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1 Introduction

In the aftermath of the crisis regulators called for higher margins in derivative contracts, while

cautioning that margins could lead to inefficient fire-sales and negative pecuniary external-

ities.1 We offer a general equilibrium analysis of this issue, investigating whether privately

optimal variation margins are socially optimal.2

Our model features three types of agents: protection buyers, protection sellers and in-

vestors. Protection sellers are, e.g., investment banks or specialised insurance companies.

Protection buyers, e.g., commercial banks, share risk with protection sellers by trading deriva-

tive contracts. Protection sellers are endowed with risky assets, backing the contractual pay-

ments implied by their derivative positions. But they have limited liability, which creates

counterparty risk, as protection sellers default when contractual payments exceed the value

of their assets.3 Protection sellers can take actions that reduce or increase the risk of their

assets. The key friction in our model is that such actions are unobservable, i.e., there is moral

hazard.4 Finally, investors, e.g., sovereign or pension funds, can hold the risky assets of pro-

tection sellers, but are less efficient at doing so, e.g, because they are less able to manage or

bear risk.

We also assume there is a publicly observable signal on the future value of protection

buyers’ risky assets. For example, if protection buyers are commercial banks hedging the risk

on their real-estate loans, the signal can be provided by a retail-estate market index. The

signal occurs after initial contracting, but before protection sellers take actions that reduce

1E.g., the Committee on the Global Financial System (2010) or the European Systemic Risk Board (2017).
2McDonald and Paulson (2015) offer an informative discussion of variation margins.
3Fleming and Sarkar (2014) discuss counterparty default in the Lehman bankruptcy.
4We consider two alternative specifications of the unobservable actions problem: one in which protection

sellers must exert costly effort to reduce downside risk, as in Holmström and Tirole (1997), and one in which
protection sellers can engage in risk-shifting, as in Jensen and Meckling (1976). In both cases, the undesirable
action hurts protection buyers by increasing the probability of counterparty default. Both specifications yield
the same economic insights.
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or increase the risk of their assets.

Our first contribution is to characterize the information-constrained optimum, i.e., the

second best. It is the set of consumptions and asset allocations, contingent on all publicly ob-

servable information, that maximize a weighted average of the three types of agents’ expected

utilities, subject to incentive, participation, and resource constraints.

The second best has two key characteristics. First, moral hazard prevents perfect risk

sharing. Protection sellers’ incentive constraints limit their ability to provide insurance,

driving a wedge between their marginal rate of substitution and that of protection buyers.

Second, following a bad signal (which in the example of real-estate loans could be a drop in

the real-estate index), a transfer of assets from protection sellers to investors can be optimal.

When the signal reveals bad news about the protection buyers’ assets, it becomes more likely

that some of the output of protection sellers’ assets will be transferred to protection buyers.

This increases protection sellers’ incentives to take on risk. To alleviate this moral hazard

problem and thus improve risk sharing, it is beneficial to reduce the amount of risky assets left

under the control of protection sellers. But transferring assets to investors is costly, because

they are less efficient at holding them. In the second best, the marginal cost of inefficient

asset allocation is equal to the marginal benefit of better risk sharing.

Our second contribution is to analyze market equilibrium. Market participants can write

and trade contracts contingent on all observable variables, so there is no exogenous market

incompleteness. Yet, incentive constraints limit the amount of insurance that protection

sellers can credibly promise, which generates endogenous market incompleteness. We show

that privately optimal contracts between protection buyers and protection sellers involve

derivatives (e.g., Credit Default Swaps insuring protection buyers against the default of their

loans) and variation margins.5 After a bad signal variation margins are called, requesting

5We build on the partial equilibrium analysis of risk-sharing under moral hazard in Biais, Heider and
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protection sellers to deposit cash on their margin account. To do so, protection sellers must

liquidate risky assets. Reducing the amount of risky assets under the control of protection

sellers alleviates moral hazard, but implies selling risky assets to investors who are less efficient

at holding them. Thus, variation margins trigger price drops, which can be interpreted as

fire sales.6

Fire sales generate externalities, but do they create inefficiencies? One might be tempted

to think so, because a protection seller’s incentive constraint depend on market prices: What

protection sellers can promise to pay without jeopardizing their incentives (cash on mar-

gin account, plus pledgeable income from risky assets under management) must exceed the

liability from the derivative contract. When one protection seller liquidates assets, this con-

tributes to depressing the price at which all protection sellers liquidate their assets, reducing

cash proceeds deposited on margin accounts and tightening incentive constraints.7

Our third contribution, however, is to establish that market equilibrium, and the cor-

responding fire sales, are information-constrained efficient. The intuition is the following.

Protection buyers are hurt by fire sales because they obtain less insurance from protection

sellers, but investors benefit from the fire sale because they can buy underpriced assets.8

Since protection buyers and investors have opposite exposures to fire sale risk, they benefit

from insuring one another. In equilibrium they exploit this risk sharing opportunity until

their marginal rates of substitution are equalised, just as in the second best. Still, and as in

Hoerova (2017). In a similar framework, Bolton and Oehmke (2015) analyse whether, under moral hazard,
derivatives should be priviledged in bankruptcy.

6Shleifer and Vishny (1992) call a fire sale a forced sale of an asset at a dislocated price. Bian et al. (2018)
document margin-induced fire sales triggering price drops in equity markets. Ellul et al. (2011) find that
fire sales of downgraded corporate bonds by insurance companies trigger price declines. Merrill et al. (2012)
document fire sales of residential mortgage-backed securities (RMBS). While in our model fire sales are due
to moral hazard, in Dow and Han (2018) they reflect adverse selection.

7Chernenko and Sundaram (2018) find that mutual funds belonging to the same fund family try to mitigate
fire-sale externalities on the other funds of the family by holding back on asset sales.

8Meier and Servaes (2018) show that firms buying distressed assets in fire sales earn excess returns.
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the second best, the marginal rate of substitution of protection buyers differs from that of

protection sellers because incentive constraints prevent perfect risk sharing.

Our paper is related to the literature on equilibrium inefficiency in incomplete markets,

e.g., Stiglitz (1982), Greenwald and Stiglitz (1986), Geanakoplos and Polemarchakis (1986),

Gromb and Vayanos (2002) and Lorenzoni (2008). In Gromb and Vayanos (2002) finan-

cially constrained arbitrageurs supply insurance to hedgers. When arbitrageurs suffer losses,

their leverage constraints tighten, and they have to liquidate their positions. Markets are

incomplete because hedgers cannot directly trade with one another. In Lorenzoni (2008) en-

trepreneurs borrow to fund investment projects. Financial constraints compel entrepreneurs

to sell assets after negative shocks. Markets are incomplete because entrepreneurs cannot

insure against these shocks. Both in Gromb and Vayanos (2002) and in Lorenzoni (2008),

the combination of financial constraints and market incompleteness generates pecuniary ex-

ternalities, leading to equilibrium constrained inefficiency.9 In Davila and Korinek (2017),

when markets are exogenously incomplete equilibrium is inefficient, but when there is no

exogenous market incompleteness first-best risk sharing is achieved.10 These results stand

in contrast to ours. In contrast with Gromb and Vayanos (2002) and Lorenzoni (2008),

we find that, in spite of financial constraints, equilibrium is second best. In contrast with

Davila and Korinek (2017), we find that, even with a complete set of contingent contracts,

equilibrium is not first best. These differences arise because in our model constraints do not

reflect exogenous market incompleteness, but moral hazard, generating endogenous market

incompleteness.

Our analysis is in line with Prescott and Townsend (1984) and Alvarez and Jermann

(2000) who find that, with optimal contracting and complete markets, equilibrium is con-

9Analyses of pecuniary fire-sale externalities leading to inefficiencies in other settings are, for example,
Caballero and Krishnamurthy (2003), Stein (2012), and He and Kondor (2016).

10See their application 1.
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strained efficient.11 The major difference between our setting and theirs concerns the timing

of events. In our setting, unlike in theirs, after initial contracting but before agents’ actions

and resolution of uncertainty, a signal is observed and interim trades can take place. It is at

this interim point that variation margins are called and fire sales can occur, affecting prices

in the incentive constraint. There is no such mechanism, and in particular no price in the in-

centive constraint, in Prescott and Townsend (1984) and Alvarez and Jermann (2000). That

equilibrium is constrained efficient although prices enter the incentive constraints is one of

the distinguishing features of our analysis.

In contrast with our focus on risk sharing, Acharya and Viswanathan (2011), Brunner-

meier and Pedersen (2009), and Kuong (2016) study lending. In Acharya and Viswanathan

(2011), as in our paper, the incentive-compatibility constraint features pledgeable income

that increases in the price of assets. Brunnermeier and Pedersen (2009) examine margin

spirals resulting from fire sales. In Kuong (2016) the fire sale is self-fulfilling. When creditors

expect low collateral liquidation value, they require high interest rate. In response, borrowers

engage in risk taking. Eventually, this leads to a large number of defaults, triggering many

collateral liquidations, leading to low collateral value. Unlike these papers, we conduct a

normative analysis, characterising the second best and comparing it to market equilibrium.

Fostel and Geanakoplos (2015) offer an analysis of general equilibrium under collateral

constraints. Margins have a different meaning in their analysis and ours. In their analysis,

the agent buys one unit of a risky asset and deposits it as collateral, which, in itself entails no

inefficiency. Against this collateral, the agent can borrow an amount equal to the minimum

value of the risky asset at maturity.12 The initial margin is the cash down-payment, equal

to the difference between the price of the asset and the amount borrowed. The larger the

11See also Kehoe and Levine (1993), Kilenthong and Townsend (2014) and Kocherlakota (1998).
12Rampini, Sufi and Vishwanathan (2014) also consider collateral constraints. They show how these

constraints affect risk management.
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amount owed by the agent, the lower the initial margin.

In our analysis the agent is endowed with the risky asset and engages in a derivative

transaction. If the derivative position moves against the agent, so that the agent is now in

debt towards her counterparty, she must deposit a variation margin. To do so she sells some

of the risky asset, which is inefficient because of fire sales. The larger the amount owed by

the agent, the larger the variation margin.

Section 2 presents the model and its mapping to real markets and institutions. Section 3

analyses the first best, Section 4 the second best, and Section 5 market equilibrium. Section

6 analyses the case in which protection sellers can engage in risk shifting. Section 7 presents

implications of our analysis.

2 Economic environment

2.1 Model

There are three dates: time 0, 1 and 2, one consumption good, and assets generating con-

sumption good at time 2.

Agents and endowments: There is a unit-mass continuum of protection buyers, each

with utility u, increasing and concave, and endowed at time 0 with one unit of a risky asset,

paying θ̃ units of the consumption good at time 2. There is also a unit-mass continuum of

investors each with utility v, increasing and concave, and endowed at time 0 with e units of

a safe asset, each paying 1 unit of consumption good at time 2. Finally, there is a unit-mass

continuum of risk-neutral protection sellers, each endowed with one unit of a productive

asset, paying R̃ units of consumption good at time 2.
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Assets payoffs: The payoff of the protection buyers’ asset at time 2, θ̃, can be θ̄ with

probability π, or θ with probability 1 − π. While that payoff is exogenous, the payoff of a

protection seller’s asset depends on his action. The action is not observable, which coupled

with limited liability, creates a moral-hazard problem.

The first specification of the moral-hazard problem we consider (in Sections 3, 4 and 5)

is as in Holmström and Tirole (1997). Each unit of the protection sellers’ asset yields R at

time 2 for sure if protection sellers exert risk-management effort, at cost ψ per unit, at time

1. When consuming cS units of the consumption good and exerting effort over a units of the

asset, a protection seller obtains utility cS − aψ. If a protection seller does not exert risk-

management effort, his asset’s payoff is R with probability µ and 0 with probability 1−µ. We

assume R − ψ > µR, so that protection seller’s effort is efficient. Following Holmström and

Tirole (1997), pledgeable income, i.e., the part of the physical return that can be promised

without jeopardising incentives, is

P ≡ R− ψ

1− µ
> 0. (1)

To allow protection sellers that exert effort to fully insure protection buyers, we assume that

R > π(θ̄ − θ). (2)

For given effort decisions, θ̃ and R̃ are independent. So there is no exogenous correlation

between the valuations of the two assets. In spite of this simplifying assumption, we show

below that moral hazard creates endogenous positive correlation between the two assets.

