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Introduction

The importance of acknowledging the existence of social interactions between agents in

the estimation of causal relationships is now widely recognized. In a program-evaluation

problem, for example, non-treated individuals can nonetheless benefit from the program

through spillovers from treated units with whom they interact. Examples of this are detailed

in Miguel and Kremer (2004), Sobel (2006), and Angelucci and De Giorgi (2009). A key

concern when estimating models that feature peer effects is that agents may self-select

their peers, and do so based on (unobserved) factors that equally feature in the equation

of interest, thus creating an endogeneity problem. Randomized assignment to peer groups

has proven useful in circumventing this threat to identification (Sacerdote 2001 contains an

early application of this strategy) but this is not possible in many situations. In the context

of the linear-in-means model of social interactions (Manski 1993, Bramoullé, Djebbari and

Fortin 2009, and Blume, Brock, Durlauf and Jayaraman 2015), a recent literature has

worked on approaches to deal with the self-selection problem. A review is provided by

Bramoullé, Djebbari and Fortin (2020). The current paper is an addition to this growing

body of work.

To deal with endogeneity of the network Goldsmith-Pinkham and Imbens (2013) and

Hsieh and Lee (2016) complete the linear-in-means model with a parametric specification of

the link-formation process. Distributional assumptions on the unobservables allow to write

down the likelihood of the full model, paving the way for inference. Arduini, Patacchini

and Rainone (2015) and Johnsson and Moon (2021) (and also Auerbach 2022, albeit in

a somewhat different context) weaken some of these requirements and propose two-step

control-function approaches (Heckman and Robb, 1985). These methods, however, require

data on a single large network that also needs to be sufficiently dense. As such they are not

well suited for the conventional sampling paradigm where we observe many, possibly small,

networks; typical examples would be schools, classrooms, or neighborhoods (also see Manski

1993, p. 537, for a discussion on the (in)compatibility of the linear-in-means model with

different types of sampling schemes.) Furthermore, they are subject to the usual limitation
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of the control-function approach, which is its lack of robustness to misspecification of the

link-formation process.

These limitations of the control-function approach can be sidestepped by taking an

instrumental-variable route. Kelejian and Piras (2014) followed one such path, regressing

link outcomes on exogenous variables that are presumed to drive the link decisions to

cleanse them from endogenous factors. Applications of this idea are also documented in

Santavirta and Sarzosa (2019) and Lee, Liu, Patacchini and Zenou (2021). While this is

a general and simple technique, it of course presumes that such exogenous variables are

available to the econometrician. Furthermore, the instruments so constructed will tend

to be poor predictors of actual link decisions unless the latter are mainly driven by the

exogenous variables in question. A discussion on this is can be found in Lee, Liu, Patacchini

and Zenou (2021), and we equally observed this in our own numerical experiments (not

reported).

Here, instead, we exploit two restrictions on network formation that are implicit in most

network-formation models investigated in the literature to generate instrumental variables

that are internal to the model, in the same vain as in a dynamic panel data model. These

restrictions are that (i) link decisions of a given individual are dependent, but that (ii) link

decisions involving any two distinct pairs of agents are (conditionally) independent when

located sufficiently far away from one another in the network. Condition (ii) limits the

degree of the endogeneity problem. In turn, the implication of Condition (i) is that link

decisions between any triple of individuals are informative about each other. Together,

these conditions provide relevant conditional moment restrictions that pave the way for

the construction of instrumental variables.

Conditions (i) and (ii) are sufficiently general to cover settings where networks are

formed either cooperatively or non-cooperatively and allow for the possibility of transfers

between agents. They can accommodate degree heterogeneity as well as (dis)assortative

matching of unrestricted form (see, e.g., Newman 2010 for definitions of these concepts and

discussion on their importance in network-formation models). The conditions are satisfied

in quite general dyadic models of link formation, inclusing those of Johnsson and Moon
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(2021) and Arduini, Patacchini and Rainone (2015). They do rule out (unrestricted forms

of) interdependent link formation behavior such as that stemming from transitivity, where

individuals are more likely to link if they have more connections in common. Such behavior

poses substantial econometric complications that are difficult to handle with cross-sectional

data alone. Interdependency is equally ruled-out in the control-function approach, as such

models are typically incomplete.

In the linear-in-means model the outcome of a given individual depends on the average

outcome and the average characteristics of her peers, as well as on her own characteristics.

When peer groups are exogenous only the first of these peer effects creates an endogeneity

problem. The approach of Bramoullé, Djebbari and Fortin (2009), in essence, instruments

the average peer outcome by the average characteristics of the peers of peers. We, instead,

are faced with a situation in which both types of peer effect are endogenous. In the

simplest case we construct instrumental variables as follows. For each individual we set up

the subnetwork obtained on removing all link decisions in which this individual is involved.

