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Abstract

This paper provides a unifying framework of one-to-one and many-to-one matching

without transfers and investigates how data on realized matches can be leveraged to

identify preferences of participating agents. I find that, under parsimonious assumptions

on preferences, one can only identify the joint surplus function both in the one-to-one

and many-to-one case. While this negative identification result was already established

for the one-to-one case, I reconcile this finding with the recent literature showing that

preferences are separately identified when having data on many-to-one matchings. I

find that these positive identification results are mostly driven by restrictions imposed

on preferences rather than the additional identification power made available through

the many-to-one structure of the data. I then show that by imposing similar restrictions

on preferences, one can recover identification of preferences both in the one-to-one and

many-to-one case. Finally, I show that the additional data brought by many-to-one

matchings can alternatively be used to estimate more precisely the distribution of un-

observed preference heterogeneity.
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1 Introduction

Two-sided matching models with non-transferable utility are key to understand how central-

ized clearinghouses allocating jobs, college seats, public housing or deceased-donor kidneys

are organized and how one should design them (Roth (2018), Agarwal and Budish (2021)).

They are also essential tools to predict the impact of policies aiming at affecting how agents

sort in such markets (Agarwal (2017)). However, this requires to know ex-ante the pref-

erences of participating agents which are difficult to infer from observed sorting patterns

only. In matching markets, agents’ opportunities depend on preferences of agents from the

other side. Thus, developing a revealed preference approach based on realized matches is

not straightforward in the absence of prior information about preferences of one side of the

market.1

The goal of this paper is to provide a unifying framework of one-to-one and many-to-

one matching without transfers and investigate what can be identified from data on realized

matches, when preferences of both sides of the market are unknown. I show that, under

parsimonious assumptions on preferences, one can identify the joint surplus function both in

the one-to-one and many-to-one case. However, I find that preferences of participating agents

cannot be separately identified from the surplus function. Knowing the joint surplus is enough

to simulate matching outcomes under various counterfactual scenarios. However, it does not

allow us to characterize key objects, such as labor supply elasticities, that solely depend

on individual preferences. While this negative identification result was already known for

the one-to-one case (Menzel (2015)), it is at odds with the recent literature which highlights

that data on many-to-one matching brings additional information that can separately identify

preferences (Diamond and Agarwal (2017), He et al. (2021)). This suggests that these positive

identification results are mostly driven by other restrictions imposed on preferences, rather

than the additional identification power made available through the many-to-one structure

of the data. In light of this result, I show that by imposing similar restrictions on preferences

one can recover identification of preferences both in the one-to-one and many-to-one case,

expanding the scope of what can be learned from data on one-to-one matches. Finally, I show

1While such information is sometimes available in college admissions or school choice mechanisms (Agarwal
and Somaini (2020)), preferences of both sides of the market are usually unknown.
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that the additional data brought by many-to-one matchings can still be useful to estimate

more precisely the distribution of unobserved preference heterogeneity.

To perform this analysis, I build on Menzel (2015) to develop a model of two-sided

matching where one side is composed of firms and the other side is composed of workers.

Each side is characterized by a large set of observed and unobserved attributes. I embed both

the one-to-one and many-to-one framework in this model by assuming that each firm has an

exogenous finite number of open vacancies, which is larger or equal than one. I impose three

assumptions on the payoff functions and the equilibrium: (i) the systematic and unobserved

part of the payoff functions are additively separable, (ii) the unobserved taste shocks are

iid with type-I upper tail and (iii) the observed matching is stable. While (i) and (iii) are

commonly used in the literature, (ii) departs from Diamond and Agarwal (2017) and He

et al. (2021) by restricting the class of distributions taste shocks can follow for tractability

purposes. However, (ii) remains nested in the broader classes they consider implying that

the generality of the non identification result derived in this paper is not affected. On the

other hand, I do not restrict preferences to be homogeneous and the number of agents on

one side of the market to be fixed at the cost of allowing for multiple equilibria.

As in Menzel (2015), I consider that we observe a random sample of realized matches from

a single large market where the number of participating firm and workers grows to infinity.

Sorting patterns are thus collapsed into the limit of the joint distribution of matched char-

acteristics. Under the assumptions described above, I characterize the mapping between this

limit joint distribution function and agents’ payoff functions in four steps. First, I show that

stability implies that each worker is matched to its preferred firm among the set of firms that

would be willing to hire her. Similarly, each firm is matched to its preferred group of workers

among the set of workers that would be willing to work there. This implies that we can rein-

terpret the realized matches as the outcome of two discrete choice models with unobserved

and endogenous choice sets, and where firms choose many alternatives. Second, I abstract

away from this complexity and derive the limit of workers and firms’ conditional choice prob-

abilities under arbitrary exogenous choice sets. Third, I introduce choice sets’ endogeneity

and show that the information necessary to characterize conditional choice probabilities can

be summarized into sufficient statistics called inclusive values. Finally, I show that these
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sufficient statistics converge to the unique solution of a fixed point problem which explicitly

links agents’ preferences and choice sets. This implies that all stable matches are observa-

tionally equivalent and that the limit joint distribution of matched characteristics can be

expressed as a function of agents’ payoff functions and inclusive values.

By inverting the mapping between the observed sorting and agents’ preferences, I find

that, without additional data or restrictions on preferences, one can only identify the joint

surplus from data on realized matches. This shows that the additional data brought by

many-to-one matchings does not help to separately identify agents’ preferences. I then show

that when the systematic part of the payoff functions is common to all workers/firms (as in

Diamond and Agarwal (2017)), one can separately identify preferences from the joint surplus

both in the one-to-one case and many-to-one case. Similarly, I find that under appropriate

exclusion restrictions (as in He et al. (2021) and Agarwal and Somaini (2022)), one can also

recover preferences in the one-to-one case and many-to-one case. I then propose a maximum

likelihood estimator that can be tractably used for a parametric version of this framework.

Finally, I validate the theoretical limiting results and test the performance of the estimation

procedure proposed through Monte Carlo simulations. I find that having data on many-

to-one matches allows to estimate more precisely the distribution of random coefficients,

mirroring a similar result found for discrete choice models in Berry et al. (2004).

This paper contributes to the literature on empirical models of two-sided matching. One

strand of this literature investigates what can be inferred from data on reported preferences

within centralized allocation mechanisms (see Agarwal and Somaini (2020) for a review).

These methods allowed, for example, to make progress in understanding how school choice

mechanisms should be designed (Abdulkadiroğlu et al. (2017), Kapor et al. (2020)). How-

ever, in many instances, such data is not available and the econometrician can only rely on

realized matches to learn about participating agents’ preferences. A large literature exam-

ines what can be identified from sorting patterns in models of matching with transferable

utility (TU) (Choo and Siow (2006), Fox (2010), Gualdani and Sinha (2019), Galichon and

Salanié (Forthcoming)). However, only a handful of papers consider the same problem in

the non-transferable utility (NTU) case (see Agarwal and Somaini (Forthcoming) for a re-

view). Menzel (2015) shows that, under parsimonious assumptions on preferences and when
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matching is one-to-one, only the joint surplus is identified. To circumvent this negative re-

sult, Diamond and Agarwal (2017) find that, by restricting preferences to be common to all

agents from the same side, one can separately identify preferences with data on many-to-one

matches. He et al. (2021) and Agarwal and Somaini (2022) show that, by instead considering

a many-to-one matching market where the number of agents on one side is fixed while the

other side grows large, exclusion restrictions are sufficient and necessary in order to identify

preferences from realized matches. This paper contributes to this literature by providing a

unifying empirical framework of one-to-one and many-to-one matching and reconciling the

results previously derived in the literature. I find that these recent positive identification re-

sults are mostly driven by the extra structure imposed on preferences and not by the inherent

additional information brought by having data on many-to-one matches. This means that

such methods would also work when having data on one-to-one matches which expands the

scope of what can be learned from these models by making them more broadly applicable.2

The rest of the paper is organized as follows. Section 2 introduces the preference model

along with the equilibrium concept. Section 3 defines the objects that are observed in the

data and the sampling process that identifies them. Section 4 establishes the link between

the limit joint distribution of matched characteristics and the primitives of the model. Sec-

tion 5 discusses identification and estimation in the base model, as well as under a various

set of additional restrictions on preferences. Section 6 displays results from Monte Carlo

simulations.

2 Model

I consider a large two-sided matching market where the number of agents on both sides grows

to infinity. I start by introducing the relevant parts of the model in the finite economy before

defining the asymptotic sequence that characterizes the limit economy.

Throughout this section, I refer to one side of the market as workers and the other side

as firms. Workers are indexed by i ∈ I where I = {1, ..., nw} and firms are indexed by j ∈ J
2In many empirical settings, such as centralized labor clearinghouses or college admissions, firms often

open only one vacancy, making Diamond and Agarwal (2017) unapplicable, and the number of agents on
both sides of the market is large, making He et al. (2021) and Agarwal and Somaini (2022) unapplicable.
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where J = {1, ..., nm}. I nest both the one-to-one and many-to-one matching framework by

allowing each firm j to have a finite and exogenous number q ≥ 1 of open vacancies.3 I define

the matching function µw which maps the set of available workers to their matching outcome,

which is either their matched employer or the option to remain unmatched. Similarly, µm

maps the set of available firms to their matching outcome, which is a set of length q including

their matched employees as well as the option to leave any open vacancy unfilled.

For instance, consider a given worker i and firm j with q = 2. µw(i) = j means that

worker i is matched with school j whereas µm(j) = {i, l} means that firm j is matched with

workers i and l. Similarly, µw(i) = 0 means that worker i chooses to stay unmatched, while

µm(j) = {l, 0} means that firm j is matched with worker l but leaves one of its vacancies

unfilled. Note that all elements of the model nest Menzel (2015), which corresponds to the

one-to-one case q = 1.

2.1 Preferences

Firms and workers are characterized by their observed attributes which collapse into two

vectors of random variables xi and zj. I define their probability distribution functions as

w(x) and m(z) which have support X and Z, respectively. I specify the utility that worker

i gets from being matched with firm j as:

Uij = U(xi, zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

Vij = V (xi, zj) + σεij

εij and ηij are worker-firm specific unobserved preference shocks and are assumed to be

additively separable from the systematic part of the payoffs. I also assume that firms’ prefer-

ences over groups of workers are responsive (Roth and Sotomayor (1992)). This implies that

knowing firms’ preferences over individual workers is enough to infer firms’ preferences over

3Allowing for each firm j to open a different number of vacancies qj does not affect the main results of
the analysis.
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groups of workers. Under this assumption, the preferred group of q workers for a given firm

is composed of its q individually preferred workers.4 I impose the following restrictions on

the unknown functions U and V and the distribution of unobserved taste shocks.

Assumption 1 (i). U and V are uniformly bounded in absolute value and p ≥ 1 times

differentiable with uniformly bounded partial derivatives in X × Z.

(ii). εij and ηij are iid and drawn independently from xi and zj from a distribution with

absolutely continuous c.d.f. G(s) and density g(s). The upper tail of the distribution G(s) is

of type I with auxiliary function a(s) = 1−G(s)
g(s)

.

Assumption 1.(i) is a standard regularity condition which ensures that the functions U

and V are well behaved. Assumption 1.(ii) deserves more discussion. It first assumes that

observables are independent of unobserved preference shocks. This is usual in discrete choice

models but might be particularly strong if we consider a market where prices are set en-

dogenously. However, validity of this assumption can be restored through a control function

approach, conditional on having an exogenous price shifter available.5 Assumption 1.(ii) also

imposes restrictions on the upper tail of the distribution of ε and η but leaves the lower

tail unrestricted. As the number of workers and firms will grow to infinity, the number of

independent draws of ε and η will also grow. All values of ε and η located in the lower

tail of their distribution will thus be inconsequential in determining which alternative is the

most preferred. As in Menzel (2015), I thus assume that G belongs to a class of distributions

which might have different lower tails but for which the upper tail is type I extreme value dis-

tributed.6 Note that this class of functions encompasses most of the parametric distributions

traditionally used in discrete choice models. For the Gamma distribution or the Gumbel

distribution, this assumption holds for a(s) = 1. For the standard normal distribution, this

holds for a(s) = 1
s
.

4Note that this rules out potential complementarities in preferences over workers. Relaxing this assumption
would substantially complicate the analysis given that a stable equilibrium might not even exist in this case.

5For example, Agarwal (2015) uses competing hospitals’ Medicare reimbursements to instrument for wages
in the labor market for medical residents.

6This class of distribution is also called the domain of attraction of the Gumbel distribution (Resnick
(1987))
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2.2 Normalizations

For the limit economy to predict sorting patterns that are consistent with the finite economy,

I make several additional assumptions. First, I specify the utility of the outside option as:

Ui0 = σ max
k=1,...,J

ηi0,k

V0j = σ max
k=1,...,J

ε0j,k

As in Menzel (2015), I then impose the following normalizations on the asymptotic sequence:

Assumption 2 The asymptotic sequence is controlled by n = 1, 2, ... and we define:

(i). nw = [exp(γw)n], nm = [exp(γm)n]

(ii). J = [n1/2]

(iii). σ = 1
a(bn)

where bn = G−1(1− n−1/2)

Assumption 2.(i) allows to control flexibly the relative sizes of each side of the market

through the parameters γw and γm. Even if the size of each side converges to infinity, we can

still allow for the mass of agents on one side to be larger than the other side and vice versa.

