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Abstract

We study information design in games with a continuum of actions such that the
players’ payoffs are concave in their own actions. A designer chooses an information
structure–a joint distribution of a state and a private signal of each player. The infor-
mation structure induces a Bayesian game and is evaluated according to the expected
designer’s payoff under the equilibrium play.

We develop a method that facilitates the search for an optimal information struc-
ture, i.e., one that cannot be outperformed by any other information structure, how-
ever complex. We show an information structure is optimal whenever it induces the
strategies that can be implemented by an incentive contract in a dual, principal-agent
problem which aggregates marginal payoffs of the players in the original game. We
use this result to establish the optimality of Gaussian information structures in set-
tings with quadratic payoffs and a multivariate normally distributed state. We analyze
the details of optimal structures in a differentiated Bertrand competition and in a
prediction game.

1 Introduction

Information flows are vital for the digital economy and are increasingly controlled by tech-
nological giants. Amazon decides how to display products on its shopping website. Google
decides how to aggregate user reactions on its video platform. Meta decides how to compose
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the news feed on its social network. All these companies decide what customer characteristics
to reveal to bidding advertisers. These choices raise the question of optimal information con-
trol, which was formalized in the field of information design or Bayesian persuasion (Berge-
mann and Morris (2019), Kamenica (2019)). Existing methodology enables the designer’s
problem to be posed and to be solved in important special cases, such as those with binary
state, binary actions, a single player, or for special classes of information structures. In this
paper, we expand this methodology by developing a solution method to find unconstrained-
optimal information structures in large-scale games with a continuum of states and actions
and nonlinear payoffs.

Specifically, we study information design in concave games of incomplete information,
i.e., games in which each player’s action can take values on the real line and the payoff
of each player is strictly concave in his action, for any state and actions of other players.
The information designer takes the players’ payoffs and a prior state distribution as given
but can design an arbitrary information structure that specifies the joint distribution of
the state and private signals of the players. The designer anticipates equilibrium play. In
concave games, the best response of each player to his signal can be found by means of
a first-order optimality condition, and the equilibrium behavior is determined by a system
of such conditions. The induced joint distribution of state and actions is assessed by the
designer according to her expected payoffs. The goal is to find an information structure that
is optimal for the designer.

In a problem of this scale, a direct search for an optimal information structure is in-
tractable because of the sheer amount of optimization parameters and constraints. Instead,
we develop a solution method to check and certify the optimality of candidate information
structures. To do so, we construct a dual problem, as defined in the field of convex optimiza-
tion, and show that it admits an interpretation of adversarial contracting. In that problem,
a contract designer faces a single agent who fully controls all actions and perfectly observes
the state. The designer chooses a contract that affects the agent’s incentives: the agent’s
payoff is the sum of the information-designer payoff and the marginal payoffs of the players
scaled by the weights specified by the contract. The contract designer anticipates the agent’s
best response and chooses the contract to minimize the expected agent’s payoff, hence the
name “adversarial.”

The dual problem is important because its optimal value places an upper bound on the
optimal value of the information-design problem and, as such, on the value of information
control (Theorem 1). It in turn enables the optimality of any given information structure
to be certified: if the information structure implements a state-action distribution that
can be implemented by some contract in the dual problem, the information structure is
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optimal (Proposition 1). We discuss the general properties of certifiably optimal information
structures in Section 3.4 and the scope of the certification method in Section 3.5.

The certification solution method can be applied to any concave game. However, its
application is particularly simple in games with quadratic payoffs because in such games
the players’ marginal payoffs are linear. In Section 4, we use this method to solve general
information-design problems in which the state is distributed according to a multivariate
normal distribution and the designer’s and players’ payoffs are quadratic in actions and
the state. We provide tractable conditions under which an optimal information structure
informs each player about a linear combination of state components and explicitly derive its
optimal coefficients (Theorem 2). Under these conditions, the optimal information structure
is Gaussian, i.e., the private signals, as well as the induced actions, are jointly normally
distributed.

We apply Theorem 2 to characterize optimal information structures in two concrete
settings. First, we study a differentiated Bertrand duopoly with linear demand curves and
uncertain demand shocks that determine the curves’ intercepts. We show that information
structures that maximize a weighted average of the consumer and produce surpluses induce
normally distributed prices that are linear in demand shocks and correlated between firms. If
the weight given to consumer surplus is low, then the optimal information structure induces
coordinated pricing; if it is high, the pricing is anticoordinated. The shift between these two
modes is discontinuous. Second, we study a stylized prediction game in which each player
aims to predict a one-dimensional state and the designer wants to increase the discordance of
players’ predictions. We show that an optimal information structure introduces exogenous
Gaussian noise that is correlated across players. However, as the number of players increases,
the noise correlation decreases. In the limit, the optimal individual noises are independent.

Related Literature The literature on information design or Bayesian persuasion covers
the analysis of information control in decision problems (Rayo and Segal (2010), Kamenica
and Gentzkow (2011)) and multiplayer games (Bergemann and Morris (2016), Taneva (2019))
and constitutes a vibrant field of research.

Our work is based on the duality methodology. This methodology was applied in the
past to solve information-design problems but primarily those with a single receiver, be it a
single player or a team.1 Dworczak and Martini (2019) solve a class of problems in which the
receiver cares only about the first moment of a state. Dworczak and Kolotilin (2019) extend

1The duality methodology is frequently used to solve optimization problems in many different fields. In
economics, it has been applied to consumer theory (Krishna and Sonnenschein (1990)), matching problems
(Galichon (2018)), multidimensional mechanism design (Cai et al. (2019)), and robust mechanism design
(Carroll (2017), Brooks and Du (2020)), among others.
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this analysis to higher moments and beyond.2 Malamud and Schrimpf (2021) and Cieslak
et al. (2021) establish some general properties of optimal information structures building on
optimal-transportation duality. Kolotilin (2017) studies the persuasion of a receiver with
uncertain preferences; his formalism is closest to ours, and his problem may be viewed as
an instance of our setting with a single player and a one-dimensional state. None of these
works study games or establish the optimality of Gaussian information structures.

We are not familiar with any previous or concurrent work that characterizes an
unconstrained-optimal information structure in a fixed game with many players and a con-
tinuum of states and actions.3 The literature that perhaps comes closest to this goal is one
that studies optimal parameters of symmetric Gaussian information structures in symmetric
games with a normally distributed state (Bergemann and Morris (2013), Bergemann et al.
(2015), Bergemann et al. (2021)). In general, an optimal information structure does not have
to be symmetric or Gaussian, even if the game is symmetric and the state is normally dis-
tributed. However, our results in Section 4.2 suggest that symmetric Gaussian information
structures may indeed be optimal in some of those settings and may be possibly certified by
our solution method.

2 General Model

Payoffs There are N players indexed by i, 1 ≤ N <∞, and an information designer. Each
player is to take an action ai ∈ Ai = R.4 We denote by A the set of action profiles A = ×iAi
and write (ai, a−i) for an action profile when focusing on its i-th component.

A state ω is distributed over a possibly infinite set Ω ⊆ RK according to a prior distri-
bution µ0 ∈ ∆(Ω). An action profile a = (a1, . . . , aN) ∈ A together with the state determine
the payoffs of player i according to the payoff function

ui : A×Ω → R. (1)

The primitives ((Ai, ui)Ni=1, µ0) constitute a basic game. The designer’s payoff given action
2These authors pose the information-design problem in the space of belief distributions rather than

information structures; as a result, their dual problems are qualitatively different from ours.
3Galperti and Perego (2018) and Galperti et al. (2021) apply duality methodology to study information

design in general games with finitely many actions. However, they focus on the analysis and the interpretation
of optimal dual variables rather than on the study of optimal information structures.

4Our methodology can easily be extended to the case of multidimensional actions at the expense of
additional notation.
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profile a at state ω is described by the payoff function

v : A×Ω → R. (2)

Information The players and the designer start with a common prior belief about the
state ω that coincides with the prior distribution µ0. The designer can provide additional
information to players by choosing an information structure I = (S, π) that consists of a
signal set S = ×iSi and a likelihood function π ∈ ∆(Ω×S) that has µ0 as its state marginal
distribution. This information structure prescribes the sets of private signals the players can
observe and, through the likelihood function, their informational content.5 The information
structure can provide information about the state and coordinate the players’ actions.

The timing is as follows. First, the designer chooses an information structure I . Second,
the state ω and the signal profile s = (s1, . . . , sN) are realized according to the chosen
information structure. Finally, each player privately observes his corresponding signal si
and chooses an action ai.

The basic game together with the information structure chosen by the designer determine
a Bayesian game of incomplete information. In that game, each player’s behavior is described
by a strategy that maps any received signal to a possibly random action, σi : Si → ∆(Ai),
and we consider as a solution concept a Bayes Nash equilibrium that prescribes the players
to form their beliefs via Bayes’ rule and to act to maximize their expected payoffs.

Definition 1. (Bayes Nash Equilibrium) For a given information structure I, a strategy
profile σ = (σ1, . . . , σN) constitutes a Bayes Nash equilibrium if

EI [ui(ai, a−i, ω) | si] ≥ EI [ui(a′i, a−i, ω) | si] (3)

for all i, si ∈ Si, ai ∈ supp σi(· | si), and a′i ∈ Ai, where EI [·|si] denotes a conditional
mathematical expectation given I and si.

An information-design problem consists of choosing an information structure that max-
imizes the expected payoff of the designer without placing any additional restrictions on
the sets of signals or the likelihood function. Formally, each strategy profile determines a
conditional distribution over the action profiles in each state α : Ω → ∆(A), which we call
an allocation rule. Each allocation rule together with the prior state distribution µ0 and the
payoff function (2) determines the designer’s expected payoff. Therefore, the value of any
information structure can be determined as the maximal designer’s expected payoff that can

5We impose a standard requirement that for any signal, each player can form a regular conditional
probability over A−i ×Ω.

