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Abstract

We consider an auction design problem with private values, where the seller

and bidders may enjoy heterogeneous priors about their (possibly correlated)

valuations. Each bidder forms an (interim) belief about the others based on his

own prior updated by observing his own value. If the seller faces uncertainty

about the bidders’ priors, even if he knows that the bidders’ priors are within

any given distance from his, he may find it worst-case optimal to propose a

dominant-strategy auction mechanism.
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1 Introduction

The common knowledge assumptions have been challenged by many papers in the

literature on robust mechanism design (see our detailed discussion in the related

literature section). In an influential work, Chung and Ely (2007) consider an auction

environment where the seller has little idea about each bidder’s belief about the

other bidders’ valuations. They show that, for some specification of the bidders’

beliefs (formally identified by a type space), a dominant-strategy auction mechanism

is revenue-maximizing among all Bayesian incentive compatible auction mechanisms,

even if the seller knows that that type space governs the bidders’ beliefs (Baysian

foundation for a dominant-strategy mechanism). As a consequence, in case the seller

does not know which type space governs their beliefs, a dominant-strategy auction

mechanism is max-min optimal (Maximin foundation).

The interim belief that each bidder of each type must have in this critical type

space is special, and seems very different from what any common-prior type space

would imply. Indeed, Chung and Ely (2007) provide a counterexample such that

a dominant-strategy auction mechanism cannot be Bayesian-founded if the bidders’

type space must be one of the common-prior type spaces.

A natural question is “how far” this Chung-Ely’s type space is relative to those

given by some common prior. To investigate this question, we examine the class of

types spaces which are induced by (ϵ-) heterogeneous priors. Namely, each player

(seller and each bidder) possesses a prior distribution about the value distribution

before their values being drawn, which can be ε-different from each other (in the met-

ric similar to the one considered by Madarász and Prat (2017) and Carroll (2017)).

Then, each bidder’s value is drawn, making him Bayesian update his own prior con-

ditional on his own value. Clearly, with ε = 0, the model reduces to the standard
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common-prior case, and hence, no foundation. With a large enough ε, it is natural

to think that the critical type space of Chung-Ely can be captured, and hence a

foundation exists. We show that, in fact, the critical type space of Chung-Ely can

be represented by a type space induced by ϵ-heterogenous priors, for any ε > 0, no

matter how small it is. Therefore, with any ε > 0, the dominant-strategy auction

mechanism is Bayesian (and hence Maximin) founded.

The basic intuition is that, even if a bidder’s prior is close to the others’ (in

particular, to the seller’s), it does not mean that their “interim beliefs” are close to

each other. In fact, they can be so flexible that any small (but positive) heterogeneity

in their priors can result in very different interim beliefs.

Although the original result of Chung and Ely (2007) suggests that the dominant-

strategy approach would be reasonable in case the seller has very little idea about the

bidders’ information (for example, when there have not been similar items auctioned),

it is sometimes informally argued that, if rich data is available about past similar

auctions, it might be more difficult to justify the dominant-strategy approach, as

both the seller and bidders would have a more precise idea about the true value

distribution. In practice, the players typically have some information about past

similar auctions, though they never have an exact common prior. In this sense, it

is important to investigate the “boundary” of Chung-Ely’s argument: With which

class of type spaces (related to which information of the bidders about past similar

auctions) the dominant-strategy approach has a Chung-Ely foundation? The result

of our paper contributes to a better understanding of this question by examining

(possibly small) heterogeneity in the players’ priors.
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1.1 Related literature

This paper contributes to the growing literature on robust mechanism design (see, for

example, Bergemann and Morris (2005), Chung and Ely (2007), Chen and Li (2018),

and Yamashita and Zhu (2022) as the most relevant ones to this paper). These

papers consider the situation where the agents’ beliefs can be arbitrarily different

from each other (and from the principal’s, if the principal has a prior). For example,

as aforementioned, Chung and Ely (2007) identifies a type space with heterogeneous

priors with which one of the optimal Bayesian mechanisms is a dominant-strategy

mechanism. Thus, if the seller has little idea about the bidders’ beliefs, then the

worst-case-minded seller has a justification to offer a dominant-strategy mechanism.

See Chen and Li (2018) for its generalization to non-auction environments. We show

that, even if the seller has a much better idea about the bidders’ beliefs in that their

priors are arbitrarily close to each other and also to the seller’s (and that being their

common knowledge), essentially the same conclusion is obtained. In this sense, our

result strengthens that of Chung and Ely (2007).

Our notion of prior perturbations is related to the (various) notions of “local

robustness” in the literature. For example, in Lopomo, Rigotti, and Shannon (2021)

where each agent’s type is associated with a set of “fully overlapping”1 interim be-

liefs, a mechanism is robust if it is implementable for every possible interim belief.

They find that robustness is hard to achieve even when this set is arbitrarily small.

As another example, Ollár and Penta (2017) propose a general form of restrictions

directly on the agents’ interim beliefs, and show that, when the set of possible interim

1Roughly speaking, this “fully overlapping” requirement means that nearby types share a suffi-

ciently rich set of beliefs. A focal special case is when the set is an arbitrarily small neighborhood

around a fixed belief. See also Lopomo, Rigotti, and Shannon (2022) where they derive the necessary

and sufficient conditions for full extraction in this setting.
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beliefs is small in an appropriate sense, much more permissive results are possible.