In Section 6, we consider an alternative specification of the unobservable action problem:

risk-shifting, à la Jensen and Meckling (1976). In both specifications, the undesirable action

(not exerting costly effort, or risk-shifting) hurts the protection buyer by increasing downside
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risk on the protection seller’s assets and, correspondingly, counterparty risk for the protection

buyer. We show that the same economic mechanisms are at play in the two specifications.

Signals: At time 1 an advanced signal s̃ about θ̃ is publicly observed. When the final

realisation of θ̃ is θ̄, the signal is s̄ with probability λ > 1/2 and s with probability 1 − λ.

When the final realisation is θ, it is s̄ with probability 1− λ and s with probability λ.

Asset transfers: Effort takes place at time 1, after the signal is publicly observed.

Before effort is exerted (but after observing the public signal), a fraction α of the productive

asset can be transferred from protection sellers to investors. This is costly because investors

are less efficient than protection sellers at managing assets. Investors’ per-unit cost of man-

aging the asset is larger than that of protection sellers: ψI(α) > ψ,∀α. When consuming

cI units of the consumption good and exerting effort over α units of asset, an investor ob-

tains utility v(cI − αψI(α)). We assume ψ′I ≥ 0 and ψ′′I ≥ 0. Thus, investors’ marginal

cost, ψI(α) + αψ′I(α), is increasing. Yet, we assume it is efficient that investors exert effort

even when holding all of the asset, i.e., R − ψI(1) ≥ µR. We also maintain the following

assumption:

ψI(1) + ψ′I(1) >
ψ

1− µ
> ψI(0). (3)

As will be seen below, the right inequality in (3) allows for asset transfers, by making them

not too inefficient when α is close to 0. The left inequality in (3) precludes full transfer of

assets (α = 1) because this would be too inefficient.13

Risk-sharing and moral hazard: Risk-averse protection buyers seek insurance against

the risk θ̃. They can turn to protection sellers or to investors, facing the following trade-

13In general, assets could also be transferred to protection buyers. For simplicity we rule this out by
assuming protection buyers do not have the technology to manage the assets of protection sellers.
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off. On the one hand, protection sellers are efficient providers of insurance, as they are

risk-neutral, but they have a moral-hazard problem. On the other hand, investors are less

efficient at managing the productive asset and at providing insurance since they are risk-

averse.

When investor utility v(0) is sufficiently low, there is no moral hazard problem with

investors because threatening to give zero consumption after a low asset return is punishment

enough to suppress the incentive to shirk. We hereafter assume this is the case, so we only

need to impose incentive constraints for sellers, not for investors.

Sequence of events: Summarising, the sequence of events is as follows. At time 0,

agents receive their endowments. At time 1, first the signal s is observed, then a fraction

α(s) of the productive asset can be transferred from protection sellers to investors, and then

holders of the productive asset decide whether to exert effort or not. At time 2, assets’ payoffs

are realised and publicly observed, and consumption takes place.

2.2 Mapping the model to real markets and institutions

Protection buyers can be commercial banks seeking to insure risk, while protection sellers

can be investment banks or specialised firms providing this insurance. Prior to the 2007-09

crisis, banks frequently bought protection against credit-related losses on corporate loans and

mortgages. Out of $533 billion (net notional amount) of credit default swaps sold by AIG at

year-end 2007, 71% were categorized as such “Regulatory Capital” contracts (see Harrington,

2009).

Protection sellers take decisions that increase or reduce the riskiness of their assets. In

the case of a loan portfolio, the effort reducing downside risk corresponds to the screening

(due dilligence) and monitoring of loans. Lack of screening and monitoring leads to a higher
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risk of losses. For example, the report of the Financial Crisis Inquiry Commission (2011)

states that “investors relied blindly on credit rating agencies as their arbiters of risk instead

of doing their own due dilligence” and “... Merrill Lynch’s top management realized that the

company held $55 billion in “super-senior” and supposedly “super-safe” mortgage-related

securities that resulted in billions of dollars in losses”.

The sellers’ assets can also include financial securities and portfolio positions, whose risk

is affected by the protection seller’s management of collateral, liquidity, and exposures. For

example, as part of its securities-lending activity, AIG received cash-collateral from its coun-

terparties. Instead of holding this collateral in safe and liquid assets, such as Treasury bonds,

AIG bought risky illiquid instruments, such as Residential Mortgages Backed Securities. As

the value of these securities dropped, this resulted in approximately $21 billion of losses for

the company in 2008 (see McDonald and Paulson, 2015). More generally, before the crisis,

several institutions failed to manage emerging risks, ignored warnings from their risk man-

agers and increased their mortgage exposures even as the US housing market had begun to

show signs of weakening (see Financial Crisis Inquiry Commission, 2011).

Moreover, consistent with our assumption that lack of proper risk-management effort

increases downside risk, Ellul and Yerramilli (2013) document that banks with a weaker

risk-management function at the onset of the financial crisis had higher tail risk and higher

non-performing loans during the financial-crisis years.

3 First best

The first best obtains when protection-sellers’ effort is observable. In that case, effort is

always requested by the planner and exerted by protection sellers. Hence, the protection

sellers’ assets always yield R. The state variables, on which decisions and consumptions are
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contingent, are the realisations of the protection buyers’ asset (θ) and the signal (s).

The social planner chooses the consumptions of protection buyers (cB(θ, s)), protection

sellers (cS(θ, s)) and investors (cI(θ, s)), as well as the fraction of protection sellers’ assets

transferred to investors (α(s)), to maximise the expected utility of protection buyers and

investors (with respective Pareto weights ωB and ωI):

ωBE[u(cB(θ̃, s̃))] + ωIE[v(cI(θ̃, s̃)− α(s̃)ψI(α))], (4)

We assume that the social planner places no weight on protection sellers, i.e., ωS = 0. Cor-

respondingly, when analysing the market equilibrium, we will assume zero bargaining power

for the protection sellers.14 The constraints are the participation constraint of protection

buyers,

E[u(cB(θ̃, s̃))] ≥ E[u(θ̃)], (5)

the participation constraint of investors,

E[v(cI(θ̃, s̃)− α(s̃)ψI(α))] ≥ v(1), (6)

the participation constraint of protection sellers,

E[cS(θ̃, s̃)− (1− α(s̃))ψ] ≥ R− ψ, (7)

14When effort is unobservable, protection sellers are agents, while protection buyers are principals. Our
assumption that protection buyers have all the bargaining power is in line with the principal-agent literature,
in which the principal makes a take-it-or-leave-it offer to the agent. Our assumption that ωs = 0 implies
that, in Section 4, we only characterise a subset of the information-constrained Pareto frontier. This does
not affect qualitatively our welfare analysis, as we show in Section 5 that the equilibrium implements a point
on that subset of the information-constrained Pareto frontier.
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the resource constraint in each state,

cB(θ, s) + cI(θ, s) + cS(θ, s) ≤ θ + 1 +R, ∀(θ, s), (8)

and the constraint that α(s) must be between 0 and 1. The participation constraints reflect

the respective autarky payoffs of protection buyers (E[u(θ̃)]), investors (v(1)) and protection

sellers (R− ψ). Our first proposition states the solution of the first-best problem.

Proposition 1 In the first best, there is no transfer of the productive asset, α(s) = 0,∀s,

and protection buyers and investors receive constant consumption, cB(θ, s) = cB, cI(θ, s) = cI .

Their total consumption is

cB + cI = E[θ̃] + 1, (9)

while protection sellers’ consumption is

cS(θ, s) = θ − E[θ̃] +R, ∀(θ, s). (10)

Note that assumption (2) ensures that protection seller’s consumption is always positive

in the first-best. Also, in the first best, the productive asset is held entirely by its most

efficient holders, the protection sellers, i.e., α(s) = 0. Moreover, the risk-neutral protection

sellers fully insure the risk-averse agents, whose consumption is equal to the expected value

of their endowment. Hence, marginal rates of substitution between consumption in different

states are equal to one for all agents. Figure 1 illustrates the market implementation of the

first best.
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Risk-averse protection
buyers with risky θ-asset

Fully insured
Full insurance

e.g., forward sale of

θ-asset at price
F = E[θ]

Risk-neutral protection
sellers with risky R-asset

and costly risk management

Manage all of R-asset

Risk-averse investors
with safe endowment,

less good at managing R-asset

Do not participate

Figure 1: Market implementation of the first best

4 Second best

Now turn to the second best, when protection sellers’ effort is unobservable. The social

planner still chooses consumptions and asset transfers to maximise his objective function (4)

under participation constraints (5), (6), and (7), and resource constraints (8). In addition,

the planner is constrained by the protection sellers’ incentive-compatibility condition. In

what follows, we assume that the first-best allocation is not feasible in this more constrained,

second-best problem:

P < E[θ̃]− E[θ̃|s]. (11)

As will be clear below, if (11) did not hold, the pledgeable return would be sufficiently large

for protection sellers to credibly promise full insurance in spite of moral-hazard.
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4.1 Incentive compatibility

Protection sellers decide on effort after the realisation of the signal s. The incentive constraint

is that they prefer effort to shirking:

E[cS(θ̃, s)− (1− α(s))ψ|s] ≥ µE[cS(θ̃, s)|s] ∀s.

The left-hand side is protection sellers’ (on-equilibrium-path) expected consumption net of

the cost of effort. The right-hand side is their (off-equilibrium-path) expected consump-

tion when shirking. Under shirking, the asset yields R only with probability µ. In this case,

protection sellers still receive the same expected consumption as under effort. But with prob-

ability 1− µ, the asset returns zero. In order to relax the incentive-compatibility constraint,

the planner optimally allocates zero consumption to limited-liability protection sellers in the

(out-of-equilibrium) event of a zero asset return.

The incentive-compatibility constraint rewrites as

E[cS(θ̃, s)|s] ≥ (1− α(s))
ψ

1− µ
. (12)

The left-hand side of (12) is the expected consumption of protection sellers after observing

the signal s. The right-hand side is the incentive-adjusted cost of managing the fraction

of assets protection sellers still control after a possible transfer. Transferring assets from

protection sellers to investors relaxes the incentive constraint.

4.2 Risk-sharing in the second best

Our first result is that protection buyers and investors are exposed only to the risk associated

with the signal s. Correspondingly we write their respective consumptions as (cB(s̄), cB(s))
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and (cI(s̄), cI(s)).

Lemma 1 The consumption of protection buyers and investors depends only on the realisa-

tion of the signal s, but not on the realisation θ of protection buyers’ assets.

The incentive constraint (12) implies that only the expected consumption of protection

sellers conditional on the signal matters for incentives. For a given E[cS(θ̃, s)|s], the split

between cS(θ̄, s) and cS(θ, s) does not affect the incentive constraint or the participation

constraint of protection sellers. Hence, it is optimal to set cS(θ̄, s) and cS(θ, s) to fully insure

protection buyers conditional on the realisation of s, by equalising their marginal utility in

states (θ̄, s) and (θ, s). Similarly, it is optimal to equalise investors’ marginal utility in these

two states. The next lemmas further characterize the second-best outcome.

Lemma 2 In the second best, the resource constraints as well as the participation constraint

of protection sellers bind. Moreover, one, and only one, of the two incentive-compatibility

conditions (after s̄ or s) binds.

