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Abstract

Compositional Data (CoDa) is usually viewed as data on the simplex and is studied via a log-ratio analysis, following
the classical work of Aitchison [2]. We propose to bring to the fore an alternative view of CoDa as a stick breaking
process, an approach which originates from Bayesian nonparametrics. The first stick-breaking approach gives rise to
a view of CoDa as ordered statistics, from which we can derive “stick-ordered” distributions. The second approach
is based on a rescaled stick-breaking transformation, and give rises to a geometric view of CoDa as a free unit cube.
The latter allows to introduce copula and regression models, which are useful for studying the internal or external
dependence of CoDa. These stick-breaking representations allow to effectively and simply deal with CoDa with
zeroes. We establish connections with other topics of probability and statistics like i) spacings and order statistics,
ii) Bayesian nonparametrics and Dirichlet distributions, iii) neutrality, iv) hazard rates and the product integral, v)
mixability.

Keywords: Compositional data analysis, Stick-breaking representation, Copula, Regression, Distribution, Order
statistic.
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1. Introduction and outline

1.1. A primer on CoDa
Compositional Data (CoDa) analysis deals with statistical analysis of d-variate data which are quantitative de-

scriptions of the parts of some whole, conveying only relative information. Composition of soil in geology, elements
in a mixture in chemistry, sources of calories in nutrition, vote shares in an election, microbiome data in biology, or a
portfolio of financial assets are examples of CoDa.

There are several competing ways to describe CoDa. The traditional approach ([2], [7]) considers that one of
the key characteristics of CoDa is that the sum of the proportions must always be equal to a constant (w.l.o.g. 1).
This means that the different components of a CoDa point are often expressed as percentages or fractions, rather than
absolute values. Hence, Aitchison’s approach normalizes a raw composition vector by its sum (an operation called
closure in the CoDa literature): let y = (y1, . . . , yd) ∈ Rd

≥0 be a vector of non-negative absolute values of a composition,
its closure is denoted as

C(y) :=
y
||y||1

=
y∑d

i=1 yi
.

This leads to the consideration of normalised1 (i.e. after rescaling to unit sum) CoDa element as a vector p =
(p1, . . . , pd), taking its values in the d − 1 dimensional unit simplex2

∆d−1 := {p ∈ Rd : pi ≥ 0,
d∑

i=1

pi = 1}. (1)

∗Email address: olivier.faugeras@tse-fr.eu
1For an intrinsic approach to CoDa analysis based on projective geometry, see [15].
2Note that we allow CoDa points with some null components.
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Being in a compact space, CoDa elements of ∆d−1 can not all be mapped via homeomorphisms to Rd−1 and thus do not
enjoy a global vector space structure. This, and the spurious correlation effect ([37]) induced by the closure operation,
prevents the direct application of classical multivariate statistical analysis techniques (e.g. [3]) to the simplex.

Aitchison’s ([1], [2]) seminal approach is to study CoDa through a variety of log-ratio transforms: for example,
the Additive Log-Ratio transformation (alr) of [2]

yi := log(pi/pd), i = 1, . . . , d − 1

and its variants clr and ilr ([23], [36]) turns a CoDa point p into a vector element of Rd−1. This gives rise to a special
geometry, called Aitchison geometry, which turns the positive simplex ∆̊d−1 into an Euclidean vector space. For recent
accounts on the latter, see e.g., the survey article [24], and the books [2], [23], [36], [19], [7].

However, due to the log, log-ratios are undefined if p has some zero components3. Thus, the above-mentioned
statistical literature based on log-ratio analysis usually enforces a strict non-negativity assumption of the CoDa com-
ponents, which limits its scope of application. (Special treatments of the zero components are required: these range
from ad-hoc methods like amalgamation of the finer parts, replacement of the zeroes with small values, treatment of
the zero observations as outliers to more involved approaches based on the stratification of the simplex according to
the zeroes patterns.) This motivates the search of possible alternative representations of CoDa on the full simplex
∆d−1.

1.2. Aims and scope

The purpose of this paper is to bring to the attention of the CoDa community a possible simple alternative approach
for the statistical analysis of CoDa. It is inspired and finds its origin in Bayesian non-parametrics and consider CoDa
as a stick-breaking process. This give rises to two interrelated geometric views on CoDa points. The first is that of an
ordered set on the unit interval. This ordered view allows to define distributions on CoDa points via order statistics
and spacings of a latent vector on the unit interval.

The second view is based on a transformation which gives the relative positions of the breaks, yielding a para-
metrization of the CoDa point as an unconstrained unit cube. These relative positions have an interpretation as
conditional probabilities and are related to the concept of neutrality, a natural intra-independence notion for compo-
sitions. It can also be apprehended in terms of hazard rate, via the product integral. This second view also allows to
define distributions on the simplex, in particular copula distributions, for the study of the intra-dependence of CoDa.
In addition, it is useful to study internal (resp. external) regression models, i.e. when one wants to explain/predict a
(set of) components by other components acting as predictors (resp. by external covariates).

As these stick-breaking approaches can be described from multiple viewpoints and have multiple origins, our sec-
ond aim is thus to survey these and show the connections that exist between several topics of probability and statistics,
like spacings and order statistics, Bayesian nonparametrics and Dirichlet distributions, neutrality and subcomposi-
tions, hazard rates and the product integral, and mixability.

1.3. Outline

The outline of the paper is as follows: in Section 2, we introduce the first stick breaking transformation and
define stick-breaking distributions for CoDa, based on spacings and order statistics. Several examples are given and
numerically illustrated. Section 3 elaborates on the first construction by considering a rescaled version of the stick-
breaking process. It turns the constrained CoDa point of the simplex into a free vector of the unit cube [0, 1]d−1,
which can, for positive CoDa, even be transformed to a free Euclidean vector of Rd−1. These approaches yield a triple
representation of CoDa. We show the connections with neutrality, Dirichlet distributions, hazard rate and iterative
partitioning, and briefly discuss some possible variants.

Section 4 and 5 deal with statistical applications of such rescaled stick-breaking transformation for the study of the
intra-dependence of CoDa. Section 4 introduces CoDapulas as the analogue of copulas for CoDa, opening the gates
of the vast copula literature, tools and methodologies for CoDa. Several examples illustrates how copula models can
easily be constructed for CoDa. In particular, completely monotone copulas give interesting complete dependence

3Ratios are also undefined if both numerator and denominator are zero. See the forthcoming Proposition 4 for a treatment of this case.
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patterns for CoDa. Section 5 aims at studying intra-dependence of CoDa from the regression viewpoint. A basic
example of a parametric regression model on real data set is given. Several extensions and alternatives are discussed.
Eventually, we conclude in Section 6, with additional remarks about the choice of ordering of the components, and
mixability.

2. The first stick-breaking view on CoDa: ordered points on the unit interval

2.1. The ordered stick-breaking view
The first stick-breaking approach is based on the representation of CoDa as a normalised point p in the simplex

(1). Instead of considering the (pi), 1 ≤ i ≤ d, as primary parameters for p, one can consider the accumulated sums
s = (s0, s1, . . . , sd), defined as

s0 = 0,

si = pi + si−1 =

i∑
j=1

p j, i = 1, . . . , d − 1, (2)

sd =

d∑
i=1

pi = 1,

as an alternative system of coordinates of (1). Dropping the fixed values s0 = 0 and sd = 1, this leads to a representa-
tion of (1) as

Σd−1 := {(s1, . . . , sd−1) ∈ Rd−1 : 0 ≤ s1 ≤ . . . ≤ sd−1 ≤ 1}. (3)

Equation (3) can be interpreted as iteratively breaking the unit stick [0, 1]: first, one picks some s1 ∈ [0, 1], then,
for the second step, one picks some s2 in the remaining interval [s1, 1], and so on for si to be picked in the interval
[si−1, 1], i = 1, . . . , d − 1. The process stops after d − 1 steps. See Figure 1.

0 1

1

1

s1

s1
s2

s2
s3

1s3

Fig. 1: Stick-breaking of the unit interval: each remaining interval [si, 1] is broken at si+1 ∈ [si, 1].

Conversely, d − 1 ordered values (s1, . . . , sd−1) ∈ Σd−1 determines uniquely a CoDa point p in the simplex ∆d−1 by

p1 = s1,

pi = si − si−1, i = 2, . . . , d − 1, (4)
pd = 1 − sd−1.

For the record, let us formalize these elementary considerations in the following:
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Proposition 1. The summing transformation S : p 7→ s defined by (2) is a bijection from ∆d−1 to Σd−1, with inverse
transformation given by (4).

