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Abstract

Within the econometrics literature, assessing the impact of climate change on
agricultural yield has been approached with a linear functional regression model,
wherein crop yield, a scalar response, is regressed against the temperature dis-
tribution, a functional parameter alongside with other covariates. However this
treatment overlooks the specificity of the temperature density curve. In the realm
of compositional data analysis, it is argued that such covariates should undergo
appropriate log-ratio transformations before inclusion in the model. We compare
a discrete version with temperature histograms treated as compositional vectors
and a smooth scalar-on-density regression with temperature density treated as an
object of the so-called Bayes space. In the latter approach, when density covariate
data is initially available as histograms, a preprocessing smoothing step is per-
formed involving CB-splines smoothing. We investigate the respective advantage
of the smooth and discrete approaches by modelling the impact of maximum and
minimum daily temperatures on rice yield in Vietnam. Moreover we advocate
for the modelling of climate change scenarios through the introduction of pertur-
bations of the initial density, determined by a change direction curve computed
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from the IPPC scenarios. The resulting impact on rice yield is then quantified by
calculating a simple inner product between the parameter of the density covariate
and the change direction curve. Our findings reveal that the smooth approach and
the discrete counterpart yield coherent results, but the smooth seems to outper-
form the discrete one by an enhanced ability to accurately gauge the phenomenon
scale.

Keywords: Compositional scalar-on-density regression, Bayes space, compositional
splines, functional regression, climate change, rice yield, Vietnam.

1 Introduction

We consider improving the linear functional regression models approach used in the
econometrics literature to assess the impact of climate change on agricultural yield by
properly taking into account the density nature of their functional parameter.

As the complexity of recorded data continues to grow, contemporary models
increasingly involve intricate data objects including random densities. We are focusing
here on regression models where such density objects serve as explanatory variables.
These density objects can be treated either in a discrete fashion as histograms or in
a continuous fashion as density functions, see for example [1]. True continuous obser-
vations are rarity. Density data, often available in the discrete form of histograms,
are typically treated as continuous when the number of bins is exceedingly large.
Consequently, a preprocessing step involving smoothing becomes necessary.

It is often the case that density data are recorded in an aggregated form as his-
tograms, see for example [2] for a comprehensive review in the context of climate
change econometrics. When adopting this discrete approach, the sample space can be
described by the set of vectors of bin frequencies (percentages), with positive com-
ponents that sum to one. These vectors are called compositions and their space is
known as a simplex. A proper statistical treatment of this type of data can be done by
compositional data analysis, see [3] or [4] for an introduction. Scalar-on-composition
regression models using the simplex representation are described for example in [5].
They are obtained by transforming the simplex explanatory vectors, usually using a
log-ratio transformation, to map them into an unconstrained linear space Rk (for some
adapted value of k).

Conversely, [6] conducts a comprehensive review of various methodologies for con-
structing regression models involving samples of probability density functions with a
functional perspective. In the realm of functional data analysis, densities stand out as
unique entities due to the constraints they must satisfy. For one-dimensional densities,
the sample space can be defined as the space D of functions with positive values and a
unit integral. [6] highlights one of the two primary approaches, which revolves around
the representation of densities in the so-called Bayes spaces B2. Bayes spaces, initially
introduced by [7], then extended in [8], endow the space D of densities with a finite
support [a, b] with a Hilbert space structure. This space and structure can be viewed as
a continuous version of the simplex and its associated operations. As for the log-ratio
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transformation, the functional centered log-ratio serves as the functional counterpart
of the classical centered log-ratio transformation for vectors of a simplex. This concept
is used for example in [9] to construct functional scalar-on-density regression models.
For the preprocessing step, [10] propose a new class of splines, known as compositional
splines or CB-splines, specifically designed to accomodate the density constraints.

Nonetheless the functional (smooth) approach implementation is more complex
prompting the natural question of assessing the potential advantage gained from using
the functional model. Our first objective in this work is to explore this comparison
through an original application to the study of the impact of climate change on rice
yield in Vietnam. Our second goal is to provide tools to assess the marginal impact of
climate change on rice yield.

Using regression models to relate agricultural yield and climate descriptors is by
no means a new endeavor, as evidenced by [11]. Climate change exerts both direct and
indirect impacts on various facets of the food system encompassing food production,
storage, processing, distribution, retail and consumption, as discussed by [12]. Due to
its direct exposition to weather conditions, crop production is all the more sensitive
to climate change. In countries such as Vietnam, crop production plays a vital role
in both the country’s economy and the well-being of its people. For instance, rice
cultivation occupies a substantial 63% of Vietnam’s total agricultural land and is also
essential to the livelihoods of 63% of Vietnamese farming households. Moreover, in
2019, rice production in Vietnam reached a staggering 43.4 million tons, solidifying
the country’s position as the world’s fifth-largest rice producer and second-largest
rice exporter. Unfortunately, this critical sector faces mounting threats from climate
change. The rising sea levels pose a significant danger to Vietnam’s primary rice-
growing region, the Mekong River Delta, which accounts for 54.47% of the nation’s rice-
planted area. Under a high greenhouse gases global emissions scenario, sea levels could
rise by up to 84 cm, potentially submerging large portions of the Delta plain whose
estimated average elevation is expected to fall around 80cm below sea-level by the
end of the century [see Chapters 1 and 3 in 13]. Furthermore, temperature projections
(ranging from a modest increase of approximately 1.3◦C under a low greenhouse gases
global emissions scenario to substantial rise of around 4.2◦C under a high emissions
scenario, with faster increases on the North of the country than in the South) signal
the possibility of chronic heat stress in some areas that could also adversely affect rice
production, even under lower emissions pathways.

