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Abstract - English

This thesis is composed of three chapters. The first chapter studies the economic effects of

subsidies when firms can adjust both prices and a product attribute. The second chapter

(joint with Christian Bontemps and Cristina Gualdani) builds and estimates a 2-stage model

of airline competition. The third chapter (joint with Charles Pébereau) studies adoption of

real-time pricing electricity tariffs.

In the first chapter I study the economic effects of electric car subsidies. Electric cars are sub-

sidized around the world because they are seen as a key driver for decarbonizing the transport

sector. In response to these subsidies, producers of electric cars can adjust the price of the car,

but also the driving range. My analysis finds that subsidy design has an important impact on

price and range choices. In the paper, I find that firms react to subsidy directly based on range

by selling more expensive electric cars with a higher range. To the contrary, a flat subsidy

leads firms to sell cheaper electric cars with a lower range. These findings have important im-

plications for policymakers who have two objectives: Whereas electric car sales are maximized

at the flat scheme, minimizing CO2 emissions entails a trade-off between maximizing electric

car sales and generating substitution from more polluting cars that is solved at a scheme with

a flat and a range-based part. However, whereas a policymaker cannot maximize electric car

sales and minimize CO2 emissions with the same scheme, she is able to maximize electric car

sales and the consumer surplus of lower-income consumers with the same scheme.

In the second chapter, joint with Christian Bontemps and Cristina Gualdani, we build and

estimate a 2-stage model of airline competition. In the model, airlines choose the network

of segments to serve in the first stage before competing in prices in the second stage. The

two-stage framework allows us to account for selection of airlines into interdependent routes.

Moreover, it permits us to make counterfactual exercises that robustly predict changes not

only in prices and markups but also in how airlines adjust their route networks. We show

that large hub-and-spoke operations lower marginal costs but increase fixed costs. We evaluate

a merger between American Airlines and US Airways and compare it to the bankruptcy and

disappearance of American Airlines. We also evaluate remedies imposed on the merging parties

and find evidence that they limited harm to consumers.

In the third chapter, Charles Pébereau and I study the introduction of real-time electricity

pricing in New Zealand and shed light on why adoption was low. Under this tariff, consumers

are exposed to half-hourly varying spot prices. We find that prospective and recent adopters
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are highly sensitive to contemporaneous spot prices. Adoption rates significantly decrease

with contemporaneous spot prices. During a crisis on the electricity spot market, the share of

consumers discarding real-time pricing plans decreased with experience. These results suggest

that, over time, consumers focus less on immediate outcomes. Our results can inform the

debate regarding ways to foster the adoption of real-time pricing, such as opt-in and opt-out

policies, and information provision.
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Abstract - French

Cette thèse est composée de trois chapitres. Le premier chapitre étudie les effets d’une sub-

vention dans le cas où des entreprises peuvent changer le prix ainsi que les caractéristiques du

produit qu’elles proposent. Le deuxième chapitre (joint avec Christian Bontemps et Cristina

Gualdani) construit et estime un modèle en deux étapes de la compétition en réseau des com-

pagnies aériennes. Le troisième chapitre (joint avec Charles Pébereau) étudie l’adoption de

tarification de l’électricité en temps réel.

Dans le premier chapitre, j’étudie les effets économiques des subventions sur le marché des

voitures électriques, qui sont subventionnées partout dans le monde parce qu’on les consid-

ère comme un élément clé dans la dé-carbonisation du secteur du transport. En réponse à

ces subventions, les producteurs de voitures électriques ont la possibilité d’ajuster le prix des

voitures, mais aussi leur autonomie. Mon analyse montre que la façon dont ces subventions

sont implémentées a un impact important sur ces choix de prix et d’autonomie. Dans mon

étude, je trouve qu’une subvention directement indexée sur l’autonomie conduit les firmes à

vendre des voitures électriques qui sont plus chères et qui ont plus d’autonomie. Au contraire,

une subvention fixe conduit les firmes à vendre des voitures électriques moins chères avec une

autonomie plus faible. Ces effets ont des implications importantes pour les décideurs politiques

qui ont deux objectifs: Tandis que la quantité de voitures électriques vendue est maximisée

avec la subvention fixe, la minimisation des émissions de CO2 nécessite un compromis entre

maximisation des ventes de voitures électriques et substitution de voitures conventionelles pol-

luant beaucoup. Ce compromis est résolu avec une subvention intermédiaire. Si un décideur

politique ne peut pas atteindre les deux objectifs avec la même subvention, il peut tout à fait

maximiser les ventes de voitures électriques et le surplus des consommateurs les plus pauvres

avec la même subvention.

Dans le deuxième chapitre, écrit en collaboration avec Christian Bontemps et Cristina Gual-

dani, nous construisons et estimons un modèle en deux étapes du secteur du transport aérien.

Dans ce modèle, les compagnies aériennes choisissent d’abord leur réseau de vols directs avant

d’entrer en compétition avec ses rivales. Ce jeu en deux étapes nous permet de prendre en

compte l’interdépendance des routes choisies par les firmes. En outre, le modèle nous per-

met de faire des analyses contrefactuelles capables de fournir des prévisions robustes en ce qui

concerne le niveau des prix, mais aussi le changement du réseau des firmes. Nous montrons

que des réseaux en étoile baissent le coût marginal et augmentent le coût fixe. Nous évaluons

une fusion entre American Airlines et US Airways et la comparons au scénario d’une faillite

d’American Airlines. Nous évaluons aussi des contre-mesures imposées aux firmes fusionnantes
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et trouvons que ces mesures ont réussi à limiter la perte de surplus du consommateur.

Dans le troisième chapitre, Charles Pébereau et moi étudions l’introduction d’une tarification

de l’électricité en temps réel en Nouvelle-Zélande et offrons des explications quant à la faible

adoption de cette tarication. Cette tarification expose les consommateurs au prix courant

de l’électricité changeant chaque demi-heure. Nous trouvons que les consommateurs qui ont

adopté cette technologie le plus récemment sont très sensibles aux prix courants. Les taux

d’adoption baissent fortement quand les prix courants sont élevés. Durant une crise des prix

courants de l’électricité, la part des consommateurs abandonnant la tarification en temps réel

baisse avec leur expérience. Ces résultats suggèrent que, au fil du temps, les consommateurs

sont moins réactifs aux changement immédiats de prix. Nos résultats sont utiles dans le débat

sur la façon d’encourager les consommateurs à adopter une tarification en temps réel, comme

des programmes opt-in ou opt-out.
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1.1 Introduction

Designing a subsidy that achieves its goal requires knowledge of how firms react to the subsidy.

The economics literature has extensively studied how firms with market power react to subsidies

when firms can only adjust prices (Bulow and Pfleiderer, 1983; Stern, 1987; Weyl and Fabinger,

2013). In this case, we know the direction of the adjustment: firms respond by lowering prices.

The magnitude of the reaction depends on the slopes of the demand and marginal revenue

curves. When firms can also adjust product attributes in response to a subsidy, the directions

of the price and attribute adjustments are unclear. There exists no evidence in the economics

literature on how firms in differentiated product markets adjust prices and product attributes

in response to a subsidy.

Knowing what happens when responses by firms can be multi-dimensional is crucial for design-

ing electric vehicle subsidies. Electric vehicles (EVs) play an integral role in reducing carbon

dioxide emissions from the transportation sector, and thus countries have committed substan-

tial amounts of funding for EV subsidies. In 2018 alone, world-wide government spending on

EV purchases through subsidies totaled $15 billion.1 The design of these subsidies differs across

countries, with some basing subsidies on product attributes and others granting a subsidy with

the same amount to every EV. Policymakers have several objectives in mind when designing

these subsidies: minimizing CO2 emissions from new car sales, maximizing diffusion, and at-

tending to distributional concerns. One feature of EVs is that firms can adjust the driving

range relatively easily, giving them an additional dimension along which to react to subsidies.2

The primary determinant of the range is the size of the battery pack and the propulsion mech-

anism of an EV. Another feature of EVs is that prices of lithium-ion cells, an essential input

for battery packs, have dropped substantially over the past decade. This decrease has made

the battery pack less expensive and has decreased the cost of providing range.

In this paper, my research question is as follows: How does subsidy design affect market

outcomes when firms can adjust prices and product attributes? I use a novel state-level data

set of new car purchases in Germany to estimate a structural model of demand and supply.

The model allows for flexible substitution patterns across cars of different engine types on the

demand side and endogenous range choices by firms on the supply side. I use the estimated

model to assess a rich set of counterfactuals. First, I evaluate the impact of lower battery pack

prices on the marginal cost of providing range and market outcomes. The supply estimates

show that the marginal cost of providing range decreased by 33% from 2012 to 2018 and led

firms to sell EVs at higher prices and with a greater range. Firms also collected a higher markup

on these EVs. Second, I evaluate a subsidy scheme introduced in Germany in 2018 and find

1Source: International Energy Agency.
2The driving range, or range henceforth, is the distance that can be driven with a fully charged battery (or,

in the case of combustion cars, with a full tank).
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that it led to lower prices and a smaller range for electric vehicles on which firms collected a

lower markup. Third, I evaluate the effect of different subsidy schemes on market outcomes.

Purely range-based subsidies increase price and range, whereas flat subsidies decrease price and

range. Policymakers face a trade-off in maximizing diffusion, minimizing CO2 emissions, but

can address distributional aspects. Consumers prefer schemes purely based on the driving range

of EVs, even though this result hides important distributional effects. Maximizing diffusion and

minimizing CO2 emissions from new cars are not equivalent because achieving these two targets

requires different substitution patterns. A policymaker can design subsidies that attain one of

the objectives or achieve some combination of higher consumer surplus, lower fleet emissions,

and greater diffusion.

Several challenges exist in analysing how a multi-dimensional reaction to subsidies and marginal

cost changes affects outcomes. First, there exists little guidance in the existing literature on

the effect of subsidies in multi-product oligopolies when firms can adjust prices and product

attributes. Second, answering this question in the electric car market requires a demand model

with rich substitution patterns between electric cars and combustion cars3, given that the goal

of electric vehicle subsidies is to generate more substitution towards electric vehicles. Third,

the supply model should allow firms to react to a subsidy by adjusting not only the price

but also the range of electric cars. My framework addresses these challenges. I estimate

a structural model of demand and supply for new cars. On the demand side, consumers

exhibit heterogeneous preferences for cars with different engine types. On the supply side,

firms compete in a static oligopoly in which they set the prices of all their products and

the range of their electric cars. In general, this model provides a framework for studying the

impact of subsidies and marginal cost changes on the price and an adjustable product attribute

in multi-product oligopolies. The model builds on Berry, Levinsohn, and Pakes (1995) and the

recent literature studying equilibrium outcomes when firms can adjust one or more product

attributes (Fan, 2013; Crawford, Shcherbakov, and Shum, 2019). I estimate the model using

the generalized method of moments (GMM), using approximations to optimal instruments

(Chamberlain, 1987) as proposed by Gandhi and Houde (2019).

Given parameter estimates, I first study the important reduction in prices of lithium-ion cells,

a key input for battery packs, which determine the driving range. This input price drop is a

defining feature of electric car markets. My framework allows both endogenous provision of

range and a multi-dimensional response in terms of price and range to changes in the marginal

cost of providing range. I find that the marginal cost of providing range decreased by 33%

from 2012 to 2018. Firms pass on this negative shock to the marginal cost of range by selling

EVs with a greater range at higher prices. The markup on electric cars increases. These

findings are important for subsidy design, as a decrease in the marginal cost of providing

3Combustion cars employ a conventional gasoline or diesel engine to propel the car.
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range is equivalent to a subsidy purely based on range. Moreover, pass-through occurs through

the product attribute channel rather than the price channel. This finding underscores the

importance of accounting for a channel through which car manufacturers can adjust range.

In 2016, Germany introduced a subsidy scheme for electric vehicles. The scheme consisted of a

flat subsidy, meaning that the amount did not depend on any product attributes. My findings

show that the subsidy led to both price and range decreases for electric vehicles, with firms

collecting a lower markup. These outcomes are the converse of the adjustment that occurs in

response to a lower marginal cost of providing range. In this case, pass-through occurred mainly

through the price channel. Prices decreased by more than the amount of the subsidy. Firms

used the product attribute channel to reduce range to allow for further price reductions. These

two counterfactual exercises bracket the alternative subsidy schemes that I consider in the next

step. These alternative schemes consist of a flat part and an incentive-based part that depends

on range. The first two counterfactual exercises also make clear how different strategies shape

market outcomes: On the one hand, firms can have incentives to increase price and range to

target consumers with a high willingness to pay for range and thereby collect a larger markup.

On the other hand, firms can have incentives to sell a cheaper product at a lower range, thereby

collecting a lower markup but also capturing many consumers with a low willingness to pay for

range. Finally, firms can use a subsidy to decrease price and increase range. Which adjustment

strategy firms use shapes substitution patterns and, ultimately, market outcomes.

The estimated model allows me to compare a wide range of subsidy schemes and their impact

on market outcomes. Across different budgets, I compare schemes that are either flat, are

purely dependent on range, or mix a flat part with a range-dependent part. The market

outcomes that I focus on are CO2 emissions from new cars and diffusion. In addition, I

investigate the effects of subsidy design on consumer surplus and distributional aspects. The

ultimate goal of policymakers is to de-carbonize the automobile sector; this makes it natural

to look at CO2 emissions from new cars. At the same time, policymakers are interested

in increasing diffusion to establish EVs on the market. Dynamic considerations related to

learning curve effects also play a role. I find that flat subsidy schemes maximize diffusion.

However, maximizing diffusion is not equivalent to minimizing CO2 emissions from new car

sales. For the lowest budget considered, CO2 emissions from new cars are lowest at intermediate

schemes. Differences in substitution patterns across different subsidy schemes drive this result.

Maximizing diffusion warrants a subsidy that maximizes substitution from all cars, whereas

minimizing emissions warrants a subsidy that induces more substitution from more-polluting

cars. Moreover, I find that the pure range-based scheme maximizes consumer surplus. However,

this finding hides substantial heterogeneity: Consumers in lower income deciles prefer purely

flat schemes. They do so because the willingness to pay for range decreases with income,

meaning consumers at the top of the income distribution have strong preferences for a greater
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range. In contrast, consumers at the bottom of the income distribution have strong preferences

for lower prices. These findings suggest that policymakers can achieve different objectives with

different subsidy schemes, with a trade-off in maximizing diffusion, minimizing emissions, and

addressing distributional aspects. It is crucial to know how a given scheme affects substitution

patterns. Otherwise, the subsidy may have unintended consequences. The results also suggest

that a subsidy always decreases emissions, increases diffusion, and raises surplus for every

consumer. Accordingly, it is always possible for a policymaker to achieve a combination of

lower emissions and higher diffusion while leaving all consumers better off.

This paper contributes to different branches of the literature. The first contribution is to the

literature on quality provision (Spence, 1975; Sheshinski, 1976; Mussa and Rosen, 1978; Maskin

and Riley, 1984; Crawford et al., 2019; Holland, Mansur, and Yates, 2020) that studies how

firms provide a product attribute (quality) in imperfectly competitive markets. The paper

also contributes to the pass-through literature (Bulow and Pfleiderer, 1983; Stern, 1987; Kim

and Cotterill, 2008; Weyl and Fabinger, 2013) studying how firms adjust prices in response

to subsidies, taxes, or marginal cost changes. This paper bridges a gap between these two

literature streams by building a framework that allows for a multi-dimensional response in

prices and product attributes to subsidies, taxes, and marginal cost changes in imperfectly

competitive markets.

This paper also contributes to the literature evaluating environmental policies in car mar-

kets. This literature studies how different environmental policies shape market outcomes and

compares the effectiveness of different policy tools (Knittel, 2011; Klier and Linn, 2012; Pa-

van, 2017; Grigolon, Reynaert, and Verboven, 2018; Durrmeyer and Samano, 2018; Reynaert,

Forthcoming; Leard, Linn, and Springel, 2019). A sub-branch of this literature is explicitly

concerned with the EV market, studying the effect of EV subsidies (Beresteanu and Li, 2011;

Xing, Leard, and Li, 2019; Muehlegger and Rapson, 2020) or the impact of charging stations

(Li, Tong, Xing, and Zhou, 2017; Li, 2019; Springel, 2020). I contribute to this literature by

studying the impact of battery cost changes, one of the defining characteristics of EV markets,

on market outcomes. Further, this literature either assumes away supply-side responses of

firms or constrains firms to adjust only prices in response to subsidies. This paper contributes

to this literature by studying how firms adjust the range in response to subsidies, allowing for

an explicit range adjustment channel in the supply model. Finally, I contribute to the litera-

ture studying subsidy schemes in EV markets by providing a detailed analysis of how different

subsidy schemes affect firm strategies and policy objectives, giving rise to important trade-offs

not considered in the literature so far.

15



1.2 Industry Description and Data

The setting for the empirical analysis is the new car market in Germany. A predominance

of combustion engine cars using gasoline or diesel as fuel has characterized this market over

the past decades. Simultaneously, sales of electric vehicles increased more than twenty-fold

between 2012 and 2018. I estimate both consumer demand for new cars and competition in

price and range among firms using a detailed data set of new car transactions.

Industry description

The market for electric vehicles. After having been dormant for more than 100 years,

electric vehicle technology came back to prominence in the late 1990s. Both the Honda In-

sight and the Toyota Prius used a hybrid engine that combined fuel and electric powertrains.

However, it was not possible to plug in this electric engine to an external source. Over the

past decades, two new technologies have emerged. One is the plug-in hybrid electric vehicle

(PHEV), which combines a fuel engine with an electric battery pack that can be plugged into

an external power source. The other is a pure battery electric vehicle (BEV), whose powertrain

unit consists only of a battery pack (throughout the remainder of the text, “BEV” is used syn-

onymously with “battery electric vehicle”, “PHEV” is used synonymously with “plug-in hybrid

electric vehicle” and “EV” means both “BEV” and “PHEV”). Electric vehicles have been sin-

gled out by policymakers and firms alike as key technologies to de-carbonize the transportation

sector in pursuit of the goal to contain the rise of global temperatures to below 2◦C. To buttress

diffusion, governments around the world have introduced subsidies and tax incentives for elec-

tric vehicles. The scope and design of these subsidies vary considerably across and sometimes

even within countries. Some countries use flat subsidies, and others make subsidies depend on

characteristics such as the driving range or battery size.4. Global government spending on EVs

increased substantially from $1 billion in 2012 to $15 billion in 2018.

Another feature of the electric vehicle market is the rapid decrease in the cost of lithium-ion

cells (LICs). Numerous LICs make up the battery pack of an electric vehicle. This battery pack

propels the car, and its size is the most important determinant of the driving range. Figure

1.1 shows different approximations of the evolution of lithium-ion cell prices. Although there

is considerable variation in the estimates, there is a clear downward trend. This trend suggests

that providing driving range has become considerably cheaper over the past decade.

Significant barriers to the mass adoption of electric vehicles exist: EVs tend to be more ex-

pensive and have a shorter driving range than combustion engine cars. In consumer surveys,

the high cost and small range of EVs repeatedly show up as the most critical determinants

4For detailed overviews, see Yang, Slowik, Lutsey, and Searle (2016) and Rokadiya and Yang (2019).
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Figure 1.1: LIC price estimates (USD per kWh)

Source: Hsieh et al. (2019)
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of whether to purchase an electric vehicle, together with the charging station network density

(see, for instance, Schoettle and Sivak 2018; Carley, Krause, Lane, and Graham 2013; Rezvani,

Jansson, and Bodin 2015).

Electric vehicles in Germany. The automobile sector is a key industry in Germany,

accounting for 9.8% of gross value added and employing approximately 880,000 people, with

another 900,000 jobs heavily depending on the sector, for a combined share of 7.2% of total

employment.5 Germany is home to three of the largest 15 car manufacturers in the world as

measured in sales and is ranked fourth in the world in terms of motor vehicle production.

Over the past decade, the German government has implemented measures to boost sales of

electric vehicles. One such measure was the Government Program for Electric Mobility of 2016.

Part of this program was a support scheme that gave a subsidy of AC 2,000 for the purchase

of battery electric vehicles and a subsidy of AC 1,500 for the purchase of plug-in hybrid electric

vehicles. The car had to have a list price below AC 60,000 to be eligible for the subsidy. In

total, the government provided AC 600 million in subsidies.6 The plan reinforced the govern-

5https://www.iwkoeln.de/en/studies/iw-reports/beitrag/thomas-puls-manuel-fritsch-the-importance-of-the-

html
6Carmanufacturerspledgedtomatchthegovernmentsubsidybygrantingarebateequaltotheamountofthesubsidy.

Theprogramalsoprovidedfundingfornewchargingstationsandvarioustaxbenefitsforbuying,

using,andchargingelectricvehicles.https://www.bmwi.de/Redaktion/EN/Artikel/Industry/

regulatory-environment-and-incentives-for-using-electric-vehicles.html
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ment’s goal to have 1 million electric cars on the streets by 2020 and 6 million by 2030.7 The

budget was forecast to be sufficient to give subsidies until 2019. However, by June 2017, only

approximately 5% of the total budget had been used, and in 2018, the market share of battery

electric vehicles was only at 1.2%, with approximately 34,000 annual car sales. These lacklustre

sales numbers led the government to increase the subsidy scheme’s scope as part of a federal

climate protection act in 2019. This act increased the government subsidy for battery electric

vehicles to up to AC 3,000, depending on the list price. The act also increased tax incentives for

electric vehicles and introduced a price of AC 10 per ton on CO2 from 2021 onward. In total,

the government pledged AC 9 billion for subsidies, tax reductions, and charging infrastructure.

Finally, in response to the economic crisis caused by the COVID-19 pandemic, the government

doubled the subsidies to AC 6,000.

Data

I build a comprehensive data set of new car purchases in Germany from 2012 to 2018. I do so

by combining several data sources.

Car registrations. I use publicly available data from the German Federal Motor Transport

Authority (KBA). This data set contains yearly new registrations at the state level for every

car model.8 A firm-and-trim identifier (“HSN/TSN”) defined at a very granular level identifies

a model. It differs by car class, body type, engine type, kilowatts, weight, and the number of

doors. I follow the previous literature on demand estimation for car markets in treating new

registrations as sales.

Car prices and characteristics. I scraped data on car prices and characteristics from the

website of the General German Automobile Club (ADAC), giving me a comprehensive data

set containing a wide range of car characteristics. These characteristics include the driving

range of cars. The data also include the list price of cars, which I use in the estimation as the

transaction price, again following the literature on demand estimation for car markets. The

ADAC data also contain the HSN/TSN identifier, allowing me to match the two data sets

relatively easily, except for some observations requiring manual matching.

EV charging stations. I obtain the number of charging stations for electric car batteries

from a publicly available data set listing all public charging stations from the Federal Network

Agency (BNetzA). The data set contains each station’s opening date and its location. This

data set allows me to build a variable counting the number of public charging stations in each

7https://www.bmwi.de/Redaktion/DE/Downloads/P-R/regierungsprogramm-elektromobilitaet-mai-2011.

pdf?__blob=publicationFile&v=6
8Germany consists of 16 states (“Bundesländer”). Three of these states (Berlin, Hamburg, and Bremen)

are “city-states” whose boundaries coincide with the cities themselves. The other 13 states are larger in area,
ranging from approximately the land area of Rhode Island to approximately that of South Carolina. The
population of the 16 states ranges from approximately 680,000 (roughly comparable to that of Alaska) to
approximately 18 million (roughly comparable to that of New York state).
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Figure 1.2: Evolution of price and range of battery electric vehicles (averages, base = 2012)
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state each year. I divide the obtained number of public charging stations per state and year

by the state’s population.

Demographic data. I use data from the German Socio-Economic Panel (SOEP) to build

income distributions at the state-year level. To do so, I fit the mean and variance of a log-

normal distribution using the observed household income draws of the SOEP. Additional data

on population comes from the Federal Statistics Office, and CPI data are from Federal Reserve

Economic Data. I build a measure of fuel cost in AC /100 km using yearly average gas price

data from ADAC and electricity cost data from the German Economics Ministry.

The resulting data set defines a product at a very detailed level. A trade-off exists between

having a very granular product definition and a more aggregated definition for tractability. In

my final data set, I define a product at the firm/model/engine type level, with the possible

engine types being combustion (ICE), plug-in hybrid (PHEV), or battery electric (BEV) engines

(e.g., VW Golf ICE vs. Renault Zoe BEV). In aggregating up to this product definition, I use

the price and characteristics of the most frequently sold variant at the national level. I reduce

the size of the data further by leaving out firms and models with low sales. I set the size of the

potential market equal to the number of households in a given state in a given year. In total,

the data consist of 28,288 year-state-product observations.

Figure 1.2 shows how the average price and range of battery electric vehicles developed during

the sample period. Prices slightly increased, and the range rose by almost 60%. It is unclear
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from this picture to what extent falling LIC prices and subsidies drove these trends. Detailed

summary statistics can be found in Table 2.1 of Appendix A.