Remark 1. 1. A normalized CoDa point p ∈ ∆d−1 can be identified with a discrete probability measure µp on R,

p ↪→ µp(.) :=
d∑

i=1

piδxi (.),

where x1 < . . . < xd ∈ R denotes (arbitrarily located) distinct components and δx stands for the Dirac mass at x.
The Coda p “forgets” about the locations x1, . . . , xd of µp of the components, to only retains their probabilities
p1, . . . , pd. As such, parametrization (2) of the simplex by the (si) interprets as characterizing the discrete
distribution of a r.v. X ∼ µp by its c.d.f. F(x) = P(X ≤ x) =

∑
y≤x P(X = x), while the parametrization by the

(pi) interprets as characterizing the distribution of X by its probability mass function P(X = x).
2. (3) only uses the order structure of the interval [0, 1], and not the addition operation. This suggests that one can

generalise the notion of simplex to arbitrary ordered space, endowed with a top (= 1) and bottom (= 0) element.
3. Instead of breaking the stick from the left to the right, i.e. putting si ∈ [si−1, 1], for increasing i = 1, . . . , d−1, one

can also consider a stick-breaking process from the right to the left, i.e. putting si ∈ [0, si+1] for decreasing i =
d − 1, . . . , 1. This corresponds to characterizing µp by its survival function instead of its cumulative distribution
function.

2.2. CoDa distributions via order statistics
2.2.1. Stick-Ordered distributions

This geometric view of CoDa as a set of ordered points on the unit interval suggests a natural connection with
order statistics on the unit interval. This gives an easy way to build distributions on the simplex by taking as si the
order statistics of some ui distributed on the unit interval. More precisely, one can define a “Stick-Ordered” (SO)
distribution on the simplex as follows:

Definition 2 (Stick-Ordered distribution for CoDa). Let ui ∼ Fi, i = 1, . . . d−1 be independent r.v. with (F1, . . . , Fd−1)
a set of univariate c.d.f.s on the unit interval. Set

u(1) ≤ . . . ≤ u(d−1)

the corresponding order statistics. Eventually, define

s0 = 0, si = u(i), i = 1, . . . d − 1, sd = 1.

Then, the CoDa point p ∈ ∆d−1 corresponding to s in (3) is said to be (F1, . . . , Fd−1)-Stick-Ordered distributed, which
is denoted by

p ∼ SO(F1, . . . , Fd−1).

In case Fi = F, p is said to be F-Stick-Ordered distributed, which is denoted by p ∼ SO(F).

In other words, the Stick-Ordered distribution of p is the distribution of the spacings corresponding to the order
statistics s. The latter has to be computed as the distribution of (possibly non-identically distributed) order statistics.

p ∼ SO(F1, . . . , Fd−1)⇐⇒


ui ∼ Fi, (u1, . . . , ud−1) independent,
s0 = 0, si = u(i), sd = 1, i = 1, . . . , d − 1,
pi = si − si−1, i = 1, . . . , d

Fig. 2: Stick-Ordered distribution SO, obtained from the order statistics u(i): each pi corresponds to a spacing.
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2.2.2. Examples
Example 1. In particular, for F = U[0,1] the uniform distribution, (i.e. F(x) = x, 0 < x < 1), p ∼ SO(U[0,1]) gives
a uniform distribution on the simplex, as shown in [38] equation (2.1). (See also [50] equation (6)). More precisely,
(p1, . . . , pd−1) has a density w.r.t. the d − 1 dimensional Lebesgue measure given by

f(p1,...,pd−1)(x1, . . . , xd−1) =

(d − 1)! if xi ≥ 0, and
∑d−1

i=1 xi ≤ 1
0 otherwise

.

On the other hand, p has a singular distribution since pd = 1−
∑d−1

i=1 pi, but its restriction to the hyperplane
∑d

i=1 pi = 1
admits a density w.r.t. the d − 1 dimensional Lebesgue measure given by

fp(x) =

(d − 1)! if xi ≥ 0, and
∑d

i=1 xi = 1
0 otherwise

,

which is symmetric in (x1, . . . , xd) (i.e. the (pi) are exchangeable). One recognizes the Dirichlet Dir(1, . . . , 1; 1)
distribution, see e.g. [39] or [51].

These stick-ordered distributions are useful for modeling purposes. They allow to construct CoDa models from
classical distributions on [0, 1]. One can consider more examples with other distributions on the unit interval, like the
Beta, the Kumaraswamy, (which is similar to the Beta distribution but leads to tractable formulas for the distribution
of order statistics, see [30]), or those of [31]. (More generally, any distribution on R can be mapped to a distribution
with support included on the unit interval by applying a c.d.f to it). In some cases, analytical formulas can be obtained
for the distribution of p, using known results on spacings ([38]).

Example 2 (Kumaraswamy). The Kumaraswamy distribution ([30]) U ∼ Kumaraswamy(α, β) has density

f (u) = αβuα−1(1 − uα)β−1, 0 < u < 1, (5)

and cdf
F(u) = 1 − (1 − xα)β, 1 < u < 1. (6)

Moreover, for i.i.d. ui ∼ F, i = 1, . . . , d − 1, with density f , the marginal distribution of the spacings writes (see
e.g. [38] p. 399)

fpi (x) =
(d − 1)!

(i − 2)!(d − 1 − i)!

∫
(F(t))i−2(1 − F(x + t))d−1−i f (t) f (x + t)dt, (7)

for 2 ≤ i ≤ d − 1, and
fp1 (x) = fu(1) (x) = (d − 1) f (x)(1 − F(x))d−2. (8)

Applying formulas (7) and (8) to (5) and (6) leads to computable formulas. For example,

fp1 (x) = (d − 1)αβxα−1(1 − xα)β(d−1)−1, 0 < x < 1,

The Markov property of the order statistics can then be used to derive the joint distribution of p.

2.2.3. Generalised Stick-Ordered Distributions
One can also generalise the former definition (2) by taking dependent r.v. ui instead of independent ones.

Definition 3 (Generalized stick-ordered distribution for CoDa). For u = (u1, . . . , ud−1) ∈ [0, 1]d−1 with joint distribu-
tion function Fu, the CoDa point p ∈ ∆d−1 corresponding to s in (3) is said to be generalized-stick-ordered distributed
with generator Fu, which is denoted by p ∼ GSO(Fu), viz.

p ∼ GSO(Fu)⇐⇒


(u1, . . . , ud−1) ∼ Fu

s0 = 0, si = u(i), sd = 1, i = 1, . . . , d − 1,
pi = si − si−1, i = 1, . . . , d
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For non-identically distributed or dependent variables, one can compute them e.g. using results of [10] Chap. 5.
[29], [43] (See also [5]). However, this often leads to intractable formulas. Nonetheless, it is easy to simulate samples
from such distributions.

Example 3 (GSO with Gaussian copula generator). Consider, for d = 3, p ∼ GSO(Fu) with FU a bivariate Gaussian
copula (hence with uniform marginals), with correlation ρ. Figure 3 shows ternary diagrams of scatterplots of samples
of 1000 realisations of p = (p1, p2, p3), with varying level of the dependence coefficient ρ. The value of ρ determines
the behavior of the distribution of the CoDa element p and generates interesting patterns of dependence between
the components. For ρ = 0, one generates a uniform distribution on the simplex (upper right panel). When ρ
becomes negative (upper middle panel) and close to −1 (upper left panel), one obtains empirically a CoDa point s.t.
p2 ≈ 1 − 2p1 and p1 ≈ p3. For ρ close to one (ρ = 0.99, lower right panel), the p2 component is nearly zero and the
CoDa point is nearly on the line p1 = p3.

p1 p2

p3

p1 p2

p3

p1 p2

p3

p1 p2

p3

p1 p2

p3

Fig. 3: Ternary plots of Generalized-Stick-Ordered distribution for d = 3, with Gaussian copula generator, with varying correlation coefficient ρ.
From left to right and up to down: ρ = −0.99, ρ = −0.8, ρ = 0, ρ = 0.8, ρ = 0.99.

