichstein et al (2019)10 , we aim
to build an Emulator for the RCM downscaling function. We will name this novel
approach RCM-Emulator. Another way of seeing this work’s objective is to build
an ESD approach that uses RCM simulations to be calibrated. The advantage of
this approach is the possibility of learning the downscaling relationship in different

10Emulation: Emulation of the full (or specific parts of) a physical model can be useful for
computational efficiency and tractability reasons. Machine learning emulators once trained can
achieve orders of magnitude faster simulations than the original physical model without sacrificing
significant accuracy
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climates (including warmer climates) and regions with no observation records. The
RCM-emulator proposed here could be categorised as a Perfect Prognosis approach
as it aims to learn the relationship between low-resolution large-scale predictors and
high resolution surface variables.

Other studies have already combined ESD techniques with RCMs, notably in
2-step downscaling approaches where predictors are taken from RCMs simulations
(Vrac et al, 2012; Pryor and Barthelmie, 2014). This is particularly the case for
MOS approaches initially designed for this purpose. Chadwick et al (2011) is proba-
bly the first study to propose combining ESD and RCM similarly to this work. The
authors use neural networks to link GCM and RCM outputs. The study showed
promising results and notably concluded the importance of learning in future cli-
mates. Walton et al (2015) use RCM simulations to estimate the monthly pattern
of climate change over California and then create a small ensemble by emulating
five other GCMs. However, it used a complex and domain-specific method to se-
lect the predictors, and the model was calibrated concisely (10 years in the past
and future). The RCM-Emulator proposed in this work relies on deep neural net-
work algorithm as they have already shown promising results in a perfect prognosis
context. Recently, multiple studies have proposed similar approaches also based on
neural network architectures (Wang et al, 2021; Serifi et al, 2021; Babaousmail et al,
2021). The methods proposed are closer to a MOS approach as they aim to recreate
the high resolution temperature or precipitation from the low resolution of the same
variables.

Hereafter we introduce the scientific questions that will help us to define, de-
velop and validate the novel hybrid downscaling tool we propose here. A complete
understanding of the strengths and weaknesses of the tool is of primary importance
in assessing its reliability.

1. Is the RCM-Emulator feasible?

The first essential step is to define the concept of the emulator properly. It
implies defining the exact objective and the adapted framework to isolate and
estimate the downscaling function carried out in a Regional Climate Model.
Moreover, the choice of the statistical method used to estimate it is also part
of the conceptualisation of the emulator.

2. How reliable is the emulator?

The second important aspect in developing a novel approach is guaranteeing
its trustability. For both downscaling families, numerous studies have been
dedicated to proving the reliability of the downscaling method. It implies
finding the adapted frameworks to study the downscaling tool’s abilities in
different steps. It is notably necessary to evaluate the emulator production to
reproduce the known added value of RCM. Moreover, the proper identification
of strengths and weaknesses is essential to give confidence in the tool.

3. How efficient?
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Efficiency is a crucial attribute of the emulator. The tool aims to tackle the
high costs of RCMs and expand the number of downscaled simulations. The
efficiency objective must be kept in mind throughout the emulator’s develop-
ment and validation.

4. How transferable?
Finally, the transferability of the emulator to different levels needs to be as-
sessed. The emulator will be defined in a certain framework, and evaluating
how it reacts when moving out of this structure is important. The transfer-
ability can be considered to other sources of input, to other variables, to other
climates or different downscaling problems. Assessing the transferability of the
emulator is necessary to define how and to what problems it can be applied.

The RCM we will emulate in this study is ALADIN63 (Nabat et al, 2020). It
is the model developed at CNRM, the research centre associated with the French
weather service and CNRS. The ALADIN63 physical scheme is the same than the
CNRM-CM family of models also developed at CNRM (in collaboration with CER-
FACS). ALADIN63 has been firstly used to downscale CNRM-CM5 (Voldoire et al,
2013), and then three others GCM: MPI-ESM-LR, developed at the Max Plank
Institute (Giorgetta et al, 2013), NorESM1-M, developed at the Norvegian Climate
Center (Bentsen et al, 2013) and the HadGEM2-ES, the Met Office climate model
(Collins et al, 2011). This small ensemble is a good opportunity to build and eval-
uate the RCM-Emulator proposed in this study. The better consistency between
ALADIN63 and CNRM-CM5 offers the best case for the first tests.

This manuscript is organised into five chapters after this introduction. Chapter
2 is entirely dedicated to the machine learning algorithm we chose for the emula-
tor. As mentioned earlier, neural networks have shown accurate results in statistical
downscaling. We will explore their functioning and analyse why those methods
are well adapted for climate data and especially downscaling problems. Chapter 3
presents a feasibility study of the emulator. It aims to describe the concept and
set the framework to train and evaluate the RCM-emulator for temperature. Chap-
ters 4 and 5 explore then two transferability aspects of the emulator. Chapter 4
assesses its robustness to other input sources, while Chapter 5 explores the applica-
tion to precipitation which is a more challenging variable. Finally, the last chapter
derives some conclusions regarding this work’s achievements and introduces some
perspectives that emerge regarding the development and use of RCM-Emulators.
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Why deep neural networks are a
credible strategy to build the
RCM-emulator ?

This chapter aims to understand the general functioning of artificial neural net-
works and why they are well adapted to build the RCM-Emulator. We will review
the critical aspects of neural networks which led to the recent boom of deep learning
approaches. I will specifically focus on convolutional neural networks and the spe-
cific UNet architecture that I chose for the Emulator because of its ability to deal
with images. Finally, I will review some examples of deep learning applications in
climate and weather sciences.

2.1 A neural network
Introduced by McCulloch and Pitts (1943), the artificial neuron is a mathemat-

ical representation of the biological neuron. Eq. 2.1 describes the behaviour of such
a neuron. It receives an input X of dimension n and returns the evaluation y of
dimension 1 through the activation function g of the weighted combination of the
inputs. [ω1, ...ωn] is the weights vector associated with the inputs. ω0 is a constant
term called the neuron bias1. The activation function g is a non-linear function
determining the ‘type’ of neuron. The different activation functions commonly used
are shown in Table 2.1.

y = fΩ(x1, ..., xn) = g(ω0 +
n∑

i=1
ωixi)

with Ω = ω0, .., ωn

(2.1)

The simple neuron model can be seen as a simple linear binary classifier. It is the
perceptron model, introduced by Rosenblatt (1958). The author proposed an algo-
rithm to find the suitable weight vector that correctly classifies each input X. The
weights’ vector defines the hyperplane’s coordinates that divide the input space into
two distinct regions. The algorithm evaluates a learning set of input-outputs pairs

1An alternative expression consist to set x0 = 1 and then y = g(
∑n

i=0 ωixi).
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Figure 2.1: Neural Network diagram

(Xt, Yt)1≤t≤N and updates at each iteration the weight vector in case of misclassifi-
cation. The algorithm’s convergence has been proven in Novikoff (1962). Rosenblatt
already imagined that two connected neurons could solve non-linear classification
problems, but it was computationally too expensive to be implemented.

A neural network is then a set of neurons organised through layers. A network
includes three types of layers illustrated in Figure 2.1: the input and output layers
and some hidden layers between them. Hidden layers perform non-linear transfor-
mations of the inputs to match the targeted output. A hidden layer includes multiple
neurons that are not inter-connected. The organisation of the neurons inside a layer
depends on the type of layers and the architecture chosen. For example, in a fully
connected network, all neurons from a given layer are connected to all neurons from
the previous one. Other architectures exists such as Convolutional Neural Network
(CNN) that I will present later on. The idea behind a neural network is to mimic
the brain; each neuron can only perform a simple action, but the whole network can
solve highly complex non-linear problems.

A neural network is then a set of parametric functions Fθ which links some inputs
Xt ∈ X and outputs Yt ∈ Y . Θ represents the parameter space that regroups all
possible values of θ, i.e. all the weights ωk

i,j for the i-th input of the j-th neuron of
layer k plus the bias ωk

0,j . An error (or loss) function is associated with the neural
network. Given a training set D = {(Xt, Yt), t ∈ [[1, N ]]} , the error function L(D, θ)
evaluates the distance between the target outputs Yt and the actual network outputs
Ŷt for the input Xt . The mean square error (Eq. 2.2) is the most common loss
function for regression problems. Training the network involves finding the best set
of parameters θ∗ to minimise the training set’s error:

LMSE(D, θ) = 1
N

∑
i∈D

(Yi − Ŷi)2 (2.2)
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Table 2.1: Commonly used activation functions

NAME EXPRESSION

Identity g(x) = x

Heaviside ga(x) =
0 if x < a

1 otherwise

sign ga(x) =
−1 if x < a

1 otherwise

sigmoid g(x) = 1
1+exp(−x)

tanh g(x) = exp(x)−exp(−x)
exp(x)+exp(−x)

Rectified Linear Unit (RELU) g(x) =
0 if x < 0

x otherwise

Leaky RELU gα(x) =
αx if x < 0

x otherwise

softplus g(x) = ln(1 + exp(x))

Therefore, the learned network corresponds to:

Fθ∗ = arg min
Fθ,θ∈Θ

L(D, θ) (2.3)

To simplify, we include the bias ω0 in the weight vector ω.

2.2 Training the network: the backpropagation
algorithm

The next significant improvement in neural networks is the backpropagation
algorithm introduced by Rumelhart and Hinton (1986). The big challenge when
calibrating a neural network is to find the proper weights and biases for hidden lay-
ers while each neuron does not have a defined target outcome. Each neuron must
be calibrated following the entire network error, implying that each neuron error
function depends on the parameters from all previous and following layers. A direct
update of all parameters, like in the perceptron model, is unimaginable because of
the computations it implies. The backpropagation algorithm is an efficient opti-
misation scheme based on the gradient descent algorithm to address this issue. I
briefly describe the gradient descent below.
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Table 2.2: Notations for the backpropagation algorithm

Notations
X ∈ Rn Set of inputs to the network
Y ∈ R 1-D (for this example) target variable

Ŷt Output of the network for sample t
D = {(Xt, Yt), t ∈ [[1, N ]]} Training set

L Loss function
θ Set of parameter for the entire network
Ω Set of weights for one neuron
k Indicator for the layer, the last layer is called z
j Indicator for the neuron in layer k

i
Indicator for the input of the

jth neuron in layer k

ω i, jk weight for the input i of the jth neuron in layer k
ok

j Output of the jth neuron in layer k

Ok Number of outputs for layer k
ak

j Activation of the jth neuron in layer k

g, gz
Activation function,

(z for the activation function of the last layer)
ℓ loss function output for one given sample (X∗, Y ∗)

Figure 2.2: Illlustration of a neuron with the notation for Section 2.2
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The gradient descent is an iterative algorithm that finds a local minimum of a
differentiable convex function. The gradient at position p of a n-dimensional func-
tion h, written ∇h(p) is the vector of its n partial derivative evaluated at this point.
It gives the direction of the “fastest” increase of h at a given point p. In order to
reach a local minimum, the algorithm evaluates the function gradient at a starting
point and moves in the gradient’s opposite direction following a pre-defined step-size
called “learning rate”. By iterating this process, one should be able to find a local
minimum of the given function following Eq 2.4.

pt+1 = pt − λ∇h(pt) (2.4)
In the case of neural networks, the aim is to minimise the loss function L accord-

ing to the set of parameters θ. The backpropagation algorithm proposes an efficient
way to update all the weights and biases of the network by simplifying the gradi-
ent descent computation. The idea is to evaluate the gradient in each weight wk

i,j.
Here we consider the loss function to be MSE which can be decomposed into a sum
of individual errors (Eq. 2.5).It allows us to simplify the explanation here and to
look at the computation for a single couple (X∗, Y ∗) and we write the loss function
evaluated at this point ℓ (Eq. 2.6). The notations for this part are summarized in
Table 2.2 and illustrated for one neuron in Figure 2.2.

∂L(D, θ)
∂ωk

i,j

= 1
N

∑
t∈D

∂L((Xt, Yt), θ)
∂ωk

i,j

(2.5)

ℓ = L((X∗, Y ∗), θ) (2.6)
First of all we can re-write the partial derivative using the chain rule and defining

the activation ak
j that is the weighted sum of the neuron inputs plus the bias.

∂ℓ

∂ωk
i,j

= ∂ℓ

∂ak
j

∂ak
j

∂ωk
i,j

(2.7)

We set the first term as δk
j = ∂ℓ

∂ak
j
. It somehow represents the contribution of the

jth neuron of layer k to the total error (Ŷ ∗ − Y ∗). The second term ∂ak
j

∂ωk
i,j

is the
derivative of a sum. It is simply equal to the ith input of the neuron, which is the
output o from the ith neuron of the previous layer2 (Eq. 2.8). We define Ok as the
total number of outputs of layer k.

∂ak
i,j

∂ωk
i,j

=
∂

∑Ok−1

r=0 ωk
r,jo

k−1
r

∂ωk
i,j

= ok−1
i (2.8)

The missing terms to evaluate are the δk
j . For the last layer z, we consider having

a single output model so j = 1, we have :

δz
1 = ∂ℓ

∂az
1

=
∂ 1

2(gz(az
1) − Y ∗)2

∂az
1

= (gz(az
1) − Y ∗)g′

z(az
1) = (Ŷ ∗ − Y ∗)g′

z(az
1) (2.9)

2We assume here to be in a fully connected network where all neurons from a layer are connected
to all neurons from the previous and subsequent layers.
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since Ŷ ∗ = gz(az
1) with gz the activation function of the last neuron.

For the hidden layer, we can write δk
j according to δk+1

j thanks to the backprop-
agation formula :

δk
j = ∂ℓ

∂ak
j

=
Ok+1∑
r=1

∂ℓ

∂ak+1
r

∂ak+1
r

∂ak
j

=
Ok+1∑
r=1

δk+1
r

∂ak+1
r

∂ak
j

=
Ok+1∑
r=1
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r ( ∂
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j

Ok∑
s=1

ωk+1
s,r g(ak

s))

Finally, δk
j = g′(ak

j )
Ok+1∑
r=1

wk+1
j,r δk+1

r

(2.10)

where Ok+1 is the number of neurons from the next layer3 and wk+1
j,r are the

weights given to the output of the j-th neuron from layer k in layer k + 1. The
formula gives that in each layer, the partial derivatives for each neuron’s weights
and biases can be evaluated from the following layers. Finally, the update formula
for each weight, taking into account the entire training set D and a learning rate λ
is given by :

∆ωk
i,j = −λ

∂L(D, θ)
∂ωk

i,j

= 1
N

N∑
t=0

∂ℓt

∂ωk
i,j

= 1
N

N∑
t=0

δt,k
j ot,k−1

i,j

With δt,k
j =

(ŷ − y)g′
z(az

1) if k is the output layer
g′(ak

j ) ∑Ok+1

r=1 wk+1
j,r δk+1

r else

(2.11)

The optimisation algorithm comports then 2 steps computed for each couple
(xt, yt). In the forward step, xt is given to the network and propagated through all
layers to get the prediction. All weights and neurons’ outputs are saved during this
step. In the backward step, the δs are computed from the last layer and backprop-
agated. The partial derivative from layer k are computed after the ones from layer
k + 1 following equation. After doing so for the entire training set, it is possible to
calculate all partial derivatives and update θ 2.11.

The backpropagation algorithm was a huge improvement for neural networks
since it was finally possible to train a neural network with multiple layers. From
this point, there have been many developments with different layers or architectures,
as we will see some examples in the next sections. The optimisation algorithm has
also evolved to suit novel kinds of layers or to improve the convergence speed, but the
principle of backpropagation is still the core of all variants. Most evolutions concern
the gradient descent strategy. For example, the stochastic gradient descent works

3I use r here to go through all input for a given layer, it ranges from 1 to leave room for ω0
which is the bias.
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on the same principle but updates θ using only one example from the training set
and not the entire dataset at each iteration. In this work, I use the ADAM (Adap-
tative Moment Estimation) optimiser introduced in Kingma and Lei Ba (2015) and
recognised for its efficiency and good performance. It is an adapted stochastic gra-
dient descent based on estimating the gradient’s first and second-order momentum
to adapt the learning rate for each parameter.

2.3 The last milestones: the ReLu function and
the computational resources

In neural networks development, we are missing two important points to fill the
25 years gap between the backpropagation algorithm in the mid-80s and the boom
of neural networks in the early 2010s. The first point is related to the vanishing
gradient. The sigmoid or tanh functions were the most used activation function
until the study of Glorot et al (2011). They showed two strong advantages of using
the ReLu function (see Table 2.1) for hidden layers. It is almost linear, making
computation easier (so quicker) and avoiding any gradient vanishing effect. Indeed
sigmoid or tanh, as they are functions from R to [0, 1], tend to reduce the gradient
after several steps in the backpropagation algorithm. The second advantage con-
cerns the sparsity of the model, thanks to the negative part of the function. Indeed,
ReLu can set to 0 some neurons bringing sparsity to the network, which Glorot et al
(2011) and other studies found benefit for training the network.

The second point implies computational techniques and the new size of the avail-
able training dataset. In 2009, two major publications marked the beginning of
neural network expansion. First, Deng et al (2009) created ImageNet, the cur-
rent largest labeled image dataset. It constituted the largest training set, allowing
to train deep neural networks (with numerous hidden layers). Lastly, Raina et al
(2009) started to use Graphic Processor Unit (GPU) to train neural networks, which
sped up the training of networks at an unprecedented rate (at least 10 times for the
smallest networks and up to 70 times for the most time consuming ones).

2.4 Convolutional neural network (CNN)
The neural network presented until now and illustrated in Figure 2.1 is called a

Fully Connected Network. It is composed only of Dense layers where each neuron
is connected to all outputs from the previous layer. They have shown limitations in
dealing with high-dimensional inputs, notably with images. Indeed as all neurons
are connected, the number of parameters increases exponentially with the input
size. Moreover, too many connections increase the risk of overfitting4. LeCun et al
(1998), introduces LeNet, the first convolutional neural network specially designed
to deal with images (visual recognition, classification, etc.). The originality of the
network is the convolutional layer that I explain below.

4The neural network only learns “by heart” to reproduce the training set instead of estimating
the function.
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Figure 2.3: Convolution and Pooling principles, Goodfellow et al (2016).

As indicated by its name, the convolutional layer performs a convolution be-
tween the input matrix (an image where each matrix coordinate is a pixel) and a
kernel matrix. The idea is to look at the image blockwise and extract information
from each block. The convolution process is illustrated in Figure 2.3. The kernel
moves through the entire image such that the convolution output is another matrix
of smaller size. This output matrix, called Activation Map on the figure, is then
passed to the activation function. The weights ω are then the values of the kernel
matrix. Instead of 16 weights to fit on the illustration of Figure 2.3 with a dense
layer, there are only 4 in this convolution layer. The number of parameters is defined
by the kernel size, not input size. In order to get various decompositions, multiple
kernels, called filters, can be passed through the input to isolate different aspects of
the input. Moreover, a colourful image is a 3D matrix, where the height and width
correspond to the image size, and the third dimension contains the three colour
channels (red, green, and blue). Various kernels are then passed on to the different
channels.

A strong advantage of a convolutional layer is that it uses the same patch of
parameters in the whole image with the reasonable assumption that if a given kernel
has been useful in a first position on the image, it is likely to be also useful somewhere
else. There are three main parameters to define in a convolutional layer :

• The depth: the number of filters to pass through the image. The size of the
kernel also has to be defined.

• The stride: the number of pixels to move the kernel. On Figure 2.3 the stride
is 1, with a stride equal to 2, the output would be a 2 × 2 matrix.

• The Zero-padding: it helps control the output size by adding 0 around the
input borders.
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The Pooling layer is the other specificity of CNNs. It is here to cut the spatial
size of its input. It divides the input matrix into separated blocks of the same size
and applies a simple function, such as the maximum or the mean, to each of them
(cf. Figure 2.3). After a convolutional layer, a pooling window of size 2×2 downsizes
each feature matrix by 2. There are two main advantages of pooling. First, it re-
duces the number of computations, making the network more efficient and avoiding
overfitting. Second, it summarises the information extracted by the convolutional
layer in a given region. It makes the model more robust to little variations.

Convolutional neural networks are a succession of convolutional and pooling
layers for the extraction of features followed by a fully connected network which
performs the classification or regression task as illustrated in Figure 2.4. Various
CNNs have been developed since LeNet (LeCun et al, 1998): AlexNet introduced by
Krizhevsky et al (2012) marked the beginning of neural network and CNNs lead for
image recognition task or VGGnet introduced in Simonyan and Zisserman (2015)
which is still widely used nowadays.

If CNNs suit image classification or object detection well, they do not suit the
semantic segmentation problem. The aim is to assign each pixel to the different
objects in the image. The target of such a problem is a mask with the input im-
age size. Long et al (2015) propose a fully convolutional network to address this
exercise. It takes the same base as a classical CNN but replaces the dense part
with an upsampling layer that enlarges its input’s spatial size. There exists multiple
upsampling functions, one being the transpose convolution.

A very efficient and famous architecture for image segmentation is the UNet
(Ronneberger et al, 2015), shown in Figure 2.5. The idea of this network is to divide
the network task into two equal parts. In a first contractive path, the neural network
looks like a classical CNN. It is composed of downsampling blocks, including con-
volutional layers and max pooling. At each step, the spatial dimensions are divided
by two while the number of features doubles. It extracts the required features of the
input image. The originality of the UNet resides in the expanding or upsampling
path, which is almost symmetrical to the downsampling part (making the U-shape).
It is composed of transposed convolutions to increase the spatial dimension and
recreate the output size. Classical convolutions with multiple features allow the
network to propagate information to the high-resolution layers. The downsampling
blocks’ outputs are concatenated with each upsampling layer, which should help
the network to relocate each pixel correctly. The UNet architecture can be seen as
an encoder/decoder network. Such networks aim to encode high dimensional and
complex information in a latent space of reduced dimension while being able to re-
construct the original data with the decoder. In UNet, the aim is not to reduce
dimension, but the important information is extracted and encoded in the space
of a smaller dimension and then injected into the expanding part. The UNet will
be an essential part of my work, notably because of its superior ability to extract
information from a set of inputs and re-inject it to reconstruct a new image.
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Figure 2.4: Illustration of CNN architecture, from Hoeser and Kuenzer (2020). (b)
presents the entire network while (a) and (c) zoom on the beginning and end parts.
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Figure 2.5: Illustration of UNET architecture, from Ronneberger et al (2015).

2.5 Other great families of architecture

On top of the family of convolutional neural networks, other families dedicated
to specific tasks exist. I will briefly introduce two other noteworthy kinds of net-
works. The point here is not to detail their functioning but to understand the main
idea behind these two families and for what they are designed.

First, Recurrent Neural Networks (RNNs) help to handle sequential data as time
series or sentences. The idea behind RNN is to predict the output at time t thanks
to the previous prediction and the corresponding input. Input and output are then
considered sequentially. The most potent version of RNN is called LSTM and has
shown good abilities to deal with long series. RNN can learn different types of
relations as they can map one input to one output, one input to many outputs,
many inputs to one output or many to many. Thus, they are widely used for text
generation, time series forecasting or video anticipation.

The Generative Adversarial Network (GAN) is the other important family of
neural networks. They consist in two neural networks that the user puts in com-
petition. In general, they are used in the context of image generation. The first
network is a generator which produces an image. The second network, called Dis-
criminator, is trained to recognise if an image is true or fake, i.e. produced by the
Generator. The two networks are then competing: the Generator tries to produce
an image as close as possible to the “real” ones (i.e. such that the Discriminator
classifies them as true ones). Simultaneously, the Discriminator keeps learning to
differentiate between true and fake images. The network is trained when both Gen-
erator and Discriminator reach an equilibrium. Thus, the output of a GAN is one
possible output among others. Neural networks generally produce what minimises
the loss function, which can be a compromise of the less lousy output. A way to
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Figure 2.6: Projection of the climate data volume increase, from Overpeck et al (2011).

understand GAN is to see the Discriminator as the loss function of the Generator.
Here again, various types of GAN exist, but all rely on the same principle.

2.6 Deep Learning and climate applications
The application of artificial neural networks to meteorological or climate prob-

lems is not new. Since the early 90s, several studies have used neural networks for
forecasting weather or for statistical downscaling (Gardner and Dorling, 1998). Nev-
ertheless, the recent boom of deep neural networks has also reached meteorology and
climate science with an exponential increase in publications. Climate science has
generated huge amounts of data from in-situ and satellite observations and climate
models. The CMIP5 exercise generated about 5 Petabytes5 and CMIP6 about 23PB
6, so about 5 times more in less than a decade. The projection made by Overpeck
et al (2011) shown in Figure 2.6 seems to hold until now, and they forecast a stronger
increase for the next decade. From a machine learning point of view, the strong ad-
vantage of climate data is that the climate modelling community produces clean,
continuous and homogeneous gridded data. The outstanding performance of neural
networks to deal with images notably but more generally to estimate non-linear re-
lationships has brought much interest in the climate and weather communities. The
convolutional layers are particularly adapted to climate maps since the different
variables can be considered as the different channels of an image. In the following
application examples, I will focus only on recent studies based on recent architecture.

Numerous studies have explored the capability of neural networks to forecast
51 PB=1 000 TB=1 000 000 GB
6source : ESGF, data statistic page,Cinquini et al (2014)
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Figure 2.7: Precipitation nowcasting Ravuri et al (2021b).

weather at different time scales. Ravuri et al (2021a) recently presented a complex
GAN architecture for precipitation nowcasting. The idea is to use live radar obser-
vation of precipitation and project the evolution of the precipitation objects for the
following hours. The authors compare their method with a state-of-the-art stochas-
tic approach (Pulkkinen et al, 2019) and two neural networks: one based on LSTM
(Ayzel et al, 2020) and a second one based on a UNet model (Sønderby et al, 2020).
The GAN network showed promising results and notably produced realistic maps
with precise locations for precipitation, while the two other deep learning approaches
create blurry images after some time steps. This result, illustrated in Figure 2.7, is
typical of what GAN can offer: it is one possible outcome from the starting point
while UNet, for example, tries to cover all the possibilities, which are increasing with
time. Forecasting at other time scales has also been explored. Rasp et al (2020) pro-
posed a benchmark dataset to evaluate and compare a data-driven medium-range
(up to a week) forecasting model, including baseline scores from state-of-the-art nu-
merical models and multiple studies already used it (Rasp and Thuerey, 2021; Scher
and Messori, 2021). Among others, Lu et al (2022) or Martin et al (2022) have
explored the predictability at sub-seasonal and seasonal scales, notably by focusing
on mid-term oscillations. Recently, multiple review studies have tried to analyse the
role of recent deep learning approaches in weather forecasting as it is not clear yet
how far those methods will go (Schultz et al, 2021; Dewitte et al, 2021). If it seems
evident that deep learning methods will help improve some aspects of the forecast,
it is more difficult to say if an end-to-end approach will ever replace the current
systems.

A second neural network application in the climate field is detecting and clas-
sifying meteorological objects. Indeed as mentioned earlier, climate fields can be
considered images, and the good properties of convolutional neural networks in ob-
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ject detection could help in many cases. For example, Racah et al (2017), introduce
a labelled dataset from climate simulations and a baseline CNN architecture to en-
courage the development of an automatic and efficient method to detect in climate
simulation extreme weather patterns. The labelled objects are Tropical Depression,
Tropical Cyclones, Extra-Tropical Cyclones and Atmospheric Rivers, all subject to
severe cause damage to human societies. Kim et al (2019) or Giffard-Roisin et al
(2020) also propose NN-based method to track hurricanes and cyclones. Mounier
et al (2022) uses very high resolution simulation to detect bow-echo7 in forecast en-
sembles. Nevertheless, object detection necessitates a large volume of good quality
labelled data which limits their development strongly.

In the introductory chapter, I briefly presented the role of parametrisations.
They are an empirical representation of processes that occur at finer scales than the
grid resolution. These parametrisations are based on expert knowledge and might
lead to model biases (Medeiros and Stevens, 2011). Some studies have proposed
using neural networks to learn the actual physical processes within high-resolution
models that resolve those processes (Rasp et al, 2020; Brajard et al, 2021). The
results are auspicious, and most research still has to be done as some stabilisation
problems persist (Balogh et al, 2022).

Finally, as mentioned in the first chapter, neural network architecture has also
been used in empirical statistical downscaling. Indeed, statistical downscaling aims
to learn a generally non-linear relationship between GCM output (or similar large-
scale representation) and station data or high-resolution gridded observational prod-
ucts. Convolutional neural networks have proven to deal with high dimensional data
in input and output. Their ability to reconstruct images, as in super-resolution exer-
cises, is also very interesting, as spatial downscaling aims to recreate high-resolution
maps. Moreover, CNNs manage, by construction, to identify the right combination
of inputs for each output (station or grid point). The use of the artificial neu-
ral network is not new in statistical downscaling (Cannon, 2008; Chadwick et al,
2011), and the recent performance of CNN has motivated many studies to use them
in ESD. Baño-Medina et al (2020) have notably built simple CNN architecture to
downscale precipitation and temperature over Europe in a perfect prognosis context
with similar or better (depending on the metric) performance than state-of-the-art
ESD regression. From the existing literature I see two ways of applying deep neural
networks to ESD problems. First, in perfect prognosis approach as Baño-Medina
et al (2020) or Höhlein et al (2020) following a classical regression task. Second,
some studies have used them in a MOS approach, trying to link the low-resolution
and the high-resolution from the same variables. The task is then similar to super-
resolution problems that aim to increase the resolution of images. Wang et al (2021),
Serifi et al (2021) and Babaousmail et al (2021) build RCM-emulators following this
super resolution approach. In the following chapters, the proposed RCM-emulator
is build in a perfect prognosis. Finally, it is remarkable that multiple studies have
used a UNet architecture to downscale surface variables with generally promising
results (Höhlein et al, 2020; Serifi et al, 2021; Sha et al, 2020a,b).

7Convective system responsible for extreme winds or tornados
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2.7 Link with this work
This second chapter was somehow an extension of the introductory chapter as

it did not aim to present the results of my work but to gently introduce convo-
lutional neural networks and justify why they are adapted for the RCM-emulator.
In preliminary work for this PhD, I tried other machine learning methods. The
aim was to explore the idea’s feasibility, so I concentrated on single grid points. I
used classical ESD methods such as linear regression or advanced quantile mapping
(CDFt, Michelangeli et al, 2009) and various machine learning algorithms based
on decision trees like Random Forest or XGboost. In all cases, the downscaling
relationship seemed well estimated, which gave us confidence in the feasibility of the
RCM-emulator. Nevertheless, the efficiency of those methods is questioned. Indeed
they are all univariate in the sense that they can consider only a single output.
Therefore, it is necessary to fit one model for each grid point which can get re-
ally heavy as we work with high-resolution models. Convolutional Neural Networks
present the nice advantage of dealing efficiently with large images implying a single
model for the emulator. Moreover, we saw in this chapter that CNN would en-
sure some spatial coherence as the convolution layers consider the image blockwise.
Multiple studies have shown good results for CNN in similar exercises as the one I
propose here. I compared CNN with the other methods over single grid points, and
they showed similar or better results. Chapter 3 includes such a comparison over
large domain. Furthermore, after some small tests, I decided to base my work on
the UNet architecture. Chapter 3 gives more details about the specific architecture
I built. However, it is important to keep in mind here that the network architec-
ture does not guarantee anything. The construction of the training set, the choices
regarding some parameters or the loss function also have a crucial influence. The
following chapters will explore and discuss those choices.
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Chapter 3

Regional Climate Model emulator
based on deep learning: concept
and first evaluation of a novel
hybrid downscaling approach

A. Doury, S. Somot, S. Gadat, A. Ribes, L. Corre

This chapter is a published article in Climate Dynamics. I did not modify the
corpus here. The organisation is the same, with the appendices and supplementary
material at the end of the chapter. I simply modified the layout such that it stays
coherent with the rest of the document. Some elements of the introduction and
methodology section can be redundant with the previous chapters. The original
article DOI is 10.1007/s00382-022-06343-9.
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3.1 Introduction

Climate models are an essential tool to study possible evolutions of the climate
according to different scenarios of greenhouse gas emissions. These numerical mod-
els represent the physical and dynamical processes present in the atmosphere and
their interactions with other components of the Earth System. The complexity of
these models involves compromises between the computational costs, the horizontal
resolution and, in some cases, the domain size.

