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Résumé Cette thèse comporte cinq chapitres qui correspondent à des articles soumis

ou en cours de publication. Les trois premiers étudient des modèles à coefficients aléa-

toires. Le troisième chapitre est aussi un problème de combinaison de données, ce qui

fait le lien avec le quatrième. Le cinquième chapitre contient l’analyse des propriétés

de la décomposition en valeurs singulières (SVD) d’un opérateur qui intervient dans

le problème inverse du second chapitre.

Le premier chapitre étudie l’identiőcation nonparamétrique de la distribution de

l’hétérogénéité inobservée dans certains modèles à coefficients aléatoires lorsque les ré-

gresseurs ont une variation limitée, avec un support possiblement discret mais dénom-

brable. Nous exhibons un compromis dans l’identiőcation de la distribution des coef-

őcients aléatoires entre la taille des classes nonparamétriques que l’on considère pour

ces distributions et la variation des régresseurs. Nous obtenons de nouveaux résul-

tats dans un modèle linéaire où les coefficients, le terme d’erreur et les pentes, sont

aléatoires et indépendants des regresseurs, mais aussi dans des modèles à coefficients

aléatoires à choix binaire ou de données de panel.

Le second chapitre se concentre sur l’estimation de la densité jointe des coefficients

dans le modèle linéaire à coefficients aléatoires. Nous considérons le cas de régresseurs

dont le support est possiblement limité, i.e., est un sous-ensemble strict de l’espace.

Nous imposons que les coefficients, hormis l’intercept, n’aient pas de queues épaisses.

Nous obtenons des bornes inférieures sur le risque minimax pour un large ensemble

de régularités. Certaines classes de régularité autorisent des vitesses de convergence

polynomiales voire quasi-paramétriques. Nous présentons un estimateur qui est op-

timal au sens minimax ainsi qu’une règle de sélection basée sur les données pour

l’estimation adaptative.

Le troisième chapitre considère l’inférence écologique, qui est utilisée par exemple

pour prévoir la probabilité de voter conditionnellement à la race, lorsque l’on observe

seulement le taux de participation et la composition raciale de différents bureaux

de votes. De manière plus générale, ce problème consiste, à partir d’un échantillon

de distributions marginales (les taux de participation et les compositions raciale) de

deux variables discrètes (le vote et la race) obtenues pour différents groupes (agrégées
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par bureaux de votes), à prévoir la table de contingence sachant les distributions

marginales. Ce problème tombe sous la nomenclature de la combinaison de don-

nées, puisqu’il utilise deux jeux de données qui ne peuvent pas être appareillés au

niveau individuel (les résultats éléctoraux et le recensement). En utilisant la loi des

probabilités totales, ce problème peut aussi se voir comme la prévision de coeffi-

cients aléatoires sachant la variable dépendante et des régresseurs dans un système

linéaire à coefficients aléatoires avec des régresseurs bornés. Dans ce contexte, je car-

actérise l’ensemble identiőé sans hypothèse supplémentaire et montre que l’hypothèse

d’absence d’effets contextuels permet l’identiőcation. Puis, je développe un estimateur

qui est adaptatif et optimal au sens minimax. Enőn, j’applique mes méthodes pour

estimer l’effet du porte-à-porte sur les résultats des candidats à la présidentielle pour

deux catégories d’électeurs, construites à partir des votes passés, dans l’expérience

randomisée de Pons (2018). Je montre, seulement à partir de données agrégées au

niveau des bureaux de votes, que le porte-à-porte agit particulièrement en persuadant

les électeurs indécis, plutôt qu’en mobilisant ceux qui sont déjà convaincus.

Le quatrième chapitre construit un nouveau test des anticipations rationnelles

d’une variable individuelle, basé sur les distributions marginales des réalisations et

des anticipations subjectives de celle-ci. Ce test peut être appliqué dans de nombreux

contextes, notamment dans la situation fréquente où les réalisations et les anticipa-

tions sont observées dans deux jeux de données différents qui ne peuvent pas être

appareillés. Nous montrons que le fait que l’on puisse rationaliser à partir des don-

nées l’hypothèse d’anticipations rationnelles est équivalent au fait que la distribution

des réalisations domine au second ordre la distribution des croyances. L’hypothèse

nulle peut alors être réécrite comme un système de plusieurs inégalités de moments et

de contraintes d’égalité, pour lequel des tests ont été développés dans la littérature.

Le test est robuste aux erreurs de mesures sous certaines hypothèses et peut être

étendu pour tenir compte des chocs agrégés. Enőn, nous testons la rationalité des an-

ticipations salariales. Tandis que les individus ne se trompent pas en moyenne quant

à leurs salaires futurs, notre test rejette l’hypothèse d’anticipations rationnelles.

Le dernier chapitre considère la transformée de Fourier tronquée sur [−𝑐, 𝑐] et agis-
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sant sur l’espace 𝐿2(cosh(𝑏| · |)) sur lequel elle est injective. Nous donnons des bornes

non-asymptotiques supérieures et inférieures sur les valeurs singulières avec un com-

portement qualitatif similaire en 𝑚 (l’index), 𝑏, et 𝑐. Les bornes inférieures sont util-

isées pour obtenir des vitesses de convergence pour le prolongement analytique stable

de fonctions potentiellement non limitées en fréquences dont la transformée de Fourier

appartient à 𝐿2(𝑒𝑏|·|). Nous donnons aussi des bornes sur la norme sup des fonctions

singulières. Enőn, nous proposons une méthode d’implémentation numérique pour

calculer la SVD et l’appliquons au prolongement analytique stable quand la fonction

est observée avec erreur sur un intervalle. Dans l’application numérique, nous con-

sidérons deux cas. D’abord lorsque la fonction à extrapoler admet une transformée

de Fourier qui n’est pas à support compact. Puis lorsqu’elle a un support compact

mais qu’il est inconnu.
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Abstract This PhD thesis consists of őve chapters which correspond to different

submitted or forthcoming articles. The őrst three study some random coefficients

models. The third chapter, being also a data combination problem, draws the link

with the fourth one. The őfth contains the analysis of the properties of the singular

value decomposition of an operator which intervenes in the inverse problem of the

second chapter.

The őrst chapter studies nonparametric identiőcation of the distribution of the

unobserved heterogeneity in some random coefficients models when regressors have

limited variation, when their support is possibly discrete but countable. We exhibit a

trade-off in the identiőcation of the distribution of the random coefficients between the

size of the nonparametric classes of law of the coefficients we consider and the variation

of the regressors. We provide new results on the linear model where the coefficients,

the error term and the slopes, are random and independent of the regressors, but also

in some random coefficients models of binary choice or panel data.

The second chapter focuses on the linear random coefficient model. We consider

regressors which can have a support which is a proper subset. We assume that the

slopes do not have heavy-tails, but we do not make integrability assumptions on the

error term. Lower bounds on the minimax risk for the estimation of the joint density

of the random coefficients are obtained for a wide range of smoothness. Some allow

for polynomial and nearly parametric rates of convergence. We present a minimax

optimal estimator and a data-driven rule for adaptive estimation.

The third chapter considers the ecological inference, which is used for example to

predict the probability to vote according to race using the turnout rate and the racial

composition of different precincts. More generally, this problem consists, from a sam-

ple of marginal distributions (the turnout rates and the racial compositions) of two

discrete variables (the vote and the race) obtained for different groups (aggregated by

precincts), in predicting the contingency tables knowing the margins (the turnout rate

and the racial composition). This is can be framed as a data combination problem,

because it uses data from two datasets which can not be matched at an individual

level (the electoral results and the census). This is also related to the prediction
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of the random coefficients given the outcomes and regressors in a system of linear

random coefficients equations with bounded regressors. I characterize the identiőed

set without further assumptions and show that the no contextual effects assumption

yields point identiőcation. Then, I develop a minimax adaptive estimator. Finally, I

apply my methods to estimate the effect of door-to-door visits on vote shares among

two categories of voters, based on past votes, in the randomized experiment of Pons

(2018). My results suggest, using precinct data only, that canvassing is especially ef-

fective through persuasion of undecided voters, rather than mobilization of convinced

ones.

The fourth chapter build a new test of rational expectations based on the marginal

distributions of realizations and subjective beliefs. This test is widely applicable,

including in the common situation where realizations and beliefs are observed in two

different datasets that cannot be matched. We show that whether one can rationalize

rational expectations is equivalent to the distribution of realizations being a mean-

preserving spread of the distribution of beliefs. The null hypothesis can then be

rewritten as a system of many moment inequality and equality constraints, for which

tests have been recently developed in the literature. The test is robust to measurement

errors under some restrictions and can be extended to account for aggregate shocks.

Finally, we apply our methodology to test for rational expectations about future

earnings. While individuals tend to be right on average about their future earnings,

our test rejects rational expectations.

The őfth chapter considers the Fourier transform truncated on [−𝑐, 𝑐] acting on

the space 𝐿2(cosh(𝑏| · |)) on which it is injective. We give nonasymptotic upper

and lower bounds on the singular values with similar qualitative behavior in 𝑚 (the

index), 𝑏, and 𝑐. The lower bounds are used to obtain rates of convergence for stable

analytic continuation of possibly nonbandlimited functions whose Fourier transform

belongs to 𝐿2(𝑒𝑏|·|). We also derive bounds on the sup-norm of the singular functions.

Finally, we propose a numerical method to compute the singular value decomposition

and apply it to stable analytic continuation when the function is observed with error

on an interval. In the numerical application we consider two cases. First, when
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the function to extrapolate does no admit a compactly supported Fourier transform.

Second, when it is compactly supported but the support is unknown.
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Chapter 1

Introduction

Heterogeneity of individual economic agents is a fundamental concept. Collecting

data allows to access the outcome variables and some of the characteristics of these

agents, constituting the observed heterogeneity. However, the amount of information

we observe is always limited by the cost to obtain extensive data at large scale, the

need to protect data privacy, or because there is information which is impossible to

collect. Thus, there are heterogeneous elements which are known by the agents but re-

main unobserved to the econometrician. These can be modelled as random variables,

or vectors when there are multiple sources of unobserved heterogeneity. Account-

ing for these variables in the economic modelling can lead to important quantitative

differences. We adopt a nonparametric approach in all this PhD thesis.

The őrst three chapters study some random coefficients models, which have of mul-

tiple sources of unobserved heterogeneity. Here, it is crucial to weaken the assump-

tions used for identiőcation and estimation to be credible in applications. The second

part of the thesis, chapters three and four, consider some data combination problems.

Data combination leverages two different datasets which cannot be matched at the

individual level to learn about features of the joint distribution. This allows to test

the researchers’ working assumptions, like the rational expectations hypothesis, with-

out collecting a full dataset. Here, the third chapter relates two parts of the thesis: it

is both a data combination problem and a system of random coefficients equations.
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Finally, the őfth chapter analyzes the properties of the singular value decomposition

(SVD) of an operator intervening in the inverse problem of the second chapter. This

SVD is also particularly well suited to perform stable analytic continuation.

The őve chapters correspond to different submitted or forthcoming articles. This

introductory chapter does not make a complete literature review of these topics, which

is done in the subsequent chapters. It motivates the problems we consider and then

details our contributions.

1.1 Nonparametric identiőcation in some random co-

efficients models

1.1.1 Motivation

In many cases, the economist might be not only interested by the average effect of a

covariate on an outcome, but also by the heterogeneity of this effect, assuming that

there is heterogeneity. Consider for example the impact of the parents’ income on

children test scores or the impact of subsidies on consumption. To őx ideas, consider

the linear random coefficients model,

𝑌𝑖 = 𝛼𝑖 + 𝛽⊤
𝑖 𝑋 𝑖 (1.1)

(𝛼𝑖,𝛽𝑖) and 𝑋 𝑖 are independent, (1.2)

where 𝛽𝑖 and 𝑋 𝑖 are vectors of size 𝑝. In (1.1)-(1.2), each individual 𝑖 is affected

differently by the regressors 𝑋 𝑖. Of course, using 𝛽𝑖 = E [𝛽𝑖] + (𝛽𝑖 − E [𝛽𝑖]) and

𝜖𝑖 := 𝛼𝑖+(𝛽𝑖−E [𝛽𝑖])
⊤𝑋 𝑖, it is related to the heteroscedastic linear regression model

with one source of unobserved heterogeneity where the researcher is only interested

by the average effect E [𝛽𝑖],

𝑌𝑖 = 𝜖𝑖 + E [𝛼𝑖] + E [𝛽𝑖]
⊤
𝑋 𝑖, E [𝜖𝑖|𝑋 𝑖] = 0.
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Moreover, in (1.1)-(1.2), the dependence structure in the random vector 𝛾𝑖 := (𝛼𝑖,𝛽𝑖)

is left unrestricted. In this model, the researcher can be interested in more than the

average of the vector 𝛾𝑖 and even might want to recover the distribution 𝑓𝛾 of the

unobserved heterogeneity. For example, a policymaker might be interested by the

distribution of the marginal propensity to consume following a subsidy, to better

calibrate the following ones.

A őrst approach is to assume that the true distribution 𝑓𝛾 belongs to a parametric

family and then to estimate the model by maximum likelihood (see, e.g., Dent and

Hildreth, 1977; Imai et al., 2008). However, there is a misspeciőcation risk and this

assumption can drive the results (see, e.g., Heckman and Singer, 1984). Another

approach is to adopt a Bayesian point of view and to use a prior on the distribution

of 𝛾 (see, e.g., Griffiths et al., 1979; King, 1997; Imai et al., 2008). If the choice of the

prior might not have an impact asymptotically, it can lead to different results in őnite

sample. A nonparametric approach remains agnostic on the distribution 𝑓𝛾 . Taking

into account these multiple sources of heterogeneity nonparametrically comes with

various restrictions on the variation of the regressors as well as on the nonparametric

class of densities 𝑓𝛾 to identify the distribution 𝑓𝛾 (i.e., such that for all observed

distribution of the data P𝑋,𝑌 , there exists a unique distribution of the unobserved

heterogeneity 𝑓𝛾 which could have generated it through the model).

To give a glimpse of the trade-off between the variation of the regressors and the

size of class of densities 𝑓𝛾 we can allow, we start with the deconvolution problem with

two samples: one of the error and one of the sum of the signal and the error. This

problem can be viewed as a particular linear random coefficients model (1.1)-(1.2),

where the regressor 𝑋 has dimension 1 and two points of support, {0, 1} without loss

of generality,

𝑌 = 𝛼 + 𝛽𝑋, (𝛼, 𝛽) ⊥ 𝑋.

In this model the variation of the regressor is very limited and identiőcation assump-

tions impose independence between 𝛼 and 𝛽 (see, e.g., Carroll and Hall, 1988; Beran

and Hall, 1992; Carrasco and Florens, 2011; Gaillac and Gautier, 2019a). However, in
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some cases there might be a deep underlying parameter Θ (e.g., related to tastes, type

of education, ideology, etc) through which the heterogeneous impact 𝛽(Θ) is related

to the error term 𝛼(Θ). When the support of 𝑋 is richer but possibly discrete, we

can identify the distribution of 𝛾 without independence.

Let us describe the trade-off on (1.1)-(1.2). Identiőcation is based on the charac-

terization of the distribution of 𝛾 from the knowledge of the conditional distribution

of the outcome 𝑌 given the regressors 𝑋, namely

P𝑌 |𝑋(·|𝑥) = P𝛾⊤𝑥(·) (using (1.1) − (1.2)),

for all 𝑥 in the support of 𝑋, which we denote by S𝑋 . This shows that these

distributions are 1-dimensional projections of the distribution of 𝛾. For all 𝑥 ∈ S𝑋 ,

P𝑌 |𝑋(·|𝑥) is characterized by its characteristic function, which is related to the Fourier

transform of the distribution of 𝛾 by,1 for all 𝑡 ∈ R,

E
[︀
𝑒𝑖𝑡𝑌

⃒⃒
𝑋 = 𝑥

]︀
= E

[︁
𝑒𝑖𝑡𝛾

⊤𝑥
]︁

(using (1.1) − (1.2))

=

∫︁

R𝑝+1

𝑒𝑖𝑡𝑔
⊤𝑥𝑓𝛾(𝑔)𝑑𝑔

= ℱ [𝑓𝛾 ] (𝑡, 𝑡𝑥). (1.3)

Identiőcation of 𝑓𝛾 amounts to recovering it from the knowledge of its Fourier trans-

form on a double cone with apex 0, namely

{𝑡(1,𝑥), 𝑡 ∈ R, 𝑥 ∈ S𝑋} .

This description of the problem underlines two points. First, if the regressors have

support the space R𝑝, then, using (1.3), the Fourier transform ℱ [𝑓𝛾 ] is known every-

where (see, e.g Beran and Hall, 1992; Hoderlein et al., 2010; Holzmann and Meister,

2019). Using the injectivity of the Fourier transform, identiőcation is obtained with-

1The Fourier transform of 𝑓 in 𝐿1(R𝑝) is ℱ [𝑓 ] : 𝑥 ↦→
∫︀
R𝑝 𝑒

𝑖𝑏⊤𝑥𝑓(𝑏)𝑑𝑏 and ℱ [𝑓 ] is also the
Fourier transform in 𝐿2(R𝑝).
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out restrictions on the distribution 𝑓𝛾 . Second, if the regressors have limited variation,

i.e., a proper subset of R𝑝, then one can to restrict the size of the class of possible dis-

tributions 𝑓𝛾 to obtain nonparametric identiőcation (see, e.g, Beran and Hall, 1992;

Beran and Millar, 1994; Masten, 2017; Gaillac and Gautier, 2019a). A degenerate

situation where the support of the regressors has an empty interior is the nonlinear

model:

𝑌𝑖 = 𝛾1,𝑖 + 𝛾2,𝑖𝑋𝑖 + 𝛾3,𝑖𝑋
2
𝑖 , 𝛾𝑖 ⊥ 𝑋𝑖.

Here, 𝑓𝛾 is not nonparametrically identiőed, whatever the support of the variable 𝑋𝑖.

Thus, it is of interest to look for the type of nonlinear models which can lead to the

nonparametric identiőcation of 𝑓𝛾 .

1.1.2 Contribution

The őrst chapter of this thesis describes the trade-off in the identiőcation of the

distribution of the random coefficients between the size of the nonparametric classes

of law of the coefficients and the variation of the regressors. We consider the random

coefficients linear model, including the deconvolution, the random coefficients binary

model, and some panel data models such as single-index panel data models. In these

models, we őnd moment conditions on 𝑓𝛾 such that it is determined by the knowledge

of the set of distributions

{P𝑌 |𝑋=𝑥, 𝑥 ∈ S𝑋} (1.4)

when S𝑋 is a proper subset, possibly discrete. In the linear random coefficients model,

this is related to the conditions for a measure to be determined by some 1-dimensional

projections (see, e.g., Cuesta-Albertos et al., 2007; De Jeu, 2003; Infusino, 2016). We

give examples of parametric distributions satisfying these conditions, allowing heavy-

tails. We also show how to include knowledge about the sign or the tails of the

coefficients to weaken the identifying assumptions.
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1.2 Nonparametric estimation in the linear random

coefficients model

1.2.1 Motivation

The nonparametric estimation of the density of the random coefficients in the lin-

ear model has received considerable attention. This problem is closely related to

computerized tomography (see, e.g., Natterer, 1986), also known as medical X-ray

tomography. This consists in recovering an image of the internal structure of an ob-

ject only through the attenuation of the X-rays’ intensity crossing the object. Initial

and őnal intensities are related to the integral of the density 𝑓 of the object’s stuc-

ture on the line of the X-ray (see, e.g., Alquier et al., 2011a). As noticed in Beran

et al., 1996a, with one regressor in the linear random coefficients model (1.1)-(1.2),

the distributions (1.4) are related to 𝑓𝛼,𝛽 through, for all 𝑥 ∈ S𝑋 ,

𝑓𝑌 |𝑋(·|𝑥) =
∫︁

R

𝑓𝛼,𝛽(· − 𝑏𝑥, 𝑏)𝑑𝑏

hence are integrals indexed by 𝑥 ∈ S𝑋 along the line {(𝑎, 𝑏) ∈ R2, (𝑎, 𝑏)(1, 𝑥)⊤ = 𝑦}.
These problems are linear inverse problems, where the object of interest is related to

an observable quantity by a linear operator. Indeed, considering a different renormal-

ization

𝑈 :=
𝑌√︀

1 + ‖𝑋‖22
and 𝑆 :=

1√︀
1 + ‖𝑋‖22

⎛
⎝ 1

𝑋

⎞
⎠ ,

Hoderlein et al., 2010 show that the model (1.1)-(1.2) can be rewritten as

𝑈 = 𝑆⊤𝛾, 𝑆 ⊥ 𝛾, (1.5)

where 𝑆 ∈ S𝑝 (see Figure 1-1). Then, the distribution of the outcome 𝑈 conditional

on 𝑆 is related to 𝑓𝛾 via, for all (𝑠, 𝑢) ∈ S𝑆 × R,

𝑓𝑈 |𝑆(𝑢, 𝑠) = 𝑅[𝑓𝛾 ](𝑠, 𝑢), (1.6)

22



where 𝑅 is the Radon transform, for all (𝑠, 𝑢) ∈ S𝑝 × R,

𝑅[𝑓 ](𝑠, 𝑢) =

∫︁

{𝑔∈R𝑝+1: 𝑔⊤𝑠=𝑢}
𝑓(𝑔)𝑑P𝑢,𝑠(𝑔),

S𝑝 is the unit sphere in R𝑝+1, and P𝑢,𝑠 is the Lebesgue measure on the affine space

{𝑔 ∈ R𝑝+1 : 𝑔⊤𝑠 = 𝑢}.

Figure 1-1: Parametrisation of the random coefficients model (1.5). The red line is

the set of points 𝑔 such that 𝑔⊤𝑠 = 𝑢, where 𝑢 < 0 and 𝑠, in green, belongs to the

unit sphere in R2. The blue ellipses are a representation of the object 𝑓𝛾 , which is

here a mixture of two uniforms.

This formulation (1.6) is used in Hoderlein et al., 2010 to build a nonparametric

estimator of 𝑓𝛾 based on a kernel regularized inverse of the Radon transform, assuming

that the regressors 𝑋 have full support. Assuming that the density of the angles 𝑓𝑆

is bounded away from 0 as well as Sobolev smoothness conditions, they show that the

estimator converges at a polynomial rate. However, the former assumption imposes
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Cauchy-type tails on the regressors 𝑋 (see 4.3 in Hoderlein et al., 2010 and Holzmann

and Meister, 2019 for an alternative estimator under light-tail assumptions). When

regressors have limited variation in (1.1)-(1.2), the counterpart of this problem of is

the limited angle tomography, when X-rays go only through a limited range of angles

(see, e.g., Frikel, 2013; Hohmann and Holzmann, 2015, and Figure 1-1). By analogy

when 𝑝 = 1 with a related Gaussian sequence space model studied in Hohmann

and Holzmann, 2015, lighter tails of the regressors should impact the degree of ill-

posedness of the problem. There, an analogous to the case where the regressors are

bounded and 𝑝 = 1 is a severely ill-posed problem where the rate of the minimax

risk in Sobolev type ellipsoids relative to the right-singular functions of the Radon

transform is logarithmic.

This might be the reason why, up to now, applied researchers have preferred

models such as the quantile regression to describe unobserved heterogeneity (see,

e.g., Koenker and Bassett, 1978; Koenker, 2005). Quantile regression can be written

as a linear random coefficients model where the coefficients are functions of a scalar

uniform distribution,

𝑌 = 𝛽⊤
𝑈𝑋,

𝑈 |𝑋 ∼ 𝒰 [0, 1].

However, it is hard to argue for such degeneracy of the heterogeneity. It is thus

of importance to weaken the usual assumptions imposed on either the data or the

model in the linear random coefficients model (1.1)-(1.2) to allow its wider use by

practitioners. Speciőcally, because it is hardly ever the case in practice that regressors

have a support which is the whole space, it is important to allow the regressors to

have limited variation while authorizing 𝑝 > 1 and showing that some polynomial

rates of convergence can be attained in this context.
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1.2.2 Contribution

The third chapter focuses on adaptive estimation of the density 𝑓𝛾 in the linear

random coefficients model (1.1)-(1.2) when regressors have limited variation. We

assume that the margins of 𝛽 (but not of 𝛼) do not have heavy tails but can have

noncompact support. This is an inverse problem (see (1.3)) whose operator is not

compact when no integrability assumption is made on 𝛼.2 This makes it difficult

to prove rates of convergence, even for estimators which do not rely explicitly on

the SVD such as the Tikhonov and Landweber method (see, e.g., Carrasco et al.,

2007). However, it can be decomposed as the composition of two operators which

are easier to study. More precisely, assuming that there exists 𝑥0 > 0 such that

[−𝑥0, 𝑥0]𝑝 ⊆ S𝑋 , we consider the decomposition of the left-hand side of (1.3), for all

(𝑡,𝑢) ∈ R× [−1, 1]𝑝,

ℱ [𝑓𝛾 ] (𝑡, 𝑡𝑥0𝑢) = ℱ𝑡𝑥0 [ℱ1st [𝑓𝛾 ] (𝑡, ·)] (𝑢), (1.7)

where ℱ𝑡𝑥0 is the truncated Fourier transform operator, which, for all 𝑐 ̸= 0, to

a function 𝑓 in a weighted 𝐿2 space associates its Fourier transform truncated to

[−𝑐, 𝑐]𝑝, ℱ [𝑓 ](𝑐·) ∈ 𝐿2([−1, 1]𝑝), and ℱ1st is the partial Fourier transform with respect

to the őrst variable. This decomposition eases the analysis because the nonasymptotic

properties of the SVD of the truncated Fourier transform operator are known in at

least two cases of weights (see, e.g., Bonami and Karoui, 2016; Gaillac and Gautier,

2019a). The later are related to tail assumptions on the coefficients 𝛽𝑗 for 𝑗 = 1, . . . , 𝑝:

either compact support or without heavy tails. Moreover, the SVD is fast to compute

using numerical schemes developed recently (see, e.g., Osipov et al., 2013; Gaillac and

Gautier, 2019a).

Following (1.7), we build a three steps estimator. First, for |𝑡| ≤ 𝑇 , we use an

approximation of ℱ1st [𝑓𝛾 ] (𝑡, ·) using the regularized inverse of the truncated Fourier

operator ℱ𝑡𝑥0 . It involves spectral cut-off. Second, because the singular values of ℱ𝑡𝑥0

2Similarly to Carrasco et al., 2007 in the deconvolution problem, we could alternatively consider
an appropriate choice of reference spaces where the operator is compact.
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go to 0 as 𝑡 goes to 0, using the SVD for estimation is problematic and we would rely

on few to none coefficients. Rather, we rely on an interpolation strategy for 𝑡 ∈ [𝜖, 𝜖],

where 0 < |𝑡| < 1 < 𝑇 , which is of independent interest. Third, we use a regularized

inverse of the partial Fourier transform with respect to the őrst variable to recover

𝑓𝛾 . We show that, for classes of sufficiently smooth functions, minimax polynomial

rates of convergence can be obtained. We provide an adaptive estimator, i.e. whose

parameter is automatically selected from the data, which attains the optimal rates of

convergence up to a logarithmic term. The adaptive estimator is implemented in the

R package RandomCoefficients, described in more details in the vignette Gaillac and

Gautier (2019d).

1.3 Ecological inference as a data combination prob-

lem and a system of random coefficients equa-

tions

1.3.1 Motivation

Ecological inference uses data combined at the group level (see, e.g., Robinson, 1950;

King, 1997). Let us explain its principle using a simple yet striking illustration:

the probability to vote for some candidates according to race for given precincts.

Due to the secret ballot, this information is usually only accessible using surveys,

which have several issues: there is attrition, misreporting, and they might not be

available nationwide (see, e.g., Burden and Kimball, 1998). On the contrary, the race

𝑅 ∈ {1, . . . , 𝑑𝑅} and the candidate choice 𝐶 ∈ {1, . . . , 𝑑𝐶} are observed nationwide

and publicly, respectively in the census and the election returns, however aggregated

at a group level 𝑔 (usually the precincts). To put it differently, we do not have access

to the individual discrete variables 𝐶 and 𝑅, but to the margins of these variables,
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which are the vote shares and the racial composition of each precinct 𝑔, respectively

𝑌 𝑔 :=

⎛
⎜⎜⎜⎝

P𝑔 (𝐶 = 1)

:

P𝑔 (𝐶 = 𝑑𝐶)

⎞
⎟⎟⎟⎠ and 𝑋𝑔 :=

⎛
⎜⎜⎜⎝

P𝑔 (𝑅 = 1)

:

P𝑔 (𝑅 = 𝑑𝑅)

⎞
⎟⎟⎟⎠ .

The fundamental indeterminacy of the ecological inference can be understood con-

sidering that the conditional distributions 𝐵𝑔, or equivalently - as the margins are

known - the contingency tables satisfy the law of total probability

∀𝑐 = 1, . . . , 𝑑𝐶 , P𝑔 (𝐶 = 𝑐) =

𝑑𝑅∑︁

𝑟=1

P𝑔 (𝐶 = 𝑐|𝑅 = 𝑟)P𝑔 (𝑅 = 𝑟) , (1.8)

which can be represented as

⎛
⎜⎜⎜⎝

P𝑔 (𝐶 = 1)

:

P𝑔 (𝐶 = 𝑑𝐶)

⎞
⎟⎟⎟⎠

⏟  ⏞  
𝑌 𝑔

=

⎛
⎜⎜⎜⎝

P𝑔 (𝐶 = 1|𝑅 = 1) .. P𝑔 (𝐶 = 𝑑𝑐|𝑅 = 1)

: :

P𝑔 (𝐶 = 1|𝑅 = 𝑑𝑅) .. P𝑔 (𝐶 = 𝑑𝑐|𝑅 = 𝑑𝑅)

⎞
⎟⎟⎟⎠

⊤

⏟  ⏞  
𝐵⊤
𝑔

⎛
⎜⎜⎜⎝

P𝑔 (𝑅 = 1)

:

P𝑔 (𝑅 = 𝑑𝑅)

⎞
⎟⎟⎟⎠

⏟  ⏞  
𝑋𝑔

hence

𝑌 𝑔 = 𝐵⊤
𝑔 𝑋𝑔. (1.9)

In the example, the matrix 𝐵𝑔 contains the probabilities to vote for some candidate

conditional on race. However, without additional restrictions, for each group, there

are many possible tables compatible with the observed margins 𝑌 𝑔 and 𝑋𝑔. This is

of particular importance as, among others, ecological inference is used in courts to

rule according to the Voting Right Act, which prevents racial bloc voting (see, e.g.,

King, 1997; Wakeőeld, 2004; Greiner and Quinn, 2010). Thus, it plays a central role in

redistricting litigations, which is the process where political representatives adjust the

boundaries of the electoral districts every decade in the US to take into account the

evolution of the population. When politically biased, this is called gerrymandering

and is prevented by the law, but is very hard to establish statistically due to the secret
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ballot. This question has been recently highlighted with the polarization of the US

political debate (see, e.g., McCarty et al., 2009). This problem is also encountered in

other contexts in Economics, such as combining market level data with census data

to perform demand analysis.

For a certain group 𝑔, the ecological inference problem is related to the regression

short and long problem in econometrics (see, e.g., Cross and Manski, 2002a), when the

dependent variable 𝐶 and the covariate 𝑅 are discrete and observed in two different

datasets, which can only be matched conditionning on a third discrete variable taking

values 𝑔 = 1, . . . , 𝐺 (i.e., we observe the margins 𝑌 𝑔 and 𝑋𝑔). The point of view

of the literature in econometrics (see, e.g., Cross and Manski, 2002a; Molinari and

Peski, 2006a; Fan et al., 2014, 2016; Manski, 2018; Jiang et al., 2020; Gaillac, 2020)

is to focus on partial identiőcation and to look for all the matrices 𝐵𝑔 containing

the conditional probabilities which are compatible with given margins 𝑌 𝑔 and 𝑋𝑔.

Taking into account the constraints on the margins, this is the set3

ℐ(𝑥,𝑦) =
{︀
𝐵 ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), 𝐵1 = 1, 𝑦 = 𝐵⊤𝑥

}︀
. (1.10)

However, the set ℐ(𝑥,𝑦) is often too large for practitioners. Speciőcally, Figure 1-2

illustrates on an example, dealing with turnout among Black and White people in a

particular precinct that this set is not informative about the way minorities vote (see,

e.g. p359, Cross and Manski, 2002a, or the classical Dudley-Duncan bounds).

In Statistics and Political Science (see, e.g., King, 1997; Wakeőeld, 2004; Imai

et al., 2008), the ecological inference problem is related to the observation of a sample

of these margins (𝑋𝑔,𝑌 𝑔) for several groups 𝑔. Moreover, these matrices and margins

are heterogeneous across groups. Thus, we treat the observed sample of margins for

the groups, together with the unobserved and heterogeneous conditional distributions,

3Note that the set of associated joint distributions is known as the transportation polytope in
the optimal transport literature (see, e.g., Cuturi, 2012).
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Notes: The identiőed set of 𝐵𝑔 is delimited by the dark line. Racial composition is 72.2%

White people, 24.4% Black people, and 3.4% others, and the turnout is 75.7%

Figure 1-2: Turnout among Black and White people in a precinct of the 2nd district
of Florida in 2011, where I consider three race categories.

as random vectors and matrices drawn from a sampling distribution

(𝐵𝑔,𝑋𝑔,𝑌 𝑔) ∼ P𝐵,𝑋,𝑌 .

Thus, (1.9) together with the constraints on the margins, yield that (𝐵,𝑋,𝑌 ) satis-

őes the linear system of random coefficients equations

∀𝑐 = 1, . . . , 𝑑𝐶 , 𝑌 𝑐 =

𝑑𝑅∑︁

𝑟=1

𝐵𝑟,𝑐𝑋𝑟, ∀𝑟 = 1, . . . , 𝑑𝑅,

𝑑𝐶∑︁

𝑐=1

𝐵𝑟,𝑐 = 1 (1.11)

∀𝑐 = 1, . . . , 𝑑𝐶 , ∀𝑟 = 1, . . . , 𝑑𝑅, 𝐵𝑟,𝑐 ≥ 0, 𝑋𝑟,𝑐 ≥ 0,

𝑑𝑅∑︁

𝑟=1

𝑋𝑟 = 1 . (1.12)

Similarly to what have been introduced in Section 1.1 in the study of random coef-

őcients models, the usual baseline assumption in the ecological inference literature,

called no contextual effects (NCE), is the following independence in (1.11) between
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the random coefficients and the regressor

(NCE) 𝐵 ⊥ 𝑋.

This can be viewed as the exogeneity of the regressor 𝑋. In the voting example,

this exogeneity assumption means that the probability that an individual of a given

race go to the polls is independent of the racial composition of the precincts. We

describe later some ways to relax this assumption, which might be strong for some

applications.

The parameter of interest is the conditional expectation

𝑚 : (𝑥,𝑦) ∈ [0, 1]𝑑𝑅×𝑑𝐶 ↦→ E [𝐵|(𝑋,𝑌 ) = (𝑥,𝑦)] ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), (1.13)

where ℳ𝑑𝑅,𝑑𝐶 ([0, 1]) are 𝑑𝑅×𝑑𝐶 matrices with elements in [0, 1] (see, e.g. King, 1997;

Wakeőeld, 2004). In the example, this is the prediction of the probability to choose a

candidate for people of a certain race given the turnout rate and racial composition.

The parameter 𝑚(𝑥,𝑦) gives the best prediction of the heterogeneous conditional

distribution 𝐵 for given values of the margins (𝑋,𝑌 ) = (𝑥,𝑦).

Again, standard approaches in the literature performing estimation of 𝑚 are either

parametric (see, e.g., Imai et al., 2008) or Bayesian (King, 1997; Wakeőeld, 2004;

Imai et al., 2008), but maintain parametric assumptions on the distribution of the

rancom coefficients which can drive the results. The asymptotic properties of the

nonparametric Bayesian method of Imai et al. (2008) are unknown and the method

is limited, for computational reasons, to the case 𝑑𝑅 = 𝑑𝐶 = 2.

1.3.2 Contribution

The parameter 𝑚 is a functional of the density 𝑓𝐵, hence its study in the third

chapter extends the őrst two chapters of this thesis. I relate the point of view of the

econometrics literature with the random coefficients model representation. Indeed,

without further assumptions, the identiőed set for 𝑚, i.e., the set of parameters
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compatible with the distribution of the data, is related to the one considered in Cross

and Manski (2002a) and is exactly the one studied in Manski (2018) and Gaillac

(2020). I do not include in this thesis Gaillac (2020) because it is not yet entirely

polished.

My main contribution in this chapter is to obtain new nonparametric construc-

tive point identiőcation of 𝑚 with two possibilities for the outcome 𝑑𝐶 = 2 and

an arbitrary number of covariate categories 𝑑𝑅. With more than two possibilities, I

show how additional nonparametric restrictions on the dimension of the unobserved

heterogeneity restore point identiőcation in the linear system of random coefficients

equations. This complements the nonidentiőcation result of Masten (2017). The

second contribution is to provide a nonparametric estimator which is optimal in the

minimax sense and adaptive. Additional group level variables 𝑍 can be observed,

such as the precincts compositions in terms of levels of income or education. This

allows to assume NCE conditional on these variables, i.e., 𝐵 ⊥ 𝑋|𝑍, and to perform

inference on

𝑚 : (𝑥,𝑦, 𝑧) ↦→ E [𝐵|(𝑋,𝑌 ,𝑍) = (𝑥,𝑦, 𝑧)] . (1.14)

My method is the őrst to incorporate the additional variables 𝑍 nonparametrically.

Another extension relaxes the NCE assumption when the researcher observes an in-

strument, adapting the control function approach of Masten and Torgovitsky (2013).

I conclude with an application whose methodology paves the way for others in

Political Science and Economics. It shows that a direct application of my estimator

provides an estimator of the effect of a treatment 𝑇𝑔 ∈ {0, 1} on the choice proba-

bilities among different categories, in a clustered experiment by group 𝑔 where the

individual outcome 𝐶 and covariate 𝑅 are protected. Consider the potential outcome

model of Rubin (1974), where we denote by 𝐵𝑔(0) the potential outcome for group

𝑔 if not treated, 𝐵𝑔(1) the potential outcome if treated, and we observe only the

treatment status 𝑇𝑔 ∈ {0, 1} and relalized outcome 𝐵𝑔(𝑇𝑔). When the groups 𝑔 are

treated 𝑇𝑔 = 1 randomly conditionally on the variables 𝑊 𝑔, i.e., the unconfounded-
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ness assumption at the group level 𝑔,

𝐵𝑔(1),𝐵𝑔(0) ⊥ 𝑇𝑔 |𝑊 𝑔,

the treatment effect 𝛾𝑟,1 = E [𝐵𝑟,1(1)−𝐵𝑟,1(0)] on the probability to choose 𝐶 = 1

among individuals of category 𝑅 = 𝑟, namely 𝐵𝑟,1, is

𝛾𝑟,1 = E [E [𝐵𝑟,1|𝑊 , 𝑇 = 1]]− E [E [𝐵𝑟,1|𝑊 , 𝑇 = 0]] .

Thus, using the law of iterated expectations, 𝛾𝑟,1 is related to 𝑚 in (1.14), treating

𝑇 and 𝑊 as additional variables 𝑍 := (𝑊 , 𝑇 ), via

𝛾𝑟,1 = E [E [𝑚𝑟,1(𝑋,𝑌 ,𝑊 , 𝑇 )|𝑊 , 𝑇 = 1]]− E [E [𝑚𝑟,1(𝑋,𝑌 ,𝑊 , 𝑇 )|𝑊 , 𝑇 = 0]] .

Speciőcally, I consider the effect of door-to-door visits on vote shares among different

categories of voters, based on past votes, in the experiment of Pons (2018). My results

suggest that canvassing is especially effective through persuasion of undecided voters,

rather than mobilization of already convinced ones.

1.4 Tests of rational expectations using data combi-

nation

1.4.1 Motivation

In a dynamic environment, individual economic agents base their decisions on observ-

ables but also on their beliefs about the future values of some other variables. The

rational expectations (RE) assumption states that agents have expectations that do

not systematically differ from the realized outcomes, and efficiently process all private

information to form these expectations (see, e.g., Muth, 1961). Speciőcally, this spec-

iőcation of the beliefs formation process allows to estimate dynamic microeconomic

models without collecting subjective expectations data. Thus, rational expectations
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are a key building block in structural models despite longstanding critiques (see, e.g.,

Pesaran, 1987; Manski, 2004). For example, standard life cycle models use the as-

sumption that consumers have rational expectations about their future individual

earnings, but sometimes also about their longevity (see, e.g., Meghir and Pistaferri,

2011). In another context, standard job search models also assume that jobseek-

ers have rational expectations about both the arrival rates of offers and the wage

distribution of the latter (see, e.g., McCall, 1970; Van den Berg, 2001).

If we observe realized outcomes and subjective expectations for the same individu-

als, we can easily test for RE. This test has already been conducted in several contexts

such as Lovell (1986); Gourieroux and Pradel (1986); Dominitz (1998); Gennaioli et al.

(2015). However, it is a common situation in practice to observe individual realiza-

tions and subjective beliefs in two different datasets that cannot be matched (see, e.g.,

Delavande, 2008; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and

Romano, 2014; Stinebrickner and Stinebrickner, 2014a; Gennaioli, Ma and Shleifer,

2016; Kuchler and Zafar, 2019; Boneva and Rauh, 2018; Biroli, Boneva, Raja and

Rauh, 2020). A striking example in the US are earnings, where for the Survey of

Consumer Expectations of the New York Fed, expectations and realizations can typ-

ically only be matched for a subset of the respondents. For consumption, there is yet

no large scale survey in the US which collects matched expectations and realizations.

It is thus important to be able to test RE in this type of data combination context.

Let us formalize the problem. Denote by 𝑌 the individual outcome and by

𝜓 = ℰ [𝑌 |ℐ] its subjective expectation, where ℐ denotes the 𝜎-algebra corresponding

to the agent’s information set and using the subjective expectation operator ℰ [·|ℐ]
(i.e., for any random variable 𝑈 , ℰ [𝑈 |ℐ] is a ℐ-measurable random variable which can

be understood as taking expectation over a subjective distribution of 𝑈 conditioned

on information in ℐ). Denote by E [𝑌 |ℐ] the conditional expectation operator gen-

erated by the true data generating process.We are interested in testing the rational

expectations (RE) hypothesis

(𝑅𝐸) : 𝜓 = E [𝑌 |ℐ] . (1.15)
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. Note that, as described in more details in D’Haultfoeuille et al. (2020), this is

compatible with heterogeneity in the information different agents use to form their

expectations.

Let us describe the fundamental equality arising when testing RE. Under RE,

using the law of iterated expectations and that 𝜓 is a ℐ-measurable random variable,

we have E [𝑌 |𝜓] = E [E [𝑌 |ℐ] |𝜓], hence using (1.15),

E [𝑌 |𝜓] = 𝜓. (1.16)

Conversely, if (1.16) holds, then for ℐ = 𝜎(𝜓), we have (1.15). Thus, testing RE

without restrictions on the information set ℐ boils down to testing (1.16).

1.4.2 Contribution

In the fourth chapter of this thesis we only consider the context where we observe 𝑌 in

one dataset and 𝜓 in another one. We can (point-) identify the marginal distributions

but not their joint distribution: this is a data combination problem. Implications of

(1.16) used in the literature are equality in mean E [𝜓] = E [𝑌 ] or the constraint on

the variances V(𝑌 ) ≥ V(𝜓). But there are (inőnitely) many other implications of RE

and we show in D’Haultfoeuille et al. (2020) how to use them to test RE.

More precisely, we consider the test of whether one can rationalize RE, which is

the relevant hypothesis in this data combination context, namely

𝐻0 : there exists a pair of random variables (𝑌 ′, 𝜓′) and a sigma-algebra ℐ ′ such that

𝜎(𝜓′) ⊂ ℐ ′, 𝑌 ′ ∼ 𝑌, 𝜓′ ∼ 𝜓 and E [𝑌 ′|ℐ ′] = 𝜓′.

Note that whether we can rationalize RE does not mean that the true pair of random

variables (𝑌, 𝜓) satisőes (1.16). However, rejecting 𝐻0 implies that RE does not hold

(E [𝑌 |ℐ] ̸= 𝜓). The main insight of this chapter is that testing 𝐻0 is equivalent to

testing whether 𝑌 is a mean preserving spread of 𝜓, i.e., if 𝐹𝜓 dominates at the

second order 𝐹𝑌 and E[𝑌 ] = E[𝜓]. Using the terminology of Rothschild and Stiglitz
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(1970), 𝐻0 holds if and only if realizations 𝑌 are riskier than beliefs 𝜓. Then, we

show that this can equivalently be rewritten as a system of inőnitely many moment

inequalities. This allows us to apply the instrumental functions approach of Andrews

et al. (2017) to test for such inequalities. The extensions of the baseline test that we

consider include accounting for the availability of additional covariates or aggregate

shocks.

We apply our framework to test for rational expectations about future earnings

using individual expectations from the Labor Market module of the Survey of Con-

sumer Expectations. While a naive test of equality of means between earnings beliefs

and realizations shows that earnings expectations are realistic in the sense of not being

signiőcantly biased, thus not rejecting the rational expectations hypothesis, our test

does reject rational expectations at the 1% level. The results of our test also indicate

that the RE hypothesis is more credible for certain subpopulations than others. A

companion R package RationalExp and the user’s guide D’Haultfœuille et al. (2018a)

ease the implementation of our test in other contexts.

1.5 Stable out-of-band extrapolation and analytic con-

tinuation

1.5.1 Motivation

The truncated Fourier operator ℱ𝑐 described in Section 1.5 acting on 𝐿2(cosh(𝑏·))
appears in at least two inverse problems which have applications in economics.4

The őrst problem is out-of-band extrapolation, which consists in recovering a func-

tion from the observation with error of its Fourier transform truncated to [−𝑐, 𝑐] (see,

e.g., Chapter 11.5 in Bertero and Boccacci, 1998). We observe the function which is

4We recall that it is the operator which to 𝑓 ∈ 𝐿2(cosh(𝑏·)), the 𝐿2 space equipped with
⟨𝑓, 𝑔⟩𝐿2(cosh(𝑏·)) =

∫︀
R
𝑓(𝑥)𝑔(𝑥) cosh(𝑏𝑥)𝑑𝑥, associates ℱ [𝑓 ] (𝑐·) ∈ 𝐿2(−1, 1).
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deőned by

𝑔𝛿(𝑥) = ℱ𝑐[𝑓 ](𝑥) + 𝛿𝜉(𝑥), for a.e. 𝑥 ∈ (−1, 1), 𝑓 ∈ 𝐿2(cosh(𝑏·)), (1.17)

where 𝜉 ∈ 𝐿2(−1, 1) is a deterministic noise, ‖𝜉‖𝐿2(−1,1) ≤ 1 and 𝛿 > 0 is a noise

level. We consider approximating 𝑓 on 𝐿2(R) from 𝑔𝛿 on (−𝑐, 𝑐). Speciőcally, this

can be viewed as a simpliőed version of the problem appearing in the estimation of the

density of the random coefficients in the linear random coefficients model of Section

1.5 when 𝑝 = 1.

The second problem is stable analytic continuation, which consists in extrapolating

an analytic square integrable function 𝑓 from its observation with error on [−𝑐, 𝑐].
This has a wide range of applications in economics, such as analytical continuation of

an outcome’s density (see also references in Gaillac and Gautier, 2019a). We observe

the function on (−𝑐, 𝑐), for 𝑐 > 0, which is deőned by

𝑓𝛿(𝑐𝑥) = 𝑓(𝑐𝑥) + 𝛿𝜉(𝑥), for a.e. 𝑥 ∈ (−1, 1), ℱ [𝑓 ] ∈ 𝐿2(cosh(𝑏·)), (1.18)

where 𝜉 ∈ 𝐿2(−1, 1) is a deterministic noise, ‖𝜉‖𝐿2(−1,1) ≤ 1, 𝛿 > 0 is a noise level.5

We consider approximating 𝑓0 = 𝑓 on 𝐿2(R) from 𝑓𝛿 on (−𝑐, 𝑐). This problem can

be analyzed using the formula, for a.e. 𝑥 ∈ (−1, 1),

𝑓(𝑐𝑥) =
1

2𝜋
ℱ𝑐 [ℱ [𝑓(−·)]] (𝑥). (1.19)

This decomposes the extrapolation problem as the composition of two operators: őrst

the operator ℱ𝑐, then the Fourier transform.

The formulation with (1.18) allows to consider nonbandlimited functions, i.e.

which have a Fourier transform which does not have a compact support, which is

a more convincing set-up for probability densities for example. (1.18) is a more usual

problem when, instead of 𝐿2(cosh(𝑏·)), we consider functions having their Fourier

transform supported in [−1/𝑏, 1/𝑏]. Then, the singular values of the associated op-

5We also consider a shift 𝑥0 ∈ R of the interval [−𝑐, 𝑐].
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erator ℱ𝑐 are the Prolate Spheroidal Wave functions (PSWF). Their properties are

well studied (see, e.g., Landau and Pollak, 1962; Osipov et al., 2013). However, such

an approach is prone to criticism when the researcher does not have a priori infor-

mation on the bandlimits [−1/𝑏, 1/𝑏] or when she questions the assumption that 𝑓 is

bandlimited.

The decomposition (1.19) suggests a two-step regularized inverse using the singular

value decomposition (SVD) of ℱ𝑐 to recover ℱ [𝑓(−·)] and then taking Fourier inverse

to recover 𝑓 . This underlines that this SVD plays a key role here and a fortiori in the

out-of-band extrapolation problem (1.17). However, its properties remained unknown,

except from those established in Widom (1964), i.e., a logarithmic equivalent for the

decay of the singular values to zero and commutation between a symmetric integral

operator 𝒬𝑐/𝑏 obtained by applying the truncated Fourier operator ℱ𝑐 to its adjoint

and a second order differential operator.

1.5.2 Contribution

We provide nonasymptotic upper and lower bounds on the singular values with sim-

ilar qualitative behavior in 𝑚 (the index), 𝑏, and 𝑐. The lower bounds are used to

obtain rates of convergence for stable analytic continuation of possibly nonbandlim-

ited functions whose Fourier transform belongs to 𝐿2(cosh(𝑏·)). They are also used

to establish the rates of convergence of the estimator in Gaillac and Gautier (2019c)

when the slopes of the random coefficients model do not have compact support. Up-

per bounds on the singular values are also used in Gaillac and Gautier (2019c) to

establish lower bounds on the minimax rate of convergence in the latter context.

We also derive bounds on the sup-norm of the singular functions which are used to

establish the asymptotic results for the adaptive estimator in Gaillac and Gautier

(2019c). Finally, we propose a numerical method to compute the SVD and apply it

to stable analytic continuation. The computation of the SVD relies on the differential

operator ℒ[𝜓] = −(𝑝𝜓′)′ + 𝑞𝜓 with 𝑝(·) = cosh(4𝑐) − cosh(4𝑐·), 𝑞(·) = 3𝑐2 cosh(4𝑐·),
and domain 𝒟 ⊂ {𝜓 ∈ 𝐿2(−1, 1) : ℒ[𝜓] ∈ 𝐿2(−1, 1)} with boundary conditions of
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continuity at ±1. The latter commutes with 𝒬𝑐/𝑏, hence has the same eigenfunctions

(see, e.g., Morrison, 1962; Widom, 1964). Working with the differential operator is

useful because its eigenvalues increase quadratically while those of the integral oper-

ator decrease exponentially, which creates numerical difficulties in the computations.

Thus, the computation of these eigenfunctions is performed solving the eigenproblem

for ℒ[𝜓], called a Sturm-Liouville problem,

−(𝑝𝜓′)′ + (𝑞 − 𝜆)𝜓 = 0

with 𝜆 ∈ C, which is singular because 𝑝−1 is inőnite at the endpoints, hence requiring

speciőc numerical algorithms (see, e.g., Ledoux, 2007).
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Chapter 2

Variation of Observed and

Unobserved Heterogeneity and

Identiőcation in Some Random

Coefficients Models

Joint with Eric Gautier, Toulouse School of Economics.

Abstract

This paper studies point identiőcation of the distribution of the coefficients in some

random coefficients models with exogenous regressors when their support is a proper

subset, possibly discrete but countable. We exhibit various trade-offs between restric-

tions involving (generalized) moments of the random coefficients and the support of

the regressors. These are obtained by considering functions of the data which char-

acterize the distribution of the random coefficients over a set of points. A simple

instance involves analytic functions and their sets of uniqueness. We consider linear

models which include deconvolution, the binary choice model, and panel data models

such as single-index panel data models and an extension of the Kotlarski lemma.

39



Keywords: Identiőcation, Random Coefficients, Quasi-analyticity, Deconvolution.

2.1 Introduction

The determinants of the preferences of the economic agents remain largely unob-

served to the econometrician. This unobserved heterogeneity is a central topic in

economics as it impacts the redistributive effects of public policies. Estimating this

distributional impact requires to identify the whole distribution of the unobserved

heterogeneity. An important and growing literature thus aims at incorporating, iden-

tifying, and estimating nonparametrically the unobserved heterogeneity into general

classes of economic models (see, e.g., Berry and Haile, 2009; Gautier and Kitamura,

2013; Fox, 2017; Hoderlein et al., 2017; Masten, 2017; Chernozhukov et al., 2019;

Cooprider et al., 2020). Imposing parametric assumptions on the law of the random

coefficients is a widely used approach in the analysis of random coefficients models

(see, e.g., Berry et al., 1995; Train, 2009) but can seriously drive the results (see

Heckman and Singer, 1984; Breunig, 2019). Moreover, economic theory rarely moti-

vates these restrictions of the unobserved heterogeneity. For this reason, this paper

considers nonparametric identiőcation of its distribution. In applications, regressors

may only have limited variation. Thus, we aim at showing how to identify unobserved

heterogeneity nonparametrically with regressors having limited support, possibly dis-

crete.

Consider the example of the linear random coefficients model, where the coeffi-

cients - intercept and slopes - are random with a law in a nonparametric class and

independent from the regressors. Here, for each point of support of the regressors,

we observe the distribution of the outcome conditional on the regressors. Using the

linearity of the equation and assuming independence between the regressors and the

random coefficients, the data consists in a set of 1-dimensional projections of the un-

observed distribution. Thus, there is a trade-off between the variation the regressors,

which yields different projections, and the size of the class of distributions we con-

sider. We explicit the link between the nonparametric classes of laws of the random
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coefficients we use and restrictions which are implied on their support, their sign, or

their tails. We show that there exist similar trade-offs for other models with multiple

sources of unobserved heterogeneity, such as the random coefficients binary model

and panel data models.

The őrst contribution of this paper is to provide identiőcation of several random

coefficients models using moment conditions on the distribution with regressors hav-

ing limited variation. We show that the support of the latter can possibly be discrete

but countable and we describe the trade-off with the integrability assumptions on

the coefficients distribution. We study the linear random coefficients model, which

is identiőed in the literature assuming that the regressors have a support larger than

the support of the law of the random coefficients (see, e.g., Beran and Hall, 1992;

Beran et al., 1996a; Hoderlein et al., 2010). An important innovation is that we

obtain identiőcation using moments conditions on the marginals of the distribution

of the unobservables except from the random intercept, which yield the so-called

quasi-analyticity of the Fourier transform of the random coefficients. Thus, we re-

move entirely the assumptions regarding the marginal distribution of the random

intercept made in Masten (2017) and let the dependence structure between the ran-

dom intercept and the random slope unrestricted (see Gaillac and Gautier, 2019c,

for a data-driven estimation). We also study the random coefficients binary model

(see, e.g., Ichimura and Thompson, 1998; Gautier and Kitamura, 2013; Gautier and

Le Pennec, 2018) and the linear and single-index panel data models, where the whole

distribution of unobserved heterogeneity can also be identiőed using regressors with

limited support, even discrete if we assume smoothness and integrability assumptions

on the joint distribution.

The second contribution is our improvements made on deconvolution problems

where characteristic functions can vanish (see Carrasco and Florens, 2011) and on

the well-known Kotlarski lemma (see Kotlarski, 1967; Evdokimov and White, 2012).

The third contribution of the paper is to provide identiőcation of a class of nonlin-

ear random coefficients models, using their decompositions on well-chosen families

of functions under the restriction that only a őnite number the coefficients are ran-
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dom. The motivations for this model are to recover the whole distribution of the

nonparametric elasticities or marginal effects.

The paper is organized as follows. Section 2.2 introduces a motivating example

then settles the nonparametric identiőcation principles and the useful tools. In Section

2.3, we provide the main identiőcation results: on linear random coefficients models,

including deconvolution with identiőable error, on the random coefficients binary

model, and on some panel data models with random coefficients (i.e., an extension

of the Kotlarski lemma, the single index panel data model and the linear panel data

models where regressors are monomials of a baseline scalar regressor). Section 2.4

contains the proofs. The supplemental appendix provides more details about the main

tools used for identiőcation, namely sets of uniqueness of homogeneous polynomials,

analytic, and quasi-analytic classes, and Fourier transform of measures in sections

2.5.2 and 2.5.3.

Notations. Bold letters are used for vectors, capital letters for indeterminates of

polynomials or random variables/vectors. For a real number 𝑟, 𝑟𝑐 is the vector, the

dimension of which will be clear from the text, where each entry is 𝑟. The notation

N and N0 are used for the positive and nonnegative integers, R+ = {𝑥 ∈ R : 𝑥 >

0}, C(𝑋) denotes the set of rational functions, and 1l {·} the indicator function.

K[𝑋1, . . . , 𝑋𝑝] is the ring of polynomials of 𝑝 variables with coefficients in the ring K.

𝐴𝐵 is the set of applications from 𝐵 to 𝐴. The notation | · |𝑞 for 𝑞 ∈ [1,∞] stands for

the ℓ𝑞 norm of a vector with components in C while 𝐿𝑞(𝒮, 𝜇) for 𝑞 ∈ [1,∞] are the

𝑞 integrable functions on 𝒮 with respect to the measure 𝜇 and the norms ‖ · ‖𝐿𝑞(𝒮,𝜇).
When 𝜇 is the Lebesgue measure we drop it from the notation. S𝑝 is the unit sphere

in R𝑝+1. (𝑒(𝑗))𝑝𝑗=1 is the canonical basis of R𝑝.

For 𝛽 ∈ C𝑝, (𝑓𝑚)𝑚∈N functions with values in C, 𝑘 ∈ N0, and 𝑚 ∈ N𝑝
0, denote

by 𝑚! =
∏︀𝑝

𝑗=1 𝑚𝑗!, |𝑚| = ∑︀𝑝
𝑗=1 𝑚𝑗, 𝛽

𝑚 =
∏︀𝑝

𝑗=1 𝛽
𝑚𝑗

𝑗 , 𝛽𝑘 =
(︀
𝛽𝑘1, . . . ,𝛽

𝑘
𝑝

)︀⊤
, |𝛽|𝑚 =

∏︀𝑝
𝑗=1 |𝛽𝑗|𝑚𝑗 , and 𝑓𝑚 =

∏︀𝑝
𝑗=1 𝑓𝑚𝑗

. For a differentiable function 𝑓 of real variables,

𝑓 (𝑚) denotes
∏︀𝑝

𝑗=1
𝜕𝑚𝑗

𝜕𝑥
𝑚𝑗
𝑗

𝑓 and supp(𝑓) its support. ∆ denotes the Laplacian. {𝑀𝑚},
{0𝑚} and {1𝑚} are respectively (𝑀𝑚)𝑚∈N0 and the sequences identically 0 and 1. We
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write {𝑀𝑚} when 𝑀𝑚 = (𝑀 𝑗,𝑚)
𝑝
𝑗=1. M𝑐(𝒮), M(𝒮), and M1(𝒮) are the sets of

complex, nonnegative, and probability measures on a Borel measurable set 𝒮. For

𝜇 ∈ M𝑐(R𝑝) and 𝑚 ∈ N𝑝
0, |𝜇| is its total variation, 𝑠𝜇(𝑚) :=

∫︀
R𝑝

𝑥𝑚𝑑𝜇(𝑥) the

moments, 𝑠|·|,𝜇(𝑚) :=
∫︀
R𝑝

|𝑥𝑚|𝑑𝜇(𝑥) the absolute moments.

The Fourier transform of 𝜇 ∈ M𝑐(R𝑑) (resp. 𝑓 in 𝐿𝑞(R𝑑) for 𝑞 = 1, 2) is ℱ [𝜇] :

𝑥 ↦→
∫︀
R𝑑
𝑒𝑖𝑏

⊤𝑥𝑑𝜇(𝑏) (resp. ℱ [𝑓 ]). For a random vector 𝑋, P𝑋 is its law, 𝐹𝑋 its CDF,

𝑓𝑋 its density, 𝜙𝑋 := ℱ [P𝑋 ], and S𝑋 its support. EP [𝑓(𝑋)] is the expectation of

𝑓(𝑋) under P, ⊗ the product of measure, P𝑌 |𝑋(·|𝑥) for 𝑥 ∈ S𝑋 the conditional

distribution of 𝑌 given 𝑋 = 𝑥, and 𝜙𝑌 |𝑋(·|𝑥) := ℱ
[︀
P𝑌 |𝑋=𝑥

]︀
(·). We use the symbol

⊥ to denote independence.

2.2 Tools for nonparametric identiőcation of the dis-

tribution of the unobserved heterogeneity

2.2.1 An illustrating example : the linear random coefficients

model

Consider the linear random coefficients model

𝑌 = 𝛾⊤𝑓(𝑋), (2.1)

𝛾 and 𝑋 are independent, (2.2)

where the random coefficients 𝛾 belong to R𝑝+1, 𝑋 is scalar, and 𝑓(𝑋) is a vector

of transformations of 𝑋, 𝑓(𝑋) := (1,𝑓 2(𝑋), . . . ,𝑓 𝑝+1(𝑋)). In this model, we are

interested in describing the heterogeneity when 𝑓(𝑋) = (1, 𝑋), or in recovering the

whole distribution of the elasticity with respect to𝑋, 𝛾⊤(𝑓 ′(𝑥))𝑥/𝛾⊤𝑓(𝑥), for 𝑥 ∈ S𝑋 ,

or the marginal effects 𝛾⊤(𝑓 ′(𝑥)), assuming that both quantities exist. We give here

a sense of how identiőcation depends on the transformation 𝑓 , the support of the

regressor 𝑋, and the moments of P𝛾 .
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Starting from (2.1)-(2.2), we have

(︀
P𝑌 |𝑋=𝑥

)︀
𝑥∈S𝑋 =

(︀
P𝛾⊤𝑓(𝑥)

)︀
𝑥∈S𝑋 ,

which are 1-dimensional projections of the distribution of 𝛾 indexed by 𝑥 ∈ S𝑋 .

Thus, we want to characterize the distribution P𝛾 from the knowledge of these 1-

dimensional projections. For all 𝑥 ∈ S𝑋 , the distributions of the projections P𝛾⊤𝑓(𝑥)

are characterized by their characteristic functions, which are related to the Fourier

transform of the unobserved distribution P𝛾 , for all 𝑡 ∈ R and 𝑥 ∈ S𝑋 ,

ℱ
[︀
P𝑌 |𝑋=𝑥

]︀
(𝑡) = E

[︀
𝑒𝑖𝑡𝑌

⃒⃒
𝑋 = 𝑥

]︀

= E
[︁
𝑒𝑖𝑡𝛾

⊤𝑓(𝑥)
]︁

(using (2.1) − (2.2))

=

∫︁

R𝑝+1

𝑒𝑖𝑡𝑔
⊤𝑓(𝑥)𝑑P𝛾(𝑔)

= ℱ [P𝛾 ] (𝑡𝑓(𝑥)). (2.3)

Speciőcally, assuming that they exist, the derivatives of the characteristic function

of P𝑌 |𝑋=𝑥 at 0 are identiőed,1 for all 𝑘 ∈ N0 and 𝑥 ∈ S𝑋 ,

(−𝑖)𝑘 ℱ (𝑘)
[︀
P𝑌 |𝑋=𝑥

]︀
(𝑡)

⃒⃒
𝑡=0

= (−𝑖)𝑘 𝜕(𝑘)𝑡 ℱ [P𝛾 ] (𝑡𝑓(𝑥))
⃒⃒
⃒
𝑡=0

=

∫︁

R𝑝+1

(︃
𝑝+1∑︁

𝑗=1

𝑔𝑗𝑓 𝑗(𝑥)

)︃𝑘

𝑑P𝛾(𝑔),

=
∑︁

𝑗∈N𝑝+1
0 : |𝑗|1=𝑘

⎛
⎝ 𝑘

𝑗1, . . . , 𝑗𝑝+1

⎞
⎠ 𝑐𝑗𝑓(𝑥)

𝑗 = 𝑃 (𝑓(𝑥)),

where 𝑐𝑗 :=
∫︀
R𝑝+1 𝑔

𝑗𝑑P𝛾(𝑔) and

𝑃 (𝑍1, . . . , 𝑍𝑝+1) =
∑︁

𝑗∈N𝑝+1
0 : |𝑗|1=𝑘

⎛
⎝ 𝑘

𝑗1, . . . , 𝑗𝑝+1

⎞
⎠ 𝑐𝑗 𝑍

𝑗1
1 . . . 𝑍

𝑗𝑝+1

𝑝+1 . (2.4)

1They are also the moments of the projections P𝑌 |𝑋=𝑥.
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They are evaluations of homogeneous polynomials at 𝑓(𝑥) whose coefficients are, up

to a positive multiplicative constant, the moments of P𝛾 .

Several remarks are in order. First, if P𝛾 is characterized by its moments, it

is interesting to ask for conditions on the transformation 𝑓 and the variation of the

regressor𝑋 such that we are able to recover all the moments of P𝛾 . Indeed, for some 𝑓 ,

even if the support of𝑋 is R, the distribution P𝛾 in some models of the form (2.1)-(2.2)

is not identiőed. To show this, consider model (2.1)-(2.2) and assume that there exists

a homogeneous polynomial 𝑄 of degree 𝑘 > 0, such that 𝑄(𝑓(𝑥)) = 0 for all 𝑥 ∈ S𝑋 .

Consider a compactly supported probability distribution P*
𝛾 on [−1, 1]𝑝+1 bounded

by below by 𝑐 > 0 and deőne the function 𝑞(𝑔) =
∏︀𝑝+1

𝑗=1 𝑔𝑗 exp(−1/(𝑔2
𝑗 − 1))1l{𝑔𝑗 ∈

[−1, 1]} which is inőnitely differentiable on R𝑝+1. Then, P𝛾 := P*
𝛾 + 𝑐ℎ/‖ℎ‖∞𝑑𝑔,

where ℎ = 𝑄(𝜕1, . . . , 𝜕𝑝+1)𝑞 is a probability. Moreover, using the properties of the

Fourier transform and that 𝑄 is homogeneous, P𝛾 satisőes, for all 𝑥 ∈ S𝑋 and 𝑡 ∈ R,

ℱ [P𝛾 ] (𝑡𝑓(𝑥)) = ℱ
[︀
P*
𝛾

]︀
(𝑡𝑓(𝑥)) + 𝑡𝑘𝑄(𝑓(𝑥))ℱ [ℎ] (𝑡𝑓(𝑥)). (2.5)

Because {𝑓(𝑥), 𝑥 ∈ R} is a subset of the set of zeros of 𝑄, we obtain from (2.5) that

P*
𝛾 and P𝛾 are distinct measures leading to the same observables. A simple particular

case is

𝑌 = 𝛾1 + 𝛾2𝑋 + 𝛾3𝑋
2,

where the distribution of 𝛾 is not nonparametrically identiőed even if the support of𝑋

is R, as {(1, 𝑥, 𝑥2), 𝑥 ∈ R} is a subset of the set of zeros of 𝑄(𝑍1, 𝑍2, 𝑍3) = 𝑍2
2 −𝑍1𝑍3.

Building on these insights, this paper provides conditions on 𝑓 to obtain linear random

coefficients models of type (2.1)-(2.2) which are identiőed (see Section 2.3.1).

Second, assuming that P𝛾 is characterized by its moments restricts the moments

of the intercept 𝛾1, which is sometimes undesirable. Consider the case 𝑌 = 𝛾1+𝛾2𝑋

where, to relax assumptions on 𝛾1, one can notice from (2.3) that the identiőcation

of P𝛾 amounts to recovering it from the knowledge of its Fourier transform on the
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cone

{𝑡(1, 𝑥), 𝑡 ∈ R, 𝑥 ∈ S𝑋}.

For all 𝑡 ̸= 0, using 𝜇𝑡(·) :=
∫︀
R
𝑒𝑖𝑡𝑔1𝑑P𝛾(𝑔1, ·), we have, for all 𝑥 ∈ S𝑋 ,

ℱ [P𝛾 ] (𝑡, 𝑡𝑥) =

∫︁

R

𝑒𝑖𝑡𝑔2𝑥𝑑𝜇𝑡(𝑔2)

= ℱ [𝜇𝑡] (𝑡𝑥). (2.6)

We consider moment conditions on 𝛾2 implying that, for all 𝑡 ̸= 0, the characteristic

function of the complex measure 𝜇𝑡 belongs to (quasi-)analytic classes. Assumption

𝑅𝐿,4 (i) yields that {𝑡𝑥, 𝑥 ∈ S𝑋} is a set of uniqueness of such classes. Using (2.6),

this yields that, for all 𝑡 ̸= 0, the partial Fourier transform with respect to the őrst

variable 𝜇𝑡 = ℱ1st

[︀
P*
𝛾

]︀
(𝑡, ·) is identiőed hence, using the continuity of the Fourier

transform at 0, that P*
𝛾 is identiőed. This allows to obtain identiőcation without

assumptions on 𝛾1 with 𝑋 having possibly discrete support.

2.2.2 Nonparametric identiőcation principles

This paper uses basic elements of nonparametric identiőcation which we introduce

(see Matzkin, 2007a). Consider models deőned by a function 𝑣 (possibly a vector of

functions) relating vectors of outcomes 𝑌 ∈ 𝒴 to a vector of unobserved and observed

factors, denoted respectively by 𝛾 ∈ Γ and 𝑋 ∈ 𝒳 , where Γ = R𝑝+1 or Γ = S𝑝 and

𝒳 = R𝑝 or 𝒳 = S𝑝. The sets 𝒴 , Γ, and 𝒳 are equipped with the Borel 𝜎-őeld. The

equation

𝑣(𝑌 ,𝛾,𝑋) = 0, (2.7)

deőnes the collection (P (P𝛾,𝑋))P𝛾,𝑋∈ℛ of laws of observables P𝑌 ,𝑋 generated by P𝛾,𝑋 ,

where ℛ accounts for the model restrictions. We consider the following base restric-

tion.

Restriction (Exogeneity assumption). Deőne

ℛ1 = {P𝛾,𝑋 : P𝛾,𝑋 = P𝛾 ⊗ P𝑋}.
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Everything in this paper holds if we replace independence by independence given

𝑍, where 𝑍 is a random vector from which we could have observations simultaneously

with those of 𝑋 and the outcomes or which could be identiőable from a model for 𝑋

obtained by a control function approach. When ℛ ⊆ ℛ1, we denote by P*
𝛾 the true

parameter.

Deőnition 1 (Nonparametric identiőcation of P*
𝛾). The distribution P*

𝛾 is identiőed

under the restriction ℛ ⊆ ℛ1 if for all distributions P𝛾,𝑋 ∈ ℛ such that P (P𝛾,𝑋) =

P
(︀
P*
𝛾 ⊗ P𝑋

)︀
then P*

𝛾 = P𝛾.

Finding such a set ℛ amounts to őnding sufficient conditions for identiőcation.

Showing that a condition is necessary is only relatively useful. Indeed, if for ℛ ⊆ ℛ′′,

P*
𝛾 is identiőed under ℛ but not ℛ′′, it does not mean ℛ is sharp as there could exist

ℛ ⊆ ℛ′ ⊆ ℛ′′ such that P*
𝛾 is identiőed under ℛ′. In this paper, identiőcation of P*

𝛾

is relative to ℛ ⊆ ℛ1 which restricts the class of marginals P𝛾 of P𝛾,𝑋 and imposes

that S𝑋 is rich enough. To obtain identiőcation without restricting the class of P𝛾

usually requires that S𝑋 = 𝒳 , which is too demanding for a dataset. Hence, this

paper studies middle ground restrictions where S𝑋 could be a proper subset, possibly

discrete, while P𝛾 belongs to a restricted but nonparametric class. For models which

involve an index (1,𝑋⊤)𝛾, denoting by 𝛾 = (𝛼,𝛽⊤)⊤, we have, for all 𝑥 ∈ R𝑝 and

𝑀 ∈ 𝐺𝐿(R𝑝), where 𝐺𝐿(K𝑝) is the group of invertible 𝑝×𝑝 matrices with coefficients

in K,

𝛼 + 𝛽⊤𝑋 = 𝛼 + 𝛽⊤𝑥+ 𝛽⊤𝑀−1𝑀 (𝑋 − 𝑥) , (2.8)

and, when 𝑥 and 𝑀 are known, there is a one to one mapping between P𝛼+𝛽⊤𝑥,(𝑀−1)⊤𝛽

and P𝛾 . Hence, we could, by reparametrization, study identiőcation when S𝑋 is

replaced by any convenient invertible affine transformation. Sometimes, the results

in this paper also involve treating in a speciőc order the regressors but, based on this

discussion, the order is irrelevant.
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2.2.3 Quasi-analyticity, sets of uniqueness, and conditions on

the moments

We introduce here the main concepts used to obtain identiőcation. Let 𝒮 be a subset

of C, 𝐶(𝒮) and 𝐶∞(𝒮) be the continuous and inőnitely differentiable functions at

every point in 𝒮 with values in C. Given 𝒮 ⊆ R, 𝑏 ∈ R+, and {𝑀𝑚} ∈ (0,∞]N0 , let us

introduce useful classes of functions which have explicit controls on their derivatives,

𝐶{𝑀𝑚}(𝒮, 𝑏) :=
{︁
𝑓 ∈ 𝐶∞(𝒮) : ∃𝑐 : ∀𝑚 ∈ N0,

⃦⃦
𝑓 (𝑚)

⃦⃦
𝐿∞(𝒮) ≤ 𝑐𝑏|𝑚|𝑀𝑚

}︁
. (2.9)

Due to the constant 𝑐, we can assume that 𝑀0 = 1 in (2.9) and 𝐶{𝑀𝑚}(𝒮) :=
⋃︀
𝑏∈R+

𝐶{𝑀𝑚}(𝒮, 𝑏). The analytic functions 𝒜(𝒮) ⊆ 𝐶∞(𝒮) on 𝒮 ⊆ R𝑝 or 𝒮 ⊆ C𝑝 are

the 𝐶∞(𝒮) functions with a convergent Taylor series around every point in 𝒮. Note

that the analytic functions on R correspond to the class 𝐶{𝑚!}(R) (see, e.g., Theorem

19.9 in Rudin, 1973). Because 𝒜(𝒮) is a small subset of 𝐶∞(𝒮) (see Appendix 2.5.6),

we use larger classes.

Deőnition 2 (Quasi-analytic classes). Let 𝒮 ⊆ R, then the class of functions 𝒞(𝒮)
is said to be quasi-analytic if there exists 𝑥0 ∈ 𝒮 such that, for all 𝑓 ∈ 𝒞(𝒮),

𝑓 (𝑚)(𝑥0) = 0, ∀𝑚 ∈ N0

implies that 𝑓 = 0 on 𝒮.

Thus, quasi-analytic classes are functions being characterized by the knowledge of

their derivatives at a point. There exist quasi-analytic functions which are not analytic

functions. Proposition 1 below or the Denjoy-Carleman Theorem (see Theorem 1.7

in Infusino, 2016) give necessary and sufficient conditions on {𝑀𝑚} for 𝐶{𝑀𝑚}(R) to

be a quasi-analytic class.

Our identiőcation strategy uses sets of uniqueness for the classes of functions we

have just introduced. We give several examples of such sets in Appendix 2.5.2.

Deőnition 3 (Set of uniqueness). Let F(𝒮) be a vector space of functions on 𝒮.
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𝑈 ⊆ 𝒮 is a set of uniqueness for F(𝒮) if every function of F(𝒮) which is zero on 𝑈

is identically zero on 𝒮.

Determinate measures and how they relate to quasi-analytic classes is the last im-

portant concept. Deőne the classes of measures which admit őnite absolute moments,

M*
𝑐 (R

𝑝) :=

{︃
𝜇 ∈ M𝑐 (R

𝑝) : ∀𝑚 ∈ N,

𝑝∑︁

𝑗=1

𝑠|·|,|𝜇|(2𝑚𝑒(𝑗)) <∞
}︃
;

M* (R𝑝) := M*
𝑐 (R

𝑝) ∩M (R𝑝) , M*
1 (R

𝑝) := M* (R𝑝) ∩M1 (R
𝑝) .

Hereafter, ℳ is M*
𝑐 (R

𝑝), M* (R𝑝), or subsets with restriction on the support. Our

identiőcation strategies use determinate measures.

Deőnition 4 (Determinate measures). Let ℳ ⊆ M*
𝑐(R

𝑝). A measure 𝜇 is deter-

minate in ℳ if, when 𝜇, 𝜈 ∈ ℳ are such that, for all 𝑚 ∈ N𝑝
0, 𝑠𝜇(𝑚) = 𝑠𝜈(𝑚), then

𝜇 = 𝜈.

For a measure 𝜇 ∈ M*(R), identiőcation results in this paper assume moment

restrictions of the type 𝑠𝜇(𝑚) ≤ 𝑀𝑚, where {𝑀𝑚} is a log-convex sequence, i.e., a

sequence of nonnegative numbers such that, for all 𝑚 ∈ N, 𝑀2
𝑚 ≤𝑀𝑚−1𝑀𝑚+1, which

satisőes 𝑀0 = 1.2 More generally, Theorem 2.10 in Infusino (2016) obtained from

Petersen (1982) ensures that the determinacy of a measure on R𝑝 can be assessed by

the determinacy of projections in a set of 𝑝 directions spanning R𝑝. Proposition 1

below gives a criterion on the bounds on the moments 𝑠𝜇(𝑚) ≤ 𝑀𝑚 of a measure

𝜇 when 𝑝 = 1 ensuring its determinacy and that its Fourier transform belongs to a

quasi-analytic class.

Proposition 1. Let {𝑀𝑚} ∈ (0,∞]N0 and be log-convex sequence.

1. Let 𝜇 ∈ M*
𝑐(R). If, for all 𝑚 ∈ N0, the absolute moments of |𝜇| are bounded

2For positive log-convex sequences, this equivalently means that {𝑀𝑚−1/𝑀𝑚} is nonincreasing.
Also, for such a sequence, if inf{𝑘 ∈ N : 𝑀𝑘 = ∞} < ∞, then we have, for all 𝑚 ≥ min{𝑘 ∈
N : 𝑀𝑘 = ∞}, 𝑀𝑚 = ∞. We can relax this condition and rely on log-convex regularisation of the
sequences, but we differ this point to the Appendix for simplicity.
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𝑠|·|,|𝜇|(𝑚) ≤𝑀𝑚, and {𝑀𝑚} satisőes

∑︁

𝑚∈N

1

𝑀
1/(2𝑚)
2𝑚

= ∞, (2.10)

then 𝜇 is determinate in M*
𝑐(R) and its Fourier transform belongs to 𝐶{𝑀𝑚}(R, 1),

which is a quasi-analytic class.

2. Let 𝜇 ∈ M*
𝑐(R+). If, for all 𝑚 ∈ N0, the absolute moments of |𝜇| are bounded

𝑠|·|,|𝜇|(𝑚) ≤𝑀𝑚, and {𝑀𝑚} satisőes

∑︁

𝑚∈N

1

𝑀
1/(2𝑚)
𝑚

= ∞, (2.11)

then 𝜇 is determinate in M*
𝑐(R+) and its Fourier transform belongs to 𝐶{𝑀𝑚}(R, 1),

which is a quasi-analytic class.

The őrst part of the two statements of Proposition 1 is the Carleman theorem (see

Theorem 10 in Appendix for other equivalent conditions or Theorem 2.5 in Infusino,

2016). Condition (2.10) is the so-called Carleman condition of the Hamburger moment

problem and (2.11) is the weaker Stieltjes condition for the Stieltjes moment problem.

It is legitimate to ask what are in practice the measures satisfying (2.10), hence

which are determinate in M*(R). To answer this question, there exist integral criteria

for 𝜇 ∈ M*
1(R) with a density 𝑓 which are easier to check and interpret than (2.10).

When 𝑓 is positive and the Krein condition
∫︀
R
− log(𝑓(𝑥))/(1+𝑥2)𝑑𝑥 <∞ holds, 𝜇 is

not determinate in M*
1(R) (see Lin, 1997); while, if 𝑓 is also even, differentiable, and

there exists 𝑥0 > 0 such that, for all 𝑥 ≥ 𝑥0 > 0 and 𝑥 ↦→ 𝑓(𝑥) decreases to 0, 𝑥 ↦→
−𝑥𝑓 ′(𝑥)/𝑓(𝑥) increases to inőnity (so-called Lin conditions), and

∫︀
R
− log(𝑓(𝑥))/(1+

𝑥2)𝑑𝑥 = ∞ then (2.10) holds.

Examples. Based on these criteria, Student’s 𝑡 with 0 < 𝜈 < ∞ degrees of free-

dom, the generalized gamma𝐺𝐺(𝑎, 𝑏, 𝑝) for 0 < 𝑎 < 1/2 of density 𝑎𝑏𝑝𝑥𝑎𝑝−1 exp(−𝑏𝑥𝑎)/Γ(𝑝)
on R+, any positive power of the lognormal, the law of 𝑁2𝑛+1 for all 𝑛 ∈ N, |𝑁 |𝑟 for

𝑟 > 4, 𝑋𝑚 for all 𝑚 ∈ N ∖ {1, 2}, 𝑌 𝑟 for all |𝑟| > 2, where 𝑁 is a Gaussian, 𝑋 a
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Laplace, gamma or logistic, and 𝑌 an inverse Gaussian random variables, are not de-

terminate respectively in the space of probabilities with appropriate assumptions on

the support. However, |𝑁 |𝑟 for all 0 < 𝑟 ≤ 4, 𝑋𝑚 for 𝑚 = 1, 2, 𝑌 𝑟 for all −2 ≤ 𝑟 ≤ 2,

𝐺𝐺(𝑎, 𝑏, 𝑝) for all 𝑎 ≥ 1/2 (thus the 𝜒2 with any degrees of freedom) are determinate

in the space of probabilities with the appropriate assumptions on the support (see

Stoyanov, 2000; Pakes et al., 2001; Kleiber and Stoyanov, 2013, for more examples

and references).

2.3 Main identiőcation results

Theorems 1, 2, 3, 7, 9, and 11 use restrictions involving log-convex sequences, which

is slightly less general than working with determinate measures, but it can be easily

adapted.

2.3.1 The linear random coefficients model

Hereafter in this section, we consider the linear random coefficients model

𝑌 = 𝛼 + 𝛽⊤𝑋, (2.12)

under ℛ1 which particularizes (2.7) with 𝛾 = (𝛼,𝛽⊤)⊤.

Deconvolution

Deconvolution problems with two samples, one of the error and one of the sum of the

signal and the error, can be viewed as a particular linear random coefficients model,

where the regressor 𝑋 has dimension 1 and two points of support:

𝑌 = 𝛼 + 𝛽𝑋,

under ℛ1, which particularizes (2.7) with 𝛾 = (𝛼, 𝛽)⊤.
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Assumption 1. Let {𝑀𝑚} be a log-convex sequence. Deőne the restriction

ℛ𝐷({𝑀𝑚}) := {P𝛾,𝑋 : P𝛾,𝑋 = P𝛾 ⊗ P𝑋 and 𝑅𝐷 (i)-(iii)},

𝑅𝐷 (i) {0, 1} ⊆ S𝑋 ;

𝑅𝐷 (ii) P𝛾 = P𝛼 ⊗ P𝛽 and, for all 𝑚 ∈ N0, E[|𝛽|𝑚] ≤𝑀𝑚.

𝑅𝐷 (iii) if S𝛽 ⊆ R+, {𝑀𝑚} satisőes (2.10) and else, if S𝛽 ̸⊆ R+, {𝑀𝑚} satisőes

(2.11).

Focusing on {0, 1} in 𝑅𝐷 (i) is not restrictive as one can use affine rescaling of

𝑋. Because P𝛾 = P𝛼 ⊗ P𝛽, P𝑌 |𝑋(·|1) is the law of the sum of two independent

random variables, where 𝛼 plays the role of the noise in deconvolution problems, and

P𝑌 |𝑋(·|0) is the law of the noise 𝛼. The following theorem is a particular case of

Theorem 2, where (2.12) is generalized to higher dimensions of 𝑋 and 𝛽. We show

that in arbitrary dimensions, when S𝑋 is richer but possibly discrete, i.e., we can vary

the intensity of the noise, the independence in condition 𝑅𝐷 (ii) could be removed,

and we can identify the distribution of 𝛾 without independence and assumption on

the distribution of the noise. Else, when S𝑋 = {0, 1} and 𝛼 and 𝛽 are arbitrarily

dependent, we can obtain sharp bounds on 𝐹𝛽 (see Gautier and Hoderlein, 2015 and

the references therein).

Theorem 1. P*
𝛾 for (2.12) is identiőed under ℛ𝐷({𝑀𝑚}), where {𝑀𝑚} is a log-

convex sequence satisfying 𝑀0 = 1.

Theorem 1 extends Theorem 2.1 in Beran and Hall (1992), where they assume

that the interior of the support of 𝑋 is nonempty. Estimation in the deconvolution

model when, instead of 𝑅𝐷 (ii)-(iii), the assumption that the interior of the sets

of zeros of 𝜙𝛼 is empty is maintained has been studied in Carrasco and Florens

(2011). By continuity of the Fourier transform of probabilities, the set of zeros of

a characteristic function is a closed set and assuming that its interior is empty is

equivalent to assuming it consists of isolated points. Under ℛ𝐷({𝑀𝑚}), 𝜙𝛼 can have
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zeros on arbitrary large sets at the expense of a stronger assumption on P𝛽. Indeed,

𝜙𝛽 has isolated zeros (see Proposition 1 and Example QA.2 in the Appendix), else

it would be identically 0. This would contradict the fact that its value at 0 is 1.

There are classical examples of characteristic functions with compact support (e.g.,

𝑡 ↦→ (1 − |𝑡|𝑟)1l{|𝑡| ≤ 1} for 0 < 𝑟 ≤ 1). The sufficient condition of Polya (see, e.g.,

Theorem 6.5.3 in Chung, 2002) provides generic examples of laws which do not have

absolute őrst moment. The idea to handle ℛ𝐷({𝑀𝑚}) is the same as in Remark

1 in Kotlarski (1967) but the maintained assumption is weaker because we allow

for nonanalytic characteristic functions. Meister (2007) considers the estimation of

compactly supported densities of a signal in the deconvolution model where the known

distribution of the noise can have a characteristic function which set of zeros consists

of isolated points. This is a more restrictive framework than Carrasco and Florens

(2011) because the characteristic function is analytic (see (P3.3) in the Appendix).

Identiőcation under independence of the marginals of P*
𝛾

Due to ℛ1, we have P𝑌 |𝑋 (·|𝑥) = P𝛼+𝛽⊤𝑥. Hence, P*
𝛾 is identiőed under

ℛ𝐿,1 := ℛ1 ∩ {P𝛾,𝑋 : S𝑋 = R𝑝}

by the Cramer-Wold Theorem. When the support of the regressors 𝑋 is a proper

subset of R𝑝, P*
𝛾 is identiőed if we assume independence in the vector 𝛾 (see Beran and

Hall, 1992; Gautier and Hoderlein, 2015). For example, independence of the marginals

of P𝛾 gives rise to a deconvolution problem and identiőcation of P*
𝛾 is possible when

the support of 𝑋 contains only 𝑝+ 1 points.

Assumption 2. Let, for all 𝑘 = 1, . . . , 𝑝, {𝑀 𝑘,𝑚} be log-convex sequences, 𝑀 𝑘,0 = 1,

and

ℛ𝐿,2 ({𝑀 𝑘,𝑚}𝑝𝑘=1) := ℛ1 ∩ {P𝛾,𝑋 : 𝑅𝐿,2 (i)-(ii)} ,

where

𝑅𝐿,2 (i) {0𝑐,𝑥(1), . . . ,𝑥(𝑝)} ⊆ S𝑋 and, up to a permutation of the vectors, (𝑥(1), . . . ,𝑥(𝑝))
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is an upper triangular matrix with nonzero diagonal elements;

𝑅𝐿,2 (ii) P𝛾 = P𝛼⊗
⨂︀𝑝

𝑘=1 P𝛽𝑘
, for all 𝑘 = 1, . . . , 𝑝 and 𝑚 ∈ N0, EP𝛽

[|𝛽𝑘|𝑚] ≤ 𝑀 𝑘,𝑚,

if S𝛽𝑘
⊆ R+, {𝑀 𝑘,𝑚} satisőes (2.11) and else, if S𝛽𝑘

̸⊆ R+, {𝑀 𝑘,𝑚}
satisőes (2.10).

The following Theorem 2 extends Theorem 1. We allow for different classes of

determinate probabilities. For example, some coefficients could be assumed positive.

Theorem 2. P*
𝛾 is identiőed under ℛ𝐿,2({𝑀 𝑘,𝑚}𝑝𝑘=1), where, for all 𝑘 = 1, . . . , 𝑝,

{𝑀 𝑘,𝑚} are log-convex sequences satisfying 𝑀 𝑘,0 = 1.

The restriction ℛ𝐿,2 (ii) can be replaced by P𝛾 = P𝛼 ⊗⨂︀𝑝
𝑘=1 P𝛽𝑘

and 𝜙𝛼 and 𝜙𝛽𝑘

for all 𝑘 = 1, . . . , 𝑝 − 1 are such that the interior of their sets of zeros is empty. We

give the proof with the one of Theorem 2.

Identiőcation when P*
𝛾 has restricted support

Independence in 𝑅𝐿,2 (ii) precludes cases where 𝛾 is a function of a deep heterogeneity

parameter Θ, hence of the form 𝛾(Θ). An alternative to independence is to restrict

the support of P𝛾 . By the results in Beran and Millar (1994), P*
𝛾 is identiőed under

the following restriction ℛ𝐿,4.

Restriction. Deőne the restriction

ℛ𝐿 := ℛ1 ∩ {P𝛾,𝑋 : 𝑅𝐿 (i)-(ii)},

𝑅𝐿 (i) The interior of the support of 𝑋 is nonempty;

𝑅𝐿 (ii) The support of 𝛾 is compact.

As we shall see, it is possible to remove the unpleasant assumption that the support

of the intercept 𝛼 is compact, which is unusual for an error term. Theorem 3 below is

a consequence of Proposition 2 (see also Masten, 2017), which are about identiőcation

of a determinate measure by projections. It treats symmetrically the random intercept
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and slopes and allows for weaker assumptions on the support of the regressors than

the restriction ℛ𝐿.

Assumption 3. Let, for 𝑘 = 1, . . . , 𝑝+1, {𝑀 𝑘,𝑚} be log-convex sequences such that

𝑀 𝑘,0 = 1. Deőne the restriction

ℛ𝐿,3({𝑀 𝑘,𝑚}𝑝+1
𝑘=1) := ℛ1 ∩ {P𝛾,𝑋 : 𝑅𝐿,3 (i)-(ii)},

𝑅𝐿,3 (i)
∏︀𝑝

𝑘=1 𝑉𝑘 ⊆ S𝑋 , where, for all 𝑘 = 1, . . . , 𝑝, 𝑉𝑘 contains an inőnite number

of points.

𝑅𝐿,3 (ii) For all 𝑘 = 1, . . . , 𝑝+1 and 𝑚 ∈ N0, EP𝛾
[|𝛾𝑘|𝑚] ≤ 𝑀 𝑘,𝑚 and, if S𝛾𝑘

⊆ R+,

{𝑀 𝑘,𝑚} satisőes (2.11) and else, if S𝛾𝑘
̸⊆ R+, {𝑀 𝑘,𝑚} satisőes (2.10).

Theorem 3. Let, for 𝑘 = 1, . . . , 𝑝 + 1, {𝑀 𝑘,𝑚} be log-convex sequences such that

𝑀 𝑘,0 = 1. P*
𝛾 is identiőed under ℛ𝐿,3({𝑀 𝑘,𝑚}𝑝+1

𝑘=1).

Usual assumptions made on the support of the regressors (see, e.g., Meister, 2007;

Hoderlein et al., 2017) prevent from allowing their support to be discrete. We can

replace 𝑅𝐿,5 (i) by the more general condition: the support of 𝑋 is a set of uniqueness

of homogeneous polynomials in 𝑝 variables. Examples of latter sets are gathered in

Appendix 2.5.2. Note that we allow the support of 𝑋 to be discrete and without an

accumulation point.

Identiőcation without any restrictions on the intercept P*
𝛼

𝑅𝐿,3 (ii) still places restrictions on P*
𝛼 which we now entirely remove. We use that,

under the restriction ℛ1, for all 𝑡 ∈ R and 𝑥 ∈ S𝑋 ,

ℱ
[︀
P𝑌 |𝑋=𝑥

]︀
(𝑡) = ℱ [P𝛾 ] (𝑡, 𝑡𝑥).

Assumption 4. Let, for 𝑘 = 1, . . . , 𝑝, {𝑀 𝑘,𝑚} be log-convex sequences such that

𝑀 𝑘,0 = 1. Deőne the restriction

ℛ𝐿,4 ({𝑀 𝑘,𝑚}𝑝𝑘=1) := ℛ1 ∩ {P𝛾,𝑋 : 𝑅𝐿,4 (i)-(ii)},
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where

𝑅𝐿,4 (i)
∏︀𝑝

𝑘=1 𝑉𝑘 ⊆ S𝑋 , where, for all 𝑘 = 1, . . . , 𝑝, 𝑉𝑘 ⊂ S𝑋𝑘
contains an accumu-

lation point.

𝑅𝐿,4 (ii) For all 𝑘 = 1, . . . , 𝑝 and 𝑚 ∈ N0, EP𝛽
[|𝛽𝑘|𝑚] ≤ 𝑀 𝑘,𝑚 and, if S𝛽𝑘

⊆ R+,

{𝑀 𝑘,𝑚} satisőes (2.11) and else, if S𝛽𝑘
̸⊆ R+, {𝑀 𝑘,𝑚} satisőes (2.10).

Theorem 4. P*
𝛾 is identiőed under ℛ𝐿,4 ({𝑀 𝑘,𝑚}𝑝𝑘=1), where, for 𝑘 = 1, . . . , 𝑝,

{𝑀 𝑘,𝑚} are log-convex sequences such that 𝑀 𝑘,0 = 1.

The distribution of 𝛽𝑘 with 𝑅𝐿,4 can have heavy tails. Using Proposition 4, 𝑅𝐿,4

(ii) can also be replaced by, for all 𝑘 = 1, . . . , 𝑝, E
[︀
𝑒𝜌|𝛽𝑘|

]︀
≤ 𝑅 or S𝛽𝑘

⊆ [−𝜌, 𝜌],
where 𝜌 > 0 and 𝑅𝐿,4 (i) by,

∏︀𝑝
𝑘=1 𝑉𝑘 ⊆ S𝑋 , where, for all 𝑘 = 1, . . . , 𝑝, 𝑉𝑘 = Zℎ𝑘 ⊆

S𝑋𝑘
, with 𝜌ℎ𝑘/2 < 1. Many classical discrete distributions satisfy this condition.

Identiőcation does not rely on the knowledge of {𝑀 𝑘,𝑚} and 𝑅.

Nonlinear models with a decomposition admitting a őnite number of ran-

dom coefficients

Consider the nonlinear random coefficients model

𝑌 =
∑︁

𝑗∈Z
𝛾𝑗(Θ)𝑓 𝑗(𝑋), (2.13)

where Θ is deep underlying heterogeneity with arbitrary dimension, possibly inőnite,

𝑋 is scalar and independent of Θ, and 𝒳 := [−𝑥0, 𝑥0] ⊆ S𝑋 for 0 < 𝑥0 ≤ ∞. We

assume that there are only a őnite number of random coefficients in this decomposi-

tion: there exists 𝑗0 ∈ N, such that (𝛾𝑗)|𝑗|>𝑗0 are deterministic. We also assume that,

for a.e. 𝜃 ∈ SΘ,
∑︀

|𝑗|≤𝑗0 𝛾𝑗(𝜃)
2 +

∑︀
|𝑗|>𝑗0 𝛾

2
𝑗 <∞.

Thus, this model considers a restriction of the heterogeneity in the model

𝑌 = 𝑔(𝑋,Θ), (2.14)
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where 𝑔 is unknown and a.s in 𝜃 ∈ SΘ, 𝑥 ↦→ 𝑔(𝑥,𝜃) can be decomposed in 𝐿2(−𝑥0, 𝑥0)
as,

𝑔(𝑥,𝜃) =
∑︁

𝑗∈Z
𝛾𝑗(𝜃)𝑓 𝑗(𝑥), (2.15)

where 𝛾(𝜃) is an inőnite dimensional measure. The difference with (2.13) is that we

assume that only low frequencies |𝑗| ≤ 𝑗0 are heterogenenous, and not the high ones.3

The motivation is to recover the distribution of the elasticity in 𝜕𝑥𝑓(𝑥,Θ)𝑥/𝑓(𝑥,Θ)

or of the marginal effects 𝜕𝑥𝑓(𝑥,Θ) for 𝑥 ∈ [−𝑥0, 𝑥0], assuming that they exist. A

important case motivating the decomposition (2.15) is when (𝑓 𝑗)𝑗∈Z form a Riesz

basis of 𝐿2(−𝑥0, 𝑥0) with 𝑓 0 = 1 (see Deőnition 7). Here, the coefficients 𝛾𝑗(𝜃) are

the inner products of 𝑥 ↦→ 𝑔(𝑥,𝜃) with the unique biorthogonal system (see sections

1.7 and 1.8 in Young, 2001).

Let us introduce the following concept.

Deőnition 5 (Algebraically independent functions). Functions (𝑓 𝑗)𝑗∈Z are alge-

braically independent over R if, for all őnite subset 𝐼 of Z, and 𝑃 ∈ R[𝑋𝑖, 𝑖 =

1, . . . , |𝐼|], 𝑃 ((𝑓 𝑗)𝑗∈𝐼) = 0 implies that 𝑃 = 0.

Basic examples of algebraically independent functions over R are given in Wald-

schmidt (2000). The following examples are interesting:

F (i) The family with only three elements (𝑓 0,𝑓 1,𝑓 3) = (1, 𝑥, 𝑒𝑥) hence (2.15) is a

őnite sum;

F (ii) 𝑓 0 = 1, 𝑓 𝑗(𝑥) = 𝑥𝜆𝑗 , for all 𝑗 ∈ Z ∖ {0}, where 𝜆𝑗 = 𝑗 + 1/𝑟|𝑗| and 𝑟 ∈ (1,∞)

is transcendental over Z (i.e., it is not the root of any polynomials with

coefficients in Z, e.g., 𝑒 or 𝜋). One can also consider 𝑓 as the Gram-Schmidt

orthonormalisation of this family to obtain a basis of 𝐿2(−𝑥0, 𝑥0), motivating

the decomposition (2.15);

F (iii) 𝑓 0 = 1, 𝑓 𝑗(𝑥) = 𝑒𝑖𝜋𝜆𝑗𝑥/𝑥0 , for all 𝑗 ∈ Z ∖ {0}, where 𝜆𝑗 = 𝑗 + 1/(4𝑟|𝑗|) and

𝑟 ∈ (1,∞) is transcendental over Z. Proposition 3 in Appendix shows that

3Note that one could consider the more general model where the random components of 𝛾(𝜃) are
another arbitrary group of indexes 𝑗.
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these speciőc exponential families of functions 𝑓 are algebraically independent

functions and form a Riesz basis of 𝐿2(−𝑥0, 𝑥0), for 𝑥0 ∈ R+ (see Deőnition

7), which motivates the decomposition (2.15). Here, the coefficients 𝛾𝑗(𝜃) are

the inner products of 𝑥 ↦→ 𝑓(𝑥,𝜃) with the unique biorthogonal system (see

sections 1.7 and 1.8 in Young, 2001).

Assumption 5. Let, for 𝑘 ∈ Z, {𝑀 𝑘,𝑚} be log-convex sequences such that 𝑀 𝑘,0 = 1.

Deőne

ℛ𝑁𝐿({𝑀 𝑘,𝑚}𝑘∈Z) := ℛ1 ∩ {P𝛾,𝑋 : 𝑅𝑁𝐿 (i)-(ii)},

𝑅𝑁𝐿 (i) (a) There exists 𝑥0 > 0 such that 𝒳 := [−𝑥0, 𝑥0] ⊆ S𝑋 and 𝑓𝑋 is bounded

by below on 𝒳 ;

(b) Or, 𝑗0 is known, 𝛾𝑗 = 0 for |𝑗| > 𝑗0, and S𝑋 contains an inőnite

number of points.

𝑅𝑁𝐿 (ii) For all |𝑘| ≤ 𝑗0 and 𝑚 ∈ N0, EP𝛾
[|𝛾𝑘|𝑚] ≤ 𝑀 𝑘,𝑚 and, if S𝛾𝑘

⊆ R+,

{𝑀 𝑘,𝑚} satisőes (2.11) and else, if S𝛾𝑘
̸⊆ R+, {𝑀 𝑘,𝑚} satisőes (2.10);

𝑅𝑁𝐿 (iii) (𝑓 𝑗)𝑗∈Z are algebraically independent functions over R

The condition on 𝑅𝑁𝐿 (i) (a) on 𝑓𝑋 is mild as one can take a small 𝑥0 such that its

holds. Under the restriction 𝑅𝑁𝐿 (i) on the support of S𝑋 , if (𝑓 𝑗)𝑗∈Z are algebraically

independent functions over R, then

{(𝑓−𝑗0(𝑥), . . . , 1, . . . ,𝑓 𝑗0(𝑥)), 𝑥 ∈ S𝑋} (2.16)

is a set of uniqueness of homogeneous polynomials on R[𝑋1, . . . , 𝑋2𝑗0+1], which is a

more general condition.

Theorem 5. Let, for 𝑘 ∈ Z, {𝑀 𝑘,𝑚} be log-convex sequences such that 𝑀 𝑘,0 = 1.

P*
𝛾 is identiőed under ℛ𝑁𝐿({𝑀 𝑘,𝑚}𝑘∈Z).
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2.3.2 The random coefficients binary choice model

Consider the equation

𝑌 = 1l{𝛼 + 𝛽⊤𝑋 ≥ 0}.

Assuming that P(|(𝛼,𝛽⊤)⊤|2 = 0) = 0 and this can be equivalently written as

𝑌 = 1l{𝛾⊤𝑆 ≥ 0},

where 𝛾 := (𝛼,𝛽⊤)⊤/|(𝛼,𝛽⊤)⊤|2 and 𝑆 := (1,𝑋⊤)⊤/|(1,𝑋⊤)⊤|2. Clearly |(1,𝑋⊤)⊤|2 ≥
1 and the support of 𝑆 is a closed subset of the hemisphere 𝐻+ := {𝑠 ∈ S𝑝 : 𝑠1 ≥ 0}.
In this section, we consider identiőcation of the density 𝑓 *

𝛾 of P*
𝛾 with respect to 𝜎,

which is the surface measure on S𝑝. We maintain ℛ1 with Γ = S𝑝 and consider the

following restriction.

Assumption 6.

ℛ𝐵𝐶,0 := ℛ1∩{P𝛾,𝑋 ∈ M1(S
𝑝 × R𝑝) : 𝑑P𝛾 = 𝑓𝛾𝑑𝜎, 𝑓𝛾(𝑢)𝑓𝛾(−𝑢) = 0 for a.e. 𝑢 ∈ S𝑝} .

It is shown in Gautier and Le Pennec (2018) that P*
𝛾 is identiőed under the

restriction

ℛ𝐵𝐶,1 := ℛ𝐵𝐶,0 ∩ {S𝑋 = R𝑝}.

It is assumed in Gautier and Kitamura (2013) that the support of 𝛾 lies in an (un-

known) hemisphere, namely, that there exists 𝑛 in S𝑝 such that P(𝑛⊤𝛾 ≥ 0) = 1.

This assumption őrst appeared in Ichimura and Thompson (1998) and is too strong

for some applications. Indeed, if 𝑛 ∈ 𝐻+, then we have P(𝑌 = 1|𝑆 = 𝑛) = 1, else

P(𝑌 = 1|𝑆 = −𝑛) = 0. This means that there exist limits of values of the regressors

such that in the limit everyone chooses 𝑌 = 1 or in the limit everyone chooses 𝑌 = 0.

It is stronger than 𝑓𝛾(𝑢)𝑓𝛾(−𝑢) = 0 for a.e. 𝑢 in S𝑝 which does not imply łunselected

samples".

Let us now consider the case where the support of 𝑋 is a proper subset of R𝑝

or equivalently the support of 𝑆 is a proper subset of 𝐻+. Similarly to the previous
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section, identiőcation can be achieved if the conditional expectation 𝑥 ↦→ E[𝑌 |𝑋 = 𝑥]

belongs to a class of analytic functions or a quasi-analytic class (see the deőnition

on the sphere in Appendix 2.5.7) and the support of 𝑋 is the associated set of

uniqueness. This can be achieved by imposing restrictions on P*
𝛾 as we now present.

ℋ∞(𝒮) denotes the bounded analytic functions on 𝒮.

Assumption 7. Let 0 < 𝜖 < 1. Deőne the restriction

ℛ𝐵𝐶,2(𝜖) := ℛ𝐵𝐶,0 ∩ {P𝛾,𝑆 ∈ M1(S
𝑝 × S𝑝) : 𝑅𝐵𝐶,2 (i)-(ii)},

where

𝑅𝐵𝐶,2 (i) S𝑋 is a set of uniqueness of ℋ∞ ({𝑧 ∈ C𝑝 : |Im(𝑧)|2 < 𝜖});

𝑅𝐵𝐶,2 (ii) E [𝑌 |𝑋 = ·] belongs to ℋ∞ ({𝑧 ∈ C𝑝 : |Im(𝑧)|2 < 𝜖}).

For functions on S𝑝, the Laplacian ∆ has eigenspaces 𝐻𝑚,𝑝, eigenvalues 𝜁𝑚,𝑝 =

−𝑚(𝑚+ 𝑝− 1), and 𝑄𝑚,𝑝𝑓(·) =
∫︀
S𝑝
𝑞𝑚,𝑝(·,𝑦)𝑓(𝑦)𝑑𝜎(𝑦) is the orthogonal projection

of 𝑓 onto 𝐻𝑚,𝑝 for all 𝑚 ∈ N0.

Theorem 6. For all 0 < 𝜖 ≤ 1/2, P*
𝛾 is identiőed under ℛ𝐵𝐶,2(𝜖) and a sufficient

condition for 𝑅𝐵𝐶,2 (ii) is

lim𝑚→∞ ‖𝑄2𝑚+1,𝑝𝑓𝛾‖1/𝑚𝐿1(S𝑝) < 1/(1 + 2𝜖). (2.17)

Clearly, a set of uniqueness of ℋ∞ ({𝑧 ∈ C𝑝 : |Im(𝑧)|2 < 𝜖}) is a set of uniqueness

of the superset ℋ∞ ({𝑧 ∈ C𝑝 : |Im(𝑧)|∞ < 𝜖}). Hence, a sufficient condition for 𝑅𝐵𝐶,2

(i) is that 𝑈𝑝 ⊆ S𝑋 where for all 𝑗 = 2, . . . , 𝑝, 𝑈𝑗 :=
⋃︀

𝑢∈𝑈𝑗−1

{︀
(𝑢⊤, 𝑣)⊤, 𝑣 ∈ 𝑉𝑗(𝑢)

}︀
,

where 𝑉𝑗(𝑢) and 𝑈1 are sets of uniqueness of ℋ∞ ({𝑧 ∈ C : |Im(𝑧)| < 𝜖}). A par-

ticular case is a product of sets of uniqueness of ℋ∞ ({𝑧 ∈ C : |Im(𝑧)| < 𝜖}). We

give examples A.1, QA.1, and Q.A.2 in Appendices 2.5.2 and 2.5.2, where some are

discrete.

.

60



2.3.3 Some panel data models with random coefficients

Extension of the Kotlarski lemma

In some nonparametric panel data random coefficients models considered in this pa-

per, we use the following structure. Consider the equation

𝑌 𝑡 = 𝛿 + 𝜖𝑡, 𝑡 ∈ {1, 2}, (2.18)

where the vector of unobserved heterogeneity is 𝛾 := (𝜖1, 𝜖2, 𝛿).

Assumption 8. Let {𝑀𝑚} be a log-convex sequence. Deőne the restriction

ℛ𝐾({𝑀𝑚}) :=
{︀
P𝛾 = P𝜖1 ⊗ P𝜖2 ⊗ P𝛿, ∀𝑚 ∈ N0 EP𝜖1

[|𝜖1|𝑚] ≤𝑀𝑚, and EP𝜖1
[𝜖1] = 0

}︀
.

Lemma 1 in Kotlarski (1967) assumes all characteristic functions do not vanish

and in Remark 1 it is written that this can be extended to the case where all charac-

teristic functions are analytic. The next result shows that these assumptions are too

strong and identiőcation can be achieved when none of the characteristic functions are

analytic and 𝜖2 and 𝛿 might not have őnite őrst absolute moments. Evdokimov and

White (2012) present a similar result under alternative assumptions, but assuming

that the characteristic function of 𝜖1 is analytic.

Theorem 7. P*
𝛾 is identiőed under ℛ𝐾({𝑀𝑚}) where {𝑀𝑚} is a log-convex sequence

which satisőes 𝑀0 = 1 and (2.10).

Again, we refer to Theorem 10 in the Appendix for conditions equivalent to (2.10).

A single-index panel data model with two periods.

Consider the equation

𝑌 𝑡 = 𝑓(𝛾⊤𝑋 𝑡) + 𝜂𝑡, 𝑡 = 1, 2,

where 𝑓 is increasing.
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Assumption 9. Let {𝑀𝑚} a log-convex sequence and 0 < 𝜖 < 1. Deőne the restric-

tion

ℛ𝑆𝐼({𝑀𝑚}, 𝜖) := ℛ𝐵𝐶,0∩{P𝛾,𝑋1,𝑋2 ∈ M1 (S
𝑝 × R𝑝 × R𝑝) : 𝑅𝑆𝐼 (i)-(iii), 𝑅𝐵𝐶,2 (i)-(ii)}} ,

where

𝑅𝑆𝐼(i) P𝛾,𝜂 = P𝛾 ⊗ P𝜂1
⊗ P𝜂2

, for all 𝑚 ∈ N0, 𝑠|·|,P𝜂1 (𝑚) ≤𝑀𝑚, EP𝜂1
[𝜂1] = 0;

𝑅𝑆𝐼(ii) {(𝑥1,𝑥2) ∈ S𝑋1,𝑋2 : 𝑥1 = 𝑥2} ≠ ∅;

𝑅𝑆𝐼(iii) |𝛾|2 = 1.

Restriction 𝑅𝑆𝐼 (ii) means that there exists łstayers" in the population, for which

the value of the covariate stays the same accross periods, which is a mild assumption.

Theorem 8 below relies on theorems 6 and 7.

Theorem 8. P*
𝛾,𝜂 is identiőed under ℛ𝑆𝐼({𝑀𝑚}, 𝜖), where {𝑀𝑚} is a log-convex

sequence satisfying 𝑀0 = 1 and (2.10) and 0 < 𝜖 ≤ 1/2.

Linear panel data model where regressors are monomials of a baseline

scalar regressor

Consider the equation

𝑌 𝑡 = 𝛼 +
𝑇∑︁

𝑗=1

𝛽𝑗𝑋
𝑗
𝑡 + 𝜖𝑡, 𝑡 = 1, . . . , 𝑇, (2.19)

where 𝑋 𝑡 is a scalar regressor and denote by 𝛾 := (𝜖⊤, 𝛼,𝛽⊤)⊤. For each 𝑡, we have

S𝑋𝑡,...,𝑋
𝑇
𝑡
⊆

{︀
u ∈ R𝑝 : u2 = u2

1, . . . ,u𝑇 = 𝑢𝑇1
}︀
,

hence the restriction 𝑅𝐿,5 (i) does not hold. We show in this section that the avail-

ability of 𝑇 periods allows nonparametric identiőcation.

Remark 1. Note that (2.19) could be generalized to 𝑌 𝑡 = 𝛼 + 𝑃 (𝑋 𝑡) + 𝜖𝑡, for all

𝑡 = 1, . . . , 𝑇 , where 𝑃 (𝑋 𝑡) =
∑︀𝑇

𝑗=1 𝛽𝑗𝑋
𝜃(𝑗)
𝑡 and 𝜃 ∈ NN

0 and increasing. However,
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using our identiőcation strategy would yield to consider the so-called generalized Van-

dermonde matrices, whose theoretical properties, in particular their inverse, are not

yet well known.

Restriction. Let {𝑀𝑚} ∈ (0,∞]N0, where {𝑀𝑚} is a log-convex sequence. Deőne

the restriction

ℛ𝐿𝑃,0 ({𝑀𝑚}) := ℛ1 ∩
{︀
P𝛾,𝑋 ∈ M1

(︀
R3𝑇+1

)︀
: 𝑅𝐿𝑃,0 (i)-(ii)

}︀
,

where

𝑅𝐿𝑃,0 (i) P𝛾 =
⨂︀𝑇

𝑗=1 P𝜖𝑗⊗P𝛼,𝛽 and for all 𝑚 ∈ N0, 𝑠|·|,P𝜖1 (𝑚) ≤𝑀𝑚 and EP𝜖1
[𝜖1] =

0;

𝑅𝐿𝑃,0 (ii) 𝒳1 := {𝑥 ∈ S𝑋 : 𝑥1 = · · · = 𝑥𝑇} ≠ ∅.

Using 𝑅𝐿𝑃,0 (ii) there exists 𝑟 > 0 such that 𝑟1𝑐 ∈ 𝒳1 and conditionning on

𝑋 = 𝑟1𝑐 and using 𝛿 := 𝛼 +
∑︀𝑇

𝑘=1 𝛽𝑘𝑟
𝑘 yield, for all 𝑡 ∈ R𝑇 ,

𝜙𝑌 |𝑋(𝑡|𝑟1𝑐) = 𝜙𝛿

(︃
𝑇∑︁

𝑗=1

𝑡𝑗

)︃
𝑇∏︁

𝑗=1

𝜙𝜖𝑗(𝑡𝑗). (2.20)

This shows that identiőcation of P𝜖 is an extension Theorem 7 to 𝑇 periods (see the

proof of Theorem 11). Note that the restriction 𝑅𝐿𝑃,0 (ii) is weaker than assuming

that the covariates are centered 0𝑐 ∈ S𝑋 . The restriction 𝑅𝐿𝑃,0 (ii) is also maintained

in Cooprider et al. (2020), where they focus on the marginals of 𝛾 without imposing

ℛ1 but considering only the individuals whose 𝑋 belong to 𝒳1, which are the stayers.

Assumption 10. Let {𝑀𝑚,𝑗}𝑗=1,2 be two log-convex sequences which satisfy 𝑀0,𝑗 = 1.

Deőne

ℛ𝐿𝑃,𝑇

(︁
{𝑀𝑚,𝑗}𝑗=1,2

)︁
:= ℛ𝐿𝑃,0({𝑀𝑚,1}) ∩

{︀
P𝛾,𝑋 ∈ M1

(︀
R3𝑇+1

)︀
: 𝑅𝐿𝑃 (i)-(ii)

}︀
,

𝑅𝐿𝑃 (i) For all 𝑡 = 1, . . . , 𝑇 , the support of 𝑋 𝑡 contains an accumulation point;

63



𝑅𝐿𝑃 (ii) For all 𝑚 ∈ N0, E[|𝛽𝑇 |𝑚] ≤ 𝑀𝑚,2 and, if S𝛽𝑇
⊆ R+, {𝑀𝑚,2} satisőes

(2.11) and else, if S𝛽𝑇
̸⊆ R+, {𝑀𝑚,2} satisőes (2.10).

Denote by 𝛾⊤ = (𝛼,𝛽). Like Theorem 4, Theorem 9 allows to make no assump-

tions on P𝛼, and only on P𝛽𝑇
.

Theorem 9. P*
𝛾 is identiőed under ℛ𝐿𝑃,𝑇 ({𝑀𝑚,𝑗}𝑗=1,2), where {𝑀𝑚,𝑗}𝑗=1,2 are two

log-convex sequences satisfying 𝑀0,𝑗 = 1.

Theorem 9 focuses on identiőcation results without restrictions on P*
𝛼,𝛽1,...,𝛽𝑇−1

.

We refer to Appendix 2.5.7 for complementary results which impose restrictions on

P*
𝛼,𝛽1,...,𝛽𝑇−1

but allow for weaker assumptions on the supports of 𝑋 𝑡 for 𝑡 = 1, . . . , 𝑇 .

2.4 Appendix

2.4.1 Identiőcation results of a measure from its projections

on 1-dimensional spaces

Proposition 2 below relaxes the set of projections in the Cramér-Wold theorem for

determinate measures (see Theorem 3.1 in Cuesta-Albertos et al., 2007). The image

of 𝜇 ∈ M𝑐 (R𝑝) by 𝜙 measurable is denoted by 𝜙*𝜇. 1-dimensional projections are

denoted by Π[𝑠]*𝜇, where Π[𝑠](𝑥) = 𝑠⊤𝑥 and 𝑠 ∈ S𝑝. Projections on 𝑠⊥ are denoted

by Π[𝑠⊥]*𝜇.

Proposition 2. Let 𝑈 be a set of uniqueness of homogeneous polynomials in R[𝑋1, . . . , 𝑋𝑝]

and ℳ ⊆ M*
𝑐(R

𝑝). Let 𝜇1, 𝜇2 ∈ M𝑐(R𝑝), 𝜇1 be determinate in ℳ, and Π[𝑢]*𝜇1 =

Π[𝑢]*𝜇2 for all 𝑢 ∈ 𝑈 . If 𝜇2 ∈ ℳ, we have 𝜇1 = 𝜇2. If ℳ ⊆ M*(R𝑝), then we have,

for all 𝑚 ∈ N,
∑︀𝑝

𝑗=1 𝑠|·|,𝜇2(2𝑚𝑒(𝑗)) <∞.

Proof of Proposition 2. Take 𝑘 ∈ N0 and deőne the homogeneous polynomial

𝑃 (𝑋1, . . . , 𝑋𝑝+1) =

∫︁

R𝑝+1

(︃
𝑝+1∑︁

𝑗=1

𝑋𝑗𝑦𝑗

)︃𝑘

𝑑(𝜇1 − 𝜇2)(𝑦).
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We have, for all 𝑠 ∈ S𝑝, 𝑃 (𝑠) =
∫︀
R
𝑡𝑘𝑑(Π[𝑠]*(𝜇1 − 𝜇2))(𝑡). Thus, we have 𝑃 (𝑠) = 0

for all 𝑠 ∈ 𝑈 , hence 𝑃 (𝑠) = 0 for all 𝑠 ∈ S𝑝R. Hence, we have for all 𝑥 ∈ R𝑝+1

and 𝑘 ∈ N0,
∫︀
R𝑝+1(𝑥

⊤𝑦)𝑘𝑑𝜇1(𝑦) =
∫︀
R𝑝+1(𝑥

⊤𝑦)𝑘𝑑𝜇2(𝑦). This allows to conclude that

𝜇1 = 𝜇2 because 𝜇1, 𝜇2 ∈ ℳ ⊆ M*
𝑐(R

𝑝).

To handle the case where ℳ ⊆ M(R𝑝), it suffices to show that, for all 𝑗 = 1, . . . , 𝑝,

𝑠|·|,𝜇2(𝑑𝑒(𝑗)) < ∞. This can be done like in the proof of Theorem 3.1 in Cuesta-

Albertos et al. (2007). �

Counterexamples exist when the assumptions in Proposition 2 fail (see theorems

3.5 and 3.6 in Cuesta-Albertos et al., 2007 and Theorem 5.4 in Belisle et al., 1997).

They do not imply that the restrictions are sharp in the sense that no larger set

delivers identiőcation.

2.4.2 Proofs

Proof of Proposition 1. Let us denote by 𝑓 = ℱ [𝜇]. Start by proving the part 1.

Because 𝜇 ∈ M*
𝑐(R), we have 𝑓 ∈ 𝐶∞(R) but also clearly 𝑓 ∈ 𝐶{𝑀𝑚}(R, 1) because,

for all 𝑚 ∈ N0 and 𝑥 ∈ R,
⃒⃒
𝑓 (𝑚)(𝑥)

⃒⃒
≤ 𝑠|·|,|𝜇|(𝑚). Theorem 10 yields that 𝐶{𝑀𝑚}(R, 1)

is quasi-analytic. Thus, using that for all 𝑚 ∈ N0, 𝑓 (𝑚)(0) = 𝑖𝑚𝑠𝜇(𝑚), 𝜇 is determi-

nate in M*
𝑐(R).

For the part 2, we adapt the proof of Theorem 4.1 in Chalendar and Partington

(2007). Deőne the measure 𝜇1 on R by 𝑑𝜇1(𝑡) = 𝑑𝜇(𝑡2). Thus, we have, for all

𝑚 ∈ N0 such that there exists 𝑛 ∈ N0 𝑚 = 2𝑛, 𝑠|·|,|𝜇1|(𝑚) = 2𝑠|·|,|𝜇|(𝑛) hence
∑︀

𝑚∈N 1/(𝑠|·|,|𝜇1|(2𝑚))1/(2𝑚) =
∑︀

𝑚∈N 1/(2𝑠|·|,|𝜇|(𝑚))1/(2𝑚) and
∑︀

𝑚∈N 1/(𝑠|·|,|𝜇|(𝑚))1/(2𝑚) ≥
∑︀

𝑚∈N 1/𝑀
1/(2𝑚)
𝑚 = ∞. Hence, applying the őrst part of the proposition to 𝜇1, 𝜇 is

determinate in M*
𝑐(R+). Because we have, for all (𝑚, 𝑥) ∈ N0 × R,

⃒⃒
ℱ (𝑚)[𝜇](𝑥)

⃒⃒
=

1

2

⃒⃒
ℱ (2𝑚)[𝜇1](𝑥)

⃒⃒
≤ 22𝑚−1𝑠|·|,|𝜇1|(2𝑚) ≤ 22𝑚𝑠|·|,|𝜇|(𝑚),

ℱ [𝜇] ∈ 𝐶{𝑀𝑚}(R, 1), hence ℱ (𝑚)[𝜇](0) = 𝑖𝑚𝑠𝜇(𝑚) yields that

𝐶{𝑀𝑚}(R, 1)
⋂︁

{ℱ [𝜇], 𝜇 ∈ M*
𝑐(R+)}
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is quasi-analytic. �

Proof of Theorem 1. This is a particular case of Theorem 2. �

Proof of Theorem 2. We consider P𝛾,𝑋 ∈ ℛ such that P (P𝛾,𝑋) = P
(︀
P*
𝛾 ⊗ P𝑋

)︀
and

show that P𝛾 = P*
𝛾 . Due to the independence assumptions, under both restrictions,

we have for all 𝑥 ∈ S𝑋 and 𝑡 in R,

𝜙𝑌 |𝑋(𝑡|𝑥) = 𝜙𝛼(𝑡)

𝑝∏︁

𝑗=1

𝜙𝛽𝑗
(𝑡𝑥𝑗) = 𝜙*

𝛼(𝑡)

𝑝∏︁

𝑗=1

𝜙*
𝛽𝑗
(𝑡𝑥𝑗). (2.21)

Because the value at 0 of a characteristic function is 1, taking 𝑥 = 0𝑐, yields 𝜙𝛼 = 𝜙*
𝛼.

Under ℛ′
𝐿,2({𝑀 𝑘,𝑚}𝑝𝑘=1), because 𝜙*

𝛼 is continuous and equal to 1 at 0, we obtain that

𝑝∏︁

𝑗=1

𝜙𝛽𝑗
(𝑡𝑥𝑗) =

𝑝∏︁

𝑗=1

𝜙*
𝛽𝑗
(𝑡𝑥𝑗). (2.22)

holds for all 𝑥 ∈ S𝑋 and 𝑡 ∈ (−𝑡0, 𝑡0) for 𝑡0 small enough. Taking 𝑥 = 𝑥(1) yields,

for all 𝑡 ∈ (−𝑡0, 𝑡0), 𝜙𝛽1
(𝑥(1)1𝑡) = 𝜙*

𝛽1
(𝑥(1)1𝑡), hence 𝜙𝛽1

(𝑡) = 𝜙*
𝛽1
(𝑡) for all 𝑡 ∈

(−𝑡0/𝑥(1)1, 𝑡0/𝑥(1)1). Hence P𝛽1
and P*

𝛽1
have same moments. Using Assumption

𝑅𝐿,2 (ii’) and Proposition 1, P𝛽1
and P*

𝛽1
are determinate in M*

1(R), thus P𝛽1
and

P*
𝛽1

are equal by deőnition. We conclude by iterating this procedure.

Consider the alternative restriction mentioned after Theorem 2. By (2.21), we have,

for all 𝑥 ∈ S𝑋 and 𝑡 in the complement of the set of zeros of 𝜙*
𝛼, that (2.22) holds.

Now, using that the complement of the set of zeros of 𝜙*
𝛼 is dense and that both

𝑡 ↦→ ∏︀𝑝
𝑗=1 𝜙𝛽𝑗

(𝑡𝑥𝑗) and 𝑡 ↦→ ∏︀𝑝
𝑗=1 𝜙

*
𝛽𝑗
(𝑡𝑥𝑗) are continuous, we obtain that, for all

𝑥 ∈ S𝑋 and 𝑡 ∈ R, (2.22) holds. Taking now 𝑥 = 𝑥(1) yields, for all 𝑡 ∈ R,

𝜙𝛽1
(𝑥(1)1𝑡) = 𝜙*

𝛽1
(𝑥(1)1𝑡), hence 𝜙𝛽1

= 𝜙*
𝛽1

. Hence, with the same arguments as

before, for all 𝑥 ∈ S𝑋 and 𝑡 ∈ R,
∏︀𝑝

𝑗=2 𝜙𝛽𝑗
(𝑡𝑥𝑗) =

∏︀𝑝
𝑗=2 𝜙

*
𝛽𝑗
(𝑡𝑥𝑗), and we conclude

by iterating this procedure. �

Proof of Theorem 4. Consider P𝛾,𝑋 ∈ ℛ𝐿,4({𝑀 𝑘,𝑚}𝑝𝑘=1) such that P (P𝛾,𝑋) =

P
(︀
P*
𝛾 ⊗ P𝑋

)︀
. Consider, for 𝑙 = 1, . . . , 𝑝, 𝑈𝑙 =

∏︀𝑙
𝑘=1 𝑉𝑘 ⊂ S𝑋 such that 𝑉𝑘 ⊂ S𝑋𝑘

contains an accumulation point. For all (𝑡,𝑥) ∈ R × S𝑋 , we have 𝜙𝑌 |𝑋(𝑡|𝑥) =
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𝜙𝛾(𝑡, 𝑡𝑥) = 𝜙*
𝛾(𝑡, 𝑡𝑥). Take 𝑡 ̸= 0 and 𝑢 ∈ 𝑈𝑝−1, the function 𝑔𝑝 : 𝑧 ∈ R ↦→

𝜙𝛾(𝑡, 𝑡𝑢[𝑝−1], 𝑧)− 𝜙*
𝛾(𝑡, 𝑡𝑢[𝑝−1], 𝑧) is zero on 𝑡𝑉𝑝 by the assumptions. Denote by

𝜇𝑝,𝑡,𝑢,𝑥(·) =
∫︁

R𝑝
𝑒𝑖𝑡(𝑎+𝑏⊤[𝑝−1]𝑢[𝑝−1])𝑑P𝛾

(︀
𝑎, 𝑏[𝑝−1], ·

)︀
.

Using that for 𝑓 positive and measurable,
∫︀
R
𝑓 (𝑧) 𝑑|𝜇𝑝,𝑡,𝑢,𝑥|(𝑧) ≤ E

[︀
𝑓
(︀
𝛽𝑝

)︀]︀
(see The-

orem 6.2 in Rudin, 1973) and 𝑅𝐿,4 (ii) yields that 𝑠|·|,|𝜇𝑝,𝑡,𝑢,𝑥|(𝑚) ≤ 𝑀 𝑝,𝑚. More, using

that {𝑠|·|,|𝜇𝑝,𝑡,𝑢,𝑥|(𝑚)} is log-convex and less than 1 at 0 and Proposition 1 ensures that

𝑔𝑝, which is the Fourier transform of 𝜇𝑝,𝑡,𝑢,𝑥(·), belongs to the class 𝐶{𝑀𝑝,𝑚}(R, 1) ∩
{ℱ [𝜇], 𝜇 ∈ M*

𝑐(R)}. Then, 𝑅𝐿,4 (ii) yields
∑︀

𝑚∈N0
𝑠|·|,|𝜇𝑝,𝑡,𝑢,𝑥|(𝑚)−1/(2𝑚) = ∞. Thus,

Proposition 1 implies that the latter class is quasi-analytic and using that 𝑡𝑉𝑝 is a set

of uniqueness of this class, 𝑔𝑝 is zero on R. As a result, 𝑥 ∈ R𝑝 ↦→ 𝜙𝛾(𝑡, 𝑡𝑥)−𝜙*
𝛾(𝑡, 𝑡𝑥)

is zero on 𝑈𝑝−1 × R.

