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Abstract

This paper provides necessary and sufficient conditions for the Two-Way Fixed Effects

(TWFE) estimator to be robust to heterogeneous treatment effects. I decompose the TWFE

estimator to show that it is a weighted sum of five different types of two-by-two comparisons,

with positive weights. I show that parallel trends assumptions on either the untreated or

treated potential outcomes must hold for each comparison to identify the Average Treatment

Effect (ATE) of the group switching treatment status, when the effect of the treatment is

contemporaneous. Both parallel trends assumptions are thus necessary and sufficient for

the TWFE estimator to weigh each ATE positively, when allowing treatment effects to be

heterogeneous across groups and periods. I further provide sufficient conditions under which

the TWFE estimator remains valid even in the presence of dynamic treatment effects. Finally,

I show how to exploit all available comparisons to build unbiased estimators of the ATT and

ATE.
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1 Introduction

Difference-in-differences is one of the most popular quasi-experimental methods to estimate the

effect of a policy. Its core idea is to compare the evolution of the outcome of interest before and

after a group receives a treatment to the one of a group which does not receive it. With two groups

and two periods, such a comparison is an unbiased estimator of the Average Treatment Effect on

the Treated (ATT). However, most empirical applications depart from this simple framework, and

instead leverage the variation in treatment exposure across multiple groups and time periods. With

several groups and periods, researchers will typically interpret as the ATT the parameter of the

treatment dummy in a Two-Way Fixed Effects (TWFE) regression, also including group and time

fixed effects.

Despite its popularity, the properties of this estimator remained under-studied until recently.

The literature has now concluded that, under the standard common trends assumption, the TWFE

estimator corresponds to a weighted sum of the Average Treatment Effects (ATEs) in each group

and period, with weights that may be negative in the presence of heterogeneous treatment effects

(de Chaisemartin and d’Haultfoeuille, 2020a). The TWFE estimator may then be negative even

when all ATEs are positive.

This paper provides necessary and sufficient conditions for the TWFE estimator not to weigh

any ATEs negatively, when they can be heterogeneous across groups and over time. I show that

this requires not only a parallel trends assumption on the untreated potential outcomes, but also on

the treated potential outcomes. Under these conditions, the TWFE estimator is thus heterogeneity-

robust. Furthermore, I show that its weights can be corrected to build unbiased estimators of the

ATT and of the ATE.

To derive these results, I consider a general framework where groups are allowed to enter and

exit treatment over time. It is thus not restricted to the staggered case, which has received a lot

of attention in spite of relatively few applications (de Chaisemartin and d’Haultfoeuille, 2020a).

I first show that the TWFE estimator is a weighted sum of five different types of two-by-two

difference-in-differences comparisons. It may include (i) standard, (ii) reverse, (iii) leaver, (iv)

reverse leaver, and (v) double-switcher difference-in-differences. The four first comparisons contrast

a group which switches treatment status (enters or leaves treatment) with a group keeping the

same treatment status (either treated or untreated). Comparisons (v) contrast the evolution of

outcomes of a group joining treatment to a group leaving it.
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In a framework where the effect of the treatment can only be contemporaneous, I first establish

that each of these comparisons is an unbiased estimator of the ATE of the group switching treatment

status if and only if a parallel trends assumption either on the untreated or treated potential outcomes

holds. While most researchers are only familiar with the standard difference-in-differences, these

intermediary results broaden the panel of comparisons available to them. In particular, I show

how the double-switcher difference-in-differences - comparing, across two time periods, a group

switching from being treated to untreated, to a group switching from being untreated to treated -

can help identify treatment effects of interest.

I then establish the implication of these results for the TWFE estimator: it is a weighted sum

of ATEs in different groups and periods, all weighted positively. Each ATE enters proportionally

to the number of comparison groups available to identify it. When allowing for heterogeneous

treatment effects over time and across groups, necessary and sufficient conditions for this result

are surprising: the trends in potential outcomes both when untreated and treated should evolve

similarly across groups. Together, these common trends assumptions imply that ATEs should

follow the same evolution over time across groups, but do not impose homogeneity.

I further investigate the robustness of the static TWFE estimator to the presence of dynamic

treatment effects. On top of parallel trends assumptions, the absence of such dynamics is a sufficient,

but not necessary, condition for the TWFE estimator to weigh all ATEs positively. I provide

conditions, allowing for dynamics, for the TWFE estimator to be heterogeneity-robust. In particular,

I consider a setting where common trends assumptions conditional on being never-treated and

on joining treatment for the first time hold. I assume that the incremental effect of having been

exposed to treatment for n periods is homogeneous across groups for a given time period, while

ATEs of first exposure can be heterogeneous. In this framework, I show that there exist relevant

settings in which all two-by-two comparisons, and thus the TWFE estimator, remain valid.

Finally, I conclude with the two main implications of this paper for applied researchers. First,

the conditions for the TWFE estimator not to be under the threat of negative weights are such that

testing for parallel trends on the untreated potential outcomes is not sufficient. Whenever using

the TWFE estimator, one should also test for parallel trends of potential outcomes across groups

when they are treated. I summarize tests available to the practitioner.1 Second, I take stock of the

fact that the TWFE estimator does not weigh each ATE by the corresponding sample size and

1See Roth (2022) for recommended practices to perform such tests.
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propose alternative estimators. In particular, I exploit the existing valid comparisons which receive

zero-weight in the heterogeneity-robust estimator suggested by de Chaisemartin and d’Haultfoeuille

(2020a). I expand the latter by building an unbiased estimator of the ATT of all switching cells

under less stringent assumptions. I further show that one can build, under adequate restrictions,

unbiased estimators of the ATT - requiring a parallel trends assumption on the untreated potential

outcomes only - and ATE.

Related Literature The difference-in-differences literature has recently put the TWFE estimator

under increased scrutiny. de Chaisemartin and d’Haultfoeuille (2020a) study a general framework

with several groups and time periods where groups can enter and leave treatment, without considering

dynamic treatment effects. They conclude that the TWFE estimator is a weighted sum of ATEs in

each group and period, with weights that may be negative when ATEs are heterogeneous over time

or across groups. Borusyak et al. (2022) reach the same conclusion in the staggered case, where

groups cannot exit treatment.

This paper revisits these results and provides necessary and sufficient conditions for the TWFE

estimator to be robust to heterogeneity in treatment effects. I show that it is not required for

ATEs to be homogeneous across groups, nor over time for the TWFE estimator to weigh all ATEs

positively.

Both Goodman-Bacon (2021) and Strezhnev (2018) provide decompositions of the TWFE

estimator in terms of two-by-two difference-in-differences comparisons to shed light on the origin

of negative weights. Focusing on the staggered setting, Goodman-Bacon (2021) establishes that

negative weights come from the comparisons of late treated units with already-treated units, which

are biased estimators of the corresponding ATE in the presence of heterogeneous treatment effects

over time. These comparisons are thus understood as ‘forbidden comparisons’. Borusyak et al.

(2022) conclude that ‘these comparisons are only valid when the homogeneity assumption is true’.

While Strezhnev (2018) expands the TWFE decomposition to the general case where groups can

leave treatment, he then focuses on the staggered case and reaches the same conclusion.

The novel identification result of this paper builds on these decompositions. By carefully

deriving the conditions which are both necessary and sufficient for the TWFE estimator to be

heterogeneity-robust, I show that the so-called ‘forbidden comparisons’ are actually valid if the

potential outcomes under treatment evolve similarly across groups. Importantly, and in contrast to

the general conclusion of these papers, this does not require treatment effects to be homogeneous
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over time, nor across groups.

Finally, while the above papers have focused on the staggered case, I explore the properties of

each of the five types of two-by-two difference-in-differences comparisons which enter the TWFE

estimator. I establish the assumptions under which each comparison is an unbiased estimator of its

corresponding ATE. On top of allowing to derive the main result of this paper, it also allows to

expand the tool box of the applied economist. Apart from the standard difference-in-differences,

only the reverse difference-in-differences has received some attention in the literature (Kim and Lee,

2019). Additionally, I highlight how the different comparisons can be combined to build unbiased

estimators of the ATT and ATE, as well as to expand the heterogeneity-robust estimator suggested

by de Chaisemartin and d’Haultfoeuille (2020a).

It should be noted that, following de Chaisemartin and d’Haultfoeuille (2020a), I do not consider

cases with non-binary, continuous or several treatments (de Chaisemartin and d’Haultfoeuille,

2018; de Chaisemartin and d’Haultfoeuille, 2020b; Callaway et al., 2021). de Chaisemartin and

D’Haultfoeuille (2022b) and Roth et al. (2023) provide rich reviews of this recent literature.

2 Framework

I use the same framework and notations as de Chaisemartin and d’Haultfoeuille (2020a). In

particular, consider observations that are divided across G groups and T periods. For each group

g in period t, we observe a number Ng,t of individuals. Let us denote Di,g,t the binary treatment

status of individual i in group g at period t, and (Yi,g,t(0), Yi,g,t(1)) the potential outcomes when

untreated and when treated, respectively. The observed outcome of individual i in group g at period

t is denoted Yi,g,t(Di,g,t). The following objects can be defined, for all (g, t) ∈ {1, ...,G} × {1, ..., T}:

Dg,t =
1

Ng,t

Ng,t

∑
i=1

Di,g,t, Yg,t(0) =
1

Ng,t

Ng,t

∑
i=1

Yi,g,t(0),

Yg,t(1) =
1

Ng,t

Ng,t

∑
i=1

Yi,g,t(1), and Yg,t =
1

Ng,t

Ng,t

∑
i=1

Yi,g,t.

where Dg,t, Yg,t(0), Yg,t(1), and Yg,t denote the average treatment, the average potential outcomes

when untreated and when treated, and the average observed outcome in group g at period

t, respectively. Ω collects the potential outcomes and treatment status for all g and t, i.e.

