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Abstract

The producers of electricity using dispatchable plants rely on partially flexible technolo-
gies to match the variability of both production from renewables and final demand. We
analyse upward and downward flexibility in a two-stage decision process where firms
compete at low cost in quantities planned before knowing the demand function and ad-
just the output at high cost when the true state of demand is revealed. We first compute
the first best and competitive outcomes. Then we consider the outcome of imperfect
competition. We begin with an analysis of the monopoly case, then we determine the
duopoly subgame perfect equilibria corresponding to two market designs: one where
all trade occurs in an intra-day market with known demand, the other where a day-
ahead market with random demand is added to the intra-day market. We show that
being inflexible can be more profitable than being flexible. We also show that adding
a day-ahead market to the intra-day market increases welfare but transfers risks from
firms to consumers. The transfer is all the more important as technologies are not very
flexible.
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1 Introduction

As long as electricity energy cannot be stored at large scale, the equilibrium
between production and consumption must be reached in real time. This would
be a simple routine if demand was not permanently varying, following predict-
able cycles (e.g. day-night) and random events (e.g. temperature variations).
Moreover, the deployment of intermittent sources of renewable energy (solar,
wind) increases the randomness of the residual demand that must be served by
dispatchable plants (coal, gas, hydro, nuclear). Buyers’ price-responsiveness eases
the balancing of electricity markets but it cannot be a general solution as long as
smart meters and appliances are not massively deployed and consumers cannot
instantaneously adapt their behavior. Energy blackouts are a drastic solution
politically unacceptable in developed countries. Then, under the severe condi-
tions of i) no storage, ii) no demand rationing and iii) low demand-response, the
only way to accomodate variations in residual demand is to benefit from flexible
technologies able to follow demand in real time. There exist some cases of supply
and demand varying in time in a balanced way: it is so in regions where solar
energy simultaneously determines the electricity supply from photovoltaïc panels
and the demand for air-conditioning. However, cases of perfect positive correla-
tions are the exception. Renewables rather add uncertainty on the exact quantity
of residual energy to supply at each moment.1 The task to match the demand
not served by undispatchable renewables is mainly devoted to hydroelectric reser-
voirs that can instantaneously increase or decrease their output at zero operation
cost, and complementarily to less flexible thermal plants that incur fixed starting
and stopping costs, plus additional costs for ramping up and down in the very
short run (Kok et al., 2020). The flexibility question is often addressed at the
system level rather than within firms.2 Investing in gas-fired power plants or flex-
ible Carbon Capture and Storage plants (Bertsch et al 2016) and energy storage
(Bistline, 2017) provides global flexibility as a by-product.

In this paper, we consider the case of production plants that are not fully
flexible by assuming that the cost to produce 1kWh is increasing when the time
lag to do so is shorter. Our approach differs from what Boyer and Moreaux (1997)
call ’technological flexibility’ where firms have to make a choice among different
equipment, which results in different cost configurations. The problem we address

1See the "Duck Chart" in Denholm et al. (2015). Considering the need for reliability, most
system operators place the problem of flexibility at the center of their concerns. For example,
each year, the California Independent System Operator conducts a technical study to determine
the flexible capacity needs of the system for up to three years into the future (CAISO, 2021).
See also ACER (2022, page 3): "price volatility in the electricity system is likely to increase in
the years ahead, indicating increasing flexibility needs of the system."

2See Carlsson (1989) for a wider view and a historical presentation of the concept of flex-
ibility in the economic literature. In the electricity industry, given the current priority to
de-carbonation, the focus is shifting towards "low carbon flexibility technologies", including
low carbon flexible generation, storage, interconnection to other countries, and devices and
technologies which shift or reduce demand (see chapter 7 in DBEIS, 2022)
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is ’flexibility in timing’ where costs depend on the decision date. Our analysis
belongs to the same strand of literature as Eisenack and Mier (2019) who model
flexibility in timing with three independent technologies differentiated by their
dispatchability. In our approach, we do not separate from scratch firms that can
only plan their production day-ahead from those that can adjust their output
in real time to meet demand. We rather assume like in Crampes and Renault
(2019) that each firm can do both with the same technology, but at different
costs. Because our focus is on the supply side characteristics, we assume that
all consumers can react to price signals3, which excludes any type of rationing as
shown in Joskow and Tirole (2007) and Léautier (2019).

Our analysis has strong common features with the literature on market power
in sequential markets (Allaz and Vila, 1993; Ito and Reguant, 2016), but with
an emphasis on the cost specificities.4 The question we address is how firms
exerting some market power adapt their strategies when their technologies are
partially flexible and the demand to serve is both random and price responsive.
A correlated question is how the two-market structure that is the standard in
most liberalized countries (day-ahead commitment followed by an intra-day mar-
ket)5 affects the competitors’ strategies.6 Crampes and Renault (2019) show that,
when all agents are price-takers and risk-neutral to monetary transfers, making
competition in the wholesale market efficient given demand uncertainty does not
necessitate a day-ahead market.7 By contrast, when producers have some mar-
ket power, trading only on intra-day markets or on a combination of day-ahead
and intra-day markets is not the same.8 In this paper, we discuss the elements
that determine which market design is the most socially efficient in a Cournot
duopolistic structure framework.

Our contribution to the literature is threefold. First, we show that, contrary to
Allaz and Vila (1993) on forwards, a monopolist will enter the day-ahead market

3In its "Final Assessment of the EU Wholesale Electricity Market Design", ACER (2022),
classifies the improvement of demand flexibility among 13 measures for the consideration of
policymakers.

4The Allaz and Vila’s model of forward trading desirability has also been enlarged to the case
of limited observability of forward positions by Hughes and Kao (1997) and to an environment
with multiple firms and increasing marginal costs by Bushnell (2007). Note that it has been
challenged by Mahenc and Salanié (2004): when firms compete in prices instead of quantities,
forward trading is not socially desirable because it increases prices.

5Australia is an exception: there is no day-ahead market
(https://www.aer.gov.au/wholesale-markets). Notice that producers can also sign Power Pur-
chase Agreements that are negotiated with large consumers or retailers on a bilateral basis.

6We do not consider a framework encompassing a separate flexibility market. For a literature
review, see Schittekatte and Meeus (2020).

7Two-speed production process is not the only possible explanation for the two-stage organ-
ization of electricity markets. It can also be justified in terms of transaction costs (see Küenneke
et al., 2010 on modes of organization in infrastructures) or risk management (Redl et al. 2009).

8Using data from the German market, Goutte and Vassilopoulos (2019) show that the volat-
ility of short term prices provides an additional revenue to the flexible resources able to react
quickly as real-time approaches.
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to benefit from technical economies despite the resulting loss of market power on
the intra-day. Second, we reinforce Allaz-Vila’s (1993) result, for a duopoly by
showing that sequential markets reduce the extent of market power and increase
social welfare even if the technologies contain technical diseconomies. Our third
result is more worrisome as it points out that the opening of a day-ahead market
transfers risks from producers to consumers, in particular it fully insures inflexible
firms, a transfer that policy makers may consider inappropriate.

The flexibility question is sensible for the electricity system security, but also
as regards competition policy. Indeed, in the energy field, competition authorities
face questions such as "Are units inflexible because they are old and inefficient,
because owners have not invested in increased flexibility or because they serve
as a mechanism for the exercise of market power?"9 Our model provides some
intuitions that help identifying strategic uses of (in)flexibility in timing. Note
also that in the two-market structure, firms that sell in both markets are de facto
multiproduct producers. Then, one can wonder whether it is possible to use one
of the markets as a leverage to exert market power in the other.

The paper is organized as follows. In Section 2 we present the general assump-
tions on demand and production, and the timing of the game. We also specify a
quadratic surplus function and a quadratic cost function that will illustrate the
results. Section 3 presents the basic trade-off between the extra cost of producing
a given quantity with little anticipation and the benefits of a better knowledge of
the target, first when there is only one production plant, then when production
can be allocated to two plants. In Section 4, we switch to the analysis of imperfect
competition, first in the monopoly case, then with a duopoly that can be either
symmetric or asymmetric in terms of production cost. In particular, we study
how benefits and risks are re-allocated between producers and consumers when
the intra-day market is complemented by a day-ahead market. We conclude in
Section 5.

2 Assumptions

We consider firms competing to supply residual demand for electricity, that is
the demand not served by undispatchable energies like wind, solar and along-the-
river power. As long as supply by renewables and final demand are not perfectly
positively correlated, the residual demand is random. We first set the general
assumptions on cost and surplus. Then we introduce a quadratic specification.

9Page 104 section 3 in "2018 Quarterly State of the Market Report for PJM",
http://www.monitoringanalytics.com/reports/PJM_State_of_the_Market/2018/2018q3-
som-pjm-sec3.pdf
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2.1 General assumptions

Let S(x, z) denote the gross surplus of energy consumers, where x is the total
quantity consumed and z is a positive random variable with finite expectation
IE(z) = E and variance V = IE(z2)− E2. To guarantee the existence of at least
one maximum, the function S(x, z) is assumed twice continuously differentiable,
for all z strictly concave in x (S

′′

xx(x, z) < 0) with lim
x→∞

S(x, z) = −∞, and

S
′

x(0, z) > 0 ∀z. (H1)

We will refer to z as the “willingness-to-pay” of consumers or the “market
size”. Given this interpretation, we assume that S

′

z(x, z) ≥ 0, ∀x, and to sim-
plify the analysis we also assume that the marginal surplus is increasing in z:
S
′′

xz(x, z) > 0.
Let us now consider the cost function. Firms can produce in two stages. Day

ahead, before knowing the value of z, the representative firm can prepare the
production of Q ≥ 0. Later, it can decide on an additional q � 0 knowing z, as
long as q +Q ≥ 0. It allows the producer to adjust its initial plan Q to demand
so that Q+ q = x. When there is a intra-day market, i.e. a market where trade
occurs after learning the exact value of z, q is the additional production (if q > 0)
to increase total delivery up to Q + q > Q or the reduction in production (if
q < 0) to decrease total delivery down to Q+ q < Q.