Lemma 3 After a good signal, the incentive-compatibility constraint of protection sellers is

slack and there is no asset transfer, α(s̄) = 0. After a bad signal, the incentive-compatibility

constraint of protection sellers binds. Moreover, the consumption of protection buyers is

larger after a good signal than after a bad signal, cB(s̄) > cB(s).

After a good signal, protection sellers’ expected consumption is large, which relaxes their

incentive constraint. As a result, there is no need to transfer protection sellers’ assets to less

efficient investors (α(s̄) = 0).

After a bad signal, the opposite happens. Protection sellers’ expected consumption is

low, which tightens their incentive constraint. Because of the binding incentive constraint,

protection buyers cannot be fully insured and remain exposed to signal risk (cB(s̄) > cB(s)).
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Combining Lemmas 1, 2, and 3, we obtain the next proposition, characterising the con-

sumption of protection buyers and investors for a given level of asset transfers after a bad

signal α(s).

Proposition 2 After s, the total consumption of protection buyers and investors is

cB(s) + cI(s) = 1 + E[θ̃|s] + α(s)R + (1− α(s))P , (13)

while after s̄ it is

cB(s̄) + cI(s̄) = 1 + E[θ̃|s̄]− Pr[s]

Pr[s̄]
[α(s)(R− ψ) + (1− α(s))P ]. (14)

Signal risk is perfectly shared between protection buyers and investors

v′(cI(s)− α(s)ψI(s))

v′(cI(s̄))
=
u′(cB(s))

u′(cB(s̄))
. (15)

Consumption is split between protection buyers and investors according to their Pareto weights:

u′(cB(s))

v′(cI(s)− α(s)ψI(α(s))
=

ωI + λI
ωB + λB

, (16)

where λB and λI are the respective Lagrange multipliers of the participation constraint of

protection buyers (5) and investors (6).

Since there is there is no incentive problem between protection buyers and investors, they

share signal risk perfectly, as reflected in equation (15). While in the first best, the joint

consumption of protection buyers and investors is given by the unconditional expectation

of their joint endowment, reflecting full insurance, the second best involves the conditional

expectation of their joint endowment, which is lower after bad news than after good news.
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The joint consumption of protection buyers and investors after bad news (in equation (13))

also includes the protection sellers’ pledgeable income, which without asset transfers is just

P , and with assets transfers is increased by α(s)(R− P).15

To complete the analysis of the second best, the next proposition characterizes asset

transfers after bad news.

Proposition 3 If

u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α(s)=0

− 1 >
ψI(0)− ψ
ψ

1−µ − ψI(0)
, (17)

then, in the second best, the asset transfer is interior, α(s) ∈ (0, 1), and such that

u′(cB(s))

u′(cB(s̄))
− 1 =

ψI(α(s)) + α(s)ψ′I(α(s))− ψ
ψ

1−µ − (ψI(α(s)) + α(s)ψ′I(α(s)))
, (18)

where cB(s) and cB(s̄) are as given in Proposition 2. Otherwise, α(s) = 0.

To interpret the left-hand sides of (17) and (18), recall that Lemma 3 implies there is

signal risk: cB(s) < cB(s̄), which, in turn, implies the marginal rate of substitution, u′(cB(s))
u′(cB(s̄))

,

is larger than 1. The worse the insurance, the larger this marginal rate of substitution. Thus,

the expression on the left-hand-sides of (17) and (18) reflects the extent to which protection

buyers bear signal risk.

While the left-hand sides of (17) and (18) reflect the preferences of protection buyers,

the right-hand sides of (17) and (18) reflect the technology and incentives of those who

hold the productive asset. The denominator of the right-hand side of (17) and (18) is the

wedge between the productive asset’s marginal pledgeable income when it is held by investors

(R− (ψI(α(s))+α(s)ψ′I(α(s)))) and its counterpart when it is held by protection sellers (P).

15The joint consumption of protection buyers and investors after good news (in equation (14)) is then
pinned down by the binding participation and incentive constraints of protection sellers.
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Thus, it measures how much more income one can pledge by transferring the productive asset

from protection sellers to investors. The numerator is the wedge between the investors’ and

the protection sellers’ marginal cost of effort. Thus, the right-hand-sides of (17) and (18)

can be interpreted as a marginal rate of transformation, reflecting the marginal cost of an

increase in incentive-compatible insurance.

Condition (17) means that, at α(s) = 0, the marginal social benefit of a small asset

transfer exceeds its marginal social cost. Since ψ′I ≥ 0 and ψ′′I ≥ 0, the marginal cost of

effort for investors ψI(α(s)) + α(s)ψ′I(α(s)) is increasing. So the right-hand-side of (18)

is increasing, and takes its minimum value at α(s) = 0, as in the right-hand-side of (17).

Furthermore, by (3), there exists threshold α̂ < 1 at which the right-hand-side of (18) goes

to infinity. Hence, under (17), there exists an interior value of α(s) ∈ (0, α̂) for which the

marginal social benefit of additional insurance is equal to its marginal social cost. This pins

down the optimal asset transfer after bad news in the second best.

Figure 2 illustrates the interaction of protection buyers, protections sellers, and investors

in the second best when there are asset transfers after bad news.

5 Market equilibrium

We do not rule out trading of any contract based on the publicly observed variables (s, R,

θ), but, as will be clear below, the following three markets are sufficient:

Market for insurance against the realization of θ̃: Protection buyers and protec-

tion sellers participate in this market at time 0. In line with our simplifying assumption that

the social planner places no weight on protection sellers, we assume protection buyers have

all the bargaining power, so protection sellers are held to their reservation utility. Each pro-
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Risk-averse protection
buyers with risky θ-asset

Exposed to signal risk
Moral hazard limits

insurance after
bad signal

Risk-neutral protection
sellers with risky R-asset

and costly risk management

Manage part of R-asset

Perfect sharing
of signal risk

Risk-averse investors
with safe endowment,

less good at managing R-asset

Exposed to signal risk

Asset transfer
after bad signal

Figure 2: Second-best allocation with asset transfers after a bad signal

tection buyer is matched with one protection seller and makes an exclusive take-it-or-leave-it

offer.16 The offer includes time 2 transfers, τ(θ, s, R) and variation margins (explained be-

low). A positive transfer τ(θ, s, R) > 0 denotes a payment from the seller to the buyer and

vice versa.

Market for protection sellers’ assets: In the previous section we showed that the

second best can involve asset transfers from protection sellers to investors after bad news.

Therefore, we allow the protection buyer to request his counterparty to sell a fraction αS ≥ 0

of his assets after a bad signal. The asset sale occurs at time 1, after the realisation of the

signal, and before effort is exerted. The price is denoted by p. While supply αS stems from

protection sellers, demand αI stems from investors. All market participants are competitive.

Requesting protection sellers to liquidate a fraction of their assets and deposit the proceeds

on the margin account is a variation margin call. The procceeds αSp still belong to protection

16For an analysis of issues arising with non-exclusive contracting, see Acharya and Bisin (2014).
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sellers but are are ring-fenced from moral hazard and can be used to pay protection buyers

at time 2.

Market for insurance against signal risk: Without moral hazard this market is

not needed. Moral hazard, in contrast, limits the extent to which protection sellers can

insure protection buyers, leaving the latter exposed to signal risk. This opens the scope for

signal risk-sharing between protection buyers and investors. The corresponding market is

held at time 0, and enables participants to exchange consumption after a bad signal against

consumption after a good signal. Owners of one unit of the contract receive q units of

consumption good after a bad signal and pay 1 unit of consumption good after a good signal.

We denote protection buyers’ demand by xB and investors’ supply by xI .

Equilibrium: Equilibrium consists of transfers τ(θ, s, R), prices (p, q), and trades (αS, αI)

and (xB, xI), such that all participants behave optimally and markets clear: αI = αS and

xB = xI . To solve for equilibrium, we take the following steps. First, we derive incentive

and participation constraints. Second, we characterize investors’ trading decisions, αI and

xI , for given prices. Third, we analyse contracting between protection buyers and protection

sellers. Fourth, we impose market clearing.

5.1 Protection sellers’ incentive and participation constraints

Incentive compatibility: As in the second best, the incentive-compatibility condi-

tion of protection sellers after a good signal is slack. After a bad signal (s), the incentive-
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compatibility condition under which protection sellers exert effort is

(1− αS)(R− ψ) + αSp− E[τ(θ̃, s̃, R))|s] ≥µ((1− αS)R + αSp− E[τ(θ̃, s̃, R))|s])

+ (1− µ)E[max[αSp− τ(θ̃, s̃, 0), 0]|s]. (19)

The left-hand side of (19) is the expected gain of protection sellers on the equilibrium

path: They exert effort and obtain R − ψ for each of the 1 − αS units of the productive

asset they keep. In addition, protection sellers own the proceeds from the asset sale, αSp,

deposited in the margin account. Finally, the expected net payment by protection sellers to

protection buyers is E[τ(θ̃, s̃, R))|s].

The right-hand side of (19) is the expected profit of protection sellers if they deviate and

do not exert effort. In that case, with probability µ, protection sellers’ productive assets still

generate R, and their expected gain is the same as on the equilibrium path, except that the

cost of effort, (1− αS)ψ, is not incurred. With probability 1− µ, the productive assets held

by protection sellers generate no output. In that case, because of limited liability, protection

sellers cannot pay more than αSp. Hence their gain is max[αSp− τ(θ, s, 0), 0].

It is optimal to set τ(θ, s, 0) = αSp. This relaxes the incentive constraint by reducing the

right-hand side of (19), and does not affect the rest of the analysis because transfers τ(θ, s, 0)

only occur off the equilibrium path. Protection sellers’ incentive constraint thus reduces to

αSp+ (1− αS)P ≥ E[τ(θ̃, s̃)|s] (20)

where we write τ(θ̃, s̃, R) = τ(θ̃, s̃) to simplify the notation. The right-hand side of (20) is

how much protection sellers expect to pay protection buyers, which can be interpreted as the

implicit debt of protection sellers. The left-hand side of (20) is how much protection sellers
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can credibly pledge to pay, i.e., the sum of i) the pledgeable part (P) of output (R) obtained

on the 1− αS units of productive assets kept by protection sellers, and ii) the cash proceeds

from asset sales, deposited on margin account (αSp). Because of ii), prices enter the incentive

constraint. As discussed below, this generates pecuniary externalities.

Participation constraint: A protection seller accepts the contract if it gives her equi-

librium expected gains no smaller than her autarky payoff. This requires that the expected

net payments to protections sellers be larger than their expected opportunity cost of asset

sales, i.e.,

E[−τ(θ̃, s̃)] ≥ Pr[s]αS(R− ψ − p) (21)

5.2 Investors’ optimal trades

When selling xI units of the insurance contract against signal risk and buying αI units of

protection sellers’ assets, investors obtain time 2 consumption equal to e + xI after a good

signal and e− qxI + αI(R− ψI(αI)− p) after a bad signal.17 Their expected utility is

Pr[s̄]v(e+ xI) + Pr[s]v(e− qxI + αI(R− ψI(αI)− p)). (22)

Investors’ supply of insurance against signal risk: At time 0, investors choose xI

to maximise (22). The first-order condition is18

Pr[s̄]v′(e+ xI) = Pr[s]qv′(e− qxI + αI(R− ψI(αI)− p)), (23)

17We assume the endowment e is large enough to settle all the transactions of an investor at t = 1.
18The second-order condition Pr[s̄]v′′(e+ xI) + q2Pr[s]v′′(e− qxI + αI(R− ψI(αI)− p)) < 0 holds by the

concavity of the utility function.
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which implies that xI decreases in q.19 Equation (23) rewrites as

q =
Pr[s̄]

Pr[s]

v′(e+ xI)

v′(e− qxI + αI(R− ψI(αI)− p))
, (24)

which states that the price of insurance against signal risk is equal to the probability-weighted

marginal rate of substitution between consumption after good and bad news.