Global Climate Models (GCMs) produce simulations covering the whole planet
at reasonable cost thanks to a low spatial resolution (from 50 to 300 km). The
large number of different GCMs developed worldwide allows to build large and co-
ordinated ensembles of simulations, thanks to a strong international cooperation.
These big ensembles (CMIP3/5/6, Meehl et al, 2007; Taylor et al, 2012; Eyring
et al, 2016) are necessary to correctly explore the different sources of variability and
uncertainties in order to deliver reliable information about future climate change at
large spatial scales. However, the resolution of these models is too coarse to derive
any fine scale information, which is of primary importance for impact studies and
adaptation policies. Consequently, it is crucial to downscale the GCM outputs to a
higher resolution. Two families of downscaling have emerged: empirical-statistical
downscaling and dynamical downscaling. Both approaches have their own strengths
and weaknesses.

Empirical Statistical Downscaling methods (ESD) estimate functions to link
large scale atmosphere fields with local scale variables using observational data.
Local implications of future climate changes are then obtained by applying these
functions to GCM outputs. Gutiérrez et al (2019) present an overview of ESD
methods and evaluate their ability to downscale historical GCM simulations. The
great advantage of these statistical methods is their computational efficiency, which
makes the downscaling of large GCM ensembles possible. On the other hand, they
have two main limitations due to their dependency on observational data. First
of all, they are applicable only for regions and variables for which local long-term
observations are available. Secondly, they rely on the stationary assumption of the
large-scale / local-scale relationship, which implies that a statistical model calibrated
in the past and present climate remains reliable in the forthcoming climate. Studies
tend to show that the calibration period has a non-negligible impact on the results
(Wilby et al, 1998; Schmith, 2008; Dayon et al, 2015; Erlandsen et al, 2020).

Dynamical Downscaling (DD) is based on Regional Climate Models (RCMs).
These models have higher resolution than GCMs (1 to 50 km) but are restricted to
a limited area domain to keep their computational costs affordable. They are nested
in a GCM, e.g., they receive at small and regular time intervals dynamical informa-
tion from this GCM at their lateral boundaries. One key advantage of RCMs is to
rely on the same physical hypotheses as the one involved in GCMs. They provide
a complete description of the state of the atmosphere over their domain through a
large set of variables at high temporal and spatial resolution. The added value of
RCMs has been demonstrated in several studies (Giorgi et al, 2016; Torma et al,
2015; Prein et al, 2016; Fantini et al, 2018; Kotlarski et al, 2015, for examples). In
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order to deliver robust information about future local responses to climate change,
it is necessary to explore the uncertainty associated with RCM simulations. Déqué
et al (2007) and Evin et al (2021) assess that four sources of uncertainty are at play
in a regional climate simulation: the choice of the driving GCM, the greenhouse
gas scenario, the choice of the RCM itself and the internal variability. Their rel-
ative importance depends on the considered variables, spatial scale, and timeline.
According to these results, it is important (Déqué et al, 2012; Evin et al, 2021;
Fernández et al, 2019) to complete 4D matrices [SCENARIO, GCM, RCM, MEM-
BER] to deliver robust messages, where members are several simulations of each
(SCENARIO, GCM, RCM) triplet. However, the main limitation of RCM is their
high computational costs which makes the completion of such matrices impossible.

This study proposes a novel hybrid downscaling method to enlarge the size of
RCM simulation ensembles. The idea is to combine the advantages of both dy-
namical and statistical downscaling to tackle their respective limits. This statistical
RCM-emulator uses Machine Learning methods to learn the relationship between
large scale fields and local scale variables inside regional climate simulations. It
aims to estimate the downscaling function included in the RCM in order to apply
it to new GCM simulations. This framework will allow to learn this function on the
entire RCM domain, in past and future climate, under different scenarios. Besides,
the emulator relies on Machine Learning algorithms with low computational costs,
which will enable to increase RCM simulation ensembles and to better explore the
uncertainties associated with these high resolution simulations.

Hybrid statistical-dynamical downscaling methods have already been proposed.
They are methods which combine, in different ways, regional climate models and
statistical approaches to obtain local climate information. Several studies such as
Pryor and Barthelmie (2014), Vrac et al (2012) or Turco et al (2011) perform 2-step
downscaling by applying ESD methods to RCM simulations. Colette et al (2012)
apply bias correction methods to GCM outputs before downscaling with RCMs.
Maraun and Widmann (2018) are among the first to mention the concept of emula-
tors. Few studies have combined ESD and DD for the same purpose as in this study.
For instance, Walton et al (2015) propose a statistical model which estimates from
GCM outputs, the high resolution warming pattern for each month in California.
It is calibrated using RCM simulations and relies on a simple linear combination of
two predictors from the GCM (the monthly mean over the domain and an indica-
tor for the land/sea contrast) plus an indicator for the spatial variance (obtained
thanks to PCA). Berg et al (2015) adapt the same protocol for monthly changes
in precipitation over California. With respect to those pioneer studies, we propose
here to further develop this approach by using a neural network based method and
by emulating the full time series at the input time scale, allowing to explore daily
climate extremes.

In recent years, climate science has taken advantage of the recent strides in per-
formances of Deep Learning algorithms (see Lecun et al, 2015, for an overview).
Indeed, thanks to their capacity to deal with large amounts of data and the strong
ability of Convolutional Neural Network (CNN) (LeCun et al, 1998) to extract high
level features from images, these algorithms are particularly adapted to climate and
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weather sciences. Reichstein et al (2019) present a complete overview of the climate
studies applying Deep Learning and future possibilities. In particular, Vandal et al
(2017, 2019) and Baño-Medina et al (2020, 2021) showed the good ability of Convo-
lutional Neural Network (CNN) architecture to learn the transfer function between
large scale fields and local variables in statistical downscaling applications. Baño-
Medina et al (2021) confirms the suitability of CNN for ESD in an inter-comparison
study, while Vandal et al (2017) demonstrates the good performances of CNN in
front of a state-of-the-art bias correction method. The concept of emulator is men-
tioned in Reichstein et al (2019) as surrogate models trained to replace a complex
and computationally expensive physical model (entirely or only parts of it). Once
trained, this emulator should be able to produce simulations much faster than the
original model. In this context, the RCM-emulator proposed here is based on a dif-
ferent fully convolutional neural network architecture known as UNet (Ronneberger
et al, 2015). Wang et al (2021) propose a different emulator following a different
strategy than ours as they train it using a low and high-resolution version of the
same RCM and another type of neural network (namely CGAN).

This study presents and validates the concept of statistical RCM-emulator. We
will focus on emulating the near-surface temperature in a RCM over a specific do-
main, including high mountains, shore areas, and islands in Western Europe. This
domain regroups areas where the RCM presents added value compared to GCM but
remains small enough to perform quick sensitivity tests. This paper is organized
as follows: Section 2 presents the whole framework to define, train and evaluate
the emulator, while Section 3 shows the emulator results. Finally, Sections 4 and 5
discuss the results of the emulator and provide conclusions.

3.2 Methodology
This section provides a complete description of the UNet-based RCM-emulator

used in this paper. The notations are summarised in Table 3.1. The RCM-emulator
uses a neural network architecture to learn the relationship between large-scale fields
and local-scale variables inside regional climate simulations. RCMs include a down-
scaling function (F) which transforms large scale information (X,Z) into high reso-
lution surface variables (Y). The statistical RCM-emulator aims to solve a common
Machine Learning problem

Y = F (X, Z)

which is to estimate F by F̂ in order to apply it to new GCM simulations. The
following paragraphs describe the list of predictors used as inputs and their do-
main, the predictand (or target) and its domain, the neural network architecture,
the framework used to train the emulator and the metrics used to evaluate its per-
formances.

3.2.1 Models and simulations
This study focuses on the emulation of the daily near-surface temperature from

EURO-CORDEX simulations based on the CNRM-ALADIN63 regional climate

56



Chapter 3. RCM-Emulator: Concept and first evaluation

Table 3.1: Notations

Notation Description Dimensions

i, j
Spatial indexes over

input grid {i, j} ∈ [[1 , I]] × [[1 , J ]]

k, l
Spatial indexes over

target grid {k, l} ∈ [[1 , K]] × [[1 , L]]

t Temporal index, daily t ∈ N
x 2-D variables index List of 2D Variables : V 2D
z 1-D variables index List of 1D Variables : V 1D

X
Set of 2D input
for the emulator Xt,i,j,x ∈ {N × [[1 , I]] × [[1 , J ]] × V 2D}

Z
Set of 1D input
for the emulator Zt,z{N × V 1D}

Y
Target : Daily

Near-Surface Temperature Yt,k,l ∈ {N × [[1 , K]] × [[1 , L]]}

F Downscaling function of the RCM
F̂ Emulator : Estimation of F

model (Nabat et al, 2020) driven by the CNRM-CM5 global climate model used
in CMIP5 (Voldoire et al, 2013). The latter provides lateral boundary conditions,
namely 3D atmospheric forcing at 6-hourly frequency, as well as sea surface temper-
ature, sea ice cover and aerosol optical depth at monthly frequency. The simulations
use a Lambert Conformal grid covering the European domain (EUR-11 CORDEX)
at the 0,11◦ (about 12.5 km) scale (Jacob et al, 2014). The historical period runs
from 1951 to 2005. The scenarios (2006-2100) are based on two Representative
Concentration Pathways from the fifth phase of the Coupled Model Intercompari-
son Project (CMIP5): RCP4.5 and RCP8.5 (Moss et al, 2010). The monthly aerosol
forcing evolves according to the chosen RCP and the driving GCM.

3.2.2 Predictors
Neural Networks can deal with large datasets at low computational time. During

their self optimisation, they are able to select the important variables and regions
for the prediction. In this way, a large number of raw predictors can be given to
the learning algorithm, with minimum prior selection (which could introduce some
bias) or statistical pre-work (which might delete some of the information). Several
ESD studies (Lemus-Canovas and Brands, 2020; Erlandsen et al, 2020) show that
the right combination of predictors depends strongly on the target region and the
season. The RCM domains are often composed of very different regions in terms
of orography, land types, distance to the sea, etc. For these reasons, we decided
to give all potentially needed predictors to the emulator and leave the algorithm to
determine the right combination to be used to predict each RCM grid point.

The set of predictors (X, Z) used as input in the emulator is composed of 2
dimensional variables X, and 1D predictors Z (Table 3.2). The set of 2D vari-
ables includes atmospheric fields commonly used in ESD (Baño-Medina et al, 2020;
Gutiérrez et al, 2019) at different pressure levels. We also added the total aerosol
optical depth present in the atmosphere since it constitutes a key regional driver of
the regional climate change over Europe (Boé et al, 2020). It leads to 19 2D pre-

57



3.2. Methodology

Table 3.2: List of predictors

2D Variables
Field Altitude Levels Variables Notation Units Temporal Aggregation Dimension

Geopotential 850, 700, 500 hPa
zg500
zg700
zg850

m Daily mean [i, j]

Specific Humidity 850, 700, 500 hPa
hus500
hus700
hus850

Daily mean [i, j]

Temperature 850, 700, 500 hPa
ta500
ta700
ta850

K Daily mean [i, j]

Eastward Wind
850, 700, 500 hPa

+
Surface

ua500
ua700
ua850
uas

m/s Daily mean [i, j]

Northward Wind
850, 700, 500 hPa

+
Surface

va500
va700
va850
vas

m/s Daily mean [i, j]

Sea Level Pressure Surface psl Pa Daily mean [i, j]
Total Aerosol Optical

Depth forcing TAOD Monthly mean [i, j]

1-D Variables
Daily spatial means

of 2D variables
x

with x ∈ V 2D
Daily [#V 2D]

Daily spatial standard
deviation

of 2D variables

•
x

with x ∈ V 2D
Daily [#V 2D]

Total Anthropogenic
greenhouses gas

forcings
ant ghg Yearly [1]

Solar and Ozone
forcings sol, oz Yearly [2]

Seasonal Indicators
Cos( 2πt

365) ; Sin( 2πt
365) cos,sin Daily [2]

dictors. These variables are normalised (see Equation 3.1) according to their daily
spatial mean and standard deviation so that they all have the same importance for
the neural network before the training.

The set of 1D variables includes external forcing also given to the RCM: the total
concentration of greenhouse gases and the solar and ozone forcings. It also includes
a cosinus, sinus vector to encode the information about the day of the year. Given
that the 2D variables are normalised at each time step by their spatial mean, they
don’t carry any temporal information. For this reason, the daily spatial means and
standard deviations time series for each 2D variable are included in the 1D input,
bringing the size of this vector to 43. In order to always give normalised inputs to
the emulator, Z is normalized (see Equation 3.2 ) according to the means and stan-
dard deviations over a reference period (1971-2000 here) chosen during the emulator
training. The same set of means and standard deviations will be used to normalise
any low resolution data to be downscaled by the emulator.
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X̃t,i,j,x = Xt,i,j,x − X t,x
•

Xt,x

(3.1)

with X t,x =

I∑
i=1

J∑
j=1

Xt,i,j,x

I × J
and

•
Xt,x =

√√√√√√
I∑

i=1

J∑
j=1

(Xt,i,j,x − X t,x)2

I × J

This decomposition of the large scale information consists in giving separately
the spatial structure of the atmosphere (X) and the temporal information (Z) to
the emulator. Thanks to the neural network architecture described in Section 3.2.4,
we force the emulator to consider both items of information equally.

Z̃t,z = Zt,z − Zref,z
•
Zref,z

(3.2)

with Zref,z =

∑
t∈R

Zt,z

nb days in R
and

•
Zref,z =

√√√√√ ∑
t∈R

(Zt,z − Zref,z)2

nb days in R

where R is the reference period.

The aim of the emulator is to downscale GCM simulations. Klaver et al (2020)
shows that the effective resolution of climate models is often larger (about 3 times)
than its nominal resolution. For instance, CNRM-CM5 is more reliable at a coarser
resolution, probably about 450 to 600 km, than at its own horizontal resolution (≈
150 km). For this reason, the set of 2D predictors are smoothed with a 3 × 3 mov-
ing average filter. The grid of the GCM is conserved, with each point containing a
smoother information than the raw model outputs.

For this study the input domain is defined around the target domain (described
in Section 3.2.3). It is a 16 × 16 (J = I = 16 in Table 3.1) CNRM-CM5 grid box
visible on Figure 3.1. Each observation given to the emulator (see Figure 3.1 for an
illustration) is a day t and it is composed of a 3D array (Xi,j,x), where the two first
dimensions are the spatial coordinates and the third dimension lists the different
variables chosen as predictors, and a 1D array (Zz) regrouping all the 1 dimensional
inputs.

3.2.3 Predictands
In this study, to assess the ability of the RCM-emulator to reproduce the RCM

downscaling function, we focused on the emulation of the daily near surface temper-
ature over a small but complex domain. The target domain for this study is a box
of 64x64 RCM grid points at 12km resolution (about 600 000 km2) centred over the
south of France (Figure 3.1). It gathers different areas of interest for the regional
climate models. It includes three mountain massif (Pyrenees, Massif Central and
French Alps) which are almost invisible at the GCM scale (specially the Pyrenees).
The domain also includes coastlines on the Mediterranean side and on the Atlantic
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F

(eX )
t,eZ

Yt

t = 1st August 2000

Figure 3.1: Illustration of an observation for a randomly-chosen day. Left: each map
represents a 2D input variables (X), on the input domain, and the blue numbers corre-
spond to the 1D variables (Z). Right: an example of Y , the near surface temperature on
the target domain.

side. Thanks to a better representation of the coastline at the RCM resolution, it
takes better into account the sea effect on the shore climate. It was also important
for us to add small islands on our evaluation domain, such as the Baleares (Spain),
since they are invisible on the GCM grid and the RCM brings important informa-
tion. Finally, three major rivers (plotted in blue in Figure 3.1) are on the domain
with interesting impacts on climate (commented in Section 3.3): the Ebro in Spain,
the Garonne in southwest of France and the Rhone on the east of the domain. This
domain should therefore illustrate the added value brought by a RCM at local scale
and be a good test-bed on the feasibility of emulating high resolution models.

3.2.4 Deep learning with UNet
Neural network model as a black-box regression model

The problem of statistical downscaling and of emulation of daily near-surface
variables may be seen as a statistical regression problem where we need to build
the best relationship between the output response Y and the input variables (X, Z).
When looking at the L2 loss between the prediction Ŷ and the true Y , the optimal
link (denoted by F below) is theoretically known as the conditional expectation:

F (X, Z) = E[Y |(X, Z)]. (3.3)
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Unfortunately, since we will only have access to a limited amount of observations
collected over a finite number of days, we shall work with a training set formed
by the collected observations ((Xt, Zt), Yt)1≤t≤T and try to build from the data an
empirical estimation F̂ of the unknown F .

For this purpose, we consider a family of relationship between (X, Z) and Y
generated by a parametric deep neural network, whose architecture and main pa-
rameters are described later on. We use the symbol θ to refer to the values that
describe the mechanism of one deep neural network, and Θ as the set of all possible
values of θ. Hence, the family of possible relationships described by a collection of
neural networks correspond to a large set (Fθ)θ∈Θ. Deep learning then corresponds to
the minimization of a L2 data-fidelity term associated to the collected observations:

F̂ = arg min
Fθ,θ∈Θ

T∑
t=1

∥Yt − Fθ(Xt, Zt)∥2. (3.4)

Training a deep neural network

To train our emulator between low resolution fields and one high resolution target
variable, we used a neural network architecture called UNet whose architecture is
described below. As usual in neural networks, the neurons of UNet are organised in
layers. Given a set En of input variables denoted by (xi)i∈En of an individual neuron
n, the output of n corresponds to a non-linear transformation ϕ (called activation
function) of a weighted sum of its inputs:

n ((xi)i∈En) = ϕ (⟨(wi)i∈En , (xi)i∈En⟩) = ϕ

 ∑
i∈En

wixi

 . (3.5)

The connection between the different layers and their neurons then depends on
the architecture of the network. In a fully connected network (multilayer perceptron)
all the neurons of a hidden layer are connected to all the neurons of the previous
layer. The deepness of a network then depends on the number of layers.

As indicated in the previous paragraph, the machine learning procedure corre-
sponds to the choice of a particular set of weights over each neuron to optimise a
data fidelity term. Given a training set, a deep learning algorithm then solves a dif-
ficult multimodal minimisation problem as the one stated in (3.4) with the help of
gradient descent strategies with stochastic algorithms. The weights associated with
each neuron and each connection are then re-evaluated according to the evolution of
the loss function, following the backpropagation algorithm Rumelhart and Hinton
(1986). This operation is repeated over all the examples until the error is stabilized.
Once the neural network is trained, it may be used for prediction, i.e., to infer the
value Y from new inputs (X, Z).

We emphasize that the bigger the dimension of the inputs and outputs, the larger
the number of the parameters to be estimated and so the bigger the training set must
be. Therefore, the quality of the training set is crucial: missing or wrong values will
generate some additional fluctuation and errors in the training process. Moreover,
we also need to cover a sufficiently large variety of scenarios in the input variables
to ensure that our training set covers a wide range of possible inputs. For all these
reasons, climate simulation datasets are ideal to train deep learning networks.
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...

Figure 3.2: Scheme of the neural network architecture used for UNet emulator. The part
of the network in the red frame corresponds to the original UNet defined in Ronneberger
et al (2015)

UNet architecture

The emulator proposed in this study relies on a specific architecture called UNet
introduced by Ronneberger et al (2015). It is a fully convolutional architecture, i.e.
all layers are convolutional layers known for their strength to deal efficiently with
image data. UNet is known for its good ability to identify different objects and areas
in an image. It involves gathering pixels that correspond to the same object. This
key feature is naturally interesting for meteorological maps. The emulator needs to
identify the different meteorological structures present in the low resolution predic-
tors for a given day in order to predict the corresponding high resolution near-surface
temperature. Moreover, the good performances of UNet have been demonstrated
in problems such as pixel-wise regression (Yao et al, 2018) or super-resolution (Hu
et al, 2019), which are comparable to ours.

The original UNet architecture is illustrated in the red frame in Figure 3.2 and
more precisely described in appendix 3.6.2. It is composed of an encoding part on
the left side, which reduces the spatial dimension of the input image while the pixel
dimension gets deeper. On the right side, the expansive path decodes the encoded
information to reconstruct the target image. Each encoding step is recalled in the
decoding part, allowing the network to find the best way to the target image through
different levels.

The architecture we propose is adapted from the original UNet to suit our prob-
lem. Firstly, the input object is a description of the climate conditions leading to
the target image. It is then a 3D object while the classical UNet takes a single image
as input. This aspect differs from the natural use of UNet but does not modify its
construction. Secondly, we added a second source of input, the set of 1D predictors
(see table 3.2) which is given at the bottom of the UNet (see Figure 3.2). This 1D
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Daily time series of RCM-GCM spatial correlation of TA at 700hpa over input domain

Figure 3.3: Time series of spatial correlation of the atmospheric temperature at 700hpa
between ALADIN63 and its driving GCM, CNRM-CM5, over the input domain.

object is encoded by a dense network and then concatenated with the encoded 2D
inputs. The ”U” shape of the UNet architecture allowed us to give this information
such that the network treats equally the two sources of input. Finally, we extended
the expansive part of the UNet to reach the higher resolution of the output as illus-
trated in Figure 3.2.

We chose the Mean Square Error (MSE) as the loss function to train the network,
as we have a regression problem. Moreover, it is well adapted for variables following
Gaussian-like distribution, such as temperature. The neural network was built and
trained using the Keras Tensorflow environment in Python (https://keras.io). The
network trained for this study has about 25 million parameters to fit.

3.2.5 Training of the emulator : Perfect Model Framework
As any statistical downscaling and any machine learning method, the emulator

needs to be calibrated on a training set. It consists in showing the emulator many
examples of predictors and their corresponding target such that the parameters of
the network can be fitted as mentioned in Section 3.2.4. The emulator is trained
in a perfect model framework, with both predictors and predictands coming from
the same RCM simulation. The intuitive path to train the emulator is to use GCM
outputs as predictors and its driven RCM outputs as predictands, but there are
many reasons for our choice. First of all, it guarantees a perfect temporal corre-
lation between large scale predictors and a local scale predictand. Indeed, Figure
3.3 shows that GCM and RCM large scales are not always well correlated, with
an average correlation of 0.9 and 10% of the days with a coefficient of correlation
lower than 0.75. These mismatches are quite well known and often due to internal
variability as explained by Sanchez-Gomez et al (2009); Sanchez-Gomez and Somot
(2018). Moreover, there are more consistent biases (discussed in Section 3.4.1) be-
tween GCM and RCM large scales. It is of primary importance that the inputs and
outputs used to calibrate the model are perfectly consistent, otherwise, the emulator
will try to learn a non-existing or non-exact relationship. In this context, the perfect
model framework allows us to focus on the downscaling function of the RCM, specif-
ically. This approach is similar to the ”super-resolution downscaling” mentionned
by Wang et al (2021) and deployed by Vandal et al (2017) using observational data
in a empirical statistical downscaling framework.

The training protocol is summarised in Figure 3.4. In a first step, the RCM
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Figure 3.4: Scheme of the protocols for the training (left) and the two steps of evaluations
(center and right).

simulation outputs are upscaled to the GCM resolution (about 150km) thanks to a
conservative interpolation. This first step transforms the RCM outputs into GCM-
like outputs. This upscaled RCM is called UPRCM in the rest of this paper. In the
second step, these UPRCM outputs are smoothed by a 3x3 moving average filter
to respect the protocol described in Section 3.2.2. This smoothing also targets to
delete any local scale information which might persist through the upscaling step
(as discussed in Section 3.4.3).
The near-surface temperature on the target domain is extracted from the same RCM
simulation. Following this procedure, the emulator is trained using the ALADIN63
simulation forced by CNRM-CM5, covering the 1950-2100 period with the RCP8.5
scenario from 2006. As shown in Figure 3.4, we will use a different simulation driven
by a different RCP scenario for the evaluation. We chose the two most extreme
simulations (historical and RCP8.5) for the training in order to most effectively
cover the range of possible climate states since the emulator does not target to
extrapolate any information. Future studies could explore the best combination of
simulations to calibrate the emulator.

3.2.6 Evaluation metrics
The emulated temperature series (Ŷ ) will be compared to the original RCM

series (Y ) (mentioned as “RCM truth” in the rest of this paper) through statistical
scores described below. Each of these metrics will be computed in each point over
the complete series:

• RMSE. The Root Mean Squared Error measures the standard deviation of
the prediction error (in ◦C):

RMSE(Y, Ŷ ) =
√√√√ 1

T

∑
t

(Yt − Ŷt)2 (3.6)

• Temporal Anomalies Correlation.This is the Pearson correlation coeffi-
cient after removing the seasonal cycle:

ACC(Y, Ŷ ) = ρ(Ya, Ŷa) , (3.7)
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with ρ the Pearson correlation coefficient and Ya and Ŷa are the anomaly series
after removing a seasonal cycle computed on the whole series.

• Ratio of Variance. It indicates the performance of the emulator in repro-
ducing the local daily variability. We provide this score as a percentage.

RoV (Y, Ŷ ) = V ar(Ŷ )
V ar(Y ) ∗ 100 (3.8)

• Wasserstein distance. It measures the distance between two probability
density functions (P, Q). It relies on the optimal transport theory (Villani,
2009) and measures the minimum required “energy” to transform P into Q.
The energy here corresponds to the amount of distribution weight that is
needed to be moved multiplied by the distance it has to be moved. In this
study we use the 1-d Wasserstein distance, and its formulation between two
samples becomes a rather simple function of ordered statistics:

W1(f(Y ), f(Ŷ )) =
T∑

i=1
|Y(i) − Ŷ(i)| , (3.9)

with f(•) the probability density function associated with the sample •.

• Climatology. We compare the climatology maps over present (2006-2025)
and future (2081-2100, not shown in Section 3.3) climate. The RCM truth
and emulator maps are shown with their spatial correlation and RMSE. The
error (emulator minus RCM) map is also computed.

• Number of days over 30◦C. Same as climatology for the maps showing the
number of days over 30◦C.

• 99th Percentile. Same as climatology for the maps showing the 99th per-
centile of the daily distribution.

• Climate Change. Climate change maps for the climatology, the number of
days over 30◦C and the 99th percentile (delta between future (2080-2100) and
present (2006-2100) period).

These metrics are at the grid point scale and are presented as maps. However,
to summarise these maps with few numbers we can compute their means and their
super-quantile of order 0.05 (SQ05) and 0.95 (SQ95). The super-quantile α is defined
as the mean of all the values larger (resp. smaller) than the quantile of order α,
when α is larger (resp. smaller) than 0.5. These values are shown in the Figures of
Section 3.3 and Tables 3.3 and 3.4 in supplementary material.

3.2.7 Benchmark
For this study, we propose as benchmark the near surface temperature from the

input simulation (before the moving average smoothing), interpolated on the target
grid by bilinear interpolation. As this study is the first to propose such an emulator,
there is no already established benchmark. The one proposed here is a naive high-
resolution prediction given available predictors (low-resolution), it is used as a basic
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reference and not a potential competitor for the emulator. It allows the reader to
locate the emulator somewhere in between the simplest possible downscaling (simple
interpolation of the original low resolution simulation) and the most complex one
(RCM simulation). All the metrics introduced in Section 3.2.6 will be applied to
our benchmark.

3.3 Results

This section presents the emulator performances in terms of its computational
costs (in Section 3.3.1) and its ability to reproduce the near surface temperature time
series at high resolution. As illustrated in Figure 3.4, we will evaluate the emulator in
two steps, (1) in the perfect model world (Section 3.3.2) and (2) when the emulator
inputs come from a GCM simulation (Section 3.3.3). The RCM simulation used to
evaluate the model (also called target simulation) is the ALADIN63, RCP45, 2006-
2100 forced by the GCM simulation CNRM-CM5, RCP45, 2006-2100. Note that the
emulator never saw the target simulation during the training phase. This evaluation
exercise illustrates a potential use of the emulator: downscaling a scenario that the
RCM has not previously downscaled.

3.3.1 Computational efficiency

The emulator is trained on a GPU (Nvidia, GeForce GTX 1080 Ti). About 60
epochs are necessary to train the network, and each epoch takes about 130 seconds
with a batch size of 100 observations. The training of the emulator takes about
2 hours. Once the emulator is trained, the downscaling of a new low resolution
simulation is almost instantaneous (less than a minute). It is a significant gain in
time compared to RCM, even if these time lengths do not include the preparation of
the inputs, which depends mainly on the size of the series to downscale and on the
data accessibility. It would, when including the input preparation, take only a few
hours on a simple CPU or GPU to produce a simulation with the trained emulator,
while it takes several weeks to perform a RCM simulation on a super-computer.

3.3.2 Evaluation step 1 : Perfect model world

In a first step, the emulator is evaluated in the perfect model world, meaning
that the inputs come from the UPRCM simulation. This first evaluation step is
necessary to control the performances of the emulator in similar conditions as during
its training. Moreover, the perfect model framework guarantees perfect temporal
matches between the large scale low resolution fields (the inputs) and the local scale
high resolution temperature (the target). The emulator should then be able to
reproduce perfectly the temperature series that is simulated by the RCM. This first
evaluation of the emulator is divided in two parts. In the section 3.3.2 we analyse the
ability of the emulator to reproduce the RCM simulation. The section 3.7 compares
the specific emulator proposed in this study with respect to two others emulators
relying on standard empirical statistical downscaling methods.
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(b)

(a)

Figure 3.5: Randomly chosen illustration of the production of the emulator (in evaluation
step 1) with inputs coming from UPRCM: (a) temperature (◦C) at a random day over
the target domain for the raw UPRCM, the interpolated UPRCM, the emulator and the
RCM truth and (b) random year time series (◦C) for 4 particular grid points.

Ability to reproduce the RCM simulation

The emulator aims to learn and reproduce the downscaling function included in
the RCM, i.e., to transform the low resolution daily information about the state
of the atmosphere into high-resolution daily surface temperature. We dedicate this
first evaluation section to comparing the prediction of the emulator with the RCM
truth in perfect model. The benchmark for this first evaluation is the UPRCM near
surface temperature re-interpolated on the RCM grid. It is referred as “I-UPRCM”.
We are aware that the “I-UPRCM” field is a very simple benchmark and can not
compete with the emulator in terms of realism but it allows to simply measure the
action of the emulator regarding the input simulation.