The cost function C(Q, q) is assumed twice continuously differentiable, non
negative, increasing in Q, and convex in both Q and q. Since q can be negat-
ive, we do not assume that C(Q, q) is increasing in q. Delaying decisions until
knowing the true state of nature reduces the lag between the decision time and
its implementation. Therefore the final output is more costly than the quantity
planned initially. Formally, we write it as follows

C
′

q(0, q) > C
′

Q(0, q) ∀q > 0 (H2)

Additionnally, we assume that totally cancelling the planned output Q > 0
is more costly than if a small volume ε > 0 is ultimately produced, that is
C(Q,−Q+ ε) ≤ C(Q,−Q), or

C
′

q(Q,−Q) ≤ 0 ∀Q ≥ 0. (H3)

We also assume

lim
Q→∞,q→−∞

C(Q, q) =∞ (H4)

meaning that the cost of planning a very large output followed by the decision to
cancel it is huge.

Finally, the equilibrium of energy flows imposes the equality of demand and
supply in each state of nature, that is x = Q + q for all z. We will denote the
welfare function byW : it is the difference between the gross surplus of consumers
S(x, z), and the cost to serve them C(Q, q).

5



2.2 Quadratic specification

To illustrate our results and to derive closed-form solutions, we will use the fol-
lowing quadratic specifications:

S(x, z) = (z −
x

2
)x (1)

C(Q, q) = (Q+ q)2 + aq2 (2)

where a ≥ 0 is the index of (in)flexibility. One can easily check that these
functions satisfy all the assumptions of the former subsection.

The quadratic form of the cost function has properties that make it easier
to handle than the piecewise linear specification used in Crampes and Renault
(2019). Having quadratic specifications for both utility and costs has the advant-
age to provide explicit results in terms of the average value E and the variance
V of the random component of demand. With this specification, we also obtain
results that do not depend on the shape of the probability distribution of demand.
One drawback is that there is no room for dissymetry and higher statistical char-
acteristics of the random shock in the equilibrium quantities and prices. However,
we will see that higher statistical moments show up in the variance of equilibrium
profits and surplus so that they play a role to explain how market design transfers
risks from producers to consumers.

3 Wait-and-see gains and costs

The trade-off between the informational benefit of delayed decisions and the extra
cost due to shorter delays can be analyzed by maximizing the expected welfare
function taking into account the possibility to fix the adjusted production q after
z is known.10 To facilitate the identification of the elements of the trade-off,
in subsection 3.1 we assume that there is one single production plant and in
subsection 3.4 we add a second plant.

3.1 Social optimum with one representative producer

Assume that all production comes out of one plant. The first-best problem is

max
Q≥0

IEz max
q≥−Q

W (Q, q, z),

where W (Q, q, z)
def
= S(Q+ q, z)− C(Q, q).

As usual, we solve the problem backwards.

10Notice that maximising the expected welfare, that is the expected difference between the
consumers’ surplus and the production cost, implicitly assumes that both consumers and pro-
ducers are risk-neutral to monetary transfers.
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3.1.1 Ex post

Upon observing z and knowing the quantity Q already planned, the problem to
solve is maxq≥−Q S(Q + q, z) − C(Q, q). From hypotheses H1 and H3, we have
that S

′

x(0, z) > 0 ≥ C
′

q(Q,−Q). Consequently, the unique solution is interior and
we denote it by q∗(Q, z) > −Q, determined by the first order condition

S′x(Q+ q∗, z) = C ′
q(Q, q∗) (3)

Hereafter, the superscript ∗ will denote socially optimal values. The adjusted
quantity is related to the planned output and the random market size by

∂q∗

∂Q
= −

S
′′

xx − C ′′
qQ

S ′′

xx − C ′′
qq

, and
∂q∗

∂z
= −

S
′′

xz

S′′

xx − C ′′

qq

Since S
′′

xx < 0 and C ′′
qq ≥ 0, from the assumption S

′′

xz > 0 we have that
∂q∗/∂z > 0.

Consider now the derivative ∂q∗/∂Q. It has the same sign as S
′′

xx−C ′′
qQ. Then,

∂q∗

∂Q
< 0 if C ′′

qQ ≥ 0, or if C ′′
qQ is negative but small in absolute value. Indeed,

with a decreasing marginal surplus (S
′′

xx < 0), increasing Q decreases the need
for a positive adjustment: it is a “saturation effect", or, in a market context, a
“competition effect". Additionally, if a larger Q deteriorates the conditions to
produce an extra output, i.e. if C ′′

qQ ≥ 0 (‘technical diseconomies"), the adjusted
quantity is a decreasing function of the planned quantity. It is only when there
is a large positive technical and/or economical externality between the two pro-
duction processes, i.e. C ′′

qQ < S
′′

xx < 0, that a large planned output will induce a
larger adjustment. The latter can be the case in thermal plants for small levels of
Q since the initial costs of warming-up being already paid to produce Q > 0, ad-
justments will be less expensive. These ‘technical economies" encourage planned
production. But this positive effect can be insufficient to offset the ‘saturation
effect". And if Q is large, an increase in Q will most likely increase C ′

q, resulting

in ∂q∗

∂Q
< 0.

These effects are illustrated in Figure 1 for two values of z, a high zh and
a low zl. For a given Q > 0, the initial solutions defined by (3) are at points
Ah1 (positive adjustment) and Al1 (negative adjustment) respectively. Now, ob-
serve the consequences of an increase ∆Q > 0 in the planned output. The two
curves of marginal surplus are shifted downwards since S

′′

xx < 0. Under technical
diseconomies C ′′

qQ > 0, the marginal cost curve moves upwards so that the new
optimal points Ah2 and Al2 are located to the left of the initial ones Ah1 and Al1
respectively: the adjustment q(Q + ∆Q, z) will be smaller if z = zh and larger
(in absolute value) if z = zl. Under technical economies C ′′

qQ < 0, the marginal
cost curve move downwards. The new optimal points Ah3 and Al3 can be located
to the left of the initial ones Ah1 and Al1 if the decrease in marginal cost is not
important, or, as shown in the Figure, to the right.
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Figure 1: First-best adjustment

3.1.2 Ex ante

The planned output Q is the solution to

max
Q≥0

IEz [S(Q+ q∗(Q, z), z)− C(Q, q∗(Q, z))] .

Combining the ex post adjustment (3) and hypothesis H2 we can write

S′x(q(0, z), z) = C ′
q(0, q

∗(0, z)) > C
′

Q(0, q
∗(0, z)) for all z. (4)

Consequently, since H4 holds the ex ante problem has an interior solution Q∗ > 0.
Taking into account the ex post adjustment (3), Q∗ is simply determined by the
first order condition

IEz

�
S
′

x(Q
∗ + q∗(Q∗, z), z)− C ′

Q(Q
∗, q∗(Q∗, z))

�
= 0. (5)

3.2 Application to the quadratic case

Solving (3) in the quadratic case (1)-(2), we obtain the ex post adjustment

q∗(Q, z) =
z − 3Q

3 + 2a
(6)

which is larger than−Q and decreasing inQ. Note that |q(Q, z)| is also decreasing
in the adjustment parameter a as we could expect.
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Applying (5), the optimal planned output Q∗ is the solution to

IEz

�
z − 3(Q+

z − 3Q

3 + 2a
)

�
= 0.

We deduce that Q∗ = E/3 if a > 0. From (6) the optimal adjustment is
then q∗(Q∗, z) = z−E

3+2a
which is decreasing with both the adjustment cost a (as

expected) and the expected demand E since the planned production increases
with E and there are technical diseconomies. The adjustment is positive (resp.
negative) for large (resp. small) values of the market size z. On average, the
adjustment is nil: IEzq(Q

∗, z) = 0. Finally, note that if a = 0 any appropriate
combination of planned and adjusted output is the solution since there is no
penalty for delaying the production decision.

Remark 3.1. Notice that with Q∗+q∗(Q∗, z) = 2aE+3z
3(3+2a)

, the condition Q∗+q∗ ≥ 0
is satisfied for all non negative a and z.

Remark 3.2. Planning a production Q∗ not depending on the adjustment cost
a 
= 0 is somewhat counter-intuitive. The same is true as for the zero expected
adjustment. This actually is an artifact of our elementary quadratic specification.
Indeed, under the slightly more complex function C(Q, q) = (bQ+ q)2+aq2 where
b is a cost index for the base production, the adjustment function is q∗ (Q, z) =
z−(1+2b)Q
3+2a

and the optimal planned output is

Q∗ =
E

3

�
1 + (1− b)

6(2 + b) + 4a(5 + 4b) + 8a2(1 + b)

6(1− b)2 + 2a(5− 4b+ 8b2) + 4a2(1 + 2b2)

�
.

This shows that Q∗ > E
3

if and only if b < 1, which is natural since a small
b implies a smaller cost of planed production. One can also compute that with
b 
= 1, IEzq

∗(Q∗, z) 
= 0. The reason is that the forecasted sales Q + q are not
homogeneous in terms of initial cost in addition to the subsequent adjustment
cost. The advantage of setting b = 1, is that the planned quantities are simple to
compute and compare, and we can focus on the adjustment process, then on the
benefits and costs of having flexible technologies.

To evaluate the first best welfare, let us insert Q∗ = E
3
and q∗ = z−E

3+2a
into W.

We obtain the following welfare value in state z,

W ∗ =
1

12a+ 18

�
3z2 + 4azE − 2aE2

�

and the expected welfare

IEW ∗ =
1

6
E2 +

V

2 (2a+ 3)
(7)

With IEW ∗ increasing in V, flexibilty reduces the social costs from random-
ness as was shown by Waugh (1944) for consumers and Oi (1961) for producers,
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provided they are risk-neutral to monetary transfers and perfectly rational. How-
ever this benefit decreases when the adjustment cost parameter a increases, and
it vanishes when the technology is fully inflexible (a −→∞).