1.3 Empirical Model

Set-up

This section introduces a structural model of demand and supply for new cars under endogenous

range choices. The model is close to those of Berry et al. (1995), Fan (2013), and Crawford

et al. (2019). I need a model that generates realistic substitution patterns between electric

cars and combustion cars on the demand side and that explains how firms choose range in a

multi-product oligopoly on the supply side. The model also needs to allow me to study the

impact of subsidies and marginal cost changes in imperfectly competitive markets when firms

choose the price and a product attribute.

Consumers choose the product maximizing their indirect utility and exhibit heterogeneous

preferences over prices and product characteristics on the demand side. The supply side allows

firms to compete in terms of price and range. I assume that consumers care only about the

driving range of battery and plug-in hybrid electric vehicles and not about the driving range of

combustion engine cars. These assumptions mirror evidence from consumer surveys on purchase

behaviour and consumer preferences regarding battery electric vehicles. Several consumer

surveys have found that driving range is the most critical consideration in the purchase of an

electric vehicle, next to the price and charging station availability.9 Additionally, the driving

range of combustion engine cars is sufficiently high, and the network of gas stations is sufficiently

dense. Hence, this characteristic does not play a role in consumer purchase decisions or firms’

profit maximization problems.

I further assume that firms choose prices and range simultaneously at the national level. The

rationale behind this assumption is that a firm can alter the driving range even after it has

fixed other characteristics, such as the car’s size dimensions. A battery pack is made up

of many lithium-ion cells, giving firms the flexibility to scale the battery pack’s size up or

down. Additionally, firms choose price and range at the national level because list prices and

characteristics do not vary across states. Finally, I assume that firms only choose their battery

electric vehicles’ range. This assumption is partly a consequence of the fact that I assume

consumers do not have preferences on the range of combustion engine cars. In addition, I

9See, for instance, https://www.compromisorse.com/upload/noticias/002/2794/

accentureelectricvehicle.pdf. Specifically for Germany, see https://www.aral.de/content/dam/aral/

business-sites/de/global/retail/presse/broschueren/aral-studie-trends-beim-autokauf-2019.

pdf. The latter study (in German) also shows that consumers do not take range into account when deciding
on the purchase of a combustion engine car.
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assume that firms do not choose the range of plug-in hybrid electric vehicles. I do so, first,

because the range of PHEVs did not change much over the sample period and, second, because

the technology involved is different.10

Demand

A state m observed in year t defines a market. There are Mmt consumers in each market mt.

Each consumer i chooses one option j, which is either the outside option j = 0 or one of the

j = 1, . . . , J differentiated products. Choosing the outside option means that the consumer

buys a used car or does not buy a car at all. Choosing one of the “inside” products means

buying a new car. The utility that consumer i enjoys from purchasing one of the products

j = 1, . . . , J is

uijmt = rjtβ
r − α

pjt

yimt

+ xjmtβ
x
i + ξjmt + εijmt, (1.1)

where rjt is the range of product j, pjt is its price, yimt is the income of consumer i, and xjmt is a

vector of observed product characteristics. ξjmt is an unobserved characteristic of product j in

market mt, and εijmt is a consumer-specific unobserved taste shock assumed to be an i.i.d. type-

I extreme value. The parameter vector βx
i consists of mean tastes for characteristics and, for

some characteristics, random coefficients capturing unobserved heterogeneity in the valuation of

product characteristics. For a characteristic k, we have βk
i = βk +σkνk

i with νk
i drawn randomly

from a standard normal distribution and σk being the standard deviation of preferences. The

parameter βr captures preferences for range, and α captures price sensitivity. Remember that

consumers only care about the range of electric vehicles. In the model, this translates into

setting rjt = 0 for products with a combustion engine. The utility from purchasing the outside

option is normalized to ui0mt = εi0mt.

Consumer i in market mt chooses alternative j = 0, . . . J that maximizes her utility. Each

consumer is characterized by her income yi and her vector of idiosyncratic preferences νi. In-

come yi follows a log-normal distribution whose parameters I estimate based on draws from

the observed income distribution. Remember that εijmt follows a type-I extreme value distri-

bution. This assumption enables me to derive the probability that product j yields the highest

utility across all possible alternatives by integrating over the individual-specific valuations for

characteristics:

sjmt(p, r, x, ξ;σ) =
∫ exp(δjmt + µijmt(pjt, rjt, xjmt, ξjmt;σ))

1 +
∑J

k=1 exp(δkmt + µikmt(pkt, rkt, xkmt, ξkmt;σ))
dF (ν)dG(y),

10The battery of a PHEV needs to work in conjunction with a combustion engine. This set-up means that
on the one hand, there is less need to increase the range since the combustion engine provides enough range.
On the other hand, it is also more difficult to increase the range, given that there are more space constraints.
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where F (·) is the joint CDF of the unobserved taste shocks and G(·) is the distribution of

income. Further, δjmt is the mean utility incorporating all terms from (1.1) that do not vary

across individuals, and µijmt = −α pjt

yimt
+
∑

k σ
kνk

i x
k
jmt captures individual deviations from the

mean utility. Finally, defining the observed market share as sjmt = qjmt

Mmt
, with qjmt being the

observed quantity of product j in market mt, and stacking observed and predicted market

shares into a vector, we obtain the system of equations smt = smt(p, r, x, ξ;σ) for each market

mt.

Supply

I model the profit-maximizing price and range decisions of F multi-product firms for each year

t. I assume the product portfolio of firms to be given and that firms have already chosen all

product characteristics except for the range of BEVs. Firms then maximize profits by setting

the price of all products in their portfolio as well as setting the range of their BEVs at the

national level.

The profit in year t is then the weighted sum of profits from each state m, and firm f ’s profit

maximization problem can be written as follows:

max
p,r

πft ≡
∑

m

φmt

∑

j∈Jft

(
pjt −mcjt(rjt, wjt; θs)

)
sjmt(p, r, x, ξ;σ)Mmt, (1.2)

where φmt = Mmt∑
m′ Mm′t

is the weight of state m, Jft is the product portfolio of firm f , mc(·)
is the marginal cost of product j, wj is a vector of observed cost-shifters and θs is a vector

of parameters entering the marginal cost function. The first-order conditions with respect to

price and range are then given by

∂πft

∂pjt

=
∑

m

φmt

{
sjmt +

∑

k∈Jft

(
pkt −mckt

)∂skmt

∂pjt

}
= 0 (1.3)

∂πft

∂rjt

=
∑

m

φmt

{
− ∂mcjt

∂rjt

sjmt +
∑

k∈Jft

(
pkt −mckt

)∂skmt

∂rjt

}
= 0 (1.4)

Equation (1.3) is the usual first-order condition with respect to price, where firm f trades off

increasing the margin on product j by increasing the price against losing market share due to

this price increase, adjusted by the effect of changing j’s price on the demand of other products

that firm f offers. We can rewrite (1.4) as

∑

m

φmt

{
−∂mcjt

∂rjt

sjmt

︸ ︷︷ ︸
Change in markup x

market share

+
(
pjt −mcjt

)∂sjmt

∂rjt︸ ︷︷ ︸
Markup x change
in market share

+
∑

k 6=j,k∈Jft

(
pkt −mckt

)∂skmt

∂rjt

︸ ︷︷ ︸
Cannibalization effect

on other products

}
= 0
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When choosing the range, firm f trades off the decrease in the markup from providing more

range (intensive margin) against the higher demand arising from this range increase (exten-

sive/switching margin) as well as the cannibalization effect on the other products in firm f ’s

portfolio. Loosely speaking, equilibrium range decreases with a higher marginal cost of range

increases (which squeezes the markup) and increases with larger values of the demand semi-

elasticity with respect to range (which increases the extensive margin).

The first-order conditions in (1.3) and (1.4) can be expressed in matrix form. I use the index

B for battery electric vehicles and I for other vehicles. I let JB,JI denote the set of either

type of vehicle and JB, JI the number of either kind of vehicle on the market. I then define the

following matrices:

∆p : JxJ matrix with entry k, l =





∑
m φmt

∂slmt

∂pkt
if k, l ∈ Jf

0 otherwise

∆B
r : JBxJB matrix with entry k, l =





∑
m φmt

∂slmt

∂rkt
if k, l ∈ Jf and k, l ∈ JB

0 otherwise

∆I
r : JBxJI matrix with entry k, l =





∑
m φmt

∂slmt

∂rkt
if k, l ∈ Jf , l ∈ JI and k ∈ JB

0 otherwise

The system of first-order conditions can then be expressed as





s + (p − mc)∆p = 0 (1.5)

−∂mcB

∂rB
s + ∆B

r (pB − mcB) + ∆I
r(pI − mcI) = 0, (1.6)

where s is the vector of market shares, p is the vector of prices, mc is the vector of marginal

costs and r is the vector of range levels.

Marginal cost specification

I specify a marginal cost function that is log-linear. For product j, it is given by

log(mcjt(qjt, wjt; θs)) = wjtψ + ωjt︸ ︷︷ ︸
baseline

marginal cost

+ (γ0 + γ1t+ ηjt)rjt︸ ︷︷ ︸
marginal cost of
providing range

, (1.7)

where wjt is a vector of observed cost-shifters, ωjt is a cost shock observed by firms but un-

observed by the researcher, t is a linear time trend, ηjt is a range-specific marginal cost shock

observed by firms but unobserved by the researcher, and θs ≡ (ψ, γ0, γ1) is a vector of parame-

ters to be estimated. Note that the second part of (1.7) is zero for products that are not battery
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electric vehicles since I do not model their range choices. In the case of BEVs, I assume that

the marginal cost of providing range depends on an intercept term, a linear time trend allow-

ing for less costly range provision over time, and an unobserved, product-specific component.

The exponential nature of fixed costs is in line with the technology facing firms: Increasing

range may be achieved by increasing the size of the battery. A kilometer of range becomes

more costly at higher range levels. One reason is that the car’s dimensions restrict the size of

the battery. Additionally, other ways of increasing range, such as achieving a higher energy

density of batteries, may also be constrained by technological factors and make provision of

range costlier at higher rangey levels.

Having a functional form for marginal costs allows me to express the equilibrium levels of price

and range in matrix form. Let c0 ≡ w′ψ + ω and c1 ≡ (γ0 + γ1t + η). Then, the equilibrium

price and range are





p = mc + ∆−1
p s (1.8)

r =
1

c1

log
(

∆B
r (pB − mcB) + ∆I

r(pI − mcI)

sBc1

)
− c0

c1

(1.9)

We obtain the usual result of the price being equal to marginal cost plus a markup. The expres-

sion for range again makes apparent the trade-off in an increase in market share, cannibalization

of other products, and a decrease in the margin or vice versa.

Subsidies in the supply model

The supply model above can accommodate subsidies such as that introduced in Germany in

2016. Let pjt be the price paid by consumers and λjt the subsidy. Then, the price received by

firms is pjt + λjt. The profit maximization problem of firm f then becomes

max
p,r

πft ≡
∑

m

φmt

∑

j∈Jft

(
pjt + λjt −mcjt(rjt, wjt; θs)

)
sjmt(p, r, x, ξ;σ)Mmt, (1.10)

and the system of first-order conditions is now given by





s + (p + λ− mc)∆p = 0 (1.11)

−∂mc
∂r

s + ∆B
r (pB + λB − mcB) + ∆I

r(pI + λI − mcI) = 0, (1.12)

where λ is the vector of subsidies. Expression (1.10) also makes apparent that the introduction

of a (flat) subsidy is equivalent to a marginal cost decrease of the firm.
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1.4 Estimation

Instrumental variables

Demand side

Estimation of the demand side parameters suffers from the well-known endogeneity issue related

to price and here also to range: As the demand- and supply-side shocks realize before the

price and range choices, price and range may be correlated with these unobservables. The

utility function also includes the number of charging stations available to electric vehicles.

The charging station network is itself likely to depend on the electric vehicle base, creating an

endogeneity issue (Pavan, 2017; Springel, 2020; Li, 2019). Instruments are needed to account for

this endogeneity issue. At the same time, instruments also help identify the random coefficients,

thus serving a dual role. Recent literature has pointed out that the classic BLP instruments,

consisting of simple sums of product characteristics, tend to perform rather poorly (Reynaert

and Verboven, 2014; Gandhi and Houde, 2019). This literature suggests finding approximations

for optimal instruments as in Chamberlain (1987). In my estimation, I use differentiation IVs

as introduced by Gandhi and Houde (2019). The idea is to describe the relative position

of each product in the characteristics space. I build three variants of differentiation IVs: a

local variant that counts products close in characteristic space, a quadratic variant that sums

squared differences between product characteristics and a discrete variant for discrete variables

that counts the number of products with the same value for the characteristic:

Zk,local
jt =

∑

r∈C\{j}

1{|dk
jrt| < sd(dk)}

Zk,quadratic
jt =

∑

r∈C\{j}

dk2
jrt

Zk,discrete
jt =

∑

r∈C\{j}

1{|dk
jrt| = 0}

where |dk
jrt| is the absolute value of the difference between products j and r in characteristic

k, sd(dk) is the standard deviation of characteristic k across markets, and C is the set of

products considered. I build four kinds of instruments of each variant: one considering own-

firm products, one considering rival-firm products, one considering own-firm products of the

same engine type (BEV, PHEV, or ICE) and one considering rival-firm products of the same

engine type.

I build the local and quadratic variants for all continuous characteristics and the discrete

variant for all discrete characteristics. I also create local and quadratic variants for a price

index, obtained from regressing the observed price on demand- and cost-shifters. The range

of BEVs is endogenous, but I assume that the range of PHEVs is not. This is why I build
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the local and quadratic variants for the range of plug-in hybrid vehicles. I also build the local

and quadratic variants for battery efficiency (measured in kWh/100 km), which I assume to be

exogenous. I use a subset of all the instruments that I create. I account for the endogeneity

of the charging station network by including subsidies as instruments. These subsidies vary

across years as well as across states.

Supply side

On the supply side, firms choose range after they have fixed all other product attributes. Range

choices can thus be correlated with unobserved marginal cost shocks. I account for this endo-

geneity issue by constructing differentiation IVs built on the exogenous characteristics entering

the marginal cost function. I also include the observed exogenous characteristics entering the

baseline marginal cost, as these characteristics were chosen before range, guaranteeing their

exogeneity with respect to the unobserved range-specific cost shock. As on the demand side, I

use a subset of the instruments that I create.

Identification

Using the set of instruments described above allows me to pin down the estimated parameters.

I recover the mean utility parameters β and the cost parameters φ through a linear projection.

Variation in market shares and observed characteristics then identify β. Market share variation

exists across states (the m part of the market index) and time (the t part of the market

index). In contrast, product characteristics mainly vary across time (except for the endogenous

charging station variable). The demand-side parameters, coupled with an assumption on firm

behaviour, allow me to back out implied marginal costs. Changes in the implied marginal

cost and observed cost-shifters then identify the vector of marginal cost parameters φ. In

addition to using the instruments described above, variation in the observed characteristics

helps identify σ. Similarly, variation in market shares, prices, and consumer income identify

the price coefficient α. Prices vary across time, whereas consumer income varies both across

time and across states. The parameters (γ0, γ1) governing the marginal cost of additional

range are identified from variation in observed range levels and the implied marginal cost of

providing it, which, in turn, depends on variation in prices and market shares. For a more

elaborate discussion on the identification of demand and supply models with differentiated

products, refer to Berry and Haile (2014).

Zero market shares

Approximately 4% of my observations are products with strictly positive national-level sales

but zero state-level sales. Zero sales pose a problem in random coefficient demand models, as

the estimation procedure is not well defined when zero sales are present. Deleting observations
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with zero sales from the sample is problematic because it alters the market structure and makes

these products unavailable in counterfactual analyses. There exist approaches in the literature

to accommodating zero sales in random coefficient demand models.11 I follow D’Haultfœuille,

Durrmeyer, and Février (2019) and use a simple correction of market shares:

sc
j =

qobs
j + 0.5

M ,

where qobs
j is the observed quantity sold of product j in a given market and M is the market

size in that market. This correction aims to minimize the bias of log(sj) such that demand

parameters can be consistently estimated. D’Haultfœuille et al. (2019) provide an interesting

and detailed discussion on this.12

Estimation of the demand side

On the demand side, the vector of parameters to be estimated is given by θd ≡ (βx
i , β

r, α). I

allow random coefficients on characteristics for which I believe consumer heterogeneity matters:

an EV dummy for battery- and plug-in hybrid vehicles and Fuel Cost, measured in AC /100 km.

The random coefficient on the EV dummy allows flexible substitution between electric cars and

combustion engine cars. Obtaining such flexible substitution patterns is crucial for studying the

market outcomes of subsidy schemes, as substitution across engine types drives these outcomes.

The random coefficient on Fuel Cost allows consumers to have idiosyncratic preferences for a

characteristic that proxies the usage cost of cars. Additionally, substantial differences across

engine types exist in the fuel cost per 100 km, which renders the substitution patterns between

cars of different engine types more flexible. I allow a trend in the mean taste for range, possibly

capturing taste changes for range over time. In addition, I add several characteristics for which

I only estimate the mean taste, including the number of public charging stations per 10,000

inhabitants, fuel cost, footprint, doors, dummies for electric vehicles, a dummy if the firm has

its headquarters in the state considered, and a linear time trend.13 I also add brand, class, body

and state fixed effects. All remaining unexplained variation is then collected in ξjmt, which is

interacted with the instruments described in the previous section to build moment conditions

of the form E[zd
jmtξjmt] = 0, with zd

jmt as an instrument. Stacking ξjmt across products and

11Li (2019) uses a Bayesian shrinkage estimator to move market shares away from zero. Lu, Shi, and Gandhi
(2019) construct bounds for the conditional expectation of inverse demand and show that their approach works
well even when the fraction of zero sales is 95%. Dubé, Hortaçsu, and Joo (2020) use a pairwise-differencing
approach to estimate demand parameters.

12The zero sales problem is rather small in my sample, given that it only affects approximately 4% of my
observations. My results are robust to the use of different corrections (such as replacing qj = 0 with qj = 1),
which I see as evidence that my demand parameters are consistently estimated and lead me to believe that the
correction I use is sufficient.

13I introduce the last variable to account for the fact that car companies often register a large number of
cars in their home state. Firms do so to comply with emissions regulations or to sell these cars at a discount
later. Not accounting for this may introduce a bias, especially for products with small market shares.
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markets into a column vector ξ, I obtain the GMM objective function to be minimized:

min
θd

ξ(θd)′ZdW dZd′

ξ(θd),

where Zd contains the instruments and W d is a positive definite weighting matrix. I use the

two-step efficient GMM estimator, where I use an approximation of the optimal weighting

matrix based on an initial set of estimates to recover the final estimated vector of parameters.

The estimation algorithm that I use is described in detail in Berry et al. (1995) and Nevo

(2001). In the estimation, I account for various numerical issues that recent literature has

drawn attention to (Dubé, Fox, and Su (2012), Knittel and Metaxoglou (2014), Brunner, Heiss,

Romahn, and Weiser (2017), Conlon and Gortmaker (Forthcoming)). First, I approximate the

market share integral with 1,000 draws using modified Latin hypercube sampling. Hess, Train,

and Polak (2006) and Brunner et al. (2017) show that this method performs very well in

random coefficient logit models and provides better coverage than the more frequently used

Halton sequences. Second, I set the tolerance level in the contraction mapping of the inner loop

to 1e-14 to solve for the demand-side unobservables. A tight tolerance prevents numerical errors

from the inner loop from propagating to the outer loop. Third, I use the low-storage BFGS

algorithm of NLOPT. Fourth, I initialize the optimization routine from many different starting

values to search for a global minimum. Finally, I check first- and second-order conditions at

the obtained minimum to ensure the optimizer did not get stuck at a saddle point.

Estimation of the supply side

With demand estimates in hand, I can derive implied markups and marginal costs. The vector

of parameters to be estimated is θs = (ψ, γ0, γ1). I let the baseline marginal cost depend on

several observed characteristics, such as the product’s weight, footprint, fuel efficiency, and

engine power measured in kilowatts. I also include year, firm, class and body fixed effects. All

remaining unobserved marginal cost-shifters are then collected in ωjt.

Remember that the marginal cost of additional range consists of an intercept and a linear time

trend to capture the decreasing cost of the lithium-ion cells that are a crucial input for the

battery pack, the size of which, in turn, is a main determinant of range. Any unobserved,

product-specific cost of additional range is then captured by ηjt.

The first-order conditions in (1.5) and (1.6) can be solved for the pair of supply-side unob-

servable vectors ω and η. I then interact them with the instruments described in the previous

section to build moment conditions of the form E[zs
jtωjt] = 0 and E[zs

jtηjt] = 0. Letting ρjt =

(ωjt, ηjt) and stacking across products and markets, I then obtain the GMM objective function
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to be minimized:

min
γ0,γ1

ρ(γ0, γ1)
′ZsW sZs′

ρ(γ0, γ1),

where Zs contains the instruments and W s is a positive definite GMM weighting matrix. The

baseline marginal cost parameters ψ can be concentrated out of the minimization routine, much

like the linear mean tastes in the utility function. Note that the number of observations differs

on the demand and supply sides. As firms choose price and range at the national level, I have

one national market per year t and not m state-level markets per year t on the supply side.

I take into account subsidies as outlined in (1.11)-(1.12). I do not consider rebates granted by

firms for two reasons: The first is that some firms granted larger rebates than they had pledged.

I do not observe these rebates. The second reason is that during the sample period, firms also

granted substantial rebates on gasoline and especially diesel cars, to a large extent in response

to the Volkswagen emissions scandal.14 The list prices net of government subsidies can be seen

as the maximum transaction price, as is the case in most of the literature estimating demand

and supply in new car markets.

1.5 Results

The estimated coefficients of key parameters are in Table 1.1. The first three columns show

demand estimates, and the last three columns show marginal cost estimates along with standard

errors in parentheses. The full estimation results including fixed effects are in Appendix B.

Table A.2 in Appendix A reports the first stage. Overall, the signs and magnitudes of the

estimated coefficients are in line with standard economic intuition.

Consumers like greater range, all else equal. The range-specific trend is negative, meaning

that consumer preferences for range become less intense throughout the sample period. One

explanation for this could be that range anxiety has decreased over time due to consumers

learning more about electric vehicles. This learning may come from their own experience, that

of peers, or simply a greater availability of information on electric cars. Research and consumer

surveys suggest that the driving range of current battery electric cars is sufficient for most trips.

Li, Linn, and Muehlegger (2014), for instance, report that households drive approximately 50

miles per day on average. Another explanation may be that faster battery charging has made

consumers less worried about range. A further explanation for the negative trend is that it

captures decreasing marginal utility of range as the range increases. Such an increase in the

range of electric vehicles has indeed occurred, as evidenced in Table 1.2. The positive and

14https://www.handelsblatt.com/unternehmen/industrie/studie-zum-automarkt-wo-es-die-groessten-diesel-
rabatte-gibt/22682110.html?protected=true
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Table 1.1: Key demand and marginal cost estimates

Utility Marginal Cost

Coefficient SE Coefficient SE

Mean Utility Range Provision
Range 1.772 (0.223) Intercept 0.813 (0.026)
Range × Trend -0.118 (0.024) Trend -0.070 (0.006)
Charging Stations 0.610 (0.156)
Fuel Cost -0.281 (0.027)
BEV -8.285 (1.539)
PHEV -5.901 (1.482)

Interactions
Price/Income -5.713 (0.691)

Standard Dev.
EV 2.563 (0.685)
Fuel Cost 0.134 (0.017)

Statistics
Mean own-price elasticity -3.267
Mean own-range elasticity (BEVs) 2.854
Mean markup (AC 1,000) 10.556

Note: Prices are deflated and in AC 1,000. Vehicle class, body, firm and state fixed effects
included. See Appendix B for the full estimates.

statistically significant sign on the Charging Station variable implies that consumers prefer

more charging stations, in line with previous studies on demand for electric vehicles (Li, 2019;

Springel, 2020). The mean range elasticity is equal to 2.854.

The negative and significant coefficient on price over income translates into a mean price

elasticity of -3.267, which falls within the range of figures found in the long literature on

demand estimation for new car markets. Table D.1 in Appendix D shows how my estimated

price elasticity compares to those found in other papers. Unlike the sensitivity of range, price

sensitivity barely changes over the sample period. Due to slightly larger and slightly more

dispersed household income, mean price sensitivity dropped slightly from 2012 to 2018, with

the variance increasing slightly. Graphical evidence of the findings is provided in Figure A.3

in Appendix A. The relative stability of price sensitivity, together with the finding of a lower

valuation of range over time, suggests that towards the end of the sample period, consumers

valued (a lower) price more relative to range than at the beginning.

All else equal, consumers strongly dislike both battery and plug-in hybrid electric vehicles,

even though there is considerable heterogeneity in the population. A small share of consumers

prefer electric cars over those with a combustion engine. The results suggest that the dis-
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utility from purchasing EVs decreased over the sample period since the driving range and the

number of charging stations increased. This finding also underscores the importance of range

and charging stations for the mass adoption of EVs.

Consumers dislike higher fuel costs, as evidenced by the negative parameter in the mean utility.