Figure 3.5a illustrates the production of the emulator for a random day regarding
the target and the benchmark. The RCM truth map presents a refined and complex
spatial structure largely missing in the UPRCM map. Moreover, it is evident on
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(a)

(b)

(c)

Figure 3.6: (a) Daily probability density functions from the RCM truth, the emulator (in
evaluation step 1) and the I-UPRCM at 4 particular grid points over the whole simulation
period. (b) (resp. (c)) Maps of performance scores of the emulator (resp. of the I-UPRCM)
with respect to the RCM truth computed over the whole simulation period. For each map,
the values of the spatial mean and super-quantiles (SQ05 and SQ95) are added.
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the I-UPRCM map that the simple bilinear interpolation does not recreate these
high resolution spatial patterns. The emulator shows for this given day an excellent
ability to reproduce the spatial structure of the RCM truth. It has very accurate
spatial correlation and RMSE and estimates the right temperature range. On Fig-
ure 3.5b, we show the daily time series for four specific points shown on the RCM
truth map (Marseille, Toulouse, a high Pyrenees grid point and a point in Majorca)
during a random year. The RCM transforms the large scale temperature (visible
on I-UPRCM) differently over the four points. In the Pyrenees, the RCM shifts
the series and seems to increase the variance. In Marseille, it appears to produce
a warmer summer without strongly impacting winter characteristics, and it seems
to be the exact opposite in Majorca. On the contrary, in Toulouse, I-UPRCM and
RCM are close. For each of these 4 cases, the emulator reproduces the sophistication
of the RCM series almost perfectly.

Figure 3.5a gives the impression that the emulator has a good ability to reproduce
the complex spatial structure brought by the RCM, and we can generalise this
result with the other Figures. First of all, the performance scores (Figure 3.6b)
of the emulator confirm that this good representation of the temperature’s spatial
structure is robust over the whole series. The spatial homogeneity of the score maps
tends to show that the emulator does not have particular difficulties over complex
areas. The spatial correlation (equal to 1) and the very low spatial RMSE (0.07◦C)
of the climatology maps in Figure 3.7 in the present climate support this result. In
particular, it is worth noting on the climatology maps that the altitude dependency
is well reproduced as well as the warmer patterns in the Ebro and Rhone valley
or along the coastlines. Moreover, the comparison with the interpolated UPRCM
shows the added-value of the emulator and in particular its ability to reinvent the
fine-scale spatial pattern of the RCM truth from the large-scale field. Indeed, the
score maps of the I-UPRCM (Figure 3.6c) or the present climatology error map
( Figure 3.7a) shows strong spatial structures, highlighting the regions where the
RCM brings added value and that the emulator reproduces successfully.

The RCM resolution also allows to have a better representation of the daily vari-
ability at the local scales over critical regions. The difference in variance between the
I-UPRCM and the RCM is visible on Figure 3.6c. The I-UPRCM underestimates
the variability and is poorly correlated over the higher reliefs, the coastlines and
the river valley. In contrast, the emulator reproduces more than 90% of the RCM
variance over the whole domain. The RMSE and temporal correlation maps of the
emulator confirm the impression given by Figure 3.5b that it sticks almost perfectly
to the RCM truth series. Moreover, the RCM daily variability is strongly dependent
on the region. Indeed, the RCM transforms the “I-UPRCM” pdfs in different ways
across the domain (visible on Figures 3.6ac). Figures 3.6ab show that the emulator
succeeds particularly well in filling these gaps.
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Figure 3.7: (a) Maps of long-term mean climatologies, (b) number of days over 30◦C and
(c) 99th percentile of daily near-surface temperature for a present-climate period (2006-
2025) and for the climate change signal (2080-2100 minus 2006-2025), for the RCM truth,
the emulator (in evaluation step 1) and the I-UPRCM. On each line, the two last maps
show the error map of the emulator and the I-UPRCM. For each map, the spatial mean
and super-quantiles (SQ05 and SQ95) are added, as well as the spatial correlation and
spatial RMSE for the emulator and I-UPRCM maps.

The emulator’s good representation of the daily variability and temporal correlation
involves a good representation of the extreme values. The probability density
functions of the four specific points on Figure 3.6a show that the entire pdfs are
fully recreated, including the tails. The Wasserstein distance map extends this
result to the whole target domain. The two extreme scores computed for the present
climate on Figure 3.7bc confirm these results. The 99th percentile emulated map is
almost identical to the target one verified by the difference map, with a maximum
difference of less than 1◦C for values over 35◦C. The spatial pattern of the 99th
percentile map is here again correctly captured by the emulator, particularly along
the Garonne river that concentrates high extremes. The number of days over 30◦C
is a relatively more complicated score to reproduce since it involves an arbitrary
threshold. The emulator keeps performing well with a high spatial correlation
between the emulator and the RCM truth. However, it appears that the emulator
misses some extreme days, involving a lack in the intensity of some extremes metrics.

Finally, the high-resolution RCM produces relevant small-scale structures in
the climate change maps. In particular, RCMs simulate an elevation-dependent
warming (see the Pyrenées and Alps areas Kotlarski et al, 2015), a weaker warming
near the coasts (see the Spanish or Atlantic coast) and a specific signal over the
islands as shown in the second lines of Figures 3.7ac. It can be asked if the emulator
can reproduce these local specificities for the climate change signal. The emulator
is able to capture this spatial structure of the warming but with a slight lack of
intensity which is general over the whole domain. The reproduction of the climate
change in the extremes suffers the same underestimation of the warming but also
offers the same good ability to reproduce the spatial structure, with high spatial
correlation.

This first evaluation step shows that if the emulator is still perfectible, in particular
when looking at extremes or climate change intensity, it is able to almost perfectly
reproduce the spatial structure and daily variability of the near surface temperature
in the perfect model world.

Comparison to simpler emulators

This section validates the UNet-based emulator by comparing its performances to
two other emulators based on standard empirical statistical downscaling methods.
The perfect model framework allows comparing different emulators since the RCM
truth is the ideal reference when downscaling the UPRCM simulation.
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(a)

(b)

(c)

Figure 3.8: (a) (resp (b)) Maps of performance scores of the CDFt emulator (resp. of
the MLR emulator) with respect to the RCM truth computed over the whole simulation
period in perfect model evaluation. For each map, the values of the spatial mean and
super-quantiles (SQ05 and SQ95) are added. (c) Climate change maps and the difference
maps with respect to the RCM truth for the CDFt emulator and the MLR emulator. As
on figure 3.6 and 3.7 the spatial scores are added on the maps.

The two comparison emulators proposed here rely on very classical ESD methods.
The first one is CDFt (Michelangeli et al, 2009; Vrac et al, 2012), which belongs
to the Model Output Statistic family of methods. It can be considered as an
extended ”quantile-quantile” method. It transforms the low resolution temperature
cumulative distribution function into the high resolution one. The second method
is a simple Multiple Linear Regression (MLR Huth, 2002; Huth et al, 2015),
which belongs to the Perfect Prognosis family of method. The inputs used for the
MLR are the same as for the UNet emulator, but only the closest low resolution
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point is used for the 2D variables. The methods and the way we used them as
RCM-emulator are more precisely described in appendix 3.6.1. Both methods are
evaluated in the VALUE project (Gutiérrez et al, 2019), showing reasonable results.
They are trained in the same conditions as the UNet emulator, following the perfect
model framework described in Section 3.2.5.

The results are illustrated on Figure 3.8 and a more complete evaluation can be
found in the appendix 3.6.1. As for the neural network emulator, both CDFt and
MLR emulators present a good ability to reproduce the small scale information
brought by the RCM. They present a good variance ratio and temporal correlation
leading to a good RMSE. The climate change maps (Figure 3.8c) show that both
methods are also able to reproduce the RCM climate change maps, even if the
MLR method seems to have more difficulties and particularly over the relief. These
results are expected as these methods showed good performances in statistical
downscaling and both methods could constitute reasonable emulators. However,
the neural network emulator performs better in most metrics. Indeed, the UNet
Emulator presents a lower RMSE showing a better accuracy to fit the original RCM
series. It also better captures the spatial structure of the RCM truth, as shown by
the spatial correlation scores on the climatology, and extremes maps (Figures 3.7,
3.8 and appendix 3.6.1).

According to this comparison, we conclude that the three approaches may con-
stitute good RCM-emulators but the one based on the UNet approach is far
better, especially for the correlation with the RCM truth. As the UNet-approach
is not significantly more complex to apply and not costly to train, we decide
to select it as our main emulator for the following of the article, that is to say
to illustrate the way RCM-emulators can be applied in practical to downscale
GCM simulations. Furthermore, the UNet based emulator, as well as the two
simpler emulators, are possible emulator among many other options. We invite the
statistical downscaling community to propose other emulators, relying on different
statistical methods, trained in different ways, to find the best tool to emulate RCMs.

3.3.3 Evaluation step 2 : GCM world
In this second evaluation step, we directly downscale a GCM simulation. The
benchmark for this evaluation is the near surface temperature from the GCM,
interpolated on the target grid. It will be referred to as I-GCM. The emulated
series and the benchmark are compared to the RCM simulation driven by the same
GCM simulation.

Figure 3.9a illustrates the production of the emulator regarding the benchmark and
RCM truth for the same day as Figure 3.5a. First of all, as for the I-UPRCM, the
I-GCM map does not show any of the complex RCM spatial structures. The I-GCM
is less correlated with the RCM and warmer than the I-UPRCM. In contrast, the
emulator reproduces the complex spatial structure of the RCM very well with a
spatial correlation of 0.98 but appears to have a warm bias with respect to the
RCM truth. The four time series are consistent with the previous section, with
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(b)

(a)

Figure 3.9: Randomly chosen illustration of the production of the emulator (in evaluation
step 2) with inputs coming from the GCM: (a) near-surface temperature (◦C) at a random
day over the target domain for the the GCM, the interpolated GCM, the emulator, and
RCM truth and (b) random year time series (◦C) for 4 particular grid points.

fundamental differences between I-GCM and RCM, which the emulator captured
very well. However, the correlation between the emulator and the RCM seems to
be not as good as in the perfect model framework.

Figure 3.9b is a very good illustration of the RCM-GCM large scale de-correlation
issue presented in Section 3.2.4. Indeed the less good correlation of the emulator
with the RCM is probably due to mismatches between GCM and RCM large scales.
For instance,in the beginning of November, on the time series shown on Figure
3.9b, the RCM seems to simulate a cold extreme on the whole domain, which
appears neither in the interpolated GCM nor in the emulator. The same kind of
phenomenon occurs regularly along the series and is confirmed by lower temporal
correlations between the RCM truth and the I-GCM (Figure 3.10c) than with the
I-UPRCM (Figure 3.6c). According to this, the emulated series can not present a
good temporal correlation with the RCM truth since it is a daily downscaling of
the GCM large scale. Keeping in mind these inconsistencies, it is still possible to
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analyse the performances of the emulator if we leave aside these scores which are
influenced by the poor temporal correlation (RMSE, ACC).

As in the first step of the evaluation (Section 3.3.2), the spatial structure of the
RCM truth is well reproduced by the emulator. The present climatology map
(Figure 3.11a) has a perfect spatial correlation with the RCM. The added value
from the emulator is clear if compared to the interpolated GCM. The spatial
temperature gradients simulated by the GCM seem to be mainly driven by the
distance to the sea. On the other hand, the emulator manages to recreate the

(a)

(b)

(c)

Figure 3.10: (a) Daily probability density functions from the RCM truth, the emulator
(in evaluation step 2) and the I-GCM at 4 particular grid points over the whole simulation
period. (b) (resp. (c)) Maps of performance scores of the emulator (resp. of the I-GCM)
with respect to the RCM truth computed over the whole simulation period. For each map,
the spatial mean and super-quantiles (SQ05 and SQ95) are added.
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complex structures created by the RCM, related to relief and coastlines. The
emulator capacity to reproduce the RCM spatial structure seems as good as in
Section 3.3.2. The scores in Figure 3.10b present a good spatial homogeneity,
exactly like in the previous section 3.6b.

The error map in Figure 3.11(a) shows that the emulator is warmer in the present
climate than the RCM truth (+0.96◦C). This bias presents a North-South gradient
with greater differences over the North of the target domain, which is consistent
with the Wasserstein distance map on Figure 3.10b. The Wasserstein metric shows
that the density probability functions from the emulated series are further away
from the RCM truth with GCM-inputs than in UPRCM mode. The similarities
between the Wasserstein scores and the present climatology difference map indicate
that the emulator shifts the mean.

The daily variability is well reproduced by the emulator. As mentioned before, the
weaker RMSE (Figure 3.10b) is mainly due to the lower correlation between GCM
and RCM. But the ratio of variance demonstrates that the emulator manages to
reproduce the daily variability over the whole domain. The RCM brings a complex
structure of this variability (higher variability in the mountains than in plains, for
example), and the emulator, as in the first evaluation step, recreates this fine scale.
Moreover, the daily pdfs of the emulator (Figure 3.10a) are very consistent with the
RCM ones, and the same range of values is covered for each of the four particular
points.

This good representation of daily variability tends to suggest that the emu-
lator can reproduce the local extremes. Figures 3.11bc confirm these results,
with a very high spatial correlation between the emulator and the RCM truth
maps in present climate. The warmer extremes along the three river valleys
are present in both RCM and emulator maps, while they are absent from the
I-GCM maps. The warm bias observed in the present climatology map also
impacts these scores. The emulator map of the number of days over 30◦C in
the present climate shows more hot days than the RCM but the same spatial
structure. The map of the 99th percentile over the 2006-2025 period shows the
same observation, with a warm bias (+0.82) slightly lower than the climatology bias.

Finally, the climate change signal is also well captured by the emulator. The
different spatial patterns that bring the high resolution of the RCM in the Figures
3.11abc are also visible in the emulator climate change Figures. The emulator
represents a weaker warming than the RCM, observable in average warming but also
on the map of extremes. This underestimated warming is mainly due to the warm
bias between GCM and RCM, which is less intense in the future. For instance,
the warming from the emulator is 0.27◦C weaker on average over the domain
(with almost no spatial variation) than in the RCM. This number corresponds
approximately to the cold bias from the I-GCM (0.19◦C) plus the missed warming
by the emulator in the perfect model framework (0.07). This tends to show that
the emulator performs well in the GCM world but reproduces the GCM-RCM biases.
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(a)

(b)

(c)
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Figure 3.11: (a) Maps of long-term mean climatologies, (b) number of days over 30◦C
and (c) 99th percentile of daily near-surface temperature for a present-climate period
(2006-2025) and for the climate change signal (2080-2100 minus 2006-2025), for the RCM
truth, the emulator (in evaluation step 2) and the I-GCM. On each line, the two last maps
show the error map of the emulator and the I-GCM. For each map, the spatial mean and
super-quantiles (SQ05 and SQ95) are added, as well as the spatial correlation and spatial
RMSE for the emulator and I-GCM maps.

This section shows that the emulator remains robust when applied to GCM inputs
since it provides a realistic high-resolution simulation. As in the first step, the
emulator exhibits several desirable features with an outstanding ability to reproduce
the complex spatial structure of the daily variability and climatology of the RCM.
We also showed that the emulator remains consistent with its driving large scale,
which leads to inconsistencies with the RCM. In the next section, we will develop
this discussion further.

3.4 Discussion

3.4.1 On the inconsistencies between GCM and RCM
Several recent studies (Sørland et al, 2018; Bartók et al, 2017; Boé et al, 2020)
have highlighted the existence of large scale biases for various variables between
RCMs and their driving GCM, and have discussed the reasons behind these
inconsistencies. From a theoretical point of view, it is still controversial as to
whether these inconsistencies are for good or bad reasons (Laprise et al, 2008) and
therefore if the emulator should or should not reproduce them.

In our study, the emulator is trained in such a way that it focuses only on learning
the downscaling function of the RCM, i.e., from the RCM large scale to the
RCM small scale. Within this learning framework, the emulator can not learn
GCM-RCM large-scale inconsistencies, if there should be any. Therefore, when
GCM inputs are given to the emulator, the estimated RCM downscaling function
is applied to the GCM large scales fields, and any GCM-RCM bias is conserved
between the emulated serie and the RCM one. Figure 3.12 shows the biases for
the present-climate climatology between the GCM and the UPRCM over the input
domain for TA700 and ZG700, at the GCM resolution. The GCM seems generally
warmer than the UPRCM, which could partly explain the warm bias observed be-
tween the emulator results and the RCM truth in present climate (e.g., Figure 3.11).

These large scale biases between GCM and RCM raise the question of using the
RCM to evaluate the emulator when applied to GCM data. Indeed, if these
inconsistencies are for bad reasons (e.g., inconsistent atmospheric physics or
inconsistent forcings), the emulator somehow corrects the GCM-RCM bias for the
emulated variable. In this case, the RCM simulation cannot be considered as the
targeted truth. However, if the RCM revises the large scale signal for good reasons
(e.g., upscaling of the local added-value due to refined representation of physical
processes), then the design of the emulator should probably be adapted.
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Figure 3.12: Present (2006-2025) climatology differences for the atmospheric temper-
ature and geopotential at 700 hpa: CNRM-CM5 RCP45 minus ALADIN63 driven by
CNRM-CM5 RCP45 upscaled on the GCM grid.

In future studies, we plan to use RCM runs with spectral nudging (Colin et al,
2010), two-way nested GCM-RCM runs or global high-resolution simulations for
testing other modelling frameworks to further develop and evaluate the emulator.

3.4.2 On the stationary assumption
In the introduction of this paper, we state that the stationary assumption is one of
the main limitations of empirical statistical downscaling. The emulator proposed
here is similar in many ways to a classical ESD method, the main difference being
that the downscaling function is learnt in a RCM simulation. The framework used
to train the emulator is a good opportunity to test the stationary assumption for
the RCM-emulator. We train the same emulator, with the same neural network
architecture and same predictor set, but on the historical period (1951-2005) only.
Results are reported in Tables 3.3 and 3.4 in the supplementary material, this
version being named ’Emul-Hist’.

The perfect model (Table 3.3) evaluation constitutes the best way to evaluate the
validity of this assumption properly. Emul-Hist has a cold bias over the whole simu-
lation regarding the RCM truth and the range of emulators described in subsection
3.4.4. Moreover, this bias is much stronger for the future period (from 0.3◦C in
2006-2025 to 1.3◦C in 2080-2100). Emul-Hist manages to reproduce only 30% of
the climate change simulated by the RCM. It also fails to capture most of the spa-
tial structure of the warming since the spatial correlation between the Emul-hist
and RCM climate change maps (0.86) is closer to the I-UPRCM (0.82) and than
the main emulator (0.95) (see Figure 3.13). The Emul-hist average RMSE (1.35◦C)
over the whole series is also out of emulator range ([0.8; 0.86]). Results in GCM
evaluation are also presented (Table 3.4), but due to the lack of proper reference, it
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Figure 3.13: Maps of climatologies over present period (2006-2025) and climate change
signal (2080-2100 versus 2006-2025), for the RCM truth, the Emulator presented in section
3.3 and the Emul-Hist. The two last columns correspond to the error maps of the Emulator
and Emul-Hist with respect to the RCM truth. For each map, the spatial mean and super-
quantiles (SQ05 and SQ95) are added, as well as the spatial correlation and spatial RMSE
for the Emul-Hist and I-UPRCM maps.

is difficult to use them to assess the stationary assumption. However, it presents the
same cold bias regarding the ensemble of emulators. These results demonstrate the
importance of training the emulator in the wider range of possible climate states.
We underline that not all ESD methods are expected to behave that poorly with
respect to projected warming. However learning in the future is one of the main
differences between our RCM emulator approach and the standard ESD approach
that relies on past observations.

3.4.3 On the selection of the predictors
For this study, we chose to use a large number of inputs with almost no prior
selection, leaving the emulator to select the right combination of inputs for each
grid point. However, we are aware that it involves a lot of data, which is not always
available, and leads to several computations due to the different preprocessing steps
described in Section 3.2. For this reason, we tried to build an emulator with fewer
inputs in X including only the variables from Table 3.2 at 700hpa and removing
the solar and ozone forcings from Z. The results are reported in tables 3.3 and
3.4. They show that having more inputs increases the quality of the emulated
series, but the “cheap” emulator presents satisfying results and can be considered
as a serious option. For instance, in the first step of evaluation (Table 3.3), the
cheap emulator provides a good representation of the spatial structure (S-Cor=0.94
vs 0.96 for the main emulator) but is more biased than the main emulator (-0.3
versus -0.18 ◦C). Having a specific selection of inputs for specific areas would prob-
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ably increase the performance of the cheap emulator. However, this is not in the
spirit of the tool proposed here, which aims to be as simple and as general as possible.

Moreover, we also wanted to discuss the smoothing of the 2D inputs mentioned in
sections 3.2.2 and 3.2.5. There are two reasons behind it. First of all, it allows
getting closer to the effective resolution of the GCM models (Klaver et al, 2020).
Secondly, it deletes any local scale information that could remain after the upscaling
step when constructing the UPRCM inputs for the training (see Sect. 3.2.5). To
verify the usefulness of this step, we trained an emulator without prior smoothing
of the inputs. The results are reported under the name “No Smoothing” in tables
3.3 and 3.4, in appendix C. The “No smoothing” emulator performs slightly better
than the main emulator in perfect model world. It has for example a slightly better
RMSE (0.76◦C versus 0.82◦C for the main emulator) and a better ratio of variance
(96.2% versus 95.2%). However, in the GCM world, the “No smoothing” emulator
shows less good results than the original emulator. The ratio of variance and the
spatial correlation over the different maps are the most adapted scores to compare
two emulators in GCM world (see sections 3.3.3 and 3.4.1). The ratio of variance of
the “No smoothing” emulator falls to 83% for the worst points, while it is 95% for
the main emulator. The spatial correlation also confirms that it fails to reproduce
the entire spatial structure of the RCM. For example, when looking at the climate
change map, the main emulator’s spatial correlation is equal to 98% while the one
of the No smoothing emulator is 72%.

Finally, the last test on the inputs concerns the non-inclusion of the low resolution
surface temperature in the predictors. The motivation behind this choice comes
from the perfect model training detailed in Section 3.2.5. The intuition is that
too much high resolution information remains in TAS UPRCM. The emulator uses
undoubtedly this information, leading to a less accurate downscaling of GCM fields.
To test this hypothesis, we trained an emulator including TAS, and the results are
referred as “TAS included” in tables 3.3 and 3.4. The “TAS included” emulator
performs better in the perfect model world but not in the GCM world. The most
striking score is probably the variance ratio. In GCM world, it ranges from 83%
to 120% which is closer to our very basic benchmark ([72; 128]%) than to the main
emulator ([95; 106]%). Moreover, the spatial correlations are also much less good
than for the main emulator. These results confirm clearly our hypothesis.

3.4.4 On the non reproducibility of neural network training

While neural networks have experienced considerable success over the last decades
and the number of applications is constantly increasing, they have also been largely
criticised for their lack of transparency due to an excessive number of parameters.
Several studies (see Guidotti et al, 2018, for review) have tried to provide the keys
to “open the black box”. However, users of deep neural networks should also be
aware of their non-reproducibility. Indeed the training of deep neural networks with
GPUs involves several sources of randomness (initialisation, operation ordering,
etc.). A few recent studies have raised the issue for medical applications with
a UNet (Marrone et al, 2019; Bhojanapalli et al, 2021), but to the best of our
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knowledge, no study has addressed it.

In order to document this issue for the RCM emulator developed in this paper
and assess its robustness, we propose a Monte Carlo experiment where the same
configuration of the emulator (as described in Section 3.2) is trained 31 times,
resulting in 31 emulators. The results of this experiment are illustrated in Figure
3.14 and summarised in tables 3.3 and 3.4. The results of Section 3.3 are based on a
randomly picked emulator, mentioned as the main emulator in appendix and plotted
in darker green in Figure 3.14. All the emulators from the Monte Carlo experiment
show consistent results with the ones presented in Section 3.3. The RMSEs (and
correlated scores such as variance) are really close to each other ([0.8; 0.86]◦ C),
which is expected since it is the loss function used to fit the neural network.
However, the path taken to minimise the loss during training might vary from one
emulator to another, leading to bigger differences in climatological metrics (see
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Figure 3.14: Illustration of the results for the Monte Carlo experiment. (a) present a
year time series for 4 given points and (b) the pdfs on the whole serie. The red line refers
to the RCM truth, the dark green line is the main emulator, and the light green lines are
the 30 emulators from the Monte Carlo experiment.
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tables). For instance, in the UPRCM evaluation step, the average error in the future
climatology varies from .003 to .139◦C. The results from the GCM world evaluation
step (Table 3.4) are similar to those in the perfect model framework. This sta-
bility shows again the robustness of the emulator when using GCM large scale fields.

We believe that the readers of this study and any potential emulator users should be
aware of this characteristic of deep learning neural networks. However, it is worth
mentioning that this randomness in the training of the network does not impact the
key conclusions of the results (Section 3.3), which prove their robustness.

3.5 Conclusion
This study aims to explore a novel hybrid downscaling approach that emulates
the downscaling function of a RCM. That is to say learning the transformation
of the large-scale climate information into a local climate information performed
by a regional climate model. Here, we develop this approach for the near sur-
face temperature and a Southwest European domain. This new method, called
RCM-emulator, is designed to help increase the size of the high-resolution regional
simulation ensembles at a lower cost.

To achieve this overall goal, we develop a specific conceptual framework. The
emulator is trained using existing RCM simulations which allows it to learn the
large scale/local scale relationship in different climates and in particular in future
climate. Simply speaking, the general functioning of a RCM can be broken down
into a large scale transformation and a downscaling function. To focus on the
downscaling function, the emulator is trained in a perfect model framework,
where both predictors and predictand come from the same RCM simulation.
This framework implies to carefully prepare and select the predictors, to ensure
that no unwanted high resolution information remains in the training predictors.
The emulator takes daily large-scale and low-resolution information as input and
produces daily maps of the near surface temperature at the RCM resolution. It is
worth noting that the downscaling function likely depends on the RCM choice. So
the emulator developed in this study is RCM-dependent.

Technically speaking, the RCM-emulator is based on a fully convolutional neural
network algorithm, called UNet. A key point of the emulator is the substantial
computational gain regarding RCM computational cost. Training the emulator
used in this study took two hours on a GPU. While this time depends on the target
domain size it will never exceed some hours even for much bigger domains. Once
the emulator is trained, the downscaling of a new low resolution simulation takes
less than a minute. These time lengths do not include the preparation of the inputs;
nevertheless the gain remains evident when a RCM simulation involves weeks of
computation on a super-computer.

The emulator is evaluated in both perfect model and GCM worlds. The results
show that the emulator generally fulfils its mission by capturing very well the
transformation from low resolution information to the high resolution near surface
temperature. Firstly, the emulator is robust to different sources of input, which

83



3.5. Conclusion

validates our conceptual framework. Secondly, the emulator succeeds very well
in reproducing the high resolution spatial structure and daily variability of the
RCM. The perfect model evaluation shows that the emulator is able to reproduce
the original series almost perfectly. Moreover, it appears clearly that training
the emulator in future climate improves its ability to reproduce warmer climate.
Nevertheless the emulator shows some limitations in accurately simulating extreme
events and of the complete climate change magnitude. Future work should focus on
these two aspects to further improve the emulator ability. It is worth noting that
similar emulators could easily be built over different domains, for different RCMs
and for surface variables other than near-surface temperature.

This UNet emulator has been compared to two other possible emulators based
on more classical ESD methods using the well adapted perfect model framework.
The exercise allows us to put into perspective the result of the UNet emulator
and validate our choice as it outperforms these simpler emulators. Moreover, it
is worth mentionning that this study does not target to identify the best possible
emulator but aims to shed light on the feasibility to emulate the RCM complexity
at high-frequency and high-resolution, and to propose one good technical solution
to do it. We are fully aware that our method will certainly be one among others
and we hope that the scientific community will propose new and probably better
solutions for RCM emulators in the next years.

Finally, and even if it was not our original goal, this study highlights, as others
before, the RCM-GCM inconsistencies at large scales. As the emulator focuses
on the downscaling function of the RCM, it does not learn to reproduce these large
scale transformations. This raises the question of how to evaluate the emulator when
downscaling GCM simulation. An RCM run might not be the correct reference in
such a case. Secondly, it also puts into question the final role of a RCM-emulator.
Under the strong hypothesis that the large scale transformation carried out by the
RCM results from physics or forcings inconsistencies – which will require further
investigation – the emulator provides a high-resolution simulation that is corrected
from the GCM-RCM large-scale inconsistencies.
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3.6 Appendices

3.6.1 Emulators inter-comparison
In order to validate the neural network based emulator presented in this study, we
proposed two other emulators relying on standard empirical statistical downscaling
methods : CDFt and a Multiple Linear Regression. The idea is not to identify the
best emulator, but to give a baseline and put into perspective the performance of
the UNet architecture. The methods were chosen because both are well established
and have been widely applied. Moreover they are good example of to two different
families of ESD methods, Model Output Statistic (MOS, for CDFt) and Perfect
Prognosis (PP, for MLR). Both methods are part of the large ESD method
intercomparison project, VALUE (Gutiérrez et al, 2019).

CDFt was introduced by Michelangeli et al (2009) and used in several studies as
Vrac et al (2012); Lavaysse et al (2012); Vigaud et al (2013); Famien et al (2018). It
is based on the transformation of the Cumulative Distribution Function (CDF) of
the low resolution variable into the CDF of the high resolution variable. In our case
the low resolution variable is the smoothed surface temperature from the UPRCM
conservatively interpolated on the RCM grid. We took the smooth TAS in order
to be as coherent as possible with the UNet emulator inputs. The high resolution
variable we try to reproduce is then the RCM near surface temperature TAS.
To understand the theory behind CDFT, let FT,Lr be the CDF of the low resolution
surface temperature from the training set, and FT,Hr the CDF of the high resolution
surface temperature from the training set. Then CDFt relies on the assumption
that there exists a transformation T such that

T (FT,Lr(x)) = FT,Hr(x). (3.10)

Then by replacing x by F −1
T,Lr(u), with u any probability in [0, 1] we get a simple

definition of T :

T (u) = FT,Hr(F −1
T,Lr(u)). (3.11)

And under the assumption that T is the same in the training set than in the evalu-
ation set it comes that :

T (FE,Lr(x)) = FE,Hr(x), (3.12)
with FE,Lr (resp FE,Hr ) the CDF of the low (resp high) resolution surface temper-
ature in the evaluation set. Then FE,Hr can be determined as :

FE,Hr(x) = FT,Hr(F −1
T,Lr(FE,Lr)). (3.13)

It is then possible to reconstruct the high resolution series from the low resolution
one, following a Quantile-Quantile approach between FE,Hr and FE,Lr.

The second method is a Multiple Linear Regression (MLR), which has also been
used in multiple studies (Huth, 2002; Huth et al, 2015; Manzanas et al, 2018; Joshi
et al, 2015). It takes exactly the same list of inputs as the UNet emulator (Table
3.2), but by taking a single grid point for the 2D variables. The predicted high
resolution temperature is then :
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Ŷ = α0 +
M∑

i=0
αiPi, (3.14)

with M the number of predictors.

Both CDFt and MLR emulators are trained in the same conditions as the UNet

(a)

(b)

(c)

(d)

Figure 3.15: (a) Daily probability density functions from the RCM truth, the UNet,
the CDFt and the MLR emulators at 4 particular grid points over the whole simulation
period. (b) (resp. (c and d)) Maps of performance scores of the UNet emulator (resp.
the CDFt and MLR) with respect to the RCM truth computed over the whole simulation
period. For each map, the spatial mean and super-quantiles (SQ05 and SQ95) are added.
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emulator. The simulation used for training is the ALADIN63 simulation forced
by CNRM-CM5, covering the 1950-2100 period with the RCP8.5 scenario from
2006. The ALADIN63 simulation forced by CNRM-CM5, covering the 2006-2100
period with the RCP4.5, is used to evaluate and compare the emulators. The
evaluation is made in perfect model framework as it gives the best conditions to
properly compare the results. The results are reported in Figures 3.15 and 3.16,
where the two simpler emulators are compared to the UNet Emulator used in the
study. Figure 3.15 is showing the performances of the three emulators regarding the
performance metrics defined in section 3.2.6. Both MLR and CDFt show a good
reproduction of the pdfs, the daily variance of the original RCM truth, as well as a
good temporal correlation. However regarding all these scores the UNet emulator
performs better, and this is well summarized by the RMSE maps, where the UNet
Emulator shows much more accurate results. Figure 3.16 presents the ability of
the emulators to reproduce some climatological statistics that are usually studied
in climate studies. The conclusions are very similar, the MLR and CDFt emulators
have good results. However the UNet emulator captures better the complexity of
the high resolution temperature simulated by the RCM. This results is clear when
watching at the spatial correlation of the Figure 3.16.

