
Optimal minimax rates for nonparametric speci�cation testing

in regression models

Emmanuel Guerre, LSTA Universit�e Paris VI

Pascal Lavergne, INRA-ESR

February 1999, revised April 2001

The �rst author was with CREST when completing the �rst version of this paper. Financial support from

CREST and INRA is gratefully acknowledged. We thank the editor and four referees for comments that

were helpful in improving our paper.

Address correspondence to: Pascal Lavergne, INRA-ESR, B.P. 27, 31326 CASTANET-TOLOSAN Cedex

FRANCE; e-mail: lavergne@toulouse.inra.fr.



Proposed running head: Minimax rates for testing regressions

Proofs to be sent to:

Pascal Lavergne

INRA-ESR, BP 27,

31326 CASTANET-TOLOSAN Cedex FRANCE.

Email: lavergne@toulouse.inra.fr

2



Abstract

In the context of testing the speci�cation of a nonlinear parametric regression function, we

adopt a nonparametric minimax approach to determine the maximum rate at which a set of

smooth alternatives can approach the null hypothesis while ensuring that a test can uniformly

detect any alternative in this set with some predetermined power. We show that a smooth

nonparametric test has optimal asymptotic minimax properties for regular alternatives. As

a by-product, we obtain the rate of the smoothing parameter that ensures rate-optimality

of the test. We show that, in contrast, a class of non-smooth tests, which includes Bierens'

(1982) integrated conditional moment test, has suboptimal asymptotic minimax properties.
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1 Introduction

Speci�cation analysis is a central topic in econometrics. Recent work has focused on speci�cation

tests that are consistent against a large spectrum of nonparametric alternatives. Bierens (1982)

inaugurates this line of research by proposing integrated conditional moment (ICM) tests for

checking the speci�cation of a parametric regression model. His method, which relies on the

empirical process of the residuals from the parametric model, has been further developed by

Andrews (1997), Bierens (1990), Bierens and Ploberger (1997), Delgado (1993), Stinchcombe

and White (1998) and Stute (1997) among others. A competing approach compares parametric

and smooth nonparametric regression estimators, see Fan and Li (1996), H�ardle and Mammen

(1993), Hong and White (1995), Li and Wang (1998) and Zheng (1996) to mention just a few.

Thus there now exists a large range of consistent speci�cation tests for regression models, see

Hart (1997) for a review.

A theme of this literature concerns the power performances of the procedures derived from

either approach. This has been mainly investigated by studying the tests behavior under par-

ticular local alternatives, see e.g. Hart (1997). A familiar approach consists in considering a

sequence of alternatives of the form

E (Y jX) = �(X; �0) + rnd(X); (1.1)

where �(X; �0) is a member of the parametric model, d(�) is a speci�ed function and rn goes to

zero as the sample size n tends to in�nity. It is generally found that smooth tests have trivial

power against alternatives of the form (1.1) with rn / n�1=2, while non-smooth tests such as

ICM tests can detect such alternatives, thus suggesting that non-smooth tests are more powerful.

However, a reverse phenomenon can occur when considering di�erent sequences of alternatives.

Speci�cally, some alternatives that are more distant than n�1=2 from the null hypothesis are

detected by smooth tests but not by their competitors, see e.g. Fan and Li (2000). This shows

that considering alternatives (1.1) is overly restrictive and can be misleading, as also argued by

Horowitz and Spokoiny (2001).

In this paper, we adopt a nonparametric minimax approach, as detailed by Ingster (1993).
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Such an approach evaluates the power of a test uniformly over a set of alternatives H1(�n) that

lie at a distance �n from the parametric model and that belong to a class of smooth functions

with smoothness index s. The optimal minimax rate ~�n = ~�n(s) is the fastest rate at which

�n can go to zero while a test can uniformly detects any alternative in H1(�n). Such a test is

called rate-optimal. Assuming that s is known, Ingster (1993) determines optimal minimax rates

for goodness-of-�t testing of a uniform density and testing for white-noise in the continuous-

time Gaussian model. Considering s as an unknown nuisance parameter, the so-called adaptive

framework, Spokoiny (1996) �nds the optimal adaptive minimax rate ~�an in the latter testing

problem. Assuming this rate applies in regression settings, Horowitz and Spokoiny (2001) propose

a speci�cation test which is asymptotically uniformly consistent against alternatives approaching

the parametric model at rate ~�an.

The main contribution of the present paper is to determine the optimal minimax rates

for speci�cation testing of a parametric nonlinear regression model with a multivariate random

design and heteroscedasticity of unknown form. Following Ingster (1993), we assume that s, the

regularity of the regression function, is known. Our results show that the optimal minimax rate

~�n for speci�cation testing in regression models can di�er from the optimal rate found in testing

situations considered by Ingster (1993). We also provide a nonparametric smooth test which

has power uniformly against alternatives approaching the null hypothesis at the optimal rate.

This in turn yields the rate at which the smoothing parameter should go to zero to ensure rate-

optimality of the test. Such a result constitutes a �rst step towards a better understanding of the

smoothing parameter's e�ect and the construction of practical procedures for its determination.

The paper is organized as follows. In Section 2, we describe our framework and assumptions.

In Section 3, we establish optimal minimax rates for speci�cation testing in regression models

and provide a testing procedure that is rate-optimal for alternatives that are regular enough. We

also discuss the case of irregular alternatives. We �nally illustrate the poor minimax properties of

a class of ICM-type tests. Section 4 gives some concluding remarks in relation with the adaptive

framework of Horowitz and Spokoiny (2001). Proofs of the main results are dealt with in Section

5. Three appendices gather some auxiliary results.
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2 Framework and assumptions

Let (X;Y ) be a random variable in IRp � IR and assume that we have at hand observations on

(X;Y ) such that

Assumption I f(Xi; Yi); i = 1; : : : ; ng is an i.i.d. sample on (X;Y ) from IRp � IR. For m(�) �
IE(Y jX = �), IEm4(X) � m4 < 1 for some m4 > 0. For " = Y � IE(Y jX), IE"2 > 0 and

IE"4 <1.

Assumption I allows for heteroscedasticity of unknown form but restricts to regression functions

with bounded fourth moments. In what follows, we acknowledge the dependence of the distrib-

ution of Y given X upon the regression function by denoting probabilities and expectation as

IPm and IEm respectively.

We consider a parametric familyM of regression functionsM = f�(:; �) ; � 2 �g ;� � IRd.

The null hypothesis of interest is

H0 : m(:) � IEm[Y jX = :] 2M :

To de�ne the alternative hypothesis, the nonparametric minimax approach requires to focus on

some classes of smooth functions, as explained by Ingster (1993). For s 2 [0; 1), let Cp(L; s) be

the Lipschitz class of maps m(�) from IRp to IR such that

j m(x)�m(y) j � Lkx� yks ; L > 0 ; 8x; y 2 IRp ;

where k � k is a norm on IRp. For s � 1, let [s] be the greatest integer less than or equal to s,

and let Cp(L; s) be the set of functions m(�) almost everywhere di�erentiable up to order [s],

whose all partial derivatives of order [s] belongs to Cp(L; s � [s]). We consider the alternative

hypothesis

H1(�) : inf
�2�

IE (�(X; �)�m(X))2 � �2 ; m(�) 2 Cp(L; s) :

H1(�) is the set of regression functions in Cp(L; s) at a distance � from the parametric model

to be tested, with IEm4(X) � m4 < 1 under Assumption I. For the following analysis, the

latter restriction should hold uniformly over the set of considered regression functions m(�).
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This assumption plays a role similar to the compactness of the parameter set in parametric

estimation.

In the de�nition of the alternative hypothesis, the distance between the true regression

function m(�) and the parametric model under consideration is closely related with the notion

of \pseudo true value" for the parameter �, see White (1981) and Gourieroux, Monfort, and

Trognon (1984). We now describe some assumptions related to this pseudo-true value and the

way it can be estimated.

Assumption M1 i. For each � 2 �, �(�; �) 2 Cp(LM; s), LM � L, and IE�4(X; �) �
�4 < 1. There is an inner point �0 of � such that IE�4(X; �0) < m4, for m4 de�ned in

Assumption I.

ii. For each m(�) in Cp(L; s), there exists a unique �� = ��m such that

IE (�(X; ��)�m(X))2 = inf
�2�

IE (�(X; �)�m(X))2 :

iii. For any sequence fmn(:)g1n=1 such that 9 � in the interior of � with limn!+1 IE(�(X; �)�
mn(X))2 = 0, ��mn

converges to �.

Assumption M1{i yields that the modelM of interest is a subset of Cp(L; s), a condition under

which M1{ii implies that the parameter � is identi�ed under H0. This assumption allows to

de�ne the deviation of the regression function from the null hypothesis as

Æ(�) � Æm(�) = m(�)� �(�; ��m) : (2.2)

Assumption M2 i. For each x, �(x; :) is twice continuously di�erentiable with respect to

�, with �rst and second order derivatives ��(�; �) and ���(�; �) uniformly bounded in x and

� 2 �.

ii. The matrix IE

�
@�(X; �)

@�

@�(X; �)

@�>

�
is non-singular for all � 2 �.

iii. The set of gradient functions

�
@�(:; �)

@�
; � 2 �

�
is compact in C0, the set of continuous

functions from IRp to IRd equipped with the uniform norm.
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AssumptionM2 is similar to the assumption used byWhite (1981) to establish the
p
n-consistency

of the nonlinear least-squares estimator of ��m.
1

Assumption M3
p
n(b�n � ��m) = OIPm

(1) uniformly with respect to m(�) 2 Cp(L; s) with

IEm4(X) � m4 <1, i.e.