Take 𝑢 ∈ 𝑈𝑝−2, for all 𝑥 ∈ R, the function 𝑔𝑝−1 : 𝑧 ∈ R ↦→ 𝜙𝛾(𝑡, 𝑡𝑢[𝑘−1], 𝑧, 𝑥) −
𝜙*
𝛾(𝑡, 𝑡𝑢[𝑘−1], 𝑧, 𝑥) is zero on 𝑡𝑉𝑝−1. Using similar arguments as above, Proposition 1

and 𝑅𝐿,4 (ii) ensure that the Fourier transform of

𝜇𝑝−1,𝑡,𝑢,𝑥(·) =
∫︁

R𝑝
𝑒𝑖𝑡(𝑎+𝑏⊤[𝑘−1]𝑢[𝑘−1]+𝑏⊤−[𝑘]𝑥)𝑑P𝛾

(︀
𝑎, 𝑏[𝑘−1], ·, 𝑏−[𝑘]

)︀

belongs to 𝐶{𝑀𝑝,𝑚}(R, 1)∩{ℱ [𝜇], 𝜇 ∈ M*
𝑐(R)}, which is a quasi-analytic class. Using

that 𝑡𝑉𝑝−1 is set of uniqueness of this class yields that 𝑔𝑝−1 is zero everywhere on the

domain of deőnition of the functions of the class 𝐶{𝑀𝑝−1,𝑚}(R, 1) and thus on R. We

conclude by iterating this argument and using continuity for 𝑡 = 0. �

Proof of Theorem 5. First, we consider P𝛾,𝑋 ∈ ℛ𝑁𝐿({𝑀 𝑘,𝑚}𝑘∈Z) with 𝑅𝑁𝐿 (i)

(b) such that P (P𝛾,𝑋) = P
(︀
P*
𝛾 ⊗ P𝑋

)︀
and show that P𝛾 = P*

𝛾 . (2.13) is a particular

case of (2.12), where 𝛾 := (𝛼,𝛽⊤)⊤ is of the form 𝛾(Θ) and S(𝑓−𝑗0 (𝑋),...,𝑓𝑗0 (𝑋)) is

degenerate, possibly discrete if S𝑋 is discrete but inőnite. Using

𝐿𝑥 : 𝑡 ↦→ ℱ [P*
𝛾 − P𝛾 ](𝑡(𝑓−𝑗0(𝑥), . . . ,𝑓 𝑗0(𝑥))).
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then, for all 𝑡 ∈ R and 𝑥 ∈ S𝑋 , we have 𝐿𝑥(𝑡) = 0. Thus, taking 𝑘 derivatives with

respect to 𝑡 we obtain

𝑃 (𝑓−𝑗0(𝑥), . . . ,𝑓 𝑗0(𝑥)) = 0, ∀𝑥 ∈ S𝑋 ,

where

𝑃 (𝑍1, . . . , 𝑍2𝑗0+1) =
∑︁

𝑗∈N2𝑗0+1
0 : |𝑗|1=𝑘

⎛
⎝ 𝑘

𝑗1, . . . , 𝑗2𝑗0+1

⎞
⎠ 𝑐𝑗 𝑍

𝑗1
1 . . . 𝑍

𝑗2𝑗0+1

2𝑗0+1 .

and 𝑐𝑗 :=
∫︀
R2𝑗0+1 𝑔

𝑗𝑑(P*
𝛾−P𝛾)(𝑔). Using that (2.16) is not contained in any projective

hypersurface in R2𝑗0+1 and 𝑅𝑁𝐿 (i) (b) we obtain that then 𝑃 = 0 for all 𝑘 ∈ N0.

Thus, P𝛾 and P*
𝛾 have the same moments. Using 𝑅𝑁𝐿 (ii), which ensures that they

are determined by their moments using Theorem 2.3 in De Jeu (2003), this yields

that P𝛾 = P*
𝛾 .

Second, consider 𝑅𝑁𝐿 (i) (b). Denote by (𝑔𝑗)𝑗∈Z the unique biorthogonal system

associated to (𝑓 𝑗)𝑗∈Z. First, we recover the expectations of the (𝛾𝑗(𝜃))𝑗∈Z. We use

that, under 𝑅𝑁𝐿 (i) (a), E
[︀
𝛾𝑗(Θ)

]︀
= E

[︀
𝑌 𝑔𝑗(𝑋)/𝑓𝑋|𝒳 (𝑋)1l{𝑋 ∈ 𝒳}

]︀
, where 𝑓𝑋|𝒳

the truncated density of 𝑋 given 𝑋 ∈ 𝒳 . This brings the model back to a őnite sum

by substracting on both sides of (2.14). Second, we recover 𝑗0. Consider 𝐽 in N0,

using the proof of the case 𝑅𝑁𝐿 (i) (b), if

𝑌 =
∑︁

|𝑗|≤𝐽
𝛾𝑗(Θ)𝑓 𝑗(𝑥),

then the distribution of
(︀
𝛾𝑗,𝐽(Θ)

)︀
|𝑗|≤𝐽 is identiőed. Then, 𝑗0 is the smallest index 𝐽

such that the following equation holds

∀𝑡 ∈ R, 𝜖(𝑡,𝑋) := E
[︁
𝑒𝑖𝑡𝑌 − 𝑒𝑖𝑡

∑︀
|𝑗|≤𝐽 𝛾𝑗,𝐽 (Θ)𝑓𝑗(𝑋)

⃒⃒
⃒𝑋

]︁
= 0,

which yields the result. �

Proof of Theorem 6. Take 0 < 𝜖 ≤ 1/2 and consider P𝛾,𝑋 ∈ ℛ𝐵𝐶,2(𝜖) such that
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P (P𝛾,𝑋) = P
(︀
P*
𝛾 ⊗ P𝑋

)︀
. For 𝑠 ∈ S𝑝 and 𝑓 ∈ 𝐿1 (S𝑝), deőne 𝒯 𝑓(𝑠) :=

∫︀
S𝑝
1l{𝑢⊤𝑠 ≥

0}𝑓(𝑢)𝑑𝜎(𝑢)− 1/2. Recall that, from Gautier and Kitamura (2013),

𝒯 𝑓(𝑠) = 𝒯 𝑓−(𝑠) = (𝒯 𝑓)− (𝑠) (2.23)

and, from the restrictions ℛ𝐵𝐶,0,

∀𝑠 ∈ S𝑆, 𝒯 𝑓𝛾(𝑠) +
1

2
= E[𝑌 |𝑆 = 𝑠]. (2.24)

One has in 𝒮 ′ (see Gautier and Kitamura, 2013), for 𝑓 ∈ 𝐿𝑞 (S𝑝),

𝒯 𝑓 =
∑︁

𝑚∈N0

𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓, (2.25)

where 𝜆(2𝑚 + 1, 𝑝) = (−1)𝑚2𝜋𝑝/21 · 3 · · · (2𝑚 − 1)/(Γ(𝑝/2)𝑝(𝑝 + 2) · · · (𝑝 + 2𝑚)) for

all 𝑚 ∈ N0. Hence, we have, for all 𝑥 ∈ S𝑋 ,

E[𝑌 |𝑋 = 𝑥] =
∑︁

𝑚∈N0

𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓𝛾

(︃
(1,𝑥)√︀
1 + |𝑥|22

)︃
+

1

2
.

Denote the dot product and Lie norm by 𝑧2 =
∑︀𝑝

𝑘=1 𝑧
2
𝑘 and 𝐿(𝑧) =

√︁
|𝑧|22 +

√︀
|𝑧|42 − |𝑧2|2

respectively. Denote also by 𝐺(𝑧) =
∑︀

𝑚∈N0
𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓𝛾(𝑧) + 1/2 for all 𝑧 ∈

C𝑝+1 and 𝐹 (𝑧) = (𝑓1(𝑧), . . . , 𝑓𝑝+1(𝑧))
⊤ for all 𝑧 ∈ C𝑝, where:

𝑓1(𝑧) =
1√

1 + 𝑧2
, 𝑓2(𝑧) =

𝑧1√
1 + 𝑧2

, . . . , 𝑓𝑝+1(𝑧) =
𝑧𝑝√
1 + 𝑧2

.

We have E[𝑌 |𝑋 = 𝑥] = 𝐺 ∘ 𝐹 (𝑥) and we need to prove 𝐺 ∘ 𝐹 ∈ 𝒜(R𝑝 + 𝑖𝜖B𝑝R).

For this, we check the conditions of Theorem 1.2.3 in Rudin (1980). First, we have

𝐹 ∈ 𝒜(R𝑝 + 𝑖𝜖B𝑝R). Indeed, for all 𝑧 ∈ R𝑝 + 𝑖𝜖B𝑝R, 1 + 𝑧2 ∈ (C ∖ (−∞, 0])𝑝+1. Now,

for all 𝑧 ∈ R𝑝 + 𝑖𝜖B𝑝R, we have

𝐿(𝐹 (𝑧))2 =
𝐿(1, 𝑧)2

⃒⃒√
1 + 𝑧2

⃒⃒2 ≤ 1 + (|Re(𝑧)|2 + |Im(𝑧)|2)2
1 + |Re(𝑧)|22 − |Im(𝑧)|22

≤ 1 + 2𝜖.
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Moreover, using Lemma 3.23 in Morimoto (1962) for the őrst display and using the

Young inequalities (see, e.g., Gautier and Kitamura, 2013) for the third display, we

have, for all 𝑧 ∈ C𝑝+1 such that 𝐿(𝑧) ≤
√
1 + 2𝜖,

|𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓𝛾(𝑧)| ≤ 𝐿(𝑧)2𝑚+1 ‖𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓𝛾‖𝐿∞(S𝑝)

≤ 𝐿(𝑧)2𝑚+1 ‖𝒯 [𝑄2𝑚+1,𝑝𝑓𝛾 ]‖𝐿∞(S𝑝)

≤ 𝐿(𝑧)2𝑚+1 ‖𝑄2𝑚+1,𝑝𝑓𝛾‖𝐿1(S𝑝)

≤ (1 + 2𝜖)𝑚+1/2 ‖𝑄2𝑚+1,𝑝𝑓𝛾‖𝐿1(S𝑝) .

Now, because lim𝑚→∞ ‖𝑄2𝑚+1,𝑝𝑓𝛾‖1/𝑚𝐿1(S𝑝) ≤ 𝑞/(1+2𝜖) with 𝑞 < 1, there exists 𝑚0 ∈ N

such that, for all 𝑚 ≥ 𝑚0, (1 + 2𝜖)𝑚+1/2 ‖𝑄2𝑚+1,𝑝𝑓𝛾‖𝐿1(S𝑝) ≤
√
1 + 2𝜖. Hence, there

exists 𝐶𝜖 < ∞ such that, for all 𝑚 ∈ N0, (1 + 2𝜖)𝑚+1/2 ‖𝑄2𝑚+1,𝑝𝑓𝛾‖𝐿1(S𝑝) ≤ 𝐶𝜖. As a

result, for all 𝑧 ∈ C𝑝+1 such that 𝐿(𝑧) <
√
1 + 2𝜖, we have sup𝑚∈N0

|𝜆2𝑚+1,𝑝𝑄2𝑚+1,𝑝𝑓𝛾(𝑧)| <
∞. Using the fact that 𝑧 ↦→ 𝑄2𝑚+1,𝑝𝑓𝛾(𝑧) are homogeneous harmonic polynomials

and Theorem 1.5.6 in Rudin (1980) yields 𝐺 ∘ 𝐹 ∈ 𝒜(R𝑝 + 𝑖𝜖B𝑝R). Moreover, for all

𝑧 ∈ R𝑝 + 𝑖𝜖B𝑝R, we have

|𝐺 ∘ 𝐹 (𝑧)| ≤
√
1 + 2𝜖

∑︁

𝑚∈N0

(︁
(1 + 2𝜖) ‖𝑄2𝑚+1,𝑝𝑓𝛾‖1/𝑚𝐿1(S𝑝)

)︁𝑚
+

1

2
,

and the upper bound is a convergent series using 𝑅𝐵𝐶,2 (ii). Hence, 𝐺 ∘ 𝐹 ∈ 𝒜(R𝑝 +

𝑖𝜖B𝑝R) is bounded. �

Proof of Theorem 7. Consider P𝛾,𝑋 ∈ ℛ𝐾({𝑀𝑚}) such that P (P𝛾,𝑋) = P
(︀
P*
𝛾 ⊗ P𝑋

)︀
.

For 𝑡0 > 0 small enough, on (−𝑡0, 𝑡0), 𝜙𝛿, 𝜙*
𝛿 , 𝜙𝜖1 , 𝜙

*
𝜖1

, 𝜙𝜖2 , 𝜙
*
𝜖2

do not vanish, hence

there exist nonvanishing continuous functions 𝑝𝛿, 𝑝𝜖1 , and 𝑝𝜖2 such that 𝜙𝛿 = 𝑝𝛿𝜙
*
𝛿 ,

𝜙𝜖1 = 𝑝𝜖1𝜙
*
𝜖1

, 𝜙𝜖2 = 𝑝𝜖2𝜙
*
𝜖2

. By the restriction ℛ𝐾({𝑀𝑚}), we have 𝑝𝜖1 ∈ 𝐶∞(−𝑡0, 𝑡0).
We have

𝑝𝛿(𝑡1 + 𝑡2)𝑝𝜖1(𝑡1)𝑝𝜖2(𝑡2) = 1 for all − 𝑡0 < 𝑡1, 𝑡2, 𝑡1 + 𝑡2 < 𝑡0, (2.26)
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hence

𝑝𝛿(𝑡)𝑝𝜖1(𝑡) = 1 and 𝑝𝛿(𝑡)𝑝𝜖2(𝑡) = 1 for all − 𝑡0 < 𝑡 < 𝑡0. (2.27)

Injecting (2.27) into (2.26) we obtain, for all −𝑡0 < 𝑡1, 𝑡2, 𝑡1 + 𝑡2 < 𝑡0, 𝑝𝛿(𝑡1 + 𝑡2) =

𝑝𝛿(𝑡1)𝑝𝛿(𝑡2), which, using again (2.27), yields 𝑝𝜖1(𝑡1 + 𝑡2) = 𝑝𝜖1(𝑡1)𝑝𝜖1(𝑡2). Hence, we

have 𝑝′𝜖1(𝑡1 + 𝑡2) = 𝑝′𝜖1(𝑡1)𝑝𝜖1(𝑡2), which at 𝑡1 = 0 and 𝑡2 = 𝑡 yields

𝑝′𝜖1(𝑡) = 𝑝′𝜖1(0)𝑝𝜖1(𝑡) for all − 𝑡0 < 𝑡 < 𝑡0, (2.28)

where 𝑝′𝜖1(0) = 𝜙′
𝜖1
(0) −

(︀
𝜙*
𝜖1

)︀′
(0) = 𝑖(EP𝜖1

[𝜖1] − EP*
𝜖1
[𝜖1]) ∈ 𝑖R which we denote

by 𝑝′𝜖1(0) := 𝑖𝑏. Thus, we obtain, for all 𝑡0 < 𝑡 < 𝑡0, 𝑝𝜖1(𝑡) = exp(𝑖𝑏𝑡). Moreover,

𝑡 ↦→ 𝜙𝜖1(𝑡)− exp(𝑖𝑏𝑡)𝜙*
𝜖1
(𝑡) ∈ 𝐶{𝑀𝑚}(R) and 𝐶{𝑀𝑚}(R) is a {0}−quasi-analytic class,

hence the function is identically 0 on R because it is 0 on (−𝑡0, 𝑡0) (see Example QA.2

in the supplemental Appendix). Thus P𝜖1 and P*
𝜖1

might only differ by their averages

but it is assumed that they are both mean 0, hence P𝜖1 = P*
𝜖1

.

Now, for all 𝑡 ∈ R, 𝜙𝑌 1(𝑡) = 𝜙𝛿(𝑡)𝜙
*
𝜖1
(𝑡) = 𝜙*

𝛿(𝑡)𝜙
*
𝜖1
(𝑡), hence, because the zeros of

𝜙*
𝜖1

are isolated (see Lemma 4.8 in Belisle et al., 1997) and 𝜙𝛿 and 𝜙*
𝛿 are continuous,

we obtain 𝜙𝛿 = 𝜙*
𝛿 .

Similarly, because, for all 𝑡 ∈ R, 𝜙𝑌 2−𝑌 1(𝑡) = 𝜙*
𝜖2
(𝑡)𝜙*

𝜖1
(−𝑡) = 𝜙𝜖2(𝑡)𝜙

*
𝜖1
(−𝑡), the

zeros of 𝜙*
𝜖1

are isolated and 𝜙𝜖2 and 𝜙*
𝜖2

are continuous, we obtain 𝜙𝜖2 = 𝜙*
𝜖2

, hence

the result. �

Proof of Theorem 8. Consider P𝛾,𝑋 ∈ ℛ𝑆𝐼({𝑀𝑚}, 𝜖) such that P (P𝛾,𝑋) =

P
(︀
P*
𝛾 ⊗ P𝑋

)︀
. Denote by 𝒳1 := {(𝑥1,𝑥2) ∈ S𝑋1,𝑋2 : 𝑥1 = 𝑥2}. Using 𝑅𝑆𝐼 (ii), there

exists 𝑟 > 0 such that 𝑟(1𝑐,1𝑐) ∈ 𝒳1, hence, for all 𝑡 ∈ R2, using 𝛿 := 𝑓(𝛾⊤(𝑟1𝑐)), we

have

𝜙𝑌 |𝑋1,𝑋2(𝑡|𝑟(1𝑐,1𝑐)) = 𝜙𝛿(𝑡1+𝑡2)𝜙𝜂1
(𝑡1)𝜙𝜂2

(𝑡2) = 𝜙*
𝛿(𝑡1+𝑡2)𝜙

*
𝜂1
(𝑡1)𝜙

*
𝜂2
(𝑡2). (2.29)

Then, following the same steps as in the proof of Theorem 7 yields 𝜙𝜂1
= 𝜙*

𝜂1
. Now,

for all 𝑡 ∈ R, 𝜙𝑌 1|𝑋1(𝑡|𝑟1𝑐) = 𝜙𝛿(𝑡)𝜙
*
𝜂1
(𝑡) = 𝜙*

𝛿(𝑡)𝜙
*
𝜂1
(𝑡), hence, because the zeros of

𝜙*
𝜂1

are isolated (see Lemma 4.8 in Belisle et al., 1997) and 𝜙𝛿 and 𝜙*
𝛿 are continuous,
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we obtain 𝜙𝛿 = 𝜙*
𝛿 . Similarly, because, for all 𝑡 ∈ R, 𝜙𝑌 2−𝑌 1|𝑋1,𝑋2(𝑡|(𝑟1𝑐, 𝑟1𝑐)) =

𝜙*
𝜂2
(𝑡)𝜙*

𝜂1
(−𝑡) = 𝜙𝜂2

(𝑡)𝜙*
𝜂1
(−𝑡), the zeros of 𝜙*

𝜂1
are isolated and 𝜙𝜂2

and 𝜙*
𝜂2

are

continuous, we obtain 𝜙𝜂2
= 𝜙*

𝜂2
.

Thus, we obtain, for all 𝑡 ∈ R2 and (𝑥1,𝑥2) ∈ S𝑋1,𝑋2 ,

𝜙𝑓(𝛾⊤𝑥1),𝑓(𝛾⊤𝑥2)(𝑡) = 𝜙*
𝑓(𝛾⊤𝑥1),𝑓(𝛾⊤𝑥2)

(𝑡). (2.30)

This amount to study identiőcation in 𝑍𝑡 = 𝑓(𝛾⊤𝑋 𝑡), 𝑡 = 1, 2 and 𝑍2 ≥ 𝑍1 is

equivalent to 𝛾⊤ (𝑋2 −𝑋1) ≥ 0. This is the binary choice model, hence Theorem 6

yields the result. �

Proofs of Theorem 9. We use 𝒳0 := {𝑥 ∈ R𝑇 :
∏︀𝑇

𝑗=1 𝑥𝑗 ̸= 0,
∏︀

𝑚 ̸=𝑗(𝑥𝑚−𝑥𝑗) ̸= 0}
and, for all (𝑣,𝑥) ∈ R𝑇 ×𝒳0,

Θ : (𝑣,𝑥) ↦→
𝑇∑︁

𝑘=1

𝑣𝑘

(︃
𝑇∑︁

𝑗=1

𝑏𝑗𝑘(𝑥)𝑥
𝑇
𝑗

)︃
, (2.31)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

𝑏𝑗𝑘(𝑥) :=
(−1)𝑘+1

∏︁

1≤𝑚≤𝑇
𝑚 ̸=𝑗

(𝑥𝑚 − 𝑥𝑗)

∑︁

1≤𝑖1<···<𝑖𝑇−𝑘≤𝑇
𝑖1,...,𝑖𝑇−𝑘 ̸=𝑗

𝑥𝑖1𝑥𝑖2 . . .𝑥𝑖𝑇−𝑘 for all 𝑘 ̸= 𝑇

𝑏𝑗𝑘(𝑥) :=
(−1)𝑇+1

∏︁

1≤𝑚≤𝑇
𝑚 ̸=𝑗

(𝑥𝑚 − 𝑥𝑗)
for 𝑘 = 𝑇.

Consider P𝛾,𝑋 ∈ ℛ𝐿𝑃,𝑇 ({𝑀𝑚,𝑗}𝑗=1,2) such that P (P𝛾,𝑋) = P
(︀
P*
𝛾 ⊗ P𝑋

)︀
. Using

the same arguments as in the proof of Theorem 11, we obtain 𝜙𝜖𝑗 = 𝜙*
𝜖𝑗

for all

𝑗 = 2, . . . , 𝑇 and that for all 𝑣 ∈ R𝑇 and 𝑥 ∈ 𝒳0,

𝜙𝛼,𝛽 (𝑣,Θ(𝑣,𝑥)) = 𝜙*
𝛼,𝛽 (𝑣,Θ(𝑣,𝑥)) . (2.32)

holds. Then, using arguments from the proof of Theorem 4, 𝑅𝐿𝑃 (ii) and Proposition

1 ensure that, for all 𝑣 ∈ R𝑇 , 𝑧 ∈ R ↦→ (𝜙𝛼,𝛽 − 𝜙*
𝛼,𝛽)(𝑣, 𝑧) can be extended uniquely

72



to 𝒞{𝑀𝑚,2}(R) ∩ {ℱ [𝜇], 𝜇 ∈ M*
𝑐(R)} which is a quasi-analytic class. Finally, for all

𝑣 ∈ R𝑇 ∖𝒱 where 𝒱 is such that R𝑇 ∖𝒱 is dense in R𝑇 , 𝑅𝐿𝑃 (i) and that 𝑥 ↦→ Θ(𝑣,𝑥)

is continuous on S𝑋∩𝒳0 yield that 𝑈𝑇,𝑣 = {Θ(𝑣,𝑢), ∀𝑢 ∈ S𝑋 ∩ 𝒳0} contains a point

of accumulation. We obtain that, for all 𝑣 ∈ R𝑇 ∖𝒱 and 𝑧 ∈ R, 𝜙𝛼,𝛽(𝑣, 𝑧) = 𝜙*
𝛼,𝛽(𝑣, 𝑧)

hence P𝛼,𝛽 = P*
𝛼,𝛽 by continuity for all 𝑣 ∈ R𝑇 . �
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2.5 Supplemental Appendix

2.5.1 Notations and preliminaries

C+ = {𝑧 ∈ C : Im(𝑧) > 0}, K𝑑[𝑋1, . . . , 𝑋𝑝] is the subset of K[𝑋1, . . . , 𝑋𝑝] of polyno-

mials of degree at most 𝑑 (by convention K∞[𝑋1, . . . , 𝑋𝑝] = K[𝑋1, . . . , 𝑋𝑝]) in the ring

K, K(𝑋1, . . . , 𝑋𝑝) is the corresponding őeld of fractions, and we use the same notation

for polynomial or fractional functions, 𝑎∨ 𝑏 is the maximum between 𝑎 and 𝑏, |𝐸| the

cardinal of 𝐸 or the length of the interval if 𝐸 is an interval. The interior of the set

𝒮 is
∘
𝒮 and the closure is 𝒮. The sequences {1𝑚} and {𝑀 𝑐

𝑚} are log-convex. {𝑀 𝑐
𝑚} is

the convex regularization of {𝑀𝑚} by means of the logarithm (i.e., the largest convex

minorant of 𝑚 ↦→ log(𝑀𝑚)).

Lemma 1 (Lemma 3.3 (2) in De Jeu (2004)). Let (𝑎𝑚)𝑚∈N0 be a nonnegative nonin-

creasing sequence of real numbers. If 𝑘, 𝑙 ∈ N, then we have:
∑︀

𝑚∈N0
𝑎𝑘𝑚 = ∞ if and

only if
∑︀

𝑚∈N0
𝑎𝑙𝑚 = ∞.

By the Hölder inequality, if ‖·‖ is a norm and 𝜇 ∈ M* (R𝑝),
(︀∫︀

R𝑝
‖𝑥‖𝑚𝑑𝜇(𝑥)

)︀
𝑚∈N0

is log-convex and 𝑀0 = 𝜇 (R𝑝). The support of a complex measure 𝜇 is denoted by

supp(𝜇). If 𝒮 ⊆ R𝑝, 𝐶{𝑀𝑚}(𝒮) is a vector space. If 𝒮 = R and lim𝑚→∞𝑀
1/𝑚
𝑚 = 0 then

𝐶{𝑀𝑚}(𝒮) = 𝐶{0𝑚}(𝒮) and if 0 < lim𝑚→∞𝑀
1/𝑚
𝑚 < ∞ then 𝐶{𝑀𝑚}(𝒮) = 𝐶{1𝑚}(𝒮),

else, if the terms in the sequence are positive, 𝐶{𝑀𝑚}(𝒮) = 𝐶{𝑀𝑐
𝑚}(𝒮). Also, recall

(see Rudin, 1973) that, if 𝑀𝑚 = 1 and (𝑀𝑚)𝑚∈N0
is log-convex, then 𝐶{𝑀𝑚}(R) is an

algebra with respect to the multiplication.

2.5.2 Examples of sets of uniqueness

We give here examples of sets of uniqueness which are used in Section 2.3.

Sets of uniqueness of homogeneous polynomials

Let us start by considering homogeneous polynomials of degree 𝑑. 𝑈 is a set of

uniqueness of homogeneous polynomials in K𝑑[𝑋1, . . . , 𝑋𝑝+1], where K is R or C, if

there exists 𝐴 ∈ 𝐺𝐿(K𝑝+1) such that {(1,𝑢⊤)⊤ : 𝑢 ∈ ̃︀𝑈} ⊆ 𝐴𝑈 and ̃︀𝑈 is a set of
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uniqueness of K𝑑[𝑋1, . . . , 𝑋𝑝]. Due to the use of 𝐴 ∈ 𝐺𝐿(K𝑝+1), ̃︀𝑈 can be deőned in

any system of coordinates. Because polynomials remain polynomials when composed

by affine transformations, 0 plays no role. Polynomials are analytic, hence the sets of

uniqueness in sections 2.5.2 and 2.5.2 are sets of uniqueness of polynomials. Let us

present two examples.

Example P.1.

(i) 𝑝 = 1 and ̃︀𝑈 contains at least 𝑑+ 1 points;

(ii) 𝑝 ≥ 2 and ̃︀𝑈 = 𝑈𝑝, where 𝑈𝑝 is deőned recursively via 𝑈1, which contains at

least 𝑑+1 points, and, for all 𝑗 = 2, . . . , 𝑝, 𝑈𝑗 =
⋃︀

𝑢∈𝑈𝑗−1
{(𝑢⊤, 𝑣)⊤, 𝑣 ∈ 𝑉𝑗(𝑢)},

where 𝑉𝑗(𝑢) contains at least 𝑑+ 1 points.

The set in Example P.1 is a set of uniqueness because 𝑃 ∈ K𝑑[𝑋1, . . . , 𝑋𝑝] can be writ-

ten as 𝑃 (𝑋1, . . . , 𝑋𝑝) =
∑︀𝑑

𝑘=0𝑄𝑘(𝑋1, . . . , 𝑋𝑝−1)𝑋
𝑘
𝑝 , where 𝑄𝑘 ∈ K𝑑[𝑋1, . . . , 𝑋𝑝−1].

Speciőcally, ̃︀𝑈 =
∏︀𝑝

𝑗=1 𝑉𝑗, where, for all 𝑗 = 1, . . . , 𝑝, 𝑉𝑗 ⊆ R has at least 𝑑+1 points

is a set of uniqueness of homogeneous polynomials of degree 𝑑. The more general

formulation in Example P.1 allows to show that the inőnite fan {𝑥 ∈ R2 : ∃𝑛 ∈
N, 𝑥2 = 𝑛𝑥1} and inőnite staircase {𝑥 ∈ R2 : 𝑥2 = ⌈𝑥1⌉} (see Bochnak et al., 1998),

among others, are sets of uniqueness as well. Recall the following deőnition.

Deőnition 6. Let 𝐴 be a ring and 𝑘 a subring.

1. 𝑓 ∈ 𝐴 is transcendental over 𝑘 if, for all 𝑃 ∈ 𝑘[𝑋], 𝑃 (𝑓) = 0 implies that

𝑃 = 0.

2. 𝑆 ⊆ 𝐴 is algebraically independent over 𝑘 if, for all 𝑝 ∈ N0 and (𝑓𝑗)
𝑝
𝑗=1 ∈ 𝑆𝑝,

𝑃 ∈ 𝑘[𝑋1, . . . , 𝑋𝑝], 𝑃 (𝑓1, . . . , 𝑓𝑝) = 0 implies that 𝑃 = 0.

Basic elements and examples of algebraically independent functions are given in

Waldschmidt (2000).

75



Example P.2. There exist 𝑓𝑗 ∈ ℱ(𝒮) for all 𝑗 = 1, . . . , 𝑝, where 𝒮 ⊆ C𝑞 for 𝑞 ∈ N

and ℱ(𝒮) is an algebra with respect to multiplication, which form an algebraically

independent set over C and a set of uniqueness 𝑈𝑞 ⊂ 𝒮 of ℱ(𝒮) (see sections 2.5.2

and 2.5.2) such that {(𝑓1(𝑢), . . . , 𝑓𝑝(𝑢))⊤, 𝑢 ∈ 𝑈𝑞} ⊆ ̃︀𝑈 .

Example P.2 allows 𝑝 to be large and ̃︀𝑈 discrete. The next result gives a family

of algebraically independent functions which allows to uniquely decompose square-

integrable functions. Recall the following deőnition (see Young, 2001).

Deőnition 7. A Riesz basis (𝑓𝑗)𝑗∈N0 of a separable Hilbert space is the image of an

orthonormal basis by a bounded invertible operator.

Proposition 3. Let 𝑥0 ∈ R+, 𝜆𝑗 = 𝑗 + 1/(4𝑟|𝑗|), where, for all 𝑗 ∈ Z ∖ {0}, 𝑓𝑗(𝑧) =
𝑒𝑖𝜋𝜆𝑗𝑧/𝑥0, 𝑓0 = 1, and 𝑟 ∈ (1,∞) transcendental over Z. We have:

(P6.1 ) (𝑓𝑗)𝑗∈Z∖{0} is an algebraically independent family of functions over C(𝑋);

(P6.2 ) (𝑓𝑗)𝑗∈Z is a Riesz basis of 𝐿2(−𝑥0, 𝑥0).

Proof of Proposition 3. Start by proving (P6.1). Take 𝐽 ⊆ (Z∖{0}) őnite , 𝐽𝑠 ⊆ 𝐽

the positive indices 𝑗 in 𝐽 such that −𝑗 ∈ 𝐽 .

Let (𝑏𝑗)𝑗∈𝐽 ∈ N|𝐽 |
0 such that

∑︀
𝑗∈𝐽 𝑏𝑗𝜆𝑗 = 0. We have

∑︁

𝑗∈𝐽
𝑏𝑗𝜆𝑗 =

∑︁

𝑗∈𝐽𝑠

𝑏𝑗 + 𝑏−𝑗
4𝑟𝑗

+
∑︁

𝑗∈𝐽∖𝐽𝑠

𝑏𝑗
4𝑟|𝑗|

+
∑︁

𝑗∈𝐽
𝑗𝑏𝑗,

hence, 𝑃 (𝑟) = 0, where 𝑗0 = max𝑗∈𝐽 |𝑗| and

𝑃 (𝑋) =
∑︁

𝑗∈𝐽𝑠
(𝑏𝑗 + 𝑏−𝑗)𝑋

𝑗0−𝑗 +
∑︁

𝑗∈𝐽∖𝐽𝑠

𝑏𝑗𝑋
𝑗0−|𝑗| + 4𝑋𝑗0

∑︁

𝑗∈𝐽
𝑗𝑏𝑗 ∈ Z[𝑋].

Because 𝑟 is transcendental over Z and 0 /∈ 𝐽 , for all 𝑗 ∈ 𝐽 ∖ 𝐽𝑠, 𝑏𝑗 = 0, and, for all

𝑗 ∈ 𝐽𝑠, 𝑏𝑗 + 𝑏−𝑗 = 0 thus 𝑏𝑗 = 𝑏−𝑗 = 0 because 𝑏𝑗 and 𝑏−𝑗 are nonnegative. Hence, for

all 𝑗 ∈ 𝐽 , 𝑏𝑗 = 0.

Now, take 𝑃 ∈ C(𝑋)[𝑋1, . . . , 𝑋𝑝], where 𝑝 = |𝐽 |, which is zero when evaluated at
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(𝑓𝑗)𝑗∈𝐽 . Hence, we have
∑︀

𝑘 𝑐𝑘(𝑧) exp(𝑧
∑︀

𝑗∈𝐽 𝑏𝑘,𝑗𝜆𝑗) = 0, where the sum over 𝑘 is

őnite, all 𝑏𝑘,𝑗 belong to N0, and 𝑐𝑘 are rational functions. All exponentials in this

sum are distinct by the above computations and we conclude that all 𝑐𝑘s are zero by

taking limits in C. This yields the result.

(P6.2) follows from Kadec’s 1/4-Theorem (see, e.g., Theorem 14 page 42 in Young,

2001) because sup𝑗∈Z |𝜆𝑗 − 𝑗| < 1/4. �

Sets of uniqueness of analytic classes

Take 𝒮 ⊆ R nonempty, open, and connected. Due to the Weierstrass theorem (see,

e.g., Theorem 15.11 in Rudin, 1973), every 𝑈 ⊆ 𝒮 without an accumulation point

in 𝒮 is the set of zeros of a function in 𝒜(𝒮). We give examples of real discrete

sets of uniqueness by working with strict subclasses 𝒜0(𝒮). Denote by 𝑀(𝑥) the

trace function of {𝑀𝑚}, where, for all 𝑚 ∈ N, 𝑀 𝑐
𝑚 := exp

(︀
sup𝑥≥0(𝑚𝑥−𝑀(𝑥))

)︀
and

𝑀(𝑥) := sup𝑚∈N(𝑚𝑥− log(𝑀𝑚)) (see Mandelbrojt, 1952).

Example A.1. ((2) in Section 1 of Hirschman, 1950) 𝑈 ⊆ R is a set of uniqueness

of 𝐶{𝑚!} (R, 𝑏) if

lim𝑡→∞
log (|𝑈 ∩ (−𝑡, 𝑡)|)

𝑡
>
𝜋𝑏

2
. (2.33)

Recall that from Theorem 19.9 in Rudin (1973), 𝐶{𝑚!}(R) consists of the func-

tions 𝑓 such that there exists 𝜌 > 0 such that 𝑓 can be extended uniquely to

ℋ∞ ({𝑧 ∈ C : |Im(𝑧)| < 𝜌}).
Example A.2. Let 𝑚 ∈ R[0,∞)

+ , 𝑚→ ∞, and

𝒜0(C) :=

{︂
𝑓 ∈ 𝒜(C) : 𝑓(0) = 0, ∃𝐶 > 0 : ∀𝑟 ≥ 0, max

𝑧:|𝑧|=𝑟
|𝑓(𝑧)| ≤ 𝐶𝑚(𝑟)

}︂
.

𝑈 is a set of uniqueness of such a class 𝒜0(C) if, for 𝜖 > 0, we have

∃𝛼 > 1 : lim𝑡→∞
log(𝛼)

log(𝑚(𝛼𝑡))
|𝑈 ∩ ((−𝑡,−𝜖] ∪ [𝜖, 𝑡))| > 1. (2.34)

A detailed argument proving this characterization is provided in the Appendix 2.5.5.

The case where 𝑚(𝑟) = 𝑒𝜌𝑟 occurs when 𝑓 is the Fourier transform of the difference
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of two complex measures such that |𝜇| ≤ 1 and supported in [−𝜌, 𝜌] (see (P3.3)) in

which case 𝑈 = Zℎ is a set of uniqueness if 𝜌ℎ/2 < 1.

Sets of uniqueness of quasi-analytic classes

The following sets 𝑈 are sets of uniqueness of the following 𝑉 -quasi-analytic classes:

Example QA.1. 𝑉 ⊆
∘
𝑈 . Indeed, a function which is zero on 𝑈 has all its partial

derivatives or Laplacians (for functions on 𝒮 ⊆ S𝑝) equal to zero at every point in 𝑉 .

Example QA.2. (Lemma 4.8 in Belisle et al., 1997) 𝒮 is an interval,
∘
𝒮 ≠ ∅, 𝑉 =

{𝑥} ⊆ 𝑈 and 𝑈 contains an accumulation point.

Example QA.3. (Theorem 4b in Hirschman, 1950) Let 𝑀𝑚 = 𝜈(𝑚)𝑚𝑚!, where

𝑥 ∈ [0,∞) ↦→ 𝜈(𝑥) is increasing and continuously differentiable such that 𝜈(0) = 1

and

lim
𝑥→∞

𝑥𝜈 ′(𝑥)

𝜈(𝑥)
= 0.

𝑈 is a set of uniqueness of 𝐶{𝑀𝑚}(R, 𝑏) (which contains non-analytic functions) if

lim𝑡→∞
1

𝑡

∫︁ |𝑈∩(−𝑡,𝑡)|

1

𝑀(log(𝑟))
𝑑𝑟

𝑟2
>
𝜋𝑏

2
. (2.35)

If, for all 𝑛 ∈ N, 𝜈(𝑚) = 1 for 0 ≤ 𝑚 < exp*𝑛(1) and else 𝜈(𝑚) = (log(𝑚) log*2(𝑚) ·
log*𝑛(𝑚))𝑚 (𝑛th logarithmic class, see Corollary 4c in Hirschman, 1950), 𝑈 is a set of

uniqueness of 𝐶{𝑀𝑚}(R, 𝑏) if

lim𝑡→∞
log*𝑛+1 (|𝑈 ∩ (−𝑡, 𝑡)|)

𝑡
>
𝜋𝑏

2
.

Examples QA.1 and QA.2 are also sets of uniqueness of analytic classes on 𝒮 ⊇ R

and we refer to Section 2.5.2 for more examples.
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2.5.3 Quasi-analytic and analytic classes of Fourier transform

of measures

Some of our identiőcation strategies use Fourier transform of measures belonging to

𝑉 -quasi-analytic and analytic classes. We give here integrability conditions that are

sufficient and use them in Section 2.3.

Proposition 4. Let 𝜇 ∈ M𝑐(R), 𝑓 = ℱ [𝜇] can be extended to a complex analytic

function that we also denote by 𝑓 in the following cases:

(P3.1 ) If there exists a function ℎ such that
∫︀
R
𝑒ℎ(𝑥)𝑑|𝜇|(𝑥) ≤ 𝑅 <∞, then 𝑓 ∈ 𝒜 (𝒮)

for all open set 𝒮 ⊆ ⋂︀
𝑥∈supp(𝜇) {𝑧 ∈ C : −Im(𝑧)𝑥 ≤ ℎ(𝑥)} and is bounded by

𝑅;

(P3.2 ) If there exists an increasing function 𝑚 such that, 𝑚(0) = 0 and, for all

𝑟 ∈ R+,
∫︀
R
𝑒𝑟|𝑥|𝑑|𝜇|(𝑥) ≤ 𝑚(𝑟), then 𝑓 belongs to

𝒜0(C) :=

{︂
𝑓 ∈ 𝒜(C) : 𝑓(0) = 0, ∀𝑟 ≥ 0, max

𝑧:|𝑧|=𝑟
|𝑓(𝑧)| ≤ 𝑚(𝑟)

}︂
;

(P3.3 ) If, for 𝜌 ∈ R+, supp(𝜇) ⊆ 𝜌BR, then 𝑓 is an entire function and

∃𝐶 ∈ R+ : ∀𝑧 ∈ C, |𝑓(𝑧)| ≤ 𝐶𝑒𝜌|Im(𝑧)|2 , (2.36)

where 𝐶 = |𝜇|(R). Conversely, if 𝑓 is an entire function in C and satis-

őes (2.36), then 𝑓 is the extension of ℱ [𝜇] for some 𝜇 ∈ M𝑐(R) such that

supp(𝜇) ⊆ 𝜌BR.

The above cases are ordered so that the assumptions on 𝜇 are increasingly demand-

ing. (P3.1) can be applied when
∫︀
R
𝑒𝜌|𝑥|𝑑|𝜇|(𝑥) ≤ 𝑅 and 𝒮 ⊆ {𝑧 ∈ C : |Im(𝑧)|∞ < 𝜌}.

In the above cases, 𝑧 ↦→ 𝑓(𝑖𝑧) and 𝑧 ↦→ 𝑓(−𝑖𝑧) are extensions of, respectively, the

Laplace transform and moment generating function of 𝜇. Proposition 4 and the in-

jectivity of the Fourier transform imply that 𝜇* = 𝜇 if ℱ [𝜇*](𝑢) = ℱ [𝜇](𝑢) for all

𝑢 in a set of uniqueness 𝑈 of the class of functions containing ℱ [𝜇* − 𝜇]. Also, in

79



cases (P3.2) and (P3.3), 𝑓 is characterized by (𝑓𝑚(0))𝑚∈N0
, hence 𝜇 is determinate in

M𝑐(R) by injectivity of the Fourier transform.

Proof of Proposition 4. Consider (P4.1). Use that there exists a complex Borel

function 𝑔 with |𝑔| = 1 such that 𝑑𝜇 = 𝑔𝑑|𝜇| and rewrite all integrals as integrals

with respect to |𝜇|. For all 𝑥 ∈ supp(𝜇), 𝑧 ∈ 𝒮 ↦→ 𝑒𝑖𝑧𝑥 is holomorphic and, for all

𝑧 ∈ 𝒮, 𝑥 ∈ R ↦→ 𝑒𝑖𝑧𝑥 is |𝜇|-integrable. For all compact 𝐾 ⊂ 𝒮, for all 𝑧 ∈ 𝐾, we

have, for all 𝑥 ∈ supp(𝜇), |𝑒𝑖𝑧𝑥| ≤ 𝑒ℎ(𝑥) which is |𝜇|− integrable. The rest follows by

the same argument as those of the proof of theorem p91 of Tauvel (2006) for complex

variables. (P4.2) is obtained similarly.

(P4.3) is a corollary of the Paley-Wiener-Schwartz theorem using that complex mea-

sures are the distributions of order 0. �

2.5.4 The Denjoy-Carleman theorem

Theorem 10 reminds the link between condition (2.10) and quasi-analyticity. We

work more generaly here with the convex regularisation of the sequences, which gives

the following conditions, for {𝑀𝑚} ∈ RN0 ,

(C.1) (Carleman’s condition)
∑︀

𝑚∈N 1/𝛽𝑚 = ∞, where 𝛽𝑚 = inf𝑘≥𝑚𝑀
1/𝑘
𝑘 ;

(C.2)
∑︀

𝑚∈N 1/(𝑀
𝑐
𝑚)

1/𝑚 = ∞;

(C.3) (Mandelbrojt’s condition)
∑︀

𝑚∈N𝑀
𝑐
𝑚−1/𝑀

𝑐
𝑚 = ∞.

Theorem 10. Let 𝒮 ⊆ R𝑝 be a nonempty connected open set, 𝑥 ∈ 𝒮, then:

T10.(i) When {𝑀𝑚} ∈ ((0,∞]𝑝)N0, 𝐶{𝑀𝑚}(𝒮) is {𝑥}−quasi-analytic if the 𝑝 co-

ordinates sequences of {𝑀𝑚} satisfy (C.1).

T10.(ii) When {𝑀𝑚} has positive elements, (C.1)-(C.3) are equivalent.

T10.(iii) When 𝒮 = R and {𝑀𝑚} ∈ RN0
+ , (C.1)-(C.3) are equivalent to the {𝑥}−quasi-

analyticity of 𝐶{𝑀𝑚}(𝒮).
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T10.(i) is Theorem B.1 in De Jeu (2004) extended to connected sets by classical

arguments. Theorem T10.(ii) is given in Mandelbrojt (1952). T10.(iii) is the Denjoy-

Carleman theorem (see, e.g., Theorem 19.11 in Rudin, 1973). Due to Lemma 1, we

can replace the index of the general term in the series in (C.1)-(C.3) by 𝑙𝑚 for all

𝑙 ∈ N.

2.5.5 Arguments for the characterization of set of uniqueness

in Example A.2

The characterization in Example A.2 is a consequence of the fact that, if 𝑓 ∈ 𝒜0(C),

then there exists 𝑘 ∈ N such that 𝑓(𝑧) = 𝑧𝑘𝑔(𝑧) and 𝑔(0) ̸= 0. Jensen formula applied

to 𝑔 (see, e.g. 15.18 in Rudin, 1973), with max𝑧:|𝑧|=𝑟 |𝑔(𝑧)| = max𝑧:|𝑧|=𝑟 |𝑓(𝑧)|/𝑧𝑘 ≤
𝐶𝑚(𝑟)/𝑟𝑘, ensures that

|𝑔(0)|
𝑛𝑔(𝛼𝑟)∏︁

𝑘=1

𝛼𝑟

𝜔𝑘
≤ 𝐶𝑚(𝛼𝑟)

𝛼𝑘𝑟𝑘
,

where 𝜔1, . . . , 𝜔𝑛𝑔(𝛼𝑟) are the zeros of 𝑔 in 𝐵(0, 𝛼𝑟) ranked according to their multi-

plicity and 𝑛𝑔(𝛼𝑟) is the number of zeros of 𝑔 with multiplicity in 𝐵(0, 𝛼𝑟). Thus, we

have
𝐶𝑚(𝛼𝑟)

𝛼𝑘𝑟𝑘
≥ |𝑔(0)|

𝑛𝑔(𝑟)∏︁

𝑘=1

𝛼𝑟

𝜔𝑘
≥ |𝑔(0)|𝛼𝑛𝑔(𝑟)

which yields that 𝑛𝑓 (𝑟) = 𝑘 + 𝑛𝑔(𝑟) ≤ 𝑘 + log(𝐶𝑚(𝛼𝑟)(𝛼𝑟)−𝑘/ |𝑔(0)|)/ log(𝛼). Thus,

denoting by 𝑛𝑓 (𝑟) the number of zeros of 𝑓 with multiplicity in 𝐵(0, 𝑟) ∖ {0𝑐}, we

have
𝑛𝑓 (𝑟) log(𝛼)

log(𝑚(𝛼𝑟))
≤ 1 +

log(𝐶(𝛼𝑟)−𝑘/ |𝑔(0)|)
log(𝑚(𝛼𝑟))

then lim𝑟→∞𝑛𝑓 (𝑟) log(𝛼)/ log(𝑚(𝛼𝑟)) ≤ 1. This yields that 𝑈 satisfying (2.34) is a

set of uniqueness of 𝒜0(C).

2.5.6 𝒜(𝒮) is a small subset of 𝐶∞(𝒮)

Proposition 5 can be found in Schmets and Valdivia (1991), it is of the same spirit as

the statement that the complement of nowhere analytic functions in 𝐶∞(𝒮) is meager
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with empty interior, which we detail below.

Proposition 5. If a condition (C.1)-(C.3) fails, then 𝐶{𝑀𝑚}(𝒮) contains a vector

space of dimension 2ℵ0 such that for all nonzero element 𝑓 there does not exists

𝑥 ∈ 𝒮, a neighborhood 𝒩𝑥 of 𝑥, and a sequence {𝑀𝑥,𝑚} such that 𝑓 belongs to a

quasi-analytic class 𝐶{𝑀𝑥,𝑚}(𝒩𝑥).

Assume, for simplicity, that 𝒮 ⊂ R𝑝 is compact and as usual 𝐶∞(𝒮) is equipped

with the distance 𝑑(𝑓, 𝑔) :=
∑︀

𝑚∈N𝑝0 min
(︁
1/2𝑚

𝑐 ,
⃦⃦
𝑓 (𝑚) − 𝑔(𝑚)

⃦⃦
𝐿∞(𝒮)

)︁
. By the Cauchy-

Hadamard theorem (see Shabat, 1992), 𝑓 ∈ 𝐶∞(𝒮) is analytic at 𝑥 if and only if there

exist 𝑏, 𝑐 ∈ N such that 𝑓 belongs to

𝑇 (𝑥, 𝑏, 𝑐) :=
{︀
𝑓 ∈ 𝐶∞(𝒮) : ∀𝑚 ∈ N𝑝

0,
⃒⃒
𝑓 (𝑚)(𝑥)

⃒⃒
≤ 𝑐𝑏|𝑚|𝑚!

}︀
,

thus 𝒜(𝒮) = ⋃︀
𝑥∈Q𝑝∩𝒮,𝑏,𝑐∈N 𝑇 (𝑥, 𝑏, 𝑐). This is a countable union of closed sets, hence

closed. Moreover, 𝑇 (𝑥, 𝑏, 𝑐) has empty interior. Indeed (see Salzmann and Zeller,

1955), given 𝑓 in 𝑇 (𝑥, 𝑏, 𝑐), for all 𝜖 > 0, 𝑚 ∈ N such that
∑︀∞

𝑗=𝑚 2−𝑗 < 𝜖, 𝑐 <

(𝜖𝑏𝑚/(2𝑚!))1/(2𝑚), the functions 𝑓𝜖 : 𝑥 ∈ 𝒮 ↦→ 𝑓(𝑥) + 𝜖 cos (𝑐(𝑥1 − 𝑥1)) /(2𝑐
𝑚) are

such that 𝑑(𝑓𝜖, 𝑓) < 𝜖 and
⃒⃒
⃒𝑓 (2𝑚)
𝜖 (𝑥)− 𝑓 (2𝑚)(𝑥)

⃒⃒
⃒ > 𝑏2𝑚(2𝑚)!, hence 𝑓𝜖 /∈ 𝑇 (𝑥, 𝑏, 𝑐).

Due to Baire’s theorem, the meager set 𝒜(𝒮) of the complete metric space 𝐶∞(𝒮) has

an empty interior. With the arguments in Cater (1984), the complement of nowhere

analytic functions in 𝐶∞(𝒮), hence containing 𝒜(𝒮), can be shown to be meager with

empty interior.

2.5.7 Complementary results

On the linear panel data model where regressors are monomials of a base-

line scalar regressor

We give here results about identiőcation under restrictions on the tails or the sign of

the marginals of P*
𝛾 . We remind 𝒳0 := {𝑥 ∈ R𝑇 :

∏︀𝑇
𝑗=1 𝑥𝑗 ̸= 0,

∏︀
𝑚 ̸=𝑗(𝑥𝑚−𝑥𝑗) ̸= 0}.

Assumption 11. Given {𝑀𝑚}, {𝑀 𝑘,𝑚}𝑇+1
𝑘=1 log-convex sequences which satisfy 𝑀0 =
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1 and 𝑀 𝑘,0 = 1, deőne

ℛ𝐿𝑃,𝑇

(︀
{𝑀𝑚} , {𝑀 𝑘,𝑚}𝑇+1

𝑘=1

)︀
:= ℛ𝐿𝑃,0({𝑀𝑚})∩

{︀
P𝛾,𝑋 ∈ M1

(︀
R3𝑇+1

)︀
: 𝑅𝐿𝑃 (i)-(ii)

}︀
,

𝑅𝐿𝑃 (i) There exists a set 𝑉 ⊂ R𝑇 with non-empty interior such that for all 𝑣 ∈ 𝑉 ,

𝑈𝑇,𝑣 = {Θ(𝑣,𝑢), ∀𝑢 ∈ S𝑋 ∩ 𝒳0}, where Θ is deőned in (2.31), are sets of

uniqueness of 𝐶{𝑀𝑇+1,𝑚}(R);

𝑅𝐿𝑃 (ii) For all 𝑘 = 1, . . . , 𝑇+1 and 𝑚 ∈ N0, EP𝛾
[|𝛾⊤

𝑘 |𝑚] ≤ 𝑀 𝑘,𝑚 and, if S𝛾𝑘
⊆ R+,

{𝑀 𝑘,𝑚} satisőes (2.11) and else, if S𝛾𝑘
̸⊆ R+, (2.10) otherwise.

Theorem 11. Let {𝑀𝑚}, {𝑀 𝑘,𝑚}𝑇+1
𝑘=1 be log-convex sequences which satisfy 𝑀0 = 1

and 𝑀 𝑘,0 = 1. Then, P*
𝛾 is identiőed under ℛ𝐿𝑃,𝑇 ({𝑀𝑚}, {𝑀 𝑘,𝑚}𝑇+1

𝑘=1 ).

Proofs of Theorem 11. Let us start with the sketch of the proof. We őrst show

that under ℛ𝐿𝑃,0 ({𝑀𝑚}) if {𝑀𝑚} is a log-convex sequence which satisőes 𝑀0 = 1

and (C.3), then, for all 𝑡 ∈ R𝑇 and 𝑥 ∈ S𝑋 ,

𝜙*
𝛼,𝛽

(︃
𝑇∑︁

𝑗=1

𝑡𝑗,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥𝑗, . . . ,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗

)︃
(2.37)

is identiőed. Then, for all 𝑥 ∈ 𝒳0, we use a change of variable that relates 𝑡 ∈ R𝑇

to 𝑣 ∈ R𝑇 such that (
∑︀𝑇

𝑗=1 𝑡𝑗,
∑︀𝑇

𝑗=1 𝑡𝑗𝑥𝑗, . . . ,
∑︀𝑇−1

𝑗=1 𝑡𝑗𝑥
𝑇−1
𝑗 ) = 𝑣. This change of

variable allows to choose the values of the 𝑇 −1 őrst variables in (2.37) independently

from each other. This can be written as 𝑡 = (𝑉 −1(𝑥))
⊤
𝑣, where

𝑉 (𝑥) :=

⎛
⎜⎜⎜⎝

1 𝑥1 𝑥2
1 . . . 𝑥𝑇−1

1

: . . . :

1 𝑥𝑇 𝑥2
𝑇 . . . 𝑥𝑇−1

𝑇

⎞
⎟⎟⎟⎠

is the Vandermonde matrix. We use 𝐷(𝑥), the diagonal matrix which entries are

the coordinates of 𝑥. It is a classical result that, for all 𝑥 ∈ 𝒳0, 𝐷(𝑥) and 𝑉 (𝑥)

are invertible hence ̃︀𝑉 (𝑥) := (𝐷(𝑥)𝑉 (𝑥))⊤ is invertible. Then, for all 𝑣 ∈ R𝑇 and

𝑥 ∈ 𝒳0, we can express 𝑡 as a function of 𝑣 and 𝑥, and obtain for the last variable in
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(2.37)

𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗 = 𝑡⊤𝑥𝑇 =

(︁(︀
𝑉 (𝑥)−1

)︀⊤
𝑣
)︁⊤

𝑥𝑇 =
(︁
𝐷(𝑥)̃︀𝑉 (𝑥)−1𝑣

)︁⊤
𝑥𝑇 = Θ(𝑣,𝑥). (2.38)

Thus, for all 𝑣 ∈ R𝑇 and 𝑥 ∈ S𝑋 ∩ 𝒳0, 𝜙*
𝛼,𝛽 (𝑣,Θ(𝑣,𝑥)) is identiőed. Assuming

that, for all 𝑣 ∈ R𝑇 ∖ 𝒱 , where R𝑇 ∖ 𝒱 is dense in R𝑇 , 𝑥 ∈ R ↦→ 𝜙𝛼,𝛽(𝑣, 𝑥) belongs

to 𝑉 -quasi-analytic classes for which 𝑈𝑣 is a set of uniqueness yields identiőcation of

𝜙*
𝛼,𝛽.

Consider P𝛾,𝑋 ∈ ℛ𝐿𝑃,𝑇 ({𝑀𝑚}, {𝑀 𝑘,𝑚}𝑇+1
𝑘=1 ) such that P (P𝛾,𝑋) = P

(︀
P*
𝛾 ⊗ P𝑋

)︀
.

Using 𝑅𝐿𝑃,0 (ii), 𝑟 > 0 and 𝛿 deőned in (2.20), and (2.20), and following the same

steps as in the proof of Theorem 7 yields P𝜖1 = P*
𝜖1

.

Now, for all 𝑡 ∈ R, 𝜙𝑌 1|𝑋1(𝑡|𝑟) = 𝜙𝛿(𝑡)𝜙
*
𝜖1
(𝑡) = 𝜙*

𝛿(𝑡)𝜙
*
𝜖1
(𝑡), hence, because the

zeros of 𝜙*
𝜖1

are isolated (see Lemma 4.8 in Belisle et al., 1997) and 𝜙𝛿 and 𝜙*
𝛿 are

continuous, we obtain 𝜙𝛿 = 𝜙*
𝛿 . Similarly, because, for all 𝑡 ∈ R and 𝑗 = 2, . . . , 𝑇 ,

𝜙𝑌 𝑗−𝑌 1|𝑋1,𝑋𝑗
(𝑡|(𝑟, 𝑟)) = 𝜙*

𝜖𝑗
(𝑡)𝜙*

𝜖1
(−𝑡) = 𝜙𝜖𝑗(𝑡)𝜙

*
𝜖1
(−𝑡), the zeros of 𝜙*

𝜖1
are isolated

and 𝜙𝜖𝑗 and 𝜙*
𝜖𝑗

are continuous, we obtain 𝜙𝜖𝑗 = 𝜙*
𝜖𝑗

for all 𝑗 = 2, . . . , 𝑇 .

Using that, for all 𝑡 ∈ R𝑇 and 𝑥 ∈ S𝑋 , we have

𝜙𝛼,𝛽

(︃
𝑇∑︁

𝑗=1

𝑡𝑗,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥𝑗, . . . ,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗

)︃
𝑇∏︁

𝑗=1

𝜙𝜖𝑗(𝑡𝑗)

= 𝜙*
𝛼,𝛽

(︃
𝑇∑︁

𝑗=1

𝑡𝑗,

𝑇∑︁

𝑗=1

𝑡𝑗𝑥𝑗, . . . ,

𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗

)︃
𝑇∏︁

𝑗=1

𝜙𝜖𝑗(𝑡𝑗)

that, for all 𝑗 = 1, . . . , 𝑇 , the zeros of 𝜙𝜖𝑗 are isolated, and that 𝜙𝛼,𝛽 and 𝜙*
𝛼,𝛽 are

continuous, yield, for all 𝑡 ∈ R𝑇 and 𝑥 ∈ S𝑋 ,

𝜙𝛼,𝛽

(︃
𝑇∑︁

𝑗=1

𝑡𝑗,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥𝑗, . . . ,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗

)︃
= 𝜙*

𝛼,𝛽

(︃
𝑇∑︁

𝑗=1

𝑡𝑗,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥𝑗, . . . ,
𝑇∑︁

𝑗=1

𝑡𝑗𝑥
𝑇
𝑗

)︃
.

Now, we make use of the change of variables 𝑡 = (𝑉 −1(𝑥))⊤𝑣. Thus, using (2.38),

(2.32) holds, for all 𝑣 ∈ R𝑇 and 𝑥 ∈ 𝒳0. Using using arguments from the proof of

Theorem 4, with 𝑅𝐿𝑃 (ii), and Proposition 1 ensure that, for all 𝑣 ∈ 𝑉 , 𝑧 ∈ R ↦→
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(𝜙𝛼,𝛽 − 𝜙*
𝛼,𝛽)(𝑣, 𝑧) can be extended uniquely to 𝒞{𝑀𝑇+1,𝑚}(R) ∩ {ℱ [𝜇], 𝜇 ∈ M*

𝑐(R)}
which is a quasi-analytic class, and is zero on a set of uniqueness of this class, thus

on R. Then, 𝑅𝐿𝑃 (i) yields, for all (𝑣, 𝑧) ∈ 𝑉 × R, 𝜙𝛼,𝛽(𝑣, 𝑧) = 𝜙*
𝛼,𝛽(𝑣, 𝑧). Take

𝑣 ∈ 𝑉 and 𝑡 ∈ R, 𝑅𝐿𝑃 (ii) and Proposition 1 ensure that, 𝑧 ∈ R ↦→ (𝜙𝛼,𝛽 −
𝜙*
𝛼,𝛽)(𝑣[𝑇−1], 𝑧, 𝑡) can be extended uniquely to 𝒞{𝑀𝑇,𝑚}(R)∩{ℱ [𝜇], 𝜇 ∈ M*

𝑐(R)} which

is a quasi-analytic class, and is zero on a set of uniqueness of this class, thus on R.

Iterating this procedure we obtain that P𝛼,𝛽 = P*
𝛼,𝛽. �

Condition 𝑅𝐿𝑃 (i) excludes the case where 𝑋1 = 𝑋2 (which would yield empty

𝑈𝑇,𝑣), which does not provide enough variation in (2.19) to recover uniquely the joint

distribution of the coefficients.

Proposition 6. The following conditions are sufficient for 𝑅𝐿𝑃 when 𝑇 = 2:

1. There exists 𝑎 ∈ S𝑋2 such that {𝑥1 ∈ R, 𝑥 = (𝑥1, 𝑎) ∈ S𝑋 ∩ 𝒳0} satisőes

Example QA.2 or QA.3 in Section 2.5.2;

2. There exists 𝑎 ∈ S𝑋2 and 𝜌,𝑅 > 0 such that {𝑥1 ∈ R, 𝑥 = (𝑥1, 𝑎) ∈ S𝑋 ∩ 𝒳0}
satisőes Example A.2 in Section 2.5.2 and E

[︀
𝑒𝜌|𝛽2|

]︀
≤ 𝑅.

Proof of Proposition 6. Consider 𝒱 = {𝑣 : 𝑣2 = 𝑣1𝑎}, 𝑈𝑇,𝑣 := {𝑥1(𝑣2−𝑣1𝑎)+𝑎𝑣2 :

𝑥 = (𝑥1, 𝑎) ∈ S𝑋 ∩ 𝒳0}. Start by proving (1). Then, for all 𝑣 ∈ R2 ∖ 𝒱 such that

(𝑣2 − 𝑣1𝑎) ≥ 1, 𝑈𝑇,𝑣 also satisőes QA.2 and QA.3, hence is a set of uniqueness of

𝐶{𝑀𝑇+1,𝑚}(R).

We now prove (2). For all 𝑣 ∈ R2 ∖ 𝒱 such that (𝑣2 − 𝑣1𝑎) ≥ 1, 𝑈𝑇,𝑣 also satis-

őes A.1 and is a set of uniqueness of ℋ∞ ({𝑧 ∈ C : |Im(𝑧)| < 𝜌}) which belongs to

𝐶{𝑚!}(R𝑝, 1/𝜌). Using Proposition 4 and E
[︀
𝑒𝜌|𝛽2|

]︀
≤ 𝑅, we have that 𝑧 ↦→ 𝜙𝛾′(𝑣, 𝑧)

belongs to this class. �
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Chapter 3

Adaptive Estimation in the Linear

Random Coefficients Model when

Regressors have Limited Variation

Joint with Eric Gautier, Toulouse School of Economics.

Preprint available here.

Associated R package (RandomCoefficients) and vignette available here.

Abstract

We consider a linear model where the coefficients - intercept and slopes - are random

and independent from the regressors. The law of the coefficients is nonparametric.

Without further restriction, nonparametric identiőcation requires the regressors to

have a support which is the whole space. This is hardly ever the case in practice. It

is possible to handle regressors with limited variation when the coefficients can have

a compact support. This is not compatible with unbounded error terms as usual in

regression models. In this paper, the regressors can have a support which is a proper

subset but the slopes do not have heavy-tails. Lower bounds on the minimax risk

for the estimation of the joint density of the random coefficients are obtained for a
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wide range of smoothness. Some allow for polynomial and nearly parametric rates

of convergence. We present a minimax optimal estimator and a data-driven rule for

adaptive estimation. A R package is available to implement this estimator.

Keywords: Adaptation, Ill-posed Inverse Problem, Minimax, Random Coefficients.

3.1 Introduction

Inferring causal effects from a data set is of great importance for applied researchers.

This paper assumes that the explanatory variables are determined outside the model

(e.g., a treatment is randomly assigned) and addresses the question of the hetero-

geneity of the effects. We can argue that the effects are heterogeneous in nearly all

applications of the linear regression. In such a case, the coefficients of the linear

regression capture average effects. For example, it is well understood that the effect

of the income of the parents or the class size on pupils’ achievements differ across

pupils. A second example consists of models of consumer demand such as Engel

curves. These are models of the effect of the total budget an household can spend on

consumption goods on the budget share spent on a particular one (e.g., food). It is

also well known that there is a great deal of heterogeneity in consumer demand (see,

e.g., Hoderlein et al. (2010)). Understanding the nature of the heterogeneity of the

effects can have useful policy implications. For example, it could be worthwhile to im-

plement less costly targeted measures. It is thus of interest to recover the distribution

of heterogenous effects. Based on this model, we can compute prediction intervals for

an outcome (see Beran (1995)), welfare measures, and counterfactual effects.

The linear regression with random coefficients is a continuous mixture of linear

regressions. Maintaining parametric assumptions on the mixture density is open to

criticism because these assumptions can drive the results (see Heckman and Singer

(1984)). For this reason, this paper considers a nonparametric setup. Unfortunately,

most of the estimation theory for this model has relied on assumptions which are

almost never satisőed. This is probably the reason why, up to now, applied researchers
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have preferred to use the quantile regression to account for heterogenous effects.

There, the conditional quantiles of an outcome given the regressors are linear in the

regressors. When the conditional quantiles are strictly increasing then the quantile

regression deőnes the same data generating process as a linear random coefficients

model where the coefficients are functions of a scalar uniform distribution. However,

it can be hard to argue for such degeneracy of the random coefficients distribution or

for the linearity of the conditional quantiles. The unobserved scalar uniform variable

can be interpreted as a ranking variable. In the education and demand examples, one

can argue that such ranking can be based on a more complex multidimensional vector

of unobserved attributes. Restricting unobserved heterogeneity to a scalar can have

undesirable implications such as monotonicity in the literature on policy evaluation

(see Gautier and Hoderlein (2015)).

Formally, for a random variable 𝛼 and random vectors 𝑋 and 𝛽 of dimension 𝑝,

the linear random coefficients model is

𝑌 = 𝛼 + 𝛽⊤𝑋, (3.1)

(𝛼,𝛽⊤) and 𝑋 are independent. (3.2)

The researcher has at her disposal 𝑛 observations (𝑌𝑖,𝑋
⊤
𝑖 )

𝑛
𝑖=1 of (𝑌,𝑋⊤) but does

not observe the realizations (𝛼𝑖,𝛽
⊤
𝑖 )

𝑛
𝑖=1 of (𝛼,𝛽⊤). 𝛼 subsumes the intercept and

error term and the vector of slope coefficients 𝛽 is heterogeneous (i.e., varies across

𝑖). (𝛼,𝛽⊤) corresponds to multidimensional unobserved heterogeneity and 𝑋 to ob-

served heterogeneity. Other random coefficients models have been analyzed recently in

econometrics (see, e.g., Breunig and Hoderlein (2018); Gautier and Kitamura (2013);

Hoderlein et al. (2017); Masten (2017) and references therein). This paper focuses on

the most simple model but addresses important practical issues.

Estimation of the density of the random coefficients 𝑓𝛼,𝛽 has similarities with

tomography problems involving the Radon transform (see Beran et al. (1996b); Beran

and Millar (1994); Hoderlein et al. (2010)). Indeed, the density of 𝑌/
√︀

1 + |𝑋|22 given

𝑆 = (1,𝑋⊤)⊤/
√︀

1 + |𝑋|22, where | · |2 is the Euclidian norm, at point 𝑢 given 𝑠 is
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the integral of 𝑓𝛼,𝛽 on the affine hyperplane deőned via the pair (𝑢, 𝑠). It could be

tempting to analyze the related tomography problem with an additive Gaussian white

noise. But the random coefficients model (3.1)-(3.2) has it speciőcities. Treating it

requires: (1) that (𝛼,𝛽⊤) has a noncompact support to allow for usual unbounded

errors, (2) to allow the dimension to be larger than in tomography due to more

than one or two regressors, and (3) the directions to have an unknown but estimable

density.

To obtain rates of convergence, Hoderlein et al. (2010) assumes the density of 𝑆 is

bounded from below. When 𝑝 = 1, this holds when 𝑋 has tails at least as fat as the

ones of the Cauchy distribution. Recently, Dunker et al. (2017) motivates testing large

features of the density by the possible slow rates of convergence of density estimation

and Holzmann and Meister (2019) obtains rates of convergence for density estimation

with less heavy tails on 𝑋. But assuming the support of 𝑋 is R𝑝 is unrealistic for

nearly all applications. In the motivating examples, the income of the parents, the

class size, and the total budget have limited variation.

Limited angle tomography considers the case where 𝑝 = 1, 𝑆 has a support which

is a known cap (i.e., the support of the angle is an interval), and the object has

support in a ball. Frikel (2013) proposes a soft-thresholded curvelet regularization

for the problem with an additive bounded noise but does not obtain results for the

statistical problem (e.g., consistency). Importantly, Hohmann and Holzmann (2015)

shows that the rate of the minimax risk in Sobolev type ellipsoids relative to the right-

singular functions of the Radon transform is logarithmic. It shows that projection

estimators are adaptive. It gives the analogy with a random coefficients model where

𝑝 = 1, (𝛼,𝛽⊤) has support in the unit ball, for some known densities of the regressors.

It concludes that a lot remains to be done to handle 𝑝 > 1 and estimable densities

of the regressors. The random coefficients model when the support of 𝑋 can be a

proper (i.e. strict) subset is considered in Beran and Millar (1994). When 𝑝 = 1

and (𝛼,𝛽⊤) has compact support, it is shown that a minimum distance estimator

is consistent. Section 2 in the online appendix of Hoderlein et al. (2017) proposes

another consistent estimator in this case.
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This paper is directly applicable to (3.1)-(3.2). It allows for the essential feature

that 𝛼 can have a noncompact support, that the researcher does not need to have

knowledge on the support of 𝛽 if compact, and that the latter can also be noncompact.

It also allows for estimable density of the regressors and arbitrary 𝑝. We assume

the marginals of 𝛽 (but not of 𝛼) do not have heavy tails. This allows for many

parametric families which are used in mixture modelling, while leaving unspeciőed

the parametric family. We do not rely on the Radon transform but on the truncated

Fourier transform (see, e.g., Alibaud et al. (2009)). Due to (3.2), the conditional

characteristic function of 𝑌 given 𝑋 = 𝑥 at 𝑡 is the Fourier transform of 𝑓𝛼,𝛽 at

(𝑡, 𝑡𝑥⊤)⊤. Hence, the family of conditional characteristic functions indexed by 𝑥 in

the support of 𝑋 gives access to the Fourier transform of 𝑓𝛼,𝛽 on a double cone of

axis (1, 0, . . . , 0) ∈ R𝑝+1 and apex 0. When 𝛼 = 0 and the supports of 𝛽 and 𝑋 are

compact with nonempty interior, this is the problem of out-of-band extrapolation or

super-resolution (see, e.g., Bertero and Boccacci (1998)). Because we do not restrict

𝛼 and the support of 𝛽 can be noncompact, we generalize this approach.

A related problem is extrapolation. It is used in Meister (2007) to perform decon-

volution of compactly supported densities, allowing the characteristic function of the

error to vanish. This paper does not use extrapolation nor assume densities are ana-

lytic. Rather, the operator of the inverse problem is a composition of two operators

based on partial Fourier transforms. One involves a truncated Fourier transform and

we make use of properties of the singular value decomposition.

Unlike Beran and Millar (1994); Hoderlein et al. (2017), we go beyond consistency

and provide a full analysis of the general case. Similar to Gautier and Le Pennec

(2018); Hohmann and Holzmann (2015); Holzmann and Meister (2019), we study

minimax optimality. However, we obtain lower bounds under a wide variety of as-

sumptions. We show that polynomial and nearly parametric rates can be attained.

Hence, we can lose little in terms of rates of convergence from going from a parametric

model to a nonparametric one. This contrasts with the pessimistic logarithmic rates

in Hohmann and Holzmann (2015) (also mentioned in Hoderlein et al. (2017)) and

the message to avoid estimating densities in Dunker et al. (2017). We present an

91



estimator involving: series based estimation of the partial Fourier transform of the

density with respect to the őrst variable, interpolation around zero, and inversion of

the partial Fourier transform. The orthonormal system is a tensor products of the

Prolate Spheroidal Wave Functions (henceforth PSWF, see Osipov et al. (2013)) when

the law of 𝛽 has a support included in a known bounded set. Else, it is composed of

singular functions of an operator őrst studied in Morrison (1962); Widom (1964). The

relevant results on these systems are given in the appendix. They can also be used in

a wide range of applications such as for stable analytic continuation by Hilbert space

techniques (see Gaillac and Gautier (2019a)). We use a Goldenshluger-Lepski type

method to obtain data-driven estimators. We consider estimation of the marginal 𝑓𝛽

in Appendix 3.7.3.

The adaptive estimator is implemented in the R package RandomCoefficients. In

contrast with the EM algorithm for parametric continuous mixtures of regressions,

the estimator has the advantage of being robust to misspeciőcation of the parametric

family. It also avoids possible non convergence issues of the EM algorithm. The

proposed estimator relies on the computation of a SVD which we obtain once and

for all by a numerically efficient method, on two simple sums, and a one dimensional

Fourier transform carried by FFT. Additional practical and computational details are

available in Gaillac and Gautier (2019d).

The paper is organized as follows. Section 3.2 gives preliminaries. It introduces the

baseline assumption on 𝑓𝛼,𝛽 and the variation of the regressors. It frames the recovery

of 𝑓𝛼,𝛽 as an inverse problem involving a composition at the basis of the estimation

procedure. The section also introduces a related Gaussian white noise model and the

main elements on interpolation, which is key to obtain an optimal estimator. Finally,

it presents the sets of smooth and integrable functions for the minimax analysis and

the risk. Section 3.3 provides the lower bounds. Section 3.4 describes the estimator

and its rates of convergence assuming knowledge of the parameters of the sets of

functions. Section 3.4.3 provides a data-driven estimator and presents its nearly

minimax rates of convergence. Section 3.5 concludes with details on the numerical

implementation and simulations illustrating the őnite sample performances of the
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data-driven estimator.

3.2 Preliminaries

3.2.1 Notations

The notations ·, ·1, ·2, ⋆ are used to denote variables in a function. 𝑎∧ 𝑏 (resp. 𝑎∨ 𝑏)
is used for the minimum (resp. maximum) between 𝑎 and 𝑏, (·)+ for 0 ∨ ·, and 1l{𝐴}
for the indicator function of set 𝐴. N and N0 stand for the positive and nonnegative

integers. Bold letters are used for vectors. For all 𝑟 ∈ R, 𝑟 is the vector, which

dimension will be clear from the text, where each entry is 𝑟. For 𝑥 ≥ 1 we denote

by ln2(𝑥) = ln(ln(𝑥)). 𝒲 is the inverse of 𝑥 ∈ [0,∞) ↦→ 𝑥𝑒𝑥. | · |𝑞 for 𝑞 ∈ [1,∞]

stands for the ℓ𝑞 norm of a vector or sequence. For all 𝛽 ∈ C𝑑, (𝑓𝑚)𝑚∈N0 functions

with values in C, and 𝑚 ∈ N𝑑
0, denote by 𝛽𝑚 =

∏︀𝑑
𝑘=1 𝛽

𝑚𝑘
𝑘 , |𝛽|𝑚 =

∏︀𝑑
𝑘=1 |𝛽𝑘|𝑚𝑘 , and

𝑓𝑚 =
∏︀𝑑

𝑘=1 𝑓𝑚𝑘
. For a function 𝑓 of real variables, supp(𝑓) denotes its support. The

inverse of a mapping 𝑓 , when it exists, is denoted by 𝑓 𝐼 . We denote the interior of

𝒮 ⊆ R𝑑 by
∘
𝒮.

When 𝒮 is a Borel set and ℎ a nonnegative function from 𝒮 to [0,∞], 𝐿2(ℎ) is

the space of complex-valued square integrable functions equipped with ⟨𝑓, 𝑔⟩𝐿2(ℎ) =∫︀
𝒮 𝑓(𝑥)𝑔(𝑥)ℎ(𝑥)𝑑𝑥. This is denoted by 𝐿2(𝒮) when ℎ = 1. For a Borel set 𝒮 ⊆ R𝑑,

we denote by 𝑖𝒮 = 1l{𝒮}+∞ 1l{𝒮𝑐}. We have 𝐿2(𝑖𝒮) = {𝑓 ∈ 𝐿2(R𝑑) : supp(𝑓) ⊆ 𝒮}
and ⟨𝑓, 𝑔⟩𝐿2(𝑖𝒮)

=
∫︀
𝒮 𝑓(𝑥)𝑔(𝑥)𝑑𝑥. Denote by 𝒟 the set of densities and by ⊗ the

product of functions (e.g., ℎ⊗𝑑(𝑏) =
∏︀𝑑

𝑗=1 ℎ(𝑏𝑗)) or measures.

The Fourier transform of 𝑓 ∈ 𝐿1
(︀
R𝑑

)︀
is ℱ [𝑓 ] (𝑥) =

∫︀
R𝑑
𝑒𝑖𝑏

⊤𝑥𝑓(𝑏)𝑑𝑏 and ℱ [𝑓 ] is

also the Fourier transform in 𝐿2
(︀
R𝑑

)︀
. For all 𝑐 > 0, denote the Paley-Wiener space

by 𝑃𝑊 (𝑐) := {𝑓 ∈ 𝐿2(R) : supp (ℱ [𝑓 ]) ⊆ [−𝑐, 𝑐]}, by 𝒫𝑐 the projector from 𝐿2(R) to

𝑃𝑊 (𝑐) (𝒫𝑐[𝑓 ] = ℱ 𝐼 [1l{[−𝑐, 𝑐]}ℱ [𝑓 ]]). For all 𝑓 ∈ 𝐿1
(︀
R𝑑

)︀
, ℱ1st [𝑓 ] (𝑡, ·2) denotes the

partial Fourier transform of 𝑓 with respect to the őrst variable.

Now on, 𝑊 is a function which can be either 𝑖[−𝑅,𝑅] or cosh(·/𝑅) and which
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depends on a given 𝑅 > 0. The truncated Fourier transform ℱ𝑐 is deőned by

∀𝑐 ̸= 0, ℱ𝑐 : 𝐿2
(︀
𝑊⊗𝑑)︀ → 𝐿2

(︀
[−1, 1]𝑑

)︀

𝑓 → ℱ [𝑓 ] (𝑐 ·).
(3.3)

For a random vector 𝑋, P𝑋 is its law, 𝑓𝑋 its density, 𝑓𝑋|𝒳 the truncated density of

𝑋 given 𝑋 ∈ 𝒳 , S𝑋 its support, and 𝑓𝑌 |𝑋=𝑥 the conditional density.

3.2.2 Baseline assumption

Assumption 1 below imposes restrictions on the integrability of the density of the

random coefficients and on the variation of the regressors ensuring nonparametric

identiőcation.

Assumption 1. (H1.1 ) 𝑓𝑋 and 𝑓𝛼,𝛽 exist;

(H1.2 ) There exist 𝑤 ≥ 1 and 𝑅 > 0 such that 𝑓𝛼,𝛽 ∈ 𝐿2 (𝑤 ⊗𝑊⊗𝑝), where 𝑊 is

either 𝑖[−𝑅,𝑅] or cosh(·/𝑅);

(H1.3 ) There exists 𝑥0 > 0 and 𝒳 = [−𝑥0, 𝑥0]𝑝 ⊆ S𝑋 .

The assumption (H1.2) is important to rely on Hilbert-space methods. It is sat-

isőed when

E

[︃
𝑤(𝛼)

𝑝∏︁

𝑘=1

𝑒|𝛽𝑘|/𝑅
]︃
<∞ and ‖𝑓𝛼,𝛽‖𝐿∞(R𝑝+1) <∞

hold. The őrst condition is a condition on the tails of the density of the random

coefficients. The weights 𝑊 are such that 𝐿2 (𝑤 ⊗𝑊⊗𝑝) ⊆ 𝐿2(𝑤 ⊗ (𝑒|·|/𝑅)⊗𝑝). When

𝑊 = 𝑖[−𝑅,𝑅], 𝑓𝛼,𝛽 ∈ 𝐿2(𝑤⊗𝑊⊗𝑝) implies that S𝛽 ⊆ [−𝑅,𝑅]𝑝. If 𝑤−1 ∈ 𝐿1(R), (H1.2)

implies that the slopes of 𝛽 do not have heavy tails. This means that their tails are

not heavier than that of the Laplace distribution (i.e., the Laplace transform of their

absolute value is őnite near 0). Indeed, we have, for all 𝜖 ∈ (0, 1) and 𝑘 = 1, . . . , 𝑝,

for 𝜆 = (1− 𝜖)/(2𝑅), by the Cauchy-Schwarz inequality,

E
[︀
𝑒𝜆|𝛽𝑘|

]︀
≤ ‖𝑓𝛼,𝛽‖𝐿2(𝑤⊗𝑊⊗𝑝)

⃦⃦
𝑤−1

⃦⃦1/2

𝐿1(R)
(2𝑅/𝜖)𝑝/2 <∞.
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(H1.2) allows for slopes which marginal distributions are Gaussian, inverse Gaussian,

logistic, and all distributions with compact support, among others. But it rules out

the lognormal distribution. The case 𝑤 = 1 corresponds to mild integrability in the

őrst variable. The condition that the support of the regressors contains an hypercube

𝒳 = [−𝑥0, 𝑥0]𝑝 in (H1.3) is not restrictive because 𝑌 = 𝛼+𝛽⊤𝑥+𝛽⊤𝑀−1𝑀 (𝑋−𝑥),

we can take 𝑥, 𝑀 an invertible 𝑝 × 𝑝 matrix, and 𝑥0 such that 𝒳 ⊆ S𝑀(𝑋−𝑥), and

there is a one-to-one mapping between 𝑓𝛼+𝛽⊤𝑥,(𝑀−1)⊤𝛽 and 𝑓𝛼,𝛽.

3.2.3 Inverse problem in Hilbert spaces

Estimation of 𝑓𝛼,𝛽 corresponds to solving a statistical ill-posed inverse problem. In-

deed, we can relate 𝑓𝛼,𝛽 to the conditional characteristic function 𝑓𝑌 |𝑋=𝑥 known over

a subset of R𝑝+1, namely a double cone. This can be formalized via the introduction

of the operator: for all 𝑡 ∈ R and 𝑢 ∈ [−1, 1]𝑝,

𝒦𝑓𝛼,𝛽(𝑡,𝑢) = ℱ
[︀
𝑓𝑌 |𝑋=𝑥0𝑢

]︀
(𝑡)𝑥0|𝑡|𝑝/2, (3.4)

where
𝒦 : 𝐿2 (𝑤 ⊗𝑊⊗𝑝) → 𝐿2(R× [−1, 1]𝑝)

𝑓 → (𝑡,𝑢) ↦→ ℱ [𝑓 ] (𝑡, 𝑥0𝑡𝑢)𝑥0|𝑡|𝑝/2.
(3.5)

Proposition 1. 𝐿2 (𝑤 ⊗𝑊⊗𝑝) is continuously embedded into 𝐿2(R𝑝+1). Moreover,

𝒦 is injective and continuous, and not compact if 𝑤 = 1.

Thus, when 𝑤 = 1, the SVD of 𝒦 does not exist. This makes it difficult to

prove rates of convergence even for estimators which do not rely explicitly on the

SVD such as the Tikhonov and Landweber method (Gerchberg algorithm in out-of-

band extrapolation, see Bertero and Boccacci (1998)). Rather than working with 𝒦
directly, we use that 𝒦 is the composition of operators which are easier to analyze

∀ 𝑡 ∈ R, 𝒦[𝑓 ](𝑡, ⋆) = ℱ𝑡𝑥0 [ℱ1st [𝑓 ] (𝑡, ·2)] (⋆)𝑥0|𝑡|𝑝/2 in 𝐿2([−1, 1]𝑝). (3.6)

For all 𝑓 ∈ 𝐿2 (𝑤 ⊗𝑊⊗𝑝) and 𝑡 ∈ R, ℱ1st [𝑓 ] (𝑡, ·2) belongs to 𝐿2(𝑊⊗𝑝) and, for

95



𝑐 ̸= 0, ℱ𝑐 : 𝐿
2(𝑊⊗𝑝) → 𝐿2([−1, 1]𝑝) admits a SVD, where both orthonormal systems

are complete. This is a tensor product of the SVD when 𝑝 = 1 that we denote by

(𝜎𝑊,𝑐𝑚 , 𝜙𝑊,𝑐𝑚 , 𝑔𝑊,𝑐𝑚 )𝑚∈N0 , where (𝜎𝑊,𝑐𝑚 )𝑚∈N0 ∈ (0,∞)N0 is in decreasing order repeated

according to multiplicity. Note that (3.6) allows to rely on the property of the uni-

dimensional truncated Fourier transform to analyze the problem of the multidimen-

sional truncated Fourier transform on a double cone. This is a natural way to exploit

the geometry of the problem.

Proposition 2. For all 𝑐 ̸= 0, (𝑔𝑊,𝑐𝑚 )𝑚∈N0 and (𝜙𝑊,𝑐𝑚 )𝑚∈N0 are bases of, respectively,

𝐿2([−1, 1]) and 𝐿2(𝑊 ).

The SVD when 𝑊 = 𝑖[−1,1] is well studied. The singular functions (𝑔
𝑖[−1,1],𝑐
𝑚 )𝑚∈N0

are the PSWF. They can be extended as entire functions in 𝐿2(R) and form a complete

orthogonal system of 𝑃𝑊 (𝑐) for which we use the same notation. They are useful

to carry interpolation and extrapolation (see, e.g., Lindberg (2012)) with Hilbertian

techniques. Nonasymptotic upper bounds on the singular values show that the latter

decay exponentially with 𝑚 faster than 𝑒−𝑚 ln(4(𝑚+3/2)/𝑒|𝑐|) (see, e.g., Lemma B.4. in

Appendix 3.7 and Bonami and Karoui (2014b)).

The weight cosh(·/𝑅) allows for larger classes than 𝑃𝑊 (𝑐), hence noncompact S𝛽.

The singular functions (𝑔cosh(·/𝑅),𝑐
𝑚 )𝑚∈N0 allow to carry extrapolation of nonbandlimited

functions (see Gaillac and Gautier (2019a)). This is useful even if S𝛽 is compact

when the researcher does not know a superset containing S𝛽. Extending the work

of Widom (1964), Gaillac and Gautier (2019a) also proves nonasymptotic lower and

upper bounds on the singular values, which show that, for 𝑐 < 1, the latter decay with

𝑚 faster than 𝑒−𝑚 ln(1/|𝑐|)/
√
2𝑚+ 1 (see Theorem 7 in Gaillac and Gautier (2019a)).

Useful results for the present paper on the corresponding SVD are in Appendix 3.7.

More properties and a numerical algorithm to compute it are in Gaillac and Gautier

(2019a).

Nonasymptotic upper bounds on ‖𝑔𝑊,𝑐𝑚 ‖𝐿∞(−1,1) are proved in Bonami and Karoui

(2014b) for the PSWF and in Gaillac and Gautier (2019a) when𝑊 = cosh(·/𝑅). They

are recalled in Proposition 5. They take the form ‖𝑔𝑊,𝑐𝑚 ‖𝐿∞(−1,1) ≤ 𝐻(𝑐)
√︀
𝑚+ 1/2
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for a given 𝐻(𝑐). We use the explicit dependence of 𝐻 in 𝑐 for all 𝑚 ∈ N0 to prove

the results in Section 3.4.3.

3.2.4 Related Gaussian white noise model

The next idealized model is related to (3.1)-(3.2) when 𝑓𝑋 is known:

𝑑𝑍(𝑡) = 𝒦 [𝑓 ] (𝑡, ·2)𝑑𝑡+
1√
𝑛
𝑑𝐺(𝑡), 𝑡 ∈ R, (3.7)

where 𝑓 plays the role of 𝑓𝛼,𝛽 and (𝐺(𝑡))𝑡∈R is a complex two-sided cylindrical Gaus-

sian process on 𝐿2([−1, 1]𝑝) (see Da Prato and Zabczyk (2014)). 𝑍 and𝐺 are function-

valued processes and those functions can take complex values. The partial derivative

in the sense of distributions with respect to time of 𝐺 is the space time white noise

in 𝐿2(R× [−1, 1]𝑝). 𝐺 is the partial derivative in the sense of distributions obtained

by differentiating once with respect to each space variable the Brownian sheet.

By taking the inner product of both sides of (3.7) with 𝑔𝑊,𝑥0𝑡𝑚 for all 𝑚 ∈ N𝑝
0, we

get the system of independent equations

𝑍𝑚(𝑡) =

∫︁ 𝑡

0

𝜎𝑊,𝑥0𝑠𝑚 𝑏𝑚(𝑠)𝑑𝑠+
1√
𝑛
𝐵𝑚(𝑡), 𝑡 ∈ R, (3.8)

where 𝑍𝑚 := ⟨𝑍(⋆), 𝑔𝑊,𝑥0⋆𝑚 ⟩𝐿2([−1,1]𝑝), 𝐵𝑚(𝑡) = 𝐵R
𝑚(𝑡) + 𝑖𝐵I

𝑚(𝑡), and (𝐵R
𝑚(𝑡))𝑡∈R and

(𝐵I
𝑚(𝑡))𝑡∈R are independent two-sided Brownian motions.

It is common in statistics of inverse problems to analyze an idealized Gaussian

white noise model (see, e.g., Hohmann and Holzmann (2015)). This paper sometimes

refer to model (3.8) to develop intuitions. Some of the minimax lower bounds are

proved only in this context for simplicity. Asymptotic equivalence with white noise

models has been proved in some cases such as regression models (see, e.g., Jähnisch

and Nussbaum (2003); Reiß (2008)). These results do not apply in the current random

coefficients model because, among other things, it is an inverse problem. Asymptotic

equivalence results for some inverse problems have been proved (see, e.g., Meister

(2011) for the functional linear regression). Proving such an equivalence in our context
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is out of the scope of this paper.

3.2.5 Interpolation

This paper relies on interpolation when the variance of an initial estimator ̂︀𝑓 0(𝑡) of

𝑓(𝑡) is large when 𝑡 is close to 0 but ‖𝑓 − ̂︀𝑓 0‖2𝐿2(R∖(−𝜖,𝜖)) is small. In (3.8), because

𝜎𝑊,𝑥0𝑡𝑚 is small when |𝑚|𝑞 is large or 𝑡 is small (see Lemma 12), the estimator of

Section 3.4.1 truncates large values of |𝑚|𝑞 and does not rely on small values of |𝑡|
but uses interpolation. Speciőcally, we work with

̂︀𝑓(𝑡) = ̂︀𝑓 0(𝑡)1l{|𝑡| ≥ 𝜖}+ ℐ𝑎,𝜖[ ̂︀𝑓 0](𝑡)1l{|𝑡| < 𝜖},

where, for all 𝑎, 𝜖 > 0, ℐ𝑎,𝜖 is the interpolation operator on 𝐿2(R) with domain 𝑃𝑊 (𝑎),

ℐ𝑎,𝜖 [𝑓 ] :=
∑︁

𝑚∈N0

𝜌
𝑖[−1,1],𝑎𝜖
𝑚

⟨
𝑓, 𝑔

𝑖[−1,1],𝑎𝜖
𝑚 (·/𝜖)

⟩
𝐿2(R∖(−𝜖,𝜖))(︁

1− 𝜌
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝜖

𝑔
𝑖[−1,1],𝑎𝜖
𝑚

(︁ ·
𝜖

)︁
, (3.9)

and, for all 𝑚 ∈ N0 and 𝑐 ̸= 0, 𝜌𝑊,𝑐𝑚 := 2𝜋(𝜎𝑊,𝑐𝑚 )2/ |𝑐|. Then, (3.11) below yields

⃦⃦
⃦𝑓 − ̂︀𝑓

⃦⃦
⃦
2

𝐿2(R)
≤(1 + 2𝐶0(𝑎𝜖))

⃦⃦
⃦𝑓 − ̂︀𝑓 0

⃦⃦
⃦
2

𝐿2(R∖(−𝜖,𝜖))

+ 2(1 + 𝐶0(𝑎𝜖)) ‖𝑓 − 𝒫𝑎[𝑓 ]‖2𝐿2(R) , (3.10)

where 𝐶0 := 4 · /(𝜋(1 − 𝜌
𝑖[−1,1],·
0 )2), which bounds the error made on R by the inter-

polated estimator ̂︀𝑓 by the sum of the error of the initial estimator ̂︀𝑓 0 on R ∖ (−𝜖, 𝜖)
and a term related to the distance of 𝑓 to its projection on 𝑃𝑊 (𝑎).

Proposition 3. For all 𝑎, 𝜖 > 0, ℐ𝑎,𝜖(𝐿2(R)) ⊆ 𝐿2([−𝜖, 𝜖]) and, for all 𝑔 ∈ 𝑃𝑊 (𝑎),

ℐ𝑎,𝜖[𝑔] = 𝑔 in 𝐿2(R), and, for all 𝑓, ℎ ∈ 𝐿2(R),

‖𝑓 − ℐ𝑎,𝜖 [ℎ]‖2𝐿2([−𝜖,𝜖]) ≤2(1 + 𝐶0(𝑎𝜖)) ‖𝑓 − 𝒫𝑎[𝑓 ]‖2𝐿2(R) (3.11)

+ 2𝐶0(𝑎𝜖) ‖𝑓 − ℎ‖2𝐿2(R∖(−𝜖,𝜖)) .
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If 𝑓 ∈ 𝑃𝑊 (𝑎), ℐ𝑎,𝜖[𝑓 ] only relies on 𝑓1l{R ∖ (−𝜖, 𝜖)} and ℐ𝑎,𝜖[𝑓 ] = 𝑓 on R ∖ (−𝜖, 𝜖),
so (3.9) provides an analytic formula to carry interpolation on [−𝜖, 𝜖] of functions in

𝑃𝑊 (𝑎). Else, (3.11) provides an upper bound on the error made by approximating

𝑓 by ℐ𝑎,𝜖 [ℎ] on [−𝜖, 𝜖] when ℎ approximates 𝑓 outside [−𝜖, 𝜖]. When supp (ℱ [𝑓 ]) is

compact, 𝑎 is taken such that supp (ℱ [𝑓 ]) ⊆ [−𝑎, 𝑎]. Else, 𝑎 goes to inőnity so the

second term in (3.10) goes to 0. 𝜖 is taken such that 𝑎𝜖 is constant because, due

to (3.87) in Osipov et al. (2013), lim𝑡→∞𝐶0(𝑡) = ∞ and (3.11) and (3.10) become

useless. We set 𝐶 = 2(1 + 𝐶0(𝑎𝜖)).

3.2.6 Sets of smooth and integrable functions

Deőne, for 𝑞 ∈ {1,∞},

𝑏𝑚(𝑡) :=
⟨︀
ℱ1st [𝑓 ] (𝑡, ·2), 𝜙𝑊,𝑥0𝑡𝑚

⟩︀
𝐿2(𝑊⊗𝑝)

, 𝜃𝑞,𝑘(𝑡) :=

⎛
⎝ ∑︁

𝑚∈N𝑝0: |𝑚|𝑞=𝑘
|𝑏𝑚(𝑡)|2

⎞
⎠

1/2

,

and, for all (𝜑(𝑡))𝑡≥0 and (𝜔𝑚)𝑚∈N0
increasing, 𝜑(0) = 𝜔0 = 1, 𝑙,𝑀 > 0, 𝑡 ∈ R, 𝑚 ∈

N𝑝
0, 𝑘 ∈ N0, ℐ𝑤,𝑊 (𝑀) := {𝑓 : ‖𝑓‖𝐿2(𝑤⊗𝑊⊗𝑝) ≤𝑀}, and

ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙,𝑀) :=

{︃
𝑓 :

∑︁

𝑘∈N0

∫︁

R

𝜑2(|𝑡|)𝜃2𝑞,𝑘(𝑡)𝑑𝑡
⋁︁ ∑︁

𝑘∈N0

𝜔2
𝑘‖𝜃𝑞,𝑘‖2𝐿2(R) ≤ 2𝜋𝑙2

}︃⋂︁
ℐ𝑤,𝑊 (𝑀).

We use the notation ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) when we require ‖𝑓‖𝐿2(𝑤⊗𝑊⊗𝑝) < ∞ rather than

‖𝑓‖𝐿2(𝑤⊗𝑊⊗𝑝) ≤ 𝑀 . The set ℐ𝑤,𝑊 (𝑀) imposes the integrability discussed in the be-

ginning fo the section. The őrst set in the deőnition of ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙,𝑀) deőnes the notion

of smoothness analyzed in this paper. It involves a maximum, thus two inequalities:

the őrst for smoothness in the őrst variable and the second for smoothness in the

other variables. The asymmetry in the treatment of the őrst and remaining variables

is due to the fact that only the random slopes are multiplied by regressors which

have limited variation and we make integrability assumptions in the őrst variable

which are as mild as possible. The smoothness classes in the analysis of the Radon

transform usually involve nonstandard weight functions well suited to the operator.
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In contrast, the ones in this paper are not too hard to interpret. To gain intuition on

the inequalities, note that, by Plancherel and Parseval’s identities,

2𝜋 ‖𝑓‖2𝐿2(1⊗𝑊⊗𝑝) =

∫︁

R

‖ℱ1st [𝑓 ] (𝑡, ·2)‖2𝐿2(𝑊⊗𝑝) 𝑑𝑡

=

∫︁

R

∑︁

𝑚∈N𝑝0

|𝑏𝑚(𝑡)|2 𝑑𝑡 (3.12)

=
∑︁

𝑘∈N0

‖𝜃𝑞,𝑘‖2𝐿2(R).

The multi-index 𝑚 is a type of frequency associated to the space variable 𝑏 and 𝑘

indices a level of all frequencies with same norm of the multi-index. The fact that

𝑚 is discrete is easy to understand when 𝑊 = 𝑖[−𝑅,𝑅] and the function has compact

support in 𝑏. It is similar to Fourier series. The choice of the functions (𝜙𝑊,𝑥0𝑡𝑚 )𝑚∈N𝑝0

is well suited to the decomposition of the operator 𝒦. The frequency 𝑡 is related to

the space variable 𝑎. It is continuous because we make weaker assumptions on the

tails of 𝛼.

The őrst inequality can be written as

∫︁

R

𝜑2(|𝑡|) ‖ℱ1st [𝑓 ] (𝑡, ·2)‖2𝐿2(𝑊⊗𝑝) 𝑑𝑡 ≤ 2𝜋𝑙2.

Thus, when 𝜑 = 1∨|·|𝑠 with 𝑠 > 0, it is the usual Sobolev smoothness in 𝐿2(R;𝐿2(𝑊⊗𝑝)).

The second inequality is obtained by using weighted sums rather than (3.12).

The weights are indexed by a frequency level |𝑚|𝑞. There is no weight function for

𝑡. Hence, it can be viewed as a smoothness assumption in 𝑏 only. It can be written:

there exists a density 𝜑 on R such that

∀𝑡 ∈ R,
∑︁

𝑚∈N𝑝0

𝜔2
|𝑚|𝑞 |𝑏𝑚(𝑡)|2 ≤ 𝜑(𝑡)2𝜋𝑙2. (3.13)

The different choices of sequences (𝜔𝑘)𝑘∈N0 that we shall consider correspond to dif-

ferent source conditions for őxed 𝑡 expressed in terms of the operator 𝒥𝑊,𝑥0𝑡 from
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𝐿2 (𝑊⊗𝑝) to 𝐿2 ([−1, 1]𝑝), for 𝑓 ∈ 𝐿2 (𝑊⊗𝑝), by

𝒥𝑊,𝑥0𝑡[𝑓 ] :=
∑︁

𝑚∈N𝑝0

1

|𝑚|𝑞
⟨︀
𝜙𝑊,𝑥0𝑡𝑚 , 𝑓

⟩︀
𝐿2(𝑊⊗𝑝)

𝑔𝑊,𝑥0𝑡𝑚 .

When 𝑞 = 1, the unbounded operator 𝒥 −1
𝑊,𝑥0𝑡

can be viewed as a differential operator.

When (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0 , with 𝜎 > 0, then, ℱ1st [𝑓 ] (𝑡, ·2) satisőes (3.13) if and only

if it belongs to

{︁
𝑔 ∈ 𝐿2

(︀
𝑊⊗𝑝)︀ : 𝑔 = (𝒥 *

𝑊,𝑥0𝑡
𝒥𝑊,𝑥0𝑡)𝜎𝑣, ‖𝑣‖2𝐿2(𝑊⊗𝑝) ≤ 𝜑(𝑡)2𝜋𝑙2

}︁
. (3.14)

When, for almost every 𝑎, 𝑏 ↦→ 𝑓(𝑎, 𝑏) has compact support, we show in Appendix

3.7.5 that it is possible to relate the smoothness deőned via (3.14) to the Sobolev

smoothness deőned using Fourier series. There, smoothness corresponds to the func-

tion having bounded sum of squared 𝐿2 norm of partial derivatives of degree 𝜎.

When 𝜔 are exponentials, the smoothness deőned using Fourier series implies that

all partial derivatives are square integrable. It corresponds to supersmooth classes

(see, e.g., Cavalier (2000)). As it is common in the literature (see Alquier et al.

(2011b); Carrasco et al. (2007)), due to the different rate of decay of the singular val-

ues of ℱ𝑥0𝑡 in Section 3.2.3, we consider slightly different supersmooth classes when

𝑊 = 𝑖[−𝑅,𝑅] and 𝑊 = cosh(·/𝑅). It is (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘 ln(𝑘+1)

)︀
𝑘∈N0

when 𝑊 = 𝑖[−𝑅,𝑅]

and (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘

)︀
𝑘∈N0

when 𝑊 = cosh(·/𝑅). This case is similar to nonpara-

metric deconvolution where the density of the noise and the density of interest have

Fourier transforms which both decay like 𝑒−𝜅|𝑥|
𝑟

when |𝑥| → ∞ with same 𝑟 ≥ 1

but potentially different 𝜅 > 0 (see, e.g., Lacour (2006); Tsybakov (2000)). When

𝑊 = 𝑖[−𝑅,𝑅], we also consider the case where (𝜔𝑘)𝑘∈N0 = (𝑒𝜅(𝑘 ln(𝑘+1))𝑟)𝑘∈N0 and 𝑟 > 1.

In nonparametric deconvolution, this case corresponds to the case where the Fourier

transforms of the noise and density of interest decay respectively as 𝑒−𝜅1|𝑥|
𝑠
and 𝑒−𝜅|𝑥|

𝑟

for |𝑥| → ∞, where 𝜅1, 𝜅 > 0 and 𝑟 > 𝑠 (see case 3 in Theorem 3.1 in Lacour (2006)).

The two values of 𝑞 (1 or ∞) that we consider matter for the rates of convergence for

supersmooth functions.
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3.2.7 Risk

The risk is the mean integrated squared error (MISE)

ℛ𝑊
𝑛0

(︁
̂︀𝑓𝛼,𝛽, 𝑓𝛼,𝛽

)︁
:= E

[︂⃦⃦
⃦ ̂︀𝑓𝛼,𝛽 − 𝑓𝛼,𝛽

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)

⃒⃒
⃒⃒𝒢𝑛0

]︂
.

It is E[‖ ̂︀𝑓𝛼,𝛽 − 𝑓𝛼,𝛽‖2𝐿2(R𝑝+1)|𝒢𝑛0 ] when 𝑊 = 𝑖[−𝑅,𝑅] and supp( ̂︀𝑓𝛼,𝛽) ⊆ R × [−𝑅,𝑅]𝑝,
else it is

E

[︂⃦⃦
⃦ ̂︀𝑓𝛼,𝛽 − 𝑓𝛼,𝛽

⃦⃦
⃦
2

𝐿2(R𝑝+1)

⃒⃒
⃒⃒𝒢𝑛0

]︂
≤ ‖1/𝑊‖𝑝𝐿∞(R) ℛ𝑊

𝑛0

(︁
̂︀𝑓𝛼,𝛽, 𝑓𝛼,𝛽

)︁
. (3.15)

3.3 Lower bounds

The lower bounds involve a function 𝑟 (for rate) and take the form

∃𝜈 > 0 : lim𝑛→∞ inf
̂︀𝑓𝛼,𝛽

sup
𝑓𝛼,𝛽∈ℋ𝑞,𝜑,𝜔

𝑤,𝑊 (𝑙)∩𝒟

E

[︂⃦⃦
⃦ ̂︀𝑓𝛼,𝛽 − 𝑓𝛼,𝛽

⃦⃦
⃦
2

𝐿2(R𝑝+1)

]︂

𝑟(𝑛)2
≥ 𝜈. (3.16)

When we replace 𝑓𝛼,𝛽 by 𝑓 , ̂︀𝑓𝛼,𝛽 by ̂︀𝑓 , remove 𝒟 from the nonparametric class, and

consider model (3.8), we refer to (3.16’). We use 𝑘𝑞 := 1l{𝑞 = 1} + 𝑝1l{𝑞 = ∞} and

𝑘′𝑞 = 𝑝 + 1 − 𝑘𝑞. We consider polynomial and exponential weights (𝜔𝑘)𝑘∈N0 which

yield respectively the smooth and supersmooth cases described in Section 3.2.6.

Theorem 1. Let 𝑞 ∈ {1,∞}, 𝜑 increasing on [0,∞), 0 < 𝑙, 𝑠, 𝜅 < ∞, and 𝑤 such

that
∫︀∞
1
𝑤(𝑎)/𝑎4 <∞. When 𝑊 = 𝑖[−𝑅,𝑅],

(T1.1a) (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0, 𝜑 is such that lim𝜏→∞
∫︀∞
0
𝜑(𝑡)2𝑒−2𝜏𝑡𝑑𝑡 = 0, 𝑓𝑋 is

known, and ‖𝑓𝑋‖𝐿∞(𝒳 ) < ∞, S𝑋 = 𝒳 , then (3.16) holds with 𝑟(𝑛) =

(ln(𝑛)/ ln2(𝑛))
−(2+𝑘𝑞/2)∨𝜎,

(T1.1b) we consider model (3.8), (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘 ln(𝑘+1)

)︀
𝑘∈N0

, then (3.16’) holds with

𝑟(𝑛) = 𝑛−𝜅/(2𝜅+2𝑘𝑞)/ ln(𝑛).

When 𝑊 = cosh(·/𝑅), we consider model (3.8),
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(T1.2a) (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0, for all 𝜎 > 1/2, then (3.16’) holds with 𝑟(𝑛) = ln (𝑛/ ln(𝑛))−𝜎∨𝜎

(T1.2b) (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘

)︀
𝑘∈N0

, then (3.16’) holds with 𝑟(𝑛) = 𝑛−𝜅/(2𝜅+2𝑘𝑞).

By (3.15), (T1.2a), and (T1.2b), we obtain lower bounds involving ℛ𝑊
𝑛0

. For

smooth functions when (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0 , we obtain logarithmic lower bounds.

This is consistent with the rates obtained in other severely ill-posed inverse problems

with smooth functions of interest (see, e.g., Hohmann and Holzmann (2015); Lacour

(2006); Mair and Ruymgaart (1996)). Note that in (T1.1a) and (T1.2a), 𝑟(𝑛) does

not depend on the dimension 𝑝 (see, e.g., Bissantz et al. (2007)). Recall that, to

match the rate of decay of the singular values, cases (T1.1b) and (T1.2b) consider

supersmooth functions characterized by (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘 ln(𝑘+1)

)︀
𝑘∈N0

when 𝑊 = 𝑖[−𝑅,𝑅]

and by (𝜔𝑘)𝑘∈N0 =
(︀
𝑒𝜅𝑘

)︀
𝑘∈N0

when 𝑊 = cosh(·/𝑅). Such a situation corresponds to

ł2exp-severely ill-posed problems" (see, e.g., Bissantz et al. (2007); Cavalier et al.

(2004); Tsybakov (2000)), where the eigenvalues of the operator decay exponentially

fast to zero and the weights are exponentials of the same form. Importantly, (T1.1b)

and (T1.2b) will be supplemented by matching upper bounds showing that, for suffi-

ciently smooth classes of functions, polynomial rates can be attained, for this severely

ill-posed inverse problem. The lower bound (T1.2b) is, up to the logarithmic term,

the one in in the őrst case of Theorem 3.1 in Lacour (2006) for nonparametric de-

convolution when the density of the noise and the density of interest have Fourier

transforms decaying respectively like 𝑒−𝑘𝑞 |𝑥| and 𝑒−𝜅|𝑥| when |𝑥| → ∞. The links to

classical nonparametric estimation bounds are not direct because the operator is a

composition and sometimes does not have a SVD.

The proof of the lower bounds follow the usual reduction scheme where one ob-

tains a lower bound on the left-hand side of (3.16) (or (3.16’)) by replacing the

supremum by a maximum over two well-chosen densities 𝑓𝛼,𝛽 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙)∩𝒟 (respec-

tively 𝑓 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙)). The standard approach is to choose the latter two as linear

combinations of the singular functions of the operator 𝒦. However, there are two

main complications. First, by Proposition 1, a SVD sometimes does not exist so we

rely on the decomposition of 𝒦 as a composition of two operators. Second, to deal
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with the composition, we make use nonasymptotic (over 𝑚) bounds involving the

SVD of ℱ𝑐 with an explicit dependence on 𝑐. The proof of Theorem 1 thus relies

on results in harmonic analysis that we prove in Appendix 3.7 for the PSWF and in

Gaillac and Gautier (2019a) when 𝑊 = cosh(·/𝑅).

3.4 Estimation

This section uses the additional following simplifying assumption.

Assumption 2. (H2.1 ) We have at our disposal i.i.d (𝑌𝑖,𝑋 𝑖)
𝑛
𝑖=1 and an estimator

̂︀𝑓𝑋|𝒳 based on 𝒢𝑛0 = (𝑋 𝑖)
0
𝑖=−𝑛0+1 independent of (𝑌𝑖,𝑋 𝑖)

𝑛
𝑖=1;

(H2.2 ) ℰ is a set of densities on 𝒳 deőned in (H1.3) such that, for 𝑐𝑋 , 𝐶𝑋 ∈
(0,∞), for all 𝑓 ∈ ℰ , ‖𝑓‖𝐿∞(𝒳 ) ≤ 𝐶𝑋 and ‖1/𝑓‖𝐿∞(𝒳 ) ≤ 𝑐𝑋 , and, for

(𝑣(𝑛0, ℰ))𝑛0∈N ∈ (0, 1)N which tends to 0, we have

1

𝑣(𝑛0, ℰ)
sup

𝑓𝑋|𝒳∈ℰ

⃦⃦
⃦ ̂︀𝑓𝑋|𝒳 − 𝑓𝑋|𝒳

⃦⃦
⃦
2

𝐿∞(𝒳 )
= 𝑂𝑝 (1) .

We assume (H2.1) because the estimator involves estimators of 𝑓𝑋|𝒳 in denom-

inators. Alternative solutions exist when 𝑝 = 1 (see, e.g., Hoderlein et al. (2017);

Holzmann and Meister (2019); Kerkyacharian and Picard (2004)). The availability

of the preliminary sample 𝒢𝑛0 in (H2.1) is not really an assumption but makes it

explicit that the theory below relies on sample splitting. We do this for the simplicity

of the proofs and relaxing it could be done in future work. In practice we do not use

sample splitting in Section 3.5. These simulation results indicate that a practically

oriented researcher does not need to implement sample splitting. By choosing well

𝒳 ⊆ S𝑋 the assumption ‖𝑓𝑋|𝒳‖𝐿∞(𝒳 ) ≤ 𝐶𝑋 and ‖1/𝑓𝑋|𝒳‖𝐿∞(𝒳 ) ≤ 𝑐𝑋 in (H2.2) will

be satisőed. By doing so, ̂︀𝑓𝑋|𝒳 effectively uses a subsample of the preliminary sample

so 𝒳 should not be too small.
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3.4.1 Estimator

Based on the decomposition (3.6), the regularized inverse of 𝒦 is obtained in three

steps. First, for |𝑡| ≤ 𝑇 , we use an approximation of ℱ1st [𝑓𝛼,𝛽] (𝑡, ·) using the reg-

ularized inverse of the truncated Fourier operator ℱ𝑡𝑥0 . It involves spectral cut-off.

Second, because the singular values of ℱ𝑡𝑥0 go to 0 as 𝑡 goes to 0, using the SVD for

estimation is problematic and we would rely on few to none coefficients. Rather, we

rely on the interpolation strategy of Section 3.2.5 for 𝑡 ∈ [−𝜖, 𝜖], where 0 < 𝜖 < 1 < 𝑇 .

Third, we use a regularized inverse of the partial Fourier transform with respect to

the őrst variable to recover 𝑓𝛼,𝛽.

Let us now precise these three steps. For all 𝑞 ∈ {1,∞}, 0 < 𝜖 < 1 < 𝑇 , 𝑁 ∈ RR,

𝑁(𝑡) = ⌊𝑁(𝑡)⌋ for 𝜖 ≤ |𝑡| ≤ 𝑇 , 𝑁(𝑡) = 𝑁(𝜖) for |𝑡| ≤ 𝜖 and 𝑁(𝑡) = 𝑁(𝑇 ) for |𝑡| > 𝑇 ,

a regularized inverse is obtained by:

(S.1) for all 𝑡 ̸= 0, obtain a őrst approximation of 𝐹1(𝑡, ·) := ℱ1st [𝑓𝛼,𝛽] (𝑡, ·)

𝐹 𝑞,𝑁,𝑇,0
1 (𝑡, ·2) := 1l{|𝑡| ≤ 𝑇}

∑︁

|𝑚|𝑞≤𝑁(𝑡)

𝑐𝑚(𝑡)

𝜎𝑊,𝑥0𝑡𝑚

𝜙𝑊,𝑥0𝑡𝑚 , (3.17)

𝑐𝑚(𝑡) :=
⟨︀
ℱ

[︀
𝑓𝑌 |𝑋=𝑥0·

]︀
(𝑡), 𝑔𝑊,𝑥0𝑡𝑚

⟩︀
𝐿2([−1,1]𝑝)

, (3.18)

(S.2) for all 𝑡 ∈ [−𝜖, 𝜖], we use the interpolation

𝐹 𝑞,𝑁,𝑇,𝜖
1 (𝑡, ·) := 𝐹 𝑞,𝑁,𝑇,0

1 (𝑡, ·)1l{|𝑡| ≥ 𝜖}+ ℐ𝑎,𝜖
[︁
𝐹 𝑞,𝑁,𝑇,0
1 (⋆, ·)

]︁
(𝑡)1l{|𝑡| < 𝜖},

(S.3) 𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 (·1, ·2) := ℱ 𝐼
1st

[︁
𝐹 𝑞,𝑁,𝑇,𝜖
1 (⋆, ·2)

]︁
(·1).

Let us comment the choice of the estimator. For the regularized inverse of the

truncated Fourier operator ℱ𝑡𝑥0 in step (S.1), we choose spectral cut-off instead other

regularization methods such as Tikhonov regularization or Landweber iteration (see,

e.g., Section 1.2.2 in Alquier et al. (2011b)). We do this because the SVD is fast to

compute using numerical schemes developed recently (see Section 3.5). Moreover, the

rates of spectral cut-off do not suffer from limitations due to qualiőcation. Step (S.2)
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is the interpolation step. The interpolation is a nonstandard step, but it is essential

to obtain the polynomial rates for supersmooth densities. The regularized inverse

of the partial Fourier transform ℱ1st is performed using the indicator 1l{|𝑡| ≤ 𝑇} in

(S.3), which is a standard regularization device when inverting the Fourier transform

which consists in removing high frequencies (see, e.g., Cavalier (2000); Comte and

Lacour (2011)). We could however use different smoothing kernels.

The regularized inverse depends on 𝑅 deőned in Assumption 1 which should be

known. This is not a smoothing parameter. When the S𝛽 is assumed to be compact

then it is needed that S𝛽 ⊆ [−𝑅,𝑅]𝑝, not S𝛽 = [−𝑅,𝑅]𝑝. The choice of the parameter

𝑎 in the interpolation step (S.2) will be discussed later. The factor 𝑥0|𝑡|𝑝/2 in the

deőnition of 𝒦 in (3.5) is used to show the continuity of 𝒦 in Proposition 1. Because

it also appears on the right-hand side of (3.4), it does not enter the regularized inverse.

To deal with the statistical problem, we replace 𝑐𝑚 by

̂︀𝑐𝑚 :=
1

𝑛

𝑛∑︁

𝑗=1

𝑒𝑖⋆𝑌𝑗

𝑥𝑝0
̂︀𝑓 𝛿
𝑋|𝒳 (𝑋𝑗)

𝑔𝑊,𝑥0⋆𝑚

(︂
𝑋𝑗

𝑥0

)︂
1l {𝑋𝑗 ∈ 𝒳} , (3.19)

where ̂︀𝑓 𝛿𝑋|𝒳 (𝑋𝑗) := ̂︀𝑓𝑋|𝒳 (𝑋𝑗)∨
√︀
𝛿(𝑛0) and 𝛿(𝑛0) is a trimming factor converging to

zero. This yields the estimators ̂︀𝐹 𝑞,𝑁,𝑇,0
1 , ̂︀𝐹 𝑞,𝑁,𝑇,𝜖

1 , and ̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 . Because inverting the

truncated Fourier operator ℱ𝑡𝑥0 is more ill-posed near 0 (see Lemma 12 and Theorem

7 in Gaillac and Gautier (2019a)), ̂︀𝐹 𝑞,𝑁,𝑇,0
1 has a large variance for 𝑡 ∈ [−𝜖, 𝜖]. Hence

we use interpolation (see Section 3.2.5).

We use ( ̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 )+ as a őnal estimator of 𝑓𝛼,𝛽 which has a smaller risk than

̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 (see Gautier and Kitamura (2013); Tsybakov (2008)). We use 𝑛𝑒 = 𝑛 ∧
⌊𝛿(𝑛0)/𝑣(𝑛0, ℰ)⌋ for the sample size required for an ideal estimator where 𝑓𝑋|𝒳 is

known to achieve the rate of the plug-in estimator.
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3.4.2 Upper bounds

The upper bounds below take the form

sup
𝑓𝛼,𝛽∈ℋ𝑞,𝜑,𝜔

𝑤,𝑊 (𝑙,𝑀)∩𝒟, 𝑓𝑋|𝒳∈ℰ

ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁

𝑟(𝑛𝑒)2
= 𝑂𝑝(1). (3.20)

With the restriction 𝑓𝛼,𝛽 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) ∩ 𝒟, we refer to (3.20’).

Choice of the parameters. In this section 𝑁 , hence 𝑁 , is a constant independent

of 𝑡. 𝑁 is a function of 𝑡 only in Section 3.4.3. Denote, for 𝑢 > 0, by 𝐾𝑎(𝑢) :=

𝑎1l{𝑤 ̸= 𝑖[−𝑎,𝑎]} + 𝑢1l{𝑤 = 𝑖[−𝑎,𝑎]}. We use 𝑇 = 𝜑𝐼(𝜔𝑁), 𝑎 = 𝑤𝐼(𝜔2
𝑁) when we do not

know that S𝛼 ⊆ [−𝑎, 𝑎] and cannot take 𝑤 = 𝑖[−𝑎,𝑎], and

1. when 𝑊 = 𝑖[−𝑅,𝑅], 𝑁 is solution to

2𝑘𝑞

(︂
𝑁 +

𝑘′𝑞
2

)︂
ln (𝑁𝐾𝑎(1)) + ln(𝜔2

𝑁) + (𝑝− 1) ln (𝑁) = ln(𝑛𝑒) (3.21)

and 𝜖 = 7𝑒𝜋/(𝑅𝑥0𝐾𝑎(1));

2. when 𝑊 = cosh(·/𝑅), 𝑁 is solution to

2𝑘𝑞

(︂
𝑁 +

𝑘′𝑞
2

)︂
ln (𝐾𝑎(𝑒)) + ln(𝜔2

𝑁) +
𝑝− 1

𝑞
ln(𝑁) = ln(𝑛𝑒) (3.22)

and 𝜖 = 7𝑒2𝜋/(2𝑅𝑥0𝐾𝑎(14𝑒
2)).

(3.21)-(3.22) describe the choices of 𝑁 which realize the bias-variance trade-off.

Under these choices of tuning parameters, theorems 2 and 3 provide the convergence

rates 𝑟(𝑛𝑒) in (3.20) or (3.20’). Results are presented in increasing order of restrictions

on 𝜑, then on (𝜔𝑘)𝑘∈N0 , and on 𝑤.

Theorem 2. Let 𝑊 = 𝑖[−𝑅,𝑅], S𝛽 ⊆ [−𝑅,𝑅]𝑝, 𝑞 ∈ {1,∞}, and 𝑙,𝑀, 𝑠, 𝜎, 𝜅, 𝜇, 𝛾, 𝜈 >

0. Consider 𝜑 = 1 ∨ |·|𝑠,

(T2.1 ) (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0
, and 𝑤 = 1 ∨ |·|𝜇, then (3.20) holds with 𝑟(𝑛𝑒) =

(ln (𝑛𝑒) / ln2 (𝑛𝑒))
−𝜎,
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(T2.2 ) (𝜔𝑘)𝑘∈N0 = (𝑒𝜅𝑘 ln(𝑘+1))𝑘∈N0, with 𝑠 ≥ 𝜅(𝑝+1)/(2𝑘𝑞(𝜈1l{𝑊 ̸= 𝑖[−𝑎,𝑎]}+1)), and

(T2.2a) 𝑤𝐼(𝑒2𝜅|·| ln(|·|+1)) = ·𝜈, then (3.20) holds with 𝑟(𝑛𝑒) = 𝑛
−𝜅/(2𝜅+2(𝜈+1)𝑘𝑞)
𝑒 ln(𝑛𝑒)

Λ(𝜈),

(T2.2b) 𝑎 such that S𝛼 ⊆ [−𝑎, 𝑎], 𝑤 = 𝑖[−𝑎,𝑎], then (3.20’) holds with 𝑟(𝑛𝑒) =

𝑛
−𝜅/(2𝜅+2𝑘𝑞)
𝑒 ln(𝑛𝑒)

Λ(0),

where Λ := ((2 + ·)𝑝− 1)(1− (𝜅(𝑝+ 1)/ (2𝑠 (𝑘𝑞(·+ 1) + 𝜅))) /2.

(T2.3) Consider 𝜑 = 𝑒𝛾|·|, (𝜔𝑘)𝑘∈N0 = (𝑒𝜅(𝑘 ln(𝑘+1))𝑟)𝑘∈N0, 𝑤 such that 𝑤𝐼(𝑒2𝜅(|·| ln(|·|+1))𝑟) =

·𝜈, and 𝑟 > 1, then (3.20) holds with 𝑟(𝑛𝑒) =
√︀
𝜙 (𝑛𝑒) /𝑛𝑒, where

𝜙 := exp

(︃
−

𝑘0∑︁

𝑘=1

(−1)𝑘 𝑑𝑘 ln(·)(1/𝑟−1)𝑘+1

)︃⋁︁
ln(·)𝑝+1+(𝑝−1)/𝑟,

𝑑0 = 2𝜅(1 + (𝑘𝑞(1 + 𝜈) + (2 + 𝜈)𝑝− 1)/(ln(2 + 1/𝑝)(1 + 1/𝑝))𝑟−1), 𝑘0 := ⌊𝑟/(𝑟 − 1)⌋,
and for 𝑘 ∈ {1, . . . , 𝑘0},

𝑑𝑘 :=

(︂
𝑘𝑞(1 + 𝜈)(2𝜅)1−1/𝑟1l{𝑘 ≡ 0(mod 2)}

𝜅(1 + ln(2)/ ln(1 + 1/𝑝))𝑟

)︂𝑘

+

(︃
(𝑘𝑞(1 + 𝜈) + (2 + 𝜈)𝑝− 1)

1l{𝑘 ≡ 1(mod 2)}
𝜅𝑑

1/𝑟−1
0

)︃𝑘

.

Theorem 1 shows the rate in (T2.1) is optimal when 𝑓𝑋 is known and S𝑋 = 𝒳 .

It is the same as in Meister (2007) for deconvolution with a known characteristic

function of the noise on an interval when the signal has compact support. The rates

in Theorem 2 are independent of 𝑝 as common for severely ill-posed problems (see

Chen and Reiss (2011); Gaillac and Gautier (2019a)). The rates in (T2.2) and (T2.3)

are polynomial and nearly parametric even if the problem is severely ill-posed. This

means that we can lose little by going from a possibly misspeciőed parametric model

to a nonparametric one. The rate in (T2.3) is similar to the rate obtained in Lacour

(2006) in the deconvolution problem with supersmooth density of interest and noise

density, when the former is smoother than the later. The next theorem relaxes the

condition S𝛽 is compact.

Theorem 3. Let 𝑊 = cosh(·/𝑅). For all 𝑞 ∈ {1,∞}, 𝑙,𝑀, 𝑠, 𝜎, 𝜅, 𝜇 > 0, 𝜑 = 1∨|·|𝑠,
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(T3.1 ) if (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0
, and 𝑤 = 1 ∨ |·|𝜇, then (3.20) holds with 𝑟(𝑛𝑒) =

(ln (𝑛𝑒) / ln2 (𝑛𝑒))
−𝜎,

(T3.2 ) if (𝜔𝑘)𝑘∈N0 = (𝑒𝜅𝑘)𝑘∈N0, 𝑎 such that S𝛼 ⊆ [−𝑎, 𝑎], and 𝑤 = 𝑖[−𝑎,𝑎], then (3.20’)

holds with 𝑟(𝑛𝑒) = 𝑛
−𝜅/(2𝜅+2𝑘𝑞)
𝑒 ln(𝑛𝑒)

(𝑝−1)𝜅/(2𝑞(𝜅+𝑘𝑞)).

When 1/𝑣(𝑛0, ℰ) ≥ 𝑛 and 𝑝 = 1, the rate in (T3.2) matches the lower bound

(T1.2b) for model (3.8). Again, the results (T2.2), (T2.3), and (T3.2) are related to

those for ł2exp-severely ill-posed problems", and Tsybakov (2000) obtains the same

rates up to logarithmic factor as in (T3.2) when 1/𝑣(𝑛0, ℰ) ≥ 𝑛.

3.4.3 Data-driven estimator

The estimator depends on two parameters and an optimal estimator can be obtained

when they are chosen depending on unknowns such as 𝑠, 𝜎 or 𝜅, etc. To make it

practical, we show that a nearly minimax estimator can be obtained in a data-driven

way by a type of Goldenshluger-Lepski method (see, e.g., Goldenshluger and Lepski

(2008, 2014); Lacour and Massart (2016)).

To gain insight on the data-driven choices ̂︀𝑁 and ̂︀𝑇 of 𝑁 and 𝑇 , let us sketch the

proof when ̂︀𝑓 𝛿𝑋|𝒳 = 𝑓𝑋|𝒳 (hence we simply write ℛ𝑊 ). Consider 𝑊 = 𝑖[−𝑅,𝑅]. Let

𝜖 ∈ (0, 1) and 𝑞 ∈ {1,∞}. We use the following upper bound on the risk: for all

𝑓𝛼,𝛽 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙,𝑀),

ℛ𝑊
(︁
̂︀𝑓 𝑞, ̂︀𝑁, ̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁
≤ 𝐶

2𝜋

∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), ̂︀𝑇

)︁]︁
𝑑𝑡+ 𝐶𝑀2 ̃︀𝑤(𝑎), (3.23)

where ̃︀𝑤 := 1l{𝑤 ̸= 𝑖[−𝑎,𝑎]}/𝑤, and, for all 𝑡 ∈ R, 𝑁 ∈ NR
0 , and 𝑇 ′ ∈ [0,∞),

ℒ𝑊𝑞 (𝑡, 𝑁, 𝑇 ′) :=
⃦⃦
⃦
(︁
ℱ1st [𝑓𝛼,𝛽]− ̂︀𝐹 𝑞,𝑁,𝑇 ′,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
.

This is proved in the appendix using the Plancherel identity and (3.58). The latter is

derived from Proposition 3. It is important that the őrst integral in (3.23) is restricted

to {𝑡 ∈ R : 𝜖 ≤ |𝑡|} by the considerations in Section 3.2.5. The upper bound in (3.23)

109



when ̂︀𝑁 and ̂︀𝑇 are nonrandom is the one we use to obtain theorems 2 and 3. The

aim of the selection rules is to obtain an upper bound on the right-hand side of (3.23)

with a similar quantity but with arbitrary nonrandom ̂︀𝑁 and ̂︀𝑇 .

Let us start with intuitions on the selection rule for ̂︀𝑁 . We deőne a maximum

𝑁𝑊
max,𝑞 for the values that ̂︀𝑁(𝑡) can take. We set, for 𝑁0 ∈ {0, . . . , 𝑁𝑊

max,𝑞},

𝐵1 (𝑡, 𝑁0) := max
𝑁0≤𝑁 ′≤𝑁𝑊

max,𝑞

(︂⃦⃦
⃦ ̂︀𝐹 𝑞,𝑁 ′,∞,0

1 (𝑡, ·)− ̂︀𝐹 𝑞,𝑁0,∞,0
1 (𝑡, ·)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ (𝑡, 𝑁 ′)

)︂

+

,

where Σ(𝑡, 𝑁 ′) is a penalty term, called the łmajorant" (see Goldenshluger and Lep-

ski (2014)), which expression is given in equation (3.26) below. To explain the role

of 𝐵1 (𝑡, 𝑁0) and Σ(𝑡, 𝑁 ′) in the choice of ̂︀𝑁(𝑡), consider |𝑡| ≥ 𝜖 and 𝑁 ′, 𝑁0 ∈
{0, . . . , 𝑁𝑊

max,𝑞}, 𝑁 ′ ≥ 𝑁0. The majorant is chosen to compensate for the ŕuctua-

tion of the squared 𝐿2(𝑊⊗𝑝) norm of the statistic 𝑏 ↦→ ̂︀𝐹 𝑞,𝑁 ′,∞,0
1 (𝑡, 𝑏)− ̂︀𝐹 𝑞,𝑁0,∞,0

1 (𝑡, 𝑏).

The term (︂⃦⃦
⃦ ̂︀𝐹 𝑞,𝑁 ′,∞,0

1 (𝑡, ·)− ̂︀𝐹 𝑞,𝑁0,∞,0
1 (𝑡, ·)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ (𝑡, 𝑁 ′)

)︂

+

is a proxy for ‖𝐹 𝑞,𝑁 ′,∞,0
1 (𝑡, ·) − 𝐹 𝑞,𝑁0,∞,0

1 (𝑡, ·)‖2𝐿2(𝑊⊗𝑝). The maximum of the later is

‖ℱ1st [𝑓𝛼,𝛽] (𝑡, ·) − 𝐹 𝑞,𝑁0,∞,0
1 (𝑡, ·)‖2𝐿2(𝑊⊗𝑝). It is the square norm of the bias due to

the cut-off at 𝑁0. The majorant is an upper bound on the weighted integral of the

variance of ̂︀𝐹 𝑞,𝑁0,∞,0
1 (𝑡, ·). As a result, ̂︀𝑁 is selected as

∀𝑡 ∈ R ∖ (−𝜖, 𝜖), ̂︀𝑁(𝑡) ∈ argmin
0≤𝑁≤𝑁𝑊

max,𝑞

(𝐵1(𝑡, 𝑁) + 𝑐1Σ(𝑡, 𝑁)) , (3.24)

where 𝑐1 = 1 + 1/(2 +
√
5)2.

In the same spirit, deőne a grid for the possible values of ̂︀𝑇 ,

𝒯𝑛 := {2𝑘 : 𝑘 = 1, . . . , 𝐾max},

where 𝐾max := ⌊𝜁0 ln(𝑛)/ ln(2)⌋ and 𝜁0 = 1/(1 + 4𝑝(1 + 1l{𝑊 = cosh(·/𝑅)})). The
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choice of ̂︀𝑇 relies on, for all 𝑇 ∈ R and 𝑁 ∈ NR
0 ,

𝐵2 (𝑇,𝑁) := max
𝑇 ′∈𝒯𝑛,𝑇 ′≥𝑇

(︂⃦⃦
⃦ ̂︀𝐹 𝑞,𝑁,𝑇 ′,0 − ̂︀𝐹 𝑞,𝑁,𝑇,0

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)
− Σ2 (𝑇

′, 𝑁)

)︂

+

,

and on the majorant

Σ2(𝑇,𝑁) :=

∫︁

𝜖≤|𝑡|≤𝑇
Σ(𝑡, 𝑁(𝑡))𝑑𝑡.