5



arise in equilibrium of the induced Bayesian game.6 The solution to the information-design
problem is an information structure such that there does not exist an information structure
with a strictly higher value.

In what follows, we analyze a specific class of basic games in which each player’s payoff
is everywhere concave in his own action:

Assumption 1. (Concave Payoffs) For all i = 1, . . . , N , ω ∈ Ω, and a−i ∈ A−i, ui(ai, a−i, ω)
is continuously differentiable, strictly concave in ai, and obtains its maximum at some finite
value.

Assumption 1 is standard in applied economic models with fixed information structures
because it simplifies the characterization of equilibrium behavior: the best response of each
player at any belief over the state and actions of other players can be found via a first-order
condition, and an equilibrium can be characterized by a system of such conditions, one per
each player’s signal.7 We show that the same assumption facilitates the analysis of the
information-design problem in which the information structure is the object of design, for
arbitrary designer’s payoffs. We call a basic game in which Assumption 1 is satisfied a concave
game. We call an information-design problem in a concave game a concave information-
design problem.

3 General Analysis

3.1 Equilibrium Conditions. Primal Problem.

We begin by simplifying the equilibrium conditions (3) utilizing the special payoff structure
of concave games. Consider the choice of player i. In equilibrium, for any given belief over
the state and opponents’ actions ν ∈ ∆(A−i×Ω), the player must take a best-response action
a∗i (ν) that maximizes his expected payoff Eνi

[ui(ai, a−i, ω)]. By Assumption 1, this payoff
is continuously differentiable and strictly concave in ai since it is a convex combination of
continuously differentiable and strictly concave functions. Thus, a∗i (ν) is a unique solution
to a first-order condition. Denote the partial derivative of the player’s payoff function by

u̇i(a, ω) , ∂ui(a, ω)
∂ai

.

6If a Bayesian game allows for multiple equilibria, the designer can choose the one she prefers. If no
equilibrium exists, the value is undefined.

7Our analysis can be applied in any game in which this property holds.
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Assumption 1 implies that u̇i(a, ω) exists, is continuous, and strictly decreases in ai every-
where. The first-order condition can be written as

∂Eν [ui(a∗i , a−i, ω)]
∂ai

= Eν
[
∂ui(a∗i , a−i, ω)

∂ai

]
= Eν [u̇i(a∗i , a−i, ω)] = 0, (4)

where the first equation follows from the Leibniz integral rule and the second by definition.
Equation (4) identifies the best response of each player given any belief.

Next, we simplify the information-design problem by appealing to the revelation principle
(Myerson (1983), Bergemann and Morris (2016)) to restrict the space of induced posterior
beliefs. According to this principle, the designer in any information-design problem can focus,
without loss of generality, on direct information structures that inform each player about a
recommended action S = A and induce posterior beliefs such that all players are obedient,
i.e., are willing to follow the recommendations; providing any other kind of information
is redundant and may only complicate the players’ incentives. Each direct information
structure corresponds to a distribution π ∈ ∆(A×Ω) that has µ0 as its state marginal.

These two simplifications enable us to formulate a concave information-design problem
as:

V P , sup
π∈∆(A×Ω)

∫
A×Ω

v(a, ω)dπ (5)

s.t.
∫
A′i×A−i×Ω

u̇i(a, ω)dπ = 0 ∀ i = 1, . . . , N,measurableA′i ⊆ Ai, (6)∫
A×Ω′

dπ =
∫
Ω′

dµ0 ∀measurableΩ′ ⊆ Ω. (7)

Constraints (6) capture players’ obedience and must hold at all measurable subsets A′i ⊆ Ai

and effectively require that for each player i, the linear projection of π on Ai weighted by
the marginal utilities is equal to zero measure. This is a proper formulation of first-order
conditions (4) in light of a possible continuum of recommended actions. Constraints (7)
capture Bayes’ plausibility and, likewise, require that the linear projection of π on Ω equals
the prior distribution µ0.

The problem (5) is linear in π. In the spirit of linear programming, we view it as a primal
problem and call any π ∈ ∆(A × Ω) a primal measure. If a primal measure satisfies the
constraints of the primal problem, then we call that measure implementable by information
and call the corresponding value of the objective, V P , a feasible primal value.
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3.2 Dual Problem. Adversarial Contracting.

In this section, we develop a dual problem, which is dual to the primal problem. The
significance of this problem, and dual problems in general (see, for example, Villani (2003)),
comes from its ability to provide an upper bound on the information designer’s payoffs and,
ultimately, certify a solution. The dual problem to (5) is as follows:

V D , inf
λ∈×iB(Ai),γ∈B(Ω)

∫
Ω
γ(ω)dµ0 (8)

s.t.
N∑
i=1
λi(ai)u̇i(a, ω) + γ(ω) ≥ v(a, ω) ∀ a ∈ A, ω ∈ Ω,

where B(X) denotes the space of bounded real-valued functions on X. The minimization
arguments, the dual variables (λ, γ), represent the Lagrange multipliers associated with the
primal incentive constraints (6) and the feasibility constraints (7), respectively. Thus, they
have a clear economic interpretation: λi(ai) measures the marginal benefit for the information
designer from pushing the action ai downwards, whereas γ(ω) measures the marginal benefit
from increasing the prior probability of state ω.

The dual problem (8) itself can be simplified and rewritten to admit an economic inter-
pretation. To this end, observe that the objective in (8) is additive separable in γ(ω) and
that the constraints at different states ω are linked only through variables λ. Hence, for
any λ and ω, an optimal γ(ω) must be minimized across the values above the lower bounds
imposed by the dual constraints and hence must be equal to:

γ∗(λ, ω) = sup
a∈A

uλ(a, ω),

where uλ is a dual payoff defined as

uλ(a, ω) , v(a, ω)−
N∑
i=1

λi(ai)u̇i(a, ω). (9)

As a result, the dual problem (8) can be restated as

V D = inf
λ∈×iB(Ai)

∫
Ω

sup
a∈A

uλ(a, ω)dµ0 = inf
λ∈×iB(Ai)

Eµ0 [sup
a∈A

uλ(a, ω)]. (10)

The problem (10) can be interpreted as adversarial contracting between a contract de-
signer and a single agent. The agent perfectly observes the state and alone controls the whole
action profile. To influence the agent’s behavior, the contract designer chooses an incentive
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contract λ that consists of N functions λi(ai) and modifies the agent’s payoff according to
(9), i.e., the i-th component of the contract links the agent’s utility to u̇i(a, ω). The timing
of the adversarial contracting is as follows. First, the designer chooses a contract λ. Second,
the state ω is realized and is observed by the agent. Finally, the agent chooses an action
profile a ∈ A. If the best responses exist at all states and induce the joint action-state mea-
sure π(a, ω), then we say that λ implements π by incentives. Whenever the best response
does not exist, the interim payoff is assessed as a supremum. The contracting is adversarial
in that the designer aims to minimize the agent’s expected payoff; equivalently, the game
between the designer and the agent is zero sum.

To better understand the relationship between the primal and dual problems, observe that
the contract designer in a sense aims to minimize the payoffs of the information designer.
More precisely, note that in adversarial contracting, a benchmark feasible contract is a
null contract λ1(a1) ≡ · · · ≡ λN(aN) ≡ 0. Faced with this contract, the agent would act
to maximize v(a, ω) in each state, thus implementing the first-best allocation rule of the
information designer. The goal of the adversarial contract designer can then be viewed as
adjusting the null contract to minimize the expected payoff starting from this benchmark
level.

In the next section, we show that this rough intuition about the relationship between
the primal and the dual problems goes in the right direction; the optimal values of these
problems are tightly connected.

3.3 Weak Duality. Optimality Certification.

In this section, we establish the general relation between the values of the primal and dual
problems and demonstrate how it can be used to solve concave information-design problems.

Theorem 1. (Weak Duality) The optimal value of a concave information-design problem is
weakly below the optimal value of the dual adversarial contracting:

V P ≤ V D. (11)

Proof. Take any dual variables (λ, γ) that satisfy the constraints of dual problem (8):

v(a, ω) ≤
N∑
i=1

λi(ai)u̇i(a, ω) + γ(ω) ∀ a ∈ A, ω ∈ Ω.

Take any measure π that satisfies the constraints of primal problem (5). Integrating both
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sides of the inequality over a ∈ A and ω ∈ Ω against the measure π(a, ω) yields:

∫
A×Ω

v(a, ω)dπ ≤
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ +
∫
A×Ω

γ(ω)dπ (12)

=
∫
Ω
γ(ω)dµ0, (13)

where the equality follows because π(a, ω) satisfies the primal constraints. The left-hand side
of (12) is the value of the primal problem given measure π. At the same time, the right-hand
side of (12) is the value of the dual problem given dual variables (λ, γ). As the inequality
(12) holds for any allowed values of primal measure and dual variables, it holds also at the
respective maximization and minimization limits.

Theorem 1 establishes that without any additional assumptions, the adversarial contract-
ing problem provides an upper bound on the value of information control. Perhaps more
importantly, this result underlies the certification approach to solve concave information-
design problems.

Proposition 1. (Optimality Certification) Consider any measure π ∈ ∆(A × Ω) imple-
mentable by information. If π is implementable by incentives, then π is optimal in the
information-design problem.

