N° 1471

September 2023

“Parsimonious Wasserstein Text-mining”

Sébastien Gadat and Stéphane Villeneuve

HEE Toulouse
School of
Economics




Parsimonious Wasserstein Text-mining*

Sébastien Gadatfand Stéphane Villeneuve?

September 20, 2023

Abstract

This document introduces a parsimonious novel method of processing textual data
based on the NMF factorization and on supervised clustering with Wasserstein barycen-
ter’s to reduce the dimension of the model. This dual treatment of textual data allows
for a representation of a text as a probability distribution on the space of profiles which
accounts for both uncertainty and semantic interpretability with the Wasserstein dis-
tance. The full textual information of a given period is represented as a random
probability measure. This opens the door to a statistical inference method that seeks
to predict a financial data using the information generated by the texts of a given
period.

Keywords: Natural Language Processing, Textual Analysis, Wasserstein distance, clus-
tering

1 Introduction

Word processing technologies have recently colonized the financial industry with the boom-
ing in natural language processing (NLP). NLP includes many advanced methods based
on machine-learning techniques which aim to extract the information contained in a text
(press article, report, email, tweet, etc.). The information thus identified is intended to
enlighten decision making like, for instance, portfolio allocation or real-life investment de-
cision.

The use of texts as data in finance and more generally in social sciences is not new, see
(10) that offers a survey of text analysis in economics. Finance initially focused on sen-
timent analysis which classifies texts on a limited number of emotions (positive, negative
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or neutral). Although very succinct, the concept of sentiment analysis is a cornerstone
of behavioral finance because of its implications for understanding how financial markets
work. The question is no longer whether investor sentiment influences stock prices, but
rather how to quantify its effects. The analysis of the sentiment of a text predates the rise
of NLP techniques. For instance, (16) built a dictionary by hand to measure the tone of a
financial text and a very good survey of the textual sentiment literature can be found in
(13). On the other hand, (14) explored various applications in the financial domain where
text mining could play an important role. They concluded that it has many applications
especially in the prediction of financial variables. Text analysis may thus contribute to
stock market prediction and enable those involved to make decisions based on raw data
rather than pure speculation.

However, the statistical analysis of text-mining in finance, while promising, is just
dawning for two main reasons. One is technical. Machines simply cannot process textual
data in its raw form. They need humans to break down the text into a digital format that
they can read. Numerical representation of texts as data for statistical analysis is very
high-dimensional and empirical research seeking to exploit the information contained in
texts must first confront its dimensional challenge. All methods thus share one main idea-
to map texts to tractable embeddings (vectors or measures) that lie in a low dimensional
space.

The other reason is a deeper statistical reason. What is the real predictability of the
information contained in texts? One of the most pressing issues behind this growing inter-
est in NLP methods in finance is to provide an effective representation of textual data that
is suitable for statistical processing and prediction. All the existing attempts share the
common goal of representing texts in a small-dimensional vector space, with the constraint
that the distance between two representations is small if the two original texts are seman-
tically close. It has been already observed that machine learning methods predict but do
not explain the underlying economic mechanisms. The situation is even worse in the case
of text analysis where the preliminary step of transforming raw textual data into numerical
representations exploitable by the statistician requires to be able to model the semantic
proximity of two texts by a well chosen distance on the space of numerical representations.
A strong motivation for our approach is to build text representations that are able to cap-
ture the semantic proximity of two texts. Based on recent research (12), we claim that
distributional representations over point estimates - hereafter called profiles- allows to cap-
ture more the meaning of texts than historical point-wise representation alone.

The objective of this paper is twofold. First, it introduces a parsimonious method of
processing textual data based on both the NMF factorization and on unsupervised clus-
tering with Wasserstein barycenters to reduce the dimension of the model. This dual
treatment of textual data allows to represent a text as a probability distribution on the
space of profiles -that are a mixture of words that synthesize the information contained in



the texts of a given period- and the information contained in a given period as a random
probability measure which allows for a good semantic interpretability within the repre-
sentation space. Second, it opens the door to a statistical inference method that seeks to
predict a financial data using the information generated by the texts of a given period.
This results in a flexible method that frees itself from an a priori statistical model of the
joint distribution of textual and financial variables. An important feature of our paper is
that our method will extract a predictive content of texts.