Our result shows that the ex ante belief restriction does not imply their interim

restriction, and hence they lead to very different results. In this sense, our notion

of uncertainty may be interpreted as “ex-ante-local” uncertainty. Jehiel, Meyer-ter

Vehn, and Moldovanu (2012) consider a related notion of local uncertainty in terms

of interim beliefs, but in a generic multi-dimensional interdependent-value environ-

ment. They show that, if the principal’s goal is to implement some belief-invariant

social choice function, then the same kind of an impossibility result is obtained as

in Jehiel, ter Vehn, Moldovanu, and Zame (2006) (where the latter paper considers

ex post implementation, and in this sense allows for global robustness). Our envi-

ronment is with private values, and the seller’s goal is revenue maximization rather

than a social choice function implementation.2

In a single-agent environment, Madarász and Prat (2017) consider a situation

where the principal is aware that the true distribution of the agent’s type can be ε-

different from what the seller has in mind. Carroll (2017) generalizes their notion of

ε-closeness in the context of a (single-agent) multi-dimensional screening problem.3

As far as we are aware, ours is the first paper that generalizes their notions of

closeness to a multi-agent environment. Importantly, with multiple agents, it is not

only the principal who is uncertain about the true distribution, but also the agents

enjoy uncertainties about the true distributions and the others’ beliefs. On the

other hand, relative to Madarász and Prat (2017) and Carroll (2017), we focus on

2Hence, in principle, the seller might find it optimal to use a mechanism that induces a highly

belief-dependent outcome. Put differently, the set of feasible mechanisms in our case is larger than

those that implement a belief-invariant social choice function.
3See also Bergemann and Schlag (2011). Carroll and Meng (2016) considers the local robustness

in a single-agent moral-hazard environment.
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a single-good private-value auction, with which the agents’ payoff structures satisfy

the single-crossing conditions.

There has been some work on mechanism design with heterogeneous priors. For

example, in Eliaz and Spiegler (2008), a consumer assigns excessive weights to the

states of nature associated with their large gains from trade. They find that non-

common priors can be necessary for price discrimination. Grubb (2009) studies

a situation where a consumer assigns wrong weights to their possible valuations

(narrowly concentrates around the mean), relative to the seller’s prior. He mainly

focuses on characterizing the optimal contract under complete information. Our

paper introduces heterogeneous priors in the auction context (i.e., with multiple

agents rather than a single representative agent).

2 Auction environment

A seller wants to sell an indivisible good. There are N risk-neutral bidders with

private values. Each bidder i ∈ {1, . . . , N} knows his own valuation vi ∈ R. An

allocation is denoted by (q, p) = (qi, pi)
N
i=1, where qi ∈ [0, 1] denotes the probability

that bidder i obtains the good, and pi ∈ R denotes his payment to the seller. An

allocation is feasible if
∑

i qi ≤ 1. Given (qi, pi), i’s payoff is given by viqi − pi.

The players (the seller and the bidders) enjoy heterogeneous priors for the dis-

tribution of the bidders’ values v. Specifically, let g ∈ ∆(RN) be the seller’s prior,

which has a finite support represented by {γ, 2γ, . . . , Kγ}N (following Chung and

Ely (2007)) for some K ∈ N and γ > 0 for notational simplicity. Throughout the

paper, we assume that g satisfies the single-crossing virtual value condition (Chung
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and Ely (2007)). For each i ̸= j and v, let γi(v) be i’s virtual valuation:

γi(v) = vi − γ
1−Gi(v)

g(v)
,

where Gi(v) =
∑

v′i≤vi
g(v′i, v−i).

Assumption 1. For each i ̸= j, and each vi, v
′
i, v−i with v′i > vi:

γi(vi, v−i) ≥ 0 ⇒ γi(v
′
i, v−i) > 0

γi(vi, v−i) ≥ γj(vi, v−i) ⇒ γi(v
′
i, v−i) > γj(v

′
i, v−i).

As shown in Chung and Ely (2007), it is satisfied if g exhibits affiliation and

monotone hazard-rates. In this sense, it may be considered a mild assumption.

As opposed to the standard exact-common-prior model where not only the seller

but every bidder i believes g (and that itself being common knowledge), we allow

the possibility that they enjoy heterogeneous priors: For each i, let hi ∈ ∆(RN) be

bidder i’s prior, which again has a finite support for simplicity (but potentially with

a different support from g and from hj, j ̸= i). Note that bidder i knows his own

value vi at the time he plays an auction mechanism. That his prior is hi implies that

his belief about the others’ values is based on hi conditional on his vi.

We assume that the seller has limited knowledge as to “how distant” each bidder

i’s hi could be from the seller’s prior g. This distance may be interpreted as the level

of the seller’s confidence in his own information.4

Our notion of distance is based on Madarász and Prat (2017) and Carroll (2017):

4This interpretation implies a related but different question: what if the seller’s prior g is different

from the true value distribution? For now, we assume that the seller is confident in his own g as

the true value distribution, but we study the case where the seller fears the possibility that g is

wrong. See Section 6.
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Definition 1. Two distributions µ and µ̂ are ε-close to each other if V = supp(µ)

and V̂ = supp(µ̂) can be partitioned into disjoint measurable sets {V 1, ..., V r} and

{V̂ 1, ..., V̂ r} respectively such that, for each k ∈ {1, ..., r}:

1. µ(V k) = µ̂(V̂ k), and

2. d(v, v̂) ≤ ε for any (v, v̂) ∈ V k × V̂ k,

where d(v, v̂) represents the Euclidean distance between v and v̂.