Proof. Take any primal measure π implementable by information, i.e., that satisfies the
constraints of primal problem (5). If it is implementable by incentives, then there exist dual
variables λ that implement this measure in the dual adversarial contracting (10), and

V D = inf
λ∈×iB(Ai)

Eµ0

[
sup
a∈A

uλ(a, ω)
]

(14)

≤ Eµ0,π

[
uλ(a, ω)

]
(15)

=
∫
A×Ω

v(a, ω)dπ −
∫
A×Ω

N∑
i=1

λi(ai)u̇i(a, ω)dπ (16)

=
∫
A×Ω

v(a, ω)dπ ≤ V P , (17)

where the first inequality follows from the implementability of π in the dual problem and
the last two steps follow from the feasibility of π in the primal problem.

Furthermore, by Theorem 1, V D ≥ V P . Hence,

V D =
∫
A×Ω

v(a, ω)dπ = V P , (18)
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which proves the optimality of measure π.

Proposition 1 offers the following solution method for concave information-design prob-
lems. In the first step, one conjectures an optimal allocation measure π∗. In the second step,
one verifies that it can be implemented with information, which is equivalent to its feasibility
in the primal problem, and that it can be implemented with incentives, e.g., by explicitly
constructing the dual contract λ that implements it in adversarial contracting. In the last
step, one sets an optimal information structure to privately recommend actions to players
according to the conjectured measure π∗: I∗ = (A, π∗). The implementability of π∗ with
information implies that the players would find it optimal to follow the recommendations.
The implementability of π∗ with incentives confirms, by Proposition 1, that I∗ is optimal
among all possible information structures. In this case, we say that λ is a (dual) certificate
of π∗, that λ certifies the optimality of π∗, and that π∗ is a certifiably optimal or, simply,
certifiable information structure.

3.4 On Certifiable Information Structures

Before proceeding with the application of the certification solution method in specific eco-
nomic settings, we highlight one general property that holds for all certifiable information
structures. This property is based on the observation that an allocation rule induced by
a certifiable information structure must be undertaken at will by an agent in possession of
full information in the dual problem. It has two consequences. First, the prior state distri-
bution is irrelevant for the implementability of an allocation rule with incentives since the
prescribed action profiles must be optimal state-by-state. Second, if a certifiable allocation
rule randomizes over several action profiles at some state, the dual agent must be indiffer-
ent between these profiles and hence could just as well randomize over these profiles with
different probabilities. That is, only the support of an allocation rule is relevant for the
implementability with incentives.

Proposition 2. (Robustness to Marginal Distributions) Consider two concave information-
design problems that differ only in their prior state distributions, if at all. Let information
structure I∗1 be certifiably optimal in the first problem and implement an allocation rule α∗1.
If information structure I2 implements in the second problem an allocation rule α2 such that
suppα2(ω) ⊆ suppα∗1(ω) for all ω ∈ Ω, then I2 is certifiably optimal in the second problem.

Proposition 2 highlights the robustness of certifiable information structures to their
marginal distributions: over states and over actions. Either of these distributions may
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change without sacrificing optimality as long as the supports of the implemented allocation
rules remain the same.

In general information-design problems, the prior distribution plays two roles. First,
it affects what allocation rules are implementable by information. Second, it affects what
allocation rules among those that can be implemented are optimal. Proposition 2 highlights
that in concave information-design problems, the first channel is more important than the
second one: once optimal under some prior distribution, an information structure remains
optimal under other prior distributions, as long as it implements an allocation rule with the
same support in each state.

We highlight that Proposition 2 is specific to concave games and does not generally hold
in games with finitely many actions. For such problems, a given allocation rule is typically
implementable for many prior distributions, yet an optimal information structure continu-
ously changes with the prior. For concreteness, consider a leading example of Kamenica and
Gentzkow (2011) in which a designer persuades a single receiver. The state space and the
action space are binary: A = {a0, a1}, Ω = {ω0, ω1}. The payoffs are v(a, ω) = 1 if a = a1

and zero otherwise; u(a, ω) = 1 if a = a0, ω = ω0 or a = a1, ω = ω1 and zero otherwise.
As long as µ0(ω1) ∈ (0, 1/2), an optimal information structure sends two signals s0, s1 that
induce posterior beliefs that assign probabilities 0 and 1/2 to state ω1, respectively. The
allocation rule induced by the optimal information structure changes with the prior: the
higher the prior probability of state ω1 is, the less likely signal s1 is sent and action a1 is
taken in that state. However, the same allocation rule is implementable by information for
a variety of priors. As a result, there is no robustness to prior distribution in this example.

Proposition 2 enables us to assess the optimality of transparency. Namely, say that an
information structure is fully informative about the state if each player deduces the state
with certainty, i.e., each private signal induces an extreme posterior belief about the state.
Such an information structure can still allow for strategic uncertainty, i.e., uncertainty about
the actions of other players. We have the following.

Corollary 1. (Complete State Information) An information structure that is fully informa-
tive about the state is certifiably optimal if and only if it is certifiably optimal under all prior
state distributions.

This corollary follows immediately from Proposition 2. Indeed, if an allocation rule is
implemented by an information structure that is fully informative about the state under some
prior state distribution, then the same rule is implemented by the same information structure
under any other prior state distribution because all prior uncertainty is resolved in either
case. Consequently, if such information is certifiably optimal under one prior distribution,
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then it implements the same allocation rule and is certifiably optimal under any other prior
distribution.

Alternatively, we can use Proposition 2 to assess the support of induced action profiles
under certifiable information structures. The larger the support is, the easier it is to construct
another information structure that implements an allocation rule within that support. In the
extreme case, if the action support covers the whole action space, then the support condition
of Proposition 2 has no bite, and any information structure can be certified to be optimal.

Corollary 2. (Full-Support Noise) Consider a concave information-design problem. If
an information structure I∗ is certifiably optimal and induces an allocation rule α∗ with
suppα∗(ω) = A for all ω ∈ Ω, then any information structure is certifiably optimal.

Corollary 2 presents a strong case against using independent noises that induce full-
support individual actions in optimal information structures. These information structures
induce full support action profiles and can never be optimal in concave problems with finitely
many players, except in the trivial cases in which the designer’s expected payoff is invariant
to the information provided. However, such independent noises may optimally appear in the
limit information structure as the number of players grows to infinity, as we show in Section
4.2.

3.5 Scope of the Certification Method

Can any optimal information structure can certified? Observe that by Theorem 1, the
difference G , V D − V P ≥ 0 between the optimal values of primal and dual problems is
nonnegative and constitutes a duality gap. The solution to the information-design problem
can be certified if and only if (i) the duality gap is equal to zero, V D = V P , and (ii) the
solutions to both primal and dual problems exist. Thus, either all optimal information
structures can be certified or none of them can.

While we expect properties (i) and (ii) to hold quite generally, neither is trivial. The
former property is referred to as the case of “strong duality” in the literature on optimiza-
tion. Strong duality always holds in linear programs with a finite number of arguments
and constraints. However, for the first-order conditions to determine the best response, the
information-design problem necessarily has to feature a continuum of actions and incentive
constraints, and establishing strong duality even in well-behaved infinite problems is chal-
lenging (e.g., Daskalakis et al. (2017)). The latter property requires the solutions to both
problems to exist, which might fail due to a lack of compactness.

It is certainly of theoretical interest to understand under which conditions the certifica-
tion method is guaranteed to work. Thus, in the Appendix, we provide a set of sufficient
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conditions by building on the Fenchel-Rockafellar duality of optimal transportation theory.8

However, from a practical perspective, knowing that an optimal information structure can be
certified does not help in finding the optimal structure or the certifying contract. Vice versa,
any certifying contract by its very existence proves that the certification method applies,
i.e., the duality gap is zero and both primal and dual solutions exist. Therefore, it may be
worth constructing the dual problem and searching for certifiable information structures in
any concave problem at hand; if successful, the method leads to the solution. This is exactly
what we do in the next section.

4 Application: Normal-Quadratic Settings

In this section, we apply our theoretical machinery to study a broad subclass of concave
information-design problems in which all payoffs are quadratic and the state is normally
distributed. In particular, as before, we consider a setting with N players, each player
taking an action ai ∈ Ai = R, so an action profile is a ∈ RN . The payoff relevant uncertainty
is captured by a multidimensional state ω = (ω1, . . . , ωK) ∈ Ω ⊆ RK , K ≥ 1, that can be
viewed as a collection of state components ωk, k = 1, . . . , K.

In addition to that basic structure, we impose two assumptions on the environment.
First, we assume that the state components are jointly normally distributed so Ω = RK

and µ0 ∼ N(0, Σ), where all means are set to zero without loss of generality and Σ is the
arbitrary covariance matrix. Second, we assume that all payoff functions are quadratic.
Namely, there exist vectors b̂, b ∈ RN , matrices B̂, B ∈ RN×K and Ĉ ∈ RN×N , and a positive
definite matrix C ∈ RN×N such that the designer’s and player-i’s payoffs are, respectively,

v(a, ω) = aT (b̂+ B̂ω)− 1
2a

T Ĉa, , (19)

ui(a, ω) = aT (b+Bω)− 1
2a

TCa. (20)

Elements b̂i, Bi• capture the base benefit of player i’s action, elements B̂ij, Bij capture the
interaction between player i’s action and jth state component, and elements Ĉij, Cii capture
the interaction between the actions of players i and j, for the designer and for the players,
respectively.9 Note how this setting allows for asymmetries across players.

To maximize her payoffs, the designer chooses an information structure I = (S, π). As we
argued in the previous section, without loss of generality, we can focus on direct information

8Concurrently, Cieslak et al. (2021) and Malamud and Schrimpf (2021) use transportation theory to
establish strong duality in a class of settings with a single receiver.