3.3 Market implementation

The first best quantities can be decentralized with competitive price-taking firms
and consumers trading ex post at prices contingent to the state of nature. Since
it is a mere application of the second theorem of welfare, let us just illustrate it
with the quadratic specification.

3.3.1 Market mechanism with only ex post transactions

Ex post, that is knowing z, the representative consumer solves maxq+Q S(Q +
q, z)− p(q+Q) where p is independent from the quantities. Therefore, given (1),
demand is Q+ q = z− p. The representative producers solves maxq pq−C(Q, q).
Hence, using (2), the adjustment supply function is q = p

2(1+a)
− Q

(1+a)
. Equating

supply and demand, we deduce the equilibrium price and quantity in state z,

p (Q, z) = 2
z (1 + a)− aQ

3 + 2a
, q(Q, z) =

z − 3Q

3 + 2a
(8)

Anticipating these contingent quantities and prices, the representative firm plans
its production Q solving maxQ IE [(q (Q, z) +Q).p− C(Q, q (Q, z)]. Since it is
a price-taker, it does not internalize the effect of Q on p (Q, z) . However, as a
rational agent, it internalizes the effect on q (Q, z) . Consequently, the first order
condition is

IE

�
p (Q, z) (1 +

dq

dQ
)−

�
C

′

Q + C
′

q

dq

dQ

��
= 0 = IE

�
p (Q, z)− C

′

Q

�

since C
′

q = p (Q, z) in every state z by the condition on ex post adjustment. Then,
simple calculation shows that producers choose Q = E/3, that is the first-best
output Q∗.

3.3.2 Trade on two markets.

As shown in Crampes and Renault (2019), if we open a market for ex ante trans-
actions in complement to the ex post market, as it is the case in most organ-
ized power markets that combine day-ahead and intra-day trade (Borggrefe and
Neuhoff, 2011; ECA, 2015), under perfect competition the result is the same as
when there is one single market like in the former paragraph. Indeed, the ex-post
inverse demand function knowing z is p = S ′x(Q + q, z) (or p = z − Q − q with
our specification) where Q is the day-ahead quantity, and supply is the same as
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in the one single market case. Therefore, the intra-day equilibrium is the same
as in (8).

On the day-ahead market, the price is not state contingent: let us denote it by
P . The representative producer solvesmaxQ PQ+IE [p (Q, z) q(Q, z)− C(Q, q(Q, z)]
where ∂P/∂Q ≡ 0 and ∂p (Q, z) /∂Q ≡ 0. Then the FOC reads

P + IE

�
p (Q, z)

∂q(Q, z)

∂Q
−

�
C

′

Q + C
′

q

∂q(Q, z)

∂Q

��
= 0.

Given the ex-post adjustment, we obtain the (inverse) supply function for planned
production P = IE

	
C

′

Q



or, with the quadratic specification, P = 22aQ+E

3+2a
.

On the demand side, the consumer solves maxQ IE [S(Q+ q(Q, z)] − PQ −
IE [p (Q, z) q(Q, z)] . Since it is a price-taker, using the ex post adjustment the

demand function is IE [S ′x(Q+ q(Q, z)] = P, that is P = 2 [(1+a)E−aQ]
(3+2a)

with the
quadratic specification. At the day-ahead equilibrium between supply and de-
mand, we obtain Q = E/3 as expected, and P = 2

3
E. The latter actually is

IEp (Q, z) . Indeed, P = IEp (Q, z) prevents any possibility of arbitrage between
the two markets.11

Remark 3.3. Risk neutrality. It is worthwhile noting that the equivalence of
the two market designs whatever the shape of the cost function results from the
quasi-linearity of the consumers’ and producers’ preferences. Indeed, assuming
that the consumers’ performance is measured by their net surplus S − px and
the producers’ performance by their net profit π = px − C implicitly states that
they are risk-neutral when facing monetary risks. Consequently, as long as the
day-ahead price is the same as the expectation of the intraday price, randomness
does not affect their decisions whatever the cost function.

3.4 Social optimum with two representative producers

In order to prepare the analysis of the duopoly in section 4, we now consider
the social gains due to the existence of two production plants. We first con-
sider the general optimization problem, then we determine the explicit solution
corresponding to the quadratic specification.

3.4.1 General properties

There are two plants producing the same homogenous product with respective
cost functions Ci(Qi, qi), i = 1, 2. These costs satisfy the assumptions set in section
2, in particular they are increasing in Qi and convex in both Qi and qi. In the
following, we will write Q = Q1+Q2, q = q1+ q2, �Q = (Q1, Q2), and �q = (q1, q2).

11The assumption of perfect arbitrage between the day-ahead market and the intra—day
market is quite common in the literature. However, empirical studies show that arbitrage
remain imperfect in electricity markets. Joint with market power it generates a price premium
(Ito and Reguant, 2016).
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The problem to solve is

max
Q1≥0,Q2≥0

IEz max
q1≥−Q1,q2≥−Q2

W (�Q,−→q , z)

where W ( �Q,−→q , z) = S(Q+ q, z)− C1(Q1, q1)− C2(Q2, q2).

Ex post, given �Q and z, the intra-day quantities are the solutions to

S ′x(Q+ q, z) = C ′
1q(Q1, q1) = C ′

2q(Q2, q2) (9)

The output qi in plant i = 1, 2 is then a function of both the market size and
the two planned outputs: qi(Q1, Q2, z).

Total differentiation of the two equations in (9) w.r.t. Qi gives the variation
in qi due to a variation in the planned output of plant i:

∂qi
∂Qi

= D−1
�
S
′′

xxC
′′

−iqq +
�
S
′′

xx − C
′′

−iqq

�
C

′′

iqQ

�
i = 1, 2 ,− i 
= i (10)

where D denotes the determinant of the full system. D is positive by concavity
of the objective function. Then, like in the one-plant case, C

′′

iqQ ≥ 0 is sufficient

for ∂qi
∂Qi

≤ 0. It would take a negative and large in absolute value C
′′

iqQ to obtain
the opposite. As for the adjustment in plant −i 
= i,

∂q−i
∂Qi

= D−1S
′′

xx

�
C

′′

iqq − C
′′

iqQ

�
, i = 1, 2 (11)

which is negative if C
′′

iqQ is negative, or positive but small in absolute value, and
∂q−i
∂Qi

> 0 when C
′′

iqQ >> 0. The reason is that plant 1 and plant 2 compete

at the adjustment stage. Then, if C
′′

iqQ < 0 it is profitable to decrease q−i and
leave room to a potential increase in qi. Conversely, if there are strong technical
diseconomies between Qi and qi (i.e C

′′

iqQ >> 0), efficiency requires to use plant
−i for adjustments after an increase in the planned production of plant i.

Ex ante, differentiating IEzW ( �Q, q1( �Q, z), q2( �Q, z), z) wrt �Q and using (9), the
solution (Q∗

1, Q
∗
2) is such that for i = 1, 2

Q∗
i ≥ 0, IEz

	
S ′x(Q

∗ + q(Q∗
1, Q

∗
2, z), z)− C ′

iQ(Q
∗
i , qi(Q

∗
1, Q

∗
2, z)



≤ 0

IEz
	
S ′x(Q

∗ + q(Q∗
1, Q

∗
2, z), z)− C ′

iQ(Q
∗
i , qi(Q

∗
1, Q

∗
2, z)



.Q∗ = 0 (12)

Depending on the form of the cost functions, in particular their relative ad-
vantage in terms of flexibility, we obtain solutions where the two plants are act-
ive at both stages, and others where they must specialize, e.g. Q∗

1 > 0, Q∗
2 =

0, q1(Q
∗
1, 0, z) = 0, q2(Q

∗
1, 0, z) > 0.

3.4.2 Quadratic technologies

From a pure cost-efficiency point of view, the quadratic function Ci(Qi, qi) =
(Qi+ qi)

2+aiq
2
i , i = 1, 2 opens the door to a trade-off between specialisation and
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production at the two stages. Indeed, with convex cost functions (i.e. decreasing
returns to scale), it is efficient to share any given quantity among several genera-
tion units to reduce the total cost. On the other hand, since our specification en-
tails "technical diseconomies" both globally (Ci(Qi, qi)− (Ci(Qi, 0) + Ci(0, qi)) =
2Qiqi > 0), and at the margin (C

′′

iqQ = 2), separating the planned and adjusted
productions would lower the marginal cost of both. In the following, we analyze
how the social planner will balance these two effects.

Quantities sharing With the quadratic specification (1)-(2) and two plants,
the total expected welfare is

W = IE

�
(z −

1

2
(Q+ q))(Q+ q)− (Q1 + q1)

2 − (Q2 + q2)
2 − a1q

2
1 − a2q

2
2

�
.

(13)
Ex post,.from (9) we know that ex post productive efficiency is reached when

the two marginal adjustment costs are equal, i.e. given Q1, Q2 and the total
quantity x = Q+ q to produce, we have

2Q1 + 2(1 + a1)q1 = 2Q2 + 2(1 + a2)q2 (14)

so that
(1 + a1)q1 − (1 + a2)q2 = Q2 −Q1

i.e. the larger adjustment will be done in the plant with the smaller planned
output and, for a given difference Q2−Q1, the larger ai, the smaller qi and/or the
larger q−i, (i = 1, 2). Note that (14) is true for all values of q1 and q2 (constrained
by of qi ≥ −Qi) since these quantities can be positive or negative.

Now, equating (14) with marginal utility, we can solve for q1 and q2:



q∗1 = γ−1 [(1 + a2)z − (4 + 3a2)Q1 − a2Q2]
q∗2 = γ−1 [(1 + a1)z − (4 + 3a1)Q2 − a1Q1]

(15)

where γ is a constant:

γ = 4 + 3a1 + 3a2 + 2a1a2. (16)

As expected, the two quantities decrease with the planned outputs. For a
given z, it means that the adjusted quantities are positive and smaller and smaller
(resp. negative and larger and larger in absolute value) when Q1 + Q2 is small
(resp. large) and increases.