Ω = {Yg,t(0), Yg,t(1),Dg,t}∀g,t.
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I also impose the same assumptions as de Chaisemartin and d’Haultfoeuille (2020a). Discussions

of these assumptions can be found in their paper.

Assumption 1 (Balanced Panel of Groups): ∀(g, t) ∈ {1, ...,G} × {1, ..., T},Ng,t > 0.

Assumption 2 (Sharp Design): ∀(g, t) ∈ {1, ...,G} × {1, ..., T} and i ∈ {1, ...,Ng,t},Di,g,t =Dg,t.

Assumption 3 (Independent Groups): The vectors (Yg,t(0), Yg,t(1),Dg,t)1≤t≤T are mutually inde-

pendent.

Assumption 4 (Strong Exogeneity): ∀(g, t, d) ∈ {1, ...,G} × {2, ..., T} × {0,1},
E(Yg,t(d) − Yg,t−1(d)∣Dg,1, ...,Dg,T ) = E(Yg,t(d) − Yg,t−1(d)).

These assumptions impose very few restrictions on Ω, and in particular do not restrict treatment

effects to be homogeneous across groups, nor over time. It however rules out dynamic treatment

effects, i.e. treatment effects cannot depend on the treatment history of the group. I relax this

assumption in Section 4.3.

Finally, let us define some objects of interest. The ATE of group g in period t, ∆g,t, writes:

∆g,t =
1

Ng,t

Ng,t

∑
i=1
[Yi,g,t(1) − Yi,g,t(0)]

Defining N (1) = ∑i,g,tDi,g,t as the number of treated units, the expected average treatment on the

treated, δTR, writes:

δTR = E
⎡⎢⎢⎢⎢⎣
∑

g,t∶Dg,t=1

Ng,t

N (1)
∆g,t

⎤⎥⎥⎥⎥⎦
We consider the following TWFE regression:

Yg,t = αg + αt + βfeDg,t + ϵg,t (1)

We let β̂fe denote the OLS estimator of the coefficient of Dg,t, with βfe = E[β̂fe]. de Chaisemartin

and d’Haultfoeuille (2020a) show that, under Assumptions 1-4 and a common trends assumption

on untreated potential outcomes, βfe is equal to the expectation of a weighted sum of ∆g,t, with

potentially negative weights when ATEs are heterogeneous across groups or over time.2 This

2Results in de Chaisemartin and d’Haultfoeuille (2020a) are derived when considering the regression of Yi,g,t on
group fixed effects, period fixed effects and Dg,t, i.e. using more disaggregated outcome data. de Chaisemartin and
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result implies that β̂fe may be negative even if all ATEs are positive. The general intuition is that

negative weights arise because the TWFE estimator includes so-called ‘forbidden comparisons’,

comparing the outcome evolution of some groups to invalid control groups, such as always-treated

units (de Chaisemartin and D’Haultfoeuille, 2022b). In the next sections, I revisit these results and

provide sufficient and necessary conditions for the TWFE estimator to weigh all ATEs positively,

while allowing ATEs to be heterogeneous across groups and over time.

3 A General Decomposition of the TWFE Estimator

What are the necessary and sufficient conditions for the TWFE estimator to weigh all ATEs

positively? To answer this question, a crucial first step is to decompose the TWFE estimator as a

weighted sum of standard two-by-two difference-in-differences comparisons. Such a decomposition

will make it straightforward to understand what each difference estimates, and under which

assumptions. Importantly, Strezhnev (2018) provides a decomposition of the TWFE estimator

in the general case. He shows that the TWFE estimator can be written as a uniform average of

difference-in-differences comparisons:

β̂fe =
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]
(2)

I now decompose this object further in order to clarify which comparisons enter the TWFE

estimator.3 In particular, I show that β̂fe is a weighted sum of five different types of two-by-two

comparisons. ∀g ∈ {1, ..,G},∀k ∈ {1, ..,G} ∖ g, ∀t ∈ {1, .., T},∀t′ ∈ {1, .., T} ∖ t, we let β̂DD
g,k,t,t′ denote

the two-by-two comparison of the outcomes of group g and k between periods t and t′:

β̂DD
g,k,t,t′ = (Yg,t − Yg,t′) − (Yk,t − Yk,t′)

We can now define the five objects entering the TWFE estimator:

d’Haultfoeuille (2022b) extend them to the aggregated version considered in this paper. The latter is equivalent to
the one using individual-data, up to re-weighing by the population in each group. Re-weighing only matters for the
variance of the estimator, not its unbiasedness and consistency: we can thus abstract from re-weighing, following
de Chaisemartin and D’Haultfoeuille (2022b).

3Strezhnev (2018) interprets Equation (2) informally, and focusing on the staggered setting.
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Standard Difference-in-Differences, β̂S
g,k,t,t′:

β̂S
g,k,t,t′ = β̂DD

g,k,t,t′ × 1{Dg,t = 1,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 0, t > t′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ωS
g,k,t,t′

(3)

Equation (3) corresponds to the standard difference-in-differences comparison, where the evolution

of the outcome of a group, g, which becomes treated between period t′ and t is compared to the

one of a group, k, which is untreated in both periods.

Reverse Difference-in-Differences, β̂R
g,k,t,t′:

β̂R
g,k,t,t′ = β̂DD

g,k,t,t′ × 1{Dg,t = 1,Dg,t′ = 0,Dk,t = 1,Dk,t′ = 1, t > t′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ωR
g,k,t,t′

(4)

Equation (4) describes the reverse difference-in-differences comparison.4 It contrasts the evolution

of the outcome of a group, g, which becomes treated between period t′ and t with the one of a

group, k, which is treated in both periods.

Leaver Difference-in-Differences, β̂L
g,k,t,t′:

β̂L
g,k,t,t′ = β̂DD

g,k,t,t′ × 1{Dg,t = 1,Dg,t′ = 1,Dk,t = 0,Dk,t′ = 1, t > t′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ωL
g,k,t,t′

(5)

Equation (5) describes the leaver difference-in-differences comparison. It compares the evolution of

the outcome of a group, g, between period t′ and t, which is treated in both periods with the one

of a group, k, which is treated in period t′ but has left treatment in period t. Units which remain

treated are thus used as a control group for units leaving treatment. This comparison does not

exist in a staggered design, where groups cannot leave treatment.

Reverse Leaver Difference-in-Differences, β̂RL
g,k,t,t′:

β̂RL
g,k,t,t′ = β̂DD

g,k,t,t′ × 1{Dg,t = 0,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1, t > t′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ωRL
g,k,t,t′

(6)

4Several studies have used such an empirical strategy, such as Rossi and Villar (2020) and Chabé-Ferret and Voia
(2021).
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Equation (6) describes the reverse leaver difference-in-differences comparison. It compares the

evolution of the outcome of a group, g, between period t′ and t, which is treated in neither of the

two periods, with the one of a group which is treated in period t′ but has left treatment in period t.

Similarly, this comparison does not appear in staggered designs.

Double-Switcher Difference-in-Differences, β̂DS
g,k,t,t′:

β̂DS
g,k,t,t′ = β̂DD

g,k,t,t′ × 1{Dg,t = 1,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1, t > t′}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≡ωDS
g,k,t,t′

(7)

Equation (7) introduces a two-by-two comparison which has received seldom attention in the

literature, the double-switcher difference-in-differences. It compares the evolution of outcomes of

two groups: group g is not treated in period t′ and joins treatment in period t, while group k is

treated in period t′ but leaves treatment in period t.

We can now rewrite the TWFE estimator as a sum, with positive weights, of these five different

types of two-by-two comparisons.

Theorem 1 β̂fe is a weighted sum of five different types of two-by-two difference-in-differences:

β̂fe =
∑t∑t′≠t∑g∑k≠g[β̂S

g,k,t,t′ + β̂R
k,g,t′,t + β̂L

g,k,t,t′ + β̂RL
k,g,t′,t + 2β̂DS

g,k,t,t′]
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

where, for g ≠ k, t ≠ t′ and c ∈ {S,L,R,RL,DS}:

β̂c
g,k,t,t′ = ωc

g,k,t,t′ β̂
DD
g,k,t,t′

Details of the proof are provided in Appendix. The above decomposition shows that, in the general

case, the TWFE estimator includes five types of two-by-two difference-in-differences comparisons.

Each weight simply corresponds to a dummy equal to one each time a relevant comparison group

exists. Next section clarifies what each of these comparisons identifies, and under which assumptions.
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4 Identification

Section 4.1 studies conditions under which each of the five two-by-two comparisons defined above

identifies the ATE of the group switching treatment status. Section 4.2 highlights the implication of

this result for the TWFE estimator. When allowing for heterogeneous treatment effects over time

and across groups, parallel trends assumptions on both untreated and treated potential outcomes

are necessary and sufficient for the latter to be a weighted sum of ATEs, with positive weights.

Finally, Section 4.3 allows for dynamic treatment effects, and provides conditions under which the

static TWFE estimator remains valid.

4.1 The Five Difference-in-Differences Comparisons: Identification

Let us first study separately each of the two-by-two difference-in-differences comparisons that may

be included in the TWFE estimator. In what follows, I consider the set of Ω such that Assumptions

1-4 hold.

Standard Difference-in-Differences, β̂S
g,k,t,t′: Consider two groups g and k, two periods t, t′,

such that t > t′, Dg,t = 1, Dg,t′ = 0, Dk,t = 0 and Dk,t′ = 0. We are thus in the standard case where

we observe a group which remains untreated between period t′ and t, and a group which becomes

treated. It is well-established that the following common trends assumption is required for the

standard difference-in-differences estimator to identify the ATT, i.e. the ATE of group g in time t.

Assumption 5 (Common Trends of the Potential Outcome Without Treatment): For t ≥ 2,

E(Yg,t(0) − Yg,t−1(0)) does not vary across g.

We can write:

Assumption 5 holds if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂S
g,k,t,t′ ∣D] = E[∆g,t∣D] × ωS

g,k,t,t′

where D is the vector of treatment status history for every group. Details can be found in Appendix.