Within the field of econometrics, assessing the impact of climate change for a given
economic sector relies on the specification and estimation of a damage function. For a
specific outcome, the damage function relates a change in the climate indicators to the
corresponding change in the outcome. [14] present empirical, micro-founded sector-
specific damage functions tailored to various sectors, including agriculture, crime,
health and labor. Several of these damage functions consider crop yield as the outcome
of interest and link that yield to temperature and precipitation. Noteworthy among
these contributions are the insights provided by [15], while a recent and comprehensive
survey can be found in [16]. [15] build their assumptions on the premise that temper-
ature effects on yields accumulate over time and that yield is proportional to total
exposure. The consequence of this assumption is that we may use the temperature
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density as a functional covariate instead of using the times series of temperatures, in
other words the order in time in which the temperatures occur has no impact on the
yield. In mathematical terms, this assumption allows to specify the link between crop
yield (a scalar response) and temperature as a linear functional of a probability density
function. This functional incorporates an integral of the temperature density against
a regression parameter, itself a function of temperature. This regression parameter
encapsulates the sensibility of crop yield at different temperature levels. Similar models
are considered for example in [17] where the functional covariate is also temperature
but regarded as a function of time whereas we use the temperature density curve. The
estimation strategy adopted by [15] revolves around using a discrete approximation
of the rigth hand side integral resulting from approximating the temperature density
by an histogram of the number of days falling into different temperature bins over
the crop growing season. Similar to the handling of dummy variables, one bin is omit-
ted from the list of regressors to account for the fact that the sum of the regressors
remains constant and equal to the total number of days in the crop growing season.
The impact of an additional day within a specific temperature bin is therefore mea-
sured in reference to the omitted bin. This estimation strategy has been adopted by
several researchers, gaining prominence after its use in [18]. For instance, [19] applied
this approach in their study of how subsistence Peruvian farmers respond to extreme
heat.

The estimation strategy proposed by [15] can be discussed in light of recent con-
tributions to the statistical literature. The original model of [15] uses a function
representation for the temperature density, making the model directly comparable to
the functional scalar-on-density approach. In both cases the density function appears
on the right hand side of the regression equation in a linear fashion through an inte-
gral term. In Schlenker and Robert’s treatment of their model, they approximate this
integral by a finite sum resulting in a regression model on bin frequencies (excluding
a reference bin). This implementation of their model is therefore comparable to a dis-
crete scalar-on-composition model. However a significant divergence arises from this
point onward. Schlenker and Robert’s model uses bin frequencies (except the reference
bin) as explanatory variables in a linear model. It has long been recognized in the sta-
tistical literature, see for example [20], that comparing densities is best achieved by
using relative distributions i.e. the ratio of their densities. Consequently when com-
paring temperature distributions, it is advisable to employ relative densities instead of
absolute differences between them. While using linear effects of the temperature bin
frequencies as in [15] is coherent with absolute differences, in contrast, compositional
data analysis use log-ratios of bin frequencies as explanatory variables, aligning with
the notion of relative differences.

The paper is organized as follows. Section 2 reviews the methodological tools
involved in these discrete and smooth compositional models (simplex space and Bayes
space structures, centered log-ratio transformations) as well as the construction of the
compositional splines. Section 3 presents the rice yield data and the weather data and
explores their main features. Section 4 presents the discrete and smooth compositional
scalar-on-density regression models and their estimation results. It also provides an
interpretation of the discrete and smooth parameters associated to the temperature
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distribution parameters. Section 5 presents our proposal to derive the formulas for
computing the impact of a climate change scenario and its variance. Based on the
model fit, we perform the computations for the RCP2.6 scenario provided by IPPC
for the end of the century. An illustration of these impacts on the dataset allows to
reveal the interest of the smooth approach. Section 6 then concludes.

2 Methodological reminders

The dataset central to our problem comprises distributions of maximum and minimum
daily temperatures spanning a 30-year period, from 1987 to 2016, across 63 provinces
in Vietnam. These temperature density distributions serve as key covariates within our
regression model, designed to uncover the factors influencing rice yield in Vietnam over
this timeframe. In the discrete approach, we represent these temperature covariates
as compositional vectors and and we provide an overview of fundamental techniques
for working with compositional vectors in Section 2.1. In the smooth approach, we
use smooth densities and we remind in Section 2.2 the construction of the Bayes
space B2 of densities. As we delve into the regression component, for the discrete
approach, we employ scalar-on-composition regression techniques, as presented by [5].
In contrast, since the density covariate data is originally available as an histogram, the
regression part of the functional approach necessitates a preliminary step to transform
the histograms into B2 elements using CB-splines smoothing. We briefly review CB-
splines in Section 2.3 and CB-splines smoothing in Section 2.4.

2.1 Discrete densities as compositional vectors

Let us first recall that compositional data (hereafter referred to as CoDa) vectors can
be defined as vectors consisting ofD positive components that sum up to one, elements
of a simplex denoted by SD. A discrete density function associated to a random
variable with a finite number of outcomes is typically represented by its probability
mass function, or equivalently by the vector of probabilities of each of these outcomes
which satisfies the same constraints as a CoDa vector. This space can be equipped
with a vector space structure using the following operations, see e.g. [3].

1. ⊕ is the perturbation operation, corresponding to the addition in RD:

For u,v ∈ SD,u⊕ v = C(u1v1, . . . , uDvD),

2. ⊙ is the power operation, corresponding to the scalar multiplication in RD:

For λ ∈ R,u ∈ SD λ⊙ u = C(uλ
1 , . . . , u

λ
D),

where C denotes the closure of a vector (division by the sum of its components).
The above operations enable the definition of a meaningful average of a sample of
n compositional vectors ui (for i = 1 to n) by ū = 1

n ⊙ (u1 ⊕ . . . ⊕ un) (thus the
components of this average are the geometric averages of the corresponding sample’s
components).

5



The clr transformation of a vector u ∈ SD is defined by

clr(u) = GD lnu,

where GD = ID− 1
D1D1D

T , ID is a D ×D identity matrix, 1D is the D-vector of ones
and where the logarithm of u ∈ SD is understood componentwise. For a vector u∗ in
the orthogonal space 1⊥

D (orthogonality with respect to the standard inner product of
RD), the inverse clr transformation is defined by

clr−1(u∗) = C(exp(u∗)).

The simplex SD of dimension D − 1 can be equipped with the Aitchison inner
product

< u,v >A=< clr(u), clr(v) >,

where the right hand side inner product is the standard inner product in RD.