Under our conditions this leave-own-out network is exogenous and contains useful predictive

information about the individual’s own link behavior. Next, we instrument average peer

characteristics by the average of these characteristics in the leave-own-out network. In the

same way, we instrument average peer outcomes by the average of the characteristics of

peers of peers in the leave-own-out network. Like in the exogenous case, the procedure can

be iterated to yield additional instrumental variables by involving characteristics of peers

further away in the leave-own-out network. This is an intuitive modification of Bramoullé,

Djebbari and Fortin (2009).

In the sequel we first introduce the linear-in-means model and present the conditional

moment restrictions under which we will work. We next validate these restrictions in a

general specification of link formation and also provide examples in which they will fail to

hold. We then discuss the construction of instruments from leave-own-out networks. The

performance of the resulting two-stage least-squares estimator is evaluated in a simulation

experiment.
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1 Setup

Model Consider a network involving n agents. Let A denote its n×n adjacency matrix;

(A)i,j =

 1 if j is a peer of i

0 otherwise
.

The agents j for which (A)i,j = 1 are called the neighbors of agent i. As usual, we

do not consider agents to be linked with themselves, so matrix A has only zeros on its

main diagonal. Note that we allow A to be asymmetric, thus covering both directed and

undirected networks. It will be useful to have a notational shorthand for the row-normalized

adjacency matrix, H , say;

(H)i,j =

 (A)i,j

/∑n
j′=1(A)i,j′ if

∑n
j′=1(A)i,j′ > 0

0 otherwise
.

Recall that H corresponds to the transition matrix of a random walk through our network.

Moreover, (H)i,j is the probability that, when taking a single step, starting at agent i, we

arrive at agent j. In the same way, (H2)i,j is the probability of going from i to j in two

steps, and so on.

Let yi and xi denote scalar variables, observable for each agent. Our baseline model is

yi = α + βxi + γ
(∑n

j=1(H)i,jxj

)
+ εi,

where εi is a mean-zero unobserved variable. Taking the regressor to be a scalar is done

only for notational convenience. Here, β captures the direct effect of xi on yi while γ reflects

an indirect, spillover, effect from the covariate values of the neighbors. In matrix form we

can succinctly write

y = αιn + βx+ γHx+ ε,

where y = (y1, . . . , yn)′, ιn = (1, . . . , 1)′ is the n-vector of ones, x = (x1, . . . , xn)′, and

ε = (ε1, . . . , εn)′. An extension of the baseline specification that accommodates endogenous

peer effects, where yi also depends on
∑n

j=1(H)i,jyj, gives rise to what we will call the full

model,

y = αιn + δHy + βx+ γHx+ ε.
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This is the workhorse linear-in-means model on general networks as studied in Bramoullé,

Djebbari and Fortin (2009) and Blume, Brock, Durlauf and Jayaraman (2015). The full

model is more complicated because, due to simultaneity, Hy would be endogenous even if

peer selection were exogenous.

Restrictions Identification of the slope coefficients in our model is well-understood when

the strict exogeneity condition E(εi|A,x) = 0 holds. Here we relax this restriction by

allowing for dependence between the link decisions and the unobserved component in our

model. We work with

E(εi|A−i,x) = 0, (1.1)

where A−i is the (n − 1) × (n − 1) adjacency matrix of the subnetwork obtained from A

on deleting its ith row and its ith column. This condition implies unconditional moments

that can be used in a two-stage least-squares procedure. For our instruments to be relevant

we will presume that

E((A)i,j|A−i,x) 6= E((A)i,j|x). (1.2)

This condition states that link decisions involving a given agent are not all independent of

one another, conditional on the covariate.

A useful extension of the above is as follows. Suppose that agents can be partitioned

into (known) groups; let g(i) indicates the group to which agent i belongs and write |g(i)|

for its number of members. Then (1.1) and (1.2) can be replaced by the assumptions that

E(εi|A−g(i),x) = 0, (1.3)

and

E((A)i,j|A−g(i),x) 6= E((A)i,j|x), (1.4)

respectively. Here, A−g(i) denotes the (n − |g(i)|) × (n − |g(i)|) adjacency matrix of the

subnetwork obtained from A on deleting the rows and columns relating to all link decisions

involving any of the members of the group g(i). The conditions in (1.1) and (1.2) essentially

restrict the self-selection problem to be caused by agent-specific unobservables that do not
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affect the decision of any other pair of agents to form a link between them. Conditions

(1.3) and (1.4) would allow these drivers to be dependent within groups or even allow

group-level unobservables to cause the endogeneity. The conditions are also compatible

with interdependent link formation, provided that the interdependency is restricted to

within-group interactions (see below).

2 Motivation

Network formation Before turning to our instrumental-variable approach we provide

motivation and justification for the conditions in (1.1) and (1.2) in a general model of

dyadic network formation.