8� > 0;9� > 0 : lim sup
n!+1

sup
m(�)2Cp(L;s);IEm4(X)�m4

IPm

�p
nkb�n � ��mk > �

�
� � :

Assumption M3 deals with the existence of a
p
n-consistent estimator b�n of ��m, uniformly with

respect to m(�) 2 Cp(L; s). Such a result is not usually shown in the literature. However, uni-

formity is essential for developing our minimax approach. Birg�e and Massart (1993) have shown

that Assumption M3 usually holds for approximate nonlinear least-squares estimators.2 Con-

sider for instance the simple univariate regression model where �(X; �) = �X, � in [�; �]. The

pseudo-true value is then de�ned as ��m = IE [Xm(X)] =IE(X2). Assumptions M1 and M2 hold

provided X has bounded support and the OLS estimator is such that

b�n � �� =

"
(1=n)

nX
i=1

X2
i

#
�1

(1=n)
nX
i=1

(m(Xi)� ��Xi + "i)Xi :

Hence, Assumption M3 holds for b�n under Assumption I when IEX4 <1, as the empirical mean

of the numerator is centered, with a variance of order O(1=n) uniformly in m(�).
Consider a test tn 2 f0; 1g based on a sample of size n, where tn = 1 corresponds to rejection

of H0. The behavior of the test under the null hypothesis is usually characterized by its level

�(tn) = sup
m(�)2H0

IPm(tn = 1)

In our analysis, we focus on tests tn with �(tn) � � + o(1) for some � > 0. In Section

3.2, we consider a test ~tn with asymptotic type-I error � uniformly over H0, i.e. such that

supm(�)2H0

��IPm(~tn = 1)� �
��! 0. In this case, �(~tn) � �+ o(1) also holds. In the minimax ap-

proach, the behavior of a test is evaluated uniformly against the alternative H1(�), i.e. through

the minimax type-II error

�(tn; �) = sup
m(�)2H1(�)

IPm(tn = 0) :
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The minimax power against H1(�) is then de�ned as 1� �(tn; �). A test with �(tn; �) = o(1) is

said to be uniformly consistent against H1(�n).

The de�nition of the optimal minimax rate for the testing problem relies on two conditions.

First, the optimal minimax rate ~�n is such that no test has more than trivial minimax power

against H1(�n), for any �n that goes faster to zero than ~�n. Second, there exists a test ~tn that

has a predetermined uniform power against alternatives approaching the null hypothesis at rate

~�n. More formally, we have

De�nition 1 The optimal minimax (testing) rate ~�n is such that

i. For any test tn with �(tn) � �+ o(1), � > 0,

�(tn; �n) � 1� �+ o(1) whenever �n = o(~�n) :

ii. There exists a test ~tn with �(~tn) � �+ o(1), � > 0, such that for any prescribed bound �

in (0; 1 � �) for the minimax type-II error, there exists a constant � > 0 ensuring

�(~tn; �~�n) = sup
m(�)2H1(�~�n)

IPm(~tn = 0) � � + o(1) :

Such a test ~tn is called rate-optimal.

As noted by Stone (1982), the minimax estimation rate of a nonparametric regression not

only depends on its smoothness, but also upon the behavior of the density f(:) of X at the

boundary of its support. A similar phenomenon arises in our testing problem. For instance, if

the density of the regressors has unbounded support, it is possible to �nd some sequences of

functions m(�) in H1(�), with �xed �, against which any test has trivial power, see Appendix C

for an illustration. Therefore, to avoid technicalities, we limit ourselves to explanatory variables

X whose density is bounded from above and below and has bounded support.3

Assumption D The density f(:) of X has support [0; 1]p, with 0 < f � f(x) � F < +1 for

any x in [0; 1]p, and is continuous on [0; 1]p.
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3 Optimal minimax rates for speci�cation testing

As is usually done in this kind of analysis, we proceed in two stages corresponding to the two

conditions of De�nition 1. First, we �nd a testing rate ~�n below which alternatives in H1(~�n)

cannot be uniformly detected. Second, we exhibit a nonparametric smooth test which has power

uniformly against alternatives of order ~�n.

3.1 Lower bounds for optimal minimax rates

The next result provides a lower bound ~�n for the optimal minimax rate corresponding to the

smoothness index s. This result formally justi�es that considering local alternatives (1.1) with

rn / n�1=2 is not appropriate in the nonparametric minimax approach, since such alternatives

are not in H1(~�n), as n
�1=2 = o(~�n) for any smoothness index s.

Theorem 1 Let ~�n = n
�

2s

p+4s if s � p=4 and ~�n = n�
1

4 if s < p=4. Under Assumptions D, I,

M1{M2, if each "i is N (0; 1) conditionally upon Xi, for any test tn with �(tn) � �+ o(1),

�(tn; �n) � 1� �+ o(1) whenever �n = o(~�n):

To prove Theorem 1, it is enough to establish that �(tn) + �(tn; �n) � 1 + o(1) for any test

tn with asymptotic level �. This is obtained by bounding the latter quantity from below via

a proper choice of Bayesian a priori measures over subsets of H0 and H1(�n). Then, bounding

the errors of the Bayesian likelihood-ratio test yields the result. Theorem 1's proof also shows

that an uniformly consistent test of H0 against H1(�~�n), � > 0, does not exist. Though, as will

be shown in Section 3.2, there exists a test that has a predetermined minimax power against

H1(�~�n).

The assumption of standard normal errors, which is used to derive Theorem 1, can be

relaxed as soon as regular distributions are considered. A common condition is to assume that

the translation model associated with the errors "i's is locally asymptotically normal (LAN),

that is, the density fi(�) = f(�jXi) of the variables "i given Xi ful�lls

nX
i=1

�
log fi

�
"i +

up
n

�
� log fi("i)

�
= uSn � u2I=2 + oIP(1) ;
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where I > 0 is a constant, and Sn converges in distribution to N (0; I), see Ibragimov and

Has'minskii (1981). This condition also allows for the presence of heteroscedasticity. For instance,

if "i = �(Xi)�i, where the �i's are independent with density f�(�) and are also independent of

the Xi's, the LAN condition holds under standard regularity conditions on f�(�) given 0 <

� � �(�) � � < 1. Under the LAN condition, Theorem 1 carries over at the cost of some

technicalities.4 However, the assumption of Gaussian errors is only instrumental in our analysis.

The next subsection shows how optimal minimax rates are determined for a general unknown

error distribution.

3.2 Optimal minimax rates and a rate-optimal test for regular alternatives

To determine optimal minimax testing rates, we now build a speci�cation test. A popular method

in econometrics follows the Lagrange multiplier approach, see Godfrey (1988). This consists in

estimating the model under the null hypothesis in the �rst place and to use this estimate as

a basis for a test statistic in a second step. Here we �rst estimate � and use the estimated

parametric residuals bUi = Yi � �(Xi; b�n) to test H0. For this purpose, we introduce a simple

approximating family of functions, on which the parametric residuals will be regressed. Let

Ik =

pY
j=1

[kjh; (kj + 1)h)

be a bin of [0; 1]p, where the multivariate index k = (k1; : : : ; kp)
> 2 K � INp satis�es 0 � kj �

K � 1 for j = 0; : : : ; p, K = Kn being an integer number and h = 1=K the associated binwidth.

The bins Ik's de�ne a partition of [0; 1]p up to a negligible set and the indicator functions

1I(x 2 Ik) are therefore orthogonal. Then, following Neyman (1937) (see also Hart, 1997), a

smooth test can be proposed by regressing the bUi's on the normalized variables 1I(Xi 2 Ik)=
p
Nk

for k 2 K, where Nk =
nX
i=1

1I(Xi 2 Ik) is the number of observations of the exogenous variables

in bin Ik. If the b�k's are the corresponding estimated coeÆcients, a test can be based on

X
k2K

b�2k =
X
k2K

0@ 1p
Nk

X
Xi2Ik

bUi
1A2

:
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Such a test statistic can also be viewed as an estimator of IE (�(X; ��)�m(X))2 based on the

regressogram method. However, this statistic is systematically biased under the null hypothesis,

because it includes the squared estimated residuals bU2
i
; i = 1; : : : ; n. To remove this systematic

bias, we consider bTn = 1p
2Kp=2

X
k2K

1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i6=j

bUi bUj
and the simple estimator of the variance of bTn

v2n = (1=Kp)
X
k2K

1I(Nk > 1)

N2
k

X
fXi;Xjg2Ik;i 6=j

bU2
i
bU2
j :

The test is de�ned as ~tn = 1I
�
v�1n

bTn > z�

�
, where vn is the positive square-root of v2n and z�

is the quantile of order (1 � �) of the standard normal distribution. Our test is thus a simple

regressogram version of the kernel-based test of Zheng (1996). This allows us to treat the design

density and the conditional heteroscedasticity function as nuisance parameters and then avoids

unnecessary smoothness assumptions on these functions.

Theorem 2 Under Assumptions D, I and M1{M3,

i. If K !1 and n

Kp logKp !1, the test ~tn is of asymptotic level � uniformly over H0, i.e.

sup
H0

��IPm(~tn = 1)� �
�� = sup

H0

���IPm(v
�1
n
bTn > z�)� �

���! 0 :

ii. Assume s > p=4, let ~�n = n
�

2s

p+4s and K = [~�
�1=s
n =�], � > 0. For any prescribed bound �

in (0; 1 � �) for the minimax type-II error, there exists a constant � > 0 such that

�(~tn; �~�n) = sup
H1(�~�n)

IPm

�
v�1n

bTn � z�

�
� � + o(1) :

Theorem 2{i says that ~tn has asymptotically a type-I error equal to � uniformly over H0.