2 Inference with textual dataset

Text mining for the prediction of financial quantity movements is an emerging topic in
today’s data mining. Previous research has already suggested the existence of a relation-
ship between news articles and stock prices, making a better understanding of statistical
inference on textual data a necessity. One of the main task is to develop a textual data
representation with the following dual objective:

e a drastic reduction in the size of the data space,
e a good semantic interpretability within the representation space.

This preliminary but crucial task is the main goal of our work. We below go into details to
describe the supervised machine learning task we want to address in our framework, and
specify the structure of the data.

2.1 Inference with a corpus of documents

The dataset is structured as a sequential recording on a given period of time, say a day for
the sake of simplicity, but this period could either be several days, a week or a month for
example. The data contains N days and each day is indexed by an integer i € {1,..., N}.

Each day i, we record a corpus of texts denoted by AX;. This corpus of texts contains
n; documents and we shall write X; = (T ,...,Tp, ;) where Tj; is then the document j
of day i. In addition to our corpus of texts recorded each day, we also assume that we
observe an output Y;. We assume that a statistical model exists that describes the joint
distribution between X = (X>)1§Z-N and Y through a standard relationship in supervised
learning tasks:

o Y =U(X)+cif Y is areal valued output (supervised regression)
e P[Y =1|X] = ¥(X) if Y is a binary output (supervised classification).

Our objective is then to forecast a new output Y while we record a corpus of texts X.
Of course, a such forecasting task seems very hard, and the difficulty especially comes



from the complexity of the corpus dataset recorded during N days, since (&X;)1<i<n do not
present any clear structure. Hence, our first important task is to describe an efficient way
to represent each corpus of documents of each day.

2.2 Corpus of text representation

Vector space models (VSM) seek to represent the meaning of words using real-valued vec-
tors. These vector representations can be used to induce similarity measures by calculating
distances between vectors. Before describing two examples below, we assume that we have
at our disposal a dictionary of words that is preliminary determined before our learning
procedure. A text can be a sentence or a paragraph of news articles described with the
help of the pre-specified dictionary D of D words. Consider a collection of n; texts for a
given day, there are several ways to embed a text as a real-valued vector.

Bag of words embedding For instance, the most naive is the bag-of-words method
where X;(¢,j) counts the number of times the word j appears in text £ € {1,...,n;}. In
matrix form, the raw data of a given day take the form of a matrix X of size n; x D,
whose row X;(¢,.) is the vector of RE that represents the text i. There may be quite a few
variations while preparing the above matrix &;, in the dictionary specification. With the
bag-of-words, the calculation of similarity between textual objects is based on the frequency
of the words composing the textual objects to be compared. Unfortunately, this approach
does not always take into account the semantic dependence between these words.

Tokenization and TF-IDF Another popular embedding consists in a list of integers
that encodes the number of occurences of the term after a standard tokenization prepro-
cessing, which is a standard approach in NLP. We refer to (18) for a large overview of all
computer science methods on information retrieval and in particular an introduction to
tokenization.

Once we obtain the preliminary list of terms with a bag of words/tokens approach, we
then parameterize each text into the token basis using a standard TF-IDF encoding, which
is still one of the most popular nowadays term-weighting scheme introduced in (21). Each
token of the dictionary in each text of the corpus is weighted according to the by-product
of the term frequency and the inverse document frequency. More precisely, if j is a term
of the dictionary and X;(¥,.) is a document of the corpus X;, then:

fie
Ej/eD fire

Hence, T'F}j ; stands for the relative frequency of the word j in the document X;(¢,.). In the
meantime, the Inverse Document Frequency accounts for how much information is provided

Tlje=



by the word j among the global corpus &;. IDF) x, is given by:

n;
IDF; v =108 —=+————.
Ji 8 ?;1 Xi(f,j)

Then, the TF-IDF score of a term j in a document £ of the corpus A; is defined by:
sziji = TE77Z X IDFJ7X7,'

This produces for each document of a corpus X; a list of non-negative weights that account
for the relative importance of a word j inside each document and inside the overall corpus
X;.