Then, ̂︀𝑇 is selected by

̂︀𝑇 ∈ argmin
𝑇∈𝒯𝑛

(︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁
+ Σ2

(︁
𝑇, ̂︀𝑁

)︁)︁
. (3.25)

The expression of the majorant is as follows: for all 𝑁 ∈ NR
0 , 𝑁0 ∈ N0, and 𝑡 ̸= 0,

Σ (𝑡, 𝑁0) := 8(2 +
√
5)(1 + 2𝑝𝑛)

𝑐𝑋
𝑛

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁0), (3.26)

𝜈𝑊𝑞 (𝑡, 𝑁0) := (𝑁0 + 1)𝑘𝑞𝑄𝑊
𝑞 (𝑁0)

(︂
1
⋁︁ 7𝑒𝜋(𝑁0 + 1)

𝑅 |𝑡|

)︂2𝑘𝑞𝑁0+𝑝

,

𝑄𝑊
𝑞 (𝑁0) := 1l{𝑞 = ∞}(2𝑝1l{𝑊 = 𝑖[−𝑅,𝑅]}

+ 1l{𝑊 = cosh(·/𝑅)}) + (𝑁0 + 𝑝− 1)𝑝−11l{𝑞 = 1}
(𝑝− 1)!

,

and 𝑝𝑛 := 3
⋁︀

6(1 + 𝜁0) ln(𝑛). The term 𝜈𝑊𝑞 (𝑡, 𝑁0) is an upper bound on the sum of

the inverse of the square of the singular values up to 𝑁0 (see Lemma 10). We also take

𝑁𝑊
max,𝑞 = ⌊𝑁𝑊

max,𝑞⌋, where 𝑁𝑊
max,𝑞 satisőes 2𝑘𝑞(𝑁

𝑊
max,𝑞 + 𝑘′𝑞/2) ln(7𝑒𝜋𝑁

𝑊
max,𝑞/(𝑅𝑥0𝜖)) =

ln(𝑛).

Let us explain how the deőnition (3.25) of ̂︀𝑇 yields an upper bound on the right-

hand side of (3.23) by a quantity where ̂︀𝑇 can be replaced by an arbitrary 𝑇 . By

arguments in the proof of Lemma 5 for the őrst inequality and (3.25) for the second,
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we have, for all 𝑇 ∈ 𝒯𝑛,

∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), ̂︀𝑇

)︁]︁
𝑑𝑡

≤ 2 +
√
5√

5

∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
𝑑𝑡

+ (2 +
√
5)

(︁
E
[︁
𝐵2

(︁
̂︀𝑇 , ̂︀𝑁

)︁
+ Σ2

(︁
̂︀𝑇 , ̂︀𝑁

)︁]︁
+ E

[︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁
+ Σ2

(︁
𝑇, ̂︀𝑁

)︁]︁)︁

≤ 2 +
√
5√

5

∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
𝑑𝑡+ 2(2 +

√
5)E

[︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁
+ Σ2

(︁
𝑇, ̂︀𝑁

)︁]︁
.

We then rely on an upper bound on E
[︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁]︁
in the second term on the right-

hand side. It involves a term proportional to the őrst one :

E
[︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁]︁
≤

(︂
1 +

2√
5

)︂∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞 (𝑡, ̂︀𝑁(𝑡), 𝑇 )

]︁
𝑑𝑡+𝑂

(︂
1

𝑛

)︂
.

The 𝑂 (1/𝑛) term is independent of 𝑇 and ̂︀𝑁 and is obtained using a Talagrand’s

inequality. Similarly, (3.24) allows to obtain yet another upper bound which replaces

̂︀𝑁 by an arbitrary nonrandom 𝑁 . We conclude because the őnal upper bound (3.95)

has a similar form as the upper bound (3.56) appearing when we deal with nonrandom

̂︀𝑁 and ̂︀𝑇 in theorems 2 and 3.

The upper bounds below take the form

sup
𝑓𝛼,𝛽∈ℋ𝑞,𝜑,𝜔

𝑤,𝑊 (𝑙,𝑀)∩𝒟
𝑓𝑋|𝒳∈ℰ

ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞, ̂︀𝑁,̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁

𝑟(𝑛)2
= 𝑂𝑝

𝑣(𝑛0,ℰ)/𝛿(𝑛0)≤𝑛−2 ln(𝑛)−𝑝

𝑛𝑒≥3

(1), (3.27)

where the above 𝑂𝑝 symbol means that the left-hand side doubly-indexed sequence

of random variables, denoted for simplicity by 𝑋𝑛0,𝑛, is such that, for all 𝜖 > 0, there

exists 𝑀 such that P(|𝑋𝑛0,𝑛| ≥ 𝑀) ≤ 𝜖 for all (𝑛0, 𝑛) ∈ N2
0 satisfying the condi-

tion underneath the 𝑂𝑝 symbol. The results in this section are for 𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤
𝑛−2 ln(𝑛)−𝑝, in which case 𝑛𝑒 = 𝑛. We refer to (3.27’) when we use the restriction

𝑓𝛼,𝛽 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) ∩ 𝒟.

Theorem 4. Let 𝑊 = 𝑖[−𝑅,𝑅], S𝛽 ⊆ [−𝑅,𝑅]𝑝. For all 𝑙,𝑀, 𝑠, 𝜎 > 0, 𝑞 ∈ {1,∞},
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𝜑 = 1 ∨ |·|𝑠, if

(T4.1 ) (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0, 𝑎 = 1/𝜖, 𝑤 = 1 ∨ |·|, and 𝜖 = 7𝑒𝜋/(𝑅𝑥0 ln(𝑛)), then

(3.27) holds with 𝑟(𝑛) = (ln (𝑛) / ln2 (𝑛))
−𝜎;

(T4.2 ) (𝜔𝑘)𝑘∈N0 = (𝑒𝜅𝑘 ln(1+𝑘))𝑘∈N0, 𝑎 such that S𝛼 ⊆ [−𝑎, 𝑎], 𝑤 = 𝑖[−𝑎,𝑎], 𝜖 =

7𝑒𝜋/(𝑅𝑥0), and 𝑠 > (2𝑝 + 1/2) ∨ (𝜅(𝑝 + 1)/(2𝑘𝑞)), then (3.27’) holds with

𝑟(𝑛) = 𝑛−𝜅/(2𝜅+2𝑘𝑞) ln(𝑛)1/2+Λ(0) and Λ deőned in (T2.2).

The rate in (T4.2) matches, up to a logarithmic factor, the lower bound in Theorem

(T1.1b) for model (3.8). (T4.2) relies on S𝛼 ⊆ [−𝑎, 𝑎] because, else, the choice

𝑎 = 𝑤𝐼(𝜔2
𝑁) in Section 3.4.2 depends on the parameters of the smoothness class.

However, it is possible to check that we can obtain the rate in (T2.2a) up to a
√︀

ln(𝑛)

factor when 𝜈 = 1 for a choice of 𝑎 independent of the parameters of the smoothness

class.

When 𝑊 = cosh(·/𝑅), we keep the rules (3.24) and (3.25) for ̂︀𝑁 and ̂︀𝑇 with the

majorant Σ with parameters

𝜈𝑊𝑞 (𝑡, 𝑁0) =2𝑘𝑞
(︂
𝜋2

56

)︂𝑝

𝑄𝑊
𝑞 (𝑁0)

(︂
7𝑒2𝜋

2𝑅|𝑡|

)︂2𝑘𝑞𝑁0+𝑝

1l
{︁
|𝑡| ≤ 𝜋

4𝑅

}︁

+ 2𝑝
(︂
2𝑒𝑅 |𝑡|
𝜋

)︂𝑘𝑞

𝑄𝑊
𝑞 (𝑁0) exp

(︂
𝜋𝑘𝑞(𝑁0 + 𝑘′𝑞)

2𝑅 |𝑡|

)︂
1l
{︁
|𝑡| > 𝜋

4𝑅

}︁
,

𝑁𝑊
max,𝑞 =

ln(𝑛)

2𝑘𝑞
1l

{︂
𝜖 =

𝜋

4𝑅𝑥0

}︂
+

ln(𝑛)

2𝑘𝑞 ln (7𝑒2𝜋/(2𝑅𝑥0𝜖))
1l

{︂
𝜖 <

𝜋

4𝑅𝑥0

}︂
.

Theorem 5. Let 𝑊 = cosh(·/𝑅). For all 𝑙,𝑀, 𝑠, 𝜎 > 0, 𝑞 ∈ {1,∞}, 𝜑 = 1 ∨ |·|𝑠, if

(T5.1 ) (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0, 𝑎 = 1/𝜖, 𝑤 = 1 ∨ |·|, and 𝜖 = 7𝑒2𝜋/(2𝑅𝑥0 ln(𝑛)), then

(3.27) holds with 𝑟(𝑛) = (ln (𝑛) / ln2 (𝑛))
−𝜎;

(T5.2 ) (𝜔𝑘)𝑘∈N0 = (𝑒𝜅𝑘)𝑘∈N0, 𝑎 such that S𝛼 ⊆ [−𝑎, 𝑎], 𝑤 = 𝑖[−𝑎,𝑎], 𝜖 = 𝜋/(4𝑅𝑥0), and

𝑠 > 4𝑝+1/2, then (3.27’) holds with 𝑟(𝑛) = 𝑛−𝜅/(2𝜅+2𝑘𝑞) ln(𝑛)1/2+(𝑝−1)𝜅/(2𝑞(𝜅+𝑘𝑞)).

The risk is different for the lower and upper bounds in theorems 1 and 5. However,

by (3.15), we obtain the same rate up to logarithmic factors for the risk involving the

weight cosh(·/𝑅). Theorem 1 and (T5.2) with 𝑞 = ∞ show that ̂︀𝑓 𝑞, ̂︀𝑁, ̂︀𝑇 ,𝜖𝛼,𝛽 is adaptive.
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3.5 Simulations

Let 𝑝 = 1, 𝑞 = ∞, and (𝛼, 𝛽)⊤ = 𝜉1𝐷 + 𝜉2(1−𝐷) with P(𝐷 = 1) = P(𝐷 = 0) = 0.5.

The law of 𝑋 is a truncated normal based on a normal of mean 0 and variance 2.5 and

truncated to 𝒳 with 𝑥0 = 1.5. The laws of 𝜉1 and 𝜉2 are either: (Case 1) truncated

normals based on normals with means 𝜇1 = ( −2
3 ) and 𝜇2 = ( 3

0 ), same covariance ( 2 1
1 2 ),

and truncated to [−6, 6]𝑝+1 or (Case 2) nontruncated. The estimators in Hoderlein

et al. (2010); Holzmann and Meister (2019) cannot be used in this context. Case (1)

could be treated with Beran and Millar (1994) in this particular case where 𝑝 = 1.

This requires choosing many parameters and Beran and Millar (1994) only provides a

consistency result. Case (2) allows for unbounded errors as in usual linear regression

models (thus is very different from tomography problems) and no other nonparametric

method is available up to our knowledge.

Table 3.1 compares E[‖ ̂︀𝑓∞, ̂︀𝑁,̂︀𝑇 ,𝜖
𝛼,𝛽 − 𝑓𝛼,𝛽‖2𝐿2([−7.5,7.5]2)] and min

𝑇∈𝒯𝑛,𝑁∈𝒩𝑛,𝐻
E[‖ ̂︀𝑓∞,𝑁,𝑇,𝜖

𝛼,𝛽 −
𝑓𝛼,𝛽‖2𝐿2([−7.5,7.5]2)] (risk of the oracle) for cases 1 and 2. The Monte-Carlo experiment

uses 1000 simulations.

𝑊 = 𝑖[−7.5,7.5], Case 1 𝑊 = cosh (·/7.5), Case 2

MISE 𝑛 = 300 𝑛 = 500 𝑛 = 1000 𝑛 = 300 𝑛 = 500 𝑛 = 1000

data-driven 0.092 0.086 0.083 0.089 0.087 0.085

oracle 0.091 0.086 0.082 0.088 0.087 0.085

Table 3.1: Risk

Figure 6-4 (resp. Figure 6-3) displays summaries of the law of the estimator for

𝑊 = 𝑖[−7.5,7.5] (resp. 𝑊 = cosh(·/7.5)) in Case 1 (resp. Case 2) and 𝑛 = 1000. As

standard in the literature (see, e.g., Comte et al. (2013); Dion (2014)), the multi-

plicative constant appearing in Σ is in practice calibrated from a simulation study.

̂︀𝑓𝑋|𝑋∈𝒳 is obtained with the same data to illustrate that sample splitting is unnec-

essary in practice and only used for the mathematical argument. For ̂︀𝑓𝑋|𝑋∈𝒳 we

use a Gaussian kernel density estimator using the R package ks and the multivariate

plug-in bandwidth selector of Wand and Jones (1994). 𝜖 is chosen as in (T4.1) and

(T5.1) respectively for Case 1 and Case 2. The estimator requires the SVD of ℱ𝑐. By
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Proposition 4, we have 𝑔𝑊 (·/𝑅),𝑐
𝑚 = 𝑔𝑊,𝑅𝑐𝑚 for all 𝑚 ∈ N0. When 𝑊 = 𝑖[−1,1], the őrst

coefficients of the decomposition on the Legendre polynomials are obtained by solving

for the eigenvectors of two tridiagonal symmetric Toeplitz matrices (see Section 2.6 in

Osipov et al. (2013)). When 𝑊 = cosh, we refer to Section 7 in Gaillac and Gautier

(2019a). We use the image of 𝑔𝑊,𝑅𝑐𝑚 by the adjoint of ℱ𝑐 (see Appendix 3.6.1) and

that 𝜙𝑊,𝑅𝑐𝑚 has norm 1 to get the rest of the SVD. We obtain the Fourier inverse by

fast Fourier transform. We use a resolution of 213, which appears on simulations to

realise a good trade-off between computational time and precision. For more details

about the implementation, we refer to the vignette Gaillac and Gautier (2019d) of

the package RandomCoefficients.

(a) True density (b) Mean of estimates

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

Figure 3-1: Case 1, 𝑊 = 𝑖[−7.5,7.5]
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(a) True density (b) Mean of estimates

(c) 97.5% quantile of estimates (d) 2.5% quantile of estimates

Figure 3-2: Case 2, 𝑊 = cosh (·/7.5)
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3.6 Proofs of the main results

3.6.1 Notations and preliminaries

R and I denote the real and imaginary parts. For a differentiable function 𝑓 of real

variables, 𝑓 (𝑚) denotes
∏︀𝑑

𝑗=1
𝜕𝑚𝑗

𝜕𝑥
𝑚𝑗
𝑗

𝑓 . 𝐶∞ (︀
R𝑑

)︀
is the space of inőnitely differentiable

functions. Abusing notations, we sometimes use ℱ𝑐[𝑓 ] for the function in 𝐿2(R) and

ℰ𝑥𝑡[𝑓 ] assigns the value 0 outside [−1, 1]𝑑. Denote by Π : 𝐿2(R𝑑) → 𝐿2(R𝑑) such that

Π𝑓(𝑥) = 𝑓(−𝑥) and by

𝒞𝑐 : 𝐿2
(︀
R𝑑

)︀
→ 𝐿2

(︀
R𝑑

)︀

𝑓 → |𝑐|𝑑𝑓(𝑐 ·).
(3.28)

Because ℱ𝑐 = ℱ𝒞1/𝑐 = (1/|𝑐|)𝒞𝑐ℱ , Πℱ𝑐 = ℱ𝑐Π, ℱ*
𝑐 = (1/𝑊 )Πℱ𝑐ℰ𝑥𝑡, and 𝑊 is even,

we obtain ℱ*
𝑐 = Π((1/𝑊 )ℱ𝑐ℰ𝑥𝑡) and

ℱ𝑐ℱ*
𝑐 = Πℱ𝑐

(︂
1

𝑊
ℱ𝑐ℰ𝑥𝑡

)︂

=
2𝜋

|𝑐| ℱ
𝐼

(︂
𝒞1/𝑐

(︂
1

𝑊
𝒞𝑐ℱℰ𝑥𝑡

)︂)︂

= 2𝜋ℱ 𝐼

(︂
𝒞1/𝑐

(︂
1

𝑊

)︂
ℱℰ𝑥𝑡

)︂
.

The operator 𝒬𝑊
𝑐 = (|𝑐| /(2𝜋))ℱ𝑐ℱ*

𝑐 is a compact positive deőnite self-adjoint op-

erator (see Osipov et al. (2013) and Widom (1964) for the two choices of 𝑊 ). Its

eigenvalues in decreasing order repeated according to multiplicity are denoted by
(︀
𝜌𝑊,𝑐𝑚

)︀
𝑚∈N0

and a basis of eigenfunctions by
(︀
𝑔𝑊,𝑐𝑚

)︀
𝑚∈N0

. The other elements of the

SVD are 𝜎𝑊,𝑐𝑚 =
√︁
2𝜋𝜌𝑊,𝑐𝑚 / |𝑐| and 𝜙𝑊,𝑐𝑚 = ℱ*

𝑐 𝑔
𝑊,𝑐
𝑚 /𝜎𝑊,𝑐𝑚 . We denote, for all 𝑚 ∈ N0,

by 𝜓𝑐𝑚 the function 𝑔
𝑖[−1,1],𝑐
𝑚 and 𝜇𝑐𝑚 = 𝑖𝑚𝜎

𝑖[−1,1],𝑐
𝑚 . Because 𝜓𝑐𝑚 = ℱ𝑐(ℰ𝑥𝑡[𝜓𝑐𝑚])/𝜇𝑐𝑚

in 𝐿2([−1, 1]), 𝜓𝑐𝑚 can be extended as an entire function which we denote with the

same notation. Using the injectivity of ℱ𝑐 (see the proof of Proposition 1), we have

𝜙
𝑖[−1,1],𝑐
𝑚 = 𝑖−𝑚ℰ𝑥𝑡[𝜓𝑐𝑚].

117



We make use of

∀𝑎, 𝑏 > 0, sup
𝑡≥1

ln(𝑡)𝑎

𝑡𝑏
=

(︁ 𝑎
𝑒𝑏

)︁𝑎
, (3.29)

∀𝑐 > 0, ∀𝑎, 𝑏 ∈ R, 𝑎𝑏 ≤ 𝑎2

2𝑐
+
𝑏2𝑐

2
. (3.30)

Expectations are conditional on 𝒢𝑛0 when 𝑓𝑋|𝒳 is unknown and we rely on 𝒢𝑛0 to

estimate it. We remove the conditioning in the notations for simplicity.

3.6.2 Proofs of Proposition 1, 2, and 3

Proof of Proposition 1. The őrst assertion comes from the fact that 𝑊 is bounded

from below. The second uses Theorem IX.13 in Reed and Simon (1980) which implies

that, for all 𝑐 ̸= 0, ℱ𝑐 deőned in (3.3) is injective. We now show that 𝒦 is continuous

at 0. Let 𝑓 ∈ 𝐿2 (𝑤 ⊗𝑊⊗𝑝). The change of variables, the Plancherel identity, and

the lower bounds on the weights yield

‖𝒦[𝑓 ]‖2𝐿2(R×[−1,1]𝑝) ≤
∫︁

R𝑝+1

|ℱ [𝑓 ](𝑡,𝑣)|2 (𝑡,𝑣)𝑑𝑡𝑑𝑣 ≤
(︂

2𝜋

𝑊 (0)

)︂𝑝

‖𝑓‖2𝐿2(𝑤⊗𝑊⊗𝑝) .

Let 𝑤 = 1. We exhibit a bounded sequence (𝑓𝑘)𝑘∈N0
in 𝐿2(1⊗𝑊⊗𝑝) for which there

does not exist a convergent subsequence of (𝒦 [𝑓𝑘])𝑘∈N0
. Take 𝑣0 such that supp(𝑣0) ⊂

[1, 2], ‖𝑣0‖𝐿2(R) = 1 and, for all 𝑘 ∈ N0 and (𝑎, 𝑏⊤)⊤ ∈ R𝑝+1, 𝑣𝑘(·) = 2−𝑘/2𝑣0(2−𝑘·)
and 𝑓𝑘(𝑎, 𝑏) = ℱ 𝐼

[︁
𝑣𝑘(·)𝜙𝑊,𝑥0·0

(𝑏)
]︁
(𝑎). (𝑓𝑘)𝑘∈N0

is bounded by the Plancherel identity

and

‖𝑓𝑘‖2𝐿2(1⊗𝑊⊗𝑝) =
1

2𝜋

∫︁

R

𝑣𝑘(𝑡)
2

∫︁

R𝑝

⃒⃒
⃒𝜙𝑊,𝑥0𝑡0

(𝑏)
⃒⃒
⃒
2

𝑊⊗𝑝(𝑏)𝑑𝑡𝑑𝑏 ≤ 1

2𝜋
.

Using 𝒦 [𝑓𝑘] (·, ·2) = 𝜎𝑊,𝑥0·
0

𝑣𝑘(·)𝑔𝑊,𝑥0·0
(·2) |𝑥0·|𝑝/2, 𝑐 ∈ (0,∞) ↦→ 𝜌𝑊,𝑐0 is nondecreasing

(by Lemma 3 in Gaillac and Gautier (2019a) which holds for all 𝑊 satisfying (H1.2)),
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and using, for all 𝑗 ∈ N0, ‖𝑣𝑗‖𝐿2(R) = 1, we obtain, for all (𝑗, 𝑘) ∈ N2
0, 𝑗 < 𝑘,

‖𝒦 [𝑓𝑗]−𝒦 [𝑓𝑘]‖2𝐿2(R×[−1,1]𝑝) ≥ 𝜌𝑊,2
𝑗𝑥0

0
(2𝜋)𝑝

∫︁

R

(︀
𝑣𝑗(𝑡)

2 + 𝑣𝑘(𝑡)
2
)︀
𝑑𝑡

≥ 2(2𝜋)𝑝𝜌𝑊,𝑥0
0

> 0,

so 𝒦 is not compact. �

Proof of Proposition 2. This holds by Theorem 15.16 in Kress (1999) and the

injectivity of ℱ𝑐. �

Proof of Proposition 3. Take 𝑓 ∈ 𝐿2(R) and start by showing that ℐ𝑎,𝜖[𝑓 ] ∈
𝐿2([−𝜖, 𝜖]). The terms 1 − 𝜌

𝑖[−1,1],𝑎𝜖
𝑚 in the denominator of (3.9) are nonzero because(︁

𝜌
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝑚∈N0

is nonincreasing and 𝜌
𝑖[−1,1],𝑎𝜖

0 < 1 (see (3.49) in Osipov et al. (2013)).

Using that
(︁
𝑔
𝑖[−1,1],𝑎𝜖
𝑚 (·/𝜖) /√𝜖

)︁
𝑚∈N0

is a basis of 𝐿2([−𝜖, 𝜖]), that
(︁
𝜌
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝑚∈N0

is nonincreasing, and the Cauchy-Schwarz inequality for the őrst inequality, using
∑︀

𝑚∈N0
𝜌
𝑖[−1,1],𝑎𝜖
𝑚 = 2𝑎𝜖/𝜋 (see (3.55) in Osipov et al. (2013)) and

⃦⃦
⃦𝑔𝑖[−1,1],𝑎𝜖

𝑚

⃦⃦
⃦
2

𝐿2(R)
=

1/𝜌
𝑖[−1,1],𝑎𝜖
𝑚 (see (3) in Bonami and Karoui (2014a)) for the second yield

∑︁

𝑚∈N0

⎛
⎝ 𝜌

𝑖[−1,1],𝑎𝜖
𝑚(︁

1− 𝜌
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝜖

⎞
⎠

2 ⃒⃒
⃒⃒
⟨
𝑓, 𝑔

𝑖[−1,1],𝑎𝜖
𝑚

(︁⋆
𝜖

)︁⟩
𝐿2(R∖[−𝜖,𝜖])

⃒⃒
⃒⃒
2 ⃦⃦
⃦𝑔𝑖[−1,1],𝑎𝜖

𝑚

(︁ ·
𝜖

)︁⃦⃦
⃦
2

𝐿2([−𝜖,𝜖])

≤
‖𝑓‖2𝐿2(R∖[−𝜖,𝜖])(︁
1− 𝜌

𝑖[−1,1],𝑎𝜖

0

)︁2

∑︁

𝑚∈N0

(︁
𝜌
𝑖[−1,1],𝑎𝜖
𝑚

)︁2 ⃦⃦
⃦𝑔𝑖[−1,1],𝑎𝜖

𝑚

⃦⃦
⃦
2

𝐿2(R)
≤

2𝑎𝜖 ‖𝑓‖2𝐿2(R∖[−𝜖,𝜖])

𝜋
(︁
1− 𝜌

𝑖[−1,1],𝑎𝜖

0

)︁2 . (3.31)

Let us now show the second statement. Take 𝜖 > 0 and 𝑔 ∈ 𝑃𝑊 (𝑎). Let (𝛼𝑚)𝑚∈N

be the sequence of coefficients of 𝑔(𝜖·) ∈ 𝑃𝑊 (𝑎𝜖) on the complete orthogonal system(︁
𝑔
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝑚∈N0

. Because
(︁
𝑔
𝑖[−1,1],𝑎𝜖
𝑚

)︁
𝑚∈N0

is a basis of 𝐿2([−1, 1]), we have

∑︁

𝑚∈N0

𝛼𝑚𝑔
𝑖[−1,1],𝑎𝜖
𝑚 = 𝑔(𝜖·)1l{|·| ≥ 1}+

∑︁

𝑚∈N0

𝛼𝑚𝑔
𝑖[−1,1],𝑎𝜖
𝑚 1l{|·| ≤ 1}.

We identify the coefficients by taking the Hermitian product in 𝐿2(R) with 𝑔
𝑖[−1,1],𝑎𝜖
𝑚
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and obtain ℐ𝑎,𝜖[𝑔] = 𝑔 in 𝐿2(R) and, for all 𝑓, ℎ ∈ 𝐿2(R),

‖𝑓 − ℐ𝑎,𝜖 [ℎ]‖2𝐿2([−𝜖,𝜖]) ≤ 2
(︁
‖𝑓 − 𝒫𝑎[𝑓 ]‖2𝐿2([−𝜖,𝜖]) + ‖ℐ𝑎,𝜖 [𝒫𝑎 [𝑓 ]− ℎ]‖2

𝐿2([−𝜖,𝜖])

)︁
. (3.32)

Replacing 𝑓 by 𝒫𝑎 [𝑓 ]− ℎ in (3.31) yields

‖ℐ𝑎,𝜖 [𝒫𝑎 [𝑓 ]− ℎ]‖2
𝐿2([−𝜖,𝜖]) ≤

𝐶0(𝑎𝜖)

2
‖𝒫𝑎 [𝑓 ]− ℎ‖2

𝐿2(R∖[−𝜖,𝜖]) . (3.33)

Using (3.32) and (3.33) for the őrst display, 𝒫𝑎 [𝑓 ] − ℎ = (𝒫𝑎[𝑓 ]− 𝑓) + (𝑓 − ℎ) and

the Jensen inequality for the second display, we obtain

‖𝑓 − ℐ𝑎,𝜖 [ℎ]‖2𝐿2([−𝜖,𝜖])

≤ 2 ‖𝑓 − 𝒫𝑎[𝑓 ]‖2𝐿2([−𝜖,𝜖]) + 𝐶0(𝑎𝜖) ‖𝒫𝑎[𝑓 ]− ℎ‖2
𝐿2(R∖[−𝜖,𝜖])

≤ 2(1 + 𝐶0(𝑎𝜖)) ‖𝑓 − 𝒫𝑎[𝑓 ]‖2𝐿2(R) + 2𝐶0(𝑎𝜖) ‖𝑓 − ℎ‖2𝐿2(R∖[−𝜖,𝜖]) . �

3.6.3 Lower bounds

We denote by P𝑗 the law of density 𝑓𝑗,𝑛 and by P𝑗,𝑛 the law of an iid sample of size

𝑛, and use

inf
̂︀𝑓

sup
𝑓∈ℋ

E

[︂⃦⃦
⃦ ̂︀𝑓 − 𝑓

⃦⃦
⃦
2

𝐿2(R𝑝+1)

]︂
≥ inf

̂︀𝑓
max

𝑓𝑗,𝑛∈ℋ, 𝑗∈{1,2}
E

[︂⃦⃦
⃦ ̂︀𝑓 − 𝑓𝑗,𝑛

⃦⃦
⃦
2

𝐿2(R𝑝+1)

]︂

and the next lemma (see Theorem 2.2, (2.5), and (2.9) in Tsybakov (2008)).

Lemma 1. If there exists 𝜉 <
√
2 such that

(i) ∀𝑗 ∈ {1, 2}, 𝑓𝑗,𝑛 ∈ ℋ,

(ii) ‖𝑓1,𝑛 − 𝑓2,𝑛‖2𝐿2(R𝑝+1) ≥ 4𝑟(𝑛)2 > 0,

(iii) 𝜒2(P2,𝑛,P1,𝑛) ≤ 𝜉2 or 𝐾(P2,𝑛,P1,𝑛) ≤ 𝜉2,

then we have

1

𝑟(𝑛)2
inf
̂︀𝑓

max
𝑓𝑗,𝑛∈ℋ, 𝑗∈{1,2}

E

[︂⃦⃦
⃦ ̂︀𝑓 − 𝑓𝑗,𝑛

⃦⃦
⃦
2

𝐿2(R𝑝+1)

]︂
≥ 1

2

(︃
𝑒−𝜉

2

2

⋁︁(︂
1− 𝜉√

2

)︂)︃
.
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The proofs of the lower bounds consist in deőning 𝑓𝑗,𝑛 ∈ ℋ, for 𝑗 ∈ {1, 2} as

a function of parameters, establishing the conditions on the parameters so that 𝑓𝑗,𝑛

satisfy the three conditions (i)-(iii) of Lemma 1, and őnally choosing the value of

these parameters as a function of 𝑛 to deduce the lower bounds.

Proof of (T1.1a). For 𝑗 = 1, 2, 𝑓𝑗,𝑛 is a possible 𝑓𝛼,𝛽, (𝑏𝑗𝑚)𝑚∈N𝑝0 the sequence of

its coefficients (see Section 3.2.6), Steps 1-3 give conditions under which (i)-(iii) in

Lemma 1 are satisőed when 𝑓1,𝑛 := 𝑓0 and

𝑓2,𝑛 := 𝑓0 + 𝐹, 𝑓0(𝑎, 𝑏) :=
1

𝜋𝜏
(︀
1 + (𝑎/𝜏)2

)︀ 1l{|𝑏|∞ ≤ 𝑅}
(2𝑅)𝑝/2

, (3.34)

for all (𝑎, 𝑏) ∈ R𝑝+1,

𝐹 (𝑎, 𝑏) := 𝛾ℱ 𝐼
1st

[︃(︂
𝑐(|⋆|)
2𝜋

)︂𝑝/2

𝜆(⋆)𝜓
𝑅𝑐(⋆)
̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂]︃
(𝑎)1l{|𝑏|∞ ≤ 𝑅}, (3.35)

for all 𝑈/2 ≤ |𝑡| ≤ 𝑈

𝜆(𝑡) := exp

(︂
1− 1

1− (4 |𝑡| − 3𝑈)2 /𝑈2

)︂
, else 𝜆(𝑡) := 0, (3.36)

̃︁𝑁 (1) :=
(︁
𝑁,𝑁(𝑅𝑥0𝑈)⊤

)︁⊤
, ̃︁𝑁 (∞) := 𝑁 ∈ N𝑝, (3.37)

𝑁(𝑅𝑥0𝑈) := ⌈𝐻(𝑅𝑥0𝑈)⌉, for 𝐻 from Section 3.7.2, 𝑛 large enough, 𝑁 (odd), 𝛾,

𝜏 ≥ 1, and 𝑈 from Step 4 and such that 𝑁 ≥ 𝑁(𝑅𝑥0𝑈), hence 𝑁 ≥ 𝑅𝑥0𝑈 ∨ 2 by the

discussion before Lemma 14. Note ‖𝜆‖𝐿∞(R) ≤ 1.

Step 1.1. We prove that 𝑓1,𝑛 and 𝑓2,𝑛 are nonnegative when

𝛾𝑈𝑁𝑘𝑞/2
((𝑅𝑥0𝑈)/𝜋)

𝑝
2

1 + 𝑝/2

(︂
5

4

)︂ 𝑘𝑞
2
(︂
5

4
𝑁(𝑅𝑥0𝑈)

)︂ 𝑝−1
2𝑞

≤ 1

𝜏 + 1/𝜏
, (3.38)

𝛾𝑈𝑁𝑘𝑞/2
2
𝑝
2

2
𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈)𝑁

2 ≤ 1

𝜏 + 1/𝜏
, (3.39)

where 𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈) is deőned in Lemma 18. Let (𝑎, 𝑏) ∈ R × [−𝑅,𝑅]𝑝. We show

that (3.38) and (3.39) yield 𝑓0(𝑎, 𝑏) ≥ |𝐹 (𝑎, 𝑏)| which ensures that 𝑓2,𝑛 is nonnegative.
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(3.38) yields the result when |𝑎| < 1 because, by the third assertion in Lemma 15,

|𝐹 (𝑎, 𝑏)| ≤ 𝛾

2𝜋

(︁𝑥0
2𝜋

)︁𝑝/2 (︂
𝑁 +

1

2

)︂𝑘𝑞/2

(𝑁(𝑅𝑥0𝑈) + 1/2)(𝑝−1)/(2𝑞)

∫︁

R

|𝑡|𝑝/2 𝜆(𝑡)𝑑𝑡

≤ 𝛾𝑈

𝜋(1 + 𝑝/2)

(︂
𝑈𝑥0
2𝜋

)︂𝑝/2 (︂
5

4
𝑁

)︂𝑘𝑞/2 (︂5

4
𝑁(𝑅𝑥0𝑈)

)︂(𝑝−1)/(2𝑞)

. (3.40)

Because 𝑡 ↦→ 𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)
(𝑏/𝑅) is analytic (see Fuchs (1964) page 320), the function

𝑡 ↦→
(︂
𝑥0 |𝑡|
2𝜋

)︂𝑝/2

𝜆(𝑡)𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂
∈ 𝐶∞(R)

and its derivatives have compact support. By integration by parts, we obtain, for all

𝑎 ̸= 0,

|𝐹 (𝑎, 𝑏)| ≤ 𝛾

𝜋𝑎2𝑅𝑝/2

∫︁ 𝑈

𝑈/2

⃒⃒
⃒⃒
⃒
𝜕2

𝜕𝑡2

(︃(︂
𝑅𝑥0𝑡

2𝜋

)︂𝑝/2

𝜆(𝑡)𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂
1l{|𝑏|∞ ≤ 𝑅}

)︃⃒⃒
⃒⃒
⃒ 𝑑𝑡.

The result when |𝑎| ≥ 1 is obtained by 1 + (𝑎/𝜏)2 ≤ (1 + 1/𝜏 2)𝑎2, so by (3.39),

𝛾𝑈𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈)𝑁
2+𝑘𝑞/2/(2𝑎2) ≤ 1/

(︀
2𝑝/2𝜏(1 + (𝑎/𝜏)2)

)︀
, and by Lemma 18, for all

(𝑎, 𝑏) ∈ R𝑝+1 such that |𝑎| ≥ 1,

|𝐹 (𝑎, 𝑏)| ≤ 𝛾𝑈𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈)

2𝜋𝑎2𝑅𝑝/2
𝑁2+𝑘𝑞/21l{|𝑏|∞ ≤ 𝑅}. (3.41)

𝑓1,𝑛 = 𝑓0 has integral 1 and so has 𝑓2,𝑛 by Fubini’s theorem and that 𝜓𝑐𝑁 is odd when

𝑁 is odd.

Step 1.2. We give conditions for 𝑓1,𝑛, 𝑓2,𝑛 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙). By (3.34)-(3.35), and because,

by Step 1.1, for all (𝑎, 𝑏) ∈ R𝑝+1, 𝑓2,𝑛(𝑎, 𝑏)2 ≤ 4𝑓1,𝑛(𝑎, 𝑏)
2, 𝑓1,𝑛 and 𝑓2,𝑛 belong to

𝐿2
(︁
𝑤 ⊗ 𝑖⊗𝑝[−𝑅,𝑅]

)︁
. Let us show that 𝑓2,𝑛, hence 𝑓1,𝑛 (𝑓2,𝑛 with 𝛾 = 0), satisfy the őrst

condition in ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) if

2

(︂∫︁ ∞

0

𝜑(𝑡)2𝑒−2𝜏𝑡𝑑𝑡+ 𝛾2
(︂
𝑅𝑥0𝑈

2𝜋

)︂𝑝
𝜑(𝑈)2𝑈

𝑝+ 1

)︂
≤ 𝜋2 (3.42)

𝐶12(𝜎, 𝑝)

𝜏𝑝2𝜎/𝑞
+ 𝛾2

2𝑈𝑝2𝜎/𝑞𝑁2𝜎

𝑝+ 1

(︂
𝑅𝑥0𝑈

2𝜋

)︂𝑝

≤ 𝜋2. (3.43)
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Let 𝑚 ∈ N𝑝
0 and 𝑐𝑃𝑚(𝑡) :=

⟨︀
1/2𝑝/2, 𝜓𝑅𝑥0𝑡𝑚

⟩︀
𝐿2([−1,1]𝑝)

. By Proposition 4 (iii), change of

variables, and for all 𝑡 ∈ R, ℱ1st [𝑓0(·, ⋆)] (𝑡) = 𝑒−|𝑡|𝜏1l{|⋆|∞ ≤ 𝑅}/(2𝑅)𝑝/2, we have

𝑏2𝑚(𝑡) =
1

𝑖|𝑚|1

(︃
𝑒−𝜏 |𝑡|𝑐𝑃𝑚(𝑡) + 𝛾1l{𝑚 = ̃︁𝑁 (𝑞)}

(︂
𝑅𝑥0 |𝑡|
2𝜋

)︂𝑝/2

𝜆(𝑡)

)︃
. (3.44)

Because
(︀
𝜓𝑅𝑥0𝑡𝑚

)︀
𝑚∈N𝑝0

is an orthonormal basis, we have

∀𝑡 ̸= 0,
∑︁

𝑚∈N𝑝0

⃒⃒
𝑏2𝑚(𝑡)

⃒⃒2 ≤ 2

(︂
𝑒−2𝜏 |𝑡| + 𝛾2

(︂
𝑅𝑥0 |𝑡|
2𝜋

)︂𝑝

𝜆(𝑡)2
)︂
. (3.45)

The őrst part of the őrst condition in ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) holds by (3.42) and because, by (3.45),

∑︁

𝑚∈N𝑝0

∫︁

R

𝜑(𝑡)2
⃒⃒
𝑏2𝑚(𝑡)

⃒⃒2
𝑑𝑡 ≤ 4

(︂∫︁ ∞

0

𝜑(𝑡)2

𝑒2𝜏𝑡
𝑑𝑡+ 𝛾2

(︂
𝑅𝑥0
2𝜋

)︂𝑝 ∫︁ 𝑈

𝑈/2

𝜑(𝑡)2𝑡𝑝𝜆2(𝑡)𝑑𝑡

)︂
.

The second part of the őrst condition holds by (3.43) and because, by (3.44) and

Lemma 19, for all 𝜏 ≥
(︀
3𝑒1/2𝑅𝑥0/8

)︀
∨ (1/2) and 𝑁 ≥ 𝑁(𝑅𝑥0𝑈),

∑︁

𝑚∈N𝑝0

|𝑚|2𝜎𝑞
∫︁

R

⃒⃒
𝑏2𝑚(𝑡)

⃒⃒2
𝑑𝑡 ≤ 2

∫︁

R

𝑒−2𝜏 |𝑡|
∑︁

𝑚∈N𝑝0

|𝑚|2𝜎𝑞
(︀
𝑐𝑃𝑚(𝑡)

)︀2
𝑑𝑡

+ 2𝛾2
(︂
𝑅𝑥0
2𝜋

)︂𝑝 ⃒⃒
⃒̃︁𝑁 (𝑞)

⃒⃒
⃒
2𝜎

𝑞

∫︁

R

𝜆2(𝑡) |𝑡|𝑝 𝑑𝑡

≤ 2

(︂
𝐶12(𝜎, 𝑝)

𝜏𝑝2𝜎/𝑞
+ 𝛾2

2𝑈𝑝2𝜎/𝑞𝑁2𝜎

𝑝+ 1

(︂
𝑅𝑥0𝑈

2𝜋

)︂𝑝)︂
.

Step 2. (ii) holds with 4𝑟(𝑛)2 = 𝛾2 (𝑅𝑥0/(2𝜋))
𝑝 ∫︀ 𝑈

𝑈/2
𝑡𝑝𝜆(𝑡)2𝑑𝑡/𝜋.

Step 3. (ii) page 97 in Tsybakov (2008) yields 𝜒2(P2,𝑛,P1,𝑛) = (1 + 𝜒2 (P2,P1))
𝑛 − 1

so

𝜒2(P2,𝑛,P1,𝑛) = 𝑛

∫︁ 𝜒2(P2,P1)

0

(1 + 𝑢)𝑛−1𝑑𝑢 ≤ 𝑛𝜒2 (P2,P1) exp ((𝑛− 1)𝜒2 (P2,P1)) .
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Thus, if 𝜒2 (P2,P1) ≤ 1/𝑛, we obtain 𝜒2(P2,𝑛,P1,𝑛) ≤ 𝑒𝑛𝜒2 (P2,P1). We have

𝜒2 (P2,P1) =

∫︁

S𝑋

∫︁

R

𝑓𝑋(𝑥)
(︁
𝑓 1
𝑌 |𝑋(𝑦|𝑥)− 𝑓 2

𝑌 |𝑋(𝑦|𝑥)
)︁2

𝑓 1
𝑌 |𝑋(𝑦|𝑥) 𝑑𝑥𝑑𝑦

and, for all (𝑦,𝑥) ∈ R× S𝑋 such that 𝑥1 ̸= 0,

𝑓 1
𝑌 |𝑋(𝑦|𝑥) = 1

𝜋𝜏(2𝑅)𝑝/2 |𝑥1|

∫︁

R𝑝

∏︀𝑝
𝑘=1 1l{|𝑢𝑘| ≤ |𝑥𝑘|𝑅}

((𝑦 −∑︀𝑝
𝑘=1 𝑢𝑘) /𝜏)

2
+ 1

𝑑𝑢

≥ (2𝑅)𝑝/2

𝜋𝜏
inf

|𝑢|≤|𝑥|1𝑅

1

((𝑦 − 𝑢)/𝜏)2 + 1
.

This yields, using S𝑋 = [−𝑥0, 𝑥0]𝑝 and Parseval’s identity,

𝜒2 (P2,P1)

≤ 𝜋𝜏𝐶𝑋

(2𝑅)𝑝/2

∫︁

[−𝑥0,𝑥0]𝑝

∫︁

R

(︂
2𝑦2

𝜏 2
+

2(|𝑥|1𝑅)2
𝜏 2

+ 1

)︂(︀
𝑓 1
𝑌 |𝑋(𝑦|𝑥)− 𝑓 2

𝑌 |𝑋(𝑦|𝑥)
)︀2
𝑑𝑥𝑑𝑦

=
𝐶𝑋𝑥

𝑝
0𝛾

2

𝜏(2𝑅)𝑝/2

∫︁

[−1,1]𝑝

∫︁

R

|𝜕𝑡ℱ [𝐹 ] (𝑡, 𝑥0𝑡𝑥)|2 +
(︂
(𝑥0𝑝𝑅)

2 +
𝜏 2

2

)︂
|ℱ [𝐹 ] (𝑡, 𝑥0𝑡𝑥)|2 𝑑𝑥𝑑𝑡.

Lemmas 20 and 12 yield 𝜒2 (P2,P1) ≤ 𝐶18(𝑈, 𝑥0, 𝑅, 𝜏)𝛾
2𝑁2 (𝑒𝑅𝑥0𝑈/(4𝑁))2𝑘𝑞𝑁 ,

𝐶18(𝑈, 𝑥0, 𝑅, 𝜏) :=
𝐶𝑋

𝜏

(︂
𝑅3/2𝑥0𝑈𝑒

3

9
√
2

)︂𝑝

𝐶17(𝑅𝑥0𝑈, 𝑝, 𝑈)

(︂
𝑒𝑅𝑥0𝑈

4𝑁(𝑅𝑥0𝑈)

)︂ 2(𝑝−1)𝑁(𝑅𝑥0𝑈)
𝑞

+
𝐶𝑋

𝜏

(︂
𝑅3/2𝑥0𝑈𝑒

3

9
√
2

)︂𝑝

𝑈
2(𝑥0𝑝𝑅)

2 + 𝜏 2

2𝑁(𝑅𝑥0𝑈)2

(︂
𝑒𝑅𝑥0𝑈

4𝑁(𝑅𝑥0𝑈)

)︂ 2(𝑝−1)𝑁(𝑅𝑥0𝑈)
𝑞

.

As a result, (iii) is satisőed if

𝑛𝛾2𝑁2 exp

(︂
−2𝑘𝑞𝑁 ln

(︂
4𝑁

𝑒𝑅𝑥0𝑈

)︂)︂
≤ 𝜉2

𝑒𝐶18(𝑈, 𝑥0, 𝑅, 𝜏)
. (3.46)

Step 4. We take 𝑈 = 4/(𝑒𝑅𝑥0), 𝑁 = 2 ⌈𝑁⌉+1 for 𝑁 going to inőnity with 𝑛, and 𝜏

such that
∫︀∞
0
𝜑(𝑡)2𝑒−2𝜏𝑡𝑑𝑡

⋁︀
𝐶12(𝜎, 𝑝)/(2𝜏𝑝

2𝜎/𝑞) ≤ 𝜋𝑙2/4. Thus 𝑁(𝑅𝑥0𝑈) is universal

and 𝑁 ≥ 𝑁(𝑅𝑥0𝑈) and 𝑁 ≤ (9/2)𝑁 for 𝑛 large enough. (3.38), (3.42)-(3.43) (by the
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pigeonhole principle), and (3.46) hold for 𝑛 large enough if

𝛾𝑁2+𝑘𝑞/2 ≤ 1

(𝜏 + 1/𝜏) (9/2)1+(𝑝+𝑘𝑞)/2𝐶8(4/𝑒, 𝑝, 𝑈)𝑈
, (3.47)

𝛾𝑁𝜎 ≤ 𝑙

2𝑝𝜎/𝑞(9/2)2𝜎

√︂
𝜋(𝑝+ 1)

𝑈

(︁𝑒𝜋
2

)︁𝑝/2
, (3.48)

𝛾 ≤ 𝑙

𝜑(𝑈)

√︂
𝜋(𝑝+ 1)

𝑈

(︁𝑒𝜋
2

)︁𝑝/2
, (3.49)

𝑛𝛾2𝑁2 exp (−4𝑘𝑞𝑁 ln (𝑁)) ≤ 𝜉2

(9/2)2𝑒𝐶18(𝑈, 𝑥0, 𝑅, 𝜏)
, (3.50)

and 𝛾 goes to 0 with 𝑛. Taking 𝛾 = 𝐶𝛾𝑁
−(2+𝑘𝑞/2)∨𝜎/

(︁
(𝐶8(4/𝑒, 𝑝, 𝑈)𝑈) ∧

√
𝑈
)︁

for a

small enough 𝐶𝛾 depending on 𝑙, 𝜑, 𝜎, 𝑝, and 𝑞, (3.47)-(3.48) hold because 𝑅𝑥0, hence

𝑈 is őxed. Then, with 𝑁 = 3 ln(𝑛)/ (8𝑘𝑞 ln2(𝑛)), (3.50) becomes, for 𝑛 large enough,

𝐶2
𝛾√
𝑛
exp

(︂
3 ln(𝑛) ln(8𝑘𝑞 ln2(𝑛)/3)

4 ln2(𝑛)
−

(︂(︂
2 +

𝑘𝑞
2

)︂
∨ 𝜎 − 1

)︂
ln

(︂
3 ln(𝑛)

8𝑘𝑞 ln2(𝑛)

)︂)︂

≤ 𝜉2 (𝐶8(4/𝑒, 𝑝, 𝑈)𝑈)
2 ∧ 𝑈

8𝑒𝐶18(𝑈, 𝑥0, 𝑅, 𝜏)
.

Moreover, we have 𝑟(𝑛)2 = 𝑁−2((2+𝑘𝑞/2)∨𝜎)𝐶2
𝛾 (𝑅𝑥0/(2𝜋))

𝑝 ∫︀ 𝑈
𝑈/2

𝑡𝑝𝜆(𝑡)2𝑑𝑡/(4𝜋).�

All other steps 2 are the same as for (T1.1a).

Proof of (T1.2a). Denote by 𝐸 := 𝐿2(R) × 𝐿2(R). Equip 𝐸 with ⟨𝑔,ℎ⟩2𝐸 =

⟨𝑔1,ℎ1⟩2𝐿2(R)+⟨𝑔2,ℎ2⟩2𝐿2(R). Denote by P𝑚
𝑗,𝑛 the law of

(︀
(R (𝑍𝑗

𝑚(𝑡))) 𝑡∈R , (I (𝑍
𝑗
𝑚(𝑡))) 𝑡∈R

)︀

in 𝐸 and by P𝑗,𝑛 the law on ℓ2 (𝐸) of the sequence indexed by 𝑚 ∈ N𝑝
0. The latter

can be deőned as a function of 𝑓𝑗,𝑛 or (𝑏𝑗𝑚(𝑡))𝑚∈N𝑝0, 𝑡∈R, for 𝑗 = 1, 2. Take 𝑓1,𝑛 := 0

and 𝑓2,𝑛 like (3.34) with ̃︁𝑁 (1) := (𝑁,0⊤)⊤ ∈ N𝑝
0. (3.44) yields, for all 𝑚 ∈ N𝑝

0,

𝑏2𝑚(𝑡) = 𝑖−|𝑚|1𝛾1l{𝑚 = ̃︁𝑁 (𝑞)} (𝑅𝑥0 |𝑡| /2𝜋)𝑝/2 𝜆(𝑡). By independence, we have, for

𝑗 = 1, 2, P𝑗,𝑛 =
⨂︀

𝑚∈N𝑝0 P
𝑚
𝑗,𝑛.

Step 1. Using (3.40) and (3.41), we have 𝑓2,𝑛 ∈ 𝐿2
(︀
𝑤 ⊗ cosh (·/𝑅)⊗𝑝

)︀
and 𝑓2,𝑛 ∈
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ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) if

(︂
𝑅𝑥0𝑈

2𝜋

)︂𝑝
2𝑈𝛾2

𝑝+ 1
(𝜑(𝑈) ∨𝑁𝜎)2 ≤ 𝜋2. (3.51)

Step 3. Let 𝜉 <
√
2, 𝐺𝑊

̃︁𝑁(𝑞)
=

(︁
R

(︁
𝜎𝑊,𝑥0·̃︁𝑁(𝑞)

𝑏2̃︁𝑁(𝑞)
(·)

)︁
, I

(︁
𝜎𝑊,𝑥0·̃︁𝑁(𝑞)

𝑏2̃︁𝑁(𝑞)
(·)

)︁)︁⊤
, 𝒬 the

covariance operator of P
̃︁𝑁(𝑞)
1,𝑛 on 𝐸, and, for all ℎ ∈ 𝐸,

ℒ[ℎ] := (𝜎/
√
𝑛)

(︂∫︁ ·

0

ℎ1(𝑠)𝑑𝑠,

∫︁ ·

0

ℎ2(𝑠)𝑑𝑠

)︂⊤
.

The reproducing kernel Hilbert space 𝐻
P
̃︁𝑁(𝑞)
1,𝑛

of P
̃︁𝑁(𝑞)
1,𝑛 on 𝐸 is the image of 𝒬1/2

with the scalar product of the image structure. By Corollary B.3 in Da Prato and

Zabczyk (2014) and 𝒬 = ℒℒ*, it is the image of ℒ with the norm ‖𝑓‖2
P
̃︁𝑁(𝑞)
1,𝑛

=

(𝑛/𝜎2)
(︀
‖ℎ1‖22 + ‖ℎ2‖22

)︀
for 𝑓 = ℒ[ℎ] and derived scalar product. By (2.12) in

Da Prato and Zabczyk (2014), the scalar product is also deőned when one func-

tion belongs to 𝐻
P
̃︁𝑁(𝑞)
1,𝑛

for P
̃︁𝑁(𝑞)
1,𝑛 𝑎.𝑒. other function in 𝐸. By the Cameron-Martin

formula (Proposition 2.26 in Da Prato and Zabczyk (2014)),

dP
̃︁𝑁(𝑞)
2,𝑛

dP
̃︁𝑁(𝑞)
1,𝑛

(𝑦) = exp

(︃⟨
𝑦,

√
𝑛

𝜎
ℒ
[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⟩

P
̃︁𝑁(𝑞)
1,𝑛

− 1

2

⃒⃒
⃒⃒
√
𝑛

𝜎
ℒ
[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⃒⃒
⃒⃒
2

P
̃︁𝑁(𝑞)
1,𝑛

)︃
P
̃︁𝑁(𝑞)
1,𝑛 𝑎.𝑠.,

and, because 𝐾(P2,𝑛,P1,𝑛) =
∫︀
𝐸
ln

(︁
dP

̃︁𝑁(𝑞)
2,𝑛 /dP

̃︁𝑁(𝑞)
1,𝑛 (𝑦)

)︁
𝑑P

̃︁𝑁(𝑞)
2,𝑛 (𝑦), we have

𝐾(P2,𝑛,P1,𝑛) = E

[︃⟨
𝑍2

̃︁𝑁(𝑞)
,

√
𝑛

𝜎
ℒ
[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⟩

P
̃︁𝑁(𝑞)
1,𝑛

]︃
− 𝑛

2𝜎2

∫︁

R

⃒⃒
⃒𝜎𝑊,𝑥0𝑠̃︁𝑁(𝑞)

𝑏2̃︁𝑁(𝑞)
(𝑠)

⃒⃒
⃒
2

𝑑𝑠.

Because

⟨
𝑍2

̃︁𝑁(𝑞)
,

√
𝑛

𝜎
ℒ
[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⟩

P
̃︁𝑁(𝑞)
1,𝑛

=

⃒⃒
⃒⃒
√
𝑛

𝜎
ℒ
[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⃒⃒
⃒⃒
2

P
̃︁𝑁(𝑞)
1,𝑛

+

⟨⎛
⎝ 𝐵R

̃︁𝑁(𝑞)

𝐵I
̃︁𝑁(𝑞)

⎞
⎠ ,ℒ

[︁
𝐺𝑊

̃︁𝑁(𝑞)

]︁⟩

P
̃︁𝑁(𝑞)
1,𝑛

,

and the second term in the right-hand side is a limit in quadratic mean of mean

zero Gaussian random variables, hence has mean zero (see the arguments page 41 in
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Da Prato and Zabczyk (2014)), we have

𝐾(P2,𝑛,P1,𝑛) =
𝑛

2𝜎2

∫︁

R

⃒⃒
⃒𝜎𝑊,𝑥0𝑡̃︁𝑁(𝑞)

𝑏2̃︁𝑁(𝑞)
(𝑡)

⃒⃒
⃒
2

𝑑𝑡. (3.52)

By Proposition 4 (ii), we have

𝐾(P2,𝑛,P1,𝑛) = 𝛾2𝑛𝑅𝑝

∫︁

R

(︁
𝜎cosh,𝑅𝑥0𝑡
̃︁𝑁(𝑞)

)︁2

(𝑅𝑥0 |𝑡| /(2𝜋))𝑝 𝜆(𝑡)2𝑑𝑡/(2𝜎2)

= 𝛾2𝑛𝑅𝑝

∫︁

R

𝜌cosh,𝑅𝑥0𝑡̃︁𝑁(𝑞)
𝜆(𝑡)2𝑑𝑡/(2𝜎2)

and, by Theorem 7 in Gaillac and Gautier (2019a) (there is difference of normalisation

for 𝒬𝑡 by a factor 1/(2𝜋)), for all 𝑈/2 ≤ |𝑡| ≤ 𝑈 and 𝑅𝑥0𝑈 < 1, 𝜌cosh,𝑅𝑥0𝑡̃︁𝑁(𝑞)
≤

(𝑅𝑥0𝑈𝑒/ (𝜋(1− (𝑅𝑥0𝑈)
2)))

𝑝
exp (2𝑘𝑞𝑁 ln (𝑅𝑥0𝑈)) . Thus Lemma 1 (iii) holds if

𝑛𝛾2 exp

(︂
−2𝑘𝑞𝑁 ln

(︂
1

𝑅𝑥0𝑈

)︂)︂
≤ 𝜉2

(︂
𝜋(1− (𝑅𝑥0𝑈)

2)

𝑅2𝑥0𝑈𝑒

)︂𝑝
2𝜎2

𝑈
. (3.53)

Step 4. Let 𝑈 = 1/(𝑒𝑅𝑥0), 𝑁 = ⌈𝑁⌉, 𝛾 = 𝐶𝛾𝜉𝜎
√
2𝑒𝑅𝑥0 (𝜋 (1− 𝑒−2) /𝑅)

𝑝/2
/𝑁𝜎∨𝜎

for 𝜎 > 1/2 and 𝐶𝛾 = 𝑙 (2𝑒𝑅/ (1− 𝑒−2))
𝑝/2 √︀

(𝑝+ 1)𝑒𝜋𝑅𝑥0/
(︀
2𝜎+1𝜉𝜎

√
2𝑒𝑅𝑥0

)︀
, and

𝑁 = ln(𝑛/ ln(𝑛))/(2𝑘𝑞). (3.53) holds if

𝑛𝐶2
𝛾 exp (−2𝑘𝑞𝑁 − 2 (𝜎 ∨ 𝜎) ln (𝑁)) = 𝐶2

𝛾(2𝑘𝑞)
2(𝜎∨𝜎) ln(𝑛)1−2(𝜎∨𝜎) ln2(𝑛)

2(𝜎∨𝜎)

≤ 1

so (3.51) and (3.53) hold for 𝑛 large enough. �

Proof of (T1.1b). Step 1. By the proof of (T.1a), 𝑓2,𝑛 ∈ 𝐿2
(︁
𝑤 ⊗ 𝑖⊗𝑝[−𝑅,𝑅]

)︁
and

𝑓2,𝑛 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙) if

(︂
𝑅𝑥0𝑈

2𝜋

)︂𝑝
2𝑈𝛾2

𝑝+ 1

(︁
𝜑(𝑈)

⋁︁
exp (𝜅𝑁 ln (𝑁 + 1))

)︁2

≤ 𝜋𝑙2. (3.54)

Step 3. Let 𝜉 <
√
2 and 8/(𝑒𝑅𝑥0𝑈) ≥ 1. By Lemma 12, we have, for all 𝑈/2 ≤ |𝑡| ≤

𝑈 ,
(︁
𝜎
𝑖[−1,1],𝑅𝑥0𝑡

̃︁𝑁(𝑞)

)︁2

≤ (2𝜋𝑒3/9)
𝑝
exp (−2𝑘𝑞𝑁 ln (4(𝑁 + 3/2)/(𝑒𝑅𝑥0𝑈))) and, by (3.52)
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and Proposition 4 (ii), Lemma 1 (iii) holds if

𝑛𝛾2 exp

(︂
−2𝑘𝑞𝑁 ln

(︂
4(𝑁 + 3/2)

𝑒𝑅𝑥0𝑈

)︂)︂
≤ (𝑝+ 1)𝜉2𝜎2

𝑈

(︂
9

𝑅2𝑈𝑥0𝑒3

)︂𝑝

. (3.55)

Step 4. Let 𝑈 = 4/(𝑒𝑅𝑥0), 𝛾 = ̃︀𝐶𝛾 exp (−𝜅𝑁 ln (𝑁 + 1)), ̃︀𝐶𝛾 = 𝑙(𝜋𝑒/2)𝑝/2
√︀
(𝑝+ 1)𝑒𝜋𝑅𝑥0/8,

𝑁 = ⌈𝑁⌉, 2(𝜅 + 𝑘𝑞)𝑁 ln (𝑁 + 1) = ln
(︀
𝐶2
𝛾𝑛

)︀
, 𝐶𝛾 = 𝑙(2𝜋𝑅𝑒3/9)𝑝/2

√︀
𝜋/2/(𝜉𝜎). Un-

der such a choice, (3.54) and (3.55) hold for 𝑛 large enough. Moreover, we have 𝑟(𝑛) =

𝐶𝑟 exp (−𝜅𝑁 ln (𝑁 + 1)), where 𝐶𝑟 = ̃︀𝐶𝛾 (𝑅𝑥0/(2𝜋))𝑝/2
√︁∫︀ 𝑈

𝑈/2
|𝑡|𝑝 𝜆(𝑡)2𝑑𝑡/(4𝜋), 𝑁 ln (𝑁) ≤

𝑁 ln(𝑁 + 1) ≤ (𝑁 + 1) ln (𝑁 + 2)

𝑁 ln(𝑁 + 1) ≤ 𝑁 ln (𝑁 + 1) + ln (𝑁 + 1) + 1 + 𝑜(1)

= ln
(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁
+ (1 + 𝑜(1)) ln2

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁
,

indeed, using iteratively the deőnition of 𝑁 , ln (𝑁 + 1) = ln (𝑁) + (1 + 𝑜(1))/𝑁 so

ln (𝑁 + 1) = ln (𝑁)
(︁
1 + (1 + 𝑜(1))/ ln

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁)︁

and

ln (𝑁) = ln2

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁
− ln2 (𝑁 + 1)

= ln2

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁
− ln2 (𝑁) + (1 + 𝑜(1))/ ln

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁

= ln2

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁
− (1 + 𝑜(1)) ln3

(︁(︀
𝐶2
𝛾𝑛

)︀1/(2𝜅+2𝑘𝑞)
)︁

so 1/ ln
(︁(︀
𝐶2
𝛾𝑛

)︀(1+𝑜(1))𝜅/(2𝜅+2𝑘𝑞)
)︁
≤ 𝑟(𝑛)

(︀
𝐶2
𝛾𝑛

)︀𝜅/(2𝜅+2𝑘𝑞)
/𝐶𝑟 ≤ 1.

Proof of (T.1.2b). Let 𝑈 = 2/(𝑒𝑅𝑥0), 𝛾 = ̃︀𝐶𝛾 exp (−𝜅𝑁), ̃︀𝐶𝛾 = 𝑙(𝜋𝑒)𝑝/2
√︀
(𝑝+ 1)𝑒𝜋𝑅𝑥0/2,

𝑁 = ⌈𝑁⌉, 𝑁 = ln(𝑛)/(2𝜅 + 2𝑘𝑞), 𝐶𝛾 = 𝑙 (4𝜋𝑒/ (𝜋 (1− 𝑒−2)))
𝑝/2 √︀

𝜋/2/(𝜉𝜎). Under

such a choice, 4 (𝑅𝑥0𝑈/(2𝜋))
𝑝 (2𝑈𝛾2/(𝑝 + 1)) (𝜑(𝑈)

⋁︀
exp (𝜅𝑁))2 ≤ 𝜋𝑙2 and (3.53)

hold for 𝑛 large enough, hence steps 1 and 3. By Step 2, we have 𝑟(𝑛) = 𝐶𝑟 exp (−𝜅𝑁) ≥
𝐶𝑟 exp (−𝜅𝑁) /𝑒. �

3.6.4 Upper bounds

We use, for all 𝜖 > 0, 𝑁 ∈ NR
0 , 𝑁0 ∈ N0, 𝑇 > 0, ̃︀𝐹 𝑞,𝑁,𝑇,0

1 and ̃︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 which are

deőned like ̂︀𝐹 𝑞,𝑁,𝑇,0
1 and ̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 replacing ̂︀𝑐𝑚 by ̃︀𝑐𝑚 and ̂︀𝐹 𝑞,𝑁,𝑇,0

1 by ̃︀𝐹 𝑞,𝑁,𝑇,0
1 , ̃︀𝑐𝑚 :=
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∑︀𝑛
𝑗=1 𝑒

𝑖⋆𝑌𝑗𝑔𝑊,𝑥0⋆𝑚 (𝑋𝑗/𝑥0) 1l{𝑋𝑗 ∈ 𝒳}/(𝑛𝑥𝑝0𝑓𝑋|𝒳 (𝑋𝑗)), 𝑍𝑛0 := sup𝑓𝑋|𝒳∈ℰ
⃦⃦
∆𝑓𝑓𝑋|𝒳

⃦⃦2

𝐿∞(𝒳 )
,

∆𝑓 := 1/ ̂︀𝑓 𝛿𝑋|𝒳−1/𝑓𝑋|𝒳 , 𝐿 := (2𝜋)𝑝 ‖ℱ1st [𝑓𝛼,𝛽] (⋆, ·2)‖2𝐿2(R𝑝), ̃︀𝜔
𝑞,𝑊,𝑐
𝑁(⋆) := sup|𝑚|𝑞≤𝑁(⋆) 1/𝜌

𝑊,𝑐
𝑚 ,

∆𝑚 :=
∑︀𝑛

𝑗=1 𝑍
𝑚,⋆
𝑗 /𝑛, 𝑍𝑚,⋆

𝑗 := 𝑒𝑖⋆𝑌𝑗∆𝑓 (𝑋𝑗)𝑔
𝑊,𝑥0⋆
𝑚 (𝑋𝑗/𝑥0)1l{𝑋𝑗 ∈ 𝒳}/𝑥𝑝0,

𝑆𝑁0 (⋆, ·2) :=
∑︀

|𝑚|𝑞≤𝑁(⋆) 𝑔
𝑊,𝑥0⋆
𝑚 (·2)∆𝑚(⋆), 𝑆𝑁1 (⋆, ·2) :=

∑︀
|𝑚|𝑞≤𝑁(⋆) 𝑔

𝑊,𝑥0⋆
𝑚 (·2)E [∆𝑚(⋆)],

𝑆𝑁2 (⋆, ·2) :=
∑︀

|𝑚|𝑞≤𝑁(⋆) 𝑔
𝑊,𝑥0⋆
𝑚 (·2) (∆𝑚(⋆)− E [∆𝑚(⋆)]),

𝐾1 :=
⃦⃦
⃦1l {𝜖 ≤ |⋆|}

(︁
̂︀𝐹 𝑞,𝑁,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(⋆, ·2)

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)
,

𝐾2 :=
⃦⃦
⃦1l {|⋆| < 𝜖}

(︁
ℐ𝑎,𝜖

[︁
̂︀𝐹 𝑞,𝑁,𝑇,0
1

]︁
−ℱ1st [𝑓𝛼,𝛽]

)︁
(⋆, ·2)

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)

𝑅1(⋆, ·2) :=1l{𝜖 ≤ | ⋆ |}
(︁
̃︀𝐹 𝑞,𝑁,𝑇,0
1 − 𝐹 𝑞,𝑁,𝑇,0

1

)︁
(⋆, ·2),

𝑅2(⋆, ·2) :=1l{𝜖 ≤ | ⋆ |}
(︁
̂︀𝐹 𝑞,𝑁,𝑇,0
1 − ̃︀𝐹 𝑞,𝑁,𝑇,0

1

)︁
(⋆, ·2),

𝑅3(⋆, ·2) :=1l{𝜖 ≤ | ⋆ |}
(︁
𝐹 𝑞,𝑁,𝑇,0
1 − 𝐹 𝑞,∞,𝑇,0

1

)︁
(⋆, ·2),

𝑅4(⋆, ·2) :=1l{𝜖 ≤ | ⋆ |}
(︁
𝐹 𝑞,∞,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(⋆, ·2),

ℛ𝑊
𝑛0,sup

:= sup
𝑓𝛼,𝛽∈ℋ𝑞,𝜑,𝜔

𝑤,𝑊 (𝑙,𝑀)∩𝒟, 𝑓𝑋|𝒳∈ℰ
ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁
,

∆𝑊
0 (⋆,𝑁0, 𝑛, 𝑧) :=

2

𝜋(2𝜋)𝑝
𝑐𝑋 | ⋆ |𝑝
𝑛

𝜈𝑊𝑞 (𝑥0⋆,𝑁0)

+
2𝑧

𝜋(2𝜋)𝑝

(︂
𝐿(⋆) +

𝑐𝑋(𝑁0 + 1)𝑝 |⋆|𝑝
𝑛

)︂
̃︀𝜔𝑞,𝑊,𝑥0⋆𝑁0

.

Lemma 2. For all 𝑚 ∈ N𝑝
0, we have E [̃︀𝑐𝑚(𝑡)] = 𝑐𝑚(𝑡) and E

[︀
|̃︀𝑐𝑚(𝑡)− 𝑐𝑚(𝑡)|2

]︀
≤

𝑐𝑋/(𝑛𝑥
𝑝
0).
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Proof. This comes from

E [̃︀𝑐𝑚(𝑡)] =
1

𝑥𝑝0
E

[︂
𝑒𝑖𝑡𝑌

𝑓𝑋|𝒳 (𝑋)
𝑔𝑊,𝑥0𝑡𝑚

(︂
𝑋

𝑥0

)︂
1l{𝑋 ∈ 𝒳}

]︂

=
1

𝑥𝑝0

∫︁

𝒳
E
[︁
𝑒𝑖𝑡𝛼+𝑖𝑡𝛽

⊤𝑥
]︁
𝑔𝑊,𝑥0𝑡𝑚

(︂
𝑥

𝑥0

)︂
𝑑𝑥,

E
[︀
|̃︀𝑐𝑚(𝑡)− 𝑐𝑚(𝑡)|2

]︀
≤ 1

𝑛𝑥2𝑝0
E

[︃⃒⃒
⃒⃒ 𝑒𝑖𝑡𝑌

𝑓𝑋|𝒳 (𝑋)
𝑔𝑊,𝑥0𝑡𝑚

(︂
𝑋

𝑥0

)︂⃒⃒
⃒⃒
2
⃒⃒
⃒⃒
⃒𝑋 ∈ 𝒳

]︃

≤ 1

𝑛𝑥2𝑝0

∫︁

𝒳

1

𝑓𝑋|𝒳 (𝑥)

⃒⃒
⃒⃒𝑔𝑊,𝑥0𝑡𝑚

(︂
𝑥

𝑥0

)︂⃒⃒
⃒⃒
2

𝑑𝑥

≤ 𝑐𝑋
𝑛𝑥𝑝0

∫︁

[−1,1]𝑝

⃒⃒
⃒𝑔𝑊,𝑥0𝑡𝑚 (𝑢)

⃒⃒
⃒
2

𝑑𝑢. �

Lemma 3. If ̂︀𝑓𝑋|𝒳 satisőes (H1.2) then 𝑍𝑛0 = 𝑂𝑝 (𝑣(𝑛0, ℰ)/𝛿(𝑛0)).

Proof. For all 𝑛0 large enough so that
√︀
𝛿(𝑛0)𝑐𝑋 ≤ 1 and 𝑥 ∈ 𝒳 , we have

⃒⃒
⃒
(︁
̂︀𝑓 𝛿𝑋|𝒳 − 𝑓𝑋|𝒳

)︁
(𝑥)

⃒⃒
⃒ ≤

⃒⃒
⃒
(︁
̂︀𝑓𝑋|𝒳 − 𝑓𝑋|𝒳

)︁
(𝑥)

⃒⃒
⃒ 1l

{︁
̂︀𝑓𝑋|𝒳 (𝑥) ≥

√︀
𝛿(𝑛0)

}︁

+
⃒⃒
⃒
√︀
𝛿(𝑛0)− 𝑓𝑋|𝒳 (𝑥)

⃒⃒
⃒ 1l

{︁
̂︀𝑓𝑋|𝒳 (𝑥) <

√︀
𝛿(𝑛0)

}︁

≤
⃒⃒
⃒
(︁
̂︀𝑓𝑋|𝒳 − 𝑓𝑋|𝒳

)︁
(𝑥)

⃒⃒
⃒ (using

√︀
𝛿(𝑛0)𝑐𝑋 ≤ 1)

and 𝛿(𝑛0)𝑍𝑛0 ≤ sup𝑓𝑋|𝒳∈ℰ

⃦⃦
⃦ ̂︀𝑓𝑋|𝒳 − 𝑓𝑋|𝒳

⃦⃦
⃦
2

𝐿∞(𝒳 )
. We conclude by (H1.2). �

In the remaining, ℰ is a class of densities, 𝑓𝑋|𝒳 ∈ ℰ , 𝜂, 𝑙,𝑀 > 0, and 𝑓𝛼,𝛽 ∈
ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙,𝑀)∩𝒟. By Lemma 3, there exists𝑀ℰ,𝜂 such that, for all 𝑛0 ∈ N, P (𝐸 (𝒢𝑛0 , ℰ , 𝜂)) ≥

1− 𝜂, where 𝐸 (𝒢𝑛0 , ℰ , 𝜂) := {𝑍𝑛0 ≤𝑀ℰ,𝜂𝑣(𝑛0, ℰ)/𝛿(𝑛0)}. We work on 𝐸 (𝒢𝑛0 , ℰ , 𝜂).

Proof of theorems 2 and 3. The proof consists in three parts.

In Part 1 we show, for 𝑊 = 𝑖[−𝑅,𝑅] and 𝑊 = cosh(·/𝑅),

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃∫︁

𝜖≤|𝑡|≤𝑇
∆𝑊

0 (𝑡, 𝑁, 𝑛, 𝑍𝑛0)𝑑𝑡+4𝑙2

(︃
sup
𝑡∈R

1

𝜔2
𝑁(𝑡)+1

+
1

𝜑(𝑇 )2

)︃)︃
+𝐶𝑀2 ̃︀𝑤(𝑎).

(3.56)

In Part 2 we take 𝑊 = 𝑖[−𝑅,𝑅] and, particularising (3.56) to the different smoothness

cases, obtain (T2.1), (T2.2a), (T2.2b), and (T2.3) in Theorem 2. In Part 3 we proceed
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similarly for the weight 𝑊 = cosh(·/𝑅) and prove (T3.1) and (T3.2) in Theorem 3.

We use 𝜃 := 7𝑒𝜋/(𝑅𝑥0), 𝜃0 := 𝜋/(4𝑅𝑥0), 𝜃1 := 7𝑒2𝜋/(2𝑅𝑥0),

𝑄𝑞 := 2𝑘𝑞 ((𝑝/2)𝑝/(𝑝!𝑞) + 1l{𝑞 = ∞}) ,

for all 𝑘, 𝑙 ≥ 0, 𝑁 ≥ 1, 𝑓𝛼,𝛽 ∈ ℋ𝑞,𝜑,𝜔
𝑤,𝑊 (𝑙,𝑀),

(𝑁 + 𝑙)𝑘 ≤ ((𝑙 + 1)𝑁)𝑘,

∫︁

𝜖≤|𝑡|≤𝑇
𝐿(𝑡)𝑑𝑡 ≤ (2𝜋)𝑝+1𝑙2. (3.57)

Part 1. The Plancherel and Chasles identities yield
⃦⃦
⃦ ̂︀𝑓 𝑞,𝑁,𝑇,𝜖𝛼,𝛽 − 𝑓𝛼,𝛽

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)
≤

(𝐾1 +𝐾2)/(2𝜋). By the Jensen inequality, we have 𝐾1 ≤ 4
∑︀4

𝑗=1 ‖𝑅𝑗‖2𝐿2(1⊗𝑊⊗𝑝) and,

using (3.11) for the őrst display and Lemma 9 for the second,

𝐾1 +𝐾2

≤ 𝐾1 +

∫︁

R𝑝
2(1 + 𝐶0(𝑎𝜖)) ‖ℱ1st [𝑓𝛼,𝛽] (⋆, 𝑏)− 𝒫𝑎 [ℱ1st [𝑓𝛼,𝛽] (·, 𝑏)] (⋆)‖2𝐿2(R)𝑊

⊗𝑝(𝑏)𝑑𝑏

+

∫︁

R𝑝
2𝐶0(𝑎𝜖)

⃦⃦
⃦1l {|⋆| ≥ 𝜖}

(︁
̂︀𝐹 𝑞,𝑁,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(⋆, 𝑏)

⃦⃦
⃦
2

𝐿2(R)
𝑊⊗𝑝(𝑏)𝑑𝑏

≤ 𝐾1 + 4𝜋(1 + 𝐶0(𝑎𝜖)) ̃︀𝑤(𝑎)
∫︁

R𝑝
‖𝑓𝛼,𝛽(·, 𝑏)‖2𝐿2(𝑤)𝑊

⊗𝑝(𝑏)𝑑𝑏+ 2𝐶0(𝑎𝜖)𝐾1

≤ (1 + 2𝐶0(𝑎𝜖))𝐾1 + 4𝜋(1 + 𝐶0(𝑎𝜖))𝑀
2 ̃︀𝑤(𝑎) ≤ 𝐶

(︀
𝐾1 + 2𝜋𝑀2 ̃︀𝑤(𝑎)

)︀
. (3.58)

Using successively Proposition 2 and lemmas 2 and 10, we have

E
[︁
‖𝑅1‖2𝐿2(1⊗𝑊⊗𝑝)

]︁
=

∫︁

𝜖≤|𝑡|≤𝑇

∑︁

|𝑚|𝑞≤𝑁(𝑡)

E
[︀
|̃︀𝑐𝑚(𝑡)− 𝑐𝑚(𝑡)|2

]︀
(︁
𝜎𝑊,𝑥0𝑡𝑚

)︁2 𝑑𝑡

≤ 𝑐𝑋
(2𝜋)𝑝𝑛

∫︁

𝜖≤|𝑡|≤𝑇
|𝑡|𝑝 𝜈𝑊𝑞 (𝑥0𝑡, 𝑁(𝑡))𝑑𝑡, (3.59)

also

‖𝑅2‖2𝐿2(1⊗𝑊⊗𝑝) ≤
∫︁

𝜖≤|𝑡|≤𝑇

(︂
𝑥0|𝑡|
2𝜋

)︂𝑝

̃︀𝜔𝑞,𝑊,𝑥0𝑡𝑁(𝑡)

⃦⃦
𝑆𝑁0 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)
𝑑𝑡,

E
[︁⃦⃦
𝑆𝑁0 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)

]︁
=

⃦⃦
𝑆𝑁1 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)
+ E

[︁⃦⃦
𝑆𝑁2 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)

]︁
,
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⃦⃦
𝑆𝑁1 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)

=

⃦⃦
⃦⃦
⃦⃦

∑︁

|𝑚|𝑞≤𝑁(𝑡)

𝑔𝑊,𝑥0𝑡𝑚

⟨︀
ℱ

[︀
𝑓𝑌 |𝑋=𝑥0·2

]︀
(𝑡)

(︀
∆𝑓𝑓𝑋|𝒳

)︀
(𝑥0·2) , 𝑔𝑊,𝑥0𝑡𝑚

⟩︀
𝐿2([−1,1]𝑝)

⃦⃦
⃦⃦
⃦⃦

2

𝐿2([−1,1]𝑝)

≤
⃦⃦
ℱ

[︀
𝑓𝑌 |𝑋=𝑥0·2

]︀
(𝑡)

(︀
∆𝑓𝑓𝑋|𝒳

)︀
(𝑥0·2)

⃦⃦2

𝐿2([−1,1]𝑝)

≤ 𝑍𝑛0 ‖ℱ [𝑓𝛼,𝛽] (𝑡, 𝑥0𝑡·2)‖2𝐿2([−1,1]𝑝) ≤ 𝑍𝑛0

(︂
2𝜋

𝑥0|𝑡|

)︂𝑝

‖ℱ1st [𝑓𝛼,𝛽] (𝑡, ·2)‖2𝐿2(R𝑝) , (3.60)

and, by independence and
∑︀

|𝑚|𝑞≤𝑁 1 =
(︀
𝑁+𝑝
𝑝

)︀
1l{𝑞 = 1} + (𝑁 + 1)𝑝1l{𝑞 = ∞} ≤

(𝑁 + 1)𝑝,

E
[︁⃦⃦
𝑆𝑁2 (𝑡, ·2)

⃦⃦2

𝐿2([−1,1]𝑝)

]︁
=

∑︁

|𝑚|𝑞≤𝑁(𝑡)

1

𝑛
E
[︁⃒⃒
𝑍𝑚,𝑡
𝑗 − E

[︀
𝑍𝑚,𝑡
𝑗

]︀⃒⃒2]︁

≤
∑︁

|𝑚|𝑞≤𝑁(𝑡)

𝑍𝑛0

𝑛𝑥2𝑝0

∫︁

𝒳

1

𝑓𝑋|𝒳 (𝑥)

⃒⃒
⃒⃒𝑔𝑊,𝑥0𝑡𝑚

(︂
𝑥

𝑥0

)︂⃒⃒
⃒⃒
2

𝑑𝑥

≤(𝑁(𝑡) + 1)𝑝𝑐𝑋𝑍𝑛0

𝑛𝑥𝑝0
. (3.61)

Collecting (3.60) and (3.61), we obtain

E
[︁
‖𝑅2‖2𝐿2(1⊗𝑊⊗𝑝)

]︁
≤ 𝑍𝑛0

(2𝜋)𝑝

∫︁

𝜖≤|𝑡|≤𝑇

(︂
𝐿(𝑡) +

𝑐𝑋(𝑁(𝑡) + 1)𝑝 |𝑡|𝑝
𝑛

)︂
̃︀𝜔𝑞,𝑊,𝑥0𝑡𝑁(𝑡) 𝑑𝑡. (3.62)

By Lemma 11 and Proposition 2, we have

‖𝑅3‖2𝐿2(1⊗𝑊⊗𝑝) ≤
∫︁

R

∑︁

𝑘>𝑁(𝑡)

∑︁

|𝑚|𝑞=𝑘
|𝑏𝑚(𝑡)|2 𝑑𝑡 ≤

∫︁

R

∑︁

𝑘>𝑁(𝑡)

𝜔2
𝑘𝜃

2
𝑞,𝑘(𝑡)

𝜔2
𝑁(𝑡)+1

𝑑𝑡

≤ sup
𝑡∈R

2𝜋𝑙2

𝜔2
𝑁(𝑡)+1

(3.63)

and, by Proposition 2,

‖𝑅4‖2𝐿2(1⊗𝑊⊗𝑝) ≤
∑︁

𝑘∈N0

∫︁

|𝑡|≥𝑇

∑︁

|𝑚|𝑞=𝑘
|𝑏𝑚(𝑡)|2 𝑑𝑡 ≤

∑︁

𝑘∈N0

∫︁

R

𝜑2(|𝑡|)
𝜑2(𝑇 )

𝜃2𝑞,𝑘(𝑡)𝑑𝑡

≤ 2𝜋𝑙2

𝜑2(𝑇 )
. (3.64)
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Thus we have (3.56).

Part 2. We consider now all smoothness cases when 𝑞 ∈ {1,∞}. Let 𝑡 ̸= 0 and

𝑧 > 0. (3.105) and 𝑘𝑞𝑘′𝑞 = 𝑝 yields

̃︀𝜔𝑞,𝑊,𝑥0𝑡𝑁 ≤ 2𝑝
(︂
1
⋁︁ 𝜃(𝑁 + 1)

|𝑡|

)︂2𝑘𝑞𝑁+𝑝

. (3.65)

This yields, for all 𝑁 ≥ 1, ∆
𝑖[−𝑅,𝑅]

0 (𝑡, 𝑁, 𝑛, 𝑧) ≤ ∆𝑖[−𝑅,𝑅](𝑡, 𝑁, 𝑛, 𝑧), where

∆𝑖[−𝑅,𝑅](⋆,𝑁, 𝑛, 𝑧)

:=

(︂
1
⋁︁ 𝜃(𝑁 + 1)

|⋆|

)︂2𝑘𝑞𝑁+𝑝
2

𝜋𝑝+1

(︂
𝑄𝑞𝑐𝑋𝑁

𝑝 |⋆|𝑝
𝑛

+ 𝑧

(︂
𝐿(𝑡) +

𝑐𝑋(𝑁 + 1)𝑝 |⋆|𝑝
𝑛

)︂)︂
.

Let 𝑛𝑒 be large enough to ensure 𝑁 ≥ 1 ≥ 1/𝑘𝑞. Using 𝑁 ≤ 𝑁 , 𝜖 ≤ 𝜃 ≤ 𝜃(𝑁 + 1),

∫︁ 𝑇

𝜖

(︂
1
⋁︁ 𝜃(𝑁 + 1)

𝑡

)︂2𝑘𝑞𝑁+𝑝

𝑡𝑝𝑑𝑡 =(𝜃(𝑁 + 1))2𝑘𝑞𝑁+𝑝

∫︁ 𝜃(𝑁+1)

𝜖

𝑡−2𝑘𝑞𝑁𝑑𝑡

+ 1l{𝜃(𝑁 + 1) ≤ 𝑇}
∫︁ 𝑇

𝜃(𝑁+1)

𝑡𝑝𝑑𝑡

≤ 𝜖𝑝+1

2𝑘𝑞𝑁 − 1

(︂
𝜃(𝑁 + 1)

𝜖

)︂2𝑘𝑞𝑁+𝑝

+
𝑇 𝑝+1

𝑝+ 1
, (3.66)

∫︁

𝜖≤|𝑡|≤𝑇

(︂
1
⋁︁ 𝜃(𝑁 + 1)

|𝑡|

)︂2𝑘𝑞𝑁+𝑝

𝐿(𝑡)𝑑𝑡 ≤ (2𝜋)𝑝+1𝑙2
(︂
𝜃(𝑁 + 1)

𝜖

)︂2𝑘𝑞𝑁+𝑝

(by (3.57)),

(3.67)
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𝑛𝑒/𝑛 ≤ 1, and 𝑛𝑒𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤ 1, we have

∫︁

𝜖≤|𝑡|≤𝑇
∆𝑖[−𝑅,𝑅](𝑡, 𝑁, 𝑛, 𝑍𝑛0)𝑑𝑡

≤ 4𝑐𝑋𝑁
𝑝

𝜋𝑝+1𝑛𝑒

(︃
𝜖𝑝+1

𝑘𝑞𝑁

(︂
𝜃(𝑁 + 1)

𝜖

)︂2𝑘𝑞𝑁+𝑝

+
𝑇 𝑝+1

𝑝+ 1

)︃(︂
𝑄𝑞 +

𝑀ℰ,𝜂2𝑝

𝑛

)︂

+
𝑀ℰ,𝜂2𝑝+2𝑙2

𝑛𝑒

(︂
𝜃(𝑁 + 1)

𝜖

)︂2𝑘𝑞𝑁+𝑝

≤ 𝜏0𝑁
𝑝−1

𝑒2𝑘𝑞2𝑝𝑛𝑒

(︂
𝜃(𝑁 + 1)

𝜖

)︂2𝑘𝑞𝑁+𝑝

+
𝜏1𝑁

𝑝−1𝑇 𝑝+1

𝑛𝑒
,

𝜏0 :=
𝑒2𝑘𝑞2𝑝+2𝑐𝑋𝜃

𝑝+1

𝜋𝑝+1𝑘𝑞

(︀
𝑄𝑞 + 𝑒2𝑀ℰ,𝜂2

𝑝
)︀
+𝑀ℰ,𝜂2

𝑝+2𝑙2, 𝜏1 :=
4𝑐𝑋

𝜋𝑝+1(𝑝+ 1)
(𝑄𝑞 +𝑀ℰ,𝜂2

𝑝) .

(3.56), (𝑁 + 1)2𝑘𝑞𝑁+𝑝 ≤ 𝑒2𝑘𝑞(1 + 1/𝑘𝑞)
𝑝𝑁2𝑘𝑞𝑁+𝑝, 𝜃/𝜖 = 𝐾𝑎(1), 𝑁 + 1 ≥ 𝑁 , and the

deőnition of 𝑎, yield

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃
𝜏0𝑁

𝑝−1 (𝑁𝐾𝑎(1))
2𝑘𝑞𝑁+𝑝

𝑛𝑒
+ 𝜏1𝑁

𝑝−1𝑇
𝑝+1

𝑛𝑒
+

8𝑙2 +𝑀21l{𝑤 ̸= 𝑖[−𝑎,𝑎]}
𝜔2
𝑁

)︃
.

(3.68)

The choices of 𝑁 are such that the őrst and third terms have the same and largest

order.

Proof of (T2.1). Let 𝑛𝑒 ≥ 𝑒𝑒 be large enough so that (ln(𝑛𝑒)/𝜏2)
𝜎((𝑝+1)/𝑠+2)+𝑝−1 ≤

𝑛𝑒, where 𝜏2 := 4𝑘𝑞(2𝜎/𝜇+ 1)𝒲(1/(4𝑘𝑞(2𝜎/𝜇+ 1))). We have

2𝑘𝑞(𝑁 + 𝑘′𝑞/2) ln
(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
+ (𝑝− 1) ln(𝑁)

= 2𝑘𝑞

(︂
2𝜎

𝜇
+ 1

)︂
𝑁 ln (𝑁) + 2𝜎 ln (𝑁) +

(︂
2

(︂
𝜎

𝜇
+ 1

)︂
𝑝− 1

)︂
ln(𝑁)

≥ 2𝑘𝑞

(︂
2𝜎

𝜇
+ 1

)︂
𝑁 ln (𝑁)

and, for all 𝑥 ≥ 1/𝑒, 𝒲 (𝑥 ln(𝑥)) = ln(𝑥). Using as well the deőnition of 𝒲 , this

yields

𝑁 ≤ ln(𝑛𝑒)

4𝑘𝑞(2𝜎/𝜇+ 1)𝒲(ln(𝑛𝑒)/(4𝑘𝑞(2𝜎/𝜇+ 1)))
≤ ln(𝑛𝑒)

𝜏2
. (3.69)

Using (3.69), we have 𝑇 𝑝+1𝑁𝑝−1/𝑛𝑒 = 𝑁𝜎(𝑝+1)/𝑠+𝑝−1/𝑛𝑒 ≤ (ln(𝑛𝑒)/𝜏2)
𝜎(𝑝+1)/𝑠+𝑝−1/𝑛𝑒 ≤
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(ln(𝑛𝑒)/𝜏2)
−2𝜎 ≤ 𝑁−2𝜎 = 𝜔−2

𝑁 . Using the deőnition of 𝑁 and (3.68), we obtain

ℛ𝑊
𝑛0,sup

≤ 𝐶

𝑁2𝜎

(︃
𝜏0 + 𝜏1 + 8𝑙2 +𝑀2

)︃
. (3.70)

We also have

ln(𝑛𝑒) = 2𝑘𝑞(𝑁 + 𝑘′𝑞/2) ln
(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
+ (𝑝− 1) ln(𝑁)

≤
(︂
2𝑘𝑞

(︂
2𝜎

𝜇
+ 1

)︂
+

(︂
2𝜎 − 1 + 2𝑝

(︂
𝜎

𝜇
+ 1

)︂)︂)︂
𝑁 ln(𝑁),

hence 𝑁 ln(𝑁) ≥ ln(𝑛𝑒)/𝜏3, 𝜏3 := 2𝑘𝑞 (2𝜎/𝜇+ 1)+(2𝜎 − 1 + 2𝑝 (𝜎/𝜇+ 1)). Similarly

to (3.69) and using for the second inequality, for all 𝑥 > 0, 𝒲(𝑥) ≤ ln(𝑥 + 1) (see

Theorem 2.3 in Hoorfar and Hassani (2007)), we have

𝑁 ≥ ln(𝑛𝑒)

𝜏3𝒲 (ln(𝑛𝑒)/𝜏3)
≥ ln(𝑛𝑒)

𝜏3 ln (ln(𝑛𝑒) + 𝜏3)
≥ ln(𝑛𝑒)

𝜏3 ln2(𝑛𝑒) (1 + ln(1 + 𝜏3/𝑒))
. (3.71)

This and (3.70) yield the result.

Proof of (T2.2a). Let 𝜏4 := 𝜅(𝑝+ 1)/ (2𝑠 (𝑘𝑞(𝜈 + 1) + 𝜅)). We have

2𝑘𝑞

(︂
𝑁 +

𝑘′𝑞
2

)︂
ln

(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
≥ 2 (𝑘𝑞(𝜈 + 1) + 𝜅)𝑁 ln (𝑁) , (3.72)

hence 𝑁 ln (𝑁) ≤ (ln(𝑛𝑒)− (𝑝− 1) ln(𝑁)) / (2 (𝑘𝑞(𝜈 + 1) + 𝜅)) and

𝑁𝑝−1𝑇 𝑝+1

𝑛𝑒
=
𝑁𝑝−1𝑒𝜅(𝑝+1)𝑁 ln(𝑁+1)/𝑠

𝑛𝑒
≤ 𝑒𝜅(𝑝+1)/𝑠𝑛𝜏4−1

𝑒 𝑁 (𝑝−1)(1−𝜏4).

Because 𝑠 ≥ 𝜅(𝑝+ 1)/(2𝑘𝑞(1 + 𝜈)), we have 𝜏4 − 1 ≤ −𝜅/ (𝜅+ 𝑘𝑞(1 + 𝜈)) and

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃
𝜏1𝑒

𝜅(𝑝+1)/𝑠

𝑛
𝜅/(𝜅+𝑘𝑞(1+𝜈))
𝑒

𝑁 (𝑝−1)(1−𝜏4) +
𝜏0 + 8𝑙2 +𝑀21l{𝑤 ̸= 𝑖[−𝑎,𝑎]}

𝑒2𝜅𝑁 ln(𝑁+1)

)︃
. (3.73)

Let 𝑛𝑒 large enough so that 𝑁 ≥ 1. Using that 𝜏4 − 1 ≤ −𝜅/ (𝜅+ 𝑘𝑞(1 + 𝜈)), 𝜏5 :=
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2(𝑘𝑞(1 + 𝜈) + 𝜅) ln(2), that

ln (𝑛𝑒)− (𝑝− 1 + 𝑘𝑞𝑘
′
𝑞(1 + 𝜈)) ln (𝑁) = 2𝑘𝑞𝑁 ln

(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀

≤ 𝜏5
ln(2)

𝑁 ln (𝑁 + 1) ,

and that 𝑘𝑞𝑘′𝑞 = 𝑝, we obtain

𝑒2𝜅𝑁 ln(𝑁+1) ≥ 𝑛𝜅/(𝜅+𝑘𝑞(1+𝜈))𝑒 𝑁−𝜅(𝑝−1+𝑘𝑞𝑘′𝑞(1+𝜈))/(𝑘𝑞(1+𝜈)+𝜅)

≥ 𝑛𝜅/(𝜅+𝑘𝑞(1+𝜈))𝑒 𝑁−((2+𝜈)𝑝−1)(1−𝜏4).

We conclude because, by (3.72), 𝑁 ≤ ln(𝑛𝑒)/𝜏5.

Proof of (T2.2b). It is derived from (3.73) with 𝑤 = 𝑖[−𝑎,𝑎] and 𝜈 = 0.

Proof of (T2.3). By ln(𝑛𝑒) ≥ 2𝑘𝑞(𝑁 + 𝑘′𝑞/2) ln
(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
≥ ln

(︀
𝜔2
𝑁

)︀
,

we have

(𝑁 ln(𝑁 + 1))𝑟 ≤ ln(𝑛𝑒)

2𝜅
, (3.74)

hence, using the value of 𝑇 and 𝑁 ≤ 𝑁 ln (𝑁 + 1) / ln(2),

𝑇 𝑝+1𝑁𝑝−1

𝑛𝑒
=
𝜅𝑝+1(𝑁 ln(𝑁 + 1))𝑟(𝑝+1)𝑁𝑝−1

𝛾𝑝+1𝑛𝑒
≤ ln(𝑛𝑒)

𝑝+1+(𝑝−1)/𝑟

𝜅(𝑝−1)/𝑟2𝑝+1+(𝑝−1)/𝑟𝛾𝑝+1 ln(2)𝑝−1𝑛𝑒
.

Moreover, because ln(𝑛𝑒)
𝑝+1+(𝑝−1)/𝑟 is smaller than 𝜙(𝑛𝑒) by deőnition,

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃
𝜏1𝜙(𝑛𝑒)

𝜅(𝑝−1)/𝑟2𝑝+1+(𝑝−1)/𝑟𝛾𝑝+1 ln(2)𝑝−1𝑛𝑒
+
𝜏0 + 8𝑙2 +𝑀2

𝑒2𝜅(𝑁 ln(1+𝑁))𝑟

)︃
. (3.75)

Let 𝑛𝑒 large enough to ensure 𝑁 ≥ 1 + 1/𝑝. We also have,

2𝑘𝑞(𝑁 + 𝑘′𝑞/2) ln
(︀
𝑁𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
+ (𝑝− 1) ln(𝑁) ≤ 2𝜅 (𝑁 ln (𝑁 + 1))𝑟 (1 + ℎ(𝑁)) ,

(3.76)

where ℎ := (𝑘𝑞(1 + 𝜈) ·+(2 + 𝜈)𝑝− 1) ln (·) /(𝜅 (· ln (·+ 1))𝑟). This yields, for 𝑛𝑒
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large enough,

exp (2𝜅 (𝑁 ln(𝑁 + 1))𝑟) ≥ exp

(︂
ln(𝑛𝑒)

1 + ℎ(𝑁)

)︂
= 𝑛𝑒 exp

(︃ ∞∑︁

𝑘=1

(−1)𝑘ℎ(𝑁)𝑘 ln(𝑛𝑒)

)︃
.

(3.77)

By (3.76), we have 𝑁 ln(𝑁 +1) ≥ ln(𝑛𝑒)
1/𝑟/𝑑

1/𝑟
0 . We obtain, by (3.74) for the second

inequality,

ℎ (𝑁) ≤ 𝑘𝑞(1 + 𝜈) + ((2 + 𝜈)𝑝− 1)𝑝/(𝑝+ 1)

𝜅(𝑁 ln(𝑁 + 1))𝑟−1
≤ (𝑘𝑞(1 + 𝜈) + (2 + 𝜈)𝑝− 1)𝑑

1−1/𝑟
0

𝜅 ln(𝑛𝑒)1−1/𝑟
,

ℎ (𝑁) ≥ 𝑘𝑞(1 + 𝜈)

𝜅(1 + ln(2)/ ln(1 + 1/𝑝))𝑟(𝑁 ln(𝑁))𝑟−1
≥ 𝑘𝑞(1 + 𝜈)(2𝜅)1−1/𝑟

𝜅(1 + ln(2)/ ln(1 + 1/𝑝))𝑟 ln(𝑛𝑒)1−1/𝑟
,

and we conclude using that, for 𝑛𝑒 large enough so that the remainder below is smaller

in absolute value than a converging geometric series,

exp

(︃ ∞∑︁

𝑘=1

(−1)𝑘ℎ(𝑁)𝑘 ln(𝑛𝑒)

)︃
≥ exp

(︃
𝑘0∑︁

𝑘=1

(−1)𝑘𝑑𝑘 ln(𝑛𝑒)
(1/𝑟−1)𝑘+1 +𝑂(1)

)︃
. �

Part 3. Let 𝑞 ∈ {1,∞}. Let 𝑡 ̸= 0 and 𝑧 > 0. By (3.100), (3.102), and Proposition

4 (ii), we have, for 𝑞 ∈ 1,∞ and |𝑡| ≤ 𝜃0

̃︀𝜔𝑞,𝑊,𝑥0𝑡𝑁 ≤
(︂
𝜋2

56

)︂𝑝

exp

(︂
2𝑘𝑞 ln

(︂
𝜃1
|𝑡|

)︂(︂
𝑁 +

𝑘′𝑞
2

)︂)︂
1l {|𝑡| ≤ 𝜃0} (3.78)

+ 2𝑝 exp

(︂
2𝑘𝑞𝜃0(𝑁 + 𝑘′𝑞)

|𝑡|

)︂
1l {|𝑡| > 𝜃0} .

For all 𝑁 ≥ 1, we have ∆
cosh(·/𝑅)
0 (𝑡, 𝑁, 𝑛, 𝑧) ≤ ∆cosh(·/𝑅)(𝑡, 𝑁, 𝑛, 𝑧), where

∆cosh(·/𝑅)(⋆,𝑁, 𝑛, 𝑧)

:=
2

𝜋

(︁ 𝜋

112

)︁𝑝
(︂
2𝑝/𝑞𝑄𝑞𝑐𝑋𝑁

(𝑝−1)/𝑞 |⋆|𝑝
𝑛

+ 𝑧

(︂
𝐿(⋆) +

𝑐𝑋(𝑁 + 1)𝑝 |⋆|𝑝
𝑛

)︂)︂(︂
𝜃1
| ⋆ |

)︂2𝑘𝑞𝑁+𝑝

1l {| ⋆ | ≤ 𝜃0}

+
2

𝜋𝑝+1

(︃
2𝑝/𝑞𝑄𝑞𝑐𝑋𝑁

(𝑝−1)/𝑞 |⋆|𝑝+𝑘𝑞

(4𝜃0/𝑒)
𝑘𝑞 𝑛

+ 𝑧

(︂
𝐿(⋆) +

𝑐𝑋(𝑁 + 1)𝑝 |⋆|𝑝
𝑛

)︂)︃
exp

(︂
2𝑘𝑞𝜃0(𝑁 + 𝑘′𝑞)

|⋆|

)︂
1l {| ⋆ | > 𝜃0} .
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Let 𝑛𝑒 ≥ 𝑒𝑒 be large enough so 𝑁 ≥ (𝑝+ 2)/(2𝑘𝑞). We have, using 𝑘𝑞𝑘′𝑞 = 𝑝,

∫︁ 𝑇

𝜃0

𝑡𝑝+𝑘𝑞𝑒2𝑘𝑞𝜃0(𝑁+𝑘′𝑞)/𝑡𝑑𝑡 =

∫︁ 1/𝜃0

1/𝑇

𝑒2𝑘𝑞𝜃0(𝑁+𝑘′𝑞)𝑢

𝑢𝑝+2+𝑘𝑞
𝑑𝑢 ≤ 𝜃

𝑝+1+𝑘𝑞
0 𝑒2𝑘𝑞(𝑁+𝑘′𝑞)

2𝑘𝑞(𝑁 + 𝑘′𝑞)
≤ 𝜃

𝑝+1+𝑘𝑞
0 𝑒2𝑘𝑞𝑁+2𝑝

3𝑝+ 2
.

(3.79)

Then, using 𝑁 ≤ 𝑁 , 𝑛𝑒/𝑛 ≤ 1, 𝑛𝑒𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤ 1, and 𝜖 ≤ 𝜃0, for the őrst display,

∫︁ 𝜃0

𝜖

𝑡𝑝
(︂
𝜃1
𝑡

)︂2𝑘𝑞𝑁+𝑝

𝑑𝑡 ≤ 𝜖𝑝+1

2𝑘𝑞𝑁 − 1

(︂
𝜃1
𝜖

)︂2𝑘𝑞𝑁+𝑝

, (3.80)

∫︁

𝜖≤|𝑡|≤𝜃0

(︂
𝜃1
|𝑡|

)︂2𝑘𝑞𝑁+𝑝

𝐿(𝑡)𝑑𝑡+

∫︁

𝜃0≤|𝑡|≤𝑇
𝑒2𝑘𝑞𝜃0(𝑁+𝑘′𝑞)/|𝑡|𝐿(𝑡)𝑑𝑡

≤ (2𝜋)𝑝+1𝑙2

(︃(︂
𝜃1
𝜖

)︂2𝑘𝑞𝑁+𝑝

1l{𝜖 < 𝜃0}
⋁︁

𝑒2𝑘𝑞𝑁+2𝑝

)︃
,
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and (3.79) for the second display, we obtain

∫︁

𝜖≤|𝑡|≤𝑇
∆cosh(·/𝑅)(𝑡, 𝑁, 𝑛, 𝑍𝑛0)

≤ 22+𝑝/𝑞𝑄𝑞𝑐𝑋𝑁
(𝑝−1)/𝑞

𝜋𝑛𝑒

(︁ 𝜋

112

)︁𝑝 ∫︁ 𝜃0

𝜖

𝑡𝑝
(︂
𝜃1
𝑡

)︂2𝑘𝑞𝑁+𝑝

𝑑𝑡

+
𝑀ℰ,𝜂
𝑛𝑒

(︂(︁ 𝜋

112

)︁𝑝⋁︁ 1

𝜋𝑝

)︂
2𝑝+2𝜋𝑝𝑙2

(︃(︂
𝜃1
𝜖

)︂2𝑘𝑞𝑁+𝑝

1l{𝜖 < 𝜃0}
⋁︁

𝑒2𝑘𝑞𝑁+2𝑝

)︃

+
4𝑐𝑋
𝜋𝑛𝑒

(︁ 𝜋

112

)︁𝑝 2𝑝𝑀ℰ,𝜂𝑁
𝑝

𝑛

∫︁ 𝜃0

𝜖

𝑡𝑝
(︂
𝜃1
𝑡

)︂2𝑘𝑞𝑁+𝑝

𝑑𝑡

+
2𝑝/𝑞𝑄𝑞𝑐𝑋𝑁

(𝑝−1)/𝑞𝑒𝑘𝑞

𝜋𝑝+14𝑘𝑞−1𝜃
𝑘𝑞
0 𝑛𝑒

∫︁ 𝑇

𝜃0

𝑡𝑝+𝑘𝑞𝑒2𝑘𝑞𝜃0(𝑁+𝑘′𝑞)/𝑡𝑑𝑡

+
4𝑐𝑋
𝜋𝑝+1𝑛𝑒

2𝑝𝑀ℰ,𝜂𝑁
𝑝

𝑛

∫︁ 𝑇

𝜃0

𝑡𝑝𝑒2𝑘𝑞𝜃0(𝑁+𝑘′𝑞)/𝑡𝑑𝑡

≤ 𝐺1

(︂
𝑁𝑘𝑞

𝑛

)︂
𝑁 (𝑝−1)/𝑞

𝑛𝑒

(︂
𝜃1
𝜖

)︂2𝑘𝑞𝑁+𝑝

1l{𝜖 < 𝜃0}+𝐺2

(︂
𝑁𝑘𝑞

𝑛

)︂
𝑁 (𝑝−1)/𝑞

𝑛𝑒
𝑒2𝑘𝑞𝑁+2𝑝,

(3.81)

𝐺 := 4

(︂
2𝑘𝑞
𝑝+ 2

)︂(𝑝−1)/𝑞

𝑀ℰ,𝜂
(︁ 𝜋
56

)︁𝑝
𝜋𝑝𝑙2, 𝐺1 :=

4𝑐𝑋𝜃
𝑝+1
0

𝜋

(︀
2𝑝/𝑞𝑄𝑞 + 2𝑝𝑀ℰ,𝜂·

)︀ (︁ 𝜋

112

)︁𝑝
+𝐺,

𝐺2 :=
4𝑐𝑋𝜃

𝑝+1+𝑘𝑞
0

(3𝑝+ 2)𝜋𝑝+1

(︃
2𝑝/𝑞𝑄𝑞

(︂
𝑒

4𝜃0

)︂𝑘𝑞

+ 2𝑝𝑀ℰ,𝜂·
)︃

+𝐺.

Proof of (T3.1). We have, using 𝐾𝑎(𝑒) = 𝑤𝐼
(︀
𝜔2
𝑁

)︀
,

ln(𝑛𝑒)−
𝑝− 1

𝑞
ln(𝑁) = 2𝑘𝑞

(︂
𝑁 +

𝑘′𝑞
2

)︂
ln

(︀
𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀

=
4𝑘𝑞𝜎

𝜇

(︂
𝑁 +

𝑘′𝑞
2

)︂
ln (𝑁) + 2𝜎 ln (𝑁) ≥ 4𝑘𝑞𝜎

𝜇
𝑁 ln (𝑁) ,

hence, for 𝑛𝑒 large enough so that ln(𝑁) ≥ 𝜇/(𝑘𝑞𝜎),

𝑁 ≤ ln(𝑛𝑒)

4𝑘𝑞𝜎 ln(𝑁)/𝜇
≤ ln(𝑛𝑒)

4𝑘𝑞
. (3.82)

Thus, using (3.29), we have 𝑁/𝑛 ≤ 1/(4𝑘𝑞𝑒). This yields, using (3.81), (3.56), 𝜃1/𝜖 =
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𝑤𝐼
(︀
𝜔2
𝑁

)︀
, 𝑁 + 1 ≥ 𝑁 , and the deőnition of 𝑎,

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃
𝐺1

(︃
𝑘
𝑘𝑞−1
𝑞

4𝑒𝑘𝑞

)︃
𝑁𝑝−1

(︀
𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀2𝑘𝑞𝑁+𝑝

𝑛𝑒
+𝐺2

(︃
𝑘
𝑘𝑞−1
𝑞

4𝑒𝑘𝑞

)︃
𝑁𝑝−1 𝑒

2𝑘𝑞𝑁+2𝑝

𝑛𝑒
+

8𝑙2 +𝑀2

𝜔2
𝑁

)︃
.

By (3.82), we obtain 𝜔2
𝑁𝑁

(𝑝−1)/𝑞𝑒2𝑘𝑞𝑁+2𝑝/𝑛𝑒 ≤ ln(𝑛𝑒)
2𝜎+(𝑝−1)/𝑞𝑒2𝑝/(42𝜎+𝑝−1√𝑛𝑒). Thus,

using (3.29), we have 𝑁 (𝑝−1)/𝑞𝑒2𝑘𝑞𝑁+2𝑝/𝑛𝑒 ≤ 𝑒2𝑝((2𝜎 + (𝑝 − 1)/𝑞)/(2𝑒))2𝜎+(𝑝−1)/𝑞/𝜔2
𝑁

and using the deőnition of 𝑁 ,

ℛ𝑊
𝑛0,sup

≤ 𝐶

𝑁2𝜎

(︃
𝐺1

(︃
𝑘
𝑘𝑞−1
𝑞

4𝑒𝑘𝑞

)︃
+𝐺2

(︃
𝑘
𝑘𝑞−1
𝑞

4𝑒𝑘𝑞

)︃
𝑒2𝑝

(︂
2𝜎 + (𝑝− 1)/𝑞

2𝑒

)︂2𝜎+(𝑝−1)/𝑞

+ 8𝑙2 +𝑀2

)︃
.

(3.83)

We also have

ln(𝑛𝑒) =2𝑘𝑞𝑁 ln
(︀
𝑤𝐼

(︀
𝜔2
𝑁

)︀)︀
+ ln

(︀
𝜔2
𝑁

)︀
+

(︂
𝑝− 1

𝑞
+

2𝜎𝑝

𝜇

)︂
ln(𝑁)

≤
(︂
2

(︂
2𝑘𝑞
𝜇

+ 1

)︂
𝜎 +

(︂
𝑝− 1

𝑞
+

2𝜎𝑝

𝜇

)︂
2

𝑝+ 2

)︂
𝑁 ln(𝑁),

hence 𝑁 ln(𝑁) ≥ ln(𝑛𝑒)/𝜏6, 𝜏6 := 2 (2𝑘𝑞/𝜇+ 1) 𝜎 + 2 ((𝑝− 1)/𝑞 + (2𝜎𝑝)/𝜇) (𝑝 + 2).

Similarly to (3.71), we have 𝑁 ≥ ln(𝑛𝑒)/(𝜏6 (1 + ln(1 + 𝜏6/𝑒)) ln2(𝑛𝑒)), which yields

the result with (3.83).

Proof of (T3.2). Because 𝐾𝑎(𝑒) = 𝑒 then 2(𝑘𝑞 + 𝜅)𝑁 + (𝑝 − 1) ln(𝑁) + 𝑝 ≥
2(𝑘𝑞 + 𝜅)𝑁 , we obtain 𝑁 ≤ ln(𝑛𝑒)/(2(𝑘𝑞 + 𝜅)). Thus using 𝑛 ≥ 𝑛𝑒 and (3.29), we

have 𝐺2(𝑁
𝑘𝑞/𝑛) ≤ 𝐺2(𝑘

𝑘𝑞
𝑞 /(2(𝑘𝑞 + 𝜅)𝑒)𝑘𝑞). Using (3.56), 𝑤 = 𝑖𝒜, (3.81), 𝜖 = 𝜃0, yield

ℛ𝑊
𝑛0,sup

≤ 𝐶

(︃
𝐺2

(︃
𝑘
𝑘𝑞
𝑞

2(𝑘𝑞 + 𝜅)𝑒𝑘𝑞

)︃
𝑁 (𝑝−1)/𝑞 𝑒

2𝑘𝑞𝑁+2𝑝

𝑛𝑒
+

8𝑙2

𝜔2
𝑁

)︃
.

We conclude using the deőnition of 𝑁 , which yields

𝑁 (𝑝−1)/𝑞𝑒2𝑘𝑞𝑁/𝑛𝑒 = 𝑛−𝜅/(𝑘𝑞+𝜅)
𝑒 𝑁𝜅(𝑝−1)/(𝑞(1+𝜅))

and 𝜔−2
𝑁 = 𝑒−2𝜅𝑁 = 𝑛

−𝜅/(𝑘𝑞+𝜅)
𝑒 𝑁𝜅(𝑝−1)/(𝑞(𝑘𝑞+𝜅)). �

140



3.6.5 Auxiliary lemmas and proof of Theorem 4

The proof of Theorem 4 uses several auxiliary lemmas. Lemmas 5 and 6 are particu-

larly important.

Let 𝑇max := 2𝐾max , 𝒩𝑛 be the set of functions 𝑁 ∈ NR
0 such that, for all 𝑡 ∈

R ∖ (−𝜖, 𝜖), 𝑁(𝑡) ∈ {0, . . . , 𝑁𝑊
max,𝑞} and Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁

𝑊
max,𝑞). Let, for all 𝑡 ̸= 0 and

𝑁 ∈ NR
0 , ∆𝑚 := ̂︀𝑐𝑚 − ̃︀𝑐𝑚, ̃︀∆𝑚 := ̃︀𝑐𝑚 − 𝑐𝑚,

Ξ (𝑡, 𝑁) :=
∑︁

|𝑚|𝑞>𝑁

⃒⃒
⃒⃒ 𝑐𝑚(𝑡)

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
2

, 𝑆1 (𝑡, 𝑁) :=
∑︁

|𝑚|𝑞≤𝑁

⃒⃒
⃒⃒E [∆𝑚(𝑡)]

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
2

,

𝑆2 (𝑡, 𝑁) :=
∑︁

|𝑚|𝑞≤𝑁

⃒⃒
⃒⃒∆𝑚(𝑡)− E [∆𝑚(𝑡)]

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
2

, 𝑆3 (𝑡, 𝑁) :=
∑︁

|𝑚|𝑞≤𝑁

⃒⃒
⃒⃒
⃒
̃︀∆𝑚(𝑡)

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
⃒

2

,

𝐾𝑛(𝑡) := 𝐻𝑊 (𝑡)

(︂
𝑁𝑊

max,𝑞 +
1

2

)︂𝑝

, 𝐿 :=
1

42

√︃
2𝑥𝑝0
𝑐𝑋

,

Ψ0,𝑛(𝑡) := exp
(︁
−𝑝𝑛

6

)︁
+

294𝑐𝑋𝐾
2
𝑛(𝑡)

𝑥𝑝0𝑛
exp

(︂
−𝐿

√
𝑝𝑛𝑛

𝐾𝑛(𝑡)

)︂
,

̃︀𝐵
(︁
̂︀𝑁
)︁
:= E

⎡
⎣ sup
𝑇 ′∈𝒯𝑛

∫︁

𝜖≤|𝑡|≤𝑇 ′

⎛
⎝𝑆3

(︁
𝑡, ̂︀𝑁(𝑡)

)︁
−

Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁

2(2 +
√
5)

⎞
⎠

+

𝑑𝑡

⎤
⎦ ,

Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁
𝑊
max,𝑞) := 𝑍𝑛0

∫︁

𝜖≤|𝑡|≤𝑇max

Ψ𝑛(𝑡)𝑑𝑡+Π1

(︀
𝑛, 𝑇max, 𝑁

𝑊
max,𝑞

)︀
, (3.84)

Π1(𝑛, 𝑇max, 𝑁
𝑊
max,𝑞) :=

96
(︀
1 + 2

√
5
)︀
𝑐𝑋𝐾max

(2𝜋)𝑝𝑛

∫︁ 𝑇max

𝜖

(︀
𝑁𝑊

max,𝑞 + 1
)︀
𝑡𝑝𝜈𝑊𝑞

(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
Ψ0,𝑛(𝑡)𝑑𝑡,

Ψ𝑛 :=

(︂
2 +

1√
5

)︂(︃(︂
2𝜋

𝑥0 |⋆|

)︂𝑝

̃︀𝜔𝑞,𝑊,𝑥0𝑡
𝑁𝑊

max,𝑞
‖ℱ1st [𝑓𝛼,𝛽] (⋆, ·2)‖2𝐿2(R𝑝) +

(︂ |⋆|
2𝜋

)︂𝑝 𝑐𝑋𝜈
𝑊
𝑞

(︀
𝑥0⋆,𝑁

𝑊
max,𝑞

)︀

𝑛

)︃
,

̃︀∆𝑊
0 (⋆,𝑁, 𝑛, 𝑧) :=

𝑐𝑋 | ⋆ |𝑝
𝑛

(1 + 2(1 + 2𝑝𝑛)(1 + 𝑐1)) 𝜈
𝑊
𝑞 (𝑥0⋆,𝑁)

+ 𝑧

(︂
𝐿(⋆) +

𝑐𝑋(𝑁 + 1)𝑝 |⋆|𝑝
𝑛

)︂
̃︀𝜔𝑞,𝑊,𝑥0⋆𝑁 , (3.85)

where 𝐻𝑊 (𝑡) is deőned in Proposition 5. For all 𝑡 ∈ [−𝑇, 𝑇 ] ∖ [−𝜖, 𝜖] and 𝑁 ∈ N0,
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using (3.30) with 𝑐 =
√
5, we have

ℒ𝑊𝑞 (𝑡, 𝑁) ≤ Ξ(𝑡, 𝑁) +

(︂
1 +

2√
5

)︂
(𝑆1(𝑡, 𝑁) + 𝑆2(𝑡, 𝑁)) + (1 + 2

√
5)𝑆3(𝑡, 𝑁). (3.86)

Lemma 4. For all 𝑞 ∈ {1,∞}, 0 < 𝜖 < 1 < 𝑇 < 𝑇max = 2𝐾max, 𝑡 ∈ [−𝑇, 𝑇 ] ∖ (−𝜖, 𝜖),
and 𝑁 ∈ {0, . . . , 𝑁𝑊

max,𝑞}, we have

E
[︁
𝑆1

(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁
≤ 𝑍𝑛0

(︂
2𝜋

𝑥0|𝑡|

)︂𝑝

̃︀𝜔𝑞,𝑊,𝑥0𝑡
𝑁𝑊

max,𝑞
‖ℱ1st [𝑓𝛼,𝛽] (𝑡, ·2)‖2𝐿2(R𝑝) , (3.87)

E
[︁
𝑆2

(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁
≤ 𝑍𝑛0

𝑐𝑋
𝑛

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁
𝑊
max,𝑞), (3.88)

E

[︃(︂
𝑆3(𝑡, 𝑁)− Σ(𝑡, 𝑁)

2(2 +
√
5)

)︂

+

]︃
≤ 48

𝑐𝑋
𝑛

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁)Ψ0,𝑛(𝑡). (3.89)

Proof of Lemma 4. Let the parameters in the for all statement be given. (3.87)

follows from

𝑆1

(︁
𝑡, ̂︀𝑁(𝑡)

)︁
≤ ̃︀𝜔𝑞,𝑊,𝑥0𝑡̂︀𝑁(𝑡)

⃦⃦
ℱ

[︀
𝑓𝑌 |𝑋=𝑥0·

]︀
(𝑡)

(︀
∆𝑓𝑓𝑋|𝒳

)︀
(𝑥0·)

⃦⃦2

𝐿2([−1,1]𝑝)

≤ 𝑍𝑛0

(︂
2𝜋

𝑥0|𝑡|

)︂𝑝

̃︀𝜔𝑞,𝑊,𝑥0𝑡
𝑁𝑊

max,𝑞
‖ℱ1st [𝑓𝛼,𝛽] (𝑡, ·2)‖2𝐿2(R𝑝) (by (3.60)).

By Lemma 10,
∑︀

|𝑚|𝑞≤𝑁
(︀
𝜎𝑊,𝑥0𝑡𝑚

)︀−2 ≤ |𝑥0𝑡|𝑝𝜈𝑊𝑞 (𝑥0𝑡, 𝑁)/(2𝜋)𝑝, so we obtain (3.88) by

the following sequence of inequalities, which uses (3.61) for the second display,

E
[︁
𝑆2

(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁
≤

∑︁

|𝑚|𝑞≤𝑁𝑊
max,𝑞

E
[︀
|∆𝑚(𝑡)− E [∆𝑚(𝑡)]|2

]︀
(︁
𝜎𝑊,𝑥0𝑡𝑚

)︁2 ≤ 𝑐𝑋𝑍𝑛0 |𝑡|𝑝𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀

(2𝜋)𝑝𝑛
.

To prove (3.89), we use

𝑆3(𝑡, 𝑁) =

∫︁

R𝑝

⃒⃒
⃒ ̃︀𝐹 𝑞,𝑁,𝑇,0

1 (𝑡, 𝑏)− 𝐹 𝑞,𝑁,𝑇,0
1 (𝑡, 𝑏)

⃒⃒
⃒
2

𝑊⊗𝑝(𝑏)𝑑𝑏 = sup
𝑢∈𝒰

⃒⃒
𝜈𝑡𝑛(𝑢)

⃒⃒2
,

𝜈𝑡𝑛(𝑢) :=
⟨
̃︀𝐹 𝑞,𝑁,𝑇,0
1 (𝑡, ·2)− 𝐹 𝑞,𝑁,𝑇,0

1 (𝑡, ·2), 𝑢(·)
⟩
𝐿2(𝑊⊗𝑝)

=
1

𝑛

𝑛∑︁

𝑗=1

(︀
𝑓 𝑡𝑢(𝑌𝑗, 𝑋𝑗)− E

[︀
𝑓 𝑡𝑢(𝑌𝑗, 𝑋𝑗)

]︀)︀
,

𝑓 𝑡𝑢(⋆, ·) := 1l {· ∈ 𝒳} 𝑒𝑖𝑡⋆

𝑥𝑝0𝑓𝑋|𝒳 (·)

∫︁

R𝑝

∑︁

|𝑚|𝑞≤𝑁
𝑔𝑊,𝑥0𝑡𝑚

(︂ ·
𝑥0

)︂
1

𝜎𝑊,𝑥0𝑡𝑚

𝜙𝑊,𝑥0𝑡𝑚 (𝑏)𝑢(𝑏)𝑊⊗𝑝(𝑏)𝑑𝑏,
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and 𝒰 is a countable dense set of measurable functions of
{︁
𝑢 : ‖𝑢‖𝐿2(𝑊⊗𝑝) = 1

}︁
and

check the conditions of the Talagrand inequality given in Lemma 21 with 𝜂 = 𝑝𝑛 and

Λ(𝑝𝑛) = 1. For all 𝑢 ∈ 𝒰 , the Cauchy-Schwarz inequality yield

⃦⃦
𝑓 𝑡𝑢

⃦⃦
𝐿∞(R×𝒳 )

≤ 𝑐𝑋

(︂ |𝑡|
2𝜋𝑥0

)︂𝑝/2

⃦⃦
⃦⃦
⃦⃦
⃦⃦

⎛
⎜⎝

∑︁

|𝑚|𝑞≤𝑁

⃒⃒
⃒𝑔𝑊,𝑥0𝑡𝑚 (·/𝑥0)

⃒⃒
⃒
2

𝜌𝑊,𝑥0𝑡𝑚

∫︁

R𝑝

⃒⃒
𝜙𝑊,𝑥0𝑡𝑚 (𝑏)

⃒⃒2
𝑊⊗𝑝(𝑏)𝑑𝑏

⎞
⎟⎠

1/2
⃦⃦
⃦⃦
⃦⃦
⃦⃦
𝐿∞(𝒳 )

≤ 𝑐𝑋𝐾𝑛(𝑡)

(︂ |𝑡|
2𝜋𝑥0

)︂𝑝/2 √︁
𝜈𝑊𝑞 (𝑥0𝑡, 𝑁).

By the Cauchy-Schwarz inequality and the computation leading to (3.59), we have

E

[︂
sup
𝑢∈𝒰

⃒⃒
𝜈𝑡𝑛(𝑢)

⃒⃒]︂2
≤ E

[︂
sup
𝑢∈𝒰

⃒⃒
𝜈𝑡𝑛(𝑢)

⃒⃒2
]︂
≤ E

[︂⃦⃦
⃦ ̃︀𝐹 𝑞,𝑁,𝑇,0

1 (𝑡, ·2)− 𝐹 𝑞,𝑁,𝑇,0
1 (𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)

]︂

≤ 𝑐𝑋
𝑛

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁) =
Σ(𝑡, 𝑁)

8(2 +
√
5)(1 + 2𝑝𝑛)

.

Finally, by the Cauchy-Schwarz inequality and Proposition 5 for the second display

and Lemma 10 for the third display, we have

Var
(︀
R(𝑓 𝑡𝑢(𝑌𝑗, 𝑋𝑗))

)︀
∨ Var

(︀
I(𝑓 𝑡𝑢(𝑌𝑗, 𝑋𝑗))

)︀
≤

∫︁

R×𝒳

⃒⃒
𝑓 𝑡𝑢(𝑦,𝑥)

⃒⃒2
𝑓𝑌,𝑋(𝑦,𝑥)𝑑𝑦𝑑𝑥

≤ 𝑐𝑋

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁). �

Lemma 5. For all 𝜖 > 0, 𝑞 ∈ {1,∞}, and 𝑇 ∈ 𝒯𝑛, we have

ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞, ̂︀𝑁,̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁
≤𝐶

(︀
2 +

√
5
)︀2

2𝜋

∫︁

𝜖≤|𝑡|
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
+

E
[︁
1l{|𝑡| ≤ 𝑇}Σ

(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁

2 +
√
5

𝑑𝑡

+
𝐶2(2 +

√
5)2

𝜋
Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁

𝑊
max,𝑞) + 𝐶𝑀2 ̃︀𝑤(𝑎).

Proof of Lemma 5. Let 𝜖 > 0, 𝑞 ∈ {1,∞}, and 𝑇 ∈ 𝒯𝑛.
Start from (3.23). Using, for all 𝑇1, 𝑇2 ≥ 𝜖, 𝑅𝑇2

𝑇1
:= 1l {𝜖 ≤ |⋆|}

(︁
̂︀𝐹 𝑞, ̂︀𝑁,𝑇1,0
1 − ̂︀𝐹 𝑞, ̂︀𝑁,𝑇2∨𝑇1,0

1

)︁
(⋆, ·2)

and 𝑅𝑇1 := 1l {𝜖 ≤ |⋆|}
(︁
̂︀𝐹 𝑞, ̂︀𝑁,𝑇1,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(⋆, ·2), we have 𝑅 ̂︀𝑇 = 𝑅𝑇

̂︀𝑇 − 𝑅
̂︀𝑇
𝑇 + 𝑅𝑇
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and
⃦⃦
⃦𝑅 ̂︀𝑇

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
= 1l {𝜖 ≤ |⋆|} ℒ𝑊𝑞

(︁
⋆, ̂︀𝑁(⋆), ̂︀𝑇

)︁
. Because

𝐵2

(︁
𝑇1, ̂︀𝑁

)︁
= max

𝑇 ′∈𝒯𝑛

(︂∫︁

𝑇1≤|𝑡|≤𝑇1∨𝑇 ′

⃦⃦
⃦𝑅𝑇 ′

𝑇1
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ

(︁
𝑡, ̂︀𝑁(𝑡)

)︁
𝑑𝑡

)︂

+

, (3.90)

we have E
[︁⃦⃦
𝑅𝑇2
𝑇1

⃦⃦2

𝐿2(1⊗𝑊⊗𝑝)

]︁
≤ E

[︁
𝐵2

(︁
𝑇1, ̂︀𝑁

)︁]︁
+E

[︁
Σ2

(︁
𝑇2, ̂︀𝑁

)︁]︁
for possibly random

𝑇1 and 𝑇2 on 𝒯𝑛. By (3.30) with 𝑐 =
√
5 and (3.25), we have

E

[︂⃦⃦
⃦𝑅 ̂︀𝑇

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)

]︂
≤2(2 +

√
5)

(︁
E
[︁
𝐵2

(︁
𝑇, ̂︀𝑁

)︁]︁
+ E

[︁
Σ2

(︁
𝑇, ̂︀𝑁

)︁]︁)︁

+

(︂
1 +

2√
5

)︂
E
[︁⃦⃦
𝑅𝑇

⃦⃦2

𝐿2(1⊗𝑊⊗𝑝)

]︁
.

Using, for all 𝑇 ′ ∈ 𝒯𝑛, 𝑅𝑇 ′
𝑇,1 := ̂︀𝐹 𝑞, ̂︀𝑁,𝑇∨𝑇 ′,0

1 − 𝐹 𝑞, ̂︀𝑁,𝑇∨𝑇 ′,0
1 , 𝑅𝑇 ′

𝑇,2 := 𝐹 𝑞, ̂︀𝑁,𝑇,0
1 − ̂︀𝐹 𝑞, ̂︀𝑁,𝑇,0

1 ,

and 𝑅𝑇 ′
𝑇,3 := 𝐹 𝑞, ̂︀𝑁,𝑇∨𝑇 ′,0

1 −𝐹 𝑞, ̂︀𝑁,𝑇,0
1 , by (3.30), the objective function in (3.90) is smaller

than

∫︁

𝑇≤|𝑡|≤𝑇∨𝑇 ′

(︃
𝑘1

2∑︁

𝑗=1

⃦⃦
⃦𝑅𝑇 ′

𝑇,𝑗(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
+ 𝑘2

⃦⃦
⃦𝑅𝑇 ′

𝑇,3(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ

(︁
𝑡, ̂︀𝑁(𝑡)

)︁)︃

+

𝑑𝑡.

where 𝑘1 = 2 +
√
5 and 𝑘2 = 1 + 2/

√
5. Using that 𝐹 𝑞,∞,∞,0

1 = ℱ1st [𝑓𝛼,𝛽], we have,

for all 𝑡 ∈ R ∖ (−𝜖, 𝜖),

⃦⃦
⃦𝑅𝑇 ′

𝑇,3(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
= 1l{𝑇 ≤ |𝑡| ≤ 𝑇 ∨ 𝑇 ′}

∑︁

0≤|𝑚|𝑞≤ ̂︀𝑁

⃒⃒
⃒⃒ 𝑐𝑚(𝑡)

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
2

≤
⃦⃦
⃦
(︁
𝐹 𝑞, ̂︀𝑁,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
,

hence

𝐵2

(︁
𝑇, ̂︀𝑁

)︁

≤ max
𝑇 ′∈𝒯𝑛

∫︁

𝑇≤|𝑡|≤𝑇 ′

(︂
2(2 +

√
5)

⃦⃦
⃦
(︁
̂︀𝐹 𝑞, ̂︀𝑁,𝑇 ′,0
1 − 𝐹 𝑞, ̂︀𝑁,𝑇 ′,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ

(︁
𝑡, ̂︀𝑁(𝑡)

)︁)︂

+

𝑑𝑡

+

(︂
1 +

2√
5

)︂∫︁

𝜖≤|𝑡|

⃦⃦
𝑅𝑇 (𝑡, ·2)

⃦⃦2

𝐿2(𝑊⊗𝑝)
𝑑𝑡.
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Finally, we have

E

[︂⃦⃦
⃦𝑅 ̂︀𝑇

⃦⃦
⃦
2

𝐿2(1⊗𝑊⊗𝑝)

]︂
≤ 2(2 +

√
5)E

[︁
Σ2

(︁
𝑇, ̂︀𝑁

)︁]︁
+ (5 + 2

√
5)

(︂
1 +

2√
5

)︂
E
[︁⃦⃦
𝑅𝑇

⃦⃦2

𝐿2(1⊗𝑊⊗𝑝)

]︁

+ 4(2 +
√
5)2E

⎡
⎣max
𝑇 ′∈𝒯𝑛

∫︁

𝑇≤|𝑡|≤𝑇 ′

⎛
⎝
⃦⃦
⃦
(︁
̂︀𝐹 𝑞, ̂︀𝑁,𝑇 ′,0
1 − 𝐹 𝑞, ̂︀𝑁,𝑇 ′,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
−

Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁

2(2 +
√
5)

⎞
⎠

+

⎤
⎦ .