2.2 Continuous densities as elements of the Bayes space

As outlined in [10], density functions supported in a bounded interval [a, b] can be
regarded as elements of the so-called Bayes space denoted by B2([a, b]) and comprising
positive functions integrating to one on [a, b] whose log-transform is square integrable.
This concept corresponds to a particular case of that introduced in [8] for the reference
measure being the Lebesgue measure.

This space can first be equipped with a vector space structure using the following
operations. For any positive function f on [a, b], the closure C(f) of f is the unique
density proportional to it. Subsequently, for any two functions f and g in B2([a, b])
and any real α, the following operations can be defined

• perturbation as (f ⊕ g)(t) = C(f(t)g(t))
• powering as (α⊙ f)(t) = C(f(t)α)

The centered log-ratio (clr) transformation is defined for f ∈ B2([a, b]) and t in
[a, b] by

clrf(t) = log f(t)− 1

b− a

∫ b

a

log f(u)du (1)

Through its construction, the clr transformation maps B2([a, b]) into the space
L2
0([a, b]) of square integrable functions on [a, b] with a zero integral. The inverse

transformation is well defined and can be expressed as follows for a function f0 ∈
L2
0([a, b]),

clr−1(f0)(t) = C exp (f0(t)) .

B2([a, b]) can then be equipped with an inner product rendering the clr transfor-
mation isometric, for a corresponding choice of inner product in L2

0([a, b]). We adopt
the definition in [10] for the B2([a, b]) inner product, which differs by a constant from
the inner product introduced in [8]:

< f, g >B2=

∫ b

a

clrf(t) clrg(t)dt =< clrf, clrg >L2
0([a,b])

. (2)
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2.3 Reminder on CB-splines and ZB-splines

Spline functions are constructed by piecing together segments of polynomials of a
specified degree connecting at specified knots points while adhering to prescribed
smoothness conditions [see e.g. 21]. In our context, aimed at approximating density
functions, we require a specific type of constrained splines. One approach to con-
structing them is described in [10] using the so-called ZB-splines in L2

0([a, b]) and
corresponding CB-splines in B2([a, b]). As is common in many CoDa techniques, the
procedure is based on a log-ratio transformation, specifically the clr introduced in
Section 2.2. The process starts by constructing a basis of spline functions that fulfill
the integral constraint within L2

0([a, b]). These basis functions are then pulled back to
B2([a, b]) by the inverse clr transformation.

For a given order d and a knot sequence Λ = {(λ1, . . . , λg) : a < λ1 < . . . λg <
b} whose elements are called inside-knots, let SΛ

d be the subspace of L2([a, b]) of
polynomial splines or order d (degree k = d − 1) and inside-knots (λ1, . . . , λg), see
[22] for a complete description. SΛ

d has dimension d + g and its most popular basis
is given by the set of so-called (normalized) B-splines functions which have a small
support and good computational properties. For technical reasons, additional knots
are introduced at the boundary: if k is the degree of the polynomial pieces (d = k+1
the corresponding order), k knots equal to a are added at the beginning of the interval
and k knots equal to b at the end. [10] construct a basis of so-called ZB-splines for
the subspace ZΛ

d = SΛ
d ∩ L2

0([a, b]) of dimension g + k, the loss of one dimension
being due to the zero-integral constraint. The inverse clr of the ZB-basis functions are
called the CB-basis functions. For this application, we use exclusively cubic splines for
which k = 3 and d = 4. Equation (17) in [10] establish a correspondence between the
representation of any function in ZΛ

d within both basis systems. This correspondence
proves invaluable as it facilitates the manipulation of ZB-splines using conventional
code originally designed for B-splines.

In our subsequent application, the temperature data will first be processed into a
set of histograms, each depicting daily maximum and minimum temperatures for a
specific province and year. For maximum temperatures, the data is discretized into
28 bins of length 1 within the interval [a, b] = [12, 40]. To approximate the underlying
densities represented by these original histograms, we employ cubic splines (k = 3) and
set g = 7 (respectively g = 9) as the number of inside knots for illustrative purposes.
Consequently, the dimension of the ZB-spline basis becomes 7 + 3 = 10 when using 7
inside knots (respectively 9 + 3 = 12 for 9 inside knots). For minimum temperatures,
the data is discretized into 22 bins of length 1 within the interval [a, b] = [7, 29].

In both cases, the positioning of the knots is determined relative to the data points
position using quantiles as argued in [10].

Figure 1 represents the two sets of basis functions (for maximum temperature) thus
obtained in L2

0([a, b]) and in B2([a, b]). The vertical dotted lines on the plots indicate
the knots position. We observe that the inclusion of two additional knots in the lower
plots results in an increased number of basis functions that concentrate around the
mode of the distribution. This enhancement enables a more precise approximation of
the densities, particularly in regions where our dataset features a higher density of
temperature data points.
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Fig. 1 CB-splines (left) and ZB-splines (right) with 7 inside knots (top) and 9 inside knots (bottom)

2.4 Smoothing histograms with CB-splines

Our original temperature data comprises sequences of daily maximum and minimum
temperatures. In order to apply the same technique as [10], we first preprocess the data
into intermediate histogram representations subsequently transformed into smooth
density functions using CB-splines as in [23]. The CB-spline smoothing step involves
choosing a ZB-spline basis in L2

0 and viewing the estimation of the clr transformed
densities expressed in the ZB-basis as a penalized least squares regression. This regres-
sion smooths the scatterplot of the clr transformed histogram frequencies as a function
of the ZB-spline basis functions evaluated at the midpoints of the histograms bins. To
ensure the existence and uniqueness of the least squares problem (full column rank of
the collocation matrix), we enforce an upper limit on the number of knots. This upper
bound is dictated by the Schoenberg-Whitney conditions (see [24]). In our application,
the condition, both for maximum and minimum temperature, stipulates in particular
that the number of knots must be less than or equal to the number of bins minus 3
(degree of splines). Smoothing with ZB splines does not accommodate bins with zero
counts because of the log transformation. To address this limitation, we implement a
simple zero-replacement procedure: any zero count is substituted by 10−7 after which
we apply the closure operator. For the selection of the smoothing parameter, we opt
for a generalized cross-validation using a regular grid of 100 points on a log-scale.