Let vi and ui,j be (infinite-dimensional) vectors at the agent level and the dyad level,

respectively. Let z denote an (infinite-dimensional) vector that may contain variables that

may depend on all agents and all dyads in the network; z may contain agent-specific

variables as well as all elements of x, for example. The formation of links is determined

via

(A)i,j =

 1 if a(vi,vj,ui,j, z) > 0

0 otherwise
, (2.5)

for some function a. This function is not assumed to be symmetric in the labels of the

agents. This setup covers both directed and undirected networks and also accommodates

both cooperative and non-cooperative link formation. Allowing the variables that enter a to

be infinite dimensional yields a fully nonparametric specification that permits unrestricted

heterogeneity (see, e.g., Hoderlein and Mammen 2007 for this type of formulation in a

different context). The link function may thus differ across dyads and so, for example, how

z affects (A)i,j may vary across dyads. Equation (2.5) covers general forms of assortative

and disassortative matching between agents and allows for non-dyadic spillover effects

through z, which may include x.

We complete the link-formation model in (2.5) with the following restrictions:

A.1 E(εi|vi,ui,1, . . . ,ui,n,A,x) = E(εi|vi,ui,1, . . . ,ui,n).
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A.2 (vi,vj,ui,j) ⊥⊥ (z,x).

A.3 vi ⊥⊥ vj|x unless i = j.

A.4 ui,j ⊥⊥ ui′,j′ |x unless i′ = i or j′ = j.

A.5 vi ⊥⊥ ui′,j′ |x unless i′ = i or j′ = i.

A.1 states that the source of the endogeneity of network formation is the dependence of εi

on vi and ui,1, . . . ,ui,n. A.2 imposes that these drivers are independent of the remaining

covariates. A.3 requires the variables vi to be (conditionally) independent across agents

while A.4 demands that the variables ui,j are independent between dyads that do not have

an agent in common. This allows for ui,j, ui,j′ , and uj′′,i to be dependent. A.5 allows for

vi to depend on ui,j and uj,i.

Proposition 1. Let A.1 –A.5 hold. Then (1.1) and (1.2) are satisfied.

Proof. By virtue of A.1, iterating expectations yields

E(εi|A−i,x) = E(E(εi|vi,ui,1, . . . ,ui,n,A,x)|A−i,x) = E(E(εi|vi,ui,1, . . . ,ui,n)|A−i,x).

From (2.5), A−i is a function of vi′ for all i′ 6= i, of ui′,j and uj,i′ for all i′ 6= i and j 6= i, and

of z. By A.2–A.5 all of these variables are independent of vi,ui,1, . . . ,ui,n conditional on

x. Further, A.2 equally states that vi,ui,1, . . . ,ui,n are independent of x. We thus have

that

E(E(εi|vi,ui,1, . . . ,ui,n)|A−i,x) = E(E(εi|vi,ui,1, . . . ,ui,n)|x) = E(E(εi|vi,ui,1, . . . ,ui,n)),

which is equal to the unconditional mean E(εi) = 0. This shows the first part of the

proposition. Next, from (2.5), using the fact that vj enters (A)i′,j and (A)j,i′ for all i′ 6= i,

the dependence between ui,j and ui′,j,uj,i′ for all i′ 6= i, and the presence of the common

term z,

E((A)i,j|A−i,x) = P(a(vi,vj,ui,j, z) > 0|A−i,x)

= E(P(a(vi,vj,ui,j, z) > 0|vj,ui′,j and uj,i′ for all i′ 6= i, z,x)|A−i,x)

6= E(P(a(vi,vj,ui,j, z) > 0|vj,ui′,j and uj,i′ for all i′ 6= i, z,x)|x)

= E((A)i,j|x)
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follows easily. Hence, there is predictive power in A−i about (A)i,j conditional on x.

This shows the second part of the proposition. The proof of the proposition is, thus,

complete.

We remark that Proposition 1 does not require the presence of traditional instrumental

variables, i.e., observables that enter a but are independent of εi. Rather, at the heart

of Proposition 1 lies the observation that entries in a given column or row of the network

adjacency matrix are usually correlated as link decisions involving a given agent are, at

least partly, determined by the same factors. Whether these factors are observable in the

data, or even known to be determinants of network formation by the econometrician, is

irrelevant.

Equations (1.3) and (1.4) hold if (2.5) is complemented with the following restrictions:

B.1 E(εi|vi,ui,1, . . . ,ui,n,A,x) = E(εi|vi,ui,1, . . . ,ui,n).

B.2 (vi,vj,ui,j) ⊥⊥ (z,x).

B.3 vi ⊥⊥ vj|x unless j ∈ g(i).

B.4 ui,j ⊥⊥ ui′,j′ |x unless i′ ∈ g(i) or j′ ∈ g(j).