3. The rescaled stick-breaking view: unit cube geometry of CoDa points

3.1. Unit cube geometry for CoDa points by rescaling

The second approach we promote is based on a rescaled version of the iterative stick-breaking process of Figure
1: first, one picks some s1 ∈ [0, 1], as previously. Then, one has to pick s2 in the remaining interval [s1, 1]: in terms of
spacings/lengths, the length of s2 − s1 = p2 of the second stick [s1, s2] has to be chosen relatively to the length 1 − s2
of the remaining stick [s2, 1], see Figure 2. Similarly, the relative length si − si−1 = pi of the interval corresponding to
the ith pick si has to be chosen relatively to the length 1− si−1 of the remaining stick [si−1, 1]. Following the footsteps
of [27], [9] among others, it is therefore natural to introduce the transformation,

z1 = s1 = p1,

zi =
pi

1 − si−1
, i = 1, . . . , d − 1, (9)

zd = 1,

with the convention that 0/0 := 0.
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Fig. 4: Rescaled stick-breaking: each remaining stick is broken, relatively to its length, by zi ∈ [0, 1].

By construction, since 1− si−1 = pi + . . .+ pd ≥ pi, the zi in (9) are in the unit cube, 0 ≤ zi ≤ 1 for i = 1, . . . , d− 1,
with degenerate zd = 1. Thus the transformation (9) turns the “akward” simplex ∆d−1 into the unit cube [0, 1]d−1 (we
drop zd as it is always equal to 1). This leads to a free unit cube view of CoDa points as an unconstrained element of
[0, 1]d−1. More precisely, the transformation (9) realizes “almost” a bijection of the simplex, as formalized in the next
proposition:

Proposition 4. Let the rescaled stick-breaking transformation

R : ∆d−1 → [0, 1]d−1

p 7→ z

be defined by (9). Then,

i) R is a bijection from the interior of the simplex ∆̊d−1 to the open cube (0, 1)d−1, with inverse transformation R−1

given by p = R−1(z) with

p1 = z1,

pi = zi

i−1∏
j=1

(
1 − z j

)
, i = 2, . . . , d − 1,

pd =

d−1∏
i=1

(1 − zi) . (10)

ii) R−1 : [0, 1]d−1 → ∆d−1 is a retraction (left-inverse) of R on the full simplex ∆d−1, i.e. R−1 ◦ R(p) = p, for all
p ∈ ∆d−1.

Proof. R is ill-defined when the denominator in (9) is zero, that is to say when there exists some 1 ≤ i ≤ d − 2 s.t.
si = 1. Notice that if this so, then s j = 1 and p j = 0, for j > i. This entails that zi = pi/pi = 1 and z j = 0 for j > i,
with our convention that 0/0 := 0. Conversely, if zi = 1 for some 1 ≤ i ≤ d − 2, then pi+1 + . . . + pd = 0 which entails
p j = z j = 0 for j > i.

So, let i0 the smallest i such that si = 1, 1 ≤ i ≤ d. If p ∈ ∆̊d−1 or z ∈ (0, 1)d−1, then, in view of the preceding,
i0 > d − 2, R is well-defined and simple algebraic manipulations show that R and R−1 are inverse of each other. This
settles case i). If 1 ≤ i0 ≤ d−2, p = (p1, . . . , pi0 , 0, . . . , 0), z = R(p) = (z1, . . . , zi0−1, 1, 0, . . . , 0) and R−1(z) = p. Thus,
in the general case ii), for p ∈ ∆d−1, R−1 ◦ R(p) = p.

In other words, z can only have one of its coordinates equal to 1 (with remaining coordinates equal to zero, if so
happens). This implies that the faces of the cube [0, 1]d−1 with more than one 1 in their coordinates do not correspond
to a CoDa point: some parts of the boundary of the cube [0, 1]d−1 can not be mapped back to the simplex. Nonetheless,
this is not a serious restriction. Proposition 4 ii) means that the whole simplex can be injected into the unit cube and
mapped back to the simplex: all CoDa points (including CoDa with zeroes) can be studied in their z coordinates, as
points of (almost all) the unit cube.
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Remark 2. Historically, the transformation (9) was introduced by [27] for d = ∞, as a way to distribute gold dust
to a countably infinite sequence of beggars, where each beggar receives in turn a fraction zi of the remaining gold.
More generally, an infinite sequence (p1, p2, . . .) defined by (9) from a sequence of independent (zi) ∈ [0, 1] is called a
residual allocation model (RAM), see [17] for a review. The case when zi ∼ β(1, θ), θ > 0 is called a GEM distribution
and was notably studied in population genetics by [26], [12], [32], see e.g. [14]. RAM also appears in Bayesian
statistics in connection with the Dirichlet distribution, as the weights of random measures P(.) =

∑∞
k=1 pkδξk (.), where

(ξk) are i.i.d. and independent of (pk), see [51] p. 178, [18], [28]. See also Section 3.3 below.

3.2. Neutrality and complete neutrality
This interpretation of CoDa points as a relative/proportional iterative stick-breaking process leads to the concept

of neutrality, introduced by [9], which is relevant for the analysis of CoDa. In short, it is a sort of intra-independence
concept for a random composition p.

More precisely, neutrality is motivated by the following: if one wants to check whether the first proportion p1 has
an influence on the remaining subcomposition (p2, . . . , pd), the latter has to be rescaled by the remaining mass 1− p1,
in order to be a proper normalized CoDa point. One thus has to check for the stochastic influence of p1 on(

p2

1 − p1
, . . . ,

pd

1 − p1

)
, (11)

and if p1 is independent of the latter rescaled subcomposition, one can eliminate p1 from the analysis of p. Therefore,
[9] defines neutrality as follows: p1 is said to be neutral if p1 is independent of (11): p1 does not influence the manner
in which the remaining proportions (p2, . . . , pd) relatively divide the remainder of the unit interval.

A generalisation of neutrality to a vector pk := (p1, . . . , pk), k < d is: (p1, . . . , pk) is a neutral vector if it is
independent of (

pk+1

1 − sk
, . . . ,

pd

1 − sk

)
.

Thus, if p j is neutral for j = 1, . . . k, then zk := (z1, . . . , zk) is mutually independent (Theorem 1 in [9]). A further
generalization of neutrality is complete neutrality: if the z = (z1, . . . , zd−1) of (9) are mutually independent, then the
corresponding p is said to be completely neutral, or equivalently (Theorem 2 in [9]) if p j is neutral for all 1 ≤ j ≤ d−1.

These concepts of neutrality are helpful for constructing completely neutral distributions on the simplex: start
with mutually independent zi’s each having a specified distribution on [0, 1], and invert (9) to obtain a completely
neutral distribution on the simplex. In particular, [9] construct a generalisation of the Dirichlet distribution from
independent zi ∼ β(ai, bi). [35] Theorem 2.2 use the transformations (9) and (10) to obtain stochastic representations
of the Dirichlet distribution D(a) from independent zi ∼ β(ai,

∑d
k=i+1 ak), i = 1, . . . , d − 1.

3.3. Conditional probability interpretation of the rescaled stick-breaking approach and connection with Bayesian
priors

The rescaled weights zi interpret as conditional probabilities. The stick-breaking construction appears in the
construction of the (finite-dimensional) Dirichlet distribution of [18], see e.g. [21] p. 30. The latter is used for
constructing a prior on a discrete distribution in Bayesian statistics. It is defined as follows: in order to randomly
distribute a total mass 1, identified with the unit interval, to the first d integers 1, 2, . . . , d, the stick is first randomly
broken by a r.v. 0 ≤ Z1 ≤ 1, and mass Z1 is assigned to 1. The remaining mass is 1 − Z1 and the stick [Z1, 1] is
broken into two new pieces of relative length Z2 and 1 − Z2, for some 0 ≤ Z2 ≤ 1. Mass (1 − Z1)Z2 is assigned to the
point 2, and the remaining stick has remaining mass (or length) (1 − Z1)(1 − Z2). Iterating, one has defined a random
distribution (i.e. a Markov kernel), with values j = 1, . . . , d and (random) probabilities given by (10).

Each pi is the probability assigned to i, conditionally on the previous probabilities assigned to the j < i. Indeed, if
one denotes by ζ the r.v. with values in 1, . . . , d and (random) probabilities given by (10), i.e. s.t.

P(ζ = i) = pi = Zi

i−1∏
j=1

(
1 − Z j

)
, i = 1, . . . , d,

Then, Zi = P(ζ = i|ζ ≥ i).
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On the other hand, the complete neutrality property expresses the idea that these Zi (or equivalently these con-
ditional probabilities) are chosen independent. In particular, if (Z1, . . . ,Zd) are independent with Zi ∼ β(αi,

∑
j>i α j),

then p is Dirichlet Dir(k;α1, . . . , αd) distributed, see [21] Corollary G.5.