Assumption 2.(ii) makes sure that the probability that workers stay unmatched or that firms

keep one vacancy empty does not become degenerate in the limit. If the size of the outside

option does not grow with the size of the market, the probability that it becomes dominated

by an alternative option will tend to one given that taste shocks have unbounded support.

Assumption 2.(iii) controls the scale of the unobserved shocks such that both unobserved and

systematic parts of the payoffs jointly determine agents choices in the limit. Given that U

and V are bounded and that the support of the taste shocks is unbounded, U and V would

become irrelevant in the limit without this restriction. More specifically, if G is Gumbel,

then bn � 1
2

log(n) and σn = 1. If taste shocks are standard normal, bn �
√

log n and σn � bn

and for Gamma distributed taste shocks, bn � log(n) and σn = 1.

2.3 Equilibrium

For the remainder of the paper, I refer to a matching as µ which collects µm and µw and

summarizes the matching outcome of each agent. To rationalize the matching we observe

8



and link it to the primitives of our model, I assume that the match is stable.

Definition 1 For a given q ≥ 1, a matching µ is stable if and only if for all i = 1, ..., nw

and j = 1, ..., nm:

(i) Individual rationality: Uiµw(i) ≥ Ui0 and Vlj ≥ V0j for all l ∈ µm(j).

(ii) No blocking pairs: There exist no pair i, j such that Uij > Uiµw(i) and Vij > mini′∈µm(j) Vi′j.

A match is stable if agents weakly prefer their match rather than staying unmatched and if

there is no worker-firm pair that would prefer be matched together instead of their current

match partners. This assumption is typically used in centralized matching markets as it rules

out the presence of mismatches due to frictions. Note that, for q > 1, this definition is valid

only under the assumption that firms’ preferences over groups of workers are responsive.7

Responsiveness also ensures the existence of a stable match and of the worker-optimal/firm-

optimal stable matches for q > 1 (Roth and Sotomayor (1992)).8 However, when firms’

preferences are heterogeneous, many stable matches can exist and their number grow with

the size of the market. I impose no restrictions on which stable outcome is reached in the

data. Throughout the rest of the paper, I thus refer to any arbitrary stable match as µ∗. I

also define the worker-optimal stable match as µW and the firm-optimal stable match as µM .

3 Data and Sampling Process

I assume that we observe a sample of realized matches randomly drawn from the limit econ-

omy. Observed sorting patterns collapse into the matching frequency distribution function.

I define this distribution in the finite economy as the function Fn which gives the expected

number of groups of q workers with observable characteristics (x1, x2, ..., xq) matched with

firms with observable characteristics z:

Fn(x1, ..., xq, z;µ) =
1

Jq+1

1

q!

nw∑
i1=1

...

nw∑
iq=1

nm∑
j=1

P (xi1 ≤ x1, ..., xiq ≤ xq, zj ≤ z, µm(j) = {i1, ..., iq})

7For q = 1, µm(j) is a singleton for all j such that mini′∈µm(j) Vi′j = Vµm(j)j . We thus recover the same
definition as in Menzel (2015).

8The worker-optimal stable match is the most preferred stable outcome from the workers’ perspective
and the least preferred stable outcome from the firms’ perspective. On the contrary, the firm-optimal stable
match is the most preferred stable outcome from the firms’ perspective and the least preferred stable outcome
from the workers’ perspective.
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Normalizing by q! avoids counting the same matched group several times. Alternatively, for

firms with observable characteristics z matched to k < q workers with observable character-

istics (x1, x2, ..., xk), Fn is defined as:

Fn(x1, ..., xk, ∗, z;µ) =

1

Jk+1

1

k!

nw∑
i1=1

...

nw∑
ik=1

nm∑
j=1

P (xi1 ≤ x1, ..., xik ≤ xk, zj ≤ z, µm(j) = {i1, ..., ik} ∪ {0}q−k)

Finally, for firms with observable characteristics z leaving all their vacancies empty and

unmatched workers with observable characteristics x, Fn is defined as:

Fn(∗, z;µ) =
1

J2

nm∑
j=1

P (zj ≤ z, µm(j) = {0}q)

Fn(x, ∗;µ) =
1

J2

nw∑
i=1

P (xi ≤ x, µw(i) = 0)

I then denote F the limit of the distribution function Fn as the size of the market n grows

to infinity. I also define the joint density of matched characteristics f which is the Radon-

Nikodym derivative of the limiting measure F .

From there, I link this limiting joint density f to the density of matched characteristics

that would arise under various sampling schemes. I assume that the sampling process draws

individuals from the population regardless of whether they are firms or workers. One obser-

vation is thus composed of this individual alone, if it is unmatched, or along with its matched

partners otherwise. Assuming that q = 1, the probability that a matched individual is se-

lected by this sampling process is thus twice the probability that an unmatched individual

is selected. Indeed, a matched pair could be selected either by drawing the corresponding

firm or worker. For any q ≥ 1, the probability that a matched individual is selected will

thus depend on the number of other workers matched to the same firm. Indeed, if a firm

is matched with three employees, the probability that any of them is selected is four times

the probability that a single agent is selected. I thus define the joint density function arising
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from this sampling process as:

h(x1, ..., xq, z) =
(q + 1)f(x1, ..., xq, z)

exp{γw}+ exp{γm}

where h(x1, ..., xq, z) is the mass of firms with observable z matched with q workers with

observed characteristics (x1, ..., xq) arising from the sampling scheme defined above and

exp{γw}+exp{γm} is the total mass of workers and firms available in this economy. Similarly,

I define:

h(x1, ..., xk, ∗, z) =
(k + 1)f(x1, ..., xk, ∗, z)

exp{γw}+ exp{γm}

h(x, ∗) =
f(x, ∗)

exp{γw}+ exp{γm}

h(∗, z) =
f(∗, z)

exp{γw}+ exp{γm}

where h(x1, ..., xk, ∗, z) is the mass of firms with observable z matched with k workers with

observed characteristics (x1, ..., xk), and h(x, ∗) with h(∗, z) are the mass of unmatched work-

ers and firms. This establishes a direct link between f and h. The next section focuses on

linking f with agents’ payoff functions.

4 Characterization of the Limit Economy

This section characterizes f , the limiting joint distribution of matched characteristics, as a

function of the primitives of the model. The proof follows the same steps as Menzel (2015)

and shows how each intermediary result generalizes to q > 1. First, I show that stability

implies that the realized matches can be interpreted as the outcome of two discrete choice

models with endogenous and unobserved choice sets. These choice sets are called opportunity

sets and depend on preferences of the other side of the market and which stable match is

selected. Second, I consider a simplified economy where opportunity sets would be observed

and exogenous and derive the limit of the conditional matching probabilities. Third, I show

that, the assumption imposed on the distribution of the tails of the unobserved preference

shocks implies that we can use inclusive values as sufficient statistics to simplify the problem.
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These inclusive values collapse all the information contained in opportunity sets needed to

characterize conditional matching probabilities. Finally, I show that these inclusive values

can be represented as the approximate solution of a fixed point problem making explicit

the relationship between agents’ opportunity sets and preferences. This fixed point problem

has a unique solution in the limit, which implies that all stable matches are observationally

equivalent. I then characterize f as a function of agents’ payoff functions and inclusive values.

4.1 Opportunity Sets

Given a match µ∗, I define the opportunity set of a worker as the set of firms that would be

willing to hire her instead of one of its current matched employees. Similarly, the opportunity

set of a firm is the set of workers that would be willing to quit its current employer to accept

a position there. Formally, I define the opportunity set faced by a given worker i ∈ I under

a match µ∗ as:

Mi(µ
∗) = {j ∈ J : Vij ≥ min

i′∈µ∗m(j)
Vi′j}

Similarly, I define the opportunity set of firm j ∈ J as:

Wj(µ
∗) = {i ∈ I : Uij ≥ Uiµ∗w(i)}

I then define:

Ui,(k)(Mi(µ
∗)) = max{min{Uij : j ∈ K} : K ⊂Mi(µ

∗) ∪ {0} and |K| = k}

Vj,(k)(Wj(µ
∗)) = max{min{Vij : i ∈ K} : K ⊂ Wj(µ

∗) ∪ {0}k and |K| = k}

where Ui,(k)(Mi(µ
∗)) denotes the kth highest element of {Uij′ : j′ ∈Mi(µ

∗)∪ {0}}. Note that

Ui,(1)(Mi(µ
∗)) = maxj′∈Mi(µ∗)∪{0} Uij′ . The first important result follows:

Proposition 1 For any given q ≥ 1, a match µ∗ is stable if and only if for all i = 1, ..., nw
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and j = 1, ..., nm:

Uiµ∗w(i) = Ui,(1)(Mi(µ
∗)) and ∀l ∈ µ∗m(j), Vlj ≥ Vj,(q)(Wj(µ

∗))

See Appendix A.1 for a proof of this result. Proposition 1 states that a match µ∗ is stable

if and only if each worker i = 1, ..., nw is matched to her preferred alternative among her

opportunity set and each firm j = 1, ..., nm is matched to the qth highest ranked alternatives

among its opportunity set. This implies the following corollary:

Corollary 1 For a given stable match µ∗ and any worker i and firm j:

(i). j = µ∗w(i) ⇐⇒ i ∈ µ∗m(j) ⇐⇒ Uij ≥ Ui,(1)(Mi(µ
∗)) and Vij ≥ Vj,(q)(Wj(µ

∗))

(ii). 0 ∈ µ∗m(j) ⇐⇒ V0j ≥ Vj,(q)(Wj(µ
∗))

(iii). µ∗w(i) = 0 ⇐⇒ Ui0 ≥ Uj,(1)(Mi(µ
∗))

This corollary states that a stable match µ∗ can be rewritten as the outcome of two

discrete choice models where each agent’s choice set is its opportunity set. This equivalence

establishes a link between the observed matching and the primitives of the model. However,

opportunity sets are unobserved and endogenous objects as they depend on µ∗ and on the

preferences of agents from the other side of the market. Additionally, characterizing the

probability of being among a given firm’s qth most preferred workers is not standard when

q > 1. Deriving the limit of conditional matching probabilities is thus not straightforward.

4.2 Limit of Conditional Choice Probabilities

To simplify the analysis, I consider here arbitrary exogenous opportunity sets Mi = {1, ..., J}

and Wj = {1, ..., J}. From Corollary 1, we know that conditional matching probabilities can

be characterized as two-sided conditional choice probabilities:

P(j = µw(i)|xi, zj) = P(Uij ≥ Ui,(1)(Mi) and Vij ≥ Vj,(q)(Wj)|xi, zj)

= P(Uij ≥ Ui,(1)(Mi)|xi, zj)× P(Vij ≥ Vj,(q)(Wj)|xi, zj)

The limit of these conditional choice probabilities have the following expression:
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Proposition 2 Under Assumption 1 and 2, as J →∞ for a given finite q ≥ 1 and for all i

and j:

JP(Uij ≥ Ui,(q)(Mi)|xi, zj) −→ exp(U(xi, zj))×
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)q]

P(Ui0 ≥ Ui,(q)(Mi)|xi) −→
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)q]
See Appendix A.2 for a proof of this result. Proposition 2 generalizes the Logit formula to

cases where agents make many unranked choices among an infinite number of alternatives.

For q = 1, we recover the usual Logit formula derived in Menzel (2015). Note that the

Independence of Irrelevant Alternatives (IIA) property still holds for q > 1. This has several

implications regarding how one can allow for realistic substitution patterns. Imposing the

distribution of ε and η to be normal would not change this result as the normal distribution

has a type-I upper tail. To avoid this problem, one can alternatively introduce unobserved

preference heterogeneity for observed characteristics through the use of random coefficients.

Note that the CCP of choosing a particular alternative j would converge to zero if we do

not weight it by J , the rate at which the total number of alternatives increases. Lemma 1

in Appendix A.3 establishes that the size of opportunity sets increases at a rate
√
n which

justifies Assumption 2.(ii).

4.3 Inclusive Values

I now introduce that opportunity sets are actually endogenous and unobserved. Endogeneity

arises as shifting worker i’s taste shocks could make her prefer another feasible firm to its

current match. This could then trigger a chain of rematches that could potentially affect

her own opportunity set. This problem is even more salient in the context of many-to-one

matching as changing firm j’s taste shocks could trigger at most q chains of rematches, which

increases the probability that this ends up changing firm j’s opportunity set. However, as

in Menzel (2015), I find that, as the size of the market increases, the probability for such an

event to occur vanishes to zero. This result stems mostly from two implications of Proposition

2: (i) the probability that firm j rematches with a specific worker i vanishes to zero as the
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size of opportunity sets increase to infinity and (ii) the probability of choosing the outside

option instead, which would terminate such a chain of rematches, is non degenerate in the

limit. This result is formalized in Lemma 2 in Appendix A.3 where a more detailed discussion

and proof can be found.