Reverse Difference-in-Differences, β̂R
g,k,t,t′: Consider two groups g and k, two periods t, t′,

such that t > t′, Dg,t = 1, Dg,t′ = 0, Dk,t = 1 and Dk,t′ = 1. We are in a case where always-treated

units are used as a control group for late-treated units. These comparisons are shown to be at the
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origin of negative weights in the TWFE estimator (Goodman-Bacon, 2021), and are presented as

‘forbidden comparisons’. In particular, under Assumption 5, we have:

E[β̂R
g,k,t,t′ ∣D] = E[∆g,t − (∆k,t −∆k,t′)∣D] × ωR

g,k,t,t′

Thus, if E[∆k,t∣D] ≠ E[∆k,t′ ∣D] and E[∆k,t∣D] ≠ E[∆g,t∣D], i.e. in the presence of heterogeneous

treatment effects over time and across groups, these comparisons are biased estimators of E[∆g,t∣D].5

This is why they are typically understood as forbidden.

Yet, Kim and Lee (2019) show that, under a common trends assumption on the potential

outcomes under treatment, these two-by-two comparisons are unbiased estimators of the ATE of

group g in the pre-treatment period, t′. We thus consider the following assumption:

Assumption 6 (Common Trends of the Potential Outcome With Treatment): For t ≥ 2, E(Yg,t(1)−
Yg,t−1(1)) does not vary across g.

In particular, adding and subtracting E[Yg,t′(1)∣Dg,t = 1,Dg,t′ = 0,Dk,t = 1,Dk,t′ = 1], we have:

E[β̂DD
g,k,t,t′ ∣Dg,t = 1,Dg,t′ = 0,Dk,t = 1,Dk,t′ = 1]

=E[∆g,t′ + (Yg,t(1) − Yg,t′(1) − (Yk,t(1) − Yk,t′(1)))∣Dg,t = 1,Dg,t′ = 0,Dk,t = 1,Dk,t′ = 1]

In a framework allowing for heterogeneous treatment effects, Assumption 6 is thus both necessary

and sufficient for the reverse difference-in-differences to identify the ATE of the switching group in

period t′. We can write:

Assumption 6 holds if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂R
g,k,t,t′ ∣D] = E[∆g,t′ ∣D] × ωR

g,k,t,t′

Overall, these comparisons should not be systematically understood as forbidden when ATEs are

allowed to be heterogeneous: they require a different common trends assumption to be valid.

5Note that this qualifies the statement of Goodman-Bacon (2021) who notes that, when effects vary over time
but not across units, time-varying effects bias estimates away from their corresponding ATE. However, in a static
framework, when treatment effects are homogeneous across groups in a given time period but not over time, we
would also have an unbiased estimator of a relevant ATE:

E[β̂R
g,k,t,t′ ∣D] = E[∆k,t′ ∣D] × ω

R
g,k,t,t′ = E[∆g,t′ ∣D] × ω

R
g,k,t,t′

Thus, under a common trends assumption on the untreated potential outcomes only, reverse difference-in-differences
are forbidden comparisons if treatment effects vary over time and across groups, and not merely over time.
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Leaver Difference-in-Differences, β̂L
g,k,t,t′: Consider two groups g and k, two periods t, t′, such

that t > t′, Dg,t = 1, Dg,t′ = 1, Dk,t = 0 and Dk,t′ = 1. We are in a case where always-treated units

are used as a control group for a group which is initially treated, and leaves treatment in period t.

Taking the expectation and adding and subtracting E(Yk,t(1)∣Dg,t = 1,Dg,t′ = 1,Dk,t = 0,Dk,t′ = 1),
we find:

E[β̂DD
g,k,t,t′ ∣Dg,t = 1,Dg,t′ = 1,Dk,t = 0,Dk,t′ = 1]

=E[∆k,t + (Yg,t(1) − Yg,t′(1) − (Yk,t(1) − Yk,t′(1)))∣Dg,t = 1,Dg,t′ = 1,Dk,t = 0,Dk,t′ = 1]

That is:

Assumption 6 holds if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂L
g,k,t,t′ ∣D] = E[∆k,t∣D] × ωL

g,k,t,t′

Reverse Leaver Difference-in-Differences, β̂RL
g,k,t,t′: Consider two groups g and k, two periods

t, t′, such that t > t′, Dg,t = 0, Dg,t′ = 0, Dk,t = 0 and Dk,t′ = 1. In this case, never-treated units are

used as a control group for a group which is initially treated, and leaves treatment in period t.

Taking the expectation and adding and subtracting E(Yk,t′(0)∣Dg,t = 0,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1),
we can show that this comparison identifies the ATE of group k in period t′ under Assumption 5:

E[β̂DD
g,k,t,t′ ∣Dg,t = 0,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1]

=E[∆k,t′ + (Yg,t(0) − Yg,t′(0) − (Yk,t(0) − Yk,t′(0)))∣Dg,t = 0,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1]

We thus have:

Assumption 5 holds if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂RL
g,k,t,t′ ∣D] = E[∆k,t′ ∣D] × ωRL

g,k,t,t′

Double-Switcher Difference-in-Differences, β̂DS
g,k,t,t′: Consider two groups g and k, two periods

t, t′, such that t > t′, Dg,t = 1, Dg,t′ = 0, Dk,t = 0 and Dk,t′ = 1. We are in a case where we compare

the outcomes of two groups which treatment status change over time in different directions. Group

g is initially not treated, and becomes treated in period t. In contrast, group k is initially treated,

and leaves treatment in period t. In this case, the sum of the ATE of group g in period t and

of group k in period t′ can be identified if the standard common trends assumption on potential
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outcomes when untreated holds:

E[β̂DD
g,k,t,t′ ∣Dg,t = 1,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1]

= E[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)

+ (Yg,t(0) − Yg,t(0)) + (Yk,t′(0) − Yk,t′(0))∣Dg,t = 1,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1]

= E[∆g,t +∆k,t′ ∣Dg,t = 1,Dg,t′ = 0,Dk,t = 0,Dk,t′ = 1]

Overall, we thus have:6

Assumption 5 if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂DS
g,k,t,t′ ∣D] = E[∆g,t +∆k,t′ ∣D] × ωDS

g,k,t,t′

Note that this result is of interest in itself. It implies that, in such a setting with two groups

and two periods, if one is willing to assume that ATE are homogeneous across time and across

groups, a simple two-by-two difference-in-differences would allow to recover the ATT under the

standard common trends assumption even in cases where we observe groups changing treatment

status in opposite directions over time.7

On top of this, this result implies that one can recover an additional treatment effect which

may be of interest in certain settings, even under heterogeneous treatment effects. For example,

consider two groups and three periods, such that D1,1 = D1,2 = 0, D1,3 = 1, D2,1 = 0, D2,2 = 1, and
D2,3 = 0. The observations of the two first periods can be used to recover ∆2,2 under Assumption 5.

The information contained in the last period would usually be lost. Yet, comparing the changes

in outcomes of the two groups in periods 2 and 3 allows to identify the sum of ∆2,2 and ∆1,3.

Subtracting the first from the second comparison would thus allow to identify ∆1,3.

6Note that, alternatively, we can show:

Assumption 6 holds if and only if ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂DS
g,k,t,t′ ∣D] = E[∆g,t′ +∆k,t∣D] × ω

DS
g,k,t,t′

7Note that assuming that ATE are homogeneous will not be necessary to show that under Assumptions 5 and 6
none of the ATE that enter the TWFE estimator are weighted negatively.
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4.2 A General Decomposition Result

Section 3 shows that the TWFE estimator is a weighted sum of five different objects. Section

4.1 establishes the assumptions under which each of these objects is an unbiased estimator of its

corresponding ATE. Overall, we obtain the following decomposition:

Theorem 2

E [β̂fe∣D] =
∑t∑g [E [∆g,t∣D]∑t′≠t∑k≠g [ωS

g,k,t,t′ + ωR
g,k,t′,t + ωL

k,g,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′ + 2ωDS
k,g,t′,t]]

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

∀Ω such that Assumptions 1-4 hold, if and only if, Assumptions 5 and 6 hold.

Theorem 2 is obtained by taking the expectation of the expression of β̂fe provided in Theorem 1,

and plugging in each term derived in Section 4.1. Details of the proof are provided in Appendix.

Theorem 2 establishes that, in a general framework where there exist groups switching on and off

treatment and where treatment effects are not restricted to be homogeneous across groups nor over

time, common trends conditions on both treated and untreated potential outcomes are necessary

and sufficient for the TWFE estimator to always identify a convex combination of ATEs.8 In

particular, the TWFE estimator will never be negative when all ATEs are positive. Note that

Assumptions 5 and 6 are also both imposed by de Chaisemartin and d’Haultfoeuille (2020a) for the

estimator they propose as an alternative to the TWFE estimator to be unbiased.

The weights derived in Theorem 2 are very intuitive: they correspond to dummies equal to one

each time a relevant comparison group, as defined by the five types of two-by-two comparisons in

Section 3, exists. Each of the ATEs thus enters proportionally to the number of comparison groups

available to identify it.

Note that if we consider a framework where there exist no groups entering nor leaving treatment

while some remain treated, then conditions for the TWFE estimator not to weigh any ATEs

negatively are weaker. In particular, only the common trends assumption on the untreated potential

outcomes must hold. This however rules out the staggered difference-in-differences framework.

When, in contrast, there exist no groups entering nor leaving treatment while some remain untreated,

the common trends assumption on the untreated potential outcomes can be violated as long as its

counterpart for treated potential outcomes holds.