Using (3.86) and Lemma 4, we have

E

⎡
⎣max
𝑇 ′∈𝒯𝑛

∫︁

𝑇≤|𝑡|≤𝑇 ′

⎛
⎝
⃦⃦
⃦
(︁
̂︀𝐹 𝑞, ̂︀𝑁,𝑇 ′,0
1 − 𝐹 𝑞, ̂︀𝑁,𝑇 ′,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
−

Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁

2(2 +
√
5)

⎞
⎠

+

𝑑𝑡

⎤
⎦

≤ E

⎡
⎢⎣max
𝑇 ′∈𝒯𝑛

∫︁

𝜖≤|𝑡|≤𝑇 ′

⎛
⎜⎝

∑︁

|𝑚|𝑞≤ ̂︀𝑁(𝑡)

(︂ |̂︀𝑐𝑚(𝑡)− 𝑐𝑚(𝑡)|
𝜎𝑊,𝑥0𝑡𝑚

)︂2

−
Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁

2(2 +
√
5)

⎞
⎟⎠

+

𝑑𝑡

⎤
⎥⎦

≤
(︁
1 + 2

√
5
)︁

̃︀𝐵
(︁
̂︀𝑁
)︁
+ 𝑍𝑛0

∫︁

𝜖≤|𝑡|≤𝑇max

Ψ𝑛(𝑡)𝑑𝑡.

Considering the őrst term of the last inequality and using (3.89) for the second display

yields

̃︀𝐵
(︁
̂︀𝑁
)︁
≤ E

⎡
⎣ ∑︁

𝑇 ′∈𝒯𝑛

∫︁

𝜖≤|𝑡|≤𝑇 ′

⎛
⎝𝑆3

(︁
𝑡, ̂︀𝑁(𝑡)

)︁
−

Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁

2(2 +
√
5)

⎞
⎠

+

𝑑𝑡

⎤
⎦

≤
∑︁

𝑇 ′∈𝒯𝑛

∫︁ 𝑇 ′

𝜖

∑︁

0≤𝑁≤𝑁𝑊
max,𝑞

96
𝑐𝑋
𝑛

(︂
𝑡

2𝜋

)︂𝑝

𝜈𝑊𝑞 (𝑥0𝑡, 𝑁)Ψ0,𝑛(𝑡)𝑑𝑡

≤ 96𝑐𝑋𝐾max

(2𝜋)𝑝𝑛

∫︁ 𝑇max

𝜖

(︀
𝑁𝑊

max,𝑞 + 1
)︀
𝑡𝑝𝜈𝑊𝑞

(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
Ψ0,𝑛(𝑡)𝑑𝑡. �

Lemma 6. For all 𝜖 > 0, 𝑞 ∈ {1,∞}, and (𝑇,𝑁) ∈ 𝒯𝑛 ×𝒩𝑛,

∫︁

𝜖≤|𝑡|≤𝑇
E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
+

1l{|𝑡| ≤ 𝑇}
2 +

√
5

E
[︁
Σ
(︁
𝑇, ̂︀𝑁(𝑡)

)︁]︁
𝑑𝑡

≤
(︁
2 +

√
5
)︁2

(︂∫︁

𝜖≤|𝑡|≤𝑇
E
[︀
ℒ𝑊𝑞 (𝑡, 𝑁(𝑡), 𝑇 )

]︀
𝑑𝑡+

1 + 𝑐1

2 +
√
5
E [Σ2(𝑇,𝑁)]

)︂

+
(︁
2 +

√
5
)︁2

4Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁
𝑊
max,𝑞).
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Proof of Lemma 6. Let 𝑡 ∈ [−𝑇, 𝑇 ] ∖ (−𝜖, 𝜖), 𝑁 ∈ {0, . . . , 𝑁𝑊
max,𝑞}, 𝑇 ∈ 𝒯𝑛.

Using, for all 𝑁1, 𝑁2 ∈ N0, ̃︀𝑅𝑁2
𝑁1
(𝑡, ·2) :=

(︁
̂︀𝐹 𝑞,𝑁1,𝑇,0
1 − ̂︀𝐹 𝑞,𝑁2∨𝑁1,𝑇,0

1

)︁
(𝑡, ·2), we have

ℒ𝑊𝑞
(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁
= ̃︀𝑅𝑁

̂︀𝑁(𝑡)
− ̃︀𝑅 ̂︀𝑁(𝑡)

𝑁 + ℒ𝑊𝑞 (𝑡, 𝑁, 𝑇 ). Using (3.30) yields

E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
≤(2 +

√
5)

(︁
E
[︁
‖ ̃︀𝑅𝑁

̂︀𝑁(𝑡)
(𝑡, ·2)‖2𝐿2(𝑊⊗𝑝)

]︁
+ E

[︁
‖ ̃︀𝑅 ̂︀𝑁(𝑡)

𝑁 (𝑡, ·2)‖2𝐿2(𝑊⊗𝑝)

]︁)︁

+

(︂
1 +

2√
5

)︂
E
[︀
ℒ𝑊𝑞 (𝑡, 𝑁, 𝑇 )

]︀
.

Because 𝐵1 (𝑡, 𝑁) = max
𝑁 ′∈N0: 𝑁 ′≤𝑁𝑊

max,𝑞

(︁∑︀
𝑁≤|𝑚|𝑞≤𝑁 ′∨𝑁

(︀
|̂︀𝑐𝑚(𝑡)| /𝜎𝑊,𝑥0𝑡𝑚

)︀2 − Σ (𝑡, 𝑁 ′)
)︁
+
,

we have E

[︂⃦⃦
⃦ ̃︀𝑅𝑁2

𝑁1
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)

]︂
≤ E [𝐵1 (𝑡, 𝑁1)] + E [Σ (𝑡, 𝑁2)] for possibly random

𝑁1 and 𝑁2. Using 𝑐1 ≥ 1 + 1/(2 +
√
5)2 and (3.24) yield

E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
+

1

2 +
√
5
E
[︁
Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁

≤ (2 +
√
5) (2E [𝐵1 (𝑡, 𝑁)] + (1 + 𝑐1)E [Σ (𝑡, 𝑁)]) +

(︂
1 +

2√
5

)︂
E
[︀
ℒ𝑊𝑞 (𝑡, 𝑁, 𝑇 )

]︀
.

By (3.30) and, for all 𝑁 ′ ∈ 𝒩𝑛, ̃︀𝑅𝑁 ′
𝑁,1(𝑡, ·2) :=

(︁
̂︀𝐹 𝑞,𝑁∨𝑁 ′,𝑇,0
1 − 𝐹 𝑞,𝑁∨𝑁 ′,𝑇,0

1

)︁
(𝑡, ·2),

̃︀𝑅𝑁 ′
𝑁,2(𝑡, ·2) :=

(︁
𝐹 𝑞,𝑁,𝑇,0
1 − ̂︀𝐹 𝑞,𝑁,𝑇,0

1

)︁
(𝑡, ·2), and ̃︀𝑅𝑁 ′

𝑁,3(𝑡, ·2) :=
(︁
𝐹 𝑞,𝑁∨𝑁 ′,𝑇,0
1 − 𝐹 𝑞,𝑁,𝑇,0

1

)︁
(𝑡, ·2),

we have that 𝐵1(𝑡, 𝑁) is lower or equal than

max
0≤𝑁 ′≤𝑁𝑊

max,𝑞

𝑁 ′∈N0

(︃
(2 +

√
5)

2∑︁

𝑗=1

⃦⃦
⃦ ̃︀𝑅𝑁 ′

𝑁,𝑗(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
+

(︂
1 +

2√
5

)︂ ⃦⃦
⃦ ̃︀𝑅𝑁 ′

𝑁,3(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ(𝑡, 𝑁 ′)

)︃

+

.

Using 𝐹 𝑞,∞,𝑇,0
1 (𝑡, ·) = ℱ1st [𝑓𝛼,𝛽] (𝑡, ·), we have

⃦⃦
⃦ ̃︀𝑅𝑁 ′

𝑁,3(𝑡, ·2)
⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
=

∑︁

𝑁<|𝑚|𝑞≤𝑁∨𝑁 ′

⃒⃒
⃒⃒ 𝑐𝑚(𝑡)

𝜎𝑊,𝑥0𝑡𝑚

⃒⃒
⃒⃒
2

≤
⃦⃦
⃦
(︁
𝐹 𝑞,𝑁,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
,
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hence

𝐵1(𝑡, 𝑁) ≤ max
0≤𝑁 ′≤𝑁𝑊

max,𝑞

𝑁 ′∈N0

(︂
2(2 +

√
5)

⃦⃦
⃦
(︁
𝐹 𝑞,𝑁 ′,𝑇,0
1 − ̂︀𝐹 𝑞,𝑁 ′,𝑇,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ(𝑡, 𝑁 ′)

)︂

+

+

(︂
1 +

2√
5

)︂ ⃦⃦
⃦
(︁
𝐹 𝑞,𝑁,𝑇,0
1 −ℱ1st [𝑓𝛼,𝛽]

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
.

Finally, we have

E
[︁
ℒ𝑊𝑞

(︁
𝑡, ̂︀𝑁(𝑡), 𝑇

)︁]︁
+

1

2 +
√
5
E
[︁
Σ
(︁
𝑡, ̂︀𝑁(𝑡)

)︁]︁

≤ 4(2 +
√
5)2E

[︃
max

0≤𝑁 ′≤𝑁𝑊
max,𝑞

(︂⃦⃦
⃦
(︁
̂︀𝐹 𝑞,𝑁 ′,𝑇,0
1 − 𝐹 𝑞,𝑁 ′,𝑇,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ(𝑡, 𝑁 ′)

2(2 +
√
5)

)︂

+

]︃

+ (2 +
√
5)(1 + 𝑐1)E [Σ (𝑡, 𝑁)] +

(︁
2 +

√
5
)︁2

E
[︀
ℒ𝑊𝑞 (𝑡, 𝑁, 𝑇 )

]︀
.

Using (3.86) for the second display and Lemma 4 for the third, we obtain

E

[︂
max

0≤𝑁 ′≤𝑁𝑊
max,𝑞

⃦⃦
⃦
(︁
̂︀𝐹 𝑞,𝑁 ′,𝑇,0
1 − 𝐹 𝑞,𝑁 ′,𝑇,0

1

)︁
(𝑡, ·2)

⃦⃦
⃦
2

𝐿2(𝑊⊗𝑝)
− Σ(𝑡, 𝑁 ′)

2(2 +
√
5)

]︂

= E

⎡
⎣ max
0≤𝑁 ′≤𝑁𝑊

max,𝑞

⎛
⎝ ∑︁

|𝑚|𝑞≤𝑁 ′

(︂ |̂︀𝑐𝑚(𝑡)− 𝑐𝑚(𝑡)|
𝜎𝑊,𝑥0𝑡𝑚

)︂2

− Σ(𝑡, 𝑁 ′)

2(2 +
√
5)

⎞
⎠

+

⎤
⎦

≤
(︁
1 + 2

√
5
)︁
E

[︃
max

0≤𝑁 ′≤𝑁𝑊
max,𝑞

(︂
𝑆3(𝑁

′, 𝑡)− Σ(𝑡, 𝑁 ′)

2(2 +
√
5)

)︂

+

]︃

+

(︂
2 +

1√
5

)︂
E

[︂
max

0≤𝑁 ′≤𝑁𝑊
max,𝑞

(𝑆1(𝑁
′, 𝑡) + 𝑆2(𝑁

′, 𝑡))

]︂

≤
(︀
𝑁𝑊

max,𝑞 + 1
)︀ (︁

1 + 2
√
5
)︁
48
𝑐𝑋
𝑛

(︂ |𝑡|
2𝜋

)︂𝑝

𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
Ψ0,𝑛(𝑡) + 𝑍𝑛0Ψ𝑛(𝑡).

Hence the result. �

Hereafter, let (𝑛, 𝑛0) ∈ N2 such that 𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤ 𝑛−2 ln(𝑛)−𝑝, 𝑛 ≥ 𝑒7𝑒
2/(2𝜋) large

enough so that 𝑁𝑊
max,𝑞 ≥ (𝑝 + 1)/𝑘𝑞. Using 𝜃1/ ln(𝑛) ≤ 2𝜃0, let (𝜃1l{𝑊 = 𝑖[−𝑅,𝑅]} +

𝜃11l{𝑊 = cosh(·/𝑅)})/ ln(𝑛) ≤ 𝜖 ≤ 𝜃1l{𝑊 = 𝑖[−𝑅,𝑅]}+ 2𝜃01l{𝑊 = cosh(·/𝑅)}. Using

the deőnition of 𝑁𝑊
max,𝑞 yields 𝑁𝑊

max,𝑞 ≤ 𝑁𝑊
max,𝑞 and 𝜖 ≤ 𝜃 yields 𝑁

𝑖[−𝑅,𝑅]
max,𝑞 ln

(︁
𝑁
𝑖[−𝑅,𝑅]
max,𝑞

)︁
≤

ln(𝑛)/(2𝑘𝑞). Then, using that, for all 𝑥 ≥ 1/𝑒, 𝒲 (𝑥 ln(𝑥)) = ln(𝑥), and the deőnition

147



of 𝒲 for the bound on 𝑁
𝑖[−𝑅,𝑅]
max,𝑞 and else the deőnition of 𝑁 cosh(·/𝑅)

max,𝑞 , we have, for all

𝑡 ̸= 0,

𝑁𝑊
max,𝑞 ≤

ln(𝑛)

𝜏7
, 𝜏7 := 2𝑘𝑞𝒲

(︂
7𝑒2

4𝜋𝑘𝑞

)︂
1l{𝑊 = 𝑖[−𝑅,𝑅]}+ 2𝑘𝑞1l{𝑊 = cosh(·/𝑅)}.

(3.91)

Using, for all |𝑡| ≥ 𝜖 and 𝑁 ≥ 1, 2𝑘𝑞(𝑁 + 𝑘′𝑞/2) ln(𝜃(𝑁 + 1)/ |𝑡|) ≤ 2𝑘𝑞(𝑁 +

𝑘′𝑞/2) ln(𝜃𝑁/𝜖) + 2𝑘𝑞 + 𝑝, we have

(︁
𝜃
(︁
𝑁
𝑖[−𝑅,𝑅]
max,𝑞 + 1

)︁
/ |𝑡|

)︁2𝑘𝑞𝑁
𝑖[−𝑅,𝑅]
max,𝑞 +𝑝

≤ 𝑒2𝑘𝑞+𝑝
(︁
𝜃𝑁

𝑖[−𝑅,𝑅]
max,𝑞 /𝜖

)︁2𝑘𝑞𝑁
𝑖[−𝑅,𝑅]
max,𝑞 +𝑝

.

(3.65) and the deőnition of 𝑁
𝑖[−𝑅,𝑅]
max,𝑞 yield

∀|𝑡| ≥ 𝜖, ̃︀𝜔𝑞,𝑖[−𝑅,𝑅],𝑥0𝑡

𝑁𝑊
max,𝑞

≤ 22𝑝𝑒2𝑘𝑞𝑛. (3.92)

Lemma 7. For all 𝑞 ∈ {1,∞}, 𝜖 ≤ 𝑇max ≤ 𝑛𝜁0, and 𝑊 ∈ {𝑖[−𝑅,𝑅], cosh(·/𝑅)}, we

have

∫︁ 𝑇max

𝜖

𝑡𝑝𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
𝑑𝑡 ≤ 𝐴𝑊,𝑞3 ln(𝑛)𝑎0𝑛,

𝑎0 := 𝑝1l{𝑊 = 𝑖[−𝑅,𝑅]}+
𝑝− 1

𝑞
1l{𝑊 = cosh(·/𝑅)},

𝐴
𝑖[−𝑅,𝑅],𝑞

3 :=
2𝑝𝑄𝑞

𝜏 𝑝7 (𝑝+ 1)

(︂
𝜃2𝑝𝑒2𝑘𝑞

𝑘𝑞
+ 𝑒(1−𝜁0(𝑝+1))7𝑒2/(2𝜋)

)︂
,

𝐴
cosh(·/𝑅),𝑞
3 :=

21/𝑞𝑄𝑞

𝑘
(𝑝−1)/𝑞
𝑞

(︂(︁ 𝜋
56

)︁𝑝
1l{𝜖 < 𝜃0}𝜃0𝜃𝑝1 + 2𝑝

(︁𝑒
4

)︁𝑘𝑞 𝜃𝑝+1
0 𝑒2𝑝

3𝑝+ 2

)︂
.

Proof. Let 𝑊 = 𝑖[−𝑅,𝑅]. Using the deőnition of 𝜈
𝑖[−𝑅,𝑅]
𝑞 , 𝑁𝑊

max,𝑞 ≥ 1, and (3.57) for

the őrst inequality, (3.66) and (3.91) for the second, and the arguments which yield

148



(3.92) for the last inequality, the result follows from

∫︁ 𝑇max

𝜖

𝑡𝑝𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
𝑑𝑡

≤ 2𝑝𝑄𝑞

(︁
𝑁𝑊

max,𝑞

)︁𝑝 ∫︁ 𝑇max

𝜖

𝑡𝑝

⎛
⎝1

⋁︁
⎛
⎝
𝜃
(︁
𝑁𝑊

max,𝑞 + 1
)︁

|𝑡|

⎞
⎠
⎞
⎠

2𝑘𝑞𝑁𝑊
max,𝑞+𝑝

𝑑𝑡

≤ 2𝑝𝑄𝑞 ln(𝑛)
𝑝

𝜏 𝑝7

⎛
⎝ 𝜖𝑝+1

𝑘𝑞𝑁𝑊
max,𝑞

(︃
𝜃(𝑁𝑊

max,𝑞 + 1)

𝜖

)︃2𝑘𝑞𝑁𝑊
max,𝑞+𝑝

+
𝑇 𝑝+1
max

𝑝+ 1

⎞
⎠

≤ 2𝑝𝑄𝑞 ln(𝑛)
𝑝

𝜏 𝑝7 (𝑝+ 1)

(︂
𝜃𝑝+12𝑝𝑒2𝑘𝑞

𝑘𝑞
+

1

𝑛(𝑝+1)𝜁0−1

)︂
𝑛.

Let now 𝑊 = cosh(·/𝑅). Using the deőnition of 𝜈𝑊𝑞 , we have for all 𝑁 ≥ 1 and 𝑡 ̸= 0,

𝜈cosh(·/𝑅)
𝑞 (𝑥0𝑡, 𝑁) =2𝑝/𝑞𝑄𝑞𝑁

(𝑝−1)/𝑞
(︁ 𝜋
56

)︁𝑝(︂𝜃1
|𝑡|

)︂2𝑘𝑞𝑁+𝑝

1l{|𝑡| ≤ 𝜃0}

+ 2𝑝(1+1/𝑞)𝑄𝑞𝑁
(𝑝−1)/𝑞

(︂
𝑒|𝑡|
4𝜃0

)︂𝑘𝑞

exp
(︀
2𝜃0𝑘𝑞(𝑁 + 𝑘′𝑞)

)︀
1l{|𝑡| > 𝜃0}.

Because of (3.91), we have, for 𝑡 ̸= 0, 𝑒2𝑘𝑞𝑁
cosh(·/𝑅)
max,𝑞 ≤ 𝑛. By deőnition of 𝑁 cosh(·/𝑅)

max,𝑞 ,

when 𝜖 < 𝜃0, we also have, for |𝑡| ≤ 𝜃0, (𝜃1/𝜖)2𝑘𝑞𝑁
cosh(·/𝑅)
max,𝑞 ≤ 𝑛. Then, using (3.91) for

the őrst display and using (3.79) and (3.80) for the second, the result follows from

∫︁ 𝑇max

𝜖

𝑡𝑝𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
𝑑𝑡

≤2𝑝/𝑞𝑄𝑞

(︂
ln(𝑛)

2𝑘𝑞

)︂(𝑝−1)/𝑞 (︁ 𝜋
56

)︁𝑝
1l{𝜖 < 𝜃0}

∫︁ 𝜃0

𝜖

𝑡𝑝
(︂
𝜃1
𝑡

)︂2𝑘𝑞𝑁𝑊
max,𝑞+𝑝

𝑑𝑡

+𝑄𝑞

(︂
ln(𝑛)

2𝑘𝑞

)︂(𝑝−1)/𝑞
2𝑝(1+1/𝑞)𝑒𝑘𝑞

(4𝜃0)𝑘𝑞

∫︁ 𝑇max

𝜃0

𝑡𝑝+𝑘𝑞𝑒
2𝜃0𝑘𝑞

(︁
𝑁𝑊

max,𝑞+𝑘
′
𝑞

)︁

𝑑𝑡

≤2𝑝/𝑞𝑄𝑞

(︂
ln(𝑛)

2𝑘𝑞

)︂(𝑝−1)/𝑞 (︁ 𝜋
56

)︁𝑝
1l{𝜖 < 𝜃0}𝜃0𝜃𝑝1

(︂
𝜃1
𝜖

)︂2𝑘𝑞𝑁𝑊
max,𝑞

+𝑄𝑞

(︂
ln(𝑛)

2𝑘𝑞

)︂(𝑝−1)/𝑞
2𝑝(1+1/𝑞)𝑒𝑘𝑞

(4𝜃0)𝑘𝑞
𝜃
𝑝+1+𝑘𝑞
0 𝑒2𝑝

3𝑝+ 2
𝑒
2𝑘𝑞𝑁𝑊

max,𝑞

≤𝐴cosh(·/𝑅),𝑞
3 ln(𝑛)(𝑝−1)/𝑞𝑛. �

Lemma 8. For all 𝑞 ∈ {1,∞}, 𝑊 ∈ {𝑖[−𝑅,𝑅], cosh(·/𝑅)}, and (𝜖 ∨ 1) ≤ 𝑇max ≤ 𝑛𝜁0,
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we have Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁max,𝑞) ≤ (𝐴0 + 𝐴1)/𝑛, where

𝐴0 :=
𝑀ℰ,𝜂
𝑛

(︂
2 +

1√
5

)︂(︃(︂
4𝜋2

𝜃𝑥0

)︂𝑝

𝑏0(2𝜋)𝑙
2 +

2𝑐𝑋𝐴
𝑊,𝑞
3

(2𝜋)𝑝𝑒7𝑒2/(2𝜋)

)︃
,

𝑏0 := 22𝑝𝑒2𝑘𝑞1l{𝑊 = 𝑖[−𝑅,𝑅]}+
(︁ 𝜋
56

)︁𝑝
1l{𝑊 = cosh(·/𝑅)},

𝐴1 :=
96

(︀
1 + 2

√
5
)︀
𝑐𝑋𝜁0𝐴

𝑊,𝑞
3

(2𝜋)𝑝𝑘𝑞 ln(2) (1/𝜏7 + 𝜋/(7𝑒2))𝑝

(︂
𝑎0 + 2

𝑒𝜁0

)︂𝑎0+2

+
96

(︀
1 + 2

√
5
)︀
𝑐𝑋𝜁0𝐴

𝑊,𝑞
3

(2𝜋)𝑝𝑘𝑞 ln(2) (1/𝜏7 + 𝜋/(7𝑒2))𝑝
𝑒1/𝑏1294𝑐𝑋𝑎

2
1

𝑥𝑝0

(︂
𝑎0 + 2(𝑝+ 1)

𝑒

)︂𝑎0+2(𝑝+1)

,

𝑎1 :=

(︂
1

𝜏7
+

𝜋

7𝑒2

)︂𝑝

(𝐻01l{𝑊 = 𝑖[−𝑅,𝑅]}+𝐻11l{𝑊 = cosh(·/𝑅)})𝑝
(︀
1 + 𝑥20

)︀𝑝
,

𝑏1 :=
𝐿
√
𝑝2

𝑎1

(︂
𝑒(1− 4(1 + 1l{𝑊 = cosh(·/𝑅)})𝑝𝜁0)

2𝑝+ 3

)︂𝑝+3/2

.

Proof. Let us show

𝑍𝑛0

∫︁

𝜖≤|𝑡|≤𝑇max

Ψ𝑛(𝑡)𝑑𝑡 ≤
𝐴0

𝑛
and Π1(𝑛, 𝑇max, 𝑁max,𝑞) ≤

𝐴1

𝑛
. (3.93)

Let 𝑊 = 𝑖[−𝑅,𝑅]. Using for the second display 𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤ 𝑛−2 ln(𝑛)−𝑝, (3.92),

𝜖 ≥ 𝜃/ ln(𝑛), (3.57), and Lemma 7, we obtain

𝑍𝑛0

∫︁

𝜖≤|𝑡|≤𝑇max

Ψ𝑛(𝑡)

= 𝑍𝑛0

(︂
2 +

1√
5

)︂(︂
2𝜋

𝑥0

)︂𝑝 ∫︁

𝜖≤|𝑡|≤𝑇max

̃︀𝜔𝑞,𝑊,𝑥0𝑡
𝑁𝑊

max,𝑞
|𝑡|−𝑝 ‖ℱ1st [𝑓𝛼,𝛽] (𝑡, ·2)‖2𝐿2(R𝑝) 𝑑𝑡

+ 𝑍𝑛0

(︂
2 +

1√
5

)︂
𝑐𝑋

(2𝜋)𝑝𝑛

∫︁

𝜖≤|𝑡|≤𝑇max

|𝑡|𝑝𝜈𝑊𝑞 (𝑥0𝑡, 𝑁
𝑊
max,𝑞)𝑑𝑡

≤ 𝑀ℰ,𝜂
𝑛2 ln(𝑛)𝑝

(︂
2 +

1√
5

)︂(︃(︂
8𝜋

𝜃𝑥0

)︂𝑝

𝑒2𝑘𝑞𝑛 ln(𝑛)𝑝(2𝜋)𝑝+1𝑙2 +
2𝑐𝑋𝐴

𝑊,𝑞
3 ln(𝑛)𝑝

(2𝜋)𝑝

)︃
.

Using 𝑛 ≥ 𝑒7𝑒
2/(2𝜋) and (3.29) yield the őrst inequality in (3.93). Similarly, by def-

inition of 𝑁 cosh(·/𝑅)
max,𝑞 and (3.78), we have ̃︀𝜔𝑞,cosh(·/𝑅),𝑥0𝑡

𝑁𝑊
max,𝑞

≤ (𝑒𝜋/2)2𝑝𝑛. This and (3.91)

yield the őrst inequality in (3.93) for the other instances of 𝑊 and 𝑞.
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By (3.91), we have

𝐾𝑛(𝑡) ≤
(︂
ln(𝑛)

𝜏7
+

1

2

)︂𝑝

𝑇 2𝑝
max𝐻

𝑝
0

(︂
1

𝑇 2
max

+ 𝑥20

)︂𝑝

≤ 𝑎1 ln(𝑛)
𝑝𝑇 2𝑝

max. (3.94)

We obtain, using 𝑇max ≤ 𝑛𝜁0 for the third inequality and (3.29) for the fourth,

𝐿
√
𝑝𝑛𝑛

𝐾𝑛(𝑡)
≥ 𝐿

√︀
𝑝2 ln(𝑛)𝑛

𝑎1 ln(𝑛)𝑝𝑇
2𝑝
max

≥ 𝐿
√
𝑝2𝑛

(1−4𝜁0𝑝)/2

𝑎1 ln(𝑛)𝑝−1/2
≥ 𝑏1 ln(𝑛)

2.

Using (3.91) for the őrst inequality, Lemma 7 for the second, and using the deőnition

of 𝑝𝑛, 6(1 + 𝜁0) ln(𝑛) > 3, (3.94), and 𝑇 4𝑝
max ≤ 𝑛4𝑝𝜁0 , for the third, we have

Π1(𝑛, 𝑇max, 𝑁max,𝑞)

≤ 96
(︀
1 + 2

√
5
)︀
𝑐𝑋𝜁0 ln(𝑛)

2

(2𝜋)𝑝𝑘𝑞 ln(2)𝑛

(︂
1

𝜏7
+

𝜋

7𝑒2

)︂𝑝 ∫︁ 𝑇max

𝜖

𝑡𝑝𝜈𝑊𝑞
(︀
𝑥0𝑡, 𝑁

𝑊
max,𝑞

)︀
𝑑𝑡 sup

𝜖≤𝑡≤𝑇max

Ψ0,𝑛(𝑡)

≤ 96
(︀
1 + 2

√
5
)︀
𝑐𝑋𝜁0𝐴

𝑊,𝑞
3

(2𝜋)𝑝𝑘𝑞 ln(2)𝑛

(︂
1

𝜏7
+

𝜋

7𝑒2

)︂𝑝

sup
𝜖≤𝑡≤𝑇max

ln(𝑛)𝑝+2𝑛Ψ0,𝑛(𝑡)

≤ 96
(︀
1 + 2

√
5
)︀
𝑐𝑋𝜁0𝐴

𝑊,𝑞
3

(2𝜋)𝑝𝑘𝑞 ln(2)𝑛

(︂
1

𝜏7
+

𝜋

7𝑒2

)︂𝑝(︂
ln(𝑛)𝑝+2

𝑛𝜁0
+ sup

𝑛>0

(︁
𝑒−𝑏1 ln(𝑛)

2

𝑛2
)︁ 294𝑐𝑋𝑎

2
1

𝑥𝑝0

ln(𝑛)3𝑝+2

𝑛2(1−2𝑝𝜁0)

)︂
.

Thus, (3.29), 1− 2𝑝𝜁0 > 1/2, sup𝑥>0

(︁
𝑒−𝑏1 ln(𝑥)

2
𝑥2

)︁
= 𝑒1/𝑏1 yield the second inequality

in (3.93). We obtain similarly the bounds for the other instances of 𝑊 and 𝑞. �

Proof of Theorem 4. Let 𝑛, 𝑛0 such that 𝑣(𝑛0, ℰ)/𝛿(𝑛0) ≤ 𝑛−2 ln(𝑛)−𝑝, 𝑇 ∈ 𝒯𝑛,
and 𝑁 ∈ 𝒩𝑛. The proof of Theorem 4 has two parts. First, we prove

ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞, ̂︀𝑁,̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁

≤ 𝐶2
(︀
2 +

√
5
)︀4

𝜋

(︃∫︁

𝜖≤|𝑡|≤𝑇

̃︀∆𝑊
0 (𝑡, 𝑁(𝑡), 𝑛, 𝑍𝑛0)

(2𝜋)𝑝
𝑑𝑡+ sup

𝑡∈[−𝑇,𝑇 ]

2𝜋𝑙2

𝜔2
𝑁(𝑡)+1

+
2𝜋𝑙2

𝜑(𝑇 )2

)︃

+ 𝐶𝑀2 ̃︀𝑤(𝑎) +
2(2 +

√
5)2𝐶

(︁
1 +

(︀
2 +

√
5
)︀2)︁

(𝐴0 + 𝐴1)

𝜋𝑛
, (3.95)

where ̃︀∆𝑊
0 is deőned in (3.84) and (3.85). Second, we particularise (3.95) to the

different smoothness cases and prove (T4.1),(T4.2),(T5.1), and (T5.2).
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Part 1. By Lemma 5 and Lemma 6, we have

ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞, ̂︀𝑁,̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁

≤ 𝐶
(︀
2 +

√
5
)︀4

2𝜋

(︂∫︁

𝜖≤|𝑡|
E
[︀
ℒ𝑊𝑞 (𝑡, 𝑁(𝑡), 𝑇 )

]︀
𝑑𝑡+

1 + 𝑐1

2 +
√
5
E [Σ2(𝑇,𝑁)]

)︂

+
2(2 +

√
5)2𝐶

(︁
1 +

(︀
2 +

√
5
)︀2)︁

𝜋
Π(𝑛, 𝑍𝑛0 , 𝑇max, 𝑁max,𝑞) + 𝐶𝑀2 ̃︀𝑤(𝑎).

The deőnition of Σ, (3.59), (3.62), (3.63), (3.64), and Lemma 8 yield (3.95).

Part 2. We start from (3.95) and use 𝐴4 := 2(2 +
√
5)2𝐶

(︁
1 +

(︀
2 +

√
5
)︀2)︁

(𝐴0 +

𝐴1)/𝜋, 𝑇 * := 2𝑘
*
, 𝑘* := ⌊ln(𝜑𝐼(𝜔𝑁*))/ ln(2)⌋, 𝑁*(𝑡) := ⌊𝑁*⌋, where 𝑁* is deőned

below, and

ℛ𝑊,adp
𝑛0,sup

:= sup
𝑓𝛼,𝛽∈ℋ𝑞,𝜑,𝜔

𝑤,𝑊 (𝑙,𝑀)∩𝒟, 𝑓𝑋|𝒳∈ℰ
ℛ𝑊
𝑛0

(︁
̂︀𝑓 𝑞, ̂︀𝑁,̂︀𝑇 ,𝜖𝛼,𝛽 , 𝑓𝛼,𝛽

)︁
.

We have, for all |𝑡| ≥ 𝜖,𝑊 ∈ {𝑖[−𝑅,𝑅], cosh(·/𝑅)}, and𝑁 ≥ 1, 2̃︀∆𝑊
0 (𝑡, 𝑁, 𝑛, 𝑍𝑛0)/(𝜋(2𝜋)

𝑝) ≤
̃︀∆𝑊 (𝑡, 𝑁, 𝑛, 𝑍𝑛0) where ̃︀∆𝑊 is deőned like ∆𝑊 replacing𝑄𝑞 by𝑄𝑞,𝑛 := 𝑄𝑞 (1 + 2(1 + 2𝑝𝑛)(1 + 𝑐1)).

Thus, by (3.95), we obtain, for all 𝑊 ∈ {𝑖[−𝑅,𝑅], cosh(·/𝑅)},

ℛ𝑊,adp
𝑛0,sup

≤𝐶
(︁
2 +

√
5
)︁4

∫︁

𝜖≤|𝑡|≤𝑇
̃︀∆𝑊

(︂
𝑡, 𝑁(𝑡), 𝑛,

𝑀ℰ,𝜂𝑣(𝑛0, ℰ)
𝛿(𝑛0)

)︂
𝑑𝑡

+ 𝐶
(︁
2 +

√
5
)︁4

(︃
sup

𝑡∈[−𝑇,𝑇 ]

4𝑙2

𝜔2
𝑁(𝑡)+1

+
4𝑙2

𝜑(𝑇 )2

)︃
+ 𝐶𝑀2 ̃︀𝑤(𝑎) + 𝐴4

𝑛
. (3.96)

Proof of (T4.1). Let 𝑁* solution of

2𝑘𝑞𝑁
* ln (𝑁* ln(𝑛)) + ln

(︀
𝜔2
𝑁*

)︀
+ (𝑝− 1) ln (𝑁*) + ln2(𝑛) = ln(𝑛), (3.97)

𝑛 ≥ 𝑒7𝑒
2/(2𝜋) large enough so 𝑁* ≥ 1, and (ln(𝑛)/𝜏 ′2)

𝜎/𝑠 ≤ 𝑛𝜁0/2, where 𝜏 ′2 :=

2𝑘𝑞𝒲(𝑒/(2𝑘𝑞)). By (3.97) and the deőnition of 𝑁𝑊
max,𝑞, we have 𝑁* ≤ 𝑁𝑊

max,𝑞 for

all 𝑡 ∈ R ∖ (−𝜖, 𝜖), hence 𝑁* ∈ 𝒩𝑛. Also 𝑇 * ∈ 𝒯𝑛 because, by the arguments in the
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proof of (T2.1),

𝑁* ≤ ln(𝑛)

2𝑘𝑞𝒲(ln(𝑛)/(2𝑘𝑞))
≤ ln(𝑛)

𝜏 ′2
,

so we have 𝑇 * ≤ (ln(𝑛)/𝜏 ′2)
𝜎/𝑠 ≤ 𝑛𝜁0/2 ≤ 𝑇max. (3.66), (3.67), and 𝑝𝑛 = 6 (1 + 𝜁0) ln(𝑛),

yield

ℛ𝑊,adp
𝑛0,sup

≤ 𝐶
(︁
2 +

√
5
)︁4

ln(𝑛)(𝑁*)𝑝−1

(︂
𝜏 ′0
𝑛
(𝑁* ln(𝑛))2𝑘𝑞𝑁

*+𝑝 +
𝜏 ′1
𝑛
(𝑇 *)𝑝+1

)︂
+

8𝐶
(︀
2 +

√
5
)︀4
𝑙2

𝜔2
𝑁*

+
𝜃𝐶𝑀2

ln(𝑛)
+
𝐴4

𝑛
,

𝜏 ′0 :=
𝑒2𝑘𝑞4𝑐𝑋𝜃

𝑝+1

𝜋𝑝+1𝑘𝑞

(︂
𝑄𝑞

(︂
1

𝑒
+

(︂
1

𝑒
+ 6 (1 + 𝜁0)

)︂
2(1 + 𝑐1)

)︂
+ 𝑒𝑀ℰ,𝜂2

𝑝

)︂
+
𝑀ℰ,𝜂2𝑝+2𝑙2

𝑒
,

𝜏 ′1 :=
4𝑐𝑋

𝜋𝑝+1(𝑝+ 1)

(︂
𝑄𝑞

(︂
1

𝑒
+

(︂
1

𝑒
+ 6 (1 + 𝜁0)

)︂
2(1 + 𝑐1)

)︂
+
𝑀ℰ,𝜂2𝑝

𝑒

)︂
.

The computation below gives lower bounds on 𝑁* ln(𝑁*) and 𝑁*:

ln(𝑛) = 2𝑘𝑞(𝑁
* + 𝑘′𝑞/2) ln (𝑁

* ln(𝑛)) + (2𝜎 + 𝑝− 1) ln (𝑁*) + ln2(𝑛)

≤ 2
(︁
(2(𝑘𝑞 + 𝜎) + 2𝑝− 1)𝑁* ln(𝑁*)

⋁︁
(2𝑘𝑞𝑁

* + 𝑝+ 1) ln2(𝑛)
)︁

≤ 2
(︁
(2(𝑘𝑞 + 𝜎) + 2𝑝− 1)𝑁* ln(𝑁*)

⋁︁
(2𝑘𝑞 + 𝑝+ 1)𝑁* ln2(𝑛)

)︁
.

This yields, using 𝒲(𝑥) ≤ ln(𝑥 + 1) for all 𝑥 > 0, 𝑁* ≥ ln(𝑛)/((𝜏8
⋁︀
(2𝑘𝑞 + 𝑝 +

1)) ln2(𝑛)(1+ln(1+𝜏8/𝑒)), where 𝜏8 := 2(2(𝑘𝑞+𝜎)+2𝑝−1). We conclude proceeding

like for (3.70).

Proof of (T4.2). Start from (3.96), where, because 𝑤 = 𝑖𝒜, the term𝑀2 ̃︀𝑤(𝑎) is zero.

Let 𝑁* solution of 2𝑘𝑞(𝑁
*+𝑘′𝑞/2) ln (𝑁

*)+ln
(︁
𝜔2
𝑁*

)︁
+(𝑝−1) ln (𝑁*)+ln2(𝑛) = ln(𝑛).

By deőnition of 𝑁𝑊
max,𝑞 this yields 𝑁* ≤ 𝑁𝑊

max,𝑞 hence 𝑁* ∈ 𝒩𝑛. Using arguments

from the proof of (T2.2a) we have 𝑇 * ≤ 𝑛𝜅/(2(𝜅+𝑘𝑞)𝑠) and, using 𝑠 > 2𝑝 + 1/2, for 𝑛

large enough 𝑛𝜅/(2(𝜅+𝑘𝑞)𝑠) ≤ 𝑛1/(4𝑝+1)/2 ≤ 𝑇max, hence 𝑇 * ∈ 𝒯𝑛. Thus, we obtain

ℛ𝑊,adp
𝑛0,sup

≤ 𝐶
(︁
2 +

√
5
)︁4

ln(𝑛)(𝑁*)𝑝−1

(︂
𝜏 ′0
𝑛
(𝑁*)2𝑘𝑞𝑁

*+𝑝 +
𝜏 ′1
𝑛
(𝑇 *)𝑝+1

)︂
+
8𝐶

(︀
2 +

√
5
)︀4
𝑙2

𝜔2
𝑁*

+
𝐴4

𝑛
.

This yields the result following the proof of (T2.2a).
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Proof of (T5.1). Starting from (3.96), the proof is similar to that of (T4.1) with ele-

ments from that of (T3.1), using𝑁* solution of 2𝑘𝑞(𝑁+𝑘′𝑞/2) ln2 (𝑛)+(𝑝−1) ln(𝑁)/𝑞+

ln
(︁
𝜔2
𝑁*

)︁
= ln(𝑛).

Proof of (T5.2). The proof is similar to that of (T4.2). Start from (3.96). Let 𝑁*

solution of 2(𝑘𝑞+𝜅)𝑁
*+(𝑝−1) ln(𝑁*)/𝑞+ln2(𝑛) = ln(𝑛). Then, using the deőnition

of 𝑁𝑊
max,𝑞, which satisőes 2𝑘𝑞𝑁𝑊

max,𝑞 = ln(𝑛), we have 𝑁* ∈ 𝒩𝑛. Using arguments from

the proof of (T3.2), we have 𝑇 * ≤ 𝑛
𝜅/(2𝑠(𝜅+𝑘𝑞))
𝑒 and, using 𝑠 > 4𝑝 + 1/2, for 𝑛 large

enough 𝑛𝜅/(2𝑠(𝜅+𝑘𝑞))𝑒 ≤ 𝑛1/(8𝑝+1)/2 ≤ 𝑇max, hence 𝑇 * ∈ 𝒯𝑛. This yields the result using

the proof of (T3.2). �

3.7 Harmonic analysis

3.7.1 Preliminaries

𝑃𝑚 is the Legendre polynomial of degree 𝑚 with ‖𝑃𝑚‖𝐿2([−1,1]) = 1.

Lemma 9. For all 𝑓 ∈ 𝐿2
𝑤(R), 𝑤 even, nondecreasing on [0,∞), and 𝑤(0), 𝑅 > 0,

we have
⃦⃦
𝒫𝑅 [ℱ [𝑓 ]]−ℱ [𝑓 ]

⃦⃦2

𝐿2(R)
≤ (2𝜋/𝑤(𝑅))‖𝑓‖2𝐿2(𝑤).

Proof. The result uses the Plancherel identity and

⃦⃦
𝒫𝑅 [ℱ [𝑓 ]]−ℱ [𝑓 ]

⃦⃦2

𝐿2(R)
= 2𝜋

∫︁

R

1l{|𝑎| > 𝑅} |𝑓 (𝑎)|2 𝑑𝑎 ≤ 2𝜋

𝑤(𝑅)

∫︁

R

|𝑓 (𝑎)|2𝑤(𝑎)𝑑𝑎. �

Proposition 4. For all weighting function 𝑊 , 𝑐 ∈ R, 𝑅 > 0, and 𝑚 ∈ N0, we have

(i) 𝑔𝑊 (·/𝑅),𝑐
𝑚 = 𝑔𝑊,𝑅𝑐𝑚 in 𝐿2([−1, 1]),

(ii) 𝜎𝑊 (·/𝑅),𝑐
𝑚 = 𝜎𝑊,𝑅𝑐𝑚

√
𝑅,

(iii) 𝜙𝑊 (·/𝑅),𝑐
𝑚 = 𝜙𝑊,𝑅𝑐𝑚 (⋆/𝑅) /

√
𝑅 𝑎.𝑒.

Proof. (i) follows from 𝒬𝑊 (·/𝑅)
𝑐 = 𝒬𝑊

𝑅𝑐 and (ii) from 𝜎
𝑊 (·/𝑅),𝑐
𝑚 =

√︁
2𝜋𝜌

𝑊 (·/𝑅),𝑐
𝑚 / |𝑐| =√︁

2𝜋𝜌𝑊,𝑅𝑐𝑚 / |𝑐| (by the argument yielding (i)). Now, using (i) in the őrst display and
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(ii) in the last display, we have, for a.e. 𝑡 ∈ R,

𝜎𝑊,𝑅𝑐𝑚 𝜙𝑊,𝑅𝑐𝑚

(︂
𝑡

𝑅

)︂
= ℱ*

𝑅𝑐

[︀
𝑔𝑊 (·/𝑅),𝑐
𝑚

]︀(︂ 𝑡

𝑅

)︂
(where ℱ*

𝑅𝑐 : 𝐿
2([−1, 1]) → 𝐿2(𝑊 ))

= ℱ*
𝑐

[︀
𝑔𝑊 (·/𝑅),𝑐
𝑚

]︀
(𝑡)

(︀
where ℱ*

𝑐 : 𝐿2([−1, 1]) → 𝐿2(𝑊 (·/𝑅))
)︀

= 𝜎𝑊 (·/𝑅),𝑐
𝑚 𝜙𝑊 (·/𝑅),𝑐

𝑚 (𝑡) = 𝜎𝑊,𝑅𝑐𝑚

√
𝑅𝜙𝑊 (·/𝑅),𝑐

𝑚 (𝑡),

hence (iii) when we divide by 𝜎𝑊,𝑅𝑐𝑚 which is nonzero. �

Proposition 5. For all 𝑚 ∈ N𝑝
0, 𝑅 > 0, 𝑊 = 𝑖[−𝑅,𝑅] or 𝑊 = cosh(·/𝑅), 𝑡 ̸= 0, we

have
⃦⃦
𝑔𝑊,𝑥0𝑡𝑚

⃦⃦
𝐿∞([−1,1]𝑝)

≤ 𝐻𝑊 (𝑡)
∏︀𝑝

𝑗=1

√︀
𝑚𝑗 + 1/2, where 𝐻𝑖[−𝑅,𝑅]

(𝑡) = 𝐻𝑝
0 (1 + (𝑥0|𝑡|)2)𝑝,

𝐻0 = 2(1 + 1/
√
3), 𝐻cosh(·/𝑅)(𝑡) = 𝐻𝑝

1 (1 ∨ (𝑥0|𝑡|)4)𝑝, 𝐻1 > 0.

Proof. When 𝑊 = 𝑖[−𝑅,𝑅], this is (66) in Bonami and Karoui (2016) else this is (50)

in Gaillac and Gautier (2019a). �

Lemma 10. For all 𝑞 ∈ {1,∞}, 𝑡 ̸= 0, 𝑅 > 0, 𝑁 ∈ N0, in the two cases of weights

𝑊 in Section 3.4.3, we have
∑︀

|𝑚|𝑞≤𝑁 1/𝜌𝑊,𝑡𝑚 ≤ 𝜈𝑊𝑞 (𝑡, 𝑁).

Proof. Let 𝑅 > 0. We use repeatedly, for all 𝑥 > 0 and 𝑁 ∈ N0,

∑︁

𝑘≤𝑁
exp (𝑘𝑥) ≤ exp ((𝑁 + 1/2)𝑥)

2 sinh (𝑥/2)
≤ exp ((𝑁 + 1/2)𝑥)

𝑥
(because sinh(|𝑥|) ≥ |𝑥|),

(3.98)

≤ exp (𝑁𝑥)

1− exp(−𝑥) , (3.99)

the cardinal of {𝑚 ∈ N𝑝
0 : |𝑚|1 = 𝑘} is

(︀
𝑘+𝑝−1
𝑝−1

)︀
, and (𝑘+ 𝑝− 1)!/𝑘! ≤ (𝑘+ 𝑝− 1)𝑝−1,

and for all 𝑚 ∈ N0, 𝜌cosh,𝑅𝑡𝑚 = 𝜌
cosh(·/𝑅),𝑡
𝑚 and 𝜌

𝑖[−1,1],𝑅𝑡
𝑚 = 𝜌

𝑖[−𝑅,𝑅],𝑡
𝑚 .

Start by case (N.2). Let |𝑡| > 𝜋/4 and 𝑞 = 1. By (11) in Gaillac and Gautier (2019a)

(there 𝒬𝑡 differs by a factor 1/(2𝜋)), we have, for all 𝑚 ∈ N0,

𝜌cosh,𝑡𝑚 ≥ 1

2
exp

(︂
−𝜋(𝑚+ 1)

2 |𝑡|

)︂
. (3.100)
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The result is obtained from the above with (3.98) and

∑︁

|𝑚|1≤𝑁

1

𝜌cosh,𝑡𝑚

≤2𝑝
∑︁

𝑘≤𝑁

∑︁

|𝑚|1=𝑘
exp

(︂
𝜋(|𝑚|1 + 𝑝)

2 |𝑡|

)︂

≤2𝑝+1(𝑁 + 𝑝− 1)𝑝−1𝑒 |𝑡|
𝜋(𝑝− 1)!

exp

(︂
𝜋(𝑁 + 𝑝)

2 |𝑡|

)︂
. (3.101)

Let |𝑡| ≤ 𝜋/4 and 𝑞 = 1. By Theorem 4 in Gaillac and Gautier (2019a) and using

that 𝑥 ↦→ sin(𝑥)/𝑥 is decreasing on (0, 𝜋/2], we have, for all 𝑚 ∈ N0,

𝜌cosh,𝑡𝑚 ≥ 56

𝜋2
exp

(︂
−2 ln

(︂
7𝑒2𝜋

2|𝑡|

)︂(︂
𝑚+

1

2

)︂)︂
. (3.102)

The result is obtained from the above with (3.99) and

∑︁

|𝑚|1≤𝑁

1

𝜌cosh,𝑡𝑚

≤
(︂
𝜋2

56

)︂𝑝 ∑︁

𝑘≤𝑁

∑︁

|𝑚|1=𝑘
exp

(︂
2 ln

(︂
7𝑒2𝜋

2|𝑡|

)︂(︁
|𝑚|1 +

𝑝

2

)︁)︂

≤
(︂
𝜋2

56

)︂𝑝
(𝑁 + 𝑝− 1)𝑝−1

(𝑝− 1)!
exp

(︂
2 ln

(︂
7𝑒2𝜋

2|𝑡|

)︂(︁
𝑁 +

𝑝

2

)︁)︂ 1

1− (1/(14𝑒2𝜋))2
.

(3.103)

The results for 𝑞 = ∞ are obtained using (3.101) and (3.103) with 𝑝 = 1 and

∑︁

|𝑚|∞≤𝑁

1

𝜌cosh,𝑡𝑚

≤
𝑝∏︁

𝑗=1

⎛
⎝

𝑁∑︁

𝑚𝑗=0

1

𝜌cosh,𝑡𝑚𝑗

⎞
⎠ . (3.104)

Consider case (N.1). Let 𝑡 ̸= 0. Because 14𝑒 ≥ 1 and by Lemma 13, we have, for all

𝑚 ∈ N0,

𝜌
𝑖[−1,1],𝑡
𝑚 ≥ 1

2

(︂ |𝑡|
7𝑒𝜋(𝑚+ 1)

⋀︁
1

)︂2𝑚+1

. (3.105)
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When 𝑞 = 1, the result follows from the following sequence of inequalities

∑︁

|𝑚|1≤𝑁

1

𝜌
𝑖[−1,1],𝑡
𝑚

≤2𝑝
∑︁

𝑘≤𝑁

∑︁

|𝑚|1=𝑘

𝑝∏︁

𝑗=1

exp

(︂
2

(︂
𝑚𝑗 +

1

2

)︂
ln

(︂
7𝑒𝜋(𝑚𝑗 + 1)

|𝑡|
⋁︁

1

)︂)︂

≤2𝑝(𝑁 + 𝑝− 1)𝑝−1(𝑁 + 1)

(𝑝− 1)!
exp

(︂
2
(︁
𝑁 +

𝑝

2

)︁
ln

(︂
7𝑒𝜋(𝑁 + 1)

|𝑡|
⋁︁

1

)︂)︂
.

When 𝑞 = ∞, we obtain the result using the above with 𝑝 = 1 and (3.104). �

The proof of the next lemma is straightforward.

Lemma 11. Let 𝑓𝛼,𝛽 ∈ 𝐿2 (𝑤 ⊗𝑊⊗𝑝). For all 𝑚 ∈ N𝑝
0, 𝑡 ̸= 0, we have 𝑐𝑚 =

𝜎𝑊,𝑥0𝑡𝑚 𝑏𝑚 𝑎.𝑒.

3.7.2 Properties of the PSWF and eigenvalues

Lemma 12. For all 𝑐 ̸= 0 and 𝑚 ∈ N0, we have |𝜇𝑐𝑚| ≤
√
2𝜋𝑒3/2 (𝑒 |𝑐| / (4(𝑚+ 3/2)))𝑚 /3.

Proof. Let 𝑐 ̸= 0 and 𝑚 ∈ N0. By (69) in Rokhlin and Xiao (2007), 6.1.18 in

Abramowitz and Stegun (1965), (7) in Gautschi (1959), (1.3) in Mortici and Chen

(2011), we obtain

|𝜇𝑐𝑚| ≤
√
𝜋 |𝑐|𝑚 (𝑚!)2

(2𝑚)!Γ(𝑚+ 3/2)

≤ 𝜋 |𝑐|𝑚
4𝑚Γ (𝑚+ 3/2)

Γ(𝑚+ 1)

Γ (𝑚+ 1/2)

≤ 𝜋 |𝑐|𝑚
4𝑚Γ(𝑚+ 3/2)

(𝑚+ 1)1/2 ≤
√
𝜋𝑒3(𝑒 |𝑐|)𝑚(𝑚+ 1)1/2

4𝑚
√
2(𝑚+ 3/2)𝑚+1

and conclude using sup𝑥≥0(𝑥+ 1)1/2/(𝑥+ 3/2) ≤ 2/3. �

Lemma 13. For all 𝑐 ̸= 0 and 𝑚 ∈ N0, we have

𝜌
𝑖[−1,1],𝑐
𝑚 ≥ 1

2
1l

{︂
𝑚 ≤ 2 |𝑐|

𝜋
− 1

}︂
+ 7𝑒

(︂
𝑐

7𝑒𝜋(𝑚+ 1)

)︂2𝑚+1

1l

{︂
𝑚 >

2 |𝑐|
𝜋

− 1

}︂
.

Proof. When 𝑚 ≥ 2 |𝑐| /𝜋 − 1, the result follows from the fact that, by Proposition

5.1 in Bonami et al. (2018) and the Turán-Nazarov inequality (see Nazarov (2000)
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page 240 or (12) in Gaillac and Gautier (2019a)), 𝜌
𝑖[−1,1],𝑐
𝑚 ≥ 7𝑒 (𝑐/ (7𝑒𝜋(𝑚+ 1)))2𝑚+1 .

For all 𝑚 ≤ 2 |𝑐| /𝜋 − 1, the result follows from Remark 5.2 in Bonami et al. (2018)

and that, for all 𝑚 ∈ N0, 𝑐 ∈ (0,∞) ↦→ 𝜌𝑐𝑚 is nondecreasing (by the arguments in the

proof of Lemma 3 in Gaillac and Gautier (2019a)). �

We now use Π(𝑐) := 3𝑐2 exp
(︀
2𝑐2/

√
3
)︀
/16, 𝐻(𝑐) :=

√︀
2Π(𝑐) ∨ 2,

𝑙(𝑐) :=
(︀
1 + 4𝑐2/33/2

)︀ (︀
1 + 2𝑐233/2

)︀
,

if 𝑁 ≥ 𝐻(𝑐) then 𝑁 ≥ 𝑐 (for all 𝑐 ≥ 2, 𝑁 ≥ 𝑐
√︁

3 exp(8/
√
3)/16 > 𝑐 else 𝑁 ≥ 𝐻(𝑐) ≥

2 > 𝑐), 𝑓(𝑥) := |𝑥|/(1 − 𝑥2), 𝑔(𝑥) := |𝑥| /(1 − 𝑥)2, ℎ(𝑥) := |𝑥|/(1 − |𝑥|), 𝑐𝑓 := 4/3,

𝑐𝑔 := 4, 𝑐ℎ := 2,

∀𝑥 ∈ [−1/2, 1/2], 𝑓(𝑥) ≤ 𝑐𝑓 |𝑥| , 𝑔(𝑥) ≤ 𝑐𝑔 |𝑥| , ℎ(𝑥) ≤ 𝑐ℎ |𝑥| ; (3.106)

2
∑︁

𝑘≡𝑁 [2], 0<𝑘<𝑁

2𝑘 + 1 = 𝑁(𝑁 − 1). (3.107)

(3.107) is obtained because for all 𝑁 even the sum is 2
∑︀𝑁/2−1

𝑝=1 4𝑝 + 1 and else

2
∑︀(𝑁−1)/2−1

𝑝=0 4𝑝+ 3.

Lemma 14. For all 𝑐 ̸= 0 and 𝑚 ≥ 2, we have
⃒⃒
𝜇𝑐𝑚/𝜇

𝑐
𝑚−2

⃒⃒
≤ Π(𝑐)/𝑚2.

Proof. Let 𝑐 > 0 and 𝑚 ∈ N0 (for 𝑐 < 0, we use 𝜇𝑐𝑚 = 𝜇−𝑐
𝑚 ). By Theorem 8.1 in

Osipov et al. (2013), we have

|𝜇𝑐𝑚| =
√
𝜋𝑐𝑚(𝑚!)2

(2𝑚)!Γ(𝑚+ 3/2)
𝑒𝐹𝑚(𝑐), 𝐹𝑚(𝑐) =

∫︁ 𝑐

0

(︃
2 (𝜓𝑡𝑚(1))

2 − 1

2𝑡
− 𝑚

𝑡

)︃
𝑑𝑡.

Moreover, by (65) in Bonami and Karoui (2016), for all 𝑡 > 0,

(︃√︂
𝑚+

1

2
− 𝑡2√

3
√︀
𝑚+ 1/2

)︃2

≤
(︀
𝜓𝑡𝑚(1)

)︀2 ≤
(︃√︂

𝑚+
1

2
+

𝑡2√
3
√︀
𝑚+ 1/2

)︃2
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which yields, if 𝑚 ≥ 2,

(︀
𝜓𝑡𝑚(1)

)︀2 −
(︀
𝜓𝑡𝑚−2(1)

)︀2

≤
(︃√︂

𝑚+
1

2
+

𝑡2√
3
√︀
𝑚+ 1/2

)︃2

−
(︃√︂

(𝑚− 2) +
1

2
− 𝑡2√

3
√︀

(𝑚− 2) + 1/2

)︃2

= 2 +
4𝑡2√
3
+
𝑡4

3

(︂
1

𝑚+ 1/2
− 1

𝑚− 3/2

)︂
≤ 2 +

4𝑡2√
3
. (3.108)

Using sup𝑥≥2 𝑥
3(𝑥−1)/ ((𝑥2 − 1/4)(𝑥− 1/2)(𝑥− 3/2)) ≤ 3 and (3.108), for all𝑚 ≥ 2,

⃒⃒
⃒⃒ 𝜇

𝑐
𝑚

𝜇𝑐𝑚−2

⃒⃒
⃒⃒ = 𝑐2

16

𝑚(𝑚− 1)

(𝑚2 − 1/4)(𝑚− 1/2)(𝑚− 3/2)
exp (𝐹𝑚(𝑐)− 𝐹𝑚−2(𝑐))

≤ 3𝑐2

16𝑚2
exp

(︃∫︁ 𝑐

0

(︃
(𝜓𝑡𝑚(1))

2 −
(︀
𝜓𝑡𝑚−2(1)

)︀2

𝑡
− 2

𝑡

)︃
𝑑𝑡

)︃
≤ 3𝑐2

16𝑚2
exp

(︂
2𝑐2√
3

)︂
. �

Lemma 15. For all 𝑐 ̸= 0 and 𝑘 ∈ N, we have (𝜓𝑐𝑘(1))
2 ≤ (𝑘 + 1/2)

(︀
1 + 2𝑐2/33/2

)︀2

and ‖𝜓𝑐𝑘‖2𝐿∞([−1,1]) ≤ (𝑘 + 1/2)
(︀
1 + 4𝑐2/33/2

)︀2
. For all 𝑐 ̸= 0 and 𝑘 ≥ 𝑐, we have

‖𝜓𝑐𝑘‖2𝐿∞([−1,1]) ≤ 𝑘 + 1/2. We also have ‖𝜓𝑐0‖2𝐿∞([−1,1]) ≤ 2|𝑐|/𝜋.

Proof. The őrst assertion follows from (65) in Bonami and Karoui (2016). For the

second, we use (66) in Bonami and Karoui (2016) in the őrst display, 22.14.7 and

22.2.10 in Abramowitz and Stegun (1965), hence ‖𝑃𝑘‖𝐿∞([−1,1]) ≤
√︀
𝑘 + 1/2, in the

second inequality,

‖𝜓𝑐𝑘‖𝐿∞([−1,1]) ≤ ‖𝑃𝑘‖𝐿∞([−1,1]) +
𝑐2√︀

3(𝑘 + 1/2)

(︃
1 +

√︀
3/2√︀

𝑘 + 1/2

)︃

≤
√︀
𝑘 + 1/2

(︃
1 +

𝑐2√
3(𝑘 + 1/2)

(︃
1 +

√︀
3/2√︀

𝑘 + 1/2

)︃)︃

≤
√︀
𝑘 + 1/2

(︂
1 +

4𝑐2

33/2

)︂
.

The third uses (3.4) and (3.125) in Osipov et al. (2013). We obtain the last by the

proof of Proposition 1 in Karoui and Moumni (2008) which yields ‖𝜓𝑐0‖2𝐿∞([−1,1]) ≤
2/(𝜇𝑐0)

2 and Lemma 13. For all 𝑐 < 0, we use 𝜓−𝑐
𝑚 = 𝜓𝑐𝑚. �
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Lemma 16. For all 𝑐 ̸= 0 and 𝑁 ≥ 𝐻(𝑐), we have

⃦⃦
⃦⃦𝜕𝜓

𝑐
𝑁

𝜕𝑐

⃦⃦
⃦⃦
𝐿∞([−1,1])

≤ 2𝑐𝑓 (𝐶1(𝑐) + 𝐶2(𝑐))𝐶3(𝑐)Π(𝑐)

|𝑐|
√
𝑁,

𝐶1(𝑐) :=
2𝐻(𝑐) + 9

(𝐻(𝑐) + 2)2
, 𝐶2(𝑐) :=

2 |𝑐|
𝜋𝐻(𝑐)(𝐻(𝑐)− 1)

+
𝑙(𝑐)

4
, 𝐶3(𝑐) :=

√︃
1 +

1

2𝐻(𝑐)
.

Proof. Take 𝑐 ̸= 0, 𝑁 ≥ 𝐻(𝑐), and 𝑤 ∈ [−1, 1]. Theorem 7.11 in Osipov et al. (2013)

yields
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑤) =
2𝜓𝑐𝑁(1)

|𝑐|
∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁

𝜇𝑐𝑁𝜇
𝑐
𝑘

(𝜇𝑐𝑁)
2 − (𝜇𝑐𝑘)

2𝜓
𝑐
𝑘(1)𝜓

𝑐
𝑘(𝑤). (3.109)

Using 𝜇𝑐𝑘/𝜇
𝑐
𝑁 ∈ R if 𝑘 ≡ 𝑁 [2] and Lemma 15, we obtain

⃒⃒
⃒⃒𝜕𝜓

𝑐
𝑁

𝜕𝑐
(𝑤)

⃒⃒
⃒⃒ ≤

√
4𝑁 + 2

|𝑐| 𝒞(𝑓,𝑁, 𝑐),

𝒞(𝑓,𝑁, 𝑐) := 𝑓

(︂
𝜇𝑐𝑁
𝜇𝑐0

)︂
2|𝑐|1l{𝑁 ≡ 0[2]}

𝜋
+

∑︁

0<𝑘<𝑁
𝑘≡𝑁 [2]

𝑓

(︂
𝜇𝑐𝑁
𝜇𝑐𝑘

)︂
𝑙(𝑐)

(︂
𝑘 +

1

2

)︂

+
∑︁

𝑘>𝑁
𝑘≡𝑁 [2]

𝑓

(︂
𝜇𝑐𝑘
𝜇𝑐𝑁

)︂(︂
𝑘 +

1

2

)︂
.

Lemma 14 yields, if 𝑘 ≡ 𝑁 [2],

⃒⃒
⃒⃒𝜇

𝑐
𝑁

𝜇𝑐𝑘

⃒⃒
⃒⃒ ≤

⃒⃒
⃒⃒ 𝜇

𝑐
𝑁

𝜇𝑐𝑁−2

⃒⃒
⃒⃒ ≤ Π(𝑐)

𝑁2
≤ 1

2
if 𝑘 < 𝑁 and

⃒⃒
⃒⃒ 𝜇

𝑐
𝑘

𝜇𝑐𝑁

⃒⃒
⃒⃒ ≤

(︃√︀
Π(𝑐)

𝑁 + 2

)︃𝑘−𝑁

≤ 1

2
if 𝑘 > 𝑁.

(3.110)

Using (3.107), (3.106), (3.110), and
∑︀

𝑘∈N 𝑘2
−𝑘 = 2 in the third display, the result
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follows from

𝒞(𝑓,𝑁, 𝑐) ≤ 𝑐𝑓

⎛
⎝
(︂
2 |𝑐|
𝜋

+
𝑙(𝑐)𝑁(𝑁 − 1)

4

)︂
Π(𝑐)

𝑁2
+

∑︁

𝑘≡𝑁 [2], 𝑘>𝑁

𝑘 + 1/2

2(𝑘−𝑁)/2

(︃√︀
2Π(𝑐)

𝑁 + 2

)︃𝑘−𝑁
⎞
⎠

≤ 𝑐𝑓Π(𝑐)

⎛
⎝ 2 |𝑐|
𝜋𝐻(𝑐)(𝐻(𝑐)− 1)

+
𝑙(𝑐)

4
+

2

(𝑁 + 2)2

∑︁

𝑙≡0[2], 𝑙≥2

(︂
𝑙 +𝑁 +

1

2

)︂
1

2𝑙/2

⎞
⎠

≤ 𝑐𝑓Π(𝑐)

(︂
𝐶2(𝑐) +

2

(𝑁 + 2)2

(︂
𝑁 +

9

2

)︂)︂
≤ 𝑐𝑓Π(𝑐) (𝐶1(𝑐) + 𝐶2(𝑐)) . �

(3.111)

Lemma 17. For all 𝑐 ̸= 0 and 𝑁 ≥ 𝐻(𝑐), we have

⃦⃦
⃦⃦𝜕

2𝜓𝑐𝑁
𝜕𝑐2

⃦⃦
⃦⃦
𝐿∞([−1,1])

≤ Π(𝑐)𝐶3(𝑐)

𝑐2

(︁
𝐶4(𝑐)𝑁

5/2 + 𝐶5(𝑐)𝑁
3/2 + 𝐶6(𝑐)

√
𝑁 + 𝐶7(𝑐)

)︁
,

𝐶4(𝑐) := 𝑐𝑔 (𝐶2(𝑐)− 𝐶1(𝑐)) , 𝐶7(𝑐) :=
𝑐𝑔

(𝐻(𝑐) + 2)1/2

(︂
85 +

246

𝐻(𝑐) + 2

)︂
,

𝐶5(𝑐) := 8 (𝑐𝑓 (𝐶1(𝑐) + 𝐶2(𝑐))𝐶3(𝑐))
2 Π(𝑐) + (𝑐𝑔 + 4𝑐𝑓 )𝐶2(𝑐) + (8𝑐𝑓 − 𝑐𝑔)𝐶1(𝑐) + 2𝑐𝑔,

𝐶6(𝑐) := 8𝑐ℎ𝑐𝑓 (𝐶1(𝑐) + 𝐶2(𝑐))
2Π(𝑐) + (𝐶1(𝑐) + 𝐶2(𝑐))

(︀
𝑐2𝑐𝑔 + 4𝑐𝑓

)︀
+ 19𝑐𝑔.

Proof. For all 𝑐 < 0, 𝜇𝑐𝑚 = 𝜇−𝑐
𝑚 and 𝜓−𝑐

𝑚 = 𝜓𝑐𝑚, hence we only consider 𝑐 > 0. Using

𝑐 ∈ (0,∞) ↦→ 𝜓𝑐𝑁(𝑥) is analytic (see Fuchs (1964) page 320) and (7.99) in Osipov

et al. (2013), we have by differentiating

𝜇𝑐𝑁𝜓
𝑐
𝑁(𝑥) =

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡𝜓𝑐𝑁(𝑡)𝑑𝑡 : (3.112)

𝜇𝑐𝑁
𝜕𝜓𝑐𝑁
𝜕𝑥

(𝑥) =

∫︁ 1

−1

𝑖𝑐𝑡𝑒𝑖𝑐𝑥𝑡𝜓𝑐𝑁(𝑡)𝑑𝑡, (3.113)

𝜇𝑐𝑁
𝜕2𝜓𝑐𝑁
𝜕𝑥2

(𝑥) = −
∫︁ 1

−1

(𝑐𝑡)2𝑒𝑖𝑐𝑥𝑡𝜓𝑐𝑁(𝑡)𝑑𝑡, (3.114)

(︂
𝜕2𝜇𝑐𝑁
𝜕𝑐2

𝜓𝑐𝑁 + 2
𝜕𝜇𝑐𝑁
𝜕𝑐

𝜕𝜓𝑐𝑁
𝜕𝑐

+ 𝜇𝑐𝑁
𝜕2𝜓𝑐𝑁
𝜕𝑐2

)︂
(𝑥) =

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡
(︂
𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑡) + 2𝑖𝑥𝑡
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑡)− (𝑥𝑡)2𝜓𝑐𝑁(𝑡)

)︂
𝑑𝑡.

(3.115)

Multiplying (3.115) by 𝜓𝑐𝑘(𝑥), integrating, and using (3.112)-(3.114), we obtain, for
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all 𝑘 ̸= 𝑁 ,

2
𝜕𝜇𝑐𝑁
𝜕𝑐

∫︁ 1

−1

𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥+ 𝜇𝑐𝑁

∫︁ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥

= 𝜇𝑐𝑘

∫︁ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥+ 2
𝜇𝑐𝑘
𝑐

∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥+
𝜇𝑐𝑘
𝑐2

∫︁ 1

−1

𝑥2𝜓𝑐𝑁(𝑥)
𝜕2𝜓𝑐𝑘
𝜕𝑥2

(𝑥)𝑑𝑥.

Recombining and using that, for all 𝑘 ̸= 𝑁 , 𝜇𝑐𝑘 ̸= 𝜇𝑐𝑁 (see (3.45) in Osipov et al.

(2013)), we obtain

(𝜇𝑐𝑁 − 𝜇𝑐𝑘)

∫︁ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥

= 2
𝜇𝑐𝑘
𝑐

∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥+
𝜇𝑐𝑘
𝑐2

∫︁ 1

−1

𝑥2𝜓𝑐𝑁(𝑥)
𝜕2𝜓𝑐𝑘
𝜕𝑥2

(𝑥)𝑑𝑥− 2
𝜕𝜇𝑐𝑁
𝜕𝑐

∫︁ 1

−1

𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥.

Using (3.109), (7.69)-(7.70), and Theorem 7.11 in Osipov et al. (2013), yield, for all

𝑘 ̸≡ 𝑁 [2],
∫︀ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥 = 0, while, for all 𝑘 ≡ 𝑁 [2] and 𝑘 ̸= 𝑁 , using (7.69)-

(7.70), Theorem 7.11, (7.99) and the eigenvalues (𝜒𝑐𝑁)𝑁∈N0 of the differential operator

in (1.1) in Osipov et al. (2013),

∫︁ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑘(𝑥)𝑑𝑥 =
2

𝑐

𝜇𝑐𝑘
𝜇𝑐𝑁 − 𝜇𝑐𝑘

∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥+ Ξ𝑁,𝑘,

Ξ𝑁,𝑘 :=
𝜓𝑐𝑁(1)𝜓

𝑐
𝑘(1)

𝑐2

(︃
𝜇𝑐𝑁𝜇

𝑐
𝑘(𝜒

𝑐
𝑘 − 𝜒𝑐𝑁)

(𝜇𝑐𝑁 − 𝜇𝑐𝑘)
2 − 2

𝜇𝑐𝑁𝜇
𝑐
𝑘

(𝜇𝑐𝑁)
2 − (𝜇𝑐𝑘)

2

(︂
2 +

𝜇𝑐𝑁 (2𝜓𝑐𝑁(1)
2 − 1)

𝜇𝑐𝑁 − 𝜇𝑐𝑘

)︂)︃
.

Differentiating (7.114) in Osipov et al. (2013) in 𝑐 yields
∫︀ 1

−1

𝜕2𝜓𝑐𝑁
𝜕𝑐2

(𝑥)𝜓𝑐𝑁(𝑥)𝑑𝑥 =

−
∫︀ 1

−1

(︁
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
)︁2

𝑑𝑥. Also, by (3.110), for all 𝑘 ≡ 𝑁 [2],

|𝜇𝑐𝑁 |
|𝜇𝑐𝑁 − 𝜇𝑐𝑘|

≤ 1 if 𝑘 < 𝑁 and else
|𝜇𝑐𝑁 |

|𝜇𝑐𝑁 − 𝜇𝑐𝑘|
≤ 2. (3.116)
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We obtain, using Lemma 15 and 𝑁 ≥ 𝑐 for the őrst term,

⃦⃦
⃦⃦𝜕

2𝜓𝑐𝑁
𝜕𝑐2

⃦⃦
⃦⃦
𝐿∞([−1,1])

≤
√︂
𝑁 +

1

2

∫︁ 1

−1

(︂
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)

)︂2

𝑑𝑥+
∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁
|Ξ𝑁,𝑘| ‖𝜓𝑐𝑘‖𝐿∞([−1,1])

+
∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁

2 |𝜇𝑐𝑘|
𝑐 |𝜇𝑐𝑁 − 𝜇𝑐𝑘|

⃒⃒
⃒⃒
∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥

⃒⃒
⃒⃒ ‖𝜓𝑐𝑘‖𝐿∞([−1,1]).

(3.117)

For the őrst term on the right-hand side of (3.117), using Lemma 16, we obtain

√︂
𝑁 +

1

2

∫︁ 1

−1

(︂
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)

)︂2

𝑑𝑥 ≤ 8 (𝑐𝑓 (𝐶1(𝑐) + 𝐶2(𝑐))𝐶3(𝑐))
2𝐶3(𝑐)

(︂
Π(𝑐)

𝑐

)︂2

𝑁3/2.

For the second term in (3.117), using that for all 𝑘 ≡ 𝑁 [2], 𝜇𝑐𝑁/𝜇
𝑐
𝑘 ∈ R and (3.110)

we obtain

|Ξ𝑁,𝑘| ≤
|𝜓𝑐𝑁(1)| |𝜓𝑐𝑘(1)|

𝑐2

(︂
𝑔 (𝜌𝑘) (𝜒

𝑐
𝑘 − 𝜒𝑐𝑁) + 2

(︂
2 +

|2𝜓𝑐𝑁(1)2 − 1| |𝜇𝑐𝑁 |
|𝜇𝑐𝑁 − 𝜇𝑐𝑘|

)︂
𝑓 (𝜌𝑘)

)︂
,

where 𝜌𝑘 = 𝜇𝑐𝑁/𝜇
𝑐
𝑘 when 𝑘 < 𝑁 and 𝜌𝑘 = 𝜇𝑐𝑘/𝜇

𝑐
𝑁 when 𝑘 > 𝑁 . Using 𝑁 ≥ 𝑐, (3.116),

|𝜒𝑐𝑁 − 𝜒𝑐𝑘| ≤ |𝑁 − 𝑘| (𝑘+𝑁+1)+𝑐2 (see (13) in Bonami and Karoui (2014a)), (3.106),

and |2𝜓𝑐𝑁(1)2 − 1| ≤ 2𝑁 (by Lemma 15) for the őrst inequality, (𝑁 −𝑘)(𝑘+𝑁 +1) ≤
𝑁(𝑁+1) for all 0 < 𝑘 < 𝑁 , (3.110), and (3.107) for the second, (𝑘−𝑁)(𝑘+𝑁+1) =

𝑘(𝑘 + 1) − 𝑁2 − 𝑁 for the third, the computations in (3.111),
∑︀∞

𝑘=1 𝑘
22−𝑘 = 6 and
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∑︀∞
𝑘=1 𝑘

32−𝑘 = 26, and Euclidean division for the fourth, yield

∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁
|Ξ𝑁,𝑘| ‖𝜓𝑐𝑘‖𝐿∞([−1,1]) ≤

𝑐𝑔
√
4𝑁 + 21l{𝑁 ≡ 0[2]}

|𝑐| 𝜋

⃒⃒
⃒⃒𝜇

𝑐
𝑁

𝜇𝑐0

⃒⃒
⃒⃒
(︂
𝑁(𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(𝑁 + 1)

)︂

+
𝑐𝑔
√
4𝑁 + 2

2𝑐2

∑︁

𝑘≡𝑁 [2], 0<𝑘<𝑁

(︂
𝑘 +

1

2

)︂
𝑙(𝑐)

⃒⃒
⃒⃒𝜇

𝑐
𝑁

𝜇𝑐𝑘

⃒⃒
⃒⃒
(︂
(𝑁 − 𝑘)(𝑘 +𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(𝑁 + 1)

)︂

+
𝑐𝑔
√
4𝑁 + 2

2𝑐2

∑︁

𝑘≡𝑁 [2], 𝑘>𝑁

(︂
𝑘 +

1

2

)︂ ⃒⃒
⃒⃒ 𝜇

𝑐
𝑘

𝜇𝑐𝑁

⃒⃒
⃒⃒
(︂
|𝑁 − 𝑘| (𝑘 +𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(2𝑁 + 1)

)︂

≤ 𝑐𝑔
√
4𝑁 + 2

2𝑐2

(︂
𝑁(𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(𝑁 + 1)

)︂(︂
2 |𝑐|
𝜋

+
𝑙(𝑐)𝑁(𝑁 − 1)

4

)︂
Π(𝑐)

𝑁2

+
𝑐𝑔
√
4𝑁 + 2

2𝑐2

∑︁

𝑘≡𝑁 [2], 𝑘>𝑁

𝑘 + 1/2

2(𝑘−𝑁)/2

(︃√︀
2Π(𝑐)

𝑁 + 2

)︃𝑘−𝑁 (︂
(𝑘 −𝑁)(𝑘 +𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(2𝑁 + 1)

)︂

≤ 𝑐𝑔
√
4𝑁 + 2Π(𝑐)

2𝑐2

(︂
𝑁(𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(𝑁 + 1)

)︂(︂
2 |𝑐|

𝜋𝐻(𝑐)(𝐻(𝑐)− 1)
+
𝑙(𝑐)

4

)︂

+
𝑐𝑔
√
4𝑁 + 2

2𝑐2
2Π(𝑐)

(𝑁 + 2)2

∑︁

𝑙≡0[2], 𝑙≥2

𝑙 +𝑁 + 1/2

2𝑙/2

(︂
𝑐2 +

4𝑐𝑓
𝑐𝑔

(2𝑁 + 1)−𝑁 −𝑁2

)︂

+
𝑐𝑔
√
4𝑁 + 2

2𝑐2
2Π(𝑐)

(𝑁 + 2)2

∑︁

𝑙≡0[2], 𝑙≥2

(︂
𝑙 +𝑁 +

1

2

)︂
(𝑙 +𝑁)(𝑙 +𝑁 + 1)

1

2𝑙/2

≤ 𝑐𝑔
√
4𝑁 + 2Π(𝑐)

2𝑐2

[︃
𝐶2(𝑐)

(︂
𝑁(𝑁 + 1) + 𝑐2 +

4𝑐𝑓
𝑐𝑔

(𝑁 + 1)

)︂

+ 𝐶1(𝑐)

(︂
𝑐2 +

4𝑐𝑓
𝑐𝑔

(2𝑁 + 1)−𝑁 −𝑁2

)︂
+ 2𝑁 + 19 +

85

𝑁 + 2
+

246

(𝑁 + 2)2

]︃

≤ 𝑐𝑔Π(𝑐)

𝑐2
𝐶3(𝑐)

[︃
𝑁5/2 (𝐶2(𝑐)− 𝐶1(𝑐)) +𝑁3/2

(︂(︂
1 +

4𝑐𝑓
𝑐𝑔

)︂
𝐶2(𝑐) +

(︂
8𝑐𝑓
𝑐𝑔

− 1

)︂
𝐶1(𝑐) + 2

)︂

+
√
𝑁

(︂
(𝐶1(𝑐) + 𝐶2(𝑐))

(︂
𝑐2 +

4𝑐𝑓
𝑐𝑔

)︂
+ 19

)︂
+

85

(𝐻(𝑐) + 2)1/2
+

246

(𝐻(𝑐) + 2)3/2

]︃
.

For the third term in (3.117), using (3.109), the triangle inequality, and (7.74) in

Osipov et al. (2013) for the őrst inequality and using |𝜇𝑐𝑚| / |𝜇𝑐𝑚 + 𝜇𝑐𝑘| ≤ 1 for the
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second, we obtain

⃒⃒
⃒⃒
∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥

⃒⃒
⃒⃒ ≤ 4 |𝜓𝑐𝑁(1)| |𝜓𝑐𝑘(1)|

|𝑐|
∑︁

𝑚 ̸=𝑁, 𝑚≡𝑁 [2]

|𝜇𝑐𝑁 | |𝜇𝑐𝑚| |𝜓𝑐𝑚(1)|2⃒⃒
(𝜇𝑐𝑚)

2 − (𝜇𝑐𝑁)
2
⃒⃒ |𝜇𝑐𝑚|
|𝜇𝑐𝑚 + 𝜇𝑐𝑘|

≤ 4 |𝜓𝑐𝑁(1)| |𝜓𝑐𝑘(1)|
|𝑐| 𝒞(𝑓,𝑁, 𝑐),

hence, using (3.111) for the őrst inequality and (3.106) and (3.111) replacing 𝑐𝑓 by

𝑐ℎ for the third,

∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁

2 |𝜇𝑐𝑘|
𝑐 |𝜇𝑐𝑁 − 𝜇𝑐𝑘|

⃒⃒
⃒⃒
∫︁ 1

−1

𝑥
𝜕𝜓𝑐𝑁
𝜕𝑐

(𝑥)
𝜕𝜓𝑐𝑘
𝜕𝑥

(𝑥)𝑑𝑥

⃒⃒
⃒⃒ ‖𝜓𝑐𝑘‖𝐿∞([−1,1])

≤ 4𝑐𝑓
√
4𝑁 + 2(𝐶1(𝑐) + 𝐶2(𝑐))

Π(𝑐)

𝑐2

∑︁

𝑘≡𝑁 [2], 𝑘 ̸=𝑁

|𝜇𝑐𝑘|
|𝜇𝑐𝑁 − 𝜇𝑐𝑘|

|𝜓𝑐𝑘(1)| ‖𝜓𝑐𝑘‖𝐿∞([−1,1])

≤ 4𝑐𝑓
√
4𝑁 + 2(𝐶1(𝑐) + 𝐶2(𝑐))

Π(𝑐)

𝑐2
𝒞(ℎ,𝑁, 𝑐)

≤ 4𝑐ℎ𝑐𝑓
√
4𝑁 + 2(𝐶1(𝑐) + 𝐶2(𝑐))

2Π(𝑐)
2

𝑐2
≤ 8𝑐ℎ𝑐𝑓𝐶3(𝑐)(𝐶1(𝑐) + 𝐶2(𝑐))

2Π(𝑐)
2

𝑐2

√
𝑁. �

Lemma 18. For all 𝑢, 𝑥0, 𝑅 > 0, 𝑡 ∈ R, 𝑞 ∈ {1,∞}, 𝜆 from (3.36) and 𝑁(𝑅𝑥0𝑈)

and ̃︁𝑁 (𝑞) from (3.37), for all 𝑁 ≥ 𝑁(𝑅𝑥0𝑈), we have

sup
𝑏∈[−𝑅,𝑅]𝑝

⃒⃒
⃒⃒
⃒
𝜕2

𝜕𝑡2

(︃(︂
𝑅𝑥0𝑡

2𝜋

)︂𝑝/2

𝜆(𝑡)𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂)︃⃒⃒
⃒⃒
⃒ ≤ 1l{𝑈/2 ≤ |𝑡| ≤ 𝑈}𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈)𝑁

2+𝑘𝑞/2,

𝐶8(𝑅𝑥0𝑈, 𝑝, 𝑈) :=

(︂
𝑅𝑥0𝑈

𝜋

)︂𝑝/2
𝐶3(𝑅𝑥0𝑈)

𝑝𝑁(𝑅𝑥0𝑈)
(𝑝−1)/(2𝑞)

𝑁(𝑅𝑥0𝑈)2

(︃
𝑝|𝑝− 2|
𝑈2

+ 𝐶9(𝑈)
2𝑝

𝑈
+ 𝐶10(𝑈)

+

(︂
2𝑝

𝑈
+ 2𝐶9(𝑈)

)︂
𝑝𝐶16(𝑅𝑥0𝑈)

𝑁(𝑅𝑥0𝑈)2
+
𝑝(𝑝− 1)𝐶16(𝑅𝑥0𝑈)

𝑁(𝑅𝑥0𝑈)2
+ 𝑝𝐶11(𝑅𝑥0𝑈)

)︃
,

𝐶9(𝑈) := sup
𝑡∈[𝑈/2,𝑈 ]

|𝜆′(𝑡)| , 𝐶10(𝑈) := sup
𝑡∈[𝑈/2,𝑈 ]

|𝜆′′(𝑡)| ,

𝐶11(𝑅𝑥0𝑈) :=
(𝑅𝑥0)

2 Π(𝑅𝑥0𝑈)

(𝑅𝑥0𝑈)2

(︂
𝐶4(𝑅𝑥0𝑈) +

𝐶5(𝑅𝑥0𝑈)

𝑁(𝑅𝑥0𝑈)
+
𝐶6(𝑅𝑥0𝑈)

𝑁(𝑅𝑥0𝑈)2
+

𝐶7(𝑅𝑥0𝑈)

𝑁(𝑅𝑥0𝑈)5/2

)︂
,

𝐶16(𝑅𝑥0𝑈) := 2𝑐𝑓𝑅𝑥0 (𝐶1(𝑅𝑥0𝑈) + 𝐶2(𝑅𝑥0𝑈))𝐶3(𝑅𝑥0𝑈)
Π(𝑅𝑥0𝑈)

𝑅𝑥0𝑈
.

Proof. Let 𝑞 = 1. By symmetry, we take 𝑡 ∈ [𝑈/2, 𝑈 ], 𝑏 ∈ [−𝑅,𝑅]𝑝, and 𝑐 > 0. We
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have

𝑅(𝑡, 𝑏) :=

⃒⃒
⃒⃒
⃒
𝜕2

𝜕𝑡2

(︃(︂
𝑅𝑥0𝑡

2𝜋

)︂𝑝/2

𝜆(𝑡)𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂)︃⃒⃒
⃒⃒
⃒

≤
(︂
𝑅𝑥0
2𝜋

)︂𝑝/2

𝑡𝑝/2

[︃(︂
𝑝 |𝑝− 2|

4𝑡2
𝜆(𝑡) +

𝑝

𝑡
|𝜆′(𝑡)|+ |𝜆′′(𝑡)|

)︂ ⃒⃒
⃒⃒𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(︂
𝑏

𝑅

)︂⃒⃒
⃒⃒

+𝑅𝑥0

(︁𝑝
𝑡
𝜆(𝑡) + 2|𝜆′(𝑡)|

)︁ ⃒⃒
⃒⃒
⃒
𝜕𝜓𝑐̃︁𝑁(𝑞)

𝜕𝑐

⃒⃒
⃒⃒
⃒
𝑐=𝑅𝑥0𝑡

(︂
𝑏

𝑅

)︂⃒⃒
⃒⃒
⃒+ (𝑅𝑥0)

2 𝜆(𝑡)

⃒⃒
⃒⃒
⃒
𝜕2𝜓𝑐̃︁𝑁(𝑞)

𝜕𝑐2

⃒⃒
⃒⃒
⃒
𝑐=𝑅𝑥0𝑡

(︂
𝑏

𝑅

)︂⃒⃒
⃒⃒
⃒

]︃
,

𝜕𝜓𝑐̃︁𝑁(𝑞)

𝜕𝑐

(︂
𝑏

𝑅

)︂
=

𝑝∑︁

𝑗=2

𝜓𝑐𝑁

(︂
𝑏1

𝑅

)︂
𝜕𝜓𝑐𝑁(𝑅𝑥0𝑈)

𝜕𝑐

(︂
𝑏𝑗

𝑅

)︂ 𝑝∏︁

𝑙=2
𝑙 ̸=𝑗

𝜓𝑐𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂

+
𝜕𝜓𝑐𝑁
𝜕𝑐

(︂
𝑏1

𝑅

)︂ 𝑝∏︁

𝑙=2

𝜓𝑐𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂
,

𝜕2𝜓𝑐̃︁𝑁(𝑞)

𝜕𝑐2

(︂
𝑏

𝑅

)︂
= 2

𝑝∑︁

𝑗=2

𝜕𝜓𝑐𝑁(𝑅𝑥0𝑈)

𝜕𝑐

(︂
𝑏𝑗

𝑅

)︂
𝜕𝜓𝑐𝑁
𝜕𝑐

(︂
𝑏1

𝑅

)︂ 𝑝∏︁

𝑙=2
𝑙 ̸=𝑗

𝜓𝑐𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂

+

𝑝∑︁

𝑘=2

𝑝∑︁

𝑗=2
𝑗 ̸=𝑘

𝜓𝑐𝑁

(︂
𝑏1

𝑅

)︂
𝜕𝜓𝑐𝑁(𝑅𝑥0𝑈)

𝜕𝑐

(︂
𝑏𝑗

𝑅

)︂
𝜕𝜓𝑐𝑁(𝑅𝑥0𝑈)

𝜕𝑐

(︂
𝑏𝑘

𝑅

)︂ 𝑝∏︁

𝑙=2
𝑙 ̸=𝑗,𝑙 ̸=𝑘

𝜓𝑥0𝑡𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂

+
𝜕2𝜓𝑐𝑁
𝜕𝑐2

(︂
𝑏1

𝑅

)︂ 𝑝∏︁

𝑙=2

𝜓𝑐𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂
+

𝑝∑︁

𝑗=2

𝜓𝑐𝑁

(︂
𝑏𝑙

𝑅

)︂
𝜕2𝜓𝑐𝑁(𝑅𝑥0𝑈)

𝜕𝑐2

(︂
𝑏𝑗

𝑅

)︂ 𝑝∏︁

𝑙=2
𝑙 ̸=𝑗

𝜓𝑐𝑁(𝑅𝑥0𝑈)

(︂
𝑏𝑙

𝑅

)︂
.

We conclude using 𝑁 ≥ 𝑅𝑥0𝑈 (by the discussion before Lemma 14), the third asser-

tion of Lemma 15, and Lemma 17. The case 𝑞 = ∞ is obtained with 𝑁(𝑅𝑥0𝑈) = 𝑁 .

�

Lemma 19. For all 𝑅, 𝑥0 > 0, 2𝜎 > 𝑘𝑞 + 4, 𝑞 ∈ {1,∞}, 2𝜏 ≥
(︀
3𝑒1/2𝑅𝑥0/4

)︀
∨ 1, we

have

∫︁

R

𝑒−2𝜏 |𝑡|
∑︁

𝑚∈N𝑝0

|𝑚|2𝜎𝑞
(︀
𝑐𝑃𝑚(𝑡)

)︀2
𝑑𝑡 ≤ 𝐶12(𝜎, 𝑝)

𝜏𝑝2𝜎/𝑞
,

𝐶12(𝜎, 𝑝) := Γ(2𝜎 + 𝑝+ 1/2)

(︃
2𝑝−1𝑝

2𝜎 + 𝑝

(︂
8

3𝑒1/2

)︂2𝜎+𝑝

+
𝜋𝑒3𝑝2𝑝

√
3

9

)︃
.

Proof. When 𝑞 = 1, we use |𝑚|1 ≤ 𝑝 |𝑚|∞. Let 𝑞 = ∞, 𝑅, 𝑥0, 𝜎, 𝜏 as in the lemma.

Because 𝑃0 = 1l{|·|∞ ≤ 1}/2𝑝/2, for all 𝑚 ∈ N0,
⃒⃒
⃒⟨𝑃0, 𝜓

𝑐
𝑚⟩𝐿2([−1,1])

⃒⃒
⃒ ≤ 1, and, for all
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𝑚 > |𝑐|,
⃒⃒
⃒⟨𝑃0, 𝜓

𝑐
𝑚⟩𝐿2([−1,1])

⃒⃒
⃒ ≤ |𝜇𝑐𝑚| /

√
2 (see Proposition 3 and (13) in Bonami and

Karoui (2014a)) we obtain, for all 𝑡 ̸= 0,

∑︁

𝑚∈N𝑝0

|𝑚|2𝜎∞
(︀
𝑐𝑃𝑚(𝑡)

)︀2 ≤
∑︁

|𝑚|∞≤𝑅𝑥0|𝑡|
|𝑚|2𝜎∞1l{𝑅𝑥0 |𝑡| ≥ 1}+

∑︁

|𝑚|∞>𝑅𝑥0|𝑡|

|𝑚|2𝜎∞
⃒⃒
⃒𝜇𝑅𝑥0𝑡|𝑚|∞

⃒⃒
⃒
2

2
.

(3.118)

Using (3.118), Lemma 12, and
∑︀

|𝑚|∞=𝑘 1 ≤ 𝑝(𝑘+1)𝑝−1 for the őrst inequality, 𝑚+1 ≤
2𝑚 when 𝑚 ≥ 1 for the second, and 2𝑚 + 1 ≤ 3𝑚, (𝑅𝑥0𝑡 + 1)2𝜎+𝑝 ≤ (2𝑅𝑥0𝑡)

2𝜎+𝑝

when 𝑚,𝑅𝑥0𝑡 ≥ 1, and (1.3) in Mortici and Chen (2011) for the third, we have

∫︁

R

𝑒−2𝜏 |𝑡|
∑︁

𝑚∈N𝑝0

|𝑚|2𝜎∞
(︀
𝑐𝑃𝑚(𝑡)

)︀2
𝑑𝑡

≤
∫︁ ∞

0

2𝑝𝑒−2𝜏𝑡

(︃ ∑︁

𝑚≤𝑅𝑥0𝑡
(𝑚+ 1)𝑝−1𝑚2𝜎1l{𝑅𝑥0𝑡 ≥ 1}+ 𝜋𝑒3

9

∑︁

𝑚>𝑅𝑥0𝑡

(𝑚+ 1)𝑝−1𝑚2𝜎

(︂
𝑒𝑅𝑥0𝑡

4𝑚

)︂2𝑚
)︃
𝑑𝑡

≤
∫︁ ∞

0

2𝑝𝑝𝑒−2𝜏𝑡

∫︁ 𝑅𝑥0𝑡+1

1

𝑢2𝜎+𝑝−1𝑑𝑢1l{𝑅𝑥0𝑡 ≥ 1}𝑑𝑡+ 𝜋𝑒3𝑝2𝑝

9

∑︁

𝑚≥1

𝑚2𝜎+𝑝−1

(︂
𝑒𝑅𝑥0
4𝑚

)︂2𝑚 ∫︁ ∞

0

𝑡2𝑚

𝑒2𝜏𝑡
𝑑𝑡

≤ 22(𝜎+𝑝)𝑝

2𝜎 + 𝑝

∫︁ ∞

1/(𝑅𝑥0)

𝑒−2𝜏𝑡(𝑅𝑥0𝑡)
2𝜎+𝑝𝑑𝑡+

𝜋𝑒3𝑝2𝑝
√
3

9𝜏

∑︁

𝑚≥1

𝑚2𝜎+𝑝−1/2𝑒2𝑚 ln(3𝑅𝑥0/(8𝜏))

≤ 2𝑝−1𝑝Γ(2𝜎 + 𝑝+ 1)

(2𝜎 + 𝑝)𝜏

(︂
8

3𝑒1/2

)︂2𝜎+𝑝

+
𝜋𝑒3𝑝2𝑝

√
3

9𝜏

∫︁ ∞

0

𝑒−𝑡𝑡2𝜎+𝑝−1/2𝑑𝑡 ≤ 𝐶12(𝜎, 𝑝)

𝜏𝑝2𝜎/𝑞
. �

Lemma 20. For all 𝑁 ≥ 𝐻(𝑅𝑥0𝑈), 𝑅,𝑈 > 0, 𝑞 ∈ {1,∞}, and 𝐹 from (3.35), we

have

𝐼1 :=

∫︁

[−1,1]𝑝

∫︁

R

|𝜕𝑡ℱ [𝐹 ] (𝑡, 𝑥0𝑡𝑥)|2 𝑑𝑥𝑑𝑡 ≤ 𝑅𝑝𝐶17(𝑅𝑥0𝑈, 𝑝, 𝑈)𝑁
2𝜌
𝑖[−1,1],𝑅𝑥0𝑈

̃︁𝑁(𝑞)

(3.119)

𝐶17(𝑅𝑥0𝑈, 𝑝, 𝑈) := 𝐶15(𝑅𝑥0𝑈, 𝑝, 𝑈) +
2𝑝𝑈𝐶16(𝑅𝑥0𝑈)

2

𝑁(𝑅𝑥0𝑈)
,

𝐶15(𝑅𝑥0𝑈, 𝑝, 𝑈) :=
25𝑝2

8𝑈

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂4

+
𝑈𝐶9(𝑈)

2

𝑁(𝑅𝑥0𝑈)2
+

5𝑝𝐶9(𝑈) ln(2)

2𝑁(𝑅𝑥0𝑈)

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂2

,

𝐼2 :=

∫︁

[−1,1]𝑝

∫︁

R

|ℱ [𝐹 ] (𝑡, 𝑥0𝑡𝑥)|2 𝑑𝑥𝑑𝑡 ≤ 𝑅𝑝𝑈𝜌
𝑖[−1,1],𝑅𝑥0𝑈

̃︁𝑁(𝑞)
. (3.120)
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Proof. Let 𝑁 ≥ 𝐻(𝑅𝑥0𝑈) ≥ 2. For simplicity of notations, we omit 𝑖[−1,1] from 𝜌.

We have

ℱ [𝐹 ] (𝑡, 𝑥0𝑡𝑥) =

(︂
𝑅𝑥0 |𝑡|
2𝜋

)︂𝑝/2

𝑅𝑝/2𝜆(𝑡)ℱ𝑅𝑥0𝑡

[︁
𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

]︁
(𝑥)

= 𝑅𝑝/2𝑖|̃︁𝑁(𝑞)|
1𝜆(𝑡)

√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)
(𝑥)

(︃
because 𝜇𝑅𝑥0𝑡𝑚 = 𝑖𝑚

(︂
2𝜋

𝑅𝑥0 |𝑡|

)︂1/2 √︁
𝜌𝑅𝑥0𝑡𝑚

)︃
.

(3.121)

This yields

𝐼1 ≤𝑅𝑝

∫︁

R

∫︁

[−1,1]𝑝

⎛
⎝
⎛
⎝
d
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d𝑡
𝜆(𝑡) + 𝜆′(𝑡)

√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

⎞
⎠𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(𝑥) +
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

𝜆(𝑡)
𝜕𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(𝑥)

𝜕𝑡

⎞
⎠

2

𝑑𝑡𝑑𝑥.

Using (7.114) in Osipov et al. (2013), cross-products terms are zero and 𝐼1 ≤ 𝑅𝑝(𝐼11+

𝐼12), where

𝐼11 =

∫︁

R

⎛
⎜⎝𝜆(𝑡)2

⎛
⎝
d
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d𝑡

⎞
⎠

2

+ 𝜆′(𝑡)2𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)
+ 2𝜆(𝑡)|𝜆′(𝑡)|

√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d𝑡

⎞
⎟⎠ 𝑑𝑡,

𝐼12 =

∫︁

R

𝜆(𝑡)2𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

⎛
⎝
∫︁

[−1,1]𝑝

⎛
⎝
𝜕𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(𝑥)

𝜕𝑡

⎞
⎠

2

𝑑𝑥

⎞
⎠ 𝑑𝑡.

Then, using (7.100) in Osipov et al. (2013) for the second equality yields, for all 𝑡 ̸= 0,

d
√︁
𝜌𝑅𝑥0𝑡𝑁

d𝑡
=

𝑥0𝑅

2
√︁
𝜌𝑅𝑥0𝑡𝑁

d𝜌𝑐𝑁
d𝑐

⃒⃒
⃒⃒
𝑐=𝑅𝑥0𝑡

=

√︁
𝜌𝑅𝑥0𝑡𝑁

|𝑡|
(︀
𝜓𝑅𝑥0𝑡𝑁 (1)

)︀2
,

in particular 𝜌𝑅𝑥0𝑡𝑁 is increasing in 𝑡 and, by the őrst assertion of Lemma 15,

∀𝑈/2 ≤ |𝑡| ≤ 𝑈,
d
√︁
𝜌𝑅𝑥0𝑡𝑁

d𝑡
≤

(𝑁 + 1/2)
√︁
𝜌𝑅𝑥0𝑡𝑁

|𝑡|

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂2

. (3.122)
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When 𝑞 = 1, using 𝑁 + 1/2 ≤ 5𝑁/4 for all 𝑁 ≥ 2 and

d
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d𝑡
=(𝑝− 1)

(︁√︁
𝜌𝑅𝑥0𝑡𝑁(𝑅𝑥0𝑈)

)︁𝑝−2 √︁
𝜌𝑅𝑥0𝑡𝑁

⎛
⎝
d
√︁
𝜌𝑅𝑥0𝑡𝑁(𝑅𝑥0𝑈)

d𝑡

⎞
⎠

+
(︁√︁

𝜌𝑅𝑥0𝑡𝑁(𝑅𝑥0𝑈)

)︁𝑝−1

⎛
⎝d

√︁
𝜌𝑅𝑥0𝑡𝑁

d𝑡

⎞
⎠ ,

we have
d
√︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

d𝑡
≤ 5𝑝𝑁

4 |𝑡|

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂2 √︁
𝜌𝑅𝑥0𝑡̃︁𝑁(𝑞)

. (3.123)

The same inequality holds for 𝑞 = ∞ (there 𝑁 = 𝑁(𝑅𝑥0𝑈)). This yields, for all

𝑞 ∈ {1,∞},

𝐼11

≤
(︃
25𝑝2𝑁2

8

∫︁ 𝑈

𝑈/2

𝑑𝑡

𝑡2

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂4

+ 𝑈𝐶9(𝑈)
2

)︃
𝜌𝑅𝑥0𝑈̃︁𝑁(𝑞)

+
5𝑝𝑁𝐶9(𝑈)

2

(︂
1 +

2(𝑅𝑥0𝑈)
2

33/2

)︂2 ∫︁ 𝑈

𝑈/2

𝑑𝑡

𝑡
𝜌𝑅𝑥0𝑈̃︁𝑁(𝑞)

≤𝐶15(𝑅𝑥0𝑈, 𝑝, 𝑈)𝑁
2𝜌𝑅𝑥0𝑈̃︁𝑁(𝑞)

.

Then, by (7.114) in Osipov et al. (2013) and Lemma 16, we have, for all 𝑈/2 ≤ |𝑡| ≤ 𝑈 ,

∫︁

[−1,1]𝑝

⎛
⎝
𝜕𝜓𝑅𝑥0𝑡̃︁𝑁(𝑞)

(𝑥)

𝜕𝑡

⎞
⎠

2

𝑑𝑥 =(𝑅𝑥0)
2

∫︁

[−1,1]

(𝑝− 1)

(︃
𝜕𝜓𝑐𝑁(𝑅𝑥0𝑈)(𝑥)

𝜕𝑐

⃒⃒
⃒⃒
⃒
𝑐=𝑅𝑥0𝑡

)︃2

𝑑𝑥

+ (𝑅𝑥0)
2

∫︁

[−1,1]

(︃
𝜕𝜓𝑐𝑁(𝑥)

𝜕𝑐

⃒⃒
⃒⃒
𝑐=𝑅𝑥0𝑡

)︃2

𝑑𝑥

≤2𝑝 (𝐶16(𝑅𝑥0𝑈))
2𝑁 (using 𝑁 ≥ 𝑁(𝑅𝑥0𝑈)).

The same holds for 𝑞 = ∞ (there 𝑁 = 𝑁(𝑅𝑥0𝑈)). This and 𝑁 ≥ 𝑁(𝑅𝑥0𝑈) yield

(3.119).

(3.120) follows from (3.121) and the fact that 𝑐 ∈ (0,∞) ↦→ 𝜌𝑐𝑚 is nondecreasing. �
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3.7.3 Estimation of the marginal 𝑓𝛽

For all (𝜔𝑚)𝑚∈N0
increasing, 𝜔0 = 1, 𝑙,𝑀 > 0, 𝑞 ∈ {1,∞}, consider

ℋ𝑞,𝜔
𝑤,𝑊 (𝑙,𝑀) :=

{︃
𝑓 : ‖𝑓‖𝐿2(𝑤⊗𝑊⊗𝑝) ≤𝑀,

∑︁

𝑘∈N0

𝜔2
𝑘 ‖𝜃𝑞,𝑘‖2𝐿2(R) ≤ 2𝜋𝑙2

}︃
.

For brevity, we present the slow rates and the estimator ̂︀𝑓 𝑞,𝑁,𝜖𝛽 :=
∑︀

|𝑚|𝑞≤𝑁(𝜖) ̂︀𝑐𝑚(𝜖)𝜙𝑊,𝜖𝑥0𝑚 /𝜎𝑊,𝜖𝑥0𝑚 .

It is based on 𝑓𝛽 = ℱ1st [𝑓𝛼,𝛽] (0, ·2).

Proposition 6. Let 𝑊 = 𝑖[−𝑅,𝑅]. For all 𝑞 ∈ {1,∞}, 𝑙,𝑀,𝑅 > 0, 𝜎 > 2, S𝛽 ⊆
[−𝑅,𝑅]𝑝, 𝑁 solution of 2(1+𝜎)𝑘𝑞(𝑁+𝑘′𝑞/2) ln(𝑁)+𝑝(1−𝜎) ln(𝑁)+ln(𝜔2

𝑁) = ln(𝑛𝑒),

𝜖 = 𝜃/𝜔𝑁 , (𝜔𝑘)𝑘∈N0 = (𝑘𝜎)𝑘∈N0
, and 𝑤 such that

∫︀
R
𝑎2/𝑤(𝑎)𝑑𝑎 <∞, we have

(︂
ln(𝑛𝑒)

ln2(𝑛𝑒)

)︂2𝜎

sup
𝑓𝛽∈ℋ𝑞,𝜔

𝑤,𝑊 (𝑙,𝑀)∩𝐷, 𝑓𝑋|𝒳∈ℰ
E

[︂⃦⃦
⃦ ̂︀𝑓 𝑞,𝑁,𝜖𝛽 − 𝑓𝛽

⃦⃦
⃦
2

𝐿2(R𝑝)

]︂
= 𝑂𝑝(1).

Proof. We assume 𝑓𝑋|𝒳 is known. The general case can be handled like in the

proof of (T2.1). Use 𝑓 𝜖𝛽 := ℱ1st [𝑓𝛼,𝛽] (𝜖, ·) and deőne 𝑓 𝑞,𝜖,𝑁𝛽 like ̂︀𝑓 𝑞,𝜖,𝑁𝛽 with ̃︀𝑐𝑚(𝑡)

(see Lemma 2) instead of ̂︀𝑐𝑚(𝑡). Use
⃦⃦
⃦ ̂︀𝑓 𝑞,𝑁,𝜖𝛽 − 𝑓𝛽

⃦⃦
⃦
2

𝐿2(R𝑝)
≤ 3

∑︀3
𝑗=1 ‖𝑅𝑗‖2𝐿2(R𝑝), where

𝑅1 := ̂︀𝑓𝛽 − 𝑓 𝑞,𝑁,𝜖𝛽 , 𝑅2 := 𝑓 𝑞,𝑁,𝜖𝛽 − 𝑓 𝜖𝛽, and 𝑅3 := 𝑓 𝜖𝛽 − 𝑓𝛽. Let 𝑛 ≥ 𝑒𝑒 large enough so

that 𝑁 ≥ 1
⋁︀
((𝜎−1)𝑝−𝜎)/(2𝑘𝑞). By similar arguments from (3.59), (3.57), 𝑁 ≤ 𝑁 ,

and (𝑁 + 1)2𝑘𝑞𝑁+𝑝 ≤ 𝑒2𝑘𝑞2𝑝𝑁2𝑘𝑞𝑁+𝑝, we have

E
[︁
‖𝑅1‖2𝐿2(R𝑝)

]︁
≤𝑄𝑞𝑐𝑋𝑒

2𝑘𝑞2𝑝

𝜋𝑝𝑛
𝜖𝑝𝑁𝑝

(︂
1
⋁︁ 𝜃𝑁

𝜖

)︂2𝑘𝑞𝑁+𝑝

=
𝑄𝑞𝑐𝑋𝑒

2𝑘𝑞2𝑝𝜃𝑝

𝜋𝑝𝑛
𝑁𝑝(1−𝜎)+2(1+𝜎)𝑘𝑞(𝑁+𝑘′𝑞/2).

(3.124)

We also obtain ‖𝑅2‖2𝐿2(R𝑝) ≤ 2𝜋𝑙2/𝜔2
𝑁 and

‖𝑅3‖2𝐿2(R𝑝) ≤
∫︁

[−𝑅,𝑅]𝑝

(︂∫︁

R

⃒⃒
𝑒𝑖𝜖𝑎 − 1

⃒⃒
𝑓𝛼,𝛽(𝑎, 𝑏)𝑑𝑎

)︂2

𝑑𝑏

≤𝜖2
∫︁

[−𝑅,𝑅]𝑝

(︂∫︁

R

|𝑎| 𝑓𝛼,𝛽(𝑎, 𝑏)𝑑𝑎
)︂2

𝑑𝑏 ≤ 𝜃2𝑀2

𝜔2
𝑁

∫︁

R

𝑎2

𝑤(𝑎)
𝑑𝑎 <∞. (3.125)

Then, using ln(𝑛) = 2(1+𝜎)𝑘𝑞(𝑁+𝑘′𝑞/2) ln(𝑁)+𝑝(1−𝜎) ln(𝑁)+ln(𝜔2
𝑁) ≥ 2𝜎𝑘𝑞𝑁 ln(𝑁)
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and 𝒲(𝑥) ≤ ln(𝑥 + 1), we have 𝑁 ≤ ln(𝑛)/(2𝜎𝑘𝑞 ln2(𝑛𝑒)(1 + ln(1 + 2𝜎𝑘𝑞/𝑒)). The

result follows from the deőnition of 𝑁 , (3.124), and (3.125). �

Similar ideas apply for the estimation of 𝑓𝛽𝑗 for 𝑗 = 1, . . . , 𝑝.

3.7.4 Talagrand inequality for complex functions

Lemma 21. Let 𝑋1, . . . , 𝑋𝑛 𝑛 independent random vectors, Λ := (
√
1 + · − 1) ∧ 1,

𝒰 a countable set of complex measurable functions, and, for all 𝑢 ∈ 𝒰 , 𝜈𝑛(𝑢) :=
∑︀𝑛

𝑖=1 (𝑢(𝑋𝑖)− E [𝑢(𝑋𝑖)]) /𝑛. If there exist 𝑀,𝐻, 𝑣 > 0 such that

sup
𝑢∈𝒰

‖𝑢‖𝐿∞(R𝑝) ≤𝑀, E

[︂
sup
𝑢∈𝒰

|𝜈𝑛(𝑢)|
]︂
≤ 𝐻, sup

𝑢∈𝒰

1

𝑛

𝑛∑︁

𝑖=1

Var (R(𝑢(𝑋𝑖)))
⋁︁

Var (I(𝑢(𝑋𝑖))) ≤ 𝑣,

then, for all 𝜂 > 0,

E

[︂(︂
sup
𝑢∈𝒰

|𝜈𝑛(𝑢)|2 − 4(1 + 2𝜂)𝐻2

)︂

+

]︂
≤ 48

(︂
𝑣

𝑛
𝑒−𝜂

𝑛𝐻2

6𝑣 +
294𝑀2

Λ(𝜂)2𝑛2
𝑒−

√
2Λ(𝜂)

√
𝜂

42
𝑛𝐻
𝑀

)︂
.

Proof. The result follows from Theorem 7.3 in Comte and Genon-Catalot (2018)

and

E

[︂(︂
sup
𝑢∈𝒰

|𝜈𝑛(𝑢)|2 − 4(1 + 2𝜂)𝐻2

)︂

+

]︂
≤ E

[︂(︂
sup
𝑢∈𝒰

R(𝜈𝑛(𝑢))
2 + sup

𝑢∈𝒰
I(𝜈𝑛(𝑢))

2 − 4(1 + 2𝜂)𝐻2

)︂

+

]︂

≤ E

[︂(︂
sup
𝑢∈𝒰

R(𝜈𝑛(𝑢))
2 − 2(1 + 2𝜂)𝐻2

)︂

+

]︂
+ E

[︂(︂
sup
𝑢∈𝒰

I(𝜈𝑛(𝑢))
2 − 2(1 + 2𝜂)𝐻2

)︂

+

]︂
. �

3.7.5 Approximation by PSWF in Sobolev ellipsoids.

For all 𝜎, 𝑠, 𝑙 > 0 and 𝑞 ∈ {1,∞}, denote by (𝜑𝑚 (·/𝑅))𝑚∈Z𝑝 :=
(︁
𝑒𝑖𝜋𝑚

⊤·/𝑅/(2𝑅)𝑝/2
)︁
𝑚∈Z𝑝

,

ℱ [𝑓 ](⋆,𝑘) :=
∫︀
R
𝑒𝑖⋆𝑎

∫︀
[−𝑅,𝑅]𝑝

𝑒𝑖𝜋𝑘
⊤𝑏/𝑅 𝑓(𝑎, 𝑏)𝑑𝑎𝑑𝑏/(2𝑅)𝑝/2, and

𝐻𝑞,𝑠,𝜎(𝑙) :=

{︃
𝑓 :

∫︁

R

∑︁

𝑘∈Z𝑝
|ℱ [𝑓 ](𝑡,𝑘)|2 (1 ∨ 𝑡2𝑠)𝑑𝑡

⋁︁∫︁

R

∑︁

𝑘∈Z𝑝
|ℱ [𝑓 ](𝑡,𝑘)|2

(︀
1 ∨ |𝑘|2𝜎𝑞

)︀
𝑑𝑡 ≤ 2𝜋𝑙2

}︃
.
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Denote, for all 𝑁 ∈ N and 𝑐 ̸= 0, by 𝑃𝑁
𝑐 (resp. ℰ𝑁) the projector in 𝐿2

(︁
𝑖⊗𝑝[−𝑅,𝑅]

)︁

onto the vector space spanned by
(︀
𝜓𝑐𝑚 (·/𝑅) /𝑅𝑝/2

)︀
|𝑚|∞<𝑁

(resp. (𝜑𝑚 (·/𝑅))|𝑚|∞<𝑁).

For all 𝑡 ̸= 0 and
(︁
𝑛,𝑚,𝑁, ̃︀𝑁

)︁
∈ N4

0, denote by 𝜙𝑡 := ℱ1st [𝑓 ] (𝑡, ·2), 𝛽𝑚𝑛 (𝑡) :=

⟨𝜓𝑡𝑚, 𝑃𝑛⟩𝐿2([−1,1]), 𝐽𝑗 the Bessel function of the őrst kind and order 𝑗 > −1, 𝐾𝑁, ̃︀𝑁
𝑡 :=⃦⃦

⃦ℰ ̃︀𝑁𝜙𝑡 − 𝑃𝑁
𝑥0𝑡

ℰ ̃︀𝑁𝜙𝑡
⃦⃦
⃦
2

, and 𝐼𝑁, ̃︀𝑁 :=
∑︀

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁
∑︀

|𝑚|∞≥𝑁 |⟨𝜑𝑘 (·/𝑅) , 𝜓𝑥0⋆𝑚 (·/𝑅)⟩|2.

Proposition 7. For all 𝜎, 𝑙,𝑀,𝑅 > 0, 𝑞 ∈ {1,∞}, and 𝑠 ≥ 𝜎+ 𝑝/2, we have, for all

𝑁 ≥ 10,

∫︁

R

⃦⃦
ℱ1st [𝑓 ] (𝑡, ·2)− 𝑃𝑁

𝑥0𝑡
ℱ1st [𝑓 ] (𝑡, ·2)

⃦⃦2
𝑑𝑡 ≤ 2𝜋𝐴𝑙2

𝑁2𝜎
, (3.126)

𝐴 :=2

(︃(︂
1

1/(𝜋𝑒)− 1/10

)︂2𝜎

+ 𝑐

(︂
𝑝+ 2𝜎

𝑏𝑒

)︂𝑝+2𝜎

+

(︂
2𝑒𝑅𝑥0
𝜋

)︂𝑝

(𝑒2𝑥0)
2𝜎

)︃
,

𝑎 :=

√
5𝑒3(𝑒2 + 1/𝑒2)5/8

3(ln(2) + 2)211/4
, 𝑏 := 𝑝

(︂
5

8
ln

(︂
21

10

)︂
− 1

𝑒

)︂
,

𝑐 :=
𝑝(4𝑅2/(𝜋𝑒))𝑝

2𝑅

(︃
𝑎2𝑝

8𝑝(𝑝− 1)𝑝−1

(3𝑝)𝑝𝑒𝑝−1
+

(︂
(2𝑝− 1)8

5𝑝𝑒

)︂2𝑝−1
5𝑝−18

𝑝16𝑝 ln (21/10)

)︃
.

Proposition 7 is an analogue of (3.63) with 𝑁 constant and (𝜔𝑘)𝑘∈N0
= (𝑘𝜎)𝑘∈N0

.

It shows that the approximation error when we use a truncated series expansion in the

PSWF basis is of order 𝑁−2𝜎 whether we work on the class 𝐻𝑞,𝑠,𝜎(𝑙) or ℋ𝑞,𝜑,𝜔
𝑤,𝑖[−𝑅,𝑅]

(𝑙,𝑀)

with 𝜑 = 1 ∨ |·|𝑠. (3.64) can be obtained using the őrst inequality in the deőni-

tion of 𝐻𝑞,𝑠,𝜎(𝑙) and, for all 𝑡 ̸= 0,
∑︀

𝑘∈Z𝑝 |ℱ [𝑓 ](𝑡,𝑘)|2 = ‖ℱ1st[𝑓 ](𝑡, ·2)‖2𝐿2
(︁
𝑖⊗𝑝
[−𝑅,𝑅]

)︁ =
∑︀

𝑚∈N𝑝0 |𝑏𝑚(𝑡)|2. Thus (T2.1) also holds for functions in the intersection of

𝐻𝑞,𝑠,𝜎(𝑙)
⋂︁{︂

𝑓 : ‖𝑓‖
𝐿2

(︁
𝑤⊗𝑖⊗𝑝

[−𝑅,𝑅]

)︁ ≤𝑀

}︂
.

The proof below uses techniques from the proof of Lemma 11 in Bonami and Karoui

(2014a).

Proof. In this proof, ⟨·, ·⟩ and ‖·‖ denote the scalar product and norm in 𝐿2([−𝑅,𝑅]𝑝).
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Take 𝑓 ∈ 𝐻𝑞′,𝑠,𝜎′
(𝑙). Let 𝑁 ≥ 10 and ̃︀𝑁 := ⌊𝜏𝑁⌋, where 𝜏 := 1/(𝜋𝑒). We have

⃦⃦
𝜙𝑡 − 𝑃𝑁

𝑥0𝑡
𝜙𝑡

⃦⃦2 ≤ 2

(︂⃦⃦
⃦𝜙𝑡 − ℰ ̃︀𝑁𝜙𝑡 − 𝑃𝑁

𝑥0𝑡

(︁
𝜙𝑡 − ℰ ̃︀𝑁𝜙𝑡

)︁⃦⃦
⃦
2

+𝐾𝑁, ̃︀𝑁
𝑡

)︂

≤ 2

(︂⃦⃦
⃦𝜙𝑡 − ℰ ̃︀𝑁𝜙𝑡

⃦⃦
⃦
2

+𝐾𝑁, ̃︀𝑁
𝑡

)︂
. (3.127)

Using that
(︀
𝜓𝑥0𝑡𝑚 (·/𝑅) /𝑅𝑝/2

)︀
𝑚∈N𝑝0

are orthonormal in 𝐿2([−𝑅,𝑅]𝑝) and the Cauchy-

Schwarz inequality in the second display yield

𝐾𝑁, ̃︀𝑁
𝑡 =

⃦⃦
⃦⃦
⃦⃦

∑︁

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁

⟨
𝜙𝑡, 𝜑𝑘

(︁ ·
𝑅

)︁⟩
⎛
⎝ ∑︁

|𝑚|∞≥𝑁

⟨
𝜑𝑘

(︁ ·
𝑅

)︁
, 𝜓𝑥0𝑡𝑚

(︁ ·
𝑅

)︁⟩
𝜓𝑥0𝑡𝑚

(︁ ⋆
𝑅

)︁ 1

𝑅𝑝

⎞
⎠
⃦⃦
⃦⃦
⃦⃦

2

≤
∑︁

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁

⃒⃒
⃒
⟨
𝜙𝑡, 𝜑𝑘

(︁ ·
𝑅

)︁⟩⃒⃒
⃒
2

𝐼𝑁, ̃︀𝑁(𝑡) ≤
(︃∑︁

𝑘∈Z𝑝
|ℱ [𝑓 ](𝑡,𝑘)|2

)︃
𝐼𝑁, ̃︀𝑁(𝑡).

We have, using (18.17.19) in Olver et al. (2010) for the őrst equality and for all 𝑘 ∈ Z

and 𝑚 ∈ N0,

⃒⃒
⃒
⟨
𝜑𝑘

(︁ ·
𝑅

)︁
, 𝜓𝑥0𝑡𝑚

(︁ ·
𝑅

)︁⟩⃒⃒
⃒
2

=
𝑅

2
|𝐼𝑚,𝑘 +𝑂𝑚,𝑘|2 ≤ 𝑅

(︀
|𝐼𝑚,𝑘|2 + |𝑂𝑚,𝑘|2

)︀
,

𝐼𝑚,𝑘 :=

⌊5𝑚/8⌋−1∑︁

𝑛=0

𝛽𝑚𝑛 (𝑥0𝑡)
⟨︀
𝑒𝑖𝜋𝑘·, 𝑃𝑛

⟩︀
𝐿2([−1,1])

,

𝑂𝑚,𝑘 :=
∑︁

𝑛≥⌊5𝑚/8⌋
𝛽𝑚𝑛 (𝑥0𝑡)𝑖

𝑛

√︃
2

|𝑘|

√︂
𝑛+

1

2
𝐽𝑛+1/2(|𝑘|𝜋).

Using, for all 𝑘 ∈ Z,
⃒⃒⟨︀
𝑒𝑖𝜋𝑘·, 𝑃𝑛

⟩︀⃒⃒
≤

√
2, Proposition 3 in Bonami and Karoui (2014a),

and integral test for convergence (indeed, by (3.4) page 34 in Osipov et al. (2013), for

all 𝑚 ≥ 2∨ (𝑒2𝑥0 |𝑡|), 2
√︀
𝜒𝑥0𝑡𝑚 / (𝑥0 |𝑡|) ≥ 2𝑒2 > 1), we obtain, for all 𝑚 ≥ 2∨ (𝑒2𝑥0 |𝑡|),

|𝐼𝑚,𝑘| ≤
√︂

5

2𝜋

∫︁ ⌊5𝑚/8⌋

0

(︃
2
√︀
𝜒𝑥0𝑡𝑚

𝑥0 |𝑡|

)︃𝑥

𝑑𝑥
⃒⃒
𝜇𝑥0𝑡𝑚

⃒⃒

≤
√︀

5/(2𝜋)

ln
(︁
2
√︀
𝜒𝑥0𝑡𝑚 / (𝑥0 |𝑡|)

)︁
(︃
2
√︀
𝜒𝑥0𝑡𝑚

𝑥0 |𝑡|

)︃⌊5𝑚/8⌋ ⃒⃒
𝜇𝑥0𝑡𝑚

⃒⃒
.
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Let 𝑚 ≥ 2 ∨ (𝑒2𝑥0 |𝑡|). Using Lemma 12 for the őrst inequality, we obtain

|𝐼𝑚,𝑘| ≤
√
5𝑒3

3

1

ln(2) + 2

(︃
2
√︀
𝑚(𝑚+ 1) + 𝑥20𝑡

2

𝑥0 |𝑡|

)︃5𝑚/8 (︂
𝑒𝑥0 |𝑡|

4(𝑚+ 3/2)

)︂𝑚

≤
√
5𝑒3

3

1

ln(2) + 2

(︃√︀
𝑒2 + 1/𝑒2(𝑚+ 1)

211/5(𝑚+ 3/2)

)︃5𝑚/8

exp

(︂
−3𝑚

8
ln

(︂
𝑚

𝑒𝑥0 |𝑡|

)︂)︂

≤ 𝑎 exp

(︂
−3𝑚

8
ln

(︂
𝑚

𝑒𝑥0 |𝑡|

)︂)︂
.

Using, for all 𝑗 > −1/2, 𝑥 ∈ R, and 𝑛 ∈ N0, |𝐽𝑗(𝑥)| ≤ |𝑥|𝑗 / (2𝑗Γ(𝑗 + 1)) (see 9.1.20

in Abramowitz and Stegun (1965)), |𝛽𝑚𝑛 (𝑥0𝑡)| ≤ 1, and
√︀
𝑛+ 1/2 < Γ(𝑛 + 3/2)/𝑛!

(see (5.6.4) in Olver et al. (2010)) for the őrst inequality and 𝑚 > 8/5 and 𝑛! ≥
(𝑛/𝑒)𝑛

√
2𝜋𝑛 for the third, we obtain, for all 𝑘 ∈ Z,

|𝑂𝑚,𝑘| ≤
∑︁

𝑛≥⌊5𝑚/8⌋

√
𝜋

𝑛!

(︂ |𝑘|𝜋
2

)︂𝑛

≤
√
𝜋

⌊5𝑚/8⌋!

(︂ |𝑘|𝜋
2

)︂⌊5𝑚/8⌋
exp

(︂ |𝑘|𝜋
2

)︂
≤

√︂
5𝑚

16

(︂ |𝑘|𝜋𝑒
2(5𝑚/8− 1)

)︂5𝑚/8

exp

(︂ |𝑘|𝜋
2

)︂
.

Using |⟨𝜑𝑘 (·/𝑅) , 𝜓𝑥0𝑡𝑚 (·/𝑅)⟩|2 ≤ 𝑅 for all (𝑘,𝑚) ∈ N2
0 for the őrst inequality,

∑︀
|𝑚|∞=𝑗 1 ≤

𝑝(𝑗+1)𝑝−1 for the second, (3.57) and the convexity of 𝑥 ↦→ 𝑥𝑝 for the fourth inequality,

we have, for all 𝑡 such that 𝑁 ≥ 𝑒2𝑥0 |𝑡|,

𝐼𝑁, ̃︀𝑁(𝑡) ≤ 𝑅𝑝−1
∑︁

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁

∞∑︁

𝑗=𝑁

∑︁

|𝑚|∞=𝑗

𝑝∏︁

𝑙=1

⃒⃒
⃒
⟨
𝜑𝑘𝑙

(︁ ·
𝑅

)︁
, 𝜓𝑥0𝑡𝑗

(︁ ·
𝑅

)︁⟩⃒⃒
⃒
2

≤ 𝑅2𝑝−1
∑︁

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁

∞∑︁

𝑗=𝑁

𝑝(𝑗 + 1)𝑝−1

𝑝∏︁

𝑙=1

(︀
|𝐼𝑗,𝑘𝑙 |2 + |𝑂𝑗,𝑘𝑙 |2

)︀

≤ 𝑝𝑅2𝑝−1
∑︁

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁

∞∑︁

𝑗=𝑁

(𝑗 + 1)𝑝−1

(︃
𝑎2

(︂
𝑒𝑥0 |𝑡|
𝑗

)︂3𝑗/4

+
5𝑗𝑒|𝑘𝑙|𝜋

16

(︂ |𝑘𝑙|𝜋𝑒
2(5𝑗/8− 1)

)︂5𝑗/4
)︃

≤ 𝑝(4𝑅2𝜏𝑁)𝑝

2𝑅

∞∑︁

𝑗=𝑁

𝑗𝑝−1𝑎2𝑝
(︂
𝑒𝑥0 |𝑡|
𝑗

)︂3𝑝𝑗/4

+

(︃
5𝑒

̃︀𝑁𝜋𝑗2

16

)︃𝑝(︃ ̃︀𝑁𝜋𝑒
2(5𝑗/8− 1)

)︃5𝑝𝑗/4
1

𝑗
.

Using 𝜅(𝑡) := −3 ln (𝑒𝑥0 |𝑡| /𝑁) /8, 𝜅(𝑡) ≥ 3/8 for𝑁 ≥ 2∨(𝑒2𝑥0 |𝑡|), and sup𝑗≥1 𝑗
𝑝−1𝑒−𝑝𝜅(𝑡)𝑗 =
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(1− 1/𝑝)𝑝−1/(𝜅(𝑡)𝑒)𝑝−1 for the second inequality, we obtain, for all 𝑁 ≥ 𝑒2𝑥0 |𝑡|,

∞∑︁

𝑗=𝑁

𝑗𝑝−1

(︂
𝑒𝑥0 |𝑡|
𝑗

)︂3𝑝𝑗/4

≤ (1− 1/𝑝)𝑝−1

(𝜅(𝑡)𝑒)𝑝−1

∫︁ ∞

𝑁

𝑒−𝑝𝜅(𝑡)𝑗𝑑𝑗 ≤ (𝑝− 1)𝑝−1

(𝑝𝜅(𝑡))𝑝𝑒𝑝−1
𝑒−𝑝𝜅(𝑡)𝑁 .