A collection of distributions {µ1, . . . , µK} is ε-close to each other if any pair µi, µj

are ε-close to each other as above.

Example 1. We illustrate the closeness of two distributions in the following example

with N = 2. Let g be the distribution represented as follows:

g(v1, v2) v2 = 1 v2 = 2

v1 = 1 1
3

1
6

v1 = 2 1
6

1
3

Table 1: Distribution g

and let f be represented as follows:

f(v1, v2) v2 = 1− ε v2 = 1 v2 = 2− ε v2 = 2

v1 = 1− ε 1
3

v1 = 1 1
6

v1 = 2− ε 1
6

v1 = 2 1
3

Table 2: Distribution f
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Then, according to the definition above, f and g are (ε
√
2)-close to each other.

Figures 1 and 2 illustrate f and g in the (v1, v2)-space.

V1

V2

21

1

2

Figure 1: Distribution g

V1

V2

21

1

2

Figure 2: Distribution f

The seller believes that (g, h1, . . . , hN) are ε-close to each other for some given

ε > 0, and that any such combination of hi’s is possible. This uncertainty makes the

seller cautious in designing an auction mechanism.

3 Auction mechanism

Given the concern about the above prior heterogeneity, the seller can design a “ro-

bust” mechanism in a certain sense. One of the possible approaches is to design

a dominant-strategy auction mechanism, where each bidder has a dominant action

given each vi regardless of the other bidders’ behavior. Such a mechanism can guar-

antee some level of expected revenue regardless of each bidder’s belief about the

opponents’ values and their (higher-order) beliefs; in particular, regardless of each

i’s prior hi.

Another possibility is to try to extract each bidder’s information (about each i’s

hi, for example) in order to design a more profitable auction mechanism. Indeed,

in the standard exact common-prior environment where g = hi for all i is common
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knowledge, if g(= hi) satisfies a certain correlation structure, the seller can extract

the entire surplus (Cremer-McLean), while the optimal dominant-strategy mecha-

nism leaves a non-negligible rent to the winning bidder. Even if hi can be different

from g, if the seller knows that they cannot be too far from each other, it may be

natural to expect that better mechanisms than dominant-strategy mechanisms exist.

3.1 Notation

An auction mechanism is represented by (M, q, p) = (Mi, qi, pi)
N
i=1, where: each Mi

is a set, M =
∏N

i=1Mi, qi : M → [0, 1] with
∑

i qi(m) ≤ 1 for all m ∈ M , and

pi : M → R. An interpretation is that, given mechanism (M, q, p), each bidder

is asked to simultaneously choose any mi ∈ Mi; and given a chosen vector m =

(m1, . . . ,mN) ∈ M , allocation (qi(m), pi(m))Ni=1 is executed. A feasible mechanism

must contain some element ϕi ∈ Mi for each i such that qi(ϕi,m−i) = pi(ϕi,m−i) = 0

for any m−i ∈ M−i, representing the idea of i’s individual rationality requirement.

3.2 Dominant-strategy auction mechanism

We first introduce dominant-strategy auction mechanisms.

Definition 2. Mechanism (M, q, p) admits a dominant-strategy equilibrium if there

exists σi(vi) for each i, vi ∈ R such that, for each mi,m−i:

viqi(σi(vi),m−i)− pi(σi(vi),m−i) ≥ viqi(mi,m−i)− pi(mi,m−i)

viqi(σi(vi),m−i)− pi(σi(vi),m−i) ≥ 0.

Mechanism Γ guarantees expected revenue R in dominant strategy if Γ admits a
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dominant-strategy equilibrium σ = (σi)
N
i=1 such that∑

v

[
∑
i

pi(σ(v))]g(v) ≥ R.

Let RD denote the best revenue guarantee in dominant strategy. That is, for any

R < RD, there is a mechanism which guarantees R in dominant strategy.

3.3 Bayesian auction mechanism

In order to define the other standard concept of Bayesian equilibrium, we need fur-

ther information about the bidders’ higher-order beliefs (such as what each bidder

believes about the others’ values, and about the others’ beliefs about it, etc.). In this

paper, we consider the simplest possible alternative: Each bidder i believes hi as his

first-order belief, and that fact itself is common knowledge (i.e., trivial higher-order

beliefs).5

Given that (hi)
N
i=1 is common knowledge among the bidders, a Bayesian equilib-

rium in a mechanism is naturally defined as follows.

Definition 3. Mechanism Γ admits a Bayesian equilibrium given (hi)
N
i=1 if there

exists σi(vi) for each i, vi ∈ R such that, for each mi:∑
v−i

[viqi(σi(vi), σ−i(v−i))− pi(σi(vi), σ−i(v−i))]hi(vi, v−i)

≥
∑
v−i

[viqi(mi, σ−i(v−i))− pi(mi, σ−i(v−i))]hi(vi, v−i).