8Note indeed that
∑t∑g∑t′≠t∑k≠g[ωS

g,k,t,t′
+ωR

g,k,t′,t
+ωL

k,g,t,t′
+ωRL

k,g,t′,t
+2ωDS

g,k,t,t′
+2ωDS

k,g,t′,t
]

∑t∑g∶Dg,t=1
∑k∶Dk,t=0

∑t′≠t[1−Dg,t′+Dk,t′ ] = 1.
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4.3 Extension: Introducing Dynamic Treatment Effects

The above decomposition is derived in the case where treatment can only have a contemporaneous

effect on the outcome. Let us now introduce the dynamic potential outcome framework, following

Robins (1986) and de Chaisemartin and D’Haultfoeuille (2022a). In particular, we denote Yg,t(d)
the average potential outcome for group g in period t when facing the treatment sequence d ∈ {0, 1}T .
The realized outcome of group g writes Yg,t = Yg,t(Dg,1,Dg,2, ...,Dg,T ) = Yg,t(Dg,T ), where Dg,t is the

vector of treatment status for group g up to period t. Now, Ω is the vector {(Yg,t(d))d∈{0,1}T ,Dg,t}∀g,t.
We only maintain Assumptions 1 and 2. Let us also follow de Chaisemartin and D’Haultfoeuille

(2022a) and impose that a group’s current outcome does not depend on its future treatment status,

as well as a common trends assumption on the never-treated potential outcomes:

Assumption 7 For all g, for all d ∈ {0,1}T , Yg,t(d) = Yg,t(d1, ..., dt).

Assumption 8 ∀t ≥ 2,∀g,E(Yg,t(0t) − Yg,t−1(0t−1)∣D), where 0t corresponds to a vector of zeros

of length t, does not vary across g.

Potential outcomes can now depend on past treatments: Yg,t(Dt−1, dt) may be different from

Yg,t(D
′

t−1, dt) where Dt−1 ≠ D
′

t−1. Can the static TWFE estimator (Equation (1)) be robust to

dynamic treatment effects? I now use the decomposition provided in Theorem 19 to show that it

is the case in some relevant scenarios. Let us assume that untreated potential outcomes do not

depend on the treatment history of a group, that is:

Assumption 9 (No Dynamics for Untreated Potential Outcomes):

Yg,t(Dt−1,0) = Yg,t(D
′

t−1,0), ∀Dt−1,D
′

t−1 ∈ {0,1}t−1

A General Decomposition Result in the Dynamic Framework Given Assumptions 8 and 9,

the standard, reverse leaver and double-switcher difference-in-differences remain unbiased estimators

of their corresponding ATEs even in the presence of dynamics. Let us now consider the reverse

difference-in-differences, where we compare group g switching from untreated to treated between

period t and t′, to group k remaining treated across the two periods. Adding and subtracting

9Note indeed that this decomposition does not rely on any assumptions about the true data generating process
for Yg,t, and thus remains valid in the presence of dynamic treatment effects.
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E[Yg,t′(Dg,t′−1,1)∣D], we have:

E[β̂DD
g,k,t,t′ ∣D] = E[∆g,t′(Dg,t′−1) + Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1))∣D]

where ∆g,t′(Dg,t′−1) = Yg,t′(Dg,t′−1,1) − Yg,t′(Dg,t′−1,0), the treatment effect of group g in time t′

conditional on having faced treatment history Dg,t′−1. A necessary and sufficient condition for the

reverse two-by-two comparisons included in the TWFE estimator is thus that, conditional on the

treatment history of each group, their treated potential outcomes would follow the same trend. The

same assumption is required for the leaver difference-in-differences. The counterpart of Theorem 2

in this framework is thus as follows:

Theorem 3

E [β̂fe∣D] =
∑t∑g [E [∆g,t(Dg,t−1)∣D]∑t′≠t∑k≠g [ωS

g,k,t,t′ + ωR
g,k,t′,t + ωL

k,g,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′ + 2ωDS
k,g,t′,t]]

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

∀Ω such that Assumptions 1-2, 7-9 hold, if and only if, ∀t > 2,E[Yg,t(Dg,t−1, 1)−Yg,t−1(Dg,t−2, 1)∣D]
does not vary across g.

The proof follows the same argument as for Theorem 2. Note that, together with Assumption 6,

the absence of dynamic treatment effects is thus a sufficient condition for the TWFE estimator not

to weigh any ATEs negatively. However, it is not necessary, and I now show that the condition in

Theorem 3 can be satisfied even in the presence of dynamic treatment effects.

Sufficient Conditions in the Presence of Dynamic Treatment Effects Let us now derive

sufficient conditions for the TWFE estimator to be heterogeneity-robust even in the presence of

dynamics. I impose the following assumption:

Assumption 10

1. (Common Trends on the Potential Outcome of First Exposure to Treatment:) For t ≥ 2,

E(Yg,t(0t−1,1) − Yg,t−1(0t−2,1)∣D) does not vary across g.

2. (Homogeneous Effect from n-period Treatment Exposure:) ∀g, t, the ATE of group g in period

t conditional on history Dg,t−1 writes: ∆g,t(Dg,t−1) =∆g,t(0t−1) + τt(∑t−1
ℓ=1Dg,ℓ), with τt(0) = 0.
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Assumption 10.1. is a parallel trends assumption on treated potential outcomes, conditional on not

having been treated before. This simply means that the difference in outcomes when being treated

for the first time in period t or in period t − 1 would be the same across groups.

Assumption 10.2. defines the ATE of group g in period t as being equal to the sum of the ATE of

the group if it was first exposed to treatment in t, and the effect of having been exposed to treatment

for ∑t−1
ℓ=1Dg,ℓ periods prior to t, τt(∑t−1

ℓ=1Dg,ℓ). The latter is a period-t specific function, taking as

argument the group’s number of periods of exposure to treatment prior to t. This implies that the

incremental effect of having been exposed to treatment for n periods is homogeneous across groups

for a given t. Note that this assumption does not rule out treatment effect heterogeneity across

groups, nor over time. Indeed, the first-exposure ATE is g, t-specific. Further, the incremental

effect τt(n) is also allowed to vary across time for a given n.

Overall, Assumptions 8 to 10 imply that E[Yg,t(Dk,t−1,1) − Yg,t′(Dk,t′−1,1) − (Yk,t(Dk,t−1,1) −
Yk,t′(Dk,t′−1, 1)∣D] is equal to zero.10 Under these assumptions, we can derive the following theorem:

Theorem 4 Suppose Assumptions 1-2, 7-10 hold. If:

1. ∄g, k ≠ g, t, t′ ≠ t such that ωR
g,k,t′,t = 1, or if g, k ≠ g, t, t′ ≠ t for which ωR

g,k,t′,t = 1 are such that

∑t′−1
ℓ=1 Dg,ℓ = ∑t′−1

ℓ=1 Dk,ℓ and,

2. ∄g, k ≠ g, t, t′ ≠ t such that ωL
k,g,t,t′ = 1, or if g, k ≠ g, t, t′ ≠ t for which ωL

k,g,t,t′ = 1 are such that

∑t′−1
ℓ=1 Dg,ℓ = ∑t′−1

ℓ=1 Dk,ℓ,

then,

E [β̂fe∣D] =
1

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]
×

⎡⎢⎢⎢⎣
∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t(Dg,t−1)∣D]∑

t′≠t
∑
k≠g
[ωS

g,k,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′ + 2ωDS
k,g,t′,t]

⎤⎥⎥⎥⎦

+∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t(Dk,t−1)∣D]∑

t′≠t
∑
k≠g
[ωR

g,k,t′,t + ωL
k,g,t,t′]

⎤⎥⎥⎥⎦

⎤⎥⎥⎥⎦

Details can be found in Appendix. This result stems from the fact that, first, reverse or leaver

difference-in-differences between t′ and t when both groups have been exposed to treatment the

10Details can be found in Appendix.
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same number of periods up to t′ − 1 and up to period t− 1 identifies the ATE of the group switching

treatment status under its own history. This would for example happen when comparing periods

2 and 4 of group g with Dg,t = (0,0,1,1) and group k with Dk,t = (0,1,0,1). Second, it relies

on the fact that when the number of periods under treatment prior to the treated period of the

switching group is the same as in the comparison group, reverse and leaver difference-in-differences

identify the ATE of the switching group under the history of the comparison group. For example,

comparing a group g such that Dg,t = (1,0,0,1) to a group k with Dk,t = (0,0,1,1) in periods 3

and 4 allows to identify the ATE of group g in period 3 when being exposed to treatment for the

first time.

Overall, the absence of dynamic treatment effects over time is a sufficient condition for the

TWFE estimator to be heterogeneity-robust. This may be a plausible assumption when individuals

stay within a group g only one time period. For example, when evaluating educational policies, the

treatment unit is often a grade within a school: students within this group will be treated a single

period, limiting the potential for dynamic treatment effects.

However, I also show that the TWFE estimator remains valid in relevant settings, even in the

presence of dynamic treatment effects. The framework provided should help researchers evaluate

whether their setting contains comparisons threatening the validity of the static TWFE estimator.

Under the dynamics described in Assumption 10 and when reverse and leaver difference-in-differences

exist, the potential for the TWFE estimator to weigh biased estimators of ATEs is null under two

conditions. First, the existing reverse difference-in-differences should be such that the cumulative

number of treated periods is the same in the two groups prior to the last period of the comparison.

Second, the existing leaver difference-in-differences should be such that the cumulative number of

treated periods is the same in the two groups prior to the first period of the comparison.

5 Implications for Empirical Analyses

I now derive the implications of Section 4.2 for researchers. First, when using the TWFE estimator,

researchers should test for both untreated and treated parallel trends. Second, I provide alternative

estimators exploiting the two-by-two comparisons highlighted above.
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5.1 Testing for Common Trends on Treated Potential Outcomes

To the extent that the static TWFE estimator remains broadly used in empirical studies, it is

crucial to establish under which assumptions all ATEs it includes are weighted positively. Suppose

the researcher is in a framework where dynamic treatment effects can safely be discarded. As shown

in Section 4.2, the TWFE estimator will then be heterogeneity-robust under two common trends

assumption, Assumptions 5 and 6.