In our experiments, we will use the two previous parameterization: the simplest one
derived from a straightforward bag of words approach, which leads to the matrix A}, and
the one with a supplementary TF-IDF weighting procedure, which leads to X. That being
said, the rest of our construction is theoretically independent from the way the matrix
X; /X; is obtained with our initial natural language processing.

As observed in (12), most VSMs have a common problem: each word is represented
by a single vector, which doesn’t always allow for semantics and polysemy. In addition,
the dimension of the vector is given by the size of the dictionary which can be very high-
dimensional and can cause the phenomenon called the curse of dimensionality. To tackle
these two issues, we introduce a profile modelling method based on the NMF factorization
and a clustering method using Wassersetin barycenters. This method will treat each doc-
ument as a mixture of profiles, each profile as a mixture of the words from the dictionary.
Therefore, each document is represented as a probability distribution over the set of profiles
whose dimension is controlled by the statistician. This will allow us to cast the distance
between documents via the Wasserstein distance.

3 Methodology

3.1 Global overview

Our methodology may be summarized, rouhgly speaking in a a global NLP+ML pipeline
that contains essentially two main steps. The first one is described in Figure 1, and
consists in a quantitative description of our corpus of texts with the help of a low-rank
matrix factorization. This factorization appears to be a preliminary learning phase to be
made before the daily information is considered and should be addressed carefully with
more or less sophisticated NLP tools.

The second one is described in Figure 2, and brought the essential novelty of our
paper. It leads to a mixture modelling of the daily information with the help of a K-means
clustering in the Wasserstein space of weights over profiles of information. This second
step may then feed any classification or regression tasks but highly depends on the results
brought by the preliminary factorization step.
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Figure 1: Learning step: From a corpus of texts to a quantitative weights/profile
parametrization. The new parametrization is obtained with NMF.
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Figure 2: Daily analysis: From a daily corpus of texts to a weighted mixture of clusters. A
cluster is a probability distribution over the profiles. The size of the balls are proportional
to the weights of the clusters. For each of the 3 days we represent the three most important
clusters of the daily information.



3.2 Profile modelling via Matrix factorization

The previous paragraph permits to embed the corpus of texts into a matrix representation
(obtained with X; or X; following the previous paragraph). For the sake of simplicity, we
will denote X; as the matrix associated to day 4, which is therefore of size n; x D.

It is well known in mathematical statistics and in machine learning that supervised
learning highly suffers from the curse of dimensionality (see e.g. (11)). Faced with a large
sample of data, our first step is to use non-negative matrix factorisation (NMF) to reduce
the dimensionality of the problem by identifying the dominant profiles. Popularized by
(15), NMF is a way to automatically extract sparse and meaningful features from a set of
nonnegative data vectors.

Latent hidden structure of texts It is clear from the very nature of the data that in-
deed, a single document only brings a finite amount of information that may be decomposed
on a finite small number of profile of information. Even though we could imagine some
situations where a text may be somewhat unstructured, it is also a reasonable assump-
tion to impose that the information contained in a text deals with a finite small number
of themes (for example “crisis”, “war”, “epidemy”, “ecology”, “growth GDP”, etc.). Of
course, these typical profiles/themes are not available in the document and are hidden in
the corpus of texts. Hence, they must be determined from the data and we assume that
the hidden profiles are “stationary”, i.e. we assume that the latent structure of the corpus
of texts is decomposed inside the same basis of hidden profiles, all along the days and for

all documents of every days during the period of study.

Statistical point of view Said differently, we assume the next important approxima-
tion, which may be translated into a statistical model (see below):

X; ~ W;P, (3.1)

where W; corresponds to a set of weights for the n; texts inside the profile matrix P. The
matrix P and the weights W may be written as:

wi(1,1)  wi(1,2) ... wi(l,7) P(1,1) P(1,2) ... P(1,D)
Wi = : : and P = : :
wi(ng, 1) wi(ni,2) ... wi(ng,r) P(r,1) P(r,2) ... P(r,D)

Hence, each line of Wj;, denoted by W;(¢,.) = (W;(f,u))1<u<r corresponds to the set of
weights on the latent profiles P(1,.),..., P(r,.), meanwhile for any v € {1,...,r} each row
P(u,.) contains some non-negative coefficients that describe the coordinates of the profile
P(u,.) in the initial dictionary.