5See Appendix (Section A) for the formal description of the type space considered here. Our

modelling choice may be justified as follows. First, even if one prefers other specifications, they

would probably include this common-knowledge possibility as one of the possible situations; Second,

as a related point, our approach would make the departure from the standard exact-common-

knowledge model minimal. Given that our result is basically a negative result, this minimalistic

choice makes the conclusion strongest.
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Mechanism Γ guarantees expected revenue Rε in Bayesian equlibrium if, for any

(hi)
N
i=1 such that (g, (hi)

N
i=1) are ε-close to each other, Γ admits a Bayesian equilib-

rium σ = (σi)
N
i=1 given (hi)

N
i=1 such that∑
v

[
∑
i

pi(σ(v))]g(v) ≥ R.

Let R⋆
ε denote the best revenue guarantee in Bayesian equilibrium. That is, for

any Rε < R⋆
ε, there is a mechanism which guarantees Rε in Bayesian equilibrium.

Obviously, the best revenue guarantee in dominant strategy is weakly lower than

that in Bayesian equilibrium: For any ε,

R⋆
ε ≥ RD.

Recall that, in case g exhibits certain correlation (as specified in Crémer and

McLean (1988)) and ε = 0, the expected revenue in Bayesian equilibrium is very

different from that in dominant strategies (i.e., R⋆
0 > RD). On the contrary, we show

that, as long as ε is strictly positive, no matter how small it is, the guaranteed revenue

in Bayesian equilibrium coincides with that in dominant strategies (i.e., R⋆
ε = RD).

We prove this claim in Section 5, followed by a motivating example in Section 4,

explaining why the problem with ε > 0 can be very different from that with ε = 0.

4 Motivating example

We employ Example 1 to illustrate the seller’s revenue loss if he adopts the optimal

mechanism without taking into account the possibility of prior heterogeneity. More

precisely, imagine that the seller wrongly assumes that g is the common prior, while

each bidder i actually has a different prior hi ̸= g. We will show that the seller’s

12



revenue loss does not vanish even when g and each hi get closer in the sense of our

distance.

Assume that the seller’s benchmark distribution g is as illustrated in Table 1. If

the seller believes that g is the common prior, then as in Crémer and McLean (1988),

the optimal mechanism is a combination of a second-price auction (SPA) and side-

bets, which extracts the full surplus as his expected revenue (5
3
). The following table

corresponds to one such mechanism (it only shows bidder 1’s allocation; bidder 2’s

is symmetric), where “NP” stands for non-participation:

(q1(v), t1(v)) NP v2 = 1 v2 = 2

NP (0, 0) (0, 0) (0, 0)

v1 = 1 (1, 0) (1
2
, 1
2
− 1

3
) (0; 2

3
)

v1 = 2 (1, 0) (1, 1− 1
3
) (1

2
, 1 + 2

3
)

Table 3: Outcomes from a SPA and side-bets

where the red parts in the transfers come from the side-bets. Each bidder’s expected

payment is 1
3

(
1
2
− 1

3
+1+ 2

3

)
+ 1

6

(
1− 1

3
+ 2

3

)
= 5

6
, and therefore, the expected revenue

is 5
3
, which is exactly the ex-ante total surplus.

Now consider the case where each bidder i’s prior hi is ε-close to but different from

g. One might conjecture that, if the above mechanism is appropriately perturbed

so that the bidders’ participation and incentive constraints are satisfied with strict

inequality (more specifically, with the strictness in the order of ε), then a similar level

of expected revenue may be guaranteed. In particular, as ε → 0, that guaranteed

revenue converges to the full-surplus revenue again.

This conjecture is false. To explain the key idea, suppose that each hi coincides

with f in Table 2, while g is, as assumed by the seller, the true distribution of values.

Even though f and g are ε-close to each other as priors, they are very different in
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terms of their induced conditional distributions, that is, each bidder’s interim belief

given his value. Given f(= hi), bidder i with any vi essentially knows the other

bidder’s value. Therefore, in the above Crémer-McLean mechanism, truth-telling

(or more precisely, reporting the values closest to their true values) is no longer an

equilibrium.

For example, bidder i with vi = 1 puts probability 1 on bidder −i’s having

v−i = 2− ε, and vice versa. They play a “ complete-information” equilibrium where

bidder −i bids 2 and bidder i does not participate in the auction. Similarly, bidder

i with vi = 2, putting probability 1 on v−i = 2, does not participate in the auction

either. Therefore, as long as g is the true distribution (which only assigns positive

probabilities on vi ∈ {1, 2}), no one participates in the auction, yielding 0 revenue.

Note that this property does not depend on the exact value of ε > 0. Therefore,

the seller’s expected revenue in this mechanism would be far below the first-best

surplus.

5 Main result

In this section, we show that RD = R⋆
ε for any ε > 0.

Theorem 1. For any ε > 0, we have:

RD = R⋆
ε.

The proof is in Appendix B, and proceeds as follows. The key intuition is that,

even if ε(> 0) is arbitrarily small, it is always possible to find a specific prior hi

of each bidder i such that, after Bayesian updating observing i’s own value vi, his

“interim belief” about the others’ values is very different from the one where i’s prior

is g (i.e., the case with ε = 0). Moreover, this interim belief structure is such that
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the seller finds it optimal to offer a dominant-strategy auction mechanism even if

he knows that that hi is each bidder’s prior. This last property is building on the

original work by Chung and Ely (2007), while our more concise proof is building on

Chen and Li (2018).

Recall that the original result of Chung and Ely (2007) shows that an auction

seller finds it optimal to offer a dominant-strategy auction mechanism to bidders if

the seller has very little idea as to the bidders’ belief structure, and hence any interim

belief structure is deemed possible. Our result suggests that their result is relevant

not only when the seller literally has very little idea about the bidders’ information,

but also when the seller and bidders have close (but heterogeneous) priors.