3.4. Hazard rate interpretation with the product integral
Going one step further in the interpretation of the rescaled stick-breaking transform (9) in terms of conditional

probabilities of Section 3.3, we now show that it is associated with the expression of density functions in terms of
hazard rate, a concept commonly used in reliability and survival analysis. Indeed, for X a positive real-valued random
variable with density f and cdf F, recall that the hazard rate function is defined as minus the log derivative of the
survival function,

h(x) :=
f (x)

1 − F(x)
= −

d ln (1 − F(x))
dx

= lim
h↓0

P(X ≤ x + h|X > x)
h

. (12)

It interprets, when X stands for a survival time, as the conditional probability of the failure of the device at age x,
given that it did not fail before age x. By direct integration of (12), the survival function (or cdf) expresses in terms of
the hazard rate, as

1 − F(x) = exp
(
−

∫ x

0
h(y)dy

)
, x ≥ 0. (13)

Combining (12) and (13) yields a representation of the density function as

f (x) = h(x) exp
(
−

∫ x

0
h(y)dy

)
. (14)

Equations (12), resp. (14), are the continuous analogue of the discrete p → z transform (9), resp. the inverse z → p
transform (10). For (9) and (12) this is clear, as, in the discrete case, the density (Radon-Nikodym derivative w.r.t.
the counting measure) f (x) = P(X = x) identifies with the CoDa vector of probabilities p, and the cdf F(x) with the
accumulated sum vector s, in accordance with Remark 1. The z coordinates thus interpret as a discrete hazard rate.

For the inverse transform z → p, the correspondence is less apparent as the continuous density (14) and discrete
inverse transforms (10) appear different at first sight. The analogy is complete when one writes (14) in terms of
Volterra’s product integral [47]. The product integral is the continuous product analogue of the ordinary (Riemann,
Lebesgue, Denjoy, Perron etc. . .) integral and provide a compact functional way to express the solution to the Cauchy
problem for systems of ordinary differential equations (or of integral equations). It finds applications in survival analy-
sis (Kaplan-Meier and Nelson-Aalen estimators), nonlinear systems theory (Péano-Wiener series), Markov processes
and semi-martingales, see [11], [45], [22] for more details.

Indeed, given a fixed x > 0, let 0 = x0 < x1 < . . . < xm = x be a partition of [0, x]. Then, by successive
conditioning,

P(X > x) = 1 − F(x) = P(X > x0)P(X > x1|X > x0) . . . P(X > xm|X > xm−1)

=

m∏
i=1

(1 − P(X ≤ xi|X > xi−1))

By (12), P(X ≤ xi|X > xi−1) ≈ h(xi)δxi, for δxi := xi − xi−1 small. Thus, when the partition size goes to zero, viz.
m→ ∞, δ := max1≤i m δxi → 0, then

P(X > x) ≈
m∏

i=1

(1 − h(xi)δxi)→
x

R
0

(1 − h(y)dy)

where the r.h.s is the definition of the product integral, understood as the limit of the finite products of the l.h.s. The
final step in the analogy consists in the property that, since e−x = 1− x+o(x2), the product integral can also be written
as an exponential product integral, see e.g. Theorem 1.7.1 p. 52 in [11]. In turn, it is equal to the exponential of the
classical Riemann sum integral:

x

R
0

(1 − h(y)dy) =
x

R
0

e−h(y)dy := lim
δ↓0

m∏
i=1

(
e−h(xi)δxi

)
= lim
δ↓0

e
∑m

i=1 −h(xi)δxi = e−
∫ x

0 h(y)dy.
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In other words, the formula of the inverse z transform (10),

pi = zi

i−1∏
j=1

(
1 − z j

)
, i = 2, . . . , d − 1,

interprets as the discrete analogue of the density formula (14) in terms of hazard rate, that is

f (x) = h(x)
x

R
0

(1 − h(y)dy). (15)

This analogy with the hazard rate and connection with survival and reliability analysis suggest that statistical
models (like Cox or frailty models) and techniques of the latter fields could be used for CoDa.

Remark 3. [22] develop a theory of product integration for matrix measures µ on ]0,∞] which allows to simultane-
ously handle the continuous and discrete case. In particular, their Definition 4 of the product integral in the univariate
commuting case gives

R
]0,x]

(1 + dµ) =
∏

y∈]0,x]

(1 + µ({y})) × exp (µc(]0, x])) ,

where µc is the absolutely continuous part of the measure µ. This unifies the continuous (15) and discrete (10) case in
a single formula.

3.5. A triple representation of CoDa

One thus has a triple representation of the simplex / of normalized CoDa points: the simplex can be represented
as ∆d−1 with its sum constraint, as the ordered set of points Σd−1 on the unit interval, or a free cube [0, 1]d−1 via its
rescaled representation in z coordinates. Figure 5 shows the different representations as well as the transformations
between them (where the arrows between the free unit cube [0, 1]d−1 and Σd−1 are obtained by composition of the
previous transformations). Note that the ordered and rescaled representations are not canonical, as they depend on the
order of enumeration of the components of p.

Unit Cube:
Relative representation

z ∈ [0, 1]d−1

Simplex:
Unit-sum representation

p ∈ ∆d−1 ⊂ [0, 1]d

Interval:
Ordered representation

s ∈ Σd−1 ⊂ [0, 1]d−1

y ∈ Rd
≥0 u ∈ [0, 1]d−1

summing:

rescaled stick-breaking

spacings/differencing

normalisation y
||y||1

ordering

Fig. 5: A triple representation of CoDa: as a simplex, as an ordered set and as a free unit cube.

In addition, Figure 5 shows how one can obtain the stick-ordered distribution of Definition 2, via ordering of some
ui ∈ [0, 1] r.v. (lower-right), for i = 1, . . . , d − 1. Another way to produce a CoDa point is through closure C, i.e.
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normalisation by the sum of nonnegative random variables, for some y = (y1, . . . , yd) ∈ Rd
≥0. This is also illustrated in

Figure 5, (lower-left).
The figure shed lights on some results and representations of order statistics and constructions of Dirichlet dis-

tribution. For example, it is well-known (see [46], [40], [38]) that the order statistics and spacings of i.i.d (ui) r.v.
uniformly distributed on [0, 1], have a representation as a ratio of (sums of) exponential r.v.: Take yi ∼ Exp(1) i.i.d. in
Figure 5, then normalisation by the sum gives the pi which corresponds to spacings, and summing this spacings give
the order statistics si = u(i), (

u(i)
)
i=1,...,d−1

d
=

 ∑
j≤i y j∑d
j=1 y j


i=1,...,d−1

and

(pi)i=1,...,d
d
=

 yi∑d
j=1 y j


i=1,...,d

Also, for yi ∼ γ(αi) Gamma distributed, Figure 5 allows to explain and visualize the difference between the
Dirichlet distribution on ∆d−1 and its ordered version on Σd−1, see [51] p. 178, 182 and 238.

3.6. From the unit cube to the free Euclidean space Rd−1

If p has no zero components, viz. 0 < pi < 1 for all 1 ≤ i ≤ d, then p is sent to the interior (0, 1)d−1 of the unit cube
[0, 1]d−1 by the rescaled stick-breaking transformation (9). In turn, one can then map the open unit-cube representation
z ∈ (0, 1)d−1 of the Coda element p ∈ ∆d−1 to a point ξ = (ξ1, . . . , ξd−1) ∈ Rd−1 by applying an increasing4 continuous
transformation q : (0, 1)→ R to each component zi of z, viz.

ξi = q(zi), 1 ≤ i ≤ d − 1.

See Figure 6. Examples of q which come to mind include the probit, logit transform, or any quantile function of a
distribution on R with positive density (hence the notation q).

p ∈ ∆d−1,
p > 0 z ∈ (0, 1)d−1 ξ ∈ Rd−1

rescaled
stick-breaking

q

q−1

Fig. 6: Free Euclidean representation ξ ∈ Rd−1 of positive CoDa p by (quantile) mapping of its rescaled stick-breaking representation z.

This gives an interesting alternative to the vector space representation provided by Aichison’s log-ratio trans-
forms. This variant of the z representation allows to apply standard multivariate analysis techniques designed for
Euclidean vectors to CoDa. For example, one can apply classical Principal Component Analysis to the transformed
variables ξ for exploratory data analyses of CoDa. Also, clustering algorithms (i.e. k−means) can be applied on the
ξ-representation of CoDa, without further ado. On the modeling side, any classical multivariate distribution for ξ on
Rd−1 gives, by back-transformation, a corresponding CoDa distribution for p ∈ ∆d−1.