To conclude, both MLR and CDFt are reasonable candidates for the emulator, as
they were for statistical downscaling, however the UNet emulator provides better
results, specially in the more complex regions. Moreover, as a comparison, the very
simple multiple linear regression involves 233 thousand parameters over the whole
target domain when it uses a single grid point as input for each of the 2D variables
used. However, if we want to fit a MLR with the full 2D grid of input as for UNet,
the model would imply about 250 times more parameters (16*16), so more than the
UNet. For these reasons we decided to mainly present the UNet emulator.
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(a)

(b)

(c)

Figure 3.16: (a)Maps of climatologies, (b) Number of days over 30◦C and (c) the 99th
percentile of daily temperature, for the present-climate period (2006-2025) and for the
climate change signal (2080-2100 minus 2006-2025), for the RCM truth, the UNet, the
MLR and CDFt emulators in perfect model mode. On each line, the two last maps show
the error maps of the emulators. For each map, the spatial mean and super-quantiles
(SQ05 and SQ95) are added, as well as the spatial correlation and spatial RMSE with
respect to the RCM truth maps.
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3.6.2 Description of the UNet-emulator architecture

We describe here with more details the Figure 3.2, which schematize the UNet
architecture used for the emulator. On the figure, the different blocks are represented
by colorful arrows. Each arrow is described below :

• Each blue arrow ⇒ corresponds to a convolution block composed of a layer
built with a set of convolutional 2 × 2 filters. The number of filters increases
all along the contracting part (the number of filters is respectively 64, 128,
256, 512 and 1024 and is given on the top of each block in Figure 3.2). The
outputs of this layer are then normalised with a batch normalisation layer (see
e.g. Ioffe and Szegedy (2015)) to improve the statistical robustness of the
layer. Finally the ReLu activation function completes this block.

ReLu : R(z) = max(0, z)

• Each red arrow
ww� is a Maxpooling layer. It performs 2 × 2 pooling on each

feature map, which simply divides by 2 the spatial dimension by taking the
maximum of each 2 × 2 block. It is applied through all convolution block
outputs in the encoding path. The size of the images is indicated on the side
of each block on Figure 3.2.

• Each green arrow
~ww is a transpose convolution layer. It allows to perform

up-sampling in the expansive part of the algorithm. It multiplies the spatial
dimension by 2 by applying the same connection as the classical convolution
but in the backward direction.

• The black arrow =⇒ represents a fully connected dense network of 4 layers
which is applied on the 1-dimensional inputs (Z).

• The grey arrow ⇒ represents a simple concatenation layer which recalls the
layers from the encoding path in the decoding one.

• Finally, the light blue arrow ⇒ is the output layer, which is a simple convolu-
tional layer with a single filter and a linear activation function.

3.6.3 Supplementary Material: Summary tables

We present here the summary tables of the different tests performed with the UNet-
based emulators and for the two steps of the emulator evaluation.
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Table 3.3: Summary of the results obtained in the 1st step of evaluation (UPRCM world). The
scores are the one used to summarize the maps on figures 3.6,3.7, for the different versions of the
emulator tested in the paper. The first line (RCM truth) is the RCM absolute values (except for
the first section). On each sections, the three first lines give the mean and the range of the ensemble
of emulators described in Section 3.4.4. For the ensemble minimums and maximums the name (
E1 to E30 ) of the emulator corresponding to the value is given in brackets. “Main Emulator” is
the one used for the results section (3.3). “Cheap” emulator is the one including only the variables
at 700hpa described in Section 3.4.3. “Emul-Hist” is the emulator trained only on the historical
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with no prior smoothing of the data, and the one including TAS among the inputs (Section 3.4.3).
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Table 3.4: Summary of the results obtained in the 2nd step of evaluation (GCM world). The
scores are the one used to summarize the maps on figures 3.6,3.7, for the different versions of the
emulator tested in the paper. The first line (RCM truth) is the RCM absolute values (except for
the first section). On each sections, the three first lines give the mean and the range of the ensemble
of emulators described in Section 3.4.4. For the ensemble minimums and maximums the name (
E1 to E30 ) of the emulator corresponding to the value is given in brackets. “Main Emulator” is
the one used for the results section (3.3). “Cheap” emulator is the one including only the variables
at 700hpa described in Section 3.4.3. “Emul-Hist” is the emulator trained only on the historical
period (Section 3.4.2). “NO smoothing” and “TAS included” correspond to the emulator trained
with no prior smoothing of the data, and the one including TAS among the inputs (Section 3.4.3).



Chapter 4

Study of the RCM-Emulator
applicability to GCM ensembles

This chapter evaluates the robustness of the emulator introduced in Chapter 3 to
various input sources. To simplify the reading, I tried to make it independent,
implying that some parts recall and summarise the previous chapter. Moreover, I
work with multiple RCM climate simulations and their driving GCM simulations. I
have tried to simplify the naming and clearly identify the simulations I use at the
beginning of each section. Nevertheless, It might be difficult to follow for a reader
non-familiar with those climate models, and I apologize in advance for that.
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Chapter 4. Applicability study

4.1 Introduction
Evaluating and understanding the uncertainties associated with climate projections
is crucial to deliver reliable information about climate change considering all
possible futures. There are three main sources of uncertainty. The chaotic nature
of the climate system induces a strong natural variability reproduced in climate
models and which needs to be quantified. The future evolution of human activities
is another source of uncertainty that the scientific community addresses with
different scenarios of greenhouse gas emissions along the 21st century (Meinshausen
et al, 2011). Finally, each climate model is a possible representation of the Earth
System. They are built by different teams in different research centres worldwide
with different approaches to solving the same problems. As there is no “best”
model, the variety of models is essential, and the robustness of a result can come
from the agreement of the majority of these models. Multiple studies are developing
methods to make the best out of this large ensemble of GCM simulations (Knutti,
2010; Ribes et al, 2017). Thus, to provide reliable information about climate
change, the scientific community cooperates to build large simulation ensembles
with multiple Global Climate Models (GCMs) driven by different scenarios. Several
members from the same GCM/Scenario pair are produced to consider the internal
variability.

Regional Climate Models (RCM) are high-resolution limited area models nested in
a GCM simulation. They are used to downscale GCM simulations, which are too
coarse to reveal the consequences of climate change at local scales. RCMs are an
additional source of uncertainty. Ideally, it is necessary to downscale with multi-
ple RCMs each simulation from the GCM large ensembles to consider all possible
futures and create reliable information about the local impacts of global climate
warming. However, the high cost of RCMs only allows for downscaling some sim-
ulations, and the needed exploration of uncertainties is limited. RCMs ensembles
are 4-dimensional matrices, and the driving scenarios, the choices of the GCM and
the RCM, and the number of members are the four entries. CORDEX, is an inter-
national initiative which aims to coordinate the design and filling of such matrices
over specific regional domains. Figure 4.1 illustrates the EURO-CORDEX domain
and matrix, which results from about ten years of international cooperation.

Figure 4.1: EURO-CORDEX domain and matrix illustration.

To tackle this issue, Chapter 3 introduces the RCM-Emulator, a hybrid downscaling
approach combining both statistical and dynamical downscaling. The emulator
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4.1. Introduction

learns the downscaling function included in the RCM. It is the relationship between
low-resolution altitude variables - supposedly well represented by GCMs - and
high-resolution surface variables. To ensure perfect coherence between predictors
and predictands, the emulator is trained in a perfect model framework, where
both inputs and target come from the same RCM simulation. The emulator is
designed for a specific RCM and can emulate only this one. Chapter 3 presents the
evaluation of the emulator on a single RCM simulation driven by the same GCM
as the training simulation but in a different scenario. The present chapter aims to
extend this evaluation.

The main objective of the emulator is to downscale a maximum of GCM simula-
tions while respecting and preserving their diversity. It is then important to study
its transferability to different sources of inputs. Therefore, different levels of trans-
ferability can be considered.

1. Member-transferability: the simplest, it evaluates the emulator’s ability to
downscale another member from the same GCM/Scenario couple as the one
used for training.

2. Scenario-transferability: It is the robustness to different forcing scenarios with
the same GCM. In chapter 3, we started to validate this question, and the
present chapter will further document it.

3. GCM-transferability: probably the most complex one, it is the ability of the
emulator to provide a coherent downscaling of simulations from global models
different than the one used to drive the training simulation.

This work is based on ALADIN63, the state-of-the-art regional climate model
developed at CNRM. In the EURO-CORDEX and Copernicus C3S projects, 10
ALADIN63 simulations were performed covering different driving GCMs and
scenarios. This small ALADIN63 matrix 4.1 allows us to explore levels 2 and 3 of
transferability as any of this simulation is a possible test set. Moreover, I think it
is legitimate to consider that the second level implies the first one, especially at the
beginning of the 21st century, where the scenarios are similar. It is worth recalling
here that the emulator is designed to learn the downscaling function of a given
RCM, which is why the evaluation focuses on ALADIN63 runs.

This transferability evaluation will be conducted in three steps. First, I evaluate
the scenario and GCM-transferability of the emulator for near surface temperature
introduced in the last chapter. Secondly, I will extend this analysis by training
other emulators of the same RCM (ALADIN63) using different training simulations
and check if it provides similar results. Furthermore, I will also investigate the
benefits of using simulations from multiple driving GCMs in the training set.
Following the methodology and the results from Chapter 3, I will address these
questions of transferability in a perfect model framework. This choice is deeper
commented in Section 4.2.3. Finally, I will use the emulator in application mode
and downscale the GCM simulations used to drive ALADIN63. I will try to assess
the quality of these emulated series by comparing them with both the GCM low
resolution and the RCM high-resolution temperature.
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Chapter 4. Applicability study

Table 4.1: The ALADIN63 matrix.

DRIVING
SCENARIO

DRIVING GCMS
CNRM-CM5

(CNRM)
MPI-ESM-LR

(MPI)
NorESM1-M

(NCC)
HadGEM-ES2

(HGM)
Historical x x x x
RCP26 x
RCP45 x
RCP85 x x x x

This chapter is divided into four sections. The first one presents the simulations used
in this chapter and sets the methodology applied to evaluate the transferability of
the emulator. After that, sections 4.3 and 4.4 present the results in perfect model
evaluation and the application to GCM inputs. The last one discusses different
choices made during the construction of the emulator.

4.2 Methodology
This section firstly introduces the available simulations to explore the transferability
question. Then I recall the principle of the perfect model framework and justify why
I use it for this chapter. Finally, I will expose the different metrics I will use.

4.2.1 The ALADIN63 matrix
In the EURO-CORDEX framework, ten scenario simulations were performed with
ALADIN63 with different driving GCMs and scenarios. They are reported in Table
4.1. All GCMs used to drive ALADIN63 are part of the fifth phase of the Coupled
Model Intercomparison Project (CMIP5). The first GCM is CNRM-CM5, which is
developed at CNRM. Because they are developed in the same institute, ALADIN63
and CNRM-CM5 share very similar components that guarantee some consistency in
the downscaling procedure1. Four simulations from CNRM-CM5 were downscaled
by ALADIN63, one historical (1951-2005) and one for each RCP2.6, RCP4.5 and
RCP8.5 scenarios (2006-2100) of greenhouse gas emissions. In chapter 1, the
emulator is trained on the CNRM-HIST and RCP85, while the RCP4.5 was used
to evaluate it. The other driving GCMs are MPI-ESM-LR, developed at the Max
Plank Institute (Giorgetta et al, 2013), NorESM1-M, developed at the Norvegian
Climate Center (Bentsen et al, 2013) and the HadGEM2-ES, the Met Office climate
model (Collins et al, 2011). The historical and RCP8.5 runs were downscaled for
these three models with ALADIN63. The CNRM, MPI, NCC and HGM acronyms
will respectively refer to the CNRM-CM5, the MPI-ESM-LR, the NorESM1-M and
the HadGEM2-ES GCMs.

In Section 4.4 I will use the same GCM simulations to test the emulator in appli-
cation mode. As they all have different horizontal resolutions, I interpolated all of
them on the CNRM grid at 1.4◦ resolution. All these simulations are available on

1ALADIN63 relies on a more recent version of the code than CNRM-CM5, so the consistency
is not “perfect” but the best we have
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Figure 4.2: Illustration of the inputs domain (blue box including the sides) and the
target domain (green box).

the mesocenter ESPRI facility, which is supported by CNRS, UPMC, Labex L-IPSL,
CNES and Ecole Polytechnique. Concerning the HGM historical simulation, I could
not find some input variables on the ESPRI nor the ESGF (ref) nodes, so I only
work on the RCP85 simulation.

4.2.2 Recall on the main emulator and Experiment design
The ALADIN63-emulator from Chapter 3 is built to reproduce the daily near-
surface temperature over a 64×64 grid points domain located between South of
France and North-East of Spain and illustrated in Figure 4.2. The predictors are five
variables at three different pressure levels2 plus some surface fields and the aerosols
optical depth over a larger input domain of 16×16 GCM (CNRM-CM5) grid points.
They are normalised daily according to their spatial means and standard deviations
so that only the information about the atmosphere’s spatial structure remains.
The temporal information is given through a vector containing for each day the
spatial means and standard deviations used for normalising each variable map,
plus external forcings such as the greenhouse gas concentration and a seasonal
vector. The emulator relies on a neural network architecture called UNet that
has been adapted to the problem. More details can be found in the previous chapter.

The emulator is calibrated in the perfect model framework. It implies that, for the
training phase, both predictors and predictands come from the same high-resolution
simulation. The idea is to ensure a perfect correlation between the predictors and
the target surface variable, such that the neural network focuses on the estimation
of the downscaling function only. The predictors are then upscaled to a typical
GCM resolution, and we apply a moving average window to kill any high-resolution

2i.e. different altitudes
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Figure 4.3: Training, evaluation and application of the emulator. Inspired and adapted
from Wang et al (2021).

information that could have remained. As explained in chapter 3, the same
“filtering” will be applied to GCM data before giving them to the emulator as it
allows to reach the effective resolution of the model and to work with more robust
data. Figure 4.3 illustrates the training protocol. The perfect model framework also
serves for the evaluation with a different simulation than the training set. Thus, the
emulated series can be compared with the RCM high-resolution variable we target
to emulate. Conversely, when the emulator is used to downscale a GCM simulation,
it is impossible to evaluate the emulated series correctly. As the emulator does
not reproduce the large scale biases between GCM and RCM, it is normal to have
biases between the GCM-downscaled series and the true RCM. Therefore, separat-
ing these large scale biases’ local impact and the emulator’s possible error is difficult.

In Chapter 3 the ALADIN63-emulator is trained on CNRM-HIST and CNRM-
RCP85 ALADIN63 simulations and evaluated on the CNRM-RCP45, in the per-
fect model framework. From now on, I will refer to it as the main emulator. The
first part of this work (Section 4.3.1) analyses the main emulator on all other AL-
ADIN63 simulations in perfect model framework. Following Figure 4.3, predictors
are extracted from each of the ALADIN63 simulations (cf. Table 4.1), upscaled
and filtered to obtained the UPRCM simulations. Those inputs are then given
to the main emulator, which recreates high-resolution temperature series that are
compared with the corresponding ALADIN63 simulation. The objective is then to
assess how the emulator “digests” inputs from different sources. In section 4.3.2, I
construct other ALADIN63-emulators using other training sets. The exercise aims
to evaluate if it affects the results obtained in chapter 3 and section 4.3.1, and so
how the emulator depends on the training set.
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4.2.3 Justification of the perfect model framework
For the reasons above, I first address the transferability in the perfect model
framework. The RCM-emulator relies on a specific convolutional neural network
architecture. Another way to see the current chapter goals is to assess if the neural
network and the previous strategy will be robust to slightly different input spaces.
Indeed, the driving scenario modifies the atmosphere composition, which impacts
all variables differently. Furthermore, two GCMs rely on different assumptions
reflecting the choices of the teams building them and impacting the entire structure
of the system, the relationship between variables, the vertical dependence etc.. In
both cases, the input space from a new simulation to downscale will differ from the
training input space, and this chapter aims to study the robustness of the emulator
in such cases.

To validate the use of the perfect model framework it is necessary to assess
if the difference between two RCM simulations is representative from the one
between two GCM simulations. The driving RCP scenario is likely to impact
RCM and GCM similarly, so it seems reasonable to study the second level of
transferability within this framework. However, it is not intuitive that the in-
trinsic differences between two GCMs will reflect in the RCM simulations they drive.

The upper panel of Figure 4.4 shows the yearly mean times series (1950-2100,
RCP8.5) for the temperature, the geopotential and the humidity at two pressure
levels (500 and 850 hPa) over the input domain defined in chapter 1, for the 4
UPscaled RCM (UPRCM) simulations we have. They are an extract of the inputs
given to the emulator. This figure helps to illustrate the kind of differences that
can exist between the different ALADIN63 simulations. Firstly we can observe
that the relationship between variables at a given pressure level differs between
two simulations. For example, NCC-UPRCM is generally less humid and colder
than MPI-UPRCM at 500hPa but has a similar altitude for the geopotential.
Secondly, the vertical dynamic differs, as we can see by comparing the right and left
panels. For instance, the MPI-UPRCM is more humid than any other simulation at
500hPa, but it is not true at 850hPa. Finally, we can also remark that the different
simulations have different responses to the increase in greenhouse gas concentration
imposed by the RCP85 scenario. The HGM-UPRCM (in green) notably simulates
more significant changes than the others. Therefore, fundamental differences exist
between these 4 UPRCM simulations in the internal relationship of the emulator
inputs.

The lower panel shows the yearly mean times series of the same variables but for
the driving GCM simulations. The first comforting remark is that the differences
observed in the UPRCM simulations are in the same order of magnitude as the ones
we can see in the GCM simulations. For a given variable, the vertical structure
differs from one model to the other. When comparing right and left columns, it is
particularly visible for the MPI-GCM humidity or the CNRM-GCM temperature.
This result tends to validate the evaluation of transferability in the perfect model
framework. Moreover, we can observe how the RCM transforms the GCM large
scale. Regarding almost all six variables, the differences between the four simula-
tions are not the same as in the UPRCM world. The most remarkable example
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is probably for the HGM simulations, where ALADIN seems to underestimate
the atmospheric warming of the original GCM simulation. Still, regarding the
temperature at 850hPa, CNRM-GCM, MPI-GCM, and NCC-GCM are much more
similar than their UPRCM versions.

Figure 4.4 confirms that the perfect model framework is a good opportunity to test
whether the emulator built in Chapter 3 of this manuscript is robust to different
input sources and all the intrinsic differences they carry.

4.2.4 Metrics, Benchmark and results presentation

As in the previous chapter, I use the interpolated low resolution near-surface tem-
perature from the corresponding input simulation as a naive reference. It helps us
to locate the emulator’s performance with respect to a representation of its driving
large scale. On the other hand, I will also evaluate the emulators on their training set
and use it as a reference for the best result possible as it is a level 0 of transferability.

As a matter of coherence, I use the same metrics as the ones Chapter 3 over slightly
different periods. I compute the maps for the mean and 99th and 1st quantiles over
three thirty-year periods: 1951-1980, 2006-2035, and 2071-2100 referred to as past,
present and future periods. I replaced in this chapter the number of days over 30◦C
by the first quantile as it is essential to look at both sides of the distribution. These
maps are computed for the RCM truth, the Emulated series and the interpolated
UPRCM/GCM. In addition, I add the biases maps to highlight the differences
between the RCM and both the emulator and I-UPRCM maps. I also use the
four scores from the previous chapter, the RMSE, the variance ratio, the temporal
correlation (ACC) and the Wasserstein distance. These scores are computed over
the whole simulation, separating the historical (1950-2005) from the projection
(2006-2100) part.

These metrics are computed at the grid point scale, implying that I obtain a
map for each metric and each evaluated simulation. As in the previous chapter,
we use the spatial mean and superquantiles (5th and 95th) to summarise each
map. For the raw climatology and quantile maps, I also use the spatial correlation
and spatial RMSE to measure the ability of the emulator to reproduce the high
resolution spatial structure brought by the RCM. In this chapter, I will evaluate
many emulators on multiple metrics. Thanks to these summary metrics, I can
synthesise all these results summary plots.

99



4.2. Methodology

1960 1980 2000 2020 2040 2060 2080 2100

0.0000

0.0002

0.0004

0.0006

S
p
e
ci

fi
c 

H
u
m

id
it

y

Pressure level : 500hPa

1960 1980 2000 2020 2040 2060 2080 2100

0.0000

0.0005

0.0010

0.0015

Pressure level : 850hPa

1960 1980 2000 2020 2040 2060 2080 2100

0

50

100

150

G
e
o
p
o
te

n
ti

a
l 
a
lt

it
u
d
e
 

(m
)

1960 1980 2000 2020 2040 2060 2080 2100

0

20

40

60

1960 1980 2000 2020 2040 2060 2080 2100

0.0

2.5

5.0

7.5

Te
m

p
e
ra

tu
re

 
(°

C
)

1960 1980 2000 2020 2040 2060 2080 2100

0

2

4

6

8

UPRCM

(k
g

/k
g

)

1960 1980 2000 2020 2040 2060 2080 2100
0.0000

0.0002

0.0004

0.0006

S
p
e
ci

fi
c 

H
u
m

id
it

y

Pressure level : 500hPa

1960 1980 2000 2020 2040 2060 2080 2100
0.0000

0.0005

0.0010

0.0015

0.0020

Pressure level : 850hPa

1960 1980 2000 2020 2040 2060 2080 2100
0

50

100

150

200

G
e
o
p
o
te

n
ti

a
l 
a
lt

it
u
d
e
 

(m
)

1960 1980 2000 2020 2040 2060 2080 2100

0

20

40

60

80

1960 1980 2000 2020 2040 2060 2080 2100

0.0

2.5

5.0

7.5

10.0

Te
m

p
e
ra

tu
re

 
(°

C
)

1960 1980 2000 2020 2040 2060 2080 2100

0.0

2.5

5.0

7.5

GCM

CNRM MPI HGM NCC

(k
g

/k
g

)

Figure 4.4: Yearly anomalies time series for 3 atmospherics variables (Specific Humidity,
Geopotential altitude and Temperature, from up to down) at 2 pressure levels (500 and
850 hPa, from left to right). Theses series are shown for the 4 UPRCM simulations
(upper panel) and their driving GCM simulations (lower panel). We show here the yearly
mean over the input domain. The series are plotted as anomalies compared to CNRM-
UPRCM climatology over the 1971-2000 period. In the upper panel the simulations are
differentiated according to the driving simulation which is plotted in the lower panel.
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4.3 Perfect Model evaluation
In this section, I address the reliability of the emulator under different sources of
inputs and its capacity to reproduce the daily maps under different climates. We
place ourselves here in the perfect model framework to evaluate the emulated series’
accuracy with respect to their RCM true series. We divide this section into two
parts. Firstly we will study the transferability of the emulator trained in Chap
1, and secondly, we will train 15 other emulators on multiple combinations of the
training set.

4.3.1 Main emulator
The UNet-emulator built in chapter 1 was trained using the entire CNRM Historical
and RCP85 simulations following the training procedure recalled in Section 4.2.2.
It was then evaluated in the perfect model framework on the CNRM RCP45
simulation, showing an excellent ability to downscale a more intermediate RCP
scenario than the one used for calibration. I extend this evaluation to all ALADIN63
simulations (see Sec 4.2.1). The results shown here are computed on the novel
simulations but also on the CNRM-RCP45 to compare the new results with the
ones from the previous chapter. I also downscaled the UPRCM-CNRM HIST and
RCP85 used for calibration, which I consider a naive benchmark. Of course, the
results on this simulation are expected to be good. As in Chapter 3 we use the
interpolated UPRCM temperature as a benchmark. These two benchmarks will
help us to analyse and compare the results on the different simulations. In the
entire section the RCM simulations are named accordingly to their driving GCMs.
The GCM simulations are not used in this section, so the names CNRM, MPI,
NCC or HGM only refer to the ALADIN63 simulations.

Yearly mean series reconstruction

Figure 4.5 gives a first insight into the emulator’s ability to reproduce the different
climates, as it plots the times series of the year means over the whole domain. The
emulator produces, as the RCM, daily temperature maps, so these mean series are,
in some sense, reconstructed large scale. In a matter of coherence, it is fundamental
that the emulator respects and reproduces this kind of chronology and sensitivity
aspects well, even if it is not designed for it.

The RCM and emulator series look perfectly similar, with the correct order between
the different simulations. The gaps between the 3 CNRM simulations are well
reproduced. The RCP85 warms much stronger after 2050, while the RCP26 is
slightly cooling at the end of the century. Moreover, the MPI and NCC simulations
appear warmer than the CNRM throughout the period, and the emulator respects
this well. Finally, the HGM RCM simulation ( in brown) is warming the most
and exactly as in the emulator plot. These series tend to show that the emulator
is robust to different input conditions and correctly follows its driving large scale.
Now we can have a closer look into these emulated simulations.
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Figure 4.5: Time series of the yearly mean near surface temperature over the target
domain for the 6 entire (Historical + Scenario) simulations at our disposal. The upper
panel show the series computed on the RCM true simulations, while the lower panel shows
the ones computed from the emulated simulations.

Grid points 30 years statistics

In a second step, we can look at temporal statistics at the grid point scale over 30
years periods. I compute the mean, 99th and 1st percentile maps over the past
(1971-2000), present (2006-2035) and future (2071-2100) periods. As explained
in Section 4.2.4 we summarise these maps with the spatial mean and spatial
5th and 95th super-quantiles, and I report these numbers in summary bar plots.
The biases maps regarding the corresponding RCM truth maps are summarised
similarly. Figures 4.6 and 4.7 show the summary plots for the present period and an
illustration for one simulation. Figure 4.8 shows the summary plots for the past and
future periods. The results are shown for both Scenario and GCM transferability,
but we firstly comment the scenario-transferability (i.e. the left part of the plots).

The first conclusions on the yearly series are confirmed at the grid point scale.
Concerning the Scenario-transferability, the emulator reproduces accurately the
CNRM-RCP26 climatology and quantiles maps. It confirms the results obtained in
the last chapter on CNRM-RCP45 and the ability of the emulator to reproduce more
intermediate scenarios than the ones used for calibration. For both simulations, the
emulator reproduces the spatial structures of the different maps very well, as the
spatial correlations are always equal to one and the RMSE around 0.1◦C on the
present climatology (Figure 4.6). The climatology maps are identical, as the red
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and green bars are indistinguishable and the biases very small. Figure 4.7 shows
that the emulator reproduces less well the extreme percentile maps on these two
simulations. The spatial RMSEs are higher (0.3/0.4◦C), and the bias summary
plots show an underestimation of the warmest extremes and inversely for the 1st
percentile. The maps for the CNRM RCP26 1st percentile (Figure 4.7) help to
understand these biases. The emulator captures the spatial structure but has a
general warm bias. Remarkably, the worst points do not necessarily correspond to
the coldest points, as the bias is more significant in the Rhone valley than on top
of the Pyrenees. The analysis is the same for the RCP45 simulation with stronger
biases because the first quantile map is colder in this present period than the RCP26.
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Figure 4.6: Climatology on present climate. The upper panel shows the MPI simulation
climatology maps for the RCM truth, the emulator and the interpolated UPRCM tem-
perature. The emulator and i-UPRCM biases with respect to the RCM true map are also
shown. These maps are summarised by their mean and super-quantiles. The spatial cor-
relation and RMSE w.r.t the RCM truth are computed for the raw maps. The lower panel
regroups these statistics for the 6 simulations. On the upper part for each simulation,
the RCM (red), the emulator (green) and the interpolated UPRCM (blue), statistics are
represented by an error bar. The lower (resp. upper) boundary of the bar shows the map’s
5th (resp. 95th) super-quantile and the point the mean. The lower plot shows the same
statistics for the bias maps. The middle table shows the spatial correlation and RMSE for
the emulator maps.
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Figure 4.7: Upper pannel : Same as lower panel on Figure 4.6, for 1st and 99th quantiles.
Center (resp. Lower) panel : 1st (resp. 99th) quantile maps for the CNRM-RCP26 (resp.
NCC) simulation for the RCM truth, the Emulated series and the i-UPRCM, and the
biases maps.

Figure 4.8 extend those remarks for future periods3. The spatial structure is always
well reproduced with spatial correlation equal to 1. Notably, the green bars always
match flawlessly with the red ones. In future periods, the effect of the different
scenarios is well visible in the first percentile, for example, and the emulator
respects those different evolutions. We can conclude that even if the emulator has
difficulties reproducing the extremes, it generally fits well with the original RCM

3The historical is common to RCP85, RCP45 and RCP26 and has been used in the training
set.
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series validating the scenario-transferability.

Moreover, one can observe that the results of reproducing the CNRM Hist
and RCP85 are similar to those for the other CNRM RCPs. This brings confi-
dence to the neural network training since it shows no over-fitting on the training set.

Regarding the transferability to other driving GCMs, the emulator reproduces
the different maps correctly even if the results are less good than in the CNRM
simulations. Figure 4.6 shows a cold bias (about - 0.2 ◦C) in the 3 emulated
series which reflects in the RMSE. The spatial structure is well captured, as we
can observe on the MPI maps given for illustration. The cold bias is similar over
the entire domain with no spatial structure. Regarding Figure 4.7, the emulator
has a clearer bias on the 99th percentile for the MPI and NCC simulations. The
NCC maps (Figure 4.7) show a general bias which seems stronger on the reliefs.
Conversely, the emulator is quite accurate on the 1st quantile.

A possible explanation is that the emulator has more difficulties in a warmer
climate. The MPI and NCC are constantly warmer than CNRM (cf Fig 4.5) and
the emulator provides slightly colder (about - 0.2 ◦C) simulations. The HGM
simulation has a similar average temperature to the CNRM in the past period.
Figure 4.8 shows that its emulated series has very good climatology and quantile
maps. However, due to a stronger response to climate change, HGM gets warmer
than CNRM at the end of the simulation. We can then observe that the HGM
emulated climatology map is slightly colder than the RCM one. This cold bias
might come from the highest temperature, which the emulator never saw in its
training sample and has more difficulties reinventing. In Figure 4.8, the summary
plots for the 99th percentile maps support this hypothesis, the emulator maps on
MPI Hist+85, NCC Hist+85, and HGM 85 are too cold with RMSEs over 1◦C.
Notably, the emulator performs poorly on the representation of the MPI RCP85
99th percentile map with a significant cold bias. On the other hand, the emulator
reproduces the colder extremes on these simulations very well. These results
highlight the role of the emulator, which is not designed to extrapolate too far
from its calibration set. Similarly, the emulator is less good at reproducing the
coldest extremes in the HGM HIST and CNRM RCP26, the two coldest simulations.