Overall, in a setting with several groups and time periods, when using the TWFE estimator,

one should test not only for common trends on the potential outcomes when untreated, but also

when treated.11 While Assumption 6 is not directly testable, it has a natural testable counterpart,

suggested by Kim and Lee (2019) who study the reverse difference-in-differences. In particular, one

can use groups which stay treated over at least two periods in order to compare the evolution of

their outcomes. In particular, one should test whether the following relation holds:

E (Yg,t − Yg,t′ ∣Dg,t = 1,Dg,t′ = 1) = E (Yk,t − Yk,t′ ∣Dk,t = 1,Dk,t′ = 1)

5.2 Alternative Estimators

Even if non-negative, the weights derived in Section 4.2 do not correspond to each group’s sample

size. This might make the TWFE estimator difficult to interpret, and implies that it is generally

a biased estimator of δTR. This may motivate the use of other heterogeneity-robust estimators,

such as the one suggested by de Chaisemartin and d’Haultfoeuille (2020a), which estimates a

quantity which may be of interest: the ATE of switching cells.12 This paper highlights additional

comparisons which can be exploited to construct alternative estimators. I first show that one can

build an augmented, unbiased estimator of the ATE of switching cells, while relaxing some of the

assumptions de Chaisemartin and d’Haultfoeuille (2020a) impose. Second, I provide an unbiased

estimator of the ATT, δTR, and of the ATE.

11Note that one should perform a similar test when using the heterogeneity-robust estimator provided by
de Chaisemartin and d’Haultfoeuille (2020a).

12Note, however, that it is not an unbiased estimator of the ATT.

18



5.2.1 Unbiased Estimator of the ATE of Switching Cells

Let us consider the following object, the ATE of all switching cells:

δS = E
⎡⎢⎢⎢⎢⎣

1

NS
∑

(i,g,t)∶t≥2,Dg,t≠Dg,t−1

[Yi,g,t(1) − Yi,g,t(0)]
⎤⎥⎥⎥⎥⎦

where NS = ∑(g,t)∶t≥2,Dg,t≠Dg,t−1
Ng,t.

de Chaisemartin and d’Haultfoeuille (2020a) provide an unbiased estimator of this object,

under assumptions ensuring the existence of relevant comparison groups. I now show that an

unbiased estimator of δS can be built while relaxing these requirements. This estimator exploits

the additional comparisons highlighted above.

Assumption 11 (Mean Independence between a Group’s Outcome and Other Group Treatments):

For all g and t, E[Yg,t(0)∣D] = E[Yg,t(0)∣Dg] and E[Yg,t(1)∣D] = E[Yg,t(1)∣Dg].

Assumption 12 (Existence of Stable Groups): For all t ≥ 2:

(i) If there is at least one g ∈ {1, ...,G} such that Dg,t−1 = 0, Dg,t = 1, then 1) there exists at least

one g′ ≠ g, g′ ∈ {1, ...,G} such that either Dg′,t−1 =Dg′,t = 0 or 2) g is such that Dg,t+1 = 0 and

there exists at least one g′ such that Dg′,t =Dg′,t+1 = 0.

(ii) If there is at least one g ∈ {1, ...,G} such that Dg,t−1 = 1, Dg,t = 0, then 1) there exists at least

one g′ ≠ g, g′ ∈ {1, ...,G} such that either Dg′,t−1 =Dg′,t = 1 or 2) g is such that Dg,t+1 = 1 and

there exists at least one g′ such that Dg′,t =Dg′,t+1 = 1.

I follow de Chaisemartin and d’Haultfoeuille (2020a) in imposing Assumption 11. However, I relax

the assumptions they impose with respect to the existence of ‘stable groups’, which correspond to

Assumption 12(i)1) and Assumption 12(ii)1). They require the existence of a group which stays

untreated (treated, respectively) over two consecutive periods if there exists a group which joins

(leaves, respectively) treatment over these periods. When such assumptions hold, one can identify

the ATE in period t for each group switching treatment status between t − 1 and t, and hence δS.

Yet, if these assumptions fail to hold, I now show that one can exploit other comparisons to

identify the ATE in period t for each group switching treatment status between t − 1 and t. In

particular, while the estimator suggested by de Chaisemartin and d’Haultfoeuille (2020a) comprises

only two kinds of comparisons, at least four two-by-two comparisons could be included.13 First, one

13For simplicity, I do not consider using the double-switcher difference-in-differences comparison.
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could use the two-by-two comparisons initially thought of as ‘forbidden comparisons’, the reverse

difference-in-differences. Second, one could include the reverse leaver difference-in-differences.

Assumptions 12(i)2) and 12(ii)2) define the alternative stable groups which are needed to derive

an unbiased estimator of δS when Assumptions 12(i)1) or 12(ii)1) are not satisfied. Let us now

define the augmented estimator. For all t ∈ {2, ..., T} and for all (d, d′) ∈ {0,1}2, let

Nd,d′,t = ∑
g∶Dg,t=d,Dg,t−1=d′

Ng,t

denote the number of observations with treatment d′ at period t−1 and d at period t. The following

objects will be included in the augmented estimator:

DID+,g,t = 1{Dg,t = 1,Dg,t−1 = 0}
⎡⎢⎢⎢⎢⎣
(Yg,t − Yg,t−1) − ∑

k∶Dk,t=Dk,t−1=0

Nk,t

N0,0,t

(Yk,t − Yk,t−1)
⎤⎥⎥⎥⎥⎦

DID−,g,t = 1{Dg,t = 0,Dg,t−1 = 1}
⎡⎢⎢⎢⎢⎣

∑
k∶Dk,t=1,Dk,t−1=1

Nk,t

N1,1,t

(Yk,t − Yk,t−1) − (Yg,t − Yg,t−1)
⎤⎥⎥⎥⎥⎦

DIDR
+,g,t = 1{Dg,t = 1,Dg,t−1 = 0}

⎡⎢⎢⎢⎢⎣
(Yg,t − Yg,t−1) − ∑

k∶Dk,t=Dk,t−1=1

Nk,t

N1,1,t

(Yk,t − Yk,t−1)
⎤⎥⎥⎥⎥⎦

DIDR
−,g,t = 1{Dg,t = 0,Dg,t−1 = 1}

⎡⎢⎢⎢⎢⎣
∑

k∶Dk,t=0,Dk,t−1=0

Nk,t

N0,0,t

(Yk,t − Yk,t−1) − (Yg,t − Yg,t−1)
⎤⎥⎥⎥⎥⎦

DID+,g,t and DID−,g,t are defined in a similar fashion as in de Chaisemartin and d’Haultfoeuille

(2020a). Following them, we let DID+,g,t = 0 if there is no group such that Dg,t = 1 and Dg,t−1 = 0
or no group such that Dg,t =Dg,t−1 = 0. Similarly, we let DID−,g,t = 0 if there is no group such that

Dg,t = 0 and Dg,t−1 = 1 or no group such that Dg,t =Dg,t−1 = 1. We follow the same rule for the two

additional objects. We let DIDR
+,g,t = 0 if there is no group such that Dg,t = 1 and Dg,t−1 = 0 or

no group such that Dg,t = Dg,t−1 = 1. Similarly, we let DID−,g,t = 0 if there is no group such that

Dg,t = 0 and Dg,t−1 = 1 or no group such that Dg,t =Dg,t−1 = 0.
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Finally, let us define the augmented estimator of δS:

DIDA
M =

T

∑
t=2

⎡⎢⎢⎢⎢⎣

1

NS
∑

g∶Dg,t=1,Dg,t−1=0
Ng,t(1{∃k ≠ g,Dk,t =Dk,t−1 = 0}DID+,g,t

+ 1{∄k ≠ g,Dk,t =Dk,t−1 = 0}DIDR
−,g,t+1)

+ 1

NS
∑

g∶Dg,t=0,Dg,t−1=1
Ng,t (1{∃k ≠ g,Dk,t =Dk,t−1 = 1}DID−,g,t

+ 1{∄k ≠ g,Dk,t =Dk,t−1 = 1}DIDR
+,g,t+1) ]

Theorem 5 If Assumption 1, 2, 4-6, 11-12 hold, then E[DIDA
M] = δS.

The proof, following closely the steps of de Chaisemartin and d’Haultfoeuille (2020a), is provided in

Appendix. This estimator uses the same comparisons as the one suggested by de Chaisemartin and

d’Haultfoeuille (2020a). However, when a given comparison is equal to zero due to the absence of a

stable group, it augments it by using either the reverse or reverse leaver difference-in-differences.

Note that these two comparisons contrast outcomes between t + 1 and t, as they identify the ATE

of the switching group in the period before it switches treatment status.

5.2.2 Unbiased Estimators of the ATT and ATE

Each two-by-two comparison highlighted in Section 3 is an unbiased estimator of the ATE of

the group switching treatment status. Yet, most of them receive a weight equal to zero in the

heterogeneity-robust estimator provided by de Chaisemartin and d’Haultfoeuille (2020a). Moreover,

the latter is not an unbiased estimator of the ATT, δTR. I now show that one can exploit the

comparisons identifying the ATE of the switching group when it is treated, the standard and reverse

leaver difference-in-differences, to build an estimator of δTR.

Assumption 13 (Existence of Stable Groups): For all g, t such that Dg,t = 1, there exists at least

one group k and time period t′ such that ωS
g,k,t,t′ = 1 or ωRL

k,g,t′,t = 1.

Assumption 13 simply specifies that, for each group g treated in period t, there exists at least

one group and time period such that a comparison allowing to identify its ATE can be performed.