3.7. Description in terms of iterated partitions and some variants

The rescaled stick-breaking can also be described in terms of the amalgamation, subcomposition and partition
operations of [2]. Recall that given a CoDa p ∈ ∆d−1, an amalgamation of order 1 is a mapping

∆d−1 ∋ p 7→ t ∈ ∆1,

4or, more generally, a strictly monotone continuous function.
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obtained when the parts of a d− composition are separated into 2 mutually exclusive and exhaustive subsets, and
the composition within each subset are added together. This results in a 2−parts composition. For example, p =
(p1, p2, p3, p4) ∈ ∆3 can be amalgamated into t = (t1, t2) with t1 = p1 + p2, t2 = p3 + p4. A subcomposition

∆d−1 ∋ p 7→ c ∈ ∆k−1

is obtained by selecting k parts of a composition and closing the selected subvector to obtain a subcomposition in ∆k−1.
Finally, a partition of order 1 is the separation of a d−parts composition into two disjoint and exhaustive subsets, and
recording the amalgamation and subcomposition of each subsets. For example, the order 1 partition

(p1, . . . , pk

∣∣∣pk+1, . . . , pd)

cuts the d−parts at position 1 ≤ k ≤ d − 1 and yields an amalgamation vector t = (t1, t2), with t1 = (p1 + . . . , pk),
t2 = (pk+1 + . . . + pd), together with the two vectors of subcompositions

c1 = C(p1, . . . , pk) =
(p1, . . . , pk)

t1
, c2 = C(pk+1, . . . , pd) =

(pk+1, . . . , pd)
t2

.

By Property 2.10 and 2.11 of [2], this results in a bijective transformation

∆d−1 ∋ p 7→ (t, c1, c2) ∈ ∆1 × ∆k−1 × ∆d−k−1.

The rescaled stick breaking transformation R of (9) can be described as iterated partitions of order 1 with one
subcomposition consisting of a singleton. Indeed, in the particular of partition of order one at position k = 1 where p
is partitioned into (p1

∣∣∣p2, . . . , pd), this yields

t = (p1, 1 − p1), c1 = C(p1) = 1, c2 = C(p2, . . . , pd) =
(

p2

1 − p1
, . . . ,

pd

1 − p1

)
Since c1 is not informative and t ∈ ∆1, one can only record the first component t1 = p1 of t and c2, i.e. consider the
transformation

∆d−1 ∋ p 7→ (t1, c2) ∈ [0, 1] × ∆d−2.

In a second stage, one proceeds with another partition of order 1 at position k = 1 of the subcomposition c2 into(
p2

1 − p1

∣∣∣∣∣ p3

1 − p1
, . . . ,

pd

1 − p1

)
.

This yields the amalgamation vector

t′ =
(

p2

1 − p1
, 1 −

p2

1 − p1

)
=

(
p2

1 − p1
,

1 − s2

1 − p1

)
,

where s2 = p1 + p2, and the two subcompositions vectors

c′1 = 1, c′2 = C
(

p3

1 − p1
, . . . ,

pd

1 − p1

)
=

(
p3

1 − s2
, . . . ,

pd

1 − s2

)
.

Again, one records the first component of t′, viz. p2/(1 − p1), so that one obtains a transformation

∆d−1 ∋ p 7→
(
p1,

p2

1 − p1
, c′2

)
∈ [0, 1]2 × ∆d−3.

The reader will readily see that after d − 1 iterations one has obtained the z coordinates which thus correspond to the
record of the successive amalgamation vectors in the iterated order one partitions. Note that this gives an alternative
proof of Proposition 4 i).
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Remark 4. This partition view suggests variants of the rescaled stick-breaking transformation: for example, instead
of performing iterated nested partitions from the left to the right at the same position k = 1, one can consider a
sequence of partitions on the same original CoDa point p ∈ ∆d−1, but with varying k from 1 to d. One then records
the last component of the first subcomposition of each partition. In other words, one records the closure w.r.t to the
left subcomposition of the boxed components p1, p2, . . ., pd−1 in the partitions below:(

p1

∣∣∣∣∣p2, . . . , pd

)
(p1, p2

∣∣∣∣∣p3, . . . , pd)

. . .(
p1, p2, . . . , pd−1

∣∣∣∣∣pd

)
More explicitly, this amounts to considering the transformation

∆d−1 ∋ p 7→ z′ = (z′1, . . . , z
′
d−1) ∈ [0, 1]d−1

defined by

z′1 = p1,

z′i =
pi

si
=

pi

p1 + . . . + pi
, i = 2, . . . , d − 1.

Except for the first term z′1, this amounts to a z transform (9), with reverse ordering of the components.
More generally, any transformation whose ith component is a fraction with the numerator being pi and denomi-

nator a sum of pi and at least another component will lead to a transformed CoDa in the unit cube. For example, one
can take

z′′i =
pi

pi + pi+1
∈ [0, 1], i = 1, . . . , d − 1,

with the convention that 0/0 := 0. However, these variants usually lead to less tractable formulas for the inverse
transform and are less prone to interesting statistical interpretations. Hence, we do not pursue further.

4. Application of unit cube geometry: Copulas for CoDa

In the complete neutrality view of [9], each rescaled component zi does not influence the remaining ones. If one
moves out of independence, one can generalize in several directions.

4.1. CoDapulas: copulas for CoDa

As first generalization, one can construct copula models ([34]) for CoDa: instead of taking independent zi, one
can specify a joint distribution for z by a set of marginals (Fzi ), i = 1, . . . , d − 1, (each with support the unit interval)
and a copula C, viz.

z ∼ C(Fz1 , . . . , Fzd−1 ).

By back transformation (10), this allows to define general distributions for CoDa points from the specification of a
copula and the marginal distributions of the z.

A probabilistic construction of this specification is as follows: let v ∈ [0, 1]d−1 be distributed according to a copula
function C, i.e. a multivariate distribution with uniform marginals, and let Qzi = F−1

zi
: [0, 1]→ [0, 1], i = 1, . . . , d−1,

be univariate quantile functions with range [0, 1]. Set zi = Qzi (vi), i = 1, . . . , d − 1. Then z = (z1, . . . , zd−1) ∈ [0, 1]d−1
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has copula function C and marginal distributions (Fzi ). By back transformation, p ∈ ∆d−1 is a CoDa point whose
distribution is uniquely specified by C an the set (Fzi ) of marginal cdfs. Explicitly, (10) yields

p1 = Qz1 (v1), (16)

pi = Qzi (vi)
i−1∏
j=1

(1 − Qz j (v j)), i = 2, . . . , d − 1, (17)

pd =

d−1∏
i=1

(1 − Qzi (vi)). (18)

Conversely, given a CoDa point p, one can estimate and study its intra-dependence through the copula of its z-
representation: one first transforms p into z by transformation (9), and then standardize the marginals zi to the uniform
distribution. The latter operation is obtained, when z is continuous, by the marginal probability integral transforms,

vi := Fzi (zi), i = 1, . . . , d − 1,

where Fzi is the c.d.f. of zi. Then, v = (v1, . . . , vd−1) has uniform marginals, i.e. has a copula distribution. See Figure
7.

p ∈ ∆d−1 z ∈ [0, 1]d−1 v ∼ C

Fzi

Qzi

Fig. 7: Probabilistic construction of a CoDapula from its rescaled stick breaking representation.

(In the non-continuous case, the standardization is obtained by using the marginal distributional transforms instead.
The latter is defined as

Fzi (x, η) := P(zi < x) + ηP(zi = x), η ∈ [0, 1]. (19)

Then, v is obtained by setting
vi := Fzi (zi, ηi), i = 1, . . . , d − 1,

where (ηi) is a sequence of i.i.d. uniformly distributed on [0, 1] randomizers, independent of z, see e.g. [42], [16]).
Let us give a fancy name to the copula of a CoDa point.

Definition 5 (CoDapula). Let p ∈ ∆d−1 a random CoDa point, and z ∈ [0, 1]d−1 be it rescaled stick-breaking rep-
resentation (9). Then, a CoDapula of (the distribution of) p is a copula of (the distribution of) z. In other words, a
CoDapula C of p is the distribution of v in the construction of Figure 7.

Thanks to Sklar’s Theorem ([44]), a CoDapula always exists. It is unique if z is continuous (see e.g. [34]).
Definition 5 depends on the ordering of the components 1, . . . , d. Hence, a CoDapula of p depends on a permutation π
of {1, . . . , d}. Hence, in full rigor, one should have defined a notion of π−CoDapula to stress the dependence on π. We
have chosen not to in order to simplify notations. The choice of the ordering, i.e. of π, may depend on the application
in view, and will be discussed in Section 6.2.