As an illustrative example, Figure 2 displays the histogram of the daily maximum
temperatures in 1995 in the Yen Bai province (North-East of Vietnam), as well as the
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corresponding smooth density obtained by the above procedure on the left plot, and
the smoothed clr transform on the right plot.

Fig. 2 Density of daily maximum temperature in 1995 in Yen Bai province (left) and its clr transform
(right)

3 Data and exploratory analysis

3.1 Rice yield data

The dataset concerning rice yield is sourced from the International Rice Research
Institute1. The data set contains comprehensive information on annual rice production,
harvested area, and rice yield at provincial level from 1987 to 2016. Rice yield is
quantified in tons per hectares. Figure 3 provides an overview of the overall evolution
of rice yield over the considered period. After a period of stagnation between 1987 and
1992, rice yield has exhibited consistent growth since 1992, affecting all Vietnamese
provinces. This growth may be attributed to the progress of agronomic techniques
over the years. While we lack a direct proxy for this progress, we will account for it
through the incorporation of a linear time trend. This choice is supported by Figure
4, which reports the evolution of average rice yields for the six different agronomic
regions in Vietnam. In this figure, we use the following acronyms for the regions: NMM
for Northern Midland and Mountainous region, NCC for North Central Coast region,
CHR for Central Highlands region, SR for Southeast region, MDR for Mekong Delta
River region and RRD for Red River Delta region.

3.2 Weather data

The weather data used in this study encompasses daily maximum and daily minimum
temperatures and precipitation records. Temperature data comes from the Climate
Prediction Center (CPC) database developed and maintained by the National Oceanic
and Atmospheric Administration (NOAA). We have retrieved historical information
pertaining to daily maximum temperatures for a grid with a resolution of 0.50× 0.50

1IRRI is an organisation that promotes research and development of rice production in the world.
Information about the institute can be found at https://www.irri.org/
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Fig. 3 Rice yield distributions from 1987 to 2016

Fig. 4 Average rice yield by agronomic regions from 1987 to 2016

degrees of latitude and longitude, specifically for the geographical expanse of Vietnam.
Subsequently, we have transformed this data to yield the daily maximum temperature
for each of 63 Vietnamese provinces and during a period of 30 years (1987-2016) (365
or 366 values for each year). The compilation yields one temperature distribution for
each of 1890 statistical units.

Figure 5 displays the average histograms of each of the 6 regions where average is
understood with the simplex operations as defined in Section 2.1. These histograms
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Fig. 5 Maximum temperature histograms across the Vietnamese regions in 2015

provide a visual representation of how the range of maximum temperatures varies
across different regions, emphasizing the substantial regional disparities.

Using the CB-spline smoothing tool we can also explore other aspects of the
temperature densities variations across time and space. Figure 6 displays the daily
maximum temperature density with 9 knots (along with its clr transform) in the
province of Ninh Binh which is one of the major provinces for rice production situ-
ated in the RRD region. We use the viridis color palette with 30 values, featuring 30
distinct values that transition from yellow in 1987 to dark violet in 2016 with interme-
diate shades of green. The top part of Figure 6 clearly reveals the rightward shift of the
temperature densities corresponding to climate change. Finally Figure 7 displays the
densities and their clr transforms for all provinces in the year 2015 (9 inside knots).
When examining the clr transforms, we can see groups of provinces and it would be
interesting to explore their respective spatial position. It seems that they primarily
differ in the range of the observed maximum temperatures.

To facilitate the integration of the smoothed histograms into the subsequent regres-
sion model, it is imperative to ensure that they are expressed in the same basis
of CB-splines. Consequently, we must employ a consistent set of knots across all
63 ∗ 30 = 1890 histograms. For this reason, we first pool all observations into a single
distribution and place the knots at the quantiles of this global distribution.

Improving this phase of the process hinges on obtaining information about the
specific starting and ending dates of the growing season within each province. However
since these temporal boundaries may exhibit substantial variability across geographical
regions as we have seen in section 3.2, the adoption of a standardized temperature
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Fig. 6 Density (top panel) and clr transform (bottom panel) of the smoothed daily maximum
temperature from 1987-2016 in Ninh Binh province

Fig. 7 Density (top) and Clr transform (bottom) of the smoothed daily maximum temperature from
in 2015 for all provinces

range across all provinces would then be rendered difficult, unless we find a way of
overcoming this technical constraint.
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3.3 Climate change data

Let us first examine the “historical” climate change between 1987 and 2016. Using
relative distributions for comparing two distributions as recommended by [20], Figure
8 showcases boxplots depicting the ratios of 2016 to 1987 densities across provinces
in some regions for maximum and minimum temperatures. Notably, this analysis
highlights temperature ranges affected by changes, specifically ranging from 26 to 40
degrees Celsius for maximum temperature and 17 to 29 degrees Celsius for minimum
temperature. Moreover for maximum temperature in the RRD and MDR regions, a
concentration of temperature increase is observed within the 27 to 33 degrees Celsius
range. In contrast, for minimum temperature, we observe an increasing trend of the
ratio indicating a shift of this density to the right.

Fig. 8 Relative distribution of daily temperature for 2016 versus 1987 in some regions

The Intergovernmental Panel on Climate Change (IPCC) provides projections of
global CO2 emissions and associated temperature distributions around the world under
several scenarios associated to representative concentration pathways (RCPs) for the
end of this century, see for example [25]. In Section 5,, we will use the most optimistic
RCP called RCP2.6, which projects an average increase of 1 degree Celsius relative to
the period 1986-2005. The RCP2.6 data for vietnamese provinces come from [26].
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4 The discrete and smooth regression models

The objective in this application is to develop a regression model to unravel the rela-
tionship between rice yield and the distribution of daily maximum and minimum
temperatures for the corresponding year and province, while also controlling for addi-
tional covariates. Unlike a conventional time series model used for yield prediction in
the future, our focus here is to leverage spatio-temporal variability to quantify the
influence of temperature on rice yield. Therefore we decide to include a simple linear
time trend in the model as a proxy for unobserved factors that may have evolved over
time, such as advancements in production techniques. In view of Figures 3 and 4, the
inclusion of a linear trend appears to be a reasonable choice. We further use other con-
trolling factors namely precipitation and regional dummies. Given the distributional
nature of our primary covariate, we need an adapted regression model. The choice
boils down to either utilizing a histogram of daily temperatures as a compositional
covariate, akin to the approach in [5], or opting for a smoothed representation of the
temperature density as a continuous density covariate, following the method outlined
in [9]. Before delving into the results, let us first revisit the fundamental principles
behind these two models.