At the planning stage, we know from (12) that if Q1 > 0 and Q2 > 0, the two
expected marginal costs must be set equal to the expected marginal utility:

IE [z −Q1 −Q2 − q∗1 − q∗2] = IE [2(Q1 + q∗1)] = IE [2(Q2 + q∗2)] . (17)

Using (15) and solving, we obtain

Q∗
1 =

1
4
E,Q∗

2 =
1
4
E

q∗1 = γ−1 (1 + a2) (z − E) , q∗2 = γ−1 (1 + a1) (z −E)
(18)

13



Remark 3.4. Contrary to our observation in Remark 3.1, when there are several
production plants the interior solution given by (18) does not guarantee that the
condition Q∗

i +q∗i ≥ 0 holds. Indeed we face the risk of obtaining a solution where
one plant adjust downwards to decrease not only its own output but also the output
of the other plant, which is technically impossible. Formally, using (16) and (18),
we must check that 2ai (1 + a−i) + (ai − a−i) + (4 + 4a−i) z ≥ 0, i = 1, 2. We see
that the constraint is redundant as long as the difference (ai − a−i) is not too large
and/or the demand index z is never too low.

In the first best (interior) solution given by (18), the two representative firms
are active at the two periods because, under increasing marginal costs, it is effi-
cient to share the load. They produce the same quantity at the planning period
because of the peculiarities of our cost function: in each firm, decreasing the
planned output Qi decreases the adjustment marginal cost, and the two firms in-
cur the same cost for the production ofQi. Then the adjusted quantities q1, q2 only
differ from each other because their marginal costs C ′

iq(Q
∗
i , qi) =

E
2
+ 2(1 + ai)qi

have different slopes. Ex post, efficiency imposes that ∂q∗i /∂ai < 0, ∂q
∗
i /∂a−i < 0

and q∗1 � q∗2 as a2 � a1. Note that the adjustments decrease with the expected
demand since planned outputs increase with E.

Given these quantities, welfare in state z is

W ∗=
1

4γ

��
z2 −E2

�
a1 +

�
z2 −E2

�
a2 + (a1 + a2 + 4) z

2 − 2E2a1a2 + 2zE (a1 + a2 + 2a1a2)
�

resulting in the expected welfare

IEW ∗ =
E2

4
+
2 + a1 + a2

2γ
V

To compare these results with those of the one-plant case, assume that a1 =
a2 = a. Then q∗1 + q∗2 =

1+a
2+3a+a2

(z − E) , Q∗
1 +Q∗

2 =
E
2
and IEW ∗ = E2

4
+ 1

2(a+2)
V.

At the two stages of the production process the total quantity is larger because
the cost has been alleviated by allocating the output among the two plants.
Here again, the expected welfare is an explicit function of the demand mean and
variance. Both terms are larger than in the one-plant case (see (7)) but, again,
there is no benefit from the variance if the parameter a becomes infinite.

Specialization. Suppose now that firm 2 is fully inflexible (a2 −→ +∞) so
that q∗2 = 0 and firm 1 can adapt at a finite cost. Then equation (14) is no longer

relevant. To determine q1(
−→
Q, z), we must equate the marginal cost of adjustment

in plant 1 with marginal utility: 2Q1 + 2(1 + a1)q1 = z − (Q1 +Q2 + q1) and we

obtain q1 =
z−(3Q1+Q2)

3+2a1
. Solving the stage 1 condition (17) for this adjustment

functions, the corner solution is Q∗
1 = Q∗

2 =
1
4
E, q∗1 =

z−E
2a1+3

, q∗2 = 0. The total

output of firm 1 is Q∗
1+ q∗1 =

1
4
E+ z−E

2a1+3
. It is non negative if z ≥ E

4
(1− 2a1). We

see that the most constraining case is when firm 1 is perfectly flexible (a1 = 0).
The condition is then z ≥ E

4
which means that demand forecasts must be accurate

14



enough for the lowest possible level of z to be at least one fourth of its average,
which is not very challenging given the statistical tools available today.

It is noteworthy that when a1 = 0 and a2 −→ +∞, the expected profits of
the two firms are IEΠ∗1 =

E2

16
+ V

9
> IEΠ∗2 =

E2

16
, which shows that flexibility

gives a financial advantage as long as V > 0.

Decentralization First best can be decentralized if all agents are price takers.
Using the same argument as in the one-plant case, we can compute the intra-day
price by fixing it at the value of the first best marginal utility S′ = z − (Q∗ +
q∗),which gives

p(z) = z − γ−1
�
γ
E

2
+ (2 + a1 + a2) (z − E)

�
.

The price of the day-ahead market (if there is one), is obtained by taking the
average of the intra-day price (no-arbitrage argument)

P = IEp(z) =
E

2

to be compared with P = 2
3
E obtained in the one-plant case. Clearly, sharing

the load between two price-taking firms is profitable to consumers since they
consume more at a lower price than with one single price-taking producer. As
for the firms, the price decrease is offset by a drop in costs, so that the profit of
the industry (= 1

8
E2 + 1+a

2(2+a)2
V ) is larger than when there is only one producer

(= 1
9
E2 + 1+a

(3+2a)2
V.)

In order to facilitate the comparison with the results of the next section, we
summarize the main results in the following paragraph:

First best results When the gross surplus and cost functions are given by
the quadratic specification (1)-(2), at first best with two active production plants
the ex ante production levels are Q∗

1 =
1
4
E,Q∗

2 =
1
4
E, and the two expected

adjustments are nil. The expected welfare is IEW ∗ = E2

4
+ 2+a1+a2

2γ
V . If the plants

are operated by two price-taking private operators, the results are the same as
at first best whatever the market design. If one firm is perfectly flexible and the
other totally inflexible ( a1 = 0 et a2 = +∞), when V > 0 the flexible firm has a
higher expected profit than the inflexible one.

4 Imperfect competition

We now switch to imperfect competition with and without a day-ahead market
and analyze how the firms can exert their market power when their production fa-
cilities allow to produce and sell at the two stages. We first consider the monopoly
case because the savings from early production create an incentive to produce on
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the day-ahead market whereas in Allaz and Vila (1993, section 3.4) a monopoly
has no advantage from selling forward. We then focus on the duopoly case where
each firm is managed by an independent private owner who maximizes its ex-
pected operating profit by fixing the quantities Qi and qi, taking into account
the effect of its decisions on prices, and constrained by its competitor’s choices
(Cournot competition). In this framework, we know from Crampes and Renault
(2019) that the two market organizations presented in the former section are no
longer equivalent. In sub-section 4.2 we explain the roots of this no-equivalence
and show that the market design has ambiguous effects on the total output and
the agents’ surplus. In sub-section 4.3, we compare the two market designs under
the quadratic specification, and demonstrate that the opening of a day-ahead
market makes consumers better off and firms worse off, which shows that the
result of the Allaz-Vila model (1993) remains true when the technology exhibits
technical diseconomies between production stages. More importantly, we also
show that although the two-market framework has the advantage of increasing
global welfare at the expense of firms, it has the important drawback of transfer-
ing risks from firms to consumers.

4.1 The monopoly case

It is interesting to contrast the result of Allaz-Vila in the monopoly case with
what occurs in our setting. Indeed, when there is only one way to produce and
two ways to sell (forward and on the spot), a monopoly has no reason to compete
against itself by committing on forwards since these sales alleviate its market
power on the spot market. This is clearly stated in Allaz and Vila (1993, section
3.4). By contrast, in our setting with a two-stage production function and two
markets, the monopoly is better off by preparing production and selling at stage
1 to benefit from the lower cost.

To prove it, we consider the case of one single production plant. For a given
state of nature z, knowing that consumers maximize their net surplus by S ′x(Q+
q, z) = p, a monopoly maximizes its profit qp(Q+q, z)−C(Q, q) given Q by fixing
qm(Q, z) > −Q such that12

p(Q+ q, z) + qp
′

x(Q+ q, z) = C ′
q(Q, q), (19)

or

S ′x(Q+ qm(Q, z), z) + qm(Q, z)S
′′

xx(Q+ qm(Q, z), z) = C ′
q(Q, qm(Q, z)).

Comparing with the first best ex post condition (3) that determines q∗(Q, z),
since S

′′

xx(Q + q, z) < 0, for a given pair (Q, z) we have qm(Q, z) > q∗(Q, z)

12Indeed, the condition that permits to set q > −Q at first best (that is S
′

x(0, z) >C
′

q(Q,−Q))

is satisfied in the monopoly case since the marginal revenue p(q+Q, z) + qp
′

x(Q+ q, z) is equal
to S

′

x(0, z)−QS
′′

xx(0, z) > S
′

x(0, z) when q+Q = 0. Then, if Q+ q > 0 for all z at first best, it
is also true for the monopoly.
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when adjustments are negative, and qm(Q, z) < q∗(Q, z) for positive adjustments.
When Q = 0, adjustments can only be positive so that qm(0, z) < q∗(0, z).

At the time to trade on the day-ahead, the monopoly’s expected profit is

�Πm(Q) = P (Q)Q+ IEz [p
m(Q+ qm(Q, z), z)qm(Q, z)− C (Q, qm(Q, z))]

where P (Q) = IEz [S
′
x(Q+ qm(Q, z), z)] is the inverse ex ante demand and

pm(Q + qm(Q, z), z) is the monopoly price on the intra-day market. Here and
below, the sign ∼ identifies when necessary the two-market framework What is

the sign of d
�Πm(Q)
dQ

at Q = 0?

Using (19), the expected marginal revenue from the planned production is

d�Πm(Q)
dQ

= P ′(Q)Q+P (Q)+IEz

�
qm(Q, z)pm

′

x (Q+ qm(Q, z), z)− C
′

Q (Q, qm(Q, z))
�
,

so that

d�Πm(Q = 0)
dQ

= IEz

�
S ′x(q

m(0, z), z) + qm(0, z)pm
′

x (q
m(0, z), z)− C

′

Q (0, q
m(0, z))

�
.