Theorem 2{ii shows that for s > p=4, ~tn has asymptotically minimax power 1 � � against

H1(�~�n).
5 Note that � can be chosen as close to zero as desired by taking � large enough.
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Theorems 1 and 2 together establish the minimax optimality of the rate ~�n and the rate-

optimality of the test ~tn. This easily follows by checking the conditions of De�nition 1. Condition

i is ful�lled, as the lower bound of Theorem 1 cannot be improved if the conditional distribution

of the "i's is unknown and lies in a set of densities including the normal.6 Condition ii is ful�lled

because of Theorem 2, which leaves this distribution unspeci�ed.

Corollary 3 Under Assumptions D, I and M1{M3 and if s > p=4, ~�n = n
�

2s

p+4s is the optimal

minimax (testing) rate and ~tn is rate-optimal when K is chosen as in Theorem 2-ii.

As can be expected, the rate ~�n becomes slower when the dimension of X increases or when

the smoothness index s decreases. When p = 1, the rate ~�n is similar to the one obtained for a

test of m(�) = 0 in the continuous-time Gaussian (CTG) model,

dYn(x) = m(x)dx+
�p
n
dW (x); x 2 [0; 1] ;

where W (�) is a Standard Brownian motion, see Ingster (1993). This model may be viewed as

an ideal model: many optimality results valid in this context can be extended to the univariate

regression model with homoscedastic Gaussian errors when the smoothness index of m(�) is such
that s > 1=2, thanks to an equivalence statement due to Brown and Low (1996). However,

this equivalence does not hold for s < 1=4 and s = 1=2 as shown by Efromovich and Samarov

(1996) and Brown and Zhang (1998). Moreover, it is not known if such an equivalence extends

to a regression model with a multivariate random design, unknown variance, non-normality or

heteroscedasticity of the regression errors. For instance, the case of small smoothness indices,

i.e., s � p=4, which is not treated in Corollary 3, seems to be speci�c to the regression model and

is discussed below. Horowitz and Spokoiny (2001), who do not assume that s is known, propose

a test that is uniformly consistent against alternatives approaching the null hypothesis at rate

~�n (ln lnn)
s=(4s+p) when s � max(2; p=4), which for p = 1 is the optimal adaptive minimax

rate for testing m(�) = 0 in the CTG model according to Spokoiny (1996). Thus, the adaptive

approach leads to an unavoidable but small loss in the optimal minimax rate.

Our results give theoretical grounds for the choice of the smoothing parameter in a speci�-

cation testing framework. To understand how the binwidth is chosen to get a rate-optimal test,
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note that our results imply thatbTn
v2n

� OIPm(1)nh
p=2
�
IE1=2Æ2(X)� hs

�2 � OIPm(1)nh
p=2 (��n � hs)2 ;

for any m(�) 2 H1(��n) with ��n � hsn and nhp= lnhp ! 1.7 To bound the asymptotic

minimax type-II error, one must force the lower bound of bTn to stay away from zero. Hence the

smallest possible �n has the same rate as hs and the corresponding lower bound for bTn is an

O
�
nh(p+4s)=2

�
. Therefore, for regular alternatives, i.e. for s > p=4, the optimal binwidth ~h is

such that n~h(p+4s)=2 has a non-vanishing �nite limit, that is,

~h / n
�

2

p+4s : (3.3)

For the same p and s, the optimal binwidth rate for testing the speci�cation of a nonlinear para-

metric regression model is faster than the optimal binwidth rate for minimax nonparametric

estimation of the regression function in the L2-norm, which is n�1=(p+2s). Basically, choosing an

optimal testing binwidth leads to balance a variance and a squared bias term, similar to the ones

found in semiparametric estimation of IEm2(X). This implies some undersmoothing relative to

optimal estimation of the regression function itself, as is the case in other semiparametric esti-

mation problems, see e.g. H�ardle and Tsybakov (1993) and Powell and Stoker (1996). However,

determining the optimal smoothing parameter in semiparametric estimation or testing contexts

are typically di�erent issues.8

3.3 The case of irregular alternatives

The optimal minimax testing rate generally depends on the relative standing of the smoothness

index s and the dimensionality of the model p. For irregular alternatives, i.e. s � p=4, the lower

bound of Theorem 1 equals n�1=4, and depends neither on the smoothness index nor on the

dimension of X. This contrasts with the result found by Ingster (1993) in the CTG model.

The rate n�1=4 corresponds to a baseline minimax testing rate when the variance function

�2(X) = Varm["jX] is known. De�ne

bT 0n = (1=n)
nX
i=1

� bU2
i � �2(Xi)

�
; (3.4)
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and observe that bT 0n estimates IEm[Y � �(X; ��)]2 � IE�2(X) = IE[�(X; ��)�m(X)]2 with rate

of convergence
p
n. Therefore, it is easy to show that a test based on bT 0n has asymptotically

nontrivial minimax power against H1(�n
�1=4) for any � > 0.9

The case where the variance function �2(X) is unknown is more diÆcult to deal with. Even

with homoscedastic errors, estimating �2 is problematic when m(�) is not smooth enough, as it

is diÆcult to separate the signal m(�) from the noise ". It is likely that the minimax testing rate

depends upon s when s � p=4 and �2(�) is unknown. Note that choosing h / n�1=p in our testing

procedure yields a test that uniformly detects with some predetermined power alternatives in

H1(�n
�s=p), for � large enough.10 This implies that the optimal minimax rate is faster than or

equal to n�s=p for irregular alternatives.

3.4 Minimax properties of ICM-type tests

We now study the minimax behavior of some non-smooth tests. Bierens and Ploberger (1997)

have shown that Integrated Conditional Moment (ICM) tests are asymptotically admissible

against speci�c alternatives of the type (1.1). The nonparametric minimax approach provides

an alternative way of evaluating power properties of such speci�cation tests. Theorem 4 below

shows that ICM-type tests have asymptotically trivial minimax power against alternatives in

H1(n
�a) for any a > 0.

The ICM test statistic proposed by Bierens (1982), and further developed by Bierens and

Ploberger (1997), is

In =

Z
z2(�) d�(�);

where �(�) is a measure on a compact set � and z(�) = (1=
p
n)
P

n

i=1
bUiw(Xi; �), with real-valued

w(Xi; �). Stinchcombe and White (1998) study the more general statistic

In;q =

�Z
jz(�)jq d�(�)

�1=q
; q � 1 :

Let btn;q be the test btn;q = 1I (In;q > u�;q), with �(btn;q) � �+ o(1). In what follows, Cp(1) is the

set of in�nitely continuously di�erentiable functions from IRp to IR.
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Theorem 4 Let w(�; �) be bounded and such that w(�; �) 2 Cp(1);8� 2 �. Under Assumptions

I, D, M1{M3, if each "i is N (0; 1) conditionally upon Xi and f(�) 2 Cp(1), then 8 1 � q <1,

�(btn;q; �n) = sup
m(�)2H1(�n)

IPm (In;q � u�;q) � 1� �+ o(1); whenever �n = O(n�a); 8a > 0:

Our assumptions on w(�; �) are justi�ed by usual choices, such as exp(X 0�) by Bierens (1990)

or (1 + exp(�X 0�))�1 by White (1989). Theorem 4 relies upon a Bayesian approach similar to

the one used in Theorem 1's proof. We conjecture that similar results can be derived for other

non-smooth tests, because such tests are basically identical to nonparametric smooth tests, with

the major di�erence that the smoothing parameter is held �xed, see e.g. Eubank and Hart (1993)

or Fan and Li (2000).

4 Conclusion

Our results illustrate the particular features of speci�cation testing of nonlinear regression models

under a multivariate random design. For regular alternatives, the optimal minimax rates, as well

as the optimal smoothing parameter, converge to zero faster than their analogs for estimation of

the nonparametric regression. In particular, the optimal smoothing parameter for speci�cation

testing is derived from a di�erent bias-variance trade-o� than the one considered in regression

estimation. For irregular alternatives, the optimal minimax rates can di�er from those found in

other testing situations, such as considered by Ingster (1993). We also show that a class of ICM-

type tests, in spite of being admissible against alternatives (1.1) with rn / n�1=2, have trivial

asymptotic minimax power against alternatives at distance n�a from the null hypothesis for any

a > 0. All these results are likely to extend to testing general conditional moment restrictions,

as considered by Delgado, Dominguez and Lavergne (2000).

An important direction for future research is the study of data-driven procedures for choos-

ing the smoothing parameter. Some suggestions can be found in Hart's (1997) monograph and

the references therein. Our results explain why cross-validation and penalization procedures used

in nonparametric regression estimation would lead to suboptimal tests. The search for adapted

procedures is an important topic of recent work, see Baraud, Huet and Laurent (1999), Guerre
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and Lavergne (2001), Guerre and Lieberman (2000), Horowitz and Spokoiny (2001), Spokoiny

(1996, 1999). A further step could be to compare the practical performances of the rate-optimal

tests derived from our approach and the adaptive approach.