A dis-utility from higher driving costs makes sense, as these increase the overall cost of using

a car. However, consumers exhibit considerable heterogeneity in their valuation of fuel costs.

Heterogeneity in the valuation of fuel costs is also unsurprising, as factors such as income, driv-

ing behaviour, and preferences for less fuel-efficient cars play a role in shaping an individual’s

fuel cost valuation.

Figure 1.3: Estimated yearly mean marginal cost of providing range
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On the marginal cost side, I find that range is costly to provide. Range provision became

cheaper over the sample period, evidenced by the trend’s negative and statistically significant

coefficient. This trend translates into a mean decrease in the marginal cost of providing range

of approximately 33% from 2012 to 2018 (see Figure 1.3). This number is somewhat lower than

the estimates of lithium-ion cell price decreases in Hsieh et al. (2019), for instance. Given that

car manufacturers import most lithium-ion cells from overseas and may not directly benefit

from price drops due to long-term contracts, it seems plausible that the fall in the marginal

cost of providing range follows the lithium-ion cell price decrease less than one to one. Another

explanation is that firms need to convert the lithium-ion cells into a battery pack that is an

important – but not the exclusive – determinant of driving range.
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Figure 1.4: Estimated marginal cost functions for 2012 and 2018
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Figure 1.4 plots marginal cost curves at different range levels for 2012 and 2018. The lines

are computed using the mean estimated baseline marginal cost across BEVs and the mean

estimated marginal cost of providing range for 2012 and 2018, respectively. The curve is much

“flatter” in 2018 than in 2012, when range levels higher than 200 km resulted in a marginal

cost above AC 50,000. The figure suggests that it was not feasible to provide many of the range

levels observed in 2018 at a competitive price.

Figure 1.5: Per-kWh cost at observed range levels against battery pack cost
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To dig deeper into the validity of the marginal cost estimates, I translate the marginal cost
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of providing range into a battery cost per kWh. Dividing the estimated mean marginal cost

of providing range by the battery efficiency, I obtain a cost per kWh. I then compare this

per-kWh translation of the marginal cost of providing range to estimated costs of a battery

pack, taken from an engineering report (Steen, Lebedeva, Di Persio, and Boon-Brett, 2017).

This report provides an estimate for the battery pack cost in $ per kWh for the sample period

considered, which I convert into euros and deflate. The results are shown in Figure 1.5. We can

see that the estimated per-kWh cost, evaluated at observed range levels, is above the battery

pack cost coming from engineering estimates. This finding makes sense, given that the battery

pack’s size is the main but not the only determinant of providing range. Additionally, the

graph shows the per-kWh cost evaluated at observed range levels and imputed marginal cost

levels. Given the log-linear marginal cost specification, this per-kWh cost would be different at

different marginal cost and range levels. However, apart from 2012, the per-kWh cost backed

out of the model follows a similar trend to the battery pack estimate, providing evidence that

my marginal cost estimates are reasonable.

The baseline marginal cost estimates have the expected signs and magnitudes. Larger, heavier,

more powerful, and more fuel-efficient cars are more costly to produce. Battery electric vehicles

are cheaper to produce, all else equal, which is reasonable given that apart from the costly range

provision, there are many parts (gearbox, exhaust pipe, starter, injection system, etc.) that are

not necessary in the production of a BEV. The supply-side results suggest that range provision

accounts for approximately 62% of the marginal cost of producing a BEV, on average. This

finding is in line with recent engineering cost estimates (Lutsey and Nicholas, 2019), further

suggesting that my marginal cost estimates are reasonable in magnitude.

1.6 Counterfactuals

In this section, I use the estimated model to quantify the effect of marginal cost changes and

subsidies on battery electric vehicles by performing several counterfactual exercises. In a first

step, I evaluate how firms use a lower marginal cost of providing range to adjust the price and

range of their BEVs. In a second step, I assess the subsidy scheme imposed in Germany to

see how firms adjusted price and range in response to the subsidy. Finally, I evaluate different

subsidy schemes and compare them in terms of market outcomes. This step allows me to

describe how subsidy design affects policy objectives and the underlying substitution patterns.

It also allows a discussion on the compatibility of different policy objectives.

Procedure

Having estimates of price and range semi-elasticities, a system of first-order conditions (FOCs)

for prices and range levels, and an estimate of the marginal cost of providing range, I can
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compute the new equilibrium vectors of price and range. I employ an iterative algorithm to

find the new equilibrium vector of prices and range levels (p, r). I proceed as follows: At

iteration h,

1. Use the price FOCs to compute ph+1 = mc(rh) + ∆−1
p s(ph, rh) − λ

2. Update market shares and elasticities using ph+1, rh

3. Use the range FOCs to compute rh+1 = f(rh,ph+1), where f(·) is the expression of range

from (1.9).

4. Update market shares and elasticities using ph+1, rh+1

5. Let dmax = max(dh
p , d

h
r ), where dh

p = max |ph+1 − ph| and dh
r = max |rh+1 − rh|

6. If dmax ≥ ǫc with ǫc being some convergence criterion, go back to step 1. If dmax < ǫc,

extract (ph+1, rh+1) to be the new equilibrium vector of prices and range levels.

I adapt the algorithm for counterfactuals in which only price or only range is allowed to be

re-adjusted simply by using the respective FOCs only. I find that this procedure converges to

the same vector of prices and range levels even when I start from different starting values in

different counterfactual settings, which I take as a sign that there exists a unique counterfactual

equilibrium. Altering the ordering of the price and range updating does not change the results.

The same holds for an alternative procedure, where I iterate until convergence on, say, price

in an “inner loop” before iterating until convergence on the range and repeat both iterations

until the “outer loop” converges. These alternative procedures give me confidence that the

counterfactual results that I find are robust to the specific algorithm and different starting

values. The fact that firms choose only the range of BEVs means that the number of additional

FOCs to iterate in addition to the price FOCs is small. Additionally, the first-order price

changes are confined to BEVs. These factors contribute to the good convergence properties of

the algorithms. I perform all counterfactuals for 2018.

How does a lower marginal cost of range provision affect price and

range?

On the supply side of my model, I find that the marginal cost of range provision decreased

by approximately 33% between 2012 and 2018. Evidence from the engineering literature and

from policy reports suggests that a primary driver of this marginal cost drop has been falling

lithium-ion cell prices. While there is uncertainty on the future path of these prices, there is a
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general agreement that they will continue to fall over the next 5-10 years (Hsieh et al., 2019;

Nykvist and Nilsson, 2015; Green, Armstrong, Ben-Akiva, Heywood, Knittel, Paltsev, Reimer,

Vaishnav, Zhao, Gross, et al., 2019).

Table 1.2: Market outcomes with lower marginal cost of range

Observed With lower marginal cost

Base Price, range adjust Only price adjusts Only range adjusts

Price 34,671 +659 -357 0

(+584, +808) (-468, -226)

Range 259 +7 0 +3

(+6, +15) (+3, +4)

MC 26,023 +554 -301 +59

(+482, +690) (-393, -192) (+54, +65)

Markup 10,536 +104 -56 -59

(+102, +123) (-81, -35) (-65, -54)

Sales 34,761 +594 +1,044 +1,057

(+290, +811) (+700, +1313) (+790, +1287)

Notes: The table gives mean differences from observed outcomes with 95% CIs in parenthe-

ses.

In principle, firms can pass through lower marginal costs to price or range. The pass-through

rates are given by dp
dc1
, dr

dc1
, where c1 denotes the marginal cost of providing range. The signs

and magnitudes of the rates are determined by the relative price and range semi-elasticities,

the marginal cost of providing range, cannibalization effects, and the strategic effect of firms’

own actions on rival firms. To find the direction and magnitudes of the effects, I re-compute

the market equilibrium when the marginal cost of providing range drops by 1%.

I perform this counterfactual under three scenarios. In scenario 1, I allow firms to adjust prices

and range. In scenarios 2 and 3, I restrict firms to adjusting price only and adjusting range

only, respectively. The results are shown in Table 1.2.

The observed outcomes are in the second column of the table. The third column shows the

results when the marginal cost of providing range decreases by 1% and both price and range

can be adjusted. We can see that instead of passing through the cost decrease to lower prices,

prices increase. The reason for this price increase is that firms improve range. Firms now sell a

more expensive product with a higher range. The markup increases as well, suggesting that it

is a profit-maximizing strategy to emphasize the intensive margin (charging a higher markup
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Figure 1.6: Percentage changes of price and range due to lower marginal cost of range
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on existing consumers) over the extensive margin (attracting additional consumers). In other

words, the firm finds it more profitable to attract consumers with a high willingness to pay for

range as opposed to consumers who care relatively more about price than about range. In the

last line of Table 1.2, we see that sales also increase by approximately 1.5%. Figure 1.6 shows

that the direction of the effects is uniform across battery electric vehicles sold in 2018.

The third and fourth columns of Table 1.2 present the outcomes when only price and only range

can adjust, respectively. In the case of pure price adjustment, the average price decreases by

approximately AC 357 or 1.03%, meaning that there is a slight over-shifting of the marginal cost

drop. In the case of pure range adjustment, the average driving range increases by 3 km or

1.15%, also suggesting over-shifting. We can also observe that when firms can only adjust

a single variable, the markup decreases, as opposed to the case where both range and price

are free to change, suggesting that competitive effects are important. The ability to adjust

both price and range allows firms to increase their markup, something that they do not find it

profitable to do when they can only adjust price.

This section provides an answer to the question of how a marginal cost shock affects the price

and range of battery electric vehicles: A negative marginal cost shock increases both prices

and range levels, leading to more expensive products with higher range on which firms collect

a higher markup. This result suggests that range can be expected to increase. However, this
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result depends on the current levels of price, range, and marginal cost of providing that range.

When price, range, and the marginal cost of providing range are different, the directions and

magnitudes of the effects of a lower marginal cost of providing range on price and range may

differ.

How did the German subsidy scheme affect price and range?

The German government introduced a subsidy for electric vehicles in 2016. The goal was to

increase diffusion to have 1 million electric cars on the streets by 2020 and 6 million by 2030.

In this section, I quantify the impact of the introduction of this subsidy on the prices and

range levels of battery electric vehicles. To do so, I re-compute the market equilibrium in 2018

without the subsidy. As in the case of a shock to the marginal cost of providing range, it

is unclear how firms adjust the price and range of their products.15 There also exist reasons

to think that the response to a subsidy may be different from the reaction to a shock to the

marginal cost of providing range: A subsidy is equivalent to a decrease in the total marginal

cost of producing a product and not specific to particular adjustable product characteristics.

The results are in Table 1.3 and show outcomes from three counterfactuals: Column 3 shows

outcomes when both price and range are allowed to adjust. Columns 4 and 5 show outcomes

where only price and only range are allowed to adjust, respectively.

Table 1.3: Difference in market outcomes without the subsidy

With subsidy Without subsidy

Base Price, range adjust Only price adjusts Only range adjusts

Price 34,671 +4,099 +2,268 0

(+3,806, +5,799) (+2,219, +2,316)

Range 259 +15 0 -13

(+9, +30) (-21, -10)

MC 26,023 +1,522 0 -1,294

(+1,235, +2,925) (-1,371, -1,195)

Markup 10,536 +688 +379 -595

(+669, +993) (+331, +427) (-693, -518)

Sales 34,761 -7,431 -6,707 -4,333

(-8,222, -6,571) (-7,422, -5,972) (-5,174, -3,547)

Note: The table gives the differences from observed outcomes with 95% CIs in parentheses.

15In Appendix E.2, I show how the system of first-order conditions can be used to predict the direction of
the effects without having to perform a counterfactual analysis.
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Figure 1.7: Percentage changes of price and range due to introduction of subsidy
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We can see in column 3 that the predictions drawn from the comparative statics are validated.

Without the subsidy, both prices and range levels would have been higher on average. The

results suggest that on average, price pass-through was more than 100% (the subsidy was

AC 2,000 in 2018). The pass-through rate to price was over 200%. Firms compensated for this

over-shifting by lowering the range. Markups also fell in response to the subsidy, meaning that

firms sold cheaper cars with less range on which they collected a smaller markup. Column

4 suggests over-shifting of the subsidy in a counterfactual scenario in which firms were only

allowed to adjust prices. The pass-through rate is approximately 113% in this case. This rate

is slightly higher than that found by Muehlegger and Rapson (2020) for subsidies in California,

where pass-through was indistinguishable from 100%. Column 5 indicates that if firms had

only been able to change range, the subsidy would have led to an increase in range at a higher

markup. In the last line of Table 1.3, we can see that the subsidy increased sales by 7,431

units or approximately 21%. We also see that not accounting for range adjustment leads to an

under-prediction of the effect that the subsidy had on sales. In either case, we can conclude

that the subsidy is far from generating the diffusion needed to achieve the goal of having 1

million electric vehicles on the streets by 2020. Figure 1.7 shows the product-level effects of

the subsidy. We can see that firms decreased the price and range of all subsidized products,

and the lone non-subsidized BEV, the Tesla Model S, saw an increase in both price and range

in response to the subsidy.
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Discussion

The analysis of marginal cost shocks and the subsidy makes apparent two countervailing forces

in the market for battery electric vehicles: On the one hand, subsidies put downward pressure

on prices, range, and markups. On the other hand, a lower marginal cost of providing range

puts upward pressure on prices, range, and markups. The fact that the subsidy leads firms

to sell cheaper cars with lower range and that a lower marginal cost of providing such range

leads firms to sell more expensive cars with higher range suggests that substitution patterns

from combustion cars, as well as the outside option, are different in the two cases. Knowing

what substitution patterns look like and how they change in different scenarios is essential for

subsidy design.

The countervailing effects of subsidies and a lower marginal cost of range can also help to

explain the evolution of price and range over the sample period (see, e.g., Figure 1.2): Until

the end of 2015, there was no subsidy in place, meaning that there was only upward pressure

on prices and range levels, explaining the increasing slopes of both curves. Starting with the

introduction of the subsidy in 2016, we see that prices first plateaued and then decreased,

suggesting that the subsidy’s negative price effect dominated the positive price effect of the

marginal cost drop. The net impact on range stayed positive, even though the increase seems

to have slowed down. Overall, the total effect depends on the amount of the subsidy, the

magnitude of the marginal cost decrease, consumer preferences, and the current price and

range levels. Based on these factors, the total effect of subsidies and changes in the marginal

cost of range on price and range may be either positive or negative.

These results raise questions for policymakers regarding subsidy design. The findings suggest

that a possibly unintended side effect of flat purchase subsidies is a lower range. On the one

hand, using the support scheme to offer lower-range, lower-price products may be desirable

for very price-sensitive consumers and allow firms to increase sales. The results from these

two counterfactual exercises also raise the question of how a policymaker can achieve different

objectives through subsidy design. At what level would consumer surplus be maximized? The

ultimate goal of policymakers is to eliminate CO2 emissions from new cars sold to de-carbonize

the transport sector. What subsidy scheme achieves minimal CO2 emissions from new sales?

Finally, many governments have introduced sales targets for electric cars that they try to

meet by maximizing diffusion. A diffusion-maximizing strategy may also make sense when

policymakers have dynamic incentives, such as moving down a learning curve. In that case, it

can be optimal to forgo emission savings now because moving down the learning curve quickly

leads to higher diffusion and higher emission savings in the future. The next section investigates

which subsidy schemes achieve different objectives and whether they are compatible with one

another.
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Incentive-based subsidies

Policymakers in different countries use different subsidy schemes. For instance, the total sub-

sidy in California and China is a function of the driving range or the size of the battery pack

(Rokadiya and Yang, 2019). In Germany, on the other hand, the amount does not differ across

different EVs. In this section, I compare range-based schemes with schemes that are invariant

across different models. In particular, I evaluate subsidies of the form λj = λ0 + λ1rj. Note

that while simple, this scheme nests both the case of a flat subsidy and a decrease in the

marginal cost of providing range. When λ1 is zero, we recover a simple flat subsidy of the form

implemented in Germany. When λ0 is zero, the subsidy depends purely on the range. In that

case, the subsidy is equivalent to a decrease in the marginal cost of providing range. On the

other hand, a flat subsidy is equivalent to a general marginal cost decrease. In other words,

a flat subsidy lets firms choose how to “interpret” the marginal cost decrease: They can treat

it as making range provision cheaper or as reducing the total marginal cost of producing the

product. By contrast, a pure range-based subsidy forces firms to treat the subsidy as a de-

crease in the marginal cost of providing range. One can interpret the intermediate cases where

both λ0 and λ1 are non-zero as putting weights on a general and a range-specific marginal cost

decrease.

To find the budget-equivalent values for λ0 and λ1, I use the following procedure: At a given

budget B, I search for values of λ0, λ1 that satisfy the budget constraint. I employ a grid

search where at each candidate value (λ̃0, λ̃1), I solve for the counterfactual equilibrium vector

of prices and ranges and compute the total cost of the scheme. If the cost is either above or

below B, I discard the candidate value, and if the cost is equal to B (up to a small tolerance),

I keep it. I perform this search for different values of B: In the first search, B is equal to

the observed subsidy scheme’s cost in 2018 and subsequently increases in further searches. For

each candidate point, I compute the mean price and range of BEVs, the quantity sold of BEVs,

consumer surplus16, and fleet emissions, computed as the sales-weighted CO2 emissions from

new cars sold.17 Note that in the computation of fleet emissions, I assume that BEVs’ CO2

emissions are equal to zero. Of course, this assumption is only true if they run exclusively on

electricity generated from renewable sources. The assumption is unrealistic in a country such

as Germany, where an important part of electricity generation comes from CO2-intensive coal-

fired plants. However, there are three reasons why this approach is justified. The first is that it

serves as a useful benchmark since it measures the maximum amount by which fleet emissions

can decrease. The second is that the main reason why policymakers see electric vehicles as a

key instrument in making the transport sector emission-free is that electricity generation itself

16Consumer surplus is computed using the log-sum formula: CSt =
∑

m φmt

∑
i wi

log(1+
∑

j
exp(δjmt+µijmt))

αi
.

17I compute fleet emissions as
∑

j CO2j qj , with CO2j being the CO2 emissions of car j, measured in g/km
and qj being the quantity sold of car j.
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Figure 1.8: Firm strategies across subsidy schemes
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is being de-carbonized. De-carbonized electricity generation means that BEVs will eventually

be emission-free, making it a useful benchmark to think of them as zero-emission vehicles. The

third reason is that assuming non-zero CO2 emissions from BEVs requires ad hoc assumptions

on the electricity mix used and driving behaviour.

I focus on three outcomes in this section: First, I look at CO2 emissions from new car sales.

Focusing on this target makes sense, as the ultimate goal of subsidizing BEVs is to de-carbonize

the transport sector. The fewer vehicles emitting CO2 sold, the lower are the CO2 emissions

from the existing vehicle stock. Second, I focus on diffusion. This target makes sense for two

reasons. First, many governments have introduced explicit sales targets for electric vehicles.

A diffusion-maximizing approach ensures the achievement of these sales targets. Second, a

strategy focusing on maximizing diffusion can also be a static approximation to a dynamic op-

timization problem: A policymaker quickly wants to move down a learning curve. A diffusion-

maximizing strategy can approximate well the desire to move down the learning curve swiftly

in the early phase of adoption. An interpretation of sales targets can be that the policymaker

simplifies the complicated dynamic optimization problem by defining short- and medium-run

sales targets that allow the industry to move down the learning curve quickly. Finally, I take

into account distributional aspects by looking at consumer surplus along income deciles.
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Firms adopt two strategies, depending on the subsidy’s design: First, when the subsidy is flat,

we recover the previous section’s result: Firms decrease both price and range and collect a lower

markup on their BEVs. Firms also employ this strategy when facing schemes with low-powered

incentives on range. Second, when subsidies put more incentives on range, firms use a mix of

lower prices and higher range. The decrease in markups is smaller, meaning that at schemes

with stronger incentives, firms sell relatively more expensive BEVs with a higher range and a

relatively higher markup. We do not recover the result from Section 1.6 that firms increase

both price and range and earn a higher markup on their BEVs. Note that in Section 1.6, a

(flat) subsidy is already in place. The decrease in the marginal cost is then akin to replacing the

flat subsidy with a mixed scheme. Increasing incentives always increases range and markups

and decreases prices. Figure 1.8 shows how firms react to different subsidy schemes when the

budget is AC 67 million. While the magnitudes of the effects change at higher budgets, the

pattern described above does not: Flat subsidies and low-incentive mixed schemes always lead

to cheaper BEVs with a lower range on which firms collect a lower markup. Pure range-based

and high-incentive mixed schemes always lead to relatively more expensive BEVs with a higher

range on which firms collect a relatively higher markup. It is crucial to understand firms’

strategic reactions to different subsidy schemes because these strategies lead to different BEVs

on the market and different substitution patterns. These substitution patterns shape policy

objectives such as emissions from new car sales and diffusion.

Policy outcomes

Figure 1.9 shows policy outcomes under different subsidy schemes. The plot shows iso-budget

curves for different budget levels and the "initial point" without subsidies from Table 1.3. The

black diamonds denote the subsidy scheme maximizing consumer surplus at a given budget,

whereas the black squares represent the scheme minimizing fleet emissions at a given budget.

We can see that the flat subsidy always maximizes diffusion, suggesting that lower-range, cheap

BEVs induce the most substitution from other cars and the outside option. Also, we see that

fleet emissions are minimized at intermediate schemes. Maximizing diffusion of zero-emission

BEVs and minimizing fleet emissions are not equivalent. Minimizing emissions calls for different

substitution patterns compared to those generated by a flat subsidy. More substitution from

polluting cars makes up for the lower overall substitution. A mixed subsidy scheme placing

some incentives on range provision achieves this substitution from more polluting cars. Finally,

schemes with strong incentives on range always maximize consumer surplus. Consumers care

more about range than about price in relative terms to prefer a market outcome at which

BEVs have a high range at higher prices, rather than a market outcome where the opposite

holds. Together, these findings show that maximizing diffusion, minimizing fleet emissions,

and maximizing consumer surplus are mutually exclusive at any budget. The policymaker can

achieve these two goals separately or accomplish a mix of these goals, as any subsidy scheme
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Figure 1.9: Policy outcomes at different subsidy schemes (λ0, λ1) and budgets
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always increases consumer surplus, decreases fleet emissions, and increases diffusion.

Table 1.4: Substitution patterns by engine type

Budget: AC 64 million AC 200 million AC 300 million AC 400 million AC 500 million

Diffusion Range CO2 Diffusion Range CO2 Diffusion Range CO2 Diffusion Range CO2 Diffusion Range CO2

Percentage

Outside option 77.26 73.34 77.15 79.04 73.99 78.34 80.08 74.37 78.43 80.96 74.71 78.46 80.96 74.71 78.46

ICE 17.93 21.05 18.02 16.71 20.64 17.25 15.99 20.4 17.26 15.36 20.2 17.29 15.36 20.2 17.29

PHEV 4.8 5.61 4.83 4.25 5.37 4.41 3.93 5.22 4.31 3.67 5.09 4.24 3.67 5.09 4.24

Absolute

Outside option 5,904 4,091 5,869 16,187 10,908 15,575 23,340 15,456 21,418 30,234 19,705 26,620 30,234 19,705 24,351

ICE 1,370 1,174 1,371 3,423 3,043 3,430 4,660 4,240 4,714 5,737 5,328 5,868 5,737 5,328 5,779

PHEV 367 313 367 870 792 876 1,147 1,085 1,177 1,372 1,343 1,439 1,372 1,343 1,433

Scheme

λ0 2,000 0 1,950 4,315 0 3,900 5,450 0 4,400 6,320 0 4,650 7,028 0 4,800

λ1 0 750 25 0 1,720 210 0 2,188 542 0 2,555 866 0 2859 1,156

Percentage terms may not equal 100% due to rounding errors.

Table 1.4 shows substitution patterns from the outside option, combustion cars (ICEs), and

PHEVs towards BEVs under the schemes maximizing diffusion and range, respectively, and

minimizing fleet emissions (CO2) at the different budgets. We can see several patterns that

help explain Figure 1.9: First, substitution from the outside option is always highest at the flat
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scheme and lowest at the pure incentive-based scheme. Second, substitution from the inside

goods in relative terms is highest at the pure incentive-based scheme and is lowest at the flat

scheme. Lower substitution from inside goods is more than made up for by higher substitution

from the outside good at the flat scheme, thus maximizing diffusion. It is a profit-maximizing

strategy for firms to use a flat subsidy to sell cheaper products at a lower range. This strategy

has a market-expanding effect and mainly attracts consumers who chose not to purchase a new

car before. On the other hand, pure incentive-based subsidies make it profit-maximizing for

firms to sell more expensive cars with a higher range. This strategy attracts consumers who

value the higher range provided and previously purchased a non-BEV inside good. Firms use a

similar strategy at high-incentive mixed schemes that maximize consumer surplus, suggesting

that consumers, on average, have a relatively higher sensitivity to range than to price. Finally,

Table 1.4 also explains why intermediate schemes (or the flat scheme for the lowest budget)

minimize fleet emissions: Combustion cars have higher CO2 emissions than PHEVs. Together

with the assumption that consumers who choose the outside option cause zero CO2 emissions18,

this means that fleet emissions will be lowest at the point where substitution from combustion

cars is the highest. Maximal substitution from combustion cars occurs at mixed schemes.