Investors’ demand for protection sellers’ assets: At time 1, after a bad signal,

investors choose αI to maximise their utility v(e − qxI + αI(R − ψI(αI) − p)). When p ≥

R − ψI(0), the price of the asset is so high that investors’ demand is 0. Otherwise, their

demand is pinned down by the first-order condition:

p = R− [ψI(αI) + αIψ
′
I(αI)] , (25)

which states that the price is equal to the marginal valuation of the investor for the asset.

Because the marginal cost ψI(αI)+αIψ
′
I(αI) is increasing, (25) implies that investors’ demand

for the asset is decreasing in p.20

5.3 Contracting between protection buyers and sellers

Protection buyers’ privately-optimal contract specifies transfers τ(θ, s) and an asset sale αS.

Moreover, protection buyers demand xB units of the insurance against signal risk, receiving

qxB after bad news and paying xB after good news. Correspondingly, the consumption of

protection buyers at time 2 is θ+ τ(θ, s̄)− xB after a good signal and θ+ τ(θ, s) + qxB after

19The left-hand side of (23) is decreasing in xI , while the right-hand side is increasing in xI . Their
intersection pins down the optimal supply of insurance by investors, xI . Now, the right-hand side is increasing
in q. Thus, an increase in q shifts up the right-hand side of (23), which leads to an intersection between the
right- and the left-hand sides of (23) at a lower value of xI .

20Increasing marginal cost also implies the second-order condition holds.
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a bad signal. They choose xB, τ(θ, s) (for all θ ∈ {θ, θ̄} and s ∈ {s, s̄}), as well as αS ∈ [0, 1]

to maximise

Pr[s̄]E[u(θ̃ + τ(θ̃, s̃)− xB)|s̄] + Pr[s]E[u(θ̃ + τ(θ̃, s̃) + qxB)|s], (26)

subject to the protection seller’s incentive and participation constraints, (20) and (21). The

next lemma states protection buyers’ consumption as a function of αS.

Lemma 4 In equilibrium, in the privately-optimal contract between protection buyers and

protection sellers, protection sellers’ participation and incentive constraints bind. Moreover,

protection buyers receive full insurance conditional on the signal, i.e., for a given realisation

of the signal, their consumption does not depend on the realisation of θ̃:

cB(θ̄, s̄) = cB(θ, s̄) = E[θ̃|s̄]− Pr[s]

Pr[s̄]
[αS(R− ψ) + (1− αS)P ]− xB, (27)

cB(θ̄, s) = cB(θ, s) = E[θ̃|s] + αSp+ (1− αS)P + qxB. (28)

Lemma 4 is similar to Lemma 1. Both in the second best and in market equilibrium,

protection buyers are fully insured conditional on the signal. The new element in the market

equilibrium is that price p shows up in (28). Other things equal, raising the price relaxes the

incentive constraint, which enables to provide more insurance to protection buyers.

The next lemma states what fraction of their assets protection sellers are required to sell

after bad news.

Lemma 5 When

p ≤ P + (R− ψ − P)
u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xB

)
u′(E[θ̃|s] + P + qxB)

(29)
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then αS = 0, otherwise αS is strictly positive and such that

u′(E[θ̃|s] + αSp+ (1− αS)P + qxB)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
[αS(R− ψ) + (1− αS)P ]− xB

) =
λ1

(p− P)Pr[s]λS
+

ψ
1−µ − ψ
p− P

, (30)

where λ1 is the Lagrange multiplier of the constraint αS ≤ 1.

5.4 Equilibrium

Equilibrium in the market for insurance against signal risk: Taking the first-

order condition with respect to xB in (26), we obtain

q =
Pr[s̄]

Pr[s]

u′(θ + τ(θ, s̄)− xB)

u′(θ + τ(θ, s) + qxB)
. (31)

Since the right-hand side of (31) is increasing in xB, (31) implies xB is increasing in q, while

(24) implies that xI decreases in q. At equilibrium, q is such that xB = xI . Combining (24)

and (31), we obtain our next proposition:

Proposition 4 Equilibrium in the market for insurance against signal risk involves price q∗

and trading volume x∗ such that

q∗ =
Pr[s̄]

Pr[s]

v′(e+ x∗)

v′(e− q∗x∗ + αI(R− ψI(αI)− p))
=

Pr[s̄]

Pr[s]

u′(θ + τ(θ, s̄)− x∗)
u′(θ + τ(θ, s) + q∗x∗)

. (32)

Equation (32) states that in equilibrium, the marginal rates of substitution between con-

sumption after a bad signal and after a good signal are equated among protection buyers

and investors, i.e., they share signal risk optimally, as in the second best (see Proposition 2).

Moreover, this marginal rate of substitution (weighted by the probabilities of a good and a

bad signal) is equal to the price of insurance against signal risk.
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As long as protection buyers are exposed to signal risk, we have

u′(θ + τ(θ, s̄)− x∗)
u′(θ + τ(θ, s) + qx∗)

< 1,

which, combined with (32), implies that insurance against signal risk is not actuarially fair.

Investors who supply protection buyers with insurance against a bad signal earn profits on

average. This, in turn, means that investors’ equilibrium supply is strictly positive. Thus,

the market for insurance against signal risk is active, i.e., x∗ > 0. Protection buyers (who

cannot get full insurance from protection sellers because of moral hazard) demand a strictly

positive amount of additional insurance from investors.

Equilibrium in the market for protection sellers’ assets: Given equilibrium (q∗, x∗)

in the market for insurance against signal risk, equilibrium in the market for protection sell-

ers’ assets is defined by a price p∗ and a trading volume α∗, such that the market clears,

i.e., αS(p∗) = αI(p
∗) = α∗. The next proposition characterises equilibrium in the market for

protection sellers’ assets.

Proposition 5 If

u′(E[θ̃|s] + P + qx∗)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − x∗

) − 1 >
ψI(0)− ψ
ψ

1−µ − ψI(0)
, (33)

the equilibrium level of asset sales α∗ is strictly positive and (α∗, p∗) is such that

u′(E[θ̃|s] + α∗p∗ + (1− α∗)P + qx∗)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
[α∗(R− ψ) + (1− α∗)P ]− x∗

) − 1 =
ψI(α

∗) + α∗ψ′I(α
∗)− ψ

ψ
1−µ − (ψI(α∗) + α∗ψ′I(α

∗))
, (34)

and

p∗ = R− [ψI(α
∗) + αIψ

′
I(α
∗)] . (35)
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Otherwise, if (33) does not hold, there are no asset sales in equilibrium, i.e., α∗ = 0.

Equation (34) is similar to (18). In both cases, the left-hand side captures the extent

to which protection buyers bear signal risk and the right-hand side describes the trade-off

when protection sellers sell their asset to investors. The numerator is the difference in the

marginal cost of effort between investors and protection sellers. The denominator is the

difference in pledgeable return between assets sold to investors (at price p∗, given by (35),

with the proceeds deposited in the margin account) and assets kept under the management

of protection sellers (P).

5.5 Equilibrium constrained efficiency

Comparing Lemma 4 and Propositions 4 and 5 to Propositions 2 and 3, we obtain the

following welfare theorem.

Proposition 6 Market equilibrium is information-constrained Pareto efficient.

It is striking that, in spite of moral hazard, the market equilibrium is second best, all the

more so as the price in the incentive constraint (20) induces a pecuniary externality. This

is because there are actually two countervailing pecuniary externalities. When one protec-

tion buyer demands larger margins, this depresses the price, which tightens the incentive

constraint of all protection sellers. This negative pecuniary externality tends to increase the

amount of signal risk protection buyers must bear. There is, however, a countervailing, sta-

bilising effect. The decline in the price increases the profits of investors after a bad signal.

Thus, while a negative signal is a negative shock for protection buyers, it is a positive shock

for investors. This creates scope for risk-sharing gains from trade between investors and

protection buyers. Investors and protection buyers fully exploit this risk-sharing opportunity

until their marginal rates of substitution are equalised, exactly as in the second best.
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In the Supplementary Appendix we offer complementary remarks on the above analysis.

First, we show that if the market is exogenously incomplete, i.e., the market for insurance

against signal risk is shut down (xB = xI = 0), equilibrium differs from the second best.

Second, we argue that insurance against signal risk could be provided to protection sellers

instead of protection buyers, without changing the equilibrium outcome.

6 Risk-shifting

So far, the protection seller had to exert unobservable risk-management effort to improve

asset returns in the sense of first-order stochastic dominance as in Holmström and Tirole

(1997). We now consider another type of unobservable action: “risk-shifting” à la Jensen

and Meckling (1976) (we follow the set-up in Biais and Casamatta (1999)).

6.1 Model

We assume there is one risk-averse protection buyer seeking to hedge risk θ̃ and one com-

petitive protection seller, whose per-unit asset return R̃ can be high (H), medium (M ∈

(0, H)), or 0 (in which case the limited-liability protection seller defaults on any obliga-

tion). Without risk-shifting, the probability of the high return is κ > 0, and the prob-

ability of the medium return is 1 − κ. In that case, the expected return of the asset is

E[R̃] = κH + (1− κ)M . Risk-shifting increases the probability of 0 return to b ∈ (0, 1) and

the probability of H to κ+ a ∈ (κ, 1). Correspondingly, risk-shifting reduces the probability

of M to 1 − (κ + a + b) ≥ 0.21 We denote expectations when there is risk-shifting with

Ê. Risk-shifting generates second-order stochastic dominance: the expected return under

21If κ was equal to 0, the problem would be degenerate. Return H would only occur under risk-shifting.
Thus, the optimal contract would give the protection seller zero pay-off after H. This would deter risk-shifting
without introducing any distortion or agency cost.
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risk-shifting Ê[R̃] = (κ+ a)H + (1− (κ+ a+ b))M is lower than E[R̃], i.e., (a+ b)M > aH.

As before, there is a continuum of risk-averse investors who can manage an amount α of

the protection seller’s risky asset at a cost ψI(α) per unit. Investors can mutualize the risk

of the assets they hold so that the per-unit return each investor obtains is given by E[R̃].22

It will be useful to define

P̂ ≡ (a+ b)M − aH
b

> 0, (36)

which plays the same role as the pledgeable income P in the set-up with costly risk-management

effort (1). It is the maximum return the protection seller can pledge to outsiders without

engaging in risk-shifting. The pledgeable return is less than the expected return without

risk-shifting, P̂ < E[R̃].

6.2 Second-best

As before, the social planner chooses the consumptions of the protection buyer, the protection

seller, and investors, as well as the fraction of the protection seller’s asset transferred to

investors to maximize the expected utility of the protection buyers and investors (as before,

we set the Pareto-weight of the protection seller to 0):

ωBE[u(cB(θ̃, s̃, R̃))] + ωIE[v(cI(θ̃, s̃, R̃)− α(s̃)ψI(α))]

The incentive constraints are E[cS(θ̃, s, R̃)|s] ≥ Ê[cS(θ̃, s, R̃)|s] ∀s. The protection seller

avoids risk-shifting if, conditional on the signal, it gives her less consumption. Writing out

22They have no incentive to risk-shift because E[R̃] > Ê[R̃].
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the expectations, the incentive constraints become

a+ b

a

(
Pr[θ̄|s]cS(θ̄, s,M)+Pr[θ|s]cS(θ, s,M)

)
≥
(
Pr[θ̄|s]cS(θ̄, s,H) + Pr[θ|s]cS(θ, s,H)

)
∀s. (37)

The protection seller must not expect to receive too much when the asset return is H as this

would induce her to increase the probability of the H return by risk-shifting.