Using 1 − 8/(5𝑁) ≥ 1/5, that for 𝑗 ≥ 𝑁 , ̃︀𝑁𝜋𝑒/(2(5𝑗/8 − 1)) ≤ 10𝜏𝜋𝑒/21 = 10/21,

and sup𝑗≥1 𝑗
2𝑝−1𝑒−5𝑝𝑗/8 = ((2𝑝− 1)8/(5𝑝𝑒))2𝑝−1 for the őrst inequality, we obtain

∞∑︁

𝑗=𝑁

𝑗2𝑝−1

(︃
̃︀𝑁𝜋𝑒

2(5𝑗/8− 1)

)︃5𝑝𝑗/4

≤
(︂
(2𝑝− 1)8

5𝑝𝑒

)︂2𝑝−1 ∫︁ ∞

𝑁

𝑒−5𝑝𝑗 ln(21/10)/8𝑑𝑗

≤
(︂
(2𝑝− 1)8

5𝑝𝑒

)︂2𝑝−1
8

5𝑝 ln(21/10)
𝑒−5𝑝𝑁 ln(21/10)/8.

Using (3.127) for the őrst display, using sup𝑡: |𝑡|≤𝑁/(𝑒2𝑥0) 𝐼𝑁, ̃︀𝑁(𝑡) ≤ 𝑐𝑁𝑝𝑒−𝑏𝑁 (because

5 ln(21/10)/8 − 𝜏𝜋 < 3/8 ≤ 𝜅(𝑡)), using 𝑠 ≥ 𝜎 + 𝑝/2, 𝑓 ∈ 𝐻𝑞,𝑠,𝜎(𝑙), and, for all

|𝑡| > 𝑁/(𝑒2𝑥0), 𝐼𝑁, ̃︀𝑁(𝑡) ≤ 𝑅𝑝
∑︀

𝑘∈Z𝑝: |𝑘|∞< ̃︀𝑁 ‖𝜑𝑘‖2𝐿2([−1,1]𝑝) ≤ (2𝜏𝑁𝑅)𝑝 for the second,

we have

∫︁

R

⃦⃦
ℱ1st [𝑓 ] (𝑡, ·2)− 𝑃𝑁

𝑥0𝑡
ℱ1st [𝑓 ] (𝑡, ·2)

⃦⃦2
𝑑𝑡

≤ 2
⃦⃦
⃦ℱ1st [𝑓 ]− ℰ ̃︀𝑁ℱ1st [𝑓 ]

⃦⃦
⃦
2

𝐿2(R×[−𝑅,𝑅]𝑝)

+ 2

∫︁ 𝑁/(𝑒2𝑥0)

−𝑁/(𝑒2𝑥0)

∑︁

𝑘∈Z𝑝
|ℱ1st [𝑓 ] (𝑡,𝑘)|2 𝑑𝑡 sup

𝑡: |𝑡|≤𝑁/(𝑒2𝑥0)
𝐼𝑁, ̃︀𝑁(𝑡)

+
2 (2𝜏𝑁𝑅)𝑝

1 ∨ (𝑁/(𝑒2𝑥0))2𝑠

∫︁

|𝑡|>𝑁/(𝑒2𝑥0)

∑︁

𝑘∈Z𝑝
|ℱ1st [𝑓 ] (𝑡,𝑘)|2 (1 ∨ 𝑡2𝑠)𝑑𝑡

≤ 4𝜋𝑙2

(𝜏𝑁 − 1)2𝜎
+

4𝜋𝑙2𝑐𝑁𝑝

𝑒𝑏𝑁
+

4𝜋𝑙2 (2𝜏𝑅𝑒2𝑥0)
𝑝
(𝑒2𝑥0)

2𝜎

𝑁2𝜎
.

Using 𝜏 − 1/10 > 0 and (3.29) yield the result. �
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Chapter 4

Nonparametric Ecological Inference

with an Application to Electoral

Studies

Abstract

This paper considers a nonparametric framework for the prediction of contingency

tables for given values of the marginal distributions of two discrete variables from a

dataset of margins in different groups. My methods are evaluated on a real dataset

to predict the probability to vote according to race. It is related to the prediction

of the random coefficients given values of the outcomes and regressors in a system

of linear random coefficients equations with bounded regressors. I characterize the

identiőed set without further assumptions and show that the no contextual effects

(NCE) assumption leads to new constructive point identiőcation. Then, I develop

a minimax adaptive estimator. I evaluate the performances of the methods on real

datasets where the true value of the parameters is known. This shows that the NCE

assumption is reasonable here. Finally, I apply my methods to estimate the effect of

door-to-door visits on vote shares among two categories of voters, based on past votes,

in the randomized experiment of Pons (2018). My results suggest that canvassing is
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especially effective through persuasion of undecided voters, rather than mobilization

of convinced ones.

Keywords: Ecological Inference, Random Coefficients, Data Combination, Partial

Identiőcation, Voting Experiments.

Introduction

A common empirical issue is to observe a sample of marginal distributions of two in-

dividual discrete variables 𝐶 ∈ {1, . . . , 𝑑𝐶} and 𝑅 ∈ {1, . . . , 𝑑𝑅} over the same groups

of individuals 𝑔, while the distributions of 𝐶 conditional on 𝑅 for the various groups

remain unknown. A simple yet striking illustration is the probability to go to the

polls, where 𝑑𝐶 = 2, according to race 𝑅 for given precincts 𝑔. In this example, the

precincts correspond to the groups and the conditional probabilities are usually unob-

served. Nevertheless, one can combine the margins through the precincts. Here, the

margins are the turnout rates and the racial composition of each precinct, respectively

𝑌 𝑔 :=

⎛
⎜⎜⎜⎝

P𝑔 (𝐶 = 1)

:

P𝑔 (𝐶 = 𝑑𝐶)

⎞
⎟⎟⎟⎠ ∈ [0, 1]𝑑𝐶 and 𝑋𝑔 :=

⎛
⎜⎜⎜⎝

P𝑔 (𝑅 = 1)

:

P𝑔 (𝑅 = 𝑑𝑅)

⎞
⎟⎟⎟⎠ ∈ [0, 1]𝑑𝑅 ,

where the coordinates of 𝑌 𝑔 and 𝑋𝑔 sum to 1. The former is provided by the election

returns while the later is provided from the census. The conditional distributions 𝐵𝑔,

or equivalently - as the margins are known - the contingency tables, are matrices with

𝑑𝑅 rows and 𝑑𝐶 columns which contains the probabilities to vote or not conditional

on race, namely 𝐵𝑟,𝑐,𝑔 := P𝑔(𝐶 = 𝑐|𝑅 = 𝑟). This problem is also encountered in other

contexts such as combining market level data with census data to perform demand

analysis. It is also the case for randomized experiments with protected variables. The

sheer amount of aggregate public data available, the public awareness of the need to

protect data privacy, and the enormous cost of obtaining individual data at large

scale all stress the importance of econometric tools for making this type of ecological
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inference, which uses data at the group level (see, e.g., Robinson, 1950; King, 1997).

The coefficients of the matrix 𝐵𝑔 are the outcome probabilities conditional on the

covariate for group 𝑔, hence have to satisfy the law of total probability, for all 𝑔,

∀𝑐 = 1, . . . , 𝑑𝐶 , P𝑔 (𝐶 = 𝑐) =

𝑑𝑅∑︁

𝑟=1

P𝑔 (𝐶 = 𝑐|𝑅 = 𝑟)P𝑔 (𝑅 = 𝑟) , (4.1)

which can be rewritten

𝑌 𝑔 = 𝐵⊤
𝑔 𝑋𝑔.

However, without additional restrictions, for each group, there are many possible

tables compatible with the observed margins 𝑌 𝑔 and 𝑋𝑔. This is the fundamental

indeterminacy of the ecological inference. There are two ways to handle this hetero-

geneity in the literature, which are related.

These tables and margins are heterogeneous across groups hence the point of view

which I follow in this paper treats the observed sample of margins for the groups,

together with the unobserved and heterogeneous conditional distributions, as random

vectors and matrices drawn from a sampling distribution

(𝐵𝑔,𝑋𝑔,𝑌 𝑔) ∼ P𝐵,𝑋,𝑌 ,

where P𝑍 denotes the law of a random vector 𝑍 (see also, e.g., King, 1997; Wakeőeld,

2004; Imai et al., 2008, in the Statistics and Political Science literatures). This paper

then considers inference on the conditional expectation

𝑚 : (𝑥,𝑦) ∈ [0, 1]𝑑𝑅×𝑑𝐶 ↦→ E [𝐵|(𝑋,𝑌 ) = (𝑥,𝑦)] ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), (4.2)

where ℳ𝑑𝑅,𝑑𝐶 ([0, 1]) are 𝑑𝑅× 𝑑𝐶 matrices with elements in [0, 1]. This gives the best

prediction of the heterogeneous conditional distribution 𝐵 for given values of the

margins (𝑋,𝑌 ) = (𝑥,𝑦).1 Another way to interpert this parameter 𝑚 is that, if 𝐵

1The posterior average effects studied in a Bayesian context in Bonhomme and Weidner (2019)
shares some similarities with 𝑚.
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were observed, 𝑚 would be a local average of 𝐵 over the groups whose margins are

close to (𝑥,𝑦). This translates in the example as the prediction of the probability

to vote at an election for people of a certain race given the turnout rate and racial

composition. A second point of view, used in Econometrics (see, e.g., Cross and

Manski, 2002a; Molinari and Peski, 2006a; Fan et al., 2014, 2016; Manski, 2018; Jiang

et al., 2020; Gaillac, 2020), rather looks for all the conditional matrices 𝐵𝑔 which are

compatible with given margins 𝑌 𝑔 and 𝑋𝑔. However, this often yields identiőed sets

which are too large for the practitioners.

This paper őrst studies identiőcation of (4.2) and shows how the two above points

of view are related. The law of total probability (4.1), together with the constraints

on the margins, yield that (𝐵,𝑋,𝑌 ) satisőes exactly the linear system of random

coefficients equations

∀𝑐 = 1, . . . , 𝑑𝐶 , 𝑌 𝑐 =

𝑑𝑅∑︁

𝑟=1

𝐵𝑟,𝑐𝑋𝑟, ∀𝑟 = 1, . . . , 𝑑𝑅,

𝑑𝐶∑︁

𝑐=1

𝐵𝑟,𝑐 = 1 (4.3)

∀𝑐 = 1, . . . , 𝑑𝐶 , ∀𝑟 = 1, . . . , 𝑑𝑅, 𝐵𝑟,𝑐 ≥ 0, 𝑋𝑟,𝑐 ≥ 0,

𝑑𝑅∑︁

𝑟=1

𝑋𝑟 = 1 . (4.4)

Without further assumptions, the identiőed set for 𝑚, i.e., the set of parameters com-

patible with the distribution of the data, is related to the one considered in Cross and

Manski (2002a) and is exactly the one studied in Manski (2018) and Gaillac (2020).

Then, I make the nonparametric assumption of independence between the random

coefficients and the random margin of the covariate 𝐵 ⊥ 𝑋 - i.e. no contextual effects

(NCE) in the ecological inference literature. This can be viewed as the exogeneity of

the regressor 𝑋. In the voting example, this exogeneity assumption means that the

probability that an individual of a given race go to the polls is independent of the

racial composition of the precincts. Estimation under NCE and a degenerated matrix

𝐵 has been studied in Goodman (1959), then under parametric assumptions and 2×2

tables in King (1997), in Rosen et al. (2001) with 𝑑𝑅 categories and 𝑑𝐶 choices, using

a Bayesian hierarchical model in Wakeőeld (2004), and Bayesian nonparametric esti-
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mation method in Imai et al. (2008).2 Being frequentist nonparametric is important,

as misspeciőcation or the choice of prior could drive the results (see, e.g., Heckman

and Singer (1984)).

My main contribution is to obtain new nonparametric constructive point identiő-

cation of the prediction with two possibilities for the outcome and an arbitrary num-

ber of covariate categories. With more than two possibilities, I show how additional

nonparametric restrictions on the dimension of the unobserved heterogeneity restore

point identiőcation in the linear system of random coefficients equations model. This

complements the nonidentiőcation result of Masten (2017). The NCE assumption

might not be credible in some contexts. In the example, assume that the researcher

does not observe income categories composition of the precincts while the share of

Black people being higher in low-income precincts. Then, the NCE assumption fails

if ceteris paribus, low-income people vote less than the others. More generally, this

assumption is restrictive in the sense that it amounts to assume that there is no omit-

ted variable bias. When additional group level variables 𝑍 can be observed, such as

the precincts compositions in terms of levels of income or education, this allows to

assume NCE conditional on these variables, i.e., 𝐵 ⊥ 𝑋|𝑍, and to perform inference

on

𝑚 : (𝑥,𝑦, 𝑧) ↦→ E [𝐵|(𝑋,𝑌 ,𝑍) = (𝑥,𝑦, 𝑧)] .

This extension have been considered in a parametric way in the literature (see, e.g.,

King, 1997; Imai et al., 2008) whereas my method is the őrst to incorporate the

additional variables 𝑍 nonparametrically. Another extension proposes an alternative

to the NCE assumption when the researcher observes an instrument, adapting the

control function approach of Masten and Torgovitsky (2013).

I then perform nonparametric estimation of the conditional expectation of the ran-

dom coefficients satisfying a linear system of equations with two possibilities (𝑑𝐶 = 2),

2Recent developments use optimal transport as in Frogner and Poggio (2019), with a maximum
at posteriori under Dirichlet prior, imposing independence between the rows of the table, and in
Muzellec et al. (2017), selecting a solution minimizing a distance, apriori reŕecting the ideological
proximity.
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where regressors are bounded - as the covariate margins 𝑋𝑔 are vectors of probabili-

ties. Thus, this paper also contributes to the large literature about random coefficients

models (see, among many others, Beran and Hall, 1992; Beran and Millar, 1994; Be-

ran et al., 1996a; Hoderlein et al., 2010; Gautier and Kitamura, 2013; Masten, 2017;

Hoderlein et al., 2017; Dunker et al., 2017; Newey and Stouli, 2018; Gaillac and Gau-

tier, 2019c,b; Breunig, 2020). It extends Gaillac and Gautier (2019c), which perform

estimation of the density of the random coefficients in the difficult case where regres-

sors are bounded, as it considers a functional. Thus, under classical assumptions on

the smoothness of the underlying random coefficients distribution, my minimax lower

bounds exhibit faster rates of convergence than in Gaillac and Gautier (2019c). My

estimator is based on boundary corrected wavelets adapted to the geometry of the

support of the regressors. It is optimal in the minimax sense, up to logarithmic factors

in the rates of convergence, and adaptive, i.e., its tuning parameter is automatically

selected from the data. I also show asymptotic normality. My method performs well,

outperforming those making parametric assumptions when the latter are violated,

on Monte-Carlo simulations and on the real precincts data about turnout and race

mentioned earlier. I provide a R package RobustEI.

This paper concludes showing that a direct plug-in of the above estimator allows

the estimation of the effect a treatment 𝑇𝑔 on the choice probabilities for categories

in a clustered experiment by group 𝑔 where the individual outcomes 𝐶 and covariates

𝑅 are protected. Consider the potential outcome model of Rubin (1974), where we

denote by 𝐵𝑔(0) the potential outcome for group 𝑔 if not treated, 𝐵𝑔(1) the potential

outcome if treated, and we observe only the treatment status 𝑇𝑔 ∈ {0, 1} and relalized

outcome 𝐵𝑔(𝑇𝑔). When the groups 𝑔 are treated 𝑇𝑔 = 1 randomly conditionally on

the variables 𝑊 𝑔, i.e., the unconfoundedness assumption at the group level 𝑔,

𝐵𝑔(1),𝐵𝑔(0) ⊥ 𝑇𝑔 |𝑊 𝑔,

the treatment effect 𝛾𝑟,1 = E [𝐵𝑟,1(1)−𝐵𝑟,1(0)] on the probability to choose 𝐶 = 1

among individuals of category 𝑅 = 𝑟, namely 𝐵𝑟,1, can be expressed as a function of
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𝑚,

𝛾𝑟,1 = E [E [𝐵𝑟,1|𝑊 , 𝑇 = 1]− E [𝐵𝑟,1|𝑊 , 𝑇 = 0]]

= E [E [𝑚𝑟,1(𝑋,𝑌 ,𝑊 , 𝑇 )|𝑊 , 𝑇 = 1]− E [𝑚𝑟,1(𝑋,𝑌 ,𝑊 , 𝑇 )|𝑊 , 𝑇 = 0]] ,

(4.5)

where 𝑇 and 𝑊 are considered as additional variables 𝑍 := (𝑊 , 𝑇 ). This paves the

way for many applications in Political Science, where this is a common situation.

I consider an application to the effect of door-to-door visits on vote shares among

different categories of voters, based on past votes, in the experiment of Pons (2018).

The experiment consists in sending campaigners visit households in randomly selected

precincts to convince them to vote for the left-wing candidate at the 2012 French

Presidential election. The secret ballot prevents from observing directly the joint

distribution of the probability of voting for a candidate and individual characteristics

in the precincts. Pons (2018) shows that there is an impact at the precinct level on the

left candidate’s vote shares. He justiőes that motivation of left-wing nonvoters is not

the main channel. He argues that the main mechanism is the persuasion of undecided

active voters. However, due to the data, he can not directly estimate the impact on

this category of voters. I provide quantitative evidence for this heterogeneity. The

strategy is to leverage the two rounds of the French Presidential election, where only

two candidates qualify for the second round. Hence, the group of individuals whose

candidate they voted for at the őrst round of the election did not qualify for the

second round proxies the group of undecided active voters. I observe, for a sample of

precincts, the second round vote shares for the left-wing candidate and the precincts

composition based on past votes and use my estimator of 𝑚. My main result validates

the insights of Pons (2018), quantifying the impact on the left-wing candidate’s vote

shares among the category of undecided active voters. There is no effect on the vote

shares among the others. Finally, I use a second decomposition with respect to the

level of education. It shows that the persuasion effect of the visits is stronger on

less-educated voters.
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The remainder of the paper is organized as follows. Section 4.1 studies identiőca-

tion. Then, Section 4.2 considers inference with 𝑑𝐶 = 2, with theoretical asymptotic

results and Monte-Carlo simulations. Finally, Section 4.3 performs estimation of the

treatment effect on the vote shares given categories of voters. Appendix 4.5.1 provides

identiőcation when 𝑑𝐶 > 2 and Appendix 4.5.2 gathers complements and proofs of

the main theorems.

4.1 Identiőcation

4.1.1 Identiőcation without assuming no contextual effects

In this section, I assume that the researcher observes a distribution P𝑋,𝑌 across

groups. For a random vector 𝑋, denote by S𝑋 its support.

Let (𝑥,𝑦) ∈ S𝑋,𝑌 . The set of matrices 𝐵 ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]) satisfying (4.1) can be

characterized, from Cross and Manski (2002a) (see Proposition 1 in Gaillac, 2020),

as the set of matrices with elements in [0, 1] such that (4.3) holds, namely

ℐ(𝑥,𝑦) =
{︀
𝐵 ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), 𝐵1 = 1, 𝑦 = 𝐵⊤𝑥

}︀
. (4.6)

ℐ(𝑥,𝑦) is nonempty,3 bounded and deőned by a őnite number of equality and in-

equality constraints. It is therefore a closed and convex polytope (see, e.g., Brualdi,

2006, p.337). The set of associated joint distributions is known as the transportation

polytope (see, e.g., Cuturi, 2012).

Proposition 1 below simply shows that, without restricting the dependence be-

tween 𝐵 and 𝑋 - even with the knowledge of the distribution of the margins - the

prediction 𝑚 is only partially identiőed. The best we can assert for given margins

𝑥,𝑦 is that the prediction 𝑚(𝑥,𝑦) belongs the set ℐ(𝑥,𝑦) obtained without structure.

This relates identiőcation of the prediction 𝑚 to the partial identiőcation literature

in econometrics following Cross and Manski (2002a).

3The independent distribution 𝐵 = 1𝑦⊤, which corresponds to the case where choices probabil-
ities do not depend on the covariate, always belongs to ℐ(𝑥,𝑦).
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Deőnition of the identiőed set for 𝑚. I explicit here useful elements of nonpara-

metric identiőcation (see, e.g., Matzkin, 2007b). The distribution of the observables

is P𝑋,𝑌 , while the distribution of the observables generated by P𝐵,𝑋 and the system

(4.1) is P𝑔𝑒𝑛(P𝐵,𝑋). ℛ is a set of restrictions deőned accordingly, like satisfying the

independence restriction P𝐵,𝑋 = P𝐵 ⊗ P𝑋 . The functional of interest is (4.2) and

satisőes 𝑚 = Γ(P𝐵,𝑋 ,P𝑋,𝑌 ) for a certain deterministic function Γ.4 The identiőed

set for 𝑚 is the set of matrix valued functionals such that there exists a unobserved

associated distribution P𝐵,𝑋 which generates observations compatible with the dis-

tribution of the data,

𝒥𝑋,𝑌 (Γ,ℛ) := {𝑚 : ∃ P𝐵,𝑋 ∈ ℛ, P𝑔𝑒𝑛(P𝐵,𝑋) = P𝑋,𝑌 , Γ(P𝐵,𝑋 ,P𝑋,𝑌 ) = 𝑚} .

Proposition 1 (Partial identiőcation without assuming NCE). Let the distribution

of (𝐵,𝑋,𝑌 ) satisfy (4.1) and ℛ be unrestricted. The identiőed set for 𝑚 is

𝒥𝑋,𝑌 (Γ,ℛ) =
{︀
𝑚 : [0, 1]𝑑𝑅×𝑑𝐶 → ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), ∀(𝑥,𝑦) ∈ S𝑋,𝑌 , 𝑚(𝑥,𝑦) ∈ ℐ(𝑥,𝑦)

}︀
,

where ℐ(𝑥,𝑦) is deőned in (4.6).

4.1.2 Identiőcation assuming no contextual effects

I now consider the following exogeneity assumption which constrains the dependence

between the regressor and the random coefficients.

Assumption 1 (łNo contextual effects" (NCE)). Assume that the heterogeneous

conditional probabilities are independent of the shares of the different categories across

groups, namely:

𝐵 ⊥ 𝑋.

Assumption 1 is classical both in the random coefficients and in the ecological

inference litteratures. This nonparametric assumption is however strong for some

4It is detailed in the proofs, using Bayes’ theorem and that the conditional distribution of 𝑌

given 𝐵,𝑋 is őxed by (4.1).
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applications (see, e.g., Tam Cho, 1998) hence the need to perform sensitivity analysis

to the predictions obtained under this assumption. In assumptions 4 or 5, I consider

alternative assumptions when other covariates are available. For a vector 𝑟 of size 𝑑,

denote by 𝑟 the vector of size 𝑑− 1, containing the őrst 𝑑− 1 entries of 𝑟.

Assumption 2. The support of 𝑋 has nonempty interior.

I maintain Assumption 2 for simplicity. Note that, because 𝑋 are probabilities,

this latter assumption is not restrictive in most applications. Support conditions on

the regressors in this context are relaxed in Theorem 5 in Gaillac and Gautier (2019b)

and we could allow for discrete regressors whose support is countably inőnite.

The system (4.1) is a particular type of seemingly unrelated regressions (SUR)

with random coefficients which contain a common regressor, with additional con-

straints 𝑋⊤1 = 𝑌 ⊤1 = 1. It is shown in Corollary 1 in Masten (2017) in the context

of SUR that the joint distribution of 𝐵 is necessarily not point identiőed (see Propo-

sition (P2.a) below). Proposition (P2.b) below is new and shows that, with more

than two choices, even the conditional expectation of the random coefficients is not

identiőed without additional assumptions on the random matrix. When 𝑑𝐶 = 2, be-

cause in our model the distribution of 𝐵 is compactly supported S𝐵·,1 ⊆ [0, 1]𝑑𝑅 , then

Proposition (P2.2) below is Proposition 2.2 in Beran and Millar (1994) and (P2.1) is

a direct consequence of it.

Proposition 2 (Identiőcation without contextual effects). Let the distribution of

(𝐵,𝑋,𝑌 ) satisfy (4.1) and Assumption 1. We have, for all 𝑑𝑅 ≥ 2, when 𝑑𝐶 = 2,

(P2.1 ) 𝑚 is identiőed under Assumption 2;

(P2.2 ) the distributions of 𝐵 and of 𝐵 conditional on (𝑋,𝑌 ) are identiőed under

Assumption 2;

and, when 𝑑𝐶 > 2,

(P2.a) the distribution of 𝐵 is not identiőed under Assumption 2;
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(P2.b) 𝑚 is not identiőed under Assumption 2.

In Proposition 2 and under Assumption 2, I use the fact that the support of 𝐵 is

compact, hence the distribution is determined by its moments. Theorem 1 below goes

further than the nonidentiőcation result of (P2.b) with partial identiőcation results

and also showsn nonparametric constructive point identiőcation in the case 𝑑𝐶 = 2.

The notations ·, ⋆ are used to denote a variable in a function. For two random vectors

𝑋 and 𝑌 , P𝑌 |𝑋=𝑥, 𝑓𝑌 |𝑋=𝑥, and 𝐹𝑌 |𝑋=𝑥 denote the conditional probability, density,

and cumulative distribution.

Assumption 3. The conditional density 𝑓𝑌 |𝑋 exists and, for all 𝑗 = 1, . . . , 𝑑𝑅 − 1

and 𝑥 ∈ S𝑋 , its partial derivatives 𝜕𝑥𝑗𝑓𝑌 |𝑋(·|𝑥) are integrable and square integrable

on R𝑑𝐶−1.

I give in Section 4.2 sufficient conditions for Assumption 3 in terms of minimal

smoothness of the density of 𝐵. Note that many classical parametric distributions

of 𝐵 yield that Assumption 3 holds, such as the uniform distribution, the truncated

normal used by King (1997), the beta or the Dirichlet distributions with parameter

strictly greater than one or the logit-normal distribution.

Theorem 1 (Constructive identiőcation when 𝑑𝐶 = 2). Let 𝑑𝐶 = 2, the distribution

of (𝐵,𝑋,𝑌 ) satisfy (4.1) and deőne the restriction ℛ corresponding to assumptions

1, 2, and 3. Then, the prediction 𝑚 is point identiőed and satisőes, for all 𝑟 =

1, . . . , 𝑑𝑅 and (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝑚𝑟,1(𝑥,𝑦) = 𝑦1 +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝐹𝑌 1|𝑋(𝑦1|𝑥)
𝑓𝑌 1|𝑋(𝑦1|𝑥)

(4.7)

and 𝑚𝑟,2 = 1−𝑚𝑟,1.

Partial identiőcation and point identiőcation when 𝑑𝐶 > 2. Proposition 7 in

Appendix 4.5.1 studies partial identiőcation with more than two outcomes possibili-

ties, 𝑑𝐶 > 2, assuming NCE. It shows that the elements of 𝑚 are solutions of a system

of coupled transport partial differential equations. When one limits the dimension
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of the unobserved heterogeneity, Appendix 4.5.1 then provides a way to solve this

system and to restore point identiőcation when 𝑑𝐶 = 3, which can be extended to

𝑑𝐶 > 3. Speciőcally, I assume that some random coefficients are linearly dependent of

the others. I show that 𝑚 can be expressed as a linear combination of the quantities

𝜕𝑥𝑙𝑓𝑌 |𝑋 and 𝑓𝑌 |𝑋 .

4.1.3 Identiőcation with additional variables or instruments

Using conditioning. Additional variables 𝑍 of dimension 𝑝𝑍 can be used to allow

for some contextual effects, performing the analysis conditional on 𝑍.

Assumption 4. 𝐵 ⊥ 𝑋|𝑍.

Under Assumption 4, the parameter of interest becomes the expectation of 𝐵

conditional on the observed quantities, i.e., given values of the margins 𝑋,𝑌 and

the additional variables 𝑍:

𝑚 : (𝑥,𝑦, 𝑧) ∈ S𝑋,𝑌 ,𝑍 ↦→ E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦,𝑍 = 𝑧] ∈ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]). (4.8)

Identiőcation under Assumption 4 is the parallel of Theorem 1 (see Proposition 12

in the Appendix) and states that the same type of formula can be obtained for

(4.8) in the case 𝑑𝐶 = 2, simply conditioning on 𝑍, for all (𝑥,𝑦, 𝑧) ∈ S𝑋,𝑌 ,𝑍 and

𝑟 = 1, . . . , 𝑑𝑅,

𝑚𝑟,1(𝑥,𝑦, 𝑧) = 𝑦1 +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝐹𝑌 1|𝑋,𝑍(𝑦1|𝑥, 𝑧)
𝑓𝑌 1|𝑋,𝑍(𝑦1|𝑥, 𝑧)

(4.9)

and 𝑚𝑟,2 = 1−𝑚𝑟,1.

Using the control function approach. An alternative is to use the control func-

tion approach used in, e.g., Florens et al. (2008); Masten and Torgovitsky (2013);

Newey and Stouli (2020), when an instrument 𝑊 is available.
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Assumption 5. 1. (First stage equation) For each 𝑟 = 1, . . . , 𝑑𝑅 − 1, there

exists a scalar random variable 𝑉 𝑟 and a possibly unknown function ℎ𝑟 that is

strictly increasing in its second argument, for which 𝑋𝑟 = ℎ𝑟(𝑊 ,𝑉 𝑟).

2. (Instrument exogeneity) (𝐵,𝑉 ) ⊥ 𝑊 .

Assumption 5 is an alternative to the NCE assumption and places restrictions on

the dependence between 𝑋 and 𝐵. Namely, it implies that most of the correlation

between 𝑋 and 𝐵 occurs through 𝑉 . This can be structurally motivated in some

applications. Deőne 𝑍𝑟 := 𝐹𝑋𝑟|𝑊 (𝑋𝑟|𝑊 ) for 𝑟 = 1, . . . , 𝑑𝑅 − 1. Proposition 1 in

Masten and Torgovitsky (2013) ensures that (𝑍,𝐵) ⊥ 𝑊 and that 𝑋 ⊥ 𝐵|𝑍, which

yields identiőcation in Theorem 1 under Assumption 5 rather than Assumption 1.

Proposition 3 (Identiőcation using the control function when 𝑑𝐶 = 2). Let the

distribution of (𝐵,𝑋,𝑌 ,𝑊 ) satisfy the assumptions 2 and 5. Deőne 𝑍 by, for

𝑟 = 1, . . . , 𝑑𝑅 − 1, 𝑍𝑟 := 𝐹𝑋𝑟|𝑊 (𝑋𝑟|𝑊 ). Then

𝑚 : (𝑥,𝑦, 𝑧) ∈ S𝑋,𝑌 ,𝑍 ↦→ E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦,𝑍 = 𝑧]

satisőes (4.9).

4.2 Inference

This section, for simplicity, considers only the case 𝑑𝑅 × 2, where heterogeneity does

not have to be restricted further than Assumption 1 to get point identiőcation. My

plug-in strategy below can be directly adapted to the case 𝑑𝐶 = 3, using Proposition

8. When 𝑑𝐶 = 2, using the constraint 𝑌 ⊤1 = 1, the system (4.1) can be treated

using a single equation, without loss of generality. Because of the constraints 𝑋⊤1 =

𝑌 ⊤1 = 1, which create redundancies, I use hereafter a slight abuse of notations and,

for (𝑥, 𝑦) ∈ S𝑋,𝑌 , use the notation 𝑚(𝑥, 𝑦) instead of 𝑚((𝑥, 1−𝑥⊤1)⊤, (𝑦, 1− 𝑦)⊤).

When 𝒮 is measurable, 𝐿2(𝒮) denotes the space of complex-valued square integrable

functions equipped with the inner product ⟨𝑓, 𝑔⟩𝐿2(𝒮) =
∫︀
𝒮 𝑓(𝑥)𝑔(𝑥)𝑑𝑥.
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Asymptotic analysis with the minimax risk. This section characterizes the

asymptotic properties of estimators of 𝑚 in the minimax context, which I explain

here. Based on a sample of margins (𝑋𝑔,𝑌 𝑔)
𝐺
𝑔=1 for 𝐺 groups, I deőne the expected

error of an estimator ̂︁𝑚𝑟,1 of 𝑚𝑟,1, for 𝑟 = 1, . . . , 𝑑𝑅,

ℛ𝑞 (̂︁𝑚𝑟,1,𝑚𝑟,1) := E
[︁
‖̂︁𝑚𝑟,1 −𝑚𝑟,1‖𝐿𝑞(𝒮)

]︁

in 𝐿𝑞 norm on 𝒮, which is a subset of [0, 1]𝑑𝑅 deőned later in Assumption (Est.3), for

𝑞 ∈ {2,∞}. First, for my particular estimator ̂︁𝑚𝑗0
𝑟,1, where 𝑗0 is the tuning parameter,

I show an upper bound on the maximum risk, which the worst error estimating 𝑚

associated to a density 𝑓𝐵·,1 - assuming that it exists - in the space ℋ𝑠+1(𝑙) deőned

later, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

1

𝑟(𝐺)
sup

𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

ℛ𝑞
(︁
̂︁𝑚𝑗0

𝑟,1,𝑚𝑟,1

)︁

⏟  ⏞  
Maximum risk

= 𝑂(1), (4.10)

where 𝑟(𝐺) is thus a rate of convergence for my estimator. ℋ𝑠+1(𝑙) characterizes

the smoothness of the distributions 𝑓𝐵·,1 and is indexed by two parameters 𝑠 and

𝑙. Thus, controlling the maximum risk for an estimator shows the uniformity of its

performances with respect to all the distributions in the class ℋ𝑠+1(𝑙). Second, I

turn to the question of the optimality of this estimator. The performance measure I

consider is the minimax risk, i.e., the minimum of the maximum risk that an estimator

̂︁𝑚𝑟,1 can achieve,

ℛ𝑞,*
𝐺 := inf

̂︁𝑚𝑟,1

sup
𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

ℛ𝑞 (̂︁𝑚𝑟,1,𝑚𝑟,1) . (4.11)

I show a lower bound 𝑟 on the latter which takes the form, for all 𝑟 = 1, . . . , 𝑑𝑅,

∃𝜈 > 0 : lim𝐺→∞
1

𝑟(𝐺)
ℛ𝑞,*
𝐺 ≥ 𝜈. (4.12)

Of course, the aim is to establish the sharpest lower bound possible and to obtain a

rate for my estimator in (4.10) that is the closest to the rate that is achievable for
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this statistical problem in (4.12). Note that, (4.10) also gives an upper bound on

the minimax risk (4.11), as I consider a speciőc estimator. Theorem 2 below shows

that my estimator achieves the best rate when 𝑞 = 2 and that it is close to it, up to

logarithmic factors, for 𝑞 = ∞. However, the tuning parameter 𝑗0 has to be chosen

as a function of the smoothness parameter 𝑠, which is unobserved. Hence the last

step is to choose the tuning parameter ̂︀𝑗0, using only the data, while keeping a rate

close to the case where the smoothness parameter is known. Namely, I show that my

estimator is adaptive proving

1

𝑟(𝐺)
sup

𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

ℛ2
(︁
̂︁𝑚 ̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
= 𝑂(1), (4.13)

where the rate 𝑟 is the one in (4.10) up to a logarithmic term. Table (4.1) below

presents a summary of the rates obtained with my estimator in 𝐿2 norm.

Smoothness and sampling assumptions. For 𝑑 ≥ 1, denote the Fourier trans-

form of 𝑓 ∈ 𝐿1
(︀
R𝑑

)︀
∩ 𝐿2

(︀
R𝑑

)︀
by ℱ [𝑓 ] (𝑥) =

∫︀
R𝑑
𝑒𝑖𝑏

⊤𝑥𝑓(𝑏)𝑑𝑏.

Assumption 6 (Smoothness assumption, Sobolev ellipsoid). Let 𝑙 ∈ (0,∞), 𝑠 >

(𝑑𝑅 − 1)/2, and assume that 𝑓𝐵·,1 exists and belongs to

ℋ𝑠(𝑙) :=

{︂
𝑓𝐵 :

∫︁

R𝑑𝑅
(1 ∨ |𝜉|2)

2𝑠
⃒⃒
ℱ [𝑓𝐵·,1 ](𝜉)

⃒⃒2
𝑑𝜉 ≤ 𝑙2

}︂
.

The key proposition that links this Sobolev type smoothness to the model is

Proposition 9, which is of independent interest. Note that, contrary to Assumption

3, the uniform distribution or the truncated normal used by King (1997), do not sat-

isfy Assumption 6. This is due to the discontinuity at the boundary of the support.

Hence smooth approximations of the uniform distribution or the truncated normal

at the boundary satisfy Assumption 6. More importantly, the beta and the Dirichlet

distributions with parameter strictly greater than one, or the logit-normal distribu-

tion, which are usual parametric distributions to represent probabilities (see, e.g.,

Katz and King, 1999; Imai et al., 2008), satisfy Assumption 6.
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The following assumptions are introduced to be able to derive convergence rates.

Assumption 7. Assume that:

(Est.1 ) there exist densities 𝑓𝑋 and 𝑓𝑌 |𝑋 , which are considered known for simplicity

in the body of this paper and estimated under Assumption 12 in the Appendix;

(Est.2 ) we observe an i.i.d sample (𝑋𝑔,𝑌 𝑔)
𝐺
𝑔=1;

(Est.3 ) For 𝑐𝑋 , 𝑐𝑋,𝑌 ∈ (0,∞), ‖1/𝑓𝑋‖𝐿∞(S𝑋) ≤ 𝑐𝑋 , ‖𝑓𝑋‖𝐿∞(S𝑋) ≤ 𝐶𝑋 , and there

exists a strict subset 𝒮 of S𝑋,𝑌 such that ‖1/𝑓𝑌 |𝑋‖𝐿∞(𝒮) ≤ 𝑐𝑋,𝑌 .

Table 4.1: Summary of the minimax 𝐿2(𝒮) risk rates of convergence in ℋ𝑠+1(𝑙)

Lower bound, łbest" est. Est. (4.15), 𝑠 known Est. (4.15)-(4.18), data-driven

Rate, 𝑟(𝐺) 𝐺
− 2𝑠

2𝑠+𝑑𝑅+1

∀𝑁 , 𝐺− 2𝑠𝑁
2𝑠𝑁+𝑑𝑅+1 ∀𝑁 ,

(︁
𝐺

ln(𝐺)

)︁− 2𝑠𝑁
2𝑠𝑁+𝑑𝑅+1

𝑠𝑁 →𝑁→∞ 𝑠 𝑠𝑁 →𝑁→∞ 𝑠

Statement (4.12), Proposition 4 (4.10), Theorem 2 (4.13), Proposition 5

Notes: The asymptotic is in the number of groups 𝐺. est. means estimator. 𝑁 is a arbitrarily

őxed parameter indexing the smoothness of the wavelets functions used my estimator (4.15).

4.2.1 Upper bounds

Assumption 8 (Assumption on the support of the covariate margins). Assume that

either

(RC.1 ) S𝑋 =
∏︀𝑑𝑅−1

𝑙=1 [̃︀𝑥𝑙, ̃︀𝑥𝑙 + 𝑥0], where ̃︀𝑥 ∈ [0, 1]𝑑𝑅−1 and 𝑥0 > 0.

(RC.2 ) or S𝑋 =
{︁
𝑥 ∈ [0, 1]𝑑𝑅−1;

∑︀𝑑𝑅−1
𝑙=1 𝑥𝑙 ≤ 1

}︁
which is a triangle;

Assumption (RC.2) is more natural as we work with shares, but more difficult

to handle than (RC.1). The proof of Theorem 1 is constructive and my estimator is

based on a plug-in approach of an estimator of
(︀
𝜕𝑥𝑙𝐹𝑌 |𝑋

)︀𝑑𝑅−1

𝑙=1
. The strategy implies
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having őrst-step estimators of 𝑓𝑌 |𝑋 and 𝑓𝑋 as described in Appendix 4.5.2. As these

are quantities more classically estimated in the statistical literature and for the sake

of simplicity, I make high level assumptions on their rates of estimation and refer

to, e.g., Giné and Nickl (2016), for estimators based on wavelets. In the body of

the paper here I assume that 𝑓𝑋 and 𝑓𝑌 |𝑋 are known for simplicity, but all results

are proved in Appendix in the more general case where they are estimated. They

are implemented in a data-driven way in the R package RobustEI using Legendre

polynomials or wavelets.

My estimator uses the vaguelet-wavelet decomposition that I now describe. Ap-

pendix 4.5.4 also provides a simpler yet non optimal estimator based on Legendre

polynomials. In practice, the latter has good őnite sample properties hence it is used

in our application in Section 4.3.

The vaguelet-wavelet decomposition. Let 𝐽,𝑁 ∈ N, 2𝐽 ≥ 2𝑁 . The estimator

uses wavelets based on the Daubechies scaling function (see, e.g., Daubechies, 1992)

corrected at the boundaries according to the support of 𝑋, which constitute an

orthonormal basis of 𝐿2(S𝑋),

ℬ =
{︀
Ψ𝑤
𝑗,𝑘, 𝑗 ∈ N ∖ {0, . . . , 𝐽 − 1}, 𝑘 ∈ Λ𝑗, 𝑤 ∈ 𝒲𝑗

}︀
,

where Λ𝑗 is a set of cardinal 𝑂
(︀
2𝑗(𝑑𝑅−1)

)︀
(see Appendix 4.5.2 for the precise deőnition

according to the geometry fo the support of 𝑋), ̃︁𝒲 is the set of 2𝑑𝑅−1 − 1 sequences

𝑤 of zeros and ones, excluding the 𝑑𝑅 − 1 dimensional vector of zeros 0, for 𝑗 ̸= 𝐽 ,

𝒲𝑗 = ̃︁𝒲 , 𝒲𝐽 = 0, and Ψ𝑤
𝑗,𝑘 are based on dilatations and translations of 𝜑 and

𝜓,5 which are the initial scaling and wavelet functions from the Daubechies family

with 𝑁 ≥ 1 (see, e.g., Härdle et al., 2012) followed by a correction at the boundary,

adapted to the support of 𝑋. Appendix 4.5.2 presents the different types of boundary

corrections adapted to Assumption 8, where I use the boundary corrected wavelets

5Ψ0

𝑗,𝑘 = Φ𝐽,𝑘, 𝑘 ∈ Λ𝐽 which corresponds to dilatation of scaling function 𝜑 only, up to the
boundary correction. See Appendix 4.5.2 for a more precise description of these functions.
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introduced in Cohen et al. (1993) and adapt the correction introduced in Ajmi et al.

(2011).

Estimator. To deal with the statistical problem, I use

𝜕𝑙𝐹𝑌 |𝑋
𝑗0
(⋆|·) :=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

̂︀𝑑𝑗,𝑘,𝑤(⋆)2𝑗Ω𝑤
𝑙,𝑗,𝑘(·),

where Ω𝑤
𝑙,𝑗,𝑘 := 𝜕𝑙Ψ

𝑤
𝑗,𝑘/2

𝑗 are called the vaguelets and, for all 𝑦 ∈ [0, 1],

̂︀𝑑𝑗,𝑘,𝑤(𝑦) :=
1

𝐺

𝐺∑︁

𝑔=1

1l{𝑌 𝑔 ≤ 𝑦}
𝑓𝑋(𝑋𝑔)

Ψ𝑤
𝑗,𝑘

(︀
𝑋𝑔

)︀
(4.14)

is an estimator of 𝑑𝑗,𝑘,𝑤(𝑦) :=
⟨︀
E [1l{𝑌 ≤ 𝑦}|𝑋 = ·] ,Ψ𝑤

𝑗,𝑘

⟩︀
𝐿2(S𝑋)

. This yields my

estimator of 𝑚𝑟,1, for 𝑟 = 1, . . . , 𝑑𝑅 and (𝑥, 𝑦) ∈ S𝑋,𝑌 ,

̂︁𝑚𝑗0
𝑟,1(𝑥, 𝑦) = 𝑦 +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑙𝐹𝑌 |𝑋
𝑗0
(𝑦|𝑥)

𝑓𝑌 |𝑋(𝑦|𝑥) . (4.15)

Theorem 2 (𝐿∞ and 𝐿2 convergence rates). Let 𝑑𝐶 = 2, 𝑠 ≥ (𝑑𝑅 − 3)/2, 𝑙 > 0,

𝑁 ∈ N, 𝑁 ≥ 1 + (𝑑𝑅 + 1)/𝑠, 𝐽 ∈ N such that 2𝐽 ≥ 2𝑁 , 𝑠𝑁 := 𝑠( ̃︀𝑁 + (𝑑𝑅 + 1)( ̃︀𝑁 −
1)/(2𝑠)) →𝑁→∞ 𝑠, ̃︀𝑁 = (2𝑁+𝑑𝑅−1)/(2𝑁+2(𝑠+1)+𝑑𝑅) →𝑁→∞ 1, 𝑗0 = ⌊̃︀𝑗⌋, where

̃︀𝑗 is solution of 2
̃︀𝑗(2𝑠𝑁+𝑑𝑅+1)̃︀𝑗31l{𝑞=∞} = 𝐺𝑒. Make assumptions 1-3, 7 and 8, then

(T2.1 ) (4.10) holds with 𝑞 = ∞ and 𝑟(𝐺) = (𝐺/ ln(𝐺)3)
−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

;

(T2.2 ) (4.10) holds with 𝑞 = 2 and 𝑟(𝐺) = 𝐺−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1).

We choose the Daubechies wavelets because they are compactly supported and

have Fourier transform decaying at least polynomially at inőnity, with index limited

by 𝑁 .6 This yields that 𝑠 is replaced by 𝑠𝑁 , which can be taken arbitrarily close

to 𝑠 as 𝑁 → ∞, in the rates of Theorem 2. Note that the condition (4.64) on the

preliminary estimators of 𝑓𝑋 and 𝑓𝑌 |𝑋 , based on preliminary samples, requires a

6I also use Legendre functions, see Appendix 4.5.4, and could also use Prolate Spheroidal Wave
functions (see, e.g., Osipov et al. (2013)), but their oscillations at the boundaries of [-1,1] prevents
from obtaining optimal rates, see Proposition 13.
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larger independent sample not to impact the convergence rates in Theorem 2 as the

dimension of 𝑋 increases.

4.2.2 Lower bounds

Proposition 4 (Minimax lower bounds). Make assumptions 1-3. For 0 < 𝑙 < ∞,

𝑑𝐶 = 2, 𝑠 ≥ (𝑑𝑅 − 3)/2, ‖𝑓𝑋‖𝐿∞(S𝑋) ≤ 𝐶𝑋 < ∞, and assume that S𝑋𝑟
, 𝑟 =

1, . . . , 𝑑𝑅 − 1, S𝑌 are strict subsets of [0, 1]. Then,

(P4.a) when 𝑞 = ∞, (4.12) holds with 𝑟(𝐺) = (𝐺/ ln(𝐺))−𝑠/(2𝑠+𝑑𝑅+1);

(P4.b) when 𝑞 = 2 and 𝑑𝑅 = 2, (4.12) holds with 𝑟(𝐺) = 𝐺−𝑠/(2𝑠+𝑑𝑅+1).

I compare two related inverse problems where regressors have limited variation,

in the model (4.3)-(4.4) with 𝑑𝐶 = 2 and 𝑑𝑅 = 2:

1. estimation of the density 𝑓𝐵·,1 ,

2. estimation of the functional 𝑚.

Because the equations in (4.3)-(4.4) are linked, I consider estimation of 𝑚·,1 only.

Estimation of the density 𝑓𝐵1,1,𝐵2,1 when regressors have limited variation is an inverse

problem addressed in Gaillac and Gautier (2019c). There, we decompose the problem

using the truncated Fourier operator ℱ𝑐 : 𝐿
2
(︀
𝑊[−1,1]

)︀
→ 𝐿2 ([−1, 1]), where 𝑊[−1,1] =

1l {[−1, 1]} + ∞ 1l {[−1, 1]𝑐} and 𝐿2
(︀
𝑊[−1,1]

)︀
=

{︀
𝑓 ∈ 𝐿2

(︀
R𝑑

)︀
: supp(𝑓) ⊆ [−1, 1]

}︀
,

ℱ𝑐[𝑓 ] = ℱ [𝑓 ] (𝑐 ·) and show that, for all 𝑡 ∈ R, in 𝐿2 ([−1, 1]),

ℱ𝑡𝑥0

[︀
ℱ1st

[︀
𝑓𝐵2,1,𝐵1,1−𝐵2,1

]︀
(𝑡, ·2)

]︀
(⋆) = E

[︀
𝑒𝑖𝑡𝑌 1 |𝑋 = 𝑥0⋆

]︀
,

where ℱ1st denotes the Fourier transform with respect to the őrst variable. We show

that ℱ𝑐 admits a singular value decomposition, and that the singular values decay

sub-exponentially with 𝑘 as 𝑒−2𝑘 ln(7𝑒𝜋(𝑘+1)/𝑐) (see, e.g., Lemma B.5. in Gaillac and

Gautier, 2019c). Thus, this is a severely ill-posed problem and lower bounds for the

𝐿2 risk in Theorem 1 in Gaillac and Gautier (2019c) give (ln(𝐺)/ ln2(𝐺))
−𝑠, where 𝑠

is a Sobolev type regularity (see, e.g., Appendix B.5. in Gaillac and Gautier, 2019c).
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A plug-in approach of this estimate of the density to estimate 𝑚 leads to slower rates

than my direct approach.

Estimation of the functional 𝑚 is a simpler problem, hence achieves faster rates.

Minimax convergence rates for the 𝐿∞ risk in nonparametric estimation of the 𝑙-th

derivative of a regression function with 𝑑 dimensional covariates assuming that it

belongs to a classical Sobolev space indexed by 𝑠 are (𝐺/ ln(𝐺))−𝑠/(2𝑠+𝑑+2𝑙) (see, e.g.,

Theorem 6.3.7 in Giné and Nickl, 2016). Our setting, where the dependent variable

𝐵 in the nonparametric regression is not observed and the dimension of the covariates

are 𝑑𝑅 − 1 thus compares to the case 𝑑 = 𝑑𝑅 − 1 (which is the dimension of 𝑋) and

𝑙 = 1. This can be seen through, for all 𝑦 ∈ S𝑌 1 and in 𝐿2(S𝑋1),

(𝑚𝑟,1(·, 𝑦)− 𝑦)𝑓𝑌 1|𝑋1(𝑦|·) = (· − 1l{𝑟 = 1})𝜕𝑥𝐹𝑌 1|𝑋1(𝑦|·), (4.16)

(using Theorem 1 when 𝑑𝑅 = 2), which relates 𝑚 to the őrst derivative of a nonpara-

metric regression function. This shows that this problem is as difficult as estimating

the right-hand-side, i.e., the őrst derivative of a nonparametric regression function

on a bounded interval. To fully understand the rates, we have to relate with the

smoothness Assumption 6. The difficulty arises from the natural smoothness condi-

tion 6, which is linked to model (4.3)-(4.4) and requires the Fourier transform of the

compactly supported distribution P𝐵·,1 to decay fast at inőnity. However, in relation

to the Heisenberg principle (see, e.g., Theorem 2.6 in Mallat, 1999), a function can

not be arbitrarily localized in the initial domain and in the Fourier domain.

4.2.3 Data-driven estimation

Data-driven estimation adapts the Goldenshluger-Lepski method (see, e.g., Gold-

enshluger and Lepski, 2014; Lacour and Massart, 2016) to choose 𝑗0 automatically

from the data, while losing only logarithmic terms in the convergence rates. I focus

on adaptation with the 𝐿2 risk.7 Let 𝑝𝐺 := 𝜃 ln(𝐺), 𝜃 > 6 and, for all 𝑗0 ∈ NR,

7The case 𝐿∞ can be treated similarly, see, e.g., Theorem 8.2.8 in Giné and Nickl (2016).
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𝑗max = ⌊̃︀𝑗⌋, where ̃︀𝑗 is solution of 2̃︀𝑗 = 𝐺1/(𝑑𝑅+1). Let also

𝛽 (𝑦, 𝑗0) := max
𝑗0+1≤𝑗′≤𝑗max

⎛
⎝

𝑗′∑︁

𝑗=𝑗0+1

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗
⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2

− Σ (𝑗′)

⎞
⎠

+

,

Σ (𝑗0) :=
24𝐴 ̃︀𝐴𝑐𝑋 |̃︁𝒲|
1− 2−(𝑑𝑅+1)

(1 + 2𝑝𝐺)2
𝑗0(𝑑𝑅+1)

𝐺
, (4.17)

where 𝐴 and ̃︀𝐴 are respectively the maximum over 𝑙 = 1, . . . , 𝑑𝑅−1 of the upper Riesz

constants 𝐴𝑙 and the inverse of the lower Riesz constants 𝑎𝑙 of the system
(︀
Ω𝑤
𝑙,𝑗,𝑘

)︀
, see

(4.66). Take ̂︀𝑗0 as

∀𝑦 ∈ S𝑌 , ̂︀𝑗0(𝑦) ∈ argmin
𝐽≤𝑗≤𝑗max

(𝛽(𝑦, 𝑗) + Σ(𝑗)) (4.18)

hence as the minimizer of an objective that replicates the bias variance trade-off

we face when the parameter is deterministic (see, e.g., Gaillac and Gautier, 2019c;

Lacour and Massart, 2016, for more intuition). Note that Σ does not depend on 𝑦

because it is not required to obtain Proposition 5 but with the knowledge of 𝑘(𝑦) :=

sup𝑥∈S𝑋 E [1l{𝑌 ≤ 𝑦}|𝑋 = 𝑥], then one could use Σ(𝑗, 𝑦) := Σ(𝑗)𝑘(𝑦) instead of Σ(𝑗)

in (4.18), with the same asymptotic properties but maybe better őnite sample ones.

Proposition 5 (Data-driven convergence rates for the 𝐿2 risk). Let 𝑑𝐶 = 2, 𝑙 > 0,

𝑁 ∈ N. Make assumptions 1-3, 8 and 7, then, for 𝑟 = 1, . . . , 𝑑𝑅−1, (4.13) holds with

𝑟(𝐺) = (𝐺/ ln(𝐺))−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1), where 𝑠𝑁 is deőned in Proposition 4.

Proposition 5 shows that choosing adaptively the parameter 𝑗0 only yields a loga-

rithmic penalty in the convergence rates compared to the optimal choice in (T1.1b).

Note that an alternative would be to use wavelet thresholding (see, e.g., Donoho and

Johnstone, 1995; Donoho et al., 1995) to handle the selection of the parameter. This

would yield a nonlinear estimator, different from the one studied in Section 4.2.4.

4.2.4 Asymptotic normality

Under Assumption 9 below on the parameter choice and the convergence rates of the

preliminary estimators, I obtain asymptotic normality for the prediction 𝑚𝑟,1(𝑥, 𝑦)
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for given value of the margins.

Assumption 9. Let (Asn.1) 2𝑗0𝑑𝑅𝑗0/
√
𝐺 −→ 0; (Asn.2) 𝐺/2𝑗0(2𝑠𝑁+𝑑𝑅+1) −→

𝐺→∞.
0;

(Asn.3) ∀𝑥 ∈ S𝑋 , 𝑐𝑋,𝑌 := inf𝑦∈S𝑌 𝑓𝑌 |𝑋(𝑦|𝑥) > 0.

Let (𝑥, 𝑦) ∈ S𝑋,𝑌 . We have, when 𝑓𝑌 |𝑋 and 𝑓𝑋 are known,

̂︁𝑚𝑗0
𝑟,1(𝑥, 𝑦)− 𝑦 =

1

𝐺

𝐺∑︁

𝑔=1

𝜁𝑗0𝑟,𝑔(𝑥, 𝑦), (4.19)

where

𝜁𝑗0𝑟,𝑔(𝑥, 𝑦) :=

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})1l{𝑌 𝑔 ≤ 𝑦}
𝑓𝑌 |𝑋(𝑦|𝑥)𝑓𝑋(𝑋𝑔)

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

Ψ𝑤
𝑗,𝑘

(︀
𝑋𝑔

)︀
2𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥) .

Proposition 6 (Asymptotic normality). Let (𝑥, 𝑦) ∈ S𝑋,𝑌 , 𝑑𝐶 = 2, 𝑠 ≥ (𝑑𝑅 − 3)/2.

Let 𝑟 = 1, . . . , 𝑑𝑅 − 1, 𝑗0 ∈ N, and 𝑣𝑗0𝑟 (𝑥, 𝑦) := Var
(︀
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

)︀
. Make assumptions

1-3, 7, 6, and 9, then we have,

√︃
𝐺

𝑣
𝑗0
𝑟 (𝑥, 𝑦)

(︁
̂︁𝑚𝑗0

𝑟,1(𝑥, 𝑦)−𝑚𝑟,1(𝑥, 𝑦)
)︁

ℒ−→
𝐺→∞

𝒩 (0, 1).

Proposition 6 shows that the impact of estimating 𝑓𝑌 |𝑋 and 𝑓𝑋 under Assumption

7 is negligible. Note that condition (Asn.1) is satisőed by the optimal choices of

parameters in Theorem 2 when 𝑠 > (𝑑𝑅 − 1)/2. However, as usual in the literature,

Proposition 6 does not apply to data-driven selected parameters as in Section 4.2.3,

as these are random quantities. Variance computation and conődence intervals are

integrated to the R package RobustEI.

4.2.5 Monte-Carlo simulations and real data validation

Monte-Carlo simulations without contextual effects

Consider the case 𝑑𝑅 = 2, 𝑑𝐶 = 2, and two setups where the NCE holds and the

conditional expectation 𝑚 can be computed.
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First, consider a data generating process (DGP) satisfying King (1997) assump-

tions. Thus, take 𝐵·,1 following a truncated normal distribution in [0, 1]2, which I

denote by 𝒩𝑇 (𝜇,Σ), and 𝑋 ∼ 𝒩𝑇 (0.65, 0.07). Take 𝜇 = (0.1, 0.9)⊤, Σ11 = 0.4,

Σ2,2 = 0.1, and Σ2,1 = 0.1. I compare estimators to 1) the true value of 𝑚 or 2) the

value of 𝐵𝑔 (it is the usual reference in the ecological inference literature). The őrst

part of Table 4.2 shows the results. It compares my estimator and the parametric

estimator of King (1997), which is in a favorable case.8 As expected in this setting,

the parametric estimator performs better as its assumptions are satisőed. However,

my estimator converges well in that case, although at a nonparametric rate.

Second, consider a DGP where the assumptions of the parametric model of King

(1997) are not satisőed. Speciőcally, I take 𝐵 distributed as a logit mixture of normal

distributions with mixing probability (0.6, 0.4). The őrst distribution is normal with

mean (−1.4, 1.4), variance (0.1, 0.1), and covariance 0. I take 𝑋* ∼ 𝒩 (0.8, 0.001),

which yields a very peaked distribution and then apply the logit inverse transforma-

tion to obtain 𝑋 with values in [0, 1]. This setting is close to Imai et al. (2008),

Simulation II. Results are presented in the second part of Table 4.2. In this case,

the nonparametric estimator outperforms the parametric one, which does not even

converge.9

In both cases my estimator uses preliminary adaptive estimators of 𝑓𝑌 ,𝑋 and 𝑓𝑋

based on Legendre polynomials and which are implemented in my package RobustEI.10

As standard in the literature (see, e.g., Comte et al., 2013; Dion, 2014), the mul-

tiplicative constant appearing in (4.17) is in practice calibrated from a simulation

study.

8I wanted also to include the nonparametric Bayesian estimator of Imai et al. (2008), but the
associated R package eco is no longer available and validated on CRAN and the archives codes crash
when the Gibbs sampling starts.

9The table comparing E[‖̂︀𝑚𝑟,1 −𝑚𝑟,1‖2𝐿2([0.05,0.95]2)] and E[‖̂︀𝑚𝑟,1 −𝑚𝑟,1‖2𝐿1([0.05,0.95]2)] instead of
sample weigthed errors for the different estimators gives similar conclusions and is available upon
request.

10Note that, similarly to Li and Racine (2008), one could also use a smoothed version of the
indicator function 1l{𝑌 ≤ 𝑦} in the estimator, namely Φ((𝑦 − 𝑌 )/ℎ𝑀 ), where Φ is the cumulative
distribution function of the standard normal and ℎ𝑀 which goes to zero with 𝑀 such that it does
not impact the rates of convergence. I observe that it has better őnite sample properties in some
cases.
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Table 4.2: In-sample errors without contextual effects
With truncated normal (i.e., corresponding to King (1997) parametric assumptions)

𝑙1 error 𝑙2 error

𝐵1,1 𝐵2,1 𝐵1,1 𝐵2,1 Comp. time

Sample size 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000

Regression 0.175 0.175 0.088 0.087 0.218 0.217 0.125 0.125 0.001 0.003

King (1997) 0.014 0.011 0.013 0.010 0.020 0.016 0.016 0.013 36.1 6.3

Non. para. 0.060 0.052 0.067 0.059 0.086 0.075 0.109 0.095 1.7 2.7

With logit-mixture of normals

𝑙1 error 𝑙2 error

𝐵1,1 𝐵2,1 𝐵1,1 𝐵2,1 Comp. time

Sample size 1000 5000 1000 5000 1000 5000 1000 5000 1000 5000

Regression 0.078 0.067 0.211 0.165 0.097 0.087 0.250 0.197 0.002 0.002

King (1997) 0.049 0.053 0.194 0.212 0.057 0.061 0.231 0.243 26.3 6.4

Non. para. 0.032 0.021 0.110 0.060 0.052 0.050 0.118 0.079 3.2 7.9

Notes: in this 2×2 case, the in-sampled 𝑙1 error is computed as
∑︀𝐺

𝑔=1 |̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔)−E [𝐵𝑟,1|𝑋 = 𝑋𝑔,𝑌 = 𝑌 𝑔] |/𝐺
and the 𝑙2 error as (

∑︀𝐺
𝑔=1(̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔)−E [𝐵𝑟,1|𝑋 = 𝑋𝑔,𝑌 = 𝑌 𝑔])

2/𝐺)1/2, where ̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔) are the different

estimators. łComp. time" refers to computational time for estimation for one simulation. I use the implementation

of King (1997) in the R package EiCompare. The Monte-Carlo experiment uses 300 simulations.

Monte-Carlo simulations with contextual effects

Consider a DGP where 𝐵 and 𝑋 are related through an additional variable 𝑍.

Speciőcally, I use a DGP close to the one in Imai et al. (2008). Namely, I consider

𝑍* ∼ 𝒩 (−0.85, 0.5) then

𝐵*
·,1 = 0.85

(︀
𝑍*
−𝑍*

)︀
+ 𝜖1, 𝜖1 ∼ 𝒩 (( 0

0 ) , (
0.5 0.2
0.2 0.5 ))

𝑋* = 0.5(𝑍*)2 + 𝜖2, 𝜖2 ∼ 𝒩 (0, 0.5).

This yields the observed data (𝑋,𝑌 , 𝑍) using the inverse-logit transformation, where

𝐵1,1 and 𝑋1 have a sample correlation of -0.34. Results are displayed in Table 4.3.

Without 𝑍, both the parametric and the nonparametric estimators still achieve good

performances, but only the nonparametric one seems to improve as the sample size

augments. The nonparametric estimators with 𝑍 achieve smaller errors, in partic-
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ular with large sample sizes. In this 2 × 2 example, the computational times seem

comparable.

Table 4.3: In-sample errors with contextual effects

𝑙1 error 𝑙2 error

𝐵1,1 𝐵2,1 𝐵1,1 𝐵2,1 Comp. time

1000 5000 1000 5000 1000 5000 1000 5000 1000 5000

Without Z

Regression 0.144 0.145 0.130 0.131 0.182 0.184 0.167 0.167 0.004 0.004

King (1997) 0.072 0.070 0.100 0.100 0.107 0.107 0.130 0.129 23.64 4.67

Non. para. 0.084 0.062 0.137 0.105 0.109 0.083 0.184 0.139 9.47 10.23

With Z

King (1997) 0.071 0.071 0.100 0.100 0.108 0.107 0.130 0.130 6.79 21.19

Non. para. 0.064 0.053 0.109 0.089 0.081 0.076 0.137 0.122 11.76 23.3

Notes: in this 2 × 2 case, the in-sampled 𝑙1 error is computed as
∑︀𝐺

𝑔=1 |̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔) −
E [𝐵𝑟,1|𝑋 = 𝑋𝑔,𝑌 = 𝑌 𝑔, 𝑍 = 𝑍𝑔] |/𝐺 and the 𝑙2 error as (

∑︀𝐺
𝑔=1(̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔) −

E [𝐵𝑟,1|𝑋 = 𝑋𝑔,𝑌 = 𝑌 𝑔, 𝑍 = 𝑍𝑔])
2/𝐺)1/2, where ̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔) are the different estimators.

See the Appendix for non-sampled results and comparison to the true value of 𝐵. łComp. time" refers

to computational time for estimation for one simulation. I use the implementation of King (1997) in the

R package EiCompare. The Monte-Carlo experiment uses 300 simulations.

Comparison with ground truth in 3× 2 case: turnout by race

This section illustrates the approach on an example where we know the true value of

the contingency tables for each precinct.11 It uses the dataset studied in Imai and

Khanna (2016), which includes approximately ten million of individual records from

L2, a leading nonpartisan őrm which supplies voter data. The őle makes available,

among others, the race of the individuals, their precinct, and turnout history. I ag-

gregate data about race and turnout at the precinct level which allows to compare to

the truth. I continue with the same illustration as in the introduction, based on the

binary decision to vote or not at the 2008 general election and on three categories for

race: White people, Black people, and others. Thus, we have 𝑑𝐶 = 2 and 𝑑𝑅 = 3.

11Numerous such datasets have been released to evaluate the performance of ecological inference
methods in real situations (see, e.g., Jiang et al., 2020).
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In this example, I view the 2008 election as a sample from P𝐵,𝑋,𝑌 , with heterogene-

ity accross precincts. I run the analysis at the precinct level (8,843 observations).

Table 4.4 compares my estimator and the estimator of Rosen et al. (2001). More

precisely, it considers three types of estimators 1) assuming NCE (Assumption 1); 2)

using Assumption 4 conditioning on 𝑍1 which is the share of individuals registered

as Democrat at the district level 3) same as 2) but conditioning on 𝑍2 the share of

individuals registered as Other. In case 2), we thus control for local activism that

could create aggregation effects at the precinct level. Note that, as we consider a

national election, aggregation bias coming from local stakes is less probable.12 Table

4.4 presents the results First, note that in this example computational time is really

reduced using our nonparametric estimator rather than methods based on simula-

tions. Second, there does not appear to be much difference in this case between the

estimators using the additional variable 𝑍 or not. Third, my nonparametric estimator

achieves the best performances in prediction.

Table 4.4: In-sample errors in turnout by race in Florida

MAE RMSE Time (s.)

𝐵1,1 𝐵2,1 𝐵3,1 𝐵1,1 𝐵2,1 𝐵3,1

Rosen et al. (2001), without controls 0.048 0.131 0.096 0.099 0.174 0.133 >3600

Rosen et al. (2001), with 𝑍1 0.043 0.143 0.097 0.092 0.188 0.141 >3600

Rosen et al. (2001), with 𝑍2 0.057 0.193 0.090 0.122 0.231 0.136 >3600

Non. para., without controls 0.026 0.097 0.095 0.056 0.153 0.144 12.0

Non. para., with 𝑍1 0.023 0.108 0.086 0.054 0.165 0.127 13.3

Non. para., with 𝑍2 0.027 0.105 0.119 0.056 0.167 0.192 41.6

Notes: in this 3 × 2 case, the in-sampled MAE is computed as
∑︀𝐺

𝑔=1 |̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔) − 𝐵𝑟,1,𝑔|/𝐺
and the 𝑅𝑀𝑆𝐸 as (

∑︀𝐺
𝑔=1(̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔)−𝐵𝑟,1,𝑔)

2/𝐺)1/2, where ̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔, 𝑍𝑔) are the different

estimators. 𝐵1,1 is probability to vote conditional on being White, 𝐵2,1 is probability to vote conditional

on being Black, and 𝐵3,1 is probability to vote conditional on being neither White nor Black. I use as

𝑍1 the share of individuals registered as democrats in the precinct and 𝑍2 the share of individuals whose

party is neither Democrat nor Republican. łComp. time" refers to computational time for estimation

for one simulation. I use the implementation of King (1997) in the R package EiCompare.

12However, due to the join vote at the House and for the Presidential election, individuals could
decide to participate based on unobservable district level stakes for the House election.
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4.3 Application: estimation of the treatment effect

on the vote shares given categories of voters

4.3.1 Motivation and context

The context of experiments where either the outcome is protected or a covariate of

interest might only be available for several groups - for example villages or classes

- in another dataset that can not be merged is very common. For example, one

experiment might be targeted to evaluate the impact on some speciőc outcome like

income, but might generate some side effects on electoral behavior or health outcomes

not included in the survey - for example in the PROGRESA experiment (see, e.g., Imai

et al., 2020). I consider here a particular large-scale experiment where the outcome

and the covariate of interest are both protected, and where ecological inference helps

describing and quantifying the different mechanisms.

The importance of interpersonal discussions in the political decision process and

the persuasion of voters has been largely documented (see, e.g., Lazarsfeld et al.,

1944; Gerber and Green, 2000; DellaVigna and Gentzkow, 2010; DellaVigna et al.,

2016). This justiőes door-to-door campaigning. However, the precise estimation the

heterogeneity of the impact of interpersonal discussions on the vote is limited by the

secret ballot. Several experiments document precisely the impact of discussions on

turnout (see, e.g., Gerber and Green, 2000; Imai, 2005; Pons and Liegey, 2019; Green

and Gerber, 2019) either using voters registration database or surveys. However,

data requirements are huge for the former while sample selection, reporting biases,

and costs limit the latter. Hence the importance of analyses based on actual electoral

results.

Pons (2018) estimates the impact of door-to-door visits using a large scale experi-

ment embedded the 2012 French presidential left-wing main candidate campaign, i.e.

François Hollande. The experiment being clustered at the precinct level, he analyzes

the impact of assigning a precinct to the treatment group and effectively allocating

canvassers to precincts on the turnout and vote shares. He shows, among others,
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that there is no signiőcant impact on turnout but that there is one on the left-wing

candidate’s vote shares at both rounds of the election.

Explaining these results with such aggregate data is a complicated task as these

depend on the heterogeneity of the voters behaviors, which can not be directly inferred

from precinct level data. Speciőcally, Pons (2018) focuses on two main competing

explanations for the impact on the left-wing candidate’s vote shares: a persuasive

effect on undecided active voters (see, e.g., DellaVigna and Gentzkow, 2010) or a

mobilization effect of left-wing nonvoters (potentially joined with a demobilization

of right-wing voters). Pons (2018) forms several convincing arguments in favor of

the persuasive effect, which could occur mostly through a change in the perceptions

of left-wing candidate after the discussions. Pons (2018) provides quantitative ar-

guments justifying that the mobilization effect is negligible using the impact on the

difference between the left-wing candidate’s vote shares and voter turnout, which

remains signiőcant. Our method complements his study and allows to estimate the

impact on the vote shares among different types of voters according to their past

electoral behavior. Thus, this quantiőes precisely the importance of the persuasion

effect at the individual level. Our methodology could also be used to estimate the

differential impact of the campaign on other subgroups based, e.g., on age, income

categories, or working status. Speciőcally, Appendix 4.5.3 discussed below shows the

impact of the visits on vote shares according to the level of education.

4.3.2 Experimental design, data, and method

Experimental design. The experiment started 11 weeks before the őrst round of

the 2012 French presidential election and őnished at the second round. It consisted in

sending 80,000 left-wing activists knocking on estimated 5 million doors with principal

goal to encourage people to vote for the left-wing candidate of the Parti Socialiste

(PS) which was the mainstream left party in France in 2012. The French presidential

election is a two rounds contest, where the two candidates achieving the highest vote

shares in the őrst round qualify for the second. The repartition of the vote shares
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and the turnout at this election is displayed in Figure 4-2 and I refer to Pons (2018)

for a more detailed exposition of the context.

Pons (2018) designed the experiment in order to be able to evaluate the impact of

the visits and to maximise their impact, hence adopting a speciőc stratiőed random-

ization. First, the entire country is divided into territories. Then, he deőnes stratum

of 5 precincts ordered by highest ̃︂𝑃𝑂, which is a computed proxy of the potential to

win votes, deőned as the fraction of nonvoters multiplied by the left-wing vote share

among the active voters at the second round of the 2007 Presidential election. In each

stratum, exactly four precincts where randomly assigned to the treatment group and

one to the control group. Finally, due to human resources, not all treatment precincts

have been allocated to canvassers hence there is imperfect compliance to the alloca-

tion prescribed. Thus, to evaluate the effect of allocating a precinct to canvassers, the

assignment randomization dummy is used as an instrument. I adopt the same sample

of precincts as in Pons (2018) to perform the analysis, which gives 2,665 precincts.

My aim is study the persuasion hypothesis of Pons (2018) empirically. Hence, I

focus on the heterogeneity of the impact on the left-wing candidate’s 2nd round vote

shares (𝑑𝐶 = 2) according to whether individuals’ őrst choice at the őrst round of the

2007 Presidential election qualiőed (𝑅 = 1, 𝑑𝑅 = 2) or not (𝑅 = 2) for the second

round of 2012 (see Figure 4-1 below). As these latter individuals (𝑅 = 2) have to

change their vote in the second round (or to abstain) with respect to their őrst choice

in 2007, they are good proxies for undecided active voters.13 Thus, the covariate 𝑅

takes value 1 if they voted for the main left party, the main right party, or abstained

at the őrst round of the 2007 Presidential election, and 2 otherwise.14 I consider

only two categories to keep statistical power, but the point estimates give similar

conclusions with three categories. The precincts assignment status 𝑇 and potential

to win votes ̃︂𝑃𝑂 are used as additional variables in the prediction, see Section 4.1.3

13I use groups based 2007 őrst round choice rather than on 2012 őrst round because the treatment
might have impacted the composition of the groups between treatment and control. The structure
and candidates for the main French parties in the elections in 2007 and 2012 are quite close.

14By main left party, I refer to Parti Socialiste (PS) and by the main right one to Union pour un

mouvement populaire (UMP).
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and below.

Notes: Shares among registered voters, null votes are included in abstention.

Figure 4-1: Electoral results of the őrst round of 2007 and second round of 2012
Presidential elections, and the two categories and two outcome possibilities used in
the őrst decomposition.
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Table 4.5: Description of the variables in 𝑚𝑟,1(·) = E [𝐵𝑟,1|(𝑋,𝑌 ,𝑍) = ·]
Variables 𝑑𝐶 = 2, 𝑑𝑅 = 2 Description

𝑌
𝑐 = 1 Left-wing vote shares at the second round

𝑐 = 2 Right-wing vote shares plus abstention at the 2012 second round

𝑋
𝑟 = 1 Share of voters whose 2007 őrst round choice is at the 2012 second

𝑟 = 2 Share of voters who have to make a different second round choice

𝐵
𝑟 = 1, 𝑐 = 1 Left candidate vote shares among the őrst category of voters

𝑟 = 2, 𝑐 = 1 Left candidate vote shares among łundecided active voters"

Add. var. 𝑍

𝑇 Precinct assigment dummy

𝐴 Precinct allocation to canvassers dummy (treatment)

𝑊 Controls, including ̃︂𝑃𝑂, potential to win votes

Notes: The individual level variables are 𝐶, the decision to vote for the left-wing candidate or not (2 possibilities

𝑑𝐶 = 2) and 𝑅, which index two categories of voters based on past votes at the őrst round, see Figure 4-1.

Variables in blue are unobserved and in red are observed.

P𝑔(𝐶 = 1) = 𝑌 1,𝑔 are the left-wing candidate’s vote shares in precinct 𝑔, which are

observed and used as dependent variable in Pons (2018). 𝑇𝑔 denotes a dummy equal to

1 if the precinct was assigned to the treatment group and to 0 if it was assigned to the

control group while 𝐴𝑔 is a dummy which takes value 1 if the precinct was allocated to

the canvassers and 0 otherwise. 𝑊 𝑔 is a possible vector of controls, always including

̃︂𝑃𝑂𝑔. Contrary to Pons (2018), I focus on the impact of the assignment on the votes

of sub-groups of the population, i.e. on the unobserved P𝑔(𝐶 = 1|𝑅 = 𝑟) = 𝐵𝑟,1,𝑔,

which are formed by past voting behavior. Table 4.5 provides a summary of the

notations coherent with the previous sections.

Estimation method. I use a direct estimation of the effect of the assignment on

𝐵𝑟,1 for the two categories 𝑟 = 1, 2,15 namely, using that the assignment is ran-

dom conditionally on ̃︂𝑃𝑂 which is included in 𝑊 , we obtain (4.5) using 𝑚𝑟,1 :

(𝑥,𝑦,𝑤, 𝑡) ↦→ E [𝐵𝑟,1|𝑋 = 𝑥,𝑌 = 𝑦,𝑊 = 𝑤, 𝑇 = 𝑡], controlling for 𝑊 𝑔 nonpara-

15Results using an estimation method closer to Pons (2018) in a two stages approach are available
upon request and are very close.
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metrically. A natural estimator of 𝛾𝑟,1 is

̂︀𝛾𝑟,1 =
∑︁

𝑔 𝑠.𝑡. 𝑇𝑔=1

̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔,𝑊 𝑔, 𝑇𝑔)−
∑︁

𝑔 𝑠.𝑡. 𝑇𝑔=0

̂︁𝑚𝑟,1(𝑋𝑔,𝑌 𝑔,𝑊 𝑔, 𝑇𝑔), (4.20)

where ̂︁𝑚𝑟,1 is the estimator of Section 4.2.1, obtained under Assumption 4. Results

are stable in our application to the use of different sets of additional variables 𝑊 .

The randomization by stratum based on ̃︂𝑃𝑂 in territories, which is very speciőc to

this application, generates the need to control also for stratum őxed effects. However,

due to dimensionality issues, this can not be included as control in the estimation

of (𝑦,𝑥,𝑤, 𝑡) ↦→ E [𝐵𝑟,1|𝑋 = 𝑥,𝑌 = 𝑦,𝑊 = 𝑤, 𝑇 = 𝑡], hence the above estimation

does not take it into account otherwise than controlling for ̃︂𝑃𝑂 in 𝑊 .16 To take

into account this randomization by stratum in the standard errors associated to the

estimator (4.20), I compute the latter using bootstrap clustered at the stratum level.

To estimate the effect of the allocation on 𝐵𝑟,1,𝑔, I consider

𝐵𝑟,1,𝑔 = 𝑔𝑟(𝐴𝑔,𝑊 𝑔) + 𝜖𝑟,𝑔, E [𝜖𝑟,𝑔|𝑇𝑔] = 0, (4.21)

for an unknown function 𝑔𝑟, where the effect of the allocation on vote shares among

the sub-population of type 𝑅 = 𝑟 is

𝛾𝑟,2 = E [𝑔𝑟(1,𝑊 𝑔)− 𝑔𝑟(0,𝑊 𝑔)] .

This allows to control for 𝑊 𝑔 nonparametrically handling the endogeneity of 𝐴𝑔. To

ensure the coherency of (4.21) with Assumption 4, I impose the additional restrictions

𝐴𝑔 ⊥ 𝑋𝑔|𝑇𝑔,𝑊 𝑔 and 𝜖𝑟,𝑔 ⊥ 𝑋𝑔|𝑇𝑔,𝑊 𝑔. This yields, using the notation 𝑎𝑖,𝑗 =

P (𝐴𝑔 = 𝑖|𝑇𝑔 = 𝑗) and 𝑊 𝑔 ⊥ 𝑇𝑔, for 𝑗 = 0, 1,

E [𝐵𝑟,1,𝑔|𝑇𝑔 = 𝑗] = E [𝑔𝑟(1,𝑊 𝑔)] 𝑎1,𝑗 + E [𝑔𝑟(0,𝑊 𝑔)] 𝑎0,𝑗.

16Again, one can also consider an estimator of the effect of the assignment which handles stratum
őxed effects. However it uses a two stages approach which is valid under stronger parametric
assumptions on the controls.
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Solving this system yields that 𝛾𝑟,2 satisőes 𝛾𝑟,2 = 𝛾𝑟,1/(𝑎0,0𝑎1,1 − 𝑎1,0𝑎0,1). Thus,

with the empirical counterparts of 𝑎𝑖,𝑗, 𝑖, 𝑗 ∈ {0, 1} and (4.20), I obtain an estimator

for 𝛾𝑟,2, the effect of the allocation on vote shares among the sub-population of type

𝑅 = 𝑟.

4.3.3 Results

Table 4.6 presents the main estimation results. In Table 4.6, individuals in category 2

are proxies for the undecided active voters. The main őnding is that Table 4.6 provides

suggestive evidence of a persuasive effect on these undecided active voters as the

coefficients for the category 2 for the intention-to-treat (ITT) or instrumental variable

estimation are signiőcantly positive whereas the ones for the łqualiőed parties" voters

- i.e., category 1 - are not signiőcant. The estimate of 𝑎0,0𝑎1,1−𝑎1,0𝑎0,1 is 0.552. Results

using the alternative two-stages approach which consider stratum őxed effects give

estimates close to Table 4.6.
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Table 4.6: Impact on the left-wing candidate’s 2nd round vote shares among different

categories of voters

Category 𝑅 = 1 𝑅 = 2, “Undecided active voters"

ITT estimation 0.0076 0.0174

[-0.0379,0.0215] [0.0040,0.0510]

Instrumental variable estimation 0.0138 0.0316

[-0.0687,0.0389] [0.0073,0.0925]

Notes: Intention-to-treat (ITT) estimation shows the effect of a precinct being assigned to the

treatment group (ITT results from (1)) on the two different types of individuals: category 1 are

individuals who voted for left (Royal), right (Sarkozy), or abstained at the 2007 election while

category 2 are the others, which proxy undecided active voters. Instrumental variable estimation

shows the effect of a precinct being allocated to canvassers using the assignment dummy 𝑇 as

instrument. All the results use 𝑊 = ̃︂𝑃𝑂 as control, which enters nonparametrically. The unit of

observation is the unit of randomization (precinct or municipality) and each regression is based

on 2,665 observations. 95% bootstrap conődence intervals are in parentheses, computed via

300 stratum-clustered bootstrap. The outcome variables are estimated using our main adaptive

estimator based on Legendre functions. Category 1 constitutes 65% of the registered voters in a

precinct in average, with a minimum of 28.5% and a maximum of 93%.

If we assume that the visits have zero impact on the right-wing candidate support-

ers and that the effect on the left-wing voters is positive, the fact that there is no effect

on category 1 in Table 4.6 gives an upper bound on the mobilization impact of left-

wing nonvoters. Thus, there might not be any mobilization effect in this experiment.

However, Pons (2018) describes the alternative explanation that the visits could have

demobilized right-wing voters and simultaneously mobilized left-wing nonactive ones,

resulting in the observed zero effect. He argues that it is not likely to be the case. The

results of Decomposition 2 in Table 4.7 in Appendix 4.5.3 go in his direction. Here,

category 1 are the left and right wing voters in 2007 őrst round. Hence, under this

alternative demobilization hypothesis, the effect in category 1 should be negative and

the effect on category 2 remain positive. As estimates of Table 4.7 for category 1 are

positive and non-signiőcant, there might not be any mobilization or demobilization

effects in this experiment.
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Finally, Appendix 4.5.3 considers a different decomposition of the electorate, in

two categories according to the level education. Speciőcally, I distinguish voters

according to whether they graduated from high school or not.17 There are two possible

predictions in the literature for the differential impact of political communication

according to education. On the one hand, classical models of Bayesian updating (see,

e.g., Zaller, 1992; Box and Tiao, 1973) predict that less knowledgeable voters are

going to react more to credible information. On the other hand, these voters are less

likely to be reached by classical political communication channels, hence are less prone

to change their mind (see, e.g., Prior, 2006; Le Pennec and Pons, 2019). Reaching

individuals without distinction, the door-to-door visits of this experiment allow to

concentrate on testing the former explanation. I keep the same vector of controls as

previously. Results about the impact on the left-wing candidate vote shares at the

second round on these two categories are displayed in Table 4.8. It shows that there

is a positive and signiőcant impact of the visits on less-educated voters, with a 0.0101

[0.0010,0.0146] estimate for ITT and 0.0183 [0.0016,0.0265] for instrumental variable

estimation. There is negative but not signiőcant effect on the more educated ones.

Results are robust to the use of the őrst or second round 2007 left-wing vote shares

as additional controls. These results suggest that beliefs might be more affected by

the information brought by personal visits among those with less education. This

underlines the importance of prior knowledge in the persuasion mechanism. This is

coherent with Bayesian models of beliefs formation and results in Le Pennec and Pons

(2019) on the differential impact of campaigns on consistency between vote intention

and vote choice according to education. Results of Cantoni and Pons (2018) also

quantify the higher importance of the local context for younger voters, which have

generally less political knowledge.

17More speciőcally, according to whether they have their baccalauréat.
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4.4 Conclusion

This paper provides an ecological inference approach in a nonparametric framework.

I improve on the literature assumptions to perform inference and provide tools to per-

form sensitivity analysis to the assumptions which yield point identiőcation. First,

without adding more structure, I relate the partial identiőcation of the prediction to

the identiőed set described in the literature with one group, e.g., Cross and Manski

(2002a). A new characterisation it is provided in Gaillac (2020). Second, when the

researcher considers credible the nonparametric assumption of no contextual effects,

my approach provides a constructive identiőcation strategy and my plug-in nonpara-

metric estimator is minimax adaptive. I provide evidence on simulations that the

method performs well in őnite sample, even with more than two categories and with

some contextual effects.

One limitation is the fact that my estimator is formulated as a ratio, which then

requires trimming of the density of the regressors, which can be difficult to calibrate.

I let for future research the inclusion of tools such as warped bases (see, e.g., Chagny,

2015) which could overcome these issues. Other avenues of research will use my

constructive identiőcation to perform semi-parametric estimation and to allow for

the combination of my estimator with individual survey data (like in, e.g., Wakeőeld,

2004).

Finally, nonparametric ecological inference can also be used in other contexts.

First, this method can be adapted to demand estimation with market level data,

taking a different direction from the current nonparametric extensions of the BLP

model (see, e.g., Compiani, 2019). Second, my methodology can be used in experi-

ments where either the outcome is protected or a covariate of interest might only be

available for several groups in another dataset that can not be merged. Finally, closer

to my application is the analysis of split-ticket voting (see, e.g., Burden and Kimball,

1998). Theoretically, split-ticket exempliőes the desire for a divided government (see,

among others, Alesina and Rosenthal, 1995) which sees voters allocating their vote

differently at the House, Senate, Governor, or Presidential election to counterbalance
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the power of either representative. Many models analyzing the desire for a divided

government are based on spatial ideological models (see, e.g., Knight, 2014; Mebane,

2000) and rather use surveys than ecological inference.

4.5 Appendix

This section contains several complements and proofs for the main results of the

article. Several auxiliary derivations are in a Supplementary Appendix, along with

additional complementary results. Speciőcally, this appendix presents additional re-

sults on identiőcation with 𝑑𝐶 = 3 (Appendix 4.5.1), the complements and proofs of

the main theorems (Appendix 4.5.2).

Notations

The notations ·, ⋆ are used to denote a variable in a function. and 1l {𝐴} for the

indicator function of a set 𝐴. For all 𝑟 ∈ R, 𝑟 is the vector, which dimension will be

clear from the text, where each entry is 𝑟. For a vector 𝑋 ∈ R𝑑𝑅 , we use diag(𝑋) to

denote the diagonal matrix in ℳ𝑑𝑅,𝑑𝑅(R) which diagonal elements are the elements

of 𝑋. For all (𝑓𝑔)𝑚∈N0 functions with values in C, and 𝑚 ∈ N𝑑
0, denote by 𝑓𝑚 =

∏︀𝑑
𝑘=1 𝑓𝑚𝑘

.

4.5.1 Identiőcation when 𝑑𝐶 > 2

Partial identiőcation when 𝑑𝐶 > 2 without contextual effects

Proposition 7 (Partial identiőcation, 𝑑𝐶 > 2). Let the distribution of (𝐵,𝑋,𝑌 )

satisfy (4.1) and deőne the restriction ℛ0 corresponding to assumptions 1, 2, and

3. Let 𝑑𝐶 > 2, then 𝒥𝑋,𝑌 (Γ,ℛ0) is included into the set of functions of the form

𝑚 = 𝑀/𝑓𝑌 |𝑋 , where 𝑀 𝑟,𝑐 : S𝑋,𝑌 ↦→ [0, 1] for 𝑟 = 1, . . . , 𝑑𝑅 and 𝑐 = 1, . . . , 𝑑𝐶

are continuous functions which admit a continuous derivative with respect to 𝑦𝑐, for

𝑐 = 1, . . . , 𝑑𝐶−1, 𝑀 𝑟,𝐶 = 1−∑︀𝑑𝐶−1
𝑐=1 𝑀 𝑟,𝑐, and, for all 𝑟 = 1, . . . , 𝑑𝑅, 𝑐 = 1, . . . , 𝑑𝐶−1,
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and (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝑀 𝑟,𝑐(𝑥,𝑦) + (1− 𝑥⊤1)𝑀 𝑑𝑅,𝑐(𝑥,𝑦) = 𝜌𝑐(𝑥,𝑦), (4.22)

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝑀 𝑟,𝑐(𝑥,𝑦) =

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦) +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝑓𝑌 |𝑋(𝑦|𝑥), (4.23)

where 𝜌𝑐(𝑥,𝑦) := 𝑓𝑌 |𝑋(𝑦|𝑥)𝑦𝑐. Moreover, for all 𝑐 = 1, . . . , 𝑑𝐶−1 and (𝑥,𝑦) ∈ S𝑌 ,𝑋 ,

𝑀 𝑟,𝑐(𝑥,𝑦1, . . . ,𝑦𝑐 = 0, . . . ,𝑦𝑑𝐶−1) = 0.

Proposition 7 shows that, when 𝑑𝐶 > 2, the parameter of interest satisőes a system

of coupled partial differential equations. However, the solutions are in general not

unique nor explicit.

Identiőcation when 𝑑𝐶 = 3 when restricting the dimension of the unob-

served heterogeneity

I consider the case where the researcher assumes that some random coefficients are

linearly dependent of the others. This reduces the dimension of the unobserved het-

erogeneity, hence reducing the size of the identiőed set when we have more than two

choices. I consider the case 𝑑𝐶 = 3 and describe in Remark 3 the set of assumptions

that one would make to handle higher dimensional cases.

Assumption 10 (Restricted heterogeneity, 𝑑𝐶 = 3). Let 𝜔 :=
(︀
(𝑟, 1)𝑟∈{1,...,𝑑𝑅}, (𝑑𝑅, 2)

)︀

which is a sequence of length 𝑑 := 𝑑𝑅 + 𝑑𝐶 − 2 = 𝑑𝑅 + 1 of indexes. Let the

𝑑 coefficients (𝐵𝜔𝑘)𝑘=1,...,𝑑 be the latent unobserved heterogeneity, that I denote by

𝑈 := (𝑈 1, . . . ,𝑈 𝑑), hence

𝑈 𝑙 := 𝐵𝜔𝑙 , 𝑙 = 1, . . . , 𝑑.

The (𝑑𝑅 − 1) other random coefficients can be expressed as

𝐵𝑟,2 =
𝑑∑︁

𝑘=1

𝑎𝑟,𝑘𝑈 𝑘, 𝑟 = 1, . . . , 𝑑𝑅 − 1,
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where 𝑎 ∈ ℳ𝑑𝑅−1,𝑑(R) are őxed coefficients.

Remark 1 (More general formulation). A slightly more general formulation would

assume instead of Assumption 10 that these are 𝑑 latent sources of random unobserved

heterogeneity (𝑈 1, . . . ,𝑈 𝑑) = 𝑈 , and that the coefficients 𝐵𝑟,𝑐 depend linearly of 𝑈 .

However, the simpliőed set up that I consider is more transparent, facilitates testing

and estimation of 𝑎, and amounts to the same type of assumptions.

Note that in the case of 𝑑𝐶 = 2, Assumption 10 is not a restriction as (𝑑𝑅 −
1)(𝑑𝐶 − 2) = 0, which is in line with Theorem 1. This yields for 𝑑𝐶 = 3,

𝑌 1 =

𝑑𝑅∑︁

𝑟=1

𝑈 𝑟𝑋𝑟 (4.24)

𝑌 2 =

𝑑𝑅−1∑︁

𝑟=1

𝐷∑︁

𝑘=1

𝑎𝑟,2,𝑘𝑈 𝑘𝑋𝑟 +𝑈 𝑑𝑅+1𝑋𝑑𝑅 . (4.25)

Assumption 1 yields the system of equations

E [𝑌 1|𝑋 = 𝑥] =

𝑑𝑅−1∑︁

𝑟=1

(E [𝑈 𝑟]− E [𝑈 𝑑𝑅 ])𝑥𝑟 + E [𝑈 𝑑𝑅 ]

E [𝑌 2|𝑋 = 𝑥] =

𝑑𝑅−1∑︁

𝑟=1

(︃
𝑑𝑅+1∑︁

𝑘=1

𝑎𝑟,𝑘E [𝑈 𝑘]− E [𝑈 𝑑𝑅+1]

)︃
𝑥𝑟 + E [𝑈 𝑑𝑅+1] .

This yields using Assumption 2 with 𝑑 = 𝑑𝑅 + 1 that E [𝑈 𝑘] for 𝑘 = 1, . . . , 𝑑𝑅 + 1

and 𝑣𝑟 :=
∑︀𝑑𝑅+1

𝑘=1 𝑎𝑟,𝑘E [𝑈 𝑘] and 𝑟 = 1, . . . , 𝑑𝑅 − 1 are identiőed. Thus, I obtain a

system of 𝑑𝑅 − 1 equations and (𝑑𝑅 − 1)(𝑑𝑅 + 1) unknowns coefficients 𝑎𝑟,𝑘. If 𝑎

is known, then Proposition 8 below shows point identiőcation in a constructive way,

which is the estimation strategy used in Section 4.2 in the case 𝑑𝐶 > 2. Otherwise,

Proposition 8 describes the identiőed set.

Let me introduce some notations. Under Assumption 10 and (4.24)-(4.25) I obtain,

for 𝑐 = 1, 2, (𝑐 = 3 being redondant with the others due to the constraint 𝑌 ⊤1 = 1,
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I suppress it),

𝑦𝑐 =
𝑑∑︁

𝑘=1

𝑊 𝑐,𝑘(𝑥)E [𝑈 𝑘|𝑋 = 𝑥,𝑌 = 𝑦] , (4.26)

where 𝑊 1,𝑘(𝑥) := 𝑥𝑘1l{𝑘 ≤ 𝑑𝑅} for 𝑘 = 1, . . . , 𝑑 and

𝑊 2,𝑘(𝑥) :=

𝑑𝑅−1∑︁

𝑟=1

𝑎𝑟,𝑘𝑥𝑟 + 1l{𝑘 = 𝑑𝑅 + 1}𝑥𝑑𝑅 . (4.27)

For convenience, I use 𝑉 𝑘 : (𝑥,𝑦) ↦→ E [𝑈 𝑘|𝑋 = 𝑥,𝑌 = 𝑦] 𝑓𝑌 |𝑋(𝑦|𝑥), for 𝑘 =

1, . . . , 𝑑 and 𝑀 𝑟,𝑐 : (𝑥,𝑦) ↦→ E
[︀
𝐵𝑟,𝑐|𝑋 = 𝑥,𝑌 = 𝑦

]︀
𝑓𝑌 |𝑋(𝑦|𝑥), for 𝑟 = 1, . . . , 𝑑𝑅,

𝑐 = 1, 2.

Identiőcation strategy. Let me now explain the steps of the identiőcation strat-

egy:

(Step 1) I can express the coefficients of 𝑀 in terms of 𝑉 through

𝑀 𝑟,1(𝑥,𝑦) = 𝑉 𝑟(𝑥,𝑦)

𝑀 𝑟,2(𝑥,𝑦) =

𝑑𝑅+1∑︁

𝑘=1

𝑎𝑟,𝑘𝑉 𝑘(𝑥,𝑦), (4.28)

for 𝑟 = 1, . . . , 𝑑𝑅. Hence the aim is to recover 𝑉 .

(Step 2) I express 𝑉 𝑙 for 𝑙 = 𝑑𝑅, 𝑑𝑅 + 1 as function of 𝑉 𝑙 for 𝑙 = 1, . . . , 𝑑𝑅 −
1. Denote by 𝜌𝑐(𝑥,𝑦) := 𝑓𝑌 |𝑋(𝑦|𝑥)𝑦𝑐, for 𝑐 = 1, 2. Under Assumption

11.1 below and using (4.26), the system with 𝑑 − 𝑑𝑅 + 1 = 2 unknowns,
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𝑉 𝑅(𝑥,𝑦),𝑉 𝑑𝑅+1(𝑥,𝑦),

𝑥𝑑𝑅𝑉 𝑑𝑅(𝑥,𝑦) = 𝜌1(𝑥,𝑦)−
𝑑𝑅−1∑︁

𝑘=1

𝑥𝑘𝑉 𝑘(𝑥,𝑦) (4.29)

𝑊 2,𝑑𝑅(𝑥)𝑉 𝑑𝑅(𝑥,𝑦) +𝑊 2,𝑑𝑅+1(𝑥)𝑉 𝑑𝑅+1(𝑥,𝑦)

= 𝜌2(𝑥,𝑦)−
𝑑𝑅−1∑︁

𝑘=1

𝑊 2,𝑘(𝑥)𝑉 𝑘(𝑥,𝑦), (4.30)

has a unique solution, for 𝑙 = 𝑑𝑅, 𝑑𝑅 + 1,

𝑉 𝑙(𝑥,𝑦) = 𝜎𝑙−𝑑𝑅+1(𝑥,𝑦) +

𝑑𝑅−1∑︁

𝑘=1

𝑄𝑙−𝑑𝑅+1,𝑘(𝑥)𝑉 𝑘(𝑥,𝑦), (4.31)

where, for 𝑘 = 1, . . . , 𝑑𝑅 − 1,

𝜎1(𝑥,𝑦) =
𝜌1(𝑥,𝑦)

𝑥𝑑𝑅
, 𝑄1,𝑘(𝑥) = − 𝑥𝑘

𝑥𝑑𝑅
, (4.32)

𝜎2(𝑥,𝑦) =
𝑥𝑑𝑅𝜌2(𝑥,𝑦)−𝑊 2,𝑑𝑅(𝑥)𝜌1(𝑥,𝑦)

𝑥𝑑𝑅𝑊 2,𝑑𝑅+1(𝑥)
, (4.33)

𝑄2,𝑘(𝑥) =
𝑥𝑑𝑅𝑊 2,𝑘(𝑥)− 𝑥𝑘𝑊 2,𝑑𝑅(𝑥)

𝑥𝑑𝑅𝑊 2,𝑑𝑅+1(𝑥)
. (4.34)

(Step 3) Then, I identify 𝑉 𝑙 for 𝑟 = 1, . . . , 𝑑𝑅− 1 as solution of a system of coupled

partial transport differential equations, see Appendix 4.1 for details.

Denote by ̃︀𝑄 ∈ ℳ𝑑𝑅−1,𝑑𝑅−1(R) with coefficients ̃︀𝑄𝑟,𝑘(𝑥) := 𝑎𝑟,𝑘+
∑︀𝑑𝑅+1

𝑙=𝑑𝑅
𝑎𝑟,𝑙𝑄𝑙−𝑑𝑅+1,𝑘(𝑥),

for 𝑟 = 1, . . . , 𝑑𝑅 − 1 and 𝑘 = 1, . . . , 𝑑𝑅 − 1.

Assumption 11. When 𝑑𝐶 = 3, for all 𝑥 ∈ S𝑋 ,

1. 𝑥𝑑𝑅𝑊 2,𝑑𝑅+1(𝑥) ̸= 0;

2. ̃︀𝑄(𝑥) ∈ ℳ𝑑𝑅−1,𝑑𝑅−1(R) is diagonalisable: ̃︀𝑄(𝑥) = 𝑃−1(𝑥)diag (Λ(𝑥))𝑃 (𝑥),

where diag (Λ(𝑥)) is a diagonal matrix and 𝑃 (𝑥) is an orthogonal matrix.

Proposition 8. Consider 𝑑𝐶 = 3. Let the distribution of (𝐵,𝑋,𝑌 ) satisfy (4.1)

and deőne the restriction ℛ1 corresponding to assumptions 1, 2, 3, 10, and 11. Then
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𝒥𝑋,𝑌 (Γ,ℛ1), the identiőed set for 𝑚 is included into the set of functions taking the

form, for all 𝑟 = 1, . . . , 𝑑𝑅, 𝑐 = 1, 2, and (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝑚𝑟,𝑐(𝑥,𝑦) = Π𝑟,𝑐 [𝜁,𝜎] (𝑥,𝑦), (4.35)

Π is a linear operator from ℳ𝑑×(𝑑𝑅−1) (𝑙
∞ (S𝑋,𝑌 ))×ℳ2×1 (𝑙

∞ (S𝑋,𝑌 )) to ℳ𝑑𝑅,𝑑𝐶 (𝑙
∞ (S𝑋,𝑌 )),

Π𝑟,1 [𝜁,𝜎] =𝑃−1Diag (𝑃𝐾𝜁) , 𝑟 = 1, . . . , 𝑑𝑅 − 1 (4.36)

Π𝑑𝑅,1 [𝜁,𝜎] =𝑄⊤
1,·𝑃

−1Diag (𝑃𝐾𝜁) + 𝜎1, (4.37)

Π𝑟,2 [𝜁,𝜎] =̃︀𝑄⊤
𝑟,·𝑃

−1Diag (𝑃𝐾𝜁) + 𝑎𝑟,𝑑𝑅𝜎1 + 𝑎𝑟,𝑑𝑅+1𝜎2, 𝑟 = 1, . . . , 𝑑𝑅, (4.38)

where, 𝜎 is deőned via (4.32)-(4.34),

𝐾(𝑥) =

⎛
⎜⎜⎜⎜⎜⎜⎝

𝑥1 − 1 . . . 𝑥𝑑𝑅−1 1 1

𝑥1 𝑥2 − 1 𝑥𝑑𝑅−1 1 1

:
. . . 1 1

𝑥1 𝑥𝑑𝑅−1 − 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

(4.39)

and where 𝜁 ∈ ℳ𝑑×(𝑑𝑅−1) (𝑙
∞ (S𝑋,𝑌 )) with 𝜁(𝑥,𝑦)/𝑓𝑌 |𝑋(𝑦|𝑥) equals to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∫︀ 𝑦
1

0
𝜕𝑥1

𝑓𝑌 |𝑋(𝑣,𝑦2 −Λ1(𝑥)(𝑦1 − 𝑣)|𝑥)𝑑𝑣 . . . . . .

: :
∫︀ 𝑦

1

0
𝜕𝑥𝑅−1

𝑓𝑌 |𝑋(𝑣,𝑦2 −Λ1(𝑥)(𝑦1 − 𝑣)|𝑥)𝑑𝑣 :

𝑓𝑌 |𝑋(𝑦|𝑥)𝑦1 . . . 𝑓𝑌 |𝑋(𝑦|𝑥)𝑦1∫︀ 𝑦
1

0
𝜕𝑦

2
𝜌2(𝑥, 𝑣,𝑦2 −Λ1(𝑥)(𝑦1 − 𝑣))𝑑𝑣 . . .

∫︀ 𝑦
1

0
𝜕𝑦

2
𝜌2(𝑥, 𝑣,𝑦2 −Λ𝑅−1(𝑥)(𝑦1 − 𝑣))𝑑𝑣

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(4.40)

where, 𝜌𝑐(𝑥,𝑦) := 𝑓𝑌 |𝑋(𝑦|𝑥)𝑦𝑐.When 𝑎 ∈ ℳ𝑑𝑅−1,𝑑(R) in Assumption 10 is known,

then this set is reduced to one element.

Remark 2 (𝑑𝐶 = 2 as particular case). Using Proposition 1, the case 𝑑𝐶 = 2 appears

as a particular case where no further assumption has to be made on the random
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coefficients to obtain point identiőcation. When 𝑑𝐶 = 2, (4.7) can be rewritten as

𝑚𝑟,1 = Π𝑟,1 [𝜁] :=(𝐾𝜁)𝑟,

where Π is a linear operator from ℳ𝑑×(𝑑𝑅−1) (𝑙
∞ (S𝑋,𝑌 )) to ℳ𝑑𝑅,𝑑𝐶 (𝑙

∞ (S𝑋,𝑌 )) and

𝐾 is deőned like (4.39) with only one column of 1 and, for all (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝜁(𝑥,𝑦) :=

(︂
𝜕𝑥1𝐹𝑌 |𝑋(𝑦1|𝑥)
𝑓𝑌 |𝑋(𝑦|𝑥) , . . . ,

𝜕𝑥𝑑𝑅−1
𝐹𝑌 |𝑋(𝑦1|𝑥)

𝑓𝑌 |𝑋(𝑦1|𝑥)
,𝑦1

)︂⊤

(4.41)

and (4.35) is (4.7), hence this set is also reduced to one element. 8 shows that cases

𝑑𝐶 = 2 and 𝑑𝐶 = 3 share a similar structure, where the components needing to be

estimated nonparametrically are all the elements of 𝜁.

The proof of Proposition 8 is constructive and one can directly adapt the plug-

in approach to perform estimation in Section 4.2 using an estimator of 𝜁 deőned in

(4.41) for 𝑑𝐶 = 2, estimating (4.40) for 𝑑𝐶 = 3. Indeed, Proposition 8 and Remark

2 underline that in cases 𝑑𝐶 = 2 and 𝑑𝐶 = 3, one has to nonparametrically estimate

the elements of 𝜁, as my parameter of interest is the image by the linear operator Π

(which is also bounded under Assumption 11) of 𝜁 and 𝜎. Estimation of

(𝑥,𝑦) ↦→
∫︁ 𝑦1

0

𝜕𝑥𝑙𝑓𝑌 |𝑋(𝑣,𝑦2 −Λ𝑟(𝑥)(𝑦1 − 𝑣))𝑑𝑣

for 𝑟 = 1, . . . , 𝑑𝑅 − 1 and 𝑙 = 1, . . . , 𝑑𝑅 − 1, can be done similarly to Section 4.2,

while the other components of 𝜁 in Proposition 8 imply estimating also 𝑓𝑌 |𝑋 , 𝑓𝑋 ,

and 𝜕𝑦𝑐𝑓𝑌 |𝑋 (for 𝑑𝐶 = 3 only), when these quantities exist.

Remark 3 (Cases 𝑑𝐶 > 3). Using a similar reasoning as in the proof of Proposition

8, one could handle nonparametrically the cases 𝑑𝐶 > 3, assuming that the matrices

̃︀𝑄𝑐
(𝑥) which appear in the system of coupled differential equations all commute by

pairs for 𝑐 = 1, . . . , 𝑑𝐶 − 1 (or equivalently that they are diagonalisable in the same

basis), which puts more restrictions on the coefficients 𝑎. I left this for future research.
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4.5.2 Complements and proofs of the main theorems

Notations and Preliminaries. For notational simplicity, we denote the multivari-

ate Fourier transform of measures on the set of matricesby

ℱ [𝜇] (𝑥) =

∫︁

ℳ𝑑𝑅,𝑑𝐶
(R)

𝑒𝑖<𝑏,𝑥>𝑑𝜇(𝑏), (4.42)

where< 𝑏,𝑥 >= Tr(𝑏⊤𝑥) =
∑︀𝑑𝑅

𝑟=1

∑︀𝑑𝐶
𝑐=1 𝑏𝑟,𝑐𝑥𝑟,𝑐 is the inner product between matrices

and Tr is the trace operator. This notation is simply a compact way to denote the

multivariate Fourier transform, but one could also őx a way to vectorise the matrix

and use the usual multivariate Fourier transform. I denote by 𝐵 is the submatrix of

𝐵 keeping only the (𝑑𝐶 − 1) őrst columns, hence of dimension 𝑑𝑅 × (𝑑𝐶 − 1).

Proof of Proposition 1. Consider E [𝐵|𝑋 = ·1,𝑌 = ·2] ∈ ℐ𝑋,𝑌 (Γ,ℛ). Taking

conditional expectation in (4.1) with respect to (𝑋,𝑌 ), we obtain, a.e. (𝑥,𝑦) ∈ S𝑋,𝑌 ,

∀𝑐 = 1, . . . , 𝑑𝐶 , 𝑦𝑐 =
𝑅∑︁

𝑟=1

E [𝐵𝑟,𝑐|𝑋 = 𝑥,𝑌 = 𝑦]𝑥𝑟.

This yields that ℐ𝑋,𝑌 (Γ,ℛ) is included in the set on the right-hand-side of the equa-

tion of Proposition 1.

Consider now 𝑚 : [0, 1]𝑑𝑅×𝑑𝐶 ↦→ ℳ𝑑𝑅,𝑑𝐶 ([0, 1]), such that, for all (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝑚(𝑥,𝑦) ∈ ℐ(𝑥,𝑦), Using the constraint 𝑌 1 = 1, we consider the őrst 𝐶 − 1 equa-

tions in (4.1) as the last one can be deduced from the others. We have, for all

(𝑥,𝑦) ∈ S𝑋,𝑌 and understanding the integral below as a matrix where we integrate

component by component,

E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦] =

∫︁

R𝑑𝑅×(𝑑𝐶−1)

𝑏𝑑P𝐵|𝑋,𝑌 (𝑏|𝑥,𝑦).

Thus, we want to show that we can build P𝐵|𝑋,𝑌 (·|𝑥,𝑦) such that E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦] =

𝑚(𝑥,𝑦) (using an abuse of notation for 𝑚). Consider a compactly supported dis-

tibution P𝐵|𝑋,𝑌 satisőng (4.3)-(4.4), which is characterized, for all (𝑥,𝑦) ∈ S𝑋,𝑌

by its Fourier transform ℱ
[︀
P𝐵|𝑋,𝑌 (·|𝑥,𝑦)

]︀
, which is analytic. Then, in the Tay-
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lor expansion of ℱ
[︀
P𝐵|𝑋,𝑌 (·|𝑥,𝑦)

]︀
at 0, we modify the terms related to the őrst

partial derivatives replacing 𝜕𝑡𝑟,𝑐ℱ
[︀
P𝐵|𝑋,𝑌 (·|𝑥,𝑦)

]︀
(0) = 𝑖E

[︁
𝐵𝑟,𝑐|𝑋 = 𝑥,𝑌 = 𝑦

]︁
by

𝑖𝑚𝑟,𝑐(𝑥,𝑦). We obtain this way the Taylor expansion of ℱ
[︁
̃︀P𝐵|𝑋,𝑌 (·|𝑥,𝑦)

]︁
which

characterizes the distribution ̃︀P𝐵|𝑋,𝑌 (·|𝑥,𝑦) and which satiőes our requirements be-

cause 𝑚(𝑥,𝑦) ∈ ℐ(𝑥,𝑦). This yields the second inclusion, hence the result. �

Proof of Proposition 2. Start with the proof of (P2.2). Using 𝑌 1 + 𝑌 2 = 1, the

őrst part of the proof is Proposition 2.2 in Beran and Millar (1994). The second

part of (P2.2) can be deduced from the őrst one using the Bayes’ theorem, (4.3)-

(4.4), and Assumption 1 which yield, for all (𝑏,𝑥,𝑦) ∈ ℳ𝑑𝑅×(𝑑𝐶−1)([0, 1])×S𝑋 ×S𝑌 ,

P𝐵|𝑋,𝑌 (𝑏|𝑥,𝑦) = 1l{𝑦 = 𝑏⊤𝑥}P𝐵(𝑏)/P𝑌 |𝑋(𝑦|𝑥).
The proof of (P2.a) is a consequence of Corollary 1 in Masten (2017) once we have

used 𝑌 ⊤1 = 1 to consider only equations related to 𝑐 = 1, . . . , 𝑑𝐶 − 1 in (4.3)-(4.4).

Let us now prove (P2.1) and (P2.b). Let 𝑑𝐶 , 𝑑𝑅 ≥ 2. Using the constraint 𝑌 1 = 1, we

consider the őrst 𝑑𝐶 − 1 equations in (4.3)-(4.4) because the last one can be deduced

from the others. Hereafter 𝐵 is thus a 𝑑𝑅 × (𝑑𝐶 − 1) random matrix with the 𝑑𝐶 − 1

őrst columns of 𝐵. We have, using Bayes’ theorem for the second equality, for a.e.

(𝑥,𝑦) ∈ S𝑋,𝑌 and for all 𝑟 = 1, . . . , 𝑑𝑅, 𝑐 = 1, . . . , 𝑑𝐶 − 1,

E
[︀
𝐵𝑟,𝑐|𝑋 = 𝑥,𝑌 = 𝑦

]︀
=

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)(R)

𝑏𝑟,𝑐𝑑P𝐵|𝑋,𝑌 (𝑏|𝑥,𝑦)

=

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)(R)

𝑏𝑟,𝑐
P𝑌 |𝐵,𝑋(𝑦|𝑏,𝑥)
P𝑌 |𝑋(𝑦|𝑥) 𝑑P𝐵|𝑋(𝑏|𝑥)

=

∫︁

𝑏∈ℐ(𝑥,𝑦)

𝑏𝑟,𝑐

P𝑌 |𝑋(𝑦|𝑥)𝑑P𝐵(𝑏) (using Assumption 1),

(4.43)

where ℐ(𝑥,𝑦) is deőned like in (4.6). When 𝑑𝐶 = 2, under assumptions 1 and 2,

using (P2.2), P𝐵 is identiőed. Thus, we directly have from (4.43) that (𝑥,𝑦) ↦→
E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦] is also identiőed.

Consider now the case 𝑑𝐶 > 2. For simplicity, we condider the case 𝑑𝐶 = 3 and 𝑑𝑅 = 2,
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as the other cases can be adapted from it. Take 𝑓 1
𝐵 as, for all 𝑏 ∈ ℳ2,2([0, 1]),

𝑓 1
𝐵(𝑏) =

1

𝒵
2∏︁

𝑟=1

2∏︁

𝑐=1

1l{𝑏𝑟,𝑐 ∈ [0, 1]}𝑏𝑟,𝑐,

where 𝒵 is a normalisation constant. Consider a second distribution, for all 𝑏 ∈
ℳ2,2([0, 1]),

𝑓 2
𝐵(𝑏) := 𝑓 1

𝐵(𝑏) + 𝛾1l{𝑏 ∈ ℳ2,2([0, 1])} (𝜕11𝜕22 − 𝜕12𝜕21) 𝑓
1
𝐵(𝑏),

𝛾 such that 𝑓 2
𝐵(𝑏) ≥ 0 for all 𝑏 ∈ ℳ2,2([0, 1]). Note that we have

1

𝒵

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)([0,1])

(𝑏2,1𝑏1,2 − 𝑏1,1𝑏2,2) 𝑑𝑏 = 0

hence
∫︀
ℳ𝑑𝑅×(𝑑𝐶−1)([0,1])

𝑓 2
𝐵(𝑏)𝑑𝑏 = 1. This yields, for all 𝑧 ∈ ℳ2,2(R),

ℱ
[︀
𝑓 2
𝐵

]︀
(𝑧) = (1− 𝛾(𝑧11𝑧22 − 𝑧12𝑧21))ℱ

[︀
𝑓 1
𝐵

]︀
(𝑧),

hence for all 𝑡 ∈ R2, 𝑥 ∈ S𝑋 , ℱ
[︀
𝑓 2
𝐵

]︀
(𝑡𝑥⊤) = ℱ

[︀
𝑓 1
𝐵

]︀
(𝑡𝑥⊤). Using Assumption 1, we

have,

E
[︁
𝑒𝑖𝑡

⊤𝑌 |𝑋 = 𝑥
]︁
= ℱ [𝑓𝐵]

(︀
𝑡𝑥⊤)︀

hence 𝑓 1
𝐵 and 𝑓 2

𝐵 yield the same observables, while being distinct a.e., on ℳ2,2([0, 1]).

Consider, for example, the coefficient (1, 1) of 𝐵. Then, using (4.43), we have, for all
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(𝑥,𝑦) ∈ S𝑋,𝑌 ,

EP1 [𝐵1,1|𝑋 = 𝑥,𝑌 = 𝑦]− EP2 [𝐵1,1|𝑋 = 𝑥,𝑌 = 𝑦]

=

∫︁

𝑏∈ℐ(𝑥,𝑦)

𝑏1,1

P𝑌 |𝑋(𝑦|𝑥)
(︀
𝑓 1
𝐵 − 𝑓 2

𝐵

)︀
(𝑏)𝑑𝑏,

=
𝛾

𝒵P𝑌 |𝑋(𝑦|𝑥)

∫︁

𝑏∈ℐ(𝑥,𝑦)
𝑏1,1 (𝑏2,1𝑏1,2 − 𝑏1,1𝑏2,2) 𝑑𝑏

=
𝛾

𝒵P𝑌 |𝑋(𝑦|𝑥)

(︃∫︁ 1

0

𝑏
𝑦1 − 𝑏𝑥1

𝑥2

𝑑𝑏

∫︁ 1

0

𝑦2 − 𝑏𝑥2

𝑥1

𝑑𝑏−
∫︁ 1

0

(︂
𝑦1 − 𝑏𝑥2

𝑥1

)︂2

𝑑𝑏

∫︁ 1

0

𝑦2 − 𝑏𝑥1

𝑥2

𝑑𝑏

)︃

=
𝛾

𝒵P𝑌 |𝑋(𝑦|𝑥)(𝑥1𝑥2)2

(︂
𝑥1𝑥2

(︁𝑦1

2
− 𝑥1

3

)︁(︁
𝑦2 −

𝑥2

2

)︁
− 1

3

(︀
𝑦3
1 − (𝑦1 − 𝑥2)

3
)︀ (︁

𝑦2 −
𝑥1

2

)︁)︂

and using Assumption 2, there exists a subset 𝒮 of S𝑋,𝑌 with nonempty interior such

that the right-hand-side is different from zero a.e. (𝑥,𝑦) ∈ 𝒮, which yields the result

(P4.b). �

Lemma 1. Let P𝐵 be a measure on ℳ𝑑𝑅,𝑑𝐶 (R) satisfying (4.3)-(4.4). Then we have,

for all (𝑥,𝑦) ∈ S𝑋,𝑌 ,

∫︁

𝑏∈ℐ(𝑥,𝑦)
𝑏𝑑P𝐵(𝑏) = ℱ−1

[︀
ℱ [⋆P𝐵(⋆)]

(︀
·𝑥⊤)︀]︀ (𝑦),

where the Fourier transform is deőned in (4.42).

Proof of Lemma 1. First, using (4.43) we have, for all (𝑥,𝑦) ∈ S𝑋,𝑌 ,

E
[︀
𝐵|𝑋 = 𝑥,𝑌 = 𝑦

]︀
P𝑌 |𝑋(𝑦|𝑥) =

∫︁

𝑏∈ℐ(𝑥,𝑦)
𝑏𝑑P𝐵(𝑏), (4.44)

and that, for all 𝑥 ∈ S𝑋 , 𝑦 ∈ R𝑑𝐶−1 ↦→ E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦]P𝑌 |𝑋(𝑦|𝑥) is compactly

supported in [0, 1]𝑑𝐶−1. This yields that 𝑦 ∈ R𝑑𝐶−1 ↦→
∫︀
𝑏∈ℐ(𝑥,𝑦) 𝑏𝑑P𝐵(𝑏) belongs to

𝐿1(R𝑑𝐶−1)∩𝐿2(R𝑑𝐶−1) hence its Fourier transform is well deőned (see, e.g., Theorem

9.13 in Rudin, 1973). Using the deőnition of ℐ(𝑥,𝑦) for the second equality which

yields that 𝑏 ∈ ℐ(𝑥,𝑦) if and only if 𝑦 = (𝑥⊤𝑏)⊤ where 𝑏 ∈ ℳ𝑑𝑅×(𝑑𝐶−1)([0, 1]), that

𝑡⊤(𝑥⊤𝑏)⊤ =
∑︀𝑑𝐶−1

𝑐=1 𝑡𝑐(𝑥
⊤𝑏)𝑐 =

∑︀𝑑𝐶−1
𝑐=1 𝑡𝑐

∑︀𝑑𝑅
𝑟=1 𝑥𝑟𝑏𝑟,𝑐 =

∑︀𝑑𝐶−1
𝑐=1

∑︀𝑑𝑅
𝑟=1(𝑡𝑐𝑥𝑟)𝑏𝑟,𝑐 =<

𝑡𝑥⊤, 𝑏 > for the third equality, and using the deőnition (4.42) of the Fourier transform,
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we have, for all 𝑡 ∈ R𝑑𝐶−1,

ℱ
[︂∫︁

𝑏∈ℐ(𝑥,(·,1−·
⊤1))

𝑏𝑑P𝐵(𝑏)

]︂
(𝑡) =

∫︁

R𝑑𝐶−1

𝑒𝑖𝑡
⊤𝑦

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)([0,1])

1l{𝑏 ∈ ℐ(𝑥,𝑦)}𝑏𝑑P𝐵(𝑏)𝑑𝑦

=

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)([0,1])

𝑒𝑖𝑡
⊤(𝑥⊤𝑏)⊤𝑏𝑑P𝐵(𝑏)

=

∫︁

ℳ𝑑𝑅×(𝑑𝐶−1)([0,1])

𝑒𝑖<𝑡𝑥⊤,𝑏>𝑏𝑑P𝐵(𝑏)

= ℱ [⋆P𝐵(⋆)] (𝑡𝑥
⊤).

Then, we conclude using Theorem 9.13 d) in Rudin (1973) and taking the Fourier

inverse. �

Proof of Proposition 7 and Theorem 1. Let me start with the proof of Propo-

sition 7, then particularize the result to prove Theorem 1. Consider P𝐵,𝑋,𝑌 sat-

isfying (4.1) and assumptions 1 and 2. (4.43) and Lemma 1 brings the identiő-

cation to recovering, for 𝑟 = 1, . . . , 𝑑𝑅 and 𝑐 = 1, . . . , 𝑑𝐶 − 1, the function 𝑡 ∈
R𝑑𝐶−1 ↦→ ℱ [⋆𝑟,𝑐P𝐵(⋆)]

(︀
𝑡𝑥⊤)︀, for all 𝑥 ∈ S𝑋 . For all 𝑥 ∈ S𝑋 , we use the notation

�̇� :=
(︀
𝑥⊤, 1− 𝑥⊤1

)︀⊤ ∈ S𝑋 .

Using Assumption 1, we have, for all 𝑥 ∈ S𝑋 and 𝑡 ∈ R𝑑𝐶−1,

𝜙(𝑥, 𝑡) := E
[︁
𝑒𝑖𝑡

⊤𝑌 |𝑋 = 𝑥
]︁
= ℱ [P𝐵] (𝑡�̇�

⊤). (4.45)

Using the dominated convergence theorem, for all 𝑐 = 1, . . . , 𝑑𝐶−1, 𝑟 = 1, . . . , 𝑑𝑅−1,

the function 𝜙 admits partial derivatives with respect to 𝑡𝑐 and 𝑥𝑟. Moreover, using

that S𝑋 has a nonempty interior, the latter derivatives are identiőed on S𝑋 , and we

have, for all 𝑡 ∈ R𝑑𝐶−1 and 𝑥 ∈ S𝑋 ,

𝜕𝑡𝑐𝜙(𝑥, 𝑡) =𝑖�̇�
⊤ℱ [⋆1:𝑑𝑅,𝑐P𝐵(⋆)]

(︀
𝑡�̇�⊤)︀ , (4.46)

𝜕𝑥𝑟𝜙(𝑥, 𝑡) =𝑖𝑡
⊤ℱ [⋆𝑟,1:𝑑𝐶−1P𝐵(⋆)]

(︀
𝑡�̇�⊤)︀− 𝑖𝑡⊤ℱ [⋆𝑑𝑅,1:𝑑𝐶−1P𝐵(⋆)]

(︀
𝑡�̇�⊤)︀ . (4.47)

This brings back identiőcation to solving, for all 𝑡 ∈ R𝑑𝐶−1, a system of 𝑑𝑅× (𝑑𝐶 − 1)

unknowns ℱ [⋆𝑟,𝑐P𝐵(⋆)]
(︀
𝑡�̇�⊤)︀, 𝑟 = 1 . . . , 𝑑𝑅, 𝑐 = 1, . . . , 𝑑𝐶 − 1, and 𝑑𝑅 + 𝑑𝐶 − 2
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equations. Hence, E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦] is identiőed under Assumption 2 when 𝑑𝐶 =

2.

Using Assumption 2 and the dominated convergence theorem, for all (𝑡,𝑥) ∈ R𝑑𝐶−1×
S𝑋 , we have

𝜕𝑡𝑐𝜙(𝑥, 𝑡) =

∫︁

S𝑌−𝐶

𝑖𝑦𝑐𝑒
𝑖𝑡⊤𝑦𝑓𝑌 |𝑋(𝑦|𝑥)𝑑𝑦 = 𝑖ℱ

[︀
·𝑓𝑌 |𝑋(·|𝑥)

]︀
(𝑡).

Thus, we obtain, for all 𝑦 ∈ S𝑌 ,

ℱ−1 [𝜕𝑡𝑐𝜙(𝑥, ·)] (𝑦) = 𝑖𝑦𝑐𝑓𝑌 |𝑋(𝑦|𝑥) = 𝑖𝜌𝑐(𝑥,𝑦). (4.48)

Using Assumption 3, which yields that 𝜕𝑥𝑟𝜙(𝑥, ·) ∈ 𝐿2(R) and (4.46)-(4.47), we

obtain

𝜌𝑐(𝑥,𝑦) =�̇�⊤ℱ−1
[︀
ℱ [⋆1:𝑑𝑅,𝑐P𝐵(⋆)]

(︀
·�̇�⊤)︀]︀ (𝑦) (4.49)

ℱ−1 [𝜕𝑥𝑟𝜙(𝑥, ·)] (𝑦) =𝑖ℱ−1
[︀
·

⊤ℱ [(⋆𝑟,1:𝑑𝐶−1 − ⋆𝑑𝑅,1:𝑑𝐶−1)P𝐵(⋆)]
(︀
·�̇�⊤)︀]︀ (𝑦).

Then, using that

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐ℱ−1
[︀
ℱ [⋆𝑟,𝑐P𝐵(⋆)]

(︀
·�̇�⊤)︀]︀ (𝑦) = −𝑖ℱ−1

[︀
·

⊤ℱ [⋆𝑟,1:𝑑𝐶−1P𝐵(⋆)]
(︀
·�̇�⊤)︀]︀ (𝑦)

(4.50)

we obtain, for all 𝑐 = 1, . . . , 𝑑𝐶 − 1, 𝑟 = 1, . . . , 𝑑𝑅 − 1,

−ℱ−1 [𝜕𝑥𝑟𝜙(𝑥, ·)] (𝑦) =

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐ℱ−1
[︀
ℱ [⋆𝑟,𝑐P𝐵(⋆)]

(︀
·�̇�⊤)︀]︀ (𝑦)

−
𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐ℱ−1
[︀
ℱ [⋆𝑑𝑅,𝑐P𝐵(⋆)]

(︀
·�̇�⊤)︀]︀ (𝑦). (4.51)

Denote by 𝑀 𝑟,𝑐 : (𝑥,𝑦) ∈ S𝑋,𝑌 ↦→ ℱ−1
[︀
ℱ [⋆𝑟,𝑐P𝐵(⋆)]

(︀
𝑡�̇�⊤)︀]︀ (𝑦), for 𝑟 = 1, . . . , 𝑑𝑅

and 𝑐 = 1, . . . , 𝑑𝐶 − 1, which are continuous functions which admit a continuous

derivative with respect to 𝑦𝑐. Moreover, from (4.47), we have 𝑚 = 𝑀/𝑓𝑌 |𝑋 and the
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constraint, for all (𝑥,𝑦) ∈ S𝑋,𝑌 , 𝑀 𝑟,𝑐(𝑥,𝑦1, . . . ,𝑦𝑐 = 0,𝑦𝑑𝐶−1) = 0 holds. Then,

using (4.49), we obtain, for all (𝑥,𝑦) ∈ S𝑋,𝑌 ,

𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦) =

𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝜕𝑦𝑐𝑀 𝑟,𝑐(𝑥,𝑦) + 𝜕𝑦𝑐𝑀 𝑑𝑅,𝑐(𝑥,𝑦)−
𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝜕𝑦𝑐𝑀 𝑑𝑅,𝑐(𝑥,𝑦)

(4.52)

and summing (4.51) over 𝑟 = 1, . . . , 𝑑𝑅 − 1,

−
𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟ℱ−1 [𝜕𝑥𝑟𝜙(𝑥, ·)] (𝑦) =

𝑑𝐶−1∑︁

𝑐=1

(︃
𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝜕𝑦𝑐𝑀 𝑟,𝑐(𝑥,𝑦)−
𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝜕𝑦𝑐𝑀 𝑑𝑅,𝑐(𝑥,𝑦)

)︃

=

𝑑𝐶−1∑︁

𝑐=1

(︀
𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦)− 𝜕𝑦𝑐𝑀 𝑑𝑅,𝑐(𝑥,𝑦)

)︀
.

This yields

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝑀 𝑑𝑅,𝑐(𝑥,𝑦) =

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦) +

𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟ℱ−1 [𝜕𝑥𝑟𝜙(𝑥, ·)] (𝑦).

Then, using Assumption 3 and the dominated convergence theorem for the őrst equal-

ity, then Theorem 9.13 d) in Rudin (1973) for the second, we have

ℱ−1 [𝜕𝑥𝑟𝜙(𝑥, ·)] (𝑦) = ℱ−1
[︀
𝜕𝑥𝑟ℱ

[︀
𝑓𝑌 |𝑋(·|𝑥)

]︀]︀
(𝑦)

= 𝜕𝑥𝑟𝑓𝑌 |𝑋(𝑦|𝑥). (4.53)

Using (4.51), we obtain (4.23). This yields that 𝑚 takes the form described in the

statement of Proposition 7.

When 𝑑𝐶 = 2, integrating (4.23), using 𝑀 𝑟,𝑐(𝑥, 0) = 0, and 𝜌1(𝑥, 0) = 0 for the őrst

equality, and Assumption 3 and the dominated convergence theorem for the second
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one, we obtain, for all 𝑟 = 1, . . . , 𝑑𝑅 and (𝑥, 𝑦) ∈ S𝑋,𝑌 ,

𝑀 𝑟,1(𝑥, 𝑦) = 𝜌1(𝑥, 𝑦) +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})
∫︁ 𝑦

0

𝜕𝑥𝑙𝑓𝑌 |𝑋(𝑣|𝑥)𝑑𝑣

= 𝜌1(𝑥, 𝑦) +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝐹𝑌 |𝑋(𝑦|𝑥).