We can then re-weigh appropriately the existing standard and reverse leaver difference-in-differences
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identifying the ATE corresponding to group g in period t when Dg,t = 1 in order to build an

estimator of δTR. We obtain the following estimator:

DIDTR = 1

N (1)
∑

g,t∶Dg,t=1
Ng,t

⎡⎢⎢⎢⎢⎣

∑k≠g∑t′≠t [β̂S
g,k,t,t′ + β̂RL

k,g,t′,t]
∑k≠g∑t′≠t [ωS

g,k,t,t′ + ωRL
k,g,t′,t]

⎤⎥⎥⎥⎥⎦

Theorem 6 If Assumption 1, 2, 4-6, 11 and 13 hold, then E[DIDTR] = δTR.

The proof is immediate, as Section 4.1 establishes that each of the two-by-two comparisons

incorporated in DIDTR identifies the ATE of group g in t. It thus suffices to re-weigh each available

comparison appropriately to form an unbiased estimator of the ATT.14

Finally, one could additionally use the reverse and leaver difference-in-differences which identify

the ATE of the group switching status at the time where it is untreated in order to identify the

ATE, δT :

δT = E
⎡⎢⎢⎢⎢⎣

1

N
∑
(i,g,t)
[Yi,g,t(1) − Yi,g,t(0)]

⎤⎥⎥⎥⎥⎦
Building an unbiased estimator of this object requires to assume that relevant comparisons can be

performed.

Assumption 14 (Existence of Stable Groups): For all g, t, there exists at least one group k and

time period t′ such that ωS
g,k,t,t′ = 1 or ωR

g,k,t′,t = 1 or ωRL
k,g,t′,t = 1 or ωL

k,g,t,t′ = 1.

We can then define:

DIDT = 1

N
∑
g,t

Ng,t

⎡⎢⎢⎢⎢⎣

∑k≠g∑t′≠t [β̂S
g,k,t,t′ + β̂RL

k,g,t′,t + β̂L
k,g,t,t′ + β̂R

g,k,t′,t]
∑k≠g∑t′≠t [ωS

g,k,t,t′ + ωRL
k,g,t′,t + ωL

k,g,t,t′ + ωR
g,k,t′,t]

⎤⎥⎥⎥⎥⎦

where N is the total number of observations in the sample.

Theorem 7 If Assumption 1, 2, 4-6, 11 and 14 hold, then E[DIDT ] = δT .

Again, the proof is immediate and stems from the fact that each of the comparisons included in

DIDT identifies the ATE of group g in period t, irrespective of its treatment status.15

14Note that the comparisons included in this estimator are also unbiased in the dynamic framework considered in
Section 4.3.

15Note that I derive this estimator within a static framework. It could be easily adapted to the framework of
Section 4.3 if one is interested in the sample ATE even in the presence of dynamic treatment effects. It would require
to consider either frameworks in which all comparisons are unbiased estimators of their corresponding ATE, or by
including only valid comparisons in the estimator.
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6 Conclusion

Difference-in-differences is one of the most popular quasi-experimental methods to estimate causal

effects. Most empirical applications have yet departed from the traditional two-group two-period

setting, for which it is established that comparing the evolution of the outcome of interest before

and after a group receives a treatment to the one of a never-treated group identifies the ATT.

With several groups and periods, researchers will typically interpret the parameter of the treatment

dummy in a TWFE regression as the ATT. Yet, recent developments in the difference-in-differences

literature have concluded that, under the standard common trends assumption, the TWFE estimator

may weigh negatively some ATEs in the presence of heterogeneous treatment effects.

This paper provides necessary and sufficient assumptions for the TWFE estimator to weigh all

the ATEs it includes positively. When only contemporaneous treatment effects are considered, I

show that it requires a common trends assumptions on both the treated and untreated potential

outcomes. I further consider the presence of dynamic treatment effects, and show that the TWFE

estimator remains valid under plausible conditions.

To derive this result, I decompose the TWFE estimator and show that it may include five

different types of standard two-by-two comparisons, all entering positively. I then study these

comparisons separately and find that each is an unbiased estimator of the ATE of the group

switching treatment status under either a common trends assumption on potential outcomes when

treated or when untreated. Under these assumptions, I show that the TWFE estimator weighs

each ATE proportionally to the number of comparison groups available to identify it. Finally, I

show how to combine the highlighted comparisons in order to construct unbiased estimators of the

ATT and ATE. I also use them to build an unbiased estimator of the ATE of all switching cells

under less stringent assumptions than de Chaisemartin and d’Haultfoeuille (2020a).

As noted by de Chaisemartin and D’Haultfoeuille (2022b), ‘understanding the circumstances

where TWFE and heterogeneity-robust difference-in-differences estimators are more likely to differ

is an important question’. Results derived above are key to understand why the TWFE and

heterogeneity-robust difference-in-differences estimators may be very similar in practice. The valid

comparisons highlighted in the paper may also open the way to developing heterogeneity-robust

estimators exploiting the variation present in the data in a more comprehensive manner.
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A Appendix

A.1 Proof of Theorem 1

We take as a point of departure the decomposition of Strezhnev (2018):

β̂fe =
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]
(8)

Let us focus on the numerator:

∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′≠t
[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

=∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′<t
[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
A

−∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′>t
[(Yg,t′ − Yg,t) − (Yk,t′ − Yk,t)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

Let us start by decomposing A:

A =∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′<t

⎡⎢⎢⎢⎢⎣
∑

g∶Dg,t′=1

∑
k∶Dk,t′=1

[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

+ ∑
g∶Dg,t′=1

∑
k∶Dk,t′=0

[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

+ ∑
g∶Dg,t′=0

∑
k∶Dk,t′=0

[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

+ ∑
g∶Dg,t′=0

∑
k∶Dk,t′=1

[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]
⎤⎥⎥⎥⎥⎦
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Similarly, we can decompose B:

B =∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′>t

⎡⎢⎢⎢⎢⎣
∑

g∶Dg,t′=1

∑
k∶Dk,t′=1

[(Yg,t′ − Yg,t) − (Yk,t′ − Yk,t)]

+ ∑
g∶Dg,t′=1

∑
k∶Dk,t′=0

[(Yg,t′ − Yg,t) − (Yk,t′ − Yk,t)]

+ ∑
g∶Dg,t′=0

∑
k∶Dk,t′=0

[(Yg,t′ − Yg,t) − (Yk,t′ − Yk,t)]

+ ∑
g∶Dg,t′=0

∑
k∶Dk,t′=1

[(Yg,t′ − Yg,t) − (Yk,t′ − Yk,t)]
⎤⎥⎥⎥⎥⎦

The second term of A and B are the same, they will thus disappear when computing A-B. We thus

have, using the notations defined in Section 3:

∑
t
∑

g∶Dg,t=1
∑

k∶Dk,t=0
∑
t′≠t
[(Yg,t − Yg,t′) − (Yk,t − Yk,t′)]

=∑
t
∑
t′≠t
∑
g
∑
k≠g
[β̂S

g,k,t,t′ + β̂R
k,g,t′,t + β̂L

g,k,t,t′ + β̂RL
k,g,t′,t + 2β̂DS

g,k,t,t′]

Hence, we can write:

β̂fe =
∑t∑t′≠t∑g∑k≠g[β̂S

g,k,t,t′ + β̂R
k,g,t′,t + β̂L

g,k,t,t′ + β̂RL
k,g,t′,t + 2β̂DS

g,k,t,t′]
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

(9)

A.2 Section 4: Proofs

A.2.1 The Five Difference-in-Differences Comparisons: Identification

Let us focus on the standard difference-in-differences. We want to prove that Assumption 5 holds if

and only if, ∀g, k ≠ g, t, t′ ≠ t,∀Ω,E[β̂S
g,k,t,t′ ∣D] = E[∆g,t∣D] × ωS

g,k,t,t′ .

First, it is well known that Assumption 5 is a sufficient condition for the standard difference-

in-differences to identify the ATE of the group joining treatment. Let us now show that when

Assumption 5 does not hold, it is not true that E[β̂S
g,k,t,t′ ∣D] = E[∆g,t∣D]×ωS

g,k,t,t′ , ∀g, k ≠ g, t, t′ ≠ t
and ∀Ω.

Let us assume that Assumption 5 does not hold. Then, ∃g, k ≠ g, t, t′ ≠ t such that E[Yg,t(0) −
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Yg,t′(0)∣D] ≠ E[Yk,t(0) − Yk,t′(0)∣D]. Let us consider Ω such that ωg,k,t,t′ = 1. Then, we have:

E[β̂S
g,k,t,t′ ∣D] = E[∆g,t + (Yg,t(0) − Yg,t′(0) − (Yk,t(0) − Yk,t′(0)))∣D] × ωS

g,k,t,t′

≠ E[∆g,t∣D] × ωS
g,k,t,t′

The proofs corresponding to the other two-by-two comparisons follow the same argument.