B.5 vi ⊥⊥ ui′,j′ |x unless i′ ∈ g(i) or j′ ∈ g(i).

These conditions allow for group-level dependence in the drivers of peer selection.

Proposition 2. Let B.1 –B.5 hold. Then (1.3) and (1.4) are satisfied.

Proof. The proof follows the same steps as the proof of Proposition 1 and is omitted.

Failure of (1.1) Our conditional moment restrictions are not compatible with general

interdependency in peer selection. To see this consider a simple example where agents have

a taste for transitivity. Moreover,

(A)i,j =

 1 if vi + vj +
∑n

k=1(A)j,k (A)k,i > ui,j

0 otherwise
. (2.6)
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Assume that scalar vi and scalar ui,j are (i) independent across, respectively, agents and

dyads; (ii) independent of each other; and (iii) independent of the regressors. Suppose that

E(εi|vi,A,x) = E(εi|vi) so that endogeneity is solely due to vi. The specification in (2.6)

implies that each (A)i,j depends on all of v1, . . . , vn, and thus so do all elements of A−i.

Therefore,

E(ε|A−i,x) = E(E(εi|vi)|A−i,x) 6= E(E(εi|vi)) = 0,

and (1.1) fails. Furthermore, no entries of the adjacency matrix will satisfy the validity

condition demanded of an instrument and so a weaker version of (1.1), such as (1.3), cannot

be used to solve the problem.

On the other hand, (1.3) can be useful if the transitivity is restricted within groups, say

(A)i,j =

 1 if vi + vj +
∑

k∈g(i)(A)j,k (A)k,i > ui,j

0 otherwise
.

Indeed, in this case, (A)i,j depends on vi, vj, and vi′ ∈ g(i). Therefore, (A)i′,j for i′ /∈ g(i)

will be independent of vi but will depend on vj. Hence, this model is compatible with (1.3)

and (1.4).

Failure of (1.2) The relevance of A−i follows from the fact that the link decisions of a

given agent are not independent of one another. Moreover, (1.2) exploits the dependence

within a given row and column of the adjacency matrix. The condition fails in the basic

random-graph model of Erdős and Rényi (1959, 1960), where links are formed according

to

(A)i,j =

 1 if 0 > ui,j

0 otherwise
, (2.7)

where ui,j is a random variable that is independent and identically distributed (i.i.d.) across

dyads. This implies that (A)i,j is i.i.d. across dyads.

Of course, in the Erdős and Rényi (1959, 1960) model there is little margin for any self

selection of the peer group to come about. An extension of the model in which endogeneity
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is present and (1.2) fails is the following simple directed model with one-way heterogeneity:

(A)i,j =

 1 if vi > ui,j

0 otherwise
,

where vi is i.i.d across agents and allowed to depend on εi, and ui,j is i.i.d. across dyads

and independent of εi, as before. A symmetrized version that introduces heterogeneity on

both sides is

(A)i,j =

 1 if vi + vj > ui,j

0 otherwise
. (2.8)

This is essentially the model entertained by Johnsson and Moon (2021). Maintaining the

same assumptions on the random variables as before, this setup does satisfy both (1.1) and

(1.2).

3 Instrumental variables

In the remainder of the paper we work under (1.1) and (1.2). What follows can be adapted

to (1.3) and (1.4) in a straightforward manner.

Baseline In

yi = α + βxi + γ

(
n∑

j=1

(H)i,j xj

)
+ εi, (3.1)

the spillover term can be endogenous because (H)i,j = (A)i,j/
∑n

j′=1(A)i,j′ is a function of

(A)i,1, . . . , (A)i,n and all of these variables are allowed to covary with εi. By (1.1) the

latter is, however, mean independent (given x) of (A)i′,j for all i′ 6= i and j 6= i. Hence,

the link decisions that do not involve agent i—i.e., (A)i′,j for i′ 6= i and j 6= i—are

exogenous. Furthermore, by (1.2), these (A)i′,j contain predictive power on (H)i,j. In

(2.5), for example, they covary with (A)i,i′ and (A)i,j and, because H is a row-normalized

adjacency matrix, every link decision in the leave-own-out network A−i will be a valid and

relevant instrument for (H)i,j.

The above observation suggests the construction of instrumental variables as linear

combinations of x1, . . . , xn with weights coming from A−i. There is no unique way of doing
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so. Here we discuss one way to proceed that will equally have a natural extension to the

full model. To describe it, we first introduce, for each of the n agents i, the n× n matrices

(H−i)i′,j =

 (A)i′,j

/∑
j′ 6=i(A)i′,j′ if i′ 6= i and j 6= i and

∑
j′ 6=i(A)i′,j′ > 0

0 otherwise
.