4.1 The discrete regression model

The scalar-on-composition regression model as presented for example in [5] consti-
tutes a regression framework where at least one of the covariates takes the form of a
compositional vector. In our discrete regression setup, the compositional vectors are
temperature histograms which can also be viewed as discrete densities. Any linear func-
tion of a compositional explanatory variable X ∈ SD must be of the form < β,X >A,
where β is a parameter vector of SD and < ., . >A is the classical Aitchison inner
product in SD (see e.g. [4]). Therefore a linear model designed to explain a scalar
variable Y with possibly several compositional variables Xj ∈ SLj for j = 1, . . . J and
several scalar variables Zl for l = 1, . . . L is formulated by an equation of the form

Yi = α+

J∑
j=1

< βββj ,Xij >A +

L∑
l=1

γlZil + ϵi, (3)

where the parameters βj ∈ SLj and the errors ϵi are i.i.d. gaussian variables with
mean zero and variance σ2. For our application, it is essential to index all observa-
tions according to both the province i and the year k therefore the single index i
of equation (3) is from now on replaced by the two indices i and k. This adjust-
ment allows us to define Yik as the rice yield for province i (ranging from 1 to 63) in
year k (spanning from 1 to 30). Initially, the model comprises several classical scalar
variables (L = 7) including time, precipitation and five regional dummies (reference
region being CHR). In addition to these, we also incorporate two discrete densities
as compositional covariates, namely the histograms of maximum and minimum daily
temperature, reported with equal bins of length 1 degree Celsius. Moreover, after test-
ing the inclusion of interactions between the two discrete densities and the six regional
dummies, we decide to integrate the interactions solely for maximum temperature and
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two specific regions: RRD, and NCC. As a result, we get J = 4 compositional param-
eters associated with the discrete densities and denoted by βmax

RRD, βmax
NCC and βmax

other

for the maximum temperature and βmin for minimum temperature.
As demonstrated for example in [27], after transformation of the compositional

covariates by any transformation in the log-ratio family (isometric or additive log-
ratio), the estimation of such a model is done by ordinary least squares. The choice of
any of these transformations correspond to a particular parametrization of the same
model but yield the same result for the discrete densities contribution when expressed
as a linear combination of the logarithm of the histogram bin frequencies (with a zero
sum constraint on the coefficients). Although the clr transformation is not adapted to
the model fitting step since it would lead to a singular design matrix for the model, it
is useful to write the clr version of equation (3) for interpretation purposes:

Yi = α+

J∑
j=1

< clrβββj , clrXij >RLj +

L∑
l=1

γlZil + ϵi, (4)

4.2 The smooth regression model

Extending the model in [9] to the case of several density covariates as well as additional
scalar covariates, we consider the following linear scalar on density regression model

Yi = β0 +

J∑
j=1

< βj(t), fij(t) >B2([aj ,bj ]) +

L∑
l=1

γlZil + ϵi, (5)

where Yi is the scalar dependent variable, β0 is a real intercept, βj(t), j = 1, . . . J are
curve-parameters for the effects of the densities fij , Zl (l = 1, . . . , L) are real covariates
with their corresponding parameters γl, and finally ϵi are normal errors with mean
zero and standard deviation σ2. The densities fij as well as the curve-parameters βj

are assumed to belong to some Bayes space B2([aj , bj ]).
Using the fact that the clr transform is an isometry between B2([a, b]) and L2

0([a, b])
equipped with their respective inner products, we can rewrite the model as follows

Yi = β0 +

J∑
j=1

< clrβj(t), clrfij(t) >L2
0([aj ,bj ]) +

L∑
l=1

γlZil + ϵi. (6)

In order to estimate this model, we first need to use a basis expansion of the functional
parameters βj(t), as well as a similar expansion for the densities fij(t). For the sake
of simplicity, we will use the same basis system to express the functional regression
parameters and the observed functional explanatory variables. The expansion can be
written directly in B2([a, b]) with a basis of CB-splines or equivalently for the clr
transforms in L2

0([a, b]) with a basis of ZB-splines. We then replace these functions by
their expansions in the inner products of the model equation (5) or (6). Consequently,
the inner products terms appear as linear combinations of the beta curves coordinates
whose coefficients are given by the product of the Gram matrix (inner products of all
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pairs of basis functions) by the densities coordinates as in [9]. After this step, we are
back to a classical linear model for ordinary covariates that we can fit with ordinary
least squares.

As before in our application, all observations are indexed by province i and year
k therefore the index i of equation (5) or (6) is replaced by the two indices: i for
the province and k for the year. β0 is a real intercept and we have the same L = 7
classical covariates as for the discrete model (time, precipitation and regional dum-
mies) with their corresponding parameters γl. As for the discrete model, we include
two smooth density covariates fmax

ik and fmin
ik , which are respectively the densities

of daily maximum and minimum temperature, in province i and year k. To facili-
tate the comparison, we include the same interactions between densities and regional
dummies. The corresponding curve-parameters will be denoted by βmax

RRD(t), βmax
NCC(t)

and βmax
other(t) for the maximum temperature and βmin(t) for minimum temperature.

Finally ϵik are normal errors with mean zero and standard deviation σ2. fmax
ik , fmin

ik as
well as all the curve-parameters are assumed to belong to some Bayes space B2([a, b])
(a and b will differ for maximum and minimum temperature).