Nevertheless, the emulator still provides very accurate maps. It recreates almost
perfectly the temperature range over the maps as the red and green bars on all
summary plots are always very close. Indeed the temperature difference between
CNRM and MPI or NCC is about two degrees, while the emulator bias in only
about 0.2 degrees. On the illustrating maps on Figures 4.6 or 4.7, the emulator
maps are indistinguishable from the RCM ones. Moreover, the order between the
simulations is well respected. In Figure 4.8, the HGM, MPI, and NCC simulations
reach similar temperatures at the end of the century, while HGM HIST is colder
than the others, and the emulator reproduces this aspect. To conclude on this part,
the emulator seems robust to the GCM transferability as it produces realistic and
coherent maps. Nevertheless, it seems complicated to extrapolate too far from its
training set, notably to reproduce the same range of warmest extremes in a warmer
climate. This is a problem that a better training set could probably overcome.
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Figure 4.8: Summary plots for Climatology, 1st and 99th percentiles on past (1970-2000,
”H” columns ) and future (2071-2100, ”85”,”45”,”26” columns) period.
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Grid points climate change analysis

Figure 4.9 shows the summary plots for the climate change responses maps for the
three statistics studied previously. The emulator reproduces well the mean climate
change for all six simulations. The biases observed in the climatology maps for
MPI and NCC simulations are constant over past and future periods, so it does not
impact the delta. The warming in the HGM simulation is slightly underestimated
(RMSE about 0.2◦C), but the emulated simulation warms way more (≥ 1◦C more)
than any other, just as the RCM does. For all six simulations, the emulated maps
have the right spatial structure of the warming, with the right spatial range.

It is interesting to notice in Figure 4.9 that, for example, the structure of the change
for the first percentile is different between the HGM and the MPI simulations and
the emulator correctly captures this difference. Indeed, one can observe that MPI
warms more in the plains from South-West of France than HGM. On the other
hand, HGM has a stronger warming just South of the Pyrenees. Furthermore, the
spatial correlation between these two RCM maps is equal to 0.79 and accurately
reproduced on the emulator maps. The results are less good concerning the 99th
percentile with larger biases and less good spatial correlations (about 0.85 and even
0.76 for the MPI). Still, the emulator simulations have always the proper spatial
range of warming, with, for instance, a more considerable spatial magnitude in the
NCC map than in the HGM one. It is also noteworthy that the differences between
the blue (i-UPRCM) and red (RCM) bars are not always the same, demonstrating
that the downscaling transformation differs from one driving large scale to another.

Grid point daily analysis

As a third step and to have a closer look at these emulated series, it is necessary
to evaluate them daily. The four scores used in Chapter 1 and recalled in Section
4.2.4 are computed over the entire ten simulations (Historical + RCPs) on the
daily time series in each grid point. The results are summarised in Figure 4.10,
through summary plots where each map’s mean and superquantiles are reported.
These scores reflect the emulator’s ability to reproduce the daily time series in all
simulations as they compare the entire time series at each point.

Regarding the two CNRM simulations (RCP45 and 26), the emulator reproduces
almost identically the daily time series all over the target domain. For instance,
even the worst points have a Wasserstein distance less than 0.2 and a variance ratio
higher than 90%. As expected from the climatology and quantile maps analyse,
the scores on the MPI, HCM and NCC simulations are less “perfect”, which is
probably somehow expected. The first remark is that the scores spatial means on
these simulations are completely comparable with CNRM ones. The average RMSE
is lower than 1◦C, the variance ratio and correlation are almost equal to one and
the mean Wasserstein is less than 0.2 with a lower bound similar to the CNRM
simulations scores. However, some points are less well reproduced, as shown by
the upper bound of the error bars on the Wasserstein distance plot and illustrated
on the MPI scores maps. The MPI’s Wasserstein map indicates that the emulator
performs well everywhere but has more difficulties on the reliefs. It is not shown
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here, but the analysis is the same for NCC and HGM Wasserstein distance.
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Figure 4.9: Summary plots for climatology, 1st and 99th percentiles deltas between past
(1970-2000) and future (2071-2100) period.
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temporal correlation (ACC), the ratio of variance (VAR-R) and the Wasserstein distance,
for all 10 simulations, on their entire length. Lower: Illustration of the scores maps on the
MPI RCP85 simulation.

Another way to look at the transferability of the emulator is to analyse its ability to
reproduce the transformation of the daily probability functions across models and
time. Figure 4.11 plots the spatio-temporal probability density function of the daily
temperature over all Pyrennees points higher than 1000m. It compares the true
RCM (full line) and the emulated (dotted line) pdfs over a historical (1971-2000)
and future (2071-2100) periods. It also plots the difference between the past and
future pdfs to better visualise the transformation due to global GHG emissions.
On each plot, two simulations are represented on each side of the x-axis. This
figure shows that the emulator reproduces almost perfectly the different pdfs over
both periods and all driving GCMs. It also matches exactly the climate change
transformation. This figure also illustrates the greater Wasserstein distance (Fig.
4.10) for MPI simulation on the Pyrenees. We can see that the emulator has more
difficulties in reproducing the right tail of the future MPI distribution. However, it
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is observable here that even over these bad points, the pdf of the emulator looks
credible regarding the RCM one. Finally, it is remarkable that the driving GCM
has a non-negligible impact on the pdfs and that the emulated series reproduce this
aspect. The CNRM/MPI comparison illustrates well this aspect, with the appari-
tion of a dipole in the MPI future pdf, which does not exist in the CNRM simulation.
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Figure 4.11: Comparison of the pdf transformation from the emulator and the RCM
over the high Pyrenees points for all ALADIN63 simulations.

Conclusion on the main emulator transferability

This section has been dedicated to evaluate the emulator on various simulations
according to multiple aspects. It was lengthy, but I believe it is necessary to
have better confidence in the tool introduced in Chapter 3. The strong take-home
message here is that the emulator is robust to other inputs as it provides simulations
close to original RCM ones. We have shown here that the emulator shows as
good performances on intermediate scenarios as on the training set for a given
driving emulator, confirming its truthfulness for the member and scenario level of
transferability.

The results are still very accurate concerning the GCM transferability, showing
the robustness of our methodology to eventual differences in the representation of
the atmospheric conditions. Notably, the emulator showed excellent accuracy in
reconstructing the complex spatial structure on the climatologic and quantile maps
across time and on the climate change maps. It shows, nevertheless, some limitations
in reproducing some extremes, especially in a globally warmer simulation. The
training set is probably an important factor here. We have seen that the simulations
drove by CNRM, used for training the main emulator, are generally colder than the
three other GCMs and it warms less. The emulator had to extrapolate on those and
showed its limits. The next section will be helpful to answer this question. Some
of these limitations might also come from memory effects, notably in the soil (snow
or humidity), not taken into account or reproduced by the emulator. For instance,
it has been shown in various studies that a deficit in soil moisture leads to stronger
summer hot extremes (Seneviratne et al, 2010; Hauser et al, 2017). As the emulator
downscales each day independently, there are no chances it takes this effect into
account. It could explain the less good performances in representing the highest
percentile.
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Figure 4.12: Summary plots for the mean biases maps, in the cross validation experi-
ment. The panels corresponds to the evaluation simulation. Each color corresponds to the
different emulators: it indicates the training simulations. The marker shape corresponds
to the version of the emulator: the ’o’ is the main version while the others are sensitivity
test described in Sec. 4.5.1 and 4.5.2. The black ’plus’ at the extreme right is the Large
scale near surface temperature (I-UPRCM). The grey columns indicates if the evaluation
simulation is part of the emulator training set.

4.3.2 Cross-Validation on other training sets
In the previous section, we evaluated the emulator trained on CNRM HISTOR-
ICAL and RCP85 simulations on its capacity to reproduce all other ALADIN63
simulations. It is now interesting to see if these results are comparable when we
use a different training set. In this section, I train 15 more ALADIN63-emulators
using different combinations of the available simulations. First, on top of the main
emulator, one emulator is built using each MPI, NCC and HGM 150 years of
simulation (HIST+RCP85). Secondly, all possible combinations of two or three of
these four simulations are used to calibrate one emulator. I also added emulators
trained on CNRM Historical plus RCP45 and RCP26, which will allow us to assess
the scenario transferability through warmer scenarios. All these emulators are
then evaluated in the perfect model framework following the same protocol as
in the previous section on all ALADIN63 simulations, including the calibration
set. Indeed, we have seen in the previous section that the results obtained when
emulating the training set are quite representative to what could be obtained on
simulation driven by the same GCM and same or close scenario. In this section
the use of CNRM, MPI, NCC and HGM acronyms refer to the corresponding
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ALADIN63 simulation on the entire 150 years combining HISTORICAL and
RCP85 scenario.

In this section, we will look at the biases of the emulators versus the RCM true
series for the mean climatology and the 99th and 1st quantiles, the variance ratio
and Wasserstein distance. The results are reported using summary plots in Figures
4.12, 4.13, 4.14. Each figure presents the results for a given metric. Each figure is
composed of 6 panels, where each panel corresponds to the evaluation simulation.
One colour represents one emulator, and the shaded rectangles identify the emulator
trained on the concerned evaluation simulation. For each emulator, on each panel,
I plotted consecutively the past (except for CNRM RCP45 and RCP26), present
and future periods. These figures contain a lot of results so we will discuss them
step by step.

One simulation based emulators

First, we can focus on the emulators trained on CNRM45 (Emul-45) and CNRM26
(Emul-26). They globally show similar results as the main emulator. Regarding
the climatology bias maps in Figure 4.12 the three CNRM emulators offer identical
performances to reproduce the three CNRM simulations in the past and present
climates. It confirms that, for perfect input conditions, an emulator train using
a given driving GCM and warming scenario can perfectly reproduce the RCM
temperature simulation driven by the same GCM and at the same or more
intermediate level of warming. It also confirms that our training methodology
prevents over-fitting, and the training set could reasonably be considered as an
evaluation set. It is observable, however, that the Emul-26 performs less well in the
future period of both RCP45 and 85 simulations. The same remark can be made
to a smaller extent for the Emul-45 on the future RCP85. It appears more evident
on the 99th quantile summary plot (Figure 4.13), where Emul-26 has considerable
local biases. This result is expected as the emulator is not supposed to extrapolate
and this test is similar to training only on the historical part (Sec 4.2 Chap1).
Regarding all metrics, Emul-45 performs less well than the two others and even on
its calibration set. It notably underestimates the local temporal variance leading
to biases on the quantile maps. The explanation have not properly been explored
here and a hidden bug is not to exclude. It might also be due to the randomness
of the training mentioned in Sec.X of Chapter 3, as the scores are consistent with
the range of emulators built in this same section. Considering these observations,
it is worth noting that these three emulators have similar performances on the
three other simulations. For example, they have similar errors on the Wasserstein
distance plots in Figure 4.14.

Secondly, we can look at the three other emulators trained on single driving GCM:
Emul-MPI, Emul-NCC and Emul-HGM are trained using the upscaled ALADIN63
simulations driven by the MPI, NCC and HGM GCMs. They are represented in red,
green and yellow on the summary plots. First, each performs well on its own training
set, with the same defaults on the extremes as the main emulator. Each bias map
shows very low local biases (visible from the size of the error bar), and quantiles are
slightly under or over-estimated. The Emul-HGM has less good performance, with
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a more extensive spatial range on all metrics. Looking now at their results on the
other simulations, the first remarkable point is the similarity between the Emul-MPI
and Emul-NCC. They have comparable scores on each other simulations and seem
to produce similar maps on the other simulations as it is particularly remarkable
on the 99th quantile summary plot (Fig 4.13). Emul-HGM shows poorer results on
MPI and NCC simulations with much stronger local biases on the climatology and
99th quantiles maps and overestimating the temporal variance at some points (Fig
4.14). Finally, it is worth noting that these three emulators behave similarly on
each of the three CNRM simulations. For instance, on the three simulations, they
all have a slight warm bias on the climatology map and capture well the average
99th quantile but with significant local biases. These biases are coherent with the
cold bias of the main emulator on these three simulations in the previous section.
The conclusions on these three emulators are very close to the ones in Section 4.3.
All these emulators are robust to other input sources, but they might produce
some biases, mainly when the simulation to downscale represents a too different
climate. Finally, they all reproduce adequately the climate change maps, which are
not shown here but it is remarkable that eventual biases are consistent through time.

It seems reasonable to conclude here that for a given RCM, the emulator will
present similar performances whatever the simulation used for training. Emul-MPI
and Emul-NCC behave analogous than the Main emulator. They have excellent
results regarding the entire distribution of data as long as the input space to
downscale isn’t too far from the training one. The more it deviates, the more
complicated it is reproduce the series and notably the extremes. Emul-HGM
has globally less good performances. It highlights that using a single simulation
for training might be risky. It would be necessary to explore further why this
specific emulator has different results. A possible explanation is that it is the GCM
simulation that ALADIN63 transforms the most. In section 4.2.3, we showed for
instance that HGM-GCM was warming way more than HGM-UPRCM across the
century. This might have created some atmospheric conditions different from the
three other ALADIN63 simulation.

Multiple simulations based emulators

It is now natural to question what happens when two or more simulations driven by
different GCMs are used for cabilration. As we have four different driving GCMs,
we used a maximum of three historical plus RCP85 simulations for training to keep
one out of the training sample for the evaluation. Using different simulation from
different driving GCM helps to enlarge the input space in the training phase. It is
closer to the reality of a CORDEX matrix where the RCM are used to downscale
multiple GCMs. In order to build the best emulator one can legitimately imagine
that it is better to use all available simulations to train it. This experiment allow
to test this aspect. On the summary plots, the shaded area shows the emulators
including the evaluation simulation.
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Figure 4.13: Same as Fig 4.12 for the 99th and 1st quantile biases maps.

114



Chapter 4. Applicability study

The first comment is that even when the driving GCM has been used for training,
the results are similar or better when the emulator is trained on more simulations.
It is evident on the Wasserstein and variance plots (Fig. 4.14) that on the grey
areas, the range of the 5% most extremes points is getting smaller when going
to the right of the colourful bars. The conclusions are more challenging on the
actual evaluation set, i.e. the white areas on the plots. But when looking only
at the CNRM evaluation simulations, the more we use simulations for training,
the better the reproduction of the original RCM series. It is also the case for the
HGM series, even if it is the most difficult to reproduce and the results are less
good. Regarding the MPI simulation, the presence of the NCC simulation is of
primary importance to improve the results, and the inverse is also true. However,
it still comes that having more than one simulation for the training improves the
outcomes. For example, the Emul-CNRM-HGM is better at reproducing MPI and
NCC than Emul-HGM. On the other hand, when two simulations are similar, it
brings nothing to combine them for training. Indeed Emul-MPI-NCC does not
show significatively better results than Emul-NCC or Emul-MPI.

Cross experiment conclusions

There are three important conclusions from this cross-validation experiment.

• The scenario transferability works better from more extremes to in-
termediate scenarios than conversely.
The main emulator is able to reproduce the CNRM RCP45 and 26 very well.
The results are even comparable to the ones obtained on the calibration set.
However, Emul-RCP45 and especially Emul-RCP26 showed difficulties to re-
produce the end of the RCP85 simulation. It implies that training the emula-
tor using a single GCM and the most extremes scenarios allows to downscale
at least all simulations of the same GCM driven by similar or less warming
scenarios.

• All conclusion on the main emulator are still valid when using an-
other simulation for training.
It seems that, in most cases, the conclusion made regarding the Main in Chap-
ter 3 and in section 4.3.1 are deployable to an other emulator trained on dif-
ferent simulations.

• Having more than a single driving GCM for the simulations used
for calibration helps for the GCM-transferability.
We have seen that increasing the number of simulation for training the emu-
lator enlarge the input space and generally improve the emulator robustness.
At worst it did not improve the results when they were already good. On the
other hand it helped to correct the bad poor results of the Emul-HGM.

On top of bringing more confidence in the emulator methodology, this section gives
insight on how to design a matrix of RCM simulations to train the best emulator.
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Figure 4.14: Same as Fig 4.12 for the Variance ratio and Wasserstein distance maps.
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4.4 Application on GCM data
In chapter 3, I tried to evaluate the main emulator when downscaling a GCM
simulation. I downscaled the CNRM RCP45 simulation with the emulator and
compared the result with the ALADIN63 simulation driven by it. The emulator
was producing a coherent simulation, with a precise reproduction of the high
resolution spatial structure and daily variability. However, it had a warm bias,
which we found consistent with a large scale bias between the GCM and UPRCM
inputs. Indeed the emulator came out to logically follow its driving large scale
without reproducing the RCM large scale transformation. As there are daily but
also statistical differences between the GCM and the RCM large scales, I concluded
in Chapter 3 the RCM true series is not the correct reference to evaluate the
GCM-emulated series. It is then truly complicated to assess the emulator in this
exercise, whereas it sounds necessary to have complete trust in this downscaling
approach as downscaling GCM simulation is the final aim of RCM-emulators. I
propose looking at the downscaling of the GCM simulations used to drive the
ALADIN63 simulations. I will try then to evaluate the emulated simulations by
comparing them with the RCM truth and keeping an eye on the GCM near-surface
temperature interpolated on the target domain. I remind the reader that I am
missing the historical part of the HGM GCM simulation.
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Figure 4.15: Yearly time series over the whole domain for the 6 simulations, for the
RCM true series, the GCM-driving main emulator series and the GCM series.

Figure 4.15 shows the yearly mean time series over the target domain for the RCM,
the GCM-Emulated and the interpolated GCM. The RCM and emulator series are
similar, but two significant differences arise. Firstly, the emulated HGM series is
much warmer than the HGM RCM simulation all along the century, especially at
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Figure 4.16: Summer (JJA) and Winter (DJF) mean time series for the RCM (red), the
Emulated series from the GCM (green), the GCM (blue) and the UPRCM (yellow) over
the target domain.

the end since the emulator produces more intense warming. The emulated series
follows the GCM and seems, in this aspect, more coherent than the RCM series.
The HGM-GCM simulates a warmer climate at the end of the century than the
three other GCMs over our target region, and the ALADIN63 simulations did not
reproduce this.

Conversely, the emulated MPI simulation may be colder than it should be as it is
closer to the emulated CNRM than the emulated NCC, while it is the opposite in
both GCM and RCM series. It is particularly visible on the historical part. It might
be explained by a cold bias of the emulated MPI in summer. Figure 4.16 shows
the winter and summer time series means for the MPI simulation. It comes that
the emulated MPI is much colder than the RCM series in summer. It can, at least
partially, be explained by the large scale as the GCM is also colder than the RCM.
Moreover, in summer, RCM and UPRCM are very close, with the UPRCM being
sometimes slightly colder while the emulated series is much colder than the GCM. It
is, of course, very complex to interpret. The low resolution near-surface temperature
is not a predictor given to the emulator, and the UPRCM mean is naturally very
similar to the RCM mean. Thus, many good reasons could explain the bigger dif-
ferences between the GCM and emulator. For example, the GCM-MPI has a poorer
resolution than the CNRM grid (where we interpolate all inputs), implying a poorer
representation of the relief. Nevertheless, this cold behaviour of the emulator in
summer for the MPI simulation could be suspect and necessitates more investigation
to be understood. Here is probably the biggest challenge for the emulator evaluation
as it is complicated to evaluate without a truth series as in perfect model evaluation.
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Figure 4.17: Upper panel: Summary plots for the bias in mean climatology maps, past
(1970-2000), present (2006-2035) and future (2071-2100) periods. Lower: Climatology
maps for the HGM simulations with the RCM simulation, the GCM-emulated simulation
CNRM emulator and the GCM simulation. It also shows the biases.

I used all emulators built in Section 4.3.2 on these 4 GCM simulations to evaluate
the training set’s impact when downscaling GCM simulations. Figure 4.17 shows
the bias summary plots in the climatology maps. The reference is the corresponding
RCM temperature. Interestingly, all these emulators have similar biases, as
shown by the spatial means and superquantiles. Surprisingly, training on the
corresponding ALADIN63 simulation does not impact the performances. I show
only the results for the climatological bias here, but the conclusion is precisely the
same on all other metrics used in the previous sections. Globally we can see that
the emulated series have larger mean and local biases with greater superquantiles
than in the perfect model. The most substantial differences appear in the HGM
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simulation, especially in the summer, as shown in Figure 4.17. The emulated
climatology is warmer over land and relief while there is a cold bias over the coasts.
This cold bias could come from missing sea surface temperature information. On
the other hand the warm bias seems consistent with the large scale. However, we
can see here again that the climatology map from the emulated series is coherent
with a good representation of the high-resolution spatial structure brought by the
RCM.

These similar results on all emulators show that the downscaling function learnt by
the emulators is globally similar on all training sets, and the emulator’s production
always stays consistent with its driving large scale. It confirms the robustness of the
emulator, and if some issues need to be fixed, notably regarding some biases, the
general result here is that the downscaling of GCM simulations with the emulator
works and provides the adapted high resolution information of climate according to
the given large scale.

4.5 Discussion

4.5.1 On the standardization method
In Chapter 3 of this manuscript, I presented my choice for the standardization
method used to prepare the inputs for the neural network. I chose to separate the
temporal and spatial information into two sets of inputs. The first set regroups
all 2D variables (reported in Table 1chaptab1) normalized according to their daily
spatial mean and standard deviation. It results for every day in a collection of
maps, all centred in 0, highlighting the spatial anomalies or structure of the given
day. The second set contains somehow temporal information. It is a 1D array
including the collection of daily means and standard deviations used to normalize
the 2D variables, the yearly greenhouse gas concentration used to drive the RCM
simulation and a vector including a cosinus and a sinus representing the day of
the year. This set of 1D variables is also normalized according to its climatology
over 30 years. To summarize, for each day, the set of 1D variables indicates the
position of the day in comparison to others in terms of global climate (through
the GHG concentration), its place in the year and somehow an indication of the
climate variability mode over the input domain trough the set of spatial mean and
standard deviation. The 2D maps bring information on the daily spatial structure
completing the information on the climate mode of the day.

I made this choice because of the robustness to new inputs. Indeed, it is well
established that neural networks (ref) and especially convolutional neural networks
are very sensitive to input space changes. As shown in section 4.2.3, the relationship
between different variables and altitude levels can differ between 2 GCMs. Figure
4.4 shows these differences at the input domain scale. They are probably bigger
when we look at the grid point scale, especially because two GCMs have different
horizontal resolutions. My intuition here was that this normalization would help us
to prevent this effect.

A probably more intuitive way to normalize the inputs is to do it at the grid point
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Table 4.2

NAME DESCRIPTION with respect to the main emulator
CNRM no850 No variables at 850 hectopascal
CNRM nosfc No surface variables
CNRM nosfc no850 No variables at 850 hectopascal & No surface variables

scale. I constructed an emulator called CNRM std2 to test our standardization
strategy and my hypothesis. This emulator is, in every aspect, trained in the same
way as the main emulator as it takes the same set of inputs. It is trained on the
same simulation (CNRM HIST+RCP85) and uses the same neural network. The
only difference is the normalization procedure since each daily 2D map is directly
normalized by the mean and standard deviation maps computed over a 30 years
reference period of the corresponding variable. Following this, the set of 1D inputs
contains only the external forcings (GHG, Solar and ozone constraints) and the
cosinus sinus vector for the day of the year. The results are reported in all plots
from the cross-validation exercise (Fig. 4.12,4.13,4.14). The emulator CNRM std2
results are very similar to our main emulator on the CNRM simulations, with some-
times slightly better results regarding the climatology plots, for example (Fig, 4.12).
However, regarding the three other simulations driven by different GCMs, the main
emulator performs better than the novel one. It is obvious for all metrics on the MPI
simulation, which seems to be the most different from the CNRM one in Figure 4.4.
To conclude here, the CNRM std2 has, in this perfect model evaluation, stronger
biases and a less good representation of the variances and pdfs on the simulation
driven by different GCMs, which tends to confirm the hypothesis that the two steps
normalization helps for the robustness of the emulator.

4.5.2 Some tests on inputs choices
The large set of simulations to evaluate the emulators is a good opportunity to make
small tests on some input choices from chapter 1. For instance, I showed in Chapter
1 that including the surface temperature in the inputs set improves the emulator’s
performance in the perfect model evaluation but seemed to degrade the downscaling
of GCM inputs. This is logical as the UPRCM near-surface temperature might still
contain high-resolution information that the GCM near-surface temperature cannot
include. However, I decided to keep the surface wind and sea pressure level, and this
choice could be questionable. In the same spirit, I wanted to test whether removing
the variable at 850hpa would change something, as it is still close to the surface,
especially over the relief. To test these two points, I built three emulators described
in table 4.2. As in Sec.4.5.1, the results are reported in the figures from the cross-
validation and GCM sections (sections 4.3.2 and 4.4). It seems that excluding these
variables slightly degrade the results, especially regarding the 99th quantiles (Fig.
4.13 ) or the variance ratio for the MPI, NCC and HGM simulations. Regarding
the results on the GCM simulation, removing these variables could have improved
the results even if it is difficult to evaluate. The impact is small, but it seems to
reduce the spatial range of differences in the climatology maps around a global bias.
It is not shown here, but the same comment can be made on the maps of variance
ratio and Wasserstein distance, especially when both levels (surface and 850hPa)

121



4.6. Conclusion

are removed. This result should be kept in mind for future development and use of
the emulator, but it has not been deeper investigated in this work.

4.6 Conclusion
In this chapter, I tried to address the overriding question of the emulator’s
transferability to other input sources. The aim of the emulator is to downscale
large ensembles of simulations. In the previous chapter, I introduced the emulator’s
concept and methodology. I showed that it can reproduce a simulation close from
the training one (same driving GCM, intermediate scenario of GHG). However,
ensuring that the emulator works well for downscaling any GCM and any scenario
is essential. ALADIN63 is an ideal case study for the emulator since there are
three simulations driven by the same GCM and three different scenarios of GHG
concentration, and four simulations driven by four different GCMs following both
the historical and the RCP85 scenarios.

As in the previous chapter, I address this question in the perfect model framework
where the inputs come from upscaling and smoothing the RCM simulations as
described in Sec.4.2.3 in Chapter 3. This question of transferability remains
a challenging exercise in the perfect model world, as the driving GCM strongly
impacts the relationship between the input variables. Furthermore, these differences
between the different UPRCM simulations are comparable to those observed in
GCM simulations. Therefore, the perfect model framework is a good opportunity
to evaluate the emulator’s robustness under other inputs.

Firstly, I evaluate the emulator built in the last chapter on all available simulations.
The results are globally excellent. The emulator produces the high resolution
structure and variability brought by the RCM. Furthermore, it recreates the
differences between all the simulations regarding temperature levels and warming
strength at the entire domain, regional and grid point scales, even on the 1st
and 99th quantile change maps. For instance, I show that each simulation
simulates different density functions over the Pyrenees and transforms the regional
climate differently across time. The emulated series replicate all these observed
differences. This result gives us solid confidence in the tool, even if it probably
could be improved notably in reproducing the most intense extremes. Indeed, I
notably showed that the emulator underestimates the warmest extreme in a sim-
ulation globally warmer than the training set and it reflects in the mean climatology.

In a second step, I propose a cross-validation experiment to evaluate the impact of
the training set on the emulator’s performance. The ALADIN63 matrix is also an
excellent opportunity to build multiple emulators trained on different combinations
of the available simulations. This experiment strengthens the robustness of our
methodology as all emulators show akin results. They all correctly recreate each
simulation, with some biases or defaults but all in the same order of magnitude.
There is nevertheless a little damper as the emulators trained on the HGM
ALADIN63 simulations are significantly less good. The other conclusion from this
experiment is the importance of having the greatest spread in the training set,
including the most extreme scenarios and, when possible, various driving GCMs.
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The aim is to cover the most extensive range of climates to minimize the risk of
extrapolation in application mode. Moreover, it also prevents using a too specific
simulation, as was the case here for the HGM simulation.

Finally, I tried to validate the emulator in application mode using GCM inputs.
The emulator was able to downscale these GCMs simulations and provide consistent
results. It was particularly interesting to see that the emulator recreates the strong
sensitivity of the HGM simulation better than the RCM. However, the large scales
biases between GCM and RCM make the evaluation very hard since there is no
truth to confront the emulated series. In particular, the emulator seemed too cold
in summer in the MPI simulation. Still, it is difficult to assess if it is coherent
with the driving large scale or if there is an issue in the emulator construction. A
potential limitation of the emulator which could lead to such biases is the absence of
soil variables, such as soil moisture or snow accumulation, which can carry a strong
memory effect not represented in the atmospheric variables. These variables are less
well represented in the GCM, so it is impossible to use them directly as predictors.
Therefore, I think this is a possible improvement method that should be investigated.

This chapter gives a lot of confidence in the emulator for the daily near-surface tem-
perature to apply it to actual GCM data and create big ensembles of high resolutions
temperature series. Of course, the emulator still needs improvements, notably re-
garding the extremes, but its current version provides already a robust basis for the
downscaling of new GCM simulations. Moreover, the results of this transferability
study could also be used as guidelines for future RCM simulations in order to give
the best chance to complete the matrix with RCM-Emulators. In the conclusions of
the manuscript (Chapter 6) I will give more details on this perspective.
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Chapter 5

Precipitation downscaling with the
RCM-Emulator : The role of the
loss function

This chapter presents the use of the emulator for the downscaling of the daily amount
of precipitation. It has been written as an article to be submitted. Therefore, some
parts of the introduction and the methodology sections might be redundant with
the previous chapters (notably Chapter 3).
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5.1 Introduction

Precipitations are the principal source of usable fresh water on Earth. It is a key
variable to study and predict because of its fundamental role in the Earth’s system
balance, in the ecosystem’s life, and above all, human survival and activities rely
directly on it. On the other hand, it is a potential source of catastrophic events.
Heavy rainfalls are responsible for floods devastating cities and cultures. Severe
droughts can cause colossal damage to ecosystems and agricultural activities and
limit access to drinkable water. In the current context of global climate warming,
the eventual changes in precipitations climatology and extremes are crucial to study
for adaptation policies.

The study of rainfall is very complex. Precipitation is a non-continuous variable
neither in time nor in space. It is necessary to look at precipitation series through
different time and spatial scales to completely understand their nature. Their
occurrence and intensity characterise them. For example, the monthly mean
precipitation amount indicates seasonal cycle or large-scale variability but could
underline very different situations. Moderate and regular rain or a dry spell followed
by heavy precipitation will result in the same monthly mean but will impact the
local ecosystems and hydrological cycle very differently. Precipitations can also be
very local as they might strongly depend on the local topography, the distance to
the sea or a lake, etc., and on small scale physical processes such as convective
instability or cold pool (Caillaud et al, 2021). It is therefore necessary to study
them at refined resolutions.

Global Climate Models (GCMs) represent the global Earth system. They are today
the primary tool to study the impact of human greenhouses gases emissions on
the climate. They divide the globe into 3d grids. Each cell represents a specific
location with its characteristics (altitude, kind of surface, etc.). A set of physical
equations is resolved at regular steps in each cell and between cells to represent the
different processes driving atmospheric circulation. The horizontal size of the cell
is the resolution of the model. Finer resolution implies more grid points and higher
computational costs. GCMs have a resolution between 50 and 300km, according
to the model. It is too coarse to accurately represent the precipitation in all its
complexity, especially when looking at the most extreme events. For these reasons,
multiple studies have shown the added value of Regional Climate Models (RCMs)
for representing precipitations, especially extreme events (Torma et al, 2015; Giorgi
et al, 2016; Fantini et al, 2018).

RCMs are similar in all aspects to GCMs, except that they represent only a limited
area domain allowing a higher resolution ( 1 to 25 km). An RCM simulation receives
at regular time interval information from a GCM simulation at the borders of its
domain. The global circulation is then simulated by the GCM and passed to the
RCM, which integrates it and produces a higher resolution simulation. The RCM
is then used to downscale the GCM coarse resolution and we talk about dynamical
downscaling (by contrast to the statistical downscaling introduced below). We say
that the GCM drives or forces the RCM. The main limitation of RCMs is their
high computational costs which do not allow for downscaling large ensembles of
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GCM simulations, although it is essential to produce reliable information. Various
studies (Déqué et al, 2012; Evin et al, 2021) have pointed out at least four sources
of uncertainty associated with RCM simulations: the choice for the RCM and
GCM with the defaults they carry, the uncertainty around the evolution of human
activities and especially the emissions of GHG and finally, the internal variability
of the climate. In order to deliver a reliable message about future climate, it
is necessary to run numerous long simulations from different RCMs, driven by
different GCMs and themselves forced by multiple economic scenarios. Multiple
simulations with the same Scenario, GCM, RCM triplet are then necessary to
differentiate the impacts of climate change and the internal variability.