Then, given that S ′x(q
m(0, z), z) = pm(0, z), using (19) one more time, we

obtain
d�Πm(Q = 0)

dQ
= IEz

�
C

′

q (0, q
m(0, z))− C

′

Q (0, q
m(0, z))

�

which is strictly positive by H2, so that the monopoly is better off by selling day-
ahead: Qm > 0. The trade-off between the loss in future revenues (Allaz-Vila’s
effect, qm(0, z)pm

′

x (q
m(0, z), z) < 0) and the today lower cost turns out to the

advantage of the latter.
Notice that the monopoly could improve its performance by planning a pos-

itive output (Qm > 0) without selling it foreward, as if there was no day-ahead
market. Doing so, it would benefit from lower costs without alleviating its market
power. However this behavior could be attacked by competition authorities as a
refusal to deal (art. 102 of the Treaty on the Functioning of the European Union
and section 2 of the Sherman Act).

4.2 Strategic behavior in a duopoly

We now consider the two-stage game between two independent private firms en-
dowed with the partially flexible technologies analyzed in the former sections. For
simplicity, we assume from scratch the existence and uniqueness of Nash-Cournot
equilibria under our general assumptions of section 2. Under the quadratic spe-
cification, existence and uniqueness are guaranteed. As usual, the game is solved
backwards.
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4.2.1 Intra-day market.

The quantities Q1 ≥ 0, Q2 ≥ 0 are fixed and known by firms 1 and 2. Either
they have been sold on the day-ahead market if it exists, or their production has
just been launched if there are only intra-day markets.13 In a subgame-perfect
equilibrium, at stage 2 we have a game parameterized by z and �Q where the firms
set q1, q2 independently of each other. If all quantities are sold at the intra-day
price, the payoff of each firm i is given by

Πi(
−→
Q, q1, q2, z) = p(Q+ q, z)(qi +Qi)− Ci(Qi, qi) (20)

where p(Q + q, z) = S ′x(Q + q, z) is the ex-post demand function given z.
When there are two successive markets, i’s profit is

�Πi(
−→
Q, q1, q2, z) = PQi + p(Q+ q, z)qi − Ci(Qi, qi) (21)

where P is the day-ahead price.
Given its market power, each firm i internalizes that its production qi will

lower the price. In the one-market framework, the FOC for the maximization of
(20) with respect to qi is

p(Q+ q, z) + (Qi + qi)p
′
x = C

′

iq(Qi, qi), i = 1, 2 (22)

where p′x =
∂p(x,z)
∂x

< 0 since S
′′

xx < 0. Let −→q C = (qC1 (
−→
Q, z), qC2 (

−→
Q, z)) be the

unique Cournot equilibrium of this game and pC = S ′x(Q+ qC , z) the associated
price.

If there are two successive markets, the FOC is

p(Q+ �q, z) + �qip′x = C
′

iq(Qi, �qi), i = 1, 2 (23)

Let us denote (�qC1 , �qC2 ) and �pC = S′x(Q+ �qC , z) the equilibrium quantities and
price of this game.

In both market frameworks, the equilibrium price and quantities depend on z
and �Q. By using (10) and (11) with marginal revenue replacing marginal surplus,
we see that the adjusted quantities are generically decreasing in both Qi and Q−i.

4.2.2 Day-ahead.market

When all production is sold on the intra-day market the expected profit of i is

Πi(Q1, Q2) = IEz
�
pC(
−→
Q, z)(qCi (�Q, z) +Qi)− Ci(Qi, q

C
i (�Q, z)

�
(24)

13The assumption that Qi is observed by −i even when there is no ex-ante market-place
can be justified in terms of technological and managerial expertise. See also Hughes and Kao
(1997).
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As detailed in Crampes and Renault (2019), the FOC for the maximisation of
Πi(Q1, Q2) wrt Qi (internalizing (22)) is

IEz

�
pC +

�
Qi + qCi

�
(1 +

∂qC−i
∂Qi

)pC
′

x − C
′

iQ

�
= 0. (25)

where pC
′

x

def
= S

′′

xx(Q+ qC , z) stands for the slope of the inverse demand function
at the equilibrium point. Let QC

1 , Q
C
2 denote the solution.

If there are two markets, the expected profit is

�Πi(Q1, Q2) = P (Q1 +Q2)Qi + IEz
�
�pC(Q, z)�qCi ( �Q, z)− Ci

�
Qi, �qCi (�Q, z)

��
(26)

where P (Q1+Q2) = IEz
�
S
′

x(Q+ �qC1 + �qC2 , z)
�
is the day-ahead demand func-

tion. Given (23), the FOC is

P + P ′Qi + IEz

�
�qCi
�
1 +

∂�qC−i
∂Qi

�
�pC′x − C

′

iQ

�
= 0. (27)

Let �QC
1 , �QC

2 denote the solution.

4.2.3 Larger or smaller output?

Comparing the two pairs of conditions, we observe two differences:
ex post, if the firms have committed on a day-ahead market, increasing

their adjustment output �q has a lower impact on their profit since the drop is �qi�p′x
in (23) instead of (Qi+qi)p

′
x in (22). Then, given the same total planned quantity

Q1 +Q2, with two markets the ex post price will be closer to the marginal cost,
and quantities larger than without day-ahead trade, which is in line with the role
of forward markets in Allaz and Vila (1993) and Ito and Reguant (2016); then
this effect pushes towards �qCi > qCi ;

ex ante, there is no term like Qi
∂qC
−i

∂Qi
pC

′

x ≥ 0 in (27). The tomorrow
reaction of firm −i has no impact on the today’s marginal revenue of firm i
whereas firm i must consider this response when Qi and q−i are sold on the same
market (see (25)). Consequently, ceteris paribus the expected marginal revenue of
i in the unique market framework (equation (25)) is higher than in the two-market

design. Then, this effect pushes towards �QC
i < QC

i .
Consequently, without additional information, we cannot predict whether

�QC
i + �qCi � QC

i + qCi . Obviously, the anticipation of the competitor’s flexibil-

ity capacity
∂qC
−i

∂Qi
plays a pivotal role. The quadratic specification below provides

an illustration for one possible outcome from the two antagonistic effects.

4.3 Duopoly equilibrium in the quadratic case

We first compute and discuss the Cournot-Nash equilibrium when the two firms
can only sell their output on the intra-day market, then we examine the con-
sequences of the opening of a day-ahead market.
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4.3.1 No day-ahead market

Subgame perfect equilibrium Firms 1 and 2 compete in quantities and all
their output is sold on the intra-day market. In the profit function (20) for
i = 1, 2, the inverse demand function in state z is p(Q+ q, z) = z − (Q+ q) and
the cost of i is Ci(Qi, qi) = (Qi + qi)

2 + aiq
2
i .

Intra-day,.from (22), the FOC to determine the adjustment quantity qi is

z − 4Qi −Q−i − (4 + 2ai)qi − q−i = 0, i = 1, 2

The resulting equilibrium quantities are



qC1 = β−1 [(3 + 2a2)z − (15 + 8a2)Q1 − 2a2Q2]
qC2 = β−1 [(3 + 2a1)z − (15 + 8a1)Q2 − 2a1Q1]

(28)

and the price is

pC = β−1 [(2a1 + 3)(2a2 + 3)z − 2 (3 + 2a2) a1Q1 − 2 (3 + 2a1) a2Q2] (29)

where
β = (4 + 2a1)(4 + 2a2)− 1.

Day-ahead, to obtain the FOC relative to the quantity Qi, we use (25) where

we insert pC
′

x = −1,
∂qC
−i

∂Qi
= −2aiβ

−1 by (28) and C
′

iQ = 2(Qi+ qCi ). It results that

IEz
	
pC −

�
Qi + qCi

�
(3− 2aiβ

−1)


= 0, i = 1, 2. (30)

Then, we insert the adjustment functions given by (28) and solve the two-
equation system. The planned quantities we obtain are proportionnal to the ex-
pected willingness to pay of consumers (the explicit forms are given by equations
(35) in the Appendix 6.1):

QC
1 = k1E

QC
2 = k2E

(31)

First observe that the two firms will have different ex ante outputs if they differ
in terms of cost parameters, contrary to what we found at first best (see (18)).
This is because the strategic effect is now at work on top of the cost minimization
concern: firms try to gain market shares without decreasing the price too much.
Even when they are fully identical (a1 = a2 = a), the outputs differ qualitatively

from first best since QC
1 = QC

2 =
4(2+a)2

78a+20a2+75
E is decreasing in a whereas Q∗

1 and
Q∗
2 given in (18) are fixed. Indeed, the higher a the lower the profitability of

operating on the intra-day market and the game becomes closer to a one-shot
Cournot game with no advantage from being a first-mover. Unsurprisingly, the
firms exert their market power by restricting quantities: QC

i < Q∗
i even when

a = 0.
When a1 
= a2, the analysis of the equilibrium quantities (35) in Appendix

6.1 show that QC
i is increasing in ai and decreasing in a−i. Moreover, QC

1 ≷
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QC
2 as a1 ≷ a2. These results are the consequence of the technical diseconomies

mentioned formerly: the firm with the lower cost of adjustment produces less
than its competitor at the first stage because this will limit the negative impact
on its cost at the second stage where it will be more active. The higher the
adjustment parameter ai, the higher the planned production QC

i because firm i
does not intend to intervene intensively intra-day, hence does not mind about the
cost diseconomies.

Consider now the profit of the firmsΠCi =
	
z − 2

�
QC
i + qCi

�
−
�
QC
−i + qC−i

�

(QC

i +

qCi ) − aiq
C
i
2
, i = 1, 2, and the consumers’ net surplus SCn =

(QC+qC)2

2
in state z.