Using 𝜌1(𝑥, 𝑦) = 𝑦𝑓𝑌 |𝑋(𝑦|𝑥) yields the result of Theorem 1. �

Proof of Proposition 8. Denote the right hand side of (4.23) by, for (𝑥,𝑦) ∈ S𝑋,𝑌 ,

Θ𝑟(𝑥,𝑦) :=
2∑︁

𝑐=1

𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦) +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝑓𝑌 |𝑋(𝑦|𝑥). (4.54)

Then, (4.23) can we rewritten as, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

𝜕𝑦1
𝑉 𝑟(𝑥,𝑦) +

𝑑𝐶−1∑︁

𝑐=2

𝜕𝑦𝑐𝑀 𝑟,𝑐(𝑥,𝑦) = Θ𝑟(𝑥,𝑦). (4.55)

Using (4.28), we have, for 𝑟 = 1, . . . , 𝑑𝑅 − 1

𝑀 𝑟,2(𝑥,𝑦) =

𝑑𝑅−1∑︁

𝑘=1

̃︀𝑄𝑟,𝑘(𝑥)𝑉 𝑘(𝑥,𝑦) +

𝑑𝑅+1∑︁

𝑘=𝑑𝑅

𝑎𝑟,𝑘𝜎𝑘−𝑑𝑅+1(𝑥,𝑦) (4.56)

which yields the system of coupled partial differential equations, for 𝑟 = 1, . . . , 𝑑𝑅−1:

𝜕𝑦1
𝑉 𝑟(𝑥,𝑦) +

𝑑𝑅−1∑︁

𝑘=1

̃︀𝑄𝑟,𝑘(𝑥)𝜕𝑦2
𝑉 𝑘(𝑥,𝑦) = Θ𝑟(𝑥,𝑦), (4.57)

with boundary constraints given by 𝑉 𝑟(0,𝑦2,𝑥) = 0 for 𝑟 = 1, . . . , 𝑑𝑅 − 1. (4.57) is

a system of coupled (𝑑𝑅 − 1)× (𝑑𝑅 − 1) transport partial differential equations that

can be put into matrix form

𝜕𝑦1
𝑉 (𝑥,𝑦) + ̃︀𝑄(𝑥)𝜕𝑦2

𝑉 (𝑥,𝑦) = Θ(𝑥,𝑦). (4.58)
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When 𝑑𝐶 = 3, using assumption (11.2) yields in (4.58),

𝜕𝑦1
̃︀𝑉 (𝑥,𝑦) + diag (Λ(𝑥)) 𝜕𝑦2

̃︀𝑉 (𝑥,𝑦) = 𝑃Θ(𝑥,𝑦),

where ̃︀𝑉 := 𝑃𝑉 . Hence we can solve separately these 𝑑𝑅 − 1 transport differential

equations, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

̃︀𝑉 𝑟(𝑥,𝑦) =

𝑑𝑅−1∑︁

𝑘=1

𝑃 𝑟,𝑘(𝑥)

∫︁ 𝑦1

0

Θ𝑘(𝑥, 𝑣,𝑦2 −Λ𝑟(𝑥)(𝑦1 − 𝑣))𝑑𝑣, (4.59)

using that 𝑉 𝑟(0,𝑦2,𝑥) = 0 for 𝑟 = 1, . . . , 𝑑𝑅 − 1. Thus, using (4.54), we obtain

𝑉 𝑟(𝑥,𝑦)

=

𝑑𝑅−1∑︁

𝑘=1

𝑃 𝑟,𝑘(𝑥)

∫︁ 𝑦1

0

𝜕𝑦1
𝜌1(𝑥, 𝑣,𝑦2 −Λ𝑟(𝑥)(𝑦1 − 𝑣))𝑑𝑣

+

𝑑𝑅−1∑︁

𝑘=1

𝑃 𝑟,𝑘(𝑥)

∫︁ 𝑦1

0

𝜕𝑦2
𝜌2(𝑥, 𝑣,𝑦2 −Λ𝑟(𝑥)(𝑦1 − 𝑣))𝑑𝑣

+

𝑑𝑅−1∑︁

𝑘=1

𝑃 𝑟,𝑘(𝑥)

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑘})
∫︁ 𝑦1

0

ℱ−1 [𝜕𝑥𝑙𝜙(𝑥, ·)] (𝑣,𝑦2 −Λ𝑟(𝑥)(𝑦1 − 𝑣))𝑑𝑣

= Diag(𝑃𝐾𝜁)𝑟(𝑥,𝑦) (using (4.53)).

This yields the result using (4.31). �

Details on the approximation of 𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) using vaguelet-wavelets.

Let 𝑦 ∈ [0, 1]. Let me explain how I use the vaguelet-wavelet decomposition to

approximate 𝜕𝑙𝐹𝑌 |𝑋(𝑦|·). For any integer 𝐽 ∈ N and assuming that 𝐹𝑌 |𝑋(𝑦|·) ∈
𝐿2(S𝑋), we have the wavelet expansion

𝐹𝑌 |𝑋(𝑦|·) =
∑︁

𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

𝑑𝑗,𝑘,𝑤(𝑦)Ψ
𝑤
𝑗,𝑘, (4.60)

where 𝑑𝑗,𝑘,𝑤(𝑦) :=
⟨︀
E [1l{𝑌 ≤ 𝑦}|𝑋 = ·] ,Ψ𝑤

𝑗,𝑘

⟩︀
𝐿2(S𝑋)

. Assume that 𝐹𝑌 |𝑋(𝑦|·) ∈ 𝐿2(S𝑋)

admits a square integrable derivative with respect to the 𝑙 ∈ {1, . . . , 𝑑𝑅− 1} variable.

228



Then, the vaguelet-wavelet decomposition of 𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) (see, e.g., Section 2.2 in Cai,

2002) is simply

𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) =
∑︁

𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

𝑑𝑗,𝑘,𝑤(𝑦)2
𝑗Ω𝑤

𝑙,𝑗,𝑘(·), (4.61)

where
(︀
Ω𝑤
𝑙,𝑗,𝑘

)︀
𝑙≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

=
(︀
𝜕𝑙Ψ

𝑤
𝑗,𝑘/2

𝑗
)︀
𝑙≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

are called the vaguelets and

form a Riesz basis, which justiőes this decomposition (see also the discussion in Ap-

pendix 4.5.4). Let 𝑁 ≥ 2 and 𝐽 be őxed and 𝑗0 ≥ 𝐽 a parameter chosen a posteriori

as a function of the sample size 𝐺. For all 𝑙 = 1, . . . , 𝑑𝑅 − 1, and 𝑦 ∈ [0, 1] consider

the approximation of 𝜕𝑙𝐹𝑌 |𝑋

𝜕𝑙𝐹
𝑗0
𝑌 |𝑋(𝑦|·) :=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

𝑑𝑗,𝑘,𝑤(𝑦)2
𝑗Ω𝑤

𝑙,𝑗,𝑘(·),

which yields my approximation of 𝑚𝑟,1, for 𝑟 = 1, . . . , 𝑑𝑅 and (𝑥, 𝑦) ∈ S𝑋,𝑌 ,

𝑚
𝑗0
𝑟,1(𝑥, 𝑦) = 𝑦 +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})
𝜕𝑙𝐹

𝑗0
𝑌 |𝑋(𝑦|𝑥)

𝑓𝑌 |𝑋(𝑦|𝑥) . (4.62)

Formulation of the estimator with unknown 𝑓𝑋 and 𝑓𝑌 |𝑋

Assumption 12 (On the rates of convergence of the preliminary estimators). Assume

that:

(Est.1 ) We have estimators ̂︀𝑓𝑋 based on a preliminary sample 𝒫𝐺0 = (𝑋𝑔)
0
𝑔=−𝐺0+1

independent of (𝑋𝑔,𝑌 𝑔)
𝐺
𝑔=1 and ̂︀𝑓𝑌 |𝑋 based on a second preliminary sample

𝒫𝐺1 = (𝑋𝑔)
−𝐺0

𝑔=−(𝐺1+𝐺0)+1 independent of (𝑋𝑔,𝑌 𝑔)
𝐺
𝑔=−𝐺0

;

(Est.2 ) ℰ and ℰ ′ are sets of densities and conditional densities on S𝑋 and S𝑋,𝑌

such that, for 𝑐𝑋 , 𝑐𝑋,𝑌 ∈ (0,∞), for all 𝑓𝑋 ∈ ℰ, ‖1/𝑓𝑋‖𝐿∞(S𝑋) ≤ 𝑐𝑋 ,

‖𝑓𝑋‖𝐿∞(S𝑋) ≤ 𝐶𝑋 , and there exists a strict subset 𝒮 of S𝑋,𝑌 such that,

for all 𝑓𝑌 |𝑋 ∈ ℰ ′, ‖1/𝑓𝑌 |𝑋‖𝐿∞(𝒮) ≤ 𝑐𝑋,𝑌 ; For (𝑣(𝐺0, ℰ))𝐺0∈N ∈ (0, 1)N and
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(𝑣(𝐺1, ℰ ′))𝐺1∈N ∈ (0, 1)N which tend to 0, we have

1

𝑣(𝐺0, ℰ)
sup
𝑓𝑋∈ℰ

⃦⃦
⃦ ̂︀𝑓𝑋 − 𝑓𝑋

⃦⃦
⃦
2

𝐿∞(S𝑋)
= 𝑂𝑝 (1) , (4.63)

1

𝑣(𝐺1, ℰ ′)
sup

𝑓𝑌 |𝑋∈ℰ ′

⃦⃦
⃦ ̂︀𝑓𝑌 |𝑋 − 𝑓𝑌 |𝑋

⃦⃦
⃦
2

𝐿∞(𝒮)
= 𝑂𝑝 (1) . (4.64)

Giné and Nickl (2016); Tsybakov (2008) give examples of estimators for 𝑓𝑋 and

𝑓𝑌 |𝑋 , ℰ , ℰ ′ rates (4.63) and (4.64). Deőne ̂︀𝑓 𝛿𝑋 := ̂︀𝑓𝑋 ∨
√︀
𝛿(𝐺0) and ̂︀𝑓 𝛿𝑌 |𝑋 := ̂︀𝑓𝑌 |𝑋 ∨

√︀
𝛿(𝐺1), where 𝛿 is a trimming factor converging to zero. To deal with the statistical

problem, I use

𝜕𝑙𝐹𝑌 |𝑋
𝑗0
(⋆|·) :=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

̂︀𝑑𝑗,𝑘,𝑤(⋆)2𝑗Ω𝑤
𝑙,𝑗,𝑘(·),

where I replace 𝑓𝑋 and 𝑓𝑌 |𝑋 by ̂︀𝑓 𝛿𝑋 and ̂︀𝑓 𝛿𝑌 |𝑋 in (4.14).

𝐿𝑞 risk In this context where 𝑓𝑋 and 𝑓𝑌 |𝑋 are estimated, I use the 𝐿𝑞 risk on 𝒮,

which is deőned in Assumption (Est.3), for 𝑞 ∈ {2,∞}, 𝑟 = 1, . . . , 𝑑𝑅

ℛ𝑞
𝐺0,𝐺1

(̂︁𝑚𝑟,1,𝑚𝑟,1) := E
[︁
‖̂︁𝑚𝑟,1 −𝑚𝑟,1‖𝐿𝑞(𝒮)

⃒⃒
⃒𝒫𝐺0 ,𝒫𝐺1

]︁

and we use𝐺𝑒 = 𝐺∧⌊(𝛿(𝐺0)/𝑣(𝐺0, ℰ))1/(1+1l{𝑞=∞})⌋∧⌊(𝛿(𝐺1)𝛿(𝐺0)/𝑣(𝐺1, ℰ ′))1/(1+1l{𝑞=∞})⌋
for the sample size required for an ideal estimator where 𝑓𝑋 and 𝑓𝑌 |𝑋 are known to

achieve the rate of the plug-in estimator. Instead of (4.10), the upper bounds of

Theorem 2 in this context take the form, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

1

𝑟(𝐺𝑒)
sup

𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

𝑓𝑋∈ℰ, 𝑓𝑌 |𝑋∈ℰ′

ℛ𝑞
𝐺0,𝐺1

(︁
̂︁𝑚𝑗0

𝑟,1,𝑚𝑟,1

)︁
= 𝑂𝑝(1), (4.65)

and in Theorem 2, 𝐺 is replaced by 𝐺𝑒.
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Different types of boundary corrections

I explain here how to obtain the orthonormal basis of 𝐿2(S𝑋),

ℬ =
{︁
Φ𝐽,𝑘,𝑘 ∈ Λ𝐽 ; Ψ𝑤

𝑗,𝑘, 𝑗 ∈ N ∖ {0, . . . , 𝐽 − 1}, 𝑘 ∈ Λ𝑗, 𝑤 ∈ ̃︁𝒲
}︁

based on the Daubechies family with 𝑁 ≥ 1 (see, e.g., Härdle et al., 2012) and

summarised its properties.

Case (RC.1), where S𝑋 is a square. In this case, I use the boundary corrected

wavelets introduced in Cohen et al. (1993) (see, e.g., Section 4.3.5 in Giné and Nickl,

2016). Let 𝐽,𝑁 ∈ N, 2𝐽 ≥ 𝑁 and consider the standard 2𝐽−2𝑁 Daubechies wavelets

𝜑𝐽,𝑘 = 2𝐽/2𝜑(2𝐽 · −𝑘), 𝑘 ∈ Z supported in the interior of [0, 1], the 𝑁 left-edge basis

functions 𝜑left
𝐽,𝑘 , and the right-edge basis functions 𝜑right

𝐽,𝑘 introduced in Cohen et al.

(1993) that are obtained from transformations (e.g. Gram-Schmidt orthonormali-

sation) of the standard wavelets. Together, they form an orthonormal system of

𝐿2([0, 1]) which we denote by
{︀
𝜑𝑏𝑐𝐽,𝑘, 𝑘 = 0, . . . , 2𝐽 − 1

}︀
.

Cohen et al. (1993) then deőne the correspoding wavelets functions 𝜓left
𝐽,𝑘 , 𝜓

right
𝐽,𝑘 , 𝜓𝐽,𝑘

and introduced the dilated wavelets, for 𝑘 = 0, . . . , 𝑁 − 1, 𝑘′ = 𝑁, . . . , 2𝑁 and

𝑚 = 2𝑁 + 1, . . . , 2𝑗,

𝜓left
𝑗,𝑘 = 2(𝑗−𝐽)/2𝜓left

𝐽,𝑘

(︀
2𝑗−𝐽 ·

)︀
, 𝜓right

𝑗,𝑘′ = 2(𝑗−𝐽)/2𝜓right
𝐽,𝑘′

(︀
2𝑗−𝐽 ·

)︀
, 𝜓𝑗,𝑚 = 2𝑗/2𝜓

(︀
2𝑗 · −𝑚+𝑁

)︀
,

which I denote using the common notation by 𝜓𝑏𝑐𝑗,𝑘, 𝑘 = 0, . . . , 2𝑗. This yields

{︀
𝜓𝑏𝑐𝐽,𝑘, 𝜓

𝑏𝑐
𝑗,𝑙, 𝑘 = 0, . . . , 2𝐽−1, 𝑙 = 0, . . . , 2𝑗 − 1, 𝑗 ≥ 𝐽

}︀

forms a basis of 𝐿2([0, 1]). Theorem 4.4. in Cohen et al. (1993) and Theorem 4.2.10

(e) in Giné and Nickl (2016) shows that they belong to 𝐶𝛾([0, 1]) with 𝛾 ≥ 0.18(𝑁−1).

Then using the construction of Section 4.3.6 in Giné and Nickl (2016), we intro-
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duce, for 𝑘 ∈ Λ𝑗 := {𝑘 : |𝑘|∞ ≤ 2𝐽 − 1},

̃︀Φ𝐽,𝑘 :=
1

𝑥
(𝑑𝑅−1)/2
0

𝑑𝑅−1∏︁

𝑟=1

𝜑𝑏𝑐𝐽,𝑘𝑟

(︂ ·𝑟 − ̃︀𝑥𝑟
𝑥0

)︂
, ̃︀Ψ𝑤

𝑗,𝑘𝑟 :=
1

𝑥
(𝑑𝑅−1)/2
0

𝑑𝑅−1∏︁

𝑟=1

(𝜓𝑏𝑐𝑗,𝑘)
𝑤𝑟

(︂ ·𝑟 − ̃︀𝑥𝑟
𝑥0

)︂
,

where
(︀
𝜓𝑏𝑐𝑗,𝑘

)︀0
= 2(𝑗−𝐽)/2𝜑left

𝐽,𝑘(2
𝑗−𝐽 ·) for 𝑘 = 0, . . . , 𝑁 −1,

(︀
𝜓𝑏𝑐𝑗,𝑘

)︀0
= 2(𝑗−𝐽)/2𝜑right

𝐽,𝑘 (2𝑗−𝐽 ·)
for 𝑘 = 𝑁, . . . , 2𝑁 − 1, and

(︀
𝜓𝑏𝑐𝑗,𝑘

)︀0
= 2𝑗/2𝜑(2𝑗 · −𝑘 + 𝑁) for 𝑘 ≥ 2𝑁 . We thus have

wavelet expansion (4.60).

The vaguelets
(︀
Ω𝑤
𝑙,𝑗,𝑘

)︀
form a Riesz basis (see Section 5 and condition (C) in Cai

(2002)) which yields that there exist constants 𝐴𝑙 > 𝑎𝑙 > 0, which depend on S𝑋 ,

such that, for every sequence (𝑑𝑗,𝑘,𝑤),

𝑎𝑙 ‖(𝑑𝑗,𝑘,𝑤)‖𝑙2 ≤

⃦⃦
⃦⃦
⃦⃦
∑︁

𝑗≥𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

𝑑𝑗,𝑘,𝑤Ω
𝑤
𝑙,𝑗,𝑘

⃦⃦
⃦⃦
⃦⃦
𝐿2(S𝑋)

≤ 𝐴𝑙 ‖(𝑑𝑗,𝑘,𝑤)‖𝑙2 . (4.66)

Important properties of ℬ. For simplicity of exposition, I summarize the fol-

lowing properties, where the constants can be adapted according to S𝑋 . Using that

(𝜓𝑏𝑐𝐽,𝑘)𝑘∈Λ𝐽 belong to 𝐶⌊𝛾⌋([0, 1]) with 𝛾 ≥ 0.18(𝑁 − 1) and the cardinal of Λ𝐽 is őnite,

then for all 𝐽 s.t. 2𝐽 ≥ 2𝑁 and all 𝑥 ∈ S𝑋 ,

𝛼1,𝐽(𝑥) :=
∑︁

𝑘∈Λ𝐽
|Φ𝐽,𝑘(𝑥)| ≤ 𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋) <∞ (4.67)

and I denote by

𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋) := sup
𝑘∈Λ𝐽

‖𝜕𝑙Φ𝐽,𝑘‖𝐿∞(S𝑋) <∞. (4.68)

Denote, for all 𝑥 ∈ 𝑆𝑋 and 𝑗 ∈ 𝑁 , by 𝛼2,𝑗(𝑥) :=
∑︀

𝑘∈Λ𝑗 ,𝑤∈𝒲 |Ψ𝑤
𝑗,𝑘(𝑥)|. Then, using

for the őrst inequality that

∑︁

𝑘∈Λ𝑗

𝑑𝑅−1∏︁

𝑟=1

⃒⃒(︀
𝜓𝑏𝑐𝑗,𝑘𝑟

)︀
(𝑥𝑟)

⃒⃒
≤

𝑑𝑅−1∏︁

𝑟=1

1∑︁

𝑤=0

2𝑗−1∑︁

𝑘=0

⃒⃒(︀
𝜓𝑏𝑐𝑗,𝑘

)︀
(𝑥𝑟)

⃒⃒
,
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and Theorem 4.2.10 in Giné and Nickl (2016) for the last inequality, we obtain

𝛼2,𝑗(𝑥) ≤
𝑑𝑅−1∏︁

𝑟=1

1∑︁

𝑤=0

⎛
⎝

2𝑁−1∑︁

𝑘=0

⃒⃒(︀
𝜓𝑏𝑐𝑗,𝑘

)︀𝑤
(𝑥𝑟)

⃒⃒
+

2𝑗−1∑︁

𝑘=2𝑁

⃒⃒(︀
𝜓𝑏𝑐𝑗,𝑘

)︀𝑤
(𝑥𝑟)

⃒⃒
⎞
⎠

≤2𝑗(𝑑𝑅−1)/2

𝑑𝑅−1∏︁

𝑟=1

1∑︁

𝑤=0

(︃
𝑁−1∑︁

𝑘=0

⃒⃒(︀
𝜓left
𝐽,𝑘

)︀𝑤 (︀
2𝑗−𝐽𝑥𝑟

)︀⃒⃒
+

2𝑁−1∑︁

𝑘=𝑁

⃒⃒
⃒
(︁
𝜓right
𝐽,𝑘

)︁𝑤 (︀
2𝑗−𝐽𝑥𝑟

)︀⃒⃒
⃒
)︃

+ 2𝑗(𝑑𝑅−1)/2

𝑑𝑅−1∏︁

𝑟=1

1∑︁

𝑤=0

2𝑗−1∑︁

𝑘=2𝑁

|𝜓𝑤
(︀
2𝑗𝑥𝑟 − 𝑘 +𝑁

)︀
| (4.69)

≤2𝑗(𝑑𝑅−1)/2
(︁
𝜅𝑁,𝑑𝑅,𝐽2,1 (S𝑋) + 𝜅𝑁,𝑑𝑅2,2 (S𝑋)

)︁
,

where 𝜅𝑁,𝑑𝑅,𝐽2,1 (S𝑋) and 𝜅𝑁,𝑑𝑅2,2 (S𝑋) are őnite, hence

‖𝛼2,𝑗‖𝐿∞(S𝑋) ≤ 2𝑗(𝑑𝑅−1)/2𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋) <∞. (4.70)

Finally, using a similar decomposition as above and Ω𝑤
𝑙,𝑗,𝑘 = 𝜕𝑙Ψ

𝑤
𝑗,𝑘/2

𝑗, there exists

𝜈𝐽,𝑁,𝑑𝑅2 (S𝑋) <∞ such that for all 𝑙 = 1, . . . , 𝑑𝑅 − 1, 𝑘 ∈ Λ𝑗, 𝑤 ∈ 𝒲 , we have

⃦⃦
Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋)

≤2𝑗(𝑑𝑅−1)/2𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋). (4.71)

When 𝑁 ≥ 6 we have 𝜑, 𝜓 ∈ 𝐶1(R) by Theorem 4.2.10 in Giné and Nickl (2016) and

by Proposition 4.2.5 in Giné and Nickl (2016), then using
∑︀

𝑘∈Z ‖𝜑′(·−𝑘)‖𝐿∞([0,1]) <∞
and

∑︀
𝑘∈Z ‖𝜓′(· − 𝑘)‖𝐿∞([0,1]) <∞, we have, for all 𝑙 = 1, . . . , 𝑑𝑅 − 1 and 𝑥 ∈ S𝑋 ,

∑︁

𝑘∈Λ𝐽
|𝜕𝑙Φ𝐽,𝑘(𝑥)| ≤ ̃︀𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋) <∞ (4.72)

and, using a similar decomposition as (4.69),

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

|Ω𝑤
𝑗,𝑘(𝑥)| ≤ 2𝑗(𝑑𝑅−1)/2̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋). (4.73)
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Proof of Section 4.2

The proofs use several times, for 𝑗 ≥ 1,

|{𝑘 ∈ N𝑑𝑅−1
0 : |𝑘|∞ ≤ 2𝑗 − 1}| ≤ 2𝑗(𝑑𝑅−1), (4.74)

∀𝑎, 𝑏 > 0, sup
𝑡≥1

ln(𝑡)𝑎

𝑡𝑏
=

(︁ 𝑎
𝑒𝑏

)︁𝑎
. (4.75)

Proposition 9. There exists a constant 𝐶0 depending only on 𝑑𝑅 such that for all

𝑓 ∈ 𝐿2(R𝑑𝑅) compactly supported in [−1, 1]𝑑𝑅 and with 𝑠 > (𝑑𝑅 − 1)/2,

∫︁

S𝑋

∫︁

R

(1 ∨ |𝑡|)2𝑠+(𝑑𝑅−1)
⃒⃒
ℱ [𝑓 ](𝑡(𝑥, 1− 𝑥⊤1))

⃒⃒2
𝑑𝑡𝑑𝑥 ≤ 𝐶0

∫︁

R𝑑𝑅
(1 ∨ |𝜉|2)

2𝑠 |ℱ [𝑓 ](𝜉)|2 𝑑𝜉.

Proof of Proposition 9. I borrow arguments from the proof of Theorem 4.6 in Hahn

and Quinto (1985), without using the Radon transform. On the set S𝑋 ×R ∖ [−1, 1],

we use the bijective change of variable 𝐹 (𝑡,𝑥) = (𝑡𝑥1, . . . , 𝑡𝑥𝑅−1, 𝑡) = 𝜉 ∈ 𝑉 with 𝑉

a truncated cone in R𝑑𝑅 and that for |𝑡| ≥ 1, (1 ∨ |𝑡|)𝑑𝑅−1 ≤ 2(𝑑𝑅−1)/2|𝑡|𝑑𝑅−1 for the

őrst equality

∫︁

S𝑋

∫︁

R

(1 ∨ |𝑡|)2𝑠+(𝑑𝑅−1) |ℱ [𝑓 ] (𝑡(𝑥, 1))|2 𝑑𝑡𝑑𝑥 ≤ 2(𝑑𝑅−1)/2

∫︁

𝑉

(1 ∨ |𝜉𝑑𝑅 |)2𝑠 |ℱ [𝑓 ] (𝜉)|2 𝑑𝜉

≤ 2(𝑑𝑅−1)/2

∫︁

R𝑑𝑅
(1 ∨ |𝜉|)2𝑠 |ℱ [𝑓 ] (𝜉)|2 𝑑𝜉.

Then, for all (𝑥, 𝑡) ∈ S𝑋 × [−1, 1], using the compact support of 𝑓 ,

|ℱ [𝑓 ](𝑡(𝑥, 1))|

=

⃒⃒
⃒⃒
∫︁

R𝑑𝑅
1l{𝑏 ∈ [−1, 1]𝑑𝑅}𝑒𝑖(𝑡(𝑥,1))𝑏𝑓(𝑏)𝑑𝑏

⃒⃒
⃒⃒

≤
⃒⃒
⃒⃒
∫︁

R𝑑𝑅
ℱ

[︀
1l{· ∈ [−1, 1]𝑑𝑅}𝑒𝑖(𝑡(𝑥,1))·

]︀
(𝜉)ℱ [𝑓 ](𝜉)𝑑𝜉

⃒⃒
⃒⃒

≤
∫︁

R𝑑𝑅

⃒⃒
ℱ

[︀
1l{· ∈ [−1, 1]𝑑𝑅}𝑒𝑖(𝑡(𝑥,1))·

]︀
(𝜉)

⃒⃒2
(1 ∨ |𝜉|)−2𝑠𝑑𝜉

∫︁

R𝑑𝑅
(1 ∨ |𝜉|)2𝑠 |ℱ [𝑓 ](𝜉)|2 𝑑𝜉.

234



I conclude using that

∫︁

R𝑑𝑅

⃒⃒
ℱ

[︀
1l{· ∈ [−1, 1]𝑑𝑅}𝑒𝑖(𝑡(𝑥,1))·

]︀
(𝜉)

⃒⃒2
(1 ∨ |𝜉|)−2𝑠𝑑𝜉

=

∫︁

R𝑑𝑅

∏︀𝑑𝑅−1
𝑖=1 |sinc (𝜉𝑖 + 𝑡𝑥𝑖)|2

⃒⃒
sinc

(︀
𝜉𝑑𝑅 + 𝑡

)︀⃒⃒2

2−2𝑑𝑅(1 ∨ |𝜉|)2𝑠 𝑑𝜉,

which is őnite for 𝑠 > (𝑑𝑅 − 1)/2 ≥ 1 and that S𝑋 × [−1, 1] has őnite measure. �

In the remaining, ℰ and ℰ ′ are classes of densities and conditional densities, 𝑓𝑋 ∈
ℰ , 𝑓𝑌 |𝑋 ∈ ℰ ′, and 𝜂,𝑀 > 0. Denote also by ∆𝑓,0 := 1/ ̂︀𝑓 𝛿𝑋 − 1/𝑓𝑋 , ∆𝑓,1 := 1/ ̂︀𝑓 𝛿𝑌 |𝑋 −
1/𝑓𝑌 |𝑋 ,

𝑍𝐺0 := sup
𝑓𝑋∈ℰ

‖∆𝑓,0𝑓𝑋‖2
𝐿∞(S𝑋)

, 𝑍𝐺1 := sup
𝑓𝑌 |𝑋∈ℰ ′

⃦⃦
∆𝑓,1𝑓𝑌 |𝑋

⃦⃦2

𝐿∞(S𝑌,𝑋)
.

By Lemma A.3 in Gaillac and Gautier (2019c), there exists 𝑀ℰ,𝜂,0 and 𝑀ℰ ′,𝜂,1 such

that, for all 𝐺0, 𝐺1 ∈ N, P (𝐸 (𝒫𝐺1 , ℰ ′, 𝜂)) ≥ 1− 𝜂/2 and P (𝐸 (𝒫𝐺1 , ℰ , 𝜂)) ≥ 1− 𝜂/2

where

𝐸 (𝒫𝐺0 , ℰ , 𝜂) :=
{︂
𝑍𝐺0 ≤

𝑀ℰ,𝜂,0𝑣(𝐺0, ℰ)
𝛿(𝐺0)

}︂

and 𝐸 (𝒫𝐺1 , ℰ ′, 𝜂) := {𝑍𝐺1 ≤𝑀ℰ ′,𝜂,1𝑣(𝐺1, ℰ ′)/𝛿(𝐺1)}. I work on 𝐸 (𝒫𝐺0 ,𝒫𝐺1 , ℰ , ℰ ′, 𝜂) :=

𝐸 (𝒫𝐺0 , ℰ , 𝜂) ∩ 𝐸 (𝒫𝐺1 , ℰ ′, 𝜂), where, using independence, P (𝐸 (𝒫𝐺0 ,𝒫𝐺1 , ℰ , ℰ ′, 𝜂)) ≥
1− 𝜂, and use 𝑀ℰ,ℰ ′,𝜂 :=𝑀ℰ,𝜂,0 ∨𝑀ℰ ′,𝜂,1.

All expectations are conditional on 𝒫𝐺0 and 𝒫𝐺1 when 𝑓𝑋 and 𝑓𝑌 |𝑋 are unknown

and I rely on 𝒫𝐺0 and 𝒫𝐺1 to estimate it. I remove the conditioning in the notations

for simplicity. Denote, for all 𝑗 ∈ N, 𝑘 ∈ Λ𝑗, 𝑤 ∈ 𝒲𝑗, by ̃︀𝑑𝑗,𝑘,𝑤 the quantities deőned

as in (4.14) replacing ̂︀𝑓 𝛿𝑋 by 𝑓𝑋 . Denote by 𝜕𝑥𝑙𝐹
𝑗0

𝑌 |𝑋 the estimator 𝜕𝑥𝑙𝐹
𝑗0

𝑌 |𝑋 where

̂︀𝑑𝑗,𝑘,𝑤 is replaced by ̃︀𝑑𝑗,𝑘,𝑤. Denote also by ̃︁𝑚𝑗0 the estimator ̂︁𝑚𝑗0 where ̂︀𝑓 𝛿𝑌 |𝑋 is

replaced by 𝑓𝑌 |𝑋 .

Lemma 2. For all 𝐽, 𝑗 ∈ N, 𝑗 ≥ 𝐽 , 𝑘 ∈ Λ𝑗, 𝑤 ∈ 𝒲𝑗, and 𝑦 ∈ [0, 1], we have
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E
[︁
̃︀𝑑𝑗,𝑘,𝑤(𝑦)

]︁
= 𝑑𝑗,𝑘,𝑤(𝑦), and

E

[︂⃒⃒
⃒ ̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2
]︂
≤ 𝑐𝑋

𝐺
.

Proof of Lemma 2. Let 𝐽, 𝑗 ∈ N, 𝑘 ∈ Λ𝑗, 𝑤 ∈ 𝒲𝑗, and 𝑦 ∈ [0, 1]. Using integration

by part and that Ψ𝑤
𝑗,𝑘 is compactly supported, yield

E
[︁
̃︀𝑑𝑗,𝑘,𝑤(𝑦)

]︁
= E

[︂
1l{𝑌 𝑔 ≤ 𝑦}
𝑓𝑋(𝑋𝑔)

Ψ𝑤
𝑗,𝑘

(︀
𝑋𝑔

)︀]︂
=

∫︁

S𝑋

E [1l{𝑌 ≤ 𝑦}|𝑋 = 𝑥] Ψ𝑤
𝑗,𝑘 (𝑥) 𝑑𝑥

and, using that ℬ is an orthonormal basis of 𝐿2(S𝑋), this yields

E

[︂⃒⃒
⃒ ̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2
]︂
≤ 1

𝐺

∫︁

S𝑋

1

𝑓𝑋(𝑥)

⃒⃒
Ψ𝑤
𝑗,𝑘 (𝑥)

⃒⃒2
𝑑𝑥 ≤ 𝑐𝑋

𝐺
. � (4.76)

Proof of Theorem 2 when 𝑓𝑋 and 𝑓𝑌 |𝑋 are estimated as in Section 4.5.2.

The proof of Theorem 2 has two parts: 𝑞 = ∞ and 𝑞 = 2. Let (𝑥, 𝑦) ∈ S𝑋,𝑌 and use

𝑅𝑗0
0,𝑙 :(𝑥, 𝑦) ↦→

(︁
𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑥𝑙𝐹
𝑗0

𝑌 |𝑋

)︁
(𝑥, 𝑦) (4.77)

𝑅𝑗0
1,𝑙 :(𝑥, 𝑦) ↦→

(︁
𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑥𝑙𝐹
𝑗0
𝑌 |𝑋

)︁
(𝑥, 𝑦) (4.78)

𝑅𝑗0
2,𝑙 :(𝑥, 𝑦) ↦→

(︁
𝜕𝑥𝑙𝐹

𝑗0
𝑌 |𝑋 − 𝜕𝑥𝑙𝐹𝑌 |𝑋

)︁
(𝑥, 𝑦). (4.79)

Proof of Theorem (T2.1), 𝐿∞ norm convergence rate. Let 𝑁, 𝐽 ∈ N, 2𝐽 ≥ 2𝑁 .

We obtain, using the triangle inequality for the őrst display and the notation (4.39)

for the second one,

⃦⃦
⃦̂︁𝑚𝑗0

𝑟 −𝑚𝑟

⃦⃦
⃦
𝐿∞(𝒮)

≤
⃦⃦
⃦̂︁𝑚𝑗0

𝑟 − ̃︀𝑔𝑗0𝑟
⃦⃦
⃦
𝐿∞(𝒮)

+
⃦⃦
⃦̃︁𝑚𝑗0

𝑘 −𝑚𝑘

⃦⃦
⃦
𝐿∞(𝒮)

≤
𝑑𝑅−1∑︁

𝑙=1

‖𝐾𝑟,𝑙‖𝐿∞(S𝑋)

⎛
⎜⎝𝑍1/2

𝐺1

⃦⃦
⃦𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋

⃦⃦
⃦
𝐿∞(S𝑋,𝑌 )

+

⃦⃦
⃦⃦
⃦⃦
𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑥𝑙𝐹
𝑗0
𝑌 |𝑋

𝑓𝑌 |𝑋

⃦⃦
⃦⃦
⃦⃦
𝐿∞(𝒮)

⎞
⎟⎠ .

(4.80)
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Then, using (4.68) and (4.71) for the second inequality and using (4.67) and (4.70)

for the thrid one, we obtain

E

[︂⃦⃦
⃦𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋

⃦⃦
⃦
𝐿∞(S𝑋,𝑌 )

]︂

≤ sup
𝑦∈[0,1]

∑︁

𝑘∈Λ𝐽
E
[︁
|̂︀𝑑𝐽,𝑘,0(𝑦)|

]︁
‖𝜕𝑙Φ𝐽,𝑘‖𝐿∞(S𝑋)

+ sup
𝑦∈[0,1]

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

E
[︁⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑡)

⃒⃒
⃒
]︁
2𝑗

⃦⃦
Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋)

≤ 𝐶𝑋√︀
𝛿(𝐺0)

∑︁

𝑘∈Λ𝐽
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)

∫︁

S𝑋

|Φ𝐽,𝑘 (𝑥)| 𝑑𝑥

+
𝐶𝑋√︀
𝛿(𝐺0)

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

2𝑗(𝑑𝑅+1)/2𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋)

∫︁

S𝑋

⃒⃒
Ψ𝑤
𝑗,𝑘 (𝑥)

⃒⃒
𝑑𝑥

≤ |S𝑋 |𝐶𝑋√︀
𝛿(𝐺0)

(︃
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋) + 𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

𝑗0∑︁

𝑗=𝐽

2𝑗𝑑𝑅

)︃
. (4.81)

Thus, using the triangle inequality and that
∑︀𝑗0

𝑗=𝐽 2
(𝑗−𝑗0)𝑑𝑅 ≤ 1/(1−2−𝑑𝑅), we obtain

E

[︂⃦⃦
⃦̂︁𝑚𝑗0

𝑟 −𝑚𝑟

⃦⃦
⃦
𝐿∞(𝒮)

]︂
≤𝐶0𝑍

1/2
𝐺1

2𝑗0𝑑𝑅√︀
𝛿(𝐺0)

+

𝑑𝑅−1∑︁

𝑙=1

‖𝐾𝑟,𝑙‖𝐿∞(S𝑋)𝑐𝑌 ,𝑋

2∑︁

𝑗=0

E
[︁⃦⃦
𝑅𝑗0
𝑗,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

]︁
, (4.82)

where

𝐶0 := 𝐶𝑋

(︃
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋)

2𝐽𝑑𝑅
+
𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

1− 2−𝑑𝑅

)︃
|S𝑋 |

𝑑𝑅−1∑︁

𝑙=1

‖𝐾𝑟,𝑙‖𝐿∞(S𝑋).

(4.83)

Term 𝑅0,𝑙. We obtain, using (4.66) for the őrst display and using the same arguments

as to obtain (4.81) for the last display as well as
∑︀𝑗0

𝑗=𝐽 2
(𝑗−𝑗0)𝑑𝑅 ≤ 1/(1 − 2−𝑑𝑅), for
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all 𝑙 = 1, . . . , 𝑑𝑅 − 1,

E
[︁⃦⃦
𝑅𝑗0

0,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

]︁
≤ sup

𝑦∈[0,1]

∑︁

𝑘∈Λ𝐽
E [|̂︀𝑐𝐽,𝑘(𝑦)− ̃︀𝑐𝐽,𝑘(𝑦)|] ‖Φ𝐽,𝑘‖𝐿∞(S𝑋)

+ sup
𝑦∈[0,1]

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

E
[︁⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)− ̃︀𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
]︁ ⃦⃦

Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋)

≤ 𝑍
1/2
𝐺0

∑︁

𝑘∈Λ𝐽
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)E

[︀⃒⃒
Φ𝐽,𝑘

(︀
𝑋𝑔

)︀⃒⃒]︀

+ 𝑍
1/2
𝐺0

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

2𝑗(𝑑𝑅+1)/2𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋)E
[︀⃒⃒
Ψ𝑤
𝑗,𝑘

(︀
𝑋𝑔

)︀⃒⃒]︀

≤ 𝐶1𝑍
1/2
𝐺0

2𝑗0𝑑𝑅 , (4.84)

where

𝐶1 := 2𝐶𝑋 |S𝑋 |
(︃
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋)

2𝐽𝑑𝑅
+
𝜈𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

1− 2−𝑑𝑅

)︃
.

Term 𝑅1,𝑙. We obtain, for all 𝑙 = 1, . . . , 𝑑𝑅 − 1,

E
[︁⃦⃦
𝑅𝑗0

1,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

]︁
≤E

[︂
max
𝑘∈Λ𝐽

|̃︀𝑐𝐽,𝑘(𝑦)− 𝑐𝐽,𝑘(𝑦)|
]︂ ∑︁

𝑘∈Λ𝐽
‖𝜕𝑙Φ𝐽,𝑘‖𝐿∞(S𝑋,𝑌 )

+

𝑗0∑︁

𝑗=𝐽

E

[︃
max

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

⃒⃒
⃒ ̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
]︃ ∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

2𝑗
⃦⃦
Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋,𝑌 )

.

For all 𝑦 ∈ [0, 1], we also have

E

[︂
max
𝑘∈Λ𝐽

|̃︀𝑐𝐽,𝑘(𝑦)− 𝑐𝐽,𝑘(𝑦)|
]︂
=

1

𝐺
E

[︃
max
𝑘∈Λ𝐽

⃒⃒
⃒⃒
⃒
𝐺∑︁

𝑔=1

(︀
𝑓𝐽,𝑘(𝑋𝑔,𝑌 𝑔)− E

[︀
𝑓𝐽,𝑘(𝑋𝑔,𝑌 𝑔)

]︀)︀
⃒⃒
⃒⃒
⃒

]︃
,

where 𝑓𝐽,𝑘(𝑋𝑔,𝑌 𝑔) := 1l{𝑌 𝑔 ≤ 𝑦}Φ𝐽,𝑘(𝑋𝑔)/𝑓𝑋(𝑋𝑔). Using (4.70) we have, for all

𝑘 ∈ Λ𝐽 ,

⃦⃦
𝑓𝐽,𝑘 − E

[︀
𝑓𝐽,𝑘(𝑋𝑔,𝑌 𝑔)

]︀⃦⃦
𝐿∞(S𝑋,𝑌 )

≤ 2𝑐𝑋𝜅
𝑁,𝑑𝑅,𝐽
1 (S𝑋)
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and using Lemma 2 that

E
[︁(︀
𝑓𝐽,𝑘(𝑌 𝑔,𝑋𝑔)

)︀2 − E
[︀
𝑓𝐽,𝑘(𝑌 𝑔,𝑋𝑔)

]︀2]︁ ≤ E

[︃⃒⃒
⃒⃒1l{𝑌 𝑔 ≤ 𝑦}Φ𝐽,𝑘(𝑋𝑔)

𝑓𝑋(𝑋𝑔)

⃒⃒
⃒⃒
2
]︃
≤ 𝑐𝑋 .

(4.85)

Then, Lemma 3.5.12 in Giné and Nickl (2016) yields

E

[︂
max
𝑘∈Λ𝐽

|̃︀𝑐𝐽,𝑘(𝑦)− 𝑐𝐽,𝑘(𝑦)|
]︂
≤
√︀

2𝑀𝑐𝑋(𝐽(𝑑𝑅 − 1) + 1) ln(2)

𝐺

+
2𝑐𝑋𝜅

𝑁,𝑑𝑅,𝐽
1 (S𝑋)(𝐽(𝑑𝑅 − 1) + 1)

3𝑀
ln(2).

Similarly, using that |̃︁𝒲| = 2𝑑𝑅−1, we have, for all 𝑗 ≥ 𝐽

E

[︃
max

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

⃒⃒
⃒ ̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
]︃
≤ 1

𝐺

√︁
2𝑀𝑐𝑋((𝑗 + 1)(𝑑𝑅 − 1) + 1) ln(2)

+
𝑐𝑋2𝑗(𝑑𝑅−1)/2+1𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)((𝑗 + 1)(𝑑𝑅 − 1) + 1)

3𝑀
ln(2).

Using (4.72), (4.73), and suppressing S𝑋 in the notations, we obtain,

E
[︁⃦⃦
𝑅𝑗0

1,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

]︁

≤
√︂

2𝑐𝑋(𝐽(𝑑𝑅 − 1) + 1)

𝐺
ln(2)̃︀𝜅𝑁,𝑑𝑅,𝐽1 + 2

𝑐𝑋(𝐽(𝑑𝑅 − 1) + 1)𝜅𝑁,𝑑𝑅,𝐽1 ̃︀𝜅𝑁,𝑑𝑅,𝐽1

3𝑀
ln(2)

+

𝑗0∑︁

𝑗=𝐽

√︂
2𝑗(𝑑𝑅+1)+1𝑐𝑋((𝑗 + 1)(𝑑𝑅 − 1) + 1)

𝐺
ln(2)̃︀𝜅𝑁,𝑑𝑅,𝐽2

+

𝑗0∑︁

𝑗=𝐽

𝑐𝑋2𝑗𝑑𝑅+1((𝑗 + 1)(𝑑𝑅 − 1) + 1)𝜅𝑁,𝑑𝑅,𝐽2 ̃︀𝜅𝑁,𝑑𝑅,𝐽2

3𝑀
ln(2)

≤ (𝑗0 − 𝐽)

√︂
2𝑗0(𝑑𝑅+1)+1𝑐𝑋((𝑗0 + 1)(𝑑𝑅 − 1) + 1)

𝐺
ln(2)

(︁
̃︀𝜅𝑁,𝑑𝑅,𝐽1 + ̃︀𝜅𝑁,𝑑𝑅,𝐽2

)︁

+ (𝑗0 − 𝐽)
𝑐𝑋2𝑗0𝑑𝑅+1((𝑗0 + 1)(𝑑𝑅 − 1) + 1)

3𝑀
ln(2)

(︁
𝜅𝑁,𝑑𝑅,𝐽1 ̃︀𝜅𝑁,𝑑𝑅,𝐽1 + 𝜅𝑁,𝑑𝑅,𝐽2 ̃︀𝜅𝑁,𝑑𝑅,𝐽2

)︁
.

(4.86)
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Term 𝑅2,𝑙. We have

⃦⃦
𝑅𝑗0

2,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

≤ sup
𝑦∈[0,1]

∞∑︁

𝑗=𝑗0+1

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

|𝑑𝑗,𝑘,𝑤(𝑦)|2𝑗
⃦⃦
Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋)

.

Let 𝑇𝑗 > 0, for all 𝑗 ≥ 𝐽 . For all 𝑘 ∈ Λ𝑗, 𝑤 ∈ ̃︁𝒲 , denote by

𝐻1(𝑗,𝑘) :=

∫︁

|𝑡|>𝑇𝑗

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [P𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒

2

𝑑𝑡

𝐻2(𝑗,𝑘) :=

∫︁

|𝑡|≤𝑇𝑗

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [P𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒

2

𝑑𝑡.

Using for the second equality that under Assumption 3,

𝐹𝑌 |𝑋(𝑦|𝑥) =
∫︁ 𝑦

0

ℱ−1
[︀
ℱ [𝑓𝐵] (·(𝑥, 1− 𝑥⊤1))

]︀
(𝑣)𝑑𝑣, (4.87)

and using the Cauchy-Schwarz inequality for the third inequality, we obtain

|𝑑𝑗,𝑘,𝑤(𝑦)|

=

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

𝐹𝑌 |𝑋(𝑦|𝑥)Ψ𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒

=
1

2𝜋

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

∫︁ 𝑦

0

∫︁

R

𝑒−𝑖𝑡𝑣ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥𝑑𝑣𝑑𝑡

⃒⃒
⃒⃒
⃒

≤ 𝑦

2𝜋

∫︁

R

⃒⃒
⃒⃒sinc

(︂
𝑡𝑦

2

)︂⃒⃒
⃒⃒
⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒ 𝑑𝑡

≤ 𝑦

2𝜋

(︃∫︁

R

⃒⃒
⃒⃒sinc

(︂
𝑡𝑦

2

)︂⃒⃒
⃒⃒
2

𝑑𝑡

)︃1/2
⎛
⎝
∫︁

R

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒

2

𝑑𝑡

⎞
⎠

1/2

≤
√
2𝑦

𝜋

⎛
⎝
∫︁

R

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒

2

𝑑𝑡

⎞
⎠

1/2

≤
√
2𝑦

𝜋
(𝐻1(𝑗,𝑘) +𝐻2(𝑗,𝑘))

1/2 (4.88)

Using the Cauchy-Schwarz inequality and that
(︀
Ψ𝑤
𝑗,𝑘

)︀
𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

are orthonormal
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on 𝐿2(S𝑋) for the őrst inequality and Assumption 6 and Proposition 9 for the second

one, we have

𝐻1(𝑗,𝑘) ≤
∫︁

|𝑡|>𝑇𝑗

∫︁

S𝑋

⃒⃒
ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))

⃒⃒2
𝑑𝑥𝑑𝑡

≤ 𝑙2𝐶0

𝑇
2(𝑠+1)+𝑑𝑅−1
𝑗

. (4.89)

Then, using for the fourth equality that Ψ𝑤
𝑗,𝑘 has compact support in S𝑋 , we have

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

ℱ [𝑓𝐵] (𝑡(𝑥, 1− 𝑥⊤1))Ψ
𝑤

𝑗,𝑘(𝑥)𝑑𝑥

⃒⃒
⃒⃒
⃒ =

⃒⃒
⃒⃒
⃒

∫︁

S𝑋

∫︁

[0,1]𝑑𝑅
𝑒𝑖𝑡(𝑥,1−𝑥⊤1)⊤𝑏𝑓𝐵(𝑏)Ψ

𝑤

𝑗,𝑘(𝑥)𝑑𝑏𝑑𝑥

⃒⃒
⃒⃒
⃒

=

⃒⃒
⃒⃒
⃒

∫︁

[0,1]𝑑𝑅
𝑓𝐵(𝑏)𝑒

−𝑖𝑡𝑏𝑑𝑅
∫︁

S𝑋

𝑒−𝑖𝑡𝑥
⊤(𝑏−𝑏𝑑𝑅 )Ψ𝑤

𝑗,𝑘(𝑥)𝑑𝑥𝑑𝑏

⃒⃒
⃒⃒
⃒

= 2𝜋

⃒⃒
⃒⃒
∫︁

[0,1]𝑑𝑅
𝑓𝐵(𝑏)𝑒

−𝑖𝑡𝑏𝑑𝑅ℱ−1
[︀
Ψ𝑤
𝑗,𝑘

]︀
(𝑡(𝑏− 𝑏𝑑𝑅))𝑑𝑏

⃒⃒
⃒⃒

≤ 2𝜋 sup
𝑏∈[0,1]𝑑𝑅

⃒⃒
ℱ−1

[︀
Ψ𝑤
𝑗,𝑘

]︀
(𝑡(𝑏− 𝑏𝑑𝑅))

⃒⃒
.

(4.90)

Using that, for all 𝑘 ∈ Λ𝑗 and 𝑤 ∈ ̃︁𝒲 ,

⃒⃒
ℱ−1

[︀
Ψ𝑤
𝑗,𝑘

]︀
(·)

⃒⃒
=

1

2𝑗(𝑑𝑅−1)/2𝑥
(𝑑𝑅−1)/2
0

𝑑𝑅−1∏︁

𝑟=1

⃒⃒
⃒ℱ−1 [𝜓𝑤𝑟 ]

(︁𝑥0·
2𝑗

)︁⃒⃒
⃒ ,

where 𝑥0 = 1 in the case of (RC.2), that ℱ−1 [𝜓] (·) = |𝑚0(·+𝜋)||ℱ−1 [𝜑] (·)|, that from

(4.68) and (4.70) in Giné and Nickl (2016) there exists 𝐶2 > 0 such that |ℱ−1 [𝜓] (𝑢)| ≤
𝐶2|𝑢|𝑁 and |ℱ−1 [𝜑] (𝑢)| ≤ 𝐶2 for all 𝑢 ∈ [−1, 1], we obtain, for all 𝑥0|𝑡|/2𝑗 < 1 and

𝑏 ∈ [0, 1]𝑑𝑅 ,

|ℱ−1
[︀
Ψ𝑤
𝑗,𝑘

]︀
(𝑡(𝑏−𝑑𝑅 − 𝑏𝑑𝑅))| ≤

𝐶𝑑𝑅−1
2

2𝑗(𝑑𝑅−1)/2

(︂
𝑥0|𝑡|
2𝑗

)︂𝑁 |𝑤|1
. (4.91)
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We have, for all 𝑤 ∈ ̃︁𝒲 ,

𝐻2(𝑗,𝑘) ≤4𝜋2

∫︁

|𝑡|≤𝑇𝑗

𝐶
2(𝑑𝑅−1)
2

2𝑗(𝑑𝑅−1)

(︂
𝑥0|𝑡|
2𝑗

)︂2𝑁

𝑑𝑡

≤ 8𝜋2𝐶
2(𝑑𝑅−1)
2

2𝑗(𝑑𝑅−1)(2𝑁 + 1)

(︂
𝑥0𝑇𝑗
2𝑗

)︂2𝑁

𝑇𝑗 (4.92)

Thus, using (4.88), (4.89), (4.92), and taking 𝑇𝑗 = 2𝑗(2𝑁+𝑑𝑅−1)/(2𝑁+2(𝑠+1)+𝑑𝑅), we

obtain, for all 𝑦 ∈ [0, 1],

|𝑑𝑗,𝑘,𝑤(𝑦)| ≤
√
2

𝜋

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2

2𝑗(𝑑𝑅−1)(2𝑁 + 1)

(︁𝑥0
2𝑗

)︁2𝑁

𝑇 2𝑁+1
𝑗 +

𝑙2𝐶0

𝑇
2(𝑠+1)+𝑑𝑅−1
𝑗

)︃1/2

≤
√
2

𝜋

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2
1

2𝑗(𝑑𝑅+1)/22𝑗𝑠𝑁
. (4.93)

Then, using (4.73) for the őrst inequality, 𝑁 > 1 + (𝑑𝑅 + 1)/𝑠 for the second and

third inequalities, this yields

⃦⃦
𝑅𝑗0

2,𝑙

⃦⃦
𝐿∞(S𝑋,𝑌 )

≤
√
2

𝜋

∞∑︁

𝑗=𝑗0+1

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2
⃦⃦
Ω𝑤
𝑙,𝑗,𝑘

⃦⃦
𝐿∞(S𝑋)

2𝑗(𝑑𝑅−1)/22𝑗𝑠𝑁

≤
√
2

𝜋
̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2 ∞∑︁

𝑗=𝑗0+1

1

2𝑗𝑠𝑁

≤
√
2

𝜋

̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

ln(2)𝑠𝑁

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2
1

2(𝑗0+1)𝑠𝑁
. (4.94)

Finally, using

𝐶2,𝑟 := 𝑐𝑌 ,𝑋

𝑑𝑅−1∑︁

𝑙=1

‖𝐾𝑟,𝑙‖𝐿∞(S𝑋), 𝐶3 :=
(︁
𝜅𝑁,𝑑𝑅,𝐽1 ̃︀𝜅𝑁,𝑑𝑅,𝐽1 + 𝜅𝑁,𝑑𝑅,𝐽2 ̃︀𝜅𝑁,𝑑𝑅,𝐽2

)︁√︁
2𝑐𝑋 ln(2),

𝐶4 :=
2𝑐𝑋

(︁
̃︀𝜅𝑁,𝑑𝑅,𝐽1 + ̃︀𝜅𝑁,𝑑𝑅,𝐽2

)︁
ln(2)

3
, 𝐶5 :=

√
2

𝜋

̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

ln(2)𝑠𝑁2𝑠𝑁

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2

,
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for the őrst inequality, we obtain

E

[︂⃦⃦
⃦̂︁𝑚𝑗0

𝑟,1 −𝑚𝑟,1

⃦⃦
⃦
𝐿∞(𝒮)

]︂
≤𝐶0𝑍

1/2
𝐺1

2𝑗0𝑑𝑅√︀
𝛿(𝐺0)

+ 𝐶2,𝑟𝐶1𝑍
1/2
𝐺0

2𝑗0𝑑𝑅

+ 𝐶2,𝑟

(︃
𝐶3(𝑗0 − 𝐽)

√︂
2𝑗0(𝑑𝑅+1)((𝑗0 + 1)(𝑑𝑅 + 1) + 1)

𝐺

)︃

+ 𝐶2,𝑟

(︂
𝐶4

2𝑗0𝑑𝑅(𝑗0 − 𝐽)((𝑗0 + 1)(𝑑𝑅 − 1) + 1)

𝐺
+

𝐶5

2𝑗0𝑠𝑁

)︂

≤𝐶0𝑀
1/2
ℰ ′,𝜂,1

𝑣(𝐺1, ℰ ′)1/22𝑗0𝑑𝑅√︀
𝛿(𝐺1)𝛿(𝐺0)

+ 𝐶2,𝑟𝐶1𝑀
1/2
ℰ,𝜂,0

𝑣(𝐺0, ℰ)1/22𝑗0𝑑𝑅√︀
𝛿(𝐺0)

+ 𝐶2,𝑟

⎛
⎝𝐶3𝑗0

√︃
2𝑗0(𝑑𝑅+1)(𝑗0 + 1)𝑑𝑅

𝐺𝑒

+ 𝐶4𝑅
2𝑗0𝑑𝑅𝑗20
𝐺𝑒

+
𝐶5

2𝑗0𝑠𝑁

⎞
⎠ .

Using 3 ln(̃︀𝑗) + (2𝑠𝑁 + 𝑑𝑅 + 1)̃︀𝑗 ln(2) = ln(𝐺𝑒), we have

̃︀𝑗 ≤ ln(𝐺𝑒)

(2𝑠𝑁 + 𝑑𝑅 + 1) ln(2)
,

and using 𝑗0 ≥ ̃︀𝑗 − 1 yields

2−𝑗0𝑠𝑁 ≤ 2

2̃︀𝑗𝑠𝑁
≤ 2

(︃
̃︀𝑗3
𝐺𝑒

)︃𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

≤ 2

((2𝑠𝑁 + 𝑑𝑅 + 1) ln(2))3𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

(︂
ln(𝐺𝑒)

3

𝐺𝑒

)︂𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

and √︃
2𝑗0(𝑑𝑅+1)𝑗30𝑑𝑅

𝐺𝑒

≤

√︃
2̃︀𝑗(𝑑𝑅+1)̃︀𝑗3𝑑𝑅

𝐺𝑒

=

√
𝑑𝑅

2̃︀𝑗𝑠𝑁
.

Finally, using 𝐺𝑒𝑣(𝐺1, ℰ ′)1/2/
√︀
𝛿(𝐺1)𝛿(𝐺0) ≤ 1, we have

𝑣(𝐺1, ℰ ′)1/22𝑗0𝑑𝑅𝑗0√︀
𝛿(𝐺1)𝛿(𝐺0)

≤ 2
̃︀𝑗𝑑𝑅̃︀𝑗
𝐺𝑒

≤ 1

̃︀𝑗22̃︀𝑗(2𝑠𝑁+1)
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and, using 𝐺𝑒𝑣(𝐺0, ℰ)1/2/
√︀
𝛿(𝐺0) ≤ 1,

𝑣(𝐺0, ℰ)1/22𝑗0𝑑𝑅𝑗0√︀
𝛿(𝐺0)

≤ 2
̃︀𝑗𝑑𝑅̃︀𝑗
𝐺𝑒

≤ 1

̃︀𝑗22̃︀𝑗(2𝑠𝑁+1)

which yield the result.

Proof of Theorem (T2.2), 𝐿2 norm convergence rates. Using (4.80) and the

convexity of 𝑥 ↦→ 𝑥2, we obtain

⃦⃦
⃦̂︁𝑚𝑗0

𝑟 −𝑚𝑟

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

≤ (𝑑𝑅 − 1)

𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙|2∞
(︂
𝑍𝐺1

⃦⃦
⃦𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )
+ 𝑐2𝑋,𝑌

⃦⃦
⃦𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑥𝑙𝐹
𝑗0
𝑌 |𝑋

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

)︂
.

Then, using the convexity of 𝑥 ↦→ 𝑥2, the Cauchy-Swarz inequality, and (4.66) for

the őrst display, that (Ψ𝑤
𝑗,𝑘) is an orthonormal system of 𝐿2(S𝑋), (4.67), (4.70), and

(4.74) for the second inequality, we obtain

E

[︂⃦⃦
⃦𝜕𝑥𝑙𝐹

𝑗0

𝑌 |𝑋

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂

≤ 2E

⎡
⎣
⃦⃦
⃦⃦
⃦
∑︁

𝑘∈Λ𝐽
|̂︀𝑐𝐽,𝑘(𝑦)|𝜕𝑙Φ𝐽,𝑘

⃦⃦
⃦⃦
⃦
𝐿2(S𝑋)

⎤
⎦+ 2𝐴𝑙

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

E

[︂⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2
]︂
22𝑗

≤ 2

(︁
𝜅𝑁,𝑑𝑅,𝐽1 ̃︀𝜅𝑁,𝑑𝑅,𝐽1

)︁2

|S𝑋 |𝐶𝑋

𝛿(𝐺0)
+ 2

𝐴𝑙|̃︁𝒲|𝐶𝑋

𝛿(𝐺0)

𝑗0∑︁

𝑗=𝐽

2𝑗(𝑑𝑅+1). (4.95)

Using 𝐶7,𝑟,𝑙 := 3(𝑑𝑅 − 1)𝑐2𝑋,𝑌 ‖𝐾𝑟,𝑙‖2𝐿∞ , (4.95), that
∑︀𝑗0

𝑗=𝐽 2
(𝑗−𝑗0)(𝑑𝑅+1) ≤ 1/(1 −

2−(𝑑𝑅+1)), and the convexity of 𝑥 ↦→ 𝑥2 yield

⃦⃦
⃦̂︁𝑚𝑗0

𝑟 −𝑚𝑟

⃦⃦
⃦
2

𝐿2(𝒮)
≤ ̃︀𝐶0

𝑍𝐺12
𝑗0(𝑑𝑅+1)

𝛿(𝐺0)
+

𝑑𝑅−1∑︁

𝑙=1

𝐶7,𝑟,𝑙

2∑︁

𝑗=0

∫︁

S𝑋,𝑌

⃒⃒
𝑅𝑗0
𝑗,𝑙 (𝑥, 𝑦)

⃒⃒2
𝑑𝑦𝑑𝑥, (4.96)

where

̃︀𝐶0 := 2(𝑑𝑅−1)𝐶𝑋

(︃
(𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋)̃︀𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋))2|S𝑋 |

2𝐽(𝑑𝑅+1)
+

𝐴𝑙|̃︁𝒲|
1− 2−(𝑑𝑅+1)

)︃
𝑑𝑅−1∑︁

𝑙=1

‖𝐾𝑟,𝑙‖2𝐿∞(S𝑋).
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Term 𝑅0,𝑙. Using the Cauchy-Schwarz inequality and (4.66) for the őrst display,

that (Ψ𝑤
𝑗,𝑘)𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

is an orthonormal system of 𝐿2(S𝑋), (4.70), and (4.74) for

the second, and using
∑︀𝑗0

𝑗=𝐽 2
(𝑗−𝑗0)(𝑑𝑅+1) ≤ 1/(1 − 2−(𝑑𝑅+1)) for the last display, we

obtain, for all 𝑙 = 1, . . . , 𝑑𝑅 − 1,

E
[︁
‖𝑅𝑗0

0,𝑙‖2𝐿2(S𝑋,𝑌 )

]︁
(4.97)

≤ 2 sup
𝑦∈[0,1]

⎛
⎝|Λ𝐽 | sup

𝑘∈Λ𝐽
E [|̂︀𝑐𝐽,𝑘(𝑦)− ̃︀𝑐𝐽,𝑘(𝑦)|]2 𝑑𝑡+ 𝐴𝑙

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

E

[︂⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)− ̃︀𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2
]︂
22𝑗

⎞
⎠

≤ 2𝑍𝐺0

(︁
𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋)

)︁2

|Λ𝐽 |+ 2𝐴𝑙𝑍𝐺0 |̃︁𝒲|𝐶𝑋

𝑗0∑︁

𝑗=𝐽

2𝑗(𝑑𝑅+1)

≤ ̃︀𝐶1𝑍𝐺02
𝑗0(𝑑𝑅+1), (4.98)

where ̃︀𝐶1 := 2((𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋))2/2𝐽(𝑑𝑅+1) + 𝐴|̃︁𝒲|𝐶𝑋/(1− 2−(𝑑𝑅+1))).

Term 𝑅1,𝑙. We obtain, for all 𝑙 = 1, . . . , 𝑑𝑅−1, using the Cauchy-Schwarz inequality,

the convexity of 𝑥 ↦→ 𝑥2, and (4.66) for the second display, Lemma 2, (4.74), and

(4.68) for the third display,

∫︁

S𝑋,𝑌

E
[︁⃒⃒
𝑅𝑗0

1,𝑙 (𝑥, 𝑦)
⃒⃒2]︁

𝑑𝑦𝑑𝑥

≤ 2

∫︁

[0,1]

E

⎡
⎣
⃦⃦
⃦⃦
⃦
∑︁

𝑘∈Λ𝐽
|̃︀𝑐𝐽,𝑘(𝑦)− 𝑐𝐽,𝑘(𝑦)|2 𝜕𝑙Φ𝐽,𝑘

⃦⃦
⃦⃦
⃦
𝐿2(S𝑋)

⎤
⎦

+ 𝐴𝑙

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

E

[︂⃒⃒
⃒ ̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2
]︂
22𝑗𝑑𝑦

≤ 2
𝑐𝑋
𝐺

(︃
|Λ𝐽 |𝜈𝑁,𝑑𝑅,𝐽1 (S𝑋) + 𝐴𝑙|̃︁𝒲|

𝑗0∑︁

𝑗=𝐽

2𝑗(𝑑𝑅+1)

)︃

Thus, using
∑︀𝑗0

𝑗=𝐽 2
(𝑗−𝑗0)(𝑑𝑅+1) ≤ 1/(1− 2−(𝑑𝑅+1)), we obtain

∫︁

S𝑋,𝑌

E
[︁⃒⃒
𝑅𝑗0

1,𝑙 (𝑥, 𝑦)
⃒⃒2]︁

𝑑𝑦𝑑𝑥 ≤ 2𝑐𝑋2𝑗0(𝑑𝑅+1)

𝐺

(︃
|Λ𝐽 |𝜈𝑁,𝑑𝑅,𝐽1

2𝐽(𝑑𝑅+1)
+

𝐴𝑙|̃︁𝒲|
1− 2−(𝑑𝑅+1)

)︃
. (4.99)

Term 𝑅2,𝑙. We obtain, using (4.66) for the second display, (4.93) for the third, (4.74)
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and |̃︁𝒲| = 2𝑑𝑅−1 − 1 for the őfth,

∫︁

S𝑋,𝑌

⃒⃒
𝑅𝑗0

2,𝑙 (𝑥, 𝑦)
⃒⃒2
𝑑𝑦𝑑𝑥

≤
∫︁

S𝑋,𝑌

⃒⃒
⃒⃒
⃒⃒

∞∑︁

𝑗=𝑗0+1

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

𝑑𝑗,𝑘,𝑤(𝑦)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑥𝑑𝑦

≤ 2𝐴𝑙

∫︁

[0,1]

∞∑︁

𝑗=𝑗0+1

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

|𝑑𝑗,𝑘,𝑤(𝑦)|2 22𝑗𝑑𝑦

≤ 𝐴𝑙

∫︁

[0,1]

4

𝜋2

∞∑︁

𝑗=𝑗0+1

∑︁

𝑤∈̃︁𝒲

∑︁

𝑘∈Λ𝑗

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃
1

2𝑗(𝑑𝑅−1)22𝑗𝑠𝑁
𝑑𝑦

≤ 4𝐴𝑙(2
𝑑𝑅−1 − 1)

𝜋2

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃ ∞∑︁

𝑗=𝑗0+1

1

22𝑗𝑠𝑁

≤ 4𝐴𝑙(2
𝑑𝑅−1 − 1)

𝜋2 ln(2)𝑠𝑁

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃
1

22(𝑗0+1)𝑠𝑁
. (4.100)

Hence, using

𝐶8,𝑟 :=

𝑑𝑅−1∑︁

𝑙=1

𝐶7,𝑟,𝑙, ̃︀𝐶3 := 2𝑐𝑋

(︃
|Λ𝐽 |𝜈𝑁,𝑑𝑅,𝐽1

2𝐽(𝑑𝑅+1)
+

𝐴|̃︁𝒲|
1− 2−(𝑑𝑅+1)

)︃

̃︀𝐶4 :=
4𝐴(2𝑑𝑅−1 − 1)

𝜋2 ln(2)𝑠𝑁22𝑠𝑁

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃
,

we obtain,

E

[︂⃦⃦
⃦̂︁𝑚𝑗0

𝑟,1 −𝑚𝑟,1

⃦⃦
⃦
2

𝐿2(𝒮)

]︂
≤ ̃︀𝐶0

𝑍𝐺12
𝑗0(𝑑𝑅+1)

𝛿(𝐺0)
+ 𝐶8,𝑟

(︃
̃︀𝐶1𝑍𝐺02

𝑗0(𝑑𝑅+1) + ̃︀𝐶3
2𝑗0(𝑑𝑅+1)

𝐺
+

̃︀𝐶4

22𝑠𝑁 𝑗0

)︃

≤ ̃︀𝐶0𝑀ℰ ′,𝜂,1
𝑣(𝐺1, ℰ ′)2𝑗0(𝑑𝑅+1)

𝛿(𝐺0)𝛿(𝐺1)

+ 𝐶8,𝑟

(︃
̃︀𝐶1𝑀ℰ,𝜂,0

𝑣(𝐺0, ℰ)2𝑗0(𝑑𝑅+1)

𝛿(𝐺0)
+ ̃︀𝐶3

2𝑗0(𝑑𝑅+1)

𝐺
+

̃︀𝐶4

22𝑠𝑁 𝑗0

)︃
.

Using (2𝑠𝑁 + 𝑑𝑅 + 1)̃︀𝑗 ln(2) = ln(𝐺𝑒) and 𝑗0 ≥ ̃︀𝑗 − 1 which yields

2−2𝑗0𝑠𝑁 ≤ 4

22̃︀𝑗𝑠𝑁
≤ 4

(︂
1

𝐺𝑒

)︂2𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)
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and 2𝑗0(𝑑𝑅+1)/𝐺𝑒 ≤ 2
̃︀𝑗(𝑑𝑅+1)̃︀𝑗2/𝐺𝑒 = 1/22

̃︀𝑗𝑠𝑁 which yields the result. �

Proofs of Proposition 4

Denoting by P𝐵,𝑗 the law of P𝐵, 𝑚𝑟,1,𝑗(𝑥, 𝑦) = E [𝐵𝑟,1|𝑋 = 𝑥,𝑌 = 𝑦], 𝑟 = 1, . . . , 𝑑𝑅

the associated functions of interest, and by P𝑗,𝐺 the law of an i.i.d (𝑋𝑔,𝑌 𝑔)
𝐺
𝑔=1 sample

of size 𝐺, for 𝑗 = 0, . . . , 𝐾, 𝐾 ≥ 1, and use

inf
̂︁𝑚𝑟,1

sup
P𝐵∈ℋ𝑠+1(𝑙)

E
[︁
‖̂︁𝑚𝑟,1 −𝑚𝑟,1‖𝐿𝑞(𝒮)

]︁
≥ inf

̂︁𝑚𝑟,1

sup
P𝐵,𝑗∈ℋ𝑠(𝑙),𝑗=0,...,𝐾

E
[︁
‖̂︁𝑚𝑟,1 −𝑚𝑟,1,𝑗‖𝐿𝑞(𝒮)

]︁

and Theorem 2.6 , (2.5), and (2.9) in Tsybakov (2000) that we now recall.

Proposition 10 (Theorem 2.6 in Tsybakov (2000)). Assume that ℋ𝑠(𝑙) contains

{P𝐵,𝑗, 𝑗 = 0, . . . , 𝐾}, 𝐾 ≥ 1, which satisfy:

1. ‖𝑚𝑟,1,1 −𝑚𝑟,1,0‖𝐿𝑞(𝒮) ≥ 2𝑟(𝐺), for 𝑟 = 1, . . . , 𝑑𝑅;

2. for all 𝑗 = 1, . . . , 𝐾,

1

𝐾

𝐾∑︁

𝑗=1

𝜒2 (P𝐵,𝑗,P𝐵,0) ≤ 𝜉𝐾; (4.101)

Then, we have

1

𝑟(𝐺)
inf
̂︁𝑚𝑟,1

sup
P𝐵,𝑗∈ℋ𝑠+1(𝑙),𝑗=0,...,𝐾

E
[︁
‖̂︁𝑚𝑟,1 −𝑚𝑟,1,𝑗‖𝐿𝑞(𝒮)

]︁
≥ 1

2

(︂
1− 𝜉 − 1

𝐾

)︂
.

Proof when 𝑞 = ∞. I consider the following distributions:

- P𝐵,0 =
⨂︀𝑑𝑅−1

𝑙=1 P𝐵𝑙,0 and P𝐵1,0 = · · · = P𝐵𝑅−1,0 = P0. This yields for all P𝑌 = P0

hence 𝑔𝑟,1,0(𝑥, 𝑦) = 𝑦;

- P𝐵,𝑘, 𝑘 ∈ Λ𝑗0 are the compactly supported function in [0, 1]𝑑𝑅 such that, for all

𝑡 ∈ R, 𝑥 ∈ S𝑋 ,

ℱ [P𝐵,1] (𝑡𝑥, 𝑡(1− 𝑥⊤1)) = 𝛾(𝑡)Φ𝑗0,𝑘 (𝑥) + ℱ [P0] (𝑡), (4.102)
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with 𝛾(0) = 0, Λ𝑗0 ⊂ Λ𝑗0 such that the support of all functions (Φ𝑗0,𝑘)𝑘∈Λ𝑗0
is

a strict subset of S𝑋 . There exists a constant 𝑐0 such that |Λ𝑗0 | ≥ 𝑐02
𝑗0(𝑑𝑅−1).

This yields

ℱ [P𝐵,𝑘] (0) = 𝛾(0)Φ𝑗0,𝑘 (𝑥) + ℱ [P0] (0) = 1. (4.103)

We have, using (4.7), on 𝒮,

𝑚𝑟,1,𝑘(𝑥, 𝑦) = 𝑦 +

𝑑𝑅−1∑︁

𝑙=1

𝑥𝑙 − 1l{𝑙 = 𝑟}
𝑓𝑘
𝑌 |𝑋(𝑦|𝑥)

∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣2𝑗0Ω𝑙,𝑗0,𝑘 (𝑥) .

(4.104)

From the end of page 724 in Rullgård and Quinto (2010) and arguments from Propo-

sition 9, there exists a constant ̃︀𝐶0 depending only on 𝑑𝑅 such that for all 𝑓 ∈ 𝐿2(R𝑑𝑅)

compactly supported in [−1, 1]𝑑𝑅 and with 𝑠 > (𝑑𝑅 − 1)/2,

∫︁

S𝑋

∫︁

R

(1 ∨ |𝑡|)2𝑠+(𝑑𝑅−1)
⃒⃒
ℱ [𝑓 ](𝑡(𝑥, 1− 𝑥⊤1))

⃒⃒2
𝑑𝑡𝑑𝑥 ≥ 1

̃︀𝐶0

∫︁

R𝑑𝑅
(1 ∨ |𝜉|2)

2𝑠 |ℱ [𝑓 ](𝜉)|2 𝑑𝜉.

Thus, using (4.102), ℋ𝑠+1(𝑙) contains {P𝐵,𝑗, 𝑗 = 0, 1}, if

∫︁

R

(1 ∨ |𝑡|)2(𝑠+1)+(𝑑𝑅−1) 𝛾(𝑡)2𝑑𝑡+

∫︁

S𝑋

∫︁

R

(1 ∨ |𝑡|)2(𝑠+1)+(𝑑𝑅−1) |ℱ [P0] (𝑡)|2 𝑑𝑡 ≤
𝑙2

̃︀𝐶0

.

(4.105)

Then, using (4.104), that for 𝜖 small enough

sup
(𝑥,𝑦)∈S𝑋,𝑌

𝑓𝑘
𝑌 |𝑋(𝑦|𝑥) ≤ 2 sup

(𝑥,𝑦)∈S𝑋,𝑌

𝑓 0
𝑌 |𝑋(𝑦|𝑥) =: 𝐾0

and that, for all 𝑘 ∈ Λ𝑗0 , Ω𝑗0,𝑘 have disjoint support,

⃦⃦
𝑚𝑟,1,𝑘 −𝑚𝑟,1,𝑘′

⃦⃦
𝐿∞(𝒮) ≥

⃦⃦
⃦⃦
⃦
𝑑𝑅−1∑︁

𝑙=1

𝑥𝑙 − 1l{𝑙 = 𝑟}
𝑓𝑘
𝑌 |𝑋(𝑦|𝑥)

∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣2𝑗0Ω𝑙,𝑗0,𝑘 (𝑥)

⃦⃦
⃦⃦
⃦
𝐿∞(𝒮)

≥ 2𝑗0(𝑑𝑅+1)/2𝐾1

𝐾0

sup
𝑦∈S𝑌

⃒⃒
⃒⃒
∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣
⃒⃒
⃒⃒ (4.106)

where𝐾1 := sup𝑥∈S𝑋

⃒⃒
⃒
∑︀𝑑𝑅−1

𝑙=1 (𝑥𝑙 − 1l{𝑙 = 𝑟})𝜑′ (2𝑗0𝑥𝑙 − 𝑘𝑙)
∏︀𝑑𝑅−1

𝑡=1,𝑡 ̸=𝑙 𝜑 (2
𝑗0𝑥𝑡 − 𝑘𝑡)

⃒⃒
⃒ can
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be lower bounded independently of 𝑗0. We also have, using Step 3. in Gaillac and

Gautier (2019c), 𝜒2(P𝑘,𝑛,P0,𝑛) ≤ 𝑒𝑛𝜒2 (P𝑘,P0) and

𝜒2 (P𝑘,P0) =

∫︁

S𝑋,𝑌

𝑓𝑋(𝑥)
(︁
𝑓 0
𝑌 |𝑋(𝑦|𝑥)− 𝑓𝑘

𝑌 |𝑋(𝑦|𝑥)
)︁2

𝑓 0
𝑌 |𝑋(𝑦|𝑥) 𝑑𝑥𝑑𝑦.

Using that 𝑓 0
𝑌 |𝑋(𝑦|𝑥) = 𝑓 0

𝑌 (𝑦) ≥ inf𝑦∈S𝑌 𝑓
0
𝑌 (𝑦) =: 1/𝑐𝑌 > 0 on S𝑌 , we have

𝜒2 (P1,P0) ≤ 𝐶𝑋𝑐𝑌

∫︁

S𝑋,𝑌

(︀
𝑓 0
𝑌 |𝑋(𝑦|𝑥)− 𝑓𝑘

𝑌 |𝑋(𝑦|𝑥)
)︀2
𝑑𝑥𝑑𝑦

≤ 𝐶𝑋𝑐𝑌

∫︁

S𝑋

∫︁

R

⃒⃒
ℱ [P𝐵,𝑘] (𝑡𝑥, 𝑡(1− 𝑥⊤1))

⃒⃒2
𝑑𝑥𝑑𝑡

≤ 𝐶𝑋𝑐𝑌

∫︁

S𝑋

|Φ𝑗0,𝑘 (𝑥) |2𝑑𝑥
∫︁

R

𝛾(𝑡)2𝑑𝑡

= 𝐶𝑋𝑐𝑌

∫︁

R

𝛾(𝑡)2𝑑𝑡.

Hence, (4.101) is satisőed if

𝐺

∫︁

R

𝛾(𝑡)2𝑑𝑡 ≤ 𝜉|Λ𝑗0 |
𝐶𝑋𝑐𝑌 𝑒

. (4.107)

Take, for all 𝑡 ∈ R,

𝛾(𝑡) =
𝜖(1 ∧ |𝑡/𝜏 |𝜈)

(1 + (𝑡/𝜏)𝑠+(𝑑𝑅+1)/2)(𝜏 𝑠+(𝑑𝑅+1)/2+1/2(𝑒 ∨ |𝑡|)1/2 ln(𝑒 ∨ 𝑡/𝜏))1/2 ,

with 𝜈 ≥ 1/2,

- 𝜏 = 2𝑗0 and 𝑗0 such that 2𝑗0 ∼ (𝐺/ ln(𝐺))1/(2𝑠+𝑑𝑅+1);

- 𝜖 such that

𝜖

∫︁

R

(1 ∧ |𝑡|2𝜈)
(𝑒 ∨ |𝑡|) ln(𝑒 ∨ (𝑡/𝜏))

𝑑𝑡+

∫︁

S𝑋

∫︁

R

(1 ∨ |𝑡|)2(𝑠+1)+(𝑑𝑅−1) |ℱ [P0] (𝑡)|2 𝑑𝑡 ≤
𝑙2

̃︀𝐶0

;
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and 𝜖2 ≤ 𝜉/(𝐶𝑋𝑐𝑌 𝑒 (1 + 1/(2𝑠+ 𝑑𝑅 + 1))) which ensures that

𝐺

∫︁

R

𝛾(𝑡)2𝑑𝑡 ≤
∫︁

R

𝐺𝜖2

𝜏 2𝑠+𝑑𝑅+2(1 + (𝑡/𝜏)𝑠+(𝑑𝑅+1)/2)2
𝑑𝑡

≤
(︂
1 +

1

2𝑠+ 𝑑𝑅 + 1

)︂
𝐺2−𝑗0(2𝑠+𝑑𝑅+1)𝜖2

≤ 𝜉 ln(𝐺)

𝐶𝑋𝑐𝑌 𝑒

hence with ln(𝐺) ≤ 𝐾 = |Λ𝑗0 | that (4.107) is satisőed.

Finally, we have, for 𝑗0 sufficiently large for the second inequality to have 𝜏𝜋/2 ≥ 𝑒,

⃒⃒
⃒⃒
∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣
⃒⃒
⃒⃒ = 𝜖𝜏 1/2

𝜏 𝑠+(𝑑𝑅+1)/2

∫︁

R

sinc (𝜏𝑡𝑦/2) (1 ∧ |𝑡|𝜈)
(1 + |𝑡|𝑠+(𝑑𝑅+1)/2)(𝑒 ∨ |𝜏𝑡|)1/2 ln(𝑒 ∨ |𝑡|)1/2𝑑𝑡

≥ 2−𝑗0(𝑠+(𝑑𝑅+1)/2)𝜖2𝜋

𝑦(𝜋/2)1/2 ln(𝑒 ∨ (𝜋/2))1/2
sinc(𝜋/2)(1 ∧ |𝜋/2|𝜈)
(1 + (𝜋/2)𝑠+(𝑑𝑅+1)/2)

.

Thus, using (4.106), we obtain

‖𝑚𝑟,1,1 −𝑚𝑟,1,0‖𝐿∞(𝒮) ≥
2−𝑗0𝑠𝐾1

𝐾0

sup
𝑦∈S𝑌

1

𝑦

𝜖2𝜋

(𝜋/2)1/2 ln(𝑒 ∨ (𝜋/2))1/2
sinc(𝜋/2)(1 ∧ |𝜋/2|𝜈)
(1 + (𝜋/2)𝑠+(𝑑𝑅+1)/2)

,

which yields the result using Proposition 10.

Proof when 𝑞 = 2. I consider here the following distributions:

- P𝐵,0 is the same as in 𝑞 = ∞;

- 𝐾 = 2 and P𝐵,1 is the compactly supported function in [0, 1]𝑑𝑅 such that, for

all 𝑡 ∈ R, 𝑥 ∈ S𝑋 ,

ℱ [P𝐵,1] (𝑡𝑥, 𝑡(1− 𝑥⊤1)) = 𝛾(𝑡)
∑︁

𝑘∈Λ𝑗0

Φ𝑗0,𝑘 (𝑥) + ℱ [P0] (𝑡), (4.108)

where 𝛾(0) = 0, Λ𝑗0 ⊂ Λ𝑗0 such that the support of all functions (Φ𝑗0,𝑘)𝑘∈Λ𝑗0
is

a strict subset of S𝑋 .

Consider 𝑑𝑅 = 2. The őrst condition (4.105) remains the same using that (Φ𝑗,𝑘)𝑗≥𝐽,𝑘∈Λ𝑗

is an orthonormal system of 𝐿2(S𝑋). Then, using (4.66) and |Λ𝑗0 | ≥ 𝑐02
𝑗0(𝑑𝑅−1), for
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𝑟 = 1, 2,

‖𝑚𝑟,1,1 −𝑚𝑟,1,0‖2𝐿2(S𝑋,𝑌 ) =

⃦⃦
⃦⃦
⃦⃦
𝑥𝑟 − 1l{𝑟 = 1}
𝑓 1
𝑌 |𝑋(𝑦|𝑥)

∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣
∑︁

𝑘∈Λ𝑗0

2𝑗0Ω𝑙,𝑗0,𝑘 (𝑥)

⃦⃦
⃦⃦
⃦⃦

2

𝐿2(S𝑋,𝑌 )

≥ 𝑏21𝑐02
𝑗0(𝑑𝑅+1)

𝐾2
0

inf
𝑥1∈S𝑋

|𝑥𝑟 − 1l{𝑟 = 1}|2
∫︁

S𝑌

⃒⃒
⃒⃒
∫︁ 𝑦

0

ℱ−1 [𝛾(·)] (𝑣)𝑑𝑣
⃒⃒
⃒⃒
2

𝑑𝑦.

The end of the proof is similar to the case 𝑞 = ∞ taking here 𝜏 = 2𝑗0 and 𝑗0 such

that 2𝑗0 ∼ 𝑛1/(2𝑠+𝑑𝑅+1). �

Proofs of Section 4.2.3

We consider the more general version of Proposition 5 below, where 𝑓𝑋 and 𝑓𝑌 |𝑋 are

estimated under assumptions of Section 4.5.2.

Proposition 11 (Data-driven convergence rates for the 𝐿2 risk). Let 𝑑𝐶 = 2, 𝑙 > 0,

𝑁 ∈ N. Make assumptions 1-3, 8 and 7, then we have that, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

1

𝑟(𝐺𝑒)
sup

P𝐵∈ℋ𝑠+1(𝑙)
𝑓𝑋∈ℰ, 𝑓𝑌 |𝑋∈ℰ′

ℛ2
𝐺0,𝐺1

(︁
̂︁𝑚 ̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
= 𝑂𝑝

𝒪𝐺0,𝐺1,𝐺

(1), (4.109)

where 𝒪𝐺0,𝐺1,𝐺 = {𝑣(𝐺0, ℰ)/𝛿(𝐺0) ≤ 𝐺−2 ln(𝐺)−1, 𝑣(𝐺1, ℰ ′)/(𝛿(𝐺0)𝛿(𝐺1)) ≤ 𝐺−2 ln(𝐺)−1},
and 𝑟(𝐺𝑒) = (𝐺𝑒/ ln(𝐺𝑒))

−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1), where 𝑠𝑁 is deőned in Proposition 4.

Let 𝒥𝐺 be the set of functions 𝑗 ∈ NR
0 such that for all 𝑦 ∈ S𝑌 , 𝑗(𝑦) ∈ {0, . . . , 𝑗max}.

I use, for all 𝑗 ≥ 𝐽 , 𝑘 ∈ Λ𝑗, 𝑤 ∈ ̃︁𝒲 , ∆𝑗,𝑘,𝑤 := ̂︀𝑑𝑗,𝑘,𝑤(𝑦) − ̃︀𝑑𝑗,𝑘,𝑤(𝑦), ̃︀∆𝑗,𝑘,𝑤 :=

̃︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦),

𝐿𝑗0𝑙 : (𝑦,𝑥) ↦→
(︁
̂︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑙𝐹𝑌 |𝑋
)︁
(𝑦,𝑥) .

251



I also use

Ξ𝑙 (𝑦, 𝑗0) :=
∑︁

𝑗>𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈̃︁𝒲

22𝑗 |𝑑𝑗,𝑘,𝑤(𝑦)|2 , 𝑆1 (𝑦, 𝑗0) :=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗 |∆𝑗,𝑘,𝑤(𝑦)|2 ,

𝑆2,𝑙 (𝑦, 𝑗0) :=

∫︁

S𝑋

⃒⃒
⃒
(︁
̃︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑙𝐹
𝑗0
𝑌 |𝑋

)︁
(𝑦,𝑥)

⃒⃒
⃒
2

𝑑𝑥, 𝐿 :=

√︁
2|̃︁𝒲|

42𝜅𝑁,𝑑𝑅,𝐽2

,

Ψ0,𝐺 := exp
(︁
−𝑝𝐺

6

)︁
+

2942𝑗max(𝑑𝑅+1)𝜅𝑁,𝑑𝑅,𝐽2

𝐺|̃︁𝒲|
exp

(︁
−𝐿

√︀
𝐺𝑝𝐺

)︁
.

Lemma 3. For all 𝑞 = 2, 𝑦 ∈ S𝑌 , 𝑙 = 1, . . . , 𝑑𝑅 − 1, and 𝑗0 ∈ {0, . . . , 𝑗max}, we have

E
[︁
𝑆1

(︁
𝑦,̂︀𝑗0(𝑦)

)︁]︁
≤ 𝑍𝐺0𝐶𝑋 |̃︁𝒲|2𝑗max(𝑑𝑅+1)

1− 2−(𝑑𝑅+1)
, (4.110)

E

[︂(︂
𝑆2,𝑙(𝑦, 𝑗0)−

Σ(𝑗0)

6 ̃︀𝐴

)︂

+

]︂
≤ 48

2𝑗0(𝑑𝑅+1)𝑐𝑋𝐴|̃︁𝒲|
𝐺(1− 2−(𝑑𝑅+1))

Ψ0,𝐺. (4.111)

Proof. Let the parameters in the for all statement be given and 𝑙 ∈ 1, . . . , 𝑑𝑅 − 1.

Proof of (4.110). Using

E
[︀
|∆𝑗,𝑘,𝑤(𝑦)|2

]︀
≤ E

⎡
⎣𝑍𝐺0

𝐺2

⃒⃒
⃒⃒
⃒
𝐺∑︁

𝑔=1

⃒⃒
Ψ𝑤
𝑗,𝑘(𝑋𝑔)

⃒⃒
⃒⃒
⃒⃒
⃒

2
⎤
⎦ ≤ 𝑍𝐺0𝐶𝑋

(4.74), and
∑︀𝑗max

𝑗=𝐽 2(𝑗−𝑗max)(𝑑𝑅+1) ≤ 1/(1 − 2−(𝑑𝑅+1)), we obtain (4.110) from the fol-

lowing inequalities

E
[︁
𝑆1

(︁
𝑦, ̂︀𝑗0(𝑦)

)︁]︁
≤

𝑗max∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗E
[︀
|∆𝑗,𝑘,𝑤(𝑦)|2

]︀
≤ 𝑍𝐺0𝐶𝑋 |̃︁𝒲|2𝑗max(𝑑𝑅+1)

1− 2−(𝑑𝑅+1)
.
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Proof of (4.111). We use

𝑆2,𝑙(𝑦, 𝑗0) = sup
𝑣∈𝒰

|𝜈𝑦𝐺(𝑣)|2 ,

𝜈𝑦𝐺(𝑣) :=
⟨(︁
𝜕𝑙 ̃︀𝐹 𝑗0

𝑌 |𝑋 − 𝜕𝑙𝐹
𝑗0
𝑌 |𝑋

)︁
(𝑦, ·) , 𝑣(·)

⟩
S𝑋

=
1

𝐺

𝐺∑︁

𝑔=1

(︀
𝑓 𝑦𝑣 (𝑋𝑔,𝑌 𝑔)− E

[︀
𝑓 𝑦𝑣 (𝑋𝑔,𝑌 𝑔)

]︀)︀
,

𝑓 𝑦𝑣 (·, ⋆) :=
1l{⋆ ≤ 𝑦}
𝑓𝑋(·)

∫︁

S𝑋

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲
Ψ𝑤
𝑗,𝑘(·)2𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥) 𝑣(𝑥)𝑑𝑥,

where 𝒰 is a countable dense set of measurable functions of
{︁
𝑣 : ‖𝑣‖𝐿2(S𝑋) = 1

}︁
and

check the conditions of the Talagrand inequality given in Lemma B.15 in Gaillac and

Gautier (2019c) with 𝜂 = 𝑝𝐺 and Λ(𝑝𝐺) = 1. For all 𝑢 ∈ 𝒰 , using the Cauchy-Schwarz

inequality for the őrst display, (4.66) for the second inequality, and (4.70) for the third

one, we obtain

‖𝑓 𝑦𝑣 ‖𝐿∞(S𝑋×[0,1]) ≤
√
𝑐𝑋

⃦⃦
⃦⃦
⃦⃦
⃦

⎛
⎝

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
Ψ𝑤
𝑗,𝑘(·)

⃒⃒2
22𝑗

∫︁

S𝑋

⃒⃒
Ω𝑤
𝑙,𝑗,𝑘 (𝑥)

⃒⃒2
𝑑𝑥

⎞
⎠

1/2
⃦⃦
⃦⃦
⃦⃦
⃦
𝐿∞(S𝑋)

≤
√︀
𝑐𝑋𝐴𝑙

⃦⃦
⃦⃦
⃦⃦
⃦

⎛
⎝

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗
⃒⃒
Ψ𝑤
𝑗,𝑘 (·)

⃒⃒2
⎞
⎠

1/2
⃦⃦
⃦⃦
⃦⃦
⃦
𝐿∞(S𝑋)

≤
√︀
𝑐𝑋𝐴𝑙𝜅

𝑁,𝑑𝑅,𝐽
2 (S𝑋)

(︃
𝑗0∑︁

𝑗=𝐽

2𝑗(𝑑𝑅+1)

)︃1/2

≤ 2𝑗0(𝑑𝑅+1)/2

√︀
𝑐𝑋𝐴𝑙𝜅

𝑁,𝑑𝑅,𝐽
2 (S𝑋)

(1− 2−(𝑑𝑅+1))1/2
. (4.112)

By the Cauchy-Schwarz inequality, (4.66), Lemma 2, and (4.74), we have

E

[︂
sup
𝑣∈𝒰

|𝜈𝑦𝐺(𝑣)|
]︂2

≤ E

[︂
sup
𝑣∈𝒰

|𝜈𝑦𝐺(𝑣)|2
]︂
≤ E

[︂⃦⃦
⃦
(︁
̃︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋 − 𝜕𝑙𝐹
𝑗0
𝑌 |𝑋

)︁
(𝑦, ·)

⃦⃦
⃦
2

𝐿2(S𝑋)

]︂

≤ 𝐴𝑙
𝑐𝑋
𝐺

|̃︁𝒲|
𝑗0∑︁

𝑗=𝐽

2𝑗(𝑑𝑅+1)

≤ 2𝑗0(𝑑𝑅+1) 𝐴𝑙𝑐𝑋 |̃︁𝒲|
𝐺(1− 2−(𝑑𝑅+1))

=
Σ(𝑗0)

24(1 + 2𝑝𝐺) ̃︀𝐴
.
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Finally, by the Cauchy-Schwarz inequality and (4.112), we have

Var
(︀
R(𝑓 𝑦𝑣 (𝑌 𝑔,𝑋𝑔))

)︀
∨ Var

(︀
I(𝑓 𝑦𝑣 (𝑌 𝑔,𝑋𝑔))

)︀
≤

∫︁

S𝑋,𝑌

|𝑓 𝑦𝑣 (𝑦′,𝑥)|2 𝑓𝑌 ,𝑋(𝑦′,𝑥)𝑑𝑦′𝑑𝑥

≤ 2𝑗0(𝑑𝑅+1) 𝑐𝑋𝐴𝑙|̃︁𝒲|
1− 2−(𝑑𝑅+1)

.

�

Denote by

ℛ2,2
𝐺0,𝐺1

(︁
̂︁𝑚̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
:= E

[︂⃦⃦
⃦̂︁𝑚̂︀𝑗0

𝑟,1 −𝑚𝑟,1

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂
.

Lemma 4. For all 𝑟 = 1, . . . , 𝑑𝑅 − 1, and 𝑗0 ∈ 𝒥𝐺,

ℛ2,2
𝐺0,𝐺1

(︁
̂︁𝑚̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
≤ 𝐶8,𝑟

𝑑𝑅−1∑︁

𝑙=1

E
[︁⃦⃦
𝐿𝑗0𝑙

⃦⃦2

𝐿2(S𝑋,𝑌 )

]︁
+ 12𝐴𝐶7,𝑟

∫︁

𝑦∈S𝑌
Σ(𝑦, 𝑗0(𝑦))𝑑𝑦

+ ̃︀𝐶0
𝑍𝐺12

𝑗max(𝑑𝑅+1)

𝛿(𝐺0)
+ 𝑗max2

𝑗max(𝑑𝑅+1)𝐶7,𝑟Π(𝐺,𝑍𝐺0 , 𝑗0),

where 𝐶7,𝑟 := max𝑙=1,...,𝑑𝑅−1𝐶7,𝑟,𝑙, 𝐶8,𝑟 := (18𝐴+ 3) ̃︀𝐴𝐶7,𝑟/(3(𝑑𝑅 − 1)), and

Π(𝐺,𝑍𝐺0 , 𝑗0) := 1152
𝑐𝑋𝐴

2 ̃︀𝐴|̃︁𝒲|
𝐺(1− 2−(𝑑𝑅+1))

Ψ0,𝐺 + 𝑍𝐺0

24𝐴
2
𝐶𝑋 |̃︁𝒲|

1− 2−(𝑑𝑅+1)
,

Proof of Lemma 4. Let 𝑗0 ∈ {0, . . . , 𝑗max}. We have, using (4.96)

ℛ2,2
𝐺0,𝐺1

(︁
̂︁𝑚̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
≤ ̃︀𝐶0

𝑍𝐺12
𝑗max(𝑑𝑅+1)

𝛿(𝐺0)
+

𝐶7,𝑟

3(𝑑𝑅 − 1)

𝑑𝑅−1∑︁

𝑙=1

E

[︂⃦⃦
⃦𝐿̂︀𝑗0

𝑙

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂
.

(4.113)

Using, for all 𝑗1, 𝑗2 ∈ N and 𝑦 ∈ [0, 1],

̃︀𝑅𝑗2
𝑗1,𝑙

(𝑦, ·) :=
(︁
̂︂𝜕𝑙𝐹

𝑗2∨𝑗1
𝑌 |𝑋 − ̂︂𝜕𝑙𝐹

𝑗1

𝑌 |𝑋

)︁
(𝑦, ·) ,
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we have 𝐿
̂︀𝑗0
𝑙 = ̃︀𝑅𝑗0

̂︀𝑗0(𝑦),𝑙
− ̃︀𝑅 ̂︀𝑗0(𝑦)

𝑗0,𝑙
+ 𝐿𝑗0𝑙 . We obtain, using the convexity of 𝑥 ↦→ 𝑥2,

E

[︂⃦⃦
⃦𝐿̂︀𝑗0

𝑙

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂
≤3E

[︁
‖ ̃︀𝑅𝑗0

̂︀𝑗0,𝑙
‖2
𝐿2(S𝑋,𝑌 )

]︁
+ 3E

[︁
‖ ̃︀𝑅 ̂︀𝑗0

𝑗0,𝑙
‖2
𝐿2(S𝑋,𝑌 )

]︁

+ 3E
[︁⃦⃦
𝐿𝑗0𝑙

⃦⃦2

𝐿2(S𝑋,𝑌 )

]︁
.

Because

𝛽 (𝑦, 𝑗0) = max
𝑗′∈N0: 𝐽≤𝑗′≤𝑗max

⎛
⎝
𝑗′∨𝑗0∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗
⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2

− Σ (𝑗′)

⎞
⎠

+

,

we have

𝑑𝑅−1∑︁

𝑙=1

E
[︁
‖ ̃︀𝑅𝑗2

𝑗1,𝑙
‖2
𝐿2(S𝑋,𝑌 )

]︁
≤ 𝐴(𝑑𝑅 − 1)

∫︁

S𝑌

(E [𝛽 (𝑦, 𝑗1)] + E [Σ (𝑗2)]) 𝑑𝑦

for possibly random 𝑗1 and 𝑗2. Using (4.18) yields

𝑑𝑅−1∑︁

𝑙=1

E

[︂⃦⃦
⃦𝐿̂︀𝑗0

𝑙

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂
≤6𝐴(𝑑𝑅 − 1)

∫︁

S𝑌

(E [𝛽 (𝑦, 𝑗0)] + Σ (𝑗0)) 𝑑𝑦

+ 3

𝑑𝑅−1∑︁

𝑙=1

E
[︁⃦⃦
𝐿𝑗0𝑙

⃦⃦2

𝐿2(S𝑋,𝑌 )

]︁
.

Using the convexity of 𝑥 ↦→ 𝑥2 and, for all 𝑗′ ∈ 𝒥𝐺,

̃︀𝐾𝑗′

𝑗0,𝑎
(𝑦) :=

𝑗0∨𝑗′∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2

22𝑗

̃︀𝐾𝑗′

𝑗0,𝑏
(𝑦) :=

𝑗0∑︁

𝑗=0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
⃒ ̂︀𝑑𝑗,𝑘,𝑤(𝑦)− 𝑑𝑗,𝑘,𝑤(𝑦)

⃒⃒
⃒
2

22𝑗

̃︀𝐾𝑗′

𝑗0,𝑐
(𝑦) :=

𝑗0∨𝑗′∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

|𝑑𝑗,𝑘,𝑤(𝑦)|2 22𝑗,
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we have

𝛽(𝑦, 𝑗0) ≤ max
𝐽≤𝑗′≤𝑗max

𝑗′∈N

⎛
⎝3

∑︁

𝑚∈{𝑎,𝑏,𝑐}

̃︀𝐾𝑗′

𝑗0,𝑚
(𝑦)− Σ(𝑗′)

⎞
⎠

+

.

We obtain, for all 𝑦 ∈ [0, 1] and 𝑙 ∈ {1, . . . , 𝑑𝑅 − 1},

̃︀𝐾𝑗′

𝑗0,𝑐
(𝑦) ≤

∞∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗|𝑑𝑗,𝑘,𝑤(𝑦)|2 ≤
1

𝑎𝑙

⃦⃦
𝐿𝑗0𝑙 (𝑦, ·1)

⃦⃦2

𝐿2(S𝑋)

hence

(𝑑𝑅 − 1)𝛽(𝑦, 𝑗0) ≤(𝑑𝑅 − 1) max
0≤𝑗′≤𝑗max

𝑗′∈N

⎛
⎝6

𝑗′∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗 |∆𝑗,𝑘,𝑤(𝑦)|2 − Σ(𝑗′)

⎞
⎠

+

+ 3

𝑑𝑅−1∑︁

𝑙=1

1

𝑎𝑙

⃦⃦
𝐿𝑗0𝑙 (𝑦, ·1)

⃦⃦2

𝐿2(S𝑋)
.

Finally, denoting by

̃︀𝛽(𝑦, 𝑗0) := max
𝐽≤𝑗′≤𝑗max

𝑗′∈N

⎛
⎝

𝑗′∑︁

𝑗=𝑗0

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

22𝑗 |∆𝑗,𝑘,𝑤(𝑦)|2 −
Σ(𝑗′)

6

⎞
⎠

+

we have

𝑑𝑅−1∑︁

𝑙=1

E

[︂⃦⃦
⃦𝐿̂︀𝑗0

𝑙

⃦⃦
⃦
2

𝐿2(S𝑋,𝑌 )

]︂
≤36𝐴(𝑑𝑅 − 1)

∫︁

S𝑌

(︁
̃︀𝛽(𝑦, 𝑗0) + Σ (𝑗0)

)︁
𝑑𝑦

+ (18𝐴+ 3)

𝑑𝑅−1∑︁

𝑙=1

1

𝑎𝑙
E
[︁⃦⃦
𝐿𝑗0𝑙

⃦⃦2

𝐿2(S𝑋,𝑌 )

]︁
.

Using Lemma 3 for the third, we obtain

̃︀𝛽(𝑦, 𝑗0) ≤ 2 ̃︀𝐴
𝑑𝑅−1∑︁

𝑙=1

E

[︂
max

𝐽≤𝑗′≤𝑗max

(︂
𝑆2,𝑙(𝑦, 𝑗

′)− Σ(𝑗′)

6 ̃︀𝐴

)︂

+

]︂
+ 2𝐴E

[︂
max

𝐽≤𝑗′≤𝑗max

𝑆1(𝑦, 𝑗
′)

]︂

≤ 96𝑗max

2𝑗max(𝑑𝑅+1)𝑐𝑋𝐴 ̃︀𝐴|̃︁𝒲|
𝐺(1− 2−(𝑑𝑅+1))

Ψ0,𝑀 + 𝑍𝐺0𝑗max

2𝐴𝐶𝑋 |̃︁𝒲|2𝑗max(𝑑𝑅+1)

1− 2−(𝑑𝑅+1)
,
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Hence the result. �

Proof of propositions 5 and 11.

Let 𝐺0, 𝐺1, 𝐺 such that 𝑣(𝐺0, ℰ)/𝛿(𝐺0) ≤ 𝐺−2 ln(𝐺)−1, 𝑣(𝐺1, ℰ ′)/(𝛿(𝐺0)𝛿(𝐺1)) ≤
𝐺−2 ln(𝐺)−1, and 𝐺𝑒 ≥ 3. Let 𝑟 = 1, . . . , 𝑑𝑅 − 1 and 𝑗0 ∈ 𝒥𝐺. Start from Lemma 4

and use (4.96), (4.98), (4.99), and (4.100), which yield

ℛ2,2
𝐺0,𝐺1

(︁
̂︁𝑚̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
≤𝐶8,𝑟

(︃
̃︀𝐶1𝑍𝐺02

𝑗max(𝑑𝑅+1) +
̃︀𝐶4

22𝑗0𝑠𝑁

)︃

+

(︂
𝐶8,𝑟

̃︀𝐶3 +
576𝐶7,𝑟

1− 2−(𝑑𝑅+1)

(︂
1

𝜃 ln(2)
+ 2

)︂
̃︀𝐴𝐴𝑐𝑋 |̃︁𝒲|

)︂
2𝑗0(𝑑𝑅+1)𝑝𝐺

𝐺

+ ̃︀𝐶2
𝑍𝐺12

𝑗max(𝑑𝑅+1)

𝛿(𝐺0)
+ 𝑗max2

𝑗max(𝑑𝑅+1)𝐶7,𝑟Π(𝐺,𝑍𝐺0 , 𝑗0),

where

̃︀𝐶2 := ̃︀𝐶0 + 𝐶8,𝑟2(𝑑𝑅 − 1)𝐶𝑋

(︃
(𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋)̃︀𝜅𝑁,𝑑𝑅,𝐽1 (S𝑋))2|S𝑋 |

2𝐽(𝑑𝑅+1)
+

𝐴𝑙|̃︁𝒲|
1− 2−(𝑑𝑅+1)

)︃
.

Then, we have

𝑗max exp (−𝑝𝐺) 2𝑗max(𝑑𝑅+1) ≤ ln(𝐺)

𝑑𝑅 + 1

𝑍𝐺0𝑗max2
𝑗max(𝑑𝑅+1) ≤ 𝑀ℰ,𝜂,0𝑣(𝐺0, ℰ) ln(𝐺)𝐺

𝛿(𝐺0)
≤ 𝑀ℰ,𝜂,0

𝐺
,

𝑍𝐺12
𝑗max(𝑑𝑅+1)

𝛿(𝐺0)
≤ 𝑀ℰ ′,𝜂,1𝐺𝑣(𝐺1, ℰ ′)

𝛿(𝐺1)𝛿(𝐺0)
≤ 𝑀ℰ ′,𝜂,1

𝐺
.

Using (4.75), we obtain

𝑗max2
2𝑗max(𝑑𝑅+1) exp(−𝐿√𝐺𝑝𝐺)

𝐺
≤ ln(𝐺)𝐺

𝑑𝑅 + 1
exp(−𝐿

√
𝜃𝑒 ln(𝐺)2)

≤ 𝐺1−𝐿
√
𝜃𝑒 ln(𝐺)

𝑑𝑅 + 1

≤ ln(𝐺)

𝑑𝑅 + 1
(using 𝜃 > 1/(𝑒𝐿2)).

We conclude using that the solution 𝑗* of ln(𝑗*) + (2𝑠𝑁 + 𝑑𝑅 + 1)𝑗* ln(2) = ln(𝐺𝑒)
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satisfy

𝑗* ≤ ln(𝐺𝑒)

(2𝑠𝑁 + 𝑑𝑅 + 1) ln(2)
,

hence belongs to 𝒥𝐺, which yields the result as

ℛ2,2
𝐺0,𝐺1

(︁
̂︀𝑔̂︀𝑗0
𝑟,1, 𝑔𝑟,1

)︁

≤ ln(𝐺)

𝐺

(︃
𝐶8,𝑟

̃︀𝐶1 +

(︃
̃︀𝐶2 +

24𝐴
2
𝐶7,𝑟𝐶𝑋 |̃︁𝒲|

1− 2−(𝑑𝑅+1)

)︃
𝑀ℰ ′,𝜂,1

)︃

+ 2−2𝑗*𝑠𝑁

(︂(︂
𝐶8,𝑟

̃︀𝐶3 +
576𝐶7,𝑟

1− 2−(𝑑𝑅+1)

(︂
1

𝜃 ln(2)
+ 2

)︂
̃︀𝐴𝐴𝑐𝑋 |̃︁𝒲|

)︂
2𝑗

*(2𝑠𝑁+𝑑𝑅+1) ln(𝐺)

𝐺

)︂

+ 2−2𝑗*𝑠𝑁𝐶8,𝑟
̃︀𝐶4 +

1152𝑐𝑋 ̃︀𝐴𝐴|̃︁𝒲| ln(𝐺)
𝐺(𝑑𝑅 + 1)(1− 2−(𝑑𝑅+1))

and, using ln(𝑗*) ≥ ln(𝐺𝑒),

2−2𝑗*𝑠𝑁 ≤
(︂

𝐺𝑒

ln(𝑗*)

)︂−2𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

≤
(︂

𝐺𝑒

ln(𝐺𝑒)

)︂−2𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)

. �

Proofs of Section 4.2.4

We consider the context of Section 4.5.2, where 𝑓𝑋 and 𝑓𝑌 |𝑋 are estimated. We add

the following assumption.

Assumption 13. (Asn.4)
√
𝐺𝑣(𝐺1, ℰ ′)2𝑗0𝑑𝑅/𝛿(𝐺1) −→

𝐺,𝐺1→∞
0;

(Asn.5)
√
𝐺𝑣(𝐺0, ℰ)2𝑗0𝑑𝑅/𝛿(𝐺0).

Under this assumptions 13 and 12, Proposition 6 holds with 𝑓𝑋 and 𝑓𝑌 |𝑋 replaced

by their respective trimmed estimators. We consider this context for the proof here-

after.

We use the notation

𝒦𝑙,𝑗0

(︀
𝑋𝑔,𝑥

)︀
:=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

Ψ𝑤
𝑗,𝑘

(︀
𝑋𝑔

)︀
2𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥) .
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Proof of Proposition 6. We have, using the notation (4.39), for all 𝑟 = 1, . . . , 𝑑𝑅−1,

√
𝐺

(︁
̂︁𝑚𝑗0

𝑟,1(𝑥, 𝑦)−𝑚𝑟,1(𝑥, 𝑦)
)︁
=

√
𝐺

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)

⎛
⎝

̂︂𝜕𝑙𝐹
𝑗0

𝑌 |𝑋(𝑦|𝑥)
̂︀𝑓 𝛿
𝑌 |𝑋(𝑦|𝑥)

− 𝜕𝑙𝐹𝑌 |𝑋(𝑦|𝑥)
𝑓𝑌 |𝑋(𝑦|𝑥)

⎞
⎠

=
√
𝐺

4∑︁

𝑗=1

𝑅𝑗(𝑥, 𝑦),

where

𝑅1(𝑥, 𝑦) :=

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)

(︃
1

̂︀𝑓 𝛿
𝑌 |𝑋(𝑦|𝑥)

− 1

𝑓𝑌 |𝑋(𝑦|𝑥)

)︃
̂︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋(𝑦|𝑥)

𝑅2(𝑥, 𝑦) :=
1

𝑓𝑌 |𝑋(𝑦|𝑥)

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)
(︁
̂︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋(𝑦|𝑥)− ̃︂𝜕𝑙𝐹
𝑗0

𝑌 |𝑋(𝑦|𝑥)
)︁

𝑅3(𝑥, 𝑦) :=
1

𝑓𝑌 |𝑋(𝑦|𝑥)

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)
(︁
̃︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋(𝑦|𝑥)− 𝜕𝑙𝐹
𝑗0
𝑌 |𝑋(𝑦|𝑥)

)︁

𝑅4(𝑥, 𝑦) :=
1

𝑓𝑌 |𝑋(𝑦|𝑥)

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)
(︁
𝜕𝑙𝐹

𝑗0
𝑌 |𝑋(𝑦|𝑥)− 𝜕𝑙𝐹𝑌 |𝑋(𝑦|𝑥)

)︁
.

We have

√
𝐺

𝑓𝑌 |𝑋(𝑦|𝑥)

𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)̃︂𝜕𝑙𝐹
𝑗0

𝑌 |𝑋(𝑦|𝑥) = 𝐺−1/2

𝐺∑︁

𝑔=1

𝜁𝑗0𝑟,𝑔(𝑥, 𝑦),

and E
[︁
̃︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋(𝑦|𝑥)
]︁
= 𝜕𝑙𝐹

𝑗0
𝑌 |𝑋(𝑦|𝑥). Using (4.19), we show below that 𝜁𝑗0𝑟 (𝑥, 𝑦)

satisőes the Lyapounov condition holds, for 𝜈 > 0,

E
[︁⃒⃒
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)− E

[︀
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

]︀⃒⃒2+𝜈]︁

𝐺𝜈/2Var(𝜁𝑗0𝑟,𝑔(𝑥, 𝑦))1+𝜈/2
−→ 0.

Lower bound on Var(𝜁𝑗0𝑟,𝑔(𝑥, 𝑦))
1+𝜈/2. Because E

[︀
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

]︀
converges to 𝑚𝑟,1(𝑥, 𝑦),

it is sufficient to get a lower bound on E
[︁⃒⃒
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

⃒⃒2]︁
. We have, using that

(︀
Ψ𝑤
𝑗,𝑘

)︀
𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗
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are orthonormal on 𝐿2(S𝑋) for the last display,

E
[︁⃒⃒
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

⃒⃒2]︁
=

∫︁

S𝑋,𝑌

⃒⃒
⃒⃒
⃒
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)𝒦𝑙 (𝑣,𝑥)

⃒⃒
⃒⃒
⃒

2

1l{𝑧 ≤ 𝑦}𝑓𝑋,𝑌 (𝑣, 𝑧)

𝑓𝑌 |𝑋(𝑦|𝑥)2𝑓𝑋(𝑣)2
𝑑𝑧𝑑𝑣

=

∫︁

S𝑋

⃒⃒
⃒⃒
⃒
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)𝒦𝑙 (𝑣,𝑥)

⃒⃒
⃒⃒
⃒

2

𝐹𝑌 |𝑋(𝑦|𝑣)
𝑓𝑌 |𝑋(𝑦|𝑥)2𝑓𝑋(𝑣)

𝑑𝑣

≥ ̃︀𝑐𝑌 ,𝑋(𝑦)

𝑓𝑌 |𝑋(𝑦|𝑥)2
∫︁

S𝑋

⃒⃒
⃒⃒
⃒⃒
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

(︃
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

)︃
Ψ𝑤
𝑗,𝑘 (𝑣)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑣

≥ ̃︀𝑐𝑌 ,𝑋(𝑦)

𝑓𝑌 |𝑋(𝑦|𝑥)2
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
⃒⃒
⃒
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

⃒⃒
⃒⃒
⃒

2

, (4.114)

where ̃︀𝑐𝑌 ,𝑋(𝑦) := inf𝑣∈S𝑋 𝐹𝑌 |𝑋(𝑦|𝑣)/𝑓𝑋(𝑣).

Upper bound on the Lyapounov condition. We have,

E
[︁⃒⃒
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

⃒⃒2+𝜈]︁

=

∫︁

S𝑋,𝑌

⃒⃒
⃒⃒
⃒
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)𝒦𝑙 (𝑣,𝑥)

𝑓𝑌 |𝑋(𝑦|𝑥)𝑓𝑋(𝑣)

⃒⃒
⃒⃒
⃒

2+𝜈

𝑓𝑋,𝑌 (𝑣, 𝑧)𝑑𝑧𝑑𝑣

≤
𝑐1+𝜈𝑋

𝑓𝑌 |𝑋(𝑦|𝑥)2+𝜈
∫︁

S𝑋,𝑌

⃒⃒
⃒⃒
⃒⃒
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲

(︃
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

)︃
Ψ𝑤
𝑗,𝑘 (𝑣)

⃒⃒
⃒⃒
⃒⃒

2+𝜈

𝑓𝑌 |𝑋(𝑧|𝑣)𝑑𝑧𝑑𝑣,

≤
𝑐1+𝜈𝑋

𝑓𝑌 |𝑋(𝑦|𝑥)2+𝜈 sup
𝑣∈S𝑋

⃒⃒
⃒⃒
⃒⃒
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

(︃
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

)︃
Ψ𝑤
𝑗,𝑘 (𝑣)

⃒⃒
⃒⃒
⃒⃒

𝜈

𝐵(𝑥),

where, using that
(︀
Ψ𝑤
𝑗,𝑘

)︀
𝑗≥𝐽,𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

are orthonormal on 𝐿2(S𝑋),

𝑀(𝑥) :=

∫︁

S𝑋

⃒⃒
⃒⃒
⃒⃒
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

(︃
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

)︃
Ψ𝑤
𝑗,𝑘 (𝑣)

⃒⃒
⃒⃒
⃒⃒

2

𝑑𝑣

=

𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
⃒⃒
⃒
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

⃒⃒
⃒⃒
⃒

2

.
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This yields, using (4.70) for the second inequality and (4.73) for the third one,

E
[︁⃒⃒
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)− E

[︀
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

]︀⃒⃒2+𝜈]︁

𝐺𝜈/2Var(𝜁𝑗0𝑟,𝑔(𝑥, 𝑦))1+𝜈/2

≤
𝑐1+𝜈𝑋

̃︀𝑐𝑌 ,𝑋(𝑦)1+𝜈/2𝐺𝜈/2
sup
𝑣∈S𝑋

⃒⃒
⃒⃒
⃒⃒
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

(︃
𝑑𝑅−1∑︁

𝑙=1

𝐾𝑟,𝑙(𝑥)2
𝑗Ω𝑤

𝑙,𝑗,𝑘 (𝑥)

)︃
Ψ𝑤
𝑗,𝑘 (𝑣)

⃒⃒
⃒⃒
⃒⃒

𝜈

≤ 2𝑗0𝜈(𝑑𝑅+1)/2

𝐺𝜈/2

𝑐1+𝜈𝑋 𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜈

̃︀𝑐𝑌 ,𝑋(𝑦)1+𝜈/2

⎛
⎝
𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙(𝑥)|
𝑗0∑︁

𝑗=𝐽

∑︁

𝑘∈Λ𝑗 ,𝑤∈𝒲𝑗

⃒⃒
Ω𝑤
𝑙,𝑗,𝑘 (𝑥)

⃒⃒
⎞
⎠
𝜈

≤ 𝑗𝜈02
𝑗0𝜈𝑅

𝐺𝜈/2

𝑐1+𝜈𝑋 𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜈̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)𝜈

̃︀𝑐𝑌 ,𝑋(𝑦)1+𝜈/2
Φ(𝑥)𝜈 ,

where

Φ(𝑥) := ̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙(𝑥)| .

Thus, under condition (Asn.1), the Lyapounov condition is satisőed and we have
√︀
𝐺/𝑣𝑗0(𝑥, 𝑦)𝑅3(𝑥, 𝑦)

𝑑−→ 𝒩 (0, 1).

We now need to prove that the remaining terms
√︀
𝐺/𝑣𝑗0(𝑥, 𝑦)𝑅𝑗(𝑥, 𝑦), 𝑗 = 1, 2, 4 are

𝑜𝑝(1). Using the lower bound (4.114), it suffices to show that
√︀
𝐺/2𝑗0(𝑑𝑅+1)𝑅𝑗(𝑥, 𝑦) =

𝑜𝑝(1) for 𝑗 ∈ {1, 2, 4}.
Term

√︀
𝐺/𝑣𝑗0(𝑥, 𝑦)𝑅1(𝑥, 𝑦). We have, using that 𝑍𝐺1 = 𝑂𝑝(𝑣(𝐺1, ℰ ′)/𝛿(𝐺1)), (4.81),

and (4.83),

|𝑅1(𝑥, 𝑦)| ≤
𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙(𝑥)|
⃒⃒
⃒⃒
⃒

1

̂︀𝑓𝑌 |𝑋(𝑦|𝑥)
− 1

𝑓𝑌 |𝑋(𝑦|𝑥)

⃒⃒
⃒⃒
⃒
⃒⃒
⃒̂︂𝜕𝑙𝐹

𝑗0

𝑌 |𝑋(𝑦|𝑥)
⃒⃒
⃒ ≤ 𝐶0𝑍𝐺12

𝑗0𝑑𝑅

√︀
𝛿0(𝐺0)

.

Thus, under condition (Asn.4) we have
√︀
𝐺/2𝑗0(𝑑𝑅+1)𝑅1(𝑥, 𝑦) = 𝑜𝑝(1).

Term
√︀
𝐺/𝑣𝑗0(𝑥, 𝑦)𝑅2(𝑥, 𝑦). Using (4.84) we have,

|𝑅2(𝑥, 𝑦)| ≤𝑐𝑌 ,𝑋𝐶1𝑍𝐺02
𝑗0𝑑𝑅

𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙(𝑥)| .
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Thus, under condition (Asn.5) we have
√︀
𝐺/2𝑗0(𝑑𝑅+1)𝑅2(𝑥, 𝑦) = 𝑜𝑝(1).

Term
√︀
𝐺/𝑣𝑗0(𝑥, 𝑦)𝑅4(𝑥, 𝑦). Using (4.94), we have

|𝑅4(𝑥, 𝑦)| ≤
𝑐𝑌 ,𝑋

√
2

𝜋

𝑑𝑅−1∑︁

𝑙=1

|𝐾𝑟,𝑙(𝑥)|
̃︀𝜅𝑁,𝑑𝑅,𝐽2 (S𝑋)

ln(2)𝑠𝑁

(︃
8𝜋2𝐶

2(𝑑𝑅−1)
2 𝑥2𝑁0
2𝑁 + 1

+ 𝑙2𝐶0

)︃1/2
1

2(𝑗0+1)𝑠𝑁

hence
√︀
𝐺/2𝑗0(𝑑𝑅+1)𝑅4(𝑥, 𝑦) = 𝑜𝑝(1) using condition (Asn.2). This yields the result.

�

4.5.3 Handling inference with contextual effects

Proposition 12. Let the distribution of (𝐵,𝑋,𝑌 ,𝑍) satisfy (4.1) and assumptions

2 and 4. The identiőed set for 𝑚(𝑥,𝑦, 𝑧) ∈ S𝑋,𝑌 ,𝑍 ↦→ E [𝐵|𝑋 = 𝑥,𝑌 = 𝑦,𝑍 = 𝑧]

is included into the set of functions taking the form 𝑚 = 𝑀/𝑓𝑌 |𝑋,𝑍, where 𝐵𝑟,𝑐 :

S𝑋,𝑌 ,𝑍 ↦→ [0, 1] for 𝑟 = 1, . . . , 𝑑𝑅 and 𝑐 = 1, . . . , 𝑑𝐶 are continuous functions which

admit a continuous derivative with respect to 𝑦𝑐, for 𝑐 = 1, . . . , 𝑑𝐶 − 1, 𝑀 𝑟,𝐶 =

1−∑︀𝑑𝐶−1
𝑐=1 𝑀 𝑟,𝑐, and, for all 𝑟 = 1, . . . , 𝑑𝑅, 𝑐 = 1, . . . , 𝑑𝐶−1, and (𝑥,𝑦, 𝑧) ∈ S𝑋,𝑌 ,𝑍,

𝑑𝑅−1∑︁

𝑟=1

𝑥𝑟𝑀 𝑟,𝑐(𝑥,𝑦, 𝑧) + (1− 𝑥⊤1)𝑀 𝑟,𝑐(𝑥,𝑦, 𝑧) = 𝜌𝑐(𝑥,𝑦, 𝑧), (4.115)

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝑀 𝑟,𝑐(𝑥,𝑦, 𝑧) =

𝑑𝐶−1∑︁

𝑐=1

𝜕𝑦𝑐𝜌𝑐(𝑥,𝑦, 𝑧) +

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})𝜕𝑥𝑙𝑓𝑌 |𝑋,𝑍(𝑥, 𝑦, 𝑧),

(4.116)

where and 𝜌𝑐(𝑥,𝑦, 𝑧) := 𝑓𝑌 |𝑋,𝑍(𝑦|𝑥, 𝑧)𝑦𝑐. Moreover, for all 𝑐 = 1, . . . , 𝑑𝐶 − 1 and

(𝑥,𝑦) ∈ S𝑌 ,𝑋 , 𝑀 𝑟,𝑐(𝑥,𝑦1, . . . ,𝑦𝑐 = 0, . . . ,𝑦𝑑𝐶−1, 𝑧) = 0.

When 𝑑𝐶 = 2, this set of functions is reduced to one element, for all 𝑟 = 1, . . . , 𝑑𝑅,

(4.9) holds and 𝑚𝑟,2 = 1−𝑚𝑟,1.

Proof of Proposition 12. This is a direct adaptation of the proof of Propostition

7. �

Proof of Proposition 3. We use Proposition 1 in Masten and Torgovitsky (2013),

which ensures that 𝑋 ⊥ 𝐵|𝑍, where 𝑍 are gerenated covariates. Then, the result
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follows directly from Proposition 12. �

Complements on Section 4.3

Notes: Shares among registered voters, null votes are included in abstention.

Figure 4-2: Electoral results of the őrst and second rounds of 2012 Presidential elec-
tions, and the two categories and two outcome variable possibilities that correspond
to the ones in the őrst decomposition of Section 4.3.
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Table 4.7: Impact on the left-wing candidate’s 2nd round vote shares among different

categories of voters for Decomposition 2

Treatment Category 1 Category 2

ITT estimation 0.0129 -0.0229

[-0.0144,0.0310] [-0.0444,0.0137]

Instrumental variable estimation 0.0235 -0.0416

[-0.0260,0.0562] [-0.0804,0.0249]

Notes: ITT estimation shows the effect of a precinct being assigned to the treatment group (ITT

results from (1)) on the two different types of individuals: Category 1 are individual who voted for

party at the őrst round of the 2007 election that qualify at the second round of the 2012 election

(i.e. left (Royal), right (Sarkozy)) while category 2 are the others, undecided active voters plus

those who abstain. Instrumental variable estimation shows the effect of a precinct being allocated

to canvassers using the assignment dummy 𝑇𝑔 as instrument. All the results use 𝑊𝑔 = ̃︂𝑃𝑂𝑔 as

control, which enters nonparametrically. The unit of observation is the unit of randomization

(precinct or municipality) and each regression is based on 2,665 observations. 95% bootstrap

conődence intervals are in parentheses, computed via 300 stratum-clustered bootstrap. The

outcome variables are estimated using our main adaptive estimator based on Legendre functions.

Impact on vote shares according to past votes

Impact on vote shares according to level of education Part of the litera-

ture considers the role of voters’ prior knowledge in the persuasion effect of political

campaign communications. Prior (2006) merged local TV coverage measure with

the National Election Studies surveys in the 1960s. He shows a correlation between

television availability and less-educated voters support for the incumbents, who are

more likely to receive media coverage. I complement this literature by looking at

the difference in beliefs or preference updating after the visits according to education

using actual electoral results in Pons (2018) randomized experiment.18

Thus, I consider another decomposition than in Section 4.3 in two categories,

𝑑𝑅 = 2, 𝑑𝐶 = 2, based on the level of education. I distinguish voters according to

18See Section C in Pons (2018) for the question of whether visits act through beliefs versus pref-
erences updating, where he gives arguments favoring the őrst mechanism.
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whether they graduated from high school or not (i.e, more speciőcally, have their

baccalauréat). I focus, as in Section 4.3, on the impact on the left-wing candidate

vote shares at the second round. I keep the same vector of controls 𝑊 . Results are

robust to the use of the őrst or second round 2007 left-wing vote shares as additional

controls.

Results are displayed in Table 4.8. They show that there is a positive impact of the

visits on less-educated voters. There is negative but not signiőcant effect on the more

educated ones. It suggests that beliefs might be more affected by the information

brought by personal visits among those with less education. This underlines the

importance of prior knowledge in the persuasion mechanism, which is coherent with

Bayesian models of beliefs formation.

Table 4.8: Impact on the left-wing candidate’s 2nd round vote shares among different

categories of voters, based on education

Category 𝑅 = 1, łLess educated" 𝑅 = 2, łMore educated"

ITT estimation 0.0101 -0.0120

[0.0010,0.0146] [-0.0195,0.0030]

Instrumental variable estimation 0.0183 -0.0217

[0.0016,0.0265] [-0.0352,0.0056]

Notes: ITT estimation shows the effect of a precinct being assigned to the treatment group

(ITT results from equation (1)) on the two different types of individuals: Category 𝑅 = 1

are individuals who have not graduated high school, while Category 𝑅 = 2 are the others.

Instrumental variable estimation shows the effect of a precinct being allocated to canvassers using

the assignment dummy 𝑇𝑔 as instrument. All the results use 𝑊𝑔 = ̃︂𝑃𝑂𝑔 as control, which enters

nonparametrically. The unit of observation is the unit of randomization (precinct or municipality)

and each regression is based on 2,665 observations. 95% bootstrap conődence intervals are in

parentheses, computed via 300 stratum-clustered bootstrap. The outcome variables are estimated

using our main adaptive estimator based on Legendre functions.
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4.5.4 Main estimator based on Legendre polynomials instead

of vaguelet-wavelets

Assumption 14. Assume that S𝑋 =
∏︀𝑑𝑅−1

𝑙=1 [̃︀𝑥𝑙, ̃︀𝑥𝑙 + 𝑥0], where ̃︀𝑥 ∈ [0, 1]𝑑𝑅−1 and

𝑥0 > 0.

I make Assumption 14 for simplicity but one can handle the case (RC.2) which is a

triangle using wavelets adapted to the triangle. The proof of Theorem 1 is constructive

and my estimator is based on a plug-in approach of an estimator of
(︀
𝜕𝑥𝑙𝐹𝑌 |𝑋

)︀𝑑𝑅−1

𝑗=1
for

𝑑𝐶 = 2. The strategy implies having őrst-step estimators of 𝑓𝑌 |𝑋 and 𝑓𝑋 , similarly

to Section 4.2.

Estimator and convergence rates of the 𝐿𝑞 risk when 𝑑𝐶 = 2

My approximation is based on an approximation of the derivatives, for all 𝑦 ∈ [0, 1]

and 𝑙 = 1, . . . , 𝑑𝑅−1, 𝑥 ∈ S𝑋 ↦→ 𝜕𝑥𝑙𝐹𝑌 |𝑋(𝑦|·) using a truncation of its decomposition

on normalized Legendre polynomials (𝐿𝑘)𝑘∈N𝑑𝑅−1
0

in 𝐿2(S𝑋) that I describe now. Let

𝑦 ∈ [0, 1]. Assuming that 𝐹𝑌 |𝑋(𝑦|·) ∈ 𝐿2(S𝑋), we have the expansion

𝐹𝑌 |𝑋(𝑦|·) =
∑︁

𝑘∈N𝑑𝑅−1
0

𝑑𝑘(𝑦)𝐿𝑘(·), (4.117)

where 𝑑𝑘(𝑦) := ⟨E [1l{𝑌 ≤ 𝑦}|𝑋 = ·] , 𝐿𝑘⟩𝐿2(S𝑋). Assume that 𝐹𝑌 |𝑋(𝑦|·) ∈ 𝐿2(S𝑋)

admits a square integrable derivative with respect to the 𝑙 ∈ {1, . . . , 𝑑𝑅 − 1} variable

such that 𝜇(·)𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) ∈ 𝐿2(S𝑋), where 𝜇(·) = (1− (2(·𝑙 − ̃︀𝑥)/𝑥0 − 1)2)1/2. Then,

a valid decomposition of 𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) in the space 𝐿2
𝜇(S𝑋) is simply

𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) =
∑︁

𝑘∈N𝑑𝑅−1
0

𝑑𝑘(𝑦)𝜕𝑙𝐿𝑘(·). (4.118)

because the functions Ω𝑘,𝑙(·) = 𝜕𝑙𝐿𝑘(·)𝜇(·)/
√︀

𝑘𝑙(𝑘𝑙 + 1) are tensor products of asso-

ciated Legendre functions and Legendre polynomials. (Ω𝑘,𝑙)𝑘∈N𝑑𝑅−1
0

constitute also an

orthonormal basis of 𝐿2(S𝑋) using, e.g., 14.17.6 in Olver et al. (2010) and as they are
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solutions of the Sturm-Liouville equation 14.2.2 in Olver et al. (2010).19 The use of

weight 𝜇 means that I do not weight the boundaries of S𝑋 in our asymptotic analysis.