A.2.2 Proof of Theorem 2

Let us impose Assumptions 1-6. Taking the expectation of β̂fe conditional on D, we have:

E [β̂fe∣D] =
∑t∑t′≠t∑g∑k≠gE [β̂S

g,k,t,t′ + β̂R
k,g,t′,t + β̂L

g,k,t,t′ + β̂RL
k,g,t′,t + 2β̂DS

g,k,t,t′ ∣D]
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

=
∑t∑t′≠t∑g∑k≠g [βS

g,k,t,t′ + βR
k,g,t′,t + βL

g,k,t,t′ + βRL
k,g,t′,t + 2βDS

g,k,t,t′]
∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

where βC
g,k,t,t′ ≡ E [β̂C

g,k,t,t′ ∣D],
We can rewrite the numerator:

∑
t
∑
t′≠t
∑
g
∑
k≠g
[βS

g,k,t,t′ + βR
k,g,t′,t + βL

g,k,t,t′ + βRL
k,g,t′,t + 2βDS

g,k,t,t′]

=∑
t
∑
t′≠t
∑
g
∑
k≠g
[E [∆g,t∣D] × [ωS

g,k,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′]

+E [∆k,t∣D] × [ωR
k,g,t′,t + ωL

g,k,t,t′] +E [∆k,t′ ∣D] × [2ωDS
g,k,t,t′]]

The fist term of the sum rewrites:

∑
t
∑
t′≠t
∑
g
∑
k≠g
[E [∆g,t∣D] × [ωS

g,k,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′]]

=∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t∣D]∑

t′≠t
∑
k≠g
[ωS

g,k,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′]
⎤⎥⎥⎥⎦
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Let us focus on the term ∑t∑t′≠t∑g∑k≠g [E [∆k,t∣D] × [ωR
k,g,t′,t + ωL

g,k,t,t′]]:

∑
t
∑
t′≠t
∑
g
∑
k≠g
[E [∆k,t∣D] × [ωR

k,g,t′,t + ωL
g,k,t,t′]]

=∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t∣D] ×∑

t′≠t
∑
k≠g
[ωR

g,k,t′,t + ωL
k,g,t,t′]

⎤⎥⎥⎥⎦

And, focusing on the term ∑t∑t′≠t∑g∑k≠g [E [∆k,t′ ∣D] × 2ωDS
g,k,t,t′]:

∑
t
∑
t′≠t
∑
g
∑
k≠g
[E [∆k,t′ ∣D] × 2ωDS

g,k,t,t′]

=∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t∣D] ×∑

t′≠t
∑
k≠g

2ωDS
k,g,t′,t

⎤⎥⎥⎥⎦

The numerator thus writes:

∑
t
∑
t′≠t
∑
g
∑
k≠g
[βS

g,k,t,t′ + βR
k,g,t′,t + βL

g,k,t,t′ + βRL
k,g,t′,t + 2βDS

g,k,t,t′]

=∑
t
∑
g

⎡⎢⎢⎢⎣
E [∆g,t∣D]∑

t′≠t
∑
k≠g
[ωS

g,k,t,t′ + ωR
g,k,t′,t + ωL

k,g,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′ + 2ωDS
k,g,t′,t]

⎤⎥⎥⎥⎦

We thus have, ∀Ω:

E [β̂fe∣D] =
∑t∑g [E [∆g,t∣D]∑t′≠t∑k≠g [ωS

g,k,t,t′ + ωR
g,k,t′,t + ωL

k,g,t,t′ + ωRL
k,g,t′,t + 2ωDS

g,k,t,t′ + 2ωDS
k,g,t′,t]]

∑t∑g∶Dg,t=1∑k∶Dk,t=0∑t′≠t[1 −Dg,t′ +Dk,t′]

Following Section 4.1, if Assumption 5 or 6 does not hold, then we would be able to find an Ω

such that there would exist a two-by-two comparison between two groups and two time periods

g, k ≠ g, t, t′ ≠ t entering with a positive weight in E[β̂fe∣D], while being a biased estimator of its

corresponding ATE. Hence, Assumption 5 and 6 are both necessary and sufficient for the above

statement to hold.

A.2.3 Introduction of Dynamics: Details

A General Decomposition Result in the Dynamic Framework First, note that Assumptions

8 and 9 are such that the standard, reverse leaver and double-switcher difference-and-differences are

unbiased estimators of their corresponding ATEs. Focusing on the standard difference-in-differences,
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we have:

E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,0))∣D]

=E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,0)) + Yg,t(Dg,t−1,0) − Yg,t(Dg,t−1,0)∣D]

=E[∆g,t(Dg,t−1) + Yg,t(Dg,t−1,0) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,0))∣D]

=E[∆g,t(Dg,t−1)∣D]

Similarly, for the reverse leaver difference-in-differences, under Assumptions 8 and 9, we have:

E[Yg,t(Dg,t−1,0) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,1))∣D]

=E[Yg,t(Dg,t−1,0) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,1)) + Yk,t′(Dk,t′−1,0) − Yk,t′(Dk,t′−1,0)∣D]

=E[∆k,t′(Dk,t′−1) + Yg,t(Dg,t−1,0) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,0))∣D]

=E[∆k,t′(Dk,t′−1)∣D]

While, for the double switcher difference-in-difference, we have, under Assumptions 8 and 9:

E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,1)∣D]

=E[∆g,t(Dg,t−1) +∆k,t′(Dk,t′−1)∣D]

Finally, while details for the reverse difference-in-differences are given in the body of the paper, the

leaver difference-in-differences is such that:

E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,1) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,1)∣D]

=E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,1) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,1) + Yk,t(Dk,t−1,1) − Yk,t(Dk,t−1,1)∣D]

=E[∆k,t(Dk,t−1) + Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1))∣D]

It is thus necessary and sufficient for E[Yg,t(Dg,t−1, 1)−Yg,t′(Dg,t′−1, 1)−(Yk,t(Dk,t−1, 1)−Yk,t′(Dk,t′−1, 1))∣D]
to be zero for the reverse difference-in-difference to be an unbiased estimator of the ATE of group

k in period t.

Sufficient Conditions in the Presence of Dynamic Treatment Effects Let us focus on

the reverse difference-in-differences and derive sufficient conditions for those to estimate their
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corresponding ATE without bias. For that, we would need the following equation to be equal to

zero:

E[Yg,t(Dg,t−1,1) − Yg,t′(Dg,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1))∣D]

=E[Yg,t(Dk,t−1,1) − Yg,t′(Dk,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1))

+ [Yg,t(Dg,t−1,1) − Yg,t(Dk,t−1,1)] − [Yg,t′(Dg,t′−1,1) − Yg,t′(Dk,t′−1,1)] ∣D]

(10)

Let us first show that, under Assumptions 8-10 we have that E[Yg,t(Dk,t−1,1) − Yg,t′(Dk,t′−1,1) −
(Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1)∣D] = 0. Indeed, we have:

E[Yg,t(Dk,t−1,1) − Yg,t′(Dk,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1)∣D]

=E[Yg,t(Dk,t−1,1) − Yg,t′(Dk,t′−1,1) − (Yk,t(Dk,t−1,1) − Yk,t′(Dk,t′−1,1)

+ Yg,t(Dk,t−1,0) − Yg,t(Dk,t−1,0) + Yg,t′(Dk,t′−1,0) − Yg,t′(Dk,t′−1,0)

+ Yk,t(Dk,t−1,0) − Yk,t(Dk,t−1,0) + Yk,t′(Dk,t′−1,0) − Yk,t′(Dk,t′−1,0)∣D]

=E[∆g,t(Dk,t−1) −∆g,t′(Dk,t′−1) −∆k,t(Dk,t−1) +∆k,t′(Dk,t′−1))

+ (Yg,t(Dk,t−1,0) − Yg,t′(Dk,t′−1,0) − (Yk,t(Dk,t−1,0) − Yk,t′(Dk,t′−1,0)))∣D]

=E[Yg,t(0t−1,1) − Yg,t(0t−1,0) + τt(
t−1
∑
ℓ=1
Dk,ℓ) − (Yg,t′(0t′−1,1) − Yg,t′(0t′−1,0) + τt′(

t′−1
∑
ℓ=1

Dk,ℓ))

− (Yk,t(0t−1,1) − Yk,t(0t−1,0) + τt(
t−1
∑
ℓ=1
Dk,ℓ)) + (Yk,t′(0t′−1,1) − Yk,t′(0t′−1,0) + τt′(

t′−1
∑
ℓ=1

Dk,ℓ))∣D]

=E[Yg,t(0t−1,1) − Yg,t′(0t′−1,1) − (Yk,t(0t−1,1) − Yk,t′(0t′−1,1))

− [Yg,t(0t−1,0) − Yg,t′(0t′−1,0) − (Yk,t(0t−1,0) − Yk,t′(0t′−1,0))]∣D]

=0

where the second equality follows from Assumptions 8 and 9, and the third equality from Assumption

10.2. The first term of the fourth equality cancels out following from Assumption 10.1, while the

second term does following Assumptions 8 and 9.

Let us now examine the last two terms of Equation (10) to understand what does the reverse

difference-in-differences identifies under Assumption 10. In particular, we have:
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E [Yg,t(Dg,t−1,1) − Yg,t(Dk,t−1,1)] − [Yg,t′(Dg,t′−1,1) − Yg,t′(Dk,t′−1,1)] ∣D]

= E [[∆g,t(Dg,t−1) + Yg,t(Dg,t−1,0) −∆g,t(Dk,t−1) − Yg,t(Dk,t−1,0)]

−[∆g,t′(Dg,t′−1) + Yg,t′(Dg,t′−1,0) −∆g,t′(Dk,t′−1) − Yg,t′(Dk,t−1,0)]∣D]

= E [[Yg,t(0t−1,1) + τt(
t−1
∑
ℓ=1
Dg,ℓ) − Yg,t(0t−1,1) − τt(

t−1
∑
ℓ=1
Dk,ℓ)]

−[Yg,t′(0t′−1,1) + τt′(
t′−1
∑
ℓ=1

Dg,ℓ) − Yg,t′(0t′−1,1) − τt′(
t′−1
∑
ℓ=1

Dk,ℓ)]∣D]

= E [[τt(
t−1
∑
ℓ=1
Dg,ℓ) − τt(

t−1
∑
ℓ=1
Dk,ℓ)] − [τt′(

t′−1
∑
ℓ=1

Dg,ℓ) − τt′(
t′−1
∑
ℓ=1

Dk,ℓ)]∣D]

(11)

where the first equality uses the definition of ∆g,t(Dg,t−1) = Yg,t(Dg,t−1,1) − Yg,t(Dg,t−1,0). The

second equality follows from Assumptions 10.2, according to which ∆g,t(Dg,t−1) = Yg,t(0t−1,1) −
Yg,t(0t−1,0) + τt(∑t−1

ℓ=1Dg,t−1) and Assumption 9. The last equality stems from Assumption 10.1.