5 Proofs

5.1 Proof of Theorem 1

Some small alternatives

For l > 0, let ' be any in�nitely di�erentiable function from IRp to IR with support [0; l]p such thatZ
'(x)dx = 0 and

Z
'4(x)dx <1 :

Assume that l is large enough so that ' is in Cp((L�LM)=2; s). For example, for a suitable constant C,

one can choose '(x) = C
Qp

j=1

�
exp

�
�1

xj(l=2�xj)

�
1I(x 2 [0; l=2]p)� exp

�
�1

(xj�l=2)(l�xj)

�
1I(x 2 [l=2; l]p)

�
.

Let hn = (��n)
1=s, � > 0 and de�ne

Ikl =

pY
j=1

[lkjhn; l(kj + 1)hn) ;

for k 2 Kn(l), i.e. k 2 INp with 0 � kj � 1=(hnl) � 1. Then Ikl � [0; 1]p. Without loss of generality, we

assume that Kn(l) = 1=(hnl) is an integer. Let

'k(x) =
1

h
p=2
n

'

�
x� lkhn

hn

�
; k 2 Kn(l) : (5.1)

The functions 'k(�)'s are orthogonal with disjoint supports Ikl. Let �0 be the inner point of � de�ned in

Assumption M1, fBk; k 2 Kg be any sequence with jBkj = 1 8k, and

mn(:) = �(:; �0) + Æn(:) ; Æn(:) = ��nh
p=2
n

X
k2Kn(l)

Bk'k(:) : (5.2)

Lemma 1 Assume �n ! 0. Under Assumptions D, M1, M2, IEm4
n
(X) � m4 and mn(:) is in H1(�n)

for � and n large enough.

Proof: i) IEm4
n
(X) � m4 for n large enough, because IE�4(X; �0) < m4 under Assumption M1 and, since

the 'k(�) have disjoint supports, IE1=4Æ4n(X) � supx2[0;1]p jÆn(x)j = O(��n)! 0.
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ii) mn(�) 2 Cp(L; s): Under Assumption M1 it is enough to show that Æn(�) is in Cp(L�LM; s). For any

� 2 INp with
Pp

j=1 �j = [s], we have

@[s]Æn(x)

@x
�1

1 � � � @x�pp
=

��n

h
[s]
n

X
k2Kn(l)

Bk

@[s]'

@x
�1

1 � � � @x�pp

�
x� lkhn

hn

�
:

Therefore, for any x and y that do not necessarily belong to the same bin Ikl, we get, using the de�nition

of '(�) 2 Cp((L� LM)=2; s), hn = (��n)
1=s and jBkj = 1,����� @[s]Æn(x)

@x
�1

1 � � �@x�pp
� @[s]Æn(y)

@x
�1

1 � � �@x�pp

����� � 2
L� LM

2

��n

h
[s]
n

x� y

hn

s�[s] � (L� LM)kx� yks�[s] ;

and Æn(�) 2 Cp(L� LM; s) for any n and � > 0.

iii) mn(�) is distant from the null model: Let �n � ��
mn

. Then

IE1=2 [mn(X)� �(X; �n)]
2 � IE1=2Æ2n(X)� IE1=2 [�(X; �0)� �(X; �n)]

2

�
�
f

Z
Æ2
n
(x)dx

�1=2

�O (k�n � �0k) ; (5.3)

by Assumptions D and M2, which gives that the gradient @�(x; �)=@� is bounded. Now,Z
Æ2
n
(x)dx = (��n)

2hp
n
Kp

n
(l)

Z
'2(x) dx = (��n)

2l�p
Z

'2(x) dx : (5.4)

As �n converges to �0 by Assumption M1 since IE(mn(X)��(X; �0))
2 = IEÆ2n(X)! 0 as easily seen from

Step i), �n is then an inner point of �. Therefore, from Assumption M2 and the Lebesgue dominated

convergence theorem, Assumption M1 yields that

IE
@�(X; �n)

@�n
[�(X; �n)�mn(X)] = 0 :

This leads to

IE
@�(X; �n)

@�
[�(X; �n)� �(X; �0)] = IEÆn(X)

@�(X; �n)

@�
:

A simple Taylor expansion, which holds by Assumption M2, yields

�n � �0 =

�
IE
@�(X; �0)

@�

@�(X; �0)

@�>
+ o(1)

��1
IEÆn(X)

@�(X; �n)

@�
;

so that

k�n � �k = O

�IEÆn(X)
@�(X; �n)

@�

� : (5.5)
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The functions

�
@�(:; �)

@�
f(:) ; � 2 �

�
are equicontinuous from Assumptions D and M2 and the Arzela-

Ascoli theorem, see Rudin (1991). As '(�) has integral zero,

IEÆn(X)
@�(X; �n)

@�

= ��nh
p

n

X
k2Kn(l)

Bk

Z �
@�(lkhn + hnu; �n)

@�
f(lkhn + hnu)�

@�(lkhn; �n)

@�
f(lkhn)

�
'(u)du

= ��nh
p

nK
p

n(l)o(1) = ��nl
�po(1) :

Combining this equality with (5.3){(5.5) yields, for � and n large enough,

IE1=2 [mn(X)� �(X; �n)]
2 � ��nl

�p

 �
flp
Z

'2(x) dx

�1=2

� o(1)

!
� �n :2

Main proof

We shall establish that for any test tn

sup
m(:)2H0

IPm(tn = 1) + sup
m(:)2H1(�n)

IPm(tn = 0) � 1 + o(1) : (5.6)

Step 1: Choice of a Bayesian a priori measure. As usual in the Bayesian setup, we consider now the

regression function m(�) as a random variable and introduce some Bayesian a priori probabilities over H0

and H1(�n). Let �0 be the inner point of � de�ned in Assumption M1 and denote �0 the associate Dirac

mass, i.e. �0(m(�) = �(�; �0)) = 1. Consider i.i.d. Rademacher Bk's independent of the observations, i.e.

IP(Bk = 1) = IP(Bk = �1) = 1=2. Let �1n be the a priori distribution de�ned on H1(�n) by (5.2), i.e.

�1n

0@m(�) = �(�; �0) + ��nh
p=2
n

X
k2Kn(l)

bk'k(�)

1A =
Y

k2Kn(l)

IP(Bk = bk) ; bk 2 f1;�1g :

Lemma 1 shows that the support of �1n is a subset of H1(�n) and �n = �0+�1n is an a priori Bayesian

measure over H0 [H1(�n). This gives the lower bound

sup
m(:)2H0

IPm(tn = 1)+ sup
m(:)2H1(�n)

IPm(tn = 0) �
Z

IPm(tn = 1)d�0(m) +

Z
IPm(tn = 0)d�1n(m) : (5.7)

The r.h.s. of (5.7) is the Bayes error of the test tn which is greater than the error of the optimal Bayesian

test based on the likelihood ratio Zn that we now introduce. Denote by Y and X the set of observations

on Y and X respectively and let pm(Y ;X ) be the density corresponding to the regression function m(:).

De�ne the a priori densities associated with the two hypotheses as

p0(Y ;X ) =
Z

pm(Y ;X ) d�0(m) and p1n(Y ;X ) =
Z

pm(Y ;X ) d�1n(m) :
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The likelihood ratio of the optimal Bayesian test is

Zn =
p1n(Y ;X )
p0(Y ;X )

=
p1n(YjX )
p0(YjX )

:

The optimal Bayesian test rejects H0 if Zn � 1 and its Bayesian error, see Lehmann (1986), is

1� 1

2

Z
jp0(Y ;X )� p1n(Y ;X )j dY dX = 1� 1

2
IEE0

�
jZn � 1j

��X � ;
where E0 is the expectation under p0. Then (5.7) implies that

sup
m(:)2H0

IPm(tn = 1) + sup
m(:)2H1(�n)

IPm(tn = 0) � lim inf
n!+1

IE

�
1� 1

2
E0

�
jZn � 1j

��X ��+ o(1) ;

and (5.6) holds if we can show that the limit in the r.h.s. is 1. We �rst note that 1� 1

2
E0

�
jZn � 1j

��X �
is positive as a conditional Bayes testing error. Then the Fatou lemma implies that it is enough to

show that E0

�
jZn � 1j

��X � IP! 0, which is implied by E0

h
(Zn � 1)

2
��X i IP! 0. But E0

h
(Zn � 1)

2
��X i =

E0

�
Z2
njX

�
� 1 as E0(ZnjX ) = 1. Hence, Inequality (5.6) holds if

E0

�
Z2
n
jX
� IP! 1 : (5.8)

Step 2: Study of the likelihood ratio Zn. On the one hand, the variables "i0 = Yi ��(Xi; �0), i = 1; : : : ; n,

are standard normal variables under p0 and

p0(YjX ) = (2�)�n=2 exp

"
�1

2

nX
i=1

"2
i0

#
:

On the other hand, given the de�nition of �1n,

p1n(YjX ) = (2�)�n=2
Z (

exp

"
�1

2

nX
i=1

(Yi �mn(Xi))
2

#)
d�1n(m)

= (2�)�n=2
Z (

exp

 
�1

2

nX
i=1

"2i0 �
1

2

nX
i=1

Æ2n(Xi) +

nX
i=1

"i0Æn(Xi)

!)
d�1n(m)

= p0(YjX )
Z (

exp

 
�1

2

nX
i=1

Æ2n(Xi) +

nX
i=1

"i0Æn(Xi)

!)
d�1n(m) :