As a standard dichotomy in machine learning, we can think about Equation (3.1) in two
different ways. Kither from an optimization point of view or from a statistical modeling



point of view. We refer to (6) for a short overview on several statistical models (among
many others) related to matrix factorization based on Gaussian, Poissonian or Gamma
distributions.

It is in general somewhat difficult to assume a rigorous statistical model that describes
the distribution of the difference between X; and W; P, which is the weighted decomposition
over the latent profiles, because of the positivity constraint imposed to the entries of Xj;.

Assumption (Latent structure). A finite number of hidden profiles Py, ..., P, exists such
that:

Vie{l,...,N} Vle{l,...,n;}: Xi(l,) =) wio(k) Py + &0,
k=1

where ¢ = X — WP follows a parametric distribution for which the ML estimation is
recovered through a minimization procedure

(W, P) = arg miny, py>o — log Py, p(X).

The difficulty involved in the previous formalism are twofolds: first, it is not obvious
to define a statistical model that generates entries of X that are non-negative, and in
particular the (untruncated) Gaussian model does not permit to achieves this property.
Second, statistical identifiability is also a highly discussed subject of research, we refer to
(7) for several geometrical insights on this identifiability issue, and for the recent monograph
(9) for a global up to date overview.

Machine Learning point of view We are led to use instead the optimization point of
view, that is essentially based on the definition of a loss function between the data X; and
the reconstruction W; P obtained by the “learnt” algorithm. The loss may be measured in
several ways, the Frobenius norm being the most popular one, each of them is based on
a Bregman divergence between entries of X and the entries of the product W;P. In this
settings, to efficiently use NMF, we need to introduce a control parameter r which is an
integer very small when compared to both n; and D that will encode the dimensionality
of the latent factors. We therefore define a NMF decomposition of X; as a solution of the
minimization problem:

N
minwy, . wy)>0,P>0 Z || X5 — WiP|].

=1

where the W; are respectively n; xr and P is r x D nonnegative matrices while ||.|| is a data-
fitting norm that measures the difference between the observations and the reconstructed
data.

In the analysis, the matrix W; will be called the loading matriz and the matrix P will be
the profile matriz. Therefore, text 7, represented by the vector X;, can be approximatively



decomposed in RP as the following linear combination of the 7 profiles. As introduced
above, the r profiles (Py)i<kp<, € RP can be viewed as the most prominent topics of the
given period while W;(¢,.) refers to the non-negative decomposition of text ¢ of day i on
the profiles. This decomposition encodes an unnormalized positive measure whose total
mass is generally different from 1. For the purpose to use an optimal transport tool, we
have decided to normalize each text with the TV norm of W;(¢,.), leading to a probability
distribution that describes the text. We therefore define the normalize set of weights as
WZ‘Z

4 Wz (Ev )
Wi(l,.) = ————
Wi, ) |lrv
and the set of texts of day i is now described as: (W;(€,.), |Wi(l, )l7v)1<e<n, -
As a consequence, text ¢ € {1,...,n;} of day i can be now viewed as a probability

measure over the finite set of profiles so that the dimension of the problem has been
greatly reduced with the NMF factorization by representing a vector of RP as an element
of the (r—1)-simplex. Nevertheless, as indicated in the next paragraph, this dimensionality
reduction will not be “enough” to handle a such large amount of information. Indeed, after
the matrix factorization, each day is now represented as a collection of n; texts decomposed
on the r profiles, i.e. each day (say i) is parameterized with the help of a matrix (denoted
by W;) whose dimension is n; x . We describe below a second important pre-processing
step that leads to a more reasonable size of the dataset.

3.3 Wasserstein clustering

To even more reduce the dimension of the dataset, we then focus for a given day 4 on the
population of the n; probability distributions over profiles that describes this day. From
a mathematical point of view, a daily information is summarized as a population of n;
elements of the simplex of dimension r — 1. To produce a suitable summary of the n; texts,
we are then led to use a clustering (unsupervised classification) approach.