The participations constraints of the protection buyer, the protection seller, and the

investors are, respectively:

E[u(cB(θ̃, s̃, R̃))] ≥ E[u(θ̃)] (38)

E[cS(θ̃, s̃, R̃)] ≥ E[R̃] (39)

E[v(cI(θ̃, s̃, R̃)− α(s̃)ψI(α))] ≥ v(1). (40)

Finally, the resource constraints are

cB(θ, s, R) + cI(θ, s, R) + cS(θ, s, R) ≤ θ + 1 + (1− α(s))R + α(s)E[R̃] ∀(θ, s, R) (41)

As in the case of costly effort, we assume the first-best allocation (i.e., full insurance, no

asset transfer) is not feasible in the second-best problem:23

P̂ < E[θ̃]− E[θ̃|s], (42)

23To see this, plug the first-best consumption of the protection seller, cS(θ, s, R) = θ − E[θ̃] + R into the
incentive constraint after the bad signal (we show below that the incentive constraint after the good signal
never binds).
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The following proposition characterizes the second-best allocation.24

Proposition 7 All resource constraints (41) and the participation constraint of the pro-

tection seller (39) bind. The protection buyer’s incentive constraint (37) is slack after a

good signal, s̄, and binds after a bad signal, s. Conditional on the signal s and the pro-

tection seller’s asset return R, the protection buyer and investors are not exposed to θ-risk,

cB(θ̄, s, R) = cB(θ, s, R) and cI(θ̄, s, R) = cI(θ, s, R). The consumption levels of the protection

buyer and investors can be ranked as follows:

cB(s,M) < cB(s̄,M) = cB(s̄, H) < cB(s,H)

cI(s,M) < cI(s̄,M) = cI(s̄, H) < cI(s,H)

The protection buyer and investors perfectly share signal risk and R-risk:

u′(s, R)

u′(s′, R′)
=

v′(s, R)

v′(s′, R′)
∀ s, s′ ∈ {s, s̄} and R,R′ ∈ {H,M} (43)

There is no asset transfer after a good signal, α(s̄) = 0. A necessary condition for an asset

transfer after a bad signal is E[R̃]− P̂ ≥ ψI(0). A sufficient condition for an asset transfer

after a bad signal, α(s) > 0, is:

u′(cB(s,M))

u′(cB(s̄,M))

∣∣∣∣∣
α(s)=0

− 1 >
a+ b

b(1− κ)

ψI(0)

E[R̃]− ψI(0)− P̂

An interior asset transfer after a bad signal α(s) ∈ (0, 1) is characterized by

u′(cB(s,M))

u′(cB(s̄,M))
− 1 =

a+ b

b(1− κ)

ψI(α(s)) + α(s)ψ′I(α(s))

E[R̃]− (ψI(α(s)) + α(s)ψ′I(α(s)))− P̂
. (44)

24See the Supplementary Appendix for the proof.

31

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdaa083/6025005 by guest on 08 D

ecem
ber 2020



The results in Proposition 7 mirror those in Section 4. The protection buyer and investors

are exposed to signal risk and perfectly share it (equation (43)). The optimal asset transfer

is such that marginal social benefit equals the marginal social cost (equation (44)). The

marginal social benefit of α(s) is the extent of signal-risk sharing the asset transfer achieves

for the protection buyer. The extent of risk-sharing is given by the wedge between the

marginal rate of substitution, u′(cB(s,M))
u′(cB(s̄,M))

, and one (what the marginal rate would be equal to

under perfect risk-sharing). The marginal social cost of α(s) is given by the marginal cost of

investors managing the seller’s asset, ψI(α(s)) + α(s)ψ′I(α(s)), relative to the increase in the

pledgeable return, E[R̃]− (ψI(α(s)) + α(s)ψ′I(α(s)))− P̂ , when the asset is transferred from

the seller to investors.

A difference between risk-shifting and costly risk-management effort is that with risk-

shifting, the risk of the protection seller’s asset is present on the equilibrium path. After

bad news, in order to relax incentive constraints, the planner allocates more (resp. less)

consumption to the protection buyer (resp. seller) when the asset return is H than when it

is M . The corresponding risk is perfectly shared by protection buyer and investors.25

6.3 Market equilibrium

The structure of the market equilibrium problem with risk-shifting is similar to that with

costly risk-management effort. There is a market for insurance against θ̃-risk, a market for

the protection seller’s asset, and a market for insurance against signal risk. Because the risk

of the seller’s asset is present on the equilibrium path in the risk-shifting set-up, we also

have a market for contracts to share R̃-risk when the bad signal occurs (only then does the

protection seller’s incentive constraint bind and this risk occurs). The owner of one unit of

25The extra term a+b
b(1−κ) appears because of this risk. It matters whether we write (44) in terms of cB(s,M)

or cB(s,H) and the extra term makes the necessary adjustment.
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this contract receives z units of consumption if the asset return is H and pays one unit of

consumption if the asset return is M . We denote the protection buyer’s demand by yB and

the investors’ supply by yI .

Protection seller’s incentive and participation constraints: As before, we can

just focus on the protection seller’s incentive constraint after a bad signal. Also as before, it

is optimal not to leave the protection seller with a positive pay-off when she defaults (which

happens with probability b): τ(θ, s, 0) = αSp for all θ. The incentive constraint then is

αSp+ (1− αS)E[R̃]− κE[τ(θ̃, s,H)|s]− (1− κ)E[τ(θ̃, s,M)|s]

≥ (1− b)αSp+ (1− αS)Ê[R̃]− (κ+ a)E[τ(θ̃, s,H)|s]− (1− (κ+ a+ b))E[τ(θ̃, s,M)|s],

which rewrites as

αSp+ (1− αS)P̂ ≥
(
a+ b

b

)
E[τ(θ̃, s,M)|s]− a

b
E[τ(θ̃, s,H)|s], (45)

This incentive constraint (45) mirrors the incentive constraint in the costly-effort case (20).

The left-hand side is how much the protection seller can pledge to pay, i.e., the sum of the

proceeds from the asset sale and the pledgeable return of the proportion of her asset she still

manages. The right-hand side is the expected transfer to the protection buyer. Note that a

higher transfer from the protection seller to the protection buyer when the asset return is H

actually relaxes the incentive constraint. This transfer makes risk-shifting, which increases

the probability of the high asset return, less attractive.

The protection seller’s participation constraint is

Pr[s̄]
(
E[R̃]− E[τ(θ, s̄, R̃)

)
+ Pr[s]

(
αsp+ (1− αS)E[R̃]− E[τ(θ, s, R̃)]

)
≥ E[R̃],
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which rewrites as,

E[−τ(θ̃, s, R̃)] ≥ Pr[s]αS(E[R̃]− p). (46)

The participation constraint (46) mirrors the participation constraint in the costly-effort

case (21). Expected net payments to the protection seller must be larger than the expected

opportunity cost of selling a fraction αS of her assets at price p after a bad signal.

Investors’ optimal trades: At time t = 0 investors trade contracts with the protection

buyer:

max
xI ,yI

Pr[s̄]v(e+ xI) + Pr[s]
[
κv(e− qxI + yI + αI(E[R̃]− ψI(α)− p)) (47)

+(1− κ)v(e− qxI − zyI + αI(E[R̃]− ψI(α)− p))
]
.

This is similar to equation (22) except that there is R̃-risk when the signal is bad, and we

have the terms yI and z for the contract to share this risk.

After a bad signal at t = 1, investors choose αI to maximise the expression in square

brackets in (47). The derivative of this expression with respect to αI yields the following

demand when αI > 0:26

p = E[R̃]− [ψI(αI) + αIψ
′
I(αI)] , (48)

which is downward sloping and mirrors the demand function (25) in the costly-effort set-up.

Contracting between protection buyer and seller: The protection buyer contract

with the protection seller specifies transfers τ(θ, s, R) and an asset sale after bad news αS to

maximise her expected utility E[u(θ̃, s̃, R̃)] subject to the incentive (45) and participation (46)

constraints of the protection seller. In the Supplementary Appendix we prove the following

26If p > E[R̃]− ψI(0) then the demand is zero.
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results:

Proposition 8 The participation and incentive constraints of the protection seller bind.

Conditional on the signal and the return of the protection seller’s asset, the transfers fully

insure the protection buyer against the risk θ̃ of his asset. After bad news, the protection

buyer receives a larger transfer for each realization of θ if the protection seller’s asset return

is H than when it is M . After good news, these transfers are equal. If

p ≤
E[R̃] + P̂

(
u′(s,M)
u′(s̄,M)

− 1
)
b(1−κ)
a+b

1 +
(
u′(s,M)
u′(s̄,M)

− 1
)
b(1−κ)
a+b

,

then αS = 0. Otherwise αS is strictly positive, increasing in p, and satisfies27

u′(s,M)

u′(s̄,M)
− 1 =

a+ b

b(1− κ)

E[R̃]− p
p− P̂

. (49)

These results mirror those obtained for costly unobservable effort (Lemmas 4 and 5).

Given the realisation of the signal s and the protection seller’s asset return R, the transfers

insure the protection buyer against the remaining risk of his own asset. The new element is

the presence of the risk of the protection seller’s asset, i.e., whether the return is H or M .

To counter the protection seller’s incentive to shift risk, the protection buyer gets a higher

transfer after return H than after M .

We can therefore write the protection buyer’s expected utility as

max
xI ,yI

Pr[s̄]u(θ + τ(θ, s̄, R)− xB) + Pr[s]
[
κu(θ + τ(θ, s,H) + qxB − yB) (50)

+(1− κ)u(θ + τ(θ, s,M) + qxB + xyB)
]
.

27Recall that u′(s,M) and u′(s̄,M) depend on αS via the transfers (see the Supplementary Appendix for
details).
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The expression pinning down the margin call, (49), and therefore the supply of the pro-

tection seller’s asset, is similar to (30). The left-hand side describes the departure from full

insurance again signal risk. The right-hand side describes the trade-off per unit sold. The

numerator of the second fraction is the cost of losing the expected return E[R̃] in return for

the price p. The denominator is the gain in pledgeable return: cash p instead of P̂ .

Equilibrium: Market clearing for the contract to share signal risk, xI = xB and the

contract to share R̃-risk after a bad signal, yI = yB, leads to equilibrium prices (q∗, z∗) that

result in perfect risk-sharing between the protection buyer and investors (for details see the

Supplementary Appendix):

u′(s, R)

u′(s′, R′)
=

v′(s, R)

v′(s′, R′)
∀ s, s′ ∈ {s, s̄} and R,R′ ∈ {H,M} (51)

Market clearing in the market for the protection seller’s asset, αS = αI = α∗, where

demand and supply are given by (48) and (49), respectively, yields (for α∗ > 0):

u′(s,M)

u′(s̄,M)
− 1 =

a+ b

b(1− κ)

ψI(α
∗) + α∗ψ′I(α

∗)

E[R̃]− [ψI(α∗) + α∗ψ′I(α
∗)]− P̂

. (52)

We are now ready to check whether the equilibrium allocation satisfies the optimality

conditions of the second-best. The two key optimality conditions are perfect risk-sharing

between the protection buyer and investors, (43), and the characterization of the optimal

asset transfer, (44).

The market achieves optimal risk-sharing, (51), trough transfers τ(θ, s, R), the asset sale

α∗, and the contracts sharing R̃-risk and signal risk. The equilibrium asset transfer, (52), is

determined by the same marginal benefit and marginal cost as the second-best transfer. The

benefit, on the left-hand side, is given by the extent of signal risk the protection buyer has
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to bear. The cost, on the right-hand side, is given by the marginal cost of investors relative

to the gain in the pledgeable return. Following the same steps as in the proof of Proposition

6, we therefore obtain:

Proposition 9 Market equilibrium is information-constrained Pareto efficient in the risk-

shifting set-up.

7 Implications

Economic balance sheet: The variation-margin call requests that protection sellers

deposit safe assets in a margin account. These safe assets, however, are still owned by

protection sellers. Therefore the margin deposit is on the asset side of their balance sheet, in

line with the remark of McDonald and Paulson (2015, page 92) that the “transfer of funds

based on a market value change is classified as a change in collateral and not as payment.”