9A useful mnemonic to link the variables correctly is to think of a designer as wearing a hat.
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structures with S = A under which the designer recommends to players what actions to take
and the players are willing to follow the recommendations.

In what follows, we do not restrict the designer to use Gaussian, i.e., normally distributed,
information structures to achieve her objective. Instead, we provide conditions under which
a Gaussian information structure is optimal among all information structures. In particular,
we show the optimality of an information structure that recommends actions proportionally
to state components:

a∗(ω) = a0 +Rω, (21)

where a0 ∈ RN is a constant vector and R is an N × N responsiveness matrix that deter-
mines the responsiveness of recommended actions to different state components. Under this
information structure, player i observes a recommendation ai(ω) = a0i +Ri•ω, where for any
matrix X, the term Xi• denotes its ith row. Thus, the player can only infer the value of a
linear combination of the state components and generically, as long as K > 1, receives only
imperfect information about the state and the actions of other players.

Theorem 2. (Optimal Information) An information structure that recommends a linear
allocation rule a(ω) = a0 +Rω is optimal among all information structures if:

(i) a0 = C−1b and (Ci•R−Bi•)ΣRT
i• = 0 for all i = 1, . . . , N , and

(ii) R = (Ĉ+2D(x)C)−1(B̂+D(x)B) for some x ∈ RN such that C+2D(x)Ĉ is positive
definite, where D(x) is a diagonal matrix with D(x)ii , xi.

Proof. To establish the optimality of the information structure that recommends allocation
rule (21), we use the certification method developed in the previous section. In particular,
we show that under the conditions of Theorem 2, allocation rule (21) is implementable both
by information in the primal problem and by incentives in the dual problem.

The implementability of the allocation rule in the information-design problem, i.e., the
players’ willingness to follow recommendations, is captured by the system of first-order con-
ditions, as in any concave game. In a quadratic game, this is a system of linear equations.
An allocation rule α : Ω → ∆(A) is incentive compatible if and only if

E[bi +Bi•ω − Ci•a | ai] = 0 ∀i = 1, . . . , N, ai ∈ Ai, (22)

where, as before, conditions (22) are set to be automatically satisfied for actions ai never
recommended under α.
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Because conditions (22) must hold for all ai, they must also hold, on average; thus,

Eµ0 [bi +Bi•ω − Ci•a] = 0 ∀i = 1, . . . , N. (23)

The recommended actions are linear in the state components. Since the expectations of the
latter are nil, E[ωk] ≡ 0, the constant term of the linear information structure is uniquely
pinned down as

a0 = C−1b. (24)

That is, the constant term is the same for all implementable linear allocation rules, and they
all lead to the same expected actions; however, the action distributions may differ.

Since the state components are jointly normally distributed, the recommended action
profile a∗, as well as the variable Ci•a − Bi•ω − bi, are also normally distributed. Hence,
the sufficient condition for first-order conditions (22) is that ai and Ci•a − Bi•ω − bi are
uncorrelated for all i. The zero-correlation condition can be written as

cov(Ci•a∗ −Bi•ω − bi, a∗i ) = E[(Ci•R−Bi•)ωRi•ω]

= E[(Ci•R−Bi•)ωωTRT
i• ]

= (Ci•R−Bi•)E[ωωT ]RT
i•

= (Ci•R−Bi•)ΣRT
i• = 0. (25)

To summarize, a linear allocation rule (21) is implementable by information whenever
its coefficients a0 and R satisfy the conditions (24) and (25) that together form condition
(i) of the theorem. However, clearly, the fact that a given allocation rule is implementable
does not mean that it is optimal. After all, there are many implementable linear allocation
rules and, potentially more importantly, there are many implementable nonlinear allocation
rules, which may be preferred by the designer.

This is where the second condition (ii) of Theorem 2 plays a role. Under this condition,
as we show in the Appendix, the linear allocation rule can be implemented by incentives in
the dual problem, and in fact, it can be done by linear contracts with the proportionality co-
efficients x. According to Proposition 1, any allocation rule implementable in both problems
is optimal in both problems, which concludes the proof.

Theorem 2 provides a two-step procedure for finding optimal information structures in
normal-quadratic environments. In the first step, one uses condition (i) to identify the
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parameters a0, R of the candidate information structure. In the second step, one searches for
x ∈ RN that satisfies condition (ii); if such x exists, then it dual-certifies the optimality of the
candidate information structure. In the next section, we apply this procedure to characterize
optimal information regulation in a market with differentiated product competition.

4.1 Differentiated Bertrand Competition

We apply our solution method in a setting of differentiated product competition, in which a
designer controls the demand information available to firms. One can think of this designer
as a platform, such as Amazon or AliExpress, that organizes the marketplace in which the
firms compete. The platform has more detailed knowledge about demand conditions than
firms do, for instance, because it has access to a larger and more recent sales data set or
higher processing capabilities. The platform can communicate this information privately to
each firm, for instance, by giving it access to personalized data analysis or by direct price
recommendations. By programming its algorithms, the platform can design and commit to
any information structure, however complex. We characterize the information structure such
a designer would optimally design and the resulting allocation distortions.

Formally, the market consists of two firms and a continuum of consumers. Each firm sells
a single product and competes in price with its opponent, so action ai is the price set by firm
i. Demand is ex ante symmetric across firms and is generated by a continuum of consumers
that differ in their tastes. Each consumer has a type θ = (θ1, θ2) ∈ R2 and decides how much
of the firms’ products to consume, q = (q1, q2). The type components are independently and
identically distributed according to a normal distribution with mean θ̄ and variance σ2. The
ex post payoff of a type-θ consumer who consumes quantities q at prices a is:

w(q, a, θ) , w0 + 1
2(θ − q)TW−1(θ − q)− aT q, (26)

where w0 is a constant shift parameter henceforth normalized to zero and W is an N × N
negative semidefinite matrix with W11 = W22. Thus, the consumer’s type θ determines her
consumption bliss points, optimal at zero prices, whereasW captures the substitution effects
across products.

For any price vector a ∈ A, the quantity of good i demanded by a consumer of type θ is
equal to:10

qi(a, θ) = θi + ηai + ξa−i, (27)
10As standard, this specification allows the prices and quantities to be negative.
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where η , Wii < 0 and ξ , W−ii; thus, equivalently, q(a, θ) = θ + Wa. Equation (27)
reveals that the chosen type structure micro-founds linear demand; the consumer’s type
simply determines the intercept of the demand curve for each product. Parameters η and ξ
capture demand sensitivity to the own price and to the competitor’s price, respectively; we
refer to η as own-price sensitivity and to ξ as cross-price sensitivity.

The firms have quadratic costs of production such that their profits are:

ui(a, θ) = aiqi(a, θ)− cqi(a, θ)2. (28)

The resulting ex post valuations for consumer surplus and total profits are:

CS(a, θ) = −aT θ − 1
2a

TWa, (29)

Π(a, θ) , u1 + u2 = −cθT θ + aT (1− 2cW )θ − 1
2a

T (2W + 2cW 2)a. (30)

The designer’s payoff is a convex combination of consumer surplus and the total profits with
δ ∈ [0, 1] measuring the weight placed on consumer surplus:

v(a, θ) = δ × CS(a, θ) + (1− δ)×Π(a, θ). (31)

The firms share a prior belief about the consumer type, equal to the true distribution.
The designer can provide additional information about the type privately to each firm: she
can choose an arbitrary information structure and does so to maximize her objective.

Given (31), optimal designer’s choices in the extreme cases δ = 1 and δ = 0 correspond
to consumer-optimal and producer-optimal information structures, respectively, whereas the
solution in the case δ = 1/2 corresponds to the socially efficient information structure. As the
welfare weight δ spans the interval [0, 1], the corresponding optimal information structures
span the Pareto frontier of feasible equilibrium payoffs in the space of consumer surplus and
total profits.

Clearly, this setting is normal-quadratic because (i) firms’ payoffs are quadratic and con-
cave, (ii) designer’s payoffs are quadratic, and (iii) consumer types are normally distributed.11

Consequently, if the conditions of Theorem 2 are satisfied, then an optimal information struc-
ture recommends a linear allocation rule and can be characterized in closed form. At the
end of this section, we show that this optimal characterization indeed works, but first, we
discuss several natural benchmarks to give a sense of the trade-offs faced by the designer.

11The exact mapping between the settings requires the state normalization ωi , θi − θ̄ and is presented
in detail in the Appendix.
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Direct Price Control We begin the analysis by studying a hypothetical scenario in which
the designer can directly control prices set by the firms. This scenario constitutes a first-best
benchmark; it provides an upper bound on the designer’s payoff and illustrates the designer’s
preferred pricing.

The first-best benchmark admits a solution only if δ is not excessively high, i.e., only if
the seller does not overly value the consumer’s welfare. Namely, there is a threshold value
δFB:

δFB = 2 + 2c(−η − |ξ|)
3 + 2c(−η − |ξ|) , (32)

such that if δ > δFB, then the designer can arbitrarily increase her payoff by setting ar-
bitrarily large negative prices, because the monetary transfer to consumers outweighs any
allocation inefficiency. Clearly, this outcome is a modeling artifact and can never be imple-
mented through information control. Nevertheless, it highlights the designer’s willingness to
decrease prices as she cares progressively more about consumer welfare.

In contrast, if δ < δFB, then the designer’s problem is well-behaved: it is concave and
admits a unique solution that can be found by first-order optimality conditions to (31). The
solution is proportional to the type and can be written in matrix form as

aFB = RFBθ, (33)

where the entries of matrix RFB are nonlinear functions of the problem’s parameters and
their exact formulation is relegated to the Appendix. We use this solution to illustrate the
first-best benchmark later in the section.