Given (28) and (35) in the Appendix, these functions can be written under the
format14 ΠCi = lizE+miE

2+niz
2, i = 1, 2 and SCn = lSzE+mSE

2+nSz
2 where

the weights li,mi, ni, lS,mS, nS only depend on the adjustment coefficients a1, a2.
Consequently, the expected value of i’s profit is

IEΠCi = (li +mi + ni)E
2 + niV, i = 1, 2

and, similarly, the expected net surplus of consumers is

IESCn = (lS +mS + nS)E
2 + nSV

As we can see in the right part of Table 1 in the Appendix, ni > 0, nS >
0, li+mi+ ni > 0, and lS +mS + nS > 0. Therefore the expected profits and the
expected net surplus are increasing in E and V , at a speed that depends on the
values of the adjustment coefficients a1, a2.

Numerical illustrations. To gain insights on how the flexibility question im-
pacts the firms’ strategies and the market equilibria, in Table 1 of the Appendix
we have computed the outcomes of the game corresponding to 19 different values
of the pair a1, a2. The simulation allows to find out some important results such
as that being inflexible can be more profitable than being flexible and that adding
a day-ahead market to the intra-day market increases welfare but transfers risks
from firms to consumers.

In the following we only discuss 4 characteristic cases out of the 19, three for
symmetric costs and one for asymmetric costs.

Cost symmetry When the two firms are identical with a zero additional
cost of adjustment (a1 = a2 = 0), only the total quantity Qi + qi can be determ-
ined. Among the infinity of sharing rules between Qi and qi, one is the limit

14Indeed, by inserting (31) into (28) we obtain adjustment quantities as linear functions of
z and E with weights that only depend on the adjustment coefficients a1 and a2. Then, given
the quadratic specification of Πi(.) and S(.), it is straightforward to obtain the profits and the
net surplus as linear functions of E2, z2 and zE.
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of the subgame-perfect equilibrium when a1 = a2 goes to 0. In this case, the
equilibrium is QC

i = 0.213E, qCi = 0.2z − 0.213E, then a total expected output
QC
1 +QC

2 + IE(qC1 + qC2 ) = 2/5. It is interesting to note that the firms have a neg-
ative expected adjustment, contrary to the zero average adjustment at first best
(3.4.2). It means that even though they both plan to produce less than at first
best, the will to gain market shares pushes the output upwards, which increases
the risk of downward adjustment. The expected profit of i and the expected
consumers’ net surplus have the same value IE(ΠCi ) = IE(SCn ) = 0.08(E

2 + V ).
Consequently, the global performance is IE(WC) = 0.24(E2+V ). In this extreme
case of perfect flexibility, the demand randomness (measured by variance) is as
profitable as the average willingness to pay for both consumers and producers.

Consider now the opposite: the two fims have fully inflexible technologies:
a1 = a2 = +∞. Obviously qCi = 0 for both firms and we have a standard static
Cournot duopoly, i.e. the equilibrium quantity of i is QC

i = 0.2E bexause it
does not fear ex post competition. The individual profit and the net consumers’
surplus amount to IE(ΠCi ) = 0.08E

2. Comparing with the perfect flexibility case,
we see that everybody is losing the gains from the demand variance, unequivocally
implying that flexibility is socially desirable even under imperfect competition.

Let us switch to the intermediary symmetric case a1 = a2 = 1 (for other
values, see the upper part of Table 1 in the Appendix). At equilibrium, we
obtain

QC
i ≃ 0.208E, qCi ≃

z

7
− 0.149E i = 1, 2

IE(ΠCi ) ≃ 0.079E2 + 0.061V i = 1, 2

IE(SCn ) ≃ 0.082E2 + 0.041V (32)

IE(WC) ≃ 0.241E2 + 0.163V

Unsurprisingly, the result falls in between the two former cases: the planned
output takes an intermediary value, the average adjustment is slightly negative
and the variance of demand matters but less than when technologies are fully
flexible.

In the three cases above, the firms have identical technologies. The case
where a1 = a2 = +∞ is an interesting benchmark because firms are just compet-
ing “à la Cournot" facing an average demand. They both produce QC

i = 0.2E <
Q∗
i = 0.25E, qCi = q∗i = 0 whatever z, hence an expected social welfare IEWC =

0.24E2 < IEW ∗ = 1
4
E2. These are standard results of imperfect competition. We

can similarly observe that Cournot profits are larger than under perfect competi-
tion and the opposite holds for the consumers’net surplus. In the two other cases
where the ai are finite, we observe that QC

i is larger than when ai =∞ and that
the average adjustments are negative. This is a Stackelberg effect: each firm has
the incentive to invade the market to decrease the market share of its competitor.
But doing so, it is competing against itself in the adjustment stage, both tech-
nically and commercially, which explains the average decrease in qi. Day-ahead,
the trade-off is between the gains of pushing the price up and the adjustment
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marginal cost down by restricting supply on the one hand, and the drawback of
leaving a larger market share to the competitor on the other hand.

Cost asymmetry There is an infinity of possibilities to depict cost dis-
symmetry. Suppose that a2 > a1 so that firm 2 is less efficient than firm 1 at
adjusting its output. Then firm 2 anticipates it will not change its initial planned
production Q2 very much, so that it can increase Q2 without impairing too much
its ex-post cost. Facing this more agressive ex ante strategy, firm 1 reduces its
planned production and participates more in the adjustment process. As expec-
ted, there occurs a partial specialisation of the firms.

Let us illustrate it with the extreme case where firm 1 is perfectly flexible
and firm 2 fully inflexible: a1 = 0, a2 = +∞. Since a1 = 0, there exist several
equilibria defined by QC

1 + qC1 =
z
4
− 3E

56
. The following one is the equilibrium

obtained when a1 goes to 0:15

QC
1 ≃ 0.196E, QC

2 ≃ 0.214E,

qC1 =
1

4
(z − E), qC2 = 0,

IE(ΠC1 ) ≃ 0.077E2 + 0.125V, IE(ΠC2 ) ≃ 0.080E
2

IE(SCn ) ≃ 0.084E2 + 0.03V

IE(WC) ≃ 0.242E2 + 0.156V

Since firm 2 cannot adjust its production to the revelation of z, firm 1 is a
monopoly for the adjustment to demand on the intra-day market. And since firm
1 can produce at the same cost at the two stages, it would like to share its output
equally to prevent being penalized by increasing marginal costs. However, it
would not be profitable to do so because of the opportunism of firm 2 that would
increase its ex ante production. Then we have QC

1 < QC
2 < Q∗

1 = Q∗
2. Consider

now the expected profits. Firm 1’s profit IE(ΠC1 ) is increasing in both the average
and the variance of demand. By contrast, since firm 2 does not participate in
the intra-day market, only the average value of the willingness-to-pay appears in
IE(ΠC2 ), but with a higher coefficient than in IE(ΠC1 ). It means that, contrary to
what we had under perfect competition (see Result 3.4.2), for a small variance,
the inflexibility of firm 2 is an advantage over the flexibility of firm 1. Indeed, firm
2 contrary to firm 1 can credibly commit that it will not adjust ex post. Then it
has a Stackelberg market power pushing away firm 1 from the ex ante process, a
result in line with the worry of competition authorities quoted in footnote 1.

To sum up:
Duopoly results without a day-ahead market
When the gross surplus and cost functions are given by the quadratic specific-

ations (1)-(2) and there is no day-ahead market, two firms competing in quantities

15Notice that the condition qC
1
+ QC

1
≥ 0 is met if z ≥ 3

14
E, which is satisfied given the

restriction z ≥ E
4
set in Remark 3.4.
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produce less than at first best. If the firms have the same cost function, the higher
the adjustment cost, the lower the planned outputs (see Remark 4.1 below) and
the higher the (negative) expected adjustment. If the firms are asymmetrical, the
less flexible firm plans a higher level of output and adjusts less ex post than its
competitor. When the demand variance is low, being inflexible is more profitable
than being flexible.

Remark 4.1. In the symmetric case a1 = a2 = a, we see in the upper part of
Table 1 that QC

i is decreasing and IE(qCi ) is increasing in a.16 This is inefficient
on cost grounds. Then the explanation is to be sought in terms of strategic effect:
by setting a large QC

i , each firm is seeking to appropriate a large market share
(market stealing effect). But doing so it increases the set of states of nature where
it will have to adjust downwards (note that the expected adjustment is always neg-
ative). Consequently, when a increases, the firms want to reduce the adjustments,
and since they are negative, in means to increase their expected value IE(qCi ). And
less downward adjustment means a lower planned output QC

i . As a byproduct, the
expected total quantity QC

i +IE(qCi ) is not monotonous in a: it is increasing (resp.
decreasing) when a is small (resp. large).

4.3.2 Addition of a day-ahead market

Assume now that the two firms i = 1, 2 do not just decide on the production of
Qi at stage 1. They also sell it on a day ahead market at a price equal to the
expectation of the random ex post prices On the intra-day market, fim i only sells
qi. In the following, we first consider two cases of identical costs: a1 = a2 = 1
and a1 = a2 = +∞ to emphasize the drastic changes due to the opening of a
day-ahead market, then the case a1 = 0, a2 = +∞ to illustrate the potential for
firms’ specialization. The outcomes of 16 other pairs of coefficients are listed in
Table 2.

Finite identical costs: a1 = a2 = 1 Applying the quadratic specification
to the first order condition (23) and assuming that a1 = a2 = 1 we obtain the
following equilibrium outcome (the explicit solution is in Appendix 6.2):

�QC
i ≃ 0, 184E, �qCi ≃ 0, 143z − 0, 105E, i = 1, 2

The average profit of i is

IE(�ΠCi ) ≃ 0, 073E2 + 0, 061V,

the average consumers’ net surplus is

IE(�SCn ) = 0, 098E2 + 0, 041V.

16It is obvious as for Qi. Concerning IE(qi), since i) qi is linear in z and E, and ii) E
def
= IE(z),

we see that IE(qi) is increasing in a by adding the coefficients in column "coeff in z of qi" and
those in column "coeff in E of qi" in Table 1.
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and the resulting average welfare is

IE(�SCn + �ΠC) ≃ 0, 244E2 + 0, 163V.