Figure 3 shows the balance sheet of protection sellers at time 1. This is not an accounting

balance sheet, but an economic one, showing the value of the assets and liabilities of protec-

tion sellers, including those corresponding to derivative positions, implied by our theoretical

analysis. After good news, the derivative position of the protection seller is expected to make

a positive profit. This “marked-to-market” position is on the asset side of the balance sheet

of protection sellers along with the portfolio of loans under management (which will, on the

equilibrium path, return R at time 2 since the protection seller will exert effort). On the

other side of the balance sheet, there is just the equity of protection sellers. After bad news,

the derivative position of protection sellers is expected to be loss-making, which triggers the

variation-margin call. Correspondingly, on the asset side of the balance sheet, there is the

margin deposit (αp) and the downsized portfolio of loans, (1− α)R, while on the other side

of the balance sheet, there is the liability corresponding to the net value of the derivative
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position αp+ (1− α)P and the lower equity of protection sellers.

Assets Liabilities

After good signal (s̄)

Net
derivative
position

Loans

R

Equity

After bad signal (s)

Assets Liabilities

Net
derivative
position

Cash
margin
αp

Loans

(1− α)R Equity

Figure 3: Balance sheet of protection sellers at t = 1

Variation margins vs solvency regulation: In line with stylised facts, variation

margins are called when equity capital drops due to derivative losses. The ensuing asset

sales could be compared to those triggered by solvency regulation. However, while solvency

regulation aims at reducing leverage, variation margin calls allow an increase leverage: After

bad news, the total value of assets (margin deposits plus risky assets under management) is

R − α(R − p). This is decreasing in α, reflecting that assets under management are more

profitable than cash in the margin account. The value of liabilities, i.e., the expected loss

on the derivative position, is P + α(p − P). This is increasing in α, reflecting that larger

variation margins enable to promise more insurance ex ante, generating larger liabilities after

bad news. Thus equity (assets minus liabilities) decreases in α. This striking difference

between the consequences of variation margins and those of solvency regulation underscores

the difference between our asset-side view of variation margins, which change the structure of
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assets to enhance pledgeability, and the liability-side approach of solvency regulation, which

changes the structure of liabilities to reduce leverage.

Contagion between asset classes: Bad news lower the conditional expectation of the

final value of protection buyers’ assets. In the first best, there is no simultaneous change in

the valuation of protection sellers’ assets. In contrast, under moral hazard, after bad news

variation margin calls lead to asset sales lowering the price of protection sellers’ assets. Thus,

moral hazard generates endogenous correlation between protection buyers’ and protection

sellers’ assets. This can be interpreted as contagion after bad news, and is in line with the

empirically observed increase in correlation across asset classes during bear markets (see,

e.g., Ang and Chen, 2002).

Price of protection: An increase in variation-margins α generates productive ineffi-

ciencies by reducing the return on protection sellers’ assets. The break-even constraint of

protection sellers then requires them to make lower average transfers to protection buyers.

Empirically, this means that the price of protection, proxied for example by CDS spreads,

should increase when protection sellers expect larger margin calls, i.e., larger negative shock

to their balance sheets. This matches the recent finding by Siriwardane (2018) that negative

shocks to the capital of protection sellers in the CDS market increase the cost of insur-

ance they provide. Our model further predicts that the effect Siriwardane (2018) documents

should be more pronounced when the asset-price impact of margin calls is large.

Policy: Regulators are concerned by margin-induced fire sales (see, e.g., European Sys-

temic Risk Board, 2017, p.5). As noted by Meier and Servaes (2018), however, buyers of

underpriced assets benefit from fire sales. Meier and Servaes (2018) argue that a welfare

analysis should weigh these benefits against the losses of the sellers. Our comparison of mar-
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ket equilibrium and second best considers the ex-ante as well as the ex-post consequences

of fire sales. Ex post, during the fire sale, the profits of asset buyers are the mirror image

of the losses of asset sellers. Ex ante, before the fire sale, what matters for welfare is the

way in which those profits and losses are taken into account. When all market participants

rationally anticipate the risk of fire sales, efficient insurance against that risk is supplied

and equilibrium is constrained efficient. This points to a form of complementarity between

markets. To efficiently share risk, we need both i) insurance markets against the final value

of protection buyers’ assets, and ii) insurance markets against the interim risk of fire sales.

In practice, margin calls are often triggered by drops in the market valuation of the insured

asset. In that case, the above mentioned final and interim risks correspond to different ma-

turities of derivatives with the same underlying asset. When overseeing the development of

derivatives markets, regulators and market organisers should therefore ensure that the set

of maturities and risks traded are comprehensive enough. They should also make sure all

market participants are aware of the risk of fire sales and can sell or buy insurance against

that risk.

8 Conclusion

When protection sellers take large positions, likely to generate large losses, moral hazard

creates counterparty risk. To mitigate this problem, positions must be limited (preventing

perfect insurance) and variation margins must be called after bad news. To deposit cash on

their margin account, protection sellers need to liquidate risky assets triggering fire sales.

From a positive point of view, we show that moral hazard generates endogenous correlation

between otherwise independent asset classes. From a normative point of view, we show

that with optimal contracts equilibrium is information-constrained efficient, in spite of the
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presence of prices in incentive constraints.
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Appendix

A Proofs

Proof of Proposition 1

The Lagrangian is:

LFB(cB(θ, s), cS(θ, s), cI(θ, s), α(s)) = ωBE[u(cB(θ, s))] + ωIE[v(cI(θ, s)− α(s)ψI(α))]

+λB[E[u(cB(θ, s))]− E[u(θ)]]

+λI [E[v(cI(θ, s)− α(s)ψI(α))]− v(1)]

+λS[E[cS(θ, s)− (1− α(s))ψ]− (R− ψ)]

+
∑
θ,s

λ(θ, s)[θ + 1 +R− (cB(θ, s) + cS(θ, s) + cI(θ, s))]

+
∑
s

(λ1(s)[1− α(s)] + λ0(s)[α(s)])

First-order conditions with respect to cB(θ, s), cI(θ, s), cS(θ, s) and α(s) are

(ωB + λB)Pr[θ, s]u′(θ, s) = λ(θ, s), (A.1)

(ωI + λI)Pr[θ, s]v′(θ, s) = λ(θ, s), (A.2)

λSPr[θ, s] = λ(θ, s), (A.3)

and

− (ωI +λI)Pr[s]E[v′(cI(θ, s)−α(s)ψI(α))(ψI +α(s)ψ′I)|s]+λSPr[s]ψ = λ1(s)−λ0(s), (A.4)

respectively (where, in (A.4), we have used Pr[θ, s] = Pr[θ|s]Pr[s]). The second-order con-
ditions with respect to cB(θ, s), cI(θ, s) and cS(θ, s) hold because of decreasing marginal
utilities. The second-order condition with respect to α is:

−(ωI + λI)Pr[s]E[−v′′
(cI(θ, s)− α(s)ψI(α))(ψI + α(s)ψ′I)

2

+ v′(cI(θ, s)− α(s)ψI(α))(2ψ′I + α(s)ψ′′I )|s] ≤ 0, (A.5)

which holds since ψ′′I ≥ 0 and v′′ < 0.
Equations (A.1), (A.2) and (A.3) imply

(ωB + λB)u′(θ, s) = (ωI + λI)v
′(θ, s) = λS ∀(θ, s). (A.6)

Because neither ωB, ωI , λB, λI , nor λS depend on the state (θ, s), equation (A.6) implies that
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the marginal utilities of buyers and investors are constant across states. Hence, cB(θ, s) = cB
and cI(θ, s) = cI .

The resource constraints bind, λ(θ, s) > 0. Suppose not. Because v′, u′ > 0, Pr[θ, s] > 0,
this implies ωB + λB = 0 and ωI + λI = 0, and hence, ωB = ωI = 0. But because we also
have ωS = 0 (by assumption), the planner’s objective would then become zero.

The participation constraint of the sophisticated investors binds, λS > 0. Because
Pr[θ, s] > 0, this is immediate once λ(θ, s) > 0.

There is no asset transfer in any state, α(s) = 0. Suppose there were positive asset trans-
fers, i.e., α(s) > 0. Using the second equality in (A.6), dividing by λSPr[s], and rearranging,
the first-order condition with respect to α(s) becomes

ψ − ψI(α(s)) =
λ1

λSPr[s]
+ α(s)ψ′I .

Given that λS > 0, ψ′I ≥ 0 and ψ < ψI(α(s)) when α(s) > 0, this is a contradiction: the
left-hand side is negative while the right-hand side is weakly positive.

Given constant consumption for buyers and investors, and the binding resource con-
straints, we have cB + cI + cS(θ, s) = θ + 1 + R ∀(θ, s). Using this to substitute for
cS(θ, s) in the binding participation constraint of investors, together with α(s) = 0, we have
cB + cI = E[θ̃] + 1.

Proof of Lemma 1

The Lagrangian of the second-best maximisation problem is

LSB(cB(θ, s), cS(θ, s), cI(θ, s), α(s)) = ωBE[u(cB(θ, s))] + ωIE[v(cI(θ, s)− α(s)ψI(α))]

+
∑
s

λIC(s)

[
E[cS(θ, s)|s]− (1− α(s))ψ

1− µ

]
+λB[E[u(cB(θ, s))]− E[u(θ)]]

+λI [E[v(cI(θ, s)− α(s)ψI(α))]− v(1)]

+λS[E[cS(θ, s)− (1− α(s))ψ]− (R− ψ)]

+
∑
θ,s

λ(θ, s)[θ + 1 +R− (cB(θ, s) + cS(θ, s) + cI(θ, s))]

+
∑
s

(λ1(s)[1− α(s)] + λ0(s)[α(s)]) .

First-order conditions with respect to cB(θ, s) and cI(θ, s) are the same as in the first
best, (A.1) and (A.2), respectively. The first-order conditions with respect to cS(θ, s) and
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α(s) are altered, to take into acount the incentive constraint, and write

λIC(s)Pr[θ|s] + λSPr[θ, s] = λ(θ, s) (A.7)

and

−(ωI+λI)Pr[s]E[v′(θ, s)|s](ψI(α)+α(s)ψ′I)+λIC(s)
ψ

1− µ
+λSPr[s]ψ = λ1(s)−λ0(s), (A.8)

respectively. The second-order conditions are as in the first best.
The first-order conditions with respect to cB(θ, s) and cS(θ, s), (A.1) and (A.7), respec-

tively imply

u′(θ, s) =
1

ωB + λB

(
λIC(s)

1

Pr[s]
+ λS

)
(A.9)

while the first-order conditions with respect to cI(θ, s) and cS(θ, s), (A.2) and (A.7), respec-
tively imply

v′(θ, s) =
1

ωI + λI

(
λIC(s)

1

Pr[s]
+ λS

)
. (A.10)

Because their right-hand sides are independent of θ, (A.9) and (A.10) imply that, for a given
realisation of the signal s, the marginal utility of consumption of the protection buyers and
investors is the same in (θ̄, s) and (θ, s).

Proof of Lemma 2

First, we prove that the resource constraints bind, λ(θ, s) > 0. Suppose not. Because
v′, u′ > 0, Pr[θ, s] > 0, by (A.1) and (A.2), this implies ωB + λB = 0 and ωI + λI = 0, and
hence, ωB = ωI = 0, a contradiction.

Second, we prove that the participation constraint of the protection seller binds. Suppose
not, λS = 0. Then, using λ(θ, s) > 0 in (A.7) yields λIC(s) > 0 for all (θ, s), i.e., both incentive

constraints bind. From the binding incentive constraints, we have E[cS(θ, s)|s] = 1−α(s)
1−µ ψ and

hence,

E[cS(θ, s)] = Pr[s̄]
1− α(s̄)

1− µ
ψ + Pr[s]

1− α(s)

1− µ
ψ = (1− E[α(s)])

ψ

1− µ
. (A.11)

Substituting this into the slack participation constraint of the protection seller yields

(1− E[α(s)])
ψ

1− µ
− (1− E[α(s)])ψ > R− ψ
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and, after some rearranging,

−E[α(s)]ψ
µ

1− µ
> R− ψ

1− µ
,

which contradicts the assumption that P > 0.
Third, we prove that one of the two incentive constraints (or both) must bind. If not,

then the first-best allocation would solve the second best problem. Now, with the seller’s
first-best consumption (10) and α(s) = 0, the incentive constraint after a bad signal becomes

Pr(θ̄|s)(θ̄ − E[θ̃] +R) + Pr(θ|s)(θ − E[θ̃] +R) ≥ ψ

1− µ
,

i.e., E[θ̃|s]− E[θ̃] +R ≥ ψ
1−µ , which violates assumption (11).