From this, I then show that the dependence between taste shocks and opportunity sets

vanishes in the limit. This means that the distribution of taste shocks conditional on op-

portunity sets converges to their marginal distribution g. However, this claim can only be

proven for the opportunity sets derived from the extremal matchings. The distribution of

taste shocks conditional on opportunity sets is only well defined for the extremal matchings,

given that they are the only stable matchings that always exist irrespective of the size of

the market. Again, this result is formalized in Lemma 3 in Appendix A.3. This means

that we can use this result along with Proposition 2 to bound9 the CCPs conditional on the

opportunity sets that would arise under the firm-optimal stable match µM as follows:

n1/2P(Uij ≥ Ui,(1)(Mi(µ
M))|xi, zj, (zk)k∈Mi(µM ),Mi(µ

M)) (1)

≤ exp{U(xi, zj)}
1 + n−1/2

∑
k∈Mi(µM ) exp{U(xi, zk)}

+ o(1)

n1/2P(Vij ≥ Vj,(q)(Wj(µ
M))|xi, zj, (xl)l∈Wj(µM ),Wj(µ

M)) (2)

≥ exp(V (xi, zj))×

[
1−

(
n−1/2

∑
l∈Wj(µM ) exp{V (xl, zj)}

1 + n−1/2
∑

l∈Wj(µM ) exp{V (xl, zj)}

)q]
+ o(1)

Similar bounds can be computed for the worker-optimal stable match µW where the direction

of the inequalities is reversed. In Equation 1 and 2, n−1/2
∑

k∈Mi(µW ) exp{U(xi, zk)} and

n−1/2
∑

l∈Wj(µM ) exp{V (xl, zj)} serve as sufficient statistics that collapse all the information

contained in opportunity sets which is needed to approximate CCPs. These objects are called

inclusive values.

9Note that we only provide bounds given that there are several potential stable matches µ∗ such that
Mi(µ

∗) = Mi(µ
M ) and Wj(µ

∗) = Wj(µ
M ).
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More generally, I define worker i’s inclusive value given a realized stable match µ∗ as:

I∗wi = n−1/2
∑

j∈Mi(µ∗)

exp(U(xi, zj))

Similarly, I define firm j’s inclusive value given µ∗ as:

I∗mj = n−1/2
∑

i∈Wj(µ∗)

exp(V (xi, zj))

I also define IMwi and IMmj as the inclusive values that would arise under the firm-optimal

stable match and IWwi and IWmj as the inclusive values that would arise under the worker-

optimal stable match.

Of course, in practice, inclusive values are unobserved and we do not know which stable

match is selected. The rest of this section shows that the inclusive values arising from any

stable match µ∗ can be approximated by the solution of a fixed point problem which has a

unique solution in the limit.

4.4 Fixed Point Characterization for Inclusive Values

I first show that, for any q ≥ 1, inclusive values arising from the firm-optimal and worker-

optimal stable match can be approximated by expected inclusive value functions (Menzel

(2015)). I first rewrite IMwi as:

IMwi =
1

n

nm∑
k=1

exp{U(xi, zk)} ×
√
n1{k ∈Mi(µ

M)}

=
1

n

nm∑
k=1

exp{U(xi, zk)} ×
√
n1{Vik ≥ Vk,(q)(Wk(µ

M))}

The inclusive value of a given worker is determined by the set of firms that would accept her,

which in turn depends on the preferences of all firms as well as their opportunity sets. Using

Equation 2, I then show that:

IMwi ≥ Γ̂Mw (xi) + op(1)
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where Γ̂Mw is the firm-optimal expected inclusive value function of workers which is defined

as:

Γ̂Mw (xi) =
1

n

nm∑
k=1

exp{U(xi, zk) + V (xi, zk)} ×
[
1−

(
IMmk

1 + IMmk

)q]
Similarly, using Equation 1, I show that we can approximate IMmj as follows:

IMmj ≤ Γ̂Mm (zj) + op(1)

where Γ̂Mm is the firm-optimal expected inclusive value function of firms which is defined as:

Γ̂Mm (zj) =
1

n

nw∑
l=1

exp{U(xl, zj) + V (xl, zj)}
1 + IMwl

Note that similar bounds can be established for the inclusive values that would arise under

the worker-optimal stable match:

IWwi ≤ Γ̂Ww (xi) + op(1) and IWmj ≥ Γ̂Wm (zj) + op(1)

A formal exposition and proof of this result can be found in Lemma 4 in Appendix A.3. The

inclusive value of a given worker can be approximated by a function of firms’ preferences

and inclusive values. Similarly, the inclusive value of a given firm can be approximated by

a function of workers’ preferences and inclusive values. Hence, the two-sided nature of the

problem gives rise naturally to a fixed point problem characterizing these inclusive values. I

define the fixed point mappings as follows:

Ψ̂w[Γm](x) =
1

n

nm∑
k=1

exp{U(x, zk) + V (x, zk)} ×
[
1−

(
Γm(zk)

1 + Γm(zk)

)q]

Ψ̂m[Γw](z) =
1

n

nw∑
l=1

exp{U(xl, z) + V (xl, z)}
1 + Γw(xl)

From there, I show, using Lemma 4, that for any x ∈ X and z ∈ Z:

Γ̂Mw (x) ≥ Ψ̂w[Γ̂Mm ](x) + op(1) and Γ̂Mm (z) ≤ Ψ̂m[Γ̂Mw ](z) + op(1) (3)
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Γ̂Ww (x) ≤ Ψ̂w[Γ̂Wm ](x) + op(1) and Γ̂Wm (z) ≥ Ψ̂m[Γ̂Ww ](z) + op(1) (4)

In addition, the firm-optimal stable match is unanimously preferred by firms while the worker-

optimal stable match is unanimously preferred by workers (Roth and Sotomayor (1992)). This

implies that Mi(µ
M) ⊂ Mi(µ

∗) ⊂ Mi(µ
W ) and Wi(µ

W ) ⊂ Wi(µ
∗) ⊂ Wi(µ

M) which means

that for all i and j:

IMwi ≤ I∗wi ≤ IWwi and IWmj ≤ I∗mj ≤ IMmj

This in turn implies that for all (x, z):

Γ̂Mw (x) ≤ Γ̂∗w(x) ≤ Γ̂Ww (x) and Γ̂Wm (z) ≤ Γ̂∗m(z) ≤ Γ̂Mm (z)

Using Equation 3 and 4, we can thus show that, for any stable matching µ∗:

Γ̂∗w(x) = Ψ̂w[Γ̂∗m](x) + op(1) and Γ̂∗m(z) = Ψ̂m[Γ̂∗w](z) + op(1) (5)

which concludes the proof that inclusive values arising from any given stable match µ∗ can

be approximated by the solution of a fixed point problem.

I now introduce the population equivalent of the fixed point problem described in Equation

5:

Γ∗w = Ψw[Γ∗m] and Γ∗m = Ψm[Γ∗w] (6)

where

Ψw[Γm](x) =

∫
exp(U(x, s) + V (x, s) + γm)×

[
1−

(
Γm(s)

1 + Γm(s)

)q]
m(s)ds

Ψm[Γw](z) =

∫
exp(U(s, z) + V (s, z) + γw)

1 + Γw(s)
w(s)ds

This population fixed point problem has a unique solution and the approximate solution of

the finite sample fixed point problem converges to it. This is stated in the following result:

Theorem 1 Under Assumption 1 and 2 and for any q ≥ 1:

(i). The mapping (log Γw, log Γw) 7→ (log Ψm[Γw], log Ψw[Γm]) is a contraction.

(ii). The fixed point problem described in Equation 6 always has a unique solution Γ∗m,Γ
∗
w.
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(iii). For any given µ∗, I∗wi −→ Γ∗w(xi) and I∗mj −→ Γ∗m(zj) for all i and j.

A proof of this result can be found in Appendix A.3. Theorem 1 has several implications.

First, it implies that for any q ≥ 1 and for any arbitrary stable match µ∗, inclusive values

converge to the same limit. This means that all stable matches are observationally equivalent

in the limit both in the one-to-one and many-to-one case. This implies that we do not need

to have any information about the equilibrium selection mechanism nor do we need to impose

restrictions on preferences to ensure that there is a unique stable match10 to infer preferences

from observed sorting. Second, it implies that, for any q ≥ 1, we can use inclusive value

functions as sufficient statistics to characterize CCPs as functions which only depend on

agents’ observable characteristics. Additionally, we know that the fixed point mappings

are contractions which means that solving for inclusive value functions is computationally

feasible.

4.5 Limit of Distribution of Matched Characteristics

Finally, using Theorem 1, I characterize the limit of the conditional matching probabilities

as follows.

Proposition 3 (i) For any firm j with q ≥ 1 vacancies and any group of workers i = 1, ..., k

where k < q:

Jk+1P(µm(j) = {1, ..., k} ∪ {0}q−k|(xi)ki=1, zj) −→
k! exp

{∑k
i=1 U(xi, zj) + V (xi, zj)

}
∏k

i=1 (1 + Γ∗w(xi)) (1 + Γ∗m(zj))k+1

(ii) For any firm j with q ≥ 1 vacancies:

Jq+1P(µm(j) = {1, ..., q}|(xi)qi=1, zj) −→
q! exp

{∑q
i=1 U(xi, zj) + V (xi, zj)

}
∏q

i=1(1 + Γ∗w(xi))(1 + Γ∗m(zj))q

P(µm(j) = {0}q|zj) −→
1

1 + Γ∗m(zj)
10Assuming that firms’ preferences are homogenous, as in Diamond and Agarwal (2017), makes the stable

match unique (Roth and Sotomayor (1992)). Similarly, when we assume that there is a continuum of students
matching with a fixed number of colleges, as in He et al. (2021) and Agarwal and Somaini (2022), there exists
a unique stable match (Azevedo and Leshno (2016)).
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A proof of this result can be found in Appendix A.4. The probability that a given match

is formed is thus positively correlated with the total match surplus
∑q

i=1 U(xi, zj)+V (xi, zj).

However, it is negatively correlated with inclusive values as they grow with the size of the

set of other potential matching opportunities. It can also be noted that the rate at which

these quantities converge to their limits depend on q. The larger is q the slower convergence

is. This introduces a trade-off as increasing q might bring additional identification power at

the cost of introducing bias due to approximation errors. From this, I characterize the limit

joint distribution of matched characteristics:

f(x1, ..., xk, ∗, z) =
exp

{∑k
l=1 U(xl, z) + V (xl, z) + kγw + γm

}
Πk
l=1(1 + Γ∗w(xl))(1 + Γ∗m(z))k+1

m(z)Πk
l=1w(xl)

f(x1, ..., xq, z) =
exp

{∑q
l=1 U(xl, z) + V (xl, z) + qγw + γm

}
Πq
l=1(1 + Γ∗w(xl))(1 + Γ∗m(z))q

m(z)Πq
l=1w(xl)

f(x, ∗) =
exp(γw)w(x)

1 + Γ∗w(x)

f(∗, z) =
exp(γm)m(z)

1 + Γ∗m(z)

Where f(x1, ..., xk, ∗, z) is the mass of firms with observable z matched with k workers

with characteristics (x1, ..., xk), f(x1, ..., xq, z) is the mass of firms with observable z matched

with q workers with characteristics (x1, ..., xq), f(x, ∗) is the mass of unmatched workers with

characteristic x and f(∗, z) is the mass of unmatched firms with observable z.

5 Identification and Estimation

5.1 Identification Joint Surplus

From the expression of f derived in the previous section, we can show that:

f(x1, ..., xk, ∗, z)
f(x1, ..., xk−1, ∗, z)

=
exp

{
U(xk, z) + V (xk, z) + γw

}
(1 + Γ∗w(xk))(1 + Γ∗m(z))

w(xk)
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Inverting this mapping finally gives us:

U(xk, z)+V (xk, z) = log f(x1, ..., xk, ∗, z)−log f(x1, ..., xk−1, ∗, z)−log f(xk, ∗)−log
f(∗, z)

exp(γm)m(z)

Given that we can identify f directly from the data, as was discussed in Section 3, this implies

that we can identify the surplus function U + V . Similarly, we can express inclusive values

as functions of the distribution of the characteristics of unmatched individuals:

Γ∗w(x) =
exp(γw)w(x)

f(x, ∗)
− 1

Γ∗m(z) =
exp(γm)m(z)

f(∗, z)
− 1

However, we cannot express U as a function of f separately from V and vice versa. This

result is formalized in the following proposition.

Proposition 4 Under Assumption 1 and 2 and for any q ≥ 1:

(i) The joint surplus function U+V and the inclusive value functions Γ∗w and Γ∗m are identified

from the limiting joint distribution of matched characteristics f .

(ii) Without further restrictions, we cannot separately identify U and V .

This means that the additional data available when q > 1 does not bring any additional

information which would be useful to separately identify individual preferences from the joint

surplus. This is in sharp contrast with Diamond and Agarwal (2017) and He et al. (2021)

which find that preferences can be separately identified with data on many-to-one matching.