Table 1.5 shows the market outcomes of the flat schemes and the pure incentive-based schemes

at different budgets. When the budget is set to AC 200 million, for instance, the flat subsidy

(λ1 = 0) leads to a 33km, 12%, decrease in range and a 76% increase in diffusion, or 20,480

cars in absolute terms. A pure incentive-based subsidy (λ0 = 0), on the other hand, leads

to a 29km, or 11%, increase in range but only a 55% increase in diffusion, or 14,742 cars in

absolute terms. In other words, an extra 5,738 units “costs” the policymaker 62km of range,

equal to around 23% of the range absent any subsidies. We can also see that the flat subsidy

raises total firm profits by more than the pure incentive-based subsidy. The flat subsidy gives

firms more flexibility in “interpreting” the subsidy: It is equivalent to a general decrease in the

marginal cost of producing a BEV. In contrast, the pure incentive-based subsidy is equivalent

to a decrease in the range-specific part of marginal cost.

Distributional aspects

Table 1.5 makes clear that the market outcomes for BEVs are significantly different between

the flat- and the pure range-based subsidy schemes. Flat schemes produce cheaper BEVs with

a lower range, whereas incentive-based schemes create more expensive BEVs with a higher

range. These two outcomes likely mean that different consumers buy BEVs in the two cases.

The demand model results yield a lower price sensitivity from consumers with higher income,

meaning that their willingness to pay for range is higher. This greater willingness to pay

at higher income deciles suggests that consumer surplus alone hides important distributional

18This assumes that the consumers attracted from the outside option did not use modes of transport emitting
CO2 emissions before.
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Table 1.5: Market outcomes at different budgets, flat versus range-based subsidies

Budget: AC 64 million AC 200 million AC 300 million AC 400 million AC 500 million

Base Incentive Flat Incentive Flat Incentive Flat Incentive Flat Incentive Flat

Sales 27,119 +5,578 +7,642 +14,742 +20,480 +20,782 +29,147 +26,377 +37,343 +31,680 +45,230

Range 273.16 +14 -14 +29 -33 +35 -43 +40 -51 +43 -58

Price 38,756 -178 -4,085 -816 -8,805 -1,286 -11,152 -1,721 -12,988 -2,123 -14,500

MC 27,538 +1,866 -1,515 +3,900 -3,254 +4,864 -4,125 +5,592 -4,816 +6,175 -5,392

Markup 11,218 -38 -682 -153 -1,476 -236 -1,879 -313 -2,201 -384 -2,470

Profits 30,792 +79 +81 +139 +147 +178 +189 +213 +227 +246 +262

λ0 0 +790 +0 +1,720 +0 +2,188 +0 +2,555 +0 +2,858 +0

λ1 0 0 2,000 0 4,315 0 5,450 0 6,323 0 7,028

Table 1.6: Preferences for subsidy scheme across income deciles

Budget: AC 64 million AC 200 million AC 300 million AC 400 million AC 500 million

Scheme

Deciles preferring

Flat 9 9 8 8 8
Mixed 0 0 1 1 1
Incentive 1 1 1 1 1

Marginal decile

Flat to Mixed - - 8-9 8-9 8-9
Mixed to Incentive - - 9-10 9-10 9-10

Flat to Incentive 9-10 9-10 - - -

effects. Table 1.6 illustrates these distributional effects. The table reports the number of

income deciles preferring either a flat, a mixed, or a pure incentive-based scheme along with

the “marginal deciles” between which preferences for different schemes switch. We can see

that most income deciles prefer flat schemes, with only the top decile having a preference for

pure incentive-based schemes. However, the gain in consumer surplus in this decile is enough

to make overall consumer surplus maximal at schemes that put strong incentives on range.

We can also see that preferences are very polarized in that only the 9th income decile has a

preference for a mixed scheme (at a budgets over AC 200 million). In contrast, all other income

deciles either prefer a flat or a true incentive-based scheme. These findings suggest that there

are important distributional consequences to consider when designing subsidies. A policymaker

can target different consumer segments with different schemes.

Discussion

These results suggest that at the observed levels of price, range and marginal cost in 2018, a

policymaker interested in maximizing diffusion merely needs to introduce flat subsidy schemes.

On the other hand, a policymaker interested in minimizing fleet emissions would take another

strategy, employing a mixed scheme that maximizes substitution from more polluting combus-

tion cars. A high-incentive mixed subsidy maximizes consumer surplus, even though this hides

important distributional aspects. In summary, policymakers face a trade-off between diffusion,
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emissions, but can address distributional aspects. This suggests that a policymaker needs to

be mindful when deciding on a policy objective as it may have unintended consequences on

other outcomes. The results also suggest, however, that a policymaker can always achieve

a mix of the three goals as a subsidy always increases consumer surplus for all consumers,

always increases diffusion, and always reduces fleet emissions. What holds regardless of the

level of prices, ranges, and marginal cost of range provision is that a policymaker intending

to maximize diffusion with a subsidy should be mindful of the impact of price and range on

firms’ intensive and extensive margins. A subsidy can lead a firm to use three strategies, two

of which we have seen in this section: First, a firm could use the subsidy to decrease both price

and range. Second, the firm could use the subsidy to decrease price and increase range. Third,

a firm could use the subsidy to increase both the price and range. These three strategies will

generate different substitution patterns from polluting cars and the outside option, leading to

different market outcomes.

The downward trend in the marginal cost of providing range puts upward pressure on price and

range. As long as range provision continues to become cheaper, a flat or low-incentive subsidy’s

negative effect on the range is likely to be mitigated or even dominated by this range-enhancing

effect.

For the German market studied here, the results suggest that flat subsidies were indeed diffusion

maximizing, albeit with a moderate overall effect. The findings also indicate that increasing

diffusion to a level that would bring the electric vehicle stock close to 1 million by 2020 neces-

sitates a substantial increase in the subsidy amount.

This section’s findings are also relevant to other markets: Policymakers often subsidize access to

necessary infrastructures such as water and electricity in developing countries. These subsidies

may have adverse effects on quality (McRae, 2015). Another example is newspaper markets,

where quality may be affected by subsidies aimed at increasing readership numbers (Battaggion

and Vaglio, 2018). In these cases, policymakers need to be mindful of relative preferences for

price and quality, the cost of quality provision, and the impact of these factors on firms’

intensive and extensive margins. Ultimately, a subsidy’s effect on price and an adjustable

product attribute is an empirical question that calls for a case-by-case evaluation. In general,

this section shows that subsidy design in a multi-product oligopoly when firm reactions can be

multi-dimensional can lead to very different strategic reactions by firms, affecting substitution

patterns that ultimately shape market outcomes.
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1.7 Conclusion

In this paper, I study how firms adjust the price and range of electric vehicles in response

to subsidies and changes in marginal cost. Falling input prices and subsidies characterize the

electric vehicle market. Even though understanding how input prices and subsidies are passed

through to price and range and how they affect the diffusion of electric vehicles is essential

for proper subsidy design, there is little evidence on pass-through when price and range are

endogenous.

I develop a structural model of demand and supply for new cars, and estimate it using a novel

data set on state-level new car sales in Germany. On the demand side, consumers choose

between cars of different engine types. The demand side allows for rich substitution patterns

across electric and combustion cars. On the supply side, firms compete in prices and can set the

range of their battery electric vehicles (BEVs). The model provides a framework for analyzing

the impact of subsidies in imperfectly competitive markets when firms choose the price and

product attributes.

I find that the marginal cost of providing range has decreased by approximately 33% over

the sample period. I use the estimated model to analyze how firms adjust price and range in

response to cheaper range provision and subsidies. The lower marginal cost of range provision

increased the price and range of BEVs, with firms collecting a higher markup. Conversely, a

flat subsidy introduced in Germany led to cheaper BEVs with a lower range on which firms

collect a lower markup. The subsidy increased sales by approximately 27% in 2018, far from

sufficient to meet the governments’ sales targets.

I then compare the flat subsidy imposed in Germany to alternative schemes used in other

countries and their effect on policy goals. I find that policymakers face a trade-off between

maximizing diffusion, minimizing emissions, but can address distributional concerns. Differ-

ent substitution patterns at different schemes drive this result. These substitution patterns

ultimately determine market outcomes. On the one hand, flat subsidies and schemes with low-

incentive mixed schemes induce firms to employ a strategy of selling BEVs with less range at

a lower price, capturing a large number of consumers on which firms collect a smaller markup.

On the other hand, pure range-based subsidies and high-incentive mixed schemes induce firms

to sell BEVs with more range at a relatively higher price, attracting consumers with a high

willingness to pay on which firms collect a relatively higher markup. The findings suggest

that a policymaker can always achieve a mix of the three policy goals as the subsidies always

increase consumer surplus and diffusion and always decrease fleet emissions.

This result also has direct implications for distributional effects: As consumers with a higher
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income have a higher willingness to pay for range, they are better off under high-incentive

schemes. Consumers in lower-income deciles, to the contrary, are better off under a flat subsidy

scheme. On the one hand, there may be important distributional effects from different subsidy

schemes. On the other hand, targeting specific consumer groups can be compatible with a

given policy objective. The diffusion-maximizing subsidy scheme coincides with the scheme

maximizing consumer surplus for lower-income groups, for instance.

The results have implications for policymakers. It is crucial to understand substitution pat-

terns generated by different subsidy schemes. Consumer preferences ultimately drive these

substitution patterns for range and price and the marginal cost of providing range. These

insights generalize to other markets in which firms can adjust one or more product attributes

in response to subsidies.

My paper leaves scope for future work. First, I do not directly explore dynamic incentives

that may exist due to learning effects. Second, I take the product portfolio of firms as given.

Recent years have seen the introduction of a large number of new EV models. Endogenizing the

product portfolio may be necessary to understand how firms react to subsidies and cost changes

by (not) introducing new products. Finally, firms have been increasingly offering models with

different range specifications. Firms offering menus of price and range add an angle to range

provision as firms may distort price and range within their menu.
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Appendix A

Additional Figures and Tables

Table A.1: Summary statistics

Mean values of key characteristics

Variable 2012 2013 2014 2015 2016 2017 2018

BEV

Price 30,490 31,295 35,392 32,569 37,104 37,200 34,671

Range (in km) 168 173 202 196 213 246 259

Fuel Cost 4.02 4.34 4.37 4.19 4.24 4.28 4.21

Acceleration 2.8 2.98 3.19 2.96 3.31 3.26 2.94

Weight 1,581 1,662 1,797 1,797 1,867 1,902 1,841

Footprint 6.01 6.4 6.78 6.78 7.03 7.13 6.97

Doors 4.5 4.7 4.85 4.85 4.86 4.88 4.89

Number of Products 6 10 13 13 14 16 18

Sales 2,100 5,517 9,044 13,234 12,201 25,593 34,629

PHEV

Price 43,288 48,472 44,265 56,007 57,479 54,651 57,126

Range (in km) 54 53 52 44 40 45 45

Fuel Cost 5.29 5.64 5.76 5.77 5.57 5.58 5.89

Acceleration 4.58 5.16 5.02 5.81 5.82 5.81 5.95

Weight 1,988 2,160 2,143 2,408 2,476 2,425 2,449

Footprint 7.93 8.17 8.04 8.53 8.66 8.66 8.74

Doors 5 5 5 5 4.87 4.86 4.79

Number of Products 2 3 6 11 15 22 24

Sales 1,148 1,079 2,671 8,248 10,614 25,374 25,841

ICE

Price 32,582 32,873 33,914 33,881 34,653 33,669 33,652

Range (in km) 995 1,018 1,039 1,057 1,063 1,023 997

Fuel Cost 10.06 9.32 8.62 7.6 6.98 7.47 8.01

Acceleration 5.29 5.32 5.41 5.44 5.62 5.76 5.74

Weight 2,023 2,035 2,044 2,043 2,031 2,008 2,017

Footprint 8 8.04 8.07 8.08 8.1 8.09 8.12

Doors 4.43 4.48 4.52 4.55 4.52 4.58 4.63

Number of Products 233 233 227 222 214 213 215

Sales 2,739,581 2,569,876 2,651,415 2,767,185 2,855,922 2,864,409 2,819,762

Stations

Number of Charging Stations 1,116 1,466 2,243 3,530 6,053 9,803 16,307
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Table A.2: First Stage Estimates

Price Range Range x Trend Stations

Coefficient SE Coefficient SE Coefficient SE Coefficient SE

Exogenous Charac.

Fuel Cost -0.603 (0.025) 0.000 (0.000) 0.005 (0.002) 0.001 (0.001)
Footprint 4.149 (0.121) 0.065 (0.003) 0.248 (0.018) -0.001 (0.004)
Acceleration 2.886 (0.044) -0.024 (0.002) -0.118 (0.011) -0.004 (0.002)
Doors 1.279 (0.075) -0.035 (0.002) -0.175 (0.010) -0.002 (0.002)
BEV -2.058 (1.244) 0.732 (0.073) -12.668 (0.511) -0.850 (0.083)
PHEV 0.464 (0.711) -0.028 (0.014) -0.553 (0.121) -0.020 (0.063)
Own State -0.001 (0.247) 0.000 (0.009) -0.001 (0.057) 0.057 (0.017)
Trend -0.722 (0.018) -0.008 (0.000) -0.018 (0.003) 0.001 (0.001)

PHEV

Range x PHEV -2.459 (0.969) 0.257 (0.070) -0.871 (0.473) 0.153 (0.154)

Cost shifters

Station Subsidies 0.005 (0.016) 0.000 (0.001) 0.004 (0.004) 0.019 (0.002)

Differentiation IVs

Price-quadratic-own 0.332 (0.010) -0.001 (0.000) -0.006 (0.002) -0.001 (0.000)
Price-local-own-nest 8.711 (2.129) -0.918 (0.097) -4.624 (0.551) -0.130 (0.086)
Engine-local-own-nest -11.343 (1.688) 0.091 (0.025) 0.284 (0.140) 0.041 (0.059)
Engine-quadratic-own-nest -12.897 (0.949) 0.036 (0.008) 0.287 (0.049) 0.048 (0.022)
Engine-local-rival-nest -4.973 (0.199) -0.007 (0.002) 0.022 (0.014) 0.009 (0.005)
Acceleration-quadratic-rival 2.276 (0.116) 0.082 (0.007) 0.424 (0.044) 0.001 (0.009)
Acceleration-quadratic-rival-nest -2.432 (0.138) -0.086 (0.007) -0.445 (0.047) 0.001 (0.010)
Footprint-local-own -0.198 (0.887) 1.116 (0.059) 5.233 (0.337) 0.033 (0.048)
Engine-local-rival -1.135 (0.205) -0.112 (0.008) -0.684 (0.051) -0.065 (0.027)
EV efficiency-quadratic-rival-nest 0.238 (0.033) 0.005 (0.001) 0.129 (0.007) 0.049 (0.006)
Fuel efficiency-quadratic-own 0.382 (0.110) -0.005 (0.001) -0.040 (0.005) -0.004 (0.002)
PHEV-count-own 0.012 (0.001) 0.000 (0.000) -0.002 (0.000) 0.000 (0.000)
PHEV range-local-own -1.459 (0.112) 0.039 (0.003) 0.598 (0.025) 0.146 (0.018)
BEV count-local-rival -0.156 (0.058) 0.062 (0.005) 1.366 (0.036) 0.088 (0.005)

Firm FE X X X X
Class FE X X X X
Body FE X X X X
State FE X X X X

SW F-Stat 140.664 209.89 96.623 52.472
Observations 28,288 28,288 28,288 28,288

Note: This table presents first stage estimates for each of the endogenous charateristics. The Sanderson-Windmeijer multivariate

F-test is reported for each endogenous vairable.

Table A.3: Kernel density estimation of price sensitivity
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Appendix B

Full demand and supply estimates

Table B.1: Full demand and marginal cost estimates

Utility Marginal Cost

Coefficient SE Coefficient SE

Mean Utility Range Provision

(Intercept) -9.705 (0.296) Intercept 0.813 (0.026)

Range 1.772 (0.223) Trend -0.070 (0.006)

Range x Trend -0.118 (0.024) Baseline Marginal Cost

Stations 0.610 (0.156) Intercept 1.534 (0.133)

Fuel Cost -0.281 (0.027) Weight 0.274 (0.041)

Footprint 0.504 (0.050) Fuel Efficiency -0.041 (0.006)

Acceleration 0.295 (0.025) KW 0.005 (0.000)

Doors -0.195 (0.027) Footprint 0.096 (0.019)

BEV -8.285 (1.539) BEV -0.578 (0.043)

PHEV -5.901 (1.482) PHEV 0.189 (0.025)

Own State 1.191 (0.072) 2013 -0.011 (0.013)

Trend -0.114 (0.010) 2014 -0.026 (0.014)

Audi 2.809 (0.087) 2015 -0.057 (0.014)

BMW 3.173 (0.091) 2016 -0.043 (0.014)

Chevrolet 0.468 (0.125) 2017 -0.026 (0.014)

Citroen 0.272 (0.090) 2018 -0.034 (0.014)

Dacia 0.904 (0.164) Audi -0.049 (0.052)

Daihatsu -0.499 (0.175) BMW 0.028 (0.054)

Dodge -3.655 (0.305) Chevrolet -0.309 (0.068)
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Table B.1: Demand and marginal cost estimates (continued)

Coefficient SE Coefficient SE

Fiat -0.119 (0.103) Citroen -0.153 (0.055)

Ford 1.652 (0.095) Dacia -0.843 (0.064)

Honda 1.484 (0.095) Daihatsu -0.250 (0.051)

Hyundai 1.536 (0.096) Dodge -0.340 (0.093)

Jeep 0.614 (0.107) Fiat -0.225 (0.053)

KIA 1.081 (0.092) Ford -0.234 (0.055)

Lada -0.679 (0.188) Honda -0.112 (0.056)

Lancia -1.371 (0.126) Hyundai -0.205 (0.054)

Land Rover 1.609 (0.110) Jeep -0.151 (0.055)

Mazda 2.170 (0.085) KIA -0.242 (0.052)

Mercedes 3.066 (0.096) Lada -0.525 (0.063)

MINI 1.797 (0.252) Lancia -0.185 (0.054)

Mitsubishi 1.073 (0.107) Land Rover -0.143 (0.053)

Nissan 1.143 (0.103) Mazda -0.142 (0.053)

Opel 1.596 (0.095) Mercedes -0.048 (0.054)

Peugeot 0.822 (0.090) MINI -0.011 (0.062)

Renault 1.447 (0.092) Mitsubishi -0.199 (0.060)

SEAT 1.947 (0.100) Nissan -0.269 (0.058)

Skoda 2.730 (0.098) Opel -0.216 (0.052)

smart 3.22 (0.149) Peugeot -0.170 (0.054)

Subaru 0.166 (0.091) Renault -0.250 (0.053)

Suzuki 0.96 (0.098) SEAT -0.249 (0.052)

Tesla 1.789 (0.465) Skoda -0.228 (0.053)

Toyota 1.175 (0.090) smart -0.055 (0.102)

Volvo 1.419 (0.090) Subaru -0.036 (0.056)

VW 2.971 (0.087) Suzuki -0.200 (0.057)

Compact Executive 0.353 (0.099) Tesla -0.243 (0.088)

Executive 0.728 (0.155) Toyota -0.023 (0.053)

Luxury 1.843 (0.225) Volvo -0.088 (0.053)

Mid-size 0.123 (0.049) VW -0.133 (0.052)

Coupe -1.403 (0.139) Compact Executive 0.270 (0.028)

Station wagon 1.351 (0.137) Executive 0.259 (0.040)

Roadster -1.109 (0.140) Luxury 0.459 (0.048)

Hatchback 1.358 (0.132) Mid-size 0.159 (0.017)

Sedan -0.717 (0.135) Coupe -0.187 (0.029)

58



Table B.1: Demand and marginal cost estimates (continued)

Coefficient SE Coefficient SE

SUV 1.742 (0.120) Station wagon -0.246 (0.023)

Van 1.365 (0.128) Roadster 0.054 (0.041)

ber -1.079 (0.076) Hatchback -0.303 (0.024)

bra -0.741 (0.070) Sedan -0.260 (0.028)

bre -1.505 (0.123) SUV -0.146 (0.024)

bwt -0.923 (0.094) Van -0.214 (0.025)

ham -0.417 (0.073)

hes -0.320 (0.077)

mvp -0.608 (0.064)

nie -1.064 (0.078)

nrw -0.916 (0.094)

rlp -0.857 (0.090)

sac -0.372 (0.056)

san -1.012 (0.083)

sar -0.158 (0.058)

swh -1.002 (0.092)

thr -0.451 (0.058)

Interactions

Price / Income -5.713 (0.691)

Standard Dev.

BHEV 2.563 (0.685)

Fuel Cost 0.134 (0.017)

Note:

Prices deflated and in EUR 1,000. Vehicle class-, Body-, Firm- and State Fixed Effects included.
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Appendix C

Robustness to alternative corrections

Table C.1 shows estimates of key demand parameters under different corrections for obser-

vations with zero market shares. The column Min bias holds the results from the correction

employed in the paper that follows D’Haultfœuille et al. (2019). The second column (Laplace)

uses a correction based on Laplace’s rule of succession that is used in Gandhi, Lu, and Shi

(2013). It consists of replacing market shares by ˜sjmt = Mmtsjmt+1

Mmtsjmt+Jmt+1
, with Jmt the number

of products in market mt. Finally, column 3 (Naive) uses a naive correction where quantities

of zero sales observations are assumed to be 1. We can see that the estimates do not change

dramatically across the different corrections.
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Table C.1: Estimates of key parameters under alternative corrections for zero market shares

Min bias Laplace Naive

Mean Utility

Range 1.772 1.694 1.792

(0.223) (0.193) (0.213)

Range x Trend -0.118 -0.105 -0.116

(0.024) (0.023) (0.023)

Charging Stations 0.61 0.441 0.584

(0.156) (0.151) (0.153)

Fuel Cost -0.281 -0.263 -0.279

(0.027) (0.024) (0.026)

BEV -8.285 -5.955 -7.976

(1.539) (2.372) (1.593)

PHEV -5.901 -3.704 -5.598

(1.482) (2.353) (1.544)

Interactions

Price / Income -5.713 -4.172 -5.275

(0.691) (0.548) (0.659)

Standard Dev.

EV -2.563 -1.294 -2.368

(0.685) (1.798) (0.743)

Fuel Cost 0.134 0.122 0.13

(0.017) (0.015) (0.017)

Note: Standard errors in parentheses.
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Appendix D

Estimated price elasticities in selected

papers

Table D.1 presents estimates of price elasticities from several papers using a similar structural

model of demand to mine.

Table D.1: Estimated price elasticities of selected papers

Author(s) Price elasticity

Beresteanu and Li (2011) -10.91

Berry et al. (1995)1 -3.928

Berry et al. (1995)2 -3.461

Li (2019) -2.732

Klier and Linn (2012) -2.6

Pavan (2017) -2.85

Reynaert and Sallee (Forthcoming) -5.45

Springel (2020)3 [-1, -1.5]

Thurk (2018) -3.6

Own estimated price elasticity: -3.267
1 Conlon and Gortmaker (Forthcoming) replication
2 Conlon and Gortmaker (Forthcoming) own proce-

dure
3 Range of elasticities for EVs
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Appendix E

A model of quality provision

E.1 Monopoly

In this section, I outline a model of quality provision by a monopolist. This model helps to

understand the forces that determine how price and quality adjust to the introduction of a

subsidy or a decrease in the marginal cost of quality provision. Note that what I call quality

in this model can, in principle, be any product characteristics, such as driving range.

Set-up

Let us consider a monopolist who chooses price (p) and quality (q) of a single product sold

to final consumers.1 In my application, q would be the driving range of a car. The demand

function s(p, q) is increasing in quality, decreasing in price, and twice differentiable. Cost is

an increasing function of quality and is denoted c(q)s(p, q). A social planner subsidizes the

product with a subsidy denoted by λ, possibly to increase the diffusion of the product. This

scheme mirrors the type of subsidy for electric vehicles employed in countries such as Germany.

Quality choice

The monopolist maximizes its total profits given by π(p, q). His optimization problem is given

by

max
p,q

π(p, q) ≡ (p+ λ− c(q)) s(p, q)

1The set-up slightly differs from Spence (1975) and Sheshinski (1976) where the monopolist’s choice variables
are quality and quantity.
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and the first-order conditions of the monopolist are given by

[p]: πp ≡ s(p, q) + (p+ λ− c)
∂s(p, q)

∂p
= 0

[q]: πq ≡ −cqs(p, q) + (p+ λ− c)
∂s(p, q)

∂q
= 0.