The number of basis functions for the expansion is a function of the number of
knots. In order to reduce variability, it is advisable to use a small number of knots com-
pared to the sample size. Respecting the Schoenberg-Whitney conditions of Section 2.4
and after a few tests, we select g = 9 knots corresponding to the dimension 9+3 = 12
for the corresponding ZB-basis. A technical but important detail for comparing the
two models is that for a bin of size 1 the discrete inner product of two histograms
correspond exactly to their smooth inner product.

Let us note an important difference between the discrete and the smooth model.
Conventional compositional data analysis does not pay attention to the order of the
components (permutation invariance). However in our case, for a temperature his-
togram, the components correspond to temperature bins and the order of these bins
should be considered in order to take into account some continuity of the bin frequen-
cies with respect to the bins positions on the temperature axis. In contrast the smooth
approach does take this into account.

4.3 Model results

The histograms smoothing step and the fitting of both models are performed with
the R packages compositions and robCompositions, adapting some codes from [28].
The parameters estimates for classical significant variables displayed in Table 1 are
comparable between discrete and smooth models. Moreover, we performed some tests
in the discrete model showing that the maximum temperature histograms and mini-
mum temperature histograms are statistically very significant (with p-value less than
10−16).

The smooth model with 9 knots has a better fit than the discrete one as shown
in Figure 9 displaying the distributions of the distance between fitted and observed
values for both models.

The interpretation of parameters of a compositional covariate in a scalar on com-
position model is presented for example in [27]. In the discrete case, as in [29], we
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Table 1 Estimated coefficients associated to regional dummies, total
precipitation and year

Regression type
Variable Discrete Smooth

regression regression
(9 knots)

Constant 2.62∗∗∗ 2.72∗∗∗

(0.31) (0.26)
Region
SR −1.18∗∗∗ −1.25∗∗∗

(0.15) (0.13)
MDR −0.09 −0.14

(0.27) (0.14)
NMM 0.06 −0.09

(0.27) (0.22)
NCC −0.75∗∗ −0.86∗∗∗

(0.35) (0.30)
RRD −0.22 −0.05

(0.37) (0.30)
(Reference = CHR)
Total precipitation −0.0002 0.01
(Thousand ml per year) (0.04) (0.04)
Year 0.10∗∗∗ 0.10∗∗∗

(0.002) (0.002)

Adjusted R2 0.79 0.78
Residual Std. Error 0.56 (df = 1780) 0.57 (df = 1834)
F Statistic 65.08∗∗∗ 123.46∗∗∗

(df = 109; 1780) (df = 55; 1834)
RMSE 1.10 0.56
Note: *, **, and *** mean significant at 10%, 5%, and 1%, respectively

interpret the disparity among clr parameters as indicative of the impact of the cor-
responding pairwise log-ratios. Figure 10, respectively Figure 11, show the estimated
clr parameters for maximum temperature in the discrete model, respectively for min-
imum temperature. The curves of the different functional parameters β̂max

r on Figure

12, respectively β̂min on Figure 13, are presented in the functional clr space on the
right plot and in the functional Bayes space on the left plot.

First of all let us note that in [29], the authors are searching for the highest contrast
between two clr. However in order to take into account the order of the bins, we
suggest to only compare neighboring bins. For the RRD region, the fact that the
highest clr coefficient corresponds to the temperature bin 31-32 and the next bin 32-33
is negative so that the ratio of bin counts 31-32 versus 32-33 has the highest marginal
effect on rice yield according to the model. A similar but smaller pattern appears with
the ratio of bin counts 27-28 versus 28-29. These two phenomenons correspond to the
oscillations of the smooth clr curve on Figure 12. Similarly, in the NCC region, the most
influential contrast occurs between the bins 30-31 and 31-32 (in the reverse direction)
and a smaller contrast is visible between bins 28-29 and 29-30. These two effects are
also visible on the corresponding smooth clr curves. For other regions, the contrast is
between the bins 30-31 and 31-32 and similarly on the smooth clr curves. On the left
plot of Figure 12, the temperature intervals of high importance for rice yield appear
very clearly for the three regions. Recalling that a hypothetical temperature density
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Fig. 9 Distance between observed and fitted values by models and regions

that would correspond to the beta histogram (respectively the beta curve) has highest
marginal effect (see [30]), we can conclude that these important intervals correspond
to temperatures that are most favorable to rice yield.

Figures 11 (discrete model) and 13 (smooth model) show these parameters for min-
imum temperature. It is clear that the marginal effects are smaller and that something
may be happening in the neighborhood of 25 degrees.

The comparison of the smooth beta curves with their discrete histogram coun-
terparts seem to imply higher maximum values for the smooth curves. This is the
same phenomenon as when the smooth density estimate is larger than the histogram
counterpart in regions of high density of observations.

The detection of the influential intervals may be affected by the choice of param-
eters: in the discrete case by the bin size choice and the end-point of the first bin and
in the smooth case by the number of knots of the spline approximation. However it
is known that a small change in the end-point of the first bin can dramatically affect
the histogram whereas the smooth approach is less sensitive to the number of knots.
Overall we can say that the results of both models are coherent but more precise and
possibly less sensitive to parameter choices for the smooth model.

5 Climate change scenario and its marginal effect

We would like to compute projections for the marginal impact of temperature on rice
yield corresponding to the IPPC projections of the temperature at the end of this
century, see for example [31], and more precisely those projected by RCP2.6.
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Fig. 10 Estimated clr coefficients of maximum temperature for some regions

Covariates impact in scalar-on-composition regression can be evaluated either using
finite increments as in Coenders and Pawlowsky-Glahn [27] or infinitesimal increments
as in Morais et al [32] but the two approaches coincide in this case as can be seen in
[33].

In order to assess the impact of a compositional covariate in a model such as (3)
or (5), we imagine possible change scenarios for this covariate. To remain coherent
with the linear structure of the spaces to which the parameters belong, it is desirable
to consider change scenarios that are linear with respect to the vector space structure
of the simplex S28 in the discrete case and to the vector space structure of the Bayes
space B2([a, b]) in the smooth case. Let us first look at what are linear changes in
these two frameworks.