This suggests that these positive identification results mostly rely on the extra assumptions

they impose on preferences rather than the additional information made available by the

many-to-one structure of the data. This would mean that, by using similar restrictions, we

could thus achieve similar positive identification results even for q = 1. The goal of the

remainder of this section is to verify this claim.
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5.2 Homogeneous preferences

I mimic the framework developed in Diamond and Agarwal (2017) by assuming that the

systematic part of the payoff functions is homogeneous across individuals. I thus define the

utility that worker i gets from being matched with school j as:

uij = U(zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

vij = V (xi) + σεij

Additionally, I assume that there exists x̄ such that V (x̄) = 0. Note that this framework

differs from Diamond and Agarwal (2017) on two dimensions. Taste shocks are heterogeneous

and iid over i, j and the class of distribution to which they belong is more restrictive. Under

these assumptions, it is immediate to see that we can recover U and V from the joint surplus

as U(z) + V (x̄) = U(z). I state the following result:

Proposition 5 Under Assumptions 1 and 2 and for any q ≥ 1, the payoff functions U and

V are identified from the limiting joint distribution of matched characteristics f .

This shows that a similar positive identification result as the one derived in Diamond

and Agarwal (2017) can actually be achieved for both q > 1 and q = 1 by using similar

restrictions on preferences. In fact, this suggests that their non identification result for q = 1

is mostly driven by the assumption they impose on the correlation structure of the unobserved

taste shocks. As is pointed out by the authors, assuming that taste shocks are common to

all agents from the same side makes the unique stable match perfectly assortative along

these unobserved tastes. This creates an endogeneity problem. It thus becomes necessary

to have data on at least two-to-one matching in order to have an additional measurement of

these sorting patterns that would allow to disentangle the effect of observed and unobserved

preferences. In the framework developed in this paper, this problem does not exist given that

taste shocks are iid across individuals. In the limit, conditional matching probabilities are

uniquely determined by observable characteristics even when q = 1.
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5.3 Exclusion restrictions

As in He et al. (2021) and Agarwal and Somaini (2022), I assume that a set of variables

affecting the utility of one side can be excluded from the utility of the other side. I define

the utility that worker i gets from being matched with firm j as:

Uij = U(xi, zj) + σηij

whereas the utility that firm j gets from being matched with worker i is defined as:

Vij = V (xi, zj) + g(wi) + σεij

I additionally assume that g is increasing in w and that limw→∞ g(w) =∞.11 I also assume

that there exists w̄ such that g(w̄) = 0. Under these assumptions, we can state the following

result:

Proposition 6 Under Assumptions 1 and 2 and for any q ≥ 1, the payoff functions U , V

and g are identified from the limiting joint distribution of matched characteristics f .

A proof of this result can be found in Appendix A.5. Similarly to the argument used in

He et al. (2021) and Agarwal and Somaini (2022), increasing w shifts the probability that a

given firm becomes available which allows us to disentangle the role of firms’ and workers’

preferences in determining the sorting patterns we observe.12 This argument also holds for

q = 1 and the many-to-one structure of the data does not help in making this additional

source of identification more salient. Note that we do not need here to have preference shifters

for both sides of the market as in Agarwal and Somaini (2022) and He et al. (2021). As the

joint surplus is already identified in the absence of exclusion restrictions, we only need to

identify preferences of workers to recover preferences of firms from the surplus.13

11This is similar to Assumption 2 in Agarwal and Somaini (2022).
12The identification argument only works at infinity as the match has not a fixed cutoff structure as in He

et al. (2021) and Agarwal and Somaini (2022). As both the number of firms and workers grow to infinity in
our case, the cutoffs grow to infinity as the size of the market grows.

13In Agarwal and Somaini (2022) and He et al. (2021) it is not clear whether the joint surplus is identified
in the absence of exclusion restrictions. Further work could determine whether it is only the case when taste
shocks have type-I upper tails.
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5.4 Unobserved Preference Heterogeneity

In light of the previous results, one can wonder how we could use the additional information

made available by data on many-to-one matching, if not for disentangling preferences from

the joint surplus. Using a similar argument as what is used in the discrete choice literature, I

claim that having data on several decisions made by the same firm allows to know more about

the unobserved ”type” this firm belongs to. More specifically, if we were to assume that firms

have an unobserved individual and heterogeneous taste for a given worker characteristic xi,

having more than one measurement of given firm j’s choice would be useful to pin it down.

This is analogous to what is argued by Berry et al. (2004) who show that estimating random

coefficients from a cross section of observed choices often fails when having only the first

ranked choice of each consumer. Having at least the second choice of each consumer allows

to disentangle what drives observed choices between random coefficients and unobserved

taste shocks. A similar argument could apply with data on many-to-one matching given that

we observe several workers matched to the same firm. I investigate in Section 6, whether

such gains could also be achieved in a matching market setting thanks to the many-to-one

structure of the data.

5.5 Estimation

Given that the identification proof is constructive, one could construct naturally a non-

parametric estimator for the joint surplus function U + V and the inclusive value functions

Γ∗w and Γ∗m. However, this would quickly become intractable as the dimensionality of x and

z increases.

I instead consider a parametric version of this framework where I define the payoff func-

tions as U(x, z;θ) and V (x, z;θ). I assume that U and V are known for all (x, z) up to a

vector of unknown parameters θ. Assume that we observe a random sample of K individuals,

drawn from the sampling scheme described in Section 3, along with their respective matches.

For a given observation k, we observe a vector (x1(k), ..., xq(k), z(k)) which has a different

structure depending on the type of match we observe. For an unmatched worker, which is

indexed by w(k) = 0, I record its characteristics in x1(k) and encode the other variables as
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missing. For an unmatched firm, which is indexed by m(k) = 0, I record its characteristics

in z(k). And for a firm matched with a group of workers of size n, indexed by m(k) = n, I

record the characteristics of all matched workers along with the characteristic of the matched

firm in (x1(k), ..., xn(k), z(k)) and encode the rest as missing. We can then construct the

following sample average log-likelihood:

L(x, z;θ) =
1

K

K∑
k=1

1{w(k) = 0}h(x(k), ∗,θ) + 1{m(k) = 0}h(∗, z(k),θ)

+ 1{m(k) = 1}h(x1(k), ∗, z(k),θ)

+ 1{m(k) = 2}h(x1(k), x2(k), ∗, z(k),θ)

+ ...

+ 1{m(k) = q}h(x1(k), ..., xq(k), z(k),θ)

where h is the joint density of matched characteristics under the sampling scheme described in

Section 3. Of course, calculating the likelihood function for a given parameter θ first involves

solving for the fixed point problem described in Equation 6 to derive the inclusive value

functions. This can be achieved by setting up an inner loop that will apply the contraction

mapping until convergence. The estimator proposed is then defined as:

θ̂ = arg max
θ∈Θ

L(x, z;θ)

Asymptotic inference for θ̂ is then standard as long as the size of the sample is not too large

relative to the size of the overall economy. As is pointed out in Menzel (2015) and Diamond

and Agarwal (2017), the inherent structure of matching markets could introduce dependence

between observations. A bootstrap procedure could then be used for inference (Diamond and

Agarwal (2017), Menzel (2021)).

6 Monte Carlo Simulations

In this section, I perform several Monte Carlo simulations in order to assess: (i) the validity

of the convergence results derived in Section 4 and (ii) the validity of the estimation strategy

25



Table 1: Monte Carlo: Convergence of Matching Frequencies and Inclusive Values

n
Unmatched

Workers
Firms with One
Unfilled Vacancy

Firms with Two
Unfilled Vacancies

Iw Im

20 0.5894 0.6778 0.2339 0.7617 0.5343

50 0.5714 0.6712 0.2290 0.8007 0.5365

100 0.5608 0.6661 0.2285 0.8245 0.5350

200 0.5521 0.6621 0.2279 0.8406 0.5344

500 0.5449 0.6588 0.2273 0.8546 0.5313

1000 0.5418 0.6577 0.2263 0.8611 0.5320

2000 0.5389 0.6561 0.2268 0.8662 0.5335

Model 0.5321 0.6527 0.2267 0.8794 0.5321

Notes. This table reports the average share of unmatched firms and workers in each period taken over 200 sample draws for different
sample sizes n.

proposed in Section 5.

6.1 Convergence of Conditional Match Probabilities

Consider a simple model where q = 2 and U(x, z) = V (x, z) = 0 for all (x, z) ∈ X × Z. In

this example, we can easily solve for the fixed point problem described in Equation 6 given

that inclusive value functions collapse to a fixed number which does not vary with (x, z).

This results in Γ∗w = 0.8794 and Γ∗m = 0.5321. I also compute the limit matching frequencies:

P
(
Ui0 ≥ U∗i,(1)

)
−→ 0.5321

P
(
V0j ≥ V ∗i,(1)

)
−→ 0.2267

P
(
V ∗i,(1) > V0j ≥ V ∗i,(2)

)
−→ 0.6527

To verify the validity of the large market approximation, I first simulate n individuals along

with their taste shocks over the individuals from the other side of the market εij and ηij

for all (i, j). I then use the worker-proposing Deferred Acceptance algorithm to get the

worker-optimal stable match. Finally, I compute the empirical matching frequencies and the

inclusive values under this stable match and check whether they converge to their theoretical

limits as n grows large. Table 1 displays the result of this exercise. Both the inclusive values

and the matching frequencies converge to their theoretical limits. This table also shows that
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Table 2: Monte Carlo: Estimation without Random Coefficient

q = 1 q = 2 q = 3

n θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3 θ̂1 θ̂2 θ̂3
100 0.989 1.048 0.511 0.942 1.053 0.494 0.944 1.051 0.457

(0.309) (0.374) (0.231) (0.202) (0.334) (0.173) (0.159) (0.372) (0.152)

200 0.999 0.962 0.487 0.957 1.047 0.486 0.951 1.045 0.468

(0.223) (0.236) (0.150) (0.155) (0.229) (0.121) (0.125) (0.236) (0.113)

500 0.991 0.997 0.497 0.976 1.018 0.479 0.966 1.013 0.476

(0.153) (0.155) (0.101) (0.101) (0.153) (0.082) (0.082) (0.143) (0.071)

1000 0.989 0.992 0.500 0.987 1.009 0.486 0.974 1.005 0.485

(0.108) (0.111) (0.069) (0.066) (0.102) (0.055) (0.060) (0.097) (0.047)

Model 1 1 0.5 1 1 0.5 1 1 0.5

Notes. This table reports the average and standard deviation of the ML estimator of θ for different values of q taken
over 200 sample draws for different sample sizes n.

the limit economy is a relatively good approximation even when the size of the market is

moderately large.

6.2 Convergence of ML Estimator

I now evaluate the performance of the estimator proposed in Section 5 through two Monte

Carlo exercises. In the first exercise, I consider the following simple parametric framework:

Uij = θ1zj + ηij and Vij = θ2xi + θ3xizj + εij

and estimate θ on simulated data. To do so, I draw n individuals along with their observed

characteristics xi and zj drawn from a standard normal distribution. I draw the taste shocks

εij and ηij from the Gumbel distribution and set θ = (1, 1, 0.5) to compute Uij and Vij

for all (i, j). I then derive the worker-optimal stable match using the Deferred Acceptance

algorithm. Finally, I estimate θ and repeat this process 200 times to report the mean and

standard deviation of θ̂ over the sample draws. Table 2 shows that the estimator seems to

converge to its true value as the size of the market increases given that the mean converges to

the true value while the standard deviation vanishes. We can also see that, while increasing

q lowers the variance of the estimator, it also seems to introduce bias. This is consistent

with Proposition 3, given that the joint conditional matching probabilities converge to their

theoretical limits at a slower rate when q increases. There is thus a trade off involved as
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Table 3: Monte Carlo: Estimation with Random Coefficient

q = 1 q = 2 q = 3

n θ̂1 θ̂2 θ̂3 P(θ̂3 = 0) θ̂1 θ̂2 θ̂3 P(θ̂3 = 0) θ̂1 θ̂2 θ̂3 P(θ̂3 = 0)

100 1.006 0.997 0.300 0.485 0.995 0.992 0.311 0.280 0.976 0.990 0.267 0.315

(0.334) (0.352) (0.363) - (0.217) (0.307) (0.260) - (0.168) (0.265) (0.234) -

200 1.037 0.969 0.286 0.425 0.993 0.965 0.317 0.210 0.964 0.960 0.327 0.110

(0.191) (0.206) (0.301) - (0.152) (0.208) (0.224) - (0.113) (0.195) (0.169) -

500 0.995 0.974 0.294 0.310 0.992 0.970 0.350 0.065 0.991 0.977 0.389 0.025

(0.125) (0.130) (0.256) - (0.086) (0.122) (0.146) - (0.068) (0.128) (0.116) -

1000 1.007 0.963 0.348 0.115 0.995 0.981 0.405 0.005 0.995 0.981 0.414 0

(0.100) (0.101) (0.190) - (0.060) (0.086) (0.105) - (0.056) (0.077) (0.073) -

Model 1 1 0.5 - 1 1 0.5 - 1 1 0.5 -

Notes. This table reports the average and standard deviation of the ML estimator of θ for different values of q taken over 200
sample draws for different sample sizes n.

increasing q allows to have a more precise estimator, given that we are using more information,

but might introduce distortions as conditional matching frequencies converge to their limit

at a slower rate.