For the price, we recover the standard optimal markup formula. For quality, the formula looks

similar. The firm faces a trade-off: It can increase quality to expand sales. However, doing so is

costly and leads to a smaller margin. To see how the monopolist chooses quality in equilibrium,

we can plug the price FOC into the quality FOC and re-arrange to find

cq =
∂s(p, q)/∂q

|∂s(p, q)/∂p| , (E.1)

where cq is the marginal cost of providing quality ∂c(q)
∂q

The monopolist sets quality such that the

marginal cost of providing quality is equal to the absolute value of the ratio of semi-elasticities

of quality and price. The larger the fraction on the right-hand side of equation (E.1), the larger

the level of quality provided in equilibrium.

The effect of a subsidy

What happens when the policymaker introduces a subsidy? If quality cannot adjust, we expect

the monopolist to pass on the subsidy by lowering the price. The extend of this pass-through

depends on the curvature of the demand curve. The more elastic the demand curve, the higher

the amount of pass-through. If both the price and quality can adjust, there is no clear-cut

answer to how the monopolist will react. Differentiating the system of first order conditions

gives




dp
dλ
dq
dλ


 =


πpp πpq

πpq πqq




−1 
−πpλ

−πqλ


 ,

where πmn denotes the second order derivative of the monopolist’s profit function respect to m

and n, with m,n ∈ {p, q} and where

πpp = 2sp + spp(p+ λ− c)

πqq = −cqqs− 2cqsq + sqq(p+ λ− c)

πpq = sq + (p+ λ− c)spq − cqsp

πpλ = sp, πqλ = sq.
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This gives

dp

dλ
=

1

∆

(
πpqπqλ − πqqπpλ

)

dq

dλ
=

1

∆

(
πpqπpλ − πppπqλ

)
,

where ∆ ≡ πppπqq − π2
pq > 0 from the second order conditions of having a global maximum.

The SOCs further require πpp < 0 and πqq < 0. Note that we also have πpλ < 0 and πqλ > 0.

If πpq < 0, meaning price and quality are strategic substitutes, we have dp
dλ
< 0 and dq

dλ
> 0.

In the case where πpq > 0, things become more ambiguous. Note that we can write

dp

dλ
=

1

∆

(
πpqsq − πqqsp

)

dq

dλ
=

1

∆

(
πpqsp − πppsq

)
,

We can then conclude that

sign
(
dp

dλ

)
= sign

( ∣∣∣∣∣
sq

πqq

∣∣∣∣∣−
∣∣∣∣∣
sp

πpq

∣∣∣∣∣

)

sign
(
dq

dλ

)
= sign

( ∣∣∣∣∣
sp

πpp

∣∣∣∣∣−
∣∣∣∣∣
sq

πpq

∣∣∣∣∣

)

The effect of a subsidy on quality and price depends on the relative magnitudes of the price-

and quality semi-elasticities, sp and sq, and the marginal cost of providing quality cq. Moreover,

we can rule out the case πpλ > 0 and πqλ < 0. To see see why, note that this case would imply
πpq

πpp
< sq

sp
< πqq

πpq
which violates the second order conditions.

E.2 Multi-product oligopoly

In this section I show how the main insights obtained in the monopoly case generalize to a

multi-product oligopoly setting. The fact that there are cannibalization effects within a firm’s

product portfolio and the fact that products are differentiated within and across the product

portfolio will influence the effect of a subsidy on price and quality but not alter the main

conclusions. To see why, let us consider the following setting: There are j = 1, . . . J products

in a market. Consumers care about the quality of a subset of products j ∈ B and do not have

any preferences over the quality of the remaining products j ∈ I.2 The social planner puts a

subsidy on products in B but not on those in I. Let us look at the firm f ’s profit maximization

2Think of the market for cars: The range of electric cars is a proxy for quality and costly to provide.
Consumers do not care about the range of diesel or gasoline cars as it is sufficiently high and firms do not give
it first-order importance when making their strategic decisions.
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problem:

max
pf ,qf

πf =
∑

k∈Jf ∩k∈B

(pk + λ− c(qk))sk(p, q) +
∑

l∈Jf ∩k∈I

(pl − c(ql))sl(p, q),

where pf and qf denote the own-firm vectors of price and quality, respectively, p and q the

price-and quality vectors of all firms in the market and Jf the portfolio of firm-f products.

The FOCs for product one are then given by

[p1]: πfp1 ≡ s1 +
∑

k∈Jf ∩k∈B

(pk + λ− c(qk))
∂sk

∂p1

+
∑

l∈Jf ∩k∈I

(pl − c(ql))
∂sl

∂p1

= 0

[q1]: πfq1 ≡ −cq1s1 +
∑

k∈Jf ∩k∈B

(pk + λ− c(qk))
∂sk

∂q1

+
∑

l∈Jf ∩k∈I

(pl − c(ql))
∂sl

∂q1

= 0

The second-order derivatives of the profit function will depend not only on the effect of own

price and quality on own demand, but also on the demand of the other own-firm products.

Finally, they depend on rival product prices and quantities through the demand function.

Increase of subsidy for a single product

In the case where the subsidy is only increased for a single product product, say product 1, we

get

dp1

dλ
=

1

∆

(
πfp1q1πfq1λ − πfq1q1πfp1λ

)

dq1

dλ
=

1

∆

(
πfp1q1πfp1λ − πfp1p1πfq1λ

)
,

meaning that the general results from above go through: The signs of dp1

dλ
, dq1

dλ
depend on

whether p, q are strategic substitutes or complements. They also still depend on the marginal

cost of providing quality as well as the relative magnitudes of πfp1λ and πfq1λ that themselves

still depend on sp and sq.

Increase in the subsidy for all products in B

Things become more complicated when we consider an increase on the subsidy of all products

in B. We now need to differentiate J + JB first order conditions (JB being the cardinality of

B). In essence, the effect of price and quality on the FOC of all other products now needs to

be taken into account as well.

Let J denote the cardinality of all products, JB the cardinality of those products with endoge-

nous quality and f(j) the firm of product j. Then, we have the following system of FOCs with
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J + Jq equations:

[p1]: πf(1)p1 ≡ s1 +
∑

k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂p1

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂p1

= 0

...

[pJ ]: πf(J)pJ
≡ sJ +

∑

k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂pJ

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂pJ

= 0

[q1]: πf(1)q1 ≡ −cq1s1 +
∑

k∈Jf(1)∩k∈B

(pk + λ− ck)
∂sk

∂q1

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂sl

∂q1

= 0

...

[qJB
]: πf(JB)qJB

≡ −cqJB
sJB

+
∑

k∈Jf(JB)∩k∈B

(pk + λ− ck)
∂sk

∂qJB

+
∑

l∈Jf(J)∩l∈I

(pl − cl)
∂sl

∂qJB

= 0

The total differentiation of this system yields




dp1

dλ
...

dpJ

dλ
dq1

dλ
...

dqJB

dλ




=




πf(1)p1p1 . . . πf(J)pJ p1 πf(1)q1p1 . . . πf(JB)qJB
p1

...
...

...
...

πf(1)p1pJ
. . . πf(J)pJ pJ

πf(1)q1pJ
. . . πf(JB)qJB

pJ

πf(1)p1q1 . . . πf(J)pJ q1 πf(1)q1q1 . . . πf(JB)qJB
q1

...
...

...
...

πf(1)p1qJB
. . . πf(J)pJ qJB

πf(1)q1qJB
. . . πf(JB)qJB

qJB




−1 


−πf(1)p1λ

...

−πf(J)pJ λ

−πf(1)q1λ

...

−πf(JB)qJB
λ




, (E.2)

where for instance

• πf(1)p1p1
= 2

∂s1

∂p1
+

∑

k∈Jf(1)∩k∈B

(pk + λ − ck)
∂2sk

∂p2
1

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p2
1

• πf(J)pJ p1
=

∂sJ

∂p1
+

∂sJ

∂p1
1{1,J∈f(J)} +

∑

k∈Jf(J)∩k∈B

(pk + λ − ck)
∂2sk

∂pJ∂p1
+

∑

l∈Jf(J)∩l∈I

(pl − cl)
∂2sl

∂pJ∂p1

• πf(1)p1q1
= −cq1

∂s1

∂p1
+

∂s1

∂q1
+

∑

k∈Jf(1)∩k∈B

(pk + λ − ck)
∂2sk

∂p1∂q1
+

∑

l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p1∂q1

• πf(1)p1qJB
= −cqJB

∂sJB

∂p1
1{1,JB∈f(1)} +

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B

(pk + λ − ck)
∂2sk

∂p1∂qJB

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂p1∂qJB

• πf(1)q1q1
= −cq1q1s1 − 2cq1

∂s1

∂q1
+

∑

k∈Jf(1)∩k∈B

(pk + λ − ck)
∂2sk

∂q2
1

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂q2
1

• πf(1)q1qJB
= −cqJB

∂sJB

∂q1
1{1,JB∈Jf } − cq1

∂s1

∂qJB

+
∑

k∈Jf(1)∩k∈B

(pk + λ − ck)
∂2sk

∂q1∂qJB

+
∑

l∈Jf(1)∩l∈I

(pl − cl)
∂2sl

∂q1∂qJB

• πp1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂p1
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• πq1λ =
∑

k∈Jf(1)∩k∈B

∂sk

∂q1

It is no longer possible to simply pin down the effects of the subsidy on whether or not p, q

are strategic complements, nor on the relative magnitudes of πfp1λ and πfq1λ and the marginal

cost of providing quality. First off however, the entries πfpjpj
and πfqjqj

in the matrix to be

inverted in E.2 are likely to dominate the entries πfpjpk
and πfqjqk

, k 6= j. Hence the signs and

magnitudes of these own second-order derivatives will play an important role in determining the

effect of the subsidy. Secondly, the system in E.2, while too opaque to be solved analytically, can

be solved numerically if estimated profits and semi-elasticities can be recovered and prices as

well as qualities are known. I can do so in my empirical setting below. In principle, this system

can also be obtained to measure pass-through of a change in marginal cost. The difference is

then that the system of first order conditions will be differentiated with respect to the change

in marginal cost. Finally, the case where several multi-product firms produce products with

endogenous quality that are subsidized and products with fixed quality that are not subsidized.

Note that a similar system can be obtained to analyze pass-through of a shock to the marginal

cost of providing quality.
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2.1 Introduction

The airline industry has received a lot of attention in the economic literature, sparked by the

wave of mergers and bankruptcies after the U.S. Airline Deregulation Act of 1978.1 Most of

the contributions on merger and bankruptcy evaluations are based on supply-demand models,

where the airlines best respond to competitors by adjusting their prices, while holding the entry

decisions in markets exogenous and fixed (Bresnahan, 1987; Berry, 1994; Berry, Levinsohn,

and Pakes, 1995). More plausibly, such events prompt the airlines to best respond also by

repositioning in markets. For example, a merger could generate cost savings for the merged

firm which may favour its entry in new markets. Also, after a merger, there might room in some

markets for accommodating other entrants. The aim of this paper is to provide a tractable

framework for the airline industry which combines entry and pricing decisions and use it to

conduct counterfactual exercises where the airlines are allowed to modify prices and market

structures.

More broadly, the question about endogenising entry decisions (and, hence, product choices

and characteristics) in supply-demand models is of general interest and it was already posed

in earlier works. For example, Berry (1994): “I should emphasize in closing that the techniques

of this article rely on a number of restrictive assumptions. [...] More importantly, and more

difficult to solve, I assume that product characteristics are econometrically exogenous.” (p.260).

Berry et al. (1995): “The second, and richer, part of the problem is to endogenize the actual

choice of the characteristics of the models marketed.” (p.886). Berry and Jia (2010): “An

implicit assumption of our empirical model is that the network structure and the carriers that

serve each market are taken as given. Ideally, we would like to model a three-stage game. First,

carriers form their hubs. Second, given the hub structure, each carrier chooses a set of markets

to serve. Third, given these entry decisions, carriers compete in prices and the frequency of

flight departures.” (p.20).

Endogenising entry decisions in a supply-demand model for the airline industry is challenging.

This is because the entry decisions of an airline are interdependent across markets. Specifically,

the literature on the airline industry suggests that hub-and-spoke operations decrease the

marginal costs of serving markets out of hubs, via economies of density and scope, and increase

the total fixed costs, due to congestion at hubs. Further, customers may find it attractive

to fly from dense hubs because this enhances the value of frequent flier programs.2 Such

synergies among markets imply that the entry decision of an airline in market t may spill over

1See Table H.0.1 in Appendix H.
2See, for example, Caves, Christensen, and Tretheway (1984), Kanafani and Ghobrial (1985), Morrison and

Winston (1986), Levine (1987), Butler and Houston (1989), Berry (1990),Borenstein (1989; 1992), Butler and
Houston (1989), Morrison and Winston (1989),Berry (1990), Brueckner, Dyer, and Spiller (1992), Brueckner
and Spiller (1994), Oum, Zhang, and Zhang (1995), Berry, Carnall, and Spiller (1996), Nero (1999), Berry and
Jia (2010), and Berry, Gaynor, and Scott Morton (2019).
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its entry decision in market t′ by directly affecting the demand, marginal cost, and fixed cost

equations (and, in turn, profitability) in market t′. Due to these spillover effects, an airline

does not take its entry decisions independently across markets. Instead, an airline globally

forms the network of markets to be served in order to internalise the spillover effects within its

optimisation problem.3

This paper addresses the above concerns by developing an empirical two-stage game. In the

first stage, the airlines form their networks by entering markets and pay the fixed costs. The

network an airline consists of a collection of nodes corresponding to the cities (or, airports)

and a collection of links between nodes representing the markets served by the airline.4 In the

second stage, the airlines face the demand for their products, pay the variable costs, and choose

which prices to charge by competing in a standard Bertrand-Nash pricing game. Thus, in the

first stage, the airlines form the networks which maximise the expected second-stage profits net

of the fixed costs, while taking into account spillover effects in entry decisions across markets

on the demand, marginal cost, and fixed costs sides, as discussed in the previous paragraph.

Identifying the parameters governing our two-stage game is challenging. While identification

of the second-stage parameters can be established by following the standard approach for

supply-demand models with differentiated products (Berry and Haile, 2014), identification of

the first-stage parameters is complicated by the discrete choice nature of the problem. In

particular, there are two main issues. First, there may be multiple Nash equilibrium networks.

This is because the airlines compete at the entry stage through the second-stage pricing game.

In turn, we are not able to write down a well-defined likelihood function. Second, even if one is

willing to specify an equilibrium selection mechanism, it remains burdensome to construct the

set of Nash equilibrium networks, due to the large number of markets. In turn, we are not able

to write down a tractable likelihood function that can be evaluated many times throughout an

optimisation routine. Instead of focusing on Nash equilibrium networks, we bypass these two

issues by considering implications of (i.e., necessary conditions for) Nash equilibrium, which are

easier to handle from an econometric point of view. More precisely, we implement the revealed

preference approach by Pakes (2010) and Pakes, Porter, Ho, and Ishii (2015). This approach

consists of two steps. First, we write down inequalities by simply predicting that the observed

networks lead to higher profits than the profits would be were the airlines to deviate from

the observed networks. Second, we get rid of the structural errors entering the inequalities by

taking the expectation of the inequalities over markets and interacting them with appropriate

instruments. The resulting moment inequalities characterise a non-sharp identified set that is

3The importance of network considerations has been also highlighted in several merger investigations. For
example, see the Department of Justice’s Competitive Impact statement on the merger between American
Airlines and US Airways (https://www.justice.gov/atr/case-document/file/514516/download).

4For example, Figure H.0.1 in Appendix H represents the network of markets served by American Airlines,
before the merger with US Airways.
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a convex polytope, whose projections can be easily obtained by solving linear programming

problems.

We estimate the model using data from the US Airline Origin and Destination Service, a 10%

random sample of all tickets issued in the United States during the second quarter of 2011. We

focus on flights operated between the 85 largest metropolitan statistical areas in the United

States, which are served by United Airlines, Delta Airlines, American Airlines, US Airways,

Southwest Airlines, low and medium cost carriers. In the first stage, we find that fixed costs

increase in the number of destinations reachable from hub airports. On the supply side of the

second stage, we find that marginal costs decrease in the number of flights (direct or one-stop)

offered out of the endpoints. On the demand side of the second stage, we find that consumer

utility increases in the number of direct connections that can be reached from the endpoints.

As mentioned above, previous works have suggested that the size of hub-and-spoke networks

increase the fixed costs and decrease the marginal cost. To the best of our knowledge, our

model is the first to confirm these effects in a structural model of the airline market.

With estimates of the two stages in hand, we simulate the effects of a merger between American

Airlines and US Airways and compare the merger, which did occur in 2013, to a bankruptcy and

subsequent disappearance of American Airlines.5 In a first step, we compare the predictions

based on our full model to the predictions form a model in which networks do not adjust in

response to a merger or bankruptcy. We find that leaving the network unchanged or making

ad-hoc assumptions about it can lead to misleading conclusions regarding market outcomes. In

a second step, we investigate the merger and, in particular, the effect of remedies that forced

the merged entity to not reduce operations at most of its hubs. We find that these remedies

turned a slight decrease in consumer surplus into a slight increase. At the most negatively

affected hubs, the remedies helped to contain harm to consumers. In a third step, we compare

the merger to a scenario in which a bankruptcy of American Airlines leads to its disappearance

from the market. Not surprisingly, the bankruptcy induces more rival firm entry than the

merger. However, the loss of access to a large network causes substantial loss in consumer

surplus at American’s hubs. Other firms are not able to fill this void completely. Overall,

consumer surplus decreases by more than in the merger case. Our results underline one key

advantage of a conditional merger over the bankruptcy of a distressed hub-and-spoke airline:

competition authorities can shape post-merger outcomes by imposing remedies.

5When the two airlines announced their intention to merge, American Airlines was under Chapter 11
bankruptcy.
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2.2 Literature review

This paper aims to bridge a gap between two strands of the literature. The first strand is the

literature on supply-demand models. This literature estimates demand and supply equations,

while taking entry decisions as exogenously given (for example, Bresnahan, 1987; Berry, 1994;

Berry et al., 1995; Berry, Linton, and Pakes, 2004; Berry and Haile, 2014). Some empirical

studies using supply-demand models for the airline industry are Berry et al. (1996), Berry and

Jia (2010), Ciliberto and Williams (2014), Peters (2006), Mark, Keating, Rubinfeld, and Willig

(2013), and Das (2019). The second strand is the literature on entry models (for example, Reiss

and Spiller, 1989; Bresnahan and Reiss, 1990; 1991; Berry, 1992; Goolsbee and Syverson, 2008;

Ciliberto and Tamer, 2009). This literature estimates the payoffs from entering markets, under

the assumption that entry decisions are independent across markets and without considering

demand and supply. In this paper, we model entry decisions, supply, and demand. Moreover,

we allow for spillover effects in entry decisions across markets, as discussed in Section 2.1.

There are other papers which combine entry and pricing decisions for studying the airline

industry. The seminal contributions by Li, Mazur, Park, Roberts, Sweeting, and Zhang (2019),

and Ciliberto, Murry, and Tamer (2021) acknowledge the network dimension, but treat spillover

effects as exogenous product covariates and assume that entry decisions are independent across

markets. In turn, when simulating a merger, those approaches require one to focus separately

on each market and ad-hoc readjust the spillover effects, for example by distinguishing a base-

case from a best-case scenarios. This is not needed in our framework because the airlines are

allowed to reoptimise their entire networks. In turn, we can offer a global view of the overall

changes in the networks and other market outcomes. Aguirregabiria and Ho (2012) develop a

dynamic game of entry and pricing decisions, but assume that entry decisions are decentralised

at the market level (i.e., each market is run by a local manager taking independent entry

decisions), which substantially reduces the dimensionality of the strategy space. Here, instead,

we model network formation as a process centralised at the level of each airline. Also Benkard,

Bodoh-Creed, and Lazarev (2020) consider a dynamic setting, but do not include the demand

equation. Hence, differently from our paper, their framework cannot be used to quantify welfare

effects. Admittedly, though, our model does not incorporate dynamics, which we leave to future

extensions. Park (2020) combine entry and pricing decisions, but entry is endogenised only in

the markets out of Ronald Reagan Washington National Airport. Here, instead, we endogenise

entry in all markets. Lastly, Yuan (2020) is close in spirit to our approach by developping a

three-stage game of entry, frequency, and price choices. However, he obtains point estimates

for the first-stage parameters via a calibration strategy and does not consider spillover effects

in entry decisions across markets on the fixed cost side.

A number of papers combine entry and pricing decisions for studying other industries (for
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example, Eizenberg, 2014; Holmes, 2011; Houde, Newberry, and Seim, 2017; Kuehn, 2018;

Rossetti, 2018; Wollmann, 2018). As most of these papers, we rely on the revealed prefer-

ence approach by Pakes (2010) and Pakes et al. (2015) in order to simplify identification of

the first-stage parameters. Here, however, we face spillover effects in entry decisions across

markets which appear on the demand, marginal cost, and fixed cost sides and create lots of

computational challenges.

Finally, our paper broadly connects with the recent advances in the econometrics of network

formation (e.g., Chandrasekhar, 2016; Graham, 2015; de Paula, 2017; 2020; Graham and

de Paula, 2020). We have decided to pursue the revealed preference approach by Pakes (2010)

and Pakes et al. (2015), rather than applying those methods, for two reasons. First, the latter

involve computationally serious challenges in the presence of spillover effects, which become

even deeper when combined with our second stage. Instead, the moment inequalities that we

obtain from the revealed preference approach are computationally easier to handle because

linear in the first-stage parameters. Second, the latter typically view network formation as a

process decentralised at the level of each node. Here, instead, network formation is centralised

at the level of each airline.

The rest of the paper is organised as follows. Section 2.3 presents the model. Section 2.4

discusses identification. Section 2.5 describes the empirical application. Section 2.6 concludes.

Further details are in the appendices.

2.3 The model

There are N airlines, labelled by f ∈ N ≡ {1, . . . ,N}, which play a two-stage game. In the

first stage, the airlines form their networks by entering markets and pay the fixed costs. In the

second stage, the airlines face the demand for their products, pay the variable costs, and choose

which prices to charge. In the first stage, the airlines observe their own and the competitors’

fixed cost shocks. However, they do not observe their own and the competitors’ demand and

marginal cost shocks, despite knowing the probability distribution from which such shocks

are drawn. Hence, in the first stage, the airlines form expectations about the second-stage

profits. The airlines publicly discover the demand and marginal cost shocks just before playing

the second stage, where they compete in a standard Bertrand-Nash pricing game. The airlines

solve the game by going backward from the second stage and use pure strategy subgame perfect

Nash equilibrium as solution concept. In what follows, we describe the game in more details

starting from the second stage.6

6We do not model frequency and capacity choices. This is because we want to preserve tractability, given
the many challenges introduced by the network formation stage. Moreover, modelling frequency and capacity
choices would require us to collect detailed data on the types of aircrafts used, the flight schedule, and the
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Figure 2.1: Timing of the game

Firms learn
fixed cost shocks

Firms choose
their networks

Firms learn
demand/marginal cost shocks

Firms compete
in prices

T1 T2

2.3.1 The second stage

In the second stage, the airlines take as given the entry decisions in markets and the conse-

quent product choices. Markets are undirectional city-pairs (for example, Boston-Houston).7

Products are airline-itinerary combinations (for example, Boston-Houston via Miami operated

by American Airlines).8 In every market, the airlines face the demand for their products,

pay the variable costs, and simultaneously choose the prices maximising the variable profits,

under complete information. We use a standard supply-demand framework for differentiated

products.

Demand We consider the Nested Logit demand with two nests, one for the airline products,

the other for the outside option of not travelling or travelling with other means (Berry, 1994).9

Each market is indexed by t ∈ T , where T is the set of markets. Each product offered in

market t is indexed by j ∈ Jt, where Jt is the set of products offered in market t. The utility

that individual i receives from buying in market t is specified as:

product j: Ui,j,t = X⊤
j,tβ − αPj,t + ξj,t + νi,t + λǫi,j,t,

outside option 0: Ui,0,t = ǫi,0,t.
(2.1)

In (2.1), Xj,t is a vector of product characteristics and Pj,t is the product price. Both Xj,t

and Pj,t are observed by the researcher. ξj,t represents the product characteristics that are

unobserved by the researcher but are observed by the airlines. νi,t, ǫi,j,t, ǫi,0,t are the consumer

tastes, unobserved by the researcher, i.i.d. across i, j, t, and independent of all other variables.

The probability distribution of the consumer tastes is chosen to yield the familiar Nested Logit

market share function, with λ ∈ (0, 1].

We include in Xj,t various product characteristics, such as the number of stops, the distance

flown and its squared value, and the number of direct flights offered at the itinerary’s origin

number of passengers on each flight. We leave extensions on these aspects to future analysis.
7 We do not distinguish between airports in the same city. In fact, carriers in nearby airports might

compete against each other because customers can choose which airport to fly from. We do not define markets
as directional city-pairs because our data contain very few cases of airlines not serving both directions of a
given city-pair.

8Note that the airlines can be multi-product because, in a given market, an airline may offer direct flights
and/or connecting flights. Further, two itineraries offered by an airline with the same endpoints but different
connecting cities are treated as two different products.