Full Disclosure and No Disclosure In our setting, the designer does not control prices
directly but rather indirectly through demand information she supplies to firms. Before
deriving the generally optimal policy, it is instructive to analyze two extreme information
benchmarks that are particularly easy to implement in practice: not informative and com-
pletely informative information structures.

Under the not informative information structure, each firm obtains no additional infor-
mation, S1 = S2 = {s0}. Thus, each firm’s belief stays at the prior, and the equilibrium
prices satisfy the first-order condition derived from (29):

Eµ0 [qi(ai, a−i, θ) + ∂qi(ai, a−i, θ)
∂ai

(ai − 2cai)] = 0. (34)
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In a symmetric equilibrium, each firm sets a price:

aNIi = 1− 2cη
−2η(1− cη)− ξ(1− 2cη) θ̄. (35)

Lacking demand information, the firms fix their prices at a level proportional to the expected
consumer type. The equilibrium prices do not depend on finer details about the type distri-
bution because the demand is linear. The proportionality coefficient, naturally, depends on
the own-price and cross-price sensitivities.

In contrast, under a fully informative information structure, the firms obtain perfect
demand information, S1 = S2 = Θ, and π is concentrated on the event s1 = s2 = θ. The
consumer type is always commonly known to firms. Under this information structure, there
is an equilibrium such that each firm responds linearly to the type components perfectly
anticipating the price of its opponent:

aFIi (θ) = −2η(1− cη)(1− 2cη)
4η2(1− cη)2 − (1− 2cη)2ξ2 θi + (1− 2cη)2ξ

4η2(1− cη)2 − (1− 2cη)2ξ2 θ−i. (36)

In a sense, this behavior generalizes the price-setting under no information. If θ1 = θ2 = µ,
then prices are the same as those under no information. If θ1 6= θ2, then the demand
is asymmetric across firms, and the prices are adjusted. At the same time, E[aFIi (θ)] =
aNIi . This is an instance of a general observation made in the previous section that all
implementable linear allocation rules lead to the same average actions.

Optimal Information Structure The choice of any of the extreme information struc-
tures has drawbacks. Providing no information misses the opportunity to strengthen the
link between consumer type and allocation and thus potentially limits efficiency. Providing
full information may exacerbate competition and dissipate firm profits. Providing partial
information may alleviate the individual shortcomings of extreme information structures
and, as we will show, is the best option in most cases. However, the space of all possible
information structures is too large for a direct search to be tractable. Instead, we find an
optimal structure using the certification method developed for the normal-quadratic setting
and which application we now outline.

The sufficiency conditions of Theorem 2 stipulate the existence of certification parameters
(x1, x2) ∈ R2. Given the symmetry of the environment, it is natural to conjecture x1 = x2 =
x. By condition (ii) of the Theorem, any such x uniquely pins down the responsiveness matrix
R(x), whose elements are quadratic functions of x. Furthermore, condition (i) requires the
equation (Ci•R(x) − Bi•)ΣR(x)Ti = 0 to hold for both firms. Due to symmetry of the
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environment, this condition becomes a single equation:

f(x) = 0, (37)

where f(x) is a degree-four polynomial whose coefficients depend on the parameters of the
problem and are explicitly defined in the Appendix. Equation (37) admits up to four real
solutions. If any of these solutions makes the matrix C + 2D((x, x))Ĉ positive semidefinite,
then Theorem 2 allows us to conclude that the information structure that recommends the
linear allocation rule a(θ) = a0(x) +R(x)θ is optimal. This discussion is summarized in the
proposition below.

Proposition 3. (Optimal Demand Information) Polynomial f(x) certifies a solution to the
information-design problem in differentiated product competition: if there exists x ∈ R such
that f(x) = 0 and C + 2D((x, x))Ĉ is positive semidefinite, then an information structure
that recommends allocation rule a(θ) = a0(x) +R(x)θ is optimal.

We use Proposition 3 to derive optimal information structures, to understand how they
differ from the benchmarks presented above, and to see how they depend on the weight the
designer attaches to consumer surplus. For concreteness, in what follows, we fix the basic
parameters of the problem to c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2, so θi ∼ N(3, 1)
and the goods are imperfect substitutes with the demand function for product i being

qi(a, θ) = θi − ai + 1
2a−i. (38)

The equilibrium strategies under no information and under full information can be im-
mediately calculated as:

aNI(θ) = 6
5 , (39)

aFD(θ) = 48
55θi + 18

55θ−i. (40)

Under full information, each firm increases its price in response to higher demand for either
product yet, naturally, is more sensitive to the demand for its own product. As a result,
the prices are more dispersed and volatile under full information than they are under no
information. The first-best benchmark can also be immediately calculated and is used in the
upcoming illustrations.

To solve for an optimal information structure for any given δ ∈ [0, 1], we construct the
polynomial f(x) and solve for its roots, which is possible to do in closed form in radicals.
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Figure 1: Price responsiveness to own demand (left) and opponent’s demand (right) under
no information, full information, and optimal information structure. Calculated at c = 1,

θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

We compute this solution and show that for all δ ∈ [0, 1], with the single exception of
δcr = 11/18, which we call a critical value, there exists a unique root of f(x) that makes the
matrix C + 2D((x, x))Ĉ positive definite. This root, henceforth denoted by x(δ), forms a
certifying parameter and is plotted in the Appendix as a function of δ.

Once we find the certifying parameter, we can immediately construct an optimal infor-
mation structure. This structure recommends a linear allocation rule symmetrically across
firms:

a∗i (θ) = ai0 + riθi + r−iθ−i, (41)

with the constant term ai0 being pinned down by the responsiveness coefficient to satisfy
the necessary condition for implementability of linear allocation, E[a∗i (θ)] = aNI . We refer
to responsiveness coefficients ri, r−i as to own-responsiveness and cross-responsiveness, re-
spectively. We plot the optimal responsiveness coefficients in Figure 1, together with their
counterparts under full information and no information.

For δ < δcr, the optimally induced behavior resembles that under full information. The
own responsiveness is, in fact, exactly the same. However, the cross-responsiveness differs,
showing that providing complete information is not optimal. Even if δ = 0, i.e., if the
designer aims to maximize firms’ profits, the designer benefits from information control:
to dampen competition, the designer induces larger responses to the opponent’s demand.
As δ increases, the cross-responsiveness decreases, even if moderately. Around δ = δcr,
the optimal information structure undertakes a discontinuous structural change. The own-
responsiveness ri plummets in absolute value, whereas the cross-responsiveness r−i changes
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Figure 2: Price volatility (left) and price correlation (right) under the optimal information
structure. Calculated at c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

its sign, so firms respond oppositely to the same demand shock. As δ further increases in the
region δ > δcr, both responsiveness parameters gradually decrease in their absolute values.
At δ = 1, both parameters equal zero, indicating that, in this case, providing no information
is optimal: a designer who wishes to maximize consumer surplus should keep the firms in
the dark.

The induced equilibrium behavior translates into distinct patterns of price volatility and
price cross-correlation (Figure 2). For lower consumer weights δ < δcr, the price volatility
measured by price’s standard deviation σi = σ

√
r2
i + r2

−i is high, and the prices are highly
positively correlated, as witnessed by the high value of the Pearson correlation coefficient
ρi,−i = cov(ai,a−i)

σiσ−i
= 2rir−i

r2
i +r2

−i
. This region is marked by coordination and high volatility of

prices. By contrast, for higher consumer weights δ > δcr, the price volatility is substantially
lower and the product prices are negatively correlated. This region is associated with an-
ticoordination and low volatility of prices. These distinct price patterns may be easier to
observe in practice than are firms’ strategy parameters and can serve as an indicator of the
underlying information structure and interests of the designer.

What occurs near the critical value of consumer weight δ? Why does the optimal informa-
tion structure change discontinuously? The formal explanation is as follows. The certifying
parameter x changes continuously for all δ ∈ (0, 1). However, the matrix C + 2D((x, x))Ĉ
evaluated at x = x(δcr) loses a rank and becomes noninvertible. As a result, the optimal best
response of an agent in a dual problem, proportional to the inverse of that matrix whenever
the matrix is invertible, changes discontinuously around the critical value. In other words,
even though a certifying contract changes continuously, the allocation rule that it implements
exhibits a jump.

To understand intuitively the economic reasoning behind this discontinuity, it is instruc-
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Figure 3: Price responsiveness to own demand shock (left) and opponent’s demand shock
(right) in the first-best benchmark and under the optimal information structure.

Calculated at c = 1, θ̄ = 3, σ2 = 1, η = −1, and ξ = 1/2.

tive to compare the induced pricing under the optimal information structure to its first-best
counterpart under direct price control (Figure 3). Under direct price control, both respon-
siveness coefficients start high at δ = 0 and progressively decrease, diverging to negative
values as δ approaches δFB. The more the designer cares about consumers, the lower the
responsiveness she wants to induce. This logic underlies the structure of pricing behavior
induced by optimal information control, which overall follows the decreasing responsiveness
pattern. However, information control has limits, as it needs to account for firms’ willingness
to follow recommendations. As a result, there are important caveats to this overall picture.
For δ < δcr, only the cross-responsiveness decreases, while the own-responsiveness remains
at the full-information level. At the critical value δ = δcr, the first-best responsiveness levels
become too low to be approached in a coordinated fashion, with both responsiveness coeffi-
cients being positive; the better way to approach them is to switch to an anticoordination
structure, with the cross-responsiveness being negative. As a result, both responsiveness
coefficients discontinuously drop. For δ > δcr, the own-responsiveness begins to gradually
decrease while the cross-responsiveness increases, with both values converging to zero as δ
approaches 1. Not being able to directly funnel monetary surplus to consumers, the principal
provides less and less consumer information to minimize price targeting.