In this study, I propose testing whether the RCM-emulator introduced in Chapter
3 is suitable for emulating daily precipitation in the RCM ALADIN63 (12km
resolution). The concept of the RCM-emulator is to learn, with machine learning
tools, the relationship between low-resolution large-scale variables describing the
atmosphere circulation of a given day and a local high-resolution surface variable,
such as precipitation daily amount. This downscaling function is learnt inside
existing RCM simulations. The aim is to tackle the cost limitation of RCM by
mimicking its downscaling function for a specific variable at a low computational
cost and then by applying it to any GCM simulations. RCM-Emulators belong
to the hybrid downscaling methods as they involve both statistical and dynamical
downscaling. Statistical downscaling aims to estimate or reproduce the same
large-scale/local-scale relationship with statistical methods. The fundamental
difference is that statistical downscaling uses historical observation data to learn
the downscaling function. By using historical and future RCM simulations in the
training set, the RCM-emulator is more robust to the possible non-stationarity of
this relationship. Moreover, it can also be applied over regions with no long series
of observational data.

Various studies have proposed statistical downscaling methods to downscale
GCM or RCM simulations. Maraun et al (2010) and more recently Gutiérrez
et al (2019) present an overview of available statistical methods for downscaling
precipitations. Some very recent studies (Baño-Medina et al, 2020, 2021; Vandal
et al, 2019; Wang et al, 2021) have successfully used convolutional neural networks
for this purpose. The RCM-emulator used in Chapter 3 and this study relies
on a convolutional neural network architecture called UNet (Ronneberger et al,
2015). It has shown an excellent ability to emulate the temperature, notably in
reproducing the complex spatial structure and daily variability brought by the RCM.

The second objective of this study is to look at the impact of the loss function
on emulator prediction. If precipitations are complex to study, they are also
challenging to model. Their intermittent nature implies a substantial variability
in time and space and high non-linearity. Baño-Medina et al (2020) undertake
this issue with a well-designed probabilistic neural network. It outputs the three
parameters of a Bernoulli-Gamma distribution for each day and grid point. Wang
et al (2021) use a GAN neural network architecture, which produces for each
day a possible realisation. Here, I will compare two standard loss functions
for regression problems with a third designed explicitly for the precipitation
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downscaling task. It relies on an asymmetric regularisation parameter which pe-
nalises stronger the network when it under-evaluates higher precipitation intensities.

As in the rest of this manuscript, I train and evaluate the emulators using a perfect
model framework. It implies that both predictors and predictands (precipitation
here) come from the same RCM simulation. The target domain here is centred over
the Alps and is four times bigger than in the preceding chapters. It will also help
to address the emulator’s transferability to another domain and the needed compu-
tational time for a larger target domain. This chapter contains four main sections.
In Section 5.2, I present the framework of the study: the data, the target domain
and the associated predictors. I will also recall the neural network architecture and
the concept of perfect model training and present the three losses functions used to
calibrate three emulators and the evaluation tools I will use. Section 5.3 presents
the detailed evaluation of the emulators in a perfect model framework, while Section
5.4 shows the results of the asymmetric emulator application on GCM simulations.
Finally, in a discussion part (Section 5.5), I come back to the construction of the
asymmetric loss function and the computational performances of the emulator.

5.2 Methodology
In this section, I set the framework used to build and evaluate the RCM emulator
for precipitation. I firstly present briefly the simulations used in this work. Then I
present the emulator base: the chosen target domain and predictors and the neural

Figure 5.1: Illustration of the input (left) and target (right) domains through the cli-
matology of the daily rainfall over the 1980-2000 period. The black line on the left panel
shows the target domain while the input domain is the entire map. On the target do-
main: the red points are the 4 illustrating points on Figure 5.7 and 5.12. From North to
South, there is Paris, a high point (2247 meters) in the Swiss Alps, Toulouse and Roma.
The three blue boxes are the three regions used for the SAL evaluation in section 5.3.2:
The north region, centred over Belgium, the Cevennes region (south-east France) and the
Dinaric Alps.
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Table 5.1: The ALADIN63 matrix.

DRIVING
SCENARIO

DRIVING GCMS
CNRM-CM5

(CNRM)
MPI-ESM-LR

(MPI)
NorESM1-M

(NCC)
HadGEM-ES2

(HGM)
Historical x x x x
RCP26 x
RCP45 x
RCP85 x x x x

network architecture. I will present the three loss functions used to train the three
emulators for the inter-comparison. I will also shortly recall the perfect model
framework approach used to train and evaluate the emulators. Finally, I will detail
all the metrics used to evaluate the emulator under different aspects.

5.2.1 Datas : the ALADIN63’s matrix
The emulator proposed in this study relies on the regional climate model ALADIN63
(Nabat et al, 2020). A total of ten simulations have been published with this RCM
over the whoe Europe in the EURO-CORDEX framework (Vautard et al, 2020).
They downscale four different GCMs and four different scenarios (cf Table 5.1). The
CNRM-CM5 global climate model is developed in the same institute as ALADIN63,
so they belong to the same family of models. CNRM-CM5 drove 4 ALADIN63
simulations, the historical (1951-2005) and three RCP scenarios (2.6, 4.5 and 8.5,
on the period 2006-2100). MPI-ESM-LR, NorESM1-M and HadGEM2-ES are the
three other GCMs used to drive ALADIN63 following the historical and RCP8.5
scenarios of greenhouses gases emissions. From now CNRM-CM5 will be referred
to as CNRM, MPI-ESM-LR as MPI, NorESM1-M as NCC and HadGEM2-ES as
HGM.

5.2.2 RCM-Emulator conception : Predictors, architecture
and target.

In this chapter, I focus on the challenging emulation of daily precipitation from
ALADIN63 at 11◦ horizontal resolution (about 12km). In order to also test the
emulator’s transferability to another domain, I chose a more extensive domain
centred over the Alps. The target domain is visible on the left side of Figure 5.1.
It is four times bigger than the previous domain as it counts 128 × 128 grid points.
It includes the entire Alps and goes from Sardaigna until the north of France and
from the Pyrenees until Croatia. This domain is interesting because it has different
areas with different precipitation regimes. For example, the Cevennes (South-East
of France) region is known for its very extreme events in autumn, similarly to other
coastal areas of the Mediterranean region. The reliefs receive more precipitation
than plane regions, and they are regions where the higher resolution of RCMs
brings a lot of added values, especially for the extremes. The flat regions of the
north of the domain receive a lot of precipitation throughout the year but have
less strong daily extremes than the southern regions. The emulator is trained to
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Table 5.2: List of predictors

2D Variables
Field Altitude Levels Variables Notation Units Temporal Aggregation Dimension

Geopotential 850, 700, 500 hPa
zg500
zg700
zg850

m Daily mean [i, j]

Specific Humidity 850, 700, 500 hPa
hus500
hus700
hus850

Daily mean [i, j]

Temperature 850, 700, 500 hPa
ta500
ta700
ta850

K Daily mean [i, j]

Eastward Wind
850, 700, 500 hPa

+
Surface

ua500
ua700
ua850
uas

m/s Daily mean [i, j]

Northward Wind
850, 700, 500 hPa

+
Surface

va500
va700
va850
vas

m/s Daily mean [i, j]

Sea Level Pressure Surface psl Pa Daily mean [i, j]
Total Aerosol Optical

Depth forcing TAOD Monthly mean [i, j]

1-D Variables
Daily spatial means

of 2D variables
x

with x ∈ V 2D
Daily [#V 2D]

Daily spatial standard
deviation

of 2D variables

•
x

with x ∈ V 2D
Daily [#V 2D]

Total Anthropogenic
greenhouses gas

forcings
ant ghg Yearly [1]

Solar and Ozone
forcings sol, oz Yearly [2]

Seasonal Indicators
Cos( 2πt

365) ; Sin( 2πt
365) cos,sin Daily [2]
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reproduce land and overseas precipitations, even if I will sometimes evaluate it only
on land. Finally, the bigger domain will allow characterising the computational
time needed for the emulator’s calibration.

The emulator I use in this chapter for the downscaling of precipitation is built exactly
like the one for the temperature in the two last chapters. It can be seen as a classical
machine learning problem

Yt = F (X̃t, Z̃t)
where (X̃t, Z̃t) are the low resolution predictors,Yt the high resolution target variable
(here daily amount of precipiation) at day t and F the downscaling function that
we aim to estimate with the neural network. The list of predictors is the same
as in Chapter 3, with both sets of 1D and 2D inputs recalled in Table 5.2. The
standardisation procedure is also the same. For each day, I normalise each 2D
input spatially. The daily spatial mean and standard deviation are then given
to the emulator through the set of 1D inputs, which also contains the external
forcings (yearly greenhouse gases concentration, solar and ozone constraints) and
the seasonal indicator (sinus, cosinus vector). More details can found in Chapter 3.
The input domain is adapted to match the new target domain. It is a 22*16 grid
point on the CNRM-CM5 grid (1.4◦) centred over the target domain, (the whole
map on Figure 5.1).

The neural network architecture is also the same as in the temperature emulator.
It relies on the well-known UNet architecture (Ronneberger et al, 2015). The only
differences with Chapter 3 are due to the size of the input and target domains. As
shown on Figure 5.2, the first layer of the network reshapes the 2D inputs from
[16, 22, 32] to [16, 16, 64] in order to obtain squared images before the encoding
path. On the other side, the expanding path is extended to reach the target domain
size.

5.2.3 Loss function for the neural network training
In this chapter, I propose a deeper look on the impact of the loss function on the
emulator’s performance. The loss function is an essential part of the neural network
training. In the training phase, the network sees examples of inputs and target
variable pairs. For each day of the training set, it makes a prediction and compares
it with the truth. The loss function evaluates the network prediction against the
expected outcome. The network parameters are then updated according to the loss
function results. This operation is repeated until the cost (i.e. the average loss
results) stabilises. The best combination of parameters has the lowest cost over a
validation set, different from the training set. This is then a minimisation problem
to find the best estimate F̂ such that :

F̂ = arg min
θ∈Θ

L(D, θ) (5.1)

Where Θ is the ensemble of possible parameters, D the validation set and L the
loss function.
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Figure 5.2: Illustration of the neural network architecture.

Precipitations are particularly complicated to emulate with neural networks
because of their distribution. Indeed, as illustrated in Figure 5.12, the distribution
of precipitation looks like a highly left-skewed gamma distribution. There are many
days with low precipitation and a few with very high precipitation. These different
events contribute non equally to the mean, with a few days having more impact
than the other ones. The emulator must reproduce well the entire distribution. The
good reproduction of rare extreme events constitutes the substantial added value
of RCM, so the emulator should reproduce them accurately. The loss function
is therefore a way to rebalance the data and force the emulator to look more
specifically into specific events.

In this Chapter, I compare three emulators, constructed with different loss functions:

• Emul-MSE : uses the classical mean squared error as loss function, as for the
temperature emulator. It corresponds to the L2 norm.

L(y, ŷ) = 1
N × T

T∑
t=0

∑
i∈D

(yi,t − ŷi,t)2 (5.2)

With D the ensemble of grid points, N the number of grid points and T the
number of days.

• Emul-MAE : uses the mean absolute error. It corresponds to the L1 norm.

L(y, ŷ) = 1
N × T

T∑
t=0

∑
i∈D

|yi,t − ŷi,t| (5.3)

• Emul-ASYM : uses a specific loss function that I designed for the precipi-
tation problem. It is based on the MAE loss function plus an asymetric term
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Figure 5.3: Illustration of daily precipitation distribution, in the Cevennes box (cf Fig
5.1) all points and days are pooled.

which penalizes stronger the emulator when it underestimates the true value
while it was a raining day.

L(y, ŷ) = 1
N × T

T∑
t=0

∑
i∈D

|yi,t − ŷi,t| + γ2
i,t × max(0, yi,t − ŷi,t) (5.4)

With γi,t = Fi(yi,t) and Fi the cumulative distribution function of a random
variable Yi following a gamma distrubtion

Yi ∼ Γ(αi, βi) ∼ Γi

where αi and βi are fitted on the training set.

The MAE and MSE losses are the most commonly used loss functions for regression
problems. The MAE loss sums the absolute distance between an observation and
its prediction. It gives the same weight to each observation. Knowing that daily
rainfalls are strongly left-skewed, with a vast number of observations with a small
amount of precipitation, the EMUL-MAE should be able to suit these days well.
However, the rare cases with large precipitations should be less well reproduced.

The MSE loss function gives more weight to the significant errors than the small
ones. The MSE generally shows the best results in regression problems. It is
equivalent to the maximum likelihood estimation in a Gaussian setting. It leads
theoretically to the best estimate for normally distributed data knowing the
inputs. In the case of precipitations, it is not likely to be the case because of their
highly intermittent nature. So the MSE loss function might not be well adapted.
Emul-MSE is the same emulator as the one of Chapter 3.

The choice of the asymmetric loss function is more widely discussed at the end
of this chapter. The intuition comes from the results of both EMUL-MAE and
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Figure 5.4: Illustration of the three loss functions according to the error (y − ŷ). For
the ASYM loss, as it depends on the true prediction and the location, I illustrate it with
y = 20 and 2 locations: Roma and the Alps point already mentioned (Fig 5.1).

EMUL-MSE presented in section 5.3. The idea is to add a penalty when the emula-
tor underestimates consequent precipitations. The more extreme this observation,
the higher the penalty should be. The γi,t parameter determines how extreme is a
given observation and defines the weight accordingly. At each grid point, I estimate
the parameters of a gamma distribution, which I fit on the rainy days (over 1mm)
of the training set (using the scipy python package, Virtanen et al (2020)). The
Gamma distribution has been widely used to described precipitation data (Katz,
1977; Vrac and Naveau, 2007) but other distribution could be considered. In order
to make this parameter estimation more robust, I fit them yearly and then average
these parameters over the years. It gives a map of the shape and scale parameters.
The γi,t parameter is then the evaluation of yi,t by the Cumulative Distribution
Function (CDF) associated to the gamma distribution Γi fitted at the point i.

5.2.4 Evaluation Metrics

In order to evaluate and compare the performances of the emulators I will evaluate
them with respect to the daily precipitation series from the corresponding RCM
simulation (cf Fig.5.5). I will use various metrics to compare the targeted (Y )
and the predicted (Ŷ ) series to have the most complete evaluation possible and
understand the strengths and weaknesses of each emulators. The different metrics
are detailed in the sections below.
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Figure 5.5: Scheme of the training (left), perfect model evaluation (middle) and GCM
world application (right) protocols.

Time series comparison

First of all I will evaluate in each grid point if the emulated time series matches the
original RCM series through two metrics already used in this manuscript:

• Temporal Anomalies Correlation. This is the Pearson correlation coeffi-
cient after removing the seasonal cycle:

ACC(Y, Ŷ ) = ρ(Ya, Ŷa) , (5.5)

with ρ the Pearson correlation coefficient and Ya and Ŷa are the anomaly series
after removing a seasonal cycle computed on the whole series.

• Ratio of Variance. It indicates the performance of the emulator in repro-
ducing the local daily variability. We provide this score as a percentage:

RoV (Y, Ŷ ) = V ar(Ŷ )
V ar(Y ) ∗ 100 (5.6)

Both metrics are computed at each grid point. According to what was done in the
previous chapters of this manuscript, each map is summarised with its spatial mean
and 5th and 95th super-quantiles. The super-quantile α is defined as the mean of
all the values larger (resp. smaller) than the quantile of order α, when α is larger
(resp. smaller) than 0.5.

Climatological scale metrics

It is necessary to evaluate the emulators at the climatological scale. I will look at
three statistics over at least 20 years: the daily precipitation mean, the 99th quantile
and the percentage of dry days. These three metrics are prints of the variable
distribution from the mean and extreme sides. I will compare the emulators’ maps
(Ŷ ) with the RCM truth maps (Y ) and compute the relative biases (eq. 5.7) from
the emulated series maps against the RCM truth. The biases maps are then in
percentage. When the biases are too strong, notably because of comparing very
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small values, I use the simple bias (Ŷ − Y ), expressed in mm/days. Again, the
statistics are computed point-wise, and I summarise each map with the spatial
mean and super-quantiles.

Relative bias = (Ŷ − Y )
Y

× 100 (5.7)

These three statistics will be looked at in present climate but also in climate change
context. Each statistic will be computed in a future period and the climate change
statistic is the relative difference with respect to the past period. Then the simple
bias is computed between RCM and emulator climate change statistics.

PDF normalisation

Since the pdf for the rainfall are very heavy-tailed, it is difficult to compare them. I
propose here to have a deeper look into the distributions thanks to the ASoP method
introduced in Klingaman et al (2017) and used in multiple studies as Berthou et al
(2020) or Vergara-Temprado et al (2020). It consists in computing the precipitation
frequency following some well-chosen bins bn defined in Eq 5.8. The bins are such
that they contain a similar number of events for bins over 1mm and as long as the
number of events is sufficient.

bn = e

ln(0.005) +
[
n

(ln(120) − ln(0.005))2

59

] 1
2
 with n ∈ J0, 100K (5.8)

Then we can look at each bin’s contribution Cn to the mean by multiplying each
frequency by the corresponding bin’s mean as described in Eq. 5.9. Both frequency
and contribution are interesting in comparing the emulated series with the true
RCM.

Cn = fnmn

where fn and mn are the frequency and the mean of bin bn

(5.9)

I use the skill score proposed in Berthou et al (2020) to evaluate the difference
between the emulators and the RCM truth contributions curves. The fractional
contributions are the actual contributions divided by the total mean precipitation
of the series. They give information on the shape of the distribution independently
from the mean. The Fractional Contribution Skill Score (FCSS) sums the absolute
difference in each bin between the fractional contributions of an emulator and the
targeted true series. The area under the FC curve is equal to 1, so the FCSS is
equal to 0 when the two distributions are identical and to 2 when there is no overlap
between them. It measures the differences between the two distribution shapes
independently from the series mean. This score is illustrated on Figure 5.12 and
further commented in the results section 5.3.1.
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FCSS(Emul, RCM) =
∑

n∈J0,100K

|FCEmul
n − FCRCM

n |

where FCn = Cn∑
n Cn

= Cn

mean

(5.10)

SAL score

In order to further evaluate the performances of the Emulator, I use an object-
oriented score introduced in Wernli et al (2008). The SAL score aims to evaluate the
spatial structure of precipitation objects from a predicted map versus a reference. It
compares two maps of precipitation at a given time step. It accounts for the objects’
structure (S-component) and location (L-component) plus the total amplitude of
precipitation (A-component). In perfect model evaluation, the Emulator should be
able to reproduce the precipitation events accurately. This score indicates if the
Emulator recreates objects like the RCM and if they have the same characteristics.

The first step is to identify the precipitation objects. To do so, I used the pysteps
(Pulkkinen et al, 2019) python library, which integrates a SAL implementation.
Each day, the objects are all the groups of 5 or more consecutive points with more
precipitation than a minimum threshold equal to R∗ = 1

15R95, R95 being the 95th

quantile on the map. Multiple objects can be detected every day. Then, the three
components are computed aiming to differentiate objectively different precipitation
objects. Figure 5.6, from Wernli et al (2008), illustrates the behavior of the SAL
score between observed (O) and forcasted (F ) objects on some idealized and basic
cases.

The three SAL components are defined as follow:

• Amplitude component : It compares the normalized total amount of pre-
cipitation over the domain between the Emulator and the RCM truth.

A = 2 D(REmul) − D(RRCM)
D(REmul) + D(RRCM)

Where D(R) = 1
N

∑
i∈D

Ri

(5.11)

With D the ensemble of all grid points ( even with no rain), N the number
of grid points, and Ri is the precipitation amount in the ith grid point. Then
D(R) is the average precipitation per grid point over the whole map. A takes
values between -2 and 2, and 0 is the perfect reproduction.

• Location component : It is composed of two parts L = L1+L2. L1 measures
the distance between the two maps’ centre-of-mass of the total precipitation
fields.

L1 = |x(REmul) − x(RRCM)|
d

(5.12)

x(R) is the centre-of-mass of the precipitation field, considering all precipita-
tion points and not only the identified objects. d is the maximum distance on

136



Chapter 5. Precipitation

the map. The maximum value for L1 is 1 since it is normalized by d. The
second component aims to distinguish the individual objects. L2 computes the
normalized difference between the map average of the distances of the objects
to the global centre-of-mass.

L2 = 2 |r(REmul) − r(RRCM)|
d

Where r(R) =
∑

k∈O Rk|x − xk|∑
k∈O Rk

(5.13)

With O the ensemble of identified objects, Rk the total amount of rain in
object k, xk the centre-of-mass of the object k and x the total centre-of-mass
of the map. The maximum value for r is d/2, so L2 ranges between 0 and
2. The case where L2 is equal to 0 is if both maps contain at most a single
object or if, on both maps, all objects have the same centre of mass. The
L-component is then between 0 and 2.

• Structure component : On each object, we can compute a scaled volume :

Vk = Rk

Rmax
k

∀k ∈ O (5.14)

which is the sum of all object’s points divided by the object’s maximum point.
Then we compute V the weighted mean of all scaled volume over the maps:

V (R) =
∑

k∈O RkVk∑
k∈O Rk

. (5.15)

And finally the S-component is the normalized difference in V :

S = 2 V (REmul) − V (RRCM)
V (REmul) + V (RRCM) . (5.16)

Wernli et al (2008) illustrates with several examples that this part of the
score captures information on both size and shape of each object. It notably
differentiates peaked objects, with intense precipitation but affecting few grid
points, than an other one, larger but with comparable amplitude (i.e low
intensity but affecting more points). It corresponds to examples (c) and (e)
on Figure 5.6 where object F would have smaller maximum. The structure
component scales between -2 and +2.

The results are then represented through a diagram where each day is represented
by a point with the S and A components on the x and y axis respectively, and the
L component given by the color of the point. SAL diagram are visible in Figure
5.14 and commented in Section 5.3.2. Following the recommendation of Wernli et al
(2009), I will apply this score on sub-domains of a maximum of 500km by side
represented with blue squares on Figure 5.1.

137



5.3. Perfect model Evaluation

Figure 5.6: Illustration of SAL scores with idealized examples, extracted from Wernli
et al (2008).

5.3 Perfect model Evaluation
This section is divided in two part. In a first evaluation step I evaluate and com-
pare the three emulators in perfect model framework using the CNRM-ALADIN
RCP45 simulation, from 2006 to 2100, as hidden truth. After a first impression
on the emulators’ abilities through some examples, I will extend the analysis with
climatological and daily scores. This section also helps to understand the impact of
the loss function on the trained emulator. In a second step, I limit the evaluation
to the Emul-ASYM and comment the SAL results which will help us to objectively
determine if the emulator is able to create precipitation objects. In a second part I
extend the analysis to all available ALADIN63 simulations (cf. Table 5.1) and study
the emulator ability to reproduce their climate change projections.

5.3.1 Comparison of the three emulators
First look into the emulators’ prediction

Before evaluating the emulators’ performances with metrics, it seemed worthwhile
to look into the raw series they produce. Figure 5.7 shows the times series at four
grid points for the year 2022 in the evaluation simulation for the RCM truth and
the three emulators. The four grid points show very different series. The Alps point
series shows the strongest variability and intensities, with many days over 50 mm
and almost no dry spell. The Paris series has minimal variability with numerous
small precipitation days and low extremes compared with the other points. The
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Toulouse and Roma series are the two most similar, with some dry periods and
heavy precipitation days, especially in spring and autumn in Toulouse. Roma is
pretty dry during spring and summer 2022 in this simulation and has a very strong
rainfall event in fall.
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Figure 5.7: Daily precipitation time series for four grid points. The RCM truth (in red)
and the three emulators are plotted on each panel.

The emulators series are very encouraging. They reproduce the four original series
accurately, respecting each point’s characteristics. They look like precipitation
series as they appear to be able to produce days with no precipitation and days
with heavy rainfall. All emulators capture the extreme autumn rainfall in Roma
and the dry spell between May and June. The very high variability over the Alps
point also appears well reproduced by the three emulators. On all four points, the
three emulators seem to miss some extremes simulated by the RCM, as it occurs
several times that the red line comes higher than the others. It also seems to be the
case for the green curve (Emul-ASYM), but it is more difficult to see as it covers
the other lines. However, it does not seem that Emul-MSE or Emul-MAE ever
make stronger extremes than the RCM. At this point, it is impossible to decide if
an emulator performs better than the others.

Figure 5.8 shows the precipitation field over the target for three days randomly
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picked along the simulation. It shows the RCM truth, the three emulators and the
UPscaled precipitation field (UPRCM). The UPRCM helps to have an insight into
the input resolution and shows how the RCM and the emulators refine it, even if
precipitation is not part of the predictors. Several exciting points appear in this
figure. First of all, the emulators’ prediction on each panel is very coherent with
the RCM. The precipitations are always well located with coherent intensity. It
seems, however, that the emulators are producing too smooth objects. On the RCM
maps, there are some very sharp and precise structures that the emulators fail to
reproduce with the same precision. For example, on the lower panel, there is a hole
with no rain over the southwest of France, which is missed by all emulators, even
if Emul-MAE and Emul-ASYM make less intense precipitation over this area. The
middle panel RCM map also shows very sharp structures that appear smoother
in the emulators’ maps. Nevertheless, the extreme points are well located for the
three days.

Figure 5.8: 3 randomly chosen days illustrating the precipitation field of ALADIN63 at
the Upscaled resolution (UPRCM), its native resolution (RCM truth). The three right-
most plots show the precipitation field for each of the three emulators.
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In terms of intensities, the three emulators have mostly the correct spatial mean.
Emul-ASYM reproduces better the spatial extremes as it has closer 95th superquan-
tiles than Emul-MSE and Emul-MAE, which are both under-estimating the spatial
extremes on these three days. Emul-ASYM is overestimating the spatial SQ95 on
the first panel, as it creates a more significant local extreme over the Alps than in
the RCM map. It is, however, remarkable that this extreme is not inconsistent with
the UPRCM map. Indeed it is interesting to notice the differences between the RCM
and the UPRCM maps, which attest to the resolution’s impact. The RCM is able to
create sharp and well defined objects, with locally strong intensities. Regarding this
aspect, the emulators seem to have an adequate capacity to refine the low-resolution
maps and always recreate consistent high-resolution maps. Nevertheless, it seems
that the objects created by the emulator are less precise than on the original RCM
maps.

Daily scale analysis

In a second step, and to extend the first observations from the previous section,
we can look at some scores over the time series. Firstly, the upper panel on figure
5.9 shows the Pearson correlation coefficients calculated between the RCM and the
emulators’ series in each grid point. The three emulators appear to have similar
performances regarding this aspect, with a reasonable deseasonalised correlation
with the true series over the whole domain. The best correlations are over the
reliefs with Pearson coefficients larger 0.9. The lowest correlation appears over the
driest area (cf Fig. 5.11), like the south of the Pyrenees or the North-East corner of
the domain, but the correlations are still around 0.75.

Figure 5.9: Temporal Anomalies Correlation (up) and Ratio of variance (bottom) com-
puted on the entire evaluation simulation (2006-2100) for the three emulators.
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The lower panel on Figure 5.9 shows the variance ratio for the three emulators
against the RCM truth. Emul-ASYM manages to reproduce in each point the
RCM variance much better than the two others. Its variance ratio ranges from 80
to 120 percent, with a big part of the map being very light, showing about 100%
variance reproduction. It slightly overestimates the relief’s variance and slightly
underestimates it over the regions with low rain average (cf Fig. 5.11). On the
other hand, both Emul-MSE and Emul-MAE vastly underestimate the variance
over the whole domain, even if Emul-MSE is slightly better.

It seems that the three emulators understand the large scale the same way, as they
can recreate the chronology of the original RCM series very accurately. They can
identify where and when the precipitations occur at the grid point scale, as shown by
the good correlation maps. However, the loss choice seems to substantially impact
the reproduction of the events’ intensity as the emulators have different variance
ratio maps. Let us see if this is confirmed when we look at aggregated statistics.

Climatological scale analysis

In this section, we look at some aggregated statistics to evaluate if the series
produced by the emulator are statistically similar to the RCM one and how they
differ. Figure 5.11 shows three climatological metrics over 20 years in the present
period for the RCP4.5 simulation which is not in the training set. The upper panel
shows the average daily precipitation over 2006-2025, the middle one is the 99th
quantile, and the lower one shows the proportion of dry days. This figure illustrates
the impact of each loss function on the emulator.

The Emul-MSE mean is very similar to the RCM map. The spatial mean and
superquantiles are the same. The bias map shows that it slightly underestimates
the RCM values, but at maximum by 15% and over regions with low precipitations.
However, it presents much poorer results on the other part of the distribution: it
largely underestimates the 99th quantile (-15% on average) and the number of dry
days (-10% on average). It is due to the nature of the mean squared error loss,
mainly concentrating around the mean. The Emul-MAE is, meanwhile, very accu-
rate for the representation of dry days, very slightly overestimating them. However,
it fails to reproduce the mean and the 99th quantile maps, broadly underestimating
them. The MAE loss gives the same weight to all errors. Since the number of dry
days is the most represented (between 35 and 85% of the days are between 0 and
1 mm) they weigh much more in the emulator training, so it mainly focuses on them.

The Emul-ASYM aims to correct the EMUL-MAE by giving more weight to the
rainy days, proportionally to the amount of rain. It has similar performances to
Emul-MAE over the dry days’ map, which is expected since both emulators have
the same loss function on this part of the distribution. However, the Emul-ASYM
mean and 99th quantile maps are also very accurate. It shows in both cases
less than 15% bias over the worst points and almost no bias on average over the
maps. Regarding both climatologic maps, it seems to slightly overestimate the
precipitation where it is raining the most and under-estimates at the driest points.
Nevertheless, these errors are shallow, and the Emul-ASYM is clearly the best
option if we aggregate the performances for the three metrics.
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Figure 5.11: (Upper) the mean map of daily precipitation accumulations over the 2006-
2025 period, (middle) the 99th quantile map over the same period and (lower) the percent-
age of dry days. These three statistics are shown for the RCM and the three emulators.
For each emulator and each metric, the relative bias maps are shown. The spatial mean
and 95th and 5th superquantiles are given for each map.

On all maps in Figure 5.11, it is striking to see how well the emulators reproduce
the complex spatial structures. Emul-MAE and Emul-MSE have strong biases
that are uniform over the domain. All three statistics present locally different
patterns, and the emulators reproduce that. For instance, on the 99th quantile
maps, there is a strong pattern in the Cevennes, just south of the Massif Central
(France), which is much less intense in the daily mean map. It is the same for the
emulators’ maps. The spatial structure over Italy is also very complex; there is a
thin line over the reliefs with more rainy days and higher extremes, which is also
perfectly reproduced by the emulators. Similar examples exist for the entire domain.

In order to extend this result, we can look at the entire distribution using the ASoP
method described in section 5.2.4. In Figure 5.12, the pdf analysis is detailed for the
four grid points previously used: Toulouse, a high point in the Swiss Alps, Paris and
Roma. The first column shows the events frequencies for each bin defined in section
5.2.4. Most days fall in bins under 0.1mm as the red curve comes from high on the
left part of the plots. The Emul-ASYM and the Emul-MAE reproduce this part well,
while the Emul-MSE underestimates the very low precipitations (≤ 0.1mm/day)
and overestimates the ones between 0.01 and 10mm. It is less pronounced for
the Alps point, where the event distribution is more uniform across the bins with
more intensities 10mm and 100mm than the other three points. Emul-ASYM re-
produces the frequency of these stronger events better than the two other emulators.