In the discrete case, the perturbation of a histogram f by a change scenario of
direction φ ∈ S28 is given by

Tf = f ⊕ φ, (7)
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Fig. 11 Estimated clr coefficients of tmin in the discrete regression

Fig. 12 Curves of β̂max in the smooth regression model with interactions for all regions. Left: in
B2, right: in L2

where φ is a direction of change in S28. Equivalently we may write φ = Tf ⊖ f, and
therefore the change vector is given by φ = C(Tf1

f1
, . . . , TfD

fD
), emphasizing the fact

that the components of change vector φ from the initial distribution f to Tf describe
relative changes in the original scale of frequencies.
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Fig. 13 Curves of β̂min in the smooth regression model with interactions for all regions. Left: in
B2, right: in L2

Similarly in the smooth case, and using on purpose the same notation for a different
object, the perturbation of a density f(.) by a change scenario φ(.) ∈ B2([a, b]) is given
by

Tf(.) = f(.)⊕ φ(.). (8)

Note that, in clr space, the change is a simple additive change in the discrete case
and

clrTf = clrf + clrφ (9)

and respectively in the smooth case

clrTf(.) = clrf(.) + clrφ(.). (10)

Since the RCP2.6 projections are available as histograms, we decide to choose a
change direction curve in B2([a, b]) which coincides with a histogram function with
bins of length one. Therefore the change curve φ(t) is totally determined by the vector
of histogram frequencies φ used for the discrete model and the climate change scenario
is common to both cases.

The changes we consider are the changes between the last observed date 2016
and the end of the century 2099 given by RCP2.6 both for maximum temperature
(denoted by φmax) and minimum temperature (denoted by φmin). Note that since each
province i has its own 2016 histogram and its own RCP2.6 histogram, the resulting
change vectors φmax

i and φmin
i depend on the province. In order to first visualize these

changes, we plot some histograms of the RCP2.6 compared to the corresponding 2016
histogram on Figures 14 (for maximum temperature) and Figure 15 (for minimum
temperature). The four subplots correspond to the four regions RRD, NCC, CHR
and MDR where the regional change has been computed as a simplex average of the
province changes in that region.

We observe that for the RRD and NCC regions, it is the temperature bin 32-33
which is experiencing the highest change, whereas it is the bin 31-32 in the MDR
region and the bin 29-30 in the CHR region.
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Fig. 14 Maximum temperature distributions in four regions: observed in 2016 and projected by
RCP2.6

If this hypothetical climate change were to happen in a given province between an
initial year, say 0, and year s, we are now able to compute a projection of the resulting
rice yield change, decomposed into a contribution of the change of the maximum
temperature distribution and that of the minimum temperature. Let Ŷis(φ

max
i )− Ŷi0,

respectively Ŷis(φ
min
i )− Ŷi0, denote the projected rice yield change due to maximum

temperature, respectively minimum temperature, under the change scenario. Given
that both our models are linear for the simplex structure and that Tfis(t)⊖ fi0(t) =
φi(t), the resulting change of rice yield due to the change of maximum temperature
for a given province i and a given year s are given by

• in the discrete regression model

Ŷis(φ
max
i )− Ŷi0 =

3∑
r=1

1i∈r < β̂max
r , φmax

i >A (11)

=

3∑
r=1

1i∈r < clrβ̂max
r , clrφmax

i >R28 ,
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Fig. 15 Minimum temperature distributions in four regions: projected by RCP2.6 and observed in
2016

• in the smooth regression model

Ŷis(φ
max
i )− Ŷi0 =

3∑
r=1

1i∈r < β̂max
r (t), φmax

i (t) >B2 (12)

=

3∑
r=1

1i∈r < clrβ̂max
r (t), clrφmax

i (t) >L2
0
,

Similar formulas can be written for minimum temperature impacts. Note that since
a given province belongs to a single region, there is indeed a single non-zero term
in the right hand side sums. The inner products < clrβ̂max, clrφmax

i >R28 , and <

clrβ̂min, clrφmin
i >R22 in the discrete model, respectively < clrβ̂max(t), clrφmax

i (t) >L2
0

and < clrβ̂min(t), clrφmin
i (t) >L2

0
in the smooth model therefore characterize the

impacts of a change in temperature density in the respective models. The computation
of the variance of the impacts is derived in the Appendix. They involve the compu-
tation of integrals of the products between the change functions and the ZB spline
basis functions. We show that these can be computed easily using the fact that our
change functions are step functions combined with the fact that ZB splines of order d
are derivatives of B-splines of order d+ 1, see [10].
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Table 2 displays the impacts and their standard error in our application, together
with a 95% confidence interval. Concerning the impact of maximum temperature, the
smooth model predicts a positive and significant impact in all regions whereas the
discrete model only agrees with the smooth model for the NCC region. In other regions,
the discrete model effect is either insignificant (for SR, MDR and NMM regions) or
disagrees on the sign of the effect.

For minimum temperature, the discrete model concludes with a significant effect
only for the CHR and NCC regions whereas the smooth impact is always significant.
When they are both significant, they agree on the sign.

Table 2 Impact of temperature change on rice yield by regions based on RCP2.6

Type Region Discrete regression Smooth regression

mean lwr upr sd mean lwr upr sd

SR 0.22 -0.45 0.65 0.63 8.53 8.51 8.54 0.02
CHR -1.18 -0.39 -0.26 0.12 22.72 22.55 22.88 0.31
MDR -0.38 -0.47 0.26 0.67 8.52 8.50 8.54 0.04

Tmax NMM 0.07 -0.08 0.12 0.19 0.42 0.34 0.50 0.14
NCC 0.39 0.01 0.20 0.17 1.61 1.55 1.68 0.12
RRD -2.22 -1.57 -0.24 0.83 10.99 10.93 11.04 0.07

SR 0.10 -0.00 0.09 0.05 0.52 0.51 0.53 0.01
CHR -0.30 -0.12 -0.04 0.07 -3.70 -3.71 -3.70 0.01
MDR -0.03 -0.07 0.05 0.11 0.01 0.01 0.02 0.01