This is the row-normalized version of the adjacency matrix A−i introduced previously, only

complemented with one additional row of zeros and one additional column of zeros, each of

these at location i. This augmentation is done for notational considerations, as it maintains

the dimension of these matrices to n × n, the size of the matrix H pertaining to the full

network. H−i corresponds to the transition matrix on the network obtained on ruling-out

any links that involve agent i.

The construction of these leave-own-out matrices is illustrated graphically in Figure 1.

The left plot shows a directed wheel graph involving five agents, with Agent 1 at the center

and the remaining agents in the periphery. Each arrow represents a link, with its weight

(H)i,j given alongside it. In the same way, the middle and right plots give the subnetworks

obtained on leaving out Agent 1 and Agent 2, respectively. Because of the symmetry of the

problem, the leave-own out graphs for Agents 3,4, and 5 are the same as in the right plot

up to a rotation of the indices of the agents in the periphery. They are, thus, not given

separately.
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3
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1

1
3

4 2

1
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Figure 1: Transition matrix for a directed wheel graph on five agents (left) together with transition

matrices for the implied leave-one-out subnetworks (middle and right).

Recall that (H)i,j is the probability of arriving at agent j, from agent i, in a single step
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in the network defined by the original adjacency matrix A. The entries of the n×n matrix

(Q1)i,j = (n− 1)−1
∑

i′ 6=i(H−i)i′,j,

in contrast, give the probability of arriving at agent j in the network defined by A−i, no

matter the starting point, in a single step. It may be useful to think about the matrix Q1

as a transition matrix, thus again inducing a network. The right plot in Figure 2 shows

this network in our wheel-graph example; the original network is repeated in the left plot.

The former differs considerably from the latter. While in the original network the agents

in the periphery where connected only by a counter-clockwise circle of links, the induced

network also features an additional clockwise circle, as well as new direct links between

agents at opposite ends of the circle. The weights assigned to these link are also generally

different.
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Figure 2: Transition matrix H for a directed wheel graph on five agents (left) together with the transition

matrix Q1 for the implied network (right).

Under (1.1) and (1.2) the average∑n
j=1(Q1)i,j xj

is exogenous in (3.1) and correlates with the problematic spillover term
∑n

j=1(H)i,j xj.

A way forward is thus to complement the model in (3.1) with the first-stage regression
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specification (
n∑

j=1

(H)i,j xj

)
= π0 + π1xi + π2

(
n∑

j=1

(Q1)i,j xj

)
+ εi, (3.2)

and estimate the parameters of the baseline model by a standard two-stage least-squares

procedure.

The regression coefficient π2 in (3.2) is a complex function of features of the network

such as the probability of observing a link between any two agents, a triangle between

any three agents, and similar larger-dimensional sub-network configurations. Even in the

relatively simple model of Johnsson and Moon (2021) this involves integrals of nonlinear

functions up to n dimensions. It does, therefore, not seem feasible to derive closed-form

expressions for a general network size. For small networks generated from (2.8) expressions

can be derived. While they are difficult to interpret directly, they can be combined with

low-dimensional parametrizations to study the dependence of the regression coefficient on

the underlying model.

One such parametrization has vi ∼ Exponential(λv) and ui,j ∼ Exponential(λu). The

upper two plots in Figure 3 provide the value of π2 as a function of the scale parameters for

n ∈ {3, 4, } when the regressor xi is zero mean and independent across agents. The plots

show that, for any value of λv, π2 increases with λu. The larger λu the more likely it is

that ui,j takes on small values and, hence, the more likely that (A)i,j = 1 for given values

of vi and vj. Larger values of λu thus yield denser networks, all else equal, which increases

instrument strength. The limit case λu →∞ corresponds to the degenerate situation where

unit mass is being placed at zero and links form with probability one. The comparative

statics for λv are different. Larger values of λv mean less variability in vi, and so less degree

heterogeneity across agents. This translates into an instrument with smaller predictive

power. Here the limit case λv →∞ yields an empty network.

Another parametrization is one where vi ∼ Normal(µ, σ2) and ui,j ∼ Normal(0, 1). The

lower two plots in Figure 3 give π2 as a function of µ and σ. The plots reveal the same

comparative statics as in the exponential parametrization. Larger values of µ yield denser

networks while larger values of σ yield more between-agent heterogeneity in link behavior.
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Both these features bring with them predictive power.

Figure 3: Theoretical calculations of the value of the regression coefficient π2 in (3.2) under model (2.8)

with the regressor zero mean and independent across agents. Upper plots: vi ∼ Exponential(λv) and

ui,j ∼ Exponential(λu). Lower plots: vi ∼ Normal(µ, σ2) and ui,j ∼ Normal(0, 1). Left plots: n = 3.

Right plots: n = 4.

To see how instrument strength evolves with the size of the network we must resort

to simulation. Figure 4 plots the value of π2 as a function of n for λv ∈ {1, 5, 10} and

λu = 1/2 in the exponential parametrization, as obtained by simulating a large number of

i.i.d. networks from this parametrization and computing the regression slope in question.