6 Possible misspecification of g

So far, the seller assumes that his prior g is the true distribution of the bidders’

valuations, although he thinks it possible that the bidders’ priors are “ε-different”

from g. However, if we interpret this ε as the seller’s level of confidence in his g, it

may also be natural to allow for the seller to worry about the possibility that g is

not the true distribution of valuations.

Formally, let f represent the true distribution of v, the bidders’ value profile. The

seller does not know f , while he thinks that his prior g is a reasonable approximation

of f (and each bidder’s prior hi). Based on the idea that ε(> 0) represents the seller’s

confidence in his g, we assume that (f, g, (hi)
N
i=1) are ε-close to each other.

To explain the subtlety, consider the optimal dominant-strategy mechanism if g is

indeed the true prior (which guarantee RD). Typically, some incentive compatibility

constraints are binding in this mechanism. Thus, if f (̸= g) is the true prior with

supp(f) ̸= supp(g), some bidders may find it strictly optimal to make a type report
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that is far from his true type.6

Nevertheless, we show that an appropriately modified version of the mechanism,

which we call a transfer-reducing mechanism, guarantees the same level of expected

revenue even if f ̸= g, as ε vanishes. The key of the construction is, by reducing

the transfers of the mechanism (by an appropriate amount as a function of ε), the

mechanism can now make all the incentive constraints satisfied in a stronger sense,

so that even if g and f have (ε-)different supports, each agent finds it dominant to

report the value that is closest to his true value in that mechanism. Although the

revenue must be smaller, as ε → 0, this revenue loss vanishes.

Formally, let RD
ε represent the optimal revenue guarantee in dominant strategy

if (f, g, (hi)
N
i=1) are ε-close to each other.

Theorem 2. RD
ε → RD as ε → 0.

Madarász and Prat (2017) show that, in a general single-agent mechanism design

environment, a similar approximation result is possible by their profit-participation

mechanism even without single-crossing conditions. That is, as the seller’s bench-

mark distribution converges to the true distribution, their optimal expected revenues

also converge. Its basic idea is to make the agent “biased in favor of the principal” so

that any (even non-local) deviation due to misspecification only increases the princi-

pal’s payoff. Our proof generalizes their result to a multi-agent environment, but in

a single-crossing payoff environment. The single-crossing property seems important

for this continuity result with multiple agents. To explain this, it is worth noting that

(a naive adaptation of) their profit-participating mechanism may not work in our

multi-agent setup. This is because, under that mechanism, each agent might have an

6In Appendix C, we observe that such a global deviation under misspecification is the norm

rather than the exception.
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incentive to deviate globally (i.e., a value far from his true one is reported), which in

turn distorts other agents’ reporting strategies. Consequently, it is not certain that

the vanishing revenue loss is obtained. Our transfer-reducing mechanism prevents

such global deviations by ensuring that it is a dominant strategy for agents to report

the value closest to their true values.

7 Conclusion

In this paper, we consider the private-value auction setting where the true distribu-

tion of bidders’ valuations is unknown. The seller and each bidder, however, know

its approximation. In this framework, we have shown that the dominant-strategy

mechanism secures the seller with the highest revenue guarantee. Besides, if the

seller is restricted to using a dominant-strategy mechanism, we have characterized

the transfer reducing mechanism that helps the seller to obtain a vanishing loss as

the estimates by her and the bidders get close to the truth.

There are several follow-up questions. Firstly, when restricting to dominant-

strategy mechanisms, our proof works only if the bidders’ payoff functions satisfy the

single-crossing condition. Although this property holds for a wide range of mech-

anism design problems, there are cases where it does not hold, such as multi-unit

auctions. In such situations, our proposed mechanism may not work.

Another natural direction is to characterize the optimal robust mechanisms in

non-auction environments7 or with common/interdependent values.8 We leave these

7Chen and Li (2018) generalize the foundation result of Chung and Ely (2007) to some private-

value non-auction environments. We conjecture that our approach would work in those environ-

ments, establishing the worst-case optimality of dominant-strategy mechanisms.
8Yamashita and Zhu (2022) generalize the foundation result of Chung and Ely (2007) to an

interdependent-value auction environment. We conjecture that our approach would work in those
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potential extensions for future research.

environments. However, they suggest that general interdependent-value models may not admit the

same sort of foundation result, and in those cases, it is an open question how the approximate

worst-case optimal mechanism would look like.
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A Formal description of the type space in Defini-

tion 3

The type space we consider in Definition 3 is in the class of the known-own-payoff-

type type space (Bergemann and Morris (2005)), denoted by (Ti, v̂i, β̂i)
N
i=1. For each

i, let (i) Ti = supp{vi|∃v−i; hi(vi, v−i) > 0}, (ii) v̂i : Ti → R be an identity map (i.e.,

v̂i(ti) = ti for all ti ∈ Ti), and (iii) β̂i : Ti → ∆(T−i) is consistent with hi in the sense

that:

β̂i(t−i|ti) =
hi(ti, t−i)∑
t′−i

hi(ti, t′−i)
.

B Proof of Theorem 1

We construct each bidder i’s prior, hi, as follows.