3.3.1 Wasserstein geometry of discrete probability measures over profiles

Wasserstein cost Statistical learning methods generally refer to data that are consid-
ered as points on a high-dimensional Euclidean space (e.g. RP for large D in a word
representation of texts), and deal with the problem of their classification using a distance
on the Euclidean space, whose choice is not neutral in the classification process. These
methods have led to the development of efficient algorithms, such as the K-means al-
gorithm, widely used in statistical learning, (see Hastie et al). Unlike these traditional
methods, our methodology offers a text representation in the space of probability measure
on the finite set P = {Py,..., P,} that will be denoted by A(P) below. For the purpose
of dimension reduction, we pursue the following objective: given collection of A(P)-valued
data, how to cluster the data into k groups. Because of the nonlinear structure of the space



of probability measures, the standard K-means algorithm in Euclidean space is no longer
useful for this task. On the other hand, clustering is based on the concept of distance
between the data representation. A very appropriate concept of distance in the space of
probability measures is the Wasserstein distance. More precisely, we define on the product
space P x P the applications m; : P x P — P for i = 1,2 as follows:

m1(z1,x2) = 1 and mo(z1, x2) = x2.

A coupling between i and v is a probability measure «v on P x P such that m#~v = u and
mo#y = v. We denote by II(u,v) the set of couplings between p and v. The Wasserstein
distance is thus defined as

W)= it [ [ cay)(dody)
~ell(uw) ] JPxPp

where c is a unitary transport cost on P that is chosen to reflect the semantic similarity
between profiles. In particular, given two profiles P, and P,, ¢(P,, P,) encodes the prox-
imity of the two profiles, i.e. this cost is large when P, and P, have nothing in common
whereas it is small when they share some common information. Intuitively, two documents
are similar in meaning if the prominent profiles of one document can be cheaply trans-
ported to the prominent profiles of the other document. The cost of transportation being
measured by the function c.

Computational and robustness point of views Observe that in our case, the set P
is finite and thus the computation of the Wasserstein distance between p = >/, aidp,
and v =Y, B;idp, is reduced to a linear programming problem. More precisely, we define
II(p, v) as the set of probability measures on P x P with marginals p and v.

W(p,v)= inf 3 me(P,Py) ;. (3.2)
mell(p,v) i

In that particular situation where the measures are discrete, the optimal transport problem
and the assignment problem, described in (1) coincide. This latter assignment problem
can be solved using various techniques, for example with the help of the Bertsekas’ auction
algorithm, which is a dual ascent method see (1).

Nevertheless, it has been observed both from a computational and statistical point of
views that a direct use of the Wasserstein distance yields some numerical difficulties. First,
the optimal transport plan is an irregular function of the measures pu and v, which induces
a highly lack of robustness from a statistical point of view. We refer, as an example, to
the recent work (23) (among others). Second, the computational cost of solving the linear
program (3.2) with the Bertsekas’ auction algorithm can be greatly improved, with the
help of a penalty term as indicated below.

10



A recent popular alternative (see (8; 3)), that may be solved more efficiently with the
dual Sinkhorn alternate projection algorithm, focuses on a penalized entropic criterion:

We(p,v) = inf ZﬁijC(Pi,Pj) +eKL(m, p®@v)
well(p,v) o

where ¢ is a penalization parameter and KL refers to the Kullback-Leibker divergence,

defined by:
KL(m,p®v log < > i j
Z /’I/IV] J

The essential interest of this penalty is to brought strong convexity induced by K L, which
is a 1-strongly convex function so that minimizing W, may be achieved using the Bregman
iterative mirror descent that converges exponentially fast (with a rate that is degraded
with ¢). Therefore, instead of the algorithm of (1), we will use the alternate Sinkhorn and
Knopp projection introduced in (3) to compute efficiently W, (u, v) the Wasserstein distance
between the probability distribution over profiles, i.e the distance between the lines of the
matrix W; that aggregated the information gathered at day ¢. This algorithm, which is
based on a gradient ascent strategy in the dual space iteratively computes a sequence of
two vectors of size r, denoted by (u(*), (k))k>1 and is described precisely in Algorithm 1.
Data: Measures (u,v), Matricial cost C' = (¢(P;, P;))i. ;.
Penalty parameter ¢, Iterations N,
u® =1 and K = exp(—C/e);
for k=1...Njer do
vk =y o KTuk-D),
ulb) = o Kvh,
end
Compute 7 = diag(uNier)) K diag(v(Niter))
Result: W.(u,v) ~ (7,C)
Algorithm 1: Alternate Sinkhorn-Klopp algorithm.