The de�nition of the alternatives (5.2) gives

nX
i=1

"i0Æn(Xi) = ��nh
p=2
n

X
k2K(l)

nX
i=1

Bk"i0'k(Xi) and

nX
i=1

Æ2n(Xi) = �2�2nh
p

n

X
k2K(l)

nX
i=1

'2k(Xi) ;
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since B2
k
= 1 and 'k(:)'k0 (:) = 0 for k 6= k0. This yields

Zn = exp

0@��2�2nh
p
n

2

X
k2K(l)

nX
i=1

'2k(Xi)

1A
�

Y
k2K(l)

1

2

"
exp

 
��nh

p=2
n

nX
i=1

"i0'k(Xi)

!
+ exp

 
���nhp=2n

nX
i=1

"i0'k(Xi)

!#
:

Therefore,

Z2
n = exp

0@��2�2nhpn X
k2K(l)

nX
i=1

'2k(Xi)

1A
�

Y
k2K(l)

1

4

"
exp

 
2��nh

p=2
n

nX
i=1

"i0'k(Xi)

!
+ 2 + exp

 
�2��nhp=2n

nX
i=1

"i0'k(Xi)

!#
:

Conditionally on X , the variables
P

i
"i0'k(Xi), k 2 Kn(l), are independent centered Gaussian with

conditional variance given by
P

i
'2
k
(Xi). Using IE expN (0; �2) = exp(�2=2), we get

E0

�
Z2
njX

�
=

Y
k2K(l)

exp

 
��2�2nhpn

nX
i=1

'2k(Xi)

!
� 1

2

(
exp

 
2�2�2nh

p

n

nX
i=1

'2k(Xi)

!
+ 1

)

=
Y

k2K(l)

cosh

 
�2�2

n
hp
n

nX
i=1

'2
k
(Xi)

!
;

where cosh(x) is the hyperbolic cosine function. By a series expansion, 1 � cosh(x) � exp(x2), and

1 � E0

�
Z2
njX

�
� exp

24 X
k2K(l)

 
�2�2nh

p

n

nX
i=1

'2k(Xi)

!2
35 :

Then (5.8) holds if X
k2K(l)

 
�2
n
hp
n

X
i

'2
k
(Xi)

!2

IP! 0: (5.9)

Consider the expectation of this positive random variable. We have

IE

24 X
k2K(l)

 
�2
n
hp
n

nX
i=1

'2
k
(Xi)

!2
35 = �4

n
h2p
n

X
k2K(l)

�
nIE['4

k
(X)] + n(n� 1)IE2['2

k
(X)]

	
:

Now the standard change of variables x = lkhn + uhn and Assumption D yield

IE
�
'4k(X)

�
=

Z
h�2pn '4 [(x=hn)� lk] f(x) dx � Fh�pn

Z
'4(u) du = O(h�pn )
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and

IE
�
'2
k
(X)

�
=

Z
h�p
n
'2 [(x=hn)� lk] f(x) dx � F

Z
'2(u) du = O(1):

As hn = O(1=Kn(l)) = O(�
1=s
n ),

IE

24X
k

 
�2nh

p

n

X
i

'2k(Xi)

!2
35 =

�
n�4n + n2�4nh

p

n

�
O(1) =

h
n�4n + n2�(p+4s)=sn

i
O(1):

We then consider the two following cases:

i. s > p=4: �n = o (~�n) = o
�
n�

2s
p+4s

�
=) n�4n = o

�
n(p�4s)=(p+4s)

�
= o(1) and n2�

(p+4s)=s
n = o(1).

ii. s � p=4: �n = o (~�n) = o
�
n�1=4

�
=) n�4n = o(1) and n2�

(p+4s)=s
n = o

�
n(4s�p)=4s

�
= o(1).

Equation (5.9) follows and then (5.8). Step 1 shows that (5.6) holds and Theorem 1 is proved. 2

5.2 Proof of Theorem 2

For random variables Z and Z 0, de�ne IEk(Z) � IEm(ZjX 2 Ik), Var
k(Z) � Varm (ZjX 2 Ik),

hZ;Z 0i
k
� 1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i6=j

ZiZ
0
j 8k 2 K and hZ;Z 0i � 1p

2Kp=2

X
k2K

hZ;Z 0i
k
:

Let ProjKZ �
X
k

1I(X 2 Ik)IE
kZ be the projection of Z onto the space of linear indicators 1I(x 2 Ik),

k 2 K. Key properties of this mapping are

IE [ProjKZ] =
X
k

IP (X 2 Ik) IE
kZ = IEZ and IE

�
Proj2KZ

�
� IEZ2 :

We let U� = Y � �(X; ��), " = Y �m(X), Æ(X) = m(X) � �(X; ��), e(X) = �(X; b�n) � �(X; ��) and

SK = (Nk; k 2 K)>. For simplicity, we assume that K = ~�
�1=s
n =� is an integer. Finally, C, Ci, i = 1; : : :,

denote positive constants that may vary from line to line.

Preliminary results

Proposition 5 Let v2(K) = (1=Kp)
P

k2K 1I(Nk > 1)Nk�1
Nk

�
IEkU�2

�2
. Under Assumptions I, D and

M1{M3, v2(K) is bounded from above and in probability from below uniformly in m(�) 2 Cp(L; s), and

v2n � v2(K) = oIPm
(1) uniformly in m(�) 2 Cp(L; s) whenever

n

Kp logKp !1.
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Proof of Proposition 5: By Assumption D, fhp � IP(X 2 Ik) � Fhp. Now, on the one hand,

v2(K) � (1=Kp)
X
k2K

�
IEkU�2

�2
� (1=f)

X
k2K

IP[X 2 Ik]
�
IEkU�2

�2
= (1=f)IE

�
Proj2KU

�2
�

� (1=f)IE
�
U�4

�
� (8=f)

�
IEmY

4 + IEm�
4(X; ��m)

�
< C :

On the other hand, by Lemma 4, with probability going to one uniformly in k 2 K,

v2(K) � (1=2Kp)
X
k2K

�
IEkU�2

�2
� (1=2F)

X
k2K

IP[X 2 Ik]
�
IEkU�2

�2
� (1=2F)IEm

�
Proj2KU

�2
�
� (1=2F)IE2

m

�
U�2

�
� (1=2F)IE2

m

�
"2
�
> 0 :

Let v�2n = (1=Kp)
P

k2K hU�2; U�2ik=Nk. Then��v2
n
� v�2

n

�� � (1=Kp)
X
k2K

1I(Nk > 1)

Nk

���hbU2; bU2i
k
� hU�2; U�2i

k

��� : (5.10)

But hbU2; bU2i
k
�hU�2; U�2i

k
= �4hU�2; U�e(X)i

k
+2hU�2; e2(X)i

k
+4hU�e(X); U�e(X)i

k
�4hU�e(X); e2(X)i

k

+he2(X); e2(X)i
k
. By Assumptions M1{M3 , je(Xi)j = OIPm

(1=
p
n) uniformly in m(�) and i. Hence the

dominant term in (5.10) is

(4=Kp)
X
k2K

1I(Nk > 1)

Nk

jhU�2; U�e(X)i
k
j = OIPm

(1=
p
n)(1=Kp)

X
k2K

1I(Nk > 1)

Nk

hU�2; jU�ji
k
:

Now, by Assumptions I and M1,

IEm

"
(1=Kp)

X
k2K

1I(Nk > 1)

Nk

hU�2; jU�ji
k
jSK

#

= (1=Kp)
X
k2K

1I(Nk > 1)(Nk � 1)

Nk

IEkU�2IEkjU�j

� (1=f)
X
k2K

IP [X 2 Ik ] IE
kU�2IEkjU�j = (1=f)IEm

�
ProjKU

�2ProjKjU�j
�

� (1=f)IE1=2
m

�
U�4

�
IE1=2
m

�
U�2

�
� C

This shows that v2
n
� v�2

n
= OIPm

(1=
p
n) uniformly in m(�). Now v�2

n
� v2(K) is centered conditionally

upon SK. Moreover, by Lemma 4, we have, uniformly in m(�),

IEm

h�
v�2
n
� v2(K)

�2 jSKi = Varm
�
v�2
n
jSK
�

= (1=K2p)
X
k2K

2
1I(Nk > 1)Nk(Nk � 1)

N4
k

�
2(Nk � 2)

�
IEkU�2

�2
VarkU�2 +

�
IEkU�4

�2
�
�
IEkU�2

�4�
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� (1=K2p)
X
k2K

2
1I(Nk > 1)

N2
k

�
2Nk

�
IEkU�2

�2
IEkU�4 +

�
IEkU�4

�2�
� OIP(nh

p)�2
X
k2K

�
IP(X 2 Ik)IE

kU�4
�2

+OIP(nh
p)�1

X
k2K

IP(X 2 Ik)
�
IEkU�2

�2 X
k02K

IP(X 2 Ik0 )IE
k
0

U�4

� OIP(nh
p)�2IE2

�
ProjKU

�4
�
+OIP(nh

p)�1IE
�
Proj2KU

�2
�
IE
�
ProjKU

�4
�

� OIP(nh
p)�2IE2

mU
�4 +OIP(nh

p)�1IE2
mU

�4 ! 0 :

Hence v�2
n
� v�2(K) = OIPm

(nhp)�1=2 uniformly in m(�). 2

Let Tn = hU�; U�i, A = hÆ(X); e(X)i, B = h"; e(X)i and R = he(X); e(X)i. Then

bTn = Tn � 2 (A+B) +R : (5.11)

Proposition 6 Under Assumptions D, I, M1|M3, R and B are both OIPm
(hp=2) uniformly for m(�) in

Cp(L; s), and A = OIPm
(
p
nhpIE1=2Æ2(X)) uniformly for m(�) in Cp(L; s).