For each i, let Vi = {vi | ∃v−i, g(vi, v−i) > 0} denote the set of i’s possible

values in the true distribution g, and denote it by Vi = {v1i , . . . , vmi , . . . , vMi } so that

vmi < vm+1
i . Define V̂i = {vi+ε | vi ∈ Vi} as the “shifted” version of Vi by ε. Also, we

denote V−i = {v1−i, . . . , v
k
−i, . . . , v

K
−i}, without any ordering on them (i.e., arbitrary

labelling will do). Define hi(·) so that: for each m, k,

hi(v
m
i , v

k
−i) = xi

τ ⋆i (v
k
−i|vmi )

τ ⋆i (v
1
−i|vmi )

(recall vmi ∈ Vi), and

hi(v
m
i + ε, vk−i) = g(vmi , v

k
−i)− hi(v

m
i , v

k
−i)

(recall vmi + ε ∈ V̂i), where

τ ⋆i (v−i|vi) ≡
∑

v̂i≥vi
g(v̂i, v−i)∑

v−i

∑
v̂i≥vi

g(v̂i, v−i)
, xi = min

k,m

τ ⋆i (v
1
−i|vmi )

τ ⋆i (v
k
−i|vmi )

g(vmi , v
k
−i).
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The following table illustrates our construction:

hi(., .) v1−i v2−i ... vK−i

v1i xi xi

τ ⋆i (v
2
−i|v1i )

τ ⋆1 (v
1
−i|v1i )

... xi

τ ⋆i (v
K
−i|v1i )

τ ⋆1 (v
1
−i|v1i )

v1i + ε g(v1i , v
1
−i)− xi g(v1i , v

2
−i)− xi

τ ⋆i (v
2
−i|v1i )

τ ⋆i (v
1
−i|v1i )

... g(v1i , v
K
−i)− xi

τ ⋆i (v
K
−i|v1i )

τ ⋆1 (v
1
−i|v1i )

v2i xi xi

τ ⋆i (v
2
−i|v2i )

τ ⋆i (v
1
−i|v2i )

... xi

τ ⋆i (v
K
−i|v2i )

τ ⋆i (v
1
−i|v2i )

v2i + ε g(v2i , v
1
−i)− xi g(v2i , v

2
−i)− xi

τ ⋆i (v
2
−i|v2i )

τ ⋆i (v
1
−i|v2i )

... g(v2i , v
K
−i)− xi

τ ⋆1 (v
K
−i|v2i )

τ ⋆i (v
1
−i|v2i )

... ... ... ... ...

vMi xi xi

τ ⋆i (v
2
−i|vMi )

τ ⋆i (v
1
−i|vMi )

... xi

τ ⋆i (v
K
−i|vMi )

τ ⋆i (v
1
−i|vMi )

vMi + ε g(vMi , v1−i)− xi g(vMi , v2−i)− xi

τ ⋆i (v
2
−i|vMi )

τ ⋆i (v
1
−i|vMi )

... g(vMi , vK−i)− xi

τ ⋆i (v
K
−i|vMi )

τ ⋆i (v
1
−i|vMi )

First, the choice of xi guarantees that hi(v) ≥ 0 for all v ∈ (Vi ∪ V̂i) × V−i. It

is also immediate that hi and f are ε-close to each other, because hi(v
m
i + ε, vk−i) =

g(vmi , v
k
−i)−hi(v

m
i , v

k
−i), and from this equation, we can also easily see that

∑
v hi(v) =

1.
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Next, we show that under this construction of bidders’ beliefs, R̄⋆
ε ≤ RD. This,

combines with the fact that R̄⋆
ε ≥ RD completes the proof. Note that under V̂ ,

the shifted valuations {vi+ ε}vi∈V are never realized. Therefore, the seller’s problem

under the class of dominant-strategy mechanisms are defined entirely on V , as follows:

(PD) R̄D = sup
(q,p)

Ev∼g[
∑
i

pi(v)] ≡
∑
v∈V

∑
i

pi(v)g(v)

s.t. ∀i, ∀vi, v′i ∈ Vi, ∀v−i ∈ V−i :

viqi(v)− pi(v) ≥ 0

viqi(v)− pi(v) ≥ viqi(v
′
i, v−i)− pi(v

′
i, v−i)

qi(v) ≥ 0;
∑
i

qi(v) ≤ 1

Let {qD(v), pD(v)}v denote the solution of (PD). By a standard result, only lo-

cal downward IC constraints and IR constraints for the lowest type bind. There-

fore, there exist multipliers {λD
i (v)}v associated with those constraints such that

{qD(v), pD(v), λD
i (v)}v maximizes the following Lagrangian function:

LD ≡
∑
i,v

pi(v)g(v) +
∑
i,v−i

λD
i (v

1
i , v−i)

[
v1i qi(v

1
i , v−i)− pi(v

1
i , v−i)

]
+
∑
i,v−i

∑
vmi ≥v2i

λD
i (v

m
i , v−i)

[[
vmi qi(v

m
i , v−i)− pi(v

m
i , v−i)]−

[
vmi qi(v

m−1
i , v−i)− pi(v

m−1
i , v−i)

]]
over the domain (q, p) ∈ Q× R where Q ≡ {qi(v) ≥ 0;

∑
i qi(v) ≤ 1}.