Data-dependent cost between profiles In the previous paragraph, we propose to
measure the distance between texts using a transport distance, while considering a text
as a weighted combinations of profiles. Hence, the Wasserstein loss W defined in (3.2)
crucially depends on the cost induced by a displacement of one profile to another, i.e. on
the definition of the matrix C' = (c¢(F;, Pj))1<ij<r. We can imagine simply reducing the
cost C' to a very simple matrix c¢(P;, Pj) = 1 — §;—;, which translates the fact that all the
profiles are at the same distance. This may be a reasonable assumption when r is chosen
not so large when compared to the corpus of texts.

Another solution would be to use the cosine similarity index to measure the distance

11



over profiles associated to their tf-idf coordinate in the initial dictionary:

<PU7PU>

COSine(Pu, Pv) = W’
u v

since the cosine index traditionnally measures the proximity between texts (see e.g. (18)).
Indeed, as indicated by our numerical experiments, and thanks to the good compression
property induced by the preliminary NMF algorithm, it appears that the cosine index
translates an almost null cosine between all different profiles, which shows that the simple
cost matrix:

C(PuaPU) =1 *6u:v

seems a reasonable and simple assumption. Said differently, we then consider the parametri-
sation of texts via W as a set of coordinates in the directions of profiles P that is considered
as an orthonormal basis. This latter fact even more simplifies the computation of the pairs
of penalized Wasserstein distances W;(u, ) thanks to the very simple form of the matrix
K involved in Algorithm 1.

3.3.2 Clustering the information in the Wasserstein space

The essential interest of the previous cost matrix C' and of the Wasserstein distance W is
the use of standard unsupervised classification algorithms based on metric considerations.
Among them, the K-means algorithm is one of the standard method that relies on an
iterative procedure of assignment to the nearest class and barycenter update.

Each day, we collect n; measures {j1,...,un,} on P and a natural approach to sim-
plify and aggregate the daily information is to produce a clustering with the help of an
unsupervised classification method, 7.e. we will organize this collection into K clusters in
the space A(P).

Entropic regularized Wasserstein barycenter To obtain a tractable clustering, an
almost straightforward application of the K-means algorithm of (17) can be implemented,
once the technical details of the (penalized) Wasserstein distance and Barycenter computa-
tions are fixed. For this purpose, the keystone barycenter computation in terms of penalized
Wasserstein distance is inspired from the contributions of (4) (see also (5) and (2) for re-
cent generalizations). We detail below the important steps involved in the iterations of
the K-means method. Among the increasing literature on Wasserstein barycenters, we
have choosen to use the smoothed dual approach of (5) to obtain the entropic regularized
Wasserstein barycenter to stay consitent with our use of the Sinkhorn-Klopp algorithm,
and to obtain a rapid implementation.

Entropic regularized Wasserstein-Silhouette K-means We finally describe the over-
all procedure to represent the daily information as a mixture of probability distributions

12



over profiles, with the help of (entropic regularized) Wasserstein distances, barycenters and
K-means. The method is given in Algorithm 2, and the number of clusters K used for
K-means clustering is obtained with the help of the Silhouette score medoid.

A standard bottleneck when using K-means clustering relies on the intricate choice of
K, that determines the number of clusters that are used for clustering. To properly address
this final issue, it would be tempting to use the silhouette coefficient introduced in (20),
which is defined for any measure p; of our dataset and for any clustering of the family of
measures, as:

max{a(ys). bljs;)}
where b(p;) stands for the average Wasserstein distance between p; and its closest cluster
while a(p;) is the average Wasserstein distance between f; and all other measures in the
cluster of p;. Then, the overall Silhouette coefficient is simply the average number of
individual coefficients Sgi;(1).