While larger values of λv yield a smaller coefficient, its magnitude increases with n in each
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case. The plot also shows that π2 is a concave function of n, and so the increase in the

magnitude is a decreasing function of n.
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n
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v = 1
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Figure 4: Simulated value of the regression coefficient π2 in (3.2) under model (2.8) as a function of n. The

regressor is zero mean and independent across agents, vi ∼ Exponential(λv), and ui,j ∼ Exponential(λu).

Full model In the full linear-in-means model,

y = αιn + δHy + βx+ γHx+ ε,

the presence of Hy as a regressor would induce an endogeneity problem even if H were

exogenous. If −1 < δ < 1, and if all the agents in the network are linked to at least one

other agent,

Hy =
α

1− δ
ιn + βHx+ (δβ + γ)

∞∑
s=0

δsHs+2x+
∞∑
s=0

δsHs+1ε. (3.3)
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The argument of Bramoullé, Djebbari and Fortin (2009) is that H2x, H3x, and so on can

be used as instrumental variables for Hy when the network is exogenous, provided that

δβ + γ 6= 0. This argument cannot be used in our setting as the validity of these variables

as instruments breaks down when peer selection is endogenous. However, on inspecting

the expansion in (3.3) a natural extension to our approach in the baseline model presents

itself.

BecauseH−i is a matrix of transition probabilities it can be iterated on, in the same way

as H , to yield probabilities of arriving at each agent when taking multiple steps through

the network. In our wheel-graph example, the subnetworks induced by iterating on H i

once to get H2
i = H iH i are given in Figure 5. This suggests a generalization of our

approach in the baseline model to the full model that mimics the core idea underlying the

instrument construction in Bramoullé, Djebbari and Fortin (2009) for the exogenous case.
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Figure 5: Transition matrix for a directed wheel graph on five agents (left) together with the

iterated transition matrices for the implied leave-one-out subnetworks (middle and right).

In full analogy to Q1, the entries of the n× n matrix

(Q2)i,j = (n− 1)−1
∑

i′ 6=i

∑n
j′=1(H−i)i′,j′ (H−i)j′,j,

give the probability of arriving at agent j in the network induced by A−i, no matter the

starting point, in two steps. Under our moment conditions in (1.1) and (1.2) these weights

are, again, useful to construct instrumental variables. Moreover, we may instrument the

two endogenous right-hand side variables, Hx and Hy, by the two exogenous variables
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Q1x and Q2x. Figure 6 gives the network induced by Q2 in our wheel-graph example.

Like in the exogenous case, we require Q1 and Q2 to be sufficiently different. Equally like

in the case where the network is exogenous, this is more difficult in denser networks. It

is more difficult to give simple primitive conditions for instrument relevance than in the

exogenous-network case, however. Indeed, in Bramoullé, Djebbari and Fortin (2009), (3.3)

implies a linear reduced form from which such conditions can be derived. This is not the

case here.1
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Figure 6: Transition matrix H for a directed wheel graph on five agents (left) together

with the transition matrix Q2 for the implied network (right).

It is possible to construct additional instruments by taking additional steps through the

leave-own-out networks. This yields Qsx for

(Qs)i,j = (n− 1)−1
∑

i′ 6=i

∑n
j1=1 · · ·

∑n
js−1=1(H−i)i′,j1(H−i)j1,j2 · · · (H−i)js−1,j

1The condition that δβ + γ 6= 0 is key when the network is exogenous. It requires that x affects y

and that endogenous and exogenous peer effects do not exactly offset each other. Otherwise, we have that

E(Hy|H,x) = µ ιn + βHx, and so Hsx (for any s > 1) no longer contains predictive information about

Hy conditional on Hx. On the other hand, when link formation is endogenous there will generally still

be information on Hy in Q1x and Q2x even if δβ + γ = 0. This information comes from the fact that

E(x′Q′1H
p+1ε) 6= 0 and E(x′Q′2H

p+1ε) 6= 0 because the entries of H−i x are functions of variables that

depend on εj for j 6= i.
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and any integer s. These instruments play a role analogous to Hsx in the approach of

Bramoullé, Djebbari and Fortin (2009). Again, as s increases the transition matrixHs
−i will

tend to its steady-state distribution, so that higher iterations will provide increasingly less

(additional) predictive power. The speed of convergence to the steady-state distribution is

faster in denser networks.