9Also Ciliberto et al. (2021) adopt the Nested Logit demand for studying the airline industry.
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by the same carrier offering itinerary j (hereafter, “Connections”10). We expect travellers

to prefer direct flights. We also expect that, as distance increases, air travel becomes more

attractive relative to the outside option. However, as distance increases further, travel becomes

less pleasant and demand starts to decrease. The variable Connections captures the value of

frequent flier programs. In fact, the larger the number of destinations for which consumers

can redeem frequent flier miles, the higher the value of such loyalty programs. Additionally,

an airline that flies to many cities is likely to have more convenient parking and gate access

and provide better services. For a thorough discussion on the impact of hubbing on costumer

utility, see Levine (1987), Borenstein (1989; 1992), Butler and Houston (1989), Morrison and

Winston (1989), Berry (1990), Oum et al. (1995), Berry et al. (1996), and Berry and Jia (2010).

We include in Xj,t carrier fixed effects to control for brand preferences. We also add city fixed

effects to catch unobserved heterogeneity at the city level, such as leading economic sectors,

climate, and infrastructures.

Note that, due to the variable Connections, the demand for product j in market t depends on

the entry decisions of an airline in other markets t′ 6= t. This gives rise to spillover effects in

entry decisions across markets on the demand side.

We compute Pj,t as the average of the fares in the data sharing the same airline-itinerary

combination, weighted by the number of passengers.11 Alternatively, one could introduce a

finite number of “fare bins” for each airline-itinerary combination, as in Berry and Jia (2010).

We have decided not to do so because, in our two-stage setting, we find more reasonable to

consider an average price that the carriers expect or wish to achieve for each offered itinerary.

Further, having fare bins would add many methodological and computational challenges. For

instance, we would need to carefully examine how to define fare bins in a way that does not

make the empirical results excessively sensitive to such a definition. We would also need to

deal with the fact that some fare-airline-itinerary combinations may not be available at all

time to customers and/or may have zero market shares in the data.12 Given that our model

is already complicated by the network formation stage, we prefer to leave these extensions to

future research. In turn, we do not allow for heterogeneity in consumer taste for price. This is

because, with average prices, there is not sufficient price variation left in the data.

10More precisely, given that markets are defined as undirectional city-pairs, the variable Connections is
computed as the maximum between the numbers of direct flights offered at the endpoints of itinerary j by
the same carrier offering itinerary j. For example, suppose that market t is Boston-Houston and product j is
a direct flight between Boston and Houston operated by American Airlines. Suppose that American Airlines
offers direct flights to 3 destinations out of Boston and to 5 destinations out of Houston. Then, the variable
Connections is equal to max{3, 5} = 5.

11See Section 3.2 for more details on the computation of prices.
12See, for instance, Abaluck and Adams (2020) and Barseghyan, Coughlin, Molinari, and Teitelbaum (2020)

about the identification of discrete choice models with latent choice sets. See Gandhi, Lu, and Shi (2019) about
the estimation of the demand for differentiated products with zeroes in market share data.
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The demand shock, ξj,t, captures product characteristics that are not in our data and that can

be arbitrarily correlated with prices, such as refundable versus non-refundable tickets and the

quality of in-flight service. We do not specify any parametric distribution for ξj,t. Instead, to

establish point identification of the second-stage parameters, in Section 2.4.1 we will assume

that the demand shocks are uncorrelated with the observed demand shifters, as standard in

the literature on supply-demand models. In the same section, we will discuss the pros and cons

of this assumption.

From utility maximising behaviour, we obtain the predicted product shares in market t:

product j: sj,t(Xt, Pt, ξt; θd) =
exp(δj,t/λ)

Dt

Dλ
t

1 +Dλ
t

,

outside option 0: s0,t(Xt, Pt, ξt; θd) =
1

1 +Dλ
t

,

(2.2)

where Dt ≡ ∑Jt

j=1 exp(δj,t/λ), δj,t ≡ X⊤
j,tβ − αPj,t + ξj,t, θd ≡ (β, α, λ), Xt ≡ (Xj,t ∀j ∈ Jt),

Pt ≡ (Pj,t ∀j ∈ Jt), and ξt ≡ (ξj,t ∀j ∈ Jt). In turn, the predicted demand in market t is:

product j: sj,t(Xt, Pt, ξt; θd) ×Mt,

outside option 0: s0,t(Xt, Pt, ξt; θd) ×Mt,
(2.3)

where Mt is the market size, observed by the researcher. We further assume that the researcher

observes the true product shares, as standard in the literature.

Supply In the second stage, the airlines pay the variables costs, such as the costs of fuel,

oil, aircraft maintenance, landing fees, and passenger fees. We consider a constant and linear

marginal cost specification.13 In particular, the marginal cost of offering product j in market

t is specified as:

MCj,t = W⊤
j,tψ + ωj,t. (2.4)

In the above expression, Wj,t is a vector of marginal cost shifters that are observed by the

researcher. ωj,t represents the marginal cost shifters that are unobserved by the researcher but

are observed by the airlines.

We include in Wj,t various product characteristics, such as the distance flown and the number of

cities that are reachable from the endpoints and intermediate stops of itinerary j with the same

carrier offering itinerary j (hereafter, “Presence”14). We expect the marginal costs to increase

13A constant and linear marginal cost specification is assumed in many other studies of the airline industry,
e.g., Berry and Jia (2010), Ciliberto and Williams (2014), Das (2019), Li et al. (2019).

14More precisely, the variable Presence is computed as the average number of destinations that are reachable
(with direct or connecting flights) from the endpoints and intermediate stops of itinerary j with the same carrier
offering itinerary j. For example, suppose that market t is Boston-Houston and product j is a flight between
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with distance due to the use of oil and fuel. The variable Presence captures the impact of

economies of density on the marginal costs, i.e., the fact that more densely travel segments

tend to have lower unit costs due to engineering reasons. In particular, the larger the number

of final destinations consumers can reach, the more the opportunities for an airline to pool

passengers from several itineraries into the same planes, and the more an airline can efficiently

use large aircrafts which generally have lower unit costs. At the same time, many connections

may also cause congestion and increase the fixed costs, as discussed in Section 2.3.2. For a

comprehensive analysis on the marginal cost savings induced by hub-and-spoke operations, see

Caves et al. (1984), Kanafani and Ghobrial (1985), Morrison and Winston (1986), Butler and

Houston (1989), Berry (1990), Brueckner et al. (1992), Brueckner and Spiller (1994), Oum

et al. (1995), Berry et al. (1996), Nero (1999), and Berry and Jia (2010). Analogously to the

demand side, we also include in Wj,t carrier fixed effects and city fixed effects.

Note that, due to the variable Presence, the marginal cost of product j in market t depends

on the entry decisions of an airline in other markets t′ 6= t. This gives rise to spillover effects

in entry decisions across markets on the marginal cost side.

The airlines simultaneously set the prices in each market in order to maximise the variable

profits, under complete information:

variable profits of airline f :
∑

t∈T

∑

j∈Jf,t

(Pj,t − MCj,t) × sj,t(Xt, Pt, ξt; θd) ×Mt, (2.5)

where Jf,t is the set of products offered by airline f in market t. For each airline f and market

t, we obtain the Bertrand-Nash F.O.C.s in the usual way:

MCf,t = Pf,t +
(
∂sf,t(Xt, Pt, ξt; θd)

∂Pf,t

)−1

sf,t(Xt, Pt, ξt; θd), (2.6)

where MCf,t, Pf,t, and sf,t(Xt, Pt, ξt; θd) are the vectors stacking MCj,t, Pj,t, and sj,t(Xt, Pt, ξt; θd),

respectively, for each product j ∈ Jf,t.
∂sf,t(Xt,Pt,ξt;θd)

∂Pf,t
is the matrix collecting the partial deriva-

tives of product shares with respect to prices. Note that, despite the airlines choose the prices

market-by-market, the prices in a market indirectly depends on the prices in other markets

due to the presence of spillover effects in entry decisions across markets.

2.3.2 The first stage

In the first stage, the airlines simultaneously form their networks by entering markets and pay

the fixed costs. The airlines know everything about the second stage except their own and

Boston and Houston with an intermediate stop at Miami operated by American Airlines. Suppose that American
Airlines allows to reach 3 destinations out of Boston, 5 destinations out of Miami, and 4 destinations out of
Houston. Then, the variable Presence is equal to (3 + 5 + 4)/3 = 4.
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the competitors’ demand and marginal costs shocks. This is a natural assumption because the

legacy carriers - which are the main players of our empirical application - typically operate

with a time-lag between the entry decisions and the sale of flight tickets. Nevertheless, the

airlines are aware of the probability distribution from which the second-stage shocks are drawn.

Therefore, they can compute the expected second-stage profits for any possible entry decisions.

The airlines can enter markets by offering direct flights (for example, American Airlines offering

a direct flight between Boston and Houston) and/or connecting flights (for example, American

Airlines offering a flight between Boston and Houston with an intermediate stop at Miami).

We formalise this as follows. It is useful to re-label each market t by keeping track of the

endpoint cities. Specifically, we now denote the market between cities a and b by {a, b}. Given

market {a, b}, let

Gab,f =





1 if airline f offers direct flights between cities a and b,

0 otherwise.

Let Gf ≡ (Gab,f ∀{a, b} ∈ T ) be the network of airline f where the nodes of the networks are

the cities and the links of the network represent the markets served by airline f with direct

flights. In the first stage, each airline f chooses its network Gf . In turn, we make this choice

automatically determine which markets are served by airline f with connecting flights. In

particular, if Gah,f = Ghc,f = 1 and city h is one of airline f ’s hubs, then we assume that

airline f also enters market {a, c} by offering one-stop flights between cities a and c via h.

We assume that hub locations are exogenously determined before the starting of the game.

This is because the transition from point-to-point to hub-and-spoke operations was a historical

process started by the airlines after the U.S. Airline Deregulation Act of 1978 and quickly

completed by the ’90s, many years before the sample period of our empirical application.

Once decided upon, hub locations were not altered in any major way by the airlines. For

detailed studies on the transition to hub-and-spoke operations, see Caves et al. (1984), Kanafani

and Ghobrial (1985), Morrison and Winston (1986), Levine (1987), Borenstein (1989; 1992),

Butler and Houston (1989), Berry (1990), Brueckner et al. (1992), Evans and Kessides (1993),

Brueckner and Spiller (1994), Oum et al. (1995), Berry et al. (1996), Nero (1999), Button,

Forsyth, and Nijkamp (2000), and Reynolds-Feighan (2001). We also assume that the airlines

can offer connecting flights with one stop only. Moreover, connections are possible at hubs

only. This is because in our data we have almost no observations of connecting flights with

more than one stop and connecting flights via non-hubs.

When entering markets, the airlines pay the fixed costs of building the physical, technological,

and human infrastructures. Examples are the costs of salaries, insurance, scheduling coordina-

79



tion, computer reservation and revenue management system, and aircraft financing. The fixed

costs also include the fees for ticket offices, baggage conveyor, gates, lounges, parking, and

hangars at the airports. Further, as mentioned earlier, hub-and-spoke operations can increase

the fixed costs due to the risk of congestion at hubs where many connections have to be wisely

coordinated (for instance, see, Levine, 1987; Butler and Houston, 1989; Borenstein, 1992; Oum

et al., 1995; Nero, 1999; Berry et al., 1996; Berry et al., 2019).

We specify the fixed costs sustained by airline f as:

FCf (Gf , ηf ; γ) =
∑

{a,b}∈T

Gab,f (γ1 + ηab,f ) +
∑

h∈Hf

γ2,f (
∑

a ∈ C
a 6= h

Gha,f )2, (2.7)

where Hf is the set of airline f ’s hubs, C is the set of cities, ηf ≡ (ηab,f ∀{a, b} ∈ T ) is a

vector of market-specific shocks that are observed by the airlines but are unobserved by the

researcher, and γ ≡ (γ1, γ2,f ∀f ∈ N ) collects the parameters to be identified.15 The fixed cost

equation consists of two parts. First, there are market-specific contributions, γ1 + ηab,f , for

each market {a, b} served by airline f with direct flights. Second, there are quadratic terms,

γ2,f (
∑

a ∈ C
a 6= h

Gha,f )2, for each hub h of airline f , which account for the risk of congestion at hubs

as discussed in the previous paragraph. In particular,
∑

a ∈ C
a 6= h

Gah,f is the degree of hub h, i.e.,

the number of markets served out of hub h with direct flights (also called “spokes”) by airline

f .

Due to the quadratic terms in the fixed cost equation, the fixed costs sustained by airline f

when serving a market out of hub h may depend on its decisions to serve other markets out

of hub h. This gives rise to spillover effects in entry decisions across markets on the fixed cost

side.

The assumption that the fixed cost shocks, η ≡ (ηf ∀f ∈ N ), are common knowledge among

the airlines is deemed appropriate. In fact, in the airline industry, the fixed costs capture fairly

standard balance sheet entries which pertain to the long-term side of the business and do not

typically involve any industrial or technological secrets. Hence, it is plausible to suppose that

the airlines are able to predict the competitors’ fixed cost shocks reasonably well.16

Importantly, the fixed cost shocks are allowed to be correlated across markets and airlines.

This is key because markets and airlines share endpoint cities. To establish point identification

of the second-stage parameters, in Section 2.4.1 we will assume that the fixed cost shocks are

uncorrelated with the second-stage shocks. In the same section, we will illustrate the pros and

15We could allow γ1 to be firm-specific. We have not done so to maintain a parsimonious specification.
16The assumption that the fixed cost shocks are common knowledge is also imposed, for example, by Ciliberto

et al. (2021) and Li et al. (2019).
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cons of this restriction. Further, the fact that the airlines observe the fixed cost shocks when

choosing their networks creates endogeneity issues which hamper the identification of the first-

stage parameters. In Section 2.4.2, we will explain how to construct appropriate instruments,

which are functions of some of the observed demand and marginal cost shifters. Apart from

such instruments, the fixed cost shocks are allowed to be correlated with the observed demand

and marginal cost shifters.

In the first stage, the airlines simultaneously choose the networksG ≡ (Gf ∀f ∈ N ) maximising

the expected second-stage profits minus the fixed costs:

profits of airline f : E[Πf (X⊕,W⊕,M, ξ⊕, ω⊕, G; θ)|X⊕,W⊕,M, η] − FCf (Gf , ηf ; γ), (2.8)

where Πf (X⊕,W⊕,M, ξ⊕, ω⊕, G; θ) are the second-stage profits. Hereafter, we denote by J ⊕
t

the set of all potential products in market t, including the products not chosen for production.

In turn, X⊕ ≡ (Xj,t ∀j ∈ J ⊕
t ∀t ∈ T ), W⊕ ≡ (Wj,t ∀j ∈ J ⊕

t ∀t ∈ T ), ξ⊕ ≡ (ξj,t ∀j ∈ J ⊕
t ∀t ∈

T ), and ω⊕ ≡ (ωj,t ∀j ∈ J ⊕
t ∀t ∈ T ) are the vectors of observed demand shifters, observed

marginal cost shifters, demand shocks, and marginal cost shocks of all potential products in

every markets.17 M ≡ (Mt ∀t ∈ T ) is the vector of market sizes. θ ≡ (θd, ψ) is the vector of

second-stage parameters. Note that the expectation of the second-stage profits is computed by

integrating over the demand and marginal cost shocks, (ξ⊕, ω⊕), conditional on the variables

observed by the airlines in the first stage, (X⊕,W⊕,M, η). We highlight that the second-

stage profits depend on the networks formed by the airlines. In fact, the networks determine

the competing firms, the offered products, the characteristics of the offered product, and the

equilibrium prices in each market.

2.3.3 Equilibrium

The airlines solve the game by working backward from the second stage. First, they calcu-

late the equilibrium profits under any possible networks, demand shocks, and marginal cost

shocks. Then, they choose the networks maximising the expected value of those profits. A

pure strategy subgame perfect Nash equilibrium consists of networks and price functions,

{G∗, P ∗
t (ξ⊕

t , ω
⊕
t , G) ∀t ∈ T }, constituting a pure strategy Nash equilibrium in every subgame.

The existence and uniqueness of {P ∗
t (ξ⊕

t , ω
⊕
t , G) ∀t ∈ T } is established by Nocke and Schutz

(2018) for the case of multi-product Nested Logit, which is what we consider here.

We allow for multiple G∗. Multiple G∗ are possible because the airlines compete at the entry

stage through the second-stage pricing game. Our methodology does not require the existence

17Analogously, we define the market-specific vectors X⊕
t ≡ (Xj,t ∀j ∈ J ⊕

t ), W ⊕
t ≡ (Wj,t ∀j ∈ J ⊕

t ), s⊕
t ≡

(sj,t ∀j ∈ J ⊕
t ), and P ⊕

t ≡ (Pj,t ∀j ∈ J ⊕
t ). We will use this notation also in Section 2.4.1.
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of G∗ for every possible parameterization and realization of the variables. In fact, as discussed

in Section 2.4.2, we will use a collection of revealed-preference inequalities to bound the first-

stage parameters, which are implications of (i.e., necessary conditions for) Nash equilibrium. If

a particular parameterisation does not generate Nash equilibrium networks, then the revealed-

preference inequalities may not be satisfied. In that case, this parameterization would not

be included in the identified set. If no parameterization can satisfy the revealed-preference

inequalities, then the identified set would be empty. We would conclude that the observed

networks cannot be an equilibrium outcome under the model as specified, and so we might

reject the model. Thus, our framework can be used even when nonexistence is possible. For

further discussion on the existence of Nash equilibrium networks, see Appendix F.18

2.4 Identification

This section discusses identification of the vector of parameters, (θ0, γ0) ∈ Θ × Γ ⊆ R
K ×R

N+1,

where K is the dimension of θ0, N + 1 is the dimension of γ0, and the subscript “0” denotes the

true parameter values.

2.4.1 Identification of the second-stage parameters

This section discusses identification of θ0 ≡ (θd,0, ψ0) ∈ Θ. We follow the identification argu-

ments of standard supply-demand models with differentiated products (Berry and Haile, 2014).

Intuitively, the vector of demand parameters, θd,0, is identified from the distribution of prices,

sales, and product covariates. Once θd,0 is identified, the markups are also identified from the

F.O.C.s in (2.6). In turn, the marginal costs are identified as the difference between prices

and markups. Finally, the variation in the identified marginal costs and product covariates

identifies the vector of marginal cost parameters, ψ0.

More precisely, there are two potential sources of endogeneity to be faced here. First, the list

of products offered in the second stage is selected by the airlines in the first stage and may be

correlated with the second-stage shocks. Second, the prices and within-group market shares

may be correlated with the second-stage shocks because the latter are observed by the airlines

when playing the second stage. We rule out the first source of endogeneity using a classic

approach in empirical two-stage games: we assume that the second-stage shocks are mean

independent of the airlines’ information set in the first stage. The same assumption is imposed

by Eizenberg (2014), Holmes (2011), Houde et al. (2017), Kuehn (2018), Rossetti (2018), and

Wollmann (2018). We account for the second source of endogeneity by instrumenting the prices

18Note here the the revealed-preference inequalities are different, for example, from the identifying bounds in
Ciliberto and Tamer (2009). The latter bounds are based on necessary and sufficient conditions for Nash equi-
librium. Hence, they require the econometrician to explicitly deal with the potential case where the predicted
set of Nash equilibria is empty.
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and within-group market shares, as usual in supply-demand models. The point-identifying

condition for θ0 is formalised as follows:

Assumption 1. (Exogeneity of the second-stage shocks) For every market t ∈ T and product

j ∈ J ⊕
t , E(ξj,t, ωj,t|X⊕,W⊕,M, η) = 0. ⋄

Assumption 1 essentially states that the information owned by the airlines in the first stage does

not help them to predict better the second-stage shocks. It is similar to the mean independence

assumption in standard supply-demand models. However, there is a distinguishing aspect to

notice, which relates to the two-stage structure of our game: here, we assume that the second-

stage shocks are mean independent of the airlines’ information set in the first stage, which

includes also the covariates of the products not chosen for production and the fixed cost shocks.

Assumption 1 implies that E(ξj,t, ωj,t|G) = 0 for every product j and market t, i.e., the second-

stage shocks are mean independent of the list of products offered in the second stage. In

turn, we can point identify θ0 via the classic approach. Let zj,t(X
⊕
t ,W

⊕
t ) be an L × 1 vector

of instruments pertaining to product j in market t, where L ≥ K. Given ρj,t ≡ (ξj,t, ωj,t),

Assumption 2 allows us to write the following moment conditions:

E(ρj,t × zj,t,l(X
⊕
t ,W

⊕
t )|G) = 0 ∀j ∈ J ⊕

t , ∀t ∈ T , (2.9)

for every instrument l = 1, . . . ,L. Berry et al. (1995) show that we can uniquely express ρj,t

as a function of the product covariates and θ0 (“BLP inversion”):

ρj,t = τj,t(X
⊕
t ,W

⊕
t ,Mt, s

⊕
t , P

⊕
t , G; θ0) ∀j ∈ J ⊕

t , ∀t ∈ T . (2.10)

Therefore, we obtain:

E(τj,t(X
⊕
t ,W

⊕
t ,Mt, s

⊕
t , P

⊕
t , G; θ0) × zj,t,l(X

⊕
t ,W

⊕
t )|G) = 0 ∀j ∈ J ⊕

t , ∀t ∈ T , (2.11)

for every instrument l = 1, . . . ,L. The above moment conditions depend only on variables that

are observed by the researcher and provide point identification of θ0. Inference on θ0 can be

conducted via GMM, as illustrated in Appendix G.1. As instruments for the prices and within-

group market shares, we use functions of the observed demand shifters, as explained by Berry

et al. (1995). For example, we consider the number of competing firms, the number of offered

products, and the covariates of the competitors’ products. In total, we have 13 instruments

for each product.

We conclude the section with a discussion on the pros and cons of Assumption 1. Assumption

1 allows us to apply the classic identification approach to θ0. Hence, it is key to feasibly nest
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a network formation step in a supply-demand framework, which is the main objective of our

paper. Assumption 1 rules out correlation between the second-stage shocks and the fixed cost

shocks. We view this as a reasonable simplification. In fact, the fixed cost shocks capture the

residual fixed costs sustained to build the physical, technological, and human infrastructures.

Hence, they pertain to the long-term side of the business. Instead, the second-stage shocks

represent ticket restrictions and the quality of in-flight service. Hence, they generally relate

to operational and short-term activities. Note here that the airline industry is different from

the car industry, for instance, where producing a luxury car requires more up-front investment

and greater fixed costs to create a single unit.19 Assumption 1 rules out correlation between

the second-stage shocks and the observed product characteristics, as standard in the literature

on supply-demand models. Introducing some correlation between the second-stage shocks and

the observed product characteristics can be an interesting, albeit difficult, extension for future

work. Finally, to further rule out potential sources of correlations, recall that in the utility and

marginal cost specifications we include hubbing variables, carrier fixed effects, and city fixed

effects.

2.4.2 Identification of the first-stage parameters

This section discusses identification of γ0 ∈ Γ. Identification of γ0 is hampered by two main

issues related to the discrete choice nature of the problem. First, there may be multiple Nash

equilibrium networks. This is because the airlines compete at the entry stage through the

second-stage pricing game. In turn, we are not able to write down a well-defined likelihood

function. Second, even if one is willing to specify an equilibrium selection mechanism, it

remains burdensome to construct the set of Nash equilibrium networks due to the large number

of markets. In turn, we are not able to write down a tractable likelihood function that can

be evaluated many times throughout an optimisation routine. Instead of focusing on Nash

equilibrium networks, we bypass these two issues by considering implications of (i.e., necessary

conditions for) Nash equilibrium, which are easier to handle from an econometric point of

view. More precisely, we implement the revealed preference approach by Pakes (2010) and

Pakes et al. (2015). This approach consists of two steps. First, we write down inequalities by

simply predicting that the observed networks lead to higher profits than the profits would be

were the airlines to deviate from the observed networks. These inequalities do not require that

one solves for set of Nash equilibrium networks, do not rule out multiple equilibria, and do not

restrict the selection mechanism used when there are multiple equilibria. Second, we get rid of

the structural errors entering the inequalities by taking the expectation of the inequalities over

markets and interacting them with instruments. The resulting moment inequalities characterise

a non-sharp identified set that is a convex polytope, whose projections can be easily obtained

19Under the assumption that entry decisions are independent across markets, see Li et al. (2019) and Ciliberto
et al. (2021) for possible ways to include correlation between the second-stage shocks and the fixed cost shocks.
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by solving linear programming problems. In the remainder of the section, we formally illustrate

the procedure.

We construct inequalities by considering one-link deviations from the observed networks. More

precisely, let G ≡ (Gf ∀f ∈ N ) denote the observed networks. For each airline f and market

{a, b}, if Gab,f = 1, then we consider airline f deviating from Gf by not offering direct flights

between cities a and b (hereafter, class of deviations “(−ab)”). Viceversa, if Gab,f = 0, then we

consider airline f deviating from Gf by offering direct flights between cities a and b (hereafter,

class of deviations “(+ab)”). Such deviations should lead to lower profits and, hence, produce

the following inequalities:

∆Π(+ab),f − ∆FC
⊤

(+ab),fγ0 + ηab,f ≥ 0 if Gab,f = 0,

∆Π(−ab),f − ∆FC
⊤

(−ab),fγ0 − ηab,f ≥ 0 if Gab,f = 1,

for each {a, b} ∈ T and f ∈ N .