Proof of Proposition 6: To simplify notations, we consider the case where d = 1. By Assumptions

M1{M3 , je(Xi)j = OIPm
(1=
p
n) uniformly in m(�) and i. Thus

jRj = OIPm
(nKp=2)�1

X
k2K

Nk = OIPm
(hp=2);

uniformly for m(�) in Cp(L; s). Under Assumptions M1 and M2, a standard Taylor expansion yields

e(Xi) =
�b�n � ��

�0
�1(Xi) + kb�n � ��k2�2(Xi) ; (5.12)

where �1(Xi) = ��(Xi; �
�) depends only on Xi and �2(Xi) depends on Xi and b�n . Therefore B =�b�n � ��

�0
B1 + kb�n � ��k2B2; where B1 = h"; �1(X)i and B2 = h"; �2(X)i. Now IE(B1) = 0 and

IE(B2
1) =

1

2Kp

X
k2K

IE

241I [Nk > 1]

N2
k

X
fXi;Xj ;X

0

j
g2Ik;i 6=j;i6=j0

"2
i
�1(Xj)�1(Xj0 )

35
=

O(1)

2Kp

X
k2K

IE

�
1I [Nk > 1] (Nk � 1)2

Nk

�
= O(nhp);

using Assumption M2. Similarly,

IEjB2j � O(1)p
2Kp=2

X
k2K

1I [Nk > 1]

Nk

X
fXi;Xjg2Ik;i6=j

IEkj"ij

=
O(1)p
2Kp=2

X
k2K

IE [1I [Nk > 1] (Nk � 1)] = O(nhp=2):

24



As
p
n
�b�n � ��

�
= OIPm

(1) uniformly in m(�), we obtain B = OIPm
(hp=2) uniformly in m(�).

From (5.12), A =
�b�n � ��

�0
A1 + kb�n � ��k2A2; where A1 = hÆ(X); �1(X)i and A2 = hÆ(X); �2(X)i.

Now,

IEjA1j �
O(1)p
2Kp=2

X
k2K

IE(Nk � 1)1I [Nk > 1] IEkjÆ(X)j � O(nhp=2)IEjÆ(X)j � O(nhp=2)IE1=2Æ2(X):

Similarly, IEjA2j = O(nhp=2)IE1=2Æ2(X). Since
p
n
�b�n � ��

�
= OIPm

(1) uniformly in m(�), we obtain

A = OIPm
(
p
nhpIE1=2Æ2(X)) uniformly in m(�). 2

Proposition 7 shows that projections on the set of indicator functions 1I(x 2 Ik), k 2 K, can be used to

approximate accurately enough the magnitude of the L2-norm of m(�).

Proposition 7 Under Assumption D,

IE1=2
�
Proj2Km(X)

�
� C1

�
IE1=2m2(X)� hs

�
;

for any m(�) 2 Cp(L; s) and h small enough, where C1 > 0 depends only upon L, s and f(�).

This result is new for multivariate random designs, but follows from proper modi�cations of the arguments

used in Ingster (1993, pp. 253 sqq.). A detailed proof is given in Appendix B.

The following Proposition 8 gives some bounds for the unconditional mean and variance of Tn.

Proposition 8 Under Assumptions D and I, if nhp !1, then, for any m(�) 2 Hm(��n) with ��n > hs

and n large enough,

IEmTn � C2nh
p=2
�
IE1=2Æ2(X)� hs

�2
for some C2 > 0 ;

Varm(Tn) � IEmv
2(K) + C3nh

pIEm Æ2(X) + C4nIE
2
m
Æ2(X) for some C3; C4 > 0 :

Proof of Proposition 8: Let wk = hU�; U�i
k
. By Lemmas 2 and 3,

IEmTn =
1p

2Kp=2

X
k2K

IEm!k =
1p

2Kp=2

X
k2K

IE [(Nk � 1)1I(Nk > 1)]
�
IEkÆ(X)

�2
� nhp=2

2
p
2
IE
�
Proj2KÆ(X)

�
� C1

2
p
2
nhp=2

�
IE1=2Æ2(X)� hs

�2
;

for n large enough, using Proposition 7 and IE1=2Æ2(X)� hs � 0 as m(�) 2 H1(��n) with ��n > hs.
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Because the !k's are uncorrelated given SK by Lemma 2,

Varm(Tn) =
1

2Kp

X
k2K

IEm [1I(Nk > 1)Varm(!kjSK)] +
1

2Kp
Varm

"X
k2K

1I(Nk > 1)IEm (!k jSK )
#
:

Using Lemmas 2 and 3, Assumption I and IP(X 2 Ik) � fhp uniformly in k, we get

1

2Kp

X
k2K

IE [1I(Nk > 1)Varm(!kjSK)] � IEmv
2(K) + 2hp

X
k2K

IENk

�
IEkÆ(X)

�2 h
IEk"2 + IEkÆ2(X)

i
� IEmv

2(K) + C5nh
pIE
�
Proj2KÆ(X)

�
+ C6nIE

2
�
ProjKÆ

2(X)
�
;

1

2Kp
Var

 X
k2K

1I(Nk > 1)IEm [!k jSK ]
!

� 1

2Kp

X
k

�
IEkÆ(X)

�4
Var ((Nk � 1)1I(Nk > 1))

+
1

2Kp

X
k 6=k0

�
IEkÆ(X)

�2 �
IEk

0

Æ(X)
�2

Cov ((Nk � 1)1I(Nk > 1); (Nk0 � 1)1I(Nk0 > 1))

� C7nIE
2
�
Proj2KÆ(X)

�
+ C8nh

pIE2
�
Proj2KÆ(X)

�
;

where we use the properties of ProjK. Combining inequalities, as nh
p !1, we obtain

Var (Tn) � IEmv
2(K) + C5nh

pIE
�
Proj2KÆ(X)

�
+ C6nIE

2
�
ProjKÆ

2(X)
�

+ C7nIE
2
�
Proj2KÆ(X)

�
+ C8nh

pIE2
�
Proj2KÆ(X)

�
� IEmv

2(K) + C3nh
pIE Æ2(X) + C4nIE

2 Æ2(X) :2

Main proof

Part i. From (5.11), Proposition 6 and as A = 0 under H0, it suÆces to show that Tn=vn
d�!N (0; 1).

Assume that some ordering (denoted by �) is given for the set K of indexes k. Let J1; : : : ; Jn be any

(random) rearrangement of the indices i = 1; : : : ; n, such that XJi 2 Ik i�
X
`<k

N` < Ji �
X
`�k

N` :

Let Fn;k =

8<:SK; YJi :X
`<k

N` < Ji �
X
`�k

N`

9=;. Under H0,
n
Tn;k =

P
k0�k !k0=

p
2Kp;Fn;k

o
, where wk =

hU�; U�i
k
, is a zero-mean martingale array. It is then suÆcient to show that

v�2
n

X
k2K

IE0

�
!2
k
=(2Kp)jFn;k�1

� p�! 1; (5.13)

v�2n

X
k2K

IE0

h
!2
k=(2K

p)1I
����!k=p2Kp

��� > �vn

�
jFn;k�1

i
p�! 0; 8� > 0 (5.14)
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from Corollary 3.1 in Hall and Heyde (1980), see also the remarks following it. Now

1

2Kp

X
k2K

IE0

�
!2
kjFn;k�1

�
=

1

2Kp

X
k2K

IE0

�
!2
kjSK

�
=

1

2Kp

X
k2K

2(Nk � 1)

Nk

�
IEkU�2

�2
= v2(K)

from Lemma 2, so that (5.13) follows from Proposition 5. Now (5.14) is implied by

v�4n

1

4K2p

X
k2K

IE0

�
!4
kjFn;k�1

� p�! 0:

By Assumption I, straightforward computations lead to

1

Kp

X
k2K

IE0

�
!4
k
jFn;k�1

�
� C

Kp

X
k2K

�
IEk"4

�2
= O(1):

By Proposition 5, (5.14) follows. 2

Part ii. As v2n is bounded from above uniformly in m(�) from Proposition 5, (5.11) and Proposition 6

yields

IPm

�
v�1n

bTn � z�

�
� IPm

�
Tn � z0� + 2M

p
nhpIE1=2Æ2(X)

�
+ o(1);

for any M > 0 and some z0
�
> 0, where the o(1) is uniform in m(�). But

IPm

�
Tn � z0� + 2M

p
nhpIE1=2Æ2(X)

�
= IPm

h
� (Tn � IEmTn) � IEmTn � z0� � 2M

p
nhpIE1=2Æ2(X)

i2
� VarmTnh

IEmTn � z0� � 2M
p
nhpIE1=2Æ2(X)

i2 ;

if IEmTn � z0� � 2M
p
nhpIE1=2Æ2(X) > 0. It is then suÆcient to show that � can be chosen so that

IEmTn � z0� � 2M
p
nhpIE1=2Æ2(X) > 0 ;

VarmT
�
nh

IEmT �n � z0� � 2M
p
nhpIE1=2Æ2(X)

i2 � � ; (5.15)

uniformly for m(:) in Hm(�~�n). Proposition 8 gives that for any m(:) in Hm(�~�n) and n large enough

IEmTn � z0� � 2M
p
nhpIE1=2Æ2(X)

nhp=2IEÆ2
� C2

�
1� �s

�

�2
� z0�
�2�p=2

� 2M
1

�
p
n~�n

;

and this lower bound is increasing in � and positive for � large enough. Proposition 8 also yields