4 Simulations

Our procedure was evaluated in a Monte Carlo experiment. We generated networks via

the link formation process

(A)i,j = (A)j,i =

 1 if ηi + ηj > c

0 otherwise
,

where the ηi are i.i.d. standard-normal variates and we set c = −
√

2Φ−1(p), for p ∈ {1/4, 1/2}

and Φ the standard-normal distribution function. The marginal probability of forming a

link is p. We then drew xi ∼ N(1, 1) and generated outcomes from the full model, inducing

endogeneity in link formation by generating

εi = ϕ(ηi) + ui, ui ∼ N(0, 1),

for different choices of the function ϕ. The parameters were set as α = 0, β = 1, γ = .5

and δ = .5. Data were generated for two sample sizes. The first has 250 i.i.d. networks of

size 25. The second has 25 i.i.d. networks of size 250.

We present simulation results for the estimator of Bramoullé, Djebbari and Fortin (2009)

(TSLS-X) and for our proposal (TSLS-E). The former instruments Hx by itself and Hy

by H2x, . . . ,H4x. The latter instruments Hx and Hy by Q1x, Q2x, . . . ,Q4x. In

both cases we use two overidentifying moments to discipline the sampling distribution of

the estimators—ensuring that their first two moments exist—so that we can meaningfully

report on their bias and standard deviation (see, e.g., Mariano 1972).

Table 1 concerns the design where p = 1/4 and we have 250 networks of size 25. It

contains the bias and standard deviation of the estimators, the mean and standard deviation
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Table 1: Simulation results: 250 networks of size 25, p = 1/4

TSLS-X TSLS-E

ϑn − ϑ V −1/2n (ϑn − ϑ) ϑn − ϑ V −1/2n (ϑn − ϑ)

bias std mean std size bias std mean std size

ϕ(η) = 0

β -0.0002 0.0130 -0.0167 1.0120 0.0492 -0.0009 0.0142 -0.0760 0.9928 0.0500

γ 0.0003 0.0505 0.0125 1.0033 0.0504 -0.0095 0.1322 -0.2229 1.0099 0.0532

δ -0.0002 0.0223 -0.0047 1.0152 0.0524 0.0050 0.0590 0.2415 1.0108 0.0592

ϕ(η) = η

β -0.0401 0.0166 -2.4547 1.0320 0.6864 0.0001 0.0187 -0.0022 1.0012 0.0516

γ -0.4254 0.1373 -3.0446 0.8915 0.8924 0.0017 0.1289 -0.0589 0.9959 0.0516

δ 0.3536 0.0334 10.5145 0.8746 1.0000 -0.0013 0.0458 0.0635 0.9884 0.0448

ϕ(η) = exp(3Φ(η))

β -0.0258 0.0637 -0.4226 1.0060 0.0684 -0.0005 0.0668 -0.0112 1.0015 0.0468

γ -0.2610 0.5285 -0.4514 0.9856 0.0756 0.0009 0.3060 -0.0329 1.0154 0.0532

δ 0.2192 0.0284 7.6166 0.6550 1.0000 -0.0027 0.0399 0.0540 1.0202 0.0588

ϕ(η) = sin(3Φ(η))

β -0.0120 0.0130 -0.9229 1.0046 0.1572 -0.0005 0.0146 -0.0477 0.9958 0.0484

γ -0.1248 0.0513 -2.4664 1.0012 0.6904 -0.0055 0.1294 -0.1864 1.0180 0.0576

δ 0.1049 0.0170 6.2143 1.0519 1.0000 0.0033 0.0560 0.2065 1.0118 0.0556

of the implied t-statistics, as well as the empirical rejection frequency of two-sided t-tests

(at the 5% significance level) under the null. We do not report results for the estimator

of the intercept. Four different specifications for ϕ were considered: (i) a constant, (ii)

a linear function, (iii) an exponential function, and (iv) a sine function. All results were

obtained over 5,000 Monte Carlo replications.

The estimator of Bramoullé, Djebbari and Fortin (2009) does well when link formation

is exogenous. Otherwise, the coefficient estimators are biased, except for the one of β. The

latter observation can be explained by the fact that link formation is independent of the

covariates and that the covariate is independent across agents in our simulation design.

The presence of bias implies that the sampling distribution of the t-statistic is not centered
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Table 2: Simulation results: 250 networks of size 25, p = 1/2

TSLS-X TSLS-E

ϑn − ϑ V −1/2n (ϑn − ϑ) ϑn − ϑ V −1/2n (ϑn − ϑ)

bias std mean std size bias std mean std size

ϕ(η) = 0

β -0.0002 0.0130 -0.0149 1.0004 0.0528 -0.0018 0.0157 -0.1735 1.0045 0.0552

γ -0.0002 0.0689 -0.0025 1.0155 0.0532 -0.0354 0.2307 -0.4632 1.0788 0.0976

δ -0.0001 0.0316 0.0226 1.0144 0.0524 0.0145 0.0909 0.4784 1.0810 0.0992

ϕ(η) = η

β -0.0379 0.0170 -2.2743 1.0322 0.6224 -0.0014 0.0216 -0.0898 1.0229 0.0552

γ -0.4161 0.2333 -1.7507 0.9198 0.4152 -0.0307 0.3037 -0.3206 1.0684 0.0792

δ 0.3689 0.0735 5.0615 0.8707 1.0000 0.0103 0.1116 0.3232 1.0662 0.0796

ϕ(η) = exp(3Φ(η))