In a second exercise, I now consider the following parametric framework:

Uij = θ1zj + ηij and Vij = θ2xi + θ3xiνj + εij

where νj is unobserved and follows a N (0, 1). In this example, I assume that there is un-

observed heterogeneity in schools’ tastes over xi which is parametrized through a normal

distributed random coefficient with mean θ2 and standard deviation θ3. I then follow sim-

ilar steps as for the first exercise to get the mean and the standard deviation of the ML

estimator of θ for different values of q and different sizes of the economy n. Note that to

approximate the integral over νi to compute the conditional matching probabilities, I use

a Gaussian-Hermite quadrature (Judd (1998)). Table 3 shows that θ̂ converges to its true

value as n increases. However, the standard deviation of the random coefficient θ3 is poorly

estimated when q = 1. Even with large n, θ̂3 is equal to 0 in 11% of the cases. Given that

the log-likelihood function is symmetric around θ3 = 0, this indicates that it is maximized

while being not differentiable at this point. In this case, traditional inference breaks down

and this estimator is not informative. Although this issue also arises for q = 2 and q = 3

when n is small, we can see that as q increases this is less likely to happen. In fact, increasing
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q from 1 to 2 is already enough to drastically reduce the probability of estimating θ3 to 0.

This indicates that having data on two-to-one matching is already enough to bring additional

identification power necessary to pin down the distribution of random coefficients. This mir-

rors the result found in Berry et al. (2004) which shows that having data on consumers’

second choices allows to estimate random coefficients more easily.

7 Conclusion

This paper develops a unifying empirical framework of one-to-one and many-to-one matching

without transfers to understand what can be inferred on agents’ preferences from observed

sorting in such markets. I impose few restrictions on preferences and assume that the observed

matching is stable. Stability allows me to rewrite the model as a two-sided discrete choice

model with endogenous and unobserved choice sets. I use a sufficient statistics approach

to take into account choice sets’ endogeneity and characterize agents’ conditional choice

probabilities. This allows me to form a clear mapping between the joint distribution of

matched characteristics and agents’ payoff functions.

I then show that we can identify the joint surplus from both one-to-one and many-to-

one matching data. However, without further restrictions, individual preferences are not

identified. While this negative identification result was already established in the one-to-one

case, the literature has argued that many-to-one matchings can bring additional information

which would allow to separately identify preferences from the joint surplus. I find that these

positive identification results are ultimately not driven by the availability of such additional

information but mostly by the extra assumptions imposed on preferences.

I then argue that, by imposing similar restrictions on preferences, one can extend these

positive identification result to the one-to-one matching case. More specifically, by either

assuming that the systematic parts of the payoffs is homogenous across individuals (as in

Diamond and Agarwal (2017)) or under appropriate exclusion restrictions (as in He et al.

(2021) and Agarwal and Somaini (2022)), one can separately identify preferences from the

joint surplus both in the one-to-one and many-to-one case. Finally, I show that the additional

information brought by the many-to-one structure of the data can instead be used to estimate
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more precisely the distribution of random coefficients in a parametric framework.
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A Proofs

A.1 Proof of Proposition 1

Suppose first that µ is not stable. This could imply first, by definition of stability, that there

exists a pair (i, j) such that Uij > Uiµw(i) and Vij > mini′∈µm(j) Vi′j. This would mean that

there exists a pair (i, j) such that j ∈Mi(µ) and Uij > Uiµw(i) which contradicts that Uiµw(i) =

maxj′∈Mi(µ)∪{0} Uij′ . This could also imply that Ui0 > Uiµw(i) or V0j > mini′∈µm(j) Vi′j. In

the first case, this would contradict that Uiµw(i) = maxj′∈Mi(µ)∪{0} Uij′ . In the second case,

this would mean that there exist a l ∈ µm(j) such that V0j > Vlj which contradicts that

Vlj ≥ Vj,(q)(Wj(µ)).

Now, suppose that for a given i, Uiµw(i) < maxj′∈Mi(µ)∪{0} Uij′ . This means that there exist

a firm k ∈ Mi(µ) ∪ {0} such that Uik > Uiµw(i). If k = 0, this immediately contradicts

stability. If k ∈ Mi(µ), this implies that there exist a firm k such that Vik ≥ mini′∈µm(k) Vi′k

and Uik > Uiµw(i). If Vik = mini′∈µm(k) Vi′k, this implies that k = µw(i) and we reach a contra-

diction. Otherwise, we have that Uik > Uiµw(i) and Vik > mini′∈µm(k) Vi′k which contradicts

stability.

Finally, suppose that for a given j and for a given l ∈ µm(j), Vlj < Vj,(q)(Wj(µ)). This

means that there exist a worker s such that s ∈ Wj(µ) ∪ {0} and Vsj > Vlj. If s = 0, this

contradicts stability. If s ∈ Wj(µ), this implies that Usj ≥ Usµw(s) and Vsj > Vlj. Again, we

restrict ourselves to the case where j 6= µw(s) which implies that Usj > Usµw(s) and Vsj > Vlj

which contradicts stability. This concludes the proof.

A.2 Proof of Proposition 2

I first consider the case q = 2. The proof for q = 1 can be found in Menzel (2015). I

start by decomposing in two terms the conditional probability that Uij is above or equal

Ui,(2)(Mi) where Mi = {0, ..., J}. I remove the dependence on Mi for simplicity such that

Ui,(q)(Mi) = Ui,(q) for all q. I also rewrite Uij = uij + σηij for simplicity.
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P(Uij ≥ Ui,(2)|(uik)Jk=1) = P(Uij ≥ Ui,(1)|(uik)Jk=1)

+ P(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1)

The first term is known already and is the conditional choice probability for q = 1. The

second term can be expressed as the probability that there exists one alternative preferred

to j but that j is preferred to the rest:

P(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫ J∑
k=1

P(Uik > Uij, Uij ≥ Uil, l ∈ I − {k, j}|(uik)Jk=1, ηij = s)g(s)ds

=

∫ J∑
k=1

(1−G(σ−1(uij − uik) + s))
∏

l∈I−{k,j}

G(σ−1(uij − uil) + s)g(s)ds

=

∫ J∑
k=1

1−G(σ−1(uij − uik) + s)

G(σ−1(uij − uik) + s)

2J∏
l=1

G(σ−1(uij − uil) + s)
g(s)

G(s)
ds

As in Menzel (2015), I then do the change of variables s = aJt + bJ where aJ = a(bJ) and

bJ = G−1(1− J−1/2) and multiply by J on both sides:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫
1

J

J∑
k=1

J(1−G(aJ(uij − uik + t) + bJ))

G(aJ(uij − uik + t) + bJ)

× exp

(
1

J

2J∑
l=1

J logG(aJ(uij − uil + t) + bJ)

)
JaJg(aJt+ bJ)

G(aJt+ bJ)
dt

Following Resnick (1987) and under Assumption 1 we can show that:

J(1−G(aJ(uij − uik + t) + bJ))→ e−(uij−uik+t)

G(aJ(uij − uik + t) + bJ)→ 1

J logG(aJ(uij − uil + t) + bJ)→ −e−(uij−uik+t)

JaJg(aJt+ bJ)

G(aJt+ bJ)
→ e−t
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We thus have under Assumption 1:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫
1

J

J∑
k=1

e−(uij−uik+t) exp

(
− 1

J

2J∑
l=1

e−(uij−uik+t)

)
e−tdt+ o(1)

=

∫
1

J

J∑
k=1

e(uik−uij) exp

(
− 1

J

2J∑
l=1

e−te(uik−uij)

)
e−te−tdt+ o(1)

I then do a final change of variable s = e−t such that we get:

JP(Ui,(1) > Uij ≥ Ui,(2)|(uik)Jk=1) =

∫ +∞

0

1

J

J∑
k=1

e(uik−uij) exp

(
− 1

J

2J∑
l=1

se(uik−uij)

)
sds+ o(1)

=
1

J

J∑
k=1

e(uik−uij)

(
1

J

2J∑
k=1

e(uik−uij)

)−2

+ o(1)

=
1

J

J∑
k=1

euik
exp(uij)(

1
J

∑2J
k=1 exp(uik)

)2 + o(1)

=
exp(uij)

1 + 1
J

∑J
k=1 exp(uik)

×
1
J

∑J
k=1 exp(uik)

1 + 1
J

∑J
k=1 exp(uik)

+ o(1)

From this we can finally show that:

JP(Ui,(1) > Uij ≥ Ui,(2)|xi, (zk)Jk=1) =
exp(U(xi, zj))

1 + 1
J

∑J
k=1 exp(U(xi, zk))

×
1
J

∑J
k=1 exp(U(xi, zk))

1 + 1
J

∑J
k=1 exp(U(xi, zk))

+ o(1)

which implies that:

JP(Ui,(1) > Uij ≥ Ui,(2)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×

∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

We know from Menzel (2015) that:

JP(Uij ≥ Ui,(1)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds

So we can conlude that:

JP(Uij ≥ Ui,(2)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×
(

1 +

∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)
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Following similar steps, we can prove that:

P(Ui0 ≥ Ui,(2)|xi) −→
1

1 +
∫

exp(U(xi, s))m(s)ds
×
(

1 +

∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)

To illustrate how this iterates to any q, I write here the proof for q = 3. Similarly, we want

to characterize the probability that there exists two alternatives preferred to j but that j is

preferred to the rest:

P(Ui,(2) > Uij ≥ Ui,(3)|(uik)Jk=1)

=

∫
1

2

J∑
k=1

J∑
m=1
m6=k

P(Uik > Uij, Uim > Uij, Uij ≥ Uil, l ∈ I \ {k,m, j}|(uik)Jk=1, ηij = s)f(s)ds

=

∫
1

2

J∑
k=1

1−G(σ−1(uij − uik) + s)

G(σ−1(uij − uik) + s)

J∑
m=1
m 6=k

1−G(σ−1(uij − uim) + s)

G(σ−1(uij − uim) + s)

2J∏
l=1

G(σ−1(uij − uim) + s)
g(s)

G(s)
ds

=

∫
1

2

1

J

J∑
k=1

J(1−G(σ−1(uij − uik) + s))

G(σ−1(uij − uik) + s)

1

J − 1

J∑
m=1
m 6=k

(J − 1)(1−G(σ−1(uij − uim) + s))

G(σ−1(uij − uim) + s)

× exp

(
1

J

J∑
l=1

J logG(σ−1(uij − uil) + s)

)
Jg(s)

G(s)
ds

=

∫
1

2

1

J

J∑
k=1

e−(uij+t−uik) 1

J − 1

J∑
m=1
m 6=k

e−(uij+t−uim) exp

(
− 1

J

2J∑
l=1

exp−(uij + s− uil)

)
e−tdt+ o(1)

=

∫
1

2

1

J

J∑
k=1

e(uik−uij) 1

J − 1

J∑
m=1
m 6=k

e(uim−uij) exp

(
−e−t 1

J

2J∑
l=1

exp(uil − uij)

)
e−te−te−tdt+ o(1)

=

∫ +∞

0

1

2

1

J

J∑
k=1

e(uik−uij) 1

J − 1

J∑
m=1
m 6=k

e(uim−uij) exp

(
−s 1

J

2J∑
l=1

exp(uil − uij)

)
s2ds+ o(1)

=
1

J

J∑
k=1

e(uik−uij) 1

J − 1

J∑
m=1
m 6=k

e(uim−uij) ×

(
1

J

2J∑
l=1

exp(uil − uij)

)−3

+ o(1)
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=
exp(uij)

1
J

∑2J
k=1 exp(uik)

×
1
J

∑J
k=1 exp(uik)

1
J−1

∑J
m=1
m 6=k

exp(uim)(
1
J

∑2J
l=1 exp(uil)

)2 + o(1)

=
exp(uij)

1 + 1
J

∑J
k=1 exp(uik)

×

(
1
J

∑J
k=1 exp(uik)

1 + 1
J

∑J
k=1 exp(uik)

)2

+ o(1)

From this we then have that:

JP(Ui,(2) > Uij ≥ Ui,(3)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×
( ∫

exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)2

We can thus conclude that:

JP(Uij ≥ Ui,(3)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×

3∑
k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)k−1

P(Ui0 ≥ Ui,(3)|xi, zj) −→
1

1 +
∫

exp(U(xi, s))m(s)ds
×

3∑
k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)k−1

To prove this result for any q, I derive the limit of the following conditional probability:

P(Ui,(q−1) > Uij ≥ Ui,(q)|(uik)Jk=1)

Following the same steps, the probability that there exists q − 1 alternatives preferred to j

but that j is preferred to the rest can be expressed as:

P(Ui,(q−1) > Uij ≥ Ui,(q)|(uik)Jk=1)

=

∫
1

(q − 1)!

J∑
j1=1

...