Comparing with (32), we can observe that adding a day-ahead market has the
following effects:

i) each firm produces less at the first stage ( �QC
i < QC

i ) but its average

total production is larger ( �QC
i + IE�qCi > QC

i + IEqCi ).
ii) expected prices are lower: IE(�pC) ≃ 0.556E < IE(pC) ≃ 0.595E,

iii) consumers are better off (IE �SCn > IESCn ) and firms are worse off

(IE�ΠCi < IEΠCi )

iv) total welfare is higher (IE�WC > IEWC).

With �QC
i < QC

i but �qCi > qCi , we have an illustration of the two opposite effects
due to the opening of a day-ahead market that we have identified at the end of
subsection 4.2. Here the conflict ends out with �QC

i + IE�qCi > QC
i + IEqCi , so that

opening a day-ahead market is profitable to consumers, detrimental to producers,
and socially beneficial. However, notice that all the gains and losses result from
an increase in the coefficient of the mean demand, whereas the variance effect
remains unchanged. Let us take a closer look at the random performance values
of the second stage. We observe that �WC > WC if and only if z < 0.96E and
�SCn > SCn if and only if z > 0, 94E. In words, if z is small, the firms get a bonus
and the consumers a malus, because day-ahead the firms have sold a smaller
quantity at a relatively high price. By contrast, if z is high, the firms get a malus
and the consumers get a bonus, because day-ahead the consumers have bought
products at a relatively low price. The reason why the consumers are better off
and the firms are worse off in expectation is that with convex cost functions, high
values of z matter more than low values.

Interestingly, the minimum profit is larger with a day-ahead market (≃ 0, 069E2,
reached when z ≃ 0, 738E) than without (≃ −0, 033E2, reached when z = 0).
Indeed the day-ahead market yields insurance to the firms in case of small z.
This is confirmed by the observation that the addition of the day-ahead market
induces a transfer of risks (measured by the variances of profit and surplus) from
firms to consumers. Specifically, applying the formulae in Appendix 6.2.3, we
have that

V (�ΠCi )− V (ΠCi ) ≃ 0, 0227V E2 + 0, 0172E4 − 0, 0172EIE(z3)

V (�SCn )− V (SCn ) ≃ 0, 0712V E2 − 0, 0225E4 + 0, 0225EIE(z3)

Using the Lemma 6.2.4 in the Appendix, we obtain

V (�ΠCi )− V (ΠCi ) ≤ −0, 0031V E2 < 0 (33)

V (�SCn )− V (SCn ) ≥ 0, 105V E2 > 0 (34)

Note that this is true − under the quadratic specification (1)-(2) − for any
distribution of probabilities of the willingness-to-pay z.
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Infinite identical costs: a1 = a2 = +∞ The transfer of risks is emphasized
when both firms are totally inflexible. With a1 = a2 = +∞, we obtain qCi =

�qCi ≡ 0 and QC
i = �QC

i = 0.2E, i = 1, 2. Even though the results seem identical to
the case of no day-ahead market, the following table shows that profits and net
surplus are differently affected:

intraday market only day-ahead + intraday market
pC = z − 0.4E PC = 0.6E

ΠCi =
1
25
(5z − 3E)E �ΠCi = 0.08E2

SCn = 0.08E
2 �SCn = 0.4zE − 0.32E2

Profits have equal expected values in the two designs. The same for the
consumer’s net surplus. However, when all trade can only occur intraday, the
quantity QC = 0.4E is planned day-ahead and sold at the random price pC =
z − 0.4E so that all risks are on the shoulders of firms (ΠCi depends on z) and
consumers are fully insured (SCn only depends on E). Symmetrically, when some

trade occurs day ahead at price PC, consumers buy the quantity �QC
i = 0.4E

but they pay a random price which provides full insurance to the producers. In
our model, this transfer is innocuous since both consumers and producers are
risk neutral when facing monetary lotteries. But it is worthwhile emphasizing it
because in the real world most consumers (at least households) are risk averse and
many entrepreneurs are risk lovers, so that the opening of a day-ahead market
may have some detrimental effect on welfare.17

To conclude on the symmetric case, observe that the social advantage of
adding a day-ahead market to the intra-day market measured by the difference
IE�WC − IEWC is vanishing when a1 = a2 = a is increasing (compare the last
columns in the uppert part of Tables 1 and 2). This makes sense since when a
increases, adapting quantities on the intra-day market becomes more expensive.
Consequently the firms rather rely on the response of demand to price. It also
means that the social advantage of trading ex ante à la Allaz and Vila (1993)
relies on an implicit assumption of some flexibility in the production process.

Asymmetric competition: a1 = 0, a2 = +∞. The detailed solution for the
case where firm 1 is perfectly flexible and firm 2 is totally inflexible is in Appendix
6.3. The first obvious result is that �qC2 = 0 whatever z and Q1 +Q2. Then, firm
1 is a monopoly on the intra-day market, and since it can adjust its output at
the same cost as ex ante, its best choice is �QC

1 = 0, abandonning the initial stage
to firm 2. The result is full specialization with two successive monopolies where
firm 2 sells �QC

2 =
3
14
E day-ahead and firm 1 sells �qC1 = 1

4
z− 3

56
E on the intra-day

17Before the 2022 energy crisis, the European authorities published a text encouraging real-
time electricity pricing (art 11 page 148 of Directive (EU) 2019/944), that is risky contracts for
consumers. But during the crisis, national and European policy-makers did everything possible
to ensure that the electricity prices paid by consumers varied as little as possible over time.
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market.18

We could deduce that the addition of the day ahead market has very dam-
ageable consequences for competition, then for consumers, since firm 1 has now
complete freedom in the ex-post market. However, the ex post market is shrinked
since the quantity �QC

2 =
3
14
E has already been sold. It results a intra-day price

�p ≃ 3
4
z − 0.161E to be compared with p ≃ z − 0.411E we had in subsection

4.3.1. We see that �p is smaller (resp. larger) than p for large (resp. small) values
of z even though, on average, IE�p = IEp = 0.589E. Since the quantity traded
by each firm in each state of nature is the same as when everything is sold ex
post ( �QC

i + �qCi = QC
i + qCi , i = 1, 2), the expected profits of the two firms and

the expected net surplus and welfare are unchanged after the adjunction of the
day-ahead market.

However, the average values hide some subtle changes. Firm 2 earns the same
average profit, but its profit is not random since all its production is sold ex ante
at an average price. In the same vein, the expectation of the intra-day price is the
same under the two market designs but the intra-day price is less varying with
the random shock z when there is a day-ahead market. Clearly, the ex ante sales
have a stabilizing effect on the ex post trade. The most interesting feature is the
role of consumers, already mentioned in the cases a1 = a2. Their net surplus is
higher in the day ahead setup if and only if z > E. Here again, the variance of
the consumers’ net surplus increases with the opening of the day-ahead market.
Indeed, from subsection 6.3.3 in the Appendix, we have

V (�Sn)− V (S) ≃ 0, 029V E2 − 0, 01E4 + 0, 01EIE(z3)

which is non-negative by applying the Lemma of subsection 6.2.4.
Profits are ΠC1 =

�ΠC1 = 1
8
(z − 3

14
E)2 and ΠC2 =

9
56
E(z − 1

2
E) 
= �ΠC2 = 9

112
E2.

Then the opening of the day-ahead market changes nothing as regards the fin-
ancial risks held by the flexible firm and provides full insurance to the inflexible
firm at the expense of the consumers. To sum up:
Risk transfer in the case of specialization. Under specification (1)-(2),

when a firm is totally inflexible and the other is perfectly flexible, if a day-ahead
market is added to the intra-day market the expected gains of all agents remain
unchanged but the inflexible firm is fully insured by consumers, whatever the
distribution of probabilities of the demand size.

5 Conclusion

The energy mix needs to be adpated to the multiple challenges of green trans-
ition, security of supply, rollercoaster primary energy prices, energy savings, and
so on. In the electricity industry, the main problem is the intermittency of green

18Notice that this is the unique equilibrium of the game whereas when there is no day-ahead
market there is a multiplicity of equilibria since, when a1 = 0, firm 1 can produce at the same
cost ex ante and ex post and everything is sold ex post as seen formerly.
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sources (solar, wind, along-the-river hydro) facing weak storage capacities and de-
mand dependency on weather conditions rather than on intra-day prices. Then,
encouraging the flexibility of production units able to serve residual demand is
mandatory. As stated by ACER (2022, p. 30), "flexibility needs arise at every
possible timeframe, from seconds to weeks to years". Our paper is a contribution
to the economics of daily flexibility, that is when dispatchable generation plants
face a trade-off between planning low-cost production day-ahead and benefitting
from intra-day accurate information on the demand that cannot be served by
planned production and green producers. We also recall that before any market
redesigning it is important to assess the consequences of potential strategic be-
havior. For example, we show that in a duopoly the non flexible firm can earn
higher profits than its flexible competitor because non-flexibility confers credibil-
ity when planning to produce large quantities. Consequently, when competition
is imperfect, promoting flexibility can necessitate additional payments.

We also show that the addition of a day-ahead market to the real-time market
is socially beneficial, profitable for consumers and detrimental to producers. This
is a extension of the well-known result of Allaz and Vila (1993) to the case of
complex technologies. A side effect of this social benefit is the transfer of risks
from firms to consumers thanks to day-ahead trade. This form of collective
insurance can be viewed negatively by governments.

To obtain precise results it is necessary to use specific forms of cost and surplus
functions. This is why we have assumed a quadratic gross surplus function and a
quadratic cost function with technical diseconomies between the planned and the
adjusted outputs. Consequently, all results cannot be generalized. However, they
provide some hints on the paths to explore in the analysis of supply flexibility
and the design of electricity markets. To investigate the robustness of the results,
we must relax at least four assumptions.

On the supply side, considering non quadratic cost functions would allow
to introduce statistical moments higher than variance, in particular skewness
since adjustment is generally more costly upwards than downwards. The case
of technical economies (that is, a negative crossed second derivative of the cost
function) should also be considered because starting costs and warming-up costs
are essential in thermal plants.