However, the computation of the Silhouette coefficient appears to be costly in our
framework, and we simply use instead the medoid Silhouette, presented in (22), where
average intra and inter Wasserstein distances in a and b coefficients involved in (3.4) are
simply replaced by direct distances to barycenters of clusters. Said differently,

V' (py) — a'(115)
max{a’(u;), v (1)}

(3.3)

Ssil,medoid(ﬂj) = (34)

with
b (1) = We(ny, ve) and a'(pj) = Wepj, vi;),
where vy, is the barycenter of the cluster where y; is and v_ is the second closest barycenter

J
of p;. The value of Sgiimedoia varies between —1 and 1 and it is commonly admitted
in descriptive statistics that the closest to 1 Sgi medoid, the better the clustering result.
Accordingly, we have implemented a loop over K to maximise the value of S medoid-

13



Data: Day i, measures (fi1,. .., itn, ), Matricial cost C' = (c(Pp, Pr))er
Penalty parameter

K probability measures {v1,...,vkx} on A(P) sampled uniformly;
Initial cluster assignment:

Vie{l,...,n;}: k(j) = Argming <j e We (115, Vi)

while Clusters are not stable do
Compute the smoothed barycenters with (5):

U,i:ArgminyeA(p) Z We (v, pj);
J:k(5)=k

Update the clusters assignments:

Vie{l,...,n;i}: k(j) = Argming <j < e We (115, Vi)

end
Compute the weights of each clusters:

- j:k(j) =k
Wi = 1 2 k(j) = K|
n;
Result: Weights (w!,. .., w? ), Final barycenter measures (4, ..., vk )
Algorithm 2: Smoothed entropic Wasserstein K-means with known K.

Information representation Once our NLP method with matrix factorization and
Wasserstein clustering is performed, we summarize the information of day ¢ with a mixture
of probability distributions over profiles P, denoted by Z;:

K
— § is
IrL . — kasy;;.
k=1

Each probability (V}C) k=1,.. K is a mixture of the profiles. They describe intrinsic structure
of the textual information. As indicated above, the description of the information contained
in the n; documents of day ¢ is given by the probability measure Z; which greatly simplifies
the representation of the data while keeping a nice level of interpretability.

14



4 Numerical experiments

4.1 Matricial factorization and profiles

We close this report with some brief numerical illustrations. This numerical section is
purely a proof of concept as it would require a more effective investigation on a richer
database. Besides this prospective approach, we obtain encouraging result and are strongly
convinced to be able to obtain very good results in numerous fields, including finance. We
tested our method on a database of texts from the Yahoo! news finance site over the
period April 2023, which generates a thousands of texts, and our dictionary of 1000 words
which is rather small. Even with a small database, meaningful profiles emerge. Figure (3)
shows the eight profiles generated by the NMF procedure and displays them as a mixture
of words from the dictionary. For example, Profile 2 is a mixture of words clearly related to
banking and market activities. The most frequent words in the bank and market profile are
banks, market, investors. Profile 4 is clearly dominated by the word energy, but although
of marginal contribution, the other common words of this profile are fuel, oil, renewable
and investors. Importantly, words can be shared between profile, a word like investors
appears twice.
Roughly speaking, we can summarise these profiles in the next table.

Profile 1 | Financial reports

Profile 2 | Bank and Market

Profile 3 | Performing Shares

Profile 4 | Energy

Profile 5 | Relative performance from past year
Profile 6 | Zack’s market recommendation
Profile 7 | Products in high demand

Profile 8 | Technology

4.2 Representation of the daily information

According to the previous matrix factorization, all our modeling and data analysis then
may lead to a representation of the daily information that is exemplifies in Figure 4. It
displays the daily information as a mixture of clusters, which are probability measures
over profiles. The number of clusters optimized by the silhouette method changes from
day to day. We have 6 clusters for the 21th but 8 for the 30th. The smaller the number of
clusters, the more concentrated the information, whereas the larger the number of clusters,
the more dispersed the information. Additionally, the relative weight of each cluster is
proportional to the radius of the circular diagram. For example, the largest number of
texts of the 21th of April 2023 in Yahoo news were talking about the Market (in green)
and the relative performance of a company when compared to previous reports (in grey).
This representation is also quantitative as the weight of each cluster and the coordinate
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Figure 3: Description of the profiles

of the mixing profiles of each barycenters are explicitly known.
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This opens the door to

initial statistical processing of the data. A financial variable such as the variation of a
stock market index can be regressed on the number and the size of clusters to study the

impact of information dissemination on index variations.
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Figure 4: Information summary of Day 21th, 24th and 30th of April 2023
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