To summarize, in this section we fully characterized optimal information structures that
inform imperfectly competing firms about market demand conditions. We showed that these
structures induce normally distributed prices that are linear in consumer types. The optimal
price responsiveness depends on the weight that the designer attaches to consumer surplus
relative to firms’ profits. For low consumer weight, optimal information induces coordinated
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pricing and is not far from full information. For high consumer weight, optimal information
induces anticoordinated pricing. The shift between these two modes is discontinuous.

4.2 A Prediction Game

Thus far, we have considered only the case in which the optimally induced action profile is a
deterministic function of a state, i.e., the designer does not use randomization in the optimal
information structure. One may wonder, especially given the private noise results of Section
3.4, whether this is a general feature of certifiable information structures. In this section, we
show that this is not the case. We introduce and study a stylized prediction game in which
a certifiably optimal information structure features exogenous noise.

The setting is as follows. The state is one-dimensional and normally distributed, θ ∼
N(0, 1). There are N ≥ 2 players, each of whom tries to match his action with the state:

ui(a, θ) = −1
2(ai − θ)2. (42)

The designer would like to, on the one hand, coordinate the average action with the state
and, on the other hand, make the individual actions sufficiently dispersed; her payoff function
is

v(a, θ) =
∑N
i=1 ai
N

θ − 2ρ
∑N
i=1

∑
j 6=i aiaj

N2 . (43)

The first element of (43) captures the designer’s willingness to correlate the players’ aver-
age action with the state and corresponds to the coordination motive. The second element
captures the designer’s willingness to anticorrelate the actions of different players and corre-
sponds to the anticoordination motive. The parameter ρ captures the intensity of the latter
and is assumed to be sufficiently high, ρ ≥ N

2N−1 , such that the anticoordination motives are
sufficiently important.

Given the designer’s incentives, it is natural to conjecture that her objectives may be
achieved by introducing exogenous noise to each player’s estimate that is independent of the
state but negatively correlated across players. The next proposition confirms this intuition
and pins down the parameters of an optimal information structure.
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Proposition 4. (Optimal Prediction Information) The information structure that recom-
mends to each player the following action as the function of a state is optimal:

ai(θ) =
(

1
2ρ + 1

2N

)
θ + εi −

1
N − 1

∑
j 6=i

εj, (44)

where εi ∼ N(0, σ2
ε) are symmetric noises independent of each other and the state, and

σ2
ε = 1

4ρ2
N−1
N

(
1 + ρ

N

) (
(2N−1)ρ

N
− 1

)
.

Proof. To prove this result, we cannot apply Theorem 2 because it requires the existence of
unique best responses in the dual problem, which would preclude randomization. Instead,
we directly use Proposition 1.

The allocation rule (44) is incentive compatible, E[θ|ai] ≡ ai. Indeed, ai(θ) and θ are
jointly normally distributed.Therefore, the incentive compatibility is

E[ai(θ − ai)] = 0, (45)

the condition satisfied for the chosen variance σ2
ε .

To certify the optimality of an incentive-compatible rule, it suffices to find a contract that
implements it in the dual problem (10). Consider a linear contract with λi(ai) = − ρ

N2ai.
The dual payoff of the agent in state θ becomes:

v(a, θ)−
∑
i

λi(ai)ui(a, θ) =
∑N
i=1 ai
N

θ − 2ρ
∑N
i=1

∑
j 6=i aiaj

N2 +
N∑
i=i

λi(ai)(ai − θ) (46)

=
(∑N

i=1 ai
N

)(
1 + ρ

N

)
θ − ρ

(∑N
i=1 ai
N

)2

. (47)

Thus, the agent’s best response in state θ is any action profile a that satisfies
∑N
i=1 ai
N

= N + ρ

2ρN θ, (48)

including the profile specified by rule (44). Consequently, according to Proposition 1, the
proposed contract implements the candidate allocation rule and certifies the optimality of
the information structure that recommends it.

According to Proposition 4, an optimal information structure provides each player with
a Gaussian estimate of the state. The estimate errors are correlated across players in a
way that ensures an average action is a deterministic and linear function of the state. The
estimate precision is chosen to achieve an optimal trade-off between the coordination of the
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average action with the state and the anticoordination across players. The precision de-
creases as the designer’s anticoordination motives increase. At ρ = N

2N−1 , providing perfect
information is optimal, σ2

ε = 0. As ρ → ∞, the noise variance σ2
ε converges to (N−1)(2N−1)

4N2 :
to achieve maximally anticoordinated actions, the designer must provide moderately use-
ful information. This simple Gaussian information structure is optimal across all possible
information structures, however complex.

Under the optimal information structure, the average players’ action is perfectly in-
formative about the state. This feature is achieved with finitely many players by precise
coordination of their individual noises. In contrast, in games with infinitely many players
and independent noise, the same feature could appear due to the law of large numbers. To
make a comparison, we consider the limit of our setting as the number of players goes to
infinity.

When ρ > 1/2 and N → ∞, the correlation component of the individual noise in (44)
vanishes almost surely by the law of large numbers, and the recommended allocation rule
converges to

ai(θ) = 1
2ρθ + εi, (49)

where εi ∼ N(0, σ2
ε) and σ2

ε = 2ρ−1
4ρ2 . In the limit, each player is provided a conditionally

independent estimate of the state, and the accurate behavior of the average action is ensured
by the large population size rather than by noise correlation. This analysis suggests that the
Gaussian information structures with conditionally independent noises commonly considered
in the literature, e.g., by Bergemann and Morris (2013), may indeed be optimal among all
information structures in games with a continuum of players. However, as our analysis
clarifies, such structures fail to be optimal in a finite economy.

5 Conclusion

In this paper, we developed a solution method for information-design problems in concave
games. This method builds upon the duality between the information-design problem and
adversarial contracting. We illustrated the power and tractability of the solution method in
quadratic environments with a normally distributed state. Our applications offer insights into
the determinants of price coordination in markets and the role of private noise in prediction
games. We expect our analysis to open many possibilities for future studies of information
design in games.
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A Appendix

Notation Denote by R the set of real numbers and by N the set of strictly positive integers.
For a Polish space X, denote by P(X) the space of its measurable subsets, by M(X)
the space of Radon measures on X, by ∆(X) ⊆ M(X) the space of probability measures
on X, by B(X) the space of real-valued bounded functions on X, by C(X) the space of
measurable real-valued continuous functions on X equipped with the uniform norm ‖·‖∞,
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‖f‖∞ , supx∈X |f(x)|. For an arbitrary collection of sets {Xi}, denote their product set by
×iXi.

Assumption 2. (Compactness) The state space Ω is finite. For each i = 1, . . . , N , there
exists a convex compact subset Âi ⊆ Ai such that all actions ai /∈ Âi are strictly dominated
for player i.

Assumption 3. (Responsiveness) There exists ε > 0 such that for each i = 1, . . . , N ,
and ai ∈ Ai: (i) there exist ω− ∈ Ω, a−−i ∈ A−i such that u̇i(ai, a−−i, ω−) < −ε and
u̇j(ai, a−−i, ω−) = 0 for all j 6= i, and (ii) there exist ω+ ∈ Ω, a+

−i ∈ A−i such that
u̇i(ai, a+

−i, ω
+) > ε and u̇j(ai, a+

−i, ω
+) = 0 for all j 6= i.

Assumption 3 implies certain responsiveness of players’ actions to the state. Namely, it
requires that each action may be “too high” in some states and “too low” in others, under
complete information if all others respond optimally. This assumption guarantees that in
the dual problem, the designer would never use over-powered incentives; hence, the domain
of contracts can be bounded.

Theorem 3. (Strong Duality) If Assumption 2 holds, then the optimal value of the
information-design problem (5) is equal to the optimal value of the dual adversarial-
contracting problem (10):

V P = V D. (50)

Moreover, in this case, an optimal value in (5) is achieved by some information structure. If,
in addition, Assumption 3 holds, then an optimal value in (10) is achieved by some contract.

Proof: Define auxiliary functions φ, ψ : B(A×Ω)→ R ∪ {+∞} as follows:

φ(f) ,

0, if f(a, ω) ≥ v(a, ω) ∀ a ∈ A, ω ∈ Ω,

+∞, o/w.

ψ(f) , inf
λ∈×iB(Ai),γ∈B(Ω)



∫
Ω γ(ω)dµ0, if f(a, ω) = ∑N

i=1 λi(ai)u̇i(a, ω) + γ(ω)

∀ a ∈ A, ω ∈ Ω,

+∞, o/w.

In Lemma 1, we show that (i) φ(f) and ψ(f) are convex. Moreover, by Assumption 2, v(a, ω)
is bounded from above by V , supa∈A,ω∈Ω v(a, ω) < +∞. Hence, there exists f0(a, ω) = V +1
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such that (ii) φ(f0) < +∞ (as φ(f0) = 0), (iii) ψ(f0) < +∞ (as ψ(f0) ≤ f0 since one can
set λ ≡ 0 and γ(ω) ≡ V + 1), and (iv) φ is continuous at f0 (as φ(f) ≡ 0 for all f with
‖f − f0‖∞ < 1). Consequently, by the Fenchel–Rockafellar duality (Villani (2003), Theorem
1.9), there exists a solution to supπ∈M(A×Ω)(−φ∗(−π)− ψ∗(π)) and:

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π)) = inf
f∈C(A×Ω)

(φ(f) + ψ(f)), (51)

where φ∗ and ψ∗ are Legendre-Fenchel transforms of φ and ψ, respectively:

φ∗(π) , sup
f∈C(A×Ω)

(∫
fdπ − φ(f)

)
,

ψ∗(π) , sup
f∈C(A×Ω)

(∫
fdπ − ψ(f)

)
,

and where we used the fact thatM(A×Ω) is a topological dual space of C(A×Ω) (Aliprantis
and Border (2006), Corollary 14.15) since A×Ω is a compact metrizable space (Assumption
2).