(2.12)

In (2.12), ∆Π(+ab),f and ∆Π(−ab),f denote the differences in the expected second-stage profits

between the factual and counterfactual scenarios. They contain the second-stage parameters,

which are assumed to be already identified. Similarly, ∆FC
⊤

(+ab),fγ0 and ∆FC
⊤

(−ab),fγ0 denote

the differences in the systematic fixed costs between the factual and counterfactual scenarios.

If Gab,f = 0 (resp., Gab,f = 1), then the fixed cost shock ηab,f should be added to (resp.,

subtracted from) the profit difference.

We highlight that, despite considering one-link deviations, the left-hand-side of the inequalities

in (2.12) is not computed as if entry decisions were independent across markets. In fact, a one-

link deviation creates a “domino effect” in the neighbour markets, due to the possibility for

airline f to offer one-stop flights and the presence of spillover effects. This makes our method

very different from the approaches which assume that entry decisions are independent across

markets. As an example, consider the case where airline f deviates from Gf by now setting

Gab,f = 1. If city a is a hub for airline f and Gac,f = 1 in the observed network, then airline

f now competes also in market {b, c} by offering one-stop flights between cities b and c via a.

Similarly, if city b is a hub for airline f and Gbd,f = 1 in the observed network, then airline f

now competes also in market {a, d} by offering one-stop flights between cities a and d via b.

Further, due to the presence of spillover effects on the demand side, the fact that now airline

f offers direct flights between cities a and b could make it more attractive for customers to fly

in any markets having cities a or b as origin. Also, due to the presence of spillover effects on

the marginal cost side, the fact that now airline f offers direct flights between cities a and b

could make it cheaper to offer flights having cities a or b as endpoints or intermediate stops.

Finally, if cities a or b are hubs for airline f , then the fixed costs of offering direct flights from

such hubs may increase due to congestion effects. Therefore, deviating to Gab,f = 1 implies
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new equilibrium prices and fixed costs in market {a, b} and in the markets that are in the

neighbourhood of market {a, b}. All such effects are taken into account when computing the

left-hand-side of the inequalities in (2.12). Appendix G.3 discusses in detail how we calculate

∆Π(+ab),f , ∆FC(+ab),f , ∆Π(−ab),f , and ∆FC(−ab),f .20

The inequalities in (2.12) cannot be used yet for identification because they contain the fixed

cost shocks. In order to get of rid of the fixed cost shocks, we take the expectation of the

inequalities in (2.12) over markets:

E[∆Π(+ab),f − ∆FC
⊤

(+ab),fγ0 + ηab,f |Gab,f = 0] ≥ 0,

E[∆Π(−ab),f − ∆FC
⊤

(−ab),fγ0 − ηab,f |Gab,f = 1] ≥ 0,

for each f ∈ N .

(2.13)

If we could claim that E[ηab,f |Gab,f = 0] and E[ηab,f |Gab,f = 1] are equal to zero, then the

moment inequalities in (2.15) could be used for identification. Unfortunately, such conditional

expectations are not equal to zero because the fixed cost shocks represent structural components

that are observed by the airlines when forming their networks.

We overcome this selection problem by introducing instruments, as discussed by Pakes et al.

(2015). More precisely, suppose that for each airline f we have two positive variables, Z(+ab),f

and Z(−ab),f , such that:

E[Z(+ab),f × ηab,f |Gab,f = 0] = 0 and E[Z(−ab),f × ηab,f |Gab,f = 1] = 0. (2.14)

We can interact these instruments with the moment inequalities in (2.15) and obtain:

E[Z(+ab),f × (∆Π(+ab),f − ∆FC
⊤

(+ab),fγ0 + ηab,f )|Gab,f = 0] ≥ 0,

E[Z(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),fγ0 − ηab,f )|Gab,f = 1] ≥ 0,

for each f ∈ N .

(2.15)

By the exogeneity restriction in (2.14), it holds that:

E[Z(+ab),f × (∆Π(+ab),f − ∆FC
⊤

(+ab),fγ0)|Gab,f = 0] ≥ 0,

E[Z(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),fγ0)|Gab,f = 1] ≥ 0,

for each f ∈ N .

(2.16)

The moment inequalities in (2.16) now depend only on variables that are observed by the

researcher and, hence, can be exploited for identification. In particular, suppose that one

20For the same reasons, the left-hand-side of the inequalities in (2.12) is not computed as if each market was
run by a local manager taking independent entry decisions as assumed in Aguirregabiria and Ho (2012).
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disposes of R instruments satisfying the exogeneity restriction in (2.14). Then, one can use

these instruments to obtain R moment inequalities which characterise a non-sharp identified

set for γ0. Further, if the instruments offer sufficient variation in profits relative to the fixed

cost shocks, then the identified set is bounded. Note also that the moment inequalities in (2.16)

are linear in γ0. Therefore, the identified set is a convex polytope.

To construct our first-stage instruments, we follow the approach implemented by Wollmann

(2018) in an empirical study of the commercial truck production process. Wollmann (2018)

suggests to think about Z(+ab),f as being a function of the information set of firm f in the first

stage, taking value 1 if offering direct flights between cities a and b is, on average, unoptimal

for firm f regardless of ηab,f , and 0 otherwise. Similarly, Z(−ab),f is a function of the information

set of airline f in the first stage, taking value 1 if offering direct flights between cities a and b

is, on average, optimal for airline f regardless of ηab,f , and 0 otherwise. For example, we set

Z(−ab),f = 1 if market {a, b} has a very large size and cities a or b are hubs for airline f . In fact,

this indicator isolates markets where airline f will tend to always offer direct flights, plausibly

unrelated to the fixed cost shocks, due to the expected very high profitability. Viceversa, we set

Z(+ab),f = 1 if market {a, b} has a very small size and cities a and b are hubs for the competitors

and not for airline f . In fact, this indicator isolates markets where airline f will tend to never

offer direct flights, plausibly unrelated to the fixed cost shocks, due to the expected very low

profitability. Along these lines, we construct 5 instruments per each airline which are discussed

in Appendix G.4.

Instead of introducing instruments, an alternative approach for getting rid of the fixed cost

shocks from the inequalities in (2.12) consists of introducing support restrictions on the fixed

cost shocks. For example, in an empirical study of the personal computer industry, Eizenberg

(2014) assumes that the fixed cost shocks have a bounded support which is contained within the

support of the expected change in the second-stage profits resulting from one-product deviations

at a time. We have not pursued this approach because, by construction, it characterises an

unbounded identified set when there are spillover effects in entry decisions on the fixed cost

side, as explained by Eizenberg (2014) in Appendix A.3.

The identified set that we characterise is not sharp. In principle, one could construct revealed-

preference inequalities based on “richer” classes of deviations, for example when an airline adds

or deletes two or more links simultaneously. If one was able to find appropriate instruments,

the resulting additional moment inequalities would sharpen the identified set. We have not con-

sidered simultaneous-link deviations for two reasons. First, finding appropriate instruments for

simultaneous-link deviations is challenging. Second, in the empirical application, our strategy

delivers sufficiently informative bounds for the first-stage parameters.
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We summarise the above discussion with the following assumption:

Assumption 2. (First-stage instruments) For each airline f , there exists variables Zr+

(+ab),f for

r+ = 1, . . . ,R+ and Z
r−

(−ab),f for r− = 1, . . . ,R− such that:

E[Z
r+

(+ab),f × ηab,f |Gab,f = 0] = 0 for r+ = 1, . . . ,R+,

E[Z
r−

(−ab),f × ηab,f |Gab,f = 1] = 0 for r− = 1, . . . ,R−.

⋄

In turn, the identified set for γ0 is:

ΓI ≡
{
γ ∈ Γ :E[Z(+ab),f × (∆Π(+ab),f − ∆FC

⊤

(+ab),fγ0)|Gab,f = 0] ≥ 0,

E[Z(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),fγ0)|Gab,f = 1] ≥ 0,

for r+ = 1, . . . ,R+, r− = 1, . . . ,R−, f ∈ N
}
.

(2.17)

In Appendix G.2, we discuss how to conduct inference on ΓI .

2.5 Empirical application

2.5.1 Data

We use data from the Airline Origin and Destination Service (hereafter, DB1D) which consists

of a 10% random sample of all the tickets issued in the United States during the second

quarter of 2011. By then, the merger between United Airlines and Continental Airlines had

been completed and American Airlines and US Airways had not announced their intention to

merge yet. We restrict the sample to the flights operated between the 85 largest metropolitan

statistical areas (MSAs) in the United States. We refer to MSAs as cities throughout the

section. Further, if a city has more than one airport (such as New York, Chicago, and Los

Angeles), we combine its airports into one.21 If an airport within a city serves as a hub for

a given airline, then that city is a hub for the airline.22 The major carriers in the sample

are United Airlines (UA), Delta Airlines (DL), American Airlines (AA), US Airways (US),

and Southwest Airlines (WN). All the other carriers in the sample are put either in a group

called “Low Cost Carriers” (LCC), or in a group called “Other”. These carriers are treated as

fringe competitors, differing only in whether or not they can be classified as low cost. Also,

to enhance computational tractability, we do not consider their fixed costs when estimating

21See Footnote 7.
22For instance, Dallas/Fort Worth serves as a hub for American Airlines whereas Dallas Love Field does not.

Given that we combine both airports into one, the resulting city (Dallas) is a hub for American Airlines.
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the first stage parameters and we assume that their networks are exogenously pre-determined

before the starting of the game. The legacy carriers use hub-and-spoke operations. Southwest

Airlines does not rely on a pure hub-and-spoke business model, but rather on a hybrid system

in which some airports are “focus cities” offering some, but not all, of the services generally

found at hubs. When estimating our model, we treat “focus cities” as hubs.23

We delete tickets with multiple operating carriers or multiple ticketing carriers. Also, we delete

tickets with different inbound and outbound itineraries. Further, we delete tickets that are not

round-trip. Lastly, to be consistent with our model, we delete connecting tickets via cities that

are not hubs. Note that we observe very few of these tickets. As discussed in Section 2.3, we

consider tickets featuring the same airline-itinerary combination but different fares as the same

product. We compute the corresponding price as follows. First, we delete tickets with fares in

the highest and lowest percentiles and tickets with fares below $25. Then, we construct the

weighted average price over the remaining fares.

We allow the marginal cost parameters to differ between short-haul and long-haul flights, which

are defined as flights covering up to 1,500 miles and flights covering more than 1,500 miles,

respectively. As anticipated in Section 2.3, for each market t ∈ T and product j ∈ J ⊕
t , Xj,t

collects the number of stops (“Stops”), the maximum number of direct flights offered at the

itinerary’s endpoints by the same carrier offering itinerary j (“Connections”), the distance

flown (“Distance”), and its squared value (“Distance2”). Similarly, Wj,t collects the number

of stops (“Stops Short”, “Stops Long”), the average number of cities that are reachable from

the endpoints and intermediate stops of itinerary j with the same carrier offering itinerary

j (“Presence Short”, “Presence Long”), and the distance flown (“Distance Short”, “Distance

Long”). We include in the demand and supply models firm and city fixed effects in order to

capture brand preferences and unobserved city-specific features. Lastly, we compute market

sizes using data from the US Census Bureau on MSA population. In particular, we calculate

the size of each market t ∈ T , Mt, as the geometric mean of the populations at the market’s

endpoints.

Table 2.1 provides some summary statistics. In panel (a), we see that whereas only around

15% of flights are direct, they account for around 85% of passengers. We can also see the

importance of hubs: 57% of passengers travel through, from, or to hubs and 83% of all flights

start, land, or connect at a hub. Further, we see in panel c) that airlines serve on average

almost 50 direct flights out of hub airports (measured by the "Degree" variable), compared

to around 7 for non-hub airports. Looking at panel e), we see that we have on average 5.56

products per market and on average 4.62 hub products.

23See Table H.0.2 in Appendix H for the list of hubs.
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Table 2.1: Summary statistics

(a) Sizes
Number of firms 7
Number of products 17,481
Number of markets 3,146
Fraction of direct flights 0.14
Fraction of hub itineraries 0.83
Fraction of direct passengers 0.85
Fraction of passengers in hub markets 0.57
Fraction of markets served 0.93

(b) Passengers by airline (1 million)
Total 25.33
American 3.15
Delta 4.85
United 3.81
US Airways 2.21
Southwest 6.00
Low Cost 4.10
Other 1.21

(c) Network statistics Mean St.Dev
Degree (Hub) 49.86 13.03
Density (Hub) 0.61 0.16
Clustering (Hub) 0.24 0.14
Degree (Non-hub) 7.21 7.72
Density (Non-hub) 0.09 0.09
Clustering (Non-hub) 0.80 0.33

(d) Demand and marginal cost variables Mean St.Dev
Price (100 USD) 4.32 1.20
Stops 0.86 0.34
Connections (100) 0.20 0.19
Presence (100) 0.56 0.15
Distance (100 km) 1.44 0.68
Product share 4.6083e-04 1.4784e-03
Market size (1 million) 2.55 1.85

(e) Market-level statistics Mean St.Dev
Number of firms 3.59 1.81
Number of products 5.56 4.43
Number of direct flights 0.75 1.20
Number of hub itineraries 4.62 3.43
Number of passengers (1,000) 8.05 24.43
Number of direct passengers (1,000) 6.82 23.98
Number of passengers in hub markets (1,000) 4.60 15.39

Note:

Hub itineraries are itineraries where at least one of the endpoints or intermedi-
ate stop is a hub. Hub markets are markets where at least one of the endpoints
is a hub. The share of a product is computed as the total number of passen-
gers buying that product divided by the market size, times 10 because we have
a 10% random sample. The degree of a (non-)hub is the number of markets
served with direct flights out of the (non-)hub by an airline. The density of a
(non-)hub is the ratio between the number of markets served with direct flights
out of the (non-)hub by an airline and the total number of potential markets
out of the (non-)hub. The clustering coefficient of a (non-)hub is the ratio
between the number of closed triplets including the (non)-hub served by an
airline and the total number of potential triplets including the (non)-hub.

90



2.5.2 Results from the second stage

The second-stage results are in Table 2.2. We find significant spillover effects in entry decisions

across markets on the demand side. Specifically, passengers benefit from having a large number

of direct flights offered by an airline at the itinerary’s endpoints (Connections). That is, dense

hubs increase passengers utility, all the rest being constant. This effect captures the value of

frequent flier programs. In fact, the larger the number of destinations for which consumers

can redeem frequent flier miles, the higher the value of such loyalty programs. Additionally, an

airline that flies to many cities is likely to have more convenient parking and gate access and

provide better services. The price coefficient is negative. It lies between the price coefficients

of the two consumer types considered by Berry and Jia (2010) and within the ballpark of

what other contributions have found. Consumer utility is an inverted U-shaped function of

the distance flown. This means that, as distance increases, air travel becomes more attractive

relative to the outside option. However, as distance increases further, travel becomes less

pleasant and demand starts to decrease. In line with the literature, passengers exhibit a strong

disutility for connecting flights. Lastly, we estimate the nesting parameter, λ, to be around

0.6. Recall that, as λ approaches one, the Nested Logit model reduces to the standard Logit

model. Therefore, we can conclude that there is substitution between the inside goods and the

outside option.

We find significant spillover effects in entry decisions across markets also on the marginal cost

side. Specifically, the marginal cost of an itinerary decreases with the average number of

cities that an airline allows to reach from the endpoints and intermediate stops (Presence).

This effects captures the impact of economies of density on the marginal costs, i.e., the fact

that more densely travel segments tend to have lower unit costs due to engineering reasons.

In particular, the larger the number of final destinations consumers can reach, the more the

opportunities for an airline to pool passengers from several itineraries into the same planes, and

the more an airline can efficiently use large aircrafts which typically have lower unit costs. This

mechanism implies that hub-and-spoke operations provide marginal cost savings, all the rest

being constant. The impact of the variable Presence is more pronounced for long-haul flights,

as the efficiency of large planes is especially evident in long routes. Further, the number of

stops in long-haul flights reduces their marginal cost. Again, this suggests that connecting

flights are less expensive to provide for long routes, by virtue of economies of density. The

number of stops does not significantly reduce the marginal cost of short-haul flights. This may

be because the marginal cost savings induced by economies of density are balanced by the

extra take-off and landing, which uses a lot of fuel. The marginal cost of both long-haul and

short-haul flights increases with the distance flown. This is because the longer the distance,

the more fuel is needed to cover it. Lastly, as expected, Southwest Airline, Low Cost, and

Other have lower marginal costs than the legacy carriers.
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Table 2.2: Second-stage estimates

Utility Marginal Cost

Coefficient SE Coefficient SE

Mean utility Short-haul flights
Intercept -5.598 (0.262) Intercept 3.118 (0.090)
Price -0.587 (0.066) Stops 0.031 (0.028)
Stops -1.794 (0.066) Distance 0.474 (0.037)
Connections 0.868 (0.032) Presence -1.245 (0.136)
Distance 0.289 (0.084) Long-haul flights
Distance2 -0.093 (0.095) Intercept 3.703 (0.114)
Nesting Parameter (λ) 0.623 (0.025) Stops -0.189 (0.041)

Distance 0.667 (0.032)
Presence -2.016 (0.145)

Carrier FEs Carrier FEs
DL -0.168 (0.018) DL 0.082 (0.035)
UA -0.387 (0.025) UA 0.050 (0.032)
US 0.142 (0.025) US 0.079 (0.032)
WN -0.519 (0.032) WN -0.363 (0.029)
LCC -0.348 (0.032) LCC -1.509 (0.055)
Other -0.074 (0.056) Other -1.398 (0.049)

Statistics
J-statistic 15.627
Number of observations 17,481
Price Elasticity -3.780
Aggregate Easticity -2.100
Connection semi-elasticity 0.880

Note:

Prices are divided by USD 100. Connections and Presence are divided by 100. City fixed effects are
included. The number of over-identifying restrictions is 11.
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The bottom part of Table 2.2 reports some elasticity estimates. In particular, the price elas-

ticity is the average estimated price elasticity across products. The aggregate elasticity is the

percentage change in the inside product share when all prices rise by 1%. The connection

semi-elasticity is the change in the inside product share if all direct flights became one-stop

flights, while holding the other characteristics fixed. The price elasticity is slightly higher than

in other contributions in the literature. This may be due to the fact that our model does not

capture sufficient consumer heterogeneity in price sensitivity. The connection semi-elasticity is

higher than in Berry and Jia (2010). This is in line with the trend towards increasingly strong

preferences for direct flights found in their paper.

Table 2.3: Profits by firms

Profits (100k) Price Marginal cost Markup Lerner Index

AA
All 1.78 453.36 335.20 118.16 0.28
Direct 13.77 402.37 277.42 124.94 0.32
One-stop 0.39 459.26 341.89 117.38 0.27
Direct, hub endpoint 15.06 402.75 276.66 126.09 0.33
Direct, non-hub endpoints 2.00 398.87 284.48 114.40 0.30

DL
All 1.41 436.45 310.40 126.05 0.31
Direct 12.31 463.26 321.03 142.23 0.33
One-stop 0.33 433.80 309.35 124.45 0.31
Direct, hub endpoint 13.49 482.67 336.83 145.84 0.32
Direct, non-hub endpoints 4.47 334.75 216.44 118.31 0.38

UA
All 1.25 445.56 328.43 117.13 0.28
Direct 9.17 458.50 334.97 123.53 0.29
One-stop 0.20 443.85 327.56 116.28 0.28
Direct, hub endpoint 11.03 456.82 332.24 124.58 0.29
Direct, non-hub endpoints 2.17 464.88 345.33 119.55 0.29

US
All 1.30 453.43 336.77 116.67 0.27
Direct 8.99 407.34 275.17 132.17 0.35
One-stop 0.35 459.10 344.34 114.76 0.26
Direct, hub endpoint 10.42 418.96 282.96 136.00 0.35
Direct, non-hub endpoints 3.95 366.22 247.58 118.64 0.36

WN
All 2.79 419.43 299.51 119.92 0.31
Direct 12.09 365.14 237.09 128.05 0.38
One-stop 0.23 434.40 316.73 117.67 0.29
Direct, hub endpoint 16.49 362.34 233.95 128.39 0.38
Direct, non-hub endpoints 8.88 367.19 239.39 127.80 0.38

Table 2.3 reports firm-level profits, prices, marginal costs, and markups averaged over different

products. For each airline, the first row contains the average across all products, the second

line across direct flights, and the third line across one-stop flights. The fourth and fifth rows

contain the average across direct flights where at least one of the endpoints is a hub (hub

markets) and where no endpoint is a hub (non-hub markets), respectively. We can see that
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the airlines charge a higher markup on direct flights compared to one-stop flights, which is

in line with the fact that consumers value direct flights more. The legacy carriers charge a

higher markup on direct flights in hub markets, compared to non-hub markets, suggesting the

presence of a hub premium. Charging a high markup on hub markets may be due to high

market power at hubs, or to high fixed costs from managing hubs. Whereas American Airlines,

US Airways, and Southwest Airlines have substantially lower marginal costs on nonstop flights,

it is the opposite for Delta and United Airlines. The marginal cost of Southwest Airlines is

lower than the marginal costs of the legacy carriers. For direct flights, the difference is quite

substantial. For one-stop flights, Southwest Airlines’s advantage is small. The last finding

is line with the fact that Southwest Airlines uses focus cities, rather than hubs. Hence, the

marginal cost savings from offering connecting flights may be less pronounced since not all

features of traditional hubs are exploited.

2.5.3 Results from the first stage
Table 2.4: Projections of the estimated identified set

Variable Lower bound Upper bound

Intercept 672,624 1,047,511

Congestion costs
AA 19,216 28,024
DL 12,824 21,776
UA 8,731 16,586
US 27,191 39,044
WL 17,346 30,967

Note:
Entry costs are in $.

Table 2.4 reports the projections of the estimated identified set.24 Estimates are in dollars. We

see that, absent congestion costs, offering direct service between two endpoints costs between

$672, 624 and $1, 047, 511. To interpret the congestion effect, recall from our specification of

the fixed costs (2.7) that the congestion costs of managing hubs are quadratic in the number

of spokes of each hub. For example, American Airlines has a total of 221 spokes, resulting

in congestion costs between $214 and $312 million.25 Their base-line entry costs amount to

between $157 and $245 million. The base-line entry cost is just the number of segments served

multiplied by the Intercept term. Due to congestion costs, the fixed costs sustained by an

airline when serving a market out of a hub depends on its decisions to serve other markets out

of the hub. This gives rise to spillover effects in entry decisions across markets on the fixed

24We have not implemented the inference methodology yet.
25To compute congestion costs, we need to count the number of spokes at each hub, square that number,

sum it, and then multiply by the estimated congestion cost. For American, this computation yields, for the
lower bound, 19, 216 ∗ (682 + 292 + 262 + 392 + 592)
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cost side. Congestion costs differ substantially across the airlines. US Airways faces larger

congestion costs than the other legacy carriers. United Airlines faces lower congestion costs

than the other legacy carriers. The heterogeneity in congestion costs is also highlighted by

Figure 2.2 The Figure shows the projections of the estimated identified sets for the 5 airlines.

We see that while some sets overlap, there are substantial differences between airlines.

Figure 2.2: Projections of the estimated identified set
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Colors: American (blue), Delta (purple), United (black), US Airways (red), and Southwest (green)

Table 2.5: Predicted entry probabilities

Firm Data Predicted

American 6.89 % 9.74 %

Delta 12.34 % 11.16 %

United 12.96 % 8.41 %

US Airways 6.95 % 11.12 %

Southwest 18.59 % 32.92 %

In Table 2.5, we report the predicted entry probabilities. To compute the predicted entry

probabilities, we construct a grid of admissible parameter values by taking 100,000 draws from

the convex polytope defined by our moment inequalities via Gibbs sampling. Then, for each

airline, we implement the following procedure. For every parameter value and market, first, we

compute the marginal profit from serving the market with direct flights without considering

the fixed costs shock; second, we save one if the marginal profit is positive, and zero otherwise.

For each parameter value, we sum all the ones and divide the result by the number of markets.

Finally, we take the midpoint of these numbers across parameter values. This is the predicted

entry probability. Overall, we predict entry patterns reasonably well. The largest discrepancy
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occurs for Southwest Airlines, which may be due to the fact that Southwest Airlines relies on

focus cities, rather than hubs, whose peculiarities are not entirely captured by our framework.