This implies that if groups g and k have been exposed to treatment the same number of periods

up to t′ − 1 and up to period t− 1, all those terms cancel out and one can identify the ATE of group

g in t′, conditional on facing history Dg,t. This would for example happen when comparing periods

2 and 4 of group g with Dg,t = (0,0,1,1) and group k with Dk,t = (0,1,0,1).
What if the number of periods of exposure to treatment between group g and k differs only

in t′ − 1, but not in t − 1, i.e. ∑t−1
ℓ=1Dg,ℓ = ∑t−1

ℓ=1Dk,ℓ, but ∑t′−1
ℓ=1 Dg,ℓ ≠ ∑t′−1

ℓ=1 Dk,ℓ? Now the reverse

difference-in-differences would identify the following object:

E[∆g,t′(Dg,t′−1) − [τt′(
t′−1
∑
ℓ=1

Dg,ℓ) − τt′(
t′−1
∑
ℓ=1

Dk,ℓ)]∣D]

= E[∆g,t′(0t′−1) + τt′(
t′−1
∑
ℓ=1

Dg,ℓ) − [τt′(
t′−1
∑
ℓ=1

Dg,ℓ) − τt′(
t′−1
∑
ℓ=1

Dk,ℓ)]∣D]

= E[∆g,t′(0t′−1) + τt′(
t′−1
∑
ℓ=1

Dk,ℓ)]∣D]

= E[∆g,t′(Dk,t′−1)]∣D]

(12)

Thus, in this case, the reverse difference-in-differences identifies the ATE of group g in period t′

conditional on history Dk,t′−1. For example, comparing a group g such that Dg,t = (1,0,0,1) to a

group k with Dk,t = (0,0,1,1) in periods 3 and 4 would allow to identify the ATE of group g in
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period 3 when being exposed to treatment for the first time.

Now, what if the number of periods of exposure to treatment differs only in t−1, but not t′−1, i.e.

∑t−1
ℓ=1Dg,ℓ ≠ ∑t−1

ℓ=1Dk,ℓ, but ∑t′−1
ℓ=1 Dg,ℓ = ∑t′−1

ℓ=1 Dk,ℓ? In this case, the reverse difference-in-differences

would identify the following object:

E[∆g,t′(0t′−1) + τt′(
t′−1
∑
ℓ=1

Dg,ℓ) + [τt(
t−1
∑
ℓ=1
Dg,ℓ) − τt(

t−1
∑
ℓ=1
Dk,ℓ)]∣D] (13)

Thus, in this case, the reverse difference-in-differences is a biased estimator of the ATE of group g

in period t′ conditional on history Dg,t′−1. In particular, this is the case of staggered difference-in-

differences, when groups are not allowed to leave treatment.

In a similar fashion, one can show that the leaver difference-in-differences comparing periods

t and t′, with t > t′ identifies the ATE of the group switching treatment status in period t under

its own history if both ∑t−1
ℓ=1Dg,ℓ = ∑t−1

ℓ=1Dk,ℓ and ∑t′−1
ℓ=1 Dg,ℓ = ∑t′−1

ℓ=1 Dk,ℓ. It would identify the ATE

of the group switching treatment status in period t under the history of the comparison group if

∑t′−1
ℓ=1 Dg,ℓ = ∑t′−1

ℓ=1 Dk,ℓ while ∑t−1
ℓ=1Dg,ℓ ≠ ∑t−1

ℓ=1Dk,ℓ.

We now know under which assumptions the reverse and leaver difference-in-differences are

unbiased estimators of the ATE of group g in period t, under the treatment history of the comparison

group (which may be the same as the one of group g). When only such valid comparisons exist - or

that there exist no reverse or leaver difference-in-differences - the TWFE estimator is thus robust

to heterogeneity: it only weighs positively unbiased estimators of their corresponding ATE.
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A.3 Proof of Theorem 5

We want to prove that DIDA
M is an unbiased estimator of δS. Let us write the expectation of

DIDA
M :

E [DIDA
M] ==

T

∑
t=1
E

⎡⎢⎢⎢⎢⎣

1

NS
∑

g∶Dg,t=1,Dg,t−1=0
[Ng,t1{∃k ≠ g,Dk,t =Dk,t−1 = 0}E [DID+,g,t∣D]

+Ng,t1{∄k ≠ g,Dk,t =Dk,t−1 = 0}E [DIDR
−,g,t+1∣D]]

+ 1

NS
∑

g∶Dg,t=0,Dg,t−1=1
[Ng,t1{∃k ≠ g,Dk,t =Dk,t−1 = 1}E [DID−,g,t∣D]

+ Ng,t1{∄k ≠ g,Dk,t =Dk,t−1 = 1}E [DIDR
+,g,t+1∣D]] ]

(14)

Let us look separately at each conditional expectation:

E (DID+,g,t∣D) =E
⎛
⎝
1{Dg,t = 1,Dg,t−1 = 0}

⎡⎢⎢⎢⎢⎣
(Yg,t − Yg,t−1) − ∑

k∶Dk,t=Dk,t−1=0

Nk,t

N0,0,t

(Yk,t − Yk,t−1)
⎤⎥⎥⎥⎥⎦
∣D
⎞
⎠

=1{Dg,t = 1,Dg,t−1 = 0}
⎡⎢⎢⎢⎢⎣
E (Yg,t − Yg,t−1∣D) − ∑

k∶Dk,t=Dk,t−1=0

Nk,t

N0,0,t

E (Yk,t − Yk,t−1∣D)
⎤⎥⎥⎥⎥⎦

For every g that Dg,t−1 = 0 and Dg,t = 1, we have:

E (Yg,t − Yg,t−1∣D) = E (∆g,t∣D) +E (Yg,t(0) − Yg,t−1(0)∣D) (15)

Following de Chaisemartin and d’Haultfoeuille (2020a), under Assumptions 4, 5 and 11, there exists

a real number ψ0,t such that for all g,

E (Yg,t(0) − Yg,t−1(0)∣D) = E (Yg,t(0) − Yg,t−1(0)∣Dg)

= E (Yg,t(0) − Yg,t−1(0))

= ψ0,t

(16)
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where Dg is the vector collecting treatment status of group g over time. Then, we have:

E (DID+,g,t∣D)

=1{Dg,t = 1,Dg,t−1 = 0}
⎡⎢⎢⎢⎢⎣
E (∆g,t∣D) +E (Yg,t(0) − Yg,t−1(0)∣D) − ∑

k∶Dk,t=Dk,t−1=0

Nk,t

N0,0,t

E (Yk,t(0) − Yk,t−1(0)∣D)
⎤⎥⎥⎥⎥⎦

=1{Dg,t = 1,Dg,t−1 = 0}
⎡⎢⎢⎢⎢⎣
E (∆g,t∣D) + ψo,t(1 − ∑

k∶Dk,t=Dk,t−1=0

Nk,t

N0,0,t

)
⎤⎥⎥⎥⎥⎦

=1{Dg,t = 1,Dg,t−1 = 0}

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E (∆g,t∣D) + ψo,t(1 −
1

N0,0,t
∑

k∶Dk,t=Dk,t−1=0
Nk,t

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=N0,0,,t

)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=1{Dg,t = 1,Dg,t−1 = 0}E [∆g,t∣D]

(17)

where the first equality follows from (15), the second equality from (16) and the third one uses the

definition of N0,0,t.

A similar reasoning yields:

E (DID−,g,t∣D) = 1{Dg,t = 0,Dg,t−1 = 1}E [∆g,t∣D] (18)

E (DIDR
+,g,t∣D) = 1{Dg,t = 1,Dg,t−1 = 0}E [∆g,t−1∣D] (19)

E (DIDR
−,g,t∣D) = 1{Dg,t = 0,Dg,t−1 = 1}E [∆g,t−1∣D] (20)

Plugging (17), (18), (19) and (20) in (14), we have:

E [DIDA
M] =E

⎡⎢⎢⎢⎢⎣

T

∑
t=2

1

NS

⎡⎢⎢⎢⎢⎣
∑

g∶Dg,t=1,Dg,t−1=0
[Ng,t1{∃k ≠ g,Dk,t =Dk,t−1 = 0}E [∆g,t∣D]

+Ng,t1{∄k ≠ g,Dk,t =Dk,t−1 = 0}1{Dg,t+1 = 0,Dg,t = 1}E [∆g,t∣D]] ]

+ 1

NS

⎡⎢⎢⎢⎢⎣
∑

g∶Dg,t=0,Dg,t−1=1
[Ng,t1{∃k ≠ g,Dk,t =Dk,t−1 = 1}E [∆g,t∣D]

+Ng,t1{∄k ≠ g,Dk,t =Dk,t−1 = 1}1{Dg,t+1 = 1,Dg,t = 0}E [∆g,t∣D]] ]]

(21)

Under Assumption 12, we have that if there is a group g such that Dg,t = 1 and Dg,t−1 = 0 then
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there either exists at least one comparison group which is untreated, or g is such that Dg,t+1 = 0
and there exists a group k which is untreated. Then, this implies that, for a given g such that

Dg,t = 1 and Dg,t−1 = 0:

1{∃k ≠ g,Dk,t =Dk,t−1 = 0} + 1{∄k ≠ g,Dk,t =Dk,t−1 = 0}1{Dg,t+1 = 0,Dg,t = 1} = 1

Similarly, for g such that Dg,t = 0 and Dg,t−1 = 1:

1{∃k ≠ g,Dk,t =Dk,t−1 = 1} + 1{∄k ≠ g,Dk,t =Dk,t−1 = 1}1{Dg,t+1 = 1,Dg,t = 0} = 1

Thus, Equation (21) writes:

E [DIDA
M] =

T

∑
t=2
E

⎡⎢⎢⎢⎢⎣
E

⎡⎢⎢⎢⎢⎣

1

NS

⎛
⎝ ∑
g∶Dg,t=1,Dg,t−1=0

Ng,t∆g,t + ∑
g∶Dg,t=0,Dg,t−1=1

Ng,t∆g,t

⎞
⎠
∣D
⎤⎥⎥⎥⎥⎦

⎤⎥⎥⎥⎥⎦
= δS

(22)
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