J∑
jq−1=1

jq−1 /∈{j1,...,jq−2}

P(Uij1 > Uij , ..., Uijq−1 > Uij , Uij ≥ Uil, l ∈ I \ {j1, ..., jq−1, j}|(uik)Jk=1, ηij = s)f(s)ds

which results in:

JP(Ui,(q−1) > Uij ≥ Ui,(q)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×
( ∫

exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)q−1
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We can thus derive the following result:

JP(Uij ≥ Ui,(q)|xi, zj) −→
exp(U(xi, zj))

1 +
∫

exp(U(xi, s))m(s)ds
×

q∑
k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)k−1

= exp(U(xi, zj))×
[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)q]

P(Ui0 ≥ Ui,(q)|xi, zj) −→
1

1 +
∫

exp(U(xi, s))m(s)ds
×

q∑
k=1

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)k−1

=

[
1−

( ∫
exp(U(xi, s))m(s)ds

1 +
∫

exp(U(xi, s))m(s)ds

)q]

This concludes the proof of Proposition 2.

A.3 Proof of Theorem 1

I start by proving part (i) and (ii) of Theorem 1. As in Menzel (2015), I first restrict the

space of functions to which the solutions to the fixed point problem described in Equation 6

can belong. Namely, I show that we can restrict ourselves to a Banach space of continuous

functions.

Assume that there exists a pair of functions Γ∗w and Γ∗m that solve the fixed point problem.

By definition of Ψw and using that Γ∗m ≥ 0, we have for any q ≥ 1:

Γ∗w(x) = Ψ[Γ∗m](x) =

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γ∗m(s)

1 + Γ∗m(s)

)q]
m(s)ds

≤
∫

exp{U(x, s) + V (x, s)}m(s)ds

≤ exp{Ū + V̄ }

where Ū and V̄ are the upper bounds of the functions U and V , respectively. Given that this

bound holds also for q = 1, this implies that we can bound similarly Γ∗m(x) ≤ exp{Ū + V̄ }.
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I now establish continuity of the solutions Γ∗w and Γ∗m. By definition, I rewrite:

Γ∗w(x) = Ψw[Ψm[Γ∗w]](x)

=

∫
exp{U(x, s) + V (x, s)}

[
1−

( ∫ exp{U(t,s)+V (t,s)}
1+Γ∗w(t)

w(t)dt

1 +
∫ exp{U(t,s)+V (t,s)}

1+Γ∗w(t)
w(t)dt

)q]
m(s)ds

Similarly, I write:

Γ∗m(z) = Ψm[Ψw[Γ∗m]](z)

=

∫
exp{U(t, z) + V (t, z)}

1 +
∫

exp{U(t, s) + V (t, s)}
[
1−

(
Γ∗m(s)

1+Γ∗m(s)

)q]
m(s)ds

w(t)dt

Since U and V are continuous and all the integrals are nonnegative, Ψw[Ψm[Γ∗w]] and Ψm[Ψw[Γ∗m]]

are also continuous which establishes continuity of the solutions Γ∗w and Γ∗m. Differentiability

of Γ∗w and Γ∗m also follows from differentiability of U and V which is stated in Assumption 1.

We can thus restrict the spaces in which Γ∗w and Γ∗m belong to a Banach space of nonnegative

bounded continuous functions that I call C∗.

Consider now two pairs of functions (Γw,Γm) and (Γ̃w, Γ̃m) belonging to C∗ × C∗. I first

rewrite:

log Ψw[log Γm](x) =

∫
exp{U(x, s) + V (x, s)}

[
1−

(
exp{log Γ∗m(s)}

1 + exp{log Γ∗m(s)}

)q]
m(s)ds

Given that Ψw and Ψm are Gâteaux differentiable, I use the mean value inequality to establish

that:

∣∣∣∣∣∣ log Ψw[Γm](x)− log Ψw[Γ̃m](x)
∣∣∣∣∣∣
∞

≤ sup
a∈[0,1]

∣∣∣∣∣∣d log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞

∣∣∣∣∣∣ log Γm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞

where we can write:

d log Ψw[log Γm](x) = − 1

Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

1 + Γm(s)

(
Γm(s)

1 + Γm(s)

)q
m(s)ds
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Rearranging this expression gives the following:

d log Ψw[log Γm](x) =− 1

Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γm(s)

1 + Γm(s)

)q]
× q(Γm(s))q

(1 + Γm(s))q+1 − (Γm(s))q − (Γ∗m(s))q+1
m(s)ds

Since Γ∗m has to be positive, we can show that:

q(Γm(s))q

(1 + Γm(s))q+1 − (Γm(s))q − (Γm(s))q+1
=

q(Γm(s))q∑q+1
k=0

(q+1)!
k!(q+1−k)!

(Γm(s))k − (Γm(s))q − (Γm(s))q+1

=
q(Γm(s))q∑q−1

k=0
(q+1)!

k!(q+1−k)!
(Γm(s))k + q(Γm(s))q

≤ q(exp{Ū + V̄ })q∑q−1
k=0

(q+1)!
k!(q+1−k)!

(exp{Ū + V̄ })k + q(exp{Ū + V̄ })q
:= λq

This implies that:

|d log Ψw[log Γm](x)| ≤ λq
Ψw[log Γm](x)

∫
exp{U(x, s) + V (x, s)}

[
1−

(
Γ∗m(s)

1 + Γ∗m(s)

)q]
m(s)ds

= λq ≤ 1

From this, I conclude that:

sup
a∈[0,1]

∣∣∣∣∣∣d log Ψw[a log Γm + (1− a) log Γ̃m](x)
∣∣∣∣∣∣
∞
≤ λq

which implies that:

∣∣∣∣∣∣ log Ψw[Γm](x)− log Ψw[Γ̃m](x)
∣∣∣∣∣∣
∞
≤ λq

∣∣∣∣∣∣ log Γm(x)− log Γ̃m(x)
∣∣∣∣∣∣
∞

Given that this holds for any q ≥ 1, I conclude that the mapping (log Γw, log Γm) 7→

(log Ψw[Γm], log Ψm[Γw]) is a contraction which proves claim (i) of Theorem 1. The proof

of part (ii) is a direct implication of the Banach fixed point theorem.

Before proving part (iii) of Theorem 1, intermediary steps are needed. In what follows,

I first prove that the size of opportunity sets grow at a rate
√
n for any q ≥ 1. From
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this, I then show that the dependence between opportunity sets and taste shocks under the

extremal matchings vanishes as n grows to infinity. I then use this result to show that we

can approximate inclusive values arising from any stable match by inclusive value functions

which have an approximate fixed point representation. I then finally prove that the solution

to the finite sample fixed point problem converges to the unique solution of the population

fixed point problem which concludes the proof of Theorem 1.(iii).

A.3.1 Rate of Size of Feasible Choice Sets

Define, for a given stable matching µ∗, the number of firms feasible to worker i and the

number of workers feasible to firm j as:

J∗wi =
nm∑
j=1

1{Vji ≥ Vj,(q)(Wj(µ
∗))} and J∗mj =

nw∑
i=1

1{Uji ≥ Ui,(1)(Mi(µ
∗))}

Similarly, define the number of firm that worker i would accept and the number of workers

that firm j would accept:

L∗wi =
nm∑
j=1

1{Uji ≥ Ui,(1)(Mi(µ
∗))} and L∗mj =

nw∑
i=1

1{Vji ≥ Vj,(q)(Wj(µ
∗))}

To characterize the limit of the conditional matching probabilities, we need to know at which

rate these objects grow. Menzel (2015) showed that for q = 1, we can bound each of these

by quantities that grow at a rate
√
n. I show that this extends to any q > 1 by proving the

following:

Lemma 1 Under Assumptions 1 and 2 and for any stable matching µ∗, we have for any

finite q ≥ 1:

n1/2 exp(−V̄ + γm)

1 + exp(Ū + V̄ + γw)
≤ J∗wi ≤ n1/2 exp(V̄ + γm)

n1/2 exp(−Ū + γw)

1 + exp(Ū + V̄ + γm)
≤ J∗mj ≤ n1/2 exp(Ū + γw)

n1/2 exp(−Ū + γm)

1 + exp(Ū + V̄ + γm)
≤ L∗wi ≤ n1/2 exp(Ū + γm)
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n1/2 exp(−V̄ + γw)

1 + exp(Ū + V̄ + γw)
≤ L∗mj ≤ n1/2 exp(V̄ + γw)

for each i = 1, ..., nw and j = 1, ..., nm with probability approaching 1 as n→∞.

Proof: I rely on two important observations:

(a). We can bound, for any q ≥ 1, Vj,(q)(Wj(µ
∗)) from above by Vj,(1)(Wj(µ

∗)) and similarly

Ui,(q)(Mi(µ
∗)) by Ui,(1)(Mi(µ

∗)) for all i = 1, ..., nw and j = 1, ..., nm.

(b). As in Menzel (2015), we can define exogenous sets W̄j = {i : Uij ≥ Ui0} and M̄i = {j :

Vij ≥ V0j} such that Wj(µ
∗) ⊂ W̄j and Mi(µ

∗) ⊂ M̄i as well as W ◦
j = {i : Uij ≥ Ui,(1)(M̄i)}

and M◦
i,(q) = {j : Vij ≥ Vj,(q)(W̄j)} such that W ◦

j ⊂ Wj(µ
∗) and M◦

i,(q) ⊂Mi(µ
∗).

A first important result is that (a) implies that for any q > 1, M◦
i,(1) ⊂ M◦

i,(q) ⊂ Mi(µ
∗).

From this, I construct the following bounds on J∗wi:

J◦wi =
nm∑
j=1

1{j ∈M◦
i,(1)} ≤

nm∑
j=1

1{j ∈Mi(µ
∗)} ≤

nm∑
j=1

1{j ∈ M̄i} = J̄wi

from there, using Proposition 2, we can show that:

E[J̄wi|xi, z1, ..., znm ] =
1

J

nm∑
j=1

exp{V (xi, zj)}
1 + 1

J
exp{V (xi, zj)}

+ o(1) ≤ nm
J

exp{Ū}+ o(1)

which implies under Assumption 2 that:

E[J̄wi] ≤ n1/2 exp{V̄ + γm}+ o(1)

Following the same steps as Menzel (2015) we can then show that the variance of J̄wi converges

to zero which implies that:

n−1/2(J̄wi − E[J̄wi])→ 0

We have thus established that J∗wi ≤ n1/2 exp{V̄ + γm} with probability approaching 1 as

n→∞. Following the same steps, we can show symmetrically that:

J∗mj ≤ n1/2 exp{Ū + γw}
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L∗wi ≤ n1/2 exp{V̄ + γm}

L∗mj ≤ n1/2 exp{Ū + γw}

with probability approaching 1 as n → ∞. We now consider the lower bound J◦wi. We can

again use Proposition 2 to show that:

E[J◦wi|(xl)l∈W̄j
, z1, ..., znm ] =

1

J

nm∑
j=1

exp{V (xi, zj)}
1 + 1

J

∑
l∈W̄j

exp{V (xl, zj)}
+ o(1)

≥ nm
J

exp{−V̄ }
1 +

J̄mj

J
exp{V̄ }

+ o(1)

Using the higher bound for J∗mj derived just above and Jensen’s inequality, we can finally

show that:

E[J◦wi] ≥ n1/2 exp{−V̄ + γm}
1 + exp{V̄ + Ū + γw}

+ o(1)

Following Menzel (2015) we can then also show that the variance of J◦wi converges to zero

which implies that:

n−1/2(J◦wi − E[J◦wi])→ 0

This establishes that J∗wi ≥ n1/2 exp{−V̄+γm}
1+exp{V̄+Ū+γw} with probability approaching 1 as n → ∞.

Following the same steps, we can show that symmetrically, we have:

J∗mj ≥ n1/2 exp{−Ū + γw}
1 + exp{V̄ + Ū + γm}

L∗wi ≥ n1/2 exp{−Ū + γm}
1 + exp{V̄ + Ū + γm}

L∗mj ≥ n1/2 exp{−V̄ + γw}
1 + exp{V̄ + Ū + γw}

with probability approaching 1 as n→∞. This concludes the proof of Lemma 1.

A.3.2 Exogeneity of Feasible Choice Sets

We now need to show that as n → ∞, the dependence between agents taste shocks and

opportunity sets vanishes. Again, a proof exists for q = 1 in Menzel (2015) but I show that
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this result extends to q > 1.

For the rest of the proof, I define the following set of indicator functions E∗ij = 1{i ∈

Wj(µ
∗)} and D∗ij = 1{j ∈ Mi(µ

∗)} for all workers i = 1, ..., nw and firms j = 1, ..., nm. The

first result to establish is that the probability that changing one availability indicator affects

another agents’ opportunity set converges to zero as n→∞ for any q ≥ 1. I first prove the

following result:

Lemma 2 Suppose Assumption 1 and 2 hold and suppose we change one availability indi-

cator E∗ij exogenously to Ẽij = 1 − E∗ij and then iterate the deferred acceptance algorithm

from this point until convergence. Denote the resulting availability indicators {Ẽlk, D̃lk : l =

1, ..., nw, k = 1, ..., nm}. We have for any q ≥ 1 and any worker l and firm k:

(i). P(D̃l 6= D∗l |D∗l , D∗ij = 0) = P(Ẽk 6= E∗k |E∗l , D∗ij = 0) = 0

(ii). There exist constants ā <∞ and 0 < λ < 1 such that:

P(D̃l 6= D∗l |D∗l , D∗ij = 1) ≤ n−1/2 ā

1− λ

P(Ẽk 6= E∗k |E∗l , E∗ij = 1) ≤ n−1/2 ā

1− λ

The same result holds for an exogenous change of Dij to D̃ij = 1−Dij.