By (16), the first component p1 has the same distribution as z1, and thus is completely specified by the first marginal
distribution function Fz1 , (equivalently, quantile function Qz1 ). Note that the marginal distributions of the remaining
components p2, . . . , pd depend on both the CoDapula and the marginal distributions: this is in contrast with the copula
approach for classical Euclidean vectors. Nonetheless, at the z level, one has the the classical copula separation of
a multivariate distribution into its marginal distributions Fz1 , . . . Fzd−1 and the dependence structure embodied in the
copula function C.
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4.2. Examples and numerical illustrations
We illustrate in Figures 8 and 9 some CoDa distributions which can be obtained using the specification by a

CoDapula of Definition 5 and marginal quantile functions for z. In Figure 8, the copula of z is an Ali-Mikhail-Haq
copula with parameter α = 0.91, and the marginal distributions are Beta and uniform, Fz1 ∼ β(1/4, 2) and Fz2 ∼ U[0,1],
while in Figure 9, the CoDapula is a Gumbel-Hougaard copula with parameter θ = 7, and same marginals as in
Figure 8. The left panels show scatterplots in the z domains, and the right panels the corresponding ternary plots
in the simplex CoDa space for p. Figure 8 give an example of mild dependence with CoDa points spreading above
the p1 = 0 level. As the Gumbel copula approaches the comonotonicity copula as θ → ∞ (while θ = 1 yields the
independence copula), the value θ = 7 in Figure 9 models strong dependence at the z level, resulting in the pattern of
points shown on the right panel at the CoDa level. More examples could be considered.

0.0 0.2 0.4 0.6 0.8 1.0
z10.0

0.2

0.4

0.6

0.8

1.0
z2

p3 p1

p2

Fig. 8: CoDa with AMH CoDapula (α = 0.91), and β(1/4, 2), U[0,1] marginal distribution functions: scatter plot at the z level (left) and ternary
scatter plot for the resulting p (right), d = 3.

0.0 0.2 0.4 0.6 0.8 1.0
z10.0

0.2

0.4

0.6

0.8

1.0
z2

p3 p1

p2

Fig. 9: CoDa with Gumbel CoDapula (ρ = 7) and β(1/4, 2), U[0,1] marginal distribution functions; scatter plot at the z level (left) and ternary
scatter plot for the resulting p (right), d = 3.

4.3. Complete dependence of CoDa
The concept of CoDapula opens the gates of the vast copula literature and modeling methodology to CoDa. This

is useful to study the intra-dependence of CoDa. The independence copula for z means that p is completely neutral.
At another extreme, complete dependence at the z level induces a specific dependence pattern at the p level, as is
shown in the next two examples.
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4.3.1. Comonotone CoDapula
Comonotonicity is an extreme form of dependence structure for Euclidean vectors that describes the strongest posi-

tive dependence. A comonotone vector is characterised by having as copula the comonotone copula M(x1, . . . , xd−1) =
min(x1, . . . , xd−1). The comonotone copula corresponds to the distribution of the vector v = (v, . . . , v) ∈ [0, 1]d−1, with
a single v ∼ U[0,1. In other words,

P(v ≤ x) = P(v ≤ x1, . . . , v ≤ xd−1) = min(x1, . . . , xd−1), x ∈ [0, 1]d−1.

Applied to CoDa, the corresponding z thus writes

z = (Qz1 (v), . . . ,Qzd−1 (v)),

where Qzi : [0, 1]→ [0, 1] are given quantile functions. This gives, as corresponding p, Coda with components

p1 = Qz1 (v)

pi = Qzi (v)
i−1∏
j=1

(
1 − Qz j (v)

)
, i = 2, . . . , d − 1.

Example 4 (Comonotone CoDapula, d = 3). For example, for d = 3, one gets

z =
(
z1
z2

)
=

(
Qz1 (v)
Qz2 (v)

)
which translates into

p1 = Qz1 (v)
p2 = Qz2 (v)

(
1 − Qz1 (v)

)
p3 = 1 − p1 − p2 =

(
1 − Qz1 (v)

) (
1 − Qz2 (v)

)
(20)

Thus, p1 is an increasing function of v, p3 is decreasing, while p2 switches direction of variation w.r.t v.
Figure 10 shows, for d = 3, the CoDa p corresponding to the comonotone copula, with uniform quantile functions

at the z level, viz. Qz1 (v) = Qz2 (v) = v in (20), so that p1 = v, p2 = v(1 − v), p3 = (1 − v)2.

0.0

0.2

0.4

0.6

0.8

1.0
p3

0.0

0.2

0.4

0.6

0.8

1.0

p1
0.0

0.2

0.4

0.6

0.8

1.0
p2

Fig. 10: Ternary plot of a CoDa with comonotone CoDapula and uniform quantile functions, d = 3, with barycentric axes p1 (red), p2 (green), p3
(blue).
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The distribution of p is singular, as each component pi is a deterministic function of v ∼ U[0,1]: p lies on the curve
shown in the ternary plot. This implies that each pair of components (pi, p j), 1 ≤ i , j ≤ 3 are totally dependent, i.e.
lie on a curve. Figure 11 shows the resulting complete dependence between each pairs of components: (p1, p3) are
counter-monotone (middle), while (p2, p3) (right) is comonotone. (p1, p2) (left) switches its sense of variation, being
first comonotone, then countermonotone. Note that p2 also has a limited range of variation p2 ∈ [0, 1/4].

0.0 0.2 0.4 0.6 0.8 1.0
p1

0.2

0.4
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0.0 0.2 0.4 0.6 0.8 1.0
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0.6

0.8
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p3

Fig. 11: Complete dependence between pairs of components of a CoDa with comonotone CoDapula and uniform quantile functions, d = 3: (p1, p2)
(left), counter-monotone (p1, p3) (middle), comonotone (p2, p3) (right).

4.3.2. Counter-monotone CoDapula
Counter-monotonicity is the antithesis of comonotonicity. Note that this notion is well-defined only in two di-

mensions. We thus restrict our discussion to the case d = 3. The bivariate counter-monotone copula W(x1, x2) =
max(x1 + x2 − 1, 0) is stochastically realized by the vector v = (v, 1 − v), where v ∼ U[0,1]. This gives a corresponding
Coda

p =

p1
p2
p3

 =
 Qz1 (v)

Qz2 (1 − v)
(
1 − Qz1 (v)

)(
1 − Qz1 (v)

) (
1 − Qz2 (1 − v)

)
 . (21)

The following example illustrates the case when the quantile functions are the uniform ones.

Example 5 (Counter-monotone CoDapula). For Qz1 (v) = Qz2 (v) = v, (21) gives p1 = v, p2 = (1 − v)2, p3 = v(1 − v).
One thus gets the same parametrization at the CoDa level as in the comonotone case of Example 4, but with the roles
of p2 and p3 exchanged, see Figure 12.
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Fig. 12: Ternary plot of a CoDa with countermonotone CoDapula and uniform quantile functions, d = 3, with barycentric axes p1 (red), p2 (green),
p3 (blue).
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This now translates at the CoDa level into complete dependence between pairs of components, as shown in Fig-
ure 13. Notice, however, that the dependence pattern is not the symmetric of the comonotone case of Figure 11:
(p1, p2) are now counter-monotone, whereas both (p1, p3 and (p2, p3) change their direction of variation. Hence,
with a counter-monotone CoDapula, only one pair is monotone dependent (viz. (p1, p2) counter-monotone), whereas
with a comonotone CoDapula, two pairs were monotone dependent (viz. (p1, p3) counter-monotone, and (p2, p3)
comonotone).
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Fig. 13: Complete dependence between pairs of components of a CoDa with countermonotone CoDapula and uniform quantile functions, d = 3:
counter-monotone (p1, p2) (left), (p1, p3) (middle), (p2, p3) (right)

5. Application of unit cube geometry: Regression models for CoDa

As a second possible generalization, the rescaled stick-breaking approach (9) can be useful for the intra regression
analysis of a CoDa component w.r.t the others. The basic idea is to construct regression models in the z coordinates
to iteratively explain one zi component in terms of the other z j. Indeed, the transformation (9) is reminiscent of
Rosenblatt’s generalization of the quantile transform by successive conditioning and the regression representation of
a random vector, which we recall now.