In Lemma 2, we show that the left-hand side of (51) is in fact equal to V P :

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π)) = V P .

Moreover, the right-hand side of (51) is at least as large as V D:

inf
f∈C(A×Ω)

(φ(f) + ψ(f)) ≥ inf
f∈B(A×Ω)

(φ(f) + ψ(f)) = V D,

where the inequality follows from C(A×Ω) ⊆ B(A×Ω) and the equality follows from the
definition of φ and ψ. As a result, V P ≥ V D; thus, by Theorem 1, V P = V D.

Lemma 1. φ and ψ are convex.

Proof. φ: Towards a contradiction, assume that φ is not convex. Then, there exist f1, f2 ∈
C(A×Ω) and α ∈ (0, 1) such that φ(αf1 + (1−α)f2) > αφ(f1) + (1−α)φ(f2). It is possible
only if the right-hand side is finite, that is, only if f1(a, ω) ≥ v(a, ω) and f2(a, ω) ≥ v(a, ω)
for all a ∈ A, ω ∈ Ω. However, in that case, αf1(a, ω) + (1 − α)f2(a, ω) ≥ v(a, ω); thus,
φ(αf1 + (1− α)f2) = 0 = αφ(f1) + (1− α)φ(f2), which is a contradiction.

ψ: Take any f1, f2 ∈ C(A × Ω). If either ψ(f1) = +∞ or ψ(f2) = +∞, then ψ(αf1 +
(1 − α)f2) ≤ αψ(f1) + (1 − α)ψ(f2) = +∞ for all α ∈ (0, 1). If both ψ(f1), ψ(f2) < +∞,
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then for any n ∈ N, there exist λn1 , γn1 , λn2 , γn2 such that for all a ∈ A, ω ∈ Ω:

∫
ω∈Ω

γn1 (ω)dµ0(ω) ≤ ψ(f1) + 1/n, f1(a, ω) =
N∑
i=1

λn1i(ai)u̇i(a, ω) + γn1 (ω),

∫
ω∈Ω

γn2 (ω)dµ0(ω) ≤ ψ(f2) + 1/n, f2(a, ω) =
N∑
i=1

λn2i(ai)u̇i(a, ω) + γn2 (ω).

Hence, for any α ∈ (0, 1), for all a ∈ A, ω ∈ Ω:

αf1(a, ω) + (1− α)f2(a, ω) =
N∑
i=1

λnαi(ai)u̇i(a, ω) + γnα(ω),

where λnαi(ai) , αλn1i(ai) + (1−α)λn2i(ai) and γnα(ω) , αγn1 (ω) + (1−α)γn2 (ω). Consequently,

ψ(αf1 + (1− α)f2) ≤
∑
ω∈Ω

γnα(ω)µ0(ω)

≤
∑
ω∈Ω

(αγn1 (ω) + (1− α)γn2 (ω))µ0(ω)

≤ αψ(f1) + (1− α)ψ(f2) + 1/n.

Since this inequality holds for arbitrarily large n ∈ N, the result follows.

Lemma 2. V P = maxπ∈M(A×Ω)(−φ∗(−π)− ψ∗(π)).

Proof. We can write:

−φ∗(−π) = − sup
f∈C(A×Ω)

(∫
fd(−π)− φ(f)

)
−ψ∗(π) = − sup

f∈C(A×Ω)

(∫
fdπ − ψ(f)

)
= inf

f∈C(A×Ω),f≥v

(∫
fdπ

)
= inf

f∈C(A×Ω)

(
−
∫
fdπ + ψ(f)

)

=


∫
vdπ, if π ∈ ∆(A×Ω),

−∞, o/w.
=

0, if (6) and (7) hold,

−∞, o/w.

The last line in the derivation of −φ∗(−π) holds because (i) if π /∈ ∆(A×Ω), then π assigns a
negative measure to some set and one can diverge the value of −φ∗(−π) to −∞ by choosing
f ∈ C(A× Ω) that assigns arbitrarily large values to that set and (ii) π ∈ ∆(A× Ω), then
the infimum is obtained by setting f ≡ v ∈ C(A×Ω). Similarly, to establish the last line in
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the derivation of −ψ∗(π), note that for any given f , by the definition of ψ:

−
∫
fdπ + ψ(f) ≥ −

∫ (
N∑
i=1

λi(ai)u̇i(a, ω) + γ(ω)
)
dπ +

∫
Ω
γ(ω)dµ0

=
∫
Ω
γ(ω)dµ0 −

∫
γ(ω)dπ −

N∑
i=1

∫
λi(ai)u̇i(a, ω)dπ,

for any λ, γ such that ∑N
i=1 λi(ai)u̇i(a, ω) + γ(ω) = f(a, ω) for all a ∈ A, ω ∈ Ω. If (6) and

(7) hold, then −
∫
fdπ + ψ(f) ≥ 0. Furthermore, the zero value can be achieved by setting

f ≡ 0. If (6) or (7) do not hold, then it is possible to diverge the value to −∞ by assigning
arbitrarily large absolute values, positive or negative, of γ or λ to a set with a non-zero
measure such that f(a, ω) set equal to ∑N

i=1 λi(ai)u̇i(a, ω) + γ(ω) is continuous.
As a result, the maximization problem

max
π∈M(A×Ω)

(−φ∗(−π)− ψ∗(π))

is identical to the primal problem (5). The result follows.

Thus far, we have been able to use the Fenchel–Rockafellar duality to establish the strong
duality between the primal and dual problems. To complete the proof of Theorem 3, we must
confirm that the solutions to these problems exist under the stated conditions.

Lemma 3. (Existence of Solutions) Solutions to the primal problem (5) and to the dual
problem (8) exist.

Proof. For the primal problem (5), equip ∆(Ω×A) with a weak∗ topology. In this topology,
∆(Ω×A) is compact and the objective and the constraints are continuous due to Assumption
1. The solution then exists by the extreme value theorem. (Alternatively, observe that the
solution existence follows directly from Fenchel-Rockafellar duality (51) and the proof of
Lemma 2.)

For the dual problem (8), define

γ(λ, ω) , sup
a∈A

(vI(a, ω)−
N∑
i=1

λi(ai)u̇i(a, ω)),

and observe that for any given λ ∈ ×iB(Ai), setting γ(ω) equal to γ(λ, ω) obtains the
infimum of the objective in (8): any γ(ω) < γ(λ, ω) is infeasible and any γ(ω) > γ(λ, ω) can
be improved upon by decreasing γ(ω). Hence, the dual problem can be equivalently stated
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as
V D = inf

λ∈×iB(Ai)

∫
Ω
γ(λ, ω)dµ0.

To establish the existence of the solution, we first show that the domain can be bounded.
To bound the domain from above, define

λ ,
V P + 1− V
ε infω∈Ω µ0(ω) ,

where V = infa,ω v(a, ω) > −∞ by Assumption 2 and ε is that of Assumption 3. Consider
any λ such that for some i = 1, . . . , N and ai ∈ Ai, λi(ai) > λ. By Assumption 3, there exist
ω− and a−i such that:

γ(λ, ω−) = sup
a′∈A

(v(a′, ω−)−
N∑
i=1

λi(a′i)u̇i(a′, ω−))

≥ v(ai, a−i, ω−)− λi(ai)u̇i(ai, a−i, ω−)

≥ V + ελ,

Moreover, for any ω ∈ Ω, γ(λ, ω) ≥ V . Indeed, according to the Glicksberg-Fan theorem,
there exists an allocation a such that u̇i(a, ω) ≡ 0 that achieves v(a, ω) ≥ V irrespective of
λ. Hence, under such λ, the value of the dual problem is at least v + µ0(ω−)ελ > V P + 1.
However, by strong duality, V D = V P ; consequently, such λ may be excluded from the
optimization domain without any loss. An analogous argument bounds the optimization
domain from below.

Second, by the definition of the infimum, there exists a sequence {λn}∞n=1 such that
limn→∞

∫
Ω γ(λn, ω)dµ0 = V D. As the domain is bounded, there exists a bounded pointwise

limit of this sequence, λ∗ ∈ ×iB(Ai), λ∗i (a) , limn→∞ λ
n
i (a) for all i = 1, . . . , N , a ∈ A. We

have:

V D = lim
n→∞

∫
Ω
γ(λn, ω)dµ0

=
∫
Ω

lim
n→∞

sup
a∈A

(
v(a, ω)−

N∑
i=1

λni (ai)u̇i(a, ω)
)
dµ0

≥
∫
Ω

sup
a∈A

lim
n→∞

(
v(a, ω)−

N∑
i=1

λni (ai)u̇i(a, ω)
)
dµ0

=
∫
Ω
γ(λ∗, ω)dµ0

≥ V D,
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where the third line follows from the order of the supremum and the last line follows from
the definition of V D as the optimal value of the dual problem. Hence, {λ, γ} = {λ∗, γ(λ∗, ω)}
solve the dual problem. This concludes the proof.

As argued in the main text, the dual problem (8) is equivalent to the dual adversarial
contracting problem (10). This concludes the proof of Theorem 3.