Proof: Suppose we change E∗ji exogenously to Ẽji = 1−Eji and that we iterate the deferred

acceptance algorithm from this stage. This will only trigger a chain of rematches if this affects

the indirect utility of either i or j. Suppose D∗ij = 0 and that E∗ij = 0 meaning that firm

j is not feasible to worker i and vice versa. Suppose now that Ẽji = 1 − E∗ij = 1, meaning

that suddenly worker i’s preference for firm j increase such that worker i becomes feasible

for firm j. This will not affect the indirect utility of firm j nor worker i given that firm j is

not feasible to worker i. This change will thus not trigger a chain of rematches. A similar

argument can be used in the case where E∗ij changes from 1 to Ẽji = 1 − E∗ij = 0. This

establishes part (i) of Lemma 2 and does not depend on the value of q.

Now suppose that D∗ij = 1 such that if Ẽji = 1 − E∗ij = 1, now firm j and worker i will
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want to rematch together or if Ẽji = 1−E∗ij = 0 firm j and worker i will break their current

match. This will trigger a chain of rematches than can potentially cycle back to worker i

or firm j’s opportunity set. I start by showing that, for any q > 1 at each step s of these

subsequent rematches, there is at most one indicator in the vector D
(s)
l corresponding to a

firm k with E
(s)
lk = 1 that will change. The idea of the proof is the following: suppose that a

given worker l matched to firm k in step (s−1) becomes unavailable to firm k in step s. This

firm will then replace this worker by the next qth ranked feasible applicant, which will only

change the availability indicator of this firm to this newly hired worker. On the other hand,

if a given worker becomes available to a firm while this firm prefers this worker to one of its

top q matched employees, then it will replace the qth ranked worker by this new employee,

making this firm unavailable to the kicked out employee. In both cases, this will only change

at most one availability indicator among the workers who are willing to match with this firm.

Note that at each of these steps, there is a chance that the chain is terminated if the next qth

ranked feasible worker is the outside option. A similar argument can be used symmetrically

from the workers perspective by replacing q by 1.

The rest of the proof now consists in bounding the probability that the chain is terminated

by either (a) firm k or worker l preferring the outside option to any other option in their

opportunity set or (b) a change in availability indicators of worker k Dk. I define µs the

state of the match in iteration s of the deferred acceptance algorithm following an exogenous

change of Eji to Ẽji = 1 − Eji. The first step bounds the probability that the chain is

terminated by the outside option at stage s.

I start from the following observation: given that P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk) ≥ P(Vlk >

Vk,(1)(Wk(µ
s))|xl, zk) and that W ◦

k,(1) ⊂ W ∗
k ⊂ W̄k, we have from Proposition 2 and Lemma 1

that for any firm k and worker l:

P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk) ≥ P(Vlk > Vk,(1)(W̄k)|xl, zk)

= n−1/2 exp(V (zk, xl))

1 + 1
J

∑
i∈W̄k

exp(V (zk, xi))
+ o(1)

≥ n−1/2 exp(V (zk, xl))

1 + exp(Ū + V̄ + γw)
+ o(1)

43



This implies that, conditional on D∗i and as n approaches infinity:

P(V0k > Vk,(q)|D∗i , xi, zk) ≥
1

1 + exp(Ū + V̄ + γw)
=: ps

Following now the same steps as Menzel (2015), we have, by Bayes law that:

P(V0k > Vk,(q)|D∗l , D̃
(s)
lk = 1, xl, zk) ≥

Lps
L̄(1− ps) + Lps

where L̄ and L are respectively the upper and lower bounds on L∗mj taken from Lemma 1.

From there, we finally get that:

1− P(V0k > Vk,(q)|D∗l , D̃
(s)
lk = 1, xl, zk) ≤

L̄ exp(Ū + V̄ + γw)

L̄ exp(Ū + V̄ + γw) + L
=: λ < 1

This essentially means that the probability that the chain is not terminated at stage s is

bounded away from 1.

Now we bound the probability that the chain leads to a change in Dl at stage s. We can

thus bound the following probability using Proposition 2 and Lemma 1:

P(Vlk > Vk,(q)(Wk(µ
s))|xl, zk)

≤ P(Vlk > Vk,(q)(W
◦
k,(1))|xl, zk)

= n−1/2 exp(V (zk, xl))

1−

( 1
J

∑
i∈W ◦

k,(1)
exp(V (zk, xi))

1 + 1
J

∑
i∈W ◦

k,(1)
exp(V (zk, xi))

)q
+ o(1)

≤ n−1/2 exp(V (zk, xl))

[
1−

(
J◦mk

J
exp(−V̄ )

1 +
J◦mk

J
exp(−V̄ )

)q]
+ o(1)

≤ n−1/2 exp(V (zk, xl))

[
1−

(
exp(−V̄ − Ū + γw)

1 + exp(−V̄ − Ū + γw) + exp(Ū + V̄ + γm)

)q]
+ o(1)

≤ n−1/2 exp(V̄ ) + o(1)
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This implies that for n sufficiently large, we have:

P(D̃
(s)
l 6= D∗l |D∗l , D̃

(s)
lk = 1, xl, zk)

≤ n−1/2 exp(V̄ )L̄

n−1/2 exp(V̄ )L̄+ L
≤ n−1/2 exp(V̄ )

L̄

L
= n−1/2ā

Using the law of total probability, we can thus bound as n→∞ the conditional probability

that D̃l 6= D∗l :

P(D̃l 6= D∗l |D∗l ) ≤
∞∑
s=1

λsn−1/2ā ≤ n−1/2ā

1− λ

which proves part (b) of Lemma 2.

From there, I state the main result that the dependence between taste shocks and agents’

opportunity sets vanishes as n → ∞ for any q ≥ 1. I first define the joint distribution of

ηi = (ηi1, ..., ηinm)′, εj = (ε1j, ..., εnwj)
′ and the availability indicators DW

i , EW
j , DM

i , EM
j

corresponding to the worker-optimal and the firm-optimal stable matches. Note that I con-

sider these two specific matches since the worker-optimal and firm-optimal stable matches

are defined with probability 1 conditional on the realization of the taste shocks ηi and εj.

Indeed, the distribution of availability indicators arising from an arbitrary stable match

D∗i would not be well defined. I also define: DW
i,−j = (DW

i1 , ..., D
W
i(j−1), D

W
i(j+1), ..., D

W
inm

)

and E−i,j = (EW
1j , ..., E

W
(i−1)j, E

W
(i+1)j, ..., E

W
nwj) with analogous notations for the firm optimal

match. I then define the conditional c.d.f.s:

GW
η|D(η|d) = P(ηi ≤ η|DW

i = d), d ∈ {0, 1}nm

GW
η,ε|D,E(η, ε|d, e) = P(ηi ≤ η, εj ≤ ε|DW

i,−j = d, EW
−i,j = e), d ∈ {0, 1}nm−1, e ∈ {0, 1}nw−1

with analogous definitions for the firm-optimal stable match and associated p.d.f.s gWη|D and

gWη,ε|D,E. The main result is the following:

Lemma 3 Under Assumption 1 and 2, we have:

45



(i). gWη|D and gMη|D satisfy:

lim
n

∣∣∣gWη|D(η|DW
i )

gη(η)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η|DM
i )

gη(η)
− 1
∣∣∣ = 1

(ii). gWη,ε|D,E and gMη,ε|D,E satisfy:

lim
n

∣∣∣gWη|D(η, ε|DW
i,−j, E

W
−i,j)

gη,ε(η, ε)
− 1
∣∣∣ = lim

n

∣∣∣gMη|D(η, ε|DM
i,−j, E

M
−i,j)

gη,ε(η, ε)
− 1
∣∣∣ = 1

The same results holds for the firm side of the market.

Proof: Let gWη,D be the joint p.d.f. of taste shocks and availability indicators under the

worker optimal stable match. We can rewrite, by definition of a conditional density:

gWη|D(η|DW
i )

gη(η)
=

gWη,D(η,DW
i )

gη(η)P (DW
i )

=
P (DW

i |ηi = η)gη(η)

gη(η)P (DW
i )

=
P (DW

i |ηi = η)

P (DW
i )

I then follow similar steps as in Menzel (2015) to show that:

∣∣∣P (DW
i |ηi = η)

P (DW
i )

− 1
∣∣∣ ≤ sup

η1,η2

∣∣∣P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1
∣∣∣

such that I only need to bound the probability that shifting ηi from η1 to η2 changes worker

i’s opportunity set. This insight does not depend on q. We know from Lemma 2 that

changing an availability indicator will trigger a chain of rematches that could change worker

i’s opportunity set with probability less than n−1/2ā
1−λ as n approaches infinity. Here, we can

show that shifting agent i’s taste shocks would trigger at most two chains of rematches.

Indeed, if the shift in taste shocks makes agent i prefers firm l with Dil = 1 instead of her

current employer firm j, this changes both Eij from 1 to 0 and Eil from 0 to 1. Thus, this

would trigger two chains of rematches where both firm j and the worker which was displaced

from firm l by worker i would need to find a new match. We can thus conclude that:

P (DW
i |ηi = η1)

P (DW
i |ηi = η2)

− 1 ≤ 2
n−1/2ā

1− λ
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as n→∞ which can be shown to hold also in absolute value. As the right hand side converges

to 0 as n → ∞, this proves the first part of claim (i). Now consider the symmetrical case

where we would shift firm j’s taste shocks. Following a similar argument, we can see that

this would create at most 2q chains of rematches. Indeed, assuming that such a shift in

firm j’s taste shocks would make it want to replace all of its q employees, this implies that

the q workers which were let go along with the (potentially) q firms which lost one of their

employees would need to find a new match. This implies that:

P (EW
j |εj = ε1)

P (EW
j |εj = ε2)

− 1 ≤ qn−1/2 2ā

1− λ

as n→∞ which can be shown to hold also in absolute value. As the right hand side converges

to 0 as n→∞, this proves the first part of claim (i).

For part (ii), note that the argument can be extended in a similar way. If you change

both firm j and worker i’s taste shocks this can trigger at most 2(q + 1) chains of rematches

such that we can bound the probability of a shift in opportunity sets by (q + 1)n−1/2 2ā
1−λ

which can be made arbitrarily close to 0 as n approaches infinity.

A.3.3 Bounds for Inclusive Values

Since I have established exogeneity of opportunity sets under the firm-optimal and worker-

optimal stable matches, the rest of the analysis focuses on characterizing the limit of inclusive

values that arise under these extremal matchings. As in Menzel (2015), I show that both

converge to a unique limit, implying that inclusive values arising from any stable matching

also converge towards this limit.

I define IWwi = Iwi(µ
W ) and IWmj = Imj(µ

W ) the inclusive values that arise from the worker-

optimal stable match. Similarly, I define IMwi and IMmj as the inclusive values that arise from

the firm-optimal stable match such that for any stable match µ∗, we have IWwi ≥ Iwi(µ
∗) ≥ IMwi

and IWmj ≤ Iwi(µ
∗) ≤ IMmj. I state the following result:

Lemma 4 Under Assumption 1 and 2:

47



(i). For all i = 1, ..., nw and j = 1, ..., nm:

IMwi ≥ Γ̂Mwn(xi) + op(1) and IMmj ≤ Γ̂Mmn(zj) + op(1)

where the analogous result holds for the worker-optimal stable match with the side of inequal-

ities reversed.

(ii). If the weight functions ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

x, then

sup
x∈X

1

n

nm∑
j=1

ω(x, zj)(I
M
mj − Γ̂Mm (zj)) ≤ op(1)

and

inf
z∈Z

1

n

nw∑
i=1

ω(xi, z)(I
M
wi − Γ̂Mw (xi)) ≥ op(1)

The analogous conclusion holds for the worker-optimal stable match where the sign of the

inequalities is reversed and if ω(x, z) ≥ 0 are bounded and form a Glivenko-Cantelli class in

z.