On the demand side, we have assumed perfectly rational consumers, which
means full demand responsiveness. Actually, small consumers are not able to
react to variations in intra-day prices. With inertia on the demand side, supply
flexibility is mandatory to avoid blackouts. This could change with the use of IoT
devices at consumption locations. With more responsiveness to price variations
on the consumer side, technical flexibility becomes less essential. Finally, the
transfer of risks to consumers when a day-ahead market is opened entails the
need to analyse the case where consumers are risk averse instead of risk neutral.
Using a continuity argument we can conjecture that the risk reallocation effect
will persist if consumers are slightly risk averse, still facing risk-neutral producers.
But it remains to prove it and to investigate whether the negative risk reallocation
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effect can be large enough to outweigh the welfare-enhancing effect of a day-ahead
market and how large it is depending on the degree of flexibility of producers.
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6 Appendix

6.1 Planned quantities in the duopoly game without day
ahead market

After substituting for the adjustment functions qC1 , q
C
2 given by (28), solving the

two-equation system

IEz
	
pC −

�
Q1 + qC1

�
(3− 2a1β

−1)


= 0

IEz
	
pC −

�
Q2 + qC2

�
(3− 2a2β

−1)


= 0

gives the planned quantities

QC
1 =

E
D
4(a1 + 2)(a2 + 2)

�
(15 + 8a1)(45 + 24a1 + 46a2 + 24a1a2) + 8a

2
2(2 + a1)(11 + 6a1)

�

QC
2 =

E
D
4(a1 + 2)(a2 + 2)

�
(15 + 8a2)(45 + 46a1 + 24a2 + 24a1a2) + 8a

2
1(2 + a2)(11 + 6a2)

�

where D =
�
8a1(2 + a2)(7 + 4a2) + (15 + 8a2)

2
� �
8a2(2 + a1)(7 + 4a1) + (15 + 8a1)

2
�
−

64a1a2(2 + a1)
2(2 + a2)

2.
(35)

They are denoted QC
i = kiE, i = 1, 2 in subsection 4.3.1.

6.2 Subgame perfect equilibrium in the quadratic case
with a1 = a2 = 1 when there are two markets

6.2.1 Stage 2 equilibrium

At stage 2, given �Q = (Q1, Q2) and z, the price will be p(Q+ q, z) = z− (Q+ q).
Each firm i chooses qi to maximize the concave function

Πi(q1, q2) = (z − (Q+ q))qi − (Qi + qi)
2 − q2i + P (Q1, Q2)Qi.

Since the last term does not depend on qi, it does not matter at this stage.
Differentiating wrt qi gives:



6q1 + q2 = z − 3Q1 −Q2

q1 + 6q2 = z −Q1 − 3Q2.
(36)

We obtain the equilibrium of stage 2:





�q1(z,
−→
Q) = 1

7
z − 17

35
Q1 −

3
35
Q2,

�q2(z,
−→
Q) = 1

7
z − 3

35
Q1 −

17
35
Q2.

(37)
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As a consequence,

p(Q+ �q, z) = 5

7
z −

3

7
Q1 −

3

7
Q2,

and the demand function at stage 1 is:

P (Q1, Q2) = IE(p(Q+ �q, z)) = 5

7
E −

3

7
Q1 −

3

7
Q2.

6.2.2 Stage 1 equilibrium

At stage 1, each firm i chooses Qi in order to maximize:

Πi(Qi, Q−i) = P (Qi, Q−i)Qi + IEz
�
p(Q+ �qi( �Q, z), z)�qi( �Q, z)− Ci(Qi, �qi( �Q, z)

�

= (
5

7
E −

3

7
Qi −

3

7
Q−i)Qi

+(
5

7
z −

3

7
Qi −

3

7
Q−i)(

1

7
z −

17

35
Qi −

3

35
Q−i)

−(Qi +
1

7
z −

17

35
Qi −

3

35
Q−i)

2 − (
1

7
z −

17

35
Qi −

3

35
Q−i)

2.

Differentiating with respect to Qi and combining the best response functions,
we obtain the equilibrium outputs

�QC
1 = �QC

2 =
73

397
E ≃ 0, 184E.

Then, one can compute the prices

�PC ≃ 0, 557E, �pC ≃ 0, 714z − 0, 158E.

The intraday quantities are

�qC1 = �qC2 ≃ 0, 143z − 0, 105E.

The resulting profit is

�ΠCi ≃ 0, 102E2 − 0, 090zE + 0, 061z2 (38)

and its expected value is

IE(�ΠCi ) ≃ 0, 073E2 + 0, 061V.

The consumers’ net surplus is

�SCn = ((z−( �QC+�qC)/2)( �QC+�qC)− �PC �QC−�pC�qC ≃ −0, 251E2+0, 041z2+0, 308zE
(39)

and its expected value is

IE(�SCn ) = 0, 098E2 + 0, 041V.

Finally, the expected welfare value is

IE(�SCn + �ΠC) ≃ 0, 244E2 + 0, 163V.
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6.2.3 Variances when a1 = a2 = 1

The variance of profits and surplus is

• without day-ahead trade:

V (Πi) ≃ −0, 004V
2 + 0, 004IE(z4)− 0, 011V E2 − 0, 01E4 + 0, 006EIE(z3)

(40)
V (Sn) ≃ −0, 002V

2 + 0, 002IE(z4)− 0, 005V E2 − 0, 004E4 + 0, 003EIE(z3)
(41)

• with a day-ahead market:

V (�Πi) ≃ −0, 004V 2 + 0, 004IE(z4) + 0, 012V E2 + 0, 007E4 − 0, 011EIE(z3)
(42)

V (�Sn) ≃ −0, 002V 2 + 0, 002IE(z4) + 0, 066V E2 − 0, 027E4 + 0, 025EIE(z3)
(43)

6.2.4 Proof of the inequalities (33) and (34)

To assess the sign of the variation in variances (33) and (34), we use the following
Lemma:

Lemma 6.1. Let z be a random variable taking values in IR+. Recalling that
E = IE(z), V = IE(z2)−E2, then:

IE(z3) ≥ E3 +
3

2
EV.

Proof: Consider the function f : x �→ x3/2, f is convex on IR+ so by Jensen’s
inequality the expectation of f(z2) is at least f(IE(z2)), that is: IE(z3) ≥ (E2 +

V )3/2. But (E2+ V )3/2 = (E2(1+ V
E2
))

3

2 = E3(1+ V
E2
)
3

2 . Since (1+ x)
3

2 ≥ 1+ 3
2
x

for all x, we obtain (1 + V
E2
)
3

2 ≥ 1 + 3
2
V
E2

and IE(z3) ≥ E3(1 + V
E2
)
3

2 ≥ E3 + 3
2
EV.

6.3 Subgame perfect equilibrium in the quadratic case
with a1 = 0, a2 = +∞ when there are two markets

6.3.1 Stage 2 equilibrium

Given the cost structure, it is obvious that �qC2 = 0. At stage 2, given �Q = (Q1, Q2)
and z, firm 1 chooses q1 so as to maximize:

Π1( �Q, q1, 0, z) = (z − (Q1 +Q2 + q1))q1 − (Q1 + q1)
2 + P (Q1, Q2)Q1.

which is concave in q1. The first order condition is z − 3Q1 −Q2 − 4q1 = 0, from
which we derive the equilibrium of stage 2:
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�q1(�Q, z) =
z − 3Q1 −Q2

4

�q2(�Q, z) = 0.

Then, the intra-day price is

�p(Q+ �q1, z) = z − (Q+ �q1) =
3

4
z −

1

4
Q1 −

3

4
Q2,

and the price of stage 1 is

�P (Q1, Q2) = IE(�p(Q+ �q1, z)) =
3

4
E −

1

4
Q1 −

3

4
Q2.

6.3.2 Stage 1 equilibrium

At stage 1, firm 1 chooses Q1 in order to maximize:

IE�Π1(Q1, Q2) = �P (Q1, Q2)Q1 + IEz�p(Q+ �q1, z)�q1( �Q, z)− C1(Q1, �q1( �Q, z))

= (
3

4
E −

1

4
Q1 −

3

4
Q2)Q1+

(
3

4
z −

1

4
Q1 −

3

4
Q2)(

1

4
z −

3

4
Q1 −

1

4
Q2)− (z/4 +Q1/4−Q2/4)

2.

Differentiating with respect to Q1, we find 16∂IE(Π1)
∂Q1

= −4Q1 < 0, so that at

equilibrium �QC
1 = 0.

Firm 2 chooses Q2 in order to maximize the non random profit

�Π2 = (3/4E −Q1/4− 3/4Q2)Q2 −Q2
2.

At equilibrium we obtain

�QC
2 =

3

14
E.

Plotting these values in the adjustment function of firm 1, we obtain

�qC1 =
1

4
z −

3

56
E.

Consequently the prices are

�PC ≃ 0, 557E, �pC(z) ≃ 0, 75z − 0, 161E.

The random profit and the expected profit of firm 1 are

�ΠC1 =
1

8
(z −

3

14
E)2, IE�ΠC1 ≃ 0.077E2 + 0.125V
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and the gains of firm 2 are

�ΠC2 =
9

112
E2 = IE�ΠC2 .

The consumers’ net surplus is

�SCn =
1

32
(z2 +

45

7
zE −

927

142
E2),

then, on average
IE �SCn ≃ 0.084E2 + 0.03V.

Finally, the welfare is

�WC = �SCn + �ΠC =
5

32
z2 +

33

224
zE +

81

6272
E2

and, on average,
IE(�WC) ≃ 0.242E2 + 0.156V.

6.3.3 Variances when a1 = 0, a2 =∞

When there is a day-ahead market, the variance of consumers’ net surplus is

V (�SCn ) ≃ −0, 001V 2 + 0, 001IE(z4) + 0, 026V E2 − 0, 013E4 + 0, 012EIE(z3)

to be compared with

V (SCn ) ≃ −0, 001V
2 + 0, 001IE(z4)− 0, 003V E2 − 0, 003E4 + 0, 002EIE(z3)

when the whole ouput is sold ex post.
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