Tmin NMM 0.05 -0.02 0.04 0.06 0.42 0.40 0.44 0.04
NCC 0.20 0.03 0.09 0.06 1.47 1.46 1.47 0.01
RRD -0.13 -0.13 0.02 0.10 -1.29 -1.30 -1.28 0.01

We can explain the divergence between the models for the RRD region looking
at the sign of the clr of beta coefficients, respectively beta curves, and compare with
the shape of the histograms of 2016 and RCP2.6. Indeed Figure 14 shows that for
RRD region, the main changes between the histograms of 2016 and that of the end
of the century occur approximately for temperatures between 20 and 25 and between
31 and 33. The discrete and the smooth model have the same clr sign in the range
20-25 and 31-32. However the discrete model displays a negative clr sign in the range
32-33 whereas the smooth beta curve has a positive sign in most of this range except
in the last 20% of this interval. Since the end of the century projections predict a
higher frequency of temperature in the range 32-33 this results in a negative impact
for the discrete model but a positive impact for the smooth. We wee that the discrete
model is blind to the sign change of the clr occurring in the range 32-33. Overall we
observe smaller impacts estimates for the discrete model compared to the smooth.
This phenomenon is normal since we can view the discrete model inner products as
approximations of the smooth inner products obtained by replacing the integral of
the product of clr functions over a given bin by the mean value of the product of clr
functions multiplied by the bin length (one here). Therefore, the discrete product of
clr values can be seen as approximating the mean values of the corresponding smooth
product of clr functions within the bins, resulting in a reduction in size.
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6 Conclusion

We have proposed and illustrated a procedure for assessing the impact of climate
change on rice yield production in Vietnam using scalar on density regression with
a discrete and a smooth frameworks. We have derived formulas to evaluate their
variances. The smooth or functional approach allows to keep more information from
the density objects (notably, the smoothness of their shape is ignored by the discrete
model) and is less sensitive to parameter choice. Moreover via the knots position, the
smooth approach allows to use a more complete information in the temperature ranges
where the data points concentrate.

We consider our illustration as a feasability demonstration which would need refine-
ments in order to derive pragmatic projections. Indeed, a more realistic assessment
would require taking into account the cropping season in each region if the cropping
season data were available. We did not have these data and moreover dealing with
density covariates with varying supports would have resulted in complexity issues from
the methodological side. Indeed, varying supports would generate different spline basis
for each region.

In order to measure the impact of climate change, we have chosen to consider sep-
arately daily maximum and daily minimum temperature. It would be very interesting
to use the bivariate density of these two characteristics, thus taking into account their
probable correlation. This would require using bivariate constrained splines as in [34].

7 Appendix

This appendix provides details about the computation of the impacts and their vari-
ance. We derive the impact variance in a general scenario where the change direction
curve may depend on province i and will use it for the change scenario given by the
simplex-difference between the RCP2.6 histogram and the observed histogram in 2016
for that province. The computation is very similar in spirit for both the discrete and
the smooth framework, however the evaluation of the inner products involved is more
intricate in the smooth framework. We evaluate separately the impact of maximum
temperature and that of minimum temperature, and then add them up to get the
impact of climate change. We develop the computation for maximum temperature and
the result for minimum temperature is obtained in the same fashion.

In the smooth framework, the impact estimate for maximum temperature between
an initial time, say 0, and time s, say s = 2099, is given, for a province i in region r, by

Ŷis − Ŷi0 =< clr(φi), clr(β̂
max
r ) >L2

0(a,b)
. (13)

Because the RCP scenarios are available as histograms, we will assume that φi is a
step function (constant on each bin with values (φi)j for bin j.). Since clr(β̂max

r )(t) =∑g+3
l=1 zl(β̂

max
r )Z4

l (t) the impact of maximum temperature for province i in region r is
then given by

Ŷis − Ŷi0 =

g+3∑
l=1

zl(β̂
max
r )

∫
clr(φi)(t)Z

4
l (t)dt, (14)
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where z(β̂max
r ) is the g + 3 vector of components of the β̂max

r curve in the ZB-spline
basis and Z4

l (t) is the lth ZB-spline curve. For i = 1 to 63 and l = 1 to g + 3, let us
denote by pil the integral term

pil =

∫
clr(φi)(t)Z

4
l (t)dt (15)

and therefore Ŷis − Ŷi0 =
∑g+3

l=1 zl(β̂r)pil.
To compute the pil, we take advantage of the fact that φi are constant on the bins

(bj , bj+1) and then of the fact that the integral of a ZB-spline can be obtained with
differences of B-splines of a higher order using equation (7) in [10] as follows

pil =

∫ 40

12

clr(φi)(t)Z
4
l (t)dt =

28∑
j=1

∫ bj+1

bj

clr(φi)j(t)Z
4
l (t)dt (16)

=

28∑
j=1

clr(φi)j

∫ bj+1

bj

Z4
l (t)dt =

28∑
j=1

clr(φi)j
(
B5

l (bj+1)−B5
l (bj)

)
(17)

Turning now attention to the variance of the estimated impact of maximum temper-
ature, the unbiasedness of the OLS estimates in clr space implies that E(z(β̂max

r )) =
z(βmax

r ). Therefore we have

Var(Ŷis − Ŷi0) = E

(g+3∑
l=1

(zl(β̂
max
r )− zl(β

max
r ))pil

)2
 (18)

Let P be the 63× (g + 3) matrix of elements pil. Then the variance of the impact in
province i is given by

Var(Ŷis − Ŷi0) = VarPi.z(β̂
max
r ) = Pi.Var(z(β̂

max
r ))PT

i. , (19)

where Pi. is the i
th row of P . We can estimate Var(z(β̂max

r )) by the empirical variance-
covariance matrix of the parameters estimates.

Because the computation of the variance would be lengthy and difficult to inter-
pret, we decide to approximate it by using a single scenario of change by region thus
replacing in (13) the change φi by the average (in the simplex sense) of the change
corresponding to the RCP scenarios of all the provinces in that region. Therefore pil
is replaced by prl when province i is in region r and the matrix P is then 4× (g + 3)
resulting in four values for the right hand side of (19).
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