Proof: I first show that we can bound conditional choice probabilities given an opportunity

set arising from a stable match using the extremal matchings. I first define the conditional

probability that worker i chooses firm j given the realization of opportunity set MM arising

from the firm-optimal stable match:

ΛM
w (x, z,MM) = P(Uij ≥ Ui,(1)(M

M
i )|MM

i = MM , xi = x, zj = z)

Similarly, I define the equivalent object from firm j’s perspective:

ΛM
m (x, z,WM) = P(Vij ≥ Vj,(q)(W

M
j )|WM

j = WM , xi = x, zj = z)

I also define the conditional choice probabilities under exogenous opportunity sets as:

Λw(x, z,M) = P(Uij ≥ Ui,(1)(M)|xi = x, zj = z)

Λm(x, z,W ) = P(Vij ≥ Vi,(q)(W )|xi = x, zj = z)

48



As there are several stable matches such that M∗
i = MM

i and W ∗
j = WM

j we can show that:

JΛM
w (x, z,MM

i ) ≤ JΛw(x, z,MM
i ) + op(1)

JΛM
m (x, z,WM

j ) ≥ JΛm(x, z,WM
j ) + op(1)

Similarly, we have:

JΛW
w (x, z,MW

i ) ≥ JΛw(x, z,MW
i ) + op(1)

JΛW
m (x, z,WW

j ) ≤ JΛm(x, z,WW
j ) + op(1)

Using Proposition 2, we can then show that for i = 1, ..., nw, l1 = 1, ..., nm and l2 6= l1:

E[J(DM
il1
− ΛM

m (xi, zl1 , I
M
ml1

))|IMml1 , xi, zl1 ]→ 0

and

E[J2(DM
il1
− ΛM

m (xi, zl1 , I
M
ml1

))(DM
il1
− ΛM

m (xi, zl2 , I
M
ml2

))|IMml1 , I
M
ml2
, xi, zl1 , zl2 ]→ 0

Therefore, since under Assumption 1, we know that exp(U(xi, zj)) is bounded, we can thus

conclude that:

Var

(
1

n

nm∑
k=1

exp{U(xi, zk)}J(DM
ik − ΛM

m (xi, zk, I
M
mk))

)
→ 0

which implies that:

1

n

nm∑
k=1

exp{U(xi, zk)}J(DM
ik − ΛM

m (xi, zk, I
M
mk)) = op(1)

Given that from Proposition 2:

JΛM
m (x, z,WM

j ) ≥ exp{V (x, z)}

[
1−

(
IMmj

1 + IMmj

)q]
+ op(1)
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This implies that:

1

n

nm∑
k=1

exp{U(xi, zk)}
(
JDM

ik − exp{V (xi, zk)}
[
1−

(
IMmk

1 + IMmk

)q])
≥ op(1)

which proves the first claim of part (i) of Lemma 4. From firm j’s perspective, I show using

the same arguments that:

1

n

nw∑
l=1

exp{V (xl, zj)}J(EM
lj − ΛM

w (xl, zj, I
M
wl )) = op(1)

which implies, using Proposition 2:

1

n

nw∑
l=1

exp{V (xl, zj)}
(
JEM

lj −
exp{U(xl, zj)}

1 + IMwl

)
≥ op(1)

This prove part (i) of Lemma 4. Note that analogous arguments can be used to bound

inclusive values arising from the worker-optimal stable match.

Part (ii) follows from part (i) of the Lemma and the boundedness condition on ω which

implies pointwise convergence. The Glivenko-Cantelli condition on ω then implies uniform

convergence. This concludes the proof of Lemma 4.

The next step consists in establishing uniform convergence with respect to Γw ∈ Tw and

Γm ∈ Tm of the fixed point mappings Ψ̂w and Ψ̂m to their population counterparts. I define:

Ψ̂w[Γm](x) =
1

n

nm∑
j=1

ψw(zj, x; Γm)

where ψw is defined as:

ψw(zj, x; Γm) = exp{U(x, zj) + V (x, zj)}
[
1−

(
Γm(zj)

1 + Γm(zj)

)q]

Similarly, I define:

Ψ̂m[Γw](z) =
1

n

nw∑
i=1

ψm(z, xi; Γw)

50



where ψm is defined as:

ψm(z, xi; Γw) =
exp{U(xi, z) + V (xi, z)}

1 + Γw(xi)

I define the class of functions Fw : {ψw(., x; Γm) : x ∈ X ,Γm ∈ Tm} and Fm : {ψm(., x; Γw) :

x ∈ X ,Γw ∈ Tw}.

Lemma 5 Under Assumption 1:

(i). The classes of functions Fw and Fw are Glivenko-Cantelli.

(ii). As n→∞:

(Ψ̂w[Γm](x), Ψ̂m[Γw](z))→ (Ψw[Γm](x),Ψm[Γw](z))

uniformly in Γw ∈ Tw, Γm ∈ Tm and (x, z) ∈ X × Z.

Proof: Under Assumption 1, exp{U(x, z) + V (x, z)} is Lipschitz in x and z such that this

class of functions is Glivenko-Cantelli. Γm and Γw are bounded and have bounded p ≥ 1

derivatives which makes the class of functions Fw ∪Fm Glivenko-Cantelli. Finally, note that

the transformation ψm(g, h) = g
1+h

is bounded and continuous since h and g are bounded

and continuous and h ≥ 0. Similarly, the transformation ψw(g, h) = g
[
1−

(
h

1+h

)q]
is also

bounded and continuous for any q ≥ 1. Theorem 3 in van der Vaart and Wellner (2000)

implies claim (i) of Lemma 5. Part (ii) of Lemma 5 is a direct implication of part (i).

A.3.4 Proof of Theorem 3.1 (iii)

I finally turn to the proof of part (iii) of Theorem 1. I first apply Lemma 4 to show that for

any q ≥ 1:

Γ̂Mw (x) =
1

n

nm∑
j=1

exp{U(x, zj) + V (x, zj)}

[
1−

(
IMmj

1 + IMmj

)q]

≥ 1

n

nm∑
j=1

exp{U(x, zj) + V (x, zj)}

[
1−

(
Γ̂Mm (zj)

1 + Γ̂Mm (zj)

)q]
+ op(1)
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Similarly, I show that:

Γ̂Mm (z) ≤ 1

n

nw∑
i=1

exp{U(xi, z) + V (xi, z)}
1 + Γ̂Mw (xi)

+ op(1)

Analogous bounds can be formed for the inclusive value functions of the worker-optimal

stable match. We thus have that:

Γ̂Mw ≥ Ψ̂M
w [Γ̂Mm ] + op(1) and Γ̂Mm ≤ Ψ̂M

m [Γ̂Mw ] + op(1)

Γ̂Ww ≤ Ψ̂W
w [Γ̂Wm ] + op(1) and Γ̂Wm ≥ Ψ̂W

m [Γ̂Ww ] + op(1)

Given that Ψ̂w[Γm] and Ψ̂m[Γw] are nonincreasing and Lipschitz continuous in Γm and Γw,

we have:

Γ̂Mw ≥ Ψ̂M
w [Γ̂Mm ] + op(1) ≥ Ψ̂M

w [Ψ̂M
m [Γ̂Mw ]] + op(1)

Thus for any pair of functions (Γ∗w,Γ
∗
m) solving the fixed point problem:

Γ∗w = Ψ̂w[Γ∗m] + op(1) and Γ∗m = Ψ̂m[Γ∗w] + op(1)

we thus have:

Γ̂Mw ≥ Γ∗w + op(1) and Γ̂Mm ≤ Γ∗m + op(1)

However, we know that the mapping Ψ̂ is a contraction in logs, which means that it has a

unique fixed point (Γ∗w,Γ
∗
m). We also know, by definition, that:

Γ̂Mw ≤ Γ̂Ww and Γ̂Mm ≥ Γ̂Wm

which implies that:

Γ∗w + op(1) ≥ Γ̂Ww ≥ Γ̂Mw ≥ Γ∗w + op(1)

Γ∗m + op(1) ≤ Γ̂Wm ≤ Γ̂Mm ≤ Γ∗m + op(1)
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which in turn implies that:

Γ̂Mw = Γ∗w + op(1) and Γ̂Mm = Γ∗m + op(1)

Γ̂Ww = Γ∗w + op(1) and Γ̂Wm = Γ∗m + op(1)

Combining this with Lemma 3, this gives us for all i = 1, ..., nw and all j = 1, ..., nm:

IMwi = Γ∗w + op(1) and IMmj = Γ∗m + op(1)

IWwi = Γ∗w + op(1) and IMmj = Γ∗m + op(1)

Note that given that inclusive value functions that would arise under any stable match

µ∗ defined as I∗wi and I∗mj are such that IMwi ≤ I∗wi ≤ IWwi and IMmj ≥ I∗mj ≥ IWmj the equality

written above holds also for any I∗wi and I∗mj.

I have shown that inclusive values can be approximated by the solution of the finite

sample fixed point problem. Lemma 5 finally implies that the solution of the finite sample

fixed point problem converges towards the solution of its population equivalent. This proves

Theorem 1.(iii).

A.4 Proof of Proposition 3

Assume that firm j is matched with a group of k = 2 workers and that we want to characterize

the limit of the following CCP:

P(µm(j) = {i, l} ∪ {0}q−2|xi, xl, zj)

We can rewrite it as follows:

P(Uij ≥ Ui,(1)(Mi(µ
∗)), Ulj ≥ Ul,(1)(Ml(µ

∗)), Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

+ P(Uij ≥ Ui,(1)(Mi(µ
∗)), Ulj ≥ Ul,(1)(Ml(µ

∗)), Vlj > Vij > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Uij ≥ Ui,(1)(Mi(µ
∗))|xi, zj)× P(Ulj ≥ Ui,(1)(Mi(µ

∗))|xl, zj)

×
[
P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ

∗))|xi, xl, zj) + P(Vlj > Vij > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

]
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We can then decompose the rank ordered CCPs as follows:

P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Vij ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj)× P(Vlj ≥ Vj,(1)(Wj(µ

∗) \ i)|xi, xl, zj)

× P(V0j ≥ Vj,(1)(Wj(µ
∗) \ {i, l})|xi, xl, zj)

In the limit, removing one arbitrary alternative from opportunity sets does not affect inclusive

values:

n−1/2
∑

i∈Wj(µ∗)\{l}

exp{V (xi, zj)} = n−1/2
∑

i∈Wj(µ∗)

exp{V (xi, zj)} − n−1/2 exp{V (xl, zj)}

= n−1/2
∑

i∈Wj(µ∗)

exp{V (xi, zj)}+ op(1) = I∗mj + op(1)

We can thus conclude that:

P(Vij > Vlj > V0j ≥ Vj,(3)(Wj(µ
∗))|xi, xl, zj)

=P(Vij ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj)× P(Vlj ≥ Vj,(1)(Wj(µ

∗))|xi, xl, zj)

× P(V0j ≥ Vj,(1)(Wj(µ
∗))|xi, xl, zj) + o(1)

Which, using Proposition 2 and Theorem 1, implies that:

n2P(µm(j) = {i, l} ∪ {0}q−2|xi, xl, zj) −→
2 exp{U(xi, zj) + U(xl, zj) + V (xi, zj) + V (xl, zj)}

(1 + Γ∗w(xi))(1 + Γ∗w(xl))(1 + Γ∗w(zj))3

where Γ∗w and Γ∗m are the solutions of the fixed point problem described in Equation 6. To

extend to proof to any k, a similar argument applies, except that the number of rank ordered

CCPs becomes k!. This proves part (i) of Proposition 3.

A similar argument can be used to prove part (ii).
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A.5 Proof of Proposition 6

From Theorem 1 and Proposition 2, we know that for any q ≥ 1 and for a given finite w:

n−1/2P(Uij ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w)→ exp (U(x, z))

1 + Γ∗w(x,w)

and

JP(Vij ≥ Vj,(1)(Wj(µ
∗))|xi = x, zj = z, wi = w)→ exp (V (x, z) + g(w))

1 + Γm(z)

where Γ∗m and Γ∗w solve the following fixed point problem:

Γ∗w = Ψw[Γ∗m] and Γ∗m = Ψm[Γ∗w] (7)

where

Ψw[Γm](x,w) =

∫
exp(U(x, s) + V (x, s) + g(w) + γm)×

[
1−

(
Γm(s)

1 + Γm(s)

)q]
m(s)ds

Ψm[Γw](x) =

∫ ∫
exp(U(s, z) + V (s, z) + g(t) + γw)

1 + Γw(s, t)
wx(s)ww(t)ds

However, as w goes to infinity, we have that:14

lim
w→∞

P(Vij ≥ Vj,(q)(Wj(µ
∗))|xi = x, zj = z, wi = w) = 1

This implies that:

lim
wi→∞

n−1/2Iwi =

∫
exp{U(x, s) + γm}m(s)ds

which in turn implies that:

lim
w→∞

nP(Uij ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w) =

exp (U(x, z))

1 +
∫

exp{U(x, s) + γm}m(s)ds

14The probability that an option is in workers’ opportunity sets only goes to 1 when making the shifter w
go to infinity. In He et al. (2021) and Agarwal and Somaini (2022) this is not the case as cutoffs are fixed
and finite since the number of ”colleges” or ”products” is fixed. As both the number of firms and workers
grow to infinity in our case, the cutoffs grow to infinity as the size of the market grows.
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Similarly,

lim
w→∞

nP(Ui0 ≥ Ui,(1)(Mi(µ
∗))|xi = x, zj = z, wi = w) =

1

1 +
∫

exp{U(x, s) + γm}m(s)ds

Taking the log of these ratios separately identifies U from the joint surplus. Given that

the joint surplus is identified for finite w, we can then recover V + g. V can be separately

identified by evaluating V + g at w̄.
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