Fourth, we prove that both ICs cannot bind at the same time. Suppose they do. Then,
we have again (A.11), which after substituting the binding participation constraint of the
protection seller and rearranging yields −E[α(s)]ψ µ

1−µ = R − ψ
1−µ , which contradicts the

assumption that P > 0.

Proof of Lemma 3

First, we prove that when the incentive-compatibility condition in state s is slack, then
α(s) = 0. Suppose not, i.e., α(s) > 0 and λIC(s) = 0. Then, using (A.2) and (A.7), (A.8)
becomes

−λSPr[s](ψI(α(s)) + α(s)ψ′I(α(s))) + λSPr[s]ψ = λ1(s).

Dividing by λSPr[s] > 0 and rearranging yields

ψ − ψI(α(s)) =
λ1(s)

λS(s)Pr[s]
+ α(s)ψ′I(α(s)).

Given that ψ′I ≥ 0 and ψ < ψI when α(s) > 0, we obtain the desired contradiction. The
left-hand side is negative while the right-hand side is weakly positive.

Second, we prove that the incentive-compatibility condition after a bad signal binds.
Suppose not, λIC((s)) = 0, and only the incentive constraint after the good signal binds.

Now, given that the incentive constraint after a bad signal is slack, so that α(s) = 0, and the
incentive constraint after a good signal binds, we have

E[cS(θ, s)|s̄] =
(1− α(s̄))ψ

1− µ
=

ψ

1− µ
− α(s̄)ψ

1− µ

E[cS(θ, s)|s] > ψ

1− µ
,
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which implies that
E[cS(θ, s)|s]− E[cS(θ, s)|s̄] > 0. (A.12)

Next, from the binding resource constraints and full risk-sharing conditional on the signal,
we have

cS(θ, s) = θ + 1 +R− (cB(s) + cI(s)) (A.13)

and hence

E[cS(θ, s)|s̄] = E[θ̃|s̄] + 1 +R− (cB(s̄) + cI(s̄)) (A.14)

E[cS(θ, s)|s] = E[θ̃|s] + 1 +R− (cB(s) + cI(s)) (A.15)

so that

E[cS(θ, s)|s]− E[cS(θ, s)|s̄] = E[θ̃|s]− E[θ̃|s̄]− [cB(s)− cB(s̄) + cI(s)− cI(s̄)]. (A.16)

To obtain that expression in (A.16) is weakly negative, so that we have the contradiction to
(A.12), the term in squared brackets with the consumptions must be weakly positive (because
the signal is (weakly) informative, we have E[θ̃|s]− E[θ̃|s̄] ≤ 0). From (A.1), (A.7) and the
slack incentive constraint after a bad signal, we have

(ωB + λB)u′(θ, s̄) = λS +
λIC(s̄)

Pr[s̄]

(ωB + λB)u′(θ, s) = λS

Together with full risk-sharing conditional on the signal, this implies that cB(s) ≥ cB(s̄).The
same type of argument also establishes that cI(s) ≥ cI(s̄).Hence, the term in squared brackets
in (A.16) is (weakly) positive, which yields the desired contradiction.

Third, we analyse the ranking of the consumptions of the protection buyers after bad and
good signals. Combining (A.2) with (A.7), and using the fact that there is full risk-sharing
conditional on the signal and that only the incentive constraint after the bad signal binds,
we obtain:

(ωB + λB)Pr[θ, s̄]u′(cB(s̄)) = λSPr[θ, s̄]

(ωB + λB)Pr[θ, s]u′(cB(s)) = λIC(s)Pr[θ|s] + λSPr[θ, s]

so that
u′(cB(s))

u′(cB(s̄))
= 1 +

λIC(s)

Pr[s]λS
. (A.17)

Because λIC(s) > 0 and λS > 0, we have imperfect risk-sharing across signals with cB(s) <
cB(s̄).
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Proof of Proposition 3

First, we write down more precisely the first-order optimality condition with respect to α(s).
Using (A.2) and Lemma 1, the derivative of the Lagrangian with respect to α(s) is

∂LSB
∂α(s)

= −λ(θ, s)Pr[s]
1

Pr[θ, s]
(ψI(α(s))+α(s)ψ′I(α(s)))+λIC(s)

ψ

1− µ
+λSPr[s]ψ−(λ1(s)− λ0(s)) .

Using (A.7), this rewrites as

∂LSB
∂α(s)

= −(λSPr[s]+λIC(s))(ψI(α(s))+α(s)ψ′I(α(s)))+λIC(s)
ψ

1− µ
+λSPr[s]ψ−(λ1(s)− λ0(s)) .

Collecting terms,

∂LSB
∂α(s)

=λIC(s)

[
ψ

1− µ
− (ψI(α(s)) + α(s)ψ′I(α(s)))

]
+ λSPr[s]

[
ψ − (ψI(α(s)) + α(s)ψ′I(α(s)))

]
− (λ1(s)− λ0(s)) . (A.18)

Second, we show that under (17) there must be some asset transfer, i.e., α(s) > 0.
Suppose not, i.e., suppose we have α(s) = 0. Then, λ1(s) = 0 and, by (A.18), the optimality
condition such that α(s) = 0, ∂LSB

∂α(s)
≤ 0, writes as

λIC(s)

λSPr[s]

[
ψ

1− µ
− ψI(0)

]
+
[
ψ − ψI(0)

]
≤ − λ0(s)

λSPr[s]
. (A.19)

Now, (A.17) yields

λIC(s)

Pr[s]λS
=
u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α(s)=0

− 1. (A.20)

Substituting into (A.19) yields

u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α(s)=0

−
ψ

1−µ − ψ
ψ

1−µ − ψI(0)
≤ − λ0(s)

λSPr[s]
[

ψ
1−µ − ψI(0)

] . (A.21)

This contradicts (17), which is equivalent to

u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α(s)=0

>

ψ
1−µ − ψ
ψ

1−µ − ψI(0)
.

Third, we characterise asset transfers when they are interior, i.e., when α(s) ∈ (0, 1). In
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that case, (A.18) and (A.17) imply[
u′(cB(s))

u′(cB(s̄))
− 1

]
+

ψ − (ψI(α(s)) + α(s)ψ′I(α(s)))
ψ

1−µ − (ψI(α(s)) + α(s)ψ′I(α(s)))
= 0,

where cB(s) and cB(s̄) are as given in Proposition 2.

Proof of Lemma 4

First, we write down the Lagrangian of the protection buyer and use it to show that the
participation constraint of protection sellers bind. The Lagrangian is:

L(τ(θ, s), αS, xB) = Pr[s̄]E[u(θ + τ(θ, s)− xB)|s̄] + Pr[s]E[u(θ + τ(θ, s) + qxB)|s] (A.22)

+λIC [αSp+ (1− αS)P − E[τ(θ, s)|s]]
+λS

[
Pr[s̄](R− ψ) + Pr[s]((1− αS)(R− ψ) + αSp)− E[τ(θ, s)]− (R− ψ)

]
+λ1[1− αS]− λ0αS.

The first-order conditions of (A.22) with respect to τ(θ, s̄) and τ(θ, s) are:

Pr[s̄]Pr[θ|s̄]u′(θ, s̄) = λSPr[θ, s̄] ∀θ
Pr[s]Pr[θ|s]u′(θ, s) = λSPr[θ, s] + λICPr[θ|s] ∀θ

which simplify to

u′(θ, s̄) = λS ∀θ (A.23)

u′(θ, s) = λS +
λIC
Pr[s]

∀θ. (A.24)

(A.23) implies that λS > 0, i.e., the participation constraint of protection sellers binds.
Second, we use the first-order conditions with respect to τ(θ, s̄) and τ(θ, s) to show that

the protection buyer is fully insured conditional on the signal. Because the right-hand sides
of (A.23) and (A.24) do not depend on θ, we have:

θ̄ + τ(θ̄, s̄) = θ + τ(θ, s̄) (A.25)

θ̄ + τ(θ̄, s) = θ + τ(θ, s). (A.26)

Thus, conditional on the realisation of the signal s,the protection buyer is fully insured against
remaining θ-risk.

Third, we prove by contradiction that the incentive-compatibility condition of the pro-
tection seller binds. To do so, we proceed in two steps.

The first step is to prove that, if the incentive-compatibility condition of the protection
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seller was slack, there would be no asset sale in equilibrium. This first step proceeds by
contradiction. Suppose λIC = 0 and αS = αI > 0. Consider the first-order condition of the
Lagrangian (A.22) with respect to αS, when αS > 0 (and hence, λ0 = 0) and λIC = 0:

− λsPr[s](R− ψ − p∗) = λ1, (A.27)

where p∗ is the equilibrium price in the asset market. From the investors’ demand for the
productive asset, we know that αI > 0 requires p∗ < R − ψI(0). Because ψI(0) ≥ ψ by
assumption, the left-hand side of (A.27) is strictly negative, which contradicts the fact that
the right-hand side is weakly positive.

The second step is to prove that slack protection seller’s incentive constraint would con-
tradict our assumption that P < E[θ̃] − E[θ̃|s]. Suppose λIC = 0. Equations (A.23) and
(A.24) imply full insurance, τ(θ, s̄) = τ(θ, s) ≡ τ(θ) for all θ, and θ̄ + τ(θ̄) = θ + τ(θ).
Using that αS = 0 and there is full insurance when λIC = 0, and substituting the binding
participation constraint, we obtain τ(θ̄) = −(1 − π)(θ̄ − θ) and τ(θ) = π(θ̄ − θ). Using this
in the slack incentive constraint yields

P >Pr[θ̄|s](−1)(1− π)(θ̄ − θ) + (1− Pr[θ̄|s])π(θ̄ − θ)
=(π − Pr[θ̄|s])(θ̄ − θ)
=E[θ̃]− E[θ̃|s],

a contradiction.
Fourth, we compute the transfers. The binding incentive and participation constraints

imply

E[τ(θ, s)|s̄] = −Pr[s]

Pr[s̄]

[
αS(R− ψ) + (1− αS)P

]
, (A.28)

E[τ(θ, s)|s] = αSp+ (1− αS)P . (A.29)

Equations (A.28) and (A.29), together with full insurance conditional on the signal, (A.25)
and (A.26), yield the set of transfers, for a given αS:

τ ∗(θ̄, s) = −Pr[θ|s](θ̄ − θ) + αSp+ (1− αS)P ,
τ ∗(θ, s) = Pr[θ̄|s](θ̄ − θ) + αSp+ (1− αS)P ,

τ ∗(θ̄, s̄) = −Pr[θ|s](θ̄ − θ)− Pr[s]

Pr[s̄]

[
αS(R− ψ) + (1− αS)P

]
,

τ ∗(θ, s̄) = Pr[θ̄|s](θ̄ − θ)− Pr[s]

Pr[s̄]

[
αS(R− ψ) + (1− αS)P

]
.
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Proof of Lemma 5

The first-order condition of the Lagrangian (A.22) with respect to αS is

λIC(p− P)− λsPr[s](R− ψ − p) = λ1 − λ0. (A.30)