Note that there are no restrictions imposed on payments. Therefore, at optimum:

∂LD

∂p(vMi , v−i)
= 0 ⇔ λD

i (v
M
i , v−i) = g(vMi , v−i),

∂LD

∂p(vmi , v−i)
= 0 ⇔ λD

i (v
m
i , v−i) = λD

i (v
m+1
i , v−i) + g(vmi , v−i) ∀1 ≤ m < M
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Thus, we have for all (vmi , v−i):

λD
i (v

m
i , v−i) =

∑
v̂i≥vmi

g(v̂i, v−i) (1)

Similarly, the seller’s problem under the class of Bayesian-strategy mechanisms

is also defined entirely on V , as follows:

(PB) R̄⋆
ε = sup

(q,p)

Ev∼g[
∑
i

pi(v)] ≡
∑
v∈V

∑
i

pi(v)g(v)

s.t. ∀i, ∀vi, v′i ∈ Vi, ∀v−i ∈ V−i :∑
v−i

hi(v−i|vi)[viqi(v)− pi(v)] ≥ 0∑
v−i

hi(v−i|vi)[viqi(v)− pi(v)] ≥
∑
v−i

hi(v−i|vi)[viqi(v′i, v−i)− pi(v
′
i, v−i)]

qi(v) ≥ 0;
∑
i

qi(v) ≤ 1

Consider its relaxed problem, denoted by (RPB) where only local downward IC

constraints and IR constraints for the lowest type are considered and hence, must be

binding.

Moreover, recall our construction for i’s prior:

hi(v−i|vmi ) =
hi(v−i, v

m
i )∑

v−i
hi(v−i, vmi )

≡
xi

τ ⋆i (v
k
−i|vmi )

τ ⋆i (v
1
−i|vmi )∑

v−i
xi

τ ⋆i (v
k
−i|vmi )

τ ⋆i (v
1
−i|vmi )

= τ ⋆i (v
k
−i|vmi ) =

∑
v̂i≥vmi

g(v̂i, v−i)∑
v−i

∑
v̂i≥vmi

g(v̂i, v−i)

(2)

(1) and (2) imply that:

hi(v−i|vmi ) =
λD
i (v

m
i , v−i)∑

v−i
λD
i (v

m
i , v−i)
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Therefore, each (binding) constraint in (RPB) is a weighted sum of (binding)

constraints in (PD), with the weight being the corresponding optimal Lagrangian

multiplier for the latter.9 Then, it can be verified that the these two problems have

the same values. Note that the value of (RPB) is obviously an upper bound of that

under the original problem (PB). Hence, we obtain: R̄⋆
ε ≤ RD. Therefore, R̄⋆

ε = RD.

C Global deviation in optimal dominant-strategy

mechanisms with a misspecified support.

Recall the standard properties of the optimal dominant-strategy mechanism under

the assumption that g = f :

1. All the local downward IC constraints bind, i.e, for any k ≥ 2, any v̂−i, and

any sk ∈ supp(S):

skq(sk, v̂−i)− p(sk, v̂−i) = skq(sk−1, v̂−i)− p(sk−1, v̂−i)

where sk−1 = max{s ∈ supp(S) | s < sk}.

2. Allocation is monotone, i.e., qi(s
k, v−i) ≤ qi(s

k′ , v−i) if k < k′.

If it is possible that f and g are (ε-close to but) different from each other, then

global deviations would typically be relevant.

Proposition 1. Fix ε and g. In the optimal dominant-strategy mechanism assuming

g is the true prior, there exists f that is ε-close to g such that, if v ∼ f , then a bidder

does not find it optimal to report the value that is closest to his true valuation.

9Hien Pham thanks Benjamin Brooks for his explanation on this point.
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Proof. Let S = supp(g). Let f be such that some i’s value vi = sk − ε is supported.

Then, he prefers reporting sk−1 to reporting sk, even though sk is closer to vi than

sk−1. This is because:

(sk − ε)q(sk, v̂−i)− p(sk, v̂−i) = skq(sk, v̂−i)− p(sk, v̂−i)− εq(sk, v̂−i)

≤ skq(sk−1, v̂−i)− p(sk−1, v̂−i)− εq(sk−1, v̂−i)

= (sk − ε)q(sk−1, v̂−i)− p(sk−1, v̂−i)

where the inequality follows from the local ICk,k−1 constraint and the monotonicity

constraint. Moreover, if q(sk, v̂−i) > q(sk−1, v̂−i), the inequality then becomes strict.

That is:

(sk − ε)q(sk, v̂−i)− p(sk, v̂−i) < (sk − ε)q(sk−1, v̂−i)− p(sk−1, v̂−i)

Consequently, the agent whose value is vi = sk − ε strictly prefer to report his

valuation as sk−1 instead of his closest type sk.

D Proof of Theorem 2

Let (q⋆(·), p⋆(·)) represent the optimal dominant-strategy mechanism under the as-

sumption that g is the true prior. Let V = supp(g), and let Vi = {vi ∈ R |

∃v−i; (vi, v−i) ∈ V } denote its i-th coordinate. We also denote v+i ≡ min{s ∈ Vi |

s > vi} and v−i ≡ max{s ∈ Vi | s < vi}.

Fix δ > 0, which is sufficiently small. The δ-transfer reduction mechanism of

(q⋆(·), p⋆(·)) has the same message space and the winning-probability function as the

optimal dominant-strategy mechanism, but the price is smaller by δ.