Let 𝑗0 ≥ 0 a parameter chosen a posteriori as a function of the sample size 𝐺. For

all 𝑙 = 1, . . . , 𝑑𝑅 − 1, and 𝑦 ∈ [0, 1], I thus consider the approximation

𝜕𝑙𝐹
𝑗0
𝑌 |𝑋(𝑦|·) :=

∑︁

|𝑘|∞≤𝑗0

𝑑𝑘(𝑦)𝜕𝑙𝐿𝑘(·),

which yields our approximation of 𝑚𝑟,1.

To deal with the statistical problem, I use

𝜕𝑙𝐹𝑌 |𝑋
𝑗0
(⋆|·) :=

∑︁

|𝑘|∞≤𝑗0

̂︀𝑑𝑘(⋆)𝜕𝑙𝐿𝑘(·),

where, for all 𝑦 ∈ [0, 1],

̂︀𝑑𝑘(𝑦) :=
1

𝐺

𝐺∑︁

𝑔=1

1l{𝑌 𝑔 ≤ 𝑦}
̂︀𝑓 𝛿𝑋(𝑋𝑔)

𝐿𝑘

(︀
𝑋𝑔

)︀
(4.119)

and replace 𝑓𝑌 |𝑋 by ̂︀𝑓 𝛿𝑌 |𝑋 in (4.62).

𝐿2 risk and smoothness assumptions. I study here the 𝐿2
𝜇(𝒮) risk, where 𝜇(·) =

(1−(2(·𝑙−̃︀𝑥)/𝑥0−1)2)1/2 and 𝒮 is deőned in Assumption (Est.3), for all 𝑟 = 1, . . . , 𝑑𝑅

ℛ2
𝐺0,𝐺1

( ̂︂𝑚𝑟,1,𝑚𝑟,1) := E
[︁
‖ ̂︂𝑚𝑟,1 −𝑚𝑟,1‖𝐿2

𝜇(𝒮)

⃒⃒
⃒𝒫𝐺0 ,𝒫𝐺1

]︁
,

and use𝐺𝑒 = 𝐺∧⌊(𝛿(𝐺0)/𝑣(𝐺0, ℰ))1/(1+1l{𝑞=∞})⌋∧⌊(𝛿(𝐺1)𝛿(𝐺0)/𝑣(𝐺1, ℰ ′))1/(1+1l{𝑞=∞})⌋
for the sample size required for an ideal estimator where 𝑓𝑋 and 𝑓𝑌 |𝑋 are known to

achieve the rate of the plug-in estimator.
19Note that we have

𝜇(·)𝜕𝑙𝐹𝑌 |𝑋(𝑦|·) =
∑︁

𝑘∈N
𝑑𝑅−1

0

𝑑𝑘(𝑦)
√︀

𝑘𝑙(𝑘𝑙 + 1)Ω𝑘,𝑙(·),

hence the link with the wavelet-vaguelet formulation of this inverse problem in Cai (2002) and that
I use in (4.61). The wavelet-vaguelet formulation is more complex but allows to handle more general
geometry of S𝑋 and without the weight 𝜇.
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Upper bounds on 𝐿2 risk. The upper bounds below take the form, for 𝑟 =

1, . . . , 𝑑𝑅 − 1,
1

𝑟(𝐺𝑒)
sup

𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

𝑓𝑋∈ℰ, 𝑓𝑌 |𝑋∈ℰ′

ℛ𝑞
𝐺0,𝐺1

(︁
̂︁𝑚𝑗0

𝑟,1,𝑚𝑟,1

)︁
= 𝑂𝑝(1). (4.120)

Proposition 13 (𝐿2
𝜇 convergence rates). Let 𝑑𝐶 = 2, 𝑙 > 0, 𝑁 ∈ N and 𝑠 > 0 such

that 𝑠𝑁 = 𝑠𝜈𝑁+1 − 1/2 > 0 where 𝜈𝑁+1 = 1/(1 + (𝑑𝑅 + 2(𝑠 + 1))/𝑁 + 1) →𝑁→∞ 1,

𝑗0 = ⌊̃︀𝑗⌋, ̃︀𝑗 is solution of ̃︀𝑗 = 𝐺
1/(2𝑠𝑁+𝑑𝑅+1)
𝑒 . Make assumptions 1-3, 8 and 7, then

(4.120) holds with 𝑞 = 2 and 𝑟(𝐺𝑒) = 𝐺
−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1)
𝑒 .

Proposition 13 shows that our main estimator based on Legendre polynomials ad-

mits a polynomial weighted 𝐿2 convergence rate. In the latter, note that 𝑠𝑁 converges

as 𝑁 → ∞ to 𝑠 − 1/2, hence this estimator is simpler yet non-optimal contrary to

the one in Section 4.2 based on wavelets.

Data-driven estimation

Similarly to Section 4.2.3, I use the Goldenshluger-Lepski method (see, e.g., Golden-

shluger and Lepski, 2014; Lacour and Massart, 2016) for the data-driven choice of 𝑗0.

I focus on the adaptation with the weigthed 𝐿2 risk. Let 𝑝𝐺 := 𝜃 ln(𝐺), 𝜃 > 6 and,

for all 𝑗0 ∈ NR, 𝑗 ∈ N, 𝑗max = ⌊̃︀𝑗⌋, where ̃︀𝑗 is solution of 2̃︀𝑗 = 𝐺1/(𝑑𝑅+1),

𝛽 (𝑦, 𝑗0) := max
𝑗0+1≤𝑗′≤𝑗max

⎛
⎝ ∑︁

|𝑘|∞≤𝑗′

⃒⃒
⃒ ̂︀𝑑𝑘(𝑦)

⃒⃒
⃒
2

− Σ (𝑗′)

⎞
⎠

+

,

Σ (𝑗0) :=
24(1 + 2𝑝𝐺)𝑗

𝑑𝑅+1
0 𝑐𝑋

𝐺
,

and ̂︀𝑗0 is deőned as

∀𝑦 ∈ S𝑌 , ̂︀𝑗0(𝑦) ∈ argmin
𝐽≤𝑗≤𝑗max

(𝛽(𝑦, 𝑗) + Σ(𝑗)) . (4.121)

Proposition 14 (Data-driven convergence rates for the 𝐿2 risk). Let 𝑑𝐶 = 2, 𝑙 > 0,
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𝑁 ∈ N. Make assumptions 1-3, 14 and 7, then we have that, for 𝑟 = 1, . . . , 𝑑𝑅 − 1,

1

𝑟(𝐺𝑒)
sup

𝑓𝐵·,1∈ℋ𝑠+1(𝑙)

𝑓𝑋∈ℰ, 𝑓𝑌 |𝑋∈ℰ′

ℛ2
𝐺0,𝐺1

(︁
̂︁𝑚 ̂︀𝑗0

𝑟,1,𝑚𝑟,1

)︁
= 𝑂𝑝

𝒪𝐺0,𝐺1,𝐺

(1), (4.122)

𝒪𝐺0,𝐺1,𝐺 = {𝑣(𝐺0, ℰ)/𝛿(𝐺0) ≤ 𝐺−2 ln(𝐺)−1, 𝑣(𝐺1, ℰ ′)/(𝛿(𝐺0)𝛿(𝐺1)) ≤ 𝐺−2 ln(𝐺)−1},
and 𝑟(𝐺𝑒) = (𝐺𝑒/ ln(𝐺𝑒))

−𝑠𝑁/(2𝑠𝑁+𝑑𝑅+1), where 𝑠𝑁 is deőned in Proposition 13.

Proof is available upon request, but can steadily be adapted from the wavelets’

case.

Asymptotic normality

Assumption 15. Assume (R.1) (𝑗0 + 1)𝑑𝑅+1/
√
𝐺 −→ 0; (R.2)

√
𝐺𝑣(𝐺1, ℰ ′)(𝑗0 +

1)𝑑𝑅+1/𝛿(𝐺1) −→
𝐺,𝐺1→∞

0; (R.3) inf𝑣∈S𝑌 𝑓𝑌 |𝑋(𝑣|𝑥) > 0; (R.4)
√
𝐺𝑣(𝐺0, ℰ)(𝑗0+1)𝑑𝑅+1/𝛿(𝐺0);

(R.5) 𝐺/(𝑗0 + 1)2𝑠+𝑑𝑅+1 −→
𝐺→∞

0.

Let (𝑥, 𝑦) ∈ S𝑋,𝑌 . We have, when 𝑓𝑌 |𝑋 and 𝑓𝑋 are known,

̂︁𝑚𝑗0
𝑟,1(𝑥, 𝑦)− 𝑦 =

1

𝐺

𝐺∑︁

𝑔=1

𝜁𝑗0𝑟,𝑔(𝑥, 𝑦), (4.123)

where

𝜁𝑗0𝑟,𝑔(𝑥, 𝑦) :=

𝑑𝑅−1∑︁

𝑙=1

(𝑥𝑙 − 1l{𝑙 = 𝑟})1l{𝑌 𝑔 ≤ 𝑦}
𝑓𝑌 |𝑋(𝑦|𝑥)𝑓𝑋(𝑋𝑔)

∑︁

|𝑘|∞≤𝑗0

𝐿𝑘

(︀
𝑋𝑔

)︀
𝜕𝑙𝐿𝑘 (𝑥) .

I show that, the impact of estimating 𝑓𝑌 |𝑋 and 𝑓𝑋 under Assumption 15 is negligible.

Proposition 15. (Asymptotic normality) Let (𝑥, 𝑦) ∈ S𝑋,𝑌 , 𝑑𝐶 = 2, 𝑠 ≥ (𝑑𝑅−3)/2.

Let 𝑟 = 1, . . . , 𝑑𝑅 − 1, 𝑗0 ∈ N, and 𝑣𝑗0𝑟 (𝑥, 𝑦) := Var
(︀
𝜁𝑗0𝑟,𝑔(𝑥, 𝑦)

)︀
. Make assumptions

1-3, 7, 6, and 15, then we have,

√︃
𝐺

𝑣
𝑗0
𝑟 (𝑥, 𝑦)

(︁
̂︁𝑚𝑗0

𝑟,1(𝑥, 𝑦)−𝑚𝑟,1(𝑥, 𝑦)
)︁

ℒ−→ 𝒩 (0, 1).
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Proof is available upon request, but can steadily be adapted from the wavelets’

case.
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Chapter 5

Rationalizing Rational Expectations:

Characterization and Tests

Joint with Xavier D’Haultfoeuille (CREST) and Arnaud Maurel (Duke University,

NBER and IZA), Forthcoming, Quantitative Economics.

Preprint version available at here.

Associated R Package (RationalExp) and vignette available here.

Abstract

In this paper, we build a new test of rational expectations based on the marginal

distributions of realizations and subjective beliefs. This test is widely applicable, in-

cluding in the common situation where realizations and beliefs are observed in two

different datasets that cannot be matched. We show that whether one can ratio-

nalize rational expectations is equivalent to the distribution of realizations being a

mean-preserving spread of the distribution of beliefs. The null hypothesis can then be

rewritten as a system of many moment inequality and equality constraints, for which

tests have been recently developed in the literature. The test is robust to measure-

ment errors under some restrictions and can be extended to account for aggregate

shocks. Finally, we apply our methodology to test for rational expectations about
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future earnings. While individuals tend to be right on average about their future

earnings, our test strongly rejects rational expectations.

Keywords: Rational expectations, Test, Subjective expectations, Data combination.

5.1 Introduction

How individuals form their beliefs about uncertain future outcomes is critical to

understanding decision making. Despite longstanding critiques (see, among many

others, Pesaran, 1987; Manski, 2004), rational expectations remain by far the most

popular framework to describe belief formation (Muth, 1961). This theory states that

agents have expectations that do not systematically differ from the realized outcomes,

and efficiently process all private information to form these expectations. Rational

expectations (RE) are a key building block in many macro- and micro-economic

models, and in particular in most of the dynamic microeconomic models that have

been estimated over the last two decades (see, e.g., Aguirregabiria and Mira, 2010;

Blundell, 2017, for recent surveys).

In this paper, we build a new test of RE. Our test only requires having access to

the marginal distributions of subjective beliefs and realizations, and, as such, can be

applied quite broadly. In particular, this test can be used in a data combination con-

text, where individual realizations and subjective beliefs are observed in two different

datasets that cannot be matched. Such situations are common in practice (see, e.g.,

Delavande, 2008; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and

Romano, 2014; Stinebrickner and Stinebrickner, 2014a; Gennaioli, Ma and Shleifer,

2016; Kuchler and Zafar, 2019; Boneva and Rauh, 2018; Biroli, Boneva, Raja and

Rauh, 2020). Besides, even in surveys for which an explicit aim is to measure sub-

jective expectations, such as the Michigan Survey of Consumers or the Survey of

Consumer Expectations of the New York Fed, expectations and realizations can typ-

ically only be matched for a subset of the respondents. And of course, regardless of

attrition, whenever one seeks to measure long or medium-term outcomes, matching
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beliefs with realizations does require waiting for a long period of time before the data

can be made available to researchers.1

The tests of RE implemented so far in this context only use speciőc implications

of the RE hypothesis. In contrast, we develop a test that exploits all possible im-

plications of RE. Using the key insight that we can rationalize RE if and only if the

distribution of realizations is a mean-preserving spread of the distribution of beliefs,

we show that rationalizing RE is equivalent to satisfying one moment equality and

(inőnitely) many moment inequalities.2 As a consequence, if these moment condi-

tions hold, RE cannot be refuted, given the data at our disposal. By exhausting all

relevant implications of RE, our test is able to detect much more violations of rational

expectations than existing tests.

To develop a statistical test of RE rationalization, we build on the recent literature

on inference based on moment inequalities, and more speciőcally, on Andrews and Shi

(2017). By applying their results to our context, we show that our test controls size

asymptotically and is consistent over őxed alternatives. We also provide conditions

under which the test is not conservative.

We then consider several extensions to our baseline test. First, we show that by

using a set of covariates that are common to both datasets, we can increase our ability

to detect violations of RE. Another important issue is that of unanticipated aggregate

shocks. Even if individuals have rational expectations, the mean of observed outcomes

may differ from the mean of individual beliefs simply because of aggregate shocks.

We show that our test can be easily adapted to account for such shocks.

Finally, we prove that our test is robust to measurement errors in the following

sense. If individuals have rational expectations but both beliefs and outcomes are

measured with (classical) errors, then we can still rationalize RE with such data pro-

vided that the amount of measurement errors on beliefs does not exceed the amount of
1Situations where realizations can be perfectly predicted beforehand, such as in school choice

settings where assignments are a known function of observed inputs, are notable exceptions.
2Interestingly, the equivalence on which we rely, which is based on Strassen’s theorem (Strassen,

1965), is also used in the microeconomic risk theory literature, see in particular Rothschild and
Stiglitz (1970).
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intervening transitory shocks plus the measurement errors on the realized outcomes.

In that speciőc sense, imperfect data quality does not jeopardize the validity of our

test. In particular, this allows for elicited beliefs to be noisier than realized outcomes.

This provides a rationale for our test even in cases where realizations and beliefs are

observed in the same dataset, since a direct test based on a regression of the outcome

on the beliefs (see, e.g., Lovell, 1986) is, at least at the population level, not robust

to any amount of measurement errors on the subjective beliefs.

We apply our framework to test for rational expectations about future earnings.

To do so, we combine elicited beliefs about future earnings with realized earnings,

using data from the Labor Market module of the Survey of Consumer Expectations

(SCE, New York Fed), and test whether household heads form rational expectations

on their annual labor earnings. While a naive test of equality of means between earn-

ings beliefs and realizations shows that earnings expectations are realistic in the sense

of not being signiőcantly biased, thus not rejecting the rational expectations hypoth-

esis, our test does reject rational expectations at the 1% level. Taken together, our

őndings illustrate the practical importance of incorporating the additional restrictions

of rational expectations that are embedded in our test. The results of our test also

indicate that the RE hypothesis is more credible for certain subpopulations than oth-

ers. For instance, we reject RE for individuals without a college degree, who exhibit

substantial deviations from RE. On the other hand, we fail to reject the hypothesis

that college-educated workers have rational expectations on their future earnings.

By developing a test of rational expectations in a setting where realizations and

subjective beliefs are observed in two different datasets, we bring together the liter-

ature on data combination (see, e.g., Cross and Manski, 2002b, Molinari and Peski,

2006b, Fan, Sherman and Shum, 2014, Buchinsky, Li and Liao, 2019, and Ridder and

Moffitt, 2007 for a survey), and the literature on testing for rational expectations in a

micro environment (see, e.g., Lovell, 1986; Gourieroux and Pradel, 1986; Ivaldi, 1992,

for seminal contributions).

On the empirical side, we contribute to a rapidly growing literature on the use of
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subjective expectations data in economics (see, e.g., Manski, 2004; Delavande, 2008;

Van der Klaauw and Wolpin, 2008; Van der Klaauw, 2012; Arcidiacono, Hotz, Maurel

and Romano, 2014; de Paula, Shapira and Todd, 2014; Stinebrickner and Stinebrick-

ner, 2014b; Wiswall and Zafar, 2015). In this paper, we show how to incorporate all

of the relevant information from subjective beliefs combined with realized data to test

for rational expectations.

The remainder of the paper is organized as follows. In Section 5.2, we present the

general set-up and the main theoretical equivalences underlying our RE test. In Sec-

tion 5.3, we introduce the corresponding statistical tests and study their asymptotic

properties. Section 5.4 illustrates the őnite sample properties of our tests through

Monte Carlo simulations. Section 5.5 applies our framework to expectations about

future earnings. Finally, Section 5.6 concludes. The appendix gathers the proofs of

the equivalence results. We consider in the Web Appendix various theoretical exten-

sions, additional simulation results, additional material on the application, and all

the remaining proofs. Finally, the companion R package RationalExp, described in

the user guide (D’Haultfœuille, Gaillac and Maurel, 2018a), performs the test of RE.

5.2 Set-up and characterizations

5.2.1 Set-up

We assume that the researcher has access to a őrst dataset containing the individual

outcome variable of interest, which we denote by 𝑌 . She also observes, through a

second dataset drawn from the same population, the elicited individual expectation

on 𝑌 , denoted by 𝜓. The two datasets, however, cannot be matched. We focus on

situations where the researcher has access to elicited beliefs about mean outcomes,

as opposed to probabilistic expectations about the full distribution of outcomes. The

type of subjective expectations data we consider in the paper has been collected in

various contexts, and used in a number of prior studies (see, among others, Delavande,

2008; Zafar, 2011b; Arcidiacono, Hotz and Kang, 2012; Arcidiacono, Hotz, Maurel and
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Romano, 2014; Hoffman and Burks, 2020).

Formally, 𝜓 = ℰ [𝑌 |ℐ], where ℐ denotes the 𝜎-algebra corresponding to the agent’s

information set and ℰ [·|ℐ] is the subjective expectation operator (i.e. for any 𝑈 ,

ℰ [𝑈 |ℐ] is a ℐ-measurable random variable). We are interested in testing the rational

expectations (RE) hypothesis 𝜓 = E[𝑌 |ℐ], where E [·|ℐ] is the conditional expecta-

tion operator generated by the true data generating process. Importantly, we remain

agnostic throughout most of our analysis on the information set ℐ. Our setting is also

compatible with heterogeneity in the information different agents use to form their

expectations. To see this, let (𝑈1, ..., 𝑈𝑚) denote 𝑚 variables that agents may or may

not observe when they form their expectations, and let 𝐷𝑘 = 1 if 𝑈𝑘 is observed, 0

otherwise. Then, if ℐ is the information set generated by (𝐷1𝑈1, ..., 𝐷𝑚𝑈𝑚), agents

will use different subsets of the (𝑈𝑘)𝑘=1...𝑚 (i.e., different pieces of information) de-

pending on the values of the (𝐷𝑘)𝑘=1...𝑚. Our setup encompasses a wide variety of

situations, where individuals have private information and form their beliefs based on

their information set. This includes various contexts where individuals form their ex-

pectations about future outcomes, including education, labor market as well as health

outcomes. By remaining agnostic on the information set, our analysis complements

several studies which primarily focus on testing for different information sets, while

maintaining the rational expectations assumption (see Cunha and Heckman, 2007,

for a survey).

It is easy to see that the RE hypothesis imposes restrictions on the joint distribu-

tion of realizations 𝑌 and beliefs 𝜓. In this data combination context, the relevant

question of interest is then whether one can rationalize RE, in the sense that there

exists a triplet (𝑌 ′, 𝜓′, ℐ ′) such that (𝑖) the pair of random variables (𝑌 ′, 𝜓′) are com-

patible with the marginal distributions of 𝑌 and 𝜓; and (𝑖𝑖) 𝜓′ correspond to the

rational expectations of 𝑌 ′, given the information set ℐ ′, i.e., E(𝑌 ′|ℐ ′) = 𝜓′. Hence,
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we consider the test of the following hypothesis:

H0 : there exists a pair of random variables (𝑌 ′, 𝜓′) and a sigma-algebra ℐ ′ such that

𝜎(𝜓′) ⊂ ℐ ′, 𝑌 ′ ∼ 𝑌, 𝜓′ ∼ 𝜓 and E [𝑌 ′|ℐ ′] = 𝜓′,

where ∼ denotes equality in distribution. Rationalizing RE does not mean that

the true realizations 𝑌 , beliefs 𝜓 and information set ℐ are such that E [𝑌 |ℐ] = 𝜓.

Instead, it means that there exists a triplet (𝑌 ′, 𝜓′, ℐ ′) consistent with the data and

such that E [𝑌 ′|ℐ ′] = 𝜓′. In other words, a violation of H0 implies that RE does not

hold, in the sense that the true realizations, beliefs, and information set do not satisfy

RE (E [𝑌 |ℐ] ̸= 𝜓). The converse, however, is not true.

5.2.2 Equivalences

Main equivalence

Let 𝐹𝜓 and 𝐹𝑌 denote the cumulative distribution functions (cdf) of 𝜓 and 𝑌 , 𝑥+ =

max(0, 𝑥), and deőne

∆(𝑦) =

∫︁ 𝑦

−∞
𝐹𝑌 (𝑡)− 𝐹𝜓(𝑡)𝑑𝑡.

Throughout most of our analysis, we impose the following regularity conditions on

the distributions of realized outcomes (𝑌 ) and subjective beliefs (𝜓):

Assumption 1. E (|𝑌 |) <∞ and E (|𝜓|) <∞.

The following preliminary result will be useful subsequently.

Lemma 1. Suppose that Assumption 1 holds. Then H0 holds if and only if there exists

a pair of random variables (𝑌 ′, 𝜓′) such that 𝑌 ′ ∼ 𝑌 , 𝜓′ ∼ 𝜓 and E [𝑌 ′|𝜓′] = 𝜓′.

Lemma 1 states that in order to test for H0, we can focus on the constraints on

the joint distribution of 𝑌 and 𝜓, and ignore those related to the information set.

This is intuitive given that we impose no restrictions on this set. Our main result

is Theorem 1 below. It states that rationalizing RE (i.e., H0) is equivalent to a

continuum of moment inequalities, and one moment equality.
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Theorem 1. Suppose that Assumption 1 holds. The following statements are equiv-

alent:

(i) H0 holds;

(ii) (𝐹𝑌 mean-preserving spread of 𝐹𝜓) ∆(𝑦) ≥ 0 for all 𝑦 ∈ R and E [𝑌 ] = E [𝜓];

(iii) E
[︀
(𝑦 − 𝑌 )+ − (𝑦 − 𝜓)+

]︀
≥ 0 for all 𝑦 ∈ R and E [𝑌 ] = E [𝜓].

The implication (i) ⇒ (iii) and the equivalence between (ii) and (iii) are simple

to establish. The key part of the result is to prove that (iii) implies (i). To show this,

we őrst use Lemma 1, which states that H0 is equivalent to the existence of (𝑌 ′, 𝜓′)

such that 𝑌 ′ ∼ 𝑌 , 𝜓′ ∼ 𝜓 and E [𝑌 ′|𝜓′] = 𝜓′. Then the result essentially follows from

Strassen’s theorem (Strassen, 1965, Theorem 8).

It is interesting to note that Theorem 1 is related to the theory of risk in mi-

croeconomic theory. In particular, using the terminology of Rothschild and Stiglitz

(1970), (ii) states that realizations (𝑌 ) are more risky than beliefs (𝜓). The main

value of Theorem 1, from a statistical point of view, is to transform H0 into the set

of moment inequality (and equality) restrictions given by (iii). We show in Section

5.3 how to build a statistical test of these conditions.

Comparison with alternative approaches We now compare our approach with

alternative ones that have been proposed in the literature. In the following discussion,

as in this whole section, we reason at the population level and thus ignore statistical

uncertainty. Accordingly, the łtestsž we consider here are formally deterministic, and

we compare them in terms of data generating processes violating the null hypothesis

associated with each of them.

Our approach can clearly detect many more violations of rational expectations

than the łnaivež approach based solely on the equality E(𝑌 ) = E(𝜓). It also detects

more violations than the approach based on the restrictions E(𝑌 ) = E(𝜓) and V(𝑌 ) ≥
V(𝜓) (approach based on the variance), which has been considered in particular in

the macroeconomic literature on the accuracy and rationality of forecasts (see, e.g.
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Patton and Timmermann, 2012). On the other hand, and as expected since it relies

on the joint distribution of (𝑌, 𝜓), the łdirectž approach for testing RE, based on

E(𝑌 |𝜓) = 𝜓, can detect more violations of rational expectations than ours.

To better understand the differences between these four different approaches

(łnaivež, variance, łdirectž, and ours), it is helpful to consider important particu-

lar cases. Of course, if 𝜓 = E [𝑌 |ℐ], individuals are rational and none of the four

approaches leads to reject RE. Next, consider departures from rational expectations

of the form 𝜓 = E [𝑌 |ℐ] + 𝜂, with 𝜂 independent of E [𝑌 |ℐ]. If E(𝜂) ̸= 0, sub-

jective beliefs are biased, and individuals are on average either over-pessimistic or

over-optimistic. It follows that E(𝑌 ) ̸= E(𝜓), implying that all four approaches lead

to reject RE.

More interestingly, if E(𝜂) = 0, individuals’ expectations are right on average,

and the naive approach does not lead to reject RE. However, it is easy to show that,

as long as deviations from RE are heterogeneous in the population (V(𝜂) > 0), the

direct approach always leads to a rejection. In this setting, our approach constitutes

a middle ground, in which rejection of RE depends on the degree of dispersion of

the deviations from RE (𝜂) relative to the uncertainty shocks (𝜀 = 𝑌 − E(𝑌 |ℐ)). In

other words and intuitively, we reject RE whenever departures from RE dominate the

uncertainty shocks affecting the outcome. Formally, and using similar arguments as in

Proposition 4 in Subsection 5.2.2, one can show that if 𝜀 is independent of E [𝑌 |ℐ], we

reject H0 as long as the distribution of the uncertainty shocks stochastically dominates

at the second-order the distribution of the deviations from RE.

Speciőcally, if 𝜀 ∼ 𝒩 (0, 𝜎2
𝜀) and 𝜂 ∼ 𝒩 (0, 𝜎2

𝜂), we reject RE if and only if 𝜎2
𝜂 > 𝜎2

𝜀 .

In such a case, our approach boils down to the variance approach mentioned above:

we reject whenever V(𝜓) > V(𝑌 ). But interestingly, if the discrepancy (𝜂) between

beliefs and RE is not normally distributed, we can reject H0 even if V(𝜓) ≤ V(𝑌 ).

Suppose for instance that 𝜀 ∼ 𝒩 (0, 1) and

𝜂 = 𝑎 (−1{𝑈 ≤ 0.1}+ 1{𝑈 ≥ 0.9}) , 𝑈 ∼ 𝒰 [0, 1] and 𝑎 > 0.
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In other words, 80% of individuals are rational, 10% are over-pessimistic and form ex-

pectations equal to E [𝑌 |ℐ]−𝑎, whereas 10% are over-optimistic and expect E [𝑌 |ℐ]+𝑎.
Then one can show that our approach leads to reject RE when 𝑎 ≥ 1.755, while for

𝑎 = 1.755, V(𝜂) ≃ 0.616 < V(𝜀) = 1.

Binary outcome Our equivalence result does not require the outcome 𝑌 to be

continuously distributed. In the particular case where 𝑌 is binary, our test re-

duces to the naive test of E(𝑌 ) = E(𝜓). Indeed, when 𝑌 is a binary outcome

and 𝜓 ∈ [0, 1], one can easily show that as long as E(𝑌 ) = E(𝜓), the inequalities

E
[︀
(𝑦 − 𝑌 )+ − (𝑦 − 𝜓)+

]︀
≥ 0 automatically hold for all 𝑦 ∈ R. This applies to expec-

tations about binary events, such as, e.g., being employed or not at a given date.

Interpretation of the boundary condition To shed further light on our test and

on the interpretation of H0, it is instructive to derive the distributions of 𝑌 |𝜓 that

correspond to the boundary condition (∆(𝑦) = 0). The proposition below shows that,

in the presence of rational expectations, agents whose beliefs 𝜓 lies at the boundary

of H0 have perfect foresight, i.e. 𝜓 = E[𝑌 |ℐ] = 𝑌 .3

Proposition 1. Suppose that (𝑌, 𝜓) satisőes RE, 𝑢 ↦→ 𝐹−1
𝑌 |𝜓(𝜏 |𝑢) is continuous for

all 𝜏 ∈ (0, 1), and ∆(𝑦0) = 0 for some 𝑦0 in the interior of the support of 𝜓. Then

the distribution of 𝑌 conditional on 𝜓 = 𝑦0 is degenerate: 𝑃 (𝑌 = 𝑦0|𝜓 = 𝑦0) = 1.

Equivalence with covariates

In practice we may observe additional variables 𝑋 ∈ R𝑑𝑋 in both datasets. Assuming

that 𝑋 is in the agent’s information set, we modify H0 as follows:4

H0𝑋 : there exists a pair of random variables (𝑌 ′, 𝜓′) and a sigma-algebra ℐ ′ such that

𝜎(𝜓′, 𝑋) ⊂ ℐ ′, 𝑌 ′|𝑋 ∼ 𝑌 |𝑋, 𝜓′|𝑋 ∼ 𝜓|𝑋 and E [𝑌 ′|ℐ ′] = 𝜓′.

3For any cdf 𝐹 , we let 𝐹−1 denote its quantile function, namely 𝐹−1(𝜏) = inf{𝑥 : 𝐹 (𝑥) ≥ 𝜏}.
4See complementary work by Gutknecht et al. (2018), who use subjective expectations data to

relax the rational expectations assumption, and propose a method allowing to test whether speciőc
covariates are included in the agents’ information sets.
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Adding covariates increases the number of restrictions that are implied by the

rational expectation hypothesis, thus improving our ability to detect violations of ra-

tional expectations. Proposition 2 below formalizes this idea and shows that H0𝑋 can

be expressed as a continuum of conditional moment inequalities, and one conditional

moment equality.

Proposition 2. Suppose that Assumption 1 holds. The following two statements are

equivalent:

(i) H0𝑋 holds;

(ii) Almost surely, E
[︀
(𝑦 − 𝑌 )+ − (𝑦 − 𝜓)+

⃒⃒
𝑋
]︀
≥ 0 for all 𝑦 ∈ R and E [𝑌 − 𝜓|𝑋] =

0.

Moreover, if H0𝑋 holds, H0 holds as well.

Equivalence with unpredictable aggregate shocks

Oftentimes, the outcome variable is affected not only by individual-speciőc shocks,

but also by aggregate shocks. We denote by 𝐶 the random variable corresponding to

the aggregate shocks. The issue, in this case, is that we observe a single realization

of 𝐶 (𝑐, say), along with the outcome variable conditional on that realization 𝐶 =

𝑐. In other words, we only identify 𝐹𝑌 |𝐶=𝑐 rather than 𝐹𝑌 , as the latter would

require to integrate over the distribution of all possible aggregate shocks. Moreover,

the restriction E [𝑌 |𝐶 = 𝑐, 𝜓] = 𝜓 is generally violated, even though the rational

expectations hypothesis holds. It follows that one cannot directly apply our previous

results by simply replacing 𝐹𝑌 by 𝐹𝑌 |𝐶=𝑐. In such a case, one has to make additional

assumptions on how the aggregate shocks affect the outcome.

To illustrate our approach, let us consider the example of individual income. Sup-

pose that the logarithm of income of individual 𝑖 at period 𝑡, denoted by 𝑌𝑖𝑡, satisőes

a Restricted Income Proőle model:

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽𝑡 + 𝜀𝑖𝑡,
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where 𝛽𝑡 capture aggregate (macroeconomic) shocks, 𝜀𝑖𝑡 follows a zero-mean ran-

dom walk, and 𝛼𝑖, (𝛽𝑡)𝑡 and (𝜀𝑖𝑡)𝑡 are assumed to be mutually independent. Let

ℐ𝑖𝑡−1 denote individual 𝑖’s information set at time 𝑡 − 1, and suppose that ℐ𝑖𝑡−1 =

𝜎 (𝛼𝑖, (𝛽𝑡−𝑘)𝑘≥1, (𝜀𝑖𝑡−𝑘)𝑘≥1). If individuals form rational expectations on their future

outcomes, their beliefs in period 𝑡 − 1 about their future log-income in period 𝑡 are

given by

𝜓𝑖𝑡 = E [𝑌𝑖𝑡|ℐ𝑖𝑡−1] = 𝛼𝑖 + E [𝛽𝑡|(𝛽𝑡−𝑘)𝑘≥1] + 𝜀𝑖𝑡−1.

Thus, 𝑌𝑖𝑡 = 𝜓𝑖𝑡 + 𝐶𝑡 + 𝜀𝑖𝑡 − 𝜀𝑖𝑡−1, with 𝐶𝑡 = 𝛽𝑡 − E [𝛽𝑡|(𝛽𝑡−𝑘)𝑘≥1]. The corresponding

conditional expectation is given by:

E [𝑌𝑖𝑡|ℐ𝑖𝑡−1, 𝐶𝑡 = 𝑐𝑡] = 𝜓𝑖𝑡 + 𝑐𝑡 ̸= 𝜓𝑖𝑡.

To get closer to our initial set-up, we now drop indexes 𝑖 and 𝑡 and maintain

the conditioning on the aggregate shocks 𝐶 = 𝑐 implicit. Under these conventions,

rationalizing RE does not correspond to E [𝑌 |ℐ] = 𝜓, but instead to E [𝑌 |ℐ] = 𝑐0+𝜓

for some 𝑐0 ∈ R. A similar reasoning applies to multiplicative instead of additive

aggregate shocks. In such a case, the null takes the form E [𝑌 |ℐ] = 𝑐0𝜓, for some

𝑐0 > 0. In these two examples, 𝑐0 is identiőable: by 𝑐0 = E(𝑌 )−E(𝜓) in the additive

case, by 𝑐0 = E(𝑌 )/E(𝜓) in the multiplicative case. Moreover, there exists in both

cases a known function 𝑞(𝑦, 𝑐) such that E(𝑞(𝑌, 𝑐0)) = E(𝜓), namely 𝑞(𝑦, 𝑐) = 𝑦 − 𝑐

and 𝑞(𝑦, 𝑐) = 𝑦/𝑐 for additive and multiplicative shocks, respectively.

More generally, we consider the following null hypothesis for testing RE in the

presence of aggregate shocks:

H0𝑆 : there exist random variables (𝑌 ′, 𝜓′) , a sigma-algebra ℐ ′ and 𝑐0 ∈ R such that

𝜎(𝜓′) ⊂ ℐ ′, 𝑌 ′ ∼ 𝑌, 𝜓′ ∼ 𝜓 and E [𝑞 (𝑌 ′, 𝑐0)|ℐ ′] = 𝜓′.

where 𝑞(., .) is a known function supposed to satisfy the following restrictions.

Assumption 2. E (|𝜓|) <∞ and for all 𝑐, E (|𝑞 (𝑌, 𝑐) |) <∞. Moreover, E [𝑞(𝑌, 𝑐)] =
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E[𝜓] admits a unique solution, 𝑐0.

By applying our main equivalence result (Theorem 1) to 𝑞(𝑌, 𝑐0) and 𝜓, we obtain

the following result.

Proposition 3. Suppose that Assumption 2 holds. Then the following statements are

equivalent:

(i) H0𝑆 holds;

(ii) E
[︀
(𝑦 − 𝑞 (𝑌, 𝑐0))

+ − (𝑦 − 𝜓)+
]︀
≥ 0 for all 𝑦 ∈ R.

A few remarks on this proposition are in order. First, this result can be extended

in a straightforward way to a setting with covariates. This is important not only

to increase the ability of our test to detect violations of RE, but also because this

allows for aggregate shocks that differ across observable groups. We discuss further

this extension, and the corresponding statistical test, in Appendix 5.8.1. Second,

in the presence of aggregate shocks, the null hypothesis does not involve a moment

equality restriction anymore; the corresponding moment is used instead to identify

𝑐0. Related, a clear limitation of the naive test (E(𝑌 ) = E(𝜓)) is that, unlike our test,

it is not robust to aggregate shocks. In this case, rejecting the null could either stem

from violations of the rational expectation hypothesis, or simply from the presence

of aggregate shocks. Third, in Appendix 5.8.1, we examine whether one can extend

the results above to test for RE when aggregate shocks affect the outcomes in a

more general way. Proposition 6 establishes a negative result in this respect: as

long as one allows for a sufficiently ŕexible dependence between the outcome and

the aggregate shocks, any given distribution of subjective expectations is arbitrarily

close to a distribution for which RE can be rationalized. This implies that, within

this more general class of outcome models, there does not exist any almost-surely

continuous RE test that has non-trivial power.

Robustness to measurement errors

We have assumed so far that 𝑌 and 𝜓 were perfectly observed; yet measurement

errors in survey data are pervasive (see, e.g. Bound, Brown and Mathiowetz, 2001).

283



We explore in the following the extent to which our test is robust to measurement

errors. By robust, we mean that we still rationalize RE, when they in fact hold.

Speciőcally, assume that the true variables (𝜓 and 𝑌 ) are unobserved. Instead, we

only observe ̂︀𝜓 and ̂︀𝑌 , which are affected by classical measurement errors.5 Namely:

̂︀𝜓 = 𝜓 + 𝜉𝜓 with 𝜉𝜓 ⊥⊥ 𝜓, E[𝜉𝜓] = 0

̂︀𝑌 = 𝑌 + 𝜉𝑌 with 𝜉𝑌 ⊥⊥ 𝑌, E[𝜉𝑌 ] = 0.

(5.1)

The following proposition shows that our test is robust to a certain degree of mea-

surement errors on the beliefs.

Proposition 4. Suppose that 𝑌 and 𝜓 satisfy H0, and let 𝜀 = 𝑌 − 𝜓 and
(︁
̂︀𝜓, ̂︀𝑌

)︁
be

deőned as in (5.1). Suppose also that 𝜀 + 𝜉𝑌 ⊥⊥ 𝜓 and 𝐹𝜉𝜓 dominates at the second

order 𝐹𝜉𝑌 +𝜀. Then ̂︀𝑌 and ̂︀𝜓 satisfy H0.

The key condition is that 𝐹𝜉𝜓 dominates at the second order 𝐹𝜉𝑌 +𝜀, or, equivalently

here, that 𝐹𝜉𝑌 +𝜀 is a mean-preserving spread of 𝐹𝜉𝜓 . Recall that in the case of normal

variables, 𝜉𝜓 ∼ 𝒩 (0, 𝜎2
1) and 𝜉𝑌 + 𝜀 ∼ 𝒩 (0, 𝜎2

2), this is in turn equivalent to imposing

𝜎2
1 ≤ 𝜎2

2. Thus, even if there is no measurement error on 𝑌 , so that 𝜉𝑌 = 0, this

condition may hold provided that the variance of measurement errors on 𝜓 is smaller

than the variance of the uncertainty shocks on 𝑌 . More generally, this allows elicited

beliefs to be - potentially much - noisier than realized outcomes, a setting which is

likely to be relevant in practice. One should not infer, however, that measurement

errors are innocuous in our set-up. Indeed, the converse of Proposition 4 does not

hold: ̂︀𝑌 and ̂︀𝜓 may satisfy 𝐻0, though 𝑌 and 𝜓 do not. As a simple example, suppose

that 𝑌 ∼ 𝒩 (0, 𝜎2
𝑌 ), 𝜓 ∼ 𝒩 (0, 𝜎2

𝜓), 𝜉𝑌 ∼ 𝒩 (0, 𝜎2
3), 𝜉𝜓 = 0 and 𝜎2

𝜓 ∈ (𝜎2
𝑌 , 𝜎

2
𝑌 + 𝜎2

3].

Then, ̂︀𝑌 and ̂︀𝜓 satisfy 𝐻0, since 𝜎2
𝜓 ≤ 𝜎2

𝑌 + 𝜎2
3, whereas 𝑌 and 𝜓 do not, since

𝜎2
𝜓 > 𝜎2

𝑌 . Importantly though, Proposition 4 does show that our test is conservative

in the sense that measurement errors cannot result in incorrectly concluding that the

5See Zafar (2011a) who does not őnd evidence of non-classical measurement errors on subjective
beliefs elicited from a sample of Northwestern undergraduate students. We conjecture that our test
is robust to some forms of non-classical measurement errors. However, it seems difficult in this case
to obtain a general result similar to the one in Proposition 4.
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RE hypothesis does not hold.

In situations where (̂︀𝑌 , ̂︀𝜓) are jointly observed, one could in principle alternatively

implement the direct test. However, in contrast to our test, the direct test is not robust

to any measurement errors on the subjective beliefs 𝜓. Indeed, if RE holds, so that

E [𝑌 |𝜓] = 𝜓, it is nevertheless the case that E
[︁
̂︀𝑌
⃒⃒
⃒ ̂︀𝜓

]︁
̸= ̂︀𝜓, as long as Cov(𝜉𝑌 , ̂︀𝜓) =

Cov(𝜉𝜓, 𝑌 ) = 0 and V(𝜉𝜓) > 0. In other words, even if individuals have rational

expectations, the direct test will reject the null hypothesis in the presence of even an

arbitrarily small degree of measurement errors on the elicited beliefs.

Also, it is unclear whether, in the presence of measurement errors on the elicited

beliefs and beyond the restrictions on the marginal distributions, there are restric-

tions on the copula of (̂︀𝑌 , ̂︀𝜓) that are implied by RE. For instance, we show in

Proposition 7 in Appendix 5.8.2 that under RE, and without imposing restrictions

on the dependence between 𝜉𝑌 + 𝜀 and 𝜉𝜓, the coefficient of the (theoretical) linear

regression of ̂︀𝑌 on ̂︀𝜓 remains unrestricted.6 On the other hand, if one assumes that

Cov(𝜉𝑌 + 𝜀, 𝜉𝜓) ≥ 0 and V(𝜓)/V(𝜉𝜓) ≥ 𝜆 for some 𝜆 ≥ 0, Proposition 7 also shows

that the coefficient of the linear regression of ̂︀𝑌 on ̂︀𝜓 is bounded from below under

RE. Such a restriction, which does require to take a stand on the signal-to-noise ratio

V(𝜓)/V(𝜉𝜓), can be easily added to the moment inequalities of our test if (̂︀𝑌 , ̂︀𝜓) is

observed.

Other extensions

We now brieŕy discuss other relevant directions in which Theorem 1 can be extended.

First, another potential source of uncertainty on 𝜓 is rounding. Rounding practices

by interviewees are common in the case of subjective beliefs. Under additional re-

strictions, it is possible in such a case to construct bounds on the true beliefs 𝜓 (see,

e.g., Manski and Molinari, 2010). We show in Appendix 5.8.3 that our test can be

generalized to accommodate this rounding practice.

Second, we have implicitly maintained the assumption so far that subjective beliefs

6There might of course possibly be additional relevant information in the higher-order moments,
although we have not been able to őnd any.
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and realized outcomes are drawn from the same population. In Appendix 5.8.4, we

relax this assumption and show that our test can be easily extended to allow for

sample selection under unconfoundedness, through an appropriate reweighting of the

observations.

Third, our equivalence result and our test can be extended to accommodate situ-

ations with multiple outcomes (𝑌𝑘)𝑘=1,..,𝐾 and multiple subjective beliefs (𝜓𝑘)𝑘=1,..,𝐾

associated with each of these outcomes. Speciőcally, whether one can rationalize

rational expectations in this environment can be written as:

E(𝑌𝑘|𝜓1, ..., 𝜓𝐾) = 𝜓𝑘, for all 𝑘 ∈ {1, ..., 𝐾}

which, in turn, is equivalent to the distribution of the outcomes 𝑌𝑘 being a mean-

preserving spread of the distribution of the beliefs 𝜓𝑘. This situation arises in various

contexts, including cases where respondents declare their subjective probabilities of

making particular choices among 𝐾 + 1 possible alternatives. This also arises in

situations where expectations about the distribution of a continuous outcome 𝑌 are

elicited through questions of the form łwhat do you think is the percent chance that

[Y] will be greater than [y]?ž, for different values (𝑦𝑘)𝑘=1,..,𝐾 . In such cases, it is natural

to build a RE test based on the multiple outcomes (1{𝑌 > 𝑦𝑘})𝑘=1,..,𝐾 and subjective

beliefs (𝜓𝑘)𝑘=1,..,𝐾 , where 𝜓𝑘 is the subjective survival function of 𝑌 evaluated at 𝑦𝑘.

5.3 Statistical tests

We now propose a testing procedure for H0𝑋 , which can be easily adapted to the case

where no covariate common to both datasets is available to the analyst. To simplify

notation, we use a potential outcome framework to describe our data combination

problem. Speciőcally, instead of observing (𝑌, 𝜓), we suppose to observe only, in

addition to the covariates 𝑋, ̃︀𝑌 = 𝐷𝑌 + (1 − 𝐷)𝜓 and 𝐷, where 𝐷 = 1 (resp.

𝐷 = 0) if the unit belongs to the dataset of 𝑌 (resp. 𝜓). As in Subsection 5.2.1, we

assume that the two samples are drawn from the same population, which amounts
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to supposing that 𝐷 ⊥⊥ (𝑋, 𝑌, 𝜓) (see Assumption 3-(i) below). In order to build our

test, we use the characterization (ii) of Proposition 2:

E
[︀
(𝑦 − 𝑌 )+ − (𝑦 − 𝜓)+

⃒⃒
𝑋
]︀
≥ 0 ∀𝑦 ∈ R and E [𝑌 − 𝜓|𝑋] = 0.

Equivalently but written more compactly with ̃︀𝑌 only,

E

[︂
𝑊

(︁
𝑦 − ̃︀𝑌

)︁+
⃒⃒
⃒⃒𝑋

]︂
≥ 0 ∀𝑦 ∈ R and E

[︁
𝑊 ̃︀𝑌

⃒⃒
⃒𝑋

]︁
= 0,

where𝑊 = 𝐷/E(𝐷)−(1−𝐷)/E(1−𝐷). This formulation of the null hypothesis allows

us to apply the instrumental functions approach of Andrews and Shi (2017, AS), who

consider the issue of testing many conditional moment inequalities and equalities. We

then build on their results to establish that our test controls size asymptotically and

is consistent over őxed alternatives.7 The initial step is to transform the conditional

moments into the following unconditional moments conditions:

E

[︂
𝑊

(︁
𝑦 − ̃︀𝑌

)︁+

𝑔(𝑋)

]︂
≥ 0, E [(𝑌 − 𝜓) 𝑔(𝑋)] = 0,

for all 𝑦 ∈ R and 𝑔 belonging to a suitable class of non-negative functions.

We suppose to observe a sample (𝐷𝑖, 𝑋𝑖, ̃︀𝑌𝑖)𝑖=1...𝑛 of 𝑛 i.i.d. copies of (𝐷,𝑋, ̃︀𝑌 ).

We consider instrumental functions 𝑔 that are indicators of belonging to speciőc

hypercubes within [0, 1]𝑑𝑋 , hence we tranform the variables 𝑋𝑖 to lie in [0, 1]𝑑𝑋 . For

notational convenience, we let ̃︀𝑋𝑖 denote the nontransformed vector of covariates, and

redeőne 𝑋𝑖 as:

𝑋𝑖 = Φ0

(︁
̂︀Σ−1/2

̃︀𝑋,𝑛

(︁
̃︀𝑋𝑖 − ̃︀𝑋 𝑖

)︁)︁
,

where, for any 𝑥 = (𝑥1, . . . , 𝑥𝑑𝑋 ), we let Φ0(𝑥) = (Φ(𝑥1), . . . ,Φ (𝑥𝑑𝑋 ))
⊤. Here Φ

denotes the standard normal cdf, ̂︀Σ ̃︀𝑋,𝑛 is the sample covariance matrix of
(︁
̃︀𝑋𝑖

)︁
𝑖=1...𝑛

and ̃︀𝑋𝑛 its sample mean.

7Other testing procedures could be used to implement our test, such as that proposed by Linton
et al. (2010).
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Speciőcally, we consider instrumental functions 𝑔 belonging to the class of func-

tions 𝒢𝑟 = {𝑔𝑎,𝑟, 𝑎 ∈ 𝐴𝑟}, with 𝐴𝑟 = {1, 2, . . . , 2𝑟}𝑑𝑋 (𝑟 ≥ 1), 𝑔𝑎,𝑟(𝑥) = 1l {𝑥 ∈ 𝐶𝑎,𝑟}
and, for any 𝑎 = (𝑎1, ..., 𝑎𝑑𝑋 )

⊤ ∈ 𝐴𝑟,

𝐶𝑎,𝑟 =

𝑑𝑋∏︁

𝑢=1

(︂
𝑎𝑢 − 1

2𝑟
,
𝑎𝑢
2𝑟

]︂
.

Finally, to deőne the test statistic 𝑇 , we need to introduce additional notations.

First, let 𝑤𝑖 = 𝑛𝐷𝑖/
∑︀𝑛

𝑗=1𝐷𝑗 − 𝑛(1−𝐷𝑖)/
∑︀𝑛

𝑗=1(1−𝐷𝑗) and deőne, for any 𝑦 ∈ R,

𝑚
(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
=

⎛
⎝ 𝑚1

(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁

𝑚2

(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
⎞
⎠ =

⎛
⎝ 𝑤𝑖

(︁
𝑦 − ̃︀𝑌𝑖

)︁+

𝑔 (𝑋𝑖)

𝑤𝑖̃︀𝑌𝑖𝑔 (𝑋𝑖)

⎞
⎠ . (5.2)

Let 𝑚𝑛(𝑔, 𝑦) =
∑︀𝑛

𝑖=1𝑚
(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
/𝑛 and deőne similarly 𝑚𝑛,𝑗 for 𝑗 = 1, 2. For

any function 𝑔 and any 𝑦 ∈ R, we also deőne, for some 𝜖 > 0,

Σ𝑛(𝑔, 𝑦) = ̂︀Σ𝑛(𝑔, 𝑦) + 𝜖Diag
(︁
̂︀V
(︁
̃︀𝑌
)︁
, ̂︀V

(︁
̃︀𝑌
)︁)︁

,

where ̂︀Σ𝑛(𝑔, 𝑦) is the sample covariance matrix of
√
𝑛𝑚𝑛 (𝑔, 𝑦) and ̂︀V

(︁
̃︀𝑌
)︁

is the

empirical variance of ̃︀𝑌 . We then denote by Σ𝑛,𝑗𝑗(𝑔, 𝑦) (𝑗 = 1, 2) the 𝑗-th diagonal

term of Σ𝑛(𝑔, 𝑦).

Then the (Cramér-von-Mises) test statistic 𝑇 is deőned by

𝑇 =sup
𝑦∈ ̂︀𝒴

𝑟𝑛∑︁

𝑟=1

(2𝑟)−𝑑𝑋

(𝑟2 + 100)

∑︁

𝑎∈𝐴𝑟

[︂
(1− 𝑝)

(︂
−
√
𝑛𝑚𝑛,1 (𝑔𝑎,𝑟, 𝑦)

Σ𝑛,11(𝑔𝑎,𝑟, 𝑦)1/2

)︂+2

+ 𝑝

(︂√
𝑛𝑚𝑛,2 (𝑔𝑎,𝑟, 𝑦)

Σ𝑛,22(𝑔𝑎,𝑟, 𝑦)1/2

)︂2 ]︂
,

where ̂︀𝒴 =

[︂
min

𝑖=1,...,𝑛

̃︀𝑌𝑖, max
𝑖=1,...,𝑛

̃︀𝑌𝑖
]︂
, 𝑝 ∈ (0, 1) is a parameter weighting the moments in-

equalities versus equalities and (𝑟𝑛)𝑛∈N is a deterministic sequence tending to inőnity.

To test for rational expectations in the absence of covariates, we set the instru-

mental function equal to the constant function 𝑔(𝑋) = 1, and the test statistic is
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simply written as:

𝑇 = sup
𝑦∈ ̂︀𝒴

[︂
(1− 𝑝)

(︂
−
√
𝑛𝑚𝑛,1(𝑦)

Σ𝑛,11(𝑦)1/2

)︂+2

+ 𝑝

(︂√
𝑛𝑚𝑛,2(𝑦)

Σ𝑛,22(𝑦)1/2

)︂2 ]︂
,

where, using the notations introduced above, 𝑚𝑛,𝑗(𝑦) = 𝑚𝑛,𝑗(1, 𝑦) and Σ𝑛,𝑗𝑗(𝑦) =

Σ𝑛,𝑗𝑗(1, 𝑦) (𝑗 = 1, 2).

Whether or not covariates are included, the resulting test is of the form 𝜙𝑛,𝛼 =

1l
{︀
𝑇 > 𝑐*𝑛,𝛼

}︀
where the estimated critical value 𝑐*𝑛,𝛼 is obtained by bootstrap using as

in AS the Generalized Moment Selection method. Speciőcally, we follow three steps:

1. Compute the function 𝜙𝑛 (𝑦, 𝑔) =
(︀
𝜙𝑛,1 (𝑦, 𝑔) , 0

)︀⊤
for (𝑦, 𝑔) in ̂︀𝒴 ×∪𝑟𝑛𝑟=1𝒢𝑟, with

𝜙𝑛,1 (𝑦, 𝑔) = Σ
1/2

𝑛,11𝐵𝑛1l

{︂
𝑛1/2

𝜅𝑛
Σ

−1/2

𝑛,11 𝑚𝑛,1(𝑦, 𝑔) > 1

}︂
,

and where 𝐵𝑛 = (𝑏0 ln(𝑛)/ ln(ln(𝑛)))
1/2, 𝑏0 > 0, 𝜅𝑛 = (𝜅 ln(𝑛))1/2, and 𝜅 > 0.

To compute Σ𝑛,11, we őx 𝜖 to 0.05, as in AS.

2. Let
(︁
𝐷*
𝑖 , ̃︀𝑌 *

𝑖 , 𝑋
*
𝑖

)︁
𝑖=1,...,𝑛

denote a bootstrap sample, i.e., an i.i.d. sample from

the empirical cdf of
(︁
𝐷, ̃︀𝑌 ,𝑋

)︁
, and compute from this sample the bootstrap

counterparts of 𝑚𝑛 and Σ𝑛, 𝑚*
𝑛 and Σ

*
𝑛. Then compute the bootstrap coun-

terpart of 𝑇 , 𝑇 *, replacing Σ𝑛 (𝑦, 𝑔𝑎,𝑟) and
√
𝑛𝑚𝑛 (𝑦, 𝑔𝑎,𝑟) by Σ

*
𝑛 (𝑦, 𝑔𝑎,𝑟) and

√
𝑛 (𝑚*

𝑛 −𝑚𝑛) (𝑦, 𝑔𝑎,𝑟) + 𝜙𝑛 (𝑦, 𝑔𝑎,𝑟), respectively.

3. The threshold 𝑐*𝑛,𝛼 is the quantile (conditional on the data) of order 1 − 𝛼 + 𝜂

of 𝑇 * + 𝜂 for some 𝜂 > 0. Following AS, we set 𝜂 to 10−6.

Note that, despite the multiple steps involved, the testing procedure remains com-

putationally easily tractable. In particular, for the baseline sample we use in our

application (see Section 5.5.1), the RE test only takes 2 minutes.8

We now turn to the asymptotic properties of the test. For that purpose, it is

convenient to introduce additional notations. Let 𝒴 and 𝒳 denote the support of 𝑌

8This CPU time is obtained using our companion R package, on an Intel Xeon CPU E5-2643,
3.30GHz with 256Gb of RAM.
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and 𝑋 respectively, and

ℒ𝐹 =

{︂
(𝑦, 𝑔𝑎,𝑟) : 𝑦 ∈ 𝒴 , (𝑎, 𝑟) ∈ 𝐴𝑟 × N : E𝐹

[︂
𝑊

(︁
𝑦 − ̃︀𝑌

)︁+

𝑔𝑎,𝑟(𝑋)

]︂
= 0

}︂
,

where, to make the dependence on the underlying probability measure explicit, E𝐹

denotes the expectation with respect to the distribution 𝐹 of
(︁
𝐷, ̃︀𝑌 ,𝑋

)︁
. Finally, let

ℱ denote a subset of all possible cumulative distribution functions of
(︁
𝐷, ̃︀𝑌 ,𝑋

)︁
and

ℱ0 be the subset of ℱ such that H0𝑋 holds. We impose the following conditions on

ℱ and ℱ0.

Assumption 3.

(i) For all 𝐹 ∈ ℱ , 𝐷 ⊥⊥ (𝑋, 𝑌, 𝜓);

(ii) There exists 𝑀 > 0 such that ̃︀𝑌 ∈ [−𝑀,𝑀 ] for all 𝐹 ∈ ℱ . Also, inf𝐹∈ℱ V𝐹

(︁
̃︀𝑌
)︁
>

0 and 0 < inf𝐹∈ℱ E𝐹 [𝐷] ≤ sup𝐹∈ℱ E𝐹 [𝐷] < 1;

(iii) For all 𝐹 ∈ ℱ0, 𝐾𝐹 , the asymptotic covariance kernel of 𝑛−1/2Diag
(︁
V𝐹

(︁
̃︀𝑌
)︁)︁−1/2

𝑚𝑛

is in a compact set 𝒦2 of the set of all 2 × 2 matrix valued covariance kernels

on 𝒴 × ∪𝑟≥1𝒢𝑟 with uniform metric 𝑑 deőned by

𝑑(𝐾,𝐾 ′) = sup
(𝑦,𝑔,𝑦′,𝑔′)∈(𝒴×∪𝑟≥1𝐻𝑟)

2

‖𝐾(𝑦, 𝑔, 𝑦′, 𝑔′)−𝐾 ′(𝑦, 𝑔, 𝑦′, 𝑔′)‖ .

The main result of this section is Theorem 2. It shows that, under Assumption 3,

the test 𝜙𝑛,𝛼 controls the asymptotic size and is consistent over őxed alternatives.

Theorem 2. Suppose that 𝑟𝑛 → ∞ and Assumption 3 holds. Then:

(i) lim sup𝑛→∞ sup𝐹∈ℱ0
E𝐹 [𝜙𝑛,𝛼] ≤ 𝛼;

(ii) If there exists 𝐹0 ∈ ℱ0 such that ℒ𝐹0 is nonempty and there exists (𝑗, 𝑦0, 𝑔0) in

{1, 2} × ℒ𝐹0 such that 𝐾𝐹0,𝑗𝑗(𝑦0, 𝑔0, 𝑦0, 𝑔0) > 0, then, for any 𝛼 ∈ [0, 1/2),

lim
𝜂→0

lim sup
𝑛→∞

sup
𝐹∈ℱ0

E𝐹 [𝜙𝑛,𝛼] = 𝛼.
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(iii) If 𝐹 ∈ ℱ∖ℱ0, then lim𝑛→∞ E𝐹 (𝜙𝑛,𝛼) = 1.

Theorem 2 (i) is closely related to Theorem 5.1 and Lemma 2 in AS. It shows that

the test 𝜙𝑛,𝛼 controls the asymptotic size, in the sense that the supremum over ℱ0

of its level is asymptotically lower or equal to 𝛼. To prove this result, the key is to

establish that, under Assumption 3, the class of transformed unconditional moment

restrictions that characterize the null hypothesis satisőes a manageability condition

(see Pollard, 1990). Using arguments from Hsu (2016), we then exhibit cases of

equality in Theorem 2 (ii), showing that, under mild additional regularity conditions,

the test has asymptotically exact size (when letting 𝜂 tend to zero). Finally, Theorem

2 (iii), which is based on Theorem 6.1 in AS, shows that the test is consistent over

őxed alternatives.

Extension to account for aggregate shocks This testing procedure can be easily

modiőed to accommodate unanticipated aggregate shocks. Speciőcally, using the

notation deőned in Section 5.2.2, we consider the same test as above after replacing

̃︀𝑌 by ̃︀𝑌̂︀𝑐 = 𝐷𝑞(𝑌,̂︀𝑐) + (1 − 𝐷)𝜓, where ̂︀𝑐 denotes a consistent estimator of 𝑐0. The

resulting test is given by 𝜙𝑛,𝛼,̂︀𝑐 = 1l
{︀
𝑇 (̂︀𝑐) > 𝑐*𝑛,𝛼

}︀
(where 𝑇 (̂︀𝑐) is obtained by replacing

̃︀𝑌 by ̃︀𝑌̂︀𝑐 in the original test statistic). Such tests have the same properties as those

above under some mild regularity conditions on 𝑞(·, ·), which hold in particular for the

leading examples of additive and multiplicative shocks (𝑞(𝑦, 𝑐) = 𝑦 − 𝑐 and 𝑞(𝑦, 𝑐) =

𝑦/𝑐). We refer the reader to Appendix 5.8.1 for a detailed discussion of this extension.

5.4 Monte Carlo simulations

In the following we study the őnite sample performances of the test without covariates

through Monte Carlo simulations. The őnite sample performances of the version of

our test that accounts for covariates are reported and discussed in Appendix 5.8.5.

We suppose that the outcome 𝑌 is given by

𝑌 = 𝜌𝜓 + 𝜀,
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with 𝜌 ∈ [0, 1], 𝜓 ∼ 𝒩 (0, 1) and

𝜀 = 𝜁 (−1l{𝑈 ≤ 0.1}+ 1l{𝑈 ≥ 0.9}) ,

where 𝜁, 𝑈 and 𝜓 are mutually independent, 𝜁 ∼ 𝒩 (2, 0.1) and 𝑈 ∼ 𝒰 [0, 1]. In this

setup, E(𝑌 |𝜓) = 𝜌𝜓 and expectations are rational if and only if 𝜌 = 1. But since we

observe 𝑌 and 𝜓 in two different datasets, there are values of 𝜌 ̸= 1 for which our

test is not consistent. More precisely, we can show that the test is consistent if and

only if 𝜌 ≤ 𝜌* ≃ 0.616. Besides, given this data generating process, the naive test

E(𝑌 ) = E(𝜓) is not consistent for any 𝜌, while the RE test based on variances is only

able to detect a subset of violations of RE that correspond to 𝜌 < 0.445.

To compute our test, we need to choose the tuning parameters 𝑏0, 𝜅, 𝜖 and 𝜂

(see Section 5.3 for deőnitions). As mentioned in Section 5.3, we set 𝜖 = 0.05 and

𝜂 = 10−6, following Andrews and Shi (2017). Andrews and Shi (2013) show that there

exists in practice a large range of admissible values for the other tuning parameters

parameters. Regarding 𝑏0 and 𝜅, we follow Beare and Shi (2019, Section 4.2) and

compute, for a grid of candidate parameters, the rejection rate under the null and

under one alternative (namely, 𝜌 = 0.5), through Monte Carlo simulations. Then, we

set (𝑏0, 𝜅) so as to maximize the power subject to the constraint that the rejection

rate under the null is below the nominal size 0.05. That way, we obtain 𝑏0 = 0.3

and 𝜅 = 0.001. The parameter 𝑝 has a distinct effect, in that its choice does not

affect size, at least asymptotically. Rather, this parameter selects to what extent

the test aims power at the equality constraint 𝐸(𝑌 − 𝜓) = 0 versus the inequalities

𝐸[(𝑦 − 𝑌 )+ − (𝑦 − 𝜓)+] ≥ 0 (𝑦 ∈ R). Setting 𝑝 to 0.05 leads to slightly higher power

in our DGP, but values of 𝑝 in [0, 0.31] provide similar őnite sample performances,

with power always greater than 90% of the maximal power.

Results reported in Figure 5-1 show the power curves of the test 𝜙𝛼 for őve dif-

ferent sample sizes (𝑛𝑌 = 𝑛𝜓 = 𝑛 ∈ {400; 800; 1, 200; 1, 600; 3, 200}) as a function of

the parameter 𝜌, using 800 simulations for each value of 𝜌. We use 500 bootstrap

simulations to compute the critical values of the test.
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Several remarks are in order. First, as expected, under the alternative (i.e. for

values of 𝜌 ≤ 𝜌* = 0.616), rejection frequencies increase with the sample size 𝑛. In

particular, for the largest sample size 𝑛 = 3, 200, our test always results in rejection

of the RE hypothesis for values of 𝜌 as large as .45. Second, in this setting, our test

is conservative in the sense that rejection frequencies under the null are smaller than

𝛼 = 0.05, for all sample sizes. This should not necessarily come as a surprise since the

test proposed by AS has been shown to be conservative in alternative őnite-sample

settings (see, e.g. Table 1 p.22 in AS for the case of őrst-order stochastic dominance

tests). However, for the version of our test that accounts for covariates and for the

data generating process considered in Section 5.8.5 of the Web Appendix, rejection

frequencies under the null are very close to the nominal level.

Notes: The vertical line at 𝜌 ≃ 0.616 corresponds to the theoretical limit for the rejection

of the null hypothesis using our test. The dotted horizontal line corresponds to the 5%

level.

Figure 5-1: Power curves.
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5.5 Application to earnings expectations

5.5.1 Data

Using the tests developed in Section 5.3, we now investigate whether household heads

form rational expectations on their future earnings. We use for this purpose data from

the Survey of Consumer Expectations (SCE), a monthly household survey that has

been conducted by the Federal Reserve Bank of New York since 2012 (see Armantier,

Topa, Van der Klaauw and Zafar, 2017, for a detailed description of the survey,

and Kuchler and Zafar, 2019; Conlon, Philossoph, Wiswall and Zafar, 2018; Fuster,

Kaplan and Zafar, 2020 for recent articles using the SCE). The SCE is conducted

with the primary goal of eliciting consumer expectations about inŕation, household

őnance, labor market, as well as housing market. It is a rotating internet-based panel

of about 1,200 household heads, in which respondents participate for up to twelve

months.9 Each month, the panel consists of about 180 entrants, and 1,100 repeated

respondents. While entrants are overall fairly similar to the repeated respondents,

they are slightly older and also have slightly lower incomes (see Table 1 in Armantier

et al., 2017).

Of particular interest for this paper is the supplementary module on labor market

expectations. This module is repeated every four months since March 2014. Since

March 2015, respondents are asked the following question about labor market earn-

ings expectations (𝜓) over the next four months: łWhat do you believe your annual

earnings will be in four months?ž. Implicit throughout the rest of our analysis is the

assumption that these elicited beliefs correspond to the mean of the subjective beliefs

distribution.10 In this module, respondents are also asked about current job out-

comes, including their current annual earnings (𝑌 ), through the following question:

łHow much do you make before taxes and other deductions at your [main/current]

9Each survey takes on average about őfteen minutes to complete, and respondents are paid $15
per survey completed.

10This assumption, while often made in the subjective expectations literature, is a priori restric-
tive. In this application, for the vast majority of the sub-groups of the population, the mean of
𝜓 cannot be statistically distinguished from the one of 𝑌 (see Table 5.2 below). This provides
empirical support for this assumption.
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job, on an annual basis?ž.

Speciőcally, we use for our baseline test the elicited earnings expectations (𝜓),

which are available for two cross-sectional samples of household heads who were work-

ing either full-time or part-time at the time of the survey, and responded to the labor

market module in March 2015 and July 2015 respectively. We combine this data with

current earnings (𝑌 ) declared in July 2015 and November 2015 by the respondents

who are working full-time or part-time at the time of the survey.11 This leaves us

with a őnal sample of 2,993 observations, which is composed of 1,565 earnings expec-

tation observations, and 1,428 realized earnings observations. 51% (1,536) of these

observations correspond to the sub-sample of respondents who are reinterviewed at

least once. We refer to Table 5.1 for additional details on our sample.

Table 5.1: Descriptive statistics of the SCE sample

Mean Std. dev.

Male 0.53 0.50

White 0.74 0.43

College degree 0.49 0.46

Low numeracy 0.33 0.47

Tenure ≤ 6 months 0.17 0.38

Age 45.8 13.0

𝜓 (Earnings beliefs) $50,592 $40,889

𝑌 (Realized earnings) $52,354 $38,634

5.5.2 Implementation of the test

We summarize how we implemented the test in practice, either on the overall sample

or on each subsample corresponding to the binary covariates in Table 5.1. For each

case, we start by winsorizing the distribution of realized earnings (𝑌 ) and earnings

11Throughout our analysis (with the exception of the number of observations reported in Table 5.2)
we use the monthly survey weights of the SCE in order to obtain an estimation sample that is
representative of the population of U.S. household heads. See Armantier et al. (2017) for more details
on the construction of these weights. We also Winsorize the top 5 percentile of the distributions of
realized earnings and earnings beliefs.
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beliefs (𝜓) at the 95% level.12 Then, we perform the test without covariates, where

we allow for multiplicative aggregate shock and thus test 𝐻0𝑆, with 𝑞(𝑦; 𝑐) = 𝑦/𝑐.13

Then, we use the function test of our companion R package RationalExp.14 We

choose the same values for the tuning parameters 𝑏0 = 0.3 and 𝜅 = 0.001 as in the

Monte-Carlo simulations in Section 5.4. We also set 𝑝 = 0.05, 𝜖 = 0.05, and 𝜂 = 10−6.

Following Andrews and Shi (2017), the interval ̂︀𝒴 is approximated by a grid of length

100 from min
𝑖=1,...,𝑛

̃︀𝑌𝑖 to max
𝑖=1,...,𝑛

̃︀𝑌𝑖. Finally, we use 5,000 bootstrap simulations to compute

the critical values of the test.

5.5.3 Are earnings expectations rational?

In Table 5.2 below, we report the results from the naive test of RE (E(𝑌 ) = E(𝜓)),

and our preferred test (łFull REž), where we allow for multiplicative aggregate shocks.

We implement the tests both on the overall population and on separate subgroups.

The latter approach allows us not only to identify which groups fail to rationalize RE,

but also, and importantly, to account for the possibility that aggregate shocks may

in fact differ across subgroups.

Several remarks are in order. First, using our test, we reject for the whole popu-

lation, at any standard level, the hypothesis that agents form rational expectations

over their future earnings. Second, we also reject RE (at the 5% level) when we apply

our test separately for whites (non-Hispanics) and minorities, as well as low vs. high

numeracy test scores.15

Third, the results from our test point to beliefs formation being heterogeneous

across schooling (college degree vs. no college degree) and tenure (more or less than 6

months spent in current job) levels. In particular, we cannot rule out that the beliefs

12We show in Table 5.4 of the Web Appendix that our results are robust to other levels of Win-
sorization.

13In our application, the parameter 𝑐 is estimated using survey weights from the SCE.
14See Section 3 in our user’s guide (D’Haultfœuille et al., 2018a) for details on this function.
15Respondents’ numeracy is evaluated in the SCE through őve questions involving computation

of sales, interests on savings, chance of winning lottery, of getting a disease and being affected by
a viral infection. Respondents are then partitioned into two categories: łHigh numeracyž (4 or 5
correct answers), and łlow numeracyž (3 or fewer correct answers).
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about future earnings of individuals with more schooling experience correspond to

rational expectations with respect to some information set. Similarly, while we reject

RE at any standard level for the subgroup of workers who have accumulated less

than 6 months of experience in their current job, we can only marginally reject at

the 10% level RE for those who have been in their current job for a longer period

of time. As such, these őndings complement some of the recent evidence from the

economics of education and labor economics literatures that individuals have more

accurate beliefs about their ability as they progress through their schooling and work

careers (see, e.g., Stinebrickner and Stinebrickner, 2012; Arcidiacono, Aucejo, Maurel

and Ransom, 2016).

Table 5.2: Tests of RE on annual earnings

E(𝑌 − 𝜓)/E(𝑌 ) Naive RE Variance RE Full RE Number of obs.

(p-val) (p-val) (p-val) 𝜓 𝑌

All 0.034 0.23 0.71 < 0.001 1,565 1,428

Women 0.059 0.13 0.62 < 0.001 730 649

Men 0.025 0.48 0.58 0.210 835 779

White 0.032 0.31 0.67 0.021 1,200 1,097

Minorities 0.046 0.43 0.60 < 0.006 365 331

College degree -0.001 0.96 0.50 0.130 1,106 1,053

No college degree 0.093 0.04 0.57 0.013 459 375

High numeracy 0.033 0.28 0.62 0.012 1,158 1,070

Low numeracy 0.055 0.27 0.58 0.022 407 358

Tenure ≤ 6 months 0.105 0.24 0.63 < 0.001 271 180

Tenure > 6 months 0.007 0.81 0.65 0.091 1,294 1,248

Notes: łNaive REž denotes the naive RE test of equality of means between 𝑌 and 𝜓.

łVariance REž denotes the variance RE test where the null hypothesis is the variance of 𝑌

being greater or equal than the variance of 𝜓, once we account for aggregate, multiplicative

shocks. łFull RE" denotes the test without covariates, where we test H0𝑆 with 𝑞(𝑦, 𝑐) =

𝑦/𝑐. We use 5,000 bootstrap simulations to compute the critical values of the Full RE

test. Distributions of realized earnings (𝑌 ) and earnings beliefs (𝜓) are both Winsorized

at the 95% quantile.
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Fourth, using the naive test of equality of means between earnings beliefs and

realizations, one would instead generally not reject the null at any standard levels.

The one exception is the subgroup of workers without a college degree, for whom the

naive test yields rejection of RE at the 5% level. But, as discussed before, one cannot

rule out that such a rejection is due to aggregate shocks.

Even though individuals in the overall sample form expectations over their earn-

ings in the near future that are realistic, in the sense of not being signiőcantly biased,

the result from our preferred test shows that earnings expectations are nonetheless

not rational. Taken together, these őndings highlight the importance of incorporating

the additional restrictions of rational expectations that are embedded in our test, us-

ing the distributions of subjective beliefs and realized outcomes to detect violations of

rational expectations. That the variance test of RE never rejects the null at any stan-

dard levels indicates that it is important in practice to go beyond the őrst moments,

and exploit instead the full distributions of beliefs and outcomes to detect departures

from rational expectations. These results also suggest that, in order to rationalize

the realized and expected earnings data, one should consider alternative models of

expectation formation that primarily differ from RE in their third, or higher-order

moments.

The results of the direct test of RE on the subsample of individuals who are fol-

lowed over four months are reported in Table 5.3 below. While these results generally

paint a similar picture to the results of our test, there are some differences. In partic-

ular, the direct test rejects RE at the 5% level for men and at 1% for individuals with

tenure greater than 6 months, whereas we do not reject RE for the former group and

only marginally so, at the 10% level, for the latter. The direct test also rejects with

less power than our test for certain groups (low numeracy, tenure lower than 6 months,

and minorities). This lower power may seem surprising given that the direct test can

exploit the joint distribution of (𝑌, 𝜓), but is simply due to the important reduction

in sample size when focusing on the subsample of individuals who are followed over

four months results.
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There are also important issues associated with the direct test, which generally

warrant caution when interpreting the results from this test. Most importantly, as

already discussed in Section 5.2.2, the direct test is not robust to measurement errors

on the subjective beliefs 𝜓. As shown in Proposition S7 in the Web Appendix, it is

however possible to derive a restriction on 𝛽 under RE. Speciőcally, if 𝜉𝜓 is positively

correlated with 𝜀+ 𝜉𝑌 , we have, under RE,

𝛽 ≥ 1− 1

1 + 𝜆
, (5.3)

where 𝜆 is a lower bound on the signal-to-noise ratio V(𝜓)/V(𝜉𝜓). Table 5.3 also

reports the results of tests combining (5.3) with the restrictions on the marginal

distributions used in our full RE test. Adding the restriction (5.3) does not change

the results for values of signal-to-noise ratio between 5 and 20 (i.e., for noise-to-signal

ratios between 5% and 20%). Overall, using the subsample of linked data (𝑌, 𝜓)

through this additional restriction does not add much to our test, at least once we

account for possible measurement errors on the elicited beliefs. Another signiőcant

concern with the direct test, and, more generally, the use of linked data on (𝑌, 𝜓), is

that attrition may be endogenous. We discuss this issue in more details in Appendix

5.8.6.
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Table 5.3: Direct test, our test, and combined test of RE on annual earnings

𝛽 Direct test Full RE Combined test Number of obs.

Bound on signal/noise 𝜆 5 20

Implied bound on 𝛽 0.833 0.952

(p-val) (p-val) (p-value) (p-value) 𝜓 𝑌 (𝜓, 𝑌 )

All 0.954 0.001 < 0.001 < 0.001 < 0.001 1,565 1,428 768

Women 0.956 0.002 < 0.001 < 0.001 < 0.001 730 649 356

Men 0.960 0.021 0.210 0.276 0.276 835 779 412

White 0.963 0.004 0.021 0.019 0.010 1,200 1,097 596

Minorities 0.928 0.010 0.006 0.007 0.005 365 331 172

College degree 0.974 0.060 0.130 0.182 0.182 1,106 1,053 560

No college degree 0.954 0.044 0.013 0.017 0.017 459 375 208

High numeracy 0.959 0.001 0.012 0.016 0.016 1,158 1,070 573

Low numeracy 0.954 0.094 0.022 0.030 0.030 407 358 195

Tenure ≤ 6 months 0.942 0.015 0.001 0.002 0.001 271 180 98

Tenure > 6 months 0.956 0.001 0.091 0.094 0.094 1,294 1,248 670

Notes: łDirect testž denotes the direct test of RE when (𝜓, 𝑌 ) is observed. 𝛽 is the coefficient of the

regression of 𝑌 on 𝜓 in that case. łFull RE" denotes the test without covariates, where we test H0𝑆

with 𝑞(𝑦, 𝑐) = 𝑦/𝑐. We use 5,000 bootstrap simulations to compute the critical values of the Full RE

test. łCombined RE testž denotes the test without covariates, where we test H0𝑆 with 𝑞(𝑦, 𝑐) = 𝑦/𝑐,

which is the łFull RE" test, combined with the additional restriction 𝛽 ≥ 1 − 1/(1 + 𝜆), where 𝜆 is an

a priori bound on the signal-to-noise ratio. Distributions of realized earnings (𝑌 ) and earnings beliefs

(𝜓) are both Winsorized at the 95% quantile.

Coming back to our test, the rejection of RE for the overall population but also for

most of the subpopulations are, in view of Proposition 4, unlikely to be due to data

quality issues. In that sense, these results may be seen as robust evidence against the

RE hypothesis for individual earnings, at least in this context. As a result, conclusions

of behavioral models based on the assumption that agents form rational expectations

about their future earnings may be misleading. Exploring this important question

requires one to go beyond testing though, by quantifying the extent to which model

predictions are actually sensitive to the violations from rational expectations that

have been detected with our test. We investigate this issue in D’Haultfœuille et al.

(2018b) in the context of a life-cycle consumption model.
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5.6 Conclusion

In this paper, we develop a new test of rational expectations that can be used in

a broad range of empirical settings. In particular, our test only requires having

access to the marginal distributions of realizations and subjective beliefs. As such,

it can be applied in frequent cases where realizations and beliefs are observed in

two separate datasets, or only observed for a selected sub-population. By bypassing

the need to link beliefs to future realizations, our approach also enables to test for

rational expectations without having to wait until the outcomes of interest are realized

and made available to researchers. We establish that whether one can rationalize

rational expectations is equivalent to the distribution of realizations being a mean-

preserving spread of the distribution of beliefs, a condition which can be tested using

recent tools from the moment inequalities literature. We show that our test can

easily accommodate covariates and aggregate shocks, and, importantly for practical

purpose, is robust to some degree of measurement errors on the elicited beliefs. We

apply our method to test for rational expectations about future earnings, using data

from the Survey of Consumer Expectations. While individuals tend to be right on

average about their future earnings, our test strongly rejects rational expectations.

Beyond testing, in this application as in any other situations where rational ex-

pectations are violated, a natural next step is to evaluate the deviations from rational

expectations that one can rationalize from the available data. In the context of struc-

tural analysis, a central question then becomes to which extent the main predictions

of the model are sensitive to those departures from rational expectations. We ex-

plore this important issue and propose in D’Haultfœuille et al. (2018b) a tractable

sensitivity analysis framework on the assumed form of expectations.
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5.7 Proofs of the equivalence results

5.7.1 Proof of Lemma 1

Under H0, there exist 𝑌 ′, 𝜓′ and ℐ ′ such that 𝑌 ′ ∼ 𝑌 , 𝜓′ ∼ 𝜓, 𝜎(𝜓′) ⊂ ℐ ′ and

E(𝑌 ′|ℐ ′) = 𝜓′. Then, by the law of iterated expectations,

E[𝑌 ′|𝜓′] = E [E [𝑌 ′|ℐ ′]|𝜓′] = E [𝜓′|𝜓′] = 𝜓′.

Conversely, if there exists (𝑌 ′, 𝜓′) such that 𝑌 ′ ∼ 𝑌 , 𝜓′ ∼ 𝜓 and E[𝑌 ′|𝜓′] = 𝜓′, let

ℐ ′ = 𝜎 (𝜓′). Then 𝜓′ = E [𝑌 ′|𝜓′] = E [𝑌 ′|ℐ ′] and H0 holds.

5.7.2 Proof of Theorem 1

(i) ⇔ (iii). By Strassen’s theorem (Strassen, 1965, Theorem 8), the existence of

(𝑌, 𝜓) with margins equal to 𝐹𝑌 and 𝐹𝜓 and such that E [𝑌 |𝜓] = 𝜓 is equivalent to
∫︀
𝑓𝑑𝐹𝜓 ≤

∫︀
𝑓𝑑𝐹𝑌 for every convex function 𝑓 . By, e.g., Proposition 2.3 in Gozlan

et al. (2018), this is, in turn, equivalent to (iii).

(ii) ⇔ (iii). By Fubini-Tonelli’s theorem,
∫︀ 𝑦
−∞ 𝐹𝑌 (𝑡)𝑑𝑡 = E

[︁∫︀ 𝑦
−∞ 1l{𝑡 ≥ 𝑌 }𝑑𝑡

]︁
=

E [(𝑦 − 𝑌 )+] . The same holds for 𝜓. Hence, ∆(𝑦) ≥ 0 for all 𝑦 ∈ R is equivalent to

E
[︀
(𝑦 − 𝑌 )+

]︀
≥ E

[︀
(𝑦 − 𝜓)+

]︀
for all 𝑦 ∈ R. The result follows.

5.7.3 Proof of Proposition 1

First, by Jensen’s inequality, we obtain

E[(𝑦0 − 𝑌 )+|𝜓] ≥ (𝑦0 − E(𝑌 |𝜓))+ = (𝑦0 − 𝜓)+.

Moreover, ∆(𝑦0) = 0 implies that E((𝑦0−𝑌 )+) = E((𝑦0−𝜓)+). Hence, almost surely,

we have

E[(𝑦0 − 𝑌 )+|𝜓] = (𝑦0 − 𝜓)+.
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Equality in the Jensen’s inequality implies that the function is affine on the support

of the random variable. Therefore, for almost all 𝑢, we either have Supp(𝑌 |𝜓 = 𝑢) ⊂
[𝑦0,∞) or Supp(𝑌 |𝜓 = 𝑢) ⊂ (−∞, 𝑦0]. Because E [𝑌 |𝜓] = 𝜓, Supp(𝑌 |𝜓 = 𝑢) ⊂
[𝑦0,∞) for almost all 𝑢 > 𝑦0 and Supp(𝑌 |𝜓 = 𝑢) ⊂ (−∞, 𝑦0] for almost all 𝑢 < 𝑦0.

Then, for all 𝜏 ∈ (0, 1), 𝐹−1
𝑌 |𝜓(𝜏 |𝑢) ≥ 𝑦0 for almost all 𝑢 ≥ 𝑦0 and 𝐹−1

𝑌 |𝜓(𝜏 |𝑢) ≤ 𝑦0 for

almost all 𝑢 ≤ 𝑦0. Thus, for all 𝜏 ∈ (0, 1), by continuity of 𝐹−1
𝑌 |𝜓(𝜏 |·), 𝐹−1

𝑌 |𝜓(𝜏 |𝑦0) = 𝑦0.

This implies that 𝑌 |𝜓 = 𝑦0 is degenerate.

5.7.4 Proof of Proposition 2

We őrst prove that H0𝑋 is equivalent to the existence of (𝑌 ′, 𝜓′) such that 𝐷𝑌 ′ +

(1 − 𝐷)𝜓′ = ̃︀𝑌 , 𝐷 ⊥⊥ (𝑌 ′, 𝜓′)|𝑋 and E((𝑌 ′|𝜓′, 𝑋) = 𝜓′. First, under 𝐻0𝑋 , there

exists (𝑌 ′, 𝜓′, ℐ ′) such that 𝐷𝑌 ′+(1−𝐷)𝜓′ = ̃︀𝑌 , 𝐷 ⊥⊥ (𝑌 ′, 𝜓′)|𝑋, 𝜎(𝜓′, 𝑋) ⊂ ℐ ′ and

E(𝑌 ′|ℐ ′) = 𝜓′. Then

E[𝑌 ′|𝜓′, 𝑋] = E [E [𝑌 ′|ℐ ′]|𝜓′, 𝑋] = E [𝜓′|𝜓′, 𝑋] = 𝜓′.

Conversely, if there exists (𝑌 ′, 𝜓′) such that 𝐷𝑌 ′ + (1 −𝐷)𝜓′ = ̃︀𝑌 , 𝐷 ⊥⊥ (𝑌 ′, 𝜓′)|𝑋
and E(𝑌 ′|𝜓′, 𝑋) = 𝜓′, let ℐ ′ = 𝜎 (𝑋 ′, 𝜓′). Then 𝜓′ = E(𝑌 ′|𝜓′, 𝑋) = E(𝑌 ′|ℐ ′) and

H0𝑋 holds. The proposition then follows as Theorem 1.

5.7.5 Proof of Proposition 4

For all 𝑦, 𝜉 ↦→ E[(𝑦−𝜓−𝜉)+] is decreasing and convex. Then, because 𝐹𝜉𝜓 dominates

at the second order 𝐹𝜉𝑌 +𝜀, we have

∫︁
E
[︀
(𝑦 − 𝜓 − 𝜉)+

]︀
𝑑𝐹𝜀+𝜉𝑌 (𝜉) ≥

∫︁
E
[︀
(𝑦 − 𝜓 − 𝜉)+

]︀
𝑑𝐹𝜉𝜓(𝜉).
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As a result, for all 𝑦, we obtain

E

[︂(︁
𝑦 − ̂︀𝑌

)︁+
]︂
=

∫︁
E
[︀
(𝑦 − 𝜓 − 𝜀− 𝜉𝑌 )

+ |𝜀+ 𝜉𝑌 = 𝜉
]︀
𝑑𝐹𝜀+𝜉𝑌 (𝜉)

=

∫︁
E
[︀
(𝑦 − 𝜓 − 𝜉)+

]︀
𝑑𝐹𝜀+𝜉𝑌 (𝜉)

≥
∫︁

E
[︀
(𝑦 − 𝜓 − 𝜉)+

]︀
𝑑𝐹𝜉𝜓(𝜉)

=E
[︁
(𝑦 − ̂︀𝜓)+

]︁
.

Moreover, E
(︁
̂︀𝑌
)︁
= E

(︁
̂︀𝜓
)︁
. By Theorem 1, ̂︀𝑌 and ̂︀𝜓 satisfy H0.
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5.8 Appendices

In this web appendix, we őrst establish additional results with aggregate shocks.

Then, we discuss the robustness of linear regressions for testing rational expectations

(RE) when expectations and realizations of the variable of interest are jointly observed

but measured with errors. Third, we consider tests when only rounded expectations

are observed. Fourth, we develop tests when the two samples are not representative

of the same population. Fifth, we present additional simulations, with covariates.

Sixth, we display additional material on the application. The last section gathers all

remaining proofs.

5.8.1 Additional results with aggregate shocks

Statistical tests in the presence of aggregate shocks

In this appendix, we show how to adapt the construction of the test statistic and ob-

tain similar results as in Theorem 2 in the presence of aggregate shocks. As explained

in Section 5.2.2, we mostly have to replace ̃︀𝑌 by ̃︀𝑌𝑐 = 𝐷𝑞
(︁
̃︀𝑌 , 𝑐

)︁
+(1−𝐷)𝜓. Because

we include covariates here, as in Section 5.3, 𝑐 is actually a function of 𝑋. Also, the

true function 𝑐0 has to be estimated. We let ̂︀𝑐 denote such a nonparametric estimator,

which is based on E[𝑞(𝑌, 𝑐0(𝑋))|𝑋] = E[𝜓|𝑋]. When 𝑞(𝑦, 𝑐) = 𝑦 − 𝑐 or 𝑞(𝑦, 𝑐) = 𝑦/𝑐,

we get respectively 𝑐0(𝑋) = E(𝑌 |𝑋)− E(𝜓|𝑋) and 𝑐0(𝑋) = E(𝑌 |𝑋)/E(𝜓|𝑋), and ̂︀𝑐
is easy to compute using nonparametric estimators of E(𝑌 |𝑋) and E(𝜓|𝑋).

Because in Proposition 3 (ii) we do not test for a moment equality anymore,

𝑚
(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
reduces to 𝑚1

(︁
𝐷𝑖, ̃︀𝑌𝑐,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
. We let hereafter 𝑚𝑛(𝑔, 𝑦) =

∑︀𝑛
𝑖=1𝑚1

(︁
𝐷𝑖, ̃︀𝑌𝑐,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
/𝑛. In the test statistic 𝑇 , we replace, for (𝑦, 𝑔) ∈ 𝒴 ×

∪𝑟≥1𝒢𝑟, Σ𝑛(𝑔, 𝑦) by Σ𝑛(𝑔, 𝑦) = ̂︀Σ𝑛(𝑔, 𝑦) + 𝜖Diag
(︁
̂︀V
(︁
̃︀𝑌𝑐
)︁
, ̂︀V

(︁
̃︀𝑌𝑐
)︁)︁

, where ̂︀Σ𝑛(𝑔, 𝑦)

and ̂︀V
(︁
̃︀𝑌𝑐
)︁

are respectively the sample covariance matrix of
√
𝑛𝑚𝑛 (𝑔, 𝑦) and the

empirical variance of ̃︀𝑌𝑐. The last difference with the test considered in Section 5.3

is that when using the bootstrap to compute the critical value, we also have to re-

estimate 𝑐0 in the bootstrap sample.
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We obtain in this context a result similar to Theorem 2 above, under the regularity

conditions stated in Assumption 4. We let hereafter 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
denote the space of

continuously differentiable functions of order 𝑠 on [0, 1]𝑑𝑋 that have a őnite norm

‖𝑐‖𝑠,∞ = max
|𝑘|≤𝑠

sup𝑥∈[0,1]𝑑𝑋
⃒⃒
𝑐(𝑘)(𝑥)

⃒⃒
. We also let, for any function 𝑓 on a set 𝒢, ‖𝑓‖𝒢 =

sup𝑥∈𝒢 |𝑓(𝑥)|. Finally, when the distribution of
(︁
𝐷, ̃︀𝑌 ,𝑋

)︁
is 𝐹 , 𝐾𝐹 denotes the

asymptotic covariance kernel of 𝑛−1/2Diag
(︁
V
(︁
̃︀𝑌𝑐0

)︁)︁−1/2

𝑚.

Assumption 4. (i) ̂︀𝑐 and 𝑐0 belong to 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
, with 𝑠 ≥ 𝑑𝑋 . Moreover, ‖̂︀𝑐 −

𝑐0‖[0,1]𝑑𝑋 = 𝑜𝑃 (1).

(ii) For all 𝑦 ∈ 𝒴, 𝑞 is Lipschitz on 𝒴× [−𝐶,𝐶] for some 𝐶 > ‖𝑐0‖[0,1]𝑑𝑋 . Moreover,

sup(𝑦,𝑐)∈𝒴×[−𝐶,𝐶] |𝑞(𝑦, 𝑐)| ≤𝑀0;

(iii) For all 𝑐 ∈ R, the function 𝑞(·, 𝑐) : 𝒴 → 𝒴 is bijective and its inverse 𝑞𝐼(·, 𝑐) is

Lipschitz on 𝒴;

(iv) 𝐹𝜓|𝑋(·|𝑥), 𝐹𝑌 |𝑋(·|𝑥) are Lipschitz on 𝒴 uniformly in 𝑥 ∈ [0, 1]𝑑𝑋 with constants

𝑄𝐹,1 satisfying sup𝐹∈ℱ0
𝑄𝐹,1 ≤ 𝑄1 <∞. Also, 𝐹𝑞(𝜓,𝑐(𝑋)), 𝐹𝑞(𝑌,𝑐(𝑋)) are Lipschitz

on [−𝑀0,𝑀0] with constants 𝑄𝐹,2 satisfying sup𝐹∈ℱ0
𝑄𝐹,2 ≤ 𝑄2 <∞;

(iv) inf𝐹∈ℱ V𝐹

[︁
̃︀𝑌 2
𝑐

]︁
> 0 and 𝜖0 ≤ inf𝐹∈ℱ E𝐹 [𝐷] ≤ sup𝐹∈ℱ E𝐹 [𝐷] ≤ 1− 𝜖0 for some

𝜀0 ∈ (0, 1/2). Also, ̂︀V𝐹

[︁
̃︀𝑌 2
̂︀𝑐

]︁
is a consistent estimator of V𝐹

[︁
̃︀𝑌 2
𝑐

]︁
.

Part (i) imposes some regularity conditions on 𝑐0 and its nonparametric estimator

̂︀𝑐. It is possible to check such regularity conditions on ̂︀𝑐 with kernel or series estimators

of E(𝑌 |𝑋) and E(𝜓|𝑋). Parts (ii) and (iii) also hold when 𝑞(𝑦, 𝑐) = 𝑦 − 𝑐 and

𝑞(𝑦, 𝑐) = 𝑞(𝑦)/𝑐, by imposing in the second case that 𝑐 belongs to a compact subset of

(0,∞). Proposition 5 shows that under these conditions, the test has asymptotically

correct size.

Proposition 5. Suppose that 𝑟𝑛 → ∞ and that Assumptions 3 and 4 hold. Then (i)

in Proposition 2 holds, replacing 𝜙𝑛,𝛼 by 𝜙𝑛,𝛼,̂︀𝑐.

Results like (ii) and (iii) in Proposition 2 could also be obtained under the condi-

tions of Proposition 5, modifying directly the proof of Proposition 2.
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Impossibility results with more ŕexible effects of aggregate shocks

We show here that restrictions in the way aggregate shocks affect the outcome are

needed to be able to reject RE with 𝐹𝑌 and 𝐹𝜓. We consider for that purpose the

following model:

𝑌 =
𝐾∑︁

𝑘=0

𝐶𝑘𝑉
𝑘 + 𝜀, (5.4)

where 𝑉 is ℐ-measurable and the individual shock 𝜀 satisőes 𝐸[𝜀|ℐ] = 0. The vector

𝐶 := (𝐶0, ..., 𝐶𝐾)
′ represents aggregate shocks, which is assumed to be independent

of ℐ, with support R𝐾+1. We also assume that 𝐸(𝐶) = (0, 1, 0, ..., 0)′, so that 𝑉 =

E[𝑌 |ℐ] and under RE, 𝜓 = 𝑉 . Let 𝑄𝑐(𝑦) =
∑︀𝐾

𝑘=0 𝑐𝑘𝑦
𝑘. Then E(𝑌 |𝐶 = 𝑐, ℐ) = 𝑄𝑐(𝑉 )

and under RE, we have

E(𝑌 |𝐶 = 𝑐, ℐ) = 𝑄𝑐(𝜓).

Hence, as in Section 5.2.2, we consider the following hypothesis:

H0𝑆𝐾 : there exist random variables (𝑌 ′, 𝜓′) , a sigma-algebra ℐ ′ and 𝑐 ∈ R𝐾+1 such that

𝜎(𝜓′) ⊂ ℐ ′, 𝑌 ′ ∼ 𝑌, 𝜓′ ∼ 𝜓 and E [𝑌 ′|ℐ ′] = 𝑄𝑐(𝜓
′).

The following proposition is a negative result on the possibility to test for H0𝑆𝐾 .

Proposition 6. Suppose that 𝐹𝑌 and 𝐹𝜓 are continuous with supports that are

bounded intervals. For any 𝜂 > 0, there exists 𝐾 > 0 and 𝐹 , with sup𝑢∈R |𝐹 (𝑢) −
𝐹𝜓(𝑢)| < 𝜂, such that 𝐻0𝑆𝐾 holds with 𝑌 and ̃︀𝜓 ∼ 𝐹 (instead of 𝜓).

Proposition 6 states that as 𝐾 grows large, the set of cdfs 𝐹𝑌 and 𝐹𝜓 satisfying

H0𝑆𝐾 (and thus RE in Model (5.4)) becomes arbitrarily close, for the Kolmogorov-

Smirnov metric, to the set of of cdfs 𝐹𝑌 and 𝐹𝜓 that do not satisfy 𝐻0𝑆𝐾 . In other

words, ∪𝐾∈NH0𝑆𝐾 is dense in the set of all continuous cdfs having bounded interval

as supports. When combined with Theorem 2 in Bertanha and Moreira (2020), this

implies that there does not exist any almost-surely continuous test of ∪𝐾∈NH0𝑆𝐾 that

has non-trivial power.

A similar, negative result holds if aggregate shocks are allowed to vary with re-
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spect to unobserved, individual-speciőc variables. For instance, shocks may be sector-

speciőc, but sectors may be unobserved in the data. To show such an impossibility

result, consider the following model:

𝑌 = 𝑞(𝐶,𝑈) + 𝑉 + 𝜀,

where both 𝑈 and 𝑉 are ℐ−measurable, 𝐶 is an aggregate shock independent of ℐ and

the individual shock 𝜀 satisőes 𝐸[𝜀|ℐ] = 0. Thus, aggregate shocks affect the outcome

in an additive way, but heterogeneously across individuals, depending on their 𝑈 ,

which is assumed to be unobserved by the econometrician and can thus depend on

𝑉 in a ŕexible way. We assume without loss of generality that 𝐸[𝑞(𝐶,𝑈)|ℐ] = 0, so

that 𝜓 = 𝑉 under RE. Let us also assume that 𝑞(𝑢, 𝑐) =
∑︀𝐾

𝑘=0 𝑐𝑘𝑢
𝑘 and 𝑈 = 𝜉𝑉 ,

with 𝜉 > 0, 𝜉 ⊥⊥ 𝑉 and E[𝜉𝑘] < ∞ for all 𝑘 ≤ 𝐾. Let 𝐶 ′
𝑘 = 𝐸[𝜉𝑘]𝐶𝑘 if 𝑘 ̸= 1,

𝐶 ′
1 = 𝐸[𝜉]𝐶1 − 1 and 𝐶 ′ = (𝐶 ′

0, ..., 𝐶
′
𝐾)

′. Then, under RE,

E[𝑌 |𝐶 ′ = 𝑐′, ℐ] =
𝐾∑︁

𝑘=0

𝑐′𝑘𝜓
𝑘.

Moreover, if Supp(𝐶) = R𝐾+1, we also have Supp(𝐶 ′) = R𝐾+1, and no constraint is

imposed on 𝑐′.16 As a result, we are led again to test 𝐻0𝑆𝐾 , and the same negative

result as above holds.

5.8.2 Tests based on linear regressions with measurement er-

rors

We suppose here to observe both (̂︀𝑌 , ̂︀𝜓) satisfying (5.1). In this framework, we study

the restrictions that RE entail on the coefficient 𝛽 of the (theoretical) linear regression

of ̂︀𝑌 on ̂︀𝜓.

Proposition 7. 1. For any values of (V(̂︀𝑌 ),V( ̂︀𝜓),Cov(̂︀𝑌 , ̂︀𝜓)) such that V(̂︀𝑌 ) >

V( ̂︀𝜓), there exists a DGP compatible with this triple, satisfying (5.1), for which

16𝐸[𝑞(𝐶,𝑈)|ℐ] = 0 implies that 𝐸[𝐶𝑘] = 0 for 𝑘 = 0, ...,𝐾, but it does not restrict the set of
possible 𝑐′𝑘.
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RE hold and such that 𝜀+𝜉𝑌 ⊥⊥ 𝜓 and 𝐹𝜉𝜓 dominates at the second order 𝐹𝜉𝑌 +𝜀.

2. If 𝛽 < 1− 1/(1 + 𝜆) for some 𝜆 ≥ 0, there exists no DGP compatible with this

value of 𝛽, satisfying (5.1), for which RE hold and such that corr(𝜉𝜓, 𝜉𝑌 +𝜀) ≥ 0

and V(𝜓)/V(𝜉𝜓) ≥ 𝜆.

The őrst result is a negative one. It implies that without further restrictions

than those already imposed in Proposition 4, the regression of ̂︀𝑌 on ̂︀𝜓 does not

bring any additional restriction related to RE. The second result, on the other hand,

shows that if one assumes a positive correlation between 𝜉𝜓 and 𝜉𝑌 + 𝜀 and a lower

bound on the signal-to-noise ratio V(𝜓)/V(𝜉𝜓), then 𝛽 is bounded from below under

RE. The restriction corr(𝜉𝜓, 𝜉𝑌 + 𝜀) ≥ 0 seems reasonable. First, given that the

shocks 𝜀 cannot be anticipated, it is natural to assume that corr(𝜉𝜓, 𝜀) = 0. It then

follows that the assumption corr(𝜉𝜓, 𝜉𝑌 + 𝜀) ≥ 0 holds if the measurement errors

on 𝑌 and 𝜓 are positively correlated. This would typically happen, for instance,

if individuals report their expectations and realized earnings omitting in both cases

some components of their earnings, or if they instead overstate their realized earnings,

and their expectations accordingly.

This proposition just focuses on the linear regression of ̂︀𝑌 on ̂︀𝜓, since this regres-

sion has been very often used to test for RE. This means, however, that there may in

principle be additional restrictions on the joint distribution of (̂︀𝑌 , ̂︀𝜓) implied by RE.

5.8.3 Tests with rounding practices

We have considered in Section 5.2.2 the possibility of measurement errors on 𝜓. An-

other source of uncertainty on 𝜓 is rounding. Rounding practices by interviewees

are common. A way to interpret these practices is that in situations of ambiguity,

individuals may only be able to bound the distribution of their future outcome 𝑌

(Manski, 2004). If individuals round at 5% levels, for instance, an answer 𝜓 = 0.05

for the beliefs about percent increase of income should then only be interpreted as

𝜓 ∈ [0.025, 0.075]. Another case where only bounds on 𝜓 are observed is when ques-

tions to elicit subjective expectations take the following form: łWhat do you think is
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the percent chance that your own [𝑌 ] will be below [𝑦]?ž, for a certain grid of 𝑦. If

0 and 100 are always observed, or if we assume that the support of subjective distri-

butions is included in [𝑦, 𝑦], we can still compute bounds on 𝜓.17 In such cases, we

only observe (𝜓𝐿, 𝜓𝑈), with 𝜓𝐿 ≤ 𝜓 ≤ 𝜓𝑈 . For a thorough discussion of this issue,

and especially of how to infer rounding practices, see Manski and Molinari (2010).

In this setting, rationalizing rational expectations is less stringent than in our

baseline set-up since the constraints on the distribution of 𝜓 are weaker. Formally,

the null hypothesis takes the following form:

H0𝐵 : ∃(𝑌 ′, 𝜓′, ℐ ′) : 𝜎(𝜓′) ⊂ ℐ ′, 𝑌 ′ ∼ 𝑌, 𝐹𝜓𝑈 ≤ 𝐹𝜓′ ≤ 𝐹𝜓𝐿 and E(𝑌 ′|ℐ ′) = 𝜓′.

To obtain an equivalent formulation to H0𝐵, a natural idea would be to őx a candidate

cdf 𝐹 ∈ [𝐹𝜓𝑈 , 𝐹𝜓𝐿 ] for 𝐹𝜓 and apply Theorem 1 with this 𝐹 . Then, letting ∆𝐹 (𝑦) =
∫︀ 𝑦
−∞ 𝐹𝑌 (𝑡)−𝐹 (𝑡)𝑑𝑡 and 𝛿𝐹 = E(𝑌 )−

∫︀
𝑢𝑑𝐹 (𝑢), H0𝐵 would hold as long as for some 𝐹 ∈

[𝐹𝜓𝑈 , 𝐹𝜓𝐿 ], ∆𝐹 (𝑦) ≥ 0 for all 𝑦 ∈ R and 𝛿𝐹 = 0. In practice though, directly checking

whether such a distribution exists would be very difficult. Fortunately, we show in

the following proposition that it is in fact sufficient to check that these conditions

hold for a speciőc candidate distribution. To deőne the cdf of this distribution, we

introduce, for all 𝑏 ∈ R, the random variables

𝜓𝑏 = 𝜓𝑈1l{𝜓𝑈 < 𝑏}+max(𝑏, 𝜓𝐿)1l{𝜓𝑈 ≥ 𝑏}.

We also let 𝜓−∞ = 𝜓𝐿 and 𝜓∞ = 𝜓𝑈 . The cdf of 𝜓𝑏 is then 𝐹 𝑏(𝑡) = 𝐹𝜓𝑈 (𝑡)1l{𝑡 <
𝑏} + 𝐹𝜓𝐿(𝑡)1l{𝑡 ≥ 𝑏}, for all 𝑏 ∈ R. We let ℱ𝐵 = {𝐹 𝑏, 𝑏 ∈ R} denote the set of all

such cdfs.

Assumption 5. E(|𝑌 |) <∞, E(|𝜓𝐿|) <∞ and E(|𝜓𝑈 |) <∞.

Proposition 8. Suppose that Assumption 5 holds. First, if E[𝜓𝐿] ≤ E[𝑌 ] ≤ E[𝜓𝑈 ],

there exists a unique 𝐹 * ∈ ℱ𝐵 such that 𝛿𝐹 * = 0. Second, the following statements

17Note however that in this case, our approach does not take into account all the information on
the subjective distribution.
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are equivalent:

(i) H0𝐵 holds.

(ii) E[𝜓𝐿] ≤ E[𝑌 ] ≤ E[𝜓𝑈 ] and ∆𝐹 *(𝑦) ≥ 0 for all 𝑦 ∈ R.

This test shares some similarities with the test in the presence of aggregate shocks.

Speciőcally, if E[𝜓𝐿] ≤ E[𝑌 ] ≤ E[𝜓𝑈 ], we őrst identify 𝑏0 ∈ R such that the candidate

belief 𝜓𝑏0 , which plays a similar role as the modiőed outcome 𝑞(𝑌, 𝑐0) in the test with

aggregate shocks, satisőes the equality constraint E[𝜓𝑏0 ] = E[𝑌 ]. Noting that the

inequality ∆𝐹 *(𝑦) ≥ 0 can be rewritten as E
[︁
(𝑦 − 𝑌 )+ −

(︀
𝑦 − 𝜓𝑏0

)︀+]︁ ≥ 0, it follows

from (ii) that rationalizing RE in this context (i.e., H0𝐵) is then equivalent to a set

of many moment inequality constraints involving the distributions of realizations 𝑌

and candidate belief 𝜓𝑏0 .

5.8.4 Tests with sample selection in the datasets

We consider here cases where the two samples are not representative of the same

population, or formally, 𝐷 is not independent of (𝑌, 𝜓). This may arise for instance

because of oversampling of some subpopulations or differences in nonresponse between

the two surveys that are used. We assume instead that selection is conditionally

exogenous, that is to say:

𝐷 ⊥⊥ (𝑌, 𝜓)|𝑋. (5.5)

We show how to use a propensity score weighting to handle such a selection. Denote

by 𝑝(𝑥) = 𝑃 (𝐷 = 1|𝑋 = 𝑥) = E [𝐷|𝑋 = 𝑥] the propensity score and by

𝑊 (𝑋) =
𝐷

𝑝(𝑋)
− 1−𝐷

1− 𝑝(𝑋)
.

The law of iterated expectations combined with Proposition 2 directly yields the

following proposition:

Proposition 9. Suppose that (5.5) and Assumption 1 hold. Then H0𝑋 is equivalent
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to

E

[︂
𝑊 (𝑋)

(︁
𝑦 − ̃︀𝑌

)︁+
⃒⃒
⃒⃒𝑋

]︂
≥ 0

for all 𝑦 ∈ R and E
[︁
𝑊 (𝑋)̃︀𝑌

⃒⃒
⃒𝑋

]︁
= 0.

This proposition shows that under sample selection, we can build a statistical test

of H0𝑋 akin to that developed in Section 5.3, by merely estimating nonparametrically

𝑝(𝑋). We could consider for that purpose a series logit estimator, for instance. Va-

lidity of such a test would follow using very similar arguments as for the test with

aggregate shocks considered above.

5.8.5 Simulations with covariates

We consider here simulations including covariates. The DGP is similar to that con-

sidered in Section 5.4. Speciőcally, we assume that 𝑌 = 𝜌𝜓 +
√
𝑋𝜀, with 𝜌 ∈ [0, 1],

𝜓 ∼ 𝒩 (0, 1), 𝑋 ∼ Beta(0.1, 10) and

𝜀 = 𝜁 (−1l{𝑈 ≤ 0.1}+ 1l{𝑈 ≥ 0.9}) ,

where 𝜁 ∼ 𝒩 (2, 0.1) and 𝑈 ∼ 𝒰 [0, 1]. (𝜓, 𝜁, 𝑈,𝑋) are supposed to be mutually

independent. Like in the test without covariates, we can show that the test with

covariates is able to reject RE if and only if 𝜌 < 0.616. On the other hand, E [𝑌 |𝑋] =

E [𝜓|𝑋], so the naive conditional test has no power. The test based on conditional

variances rejects only if 𝜌 < 0.445. Finally, we can show that without using 𝑋, our

test has power only for 𝜌 < 0.52. Hence, relying on covariates allows us to gain power

for 𝜌 ∈ [0.521, 0.616).

Again, we consider 𝑛𝜓 = 𝑛𝑌 = 𝑛 ∈ {400; 800; 1, 200; 1, 600; 3, 200}, use 500 boot-

strap simulations to compute the critical value, and rely on 800 Monte-Carlo replica-

tions for each value of 𝜌 and 𝑛. We use the same parameters 𝑝 = 0.05 and 𝑏0 = 0.3

as above.
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Notes: the dotted vertical lines correspond to the theoretical limit for the rejection of the

null hypothesis for test based on variance (𝜌 ≃ 0.445), our test without covariates (𝜌 ≃

0.521) and our tests with covariates (𝜌 = 0.616). The dotted horizontal line corresponds

to the 5% level.

Figure 5-2: Power curves for the test with covariates.

Figure 5-2 shows that the RE test with covariates asymptotically outperforms

the RE test without covariates. The test exhibits a similar behavior as that without

covariates, though, as we could expect, the power converges less quickly to one as 𝑛

tends to inőnity.
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5.8.6 Additional material on the application

Effect of the Winsorization on the RE test

Winsorization level 0.95 0.97 0.99

(p-value) (p-value) (p-value)

All < 0.001 < 0.001 0.002

Women < 0.001 < 0.001 0.001

Men 0.210 0.254 0.342

White 0.021 0.030 0.049

Minorities 0.006 0.007 0.018

College degree 0.130 0.146 0.196

No college degree 0.013 0.012 0.009

High numeracy 0.012 0.017 0.034

Low numeracy 0.022 0.026 0.029

Tenure ≤ 6 months 0.001 0.005 0.009

Tenure > 6 months 0.091 0.118 0.304

Notes: We test H0𝑆 with 𝑞(𝑦, 𝑐) = 𝑦/𝑐, using 5,000 bootstrap simula-

tions to compute the critical values. Distributions of realized earnings

(𝑌 ) and earnings beliefs (𝜓) are both Winsorized at either the 0.95,

0.97, or 0.99 quantile.

Table 5.4: Full test of RE with different levels of Winsorization

Possibly endogenous attrition in the survey

In addition to measurement errors, another potential issue when using the linked

data (𝑌, 𝜓) is that attrition may be related to 𝑌 itself. This would create a sample

selection issue that would invalidate the direct test, even absent any measurement

errors. To explore this possibility, Table 5.5 below reports the estimation results from

a logit model of attrition on earnings beliefs, gender, race/ethnicity, college degree

attainment, numeracy test score, tenure and a (linear) time trend. The main takeaway
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from this table is that earnings beliefs 𝜓 are signiőcantly associated with attrition,

even after controlling for this extensive set of characteristics. This result suggests

that individuals for whom we observe both earnings expectations and realizations are

likely to earn more than those who are not followed across the two waves. Along

the same lines, a Kolmogorov-Smirnov test rejects at the 1% level the equality of the

distributions of realized earnings between the whole sample and the subsample that

would be used for the direct test. Similarly, we reject the equality of the distributions

of expected earnings between these two samples. These results indicate that, in

this context, the direct RE test is likely to be misleading. Conversely, attrition is

unlikely to be an issue with our test, since we use in each wave the observations of

all respondents.18

Intercept 𝜓 Male White Coll. Degree Low Num. Tenure > 6 Trend

All 1.327** -6.206e-06** 0.046 -0.311 -0.137 -0.141 -0.786** -0.040

(0.293) (1.621e-06) (0.138) (0.222) (0.139) (0.162) (0.164) (0.033)

Notes: 1,565 observations. Signiőcance levels: †: 10%, *: 5%, **: 1%.

Table 5.5: Logit model of attrition

5.8.7 Proofs

Notation and preliminaries

For any set 𝒢, let us denote by 𝑙∞(𝒢) the collection of all uniformly bounded real

functions on 𝒢 equipped with the supremum norm ‖𝑓‖𝒢 = sup𝑥∈𝒢 |𝑓(𝑥)|. Denote by

𝐿2(𝐹 ) the square integrable space with respect to the measure associated with 𝐹 ,

and let ‖·‖𝐹,2 be the corresponding norm. We let 𝑁(𝜖, 𝒯 , 𝐿2(𝐹 )) denote the minimal

number of 𝜖-balls with respect to ‖·‖𝐹,2 needed to cover 𝒯 . An 𝜖-bracket (with respect

to 𝐹 ) is a pair of real functions (𝑙, 𝑢) such that 𝑙 ≤ 𝑢 and ‖𝑢− 𝑙‖𝐹,2 ≤ 𝜖. Then, for

any set of real functions ℳ, we let 𝑁[](𝜖,ℳ, 𝐿2(𝐹 )) denote the minimum number of

18The one assumption we need to make is that respondents in the surveys used to measure 𝜓 (i.e.,
those of March and July 2015) are drawn from the same population as those from the surveys used
to measure 𝑌 (i.e., those of July and November 2015). That there is no signiőcant time trend in the
attrition model (Table 5.5) suggests that this assumption is reasonable in this context.
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𝜖-brackets needed to cover ℳ. We denote by 𝒢 = (∪𝑟≥1𝒢𝑟). For 𝑥 ∈ R𝑑, 𝑑 > 1, we

denote by ‖𝑥‖∞ = max𝑗=1,...,𝑑 |𝑥|.

For a sequence of random variable (𝑈𝑛)𝑛∈N and a set ℱ0, we say that 𝑈𝑛 = 𝑂𝑃 (1)

uniformly in 𝐹 ∈ ℱ0 if for any 𝜖 > 0 there exist 𝑀 > 0 and 𝑛0 > 0 such that

sup𝐹∈ℱ0
P𝐹 (|𝑈𝑛| > 𝑀) < 𝜖 for all 𝑛 > 𝑛0. Similarly we say that 𝑈𝑛 = 𝑜𝑃 (1)

uniformly in 𝐹 ∈ ℱ0 if for any 𝜖 > 0, sup𝐹∈ℱ0
P𝐹 (|𝑈𝑛| > 𝜖) → 0.

Finally, we add stars to random variables whenever we consider their bootstrap

versions, as with 𝑇 * versus 𝑇 . We deőne 𝑜𝑃 * and 𝑂𝑃 * as above, but conditional

on
(︁
̃︀𝑌𝑖, 𝐷𝑖, 𝑋𝑖

)︁
𝑖=1...𝑛

. Convergence in distribution conditional on
(︁
̃︀𝑌𝑖, 𝐷𝑖, 𝑋𝑖

)︁
𝑖=1...𝑛

is

denoted by →𝑑* .

Proof of Theorem 2

(i) This is a particular case of Proposition 5 below, with 𝑞(𝑌, 𝑐0) = 𝑌 . The proof is

therefore omitted.

(ii) We show that equality holds for 𝐹0 ∈ ℱ0 satisfying the conditions stated in

(ii). The proof is divided in three steps. We őrst prove convergence in distribution of

𝑇 to 𝑆 deőned below, and conditional convergence of 𝑇 * towards the same limit. Then

we show that the cdf 𝐻 of 𝑆 is continuous and strictly increasing in the neighborhood

of its quantile of order 1− 𝛼, for any 𝛼 ∈ (0, 1/2). The third step concludes.

1. Convergence in distribution of 𝑇 and 𝑇 *.

Let us introduce some notation. Let 𝐾𝑗,𝑗 (𝑗 ∈ {1, 2}) be the 𝑗-th diagonal element

of the covariance kernel 𝐾, 𝒮 : (𝜈,𝐾) ↦→ (1 − 𝑝)
(︁
−𝜈1/𝐾1/2

1,1

)︁+2

+ 𝑝
(︁
𝜈2/𝐾

1/2
2,2

)︁2

,

𝑞(𝑟) = (𝑟2 + 100)
−1

(2𝑟)−𝑑𝑋 , and

𝜈𝑛,𝐹0(𝑦, 𝑔) =
1√
𝑛

𝑛∑︁

𝑖=1

Diag
(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2 (︁

𝑚
(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
− E𝐹0

[︁
𝑚

(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁]︁)︁
.
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Finally, we deőne 𝑘𝑛,𝐹0(𝑦, 𝑔) =
√
𝑛Diag

(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2

E𝐹0

[︁
𝑚

(︁
𝐷𝑖, ̃︀𝑌𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁]︁
,

𝐾𝑛,𝐹0(𝑦, 𝑔, 𝑦
′, 𝑔′) = Diag

(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2 ̂︂Cov

(︀√
𝑛𝑚𝑛(𝑦, 𝑔),

√
𝑛𝑚𝑛(𝑦

′, 𝑔′)
)︀
Diag

(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2

,

𝐾𝑛,𝐹0(𝑦, 𝑔, 𝑦
′, 𝑔′) = 𝐾𝑛,𝐹0(𝑦, 𝑔, 𝑦

′, 𝑔′) + 𝜖Diag
(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2

Diag
(︁
̂︀V
(︁
̃︀𝑌
)︁)︁

Diag
(︁
V𝐹0

(︁
̃︀𝑌
)︁)︁−1/2

,

and use the notations𝐾𝑛,𝐹0(𝑦, 𝑔) = 𝐾𝑛,𝐹0(𝑦, 𝑔, 𝑦, 𝑔) and𝐾𝑛,𝐹0(𝑦, 𝑔) = 𝐾𝑛,𝐹0(𝑦, 𝑔, 𝑦, 𝑔).

We have, by deőnition of 𝑇 ,

𝑇 = sup
𝑦∈𝒴

∑︁

(𝑎,𝑟):𝑟∈{1,...,𝑟𝑛},𝑎∈𝐴𝑟

𝑞(𝑟)𝒮
(︀
𝜈𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝑘𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟), 𝐾𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟)

)︀
.

To characterize the distribution of 𝑇 (resp. 𝑇 *), we őrst prove the convergence of

𝜈𝑛,𝐹0 and 𝐾𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟) (resp. 𝜈*𝑛,𝐹0
and 𝐾*

𝑛,𝐹0
(𝑦, 𝑔𝑎,𝑟)). For those purposes, we use a

class of functions which is a general form taken by 𝑚1 deőned in (5.2), namely, for

any 0 < 𝑁1 < 𝑀1,

ℳ0 = {𝑓𝑦,𝜑1,𝜑2,𝑔 (̃︀𝑦, 𝑥, 𝑑) =
(︀
𝑑𝜑1 (𝑦 − ̃︀𝑦)+ − (1− 𝑑)𝜑2 (𝑦 − ̃︀𝑦)+

)︀
𝑔(𝑥),

(𝑦, 𝜑1, 𝜑2, 𝑔) ∈ 𝒴 × [𝑁1,𝑀1]
2 × 𝒢}.

Remark that ℳ0 is a particular case of classes ℳ deőned in (5.9) below. Then, by

the proof of Proposition 5 below, Assumptions PS1 and PS2 in AS are satisőed. Thus,

the assumptions of Lemma D.2 in AS hold as well. This entails that Assumptions

PS4 and PS5 in AS hold. Namely, there exists a Gaussian process 𝜈𝐹0 such that

- 𝜈𝑛,𝐹0 →𝑑 𝜈𝐹0 and 𝜈*𝑛,𝐹0
→𝑑* 𝜈𝐹0 ;

- For all 𝑟 ∈ N and (𝑦, 𝑔) ∈ 𝒴×𝒢𝑟,𝐾𝑛,𝐹0(𝑦, 𝑔) →𝑃 𝐾𝐹0(𝑦, 𝑔)+𝜖𝐼2 and𝐾*
𝑛,𝐹0

(𝑦, 𝑔) →𝑃 *

𝐾𝐹0(𝑦, 𝑔) + 𝜖𝐼2, where 𝐼2 is the 2× 2 identity matrix.

Moreover, letting 𝑘𝐹0(𝑦, 𝑔) denote the limit in probability of 𝑘𝑛,𝐹0(𝑦, 𝑔), we have

𝑘𝐹0(𝑦, 𝑔) = 0 if (𝑦, 𝑔) ∈ ℒ𝐹0 and ∞ otherwise. Note that by assumption, the set

ℒ𝐹0 is nonempty.
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Thus, using (D.11) in the proof of Theorem D.3. in AS, which is based on the

uniform continuity of the function 𝒮 in the sense of Assumption S2 therein, we have,

under 𝐹0,

𝑇 →𝑑 sup
𝑦∈𝒴

∑︁

(𝑎,𝑟)∈𝐴𝑟×N

𝒮 (𝜈𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝑘𝐹0(𝑦, 𝑔𝑎,𝑟), 𝐾𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝜖𝐼2)

= 𝑆 := sup
𝑦∈𝒴

∑︁

(𝑎,𝑟):(𝑦,𝑔𝑎,𝑟)∈ℒ𝐹0

𝑞(𝑟)𝒮 (𝜈𝐹0(𝑦, 𝑔𝑎,𝑟), 𝐾𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝜖𝐼2) ,

where the equality follows by deőnition of 𝒮 and 𝑘𝐹0(𝑦, 𝑔). Similarly, using As-

sumption PS5 and (D.11) in AS, replacing 𝑇 by 𝑇 * and quantities 𝜈𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟) and

𝐾𝑛,𝐹0(𝑦, 𝑔𝑎,𝑟) by their bootstrap counterparts (see the proof of Lemma D.4 in AS) we

have 𝑇 * →𝑑* 𝑆.

2. The cdf 𝐻 of 𝑆 is continuous and strictly increasing in the neighbor-

hood of any of its quantile of order 1− 𝛼 > 1/2.

First, the cdf 𝐻 of 𝑆 is a convex functional of the Gaussian process 𝜈𝐹0 . Then,

as in the proof of Lemma B3 in Andrews and Shi (2013), we can use Theorem 11.1

of Davydov et al. (1998) p.75 to show that 𝐻 is continuous and strictly increasing

at every point of its support except 𝑟 = inf{𝑟 ∈ R : 𝐻(𝑟) > 0}. Moreover, for any

𝑟 > 0,

𝐻(𝑟) ≥ P

⎛
⎝sup

𝑦∈𝒴

∑︁

(𝑎,𝑟):(𝑦,𝑔𝑎,𝑟)∈ℒ𝐹0

𝑞(𝑟)𝒮 (𝜈𝐹0(𝑦, 𝑔𝑎,𝑟), 𝐾𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝜖𝐼2) < 𝑟

⎞
⎠

≥ P

(︃
sup

𝑗∈{1,2},(𝑦,𝑎,𝑟):(𝑦,𝑔𝑎,𝑟)∈ℒ𝐹0

⃒⃒
(𝐾2,𝐹0,𝑗,𝑗(𝑦, 𝑔𝑎,𝑟) + 𝜖)−1/2𝜈𝐹0,𝑗(𝑦, 𝑔𝑎,𝑟)

⃒⃒
<

√︀
𝑟/2

𝑄

)︃

> 0,

where 𝑄 =
∑︀

(𝑎,𝑟):(𝑦,𝑔𝑎,𝑟)∈ℒ𝐹0
𝑞(𝑟) < ∞ and we use Problem 11.3 of Davydov et al.

(1998) p.79 for the last inequality. This yields 𝑟 > 𝑟 and 𝐻 is continuous and strictly

increasing on (0,∞).

Then, we show that for any 𝛼 ∈ (0, 1/2), the quantile of order 1 − 𝛼 of the
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distribution of 𝑆 is positive. By assumption, there exists (𝑦0, 𝑔0) ∈ ℒ𝐹0 such that

either 𝐾𝐹0,11(𝑦0, 𝑔0) > 0 or 𝐾𝐹0,2(𝑦0, 𝑔0) > 0. This yields

P (𝑆 > 0) = 1− P

⎛
⎝sup

𝑦∈𝒴

∑︁

(𝑎,𝑟):(𝑦,𝑔𝑎,𝑟)∈ℒ𝐹0

𝑞(𝑟)𝒮 (𝜈𝐹0(𝑦, 𝑔𝑎,𝑟), 𝐾𝐹0(𝑦, 𝑔𝑎,𝑟) + 𝜖𝐼2) = 0

⎞
⎠

≥ 1− P (𝜈𝐹0,1(𝑦0, 𝑔0) ≤ 0, 𝜈𝐹0,2(𝑦, 𝑔0) = 0)

≥ 1−min {P (𝜈𝐹0,1(𝑦0, 𝑔0) ≤ 0) ,P (𝜈𝐹0,2(𝑦0, 𝑔0) = 0)}

≥ 1/2. (5.6)

The őrst inequality holds by deőnition of the supremum and because 𝒮 is nonnegative.

To obtain the last inequality, note that either 𝜈𝐹0,1(𝑦0, 𝑔0) is non-degenerate, in which

case the őrst probability is 1/2 (since 𝜈𝐹0,1(𝑦0, 𝑔0) is normal with zero mean), or

𝜈𝐹0,2(𝑦0, 𝑔0) is non-degenerate, in which case the second probability is 0.

Finally, using that 𝐻 is strictly increasing on (0,∞), (5.6) ensures that any quan-

tile of 𝑆 of order 1 − 𝛼 with 𝛼 ∈ [0, 1/2) is positive. Hence, 𝐻 is continuous and

strictly increasing in the neighborhood of any such quantiles.

3. Conclusion.

Using 𝑇 * →𝑑* 𝑆 in distribution, Step 2 and Lemma 21.2 in Van der Vaart (2000),

we have that for 𝜂 > 0, 𝑐*𝑛,𝛼 →𝑑* 𝑐(1 − 𝛼 + 𝜂) + 𝜂, where 𝑐(1 − 𝛼 + 𝜂) is the

(1−𝛼+ 𝜂)-th quantile of the distribution of 𝑆. Because 𝑇 →𝑑 𝑆 and 𝐻 is continuous

at 𝑐(1− 𝛼 + 𝜂) + 𝜂 > 0, we obtain that

lim
𝜂→0

lim sup
𝑛→∞

P𝐹0

(︀
𝑇 > 𝑐*𝑛,𝛼

)︀
= 𝛼.

Combined with the inequality of Part (i) above, this yields the result.

(iii) This results follows from Theorem E.1 in AS. First, Assumption SIG2 in AS

holds for 𝜎2
𝐹 = V𝐹

(︁
̃︀𝑌
)︁
, following the proof of Lemma 7.2 (b) under Assumption

3-(ii). Second, Assumptions PS4 and PS5 are satisőed using the point (ii) above.

Third, Assumptions CI, MQ, S1, S3, S4 in AS are also satisőed by construction of
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the statistic 𝑇 . Thus, Theorem E.1 in AS yields the result. �

Proof of Proposition 5

We introduce E𝐹,𝑐 = E𝐹
[︁
𝑚

(︁
𝐷𝑖, ̃︀𝑌𝑐,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁]︁
and

𝜈𝑛,𝐹 (𝑦, 𝑔) =
1√
𝑛

𝑛∑︁

𝑖=1

Diag
(︁
̂︀V𝐹

(︁
̃︀𝑌̂︀𝑐
)︁)︁−1/2 (︁

𝑚
(︁
𝐷𝑖, ̃︀𝑌̂︀𝑐,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
− 𝐸𝐹,̂︀𝑐

)︁
,

𝜈𝑛,𝐹 (𝑦, 𝑔) =
1√
𝑛

𝑛∑︁

𝑖=1

Diag
(︁
V𝐹

(︁
̃︀𝑌𝑐0

)︁)︁−1/2 (︁
𝑚

(︁
𝐷𝑖, ̃︀𝑌𝑐0,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁
− 𝐸𝐹,𝑐0

)︁
.

The proof is based on Theorem 5.1 in AS, hence we have to check that the corre-

sponding assumptions PS1, PS2, and SIG1 hold. Namely, we have to ensure that

- PS1: for all sequence 𝐹 ∈ ℱ and all (𝑑, 𝑦′, 𝑥, 𝑔, 𝑦, 𝑐) ∈ {0, 1} × 𝒴 × [0, 1]𝑑𝑋 ×
𝒢𝑟 × 𝒴 × 𝒞𝑠

(︀
[0, 1]𝑑𝑋

)︀

⃒⃒
⃒⃒
⃒⃒
𝑚(𝑑, 𝑦′, 𝑥, 𝑔, 𝑦)

V𝐹

(︁
̃︀𝑌𝑐,𝑖

)︁

⃒⃒
⃒⃒
⃒⃒ ≤𝑀(𝑑, 𝑦′, 𝑥, 𝑔, 𝑦) and E𝐹

[︂
𝑀

(︁
𝐷𝑖, ̃︀𝑌𝑐,𝑖, 𝑋𝑖, 𝑔, 𝑦

)︁2+𝛿
]︂
≤ 𝐶 <∞,

where 𝛿 > 0 and for some function 𝑀 ;

- PS2: for all sequence 𝐹𝑛 ∈ ℱ , the i.i.d triangular array of processes

𝒯 0
𝑛 =

{︂𝑚
(︁
𝐷𝑖, ̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖), 𝑋𝑛,𝑖, 𝑔, 𝑦

)︁

V𝐹𝑛

(︁
̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖)

)︁ , (𝑐, 𝑦, 𝑔) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × 𝒢, 𝑖 ≤ 𝑛, 𝑛 ≥ 1

}︂

is manageable with respect to some envelope function 𝑈1 (see Pollard, 1990,

p.38 for the deőnition of a manageable class);

- SIG1: for all 𝜁 > 0, sup𝐹∈ℱ ,𝑐∈𝒞𝑠([0,1]𝑑𝑋 ) P
(︁⃒⃒
⃒̂︀V𝐹

(︁
̃︀𝑌𝑖,𝑐

)︁
/V𝐹

(︁
̃︀𝑌𝑖,𝑐

)︁
− 1

⃒⃒
⃒ > 𝜁

)︁
→

0.