The second column shows the actual contributions to the mean, which are the
frequencies multiplied by the bins’ mean. The first remark is that Emul-ASYM
slightly overestimates the contribution of the precipitations around 10mm, which
probably led to the wet bias on the mean map of figure 5.11. Emul-MAE
produces insufficient rainfall over ∼ 8mm as the right part of the distribution
is shifted to the left. The same remark applies to the Emul-MSE to a minor
extent, which has a better reproduction of the mean, confirming what we saw in
figure 5.11. Nevertheless, the Emul-ASYM matches better the right tail of the curve.

The last column illustrates the fractional contributions skill score by plotting
the difference between the emulators and the RCM distributions. The fractional
contributions are the actual contributions normalized by the mean of the series,
allowing us to compare only the shape of the distribution across the bins. It helps
to see that the Emul-MSE and Emul-MAE distribution are generally left-shifted,
with too many small precipitations and not enough big ones. The Emul-ASYM
curve generally looks better even if it tends to be right-shifted as it produces
too many heavy precipitations. The regularization term in the Emul-ASYM loss
appears to play its role pretty well as the distribution of precipitation is closer to
the real one but might sometimes be too strong.
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Figure 5.12: Illustration of the probability density function analysis following the ASoP
method (Klingaman et al, 2017) on four example grid points. Each line is a point and
each column is a different step of the method. The first column shows the frequency of
events in each bins, the second and the third the actual and the fractional contribution
and the last column illustrates the skill score. The number in the last column pplots are
the scores for each emulator at the corresponding point.

The skill score measures the area between the emulators’ fractional contribution and
the RCM one, and we can see that the Emul-ASYM outperforms the others over
these 4 points. It is interesting to notice that Emul-MSE and Emul-MAE perform
better over the Alps point, where the precipitations are more uniformly distributed
across the bins. Finally, Figure 5.13 shows that the Emul-ASYM skill score is better
over the whole domain. It generalizes the distribution analysis and confirms that the
specifically designed loss function is more adapted than the two others to reproduce
the highly skewed distribution of precipitation.
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Figure 5.13: Fractional Contribution Skill Score maps for the three emulators.

Conclusion on the comparison

Until here, we have analysed the role the loss function can play in the calibration
of the emulator. Table 5.3 summarise the results obtained on the three emulator.
They all demonstrated an excellent capacity to reproduce the daily precipitation
time series with a good temporal correlation with the original RCM series. Never-
theless the loss function impacts strongly the intensity of the events. The MSE loss
function penalizes strongly the large error which centers the prediction around the
mean because of the chaotic nature of precipitations. Thus, if the mean daily pre-
cipitations is well represented the extremes are underestimated. On the other hand
the MAE reproduces well the low precipitations but underestimate the intensity of
larger events. Finally, the Emul-ASYM, thanks to a regularization term added in
the loss function, managed to reproduce better the entire rainfall distribution at
each grid point of the domain with notably a better reproduction of the extremes.
Therefore, the loss function plays here as a cursor to set the event intensities, while
the chronology of the series is captured from the predictors. From now on, we will
consider only the EMUL-ASYM.

Table 5.3: Summary of the emulators’ comparison results

Emulators Temporal
correlation

Average
precipitation

Dry
days

Heavy
precipitation Variance PDF

Shape
MSE ++ ++ – – – -
MAE ++ – ++ – – -

ASYM ++ ++ ++ ++ + +

5.3.2 Deeper evaluation of Emul-ASYM
Object oriented analysis

The illustration Figure 5.8 that the precipitation objects created by the emulator
are smoother than in the RCM. The SAL method presented in section 5.2.4 is an
objected-oriented evaluation approach which compares on two maps the object
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similarities.

Following the recommendation of Wernli et al (2009), I limited the evaluation to
three subdomains of about 500km by the side. The blue boxes represent them
on figure 5.1. The first subdomain focuses on the Cevennes regions. This part of
South France is well known for its extreme autumn precipitation events. These
events are the object of multiple studies (Ribes et al, 2019; Caillaud et al, 2021)
because of their strong socio-economic impacts. It is then important to assess
whether the emulator is able or not to reproduce such events. The second domain is
another hotspot for Mediterranean extreme precipitation events (Ivušić et al, 2021)
located in Croatia, over the Dinaric Alps and the North of the Adriatic Sea. The
last subdomain is centred around Belgium, including the South-East of England,
the North-East of France and West of Germany. This region presents a different
climatology with extreme events of smaller intensities occurring more in winter.

Figure 5.14 presents the SAL scores’ results. For each region, there are five SAL
diagrams. The left most diagram represents the results for all raining days. Then
going to the right we consider only days where the spatial 99th percentile of the
RCM truth series is above an increasing threshold. The threshold and the number
of considered days are indicated on each diagram. Thus, from left to right we
consider only more and more extreme events. The first general comment is that over
all these diagrams, the emulator reproduces accurately the extreme majority of the
events. Indeed the red boxes regroup 90% of the days and they are always centred
around 0 with most points are deep blue, showing good Location score. On the
first column representing all raining days, the emulator underestimates the global
amount of precipitation over the domain, with the red box being pulled down left.
It can be explained by the fact that the emulator misses some small precipitation
objects. The SAL metrics are one-sided: they evaluate how the predicted map
matches the reference one. Knowing the chaotic nature of rainfall, it is perfectly fine
that the emulator misses or add some small events. Besides, we fix the threshold
according to the RCM true series. It is then logical that events, especially small
ones, are missed or underestimated by the emulator. It is not shown here, but when
we fix the threshold according to the emulated series, then the emulator overes-
timates the amplitude of some small RCM events and the red box is pushed up-right.

On the right of the figure, when we look at days with heavier precipitation,
the amplitude gets centred around zero or slightly positive on the right-most
column of the two Mediterranean regions. In addition, the emulator tends to
produce larger objects with a positive S-component. However, the centre of the
object is most of the time well located. It tends to generalize that the emulator
produces smoother objects than the RCM, especially on significant intensities events.

There is a correlation between the amplitude and the structure metrics. It can
attest that the emulator always creates objects consistent with the RCM. They are
either smaller or bigger in terms of both shape and amplitude. On all maps, we can
see some days with lousy location and structure scores but the correct amplitude.
They are typical of days where the emulator produced too smooth objects and
did not peak like the RCM. The emulator produces one large object with medium
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intensity, while the RCM produces multiple peaked objects with high intensities. It
implies bad locations and structure scores but good amplitude.

Figure 5.14: SAL diagram for the three regions: Cevennes (up), North of the domain
centred around Belgium (middle), and a region over Croatia and the North of the Adriatic
sea. From left to right, the panel show the SAL results for days with maximum events
intensities above an increasing threshold. Each point on the diagram represents a day
with the A-Component on the y-axis, the S on the x-axis and the color give the Location
score. The red box includes 90% of the points, and the black cross indicates the A and
S median. The 5th, 50th and 95th quantiles are given in white on the colormap for the
Location component.

Generally speaking, the emulator manages to reproduce the precipitation objects
simulated by the RCM, even if they do not always have the perfect characteristics.
The emulator captures most of the extreme events with the most suitable charac-
teristics. The emulator seems nevertheless to produce smoother objects. A further
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analysis, with an application to a hydrological impact study, should be conducted
to determine whether it is a fundamental limitation and how we could maybe adapt
the emulator.

ALADIN63 matrix extension

In order to give more robustness to the good performances of the Emul-ASYM, we
can extend the evaluation to all ALADIN63 simulations available for our target
domain. Figure 5.15 summarizes climatological maps as the ones shown on Figure
5.11. The three panels (from left to right) correspond to the three statistics we
looked at in Section 5.3.1: the mean amount of daily precipitation, the 99th
quantile and the percentage of dry days over the 2006-2025 period. On each panel,
the upper part shows the summary statistics for the raw maps of the RCM and the
emulator, and the lower part summarises the relative bias maps of the emulator
with respect to the RCM truth. On each panel, the columns correspond to a
simulation. Each bar shows the spatial mean of the map, the upper bound shows
the 95th super-quantile and the lower bound shows the 05th super-quantile. The
first column shows the results for the CNRM RCP85 simulation, which has been
used to train the emulator. The results on this simulation are given here as an
indicator and cannot be taken alone to evaluate the emulator’s performances.
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Figure 5.15: Summary plots of the three climatological statistics regrouping the results
on all ALADIN63 simulations. On each error bar, the lower (resp. upper) bound is the
spatial 5th (resp. 95th) superquantile and the spatial mean is represented by the dot.
The upper panels show the raw maps summary statistics for the RCM (in red) and the
Emul-ASYM (in green), and the lower panels show them for the relative bias maps.

The results are very encouraging as the performances of the emulator are very
similar across simulations, even if those are different in several aspects. For
instance, the 3 CNRM simulations have higher daily means than the three others
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since the spatial mean and superquantiles are higher. It is less evident on the 99th
quantile maps, where only the NCC simulation produces “eye-visible” less intense
extremes. The emulator’s bars reproduce these aspects. As observed previously, the
emulator overestimates the average daily precipitation on the wettest points and
underestimates it over the driest points whatever the statistics, which stays valid for
all simulations. The biases on land points are similar to the ones observed for the
CNRM RCP45 simulation, showing that the emulator reproduces each simulation
with the same accuracy. In all these simulations, the emulator reproduces the three
parts of the distribution well over the whole domain.
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Figure 5.16: The left panel show the summary plots for the temporal variance, the upper
panel summarizes the raw variance maps, and the lower one shows the ratio of variances.
The right panel shows the Fractional Contribution Skill Score (FCSS) for the 2006-2100
period for the four simulations that have not been shown yet (CNRM 26, MPI, NCC,
HGM).

The analysis is the same regarding the variance maps summarized in Figure 5.16.
The temporal variance differs according to the simulation. For example, the RCM
simulation driven by NCC has a smaller variance than the CNRM simulations or
the HGM. The emulator reproduces in each case the variance maps quite accurately.
However, in every simulation, it strengthens the variance where it is the strongest.
The variance ratio summary plot confirms that the analysis made for the CNRM
RCP45 in section 5.3.1 extends to all other simulations. The emulator can reproduce
the daily time series with globally acceptable variance at every grid point. In the
worse cases, it misestimates the variance by about 20%. Figure 5.16 also shows
the FC skill score maps for the four missing evaluation simulations (the RCP45
simulation in in 5.13). Here again, we can observe that the emulators reproduce the
shape of the precipitation distribution correctly at each grid point in all simulations.
It is impressive to see how similar are these four maps. The emulator has similar
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performances across all simulations at the grid point scale.

Climate change reproduction

In order to finalise the evaluation of the emulator in the perfect model framework,
we can look at the climate change maps. To do so, we will look at the three statistics
used in the previous sections: the mean daily precipitation, the 99th quantile and
the percentage of dry days. In each simulation, I compute the relative changes
in a future period (2070-2100) versus a past period (1950-1980). The changes in
precipitation are likely to be different according to the seasons over western Europe
so we will look at the seasonal climate change here. The different studies about
changes in precipitation amount over the region project a decrease in summer
precipitations, notably around the Mediterranean sea, and an increase of winter
precipitation on the North. Besides, a possible increase in extreme precipitation,
especially over northern Europe, is expected. The results for the four seasons and
the three statistics on all simulations are summarised through summary plots in
Figure 5.17 while the results for the MPI and HGM simulations are illustrated in
Figure 5.18.

The first remark is that on all plots summarising the raw maps, the green bar
sticks very well to the red one, implying that the emulator correctly reproduces
the maps and the intensity of the local changes. It is particularly notable on
the summer plot, where the differences between the projections are the strongest.
The MPI and NCC simulations show a substantial decrease in the mean daily
precipitation over the entire map, associated with a global increase in the percentage
of dry days. On the other hand, the HGM simulation projects an increase in
average daily rainfall over some regions in summer. The emulator reproduces
each simulation specificity with mainly the right intensity. Figure 5.18 shows
summer and winter changes for the MPI and HGM simulations. It illustrates well
that the emulator correctly captures the big spatial pattern. Still, in summer,
we can observe that the emulator precisely places the regions where the HGM
simulation produces an increase in average rainfall. This increase matches an
increase of the 99th quantile in the same regions, and the emulator produces
the same relationship. Similar analysis can exist on the winter maps, conclud-
ing that the emulator reproduces the ALADIN63 simulation with excellent accuracy.

Nevertheless, the emulator’s maps are more continuous than the RCM maps,
especially for the 99th quantile maps, which are a lot patchy. It results in significant
local biases between the emulator and the RCM maps. It partly explains the large
biases on the bias maps summary plots in Figure 5.17. Generally, the emulator
tends to overestimate some changes as we can see that the green bar is often longer
than the red one. The number given on top of the bias maps summary plots shows
the percentage of sign agreement between RCM and emulator over the grid points.
It shows that the emulator identifies well the changes as these numbers are very
high ( always above 75%, very often above 90%). Moreover, on the bias maps of
Figure 5.18, the hatching shows the points where RCM and Emulator disagree on
the signs. It is visible that they mostly correspond to points with minor changes.
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Figure 5.17: Same as Fig 5.15 for the seasonal climate change (2070-2100 vs 1950-80)
summary plots for the three statistics of interest: the daily precipitation mean, the 99th
quantile and the percentage of dry days. The changes are the relative difference between
the future period and the past one. The biases are simple bias between the Emulator and
RCM relative change maps. On each bias summary plot the number indicates the % of
points where RCM and Emulator agree on the sign.152
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To conclude, the emulator can reproduce high-resolution climate change maps with
the same strong spatial pattern and intensities. Another relevant remark, not shown
here, is that Emul-MSE and Emul-MAE have the same ability as Emul-ASYM to
reproduce the climate change maps. It means that each emulator keeps the same
biases along the simulation, and the changes are mainly driven by the large scale,
which the emulators understand well.

Conclusions on Emul-ASYM

Through sections 5.3.1 and 5.3.2 we have analysed the ability of the emulator trained
with the asymetric loss function to reproduce the precipitation field simulated by
the RCM. The conclusion on the emulator performances are summarised here:

• The emulator is able to produce realistic precipitation time series well corre-
lated to the RCM ones and with the right variability.

• The grid-point regularization term in the asymetric loss function helps to re-
spect and reproduce the entire complex distribution of precipitation every-
where on the target domain.

• The emulator tend to underestimate the precipitation in generally dry regions
and inversely in the wettest parts of the domain.

• The emulator creates coherent objects of precipitation, with generally the right
characteristics even if they tend to be too smooth (i.e. less sharp and precise
than the RCM objects).

• Those conclusion on a single evaluation series stand also for the other evalu-
ation simulations that we have at our disposal, respecting both scenario and
GCM transferability defined in Chapter 4.

• Finally the climate change maps obtained from the emulated series are almost
identical to the RCM ones. It gives a lot of confidence to use the emulator in
climate change context.

The emulator present therefore satisfactory results in perfect model evaluation and,
even is there is space for improvements, we will study its behavior in GCM applica-
tion.
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5.3. Perfect model Evaluation

Figure 5.18: Relative changes (in %) between 2070-2100 and 1950-1980 for the MPI and
HGM driven simulations regarding (up) the mean map of daily precipitation accumula-
tions, (middle) the 99th quantile map and (low) the percentage of dry days. These three
statistics are shown for the RCM and the emulator, plus the simple bias map between
the two. For each map, the spatial mean and 95th and 5th superquantiles are given. The
hatching indicates the point where RCM and Emulator disagree on the sign.
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5.4 GCM data application
In this section, I apply the emulator directly to GCM data as in its application
mode. In order to have a reference to analyse those results, I will downscale with
the emulator the GCMs used to drive ALADIN63: CNRM-CM5, MPI-ESM-LR,
HadGEM2-ES and NorESM1 (cf. Table 5.1). I will focus only on the RCP85 sim-
ulations from 2006 to 2100. This section aims to evaluate the emulator’s behaviour
when applied to GCM inputs. However, as shown in Chapters ?? and 4, the RCM
simulations cannot be used as the exact reference to evaluate the emulator. The
large-scale differences between an RCM simulation and its driving GCM imply low
day-to-day correlation and long-term statistical differences. The difficult task here
is to assess if the emulator produces a series consistent with the GCM large scale
and the high resolution added value from the RCM.

5.4.1 Illustration of the daily GCM/RCM differences
Figure 5.19 shows five consecutive autumn days of the precipitation field in the
CNRM RCP85 simulation. For each day, we see the RCM truth simulation and the
emulated maps in perfect model and application mode. In perfect model mode, the
emulator inputs come the UPscaled RCM predictors, and in the application mode,
it takes GCM predictors. I also plot the UPRCM and GCM precipitation maps of
the corresponding days. It is important to remember here that the low-resolution
precipitation field is not a predictor. The UPRCM precipitation is simply the
RCM map interpolated on the GCM grid, and I use it to compare with the GCM
precipitation map.

It is striking that over these six days, the GCM emulated maps never look the
same as the RCM and the UPRCM emulated maps. As shown in the previous
section, the UPRCM’s emulator reproduces the RCM map very well. It recreates
most objects in the right place and with the right intensity. We have seen that
the objects are more spatially continuous than in the RCM maps. Looking at the
maps produced by the emulator when it downscales GCM predictors, we can see
that they are very different. The rainfall occurrence, location or intensity do not
match the RCM map but is perfectly coherent with the low-resolution map from
the GCM. For instance, on the first day, the RCM produces heavy precipitation
on both sides of the Adriatic sea, while there is nothing on the GCM emulated
nor in the GCM maps. Then a strong precipitation event arrives from south and
stays blocked on the Alps at day 3. The GCM seems produces the same event but
one day after the RCM and it stays south of the Alps. Remarkably, the GCM
emulated maps are always perfectly coherent with the precipitation field produced
by the GCM, which gives some confidence that the emulator creates realistic maps.
Indeed, the emulator seems robust to GCM predictors, as it “understands” and
follows the large-scale atmospheric conditions.

The sentiment after this little illustration, is that the emulator seems to do the job.
It recreates high-resolution fields which look like the RCM ones, or at least the em-
ulator in perfect model mode. Indeed, the downscaled objects from the GCM look
similar to the UPRCM emulated maps. They seem smoother than what creates the
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RCM, as we saw in section 5.3. Nevertheless, similarly to the perfect model mode,
the emulator creates objects with realistic intensities or characteristics. These six
days also illustrate the difficulty of evaluating the emulator in application mode
without proper reference. Indeed these day-to-day mismatches make it impossi-
ble to differentiate an eventual emulator’s bad behaviour and large-scale induced
divergence.

Figure 5.19: Illustration of 6 consecutive days rainfall maps for the RCM, the emulator
downscaling the UPRCM, the emulator downscaling the GCM, and both the UPRCM and
GCM precipitation fields.
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5.4.2 Present climate analysis

Since studying time series reproduction does not make sense, we can look at
climatological statistics. As in the perfect model evaluation, I compute the annual
average daily rainfall, the 99th quantile and the percentage of dry days in the
present climate (2006-2025) in the four simulations. The results are shown as maps
in Figure 5.20 because there are too big local biases which cannot be analysed on
summary plots. For the same reason, we look at simple biases as relative bias can
get very high for small biases on small rain amount.

The first general comment on all these maps is that they all seem realistic, which
testify to the emulator’s robustness. Indeed, because of the well-known limits of
neural networks regarding the input space, it risked making completely unrealistic
series. The spatial extremes and mean on the raw maps are in the same order
as for the RCM maps. The second reassuring remark is that most biases differ
from one model to the other. The emulated CNRM is wetter in the Alps than its
corresponding RCM simulation, while it is the opposite for the HGM simulations.
It is furthermore notable that the three statistics agree on these two examples.
The emulated CNRM 99th quantile is higher over the northern Alps than in the
RCM simulation combined with fewer dry days, leading to a stronger average of
daily precipitation. The complete opposite analysis can be done for the HGM
simulations over the southern Alps. This coherence also gives some confidence in
the downscaling of the emulator.

On the other hand, some biases might be more questioning. For instance, all emu-
lated simulations undervalue the 99th quantile over the Cevennes in South France.
This specific region is well known for its extreme events, and it is an added value
from the RCM to reproduce them better. The emulator produces substantial ex-
treme in this region, but less intense than over the Alps, while there are comparable
on the RCM maps. Likewise, the emulated maps show a dry bias on all models
around the Adriatic sea and a wet bias on the North of the Pyrenees. Though, it
is difficult to assess without a dedicated study if this is indeed a limitation of the
emulator.

5.4.3 Climate change analysis

In order to complete the study of the emulator performances on downscaling GCM
simulations, it is necessary to look at its ability to create consistent high-resolution
climate change maps, as it is the primary purpose of the emulator. To do so,
I decided to look at the average precipitation changes in summer for the four
simulations used in this section. The aim here is really to illustrate what the
emulator produces. Figure 5.21 shows for each model the summer changes for the
RCM simulation, the GCM-emulated simulation, the bias between emulator and
RCM projections, and the bias map between UPRCM and raw GCM. The changes
are shown as the relative differences to the past period, while the biases are the
simple difference between the emulator (resp. GCM) and the RCM (resp. UPRCM)
maps.
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Figure 5.20: Present (2006-2025) climate statistics of 4 simulations (CNRM RCP85,
MPI, NCC and HGM) for (Upper) the mean map of daily precipitation accumulations,
(middle) the 99th quantile map and (lower) the percentage of dry days. For each simula-
tion, we see the RCM, the emulated one and the simple bias between them. The spatial
mean and 95th and 5th superquantiles are given for each map.
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The MPI simulations are the ones which agree the most. Both emulator and
RCM are drying over the entire domain, with more intensity over the Mediter-
ranean sea and the Atlantic Ocean coasts. The emulator is drying more over the
Mediterranean than the RCM. Both Emulator and GCM bias maps are consis-
tent. No strong bias over the land, and more pronounced on the south of the domain.

Figure 5.21: Summer relative changes of average daily precipitation between future
(2070-2100) and present (2006-2025) period for the 4 GCM simulations downscaled with
the emulator: CNRM, MPI, NCC and HGM under RCP85 scenario. From left to right,
the column shows: the RCM map, the emulated map (from GCM), the difference between
emulator and RCM, and the difference between GCM and UPRCM. The spatial mean and
95th and 5th superquantiles are given for each map.

159



5.5. Discussion

The HGM emulator is drying much more than the RCM, which completely matches
the GCM, as both bias maps are brown, with some extreme differences from the
RCM. Surprisingly the CNRM GCM simulation is wetter around the Mediterranean
sea in the future. The emulator reproduces it well, as the bias maps are very close.
The RCM produces an entirely different change, much more consistent with the
other simulations.

Finally, the emulated NCC simulation is quite similar to the RCM one. It is drying
over most of the domain, more intensively in the south, such as the RCM. The
emulator changes are, however, less pronounced than in the RCM simulation, as
shown by the bias map. It is getting wetter in the middle of the Mediterranean
Sea, which looks weird, but there is low precipitation on the sea so that it might
be simply noise. However, the emulator’s bias map does not match the one from
the GCM, which is surprising. The GCM occurs to be globally drier than the
UPRCM, while we have the opposite from the emulator. Again, it is difficult to
conclude the soundness of the emulator downscaling. Nevertheless, once again, the
emulator produces realistic maps without evidence invalidating its application to
GCM simulations.

5.5 Discussion

5.5.1 On the asymmetric loss
In this section, I wanted to reflect on the construction of the Emul-ASYM loss.
The idea came from the behaviour of Emul-MAE. It predicted the low precipitation
very well but largely underestimated the medium and large rainfall. It is mostly
due to the unbalancing of the data. Figure 5.11 shows that over the domain, at
least 35% of days are dry (less than 1mm), with some grid points reaching more
than 80% of dry days. Emul-MAE reproduces better the most raining points as
shown by the variance ratio (Fig. 5.9) and the FCSS (Fig. 5.13) maps. The aim
was then to give more weight to the underrepresented raining days. I chose to
handle this issue by penalising the neural network stronger when it underestimates
a precipitation amount. It felt like the right answer to the Emul-MAE default.
It is the asymmetric part done by the max(0, yi,t − ŷi,t) parameter in equation
5.4. However, it needed to depend on the intensity of the rain. The more intense
the event is, the rarer it is, so the stronger the emulator needs to be penalised if
it underestimates it, especially because these events constitute an essential part
of RCM’s added value. It also depends on each grid point because of the strong
spatial variability of extremes visible on the 99th quantile maps (Fig. 5.11). It is
the role of the γi,t parameter.

(Eq. 5.17) is the first assymetric loss function I tried with good results. It has
fixed values of γ according to a certain threshold based on the local quantile
function. In each grid point i we compute the pth quantile, and for every target
value yi,t the associated γi,t parameter can take two values if yi,t is higher or lower
than the threshold. There are 3 parameters to define for this loss function and
figure 5.22 shows different attempts. We can see that the value of γUP strongly
impacts the results. Too low is not enough to correct the Emul-MAE, while too
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high leads to a considerable overestimation of the precipitations (expected by
construction). The γLOW influences mainly the results on the low precipitations
days, where the MAE is already accurate. So 0 or a low value is preferable. The
quantile choice also has a strong impact. It is not shown here, but by analysing
the pdf curves of these tries, we could see an artificial bump after the given quantile.

L(y, ŷ) = 1
N × T

T∑
t=0

∑
i∈D

|yi,t − ŷi,t| + γi,t × max(0, yi,t − ŷi,t)

With: γi,t =
γUP if yi,t ≥ Qi(p)

γLOW if yi,t < Qi(p)
p ∈ [0, 1]

γUP , γLOW and p are fixed parameters to be defined and
Qi is the quantile function in point i.

(5.17)

For this last reason, I searched something continuous which would give similar
results. The Gamma distribution has been shown to fit precipitation data correctly.
The idea was then to fit in each grid point a gamma distribution and use the
associated cumulative function to set the γ parameter according to the target value.
Once again, I made multiple tests. The orange bar on Figure 5.22 shows the results
when the gamma is fitted on all days. The star red bar shows the results for the
loss function as used in this chapter, with the gamma fitted only on days over 1mm
rainfall, and the brown bar shows the results without taking the square of the γ.
Fitting the Gamma distribution on all days seems to lead to an undervaluation of
the number of dry days, increasing the mean value. Taking the square of the γ
parameter seems to correct an intensification of the medium rainfall.

I also added on Figure 5.22, two others emulators based on the same loss function
as the Emul-ASYM used in the rest of this chapter. The training of neural
networks implies a part of randomness (see 3), which can lead to slightly different
results. These two other versions help to put into perspective the results. Indeed,
if Emul-ASYM overestimated the mean daily rainfall, a twin emulator shows
different results and underestimates the 99th quantile map. It does not change the
conclusion that Emul-ASYM produces accurate results in reproducing the entire
local rainfall distribution. We can see that the three red bars perform better over
the three statistics than the Emul-MAE and Emul-MSE and than all other tries.
Nevertheless, it needs to be considered when analysing the best loss.

The discussion on the asymmetric loss function felt important, as I do not claim that
the choice made here is the best. There could be a better and more robust way re-
weight the training sample. We have seen that Emul-ASYM tends to overestimate
the medium-range precipitation, probably because the associated γ parameter is too
strong. The problem was mainly over the relief where the Emul-MAE was doing
a better job due to more balanced data. Maybe the regularisation parameter γ
should also consider the MAE performance. The point here is to present what I
have reached as it constitutes a basis for more development.
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Figure 5.22: Summary plots of the three climatological statistics for different emulators
trained with different versions of the asymmetric loss. The “V0” versions correspond to
the equation 5.17 with the γ parameter noted “b” here and p the threshold quantile. See
sec 5.5.1.

5.5.2 On the computational efficiency

The target domain chosen for this chapter is four times larger than in the previous
chapters. We saw that the RCM-emulator showed good abilities in this new
domain, and even if it is not the same variable, it seemed to follow the large-scale
predictors perfectly. This more extensive domain is an excellent opportunity to
make a short evaluation of computational efficiency. In the previous chapters,
the target domain is a square with 64 grid points side, and the input domain is
a square of 16× 16 low-resolution grid points. In this chapter, the target domain
size is 128×128, while the input domain includes 22 grid points in longitude
and 16 in latitude. Both neural networks include about 25 million parameters to
fit. Indeed the layers with the most parameters are at the bottom of the architecture.

Regarding available memory, it was impossible to train the precipitation emulator
on the new domain with the same GPU as in Chapter 1. So I trained both
emulators on a bigger GPU to compare the computational times. The GPU used
here is an Nvidia Tesla V100 PCIe 16GB. Both emulators necessitate about 60
epochs to be trained. Actually, only 45 are necessary, as the neural network does
not improve on the last 15 epochs. 1 epoch on the new domain takes about 130
seconds, which implies a total training time of 2 hours and 10min.

On the other hand, the emulator trained on the smaller domain needs 65 seconds
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per epoch. The training of the emulator for the more extensive domain is two
times longer, while the domain is four times bigger. The computational resources
are then not linearly proportional to the target domain size. Moreover, the entire
ALADIN63 domain is of size 450× 450 grid points, less than four times bigger than
the target domain considered in this chapter. Even when we use 4 emulators to
cover the entire ALADIN63 domain, it will take less than 10 hours to train. It is not
comparable with the computational time of ALADIN63, which needs several weeks
to perform one simulation. Besides, the training of the emulator can probably be
more optimised as I am not an expert in GPU resource management. Finally it is
important to note here that once the emulator trained the producing time1 takes
only few seconds even on the bigger domain.

5.6 Conclusion
This chapter aims to propose a credible solution to the high computational costs of
Regional Climate Models to build large ensembles of high-resolution precipitation
projections. It relies on the RCM-emulator introduced in Chapter 3 for the case
of temperature downscaling. RCM-emulators belong to the family of hybrid
downscaling methods. They use RCM simulations to estimate the downscaling
relationship between low-resolution and large-scale variables and a high-resolution
surface variable. This chapter aims to see if it is suitable for the complex variable
of precipitation, including the extreme parts of its distribution, and, if not, how it
can be adapted.

The RCM-Emulator used here is exactly the same as in the rest of this manuscript.
It takes the same set of predictors: various two-dimensional variables at different
pressure levels and external forcing, such as greenhouse gas concentrations. The
predictors are normalised exactly the same way. The neural network architecture
is also the same, and the emulator is trained in the same perfect model framework
where both predictors and targets come from the same RCM simulations. The
predictors are then upscaled to low resolution so that they look like a GCM
simulation output. The perfect model framework ensures a perfect match between
input and output and grants the focus of the neural network on the downscaling
function. The only difference with chapter 3 is the target domain which is more
extensive and centred over the Alps here. It implied an adaptation of the input
domain and a little extension of the neural network. Of course, the target variable
is also different as we want to emulate the precipitation field from ALADIN63.

The same neural network is referred to as Emul-MSE in this chapter. In perfect
model evaluation, it showed an excellent capacity to follow the large-scale atmo-
spheric circulation and to recreate the precipitation times series with reasonable
accuracy. However, the climatological analysis revealed a problem in the intensity.
The emulator concentrates its prediction around the climatological mean, with too
many medium-low precipitations and a clear underestimation of the number of dry

1This do take into account the preparation of the data. The longest part is to actually get
the data from online servers. Then the cropping, interpolation and smoothing can be done in few
hours.
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days and the 99th quantile. It is due to the complexity of the precipitation variable,
which is non-continuous and highly unbalanced. In this chapter, I proposed to
adjust the loss function to tackle this issue.