From (A.23) and (A.24) we have

u′(θ, s)

u′(θ, s̄)
= 1 +

λIC
Pr[s]λS

> 1, (A.31)

where the inequality follows from the binding incentive constraint stated in Lemma 4.
Combining (A.30) and (A.31), and using the consumptions in Lemma 4, we obtain

u′(E[θ̃|s] + αSp+ (1− αS)P + qxd)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
[αS(R− ψ) + (1− αS)P ]− xd

) =
λ1 − λ0

(p− P)Pr[s]λS
+
R− ψ − P
p− P

. (A.32)

Next, we show that when p > P + (R − ψ − P)
u′(E[θ̃|s̄]−Pr[s]

Pr[s̄]
P−xd)

u′(E[θ̃|s]+P+qxd)
then αS > 0. In that

case, (A.32) with λ0 = 0 yields (30). Suppose not, αS = 0, so that λ0 > 0 and λ1 = 0. Then
solving (A.32) with αS = 0 for p yields u′(E[θ̃|s] + P + qxd)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd

) +
λ0

(p− P)Pr[s]λS

 (p− P) = R− ψ − P

p = P +
R− ψ − P[

u′(E[θ̃|s]+P+qxd)

u′(E[θ̃|s̄]−Pr[s]
Pr[s̄]
P−xd)

+ λ0

(p−P)Pr[s]λS

] .
This contradicts the assumption that p > P + (R− ψ − P)

u′(E[θ̃|s̄]−Pr[s]
Pr[s̄]
P−xd)

u′(E[θ̃|s]+P+qxd)
, because

R− ψ − P[
u′(E[θ̃|s]+P+qxd)

u′(E[θ̃|s̄]−Pr[s]
Pr[s̄]
P−xd)

+ λ0

(p−P)Pr[s]λS

] < (R− ψ − P)
u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd

)
u′(E[θ̃|s] + P + qxd)

,

as

1 <
u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd

)
u′(E[θ̃|s] + P + qxd)

 u′(E[θ̃|s] + P + qxd)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd

) +
λ0

(p− P)Pr[s]λS

 ,
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due to

1 < 1 +
λ0

(p− P)Pr[s]λS

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd

)
u′(E[θ̃|s] + P + qxd)

.

Finally, we show that when p ≤ P + (R − ψ − P)
u′(E[θ̃|s̄]−Pr[s]

Pr[s̄]
P−xd)

u′(E[θ̃|s]+P+qxd)
, then αS = 0. To do

so, we proceed in three steps, corresponding to different values of p.
First, when p < P , αS = 0. Suppose not, αS > 0 and hence λ0 = 0. Then, the first term

on the right-hand side of (A.32) is weakly negative and the second term is strictly negative.
Hence, the right-hand side is strictly negative while the left-hand side is strictly positive.

Second, when P < p ≤ P + (R − ψ − P)
u′(E[θ̃|s̄]−Pr[s]

Pr[s̄]
P−xd)

u′(E[θ̃|s]+P+qxd)
, then αS = 0. Suppose not,

αS > 0 and hence, λ0 = 0. Then, solving (A.32) for p yields

p =
λ1

Pr[s]λS

u′(E[θ̃|s̄]− Pr[s]
Pr[s̄]

[αS(R− ψ) + (1− αS)P ]− xd)

u′(E[θ̃|s] + αSp+ (1− αS)P + qxd)

+P + (R− ψ − P)
u′(E[θ̃|s̄]− Pr[s]

Pr[s̄]
[αS(R− ψ) + (1− αS)P ]− xd)

u′(E[θ̃|s] + αSp+ (1− αS)P + qxd)
.

This price decreases when αS decreases (since the ratio of marginal utilities is strictly increas-
ing in αS). Yet, with αS > 0, the price will always be larger than the largest price allowed
in the starting condition

p = P + (R− ψ − P)
u′(E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd)

u′(E[θ̃|s] + P + qxd)

because λ1 ≥ 0 and

u′(E[θ̃|s̄]− Pr[s]
Pr[s̄]

[αS(R− ψ) + (1− αS)P ]− xd)

u′(E[θ̃|s] + αSp+ (1− αS)P + qxd)
>
u′(E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xd)

u′(E[θ̃|s] + P + qxd)

when αS > 0.
Third, when p = P , then αS = 0. Suppose not, αS > 0 and hence, λ0 = 0. As p → P ,

the right-hand side of (A.32) goes to infinity, contradiction since the left-hand side is finite.

Proof of Proposition 5

Lemma 5 states that if

p ≤ P + (R− ψ − P)
u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xB

)
u′(E[θ̃|s] + P + qxB)

,
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then αS = 0, otherwise αS > 0, where αS is given by (30).
Moreover, the above analysis of investors trades showed that if p < R−ψI(0) then αI > 0,

while otherwise αI = 0. So two cases must be distinguished.
If

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
P − xB

)
u′(E[θ̃|s] + P + qxB)

>

ψ
1−µ − ψ

R− ψ − P
,

then α∗ = 0 and p∗ is any price in [R− ψI(0), p̂(xd, q)].
Otherwise, there exists (p∗, α∗) such that αS(p∗) = αI(p

∗) = α∗ > 0. A sufficient condition
for α∗ < 1 is provided by (3), which implies ψI(1) + ψ′I >

ψ
1−µ . To see this, proceed by

contradiction and suppose α∗ = 1. Then, (25) implies the price is p∗ = R − (ψI(1) + ψ′I).
Substituting into (30)

u′(E[θ̃|s] + αSp+ (1− αS)P + qxd)

u′
(
E[θ̃|s̄]− Pr[s]

Pr[s̄]
[αS(R− ψ) + (1− αS)P ]− xd

) =
λ1(

ψ
1−µ − (ψI(1) + ψ′I)

)
λSPr[s]

+
R− ψ − P

ψ
1−µ − (ψI(1) + ψ′I)

The left-hand side is strictly positive but if ψI(1) + ψ′I >
ψ

1−µ , the right-hand side is strictly
negative, so we have a contradiction.

In the second case, the price p∗ is obtained by applying (25). Substituting this price into
(30) while setting λ1 = 0 yields (34).

Proof of Proposition 6

To prove Proposition 6, we first recall the equilibrium conditions, then we recall the second-
best conditions, and finally we show that for any allocation that satisfies the equilbrium
conditions there exists a set of Pareto weights such that this allocation satisfies the conditions
for second-best optimality.

Equilibrium allocation: Substituting equilibrium prices and trades α∗, p∗, x∗, and q∗

into (27) and (28), equilibrium protection buyers’ consumption is

cB(θ̄, s̄) = cB(θ, s̄) = E[θ̃|s̄]− Pr[s]

Pr[s̄]
[α∗(R− ψ) + (1− α∗)P ]− x∗, (A.33)

cB(θ̄, s) = cB(θ, s) = E[θ̃|s] + α∗p∗ + (1− α∗)P + q∗x∗. (A.34)

Similarly, substituting α∗, p∗, x∗, and q∗ into investors’ consumptions

cI(θ̄, s̄) = cI(θ, s̄) = 1 + x∗, (A.35)
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cI(θ̄, s) = cI(θ, s) = 1− q∗x∗ + α∗(R− p∗). (A.36)

Substituting α∗, p∗, x∗, q∗, (A.33) and (A.34) into (32), marginal rates of substitution between
consumption after good news and after bad news are equalised for protection buyers and
investors.

v′(cI(θ, s)− α∗ψI(α∗))
v′(cI(θ, s̄))

=
u′(cB(θ, s))

u′(cB(θ, s̄))
. (A.37)

Substituting (A.33) and (A.34) into condition (33), the condition writes as

u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α=0

>

ψ
1−µ − ψ
ψ

1−µ − ψI(0)
. (A.38)

When that condition does not hold, α∗ = 0. When it holds, substituting α∗, p∗, x∗, q∗, into
(34), the marginal rate of substitution between consumption after bad news and consump-
tion after good news is equal to what we intepreted, in the discussion of equation (18) in
Proposition 3, as the marginal cost of insurance:

u′(cB(θ, s)

u′ (cB(θ, s̄))
=

ψ
1−µ − ψ

ψ
1−µ − (ψI(α∗) + α∗ψ′I(α

∗))
. (A.39)

Second best allocation: Equations (13) and (14) state the total consumption of pro-
tection buyers and investors, after bad news and after good news, in the second best:

cB(s) + cI(s) = 1 + E[θ̃|s] + α(s)R + (1− α(s))P , (A.40)

cB(s̄) + cI(s̄) = 1 + E[θ̃|s̄]− Pr[s]

Pr[s̄]
[α(s)(R− ψ) + (1− α(s))P ]. (A.41)

Equation (15) states that in the second best marginal rates of substitution are equalised
between protection buyers and investors:

v′(cI(s)− α(s)ψI(s))

v′(cI(s̄)− α(s̄)ψI(s̄))
=
u′(cB(s))

u′(cB(s̄))
. (A.42)

Inequality (17) states the condition under which asset transfers are strictly positive in the
second best:

u′(cB(s))

u′(cB(s̄))

∣∣∣∣∣
α(s)=0

>

ψ
1−µ − ψ
ψ

1−µ − ψI(0)
; (A.43)

if that condition does not hold, then there are no asset transfers in the second best.

57

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/advance-article/doi/10.1093/restud/rdaa083/6025005 by guest on 08 D

ecem
ber 2020



Equation (18) gives the interior asset transfer:

u′(cB(s))

u′(cB(s̄))
=

ψ
1−µ − ψ

ψ
1−µ − (ψI(α(s)) + α(s)ψ′I(α(s)))

. (A.44)

Finally, equation (16) states how total consumption is split between protection buyers
and investors as a function of their Pareto weights:

u′(cB(s))

v′(cI(s)− α(s)ψI(α(s))
=

ωI + λI
ωB + λB

. (A.45)

Investors’ and protection buyers’ consumptions and asset transfers such that (A.40),
(A.41), (A.42), (A.43), (A.44) and (A.45) hold are second best.

Comparing second best and equilibrium allocations: Consider an equilibrium
allocation E = {cI(θ, s), cB(θ, s), α∗}. It is such that i) (A.33) to (A.36) hold and ii) if (A.38)
holds, then (A.39) holds.

Equilibrium is information-constrained Pareto efficient if E satisfies the second-best opti-
mality conditions, (A.40) to (A.45). Out of these six conditions, 5 are obviously satisfied:

Adding (A.33) to (A.35), and (A.34) to (A.36), in equilibrium the total consumption of
protection buyers and investors is

cB(θ, s̄) + cI(θ, s̄) = 1 + E[θ̃|s̄]− Pr[s]

Pr[s̄]
[α∗(R− ψ) + (1− α∗)P ],∀θ, (A.46)

after good news and

cB(θ, s) + cI(θ, s) = 1 + E[θ̃|s] + α∗R + (1− α∗)P , ∀θ, (A.47)

after bad news. (A.47) is equivalent to (A.40), while (A.46) is equivalent to (A.41).
Equation (A.37) shows that in equilibrium the MRS of protection buyers and investors

are equalised, exactly as requested in the second best, in (A.42).
Third, (A.38) is equivalent to (A.43), and (A.39) is equivalent to (A.44).
So, it only remains to check that E satisfies (A.45). To do so, we need to show that

there are Pareto weights ωI and ωB such that (A.45) holds for the consumptions in E .
Now, investors are strictly better off when participating in the market equilibrium than
in autarky, since they strictly prefer to trade in the market for insurance against signal
risk. Protection buyers also are strictly better off since they can, at least, extract all the
surplus from contracting with protection sellers with α = 0. Consequently, the participation
constraints of protection buyers and investors are slack, implying λI = λB = 0. Hence, (A.45)
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holds for the consumptions in E if and only if there exist Pareto weights ωI and ωB such that

u′(cB(s))

v′(cI(s)− α(s)ψI(α(s))
=
ωI
ωB

.

This is always the case. To see this, pick an arbitrary ωB, then set

ωI = ωB
u′(cB(s))

v′(cI(s)− α(s)ψI(α(s))
.
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