5.1. Regression representation of an Euclidean random vector
Let X = (X1, . . . Xk) ∈ Rk be a vector with joint c.d.f. F. If one can transform X into a sequence ϵ1, . . . , ϵk of

independent, identically distributed r.v., with a prescribed distribution λ (say, uniform on [0, 1]), then, one can argue
that the distribution of X has been successfully modeled: the transformation

(X1, . . . , Xk)
ϕ
→ (ϵ1, . . . , ϵk)

has stripped X of all its stochastic variability and dependence and turned it into white noise. The function ϕ effectively
models the distribution F of X.

[41]’s transform and its generalizations (see [42]) achieves such a reduction: Denote by Fi|i−1,...,1 the conditional
c.d.f. of Xi given (Xi−1, . . . , X1), i = 2, . . . , k, with F1 the (marginal) cdf of X1. [41]’s transform is then defined by
ϵ = (ϵ1, . . . ϵk) with

ϵ1 := F1(X1)
ϵi := Fi|i−1,...,1(Xi|Xi−1, . . . , X1), i = 2, . . . , k.

Under an assumption of continuity5 of the successive conditional c.d.f. Fi|i−1,...,1, Rosenblatt’s transform turn the
vector X into a vector ϵ of i.i.d. U[0,1] components (see [42]).

Conversely, starting from a vector ϵ ∼ λk and applying the successive (conditional) quantile functions F−1
i|i−1,...,1,

viz.

X1 := F−1
1 (ϵ1)

Xi := F−1
i|i−1,...,1(ϵi|Xi−1, . . . , X1), i = 2, . . . , k, (22)

5For discontinuous conditional cdf, one must use the conditional probability integral transform (19) instead, see [42]
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one obtains a vector X with the desired joint c.d.f. F. Each equation (22) interprets as a nonlinear regression equation
of Xi, given its past covariates X j, j < i, with error/noise/innovation ϵi. This gives a regression representation of
X, according to [42], where (22) is a (triangular) stochastic representation of the successive predictive distributions
PXi |Xi−1,...,X1 .

In (22), the distribution of (ϵ1, . . . , ϵd) is purely conventional, the only constraint is that it be absolutely continuous
(so that any distribution of X can be obtained from it by mapping and not by Markov kernels, see [16]). In particular,
one can choose the more familiar Gaussian white noise framework by setting

ϵi = ϕ(ϵ′i ),

where ϵ′1, . . . , ϵ
′
k are i.i.d. standard Gaussian N(0, 1), and ϕ is the c.d.f. of the N(0, 1) distribution.

The regression representation (22) is the general, exact, nonlinear form of a regression model. In particular, if the
conditional quantile functions F−1

i|i−1,...,1 are linear, one obtains the classical linear model (albeit with uniform noise),
viz.

Xi = ai,1X1 + . . . + ai,i−1Xi−1 + ϵi,

where ai,1, . . . , ai,i−1 are parameters.

5.2. Parametric internal regression models for CoDa

This suggests to make use of this regression representation to construct triangular regression models on the z
representation of CoDa, by applying the transformation (22) to the zi of (9) instead of the Xi: each zi is explained
in terms of the previous z j, j < i, and some extraneous randomness ϵi ∼ λ, for i = 1, . . . , d − 1. Then, by back
transformation (9), one obtains a (possibly nonlinear) regression model for the original pi, which can be used for
internal prediction of a component in term of the others.

More precisely, let ϵ ∼ λd−1 be a vector of uniform noise on [0, 1]d−1. Then, a general nonlinear triangular
regression model for the z writes

z1 = ϕ1(ϵ1)
zi = ϕi(ϵi, zi−1, . . . , z1), i = 2, . . . , d − 1, (23)

where ϕi : [0, 1]i 7→ [0, 1] are s.t. ϵi → ϕi(ϵi, zi−1, . . . , z1) is non-decreasing, left-continuous, with ϕi(0, zi−1, . . . , z1) =
0, ϕi(1, zi−1, . . . , z1) = 1. (i.e. the ϕi satisfy the properties of univariate quantile functions).

For example, a Gausssian (partially )linear triangular model can be obtained by specifying the error distribution
as standard multivariate Gaussian ϵ ∼ N(0, Id−1), and the zi as

z1 = Φ(ϵ1)
zi = Φ(ai,1z1 + . . . + ai,i−1zi−1 + ϵi), i = 2, . . . , d − 1 (24)

where Φ, the cdf of the standard univariate Gaussian distribution, is applied to ensure that zi ∈ [0, 1]. More generals
models can be constructed via Generalized Linear Models, see e.g. [33], and more specifically, [6] for data on the unit
interval [0, 1].

5.3. Example: agriculture data.

We provide below a basic example of the construction of a parametric internal regression model in the z space for
CoDa, illustrated on a real dataset. The data is taken from the example datasets accompanying Mathematica’s ([52])
“TernaryListPlot” command. It gives the raw amount of fertilizers (Nitrogen-Potassium-Phosphate) in a time series
from 1960 to 2015. The scatter plots, both at the z level (left panel), and at the compositional level in the ternary
plot (right panel) in Figure 14 show a cyclic pattern in the composition of fertilizers. The sinusoidal shape of the
transformed data at the z level (left panel) suggests the following model,

z2 = a0 + a1 cos(ωz1 + ϕ) + ϵ,
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where a0, a1, ω, ϕ are parameters to be estimated and ϵ the random error. Nonlinear least squares (command “Non-
LinearModelFit” in [52]) gives as fitted model,

z2 ≈ 0.5 + 0.047 cos(−21.86 z1 + 8.76),

with sums of squares of 13.43 for the model and 0.0075 for the error. In terms of the original CoDa variables p, this
yields a predictive model of the components in term of the first one p1,

p1 = p1

p2 ≈ (1 − p1)(0.5 + 0.047 cos(−21.86 p1 + 8.76))
p3 ≈ 1 − p1 − p2 ≈ (1 − p1)(0.5 − 0.047 cos(−21.86 p1 + 8.76)).

The resulting fitted curve is shown in orange in Figure 14, with extrapolated values on the full range z1 = p1 ∈ [0, 1].

Fitted Model
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PhosphatePotash

Fig. 14: Internal parametric regression model for agriculture data. Scatter plots (blue points) and fitted sinusoidal model (orange line) in the z space
(left) and for the original data (right).

5.4. Extensions and alternatives

As shown in the previous example of Section 5.3, the rescaled stick-breaking transformation (9) reduces internal
regression analysis of CoDa to classical regression analysis of vector data. Hence, all classical multivariate regression
analysis techniques apply to CoDa, in their transformed z representation of the free unit cube. For space constraints,
we limited ourselves in the example of Section 5.3 to a very basic illustration with a parametric regression model. Let
us thus briefly mention some extensions and alternatives:

• A nonparametric alternative to the above intra-parametric models is to directly start from (22) and estimate the
conditional distributions of zi given (zi−1, . . . , z1), or some functional thereof, via some nonparametric estimate.
For example, one can look for the mean of these conditional distributions, and estimate the regression function
of E[zi|zi−1, . . . , z1] by a Nadara-Watson, spline, or local polynomial estimator.

• Many applications are interested in explaining/predicting a CoDa point p w.r.t. some covariates X ∈ Rk, i.e. in
studying the conditional distribution of p|X = x. This can be done via the rescaled z representation (9) by per-
forming a regression of z w.r.t. the covariates X. As said before, one must ensure that the constraint 0 ≤ z ≤ 1
is fulfilled. This can be achieved by a link function which entails the correct normalisation or by mapping
z ∈ [0, 1]d−1 into ξ ∈ Rd−1, by using the device explained in Section 3.6. In parametric regression models, one
can incorporate these external covariates X by making the parameters of p in its rescaled z representation (9),
(i.e. the functions ϕi in (23) or the coefficients a j,i in (24)) as functions of the covariates X. Once a regression
model/ or a nonparametric estimate for z given X has been computed, one back transforms the predicted values
ẑ into predicted values of p̂, via the inverse transformation (10).