VarmTn�
nhp=2IEÆ2(X)

�2 � IEv2(K) + C3nh
pIEÆ2(X) + C4nIE

2Æ2(X)

n2hpIE2Æ2(X)

� IEv2(K)

�4�p
+

C3

�2n~�2
n

+
C4

nhp
;

and this upper bound is bounded because of Proposition 5, and decreasing in �. Hence (5.15) can be

made smaller than � uniformly for m(:) in Hm(�~�n) by taking � large enough. 2

27



5.3 Proof of Theorem 4

Without loss of generality, we consider the case of testing for a pure noise model, that isM = f0g. Then

z(�) = z0(�) + z1(�) = (1=
p
n)

nX
i=1

"iw(Xi; �) + (1=
p
n)

nX
i=1

m(Xi)w(Xi; �) :

Consider the a priori �1n de�ned in Theorem 1's proof, i.e. the measure de�ned by the random functions

mn(�) = Æn(�) = ��nh
p=2
n

X
k

Bk'k(�);

where B1; : : : ; BKn
are independent Rademacher variables, hn = ��

1=s
n , 'k(�) is de�ned by (5.1), and

further assume that '(�) is bounded with r-�rst zero moments. We have

IE�1nz
2
1 (�) =

�2�2
n
hp
n

n

nX
i;j=1

X
k2K

IE [w(Xi; �)w(Xj ; �)'k(Xi)'k(Xj)]

uniformly in �. Now, uniformly in � and k,

IE
�
w2(Xi; �)'

2
k
(Xi)

�
� F sup

x2[0;1]p;�2�

w(x; �)

Z
'2(x) dx

and

IE [w(Xi; �)'k(Xi)] = hp=2n

Z
w(lkhn + uhn; �)f(lkhn + uhn)'(u) du = O(hr+p=2) :

Hence, we have uniformly in �

IE�1nz
2
1 (�) = �2�2nO(1) + �2�2nnh

2r+pO(1) :

Because r can be chosen as large as desired, IE�1nz
2
1 (�) = o(1) whenever �n = O(n�a), for any a > 0.

Under the same assumptions, IE�1n jz1 (�) jq = o(1) for any 1 � q < 2 from H�older inequality, and

IE�1n jz1 (�) jq = o(1) for any 2 < q < 1 from the Khinchin-Kahane inequality, see e.g. de la Pe~na and

Gin�e (1999). Hence,

IE�1n

Z
jz1 (�) jq d�(�) = o(1) :

Thus

sup
H1(�n)

IPm (In;q � u�;q) �
Z

IPm (In;q � u�;q) d�1n(m)

�
Z

IPm

 �Z
jz0(�)jq d�(�)

�1=q
� u�;q

!
d�1n(m) + o(1)

� IP0 (In;q � u�;q) + o(1) = 1� �+ o(1) :2
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Footnotes

1. The main di�erence lies in the compactness of the set of �rst derivatives.

2. Nonlinear least-squares estimators are adapted to our framework, but one could use estimators

designed for speci�c purposes, as soon as they satisfy Assumption M3, see for instance Fan and Huang

(2000).

3. As pointed out by Bierens and Ploberger (1997), we can without loss of generality replace X by

� (X), where � (�) is a bounded one-to-one smooth mapping.

4. In the above expansion, the remainder term is zero with standard normal errors. Non-normality

or heteroscedasticity induce a remainder term which must be studied via the Fatou Lemma and some

truncation arguments as done in Ibragimov and Has'minskii (1981) for eÆcient parametric estimation.

5. This does not mean that our test has trivial power against any alternative in H1 (�n) with �n =

o(~�n), though it has trivial power against alternatives (1.1) with rn / n�1=2.

6. Suprema should then be considered over this set in De�nition 1.

7. This follows from Propositions 5, 6 and 8 in Section 5.

8. In the CTG model and alternatives de�ned through Lq norms, Lepski, Nemirovski and Spokoiny

(1999) have shown that the optimal minimax testing rate and the optimal minimax estimation rate

for the Lq norm coincide when q is even only.

9. In the case of testing for a pure noise model with homoscedastic errors and regular alternatives,

the speci�cation test proposed by Dette and Munk (1998) is also based on (3.4), with �2 replaced by

a ineÆcient di�erence-based estimator.

10. This can be shown by adapting Proposition 8 to the case h / n�1=p, as formally established in a

previous version of this paper.
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Appendix A: Auxiliary results

Lemma 2 Let !k = hU�; U�i
k
. Under Assumptions I, for any k 2 K such that Nk > 1,

IEm[!kjSK] = (Nk � 1)
�
IEkÆ(X)

�2
;

Varm[!kjSK] =
2(Nk � 1)

Nk

�
IEkU�2

�2
+

4(Nk � 1)(Nk � 2)

Nk

�
IEkÆ(X)

�2
IEkU�2

� 2(Nk � 1)(2Nk � 3)

Nk

�
IEkÆ(X)

�4
:

Moreover, the !k's are uncorrelated given SK.

Proof of Lemma 2: Conditionally upon SK, the Xi's are independent and identically distributed within

each cell. The expression of the conditional expectation then follows from IEkU� = IEkÆ(X). The other

claims are easily checked. 2

Lemma 3 Under Assumptions D and I, if nhp !1, then for n large enough,

IE[(Nk � 1)1I(Nk > 1)] � n

2
IP(X 2 Ik) 8k 2 K ;

Var [(Nk � 1) 1I(Nk > 1)] � 2nIP(X 2 Ik) 8k 2 K ;

Cov [(Nk � 1) 1I(Nk > 1); (Nk0 � 1) 1I(Nk0 > 1)] � 2nIP(X 2 Ik)IP(X 2 Ik0 ) 8k 6= k0 2 K :

Proof of Lemma 3: Note that (Nk � 1)1I(Nk > 1) = Nk � 1+ 1I(Nk = 0). As 1I(Nk = 1) is a Bernoulli

random variable, then, by Assumptions D and I, we have for n large enough,

IE[(Nk � 1)1I(Nk > 1)] = nIP(X 2 Ik)� 1 + (1� IP(X 2 Ik))
n � n

2
IP(X 2 Ik) ;

Var [(Nk � 1) 1I(Nk > 1)] � nIP(X 2 Ik) [1� IP(X 2 Ik)] + 1=4� 2IE(Nk) IP(Nk = 0) � 2nIP(X 2 Ik) :

The covariance equals

Cov(Nk; Nk0) + Cov (1I(Nk = 0); 1I(Nk0 = 0)) + Cov (Nk; 1I(Nk0 = 0)) + Cov (Nk0 ; 1I(Nk = 0)) :

The �rst item is �IE(Nk)IE(Nk0) and the second item is

(1� IP(X 2 Ik)� IP(X 2 Ik0 ))
n � (1� IP(X 2 Ik))

n
(1� IP(X 2 Ik0 ))

n
:
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They are both negative. Moreover,

Cov (Nk; 1I(Nk0 = 0)) = n (1� IP(X 2 Ik0 ))
n�1

IP(X 2 Ik)IP(X 2 Ik0 ) � nIP(X 2 Ik)IP(X 2 Ik0 ) :2

Lemma 4 Under Assumptions D and I, if n

Kp logKp !1,

IP

�
min
k2K

1I(Nk > 1) = 1

�
! 1 and max

k2K

���� Nk

IENk

� 1

���� = oIP(1) :

Proof of Lemma 4: As Nk is a binomial random variable, the Bernstein inequality yields

IP

����� Nk

IENk

� 1

���� � t

�
= IP

�����Nk � IENkp
n

���� � tIENkp
n

�
� 2 exp

�
� t2

2 (1 + t=3)
IENk

�
;

for any t > 0, see Shorack and Wellner (1986, p. 440). This yields

IP

�
min
k2K

1I(Nk > 1) = 0

�
�
X
k2K

IP [Nk = 0] �
X
k2K

IP

�����Nk � IENkp
n

���� � IENkp
n

�
� 2Kp exp

�
�3

8
f
n

Kp

�
! 0 ;

as IENk � fn=Kp under Assumption D, and n

Kp logKp !1. Moreover, for any t > 0,

IP

�
max
K2K

���� Nk

IENk

� 1

���� � t

�
�
X
K2K

IP

�����Nk � IENkp
n

���� � tIENkp
n

�
� 2Kp exp

�
� t2

2 (1 + t=3)
f
n

Kp

�
! 0 :2

Appendix B: Proof of Proposition 7

Step 1. Let s0 = [s+ 1], assume that K = Kn is larger than s0, and de�ne

�(0) = 0 ; �(1) = s0 ; : : : ; �([K=s0]� 1) = ([K=s0]� 1)s0 ; �([K=s0]) = K ;

where [:] is the integer part. This gives, with ` = `n = [K=s0],

s0 � �(r + 1)� �(r) � 2s0 ; r = 0; : : : ; `� 1 : (B.1)

Let Q be the set of vectors whose generic element is q with p components in f�(0); : : : ; �(`� 1)g, i.e.

q = (�(r1;q); : : : ; �(rp;q))
> ; rj;q = 0; : : : ; `� 1 ; j = 1; : : : ; p :
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Consider the following subsets of [0; 1]p, which de�ne a partition up a to negligible set:

�q(h) = �q =

pY
j=1

[�(rj;q)h; �(rj;q + 1)h) ; q 2 Q : (B.2)

De�ne kÆk22 = IEÆ2(X). Let Pm;q(:) be the Taylor expansion of order [s] of m(�) around qh. Because m(:)

is in Cp(L; s) and by de�nition of �q , we get by (B.1) that jm(x) � Pm;q(x)j � Cs;Lh
s for any x in �q

for some constant Cs;L. If Pm(:) is such that Pm(:) = Pm;q(:) on �q , we have

km� Pmk22 � IE

24X
q2Q

C2
s;Lh

2s1I(X 2 �q)

35 = C2
s;Lh

2s :

Assume that we have been able to establish that, for some constant Cs;f ,

kProjKPmk2 � Cs;fkPmk2 : (B.3)

Because ProjK is contracting, this would give the desired result, as

kProjKmk2 � kProjKPmk2 � kProjK(m� Pm)k2 � kProjKPmk2 � km� Pmk2

� Cs;fk(Pm �m) +mk2 � Cs;Lh
s � Cs;fkmk2 � (1 + Cs;f )Cs;Lh

s :

Inequality (B.3) will follow by summation over q 2 Q of inequalities of the type

IE
h
(ProjKP (X))

2
1I(X 2 �q)

i
� C2

s;f
IE
�
P 2(X)1I(X 2 �q)

�
; (B.4)

for any polynomial functions P (:) of degree [s].