For each vi ∈ Vi, truth-telling is still dominant-strategy incentive compatible, but

now in a stronger sense: for bidder i whose value is δ-close to vi ∈ Vi, it is dominant
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for him to report vi in the δ-transfer-reduction mechanism. Note that under the

original mechanism, for all σ(v−i) and v′i < vi, we have q
⋆
i (vi, σ(v−i)) ≥ q⋆i (v

′
i, σ(v−i))

and:

viq
⋆
i (vi, σ(v−i))− p⋆i (vi, σ(v−i)) ≥ viq

⋆
i (v

′
i, σ(v−i))− p⋆i (v

′
i, σ(v−i))

which means:

(vi − δ)q⋆i (vi, σ(v−i))− [p⋆i (vi, σ(v−i))− δq⋆i (vi, σ(v−i))]

≥(vi − δ)q⋆i (v
′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

By single crossing property and v̂i ≥ vi − δ (v̂i is δ-close to vi ∈ Vi), we thus have:

v̂iq
⋆
i (vi, σ(v−i))− [p⋆i (vi, σ(v−i))− δq⋆i (vi, σ(v−i))] ≥ v̂iq

⋆
i (v

′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

for all σ(v−i) and v′i < vi, i.e.,

vi = arg max
v′i≤vi

[
v̂iq

⋆
i (v

′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

]
∀σ(v−i) (3)

Note also that under the original mechanism, for all σ(v−i) and v′i > v+i , we have

q⋆i (v
′
i, σ(v−i)) ≥ q⋆i (v

+
i , σ(v−i)) ≥ q⋆i (vi, σ(v−i)), and:

v+i q
⋆
i (v

+
i , σ(v−i))− p⋆i (v

+
i , σ(v−i)) = v+i q

⋆
i (vi, σ(v−i))− p⋆i (vi, σ(v−i))

which means:

(v+i − δ)q⋆i (v
+
i , σ(v−i))− [p⋆i (v

+
i , σ(v−i))− δq⋆i (v

+
i , σ(v−i))]

=(v+i − δ)q⋆i (vi, σ(v−i))− [p⋆i (vi, σ(v−i))− δq⋆i (vi, σ(v−i))]

By single crossing property and v+i − δ ≥ v̂i (v̂i is δ-close to vi ∈ Vi), this implies

that for all σ(v−i):

v̂iq
⋆
i (v

+
i , σ(v−i))− [p⋆i (v

+
i , σ(v−i))− δq⋆i (v

+
i , σ(v−i))]

≤v̂iq
⋆
i (vi, σ(v−i))− [p⋆i (vi, σ(v−i))− δq⋆i (vi, σ(v−i))] (4)
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Moreover, for all σ(v−i) and v′i > v+i :

v+i q
⋆
i (v

′
i, σ(v−i))− p⋆i (v

′
i, σ(v−i)) ≤ v+i q

⋆
i (v

+
i , σ(v−i))− p⋆i (v

+
i , σ(v−i))

which means:

(v+i − δ)q⋆i (v
′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

≤(v+i − δ)q⋆i (v
+
i , σ(v−i))− [p⋆i (v

+
i , σ(v−i))− δq⋆i (v

+
i , σ(v−i))]

By single crossing property and v+i − δ ≥ v̂i (v̂i is δ-close to vi ∈ Vi), we thus have

for all σ(v−i) and v′i > v+i :

v̂iq
⋆
i (v

′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

≤v̂iq
⋆
i (v

+
i , σ(v−i))− [p⋆i (v

+
i , σ(v−i))− δq⋆i (v

+
i , σ(v−i))] (5)

Combining (4) and (5), we obtain:

vi = arg max
v′i≥vi

[
v̂iq

⋆
i (v

′
i, σ(v−i))− [p⋆i (v

′
i, σ(v−i))− δq⋆i (v

′
i, σ(v−i))]

]
∀σ(v−i) (6)

Then, (3) and (6) imply that for bidder i whose value is δ-close to vi ∈ Vi, it is

dominant for him to report vi in the δ-transfer-reduction mechanism. We take δ = ε

then. Although we omit the details, it can also be shown that his ex post individual

rationality is satisfied.

By construction, the ε-transfer-reduction mechanism collects the same amount of

transfer from each type of each agent less at most ε. Therefore, if g = f , then the

expected revenue in the ε-transfer-reduction mechanism, denoted by R′
ε(g), is not

lower than RD −Nε:

R′
ε(g) ≥ RD −Nε.
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Even if f is different from g, it remains true that each bidder with each type finds

it dominant to report his closest type in the same ε-transfer-reduction mechanism.

Therefore, denoting by R′
ε(f) the expected revenue of the same ε-transfer-reduction

mechanism but with distribution f , by continuity we obtain:

lim
ε→0

|R′
ε(g)−R′

ε(f)| = 0,

and therefore:

lim
ε→0

|R′
ε(g)− inf

f |ε-close to g
R′

ε(f)| = 0,

By Theorem 1:

RD = R⋆
ε ≥ inf

f |ε-close to g
R′

ε(f)

Therefore:

0 ≤ RD − inf
f |ε-close to g

R′
ε(f) ≤ R′

ε(g) +Nε− inf
f |ε-close to g

R′
ε(f),

where the right-hand side converges to 0 as ε → 0, implying:

inf
f |ε-close to g

R′
ε(f) → RD,

as ε → 0. We complete the proof by noticing that RD
ε ∈ [inff |ε-close to g R

′
ε(f), R

D].
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