• Our focus in this paper is on internal dependence analysis of CoDa. However, one can also easily envision
external regression analysis such as CoDa to CoDa or CoDa to vector, by conducting a similar analysis in the
corresponding z space for the CoDa input/output variables considered.
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• In addition to explicit regression models, one can also assess quantitatively neutrality of z1 by the strength
of the regression dependence between z1 and the remaining z j components of p, for j > 1. This quantifica-
tion can be achieved through multivariate asymmetric correlation coefficients, like the recent [25]’s ζ1(X,Y)
or [4]’s T (X,Y)6, the latter being a multivariate extension of the bivariate measure ξ of [8]. These coefficients
quantifies the extent of regression dependence of a univariate random variable Y on a k-dimensional random
vector X = (X1, . . . , Xk): they are equal to 0 in case of independence, and equal to 1 if Y is measurable func-
tion of X. Applied to our context, one can thus quantify the amount of (non-)neutrality of p1 by computing
ζ1((z2, . . . , zd), z1) or T ((z2, . . . , zd), z1).

6. Conclusion and further remarks

6.1. Conclusion

We have thus brought to the fore these two related transformations for CoDa based on stick-breaking processes.
The first one represents a CoDa point as a set of ordered values on the unit interval, whereas the second one, which
originates from [27] and [9], removes the unit-sum constraint of the simplex representation and turns a CoDa point
into a free vector of the unit cube. It is noticeable that these stick-breaking representations are not mentioned in the
reference books [2], [23], [36], [19], [7] on CoDa and thus do not seem to be well-known inside the CoDa community.
We have thought it was thus commendable to publicize them and consolidate the various connections they have with
several topics of probability and statistics into a cohesive account.

Both approaches are useful to construct distributions for CoDa from multivariate distributions of Euclidean vec-
tors. The second approach appears most promising as it allows for a reduction of CoDa points to classical multivariate
vectors and thus allows the use of well-established multivariate analysis techniques and models to be directly trans-
ferred to CoDa. Important statistical models and tools like generalised linear models, graphical models, vines/factor
copulas, clustering, Principal Component Analysis, non-parametric and semi-parametric techniques, etc. are now at
the disposal of the Statistician and beg for their application to CoDa. In particular, we are confident that the concept
of a CoDapula, a copula for CoDa, is promising as it allows to study the intra-dependence of CoDa with such copulas.

Let us stress that these stick-breaking representations allow to deal effectively and simply with CoDa with zeroes:
in the ordered representation (3), zeroes translates into ties in s, while in the rescaled z representation, zeroes of p
translates into z being sent to the boundary of [0, 1]d−1. Distributionally, this means that the (ui) in Definition 2 of the
ordered representation (3) have common discrete components in their distributions. For the rescaled z representation
(9), zeroes of p translates distributionally into z having a singular component on some faces of [0, 1]d−1 in the Lebesgue
decomposition of the probability measure of z. One can therefore use mixed/general distributions to model such CoDa
points with possibly zero components.

We thus believe these stick-breaking representations provide an interesting complementary approach to the classi-
cal log-ratio coordonatizations techniques of Aitchison and his followers. For length reasons, we have barely scratched
the surface of statistical applications based on these transformations. Much more needs to be done to explore its
potentialities and eventual limitations. The multi-faceted aspect of CoDa, which can be envisioned from so many
viewpoints, via the log-ratios, the stick-breaking, the projective geometry ([15]), or the manifold and information
geometric ([13]) approaches, is what makes CoDa such a fascinating topic.

Let us close the article with some further remarks.

6.2. Choice of the ordering of the components

A possible issue of the transformations (2) and (9) is the lack of symmetry w.r.t. the components, as they depend
on the ordering of the components 1, . . . , d of the composition. The question thus arises which ordering is most
adequate. Several possibilities can be envisioned.

6Note that [4] introduce a more general regression dependence coefficient which allows for covariates and the assessment of conditional
independence.
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• A first possibility is to let the Statistician decide for himself. This is similar to the “working-in-coordinates”
principle in classical log-ratio CoDa analysis: the statistical model is extrinsic and built w.r.t. a given coordinate
frame (here, the ordering chosen), and is eventually mapped back to the original simplex. This was the approach
chosen in the example of Section 5.3: the sinusoidal regression model in the z space is mapped to the CoDa
simplex space and then gives a model which explains/predicts how the remaining components p2, p3 are driven
by p1.

• The order of the components can be dictated by the type of application in view. For example, in a general
regression model Y = r(X, ϵ), there is a natural asymmetry in the vector (X,Y) between the dependent/predicted
variable Y and the independent/predictor variables X: one wants to explain/predict Y from X (with noise ϵ).
There is also an asymmetry in the rescaled stick-breaking transformation (10), between the first component p1
and the remaining ones p2, . . . , pd: the first component is identical in the simplex space p representation as in
the unit cube z representation, i.e. p1 = z1, whereas the remaining components p2, . . . , pd depend on several of
the zi. (pi is a function of z j, for 1 ≤ j ≤ i). Thus, z1 is directly interpretable as one original component and a
statistical analysis of z1 translates into a statistical analysis of the first component p1. So, if one is interested in
evaluating how a specific component is influenced by the remaining parts, it is sensible to take this component
as first one: a regression model z1 = r(z2, . . . , zd, ϵ) at the z level, following the methodology explained in
Section 5, with z1 = p1 as predicted variable, directly gives a regression model of the first component p1 in
terms of the remaining (rescaled) components, viz. p1 = r(z2, . . . , zd, ϵ).

• One can also envision a data-dependent choice of the ordering of the components: the basic idea of the z trans-
formation is to transform the study of the non-neutrality of the constrained components pi of the composition
into a the study of the dependence of the free zi. Thus, it would make sense to order the components by decreas-
ing order of non-neutrality/dependence with the remaining composition. If, w.l.o.g, the first component p1 is
most dependent with the remaining composition ( p2

1−p1
, . . . , pd

1−p1
), it means that p1 is the main factor explaining

the remaining composition. Having isolated such a component, one can then look within the closed remaining
composition ( p2

1−p1
, . . . , pd

1−p1
) of size d−1, which component is most dependent with the closed subcompositions

of size d − 2. The process is then iterated, yielding an ordering of the components. In practice, such evaluation
of the dependence between a component and a subcomposition can be performed using the estimators of the
asymmetric regression dependence coefficients ζ1(X,Y) of [25] or T (X,Y) of [4], mentioned in Section 5.4.

This gives the following algorithm: For a composition p of size d,

1. Select j s.t. T (W j, p j) (or ζ1(W j, p j)) is maximum, where W j :=
(
. . . , pk

1−p j
, . . .

)
k, j

is the closed subcom-

position of size d − 1 with component j omitted.
2. Define a new composition p′ = (p′k) of size d′ = d − 1, with, for 1 ≤ k ≤ d, k , j, p′k = pk/(1 − p j), so

that p′ has component j removed.
3. If d′ > 1, return to step 1, with p′ in lieu of p, and d′ instead of d.

• One can also mix the above approaches, e.g. select as first component the one the Statistician is interested in
explaining/predicting, and select the remaining ones in a data-dependent manner.

6.3. Connection with mixability: existence of CoDa distributions with given marginals
The stick-breaking approaches were constructive and gave explicit representations of distributions of CoDa points.

In case of the ordered approach, the stick-ordered distributions of Definition 2, were parametrized by d − 1 univariate
marginals. Similarly, in the rescaled approach, the distributions are parametrized by either a d − 1 dimensional copula
and d − 1 marginals, or a set of d − 1 conditional distributions. These approaches were helpful in constructing
distributions for d−dimensional CoDa points.

A converse issue is to enquire for the existence of a d-dimensional CoDa distribution with a given set of d marginal
distributions. This question is related to the notion of joint mixability, which is a notion mainly investigated in the
risk theory literature (See the survey by [49]). This connection between mixability and distributions for CoDa does
not seem to have been made beforehand by the CoDa community.

Recall that the definition of joint mixability ([48]) is as follows:
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Definition 6. An d-tuple of probability distributions on R, (F1, . . . , Fd) is jointly mixable if there exist d random
variables X1 ∼ F1, . . . , Xd ∼ Fd such that X1 + . . . + Xd =: K is almost surely a constant.

Hence, the question of existence of a d-dimensional CoDa distribution with given marginals is a special case of
mixability with K = 1. [20] Theorem 5 give a necessary and sufficient condition. Necessary conditions are given in
Theorem 2.1 in [48], and sufficient conditions are given in Theorems 3.1, 3.2, and 3.4 for uniform, monotone, and
symmetric-unimodal densities, respectively.
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[42] L. Rüschendorf, On the distributional transform, Sklar’s theorem, and the empirical copula process, J. Statist. Plann. Inference 139 (2009)

3921–3927.
[43] T. Rychlik, Distributions and expectations of order statistics for possibly dependent random variables, J. Multivariate Anal. 48 (1994) 31–42.
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