Step 2. Let us now give a matrix expression of (B.4). For any � = (�1; : : : ; �p) 2 INp with
Pp

j=1 �j � [s],

let x(�) =
Q

p

j=1 x
�j

j
. Every polynomial functions of degree [s] is completely determined by the coeÆcients

a =
�
a� ;
Pp

j=1 �j � [s]
�
(with a suitable ordering for the index � in INp) such that

P (x) =
X

�;

P
�j�[s]

a�

�
x� qh

h

�(�)

:

This gives, for x in �q ,

ProjKP (x) =
X

Ik��q

X
�;

P
�j�[s]

a�
1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#
1I(x 2 Ik) :
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Let �1 = Card fIk � �qg, �2 = Card
nPp

j=1 �j � [s]
o
and Bq(h) be the �1 � �2 matrix with typical

element indexed by k and �

1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#
; Ik � �q ;

pX
j=1

�j � [s] :

Let �q(h) = Diag(IP(X 2 Ik) ; Ik � �q). Because the density f(�) is bounded from below and the �q(h)'s

are diagonal, we have (for the standard ordering for positive symmetric matrices)

�q(h) >> fhpId :

Hence the l.h.s. of (B.4) writes

IE
h
(ProjKP (X))

2
1I(X 2 �q)

i
= a>B>

q
(h)�q(h)Bq(h)a � fhpa>B>

q
(h)Bq(h)a :

Let Dq(h) be the square �2 matrix with typical element, indexed by � and �0,

1

IP(X 2 �q)
IE

"�
X � qh

h

�(�+�0)

1I(X 2 �q)

#
;

pX
j=1

�j � [s] ;

pX
j=1

�0j � [s] :

Since the density f(:) is bounded from above, we have for the r.h.s. of (B.4)

IE
�
P 2(X)1I(X 2 �q)

�
� IP(X 2 �q)a

>Dq(h)a � F (2s0h)pa>Dq(h)a ;

using (B.1). Therefore, (B.4) holds as soon as, for any a, q, and h small enough,

a>Dq(h)a � Cs;f a>B>q (h)Bq(h)a : (B.5)

Step 3. We can limit ourselves to establish (B.5) for vectors a with norm 1 by homogeneity. This step

works by showing that the matrices Dq(h) and Bq(h) converge (uniformly with respect to q) to some

matrices Dq and Bq, Bq being of full rank for any q. Moreover the number of matrices Bq and Dq, q 2 Q,
will be �nite. If the Bq 's are of full rank, a possible choice of Cs;f in (B.5) is

Cs;f = max
q2Q

supfa>Dqa : a>B>
q
Bqa � 1g+ 1 :

Let us now determine the limits Bq . The entries of Bq(h) are

1

IP(X 2 Ik)
IE

"�
X � qh

h

�(�)

1I(X 2 Ik)

#

=
1R

[0;1]p
f(kh+ hu) du

Z
[0;1]p

(k � q + u)(�)f(kh+ hu) du

=
1

f(kh) + o(1)

Z
[0;1]p

(k � q + u)(�)(f(kh) + o(1)) du!
Z
[0;1]p

(k � q + u)(�)du ;
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uniformly in k, q, since f(:) is bounded away from 0 and uniformly continuous on [0; 1]p by Assumption D.

We now check that the number of limits Bq, q in Q is �nite. The de�nitions (5.3) and (B.2) require that

Ik = kh+h[0; 1)p � �q = q+h[0; 1)p, which implies that k = (k1; : : : ; kp)
> and q = (�(r1;q); : : : ; �(rp;q))

>

are such that �(rj;q) � kj < �(rj;q + 1), independently of h . Therefore,

0 � kj � �(rj;q) < �(rj;q + 1)� �(rj;q) � 2s0 ; j = 1; : : : ; p : (B.6)

As
Pp

j=1 �j � [s], the number of Bq , q in Q, is bounded by (2s0)[s]
p

independently of K. It can be

similarly shown that the Dq(h)'s converge, uniformly in q, to some matrices Dq with entriesZQ
p

j=1
[0;�(rj;q+1)��(rj;q))

u(�+�
0) du ;

which are also in �nite number by (B.1) and (B.6).

To �nish the proof, we need to check that all the Bq's are of full rank. To this purpose assume that there

exists q in Q and a = (a� ;
P

p

j=1 �j � [s]) with Bqa = 0, i.e. for all k such that Ik � �q ,X
�;

P
p

j=1
�j�[s]

a�

Z
[0;1]p

(k � q + u)(�) du =

Z
k�q+[0;1]p

X
�;

P
p

j=1
�j�[s]

a�u
(�) du = 0 :

This implies that P (x) =
P

�
a�x

(�) of degree [s] is such that,Z
�+[0;1]p

P (u)du = 0 ; 0 � �j < s0 ; j = 1; : : : ; p ; (B.7)

with � = (�1; : : : �p)
> satisfying the conditions in (B.1) and (B.6). We now use an induction argument.

Let P(p) be the proposition: if P (x) of degree [s], x in [0; 1]p, is such that (B.7) holds, then P (:) = 0.

Note that P(1) holds, because (B.7) and the mean value theorem gives that P (x(�)) = 0 for some x(�)

in ]�; �+1[, � = 0; : : : ; s0. Then the univariate polynomial function P (:) of degree [s] should have at least

[s]+1 distinct roots, which is possible only if P (:) � 0. We now show that P(p�1) implies P(p). Assume
that P (x) of degree [s] with x = (x1; : : : ; xp)

> in [0; 1]p is such that (B.7) holds. De�ne

x�1 = (x2; : : : ; xp)
> 2 [0; 1]p�1 ; Px�1(x1) = P (x1; x�1) = P (x) :

Then (B.7) yields for any �1 in IN with 0 � �1 < s0,Z
u�12��1+[0;1]p�1

�Z �1+1

�1

P (u1; u�1)du1

�
du�1 = 0 ; 0 � �j < s0 ; j = 2; : : : ; p :

As a consequence, P(p� 1) gives for any x�1 in [0; 1]p�1,Z
�1+1

�1

P (u1; x�1)du1 =

Z
�1+1

�1

Px�1(u1)du1 = 0 ; 0 � �1 < s0 :
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Then P(1) shows that Px�1(:) � 0 for any x�1 in [0; 1]p�1, which implies P(p). 2

Appendix C

Proposition 9 Assume p = 1 and M = f0g. Let the c.d.f. of the design be 1 � x�, x � 1,  > 0. If

2s > , there exists a sequence fmn(:)gn�1 of functions in C1(L; s) with IE1=2m2
n(X) � �, such that, for

any �-level test tn, lim infn!+1 IPmn
(tn = 1) � 1� �.

Proof: Assume s is integer. Consider the �(s+ 2) distribution c.d.f

I(x) =
1I(x � 0)

(s+ 1)!

Z x

0

ts+1 exp(�t) dt ;

which admits s bounded continuous derivatives over IR. Letmn(x) = C(x�xn)sI(x�xn), where xn = n2=

and C is a constant. Note that mn(x) vanishes if x � xn. The binomial formula for derivatives yields

m(s)
n
(x) = C

sX
k=0

I(k)(x � xn)
(s!)2

(sk)!(k!)2
(x� xn)

k :

Since the functions (x � xn)
kI(k)(x � xn), k = 0; : : : ; s, are bounded, m(:) is in C1(L; s) for C small

enough. Moreover,

IEm2
n(X) = C2

Z +1

xn

I2(x� xn)(x� xn)
2sx��1dx ;

and IEm2
n
(X) = +1 if 2s �  � 0, because m2

n
(x)x��1 is equivalent to x2s��1 when x grows. If

supXi � xn, we have mn(Xi) = 0, i = 1; : : : ; n, so that Yi = �"i, i = 1; : : : ; n. Hence,

IPmn
(�n = 0 ; sup

1�i�n
Xi � xn) = IPH0

(�n = 0 ; sup
1�i�n

Xi � xn) :

This leads to

IPmn
(�n = 1) � IPmn

(�n = 1 ; sup
1�i�n

Xi � xn) = IPH0
(�n = 1 ; sup

1�i�n

Xi � xn)

� IPH0
(�n = 1)� IP( sup

1�i�n
Xi > xn) � 1� �� nIP(X > xn) = 1� �� nn�2 :2
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