We proceed in two steps, to handle the fact that 𝑐0 and Diag
(︁
V𝐹

(︁
̃︀𝑌𝑐0

)︁)︁−1/2

are

estimated:
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1. We őrst show that

sup
𝐹∈ℱ0

sup
𝑔∈∪𝑟≥1𝒢𝑟,𝑦∈𝒴

‖𝜈𝑛,𝐹 (𝑦, 𝑔)− 𝜈𝑛,𝐹 (𝑦, 𝑔)‖∞ =𝑜𝑃 (1), (5.7)

sup
𝐹∈ℱ0

sup
𝑔∈∪𝑟≥1𝒢𝑟,𝑦∈𝒴

⃦⃦
𝜈*𝑛,𝐹 (𝑦, 𝑔)− 𝜈*𝑛,𝐹 (𝑦, 𝑔)

⃦⃦
∞ =𝑜𝑃 *(1). (5.8)

2. Next, we show that 𝑚 satisőes assumptions PS1, PS2, and that SIG1 in AS also

holds for 𝜎2
𝐹 = V𝐹

(︁
̃︀𝑌𝑐0

)︁
, where 𝐹 ∈ ℱ and ̂︀𝜎2

𝑛 = 𝑛−1
∑︀𝑛

𝑖=1

(︁
̃︀𝑌̂︀𝑐,𝑖 − 𝑛−1

∑︀𝑛
𝑗=1

̃︀𝑌̂︀𝑐,𝑗
)︁2

.

1. Proof of (5.7)-(5.8)

We apply the uniform version over 𝐹 ∈ ℱ0 of Theorem 3 in Chen et al. (2003) to

a general class of functions to which pertain the moment condition 𝑚 (see (5.2), with

̃︀𝑌 replaced here by ̃︀𝑌𝑐 = 𝐷𝑞
(︁
̃︀𝑌 , 𝑐

)︁
+ (1 − 𝐷)𝜓 and without the moment equality

𝑚2). Hence, it suffices to verify that Assumptions (3.2) and (3.3) of Theorem 3 in

Chen et al. (2003) are satisőed. Let us introduce, for any 0 < 𝑁1 < 𝑀1, the classes

of functions

ℳ1 =
{︀
𝑓𝑐,𝑦,𝜑,𝑔 (̃︀𝑦, 𝑥) = 𝜑 (𝑦 − 𝑞 (̃︀𝑦, 𝑐(𝑥)))+ 𝑔(𝑥), (𝑐, 𝑦, 𝜑, 𝑔) ∈ 𝒞𝑠

(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]× 𝒢

}︀
,

(5.9)

ℳ2 =
{︀
𝑓𝑐,𝑦,𝜑,𝑔 (̃︀𝑦, 𝑥) = 𝜑 (𝑦 − ̃︀𝑦)+ 𝑔(𝑥), (𝑐, 𝑦, 𝜑, 𝑔) ∈ 𝒞𝑠

(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]× 𝒢

}︀
,

ℳ ={𝑓𝑐,𝑦,𝜑1,𝜑2,𝑔 (̃︀𝑦, 𝑥, 𝑑) = (𝑑𝑔𝑐,𝑦,𝜑1,𝑔 − (1− 𝑑)𝑞𝑐,𝑦,𝜑2,𝑔) (̃︀𝑦, 𝑥) , 𝑔 ∈ ℳ1, 𝑞 ∈ ℳ2,

(𝑐, 𝑦, 𝜑1, 𝜑2, 𝑔) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]

2 × 𝒢}.

Note that 𝜑1, 𝜑2, and 𝑐 in the class ℳ denote components of 𝑚 that are estimated.

Consider the space 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]

2 × 𝒢 equipped with the norm

‖(𝑐, 𝑦, 𝜑1, 𝜑2, 𝑔)‖ = max
{︁
‖𝑐‖[0,1]𝑑𝑋 , |𝑦| , |𝜑1| , |𝜑2| , ‖𝑔‖[0,1]𝑑𝑋

}︁
.

For 𝑣 = (𝑐, 𝑦, 𝜑1, 𝜑2, 𝑔), 𝑣
′ = (𝑐′, 𝑦′, 𝜑′

1, 𝜑
′
2, 𝑔

′) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]

2 × 𝒢 and

(̃︀𝑦, 𝑥, 𝑑) ∈ 𝒴× [0, 1]𝑑𝑋×{0, 1}, we have, by the triangular inequality and Assumptions

321



4-(i) and 4-(v),

|𝑓𝑣 (̃︀𝑦, 𝑥, 𝑑)− 𝑓𝑣′ (̃︀𝑦, 𝑥, 𝑑)| ≤
⃒⃒
𝑔𝑐,𝑦,𝜑1,𝑔 (̃︀𝑦, 𝑥)− 𝑔𝑐′,𝑦′,𝜑′1,𝑔′ (̃︀𝑦, 𝑥)

⃒⃒

+
⃒⃒
𝑞𝑐,𝑦,𝜑2,𝑔 (̃︀𝑦, 𝑥)− 𝑞𝑐′,𝑦′,𝜑′2,𝑔′ (̃︀𝑦, 𝑥)

⃒⃒

≤(𝑀 +𝑀0) (|𝜑1 − 𝜑′
2|+ |𝜑2 − 𝜑′

2|)

+ 2𝑀1 [|𝑦 − 𝑦′|+ |𝑞 (̃︀𝑦, 𝑐(𝑥))− 𝑞 (̃︀𝑦, 𝑐′(𝑥))|]

+ 2𝑀0𝑀1

[︀
|1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦} − 1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦′}|

+ |1l {𝑞 (̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦′} − 1l {𝑞 (̃︀𝑦, 𝑐′(𝑥)) ≤ 𝑦′}|

+ |𝑔(𝑥)− 𝑔′(𝑥)|
]︀
.

Denote by 𝐾𝑞 > 0 the Lipschitz constant of 𝑞(̃︀𝑦, .). Then, by convexity of 𝑥 ↦→ 𝑥2,

we obtain

1

7
|𝑓𝑣 (̃︀𝑦, 𝑥, 𝑑)− 𝑓𝑣′ (̃︀𝑦, 𝑥, 𝑑)|2 ≤(𝑀 +𝑀0)

2
(︁
|𝜑1 − 𝜑′

1|2 + |𝜑2 − 𝜑′
2|2

)︁

+ 4𝑀2
1

[︁
|𝑦 − 𝑦′|2 +𝐾𝑞 ‖𝑐− 𝑐′‖2[0,1]𝑑𝑋

]︁

+ 4(𝑀0𝑀1)
2
[︀
|1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦} − 1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦′}|

+ |1l {𝑞 (̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦′} − 1l {𝑞 (̃︀𝑦, 𝑐′(𝑥)) ≤ 𝑦′}|

+ ‖𝑔 − 𝑔′‖2[0,1]𝑑𝑋
]︀
.

Fix 𝛿 > 0. If ‖𝑣 − 𝑣′‖ ≤ 𝛿, this yields

1

7
|𝑓𝑣 (̃︀𝑦, 𝑥, 𝑑)− 𝑓𝑣′ (̃︀𝑦, 𝑥, 𝑑)|2 ≤𝛿2

(︀
2(𝑀 +𝑀0)

2 + 4𝑀2
1 (1 +𝐾𝑞) + 4(𝑀0𝑀1)

2
)︀

+ 4(𝑀0𝑀1)
2
[︀
1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦 + 𝛿} − 1l {𝑞(̃︀𝑦, 𝑐(𝑥)) ≤ 𝑦 − 𝛿}

+
⃒⃒
1l
{︀
̃︀𝑦 ≤ 𝑞𝐼 (𝑦′, 𝑐(𝑥))

}︀
− 1l

{︀
̃︀𝑦 ≤ 𝑞𝐼 (𝑦′, 𝑐′(𝑥))

}︀⃒⃒ ]︀
.
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Next, by Assumption 4-(iv), we obtain

E
[︁
1l
{︁
𝑞
(︁
̃︀𝑌 , 𝑐(𝑋)

)︁
≤ 𝑦 + 𝛿

}︁
− 1l

{︁
𝑞
(︁
̃︀𝑌 , 𝑐(𝑋)

)︁
≤ 𝑦 − 𝛿

}︁]︁

= 𝐹𝑞(̃︀𝑌 ,𝑐(𝑋)) (𝑦 + 𝛿)− 𝐹𝑞(̃︀𝑌 ,𝑐(𝑋)) (𝑦 − 𝛿)

≤ 2𝑄2𝛿.

Finally, we have

E
[︀⃒⃒
1l
{︀
𝑌 ≤ 𝑞𝐼 (𝑦′, 𝑐(𝑋))

}︀
− 1l

{︀
̃︀𝑦 ≤ 𝑞𝐼 (𝑦′, 𝑐′(𝑋))

}︀⃒⃒]︀

≤E
[︀
1l
{︀
𝑌 ≤ 𝑞𝐼 (𝑦′, 𝑐(𝑋))−𝑄𝐹,2𝛿

}︀
− 1l

{︀
̃︀𝑦 ≤ 𝑞𝐼 (𝑦′, 𝑐(𝑋)) +𝑄𝐹,2𝛿

}︀]︀

≤E
[︀
𝐹𝑌 |𝑋

(︀
𝑞𝐼 (𝑦′, 𝑐(𝑋))−𝑄𝑞𝐼𝛿

⃒⃒
𝑋
)︀
− 𝐹𝑌 |𝑋

(︀
𝑞𝐼 (𝑦′, 𝑐(𝑋)) +𝑄𝑞𝐼𝛿

⃒⃒
𝑋
)︀]︀

≤2𝑄𝐹,1𝑄𝑞𝐼𝛿,

where 𝑄𝑞𝐼 is the Lipschitz constant of 𝑞𝐼 . Thus, by Assumption 4, there exists 𝑄 > 0

such that

sup
𝐹∈ℱ0

E

[︃
sup

‖𝑣−𝑣′‖≤𝛿

⃒⃒
⃒𝑓𝑣

(︁
̃︀𝑌 ,𝑋,𝐷

)︁
− 𝑓𝑣′

(︁
̃︀𝑌 ,𝑋,𝐷

)︁⃒⃒
⃒
2
]︃
≤ 𝑄𝛿. (5.10)

Therefore the class ℳ satisőes Condition (3.2) of Theorem 3 in Chen et al. (2003)

uniformly in 𝐹 ∈ ℱ0. Moreover, the class 𝒢 is manageable and thus Donsker (see

Lemma 3 in Andrews and Shi, 2013). Finally, by Remark 3 (ii) in Chen et al. (2003),

𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
is also Donsker. Then, 𝒞𝑠

(︀
[0, 1]𝑑𝑋

)︀
, 𝒴 , [𝑁1,𝑀1], and 𝒢 satisfy Condition

(3.3) of Theorem 3 in Chen et al. (2003). The result follows by Theorem 3 in Chen

et al. (2003).

2. 𝑚 satisőes PS1 and PS2 of AS and SIG1 of AS also holds for 𝜎2
𝐹 and

̂︀𝜎2
𝑛.

From Assumption 4 (iii) and the proof of Lemma 7.2 (a) in AS, PS1 is satisőed

replacing 𝐵 by max(𝑀,𝑀0) in the proof of Lemma 7.2-(a) in AS.

We now show that PS2 in AS also holds. As the result is uniform over ℱ0, we

have to consider sequences for the cdfs 𝐹𝑛 of (𝐷𝑛,𝑖, 𝑌𝑛,𝑖, 𝑋𝑛,𝑖)𝑖=1...𝑛 (with 𝐹𝑛 ∈ ℱ0).
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We also deőne

̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖) = 𝐷𝑛,𝑖𝑞 (𝑌𝑛,𝑖, 𝑐(𝑋𝑛,𝑖)) + (1−𝐷𝑛,𝑖)𝜓𝑛,𝑖,

𝑊𝑛,𝑖 =
𝐷𝑛,𝑖

E𝐹𝑛 [𝐷𝑛,𝑖]
− 1−𝐷𝑛,𝑖

E𝐹𝑛 [1−𝐷𝑛,𝑖]
,

𝜎2
𝐹𝑛 = V𝐹𝑛

(︁
̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖)

)︁
.

Note that by Assumption 3 (iii), 𝜎2
𝐹𝑛

≥ 𝜎 > 0 for all 𝐹𝑛 ∈ ℱ . Let (Ω,F, 𝐹𝑛) be a

probability space and let 𝜔 denote a generic element in Ω. Showing Assumption PS2

in AS then boils down to prove that for any 0 < 𝑁1 < 𝑀1 := 1/ inf𝐹 𝜎
2
𝐹 , the i.i.d

triangular array of processes

𝒯1,𝑛,𝜔 =

{︂
𝑊𝑛,𝑖𝜑

(︁
𝑦 − ̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖)

)︁+

𝑔(𝑋𝑛,𝑖), (𝑐, 𝑦, 𝜑, 𝑔) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]× 𝒢,

𝑖 ≤ 𝑛, 𝑛 ≥ 1

}︂

is manageable with respect to some envelope function 𝑈1. Lemma 3 in Andrews and

Shi (2013) shows that the processes {𝑔(𝑋𝑛,𝑖), 𝑔 ∈ 𝒢, 𝑖 ≤ 𝑛, 𝑛 ≥ 1} are manageable

with respect to the constant function 1. Then, using Lemma D.5 in AS, it remains

to show that

𝒯 ′
1,𝑛,𝜔 =

{︂
𝑊𝑛,𝑖𝜑

(︁
𝑦 − ̃︀𝑌𝑛,𝑐(𝑋𝑛,𝑖)

)︁+

, (𝑐, 𝑦, 𝜑) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1], 𝑖 ≤ 𝑛, 𝑛 ≥ 1

}︂
,

is manageable with respect to some envelope. For such an envelope, we can consider

𝑈 ′
1(𝜔) = (𝑀0 +𝑀)/(𝜎𝜖0). We now prove the manageability of 𝒯 ′

1,𝑛,𝜔. Let us deőne

ℳ′ =
{︀
𝑓𝑐,𝑦,𝜑1,𝜑2 (̃︀𝑦, 𝑥, 𝑑) = 𝑑𝜑1 (𝑦 − 𝑞 (̃︀𝑦, 𝑐(𝑥)))+ − (1− 𝑑)𝜑2 (𝑦 − ̃︀𝑦)+ ,

(𝑐, 𝑦, 𝜑1, 𝜑2) ∈ 𝒞𝑠
(︀
[0, 1]𝑑𝑋

)︀
× 𝒴 × [𝑁1,𝑀1]

2
}︀
.

Reasoning as for the class ℳ deőned in (5.9), and using the last equation of the proof
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of Theorem 3 in Chen et al. (2003), p.1607, we have that for 𝜖 > 0,

𝑁[·] (𝜖,ℳ′, ‖ · ‖2) ≤ 𝑁
(︀
𝜖′, [𝑁1,𝑀1]

2, |·|
)︀
×𝑁 (𝜖′,𝒴 , |·|)×𝑁

(︀
𝜖′, 𝒞𝑠

(︀
[0, 1]𝑑𝑋

)︀
, ‖ · ‖[0,1]𝑑𝑋

)︀
,

with 𝜖′ = (𝜖/(2𝑄))2 and 𝑄 deőned in (5.10). Using Theorem 2.7.1 page 155 in Van der

Vaart and Wellner (1996), there exists a constant 𝑄2 depending only on 𝑠, 𝑑𝑋 , and

[0, 1]𝑑𝑋 such that

ln
(︀
𝑁

(︀
𝜖′, 𝒞𝑠([0, 1]𝑑𝑋 ), ‖ · ‖[0,1]𝑑𝑋

)︀)︀
≤ 𝑄2𝜖

′−𝑑𝑋/𝑠.

Moreover, because 𝒴 and [𝑁1,𝑀1] are compact subsets of two Euclidean spaces, there

exist 𝑄3, 𝑄4 such that

𝑁
(︀
𝜖′, [𝑁1,𝑀1]

2, |·|
)︀
≤ 𝑄3𝜖

′−4 and 𝑁 (𝜖′,𝒴 , |·|) ≤ 𝑄4𝜖
′−2. (5.11)

This yields

ln
(︀
𝑁[·] (𝜖,ℳ′, ‖ · ‖2)

)︀
≤ (6 +𝑄2)max

(︀
− ln(𝜖′), 𝜖′−𝑑𝑋/𝑠

)︀
+ ln(𝑄3𝑄4). (5.12)

Let ⊙ denote element-by-element product and 𝒟
(︀
𝜖 |𝛼⊙ 𝑈 ′

1(𝜔)| , 𝛼⊙ 𝒯 ′
1,𝑛,𝜔

)︀
denote

random packing numbers. By (A.1) in Andrews (1994, p.2284), we have

sup
𝜔∈Ω,𝑛≥1, 𝛼∈R𝑛+

𝒟
(︀
𝜖 |𝛼⊙ 𝑈 ′

1(𝜔)| , 𝛼⊙ 𝒯 ′
1,𝑛,𝜔

)︀
≤ sup

𝐹∈ℱ0

𝑁
(︁ 𝜖
2
,ℳ′, ‖ · ‖2

)︁

≤ sup
𝐹∈ℱ0

𝑁[·] (𝜖,ℳ′, ‖ · ‖2) , (5.13)

where the second inequality follows as in e.g., Van der Vaart and Wellner (1996, p.84).

Then, (5.12) ensures (see Deőnition 7.9 in Pollard (1990), p.38) that

sup
𝜔∈Ω,𝑛≥1, 𝛼∈R𝑛+

𝒟
(︀
𝜖 |𝛼⊙ 𝑈 ′

1(𝜔)| , 𝛼⊙ 𝒯 ′
1,𝑛,𝜔

)︀
≤ 𝜆(𝜖),

where 𝜆(𝜖) = exp
(︁
(6 +𝑄2)max

(︁
−2 ln (𝜖/(2𝑄)) , (𝜖/(2𝑄))−2𝑑𝑋/𝑠

)︁
+ ln(𝑄3𝑄4)

)︁
. More-
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over, by using
√
𝑎+ 𝑏 ≤ √

𝑎+
√
𝑏 for all 𝑎, 𝑏 ≥ 0,

∫︁ 1

0

√︀
ln(𝜆(𝜖))𝑑𝜖 ≤

√︀
6 +𝑄2

∫︁ 1

0

[︁
max

(︁
−2 ln (𝜖/(2𝑄)) , (𝜖/(2𝑄))−2𝑑𝑋/𝑠

)︁]︁1/2
𝑑𝜖

+
√︀

ln(𝑄3𝑄4)

<∞.

Thus, 𝒯 ′
1,𝑛,𝜔 hence 𝒯1,𝑛,𝜔 are manageable. Therefore, 𝑚 satisőes PS2 in AS.

Finally, in order to show that SIG1 in AS is satisőed, we use Assumption 4 (iii)

and follow the proof of Lemma 7.2 (b) in AS where we replace 𝑌 by 𝑞(𝑌, 𝑐(𝑋)) and

𝐵 by max(𝑀,𝑀0). The result follows.

Proof of Proposition 6

Hereafter, we let [𝜓, 𝜓] (resp. [𝑦, 𝑦]) denote the support of 𝜓 (resp. of 𝑌 ). As in

Lemma 1, 𝐻0𝑆𝐾 holds if and only if there exists a pair of random variables (𝑌 ′, 𝜓′)

and 𝑐 such that 𝑌 ′ ∼ 𝑌 , 𝜓′ ∼ 𝜓 and E [𝑌 ′|𝜓′] = 𝑄𝑐(𝜓
′). Now, if 𝑄𝑐 is strictly

increasing on [𝜓, 𝜓], we have E [𝑌 ′|𝜓′] = 𝑄𝑐(𝜓
′) if and only if E [𝑌 ′|𝑄𝑐(𝜓

′)] = 𝑄𝑐(𝜓
′).

In view of Theorem 1, the latter is equivalent to 𝐹𝑌 being a mean-preserving spread

of 𝐹𝑄𝑐(𝜓′). Therefore, the proposition holds if for any 𝜂 > 0, there exists 𝐾, 𝑐 ∈ R𝐾+1

and 𝐹 such that (i) 𝑄𝑐 is strictly increasing on [𝜓, 𝜓]; (ii) sup𝑦∈R |𝐹𝜓(𝑦)− 𝐹 (𝑦)| < 𝜂;

(iii) 𝐹𝑌 is mean-preserving spread of 𝐹𝑄𝑐( ̃︀𝜓), with ̃︀𝜓 ∼ 𝐹 .

Fix 𝜂 > 0. Since 𝐹𝑌 is continuous on [𝑦, 𝑦], it is uniformly continuous on this set.

Hence, there exists 𝜂′ such that

|𝑦 − 𝑦′| < 𝜂′ ⇒ |𝐹𝑌 (𝑦)− 𝐹𝑌 (𝑦
′)| < 𝜂. (5.14)

By assumption, 𝐹−1
𝑌 ∘ 𝐹𝜓 is increasing and continuous. Then, by Theorem 9 in Mu-

lansky and Neamtu (1998), there exists a sequence (𝑃𝑛)𝑛∈N of increasing polynomials

on [𝜓, 𝜓] satisfying 𝑃𝑛(𝜓) = 𝑦 and 𝑃𝑛(𝜓) = 𝑦 and converging uniformly to 𝐹−1
𝑌 ∘ 𝐹𝜓.
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Hence, there exists 𝑃𝑛0 such that

sup
𝑦∈[𝜓,𝜓]

|𝑃𝑛0(𝑦)− 𝐹−1
𝑌 ∘ 𝐹𝜓(𝑦)| < 𝜂′. (5.15)

Let 𝐾 be the degree of 𝑃𝑛0 and 𝑐 ∈ R𝐾 denote the vector of coefficients of 𝑃𝑛0 , so

that 𝑄𝑐 = 𝑃𝑛0 . 𝑄𝑐 is a non-constant polynomial, which is increasing on [𝜓, 𝜓]. Hence,

its derivative vanishes a őnite number of times and 𝑄𝑐 is actually strictly increasing.

Hence, Condition (i) above holds. Moreover, combining (5.15) with (5.14), we obtain

sup
𝑦∈[𝜓,𝜓]

|𝐹𝑌 ∘𝑄𝑐(𝑦)− 𝐹𝜓(𝑦)| < 𝜂.

Now, let 𝐹 := 𝐹𝑌 ∘𝑄𝑐 on [𝜓, 𝜓], 𝐹 (𝑦) := 0 for all 𝑦 < 𝜓 and 𝐹 (𝑦) := 1 for all 𝑦 > 𝜓.

Then 𝐹 is continuous and increasing, with limit 0 and 1 respectively at −∞ and ∞.

Thus, it is a cdf and Condition (ii) above holds. Finally, let ̃︀𝜓 ∼ 𝐹 . We have, for any

𝑦 ∈ [𝑦, 𝑦],

𝑃
(︁
𝑄𝑐( ̃︀𝜓) ≤ 𝑦

)︁
= 𝐹 ∘𝑄−1

𝑐 (𝑦) = 𝐹𝑌 (𝑦).

This implies that 𝐹𝑄𝑐( ̃︀𝜓) is a mean-preserving spread of 𝐹𝑌 . The result follows.

Proof of Proposition 7

1. We consider for that purpose (𝜓*, 𝜉*𝜓, 𝜉
*
𝑌 , 𝜀

*) ∼ 𝒩 (𝑚,Σ), potentially different from

the true (𝜓, 𝜉𝜓, 𝜉𝑌 , 𝜀), and let

̂︀𝜓* = 𝜓* + 𝜉*𝜓,

̂︀𝑌 * = 𝜓* + 𝜀* + 𝜉*𝑌 .

We then őx (𝑚,Σ) so that the DGP satisőes all the restrictions speciőed in the propo-

sitions, and in particular, (V(̂︀𝑌 *),V( ̂︀𝜓*),Cov(̂︀𝑌 *, ̂︀𝜓*)) = (V(̂︀𝑌 ),V( ̂︀𝜓),Cov(̂︀𝑌 , ̂︀𝜓)).
First, letting 𝑚 = (𝑚1,𝑚2,𝑚3,𝑚4)

′, we impose 𝑚2 = 𝑚3 = 𝑚4 = 0, and set all the

non-diagonal terms of Σ, except Σ23 = Cov(𝜉*𝜓, 𝜉
*
𝑌 ), equal to zero. Then (̂︀𝑌 *, ̂︀𝜓*, 𝜓*)

satisfy (5.1) and RE hold (considering ℐ = 𝜎(𝜓*) and 𝑌 * = 𝜓* + 𝜀*). We őx be-
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low Σ22 ∈ [0,V( ̂︀𝜓)]. Then let Σ11 = V( ̂︀𝜓) − Σ22 and Σ33 = V(̂︀𝑌 ) − V( ̂︀𝜓) + Σ22

and Σ44 = 0, so that (V(̂︀𝑌 *),V( ̂︀𝜓*)) = (V(̂︀𝑌 ),V( ̂︀𝜓)). Also, because V(̂︀𝑌 ) > V( ̂︀𝜓),
V(𝜉*𝜓) < V(𝜉*𝑌 + 𝜀*) and 𝐹𝜉*𝜓 dominates at the second order 𝐹𝜉*𝑌 +𝜀* .

Now, we őx Σ22. Let 𝑎 = V(̂︀𝑌 ) − V( ̂︀𝜓) and 𝑐 = Cov(̂︀𝑌 − ̂︀𝜓, ̂︀𝜓). Then, by

Cauchy-Schwarz inequality,

𝑐2 ≤ V( ̂︀𝜓)V(̂︀𝑌 − ̂︀𝜓) = V( ̂︀𝜓)(𝑎− 2𝑐).

This means that there exists 𝜎2 ∈ [0,V( ̂︀𝜓)] such that

𝑐2 ≤ 𝜎2(𝑎− 2𝑐). (5.16)

Let Σ22 = 𝜎2 and Σ23 = 𝑐+ Σ22. Then, by construction,

Cov(̂︀𝑌 *, ̂︀𝜓*) = Σ11 + Σ23

= V( ̂︀𝜓)− Σ22 + Σ22 + 𝑐

= Cov(̂︀𝑌 , ̂︀𝜓).

Moreover, in view of (5.16) and by deőnition of Σ22 and Σ33,

Σ2
23 = 𝑐2 + 2𝑐Σ22 + Σ2

22

≤ (𝑎− 2𝑐)Σ22 + 2𝑐Σ22 + Σ2
22

= Σ33Σ22.

In other words, Σ is a proper covariance matrix.

2. Let 𝜆 = V(𝜓)/𝜎2
𝜉𝜓

. If (5.1) and RE hold, Cov(𝜉𝜓, 𝜀 + 𝜉𝑌 ) ≥ 0 and 𝜆 ≥ 𝜆, we
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obtain

𝛽 − 1 =
Cov(̂︀𝑌 − ̂︀𝜓, ̂︀𝜓)

V( ̂︀𝜓)

=
Cov(𝜀+ 𝜉𝑌 − 𝜉𝜓, 𝜉𝜓)

𝜎2
𝜉𝜓
(1 + 𝜆)

≥− 1

1 + 𝜆
.

The result follows.

Proof of Proposition 8

We őrst prove that if E[𝜓𝐿] ≤ E[𝑌 ] ≤ E[𝜓𝑈 ], there exists a unique 𝐹 * ∈ ℱ𝐵 such

that 𝛿𝐹 * = 0. First, suppose that 𝐹 𝑏 ̸= 𝐹 𝑏′ and, without loss of generality, 𝑏 > 𝑏′.

Then 𝜓𝑏 ≤ 𝜓𝑏
′
, implying that 𝐹 𝑏(𝑦) ≤ 𝐹 𝑏′(𝑦) for all 𝑦. Moreover, the inequality is

strict for at least one 𝑦. As a result, E(𝜓𝑏) > E(𝜓𝑏
′
). In other words, there is at

most one 𝐹 * ∈ ℱ𝐵 such that 𝛿𝐹 * = 0. If E[𝜓𝐿] = E[𝑌 ] or E[𝜓𝑈 ] = E[𝑌 ], such a

solution also exists by taking 𝑏 = −∞ and 𝑏 = ∞, respectively. Now, suppose that

E[𝜓𝐿] < E[𝑌 ] < E[𝜓𝑈 ]. For all ∞ > 𝑏 > 𝑏′ > −∞,

𝜓𝑏 − 𝜓𝑏
′
=(𝜓𝑈 −max(𝜓𝐿, 𝑏

′)) 1l{𝜓𝑈 ∈ [𝑏′, 𝑏)}+ (𝑏− 𝑏′)1l{𝜓𝐿 < 𝑏′, 𝜓𝑈 ≥ 𝑏}

+ (𝑏− 𝜓𝐿)1l{𝜓𝐿 ∈ [𝑏′, 𝑏), 𝜓𝑈 ≥ 𝑏}.

As a result, |𝜓𝑏 − 𝜓𝑏
′ | ≤ |𝑏 − 𝑏′|. This implies that ̃︀𝛿 : 𝑏 ↦→ E[𝜓𝑏] is continuous.

Moreover, lim𝑏→−∞ ̃︀𝛿(𝑏) = E[𝜓𝐿] < E(𝑌 ) and lim𝑏→∞ ̃︀𝛿(𝑏) = E[𝜓𝑈 ] > E(𝑌 ). By the

intermediate value theorem, there exists 𝑏* such that ̃︀𝛿(𝑏*) = E(𝑌 ). Hence, there

exists 𝐹 * ∈ ℱ𝐵 such that 𝛿𝐹 * = 0. The őrst part of Proposition 8 follows.

Let us turn to the second part of the proposition. First, if (ii) holds, there exists

𝑏0 ∈ R such that 𝐹 * = 𝐹 𝑏0 . Then, by construction and Theorem 1, 𝑌 and 𝜓𝑏0 satisfy

H0. Moreover, 𝐹 𝑏0 ∈ [𝐹𝜓𝑈 , 𝐹𝜓𝐿 ]. Therefore, H0𝐵 holds as well.

Now, let us prove that (i) implies (ii). Let us denote by 𝒟 the set of all the cdfs for

𝜓 such that H0𝐵 holds. By Theorem 1, these are cdfs 𝐹 satisfying 𝐹𝜓𝑈 ≤ 𝐹 ≤ 𝐹𝜓𝐿 ,
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𝛿𝐹 = 0 and dominating at the second order 𝐹𝑌 . We show below that all 𝐹 ∈ 𝒟
are dominated at the second order by 𝐹 *. Then, because 𝐹𝜓𝑈 ≤ 𝐹 * ≤ 𝐹𝜓𝐿 and
∫︀
𝑦𝑑𝐹 *(𝑦) =

∫︀
𝑦𝑑𝐹𝑌 (𝑦), 𝒟 is not empty only if 𝐹 * dominates at the second order 𝐹𝑌 .

The result then follows by Theorem 1.

Thus, we have to show that for all 𝑡 ∈ R,

𝐹 * = argmin𝐹𝜓∈𝒟

∫︁ 𝑡

−∞
𝐹𝜓(𝑦)𝑑𝑦. (5.17)

First, if 𝐹 * = 𝐹−∞, we have for all 𝐹 ̸= 𝐹 *, 𝐹 (𝑦) ≤ 𝐹𝜓𝐿(𝑦) = 𝐹 *(𝑦) for all 𝑦, with

strict inequality for some 𝑦. Then 𝛿𝐹 > 𝛿𝐹 * = 0 and 𝒟 = {𝐹 *}, implying that (5.17)

holds. Similarly, (5.17) holds if 𝐹 * = 𝐹∞.

Suppose now that 𝐹 * = 𝐹 𝑏0 for some 𝑏0 ∈ R. Because 𝐹𝜓𝑈 (𝑦) ≤ 𝐹𝜓(𝑦) for all 𝑦 <

𝑏0 and all 𝐹𝜓 ∈ 𝒟, (5.17) holds for all 𝑡 < 𝑏0. We now prove that (5.17) holds also for

𝑡 ≥ 𝑏0. First suppose that 𝑡 ≥ max(𝑏0, 0). For all 𝐹𝜓 ∈ 𝒟,
∫︀
𝑦𝑑𝐹𝑌 (𝑦) =

∫︀
𝑦𝑑𝐹𝜓(𝑦)𝑑𝑦.

As a result, by Fubini’s theorem,

−
∫︁ 0

−∞
𝐹 *(𝑦)𝑑𝑦 +

∫︁ 𝑡

0

(1− 𝐹 *(𝑦)) 𝑑𝑦 +

∫︁ ∞

𝑡

(1− 𝐹 *(𝑦)) 𝑑𝑦

= −
∫︁ 0

−∞
𝐹𝜓(𝑦)𝑑𝑦 +

∫︁ 𝑡

0

(1− 𝐹𝜓(𝑦)) 𝑑𝑦 +

∫︁ ∞

𝑡

(1− 𝐹𝜓(𝑦)) 𝑑𝑦.

Because 𝐹𝜓 ≤ 𝐹𝜓𝐿 = 𝐹 * on [𝑏0,∞], this implies that

−
∫︁ 0

−∞
𝐹 *(𝑦)𝑑𝑦 +

∫︁ 𝑡

0

(1− 𝐹 *(𝑦)) 𝑑𝑦 ≥ −
∫︁ 0

−∞
𝐹𝜓(𝑦)𝑑𝑦 +

∫︁ 𝑡

0

(1− 𝐹𝜓(𝑦)) 𝑑𝑦

and thus (5.17) holds for 𝑡 ≥ max(𝑏0, 0). Now, if 𝑏0 < 0 and 𝑡 ∈ (𝑏0, 0), we have

−
(︂∫︁ 𝑡

−∞
𝐹 *(𝑦)𝑑𝑦 +

∫︁ 0

𝑡

𝐹 *(𝑦)𝑑𝑦

)︂
+

∫︁ ∞

0

(1− 𝐹 *(𝑦)) 𝑑𝑦

= −
(︂∫︁ 𝑡

−∞
𝐹𝜓(𝑦)𝑑𝑦 +

∫︁ 0

𝑡

𝐹𝜓(𝑦)𝑑𝑦

)︂
+

∫︁ ∞

0

(1− 𝐹𝜓(𝑦)) 𝑑𝑦.
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Using again 𝐹𝜓 ≤ 𝐹𝜓𝐿 = 𝐹 * on [𝑡,∞) yields

−
∫︁ 0

𝑡

𝐹 *(𝑦)𝑑𝑦 +

∫︁ ∞

0

(1− 𝐹 *(𝑦)) 𝑑𝑦 ≤ −
∫︁ 0

𝑡

𝐹𝜓(𝑦)𝑑𝑦 +

∫︁ ∞

0

(1− 𝐹𝜓(𝑦)) 𝑑𝑦.

Therefore, the result also follows in this case.
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Chapter 6

Estimates for the SVD of the

Truncated Fourier Transform on

𝐿2(cosh(𝑏| · |)) and Stable Analytic

Continuation

Joint with Eric Gautier, Toulouse School of Economics.

Preprint available here.

Abstract

The Fourier transform truncated on [−𝑐, 𝑐] is usually analyzed when acting on 𝐿2(−1/𝑏, 1/𝑏)

and its right-singular vectors are the prolate spheroidal wave functions. This paper

considers the operator acting on the larger space 𝐿2(cosh(𝑏| · |)) on which it remains

injective. We give nonasymptotic upper and lower bounds on the singular values

with similar qualitative behavior in 𝑚 (the index), 𝑏, and 𝑐. The lower bounds are

used to obtain rates of convergence for stable analytic continuation of possibly non-

bandlimited functions whose Fourier transform belongs to 𝐿2(𝑒𝑏|·|). We also derive

bounds on the sup-norm of the singular functions. Finally, we propose a numerical

333

https://arxiv.org/pdf/1905.11338.pdf


method to compute the SVD and apply it to stable analytic continuation when the

function is observed with error on an interval. In the application we consider cases

where the function to extrapolate is not bandlimited and when it is bandlimited but

the bandlimits are unknown.

Keywords: Analytic continuation, Nonbandlimited functions, Heavy tails, Uniform

estimates, Extrapolation, Singular value decomposition, Truncated Fourier transform,

Singular Sturm Liouville Equations, Superresolution.

6.1 Introduction

Extrapolating an analytic square integrable function 𝑓 from its observation with

error on [−𝑐, 𝑐] to R has a wide range of applications, for example in imaging and

signal processing Gosse (2010b), in geostatistics and with big data Coifman and Lafon

(2006), and őnance Gosse (2010a). A researcher may want to estimate a density from

censored data. This means that the data is only available on a smaller set than

the one of interest (see, e.g., Belitser (1998); Berman (2007)). When the function is

a Fourier transform, this is a type of super-resolution in image restoration Bertero

and Boccacci (1998); Bertero et al. (1984); Gerchberg (1974) which can be achieved

under auxiliary information such as information on the support of the object. The

related problem of out-of-band extrapolation (see, e.g., Alibaud et al. (2009); Bertero

and Boccacci (1998)) consists in recovering a function from partial observation of its

Fourier transform. A particular instance of this framework appears in the analysis of

the random coefficients linear model (see, e.g. Gaillac and Gautier (2019c)). There,

the model takes the form

𝑌 = 𝛼 + 𝛽⊤𝑋,

where (𝛼, 𝛽⊤) ∈ R𝑝+1 and𝑋 ∈ R𝑝 are independent random vectors, and the researcher

has at her disposal an independent and identically distributed sample of (𝑌,𝑋⊤) from

which she can estimate the Fourier transform of the density of the coefficients (𝛼, 𝛽⊤)

on {(𝑡, 𝑡𝑥) : (𝑡, 𝑥) ∈ R × 𝒳}, where 𝒳 ⊆ R𝑝 is the support of 𝑋 and the object of
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interest is the density the coefficients.

It is customary to rely on analytic functions and use Hilbert space techniques. For

the extrapolation problem, one can restrict attention to bandlimited functions which

are square integrable functions whose Fourier transforms have support in [−1/𝑏, 1/𝑏].

For out-of-band extrapolation, one can work with square-integrable functions whose

support is a subset of [−1/𝑏, 1/𝑏] in which case their Fourier transform is analytic

by the Paley-Wiener theorem (see Reed and Simon (1980)). Prolate spheroidal wave

functions (henceforth PSWF, see Osipov et al. (2013); Slepian (1965)) are the right-

singular functions of the truncated Fourier transform restricted to functions with sup-

port in [−1/𝑏, 1/𝑏]. The truncated Fourier transform maps functions to their Fourier

transform on [−𝑐, 𝑐]. The PSWF form an orthonormal basis of the space 𝐿2(−𝑐, 𝑐) of

square-integrable functions on (−𝑐, 𝑐), are restrictions of square integrable orthogonal

analytic functions on R, and form a complete system of the bandlimited functions

with bandlimits [−1/𝑏, 1/𝑏]. Hence, a bandlimited function on the whole line is simply

the series expansion on the PSWF basis, sometimes called Slepian series, whose coef-

őcients only depend on the function on (−𝑐, 𝑐), almost everywhere on R. This makes

sense if we understand the PSWF functions as their extension to R. In this frame-

work, analytic continuation is an inverse problem in the sense that the solution does

not depend continuously on the data, more speciőcally severely ill-posed (see, e.g., Fu

et al. (2008); Grabovsky and Hovsepyan (2020); Shapiro (1986); Zhang et al. (2011)),

and many methods have been proposed (see, e.g., Batenkov et al. (2018); Bertero

et al. (1979); Chen (2010); Coifman and Lafon (2006); Drouiche et al. (2001); Landau

(1986); Miller (1970); Trefethen (2019)). To obtain precise error bounds, it is useful to

obtain nonasymptotic upper and lower bounds on the singular values of the truncated

Fourier transform rather than the more usual asymptotic estimates on a logarithmic

scale. In several applications, uniform estimates on the right singular functions are

useful as well. This occurs for example to show that certain nonparametric statistical

procedures involving series are adaptive (see, e.g., Chagny (2015)). This means that

an estimator with a data-driven smoothing parameter reaches the optimal minimax

rate of convergence. Importantly, such a program providing nonasymptotic bounds on
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the singular values and right singular functions has been carried recently in relation

to bandlimited functions in Bonami et al. (2018); Bonami and Karoui (2016, 2017);

Osipov (2013); Osipov et al. (2013); Rokhlin and Xiao (2007). A second important

aspect is the access to efficient methods to obtain the singular value decomposition

(henceforth SVD). While numerical solutions to the inverse problems have for a long

time relied on the Tikhonov or iterative methods such as the Landweber method

(Gerchberg method for out-of band extrapolation, see Bertero and Boccacci (1998))

to avoid using the SVD, recent developments have made it possible to approximate

efficiently the PSWF and the SVD (see Section 8 of Osipov et al. (2013)).

Assuming that the function observed on an interval is the restriction of a ban-

dlimited function can be questionable. For example, in the case of censored data,

the observed function is a truncated density and the underlying function a density,

and none of the usual families are bandlimited. Moreover, even if the function were

bandlimited, one would require an upper bound on 1/𝑏 which might not be avail-

able in practice (see Slepian (1983)). For this reason, this paper considers the larger

class of functions whose Fourier transforms belong to the space 𝐿2(𝑒𝑏|·|) of square-

integrable functions with weight function 𝑒𝑏|·|. This is the largest space that we

can consider to extrapolate a function with Hilbert space techniques because, for

𝑎 > 0,
{︀
𝑓 ∈ 𝐿2(R) : ∀𝑏 < 𝑎, ℱ [𝑓 ] ∈ 𝐿2

(︀
𝑒𝑏|·|

)︀}︀
is the set of square-integrable func-

tions which have an analytic continuation on {𝑧 ∈ C : |Im(𝑧)| < 𝑎/2} (see Theorem

IX.13 in Reed and Simon (1980)). The broader class 𝐿2(𝑒𝑏|·|) has rarely been used

in this context and, unlike the PSWF, much fewer results are available, with the no-

table exception of Morrison (1962); Widom (1964). It is considered in Belitser (1998)

in the case of censored data and in Gaillac and Gautier (2019c) for the problem of

estimating the density of random coefficients in the linear random coefficients model.

There it is meaningful to assume the Laplace transform of the density is őnite near 0

or equivalently that it does not have heavy-tails.

In this paper, we use the weight cosh(𝑏·) rather than 𝑒𝑏|·| because the Fourier trans-

form of sech = 1/ cosh is essentially itself and, though with a different scalar product,

𝐿2 (cosh(𝑏·)) = 𝐿2
(︀
𝑒𝑏|·|

)︀
. Theorem II in Widom (1964) provides, for given 𝑏, 𝑐 > 0
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and a value of the index 𝑚 going to inőnity, an equivalent of the logarithm of the

singular values of the truncated Fourier transform acting on 𝐿2 (cosh(𝑏·)). Such an

equivalent is important but this result is silent on the polynomial preexponential fac-

tors, their dependence with respect to 𝑐 and 𝑏, and to deduce upper and lower bounds

on the singular values which hold for all 𝑚, 𝑐, and 𝑏. This behavior is important in

Gaillac and Gautier (2019c) where we integrate the bounds over 𝑐 in intervals [𝑎, 𝑏]

where 𝑎 can be arbitrarily close to 0. This paper provides nonasymptotic upper and

lower bounds on the singular values, with similar qualitative behavior, and applies

the lower bounds to error bounds for stable analytic continuation using the spectral

cut-off method. There, the nonasymptotic lower bounds are important to obtain a

tight polynomial rates of convergence for łsupersmooth functions". We also analyze a

differential operator which commutes with a symmetric integral operator obtained by

applying the truncated Fourier operator to its adjoint. The corresponding eigenvalue

problem involves singular Sturm-Liouville equations. This allows to prove uniform

estimates on the right-singular functions. Solving numerically singular differential

equations allows to obtain these functions, hence all the SVD. Working with the dif-

ferential operator is useful because its eigenvalues increase quadratically while those

of the integral operator decrease exponentially. Finally, we illustrate numerically the

proposed method for stable analytic continuation by spectral cut-off. We propose

an adaptive method to select the cut-off. When the function is bandlimited and the

researcher knows an interval which contains the bandlimits, we rely on the PSWF and

efficient methods to compute the SVD. We also illustrate the proposed method in-

volving numerical schemes for singular differential equations when the researcher does

not have prior information on the bandlimits and when she questions the fact that

the function can be bandlimited as in the statistical applications presented above.

6.2 Preliminaries

We use N0 for the set of nonnegative natural numbers, 𝑎 ∨ 𝑏 for the maximum of

𝑎 and 𝑏, a.e. for almost everywhere, and 𝑓(·) for a function 𝑓 of some generic ar-
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gument. We denote, for 𝑎 > 0, by 𝐿2(−𝑎, 𝑎) and 𝐿2(R) the usual 𝐿2 spaces of

complex-valued functions equipped with the Hermitian inner product, for example

⟨𝑓, 𝑔⟩𝐿2(−𝑎,𝑎) =
∫︀ 𝑎
−𝑎 𝑓(𝑥)𝑔(𝑥)𝑑𝑥, by 𝐿2(𝑊 ) for a positive function 𝑊 on R the weighted

𝐿2 spaces equipped with ⟨𝑓, 𝑔⟩𝐿2(𝑊 ) =
∫︀
R
𝑓(𝑥)𝑔(𝑥)𝑊 (𝑥)𝑑𝑥, and by 𝑆⊥ the orthogonal

complement of the set 𝑆 in a Hilbert space. We denote by ‖𝑓‖𝐿∞([𝑎,𝑏]) the sup-norm

of the function 𝑓 on [𝑎, 𝑏]. ℰ is the operator which extends a function in 𝐿2(−1, 1)

to 𝐿2 (R) by assigning the value 0 outside [−1, 1] and ℛ𝐿2(R) → 𝐿2(R) is such that

ℛ𝑓 = 𝑓(−·). The inverse of a mapping 𝑓 , when it exists, is denoted by 𝑓 𝐼 . We

denote, for 𝑏, 𝑐 > 0, by

𝒞𝑐 : 𝐿2 (R) → 𝐿2 (R)

𝑓 ↦→ 𝑐𝑓(𝑐·)
,

ℱ𝑏,𝑐 : 𝐿2 (cosh(𝑏·)) → 𝐿2(−1, 1)

𝑓 ↦→ ℱ [𝑓 ] (𝑐·)
, (6.1)

by ℱ [𝑓 ] =
∫︀
R
𝑒𝑖𝑥·𝑓(𝑥)𝑑𝑥 the Fourier transform of 𝑓 in 𝐿1 (R) and also use the notation

ℱ [𝑓 ] for the Fourier transform in 𝐿2 (R). 𝒪* denotes the Hermitian adjoint of an

operator 𝒪. Recovering 𝑓 such that for 𝑏 small enough 𝑓 ∈ 𝐿2 (cosh(𝑏·)) based on its

Fourier transform on [−𝑐, 𝑐] amounts to inverting ℱ𝑏,𝑐. This can be achieved using

the SVD. Deőne the őnite convolution operator

𝒬𝑐 : 𝐿2(−1, 1) → 𝐿2(−1, 1)

ℎ ↦→
∫︀ 1

−1
𝜋𝑐 sech

(︀
𝜋𝑐
2
(· − 𝑦)

)︀
ℎ(𝑦)𝑑𝑦.

(6.2)

It is compact, symmetric, and positive on spaces of real and complex valued func-

tions. Denote by (𝜌𝑐𝑚)𝑚∈N0
its positive real eigenvalues in decreasing order and re-

peated according to multiplicity and by (𝑔𝑐𝑚)𝑚∈N0
its eigenfunctions which can be

taken to be real valued. The next proposition relies on the fact that, for all 𝑐 > 0,

ℱ [sech(𝑐·)] (⋆) = (𝜋/𝑐)sech(𝜋 ⋆ /(2𝑐)).

Proposition 1. For 𝑏, 𝑐 > 0, we have 𝑐ℱ𝑏,𝑐ℱ*
𝑏,𝑐 = 𝒬𝑐/𝑏.

Proof. Because ℱ𝑏,𝑐 = ℱ𝒞𝑐−1 = 𝑐−1𝒞𝑐ℱ , ℛℱ𝑏,𝑐 = ℱ𝑏,𝑐ℛ,

ℱ*
𝑏,𝑐 = sech(𝑏·)ℛℱ𝑏,𝑐ℰ , (6.3)
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and sech(𝑏·) is even, we obtain ℱ*
𝑏,𝑐 = ℛ [sech(𝑏·)ℱ𝑏,𝑐ℰ ] and

𝑐ℱ𝑏,𝑐ℱ*
𝑏,𝑐 = 𝑐ℛℱ𝑏,𝑐 [sech(𝑏·)ℱ𝑏,𝑐ℰ ]

= 2𝜋ℱ 𝐼 [𝒞𝑐−1 [sech(𝑏·)𝒞𝑐ℱℰ ]]

= 2𝜋𝑐ℱ 𝐼 [𝒞𝑐−1 [sech(𝑏·)]ℱℰ ] ,

where, for a.e. 𝑥 ∈ R,

2𝜋𝑐ℱ 𝐼 [𝒞𝑐−1 [sech(𝑏·)]] (𝑥) =
∫︁

R

𝑒−𝑖𝑡𝑥sech

(︂
𝑏𝑡

𝑐

)︂
𝑑𝑡 =

𝜋𝑐

𝑏
sech

(︁𝜋𝑐
2𝑏
𝑥
)︁
.

As a result, we have, for 𝑓 ∈ 𝐿2(−1, 1),

𝑐ℱ𝑏,𝑐ℱ*
𝑏,𝑐[𝑓 ] = 𝒞𝜋𝑐/(2𝑏) [2sech] * ℰ [𝑓 ] = 𝒬𝑐/𝑏[𝑓 ].

Proposition 1 yields that (𝑔
𝑐/𝑏
𝑚 )𝑚∈N0 are the right singular functions of ℱ𝑏,𝑐. The

SVD of ℱ𝑏,𝑐, denoted by
(︁
𝜎𝑏,𝑐𝑚 , 𝜙

𝑏,𝑐
𝑚 , 𝑔

𝑐/𝑏
𝑚

)︁
𝑚∈N0

, is such that, for 𝑚 ∈ N0,

𝜎𝑏,𝑐𝑚 =

√︃
𝜌
𝑐/𝑏
𝑚

𝑐
(6.4)

and 𝜙𝑏,𝑐𝑚 = ℱ*
𝑏,𝑐𝑔

𝑐/𝑏
𝑚 /𝜎𝑏,𝑐𝑚 . It yields, for all 𝑓 ∈ 𝐿2 (cosh(𝑏·)),

𝑓 =
∑︁

𝑚∈N0

1

𝜎𝑏,𝑐𝑚

⟨︀
ℱ𝑏,𝑐 [𝑓 ] , 𝑔

𝑐/𝑏
𝑚

⟩︀
𝐿2(−1,1)

𝜙𝑏,𝑐𝑚 . (6.5)

(6.5) is a core element to approximate a function from partial observations of its

Fourier transform when the signal 𝑓 does not have compact support.

Proposition 2. For all 𝑏, 𝑐 > 0, ℱ𝑏,𝑐 is injective and
(︀
𝜙𝑏,𝑐𝑚

)︀
𝑚∈N0

is a basis of 𝐿2(cosh(𝑏·)).

Proof. We use that, for every ℎ ∈ 𝐿2(cosh(𝑏·)), if we do not restrict the argument in

the deőnition of ℱ𝑏,𝑐[ℎ] to [−1, 1], ℱ𝑏,𝑐[ℎ] can be deőned as a function in 𝐿2(R). In
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what follows, for simplicity, we use ℱ𝑏,𝑐[ℎ] for both the function in 𝐿2(−1, 1) and in

𝐿2(R).

Let us show that ℱ𝑏,𝑐 deőned in (6.1) is injective. Take ℎ ∈ 𝐿2(cosh(𝑏·)) such that

ℱ𝑏,𝑐[ℎ] is zero on [−1, 1]. Then, using Theorem IX.13 in Reed and Simon (1980),

ℱ𝑏,𝑐[ℎ] is zero on R. Thus, ℱ [ℎ] hence ℎ are zero a.e. on R.

The second part of Proposition 2 holds by Theorem 15.16 in Kress (1999) and the

injectivity of ℱ𝑏,𝑐.

Theorem II in Widom (1964) provides the equivalent

log (𝜌𝑐𝑚) ∼
𝑚→∞

−𝜋𝑚𝐾(sech(𝜋𝑐))
𝐾(tanh(𝜋𝑐))

, (6.6)

where 𝐾(𝑟) =
∫︀ 𝜋/2
0

(1− 𝑟2 sin(𝑥)2)
−1/2

𝑑𝑥 is the complete elliptic integral of the őrst

kind. This paper provides nonasymptotic upper and lower bounds on the eigenvalues

and upper bounds on the sup-norm of the functions (𝑔𝑐𝑚)𝑚∈N0
.

The proofs of this paper sometimes rely on the following operator

ℱ𝑊[−1,1]
𝑐 : 𝐿2

(︀
𝑊[−1,1]

)︀
→ 𝐿2(−1, 1),

𝑓 → ℱ [𝑓 ] (𝑐·)
(6.7)

where 𝑊[−1,1] = 1l {[−1, 1]}+∞ 1l {[−1, 1]𝑐}, for which we use the notations 𝜌
𝑊[−1,1],𝑡𝑚
𝑚

for the 𝑚th eigenvalue of 𝒬𝑊[−1,1]
𝑐 = 𝑐ℱ𝑊[−1,1]

𝑐

(︁
ℱ𝑊[−1,1]
𝑐

)︁*
.

6.3 Lower bounds on the eigenvalues of 𝒬𝑐 and an

application

6.3.1 Lower bounds on the eigenvalues of 𝒬𝑐

Lemma 1. For all 𝑚 ∈ N0, 𝑐 ∈ (0,∞) ↦→ 𝜌𝑐𝑚 is nondecreasing.

Proof. Take𝑚 ∈ N0. Using the maximin principle (see Theorem 5 page 212 in Birman
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and Solomjak (2012)), the 𝑚+ 1-st eigenvalue 𝜌𝑐𝑚 satisőes

𝜌𝑐𝑚 = max
𝑉 ∈𝑆𝑚+1

min
𝑓∈𝑉 ∖{0}

⟨𝒬𝑐𝑓, 𝑓⟩𝐿2(−1,1)

‖𝑓‖2𝐿2(−1,1)

,

where 𝑆𝑚+1 is the set of 𝑚+1-dimensional vector subspaces of 𝐿2(−1, 1). Using (6.3)

and Proposition 1, we obtain

⟨𝒬𝑐𝑓, 𝑓⟩𝐿2(−1,1) = 𝑐
⟨︀
ℱ1,𝑐ℱ*

1,𝑐[𝑓 ], 𝑓
⟩︀
𝐿2(−1,1)

= 𝑐
⟨︀
ℱ*

1,𝑐[𝑓 ],ℱ*
1,𝑐[𝑓 ]

⟩︀
𝐿2(cosh)

(6.8)

= 𝑐 ‖sech×ℱ1,𝑐 [ℰ [𝑓 ]]‖2𝐿2(cosh)

= 𝑐

∫︁

R

sech (𝑥)

⃒⃒
⃒⃒
∫︁

R

𝑒𝑖𝑐𝑡𝑥ℰ [𝑓 ] (𝑡)𝑑𝑡

⃒⃒
⃒⃒
2

𝑑𝑥

=

∫︁

R

sech
(︁𝑥
𝑐

)︁
|ℱ [ℰ [𝑓 ]] (𝑥)|2 𝑑𝑥

hence

𝜌𝑐𝑚 = max
𝑉 ∈𝑆𝑚+1

min
𝑓∈𝑉 ∖{0}

2𝜋
∫︀
R
sech (𝑥/𝑐) |ℱ [ℰ [𝑓 ]] (𝑥)|2 𝑑𝑥

‖ℱ [ℰ [𝑓 ]]‖2𝐿2(R)

. (6.9)

Then, using that 𝑡 ↦→ cosh(𝑡) is even, nondecreasing, and positive, we obtain that,

for all 0 < 𝑐1 ≤ 𝑐2 and 𝑥 ∈ R, sech (𝑥/𝑐2) ≥ sech (𝑥/𝑐1) hence that 𝜌𝑐1𝑚 ≤ 𝜌𝑐2𝑚.

Theorem 1. For all 𝑚 ∈ N0, we have

∀ 0 < 𝑐 ≤ 𝜋

4
, 𝜌𝑐𝑚 ≥ 2 sin(2𝑐)2

𝑒2𝑐
exp

(︂
−2 log

(︂
7𝑒2𝜋

2𝑐

)︂
𝑚

)︂
(6.10)

∀𝑐 > 0, 𝜌𝑐𝑚 ≥ 𝜋 exp

(︂
−𝜋(𝑚+ 1)

2𝑐

)︂
. (6.11)

(6.10) is valid for 0 < 𝑐 ≤ 𝜋/4 and more precise than (6.11) for 𝑐 close to 0. (6.11)

is uniformly valid. To prove it, we show that 𝜌𝑐𝑚 ≥ sech (𝑡𝑚/𝑐) 𝜌
𝑊[−1,1],𝑡𝑚
𝑚 for well

chosen 𝑡𝑚 and rely on a lower bound on 𝜌
𝑊[−1,1],𝑡𝑚
𝑚 . The proof of (6.10) uses similar

arguments as those in Bonami et al. (2018) Section 5.1 and a lower bound on the

best constant Γ(𝑚, 𝜖) such that for all interval 𝐼 ⊆ [−𝜋, 𝜋] of length 2𝜖 > 0 and all
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polynomial of degree at most 𝑚 ∈ N0,

⃦⃦
𝑃

(︀
𝑒𝑖·

)︀⃦⃦2

𝐿2(𝐼)
≥ Γ(𝑚, 𝜖)

⃦⃦
𝑃

(︀
𝑒𝑖·

)︀⃦⃦2

𝐿2(−𝜋,𝜋) .

We use the lower bound in Nazarov (2000) page 240

Γ(𝑚, 𝜖) ≥
(︂
14𝑒𝜋

𝜖

)︂−2𝑚
𝜖

𝜋
(6.12)

for 𝜖 = 4𝑐. It is argued in Nazarov (2000) that it cannot be signiőcantly improved for

small 𝜖 which is precisely the regime for which (6.10) is used to bound the eigenvalues

from below.

Proof. Let 𝑚 ∈ N0, 𝑐 > 0, and 𝑀 = (𝑚+ 1)/(2𝑐). For 𝑅 > 0, we denote by 𝑃𝑊 (𝑅)

the Paley-Wiener space of functions whose Fourier transform has support in [−𝑅,𝑅]
and by 𝑆𝑚+1(𝑅) the set of 𝑚 + 1-dimensional subspaces of 𝑃𝑊 (𝑅). Using (6.9), we

have

𝜌𝑐𝑚 = max
𝑉 ∈𝑆𝑚+1(1)

min
𝑔∈𝑉 ∖{0}

2𝜋
∫︀
R
sech (𝑥/𝑐) |𝑔(𝑥)|2 𝑑𝑥

‖𝑔‖2𝐿2(R)

.

Then, for 𝑔 ∈ 𝑃𝑊 (1), the function 𝑔𝑀𝑐 : 𝑥 ∈ R ↦→ (𝑀𝑐)1/2𝑔(𝑀𝑐𝑥) satisőes

‖𝑔‖2𝐿2(R) = ‖𝑔𝑀𝑐‖2𝐿2(R) and belongs to 𝑃𝑊 (𝑀𝑐). Using

∫︁

R

sech
(︁𝑥
𝑐

)︁
|𝑔(𝑥)|2 𝑑𝑥 =

∫︁

R

sech (𝑀𝑥) |𝑔𝑀𝑐(𝑥)|2 𝑑𝑥,

we have, for 𝑉 ∈ 𝑆𝑚+1(𝑀𝑐),

𝜌𝑐𝑚 ≥ min
𝑔∈𝑉 ∖{0}

2𝜋
∫︀
R
sech (𝑀𝑥) |𝑔(𝑥)|2 𝑑𝑥

‖𝑔‖2𝐿2(R)

. (6.13)

Let us now choose a convenient such space 𝑉 deőned, for 𝜙 : 𝑡 ∈ R ↦→ sin(𝑡/2)/(𝜋𝑡),

as

𝑉 =

{︃
𝑚∑︁

𝑘=0

𝑃𝑘𝑒
𝑖(𝑘−𝑚/2)·𝜙(·), (𝑃𝑘)

𝑚
𝑘=0 ∈ C𝑚+1

}︃
.

The Fourier transform of an element of 𝑉 is of the form
∑︀𝑚

𝑘=0 𝑃𝑘ℱ [𝜙] (· − 𝑘 +𝑚/2)
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and, because ℱ [𝜙] (·) = 1l{| · | ≤ 1/2}, it has support in [−1/2−𝑚/2, 1/2 +𝑚/2] =

[−𝑀𝑐,𝑀𝑐]. This guarantees that 𝑉 ∈ 𝑆𝑚+1(𝑀𝑐).

We now obtain a lower bound on the right-hand side of (6.13). Let 𝑔 ∈ 𝑉 , deőned

via the coefficients (𝑃𝑘)𝑚𝑘=0, and, for 𝑥 ∈ R, let 𝑃 (𝑥) =
∑︀𝑚

𝑘=0 𝑃𝑘𝑥
𝑘. Let 0 < 𝑥0 ≤ 𝜋/2.

We have, using ∀𝑥 ∈ [0, 2𝑥0), sin(𝑥/2)/𝑥 ≥ sin(𝑥0)/(2𝑥0) for the last display,

∫︁

R

sech (𝑀𝑥) |𝑔(𝑥)|2 𝑑𝑥 ≥
∫︁ 2𝑥0

−2𝑥0

sech (𝑀𝑥)

⃒⃒
⃒⃒
⃒
𝑚∑︁

𝑘=0

𝑃𝑘𝑒
𝑖𝑘𝑥

⃒⃒
⃒⃒
⃒

2

|𝜙(𝑥)|2 𝑑𝑥

≥ 1

cosh(2𝑀𝑥0)
min

𝑥∈[−2𝑥0,2𝑥0]
|𝜙(𝑥)|2

∫︁ 2𝑥0

−2𝑥0

⃒⃒
⃒⃒
⃒
𝑚∑︁

𝑘=0

𝑃𝑘𝑒
𝑖𝑘𝑥

⃒⃒
⃒⃒
⃒

2

𝑑𝑥

≥ sin(𝑥0)
2

(2𝜋𝑥0)2
𝑒−2𝑀𝑥0

⃦⃦
𝑃

(︀
𝑒𝑖·

)︀⃦⃦2

𝐿2(−2𝑥0,2𝑥0)
.

Now, using that, for 𝑘 ∈ N0, 𝑡 ↦→ ℱ [𝜙] (𝑡−𝑘+𝑚/2) have disjoint supports, we obtain

‖𝑔‖2𝐿2(R) =
1

2𝜋
‖ℱ [𝑔]‖2𝐿2(R)

=
1

2𝜋

𝑚∑︁

𝑘=0

|𝑃𝑘|2 ‖ℱ [𝜙]‖2𝐿2(R)

=
1

(2𝜋)2
⃦⃦
𝑃

(︀
𝑒𝑖·

)︀⃦⃦2

𝐿2(−𝜋,𝜋) ,

hence, by (6.12),

𝜌𝑐𝑚 ≥ 4 sin(𝑥0)
2

𝑥0
𝑒−2𝑀𝑥0

(︂
7𝑒𝜋

𝑥0

)︂−2𝑚

.

We obtain, for 0 < 𝑥0 ≤ 𝜋/2 and 𝑚 ∈ N0,

𝜌𝑐𝑚 ≥ 4 sin(𝑥0)
2

𝑥0
exp

(︂
−𝑥0
𝑐
(𝑚+ 1)− 2 log

(︂
7𝑒𝜋

𝑥0

)︂
𝑚

)︂
.

Thus, we have, for all 𝑚 ∈ N0,

𝜌𝑐𝑚 ≥ 4𝑒−2 log(7𝑒𝜋)𝑚 sup
𝑥0∈(0,𝜋/2]

sin(𝑥0)
2

𝑥0
𝑒−𝑥0/𝑐 exp

(︁
−

(︁𝑥0
𝑐

− 2 log (𝑥0)
)︁
𝑚
)︁
. (6.14)
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Using that if 2𝑐 < 𝜋, 𝑥0 ↦→ 𝑥0/𝑐−2 log (𝑥0) admits a minimum at 𝑥0 = 2𝑐, we obtain,

for all 0 < 𝑐 ≤ 𝜋/4,

𝜌𝑐𝑚 ≥ 2 sin(2𝑐)2

𝑒2𝑐
exp

(︂
−2 log

(︂
7𝑒2𝜋

2𝑐

)︂
𝑚

)︂
.

We now prove the second bound on 𝜌𝑐𝑚. Let 𝑚 ∈ N0 and 𝑡𝑚 = 𝜋(𝑚 + 1)/2. For all

𝑥 ∈ R, we have sech (𝑥/𝑐) ≥ sech (𝑡𝑚/𝑐) 1l{|𝑥| ≤ 𝑡𝑚}, hence, by (6.9), we have

𝜌𝑐𝑚 = max
𝑉 ∈𝑆𝑚+1

min
𝑓∈𝑉 ∖{0}

∫︁

R

sech
(︁𝑥
𝑐

)︁
|ℱ [ℰ [𝑓 ]] (𝑥)|2 𝑑𝑥 1

‖𝑓‖2𝐿2(−1,1)

≥ sech

(︂
𝑡𝑚
𝑐

)︂
max

𝑉 ∈𝑆𝑚+1

min
𝑓∈𝑉 ∖{0}

∫︁

R

1l{|𝑥| ≤ 𝑡𝑚} |ℱ [ℰ [𝑓 ]] (𝑥)|2 𝑑𝑥 1

‖𝑓‖2𝐿2(−1,1)

≥ sech

(︂
𝑡𝑚
𝑐

)︂
𝜌
𝑊[−1,1],𝑡𝑚
𝑚 . (6.15)

Using that 𝑚 = 2𝑡𝑚/𝜋 − 1 and (5.2) in Bonami et al. (2018) (with a difference by a

factor 1/(2𝜋) in the normalisation of 𝒬𝑊[−1,1]
𝑐 ), we have 𝜌

𝑊[−1,1],𝑡𝑚
𝑚 ≥ 𝜋 hence, for all

𝑚 ∈ N0,

𝜌𝑐𝑚 ≥ exp

(︂
−𝑡𝑚
𝑐

)︂
𝜌
𝑊[−1,1],𝑡𝑚
𝑚 (by (6.15))

≥ 𝜋 exp

(︂
−𝜋(𝑚+ 1)

2𝑐

)︂
.

The best lower bound in terms of the factor in the exponential is (6.10) for 𝑐 ≤ 𝑐0,

where 𝑐0 = 0.12059, and (6.11) for larger 𝑐 (see Figure 6-1). This yields

Corollary 1. For all 𝑐 > 0,

∀𝑚 ∈ N0, 𝜌
𝑐
𝑚 ≥ 𝜃(𝑐)𝑒−2𝛽(𝑐)𝑚, (6.16)
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where

𝛽 : 𝑐 ↦→ log

(︂
7𝑒2𝜋

2𝑐

)︂
1l {𝑐 ≤ 𝑐0}+

𝜋

4𝑐
1l {𝑐 > 𝑐0} ,

𝜃 : 𝑐 ↦→ 2 sin(2𝑐)2

𝑒2𝑐
1l {𝑐 ≤ 𝑐0}+

𝜋

𝑒𝜋/(2𝑐)
1l {𝑐 > 𝑐0} .

Clearly, because 𝑐0 ≤ 𝜋/4 and 𝑥 ↦→ sin(𝑥)/𝑥 is decreasing on (0, 𝜋/2], the lower bound

holds when we replace 𝜃 by

̃︀𝜃 : 𝑐 ↦→ 2 sin(2𝑐0)
2𝑐

(𝑒𝑐0)2
1l {𝑐 ≤ 𝑐0}+

𝜋

𝑒𝜋/(2𝑐)
1l {𝑐 > 𝑐0} .

6.3.2 Application: Error bounds for stable analytic continu-

ation of functions whose Fourier transform belongs to

𝐿2(cosh(𝑏·))

In this section, we consider the problem where we observe the function 𝑓 with error

on (𝑥0 − 𝑐, 𝑥0 + 𝑐), for 𝑐 > 0 and 𝑥0 ∈ R,

𝑓𝛿(𝑐𝑥+𝑥0) = 𝑓(𝑐𝑥+𝑥0)+𝛿𝜉(𝑥), for a.e. 𝑥 ∈ (−1, 1), ℱ [𝑓 ] ∈ 𝐿2(cosh(𝑏·)), (6.17)

where 𝜉 ∈ 𝐿2(−1, 1), ‖𝜉‖𝐿2(−1,1) ≤ 1, and 𝛿 > 0. We consider the problem of

approximating 𝑓0 = 𝑓 on 𝐿2(R) from 𝑓𝛿 on (𝑥0−𝑐, 𝑥0+𝑐). This is a classical problem

for which an approach based on PSWF is prone to criticism when the researcher does

not have a priori information on the bandlimits or when she questions the bandlimited

assumption. As we have stressed before such an assumption makes little sense for

probability densities.

Noting that, for a.e. 𝑥 ∈ (−1, 1),

1

2𝜋
ℱ𝑏,𝑐 [ℱ [𝑓(𝑥0 − ·)]] (𝑥) = 𝑓(𝑐𝑥+ 𝑥0) (6.18)

suggests the two steps regularising procedure:
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1. approximate ℱ [𝑓(𝑥0 − ·)] /(2𝜋) ∈ 𝐿2(cosh(𝑏·)) by the spectral cut-off regular-

ization,

𝐹𝑁
𝛿 =

∑︁

𝑚≤𝑁

1

𝜎𝑏,𝑐𝑚

⟨︀
𝑓𝛿(𝑐 ·+𝑥0), 𝑔𝑐/𝑏𝑚 (·)

⟩︀
𝐿2(−1,1)

𝜙𝑏,𝑐𝑚 , (6.19)

2. take the inverse Fourier transform and deőne

𝑓𝑁𝛿 (·) = 2𝜋ℱ 𝐼
[︀
𝐹𝑁
𝛿

]︀
(𝑥0 − ·). (6.20)

These steps require numerical approximations of an inner product, of an inverse

Fourier transform over R, and of the singular functions. Sections 6.7 and 6.8 ad-

dress these issues. The lower bounds on the eigenvalues of 𝒬𝑐/𝑏 of Theorem 1 are

useful to obtain rates of convergence when ℱ [𝑓 ], which appears on the left-hand side

of (6.18), satisőes a source condition: 𝑓 ∈ ℋ𝑏,𝑐
𝜔,𝑥0

(𝑀), where

ℋ𝑏,𝑐
𝜔,𝑥0

(𝑀) =

{︃
𝑓 :

∑︁

𝑚∈N0

𝜔2
𝑚

⃒⃒
⃒
⟨︀
ℱ [𝑓(𝑥0 − ·)], 𝜙𝑏,𝑐𝑚

⟩︀
𝐿2(cosh(𝑏·))

⃒⃒
⃒
2

≤𝑀2

}︃

for a given sequence (𝜔𝑚)𝑚∈N0
. The set can also be written as

ℋ𝑏,𝑐
𝜔,𝑥0

(𝑀) =

{︃
𝑓 :

∑︁

𝑚∈N0

(︂
2𝜋
𝜔𝑚

𝜎𝑏,𝑐𝑚

)︂2 ⃒⃒
⃒
⟨︀
𝑓(𝑐 ·+𝑥0), 𝑔𝑏,𝑐𝑚

⟩︀
𝐿2(−1,1)

⃒⃒
⃒
2

≤𝑀2

}︃
.

This amounts to smoothness of 𝑓(𝑐 · +𝑥0) on (−1, 1). When 𝜔𝑚 = 1 for all 𝑚 this

corresponds to analyticity of 𝑓 in R. We consider below the case where we have

a preexponential polynomial or exponential sequence 𝜔𝑚. Theorem 1 in Bonami

and Karoui (2017) provides a comparison between the smoothness in terms of a

summability condition involving the coefficients on the PSWF basis and Sobolev

smoothness on (−1, 1). Such a result is not available when the PSWF basis is replaced

by (𝑔𝑏,𝑐𝑚 )𝑚∈N0 and requires further investigation.

Theorem 2. Take 𝑀 > 0 and deőne 𝛽 as in (6.16), then we have
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1. for (𝜔𝑚)𝑚∈N0 = (𝑚𝜎)𝑚∈N0, 𝜎 > 1/2, 𝑁 =
⌊︀
𝑁
⌋︀
, and 𝑁 = ln(1/𝛿)/(2𝛽(𝑐/𝑏)),

sup
𝑓∈ℋ𝑏,𝑐

𝜔,𝑥0
(𝑀),‖𝜉‖𝐿2(−1,1)≤1

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦
𝐿2(R)

= 𝑂
𝛿→0

((− log(𝛿))−𝜎), (6.21)

2. for (𝜔𝑚)𝑚∈N0 = (𝑒𝜅𝑚)𝑚∈N0, 𝜅 > 0, 𝑁 =
⌊︀
𝑁
⌋︀
, and 𝑁 = ln(1/𝛿)/(𝜅+ 𝛽(𝑐/𝑏)),

sup
𝑓∈ℋ𝑏,𝑐

𝜔,𝑥0
(𝑀),‖𝜉‖𝐿2(−1,1)≤1

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦
𝐿2(R)

= 𝑂
𝛿→0

(︀
𝛿𝜅/(𝜅+𝛽(𝑐/𝑏))

)︀
. (6.22)

Proof. We have, using the Plancherel equality for the őrst equality,

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦2

𝐿2(R)
=

1

2𝜋

⃦⃦
ℱ

[︀
𝑓𝑁𝛿

]︀
−ℱ [𝑓 ]

⃦⃦2

𝐿2(R)

=
1

2𝜋

⃦⃦
ℱ

[︀
𝑓𝑁𝛿 (𝑥0 − ·)

]︀
−ℱ [𝑓(𝑥0 − ·)]

⃦⃦2

𝐿2(R)

≤ 1

2𝜋

⃦⃦
ℱ

[︀
𝑓𝑁𝛿 (𝑥0 − ·)

]︀
−ℱ [𝑓(𝑥0 − ·)]

⃦⃦2

𝐿2(cosh(𝑏·))

≤ 1

𝜋

⃦⃦
ℱ

[︀
𝑓𝑁𝛿 (𝑥0 − ·)

]︀
−ℱ

[︀
𝑓𝑁0 (𝑥0 − ·)

]︀⃦⃦2

𝐿2(cosh(𝑏·))

+
1

𝜋

⃦⃦
ℱ

[︀
𝑓𝑁0 (𝑥0 − ·)

]︀
−ℱ [𝑓(𝑥0 − ·)]

⃦⃦2

𝐿2(cosh(𝑏·)) . (6.23)

Using (6.19) for the őrst equality, the Cauchy-Schwarz inequality and (6.4) for the

őrst inequality, and (6.16) for the second inequality, we obtain

⃦⃦
ℱ

[︀
𝑓𝑁𝛿 (𝑥0 − ·)

]︀
−ℱ

[︀
𝑓𝑁0 (𝑥0 − ·)

]︀⃦⃦2

𝐿2(cosh(𝑏·))

=

⃦⃦
⃦⃦
⃦
∑︁

𝑚≤𝑁

2𝜋

𝜎𝑏,𝑐𝑚

⟨︀
(𝑓𝛿 − 𝑓) (𝑐 ·+𝑥0), 𝑔𝑐/𝑏𝑚 (·)

⟩︀
𝐿2(−1,1)

𝜙𝑏,𝑐𝑚 (·)
⃦⃦
⃦⃦
⃦

2

𝐿2(cosh(𝑏·))

=
∑︁

𝑚≤𝑁

(︂
2𝜋

𝜎𝑏,𝑐𝑚

)︂2 ⃒⃒
⃒
⟨︀
(𝑓𝛿 − 𝑓) (𝑐 ·+𝑥0), 𝑔𝑐/𝑏𝑚 (·)

⟩︀
𝐿2(−1,1)

⃒⃒
⃒
2

≤ (2𝜋)2 ‖(𝑓𝛿 − 𝑓) (𝑐 ·+𝑥0)‖2𝐿2(−1,1)

∑︁

𝑚≤𝑁

𝑐

𝜌
𝑐/𝑏
𝑚

≤ (2𝜋)2𝑐𝛿2

𝜃(𝑐)
‖𝜉‖2𝐿2(−1,1)

∑︁

𝑚≤𝑁
𝑒2𝛽(𝑐/𝑏)𝑚

≤ (2𝜋)2𝑐𝛿2

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝑒2𝛽(𝑐/𝑏)𝑁 . (6.24)
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Using (6.20), we have

ℱ
[︀
𝑓𝑁0 (𝑥0 − ·)

]︀
(⋆) =

∑︁

𝑚≤𝑁

2𝜋

𝜎𝑏,𝑐𝑚

⟨︀
𝑓(𝑐 ·+𝑥0), 𝑔𝑐/𝑏𝑚 (·)

⟩︀
𝐿2(−1,1)

𝜙𝑏,𝑐𝑚 (⋆)

=
∑︁

𝑚≤𝑁

2𝜋

𝜎𝑏,𝑐𝑚

⟨
ℱ𝑏,𝑐

[︂
1

2𝜋
ℱ [𝑓(𝑥0 − ·)]

]︂
, 𝑔𝑐/𝑏𝑚

⟩

𝐿2(−1,1)

𝜙𝑏,𝑐𝑚 (⋆)

=
∑︁

𝑚≤𝑁

1

𝜎𝑏,𝑐𝑚

⟨︀
ℱ [𝑓(𝑥0 − ·)] ,ℱ*

𝑏,𝑐

[︀
𝑔𝑐/𝑏𝑚

]︀⟩︀
𝐿2(cosh(𝑏·)) 𝜙

𝑏,𝑐
𝑚 (⋆)

=
∑︁

𝑚≤𝑁

⟨︀
ℱ [𝑓(𝑥0 − ·)] , 𝜙𝑐/𝑏𝑚

⟩︀
𝐿2(cosh(𝑏·)) 𝜙

𝑏,𝑐
𝑚 (⋆).

Thus, using Proposition 2 and Pythagoras’ theorem, we obtain

⃦⃦
ℱ

[︀
𝑓𝑁0 (𝑥0 − ·)

]︀
−ℱ [𝑓(𝑥0 − ·)]

⃦⃦2

𝐿2(cosh(𝑏·)) =
∑︁

𝑚>𝑁

⃒⃒
⃒
⟨︀
ℱ [𝑓(𝑥0 − ·)], 𝜙𝑏,𝑐𝑚 (·)

⟩︀
𝐿2(cosh(𝑏·))

⃒⃒
⃒
2

≤
∑︁

𝑚∈N0

(︂
𝜔𝑚
𝜔𝑁

)︂2 ⃒⃒
⃒
⟨︀
ℱ [𝑓(𝑥0 − ·)], 𝜙𝑏,𝑐𝑚 (·)

⟩︀
𝐿2(cosh(𝑏·))

⃒⃒
⃒
2

≤ 𝑀2

𝜔2
𝑁

(using 𝑓 ∈ ℋ𝑏,𝑐
𝜔,𝑥0

(𝑀)). (6.25)

Finally, using (6.23)-(6.25) yields

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦2

𝐿2(R)
≤ 1

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝛿2𝑒2𝛽(𝑐/𝑏)𝑁 +

𝑀2

𝜔2
𝑁

)︂
. (6.26)

Consider case (1). Take 𝛿 small enough so that 𝑁 ≥ 2 and log
(︀
𝛿 log (1/𝛿)2𝜎

)︀
≤ 0.

By (6.26) and the deőnition of (𝜔𝑁)𝑛∈N0
in the őrst display below, 𝑁 − 1 ≤ 𝑁 ≤ 𝑁

in the second display, and 𝑁 ≥ 2 in the third display, we obtain

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦2

𝐿2(R)
≤ 𝑁−2𝜎

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝛿2𝑒2𝛽(𝑐/𝑏)𝑁𝑁2𝜎 +𝑀2

)︂

≤ 𝑁
−2𝜎 (︀

1− 1/𝑁
)︀−2𝜎

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝛿2𝑒2𝛽(𝑐/𝑏)𝑁𝑁

2𝜎
+𝑀2

)︂

≤ 𝑁
−2𝜎

22𝜎

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝛿2𝑒2𝛽(𝑐/𝑏)𝑁𝑁

2𝜎
+𝑀2

)︂
.
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Using that

𝛿2 exp
(︁
2𝛽

(︁𝑐
𝑏

)︁
𝑁
)︁
𝑁

2𝜎
= exp

(︃
2𝜎 log

(︂
1

2𝛽(𝑐/𝑏)

)︂
+ log

(︃
𝛿 log

(︂
1

𝛿

)︂2𝜎
)︃)︃

≤
(︂

1

𝛽(𝑐/𝑏)

)︂2𝜎

,

yields

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦2

𝐿2(R)
≤ 1

𝜋

(︁
4𝛽

(︁𝑐
𝑏

)︁)︁2𝜎
(︃

(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))

(︂
1

𝛽(𝑐/𝑏)

𝜎

𝑒

)︂2𝜎

+𝑀2

)︃
(− log(𝛿))−2𝜎,

(6.27)

hence the result.

Consider now case (2).

Using 𝑁 − 1 ≤ 𝑁 ≤ 𝑁 in the őrst display and 𝛿2 exp
(︁
2
(︁
𝛽
(︁𝑐
𝑏

)︁
+ 𝜅

)︁
𝑁
)︁
= 1 and

the deőnition of 𝑁 in the second display, yields

⃦⃦
𝑓𝑁𝛿 − 𝑓

⃦⃦2

𝐿2(R)
≤ 𝑒−2𝜅(𝑁−1)

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
𝛿2𝑒2(𝛽(𝑐/𝑏)+𝜅)𝑁 +𝑀2

)︂

≤ 𝑒2𝜅

𝜋

(︂
(2𝜋)2𝑐

𝜃(𝑐) (1− 𝑒−2𝛽(𝑐/𝑏))
+𝑀2

)︂
𝛿2𝜅/(𝜅+𝛽(𝑐/𝑏)),

hence the result.

The rate in (6.21) does not depend on 𝑐 but the constant blows up as 𝑐→ 0 (see

(6.27)). In contrast, the rate in (6.22) deteriorates for small values of 𝑐. The result

(6.22) is related to those obtained for the so-called ł2exp-severely ill-posed problems"

(see Cavalier et al. (2004) for a survey and Tsybakov (2000) which obtains similar

polynomial rates) where the singular values decay exponentially and the functions

are supersmooth.

The proof of Theorem 2 requires an upper bound on a sum involving the singular

values for small 𝑚 in the denominator. Theorem 1 allows to obtain (6.24). Without

it, one could at best obtain, instead of (6.24), the upper bound (2𝜋)2𝑐𝛿2(𝑁 +1)/𝜌𝑏,𝑐𝑁 .

Because (6.6) is an equivalent of the logarithm we are unable to obtain a polynomial

rate of convergence as sharp as in (6.22).
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6.4 Upper bounds on the eigenvalues of 𝒬𝑐

Theorem 3. For 𝑚 ∈ N0 and 0 < 𝑐 < 1, we have

𝜌𝑐𝑚 ≤ 2𝑒𝑐2𝑚+1

√
2𝑚+ 1(1− 𝑐2)

.

The proof of this result uses arguments which have been used in the proof of

Theorem 3.1 in Bonami et al. (2018) for the PSWF.

Proof. Using the minimax principle (see Theorem 4 page 212 in Birman and Solomjak

(2012)), the 𝑚+ 1-th eigenvalue 𝜌𝑐𝑚 satisőes

𝜌𝑐𝑚 = min
𝑉 ∈𝑆𝑚

max
𝑓∈𝑉 ⊥

⟨𝒬𝑐𝑓, 𝑓⟩𝐿2(−1,1)

‖𝑓‖2𝐿2(−1,1)

,

where 𝑆𝑚 is the set of 𝑚-dimensional vector subspaces of 𝐿2(−1, 1). We use (6.8),

which yields

𝜌𝑐𝑚 = min
𝑉 ∈𝑆𝑚

max
𝑓∈𝑉 ⊥

𝑐
⟨︀
ℱ*

1,𝑐[𝑓 ],ℱ*
1,𝑐[𝑓 ]

⟩︀
𝐿2(cosh)

‖𝑓‖2𝐿2(−1,1)

.

We denote by (𝑃𝑚)𝑚∈N0
the Legendre polynomials with the normalization 𝑃𝑚(1) = 1.

They are such that
(︁√︀

𝑚+ 1/2𝑃𝑚

)︁
𝑚∈N0

is an orthonormal basis of 𝐿2(−1, 1). Let

𝑉 be the vector space spanned by 𝑃0, . . . , 𝑃𝑚−1. Take 𝑓 ∈ 𝑉 ⊥ of norm 1. It is of

the form 𝑓 =
∑︀∞

𝑘=𝑚 𝑎𝑘
√︀
𝑘 + 1/2𝑃𝑘, where

∑︀∞
𝑘=𝑚 |𝑎𝑘|2 = 1. The Cauchy-Schwarz

inequality yields, for a.e. 𝑥 ∈ R,

⃒⃒
ℱ*

1,𝑐𝑓(𝑥)
⃒⃒2 ≤

(︃ ∞∑︁

𝑘=𝑚

|𝑎𝑘|2
)︃(︃ ∞∑︁

𝑘=𝑚

(︂
𝑘 +

1

2

)︂ ⃒⃒
ℱ*

1,𝑐𝑃𝑘(𝑥)
⃒⃒2
)︃

and after integration

⃦⃦
ℱ*

1,𝑐𝑓
⃦⃦2

𝐿2(cosh)
≤

∞∑︁

𝑘=𝑚

(︂
𝑘 +

1

2

)︂ ⃦⃦
ℱ*

1,𝑐𝑃𝑘
⃦⃦2

𝐿2(cosh)
.
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Thus, we have

𝜌𝑐𝑚 ≤ 𝑐
∞∑︁

𝑘=𝑚

(︂
𝑘 +

1

2

)︂ ⃦⃦
ℱ*

1,𝑐𝑃𝑘
⃦⃦2

𝐿2(cosh)
. (6.28)

Then, using (18.17.19) in Olver et al. (2010), we obtain, for a.e. 𝑥 and 𝑐 > 0,

ℱ*
1,𝑐 [𝑃𝑘] (𝑥) = sech (𝑥)ℱ1,𝑐 [ℰ [𝑃𝑘]] (−𝑥)

= sech (𝑥) 𝑖−𝑘

√︃
2𝜋

𝑐 |𝑥|𝐽𝑘+1/2(𝑐 |𝑥|),

where 𝐽𝑘+1/2 is the Bessel function of order 𝑘+1/2. Using (9.1.62) in Abramowitz and

Stegun (1965) in the őrst display, Γ(𝑘+3/2) = (𝑘+1/2)Γ(𝑘+1/2) and Γ(𝑘+1/2) ≥
√
2𝜋𝑒−𝑘−1/2(𝑘 + 1/2)𝑘 (see (1.4) in Mortici and Chen (2011)) in the second display,

we obtain

⃒⃒
ℱ*

1,𝑐 [𝑃𝑘] (𝑥)
⃒⃒
≤ sech (𝑥)

√
𝜋

|𝑐𝑥/2|𝑘
Γ(𝑘 + 3/2)

.

≤ sech (𝑥)

√︂
𝑒

2

1

𝑘 + 1/2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂𝑘

|𝑥|𝑘.

Thus, we have

⃦⃦
ℱ*

1,𝑐 [𝑃𝑘]
⃦⃦2

𝐿2(cosh)
≤ 𝑒

2(𝑘 + 1/2)2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂2𝑘 ∫︁

R

𝑥2𝑘sech (𝑥) 𝑑𝑥

≤ 𝑒

(𝑘 + 1/2)2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂2𝑘 ∫︁ ∞

0

𝑥2𝑘𝑒−𝑥𝑑𝑥

≤ 𝑒

(𝑘 + 1/2)2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂2𝑘

Γ(2𝑘 + 1).

Then, by (6.28) for the őrst inequality and using (1.3) in Mortici and Chen (2011)
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for the second one, we have

𝜌𝑐𝑚 ≤ 𝑒𝑐
∞∑︁

𝑘=𝑚

1

𝑘 + 1/2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂2𝑘

Γ(2𝑘 + 1)

≤ 𝑒𝑐

∞∑︁

𝑘=𝑚

1

𝑘 + 1/2

(︂
𝑒𝑐

2(𝑘 + 1/2)

)︂2𝑘

(2𝑘 + 1)2𝑘+1/2𝑒−2𝑘

= 2𝑒𝑐
∞∑︁

𝑘=𝑚

1√
2𝑘 + 1

𝑐2𝑘

≤ 2𝑒𝑐√
2𝑚+ 1

∞∑︁

𝑘=𝑚

𝑐2𝑘

hence, for 0 < 𝑐 < 1, this yields the result.

Theorem 3 holds for a limited range of values of 𝑐 but this range is enough to

construct the so-called test functions to prove the minimax lower bounds in Gaillac

and Gautier (2019c). Note also that, using Corollary 1 and Theorem 3, we have, for

all 0 < 𝑐 ≤ 𝑐0 < 1 and 𝑚 ∈ N,

2 sin(2𝑐0)
2𝑐

(𝑒𝑐0)2
exp

(︂
−2

(︂
log

(︂
1

𝑐

)︂
+ 2 + log

(︂
7𝜋

2

)︂)︂
𝑚

)︂
≤ 𝜌𝑐𝑚 ≤

2𝑒𝑐0 exp

(︂
−2 log

(︂
1

𝑐

)︂
𝑚

)︂

√
2𝑚+ 1(1− 𝑐20)

.

The exponential factors in these upper and lower bounds have a similar behavior as

𝑐 approaches 0 (see also Figure 6-1).
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(a) 𝑐 < 1 (b) 𝑐 ≥ 1

Figure 6-1: Bounds on lim𝑚→∞ − log(𝜌𝑐𝑚)/𝑚 and Widom’s equivalent (6.6) as a func-

tion of 𝑐.

6.5 Properties of a differential operator which com-

mutes with 𝒬𝑐

In this section, we consider differential operators ℒ[𝜓] = − (𝑝𝜓′)′ + 𝑞𝜓 on 𝐿2(−1, 1),

with (1) 𝑝(𝑥) = cosh(4𝑐)− cosh(4𝑐𝑥) and 𝑞(𝑥) = 3𝑐2 cosh(4𝑐𝑥), (2) 𝑝(𝑥) = 1− 𝑥2 and

𝑞(𝑥) = 𝑞𝑐(𝑥) where, for 𝑌 (𝑥) = sin (𝑋(𝑥)), 𝑋(𝑥) = (𝜋/𝑈(𝑐))
∫︀ 𝑥
0
𝑝(𝜉)−1/2𝑑𝜉, and

𝑈(𝑐) =

∫︁ 1

−1

𝑝(𝜉)−1/2𝑑𝜉,

𝑞𝑐(𝑌 (𝑥)) =
1

2
+

1

4
tan (𝑋(𝑥))2 −

(︂
𝑈(𝑐)𝑐

𝜋

)︂2 (︂
cosh(4𝑐𝑥) +

sinh2(4𝑐𝑥)

𝑝(𝑥)

)︂
, (6.29)

and (3) 𝑝(𝑥) = 1−𝑥2 and 𝑞(𝑥) = 0. By Widom (1964) (see also Morrison (1962)), the

eigenfunctions of 𝒬𝑐 are those of the differential operator in case (1) with domain 𝒟 ⊂
𝒟max = {𝜓 ∈ 𝐿2(−1, 1) : ℒ[𝜓] ∈ 𝐿2(−1, 1)} with boundary conditions of continuity

at ±1. This is an important property for the asymptotic analysis in Widom (1964)

and to obtain bounds on the sup-norm of these functions in Section 6.6 and numerical
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approximations of them in Section 6.7. To study ℒ in case (1), Widom (1964) uses

the changes of variable and function, for all 𝑥 ∈ (−1, 1) and 𝜓 ∈ 𝒟max,

𝑦 = 𝑌 (𝑥), (6.30)

∀𝑦 ∈ (−1, 1), Γ(𝑦) = 𝐹 (𝑦)𝜓
(︀
𝑌 −1(𝑦)

)︀
, 𝐹 (𝑦) =

(︂
𝑝(𝑌 −1(𝑦))

1− 𝑦2

)︂1/4

, (6.31)

where 𝑌 is a 𝐶∞−diffeomorphism on (−1, 1). This relates an eigenvalue problem for

(1) to an eigenvalue problem for (2) and it is useful to view the operator in case (2) as a

perturbation of the operator in case (3). In the three cases, 1/𝑝 and 𝑞 are holomorphic

on a simply connected open set (−1, 1) ⊆ 𝐸 ⊆ C. The spectral analysis involves the

solutions to (𝐻𝜆): − (𝑝𝜓′)′ + (𝑞 − 𝜆)𝜓 = 0 with 𝜆 ∈ C which are holomorphic on 𝐸

and span a vector space of dimension 2 (see Sections IV 1 and 10 in Hartman (1987)).

So they are inőnitely differentiable on (−1, 1), have isolated zeros in (−1, 1), and the

condition of continuity (or boundedness) at ±1 makes sense.

We now present a few useful estimates.

Lemma 2. We have, for all 𝑐 > 0,

√
2𝑒2𝑐

sinh(4𝑐)
< 𝑈(𝑐) < 𝜋

√
2𝑒2𝑐

sinh(4𝑐)
.

Proof. By the second equation page 229 of Widom (1964)

𝑈(𝑐) =
1

𝑐(1 + cosh(4𝑐))1/2
𝐾

(︂
𝑒4𝑐 − 1

𝑒4𝑐 + 1

)︂
,

and the result follows from the fact that, by Corollary 3.3 in Anderson et al. (1992),

𝑐𝑒2𝑐

sinh(2𝑐)
< 𝐾

(︂
𝑒4𝑐 − 1

𝑒4𝑐 + 1

)︂
<

𝜋𝑐𝑒2𝑐

sinh(2𝑐)
.

We obtain the őnal expressions by classical relations between hyperbolic functions.
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We make use of the identity, for all 𝑥 ∈ [−1, 1],

𝑝(𝑥) = 4𝑐 sinh(4𝑐)(1− 𝑥)(1 + 𝑢(𝑥)), (6.32)

𝑢(𝑥) =

∫︁ 1

𝑥

4𝑐 cosh(4𝑐𝑡)

sinh(4𝑐)(1− 𝑥)
(𝑥− 𝑡)𝑑𝑡, (6.33)

which is obtained by Taylor’s theorem with remainder in integral form

cosh(4𝑐𝑥) = cosh(4𝑐) + (𝑥− 1)4𝑐 sinh(4𝑐) +

∫︁ 𝑥

1

16𝑐2 cosh(4𝑐𝑡)(𝑥− 𝑡)𝑑𝑡.

Also, 𝑢 is increasing on [−1, 1] because, for all 𝑥 ∈ [−1, 1],

𝑢′(𝑥) =
4𝑐

sinh(4𝑐)(1− 𝑥)2

∫︁ 1

𝑥

cosh(4𝑐𝑡)(1− 𝑡)𝑑𝑡 > 0 (6.34)

and, for all 𝑥 ∈ [0, 1],

− 1 +
1

4𝑐 sinh(4𝑐)
(cosh(4𝑐)− 1) ≤ 𝑢(𝑥) ≤ 0. (6.35)

Lemma 3. We have, for all 𝑐 > 0 and 𝑥 ∈ [0, 1],

𝑐 sinh(4𝑐)

1− 𝑥
− 8𝑐3 sinh(4𝑐) cosh(4𝑐)

3 (cosh(4𝑐)− 1)
≤

(︂∫︁ 1

𝑥

𝑝(𝜉)−1/2𝑑𝜉

)︂−2

≤ 𝑐 sinh(4𝑐)

1− 𝑥
.

Proof. We have

(︂∫︁ 1

𝑥

𝑝(𝜉)−1/2𝑑𝜉

)︂−2

=

(︂
1

(4𝑐 sinh(4𝑐))1/2

(︂
2(1− 𝑥)1/2 −

∫︁ 1

𝑥

∫︁ 𝜉

1

𝑢′(𝑡)

2
√
1− 𝜉(1 + 𝑢(𝑡))3/2

𝑑𝜉𝑑𝑡

)︂)︂−2

=
𝑐 sinh(4𝑐)

1− 𝑥

1

(1 + ̃︀𝑢(𝑥))2 (6.36)

=
𝑐 sinh(4𝑐)

1− 𝑥
− 𝑐 sinh(4𝑐)(2 + ̃︀𝑢(𝑥))̃︀𝑢(𝑥)

(1− 𝑥)(1 + ̃︀𝑢(𝑥))2 , (6.37)
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where

̃︀𝑢(𝑥) =
∫︁ 1

𝑥

1

4
√︀
(1− 𝜉)(1− 𝑥)

(︂∫︁ 1

𝜉

𝑢′(𝑡)

(1 + 𝑢(𝑡))3/2
𝑑𝑡

)︂
𝑑𝜉. (6.38)

The upper bound in Lemma 3 uses that, for all 𝑥 ∈ [0, 1], ̃︀𝑢(𝑥) ≥ 0. We now consider

the lower bound. By (6.34), 𝑢 is a 𝐶1-diffeomorphism and

∫︁ 1

𝑥

𝑢′(𝑡)𝑑𝑡

(1 + 𝑢(𝑡))2
𝑑𝑡 = − 𝑢(𝑥)

1 + 𝑢(𝑥)
. (6.39)

Now, by (6.33), we have, for all 𝑥 ∈ [0, 1],

−𝑢(𝑥) ≤ 4𝑐 cosh(4𝑐)

sinh(4𝑐)(1− 𝑥)

∫︁ 1

𝑥

(𝑡− 𝑥)𝑑𝑡

=
2𝑐 cosh(4𝑐)

sinh(4𝑐)
(1− 𝑥),

and, by (6.35),

∫︁ 1

𝑥

𝑢′(𝑡)𝑑𝑡

(1 + 𝑢(𝑡))2
𝑑𝑡 ≤ 8𝑐2

cosh(4𝑐)

cosh(4𝑐)− 1
(1− 𝑥). (6.40)

Now, using that ̃︀𝑢(𝑥) ≥ 0 and that 𝑔 : 𝑡 ↦→ (2 + 𝑡)/(1 + 𝑡)2 is decreasing on [0,∞)

hence 𝑔(𝑡)𝑡 ≤ 2𝑡 for 𝑡 ≥ 0, we have

(2 + ̃︀𝑢(𝑥))̃︀𝑢(𝑥)
(1 + ̃︀𝑢(𝑥))2 ≤

∫︁ 1

𝑥

1

2
√︀

(1− 𝜉)(1− 𝑥)

(︂∫︁ 1

𝜉

𝑢′(𝑡)

(1 + 𝑢(𝑡))2
𝑑𝑡

)︂
𝑑𝜉 (by (6.38))

≤ 4𝑐2 cosh(4𝑐)

cosh(4𝑐)− 1

∫︁ 1

𝑥

√︂
1− 𝜉

1− 𝑥
𝑑𝜉 (by (6.40))

≤ 8𝑐2 cosh(4𝑐)

3 (cosh(4𝑐)− 1)
(1− 𝑥). (6.41)

Proposition 3. 𝐹 is such that

‖𝐹‖4𝐿∞([−1,1]) ≤ 2𝜋2𝑒4𝑐𝑐2 (6.42)

‖1/𝐹‖4𝐿∞([−1,1]) ≤
𝜋2𝑒−4𝑐

4𝑐

(︂
1 +

4𝑐2

3

)︂2

coth(2𝑐). (6.43)
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For all 𝑐 > 0 and 𝜆 ∈ C, the change of variables and function (6.30)-(6.31) maps

a solution of
(︀
𝐻𝑈(𝑐)2𝜆/𝜋2

)︀
in case (2) to a solution of (𝐻𝜆) in case (1) and recipro-

cally the inverse transformation maps a solution of (𝐻𝜆) in case (1) to a solution of
(︀
𝐻𝑈(𝑐)2𝜆/𝜋2

)︀
in case (2) and is a bijection of 𝒟. Also, 𝑞𝑐 can be extended by continuity

to [−1, 1] and, for all 𝑦 ∈ [−1, 1],

1

2
−

(︂
𝑈(𝑐)𝑐

𝜋

)︂2

−𝑅(𝑐) ≤ 𝑞𝑐(𝑦) ≤ 1

2
−

(︂
𝑈(𝑐)𝑐

𝜋

)︂2

, (6.44)

where

𝑅(𝑐) =
2

𝜋2
+

(︂
𝑈(𝑐)𝑐

𝜋

)︂2 (︁(︁
cosh(4𝑐)

(︁
1 +

𝑐

3
coth(2𝑐)

)︁
− 1

)︁
+ 2𝑐 sinh(4𝑐)

)︁
.

Proof. To prove (6.42) and (6.43) it is sufficient, by parity, to consider 𝑥 ∈ [0, 1].

(6.42) is a obtained by the following sequence of inequalities

𝑝(𝑥)

1− 𝑌 (𝑥)2
=

𝑝(𝑥)

sin2
(︁
𝜋
∫︀ 1

𝑥
𝑝(𝜉)−1/2𝑑𝜉/𝑈(𝑐)

)︁

≤
(︂
𝑈(𝑐)

2

)︂2
𝑝(𝑥)

(︁∫︀ 1

𝑥
𝑝(𝜉)−1/2𝑑𝜉

)︁2 (because sin(𝑥) ≥ 2𝑥/𝜋)

≤
(︂
𝑈(𝑐)

2

)︂2

𝑝(𝑥)
𝑐 sinh(4𝑐)

1− 𝑥
(by Lemma 3)

≤
(︂
𝑈(𝑐)

2

)︂2

4𝑐2 sinh(4𝑐)2(1 + 𝑢(𝑥)) (by (6.32))

≤ 𝜋2𝑒4𝑐𝑐2 sinh(4𝑐)2

sinh(2𝑐)2(1 + cosh(4𝑐))
(by Lemma 2 and (6.35)).

We obtain (6.43) by the inequalities below. Using for the őrst display that, for

𝑥 ∈ [0, 𝜋/2], sin(𝑥) ≤ 𝑥, (6.32) and (6.36) for the second display, (6.35) and (6.41) for
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the third, and Lemma 2 for the fourth, we obtain, for all 𝑥 ∈ [0, 1),

1− 𝑌 (𝑥)2

𝑝(𝑥)
≤

(︂
𝜋

𝑈(𝑐)

)︂2

(︁∫︀ 1

𝑥
𝑝(𝜉)−1/2𝑑𝜉

)︁2

𝑝(𝑥)

≤
(︂

𝜋

𝑈(𝑐)

)︂2
2 (1 + ̃︀𝑢(𝑥))2
(4𝑐 sinh(4𝑐))2

1

1 + 𝑢(𝑥)

≤
(︂

𝜋

𝑈(𝑐)

)︂2
(1 + 4𝑐2/3)2

2𝑐 sinh(4𝑐)2
sinh(4𝑐)

cosh(4𝑐)− 1

≤𝜋
2𝑒−4𝑐

4𝑐

(1 + 4𝑐2/3)2 sinh(4𝑐)

cosh(4𝑐)− 1
.

Classical relations between hyperbolic functions yield the őnal expressions for (6.42)

and (6.43).

Let Γ and 𝜓 related via (6.31). Buy the above if one function is in 𝒟 the other is s

well. Moreover, by (6.31), we have

𝐹 ′(𝑦) =
𝐹 (𝑦)

4

(︂
𝑝′

𝑝𝑌 ′
(︀
𝑌 −1(𝑦)

)︀
+

2𝑦

1− 𝑦2

)︂

(1− 𝑦2)Γ′(𝑦) =
𝐹 (𝑦)

4

(︂
(1− 𝑦2)

(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂(︀
𝑌 −1(𝑦)

)︀
+ 2𝑦𝜓

(︀
𝑌 −1(𝑦)

)︀)︂

so differentiating a second time and injecting the above inequality, yields

(︀
(1− 𝑦2)Γ′)︀′ (𝑦)

=
𝐹 (𝑦)

4

(︁1
4

(︂
𝑝′

𝑝𝑌 ′
(︀
𝑌 −1(𝑦)

)︀
+

2𝑦

1− 𝑦2

)︂(︂
(1− 𝑦2)

(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂(︀
𝑌 −1(𝑦)

)︀
+ 2𝑦𝜓

(︀
𝑌 −1(𝑦)

)︀)︂

− 2𝑦

(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂(︀
𝑌 −1(𝑦)

)︀
+ (1− 𝑦2)

[︂
1

𝑌 ′

(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂′]︂ (︀
𝑌 −1(𝑦)

)︀

+ 2

(︂
𝜓
(︀
𝑌 −1(𝑦)

)︀
+ 𝑦

𝜓′

𝑌 ′
(︀
𝑌 −1(𝑦)

)︀)︂)︁
.

Dividing by 𝐹 (𝑦)/4 and using (6.30), Γ is solution of
(︀
𝐻𝑈(𝑐)2𝜆/𝜋2

)︀
iff 𝜓 is solution on
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(−1, 1) of

1

4𝑝(𝑥)

(︂
𝑝′(𝑥) +

2𝑌 𝑌 ′𝑝

1− 𝑌 2
(𝑥)

)︂(︂
1− 𝑌 2

(𝑌 ′)2 𝑝
(𝑥) (𝑝′𝜓 + 4𝑝𝜓′) (𝑥) + 2

𝑌

𝑌 ′ (𝑥)𝜓 (𝑥)

)︂

− 2
𝑌

𝑌 ′ (𝑥)

(︂
𝑝′𝜓

𝑝
+ 4𝜓′

)︂
(𝑥) +

1− 𝑌 2

𝑌 ′ (𝑥)

(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂′
(𝑥) + 2

(︂
𝜓 (𝑥) +

𝑌

𝑌 ′ (𝑥)𝜓
′ (𝑥)

)︂

= 4

(︂
𝑞𝑐 (𝑌 (𝑥))− 𝑈(𝑐)2𝜆

𝜋2

)︂
𝜓 (𝑥) .

We now use, for all 𝑥 ∈ (−1, 1),

𝑌 ′(𝑥) =
𝜋

𝑈(𝑐)𝑝(𝑥)1/2
cos(𝑋(𝑥)), (6.45)

which yields the equality between 𝐶∞ functions: (1− 𝑌 2)/ ((𝑌 ′)2𝑝) = (𝑈(𝑐)/𝜋)2 and

(︃
1 + 2

𝑌

𝑝′𝑌 ′

(︂
𝜋

𝑈(𝑐)

)︂2
)︃(︃(︂

𝑈(𝑐)

𝜋

)︂2
(︃
(𝑝′)2

4𝑝
𝜓 + 𝑝′𝜓′

)︃
+

𝑌

2𝑝𝑝′𝑌 ′

(︁
(𝑝′)

2
𝜓
)︁)︃

− 2
𝑌

𝑝′𝑌 ′

(︃
(𝑝′)2

𝑝
𝜓 + 4𝑝′𝜓′

)︃
+

(︂
𝑈(𝑐)

𝜋

)︂2

𝑝𝑌 ′
(︂
𝑝′𝜓

𝑝𝑌 ′ + 4
𝜓′

𝑌 ′

)︂′
+ 2

𝑌

𝑝′𝑌 ′𝑝
′𝜓′

= 4

(︂
𝑞𝑐 (𝑌 )− 1

2
− 𝑈(𝑐)2𝜆

𝜋2

)︂
𝜓.

The term in factor of 𝜓 on the left-hand side of the above equality is

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
1 + 2

𝑌

𝑝′𝑌 ′

(︂
𝜋

𝑈(𝑐)

)︂2
)︃2

(𝑝′)2

4𝑝
−2

𝑌

𝑝′𝑌 ′
(𝑝′)2

𝑝
+

(︂
𝑈(𝑐)

𝜋

)︂2
𝑝𝑝′′𝑌 ′ − (𝑝′)2 𝑌 ′ − 𝑝𝑝′𝑌 ′′

𝑝𝑌 ′

Using −2𝑝𝑌 ′′ = 𝑝′𝑌 ′ + 2 (𝜋/𝑈(𝑐))2 𝑌 which is obtained from (6.45), this becomes

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
1 + 2

𝑌

𝑝′𝑌 ′

(︂
𝜋

𝑈(𝑐)

)︂2
)︃2

(𝑝′)2

4𝑝
− 𝑌

𝑌 ′
𝑝′

𝑝
+

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
𝑝′′ − (𝑝′)2

2𝑝

)︃

=

(︂
𝑌

𝑌 ′

)︂2 (︂
𝜋

𝑈(𝑐)

)︂2
1

𝑝
+

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
𝑝′′ − (𝑝′)2

4𝑝

)︃

= tan (𝑋(𝑥))2 +

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
𝑝′′ − (𝑝′)2

4𝑝

)︃
.
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hence

4

(︂
𝑈(𝑐)

𝜋

)︂2

(𝑝𝜓′)′

= 4

(︃
𝑞𝑐 (𝑌 )− 1

2
− 1

4
tan (𝑋(𝑥))2 +

1

4

(︂
𝑈(𝑐)

𝜋

)︂2
(︃
(𝑝′)2

4𝑝
− 𝑝′′

)︃
−

(︂
𝑈(𝑐)

𝜋

)︂2

𝜆

)︃
𝜓

and 𝜓 is solution of (𝐻𝜆) in case (1).

We now obtain upper and lower bounds on the even function 𝑞𝑐(𝑌 (𝑥)), for 𝑥 ∈ [0, 1],

and start with the lower bound. To bound tan(𝑋)2 in (6.29), we use

tan

(︂
𝜋

𝑈(𝑐)

∫︁ 𝑥

0

𝑝(𝜉)−1/2𝑑𝜉

)︂2

=

(︂
tan

(︂
𝜋

𝑈(𝑐)

∫︁ 1

𝑥

𝑝(𝜉)−1/2𝑑𝜉

)︂)︂−2

, (6.46)

and (96) in Yang et al. (2014) in the őrst display and Lemma 3 and the fact that

(𝑎− 𝑏)2 ≥ 𝑎2 − 2𝑎𝑏 for 𝑎, 𝑏 > 0 in the second display. We obtain

tan (𝑋(𝑥))2 ≥
(︃
𝑈(𝑐)

𝜋

(︂∫︁ 1

𝑥

𝑝(𝜉)−1/2𝑑𝜉

)︂−1

− 4

𝜋𝑈(𝑐)

∫︁ 1

𝑥

𝑝(𝜉)−1/2𝑑𝜉

)︃2

≥
(︂
𝑈(𝑐)𝑐

𝜋

)︂2 (︂
sinh(4𝑐)

𝑐(1− 𝑥)
− 8𝑐 sinh(4𝑐) cosh(4𝑐)

3 (cosh(4𝑐)− 1)

)︂
− 8

𝜋2
.

To bound the second term in the bracket in (6.29) we proceed as follows. We have

4𝑐 sinh(4𝑐𝑥)2

𝑝(𝑥)
=

sinh(4𝑐)

1− 𝑥

1

1 + 𝑢(𝑥)

sinh(4𝑐𝑥)2

sinh(4𝑐)2
(by (6.32))

=
sinh(4𝑐)

1− 𝑥

(︂
1 +

∫︁ 1

𝑥

𝑢′(𝑡)𝑑𝑡

(1 + 𝑢(𝑡))2

)︂
(by (6.39)) (6.47)

≤ sinh(4𝑐)

1− 𝑥

(︀
1 + 8𝑐2(1− 𝑥)

)︀
(by (6.40)),

hence

𝑞𝑐(𝑌 (𝑥)) ≥1

2
− 2

𝜋2
−

(︂
𝑈(𝑐)𝑐

𝜋

)︂2 (︂
cosh(4𝑐)

(︂
1 +

2𝑐 sinh(4𝑐)

3 (cosh(4𝑐)− 1)

)︂
+ 2𝑐 sinh(4𝑐)

)︂

≥1

2
−

(︂
𝑈(𝑐)𝑐

𝜋

)︂2

−𝑅(𝑐).
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Consider the upper bound on 𝑞𝑐. For 𝑥 ∈ [0, 1], by (6.46) and 0 < 𝑧 ≤ tan(𝑧) on

(0, 𝜋/2], we have

𝑞𝑐(𝑌 (𝑥)) ≤ 1

2
+

(︂
𝑈(𝑐)𝑐

𝜋

)︂2

⎛
⎜⎝ 1

4𝑐2
(︁∫︀ 1

𝑥
𝑝(𝜉)−1/2𝑑𝜉

)︁2 − sinh(4𝑐𝑥)2

𝑝(𝑥)
− cosh(4𝑐𝑥)

⎞
⎟⎠ .

Using Lemma 3, (6.47), and (6.34), we have

𝑞𝑐(𝑌 (𝑥)) ≤ 1

2
−

(︂
𝑈(𝑐)𝑐

𝜋

)︂2

. (6.48)

The unbounded operator ℒ on domain 𝒟 in case (3) is self-adjoint. Indeed, it

is shown page 571 of Niessen and Zettl (1992) that 𝒟 is the domain of the self-

adjoint Friedrichs extension of the minimal operator corresponding to the differential

operator on 𝐿2(−1, 1) on the domain 𝒟min (the subset of 𝒟max of functions with

support in (−1, 1), see page 173 in Zettl (2005), we removed one condition on 𝒟max

which is automatically satisőed). By Proposition 3, the multiplication deőned, for

𝜓 ∈ 𝒟max, by 𝜓 → 𝑞𝑐𝜓 is bounded and symmetric on 𝐿2(−1, 1). Thus, by the Kato-

Rellich theorem (see, e.g., Reed and Simon (1975)), the unbounded operator ℒ on

domain 𝒟 in case (2) is self-adjoint. Denote by ((𝑈(𝑐)/𝜋)2𝜒𝑐𝑚)𝑚∈N0
the eigenvalues

of the unbounded operator ℒ on domain 𝒟 in case (2) arranged in increasing order

and repeated according to multiplicity. They are real and, because the operator is

bounded below, they are bounded below by the same constant. Moreover, Proposition

3 yields that (𝜒𝑐𝑚)𝑚∈N0
are the eigenvalues of the unbounded operator ℒ on domain

𝒟 in case (1). The following result gives exact constants and a behavior uniform over

𝑚 which is coherent with the asymptotic result on page 14 of Widom (1964).

Theorem 4. We have, for all 𝑚 ∈ N0 and 𝑐 > 0,

(︂
𝜋

𝑈(𝑐)

)︂2 (︂
𝑚(𝑚+ 1) +

1

2
−𝑅(𝑐)

)︂
+ 𝑐2 ≤ 𝜒𝑐𝑚 ≤

(︂
𝜋

𝑈(𝑐)

)︂2 (︂
𝑚(𝑚+ 1) +

1

2

)︂
− 𝑐2.
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Proof. This follows from the min-max theorem and (6.44).

6.6 Uniform estimates on the singular functions 𝑔𝑐𝑚

Theorem 5. We have, for all 𝑚 ∈ N0 and 𝑐 > 0,

‖𝑔𝑐𝑚‖𝐿∞([−1,1])

≤ 𝜋

𝑒2𝑐

(︂
1 +

4𝑐2

3

)︂1/2 (︂
sinh(4𝑐)

4𝑐

)︂1/4

cosh(2𝑐)1/2

(︃
2𝑅(𝑐)

𝑚+ 1/2
+

(︃
1 +

√︂
2

3

𝑅(𝑐)

𝑚+ 1/2

)︃√︂
𝑚+

1

2

)︃
.

The proof of this result uses similar ideas as in the proof of Proposition 5 in

Bonami and Karoui (2016). The important additional ingredients are the change of

variables and functions and Proposition 3.

Proof. Using in the őrst display the change of variables (6.30) and the change of

functions (6.31) with 𝜓 = 𝑔𝑐𝑚, and denoting by Γ𝑐𝑚(·) = 𝐹 (·)𝑔𝑐𝑚 (𝑌 −1(·)) and ̃︀Γ𝑐𝑚 =

Γ𝑐𝑚
√︀
𝑈(𝑐)/𝜋, which is real valued, and (6.45) and (6.31) in the second display, we

obtain

∫︁ 1

−1

⃒⃒
⃒̃︀Γ𝑐𝑚(𝑦)

⃒⃒
⃒
2

𝑑𝑦 =
𝑈(𝑐)

𝜋

∫︁ 1

−1

𝑌 ′(𝑥) |𝐹 (𝑌 (𝑥))|2 |𝑔𝑐𝑚(𝑥)|2 𝑑𝑥

=

∫︁ 1

−1

cos(𝑋(𝑥))√︀
1− sin(𝑋(𝑥))2

|𝑔𝑐𝑚(𝑥)|2 𝑑𝑥 = 1.

Also, by Proposition 3, for all 𝑦 ∈ (−1, 1),

(︂
(1− 𝑦2)

(︁
̃︀Γ𝑐𝑚

)︁′
)︂′

(𝑦)+𝑚(𝑚+1)̃︀Γ𝑐𝑚(𝑦) =
(︃
𝑚(𝑚+ 1)−

(︂
𝑈(𝑐)

𝜋

)︂2

𝜒𝑐𝑚 + 𝑞𝑐(𝑦)

)︃
̃︀Γ𝑐𝑚(𝑦).

(6.49)

We obtain, by the method of variation of constants and knowledge of the solutions

to the homogenous equation corresponding to the left-hand side of (6.49), that there

exist 𝐴,𝐵 ∈ R such that, for 𝑦 ∈ (−1, 1),

̃︀Γ𝑐𝑚(𝑦) = 𝐴𝑃𝑚(𝑦) + 𝐵𝑄𝑚(𝑦) +
1

𝑚+ 1/2

∫︁ 1

𝑦

𝐿𝑚(𝑦, 𝑧)
√
1− 𝑧2𝐺𝑐(𝑧)̃︀Γ𝑐𝑚(𝑧)𝑑𝑧, (6.50)
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where 𝑃𝑚 is the Legendre polynomial of degree 𝑚 and norm 1 in 𝐿2(−1, 1), 𝑄𝑚

is the Legendre function of the second kind, 𝐺𝑐(𝑦) = 𝑚(𝑚 + 1) − (𝑈(𝑐)/𝜋)2𝜒𝑐𝑚 +

𝑞𝑐(𝑦), and 𝐿𝑚(𝑦, 𝑧) =
√
1− 𝑧2

(︀
𝑃𝑚(𝑦)𝑄𝑚(𝑧)− 𝑃𝑚(𝑧)𝑄𝑚(𝑦)

)︀
. By Theorem 4 and

Proposition 3, we have ‖𝐺𝑐‖𝐿∞([−1,1]) ≤ 𝑅(𝑐). Because Γ𝑐𝑚(1) is őnite, 𝑃𝑚 is bounded

but lim𝑦→1𝑄𝑚(𝑦) = ∞, we know that 𝐵 = 0. By the result after Lemma 9 in

Bonami and Karoui (2016), for all 0 ≤ 𝑦 ≤ 𝑧 ≤ 1, |𝐿𝑚(𝑦, 𝑧)| ≤ 1. Hence, by the

Cauchy-Schwarz inequality, we have, for all 𝑦 ∈ (1, 1),

⃒⃒
⃒̃︀Γ𝑐𝑚(𝑦)− 𝐴𝑃𝑚(𝑦)

⃒⃒
⃒ ≤ 1

𝑚+ 1/2

(︂∫︁ 1

𝑦

(𝐿𝑚(𝑦, 𝑧))
2 (1− 𝑧2)𝑑𝑧

)︂1/2 (︂∫︁ 1

𝑦

𝐺𝑐(𝑧)
2̃︀Γ𝑐𝑚(𝑧)2𝑑𝑧

)︂1/2

,

≤ 𝑅(𝑐)

𝑚+ 1/2
(1− 𝑦) (6.51)

so

∫︁ 1

−1

⃒⃒
⃒̃︀Γ𝑐𝑚(𝑦)− 𝐴𝑃𝑚(𝑦)

⃒⃒
⃒
2

𝑑𝑦 ≤ 2𝑅(𝑐)2

3(𝑚+ 1/2)2

and, by the Cauchy-Schwarz inequality,

∫︁ 1

−1

⃒⃒
⃒̃︀Γ𝑐𝑚(𝑦)− 𝐴𝑃𝑚(𝑦)

⃒⃒
⃒
2

𝑑𝑦 ≥1 + 𝐴2 − 2|𝐴|
∫︁ 1

−1

⃒⃒
⃒̃︀Γ𝑐𝑚(𝑦)

⃒⃒
⃒
2

𝑑𝑦

∫︁ 1

−1

⃒⃒
𝑃𝑚(𝑦)

⃒⃒2
𝑑𝑦

≥(1− |𝐴|)2,

hence

|𝐴| ≤ 1 +

√︂
2

3

𝑅(𝑐)

𝑚+ 1/2
. (6.52)

Also, by (6.43) and Lemma 2, we have

‖1/𝐹‖𝐿∞([−1,1])

√︂
𝜋

𝑈(𝑐)
≤ 𝜋𝑒−2𝑐

(︂
1 +

4𝑐2

3

)︂1/2 (︂
sinh(4𝑐)

4𝑐

)︂1/4

cosh(2𝑐)1/2,

and we obtain the result by (6.51), (6.52), and
⃦⃦
𝑃𝑚

⃦⃦
𝐿∞([−1,1])

≤
√︀
𝑚+ 1/2.
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Corollary 2. For all 𝑚 ∈ N0 and 𝑐 > 0,

‖𝑔𝑐𝑚‖𝐿∞([−1,1]) ≤ 𝐻(𝑐)

√︂
𝑚+

1

2
, (6.53)

where

𝐻(𝑐) = 𝜋

√︂
1 +

4𝑐2

3

(︂
1 + 2

√
2

(︂
2 +

1√
3

)︂(︂
2

𝜋2
+

8

3
(1 + 2𝑐)

(︂
𝑐2 +

9𝑐

8
+

1

2

)︂)︂)︂
.

Proof. By the above results, (6.53) holds with

𝜋𝑒−2𝑐

(︂
1 +

4𝑐2

3

)︂1/2 (︂
sinh(4𝑐)

4𝑐

)︂1/4

cosh(2𝑐)1/2
(︂
1 + 2

√
2𝑅(𝑐)

(︂
2 +

1√
3

)︂)︂

in place of 𝐻(𝑐) and

𝑅(𝑐) <
2

𝜋2
+ 2

(︂
𝑐𝑒2𝑐

sinh(4𝑐)

)︂2 (︁(︁
cosh(4𝑐)

(︁
1 +

𝑐

3
coth(2𝑐)

)︁
− 1

)︁
+ 2𝑐 sinh(4𝑐)

)︁
.

hence, using that 𝑒𝑐 ≥ 1 + 𝑐 which implies 𝑐 coth(𝑐) ≤ 𝑐+ 2,

𝑅(𝑐) <
2

𝜋2
+

8𝑐𝑒4𝑐

3 sinh(4𝑐)

(︂
𝑐2 +

9𝑐

8
+

1

2

)︂
<

2

𝜋2
+

8

3
(1 + 2𝑐)

(︂
𝑐2 +

9𝑐

8
+

1

2

)︂
.

We obtain the result, using

𝑒−2𝑐

(︂
sinh(4𝑐)

4𝑐

)︂1/4

cosh(2𝑐)1/2 = 𝑒−2𝑐

(︂
sinh(2𝑐)

2𝑐

)︂1/4

cosh(2𝑐)3/4

=

(︂
1− 𝑒−4𝑐

4𝑐

)︂1/4 (︂
1 + 𝑒−4𝑐

2

)︂3/4

≤ 1.

As a result we have, for a constant 𝐶0,

‖𝑔𝑐𝑚‖𝐿∞([−1,1]) ≤ 𝐶0 (𝑐 ∨ 1)4
√︂
𝑚+

1

2
. (6.54)
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6.7 Numerical method to obtain the SVD of ℱ𝑏,𝑐

In recent years, efficient numerical methods to obtain the SVD of the truncated

Fourier transform acting on the space of bandlimited functions have been devel-

opped. This allows to go beyond the usual toolbox based on the Tikhonov or it-

erative methods such as the Landweber method (Gerchberg method for out-of-band

extrapolation, see Bertero and Boccacci (1998)). The strategy that we implement in

the next section is to őrst compute a numerical approximation of the right singular

functions (the PSWF). We use that the őrst coefficients of the decomposition of the

PSWF on the Legendre polynomials can be obtained by solving for the eigenvectors

of two tridiagonal symmetric Toeplitz matrices (for even and odd values of 𝑚, see

Section 2.6 in Osipov et al. (2013)). We can then compute their image by ℱ𝑊[−1,1]*
𝑐

(see (6.7) for the deőnition of ℱ𝑊[−1,1]
𝑐 ) because, by Gaillac and Gautier (2019c),

ℱ𝑊[−1,1]*
𝑐 = ℛ

[︁
1l{[−1, 1]}ℱ𝑊[−1,1]

𝑐 ℰ
]︁

applied to the Legendre polynomials has a closed

form involving the Bessel functions of the őrst kind (see (18.17.19) in Olver et al.

(2010)).

For nonbandlimited functions, we propose to rely on the differential operator ℒ
in case (1) at the beginning of Section 6.5. We have used that because 𝒬𝑐 commutes

with ℒ, (𝑔𝑐𝑚)𝑚∈N0
are the eigenfunctions of ℒ. To obtain a numerical approximation

of these functions, we use ℒ, whose eigenvalues are of the order of 𝑚2 (see Theorem

4), rather than 𝒬𝑐, whose eigenvalues decay to zero exponentially. This is achieved by

solving numerically for the eigenfunctions of a singular Sturm-Liouville operator. We

approximate the values of the eigenfunctions on a grid on [−1, 1] using the MATLAB

package MATSLISE 2 (it implements constant perturbation methods for limit point

nonoscillatory singular problems, see Ledoux (2007) chapters 6 and 7 for the method

and an analysis of the numerical approximation error). By Proposition A.1 in Gaillac

and Gautier (2019c), we have 𝜙𝑏,𝑐𝑚 (·) = 𝜙
1,𝑐/𝑏
𝑚 (𝑏·)

√
𝑏 for all 𝑚 ∈ N0. Finally, we use

ℱ*
1,𝑐/𝑏

[︁
𝑔
𝑐/𝑏
𝑚

]︁
= 𝜎

1,𝑐/𝑏
𝑚 𝜙

1,𝑐/𝑏
𝑚 and that 𝜙1,𝑐/𝑏

𝑚 has norm 1 to obtain the remaining of the

SVD. ℱ*
1,𝑐/𝑏

[︁
𝑔
𝑐/𝑏
𝑚

]︁
is computed using the fast Fourier transform.
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6.8 Illustration: application to analytic continuation

We solve for 𝑓 in (6.17) in Case (a) 𝑓 = 0.5/ cosh(2·), which is not bandlimited, and

Case (b) 𝑓 = sinc(2·)/6 which is bandlimited, when 𝑐 = 0.5, 𝑥0 = 0, and 𝜉 = cos(50·).
We use approximation 𝑓𝑁𝛿 described in Section 6.3.2 with 𝑏 = 1 for Case (a), 𝑏 = 1/6.5

for Case (b).

By analogy with the statistical problem where 𝛿𝜉 is random rather than bounded,

we use the terminology estimator. We select the value for the parameter 𝑁 = ̂︀𝑁 based

on a type of Goldenshluger-Lepski method (see Goldenshluger and Lepski (2014)):

̂︀𝑁 ∈ argmin
𝑁 ′∈{0,...,𝑁max}

𝐵(𝑁) + Σ(𝑁),

𝐵(𝑁) = sup
𝑁≤𝑁 ′≤𝑁max

(︂⃦⃦
⃦𝐹𝑁 ′∨𝑁

𝛿 − 𝐹𝑁
𝛿

⃦⃦
⃦
2

𝐿2(cosh(𝑏·))
+ Σ(𝑁 ′)

)︂

+

, Σ(𝑁) =
2𝜋𝑐𝛿2𝑒2𝛽(𝑐/𝑏)𝑁

1− 𝑒−2𝛽(𝑐/𝑏)
,

and 𝑁max = ⌊log(1/𝛿)⌋. Performing analytic continuation using (6.19) requires the

approximation of the scalar products on [−1, 1] of the observed function 𝑓𝛿 with 𝑔𝑐/𝑏𝑚 .

We use the package MATSLISE 2 to compute the value of the functions
(︁
𝑔
𝑐/𝑏
𝑚

)︁𝑁max

𝑚=0

at the 𝑛 őrst Gauss-Legendre quadrature nodes. Results are presented in őgures 6-2

and 6-3, where we use a 212 resolution in the Fast Fourier transform, 𝑛 = 15000,

and precision of 10−10 for the computation of the eigenvalues in MATSLISE 2, which

also controls the precision of the computation of the eigenfunctions in the function

computeEigenfunction of MATSLISE 2 despite that this is not explicitely computed

(see sections 7.2.3 and 5.2 in Ledoux (2007) for examples).

We compare 𝑓𝑁𝛿 to a similar estimator based on (6.19) but with the PSWF instead

of 𝑔𝑐𝑚 in Case (b). This approach can only be used to perform analytic continuation

of bandlimited functions when the researcher knows an interval which contains the

bandlimits. In contrast, even for bandlimited functions, using the estimator based

on 𝑔𝑐/𝑏𝑚 allows to perform analytic continuation without the knowledge of an interval

containing the support of the Fourier transform of the function. Importantly, Figure

6-4 shows that 𝑓𝑁𝛿 performs almost as well as the unfeasible method using the PSWF.

For the sake of conciseness, this paper does not study the effect of the various
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discretizations which can be carried out with arbitrary precision. Rather, we used

in the numerical illustration conservative choices for those. This paper also does

not consider the statistical problem, prove minimax lower bounds for it, and the

adaptivity of the data-driven rule giving 𝑁 = ̂︀𝑁 . This is the object of future work.

The interested reader can refer to Gaillac and Gautier (2019c) for the full statistical

analysis for estimation of the density of random coefficients in the linear random

coefficients model.

Figure 6-2: Case (a) with noise (𝛿 = 0.05), where 𝐹𝑁
𝛿 in (6.19) uses 𝑔𝑐/𝑏𝑚 .

Figure 6-3: Case (b) with noise (𝛿 = 0.01), where 𝐹𝑁
𝛿 in (6.19) uses 𝑔𝑐/𝑏𝑚 .
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Figure 6-4: Case (b) with noise (𝛿 = 0.01), where 𝐹𝑁
𝛿 in (6.19) uses the PSWF.
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