I proposed an asymmetric loss function designed to penalise the emulator stronger
in the training phase when it underestimates the true precipitation amount;
the more extreme the rain, the stronger the penalty. It showed that the loss
function is an excellent means of constraining neural networks to focus on specific
aspects as it corrected the emulator prediction to fit better the precipitation
intensity. This adapted emulator showed the same good properties as the original
emulator in terms of the temporal match with the original RCM series in perfect
model evaluation. However, it reproduces the temporal variance and the entire
distribution better. At the climatological scale, it reproduces almost perfectly
the maps of the daily average precipitation, the 99th quantile or the percent-
age of dry days, with notably the reproduction of the high-resolution spatial
structure. It has some local biases but they never exceed 15%. Moreover, the
precipitation objects recreated by the emulator are also coherent with the ones
created by the RCM. They are well located and have the right intensity, but they
tend to be more spatially continuous than on the RCM simulation. Nevertheless,
this does not affect the statistical properties of the series, even at the grid point scale.

I extended the evaluation of the emulator to multiple RCM simulations. The perfect
model evaluation grants the perfect match between the predictor and the expected
output. So the emulator was expected to reproduce all differences between the RCM
simulations. The abilities of the emulator extended perfectly to all simulations. It
showed the same good skills and default for all simulations. The emulator tended
to overestimate the precipitations where they are the strongest, which stayed the
case, in the same proportions for all tested simulations. In the climate change
context, the emulator has also shown an excellent ability to reproduce the complex
spatial patterns of change for each simulation and the three statistics we watched.
Furthermore, the loss function does not impact the climate change maps from the
emulator. It does not impact how the neural network follows the large scale but
corrects the intensity. If the emulator underestimates the extreme precipitation,
it does it similarly throughout the simulation. The event’s occurrence drives the
change, and we saw that the loss function does not impact the temporal correlation.

The application of the emulator to GCM simulations is a real-world exercise.
Nevertheless, it is very challenging to evaluate. Indeed, the emulator is constructed
in a perfect model framework to ensure a perfect match between predictors and
target variables. It focuses only on the downscaling function and can be applied
to any GCM simulation. On the other hand, it implies that if there are any
large-scale biases between an RCM simulation and its driving GCM, the emulator
will reproduce it. Such biases have been demonstrated in chapters 3 and 4 and in
various studies (Boé et al, 2020; Bartók et al, 2017; Taranu et al, 2022). There
is then no high-resolution reference to evaluate the emulator when it downscales
a GCM simulation. I applied the emulator on four RCP85 simulations from
the four GCMs used to drive ALADIN63. The results are very consistent with
the perfect model evaluation. The emulator seems to follow the GCM large
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scale very accurately. It produces coherent and realistic climatological maps
with locally strong biases with the RCM. Looking at climate change maps, they
also might differ from the RCM ones. However, they stay coherent with the
GCM/RCM biases. In my opinion, the emulator fits the job for downscaling GCM
simulations. However, to have better trust in it, the emulated GCM simulations
should be looked at deeper and maybe with different approaches. In particular,
setting a GCM/RCM pair without large scale discrepancies may be the oppor-
tunity for a proper evaluation of the emulator when downscaling a GCM simulation.

In terms of computational efficiency, the more extensive domain implied to use a
GPU with more available memory to train the emulator. We could see that it takes
about two hours to train the emulator while the production takes less than a minute.
It is not comparable to the time necessary to produce a new ALADIN63 simulation.
Moreover, the emulator was easily transferable to a new variable and a new domain.
The loss function is a good way to constrain and force a neural network to specific
events and better fit the entire distribution of a variable as complex as precipitation.
I think the RCM-emulator is a promising way to create large ensembles of high-
resolution precipitation simulations by downscaling all existing GCM simulations.
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Conclusion & Perspectives

This final chapter aims to summarise the main conclusions of this work, to
present the big questions raised and introduce some perspectives on improvements,
applications or developments. This PhD targeted to propose a solution to enlarge
the size of regional climate model (RCM) simulation ensembles. These models’
increasing resolution and complexity imply high computational costs that strongly
limit the number of simulations and, thus, the study of the associated uncertainties.
The reliability of the regional climate change messages extracted from the actual
RCMs ensembles is then insufficient. The correct exploration of all possible futures
at local scales is necessary to impact studies and organise adaptation policies. To
address this issue, I propose in this manuscript a hybrid downscaling approach as it
relies on the two distinct families of downscaling: dynamical and statistical. While
the former relies on RCMs, the latter aims to learn the statistical relationship
between what I called all along this report large and local scales. The large scales
correspond to some low-resolution fields in altitude or averaged surface fields over
a vast domain that global climate models (GCMs) should represent correctly. On
the other hand, the local scale are characterizing the whether that is actually
experimented by humans. They range from one to hundred kilometres. They
depend on the local environment and necessitate high-resolution climate models to
be represented.

Therefore, I proposed here to build an RCM-Emulator that relies on the same
idea as statistical downscaling. However, instead of targeting the real one, the
emulator aims to learn the large scale/local scale relationship simulated by a given
RCM. The advantage of this approach is that the relationship can be estimated in
non-stationary climates and regions with no observations. Of course, the emulator
does not aim to correct the relationship simulated by the RCM; it learns to
reproduce it with its defaults. By constructing one emulator for all existing RCMs,
it would be possible to downscale, for some variables, all existing GCMs simulations
with all RCMs, resulting in large RCMs/GCMs matrices. Studying those ensembles
would be an important step towards reliable local information on climate change.

In what follows, I propose to come back on the choices I made to build the RCM
emulator, the reasons behind them, and the essential results and questions that this
work has raised. This final chapter comports six sections. The first one recalls the
critical choices in defining the RCM emulator framework. Sections 6.2 to 6.5 answer
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the three other questions about the efficiency, the trustability and the applicability
of the emulator that I have set at the end of the introductory chapter. In those four
sections, I also present some perspectives of improvement or development directly
linked to the issues that stay open regarding those specific aspects. Finally, the last
section presents some more general perspectives.

6.1 RCM-Emulator concept
This work’s first part consisted of defining the appropriate framework to build the
emulator. The aim was first to identify and isolate the downscaling function of the
RCM and then find the most appropriate tool and dataset to learn it. I decided
to describe the RCM dynamical downscaling as a combination of two functions.
The RCM receives large scale inputs from the GCM that it firstly transforms,
creating its own large scale, and in a second time it downscales this new large
scale to create high-resolution fields. There is no reason to assume that the large
scale transformation is the same for any GCM, and results from Chapter 4 tends
to confirm it. Therefore, we need to focus only on the downscaling function to
have a universal emulator. This choice implies some important assumptions on the
causes of the large scales transformation that I will discuss later. I proposed to
use a perfect model framework with both large scale and local scale coming from
the same RCM simulation. The idea is to create, from the RCM simulation, a
low-resolution large scale looking like a GCM output and learn the transfer function
to the high-resolution surface field. This strategy ensures a perfect coherence
between the large scale low-resolution predictors and the high-resolution local scale
predictands.

To estimate this relationship, I used a fully convolutional neural network architec-
ture called UNet that I adapted to fit our regression task. The efficiency of CNNs in
dealing with large images made them the perfect candidate to build the emulator.
Indeed both inputs and outputs of the emulator are gridded objects that can be
considered as images. Moreover, their ability to deal with large dimensional objects
allows us to make a minimal prior selection of needed inputs and leave the network
finding the right combinations for each output grid point. Various studies have
already used convolutional neural networks in statistical downscaling (Vandal et al,
2019; Baño-Medina et al, 2020) or hybrid frameworks (Serifi et al, 2021) with success.

I defined a common set of inputs that I kept for the whole study. It mainly includes
classical atmospheric variables (temperature, geopotential height, humidity and
wind) at three pressure levels plus some surface variables that should be accurate
in the GCM and the aerosols as they play an important role at the regional scale
(Nabat et al, 2020). I also included external forcings such as the concentration of
greenhouse gases and a vector representing the seasonal cycle. The flexibility of
the neural network architecture allows separating the predictors’ spatial structure
information and the temporal part so that the neural network considers them
equally before reconstructing the high-resolution field. The choice of the input set
could still be discussed and maybe optimised. In particular, the predictors come
from the RCM simulation during the emulator calibration. It is crucial to ensure
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that the predictors do not include some RCM high resolution signal. Otherwise,
the downscaling function we try to learn is truncated and thus cannot be well
reproduced in the application world. It is why the low-resolution target variable
is not included in the predictors set (cf chapter 3). It could be that such local
information remains in the inputs set I used and further analysis to detect it is
necessary. We have also seen that a RCM-emulator trained with a minimal set of
predictor can provide reasonable results. Regarding an optimisation of the input
set, a sensitivity analysis to identify the influence of each predictor is a necessary
study that I did not have time to explore in this work.

Thus once this is set, this work aimed to assess if the RCM emulator was a
suitable option to fill up RCM matrices. To do so, we need to give some guarantees
regarding three main aspects: the efficiency, trustability and applicability. In what
follow, I detail those three aspects.

6.2 Efficiency
Efficiency is the first reason behind this work and the statistical RCM emulator.
Indeed the objective is to bypass the extremely high cost of regional climate models.
In this manuscript, we have seen that the neural network proposed could be trained
on GPU within only a few hours, even on a large domain. The production of a new
high-resolution series given a low-resolution simulation takes less than a minute.
The longest part is finally to get the input fields from the simulation to downscale
and interpolate them to the emulator input grid. This would also take some hours
and could easily be automatised (at least the interpolation part). Regarding this
aspect, the efficiency of the emulator is satisfactory.

Nevertheless, efficiency can be considered under other facets not raised in this
work. An important point is the easiness of use and application. A very practical
point, once trained, the emulator can be stored in a .h5 1 file of less than 2GB.
So it is easy to transport and can be used on GPU and CPU. A second point is
the easiness of application to a slightly different problem. We have seen in the
manuscript that the emulator was used on different domains and variables. The
code available on a public GitHub page has not been changed. Indeed, I created
a python function that designs the neural network architecture according to the
size of inputs and target. The choice of the target variable does not impact the
code unless specific adaptations, such as the loss function in the precipitation case,
for example. Moreover, during the time of my PhD, two intern students in other
research centres deployed our methodology to the MAR RCM over Antarctica and
for different variables. Emma Amblard2 emulated the surface temperature and
precipitation, while Marijn Van der Meer3, worked with a very different variable,
the Surface Mass Balance. Both internships got excellent results showing the
emulator methodology and concept’s good transferability and ease of use.

1Hierarchical Data Format 5
2Internship at the IPSL, surpervised by Cecile Agosta, Patrick Gallinari, Christoph Kittel and

myself
3Internship at the TU-DELFT, surpervised by Stef Lhermite
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Nonetheless, there is still space for improvement. First, regarding the UNet
architecture I built, there is probably a way to improve computational efficiency.
A costing part of the architecture is the bottom of the “U”. I chose to go down
to a 1-dimensional encoding vector in order to put on the same level the temporal
information, which is 1D, and the spatial information, originally 3-D, before the
reconstruction. It implies many layers and parameters to fit to reach the target
dimension. One could modify this neural network architecture, making the encoded
array larger and improving the emulator’s computational cost. Besides, it would
allow getting the best out of the UNet architecture. Indeed, some studies have
developed a dilated UNet allowing multiple input sizes thanks to its fully convolu-
tional aspect. Until now, once trained, the emulator focuses on a specific domain
and can be applied only to this domain. One could imagine a RCM-emulator for
the entire RCM domain and able to consider only a subdomain. The orography
and longitude/latitude coordinates of the target domain would be added to the
input list, as well as the coordinate map of the input domain. Each training sample
would represent a piece of the domain. In application mode, one could imagine a
very interactive tool located on a server close to the data centres. The user could
choose its target domain of interest, the adapted input domain, and easily produce
high-resolution emulated simulations. A more complete tool, could allow the user
to choose the RCM to downscale, the training set, the input list and the target
variable to build a new emulator. Such a tool implies a lot of development (and
human resources), but I believe that it is realistic.

Finally, simpler or more efficient architectures could also be used. I believe that this
work, and the other pioneer works of CNN application to downscaling, open the
door to constructing different emulators. The diversity of large emulated ensembles
will benefit the production of reliable regional climate information.

6.3 Trustability
The second key point was to assess the trustability of the RCM emulator. The
objective is to have a tool reproducing the downscaling function from a given RCM
to apply it to other GCM simulations. It is then of primary importance to assess
if the emulator well estimates the function. Because it is trained in the perfect
model framework, the emulator lives in the RCM world, it is then easy to evaluate
if this large scale/local scale relationship is correctly learned. I firstly used an RCM
simulation similar to the training one (i.e. driven by the same GCM and the closest,
more intermediate scenario). I recreated some low resolution from it to evaluate the
emulator in the perfect model framework and to have a perfect reference to compare
the emulated series. We saw that the emulator perfectly captures the atmospheric
circulation in both precipitation and temperature cases. The emulator is always
perfectly coherent with its driving large scale (i.e. the simulation it downscales) and
notably shows excellent temporal correlations with the reference series. Moreover,
we saw that it also captures the high-resolution spatial structure brought by the
RCM. The reliefs, coastal areas or islands have specific climates that the emulator
well reproduced. In this work, I took time to deeply evaluate the emulator under
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various aspects, similarly as it is done for RCMs. It was essential to assess if the
production of the emulator is good enough to be used in impact studies. The main
conclusion regarding this aspect is that the emulator produces realistic maps and
series that are almost indistinguishable from the RCM ones. We also have seen
that the statistical properties from the emulated series were almost identical from
the original RCM series, with notably a complete reproduction of the probability
density function. We also looked at indices of extremes, climatology mean and
quantiles, and the changes in future with good reproduction of the emulator. We
also validated the neural network algorithm by comparing to standard statistical
downscaling approaches used as emulator. The UNet-emulator showed globally
better performances even if those strategies also had reasonable results.

Nevertheless, there is still some room for improvement. We notably have seen
that the emulator encounters difficulties reproducing some temperature extremes
and the precipitation objects tend to be too smooth. For the former, we identified
that an adapted loss function could help to reproduce better the extremes of
precipitation. A similar strategy could easily be used to constrain the emulator
to focus more on temperature extremes. A possible explanation could also be the
lack of memory in the downscaling, as the days are considered separately, and the
chronology comes only from the predictors. For example, the presence of snow
impacts the near-surface temperature. However, the emulator cannot see it as it
results from the previous days, and the emulator does not consider it. Similarly,
a deficit in soil moisture can reinforce the high temperature extremes, and the
emulator can not consider this aspect either. Therefore, it might be a good idea
to include some temporal link between emulator predictions. This could be done
using Recurrent Neural Network and Long Short Term memory networks.

The too smooth representation of rainfall objects is explainable by the determinism
of the neural network used here. Indeed the probability that rainfall occurs in
a grid point or next to it is often the same. So the network, by minimising the
error, puts rain in both grid points. Nevertheless, we saw that the emulated
series’ statistical distribution is similar to the original RCM one, with a good
reproduction of dry days and heavy rainfalls. A deeper analysis, including an
impact study, might be necessary to see if it is a real issue. If it is, I can see at
least one option to tackle this issue. Generative Adversarial Networks are neural
networks that produce one possible outcome instead of producing what minimises
the error. Precipitation nowcasting studies based on GAN showed their ability to
produce realistic rainfall images with precise and sharp objects. They are probably
a good option for our case. As a brief reminder, GANs are composed of two
fighting networks: the Generator generates images, and the Discriminator learns to
differentiate the generated images from the true ones. In our case, the Generator
would be the adapted UNet. The Discriminator can be considered simply as a loss
function, telling the Generator if the image is realistic. I started to develop this as-
pect, but the results were too preliminary (and not good enough) to be included here.
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6.4 Applicability step 1: different sources of input

Until now, we have an efficient emulator that correctly captures the relationship
it is designed to learn. The next step to assess if the emulator is the right tool to
enlarge RCM matrices is to ensure that the relationship learnt holds in a slightly
different world. Neural networks might be unstable to a slight modification of
the input space. I have tried to prevent such an effect in this work with two
strategies. In the network architecture, the pooling layer and the Relu activation
function help to ensure the stability of the emulator. On the other hand, by
artificially dissociating the spatial information from the temporal information and
standardising the input, I have tried to control the discrepancies between two
simulations. Indeed, the aim was somehow to reduce the input space by leaving
only the spatial information at the grid point scale and extracting the temporal one
at the domain scale. In chapter 4 I have shown that the perfect model framework
is well adapted to test the robustness of the RCM-emulator to different input
sources. Therefore, I took all ALADIN63 simulations and extracted some large
scales predictors that I downscaled with the emulator. In both temperature and
precipitation cases, we saw that the emulator maps and local time series were
always close to the RCM ones. The statistical evaluation regarding the mean or
some specific quantiles maps and the entire pdfs showed similar performance on all
simulations. Moreover, the differences between simulations in climate change were
also reproduced in the emulated series. This result shows that the relationship
learnt in a given simulation holds in other simulations from the same RCM. Besides,
a short experiment presented in chapter 4 showed that the normalisation strategy
is crucial to secure this result.

Nevertheless, the study of the transferability to other input sources also highlighted
some emulator limitations. Indeed, we saw that the tool is not appropriate to
extrapolate too far from its training set, notably regarding a warmer or colder
climate. To further explore the relationship’s robustness, I trained various emulators
using combinations of all available simulations. It helped to draw the following
conclusions. Firstly regarding the driving scenario, we concluded that training in
the coldest and warmest scenarios allows downscaling more intermediate scenarios,
but the inverse does not hold. Secondly, we saw that some RCM simulations are
constantly warmer than others. Thus, training in a cold simulation does not allow
reproducing the warmer simulation’s warmest extremes, leading to a slight cold bias
when looking at climatological means. Conversely, training in a globally warmer
simulation leads to warm bias in a colder simulation. Finally, we could also observe
that some simulations seem less good than others to be considered as training sets.

All these results provide some indications of how to build the best training set
for the emulator. The great principle could be “ the most diversified, the better”,
which seems logical. At fixed computational costs, the best way to build a training
set for the emulator is to downscale with an RCM the most different GCMs and the
most extreme scenarios possible. Moreover, having more than one driving GCM
for the training set prevents using only a too-specific simulation for calibrating the
emulator and thus ensures better transferability. Finally, I have also shown that
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more extended simulations are better. Indeed, I did not present the result in this
manuscript. However, a short experiment done for the EUCP project seemed to
show that 20 years of historical and 20 years of far future are the strict minima to
have a reasonable emulator. And longer is better as it explores more climate and
better the internal variability.

The strong conclusions here are that a RCM-emulator trained in a given Scenario-
GCM-RCM triplet will be able to downscale all other members from the same
Scenario-GCM pair. Secondly, there is quite high confidance that it can also down-
scale simulation from the same GCM and more intermediate scenarios. Finally, there
is a good confidence that it produces accurate series when downscaling simulations
from an other GCM as long as it is not too far from the training one. Therefore,
using the most diversified training set is probably a good solution to prevent such a
situation.

6.5 Applicability step 2: GCM world
Finally, the last point to validate the actual applicability of the RCM-Emulator
proposed here is its good behaviour when applied to GCM simulations. It is the real
life of the emulator, as all previous steps are perfect model validation. The final aim
of the RCM-emulator is to downscale GCM simulations never downscaled by the
RCM. This is definitively the most challenging point of this work. Indeed, over the
last years, various studies have raised the inconsistencies that can occur between
RCM and their driving GCM (Laprise et al, 2008; Bartók et al, 2017; Boé et al,
2020; Taranu et al, 2022). We also have been confronted with this problem when
evaluating the downscaling performed by the emulator. Indeed, as we focused only
on the downscaling function, the emulator does not reproduce GCM/RCM large
scale biases. Therefore, the RCM simulation driven by a given GCM simulation
is not an exact reference when the emulator is applied to this GCM simulation.
The emulated series needs to be coherent with its driving large scale but should
also include all the added value brought by the RCM. In both temperature and
precipitation cases, the emulator seemed to follow the chronology of the GCM
simulation it downscaled. Moreover, we saw that the biases between the emulator
and RCM are generally coherent with the RCM/GCM ones. The emulated maps
contained the complex spatial structure resulting from the RCM resolution at
daily or climatological time scales and regarding both mean states or extremes.
This result shows that the emulator includes the RCM added value on the GCM
large scale quite well. We have seen in precipitation some counter-example that
might imply an incomplete reproduction of the RCM added value. However, it is
complicated to assess whether it is an emulator error.

Consequently, it is necessary to find a proper manner to evaluate the RCM-Emulator
when it is applied to a GCM simulation. Several options could be considered.
Firstly, using a nudged simulation for the evaluation as this technique forces the
RCM large scales to respect the GCM ones. Then the RCM series should be
a better reference under the hypothesis that the nudging does not modify the
downscaling function. It is an easy test that is necessary to do soon. A second
option could be to build a perfect RCM/GCM pair. Taranu et al (2022) show that
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setting up a nearly-perfect GCM-RCM with minimal large scale biases is feasible,
and it could become a proper test for the emulator. The last option (in my opinion,
at least) could be to apply the emulator to some reanalysis and compare its result
to the observed data and the RCM downscaling. If the emulator reproduces the
entire RCM downscaling function without large scale biases, the emulated series
should be closer to the observations than the RCM simulation.

A fundamental question here is the soundness of those RCM/GCM biases. In this
work, we somehow assumed that the large scale biases are not legitimate as the
framework I set implies not learning them. This strong assumption seems to be
confirmed by some recent studies (Taranu et al, 2022). In this case, an actual
result from this work is that we no longer aim to complete an RCM/GCM matrix
but to construct another one. Indeed we assume that the existing matrix includes
inconsistent biases that we get rid of with the emulator. The emulated matrix is
somehow the one we should have in the perfect world where RCMs only downscale
the GCM information without transforming it. Of course, it relies on two strong
assumptions that are not verified yet: the emulator captures the entire downscaling
function in the RCM perfectly, and the transformation function of the RCM is for
the wrong reasons. On the other hand, if the last hypothesis does not hold, then
the framework I proposed to train the emulator breaks down, and it is necessary to
learn also this large scale transformation.

6.6 More general perspectives
I believe this work opens the door to multiple studies to evaluate better, improve
or apply the emulator. In the last sections, I presented some perspectives to answer
different problems raised during my work. Nevertheless, I still see some ideas for
further development and application.

The first point necessary to assess is the multivariate consistency of the emulator.
In other words, the emulator must reproduce the exact relationship between
temperature and precipitation. Most impact studies necessitate temperature and
precipitation, and a real relationship must exist between them. In perfect model
mode, we have seen that the emulated series follows almost perfectly the RCM
one. If the relationship is realistic in the RCM, it should also be in the emulated
simulation. Nevertheless, I did not watch this specifically, and it should be done.
Besides, it could also be a way to verify the accuracy of downscaling a GCM
simulation. A multivariate emulator is perfectly imaginable if the relationship is
not well reproduced. A constraint on the joint loss could force the network to
respect a good consistency between precipitation and temperature.

A second point concerns higher resolution in space and time. Indeed, in the
introduction, I mentioned the existence of Convection Permitting Models with
a horizontal resolution of less than 3km. Those models have notably shown an
excellent ability to reproduce hourly precipitation and are necessary to study
extreme and devastating precipitation changes. The high resolution of these models
implies very high computational costs. RCM emulator could then be necessary
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to extend the number of simulations. I have already done some preliminary tests
on a daily scale with such models. It provided good results, but the emulator
could not capture the finest spatial structure that the CPM creates. Today, I
can see two possible reasons behind this: the resolution jumps (from 150km to
2.5km) are too big as I used the same input grid as the one in this work, or
I did not have a long enough simulation (20 years in total). This transfer to
higher spatial resolution necessitates further developments but is accessible. On
the other hand, hourly prediction is another challenge. I can see two possibilities
to do it. Firstly, following the same principle as for the daily prediction. The
emulator considers each hour independently, with hourly inputs and maybe a
cosinus/sinus vector to represent the day’s hour (similarly to the seasonal one
I implemented here). The big disadvantage of this option is that it implies a
good quality hourly input which the GCM might not well represent. Moreover,
it implies heavy input files and more preprocessing. The second option is to use
lower temporal resolution inputs (daily or 6 hours, for example) and also down-
scale the temporal resolution using recurrent approaches like in nowcasting exercises.

Finally, the last perspective, probably the most evident, concerns the application of
RCM emulators. If the tool is trusted, it could be used to downscale huge ensembles
of GCM simulation. It could completely change the way performing local studies of
climate change. An entirely statistical approach could be used to extract robust and
reliable messages on the local implications of global climate warming. The internal
variability could be entirely explored, and the most extreme possible events could
be studied. Moreover, I believe that a diversity of emulators based on different
statistical approaches would serve the purpose of exploring the possibilities and
extracting robust information.
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Laprise R, de Eĺıa R, Caya D, Biner S, Lucas-Picher P, Diaconescu E, Leduc M,
Alexandru A, Separovic L (2008) Challenging some tenets of Regional Climate
Modelling Network for Regional Climate Modelling and Diagnostics. Meteorol
Atmos Phys 100:3–22, DOI 10.1007/s00703-008-0292-9

Lavaysse C, Vrac M, Drobinski P, Lengaigne M, Vischel T (2012) Statistical down-
scaling of the French Mediterranean climate: Assessment for present and projec-
tion in an anthropogenic scenario. Natural Hazards and Earth System Science
12(3):651–670, DOI 10.5194/nhess-12-651-2012

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning ap-
plied to document recognition. Proceedings of the IEEE 86(11):2278–2323, DOI
10.1109/5.726791

Lecun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436–444,
DOI 10.1038/nature14539

Leduc M, Mailhot A, Frigon A, Martel JL, Ludwig R, Brietzke GB, Giguère M,
Brissette F, Turcotte R, Braun M, Scinocca J (2019) The ClimEx project: A
50-member ensemble of climate change projections at 12-km resolution over Eu-
rope and northeastern North America with the Canadian Regional Climate Model
(CRCM5). Journal of Applied Meteorology and Climatology 58(4):663–693, DOI
10.1175/JAMC-D-18-0021.1

Lehner F, Deser C, Maher N, Marotzke J, Fischer EM, Brunner L, Knutti R,
Hawkins E (2020) Partitioning climate projection uncertainty with multiple
large ensembles and CMIP5/6. Earth System Dynamics 11(2):491–508, DOI
10.5194/esd-11-491-2020

Lemus-Canovas M, Brands S (2020) Assessing several downscaling methods for daily
minimum and maximum temperature in a mountainous area. Are we able to sta-
tistically simulate a warmer climate in the Pyrenees? In: EGU General Assembly
Conference Abstracts, EGU General Assembly Conference Abstracts, p 11389,
DOI 10.5194/egusphere-egu2020-11389

184



Bibliography

Long J, Shelhamer E, Darrell T (2015) Fully Convolutional Networks for Semantic
Segmentation

Lorenz EN (1963) Deterministic Nonperiodic Flow. Journal of the Atmospheric Sci-
ences 20(2):130–141, DOI 10.1175/1520-0469(1963)020¡0130:dnf¿2.0.co;2

Lorenz EN (1969) Atmospheric Predictability as Revealed by Naturally Occurring
Analogues. Journal of Atmospheric Sciences 26(4):636–646

Lorenz P, Jacob D (2005) Influence of regional scale information on the
global circulation: A two-way nesting climate simulation. Geophysical Re-
search Letters 32(18), DOI https://doi.org/10.1029/2005GL023351, URL
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2005GL023351,
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2005GL023351

Lu C, Huang D, Shen Y, Xin F (2022) Data-driven Global Subseasonal Fore-
cast Model (GSFM 1 v1.0) for intraseasonal oscillation components 2. GMD
[PREPRINT] DOI 10.5194/gmd-2022-146, URL https://doi.org/10.5194/gmd-
2022-146
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Lucas-Picher P, Argüeso D, Brisson E, Tramblay Y, Berg P, Lemonsu A, Kotlarski S,
Caillaud C (2021) Convection-permitting modeling with regional climate models:
Latest developments and next steps. DOI 10.1002/wcc.731

Maher N, Milinski S, Ludwig R (2021) Large ensemble climate model simulations:
Introduction, overview, and future prospects for utilising multiple types of large
ensemble. Earth System Dynamics 12(2):401–418, DOI 10.5194/esd-12-401-2021

Manzanas R, Gutiérrez JM, Fernández J, van Meijgaard E, Calmanti S, Ma-
gariño ME, Cofiño AS, Herrera S (2018) Dynamical and statistical down-
scaling of seasonal temperature forecasts in Europe: Added value for user
applications. Climate Services 9:44–56, DOI 10.1016/j.cliser.2017.06.004, URL
https://doi.org/10.1016/j.cliser.2017.06.004

Maraun D, Widmann M (2018) Statistical Downscaling and Bias Correction for Cli-
mate Research. Cambridge University Press, DOI 10.1017/9781107588783, URL
https://www.cambridge.org/core/product/identifier/9781107588783/type/book

Maraun D, Wetterhall F, Ireson AM, Chandler RE, Kendon EJ, Widmann M,
Brienen S, Rust HW, Sauter T, Themel M, Venema VK, Chun KP, Goodess CM,
Jones RG, Onof C, Vrac M, Thiele-Eich I (2010) Precipitation downscaling under

185



Bibliography

climate change: Recent developments to bridge the gap between dynamical mod-
els and the end user. Reviews of Geophysics 48(3), DOI 10.1029/2009RG000314

Maraun D, Widmann M, Gutiérrez JM, Kotlarski S, Chandler
RE, Hertig E, Wibig J, Huth R, Wilcke RA (2015) VALUE: A
framework to validate downscaling approaches for climate change
studies. Earth’s Future 3(1):1–14, DOI 10.1002/2014EF000259,
URL https://onlinelibrary.wiley.com/doi/full/10.1002/2014EF000259
https://onlinelibrary.wiley.com/doi/abs/10.1002/2014EF000259
https://agupubs.onlinelibrary.wiley.com/doi/10.1002/2014EF000259

Maraun D, Huth R, Gutiérrez JM, Mart́ın DS, Dubrovsky M, Fis-
cher A, Hertig E, Soares PM, Bartholy J, Pongrácz R, Widmann
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Mignan L, Touzé B (2022) Detection of Bow Echoes in Kilometer-
Scale Forecasts Using a Convolutional Neural Network. Artificial Intelli-
gence for the Earth Systems 1(2), DOI 10.1175/AIES-D-21-0010.1, URL
https://journals.ametsoc.org/view/journals/aies/1/2/AIES-D-21-0010.1.xml

Nabat P, Somot S, Mallet M, Sanchez-Lorenzo A, Wild M (2014) Contribu-
tion of anthropogenic sulfate aerosols to the changing Euro-Mediterranean
climate since 1980. Geophysical Research Letters 41(15):5605–5611, DOI
10.1002/2014GL060798, URL http://doi.wiley.com/10.1002/2014GL060798

Nabat P, Somot S, Cassou C, Mallet M, Michou M, Bouniol D, Decharme B,
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Sein DV, Mikolajewicz U, Gröger M, Fast I, Cabos W, Pinto JG, Hagemann
S, Semmler T, Izquierdo A, Jacob D (2015) Regionally coupled atmosphere-
ocean-sea ice-marine biogeochemistry model ROM: 1. Description and valida-
tion. Journal of Advances in Modeling Earth Systems 7(1):268–304, DOI
10.1002/2014MS000357, URL http://doi.wiley.com/10.1002/2014MS000357

Seneviratne SI, Corti T, Davin EL, Hirschi M, Jaeger EB, Lehner I, Orlowsky
B, Teuling AJ (2010) Investigating soil moisture–climate interactions in a

190



Bibliography

changing climate: A review. Earth-Science Reviews 99(3-4):125–161, DOI
10.1016/J.EARSCIREV.2010.02.004
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