Proof of Proposition 2. We showed in the main text that under the first set of conditions,
the linear allocation rule is implementable in the primal problem. It remains to show that
under the second set of conditions, the linear allocation rule is implementable in the dual
adversarial problem. The dual problem can be written as:

min
λ

Eµ0 [max
a∈A

v(a, ω)−
∑
i

λi(ai)(Ci•a−Bi•ω − bi)] (52)

min
λ

Eµ0 [max
a∈A

aT (b̂+ B̂ω)− 1
2a

T Ĉa− λT (a)(Ca−Bω − b)]. (53)

We show that under the conditions of the theorem, the linear allocation rule can be
implemented in the dual problem by means of a linear contract λ = x0 + x ∗ a, where “∗” is
the Hadamard product. Given this contract, the optimal best response of the agent in the
dual problem solves, at any state ω ∈ Ω, the following:

max
a∈A

aT (b̂+ B̂ω)− 1
2a

T Ĉa− (x0 + x ∗ a)T (Ca−Bω − b),

max
a∈A

aT
(
b̂+D(x)b− CTx0 + (B̂ +D(x)B)ω

)
− 1

2a
T
(
Ĉ + 2D(x)C

)
a+ xT0 (Bω + b),

where D(x) is a diagonal matrix with D(x)ii = xi. This is a quadratic optimization problem.
Under the conditions of the theorem, matrix Ĉ + 2D(x)C is positive definite; hence, the
agent’s best response can be found via the system of first-order conditions

a∗(ω) = (Ĉ + 2D(x)C)−1(b̂+D(x)b− CTx0) + (Ĉ + 2D(x)C)−1(B̂ +D(x)B)ω. (54)

The conditions of the theorem ensure that x implements the best response with the
responsiveness matrix R. It remains to show that we can construct x0 to capture the constant
vector a0 = C−1b, i.e.,

(Ĉ + 2D(x)C)−1(b̂+D(x)b− CTx0) = C−1b

C(Ĉ + 2D(x)C)−1CTx0 = c0,
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for some vector c0 independent of x0. However, according to the conditions of the theo-
rem, (Ĉ + 2D(x)C)−1 is positive definite and, by the maintained assumption, C is positive
semidefinite. Hence, C(Ĉ + 2D(x)C)−1CT is invertible, and one can always find x0 that
implements the targeted linear allocation rule. The result follows.

Derivations for Section 4.1 The firms’ profits are equal to

ui(a, θ) = ai(θi + ηai + ξa−i)− c(θi + ηai + ξa−i)2,

so the derivative with respect to their own actions is:

∂ui(a, θ)
∂ai

= θi(1− 2cη) + 2aiη(1− cη) + a−iξ(1− 2cη),

= µi(1− 2cη) + (θi − µi)(1− 2cη) + 2aiη(1− cη) + a−iξ(1− 2cη).

By comparison with the F.O.C. of (23), we recover the parameters of Section 4:

b = (1− 2cη)θ̄, B = (1− 2cη)I, C =
−2η(1− cη) −ξ(1− 2cη)
−ξ(1− 2cη) −2η(1− cη)

 .
Regarding the designer’s payoff, consumer surplus can be written as:

CS(a, θ) = −aT θ − 1
2a

TWa

= −θ̄ − aT (θ − θ̄)− 1
2a

TWa.

Comparing it with the payoff function (19), we recover

b̂CS = −θ̄, B̂CS = −I, ĈCS = W =
η ξ

ξ η

 .
Similarly, the total profits can be written as

Π(a, θ) = aT (θ +Wa)− c(θ +Wa)T (θ +Wa)

= −cθT θ + aT (1− 2cW )θ − 1
2a

T (−2W + 2cW 2)a

≈ aT (1− 2cW )θ̄ + aT (1− 2cW )(θ − θ̄)− 1
2a

T (−2W + 2cW 2)a,

where the last line ignores the action-independent term −cθT θ. Comparing it with the payoff
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function (19), we recover:

b̂Π = (I − 2cW )θ̄, B̂Π = I − 2cW, ĈΠ = −2W + 2cW 2.

For any given δ ∈ [0, 1], the parameters of the designer’s problem are the weighted averages:

b̂ = δb̂CS + (1− δ)b̂Π ,

B̂ = δB̂CS + (1− δ)B̂Π ,

Ĉ = δĈCS + (1− δ)ĈΠ .

Direct Price Control: The designer’s first-order condition is

B̂θ − Ĉa = 0,

which results in the first-best responsiveness matrix

RFB = Ĉ−1B̂.

The threshold value δFB is the one that equalizes the determinant of Ĉ to zero.
Full Disclosure and No Disclosure: Equilibrium pricing behavior satisfies and can be

derived from the system of first-order conditions

Eµ[qi(ai, a−i, θ) + ∂qi(ai, a−i, θ)
∂ai

(ai − 2cai)] = 0, i = 1, 2, (55)

after substituting the linear form (27) of demand function qi and setting the belief µ equal to
µ0 for no disclosure equilibrium and equal to the belief concentrated on θ for full disclosure
equilibrium.

Optimal Information Structure: As discussed in the main text, the optimal information
structure can be certified by a contract with certifying parameters (x1, x2) = x. By Theo-
rem 2, the parameter x and the corresponding responsiveness matrix R(x) must satisfy the
conditions (Ci•R − Bi•)ΣRT

i• = 0 and R = (Ĉ + 2D(x)C)−1(B̂ + D(x)B). Plugging in the
parameters of the differentiated Bertrand competition, we obtain the certifying condition
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f(x) = 0, where f(x) is the following polynomial:

f(x) = b0 + b1x+ b2x
2 + b3x

3 + b2x
4,

b0 = −8c3(δ − 1)3(ξ − η)(η + ξ)(δη4 + (δ − 1)ξ4 + 3(2δ − 1)η2ξ2)

+ 4c2(δ − 1)2η(δ(5− 8δ)η4 + (δ(8δ − 11) + 4)ξ4 − 2(δ(16δ − 19) + 6)η2ξ2)

+ 2c(3δ − 2)(δ − 1)(δ(7δ − 4)η4 + (δ − 1)δξ4 + (3δ(8δ − 9) + 8)η2ξ2)

+ (2δ − 1)(−(2− 3δ)2)η(δη2 + (3δ − 2)ξ2),

b1 = 32c5(δ − 1)3(η2 + ξ2)(η3 − ηξ2)2

− 16c4(δ − 1)2η(ξ − η)(η + ξ)((8− 11δ)η4 + 2(δ − 1)ξ4 + (2− 3δ)η2ξ2)

+ 8c3(δ − 1)(ξ − η)(η + ξ)((−42δ2 + 64δ − 25)η4 + (δ − 1)2ξ4 + δ(2− 3δ)η2ξ2)

+ 4c2((δ(2(78− 31δ)δ − 133) + 38)η5 + (δ − 1)(δ(δ + 7)− 6)ηξ4

+ (δ(5δ(25δ − 58) + 226)− 60)η3ξ2)− 2c((δ((79− 17δ)δ − 88) + 28)η4 + (δ − 1)δ(5δ − 4)ξ4

+ 2(δ(δ(102δ − 211) + 146)− 34)η2ξ2) + (3δ − 2)η((δ(7δ + 4)− 4)η2 + (δ(41δ − 52) + 16)ξ2),

b2 = −2((η − 1)η3(δ2(8(η − 2)η(10(η − 2)η + 13) + 29)− 4δ(η − 1)(2η − 1)(20(η − 2)η + 13)

+ 20(2η2 − 3η + 1)2) + 2(δ − 1)(1− 2η)2r4(2(δ − 1)η2 − δ + 2η)

+ ηr2(δ2(η(4η(η(8(11− 3η)η − 145) + 135)− 271) + 56)

+ 2δ(η − 1)(4η(η(8η(3η − 7) + 63)− 37) + 37)− 8(η − 1)(3(η − 1)η + 1)(4(η − 1)η + 3))),

b3 = −16η(1− 2cη)2(cη − 1)(ξ2(4c2(δ − 1)η2 + 2c(2− 3δ)η + 3δ − 2)

− 2η2(cη − 1)(2c(δ − 1)η − 3δ + 2)),

b4 = −8η(1− 2cη)2(cη − 1)(4η2(cη − 1)2 − ξ2(1− 2cη)2).

For the parameters of the numerical example, the polynomial becomes

f(x) = (2996δ4 − 7880δ3 + 7490δ2 − 3000δ + 414) + (6728δ3 − 20948δ2 + 20234δ − 6210)x

+ (−52780δ2 + 88084δ − 36368)x2 + (77184δ − 62208)x3 − 31680x4,

and the condition f(x) = 0 can be solved in radicals for any δ ∈ [0, 1]. The solution x that
makes Ĉ + 2D(x)C positive definite is a certifying parameter. Calculations show that such
x is unique for all δ 6= δcr, and its value is plotted in Figure 4. The value δcr is the one that
makes the determinant of matrix Ĉ + 2D(x(δ))C equal to zero:

δcr = 2(c(|ξ|+ η)(−2cη |ξ|+ |ξ|+ η(−2cη + 3))− η)
− |ξ| (−2cη(−4cη + 5) + 1)− η(4c− η(−cη + 2) + 5) + 2cξ2(−2cη + 1) = 11

18 . (56)
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Figure 4: Parameter x that certifies an optimal information structure plotted as a function
of the consumer surplus weight δ.

39


	SmolinYamashita.pdf
	1 Introduction
	2 General Model
	3 General Analysis
	3.1 Equilibrium Conditions. Primal Problem.
	3.2 Dual Problem. Adversarial Contracting.
	3.3 Weak Duality. Optimality Certification.
	3.4 On Certifiable Information Structures
	3.5 Scope of the Certification Method

	4 Application: Normal-Quadratic Settings
	4.1 Differentiated Bertrand Competition
	4.2 A Prediction Game

	5 Conclusion
	A Appendix