β -0.0213 0.0649 -0.3803 1.0194 0.0728 -0.0039 0.0698 -0.0407 0.9770 0.0472

γ -0.2459 0.7542 -0.2456 0.9888 0.0544 -0.1334 0.8262 -0.4093 1.0226 0.0776

δ 0.2227 0.0740 2.9705 0.8600 0.8788 0.0321 0.2145 0.4561 1.0256 0.0928

ϕ(η) = sin(3Φ(η))

β -0.0107 0.0133 -0.8023 0.9981 0.1292 -0.0017 0.0162 -0.1650 0.9957 0.0540

γ -0.1191 0.0724 -1.7126 1.0493 0.3992 -0.0401 0.2243 -0.4686 1.0505 0.0904

δ 0.1044 0.0263 4.1521 1.1528 0.9796 0.0163 0.0893 0.4836 1.0621 0.0948

at zero. Consequently, the t-test displays large overrejection rates. Using instruments

constructed from the leave-own-out networks delivers estimators that are virtually unbiased

for all the designs in Table 1. The associated t-statistics have a mean that is close to zero and

a standard deviation that is close to unity. Furthermore, the empirical rejection frequencies

are close to their nominal size of 5%, and this for all parameters and for all designs. Hence,

the normal approximation does well for TSLS-E.

In Table 2 we have results for when p = 1/2, and so the networks are more dense. The

chief impact of this design change is that both estimators become less precise. This is

in line with our discussion from above. TSLS-E also suffers from somewhat more bias

than before. This results in some size distortion, with overrejections of as much as five
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Table 3: Simulation results: 25 networks of size 250, p = 1/4

TSLS-X TSLS-E

ϑn − ϑ V −1/2n (ϑn − ϑ) ϑn − ϑ V −1/2n (ϑn − ϑ)

bias std mean std size bias std mean std size

ϕ(η) = 0

β -0.0000 0.0125 -0.0034 0.9934 0.0460 -0.0006 0.0128 -0.0460 0.9904 0.0430

γ -0.0009 0.0814 -0.0088 1.0005 0.0540 -0.0825 0.4106 -0.4205 0.9458 0.0615

δ. -0.0003 0.0399 -0.0040 1.0009 0.0540 0.0458 0.2029 0.4736 0.9533 0.0645

ϕ(η) = η

β -0.0050 0.0189 -0.2689 0.9846 0.0595 -0.0001 0.0183 -0.0065 1.0101 0.0515

γ -0.4665 0.6514 -3.0298 4.9107 0.7665 -0.0392 0.3156 -0.2120 0.9949 0.0515

δ 0.4458 0.1439 13.6949 3.0706 0.9985 0.0175 0.1396 0.2284 0.9795 0.0520

ϕ(η) = exp(3Φ(η))

β -0.0022 0.0682 -0.0558 0.9628 0.0415 -0.0010 0.0664 -0.0155 0.9512 0.0400

γ -0.0618 1.9939 0.4965 7.1590 0.7850 -0.0641 0.7538 -0.0818 0.9592 0.0430

δ 0.1791 0.0965 12.0535 5.6056 0.9575 0.0178 0.1801 0.1163 0.9575 0.0390

ϕ(η) = sin(3Φ(η))

β -0.0022 0.0128 -0.1691 0.9800 0.0490 -0.0006 0.0130 -0.0431 0.9733 0.0435

γ -0.1986 0.1339 -2.7439 1.8327 0.6745 -0.0786 0.2691 -0.4333 0.9736 0.0645

δ. 0.1817 0.0403 6.5818 1.5210 0.9990 0.0431 0.1365 0.4767 0.9739 0.0760

percentage points.

Table 3, finally, contains results for the case where we have few large networks, and

p = 1/4. Both TSLS-X and TSLS-E are notably more variable in such a setting. Both

due to the presence of bias and underestimation of the sampling variability, the normal

approximation performs poorly for TSLS-X. For TSLS-E, on the other hand, it continues

to be quite accurate, leading to little discrepancy between theoretical and actual size in

hypothesis testing.
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Conclusion

This paper has introduced an instrumental-variable approach to deal with self selection of

peers in the linear in means model. Identification is achieved through conditional moment

conditions that are implied by a large class of network-formation models. A particularly

simple approach that builds on leave-own-out networks has been introduced. This leads

to two-stage least-squares estimators that are straightforward to implement and carry a

close resemblance to the estimator of Bramoullé, Djebbari and Fortin (2009). The latter

is arguably the default estimator under the assumption of exogenous construction of peer

groups.
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