2.5.4 Counterfactuals

This section studies the impact on firm and market outcomes of a merger between two of the

four legacy carriers in our sample, American Airlines and US Airways. These two firms did

in fact merge in 2013. They first expressed interest to merge in January 2012 and officially

announced their plans to merge in February 2013. At the time they expressed interest to merge,

American Airlines’ holding company (AMR Corporation) was in Chapter 11 bankruptcy.26

The Department of Justice (DoJ), along with several state attorney generals, sought to block

the merger, concerned that the merger would have substantially lessen competition and hurt

consumers. In 2013, a settlement was reached in which the merging parties pledged to give

up landing slots or gates at 7 major airports and “to maintain hubs in Charlotte, New York

(Kennedy), Los Angeles, Miami, Chicago (O’Hare), Philadelphia, and Phoenix consistent with

historical operations for a period of three years”.27 Below, we refer to such settlement as the

2013 settlement. According to articles from the time the merger was announced, the parties

expected the merger to make the new entity the largest airline in the world in terms of passenger

numbers, and annual cost savings of around $1 billion per year.28 Also, the merger was seen by

analysts as an opportunity for American Airlines to expand its footprint in markets along the

East Coast, where US Airways had a strong presence.29. The merger was the last in a series

of large airline mergers and reduced the number of legacy carriers to 4 (Delta Airlines, United

Airlines, Southwest Airlines, and the new American Airlines).

We simulate two counterfactual events. In the first event, we assume that American Airlines

and US Airways merge. In the second event, we assume that American Airlines goes bankrupt

and disappears. We consider the bankruptcy event because, at the time of the merger’s an-

nouncement, American Airlines was indeed in Chapter 11 bankruptcy, which raises the question

of what would have happened had it just disappeared from the market. Note that, through-

out the first decade of the new millennium, all the legacy carriers filed for bankruptcy at some

point, but were allowed to re-structure or merge in order to recover from financial distress. The

debate on the appropriateness of aid to airlines that struggle financially has again become a

matter of public concern during the Covid-19 pandemic. Thus, the analysis of the bankruptcy

event aims to offer insights on this topic.

26Recall that we use data from the second quarter of 2011. This is before the two parties expressed interest
to merge and corresponds to the last quarter before AMR filed for Chapter 11 bankruptcy.

27https://www.justice.gov/opa/pr/justice-department-requires-us-airways-and-american-airlines-divest-
facilities-seven-key, https://americanairlines.gcs-web.com/news-releases/news-release-details/amr-corporation-
and-us-airways-announce-settlement-us-department

28https://www.reuters.com/article/uk-americanairlines-merger-idUSLNE91D02020130214
29https://money.cnn.com/2013/02/14/news/companies/us-airways-american-airlines-merger/index.html
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Set-up

When evaluating the merger event, we compare 5 scenarios:

1. Networks fixed - Base case. After the merger, the networks remain at the pre-merger levels.

The firms maintain the pre-merger products and dummies. If the merging firms offer the

same itinerary, then the two products are kept as separate. The firms play the simultaneous

pricing game described in Section 2.3.1 and new equilibrium prices arise. In particular, the

merging firms choose the prices maximizing their joint profits, i.e., they behave as if they

colluded.

2. Networks fixed - Best case. After the merger, the networks remain at the pre-merger levels.

All the firms, except American Airlines and US Airways, maintain the pre-merger products

and dummies. The merging firms maintain the pre-merger products, but update some of

their covariates. In particular, the products of the merging firms inherit the best firm

dummies. If the merging firms offer the same itinerary, then the two products are kept

as separate. However, differently from the previous scenario, now the two products inherit

the most favourable observed demand and marginal cost shifters. For example, on the

demand side, the estimated coefficient of the variable Connections is positive. Hence, the

two products get the highest value of Connections between what American Airlines and US

Airways had before merging. After such rearrangements, the firms play the simultaneous

pricing game described in Section 2.3.1 and new equilibrium prices arise. As in the previous

scenario, the merging firms choose the prices maximizing their joint profits, i.e., they behave

as if they colluded.

3. Networks fixed - Updated case. After the merger, the networks of all the firms, except Amer-

ican Airlines and US Airways, remain at the pre-merger levels. We treat the merged entity

as a new firm and assign it the network resulting from merging the pre-merger networks of

American Airlines and US Airways. The products of the merged entity and their covariates

are constructed from the merged network. The merged entity takes on the most favourable

dummies of the merging firms. The demand and marginal cost shocks of the products of

the merged entity stay the same as pre-merger, except in markets where both firms were

present. There, we use the mean of the pre-merger errors. After such rearrangements, the

merged entity and the other firms play the simultaneous pricing game described in Section

2.3.1 and new equilibrium prices arise.

4. Networks vary - No remedies. After the merger, we treat the merged entity as a new firm and

we let the firms play the entire two-stage game described in Section 2.3. New equilibrium

networks and prices arise. More details on how the firms reoptimise networks and prices are
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in Section 2.5.4.

5. Networks vary - With remedies. After the merger, we treat the merged entity as a new

firm and we let the firms play the entire two-stage game described in Section 2.3. New

equilibrium networks and prices arise. However, differently from the previous scenario,

now we take into account some of the remedies imposed to the merged entity by the 2013

settlement. In particular, recall that the 2013 settlement invited the merged entity “to

maintain hubs in Charlotte, New York (Kennedy), Los Angeles, Miami, Chicago (O’Hare),

Philadelphia, and Phoenix consistent with historical operations for a period of three years”.

We incorporate these remedies as binding constraints and force the merged entity to keep

serving all the markets served pre-merger by the merging firms if one or both endpoints are

at one of the hubs mentioned in the 2013 settlement. Note that this scenario differs from

the “Networks fixed - Updated case” scenario because, first, the competitors of the merged

entity are allowed to reoptimise their networks; second, the merged entity is allowed to enter

all markets and exit those markets whose endpoints were not subject to the remedy.

The first three scenarios assume that the airlines do not reoptimise their networks after the

merger, as standard in the literature. In turn, the analyst should make ad-hoc assumptions on

how the products of the merged entity adjust after the merger, which opens infinite possibilities.

The first three scenarios are just some examples and do not obviously exhaust all potential

cases, with consequent risk of misspecification. The fourth and fifth scenarios consider the

entire two-stage game and allow the firms to reoptimise their prices and networks after the

merger, by leveraging on our methodology. In fact, after the merger, it is plausible to believe

that the merged firm and its competitors will react not only by adjusting their prices, but also

by repositioning in markets. For example, after the merger, there might room in some markets

for accommodating other entrants. Further, the merger could generate marginal cost savings

for the merged firm, by virtue of economies of density triggered by hub-and-spoke operations,

which may favour its entry in new markets. The merger could also increase the market power

of the merged firm, by disposing of a larger network that enhances consumer willingness to

pay. At the same time, the merger might increase the total fixed costs of the merged firm, due

to congestion effects at hubs, which may force it to dismiss some operations. All such synergies

across markets are taken into account by our procedure.

When evaluating the bankruptcy and disappearance of American Airlines, we consider the

following two scenarios:

1. Networks Fixed. After the disappearance of American Airlines, the networks of the other

firms remain at the pre-merger levels. The firms play the simultaneous pricing game de-

scribed in Section 2.3.1 and new equilibrium prices arise.
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2. Networks Vary. After the disappearance of American Airlines, we let the other firms play

the entire two-stage game described in Section 2.3. New equilibrium networks and prices

arise.

The first scenario assumes that the airlines do not reoptimise their networks after the disap-

pearance of American Airlines, as standard in the literature. The second scenario considers

the entire two-stage game and allow the firms to reoptimise their prices and networks after

the disappearance of American Airlines, by leveraging on our methodology. In fact, after the

disappearance of American Airlines, it is plausible to believe that its competitors will react not

only by adjusting their prices, but also by repositioning in markets. For example, we expect

that the disappearance of American Airlines makes it more attractive for other firms to enter

markets previously served by American Airlines, in turn alleviating the negative effects of the

bankruptcy on consumer surplus. At the same time, replacing the hub-and-spoke operations

of the disappearing airline may be infeasible due to the large fixed costs. It is then likely that

consumers living in the hub cities of American Airlines will be overall worse off as they will no

longer be able to benefit from the services previously offered by American Airlines.

Description of the counterfactual algorithm

In this section, we describe the algorithm implemented to reach a new equilibrium when the

airlines reoptimise their prices and networks, in the “Networks vary - No remedies” scenario.

In the “Networks vary - With remedies’ scenario, we follow the same procedure, but we force

the merged entity not to exit all the markets served pre-merger by the merging firms if one or

both endpoints are at one of the hubs mentioned in the 2013 settlement.

Recall that there can be multiple equilibrium networks. Hence, in principle, it would be

desirable to enumerate all possible equilibrium networks that may arise, as in Eizenberg (2014).

However, doing so is infeasible in our setting due to the large number of markets. To make

the problem tractable, we build a best-response learning algorithm based on Lee and Pakes

(2009) and Wollmann (2018). In particular, we order markets and firms according to some

criteria. For a given value of the parameters, firms iteratively best-respond to one another with

respect to entry and price decisions sequentially over markets until they reach convergence. We

are currently experimenting many different orders of markets and firms in order to obtain a

distribution of equilibria. For the moment, the results reported below correspond to one specific

order of markets and firms. We repeat the procedure for 25 draws of parameter values from

the estimated identified set and report the minimum and maximum changes in the networks

and market outcomes across such parameter values. In what follows, we provide more details

on the steps of the algorithm, for a given value of the parameters and for a given order of firms

and markets.
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1. We rank markets according to: whether at least one of the market’s endpoints are hubs

for the merging airlines; whether the merging airlines served the market; the number of

markets the merging airlines served out of the endpoints with direct flights; the market

size.

2. We rank firms in the following order: American Airlines; Delta Airlines; United Airlines;

US Airways; Southwest. When simulating the merger event, we initially assign to the

merged entity the network resulting from merging the pre-merger networks of American

Airlines and US Airways and let merged entity move first. We also assume that the

cities in which either American Airlines or US Airways had a hub prior to the merger

will continue to serve as hubs. This means that the merged entity will entertain hubs

in Dallas, Chicago, Charlotte, Philadelphia, New York City, Washington DC, Phoenix,

Miami, and Los Angeles. Further, the merged entity takes on the most favourable firm

dummies of the merging firms.

3. For a given firm in a given market, we let the firm play its best response, holding the

firm’s network outside of the considered market and the rival networks and prices fixed at

the level reached in the previous iteration. In order to find the best response of the firm,

we compute the firm’s total second-stage profits when serving the market with direct

flights, the total second-stage profits when not serving the market with direct flights,

and take the difference. Note here that we let the firm to best respond with respect

to prices both in the market under consideration and in the neighbour markets due to

spillover effects and the possibility of offering one-stop flights. Hence, the simulation is

not conducted as if entry decisions were independent across markets. We also compute

the total fixed costs when the firm serves the market with direct flights and when it does

not, and take the difference. If the second-stage profit difference is larger (smaller) than

the fixed cost difference, then the best response of the firm is to (not) serve the market

with direct flights. We update the network of the firm according to the best response and

move to the next firm. We cycle through firms in a given market until no firm wishes to

deviate.

4. We cycle through the markets and check how many entry decisions have changed. If that

number is larger than some tolerance criterium, we repeat the entire procedure. Once

the number of changed decisions is below the criterium, we stop the procedure.

Note that, at the rest point of the procedure described above, the necessary conditions that

are used in the estimation of first-stage parameters hold. Hence, the procedure provides an

equilibrium that is is internally consistent with our model. Note also that computational costs

prohibit to consider all possible entry deviations by each firm, although we believe this results in
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no meaningful loss of generality. In this respect, the equilibrium reached by the above procedure

is a Nash equilibrium within the classes of entry deviations considered. For example, we impose

that no firm considers adding/deleting direct flights in more than one market at a time. After

extensive experimentation, we concluded that no firm would best respond with more changes

than that. However, recall that the airlines offer also one-stop flights and, thus, the total

number of product changes at each iteration can be greater than one. Further, we allow the

airlines add/delete direct flights only in the hub markets of American Airlines and US Airways.

These markets represent around 20% of all segments in our sample and are presumably those

where the DoJ would be most worried about potential anti-competitive effects of the merger.

Additional details on how the latent variables are imputed

To perform counterfactuals, we need a measure of the fixed cost shocks. Different approaches

have been taken in the literature. For example, Wollmann (2018) draws the fixed cost shocks

from a normal distribution with zero mean and variance equal to a fraction of the variance of

the systematic fixed costs. Kuehn (2018) finds, for each market, the range of realisations of the

fixed cost shock generating either entry or exit and takes the midpoint. We use a procedure

that is similar in spirit to Kuehn (2018). In particular, when we observe airline f serving

market {a, b} with direct flights, we subsume that this choice must be profitable, giving us

an upper bound for ηab,f .30 Then, we collect all the markets that firms choose not to serve

with direct flights and that have a similar change in the congestion costs. These markets give

us a vector of lower bounds. We take the 5th percentile of these lower bounds and use it as

a lower bound for ηab,f . Finally, we set ηab,f as the mid-point between the lower and upper

bounds. A symmetric procedure is implemented when imputing the fixed cost shocks for the

markets that are not served by airline f . However, instead of the 5th percentile, we take the

95th percentile. When simulating the merger, the merged entity takes on the mean value of

the fixed cost shocks of the merging firms.

To perform counterfactuals, we also need to measure the demand and marginal cost shocks

of the products of the merged firm. We draw these from the joint distribution of the merged

entity.

30Consider market {a, b} and airline f . Suppose that Gab,f = 1 in the observed network. Let

∆Π(−ab),f − ∆FC
⊤

(−ab),f γ − ηab,f ,

be the deviation profits of firm f as discussed in Section 2.4.2, for any γ ∈ ΓI . By revealed preference, it must
be that

∆Π(−ab),f − ∆FC
⊤

(−ab),f γ − ηab,f ≥ 0,

or, equivalently,

ηf,ab ≤ ∆Π(−ab),f − ∆FC
⊤

(−ab),f γ.
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Results

We show the impact of the merger and bankruptcy scenarios in Table 2.6. The first row gives

the total consumer surplus, the second row gives the average consumer surplus across hub

markets. The second column, under fixed networks, provides the interval between the base-

case, the best-case, and the update scenarios and the median value. The other columns, under

reoptimised networks, provide the interval across draws of parameter values from the estimated

identified set and the median value. In the following, we base our discussion on the median

values.

Table 2.6: Consumer surplus across different scenarios

Before Merger Bankruptcy

Networks fixed Networks vary, no remedies Networks varies, with remedies Networks fixed Networks vary

Total 2807.06 +0.08 -2.94 +2.15 -12.1 -5.5

[-0.47, +3.4] [-8.18, +2.28] [-3.18, +6.61] [-9.55, +0.97]

Mean 4.09 +0.08 -4.1 +0.88 -11.84 -5.78

[-0.47, +3.4] [-9.11, +0.96] [-4.57, +5.23] [-9.55, -0.05]

Note:

Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to constant of integration. Mean consumer

surplus is total consumer surplus divided by the number of markets out of hubs. Percentage differences with respect to Before

are reported.

When comparing the “Networks fixed” to the “Networks vary” scenarios, we see that assuming

no changes in networks after a merger or bankruptcy leads to misleading conclusions. In

the merger case, the “Networks fixed” scenario predicts little changes in consumer surplus.

However, when the firms are allowed to reoptimise their networks, we see that the merger

absent any remedies would have led to a drop in total consumer surplus of around 2.94%.

When the remedies are further taken into account, we register an increase in consumer surplus

of around 2.15%, which highlights that the remedies were warranted. The difference between

the “Networks fixed” and the “Networks vary” scenario is even stronger in the bankruptcy

case. Here, not allowing for network re-alignment leads to a prediction of a drop in consumer

surplus o around 12%, whereas letting networks re-adjust reduces the loss in consumer surplus

to around 5.5%. The main reason for the smaller drop in consumer surplus is that firms enter

market following the disappearance of American, partially canceling out the negative effects of

the bankruptcy.

Comparing the effects of the merger and the bankruptcy across the scenarios in which we

make use of our full model, we can see that the bankruptcy would have hurt consumer more

than the merger. Two reasons can explain this fact. First, the firm disappearing operates

a hub-and-spoke network, so consumers will be hurt a lot in hub airports and other airlines

cannot compensate for the loss of access to this network. Second, a merger allows competition
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authorities to shape market structure and outcomes by imposing remedies. The ability to do

so presents a non-negligible advantage of allowing a merger under conditions, compared to the

bankruptcy of a large hub-and-spoke carrier. We see that our counterfactual suggests that

the merger is less harmful than the bankruptcy absent remedies and even slightly beneficial to

consumers with remedies taken into account.

Table 2.7: Changes in direct flights offered at hub airports of merging firm due to the merger

Pre-merger Post-merger

Networks vary, no remedies Networks vary, remedy

AA/US Others Presence AA/US Others Presence AA/US Others Presence

AA hubs

DFW 68 55 1.6 70 59 1.56 70 59 1.56

[59, 70] [53, 89] [1.48, 1.84] [60, 70] [53, 89] [1.48, 1.83]

LAX 28 90 1.51 27 128 1.9 30 128 1.95

[24, 29] [104, 132] [1.64, 1.98] [29, 31] [114, 133] [1.78, 2]

ORD 59 129 2.35 58 98 1.9 62 144 2.55

[56, 61] [90, 161] [1.82, 2.67] [61, 66] [96, 161] [1.93, 2.71]

MIA 40 51 1.17 18 52 0.84 40 51 1.11

[13, 22] [50, 57] [0.79, 0.95] [40, 40] [49, 58] [1.09, 1.2]

JFK 41 113 2 29 118 1.76 43 118 1.96

[11, 32] [113, 159] [1.57, 2.29] [43, 44] [112, 158] [1.89, 2.46]

US hubs

CLT 61 41 1.29 63 35 1.2 63 33 1.17

[61, 64] [30, 44] [1.11, 1.32] [63, 64] [24, 44] [1.06, 1.32]

PHX 41 74 1.49 41 64 1.28 41 62 1.26

[40, 41] [38, 74] [0.96, 1.39] [41, 41] [38, 73] [0.96, 1.39]

DCA 40 130 2.16 49 153 2.39 39 141 2.24

[39, 60] [133, 161] [2.2, 2.55] [10, 51] [132, 160] [1.82, 2.48]

PHL 52 53 1.33 50 53 1.27 55 54 1.33

[43, 52] [49, 59] [1.15, 1.36] [54, 56] [50, 64] [1.28, 1.46]

Total

Total 430 736 1.66 409 797 1.63 444 783 1.67

[350, 422] [690, 880] [1.48, 1.77] [403, 460] [696, 906] [1.54, 1.82]

Note:

Median outcomes reported, with minimum aand maximum outcome in brackets.

103



Table 2.8: Changes in direct flights offered at hub airports of American due to the bankruptcy

Before After bankruptcy

AA Others Presence Others Presence

AA hubs

DFW 68 63 1.6 75 0.91

[75, 110] [0.91, 1.34]

LAX 26 96 1.51 140 1.73

[134, 155] [1.65, 1.91]

ORD 59 134 2.35 168 2.05

[159, 172] [1.94, 2.1]

MIA 39 57 1.17 59 0.72

[56, 72] [0.68, 0.88]

JFK 29 135 2 149 1.82

[142, 190] [1.73, 2.32]

Total

Total 246 973 1.66 1082 1.47

[1012, 1224] [1.38, 1.66]

Tables 2.7 and 2.8 show the changes in the number of direct flights offered before and after

the merger and bankruptcy, respectively. Looking at the last row in Table 2.7, we see that the

merged entity reduces the operations at the hubs in reaction to the merger, whereas other firms

expand at the hubs. The variable Presence in columns 3, 6, and 9 reports the average number

of main carriers (American, Delta, United, US, Southwest) present across all possible markets

out of a given hub. The value of the variable Presence drops slightly from 1.66 to 1.63 after the

merger, suggesting that the merger leads to slightly less competition in hub markets. When

looking at what happens in specific cities, we can see that in the “No remedies” scenario, the

merged entity reduces operations in Miami (MIA) and New York (JFK) substantially, without

substantially entry of the competing airlines. In the “With remedies” scenario, the merged

entity serves a larger network compared to both before the merger and to the “No remedies”

scenario. The expansion of other carriers is less substantial than in the “No remedies” scenario.

However, the value of the variable “Presence” is now 1.67, essentially as before the merger.

Overall, Table 2.7 suggests that the remedies were successful in preventing a large reduction

in the post-merger network of the merged entity.

In contrast, Table 2.8 shows that post-bankruptcy, the level of operations at American’s hubs

decreases substantially. Even though the remaining firms increase the number of direct flights

by more than 100, they are not able to compensate for the disappearance of American (with

the exception of Los Angeles). The value of the variable “Presence” confirms this finding, as

it drops from 1.66 to 1.47.
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Table 2.9: Change in consumer surplus at hub airports of merging firms

Pre-merger Post-merger

Networks fixed Networks vary, no remedies Networks vary, remedy

AA hubs

DFW 341.22 -1.48 +6.28 +8.28

[-2.94, +7.04] [+1.12, +15.15] [+3.28, +16.65]

LAX 520.29 +0.01 +6.06 +9.72

[-0.32, +2.44] [-2.44, +7.76] [+3.17, +11.33]

ORD 485.16 +0.46 -16.17 +2.84

[-0.29, +4.07] [-18.34, +4.2] [-14.52, +6.71]

MIA 314.55 -0.34 -29.68 -19.71

[-0.51, +4.56] [-31.76, -26.24] [-20.68, -17.1]

JFK 631.27 -0.3 -21.65 -14.39

[-0.43, +2.19] [-26.6, -11.63] [-15.55, -4.7]

US hubs

CLT 134.27 -1.52 +10.29 +7.81

[-2.56, +3.27] [+3.3, +14.43] [+1.79, +12.44]

PHX 237.55 -0.64 -20.99 -19.3

[-2.48, +3.66] [-33.98, -19.12] [-32.53, -17]

DCA 428.19 -0.29 +12.68 +12.72

[-0.62, +2.26] [+7, +17.07] [+1.43, +18.49]

PHL 213.55 -0.91 +1.31 +8.48

[-1.01, +2.98] [-6.46, +7.43] [+2.14, +13.58]

Note:

Consumer surplus is computed using the log-sum formula and it is in USD 1 million up to

constant of integration. Mean consumer surplus is total consumer surplus divided by the number

of markets out of hubs. Percentage differences with respect to Before are reported.

Tables 2.9 and 2.10 show changes in consumer surplus at the hub level. We see that the impact

of the merger is quite heterogeneous across hubs, with consumers in some cities benefiting a

lot and others suffering a lot. Not surprisingly, Miami and New York are among the hardest

hit, mainly due to reduced operations of the merged entity. Similarly, consumer surplus drops

substantially in Chicago (ORD) Phoenix (PHX). All three cities were targeted by the remedies,

suggesting the concern of the state Attorney Generals was warranted. When comparing the “No

remedies” scenario to the “With remedies” scenario, we see that the drop in consumer surplus

in Miami and New York becomes less pronounced and even turns into a gain in Chicago,

suggesting that the remedies were helpful in at least mitigating consumer harm.
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Table 2.10: Change in consumer surplus at hub airports of American due to the bankruptcy

Before After bankruptcy

Networks fixed Networks vary

AA hubs

DFW 341.22 -34.37 -16.4

[-17.37, +0.13]

LAX 520.29 -10.86 +7.1

[+3.85, +11.8]

ORD 485.16 -16.85 -11.37

[-16.71, -10.05]

MIA 314.55 -15.33 -30.2

[-32.61, -25.39]

JFK 631.27 -9.13 -18.36

[-21.04, -7.68]

Note:

Consumer surplus is computed using the log-sum

formula and it is in USD 1 million up to constant

of integration. Mean consumer surplus is total con-

sumer surplus divided by the number of markets

out of hubs. Percentage differences with respect to

Before are reported.

In contrast, as Table 2.10 suggests, the picture is bleaker in the case of American’s bankruptcy.

With the exception of Los Angeles - where other firms enter a lot- consumer surplus drops sub-

stantially. Again, Miami and New York suffer the most. It is also noteworthy that Dallas/Fort

Worth (DFW), American’s biggest hub, now sees consumer surplus drop by around 16%. Com-

paring the impact on consumer surplus on hubs between the merger and the bankruptcy of

American underlines the negative effects of removing a large hub-and-spoke airline from the

market: consumers suffer for no longer having access to a large network and hub amenities and

other airlines struggle to fill the void left behind by the bankruptcy.

Finally, Table 2.11 shows the merger’s and bankruptcy’s impact on prices, markups, and

marginal costs. We observe a drop in prices in response to both the merger and the bankruptcy

(with the exception of one-stop flights offered by other airlines). At the same time, marginal

cost also falls quite a bit. For the merging entity, the drop in marginal cost is due to a larger

network post-merger. Even though their post-merger network is smaller than their combined

pre-merger network, the post-merger network is still larger than the individual per-merger net-

works, allowing for marginal cost savings. Similarly, the other carriers increase their operations

substantially both in response to a merger and a bankruptcy, leading to marginal cost savings

from a larger network and to lower prices. Interestingly, the remedies reduce the increase in
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Table 2.11: Changes in prices, marginal cost, and markups

Before After

Merger Bankruptcy

No remedies With remedies

AA: Direct
Price 406.24 -6.67 -6.56

[-6.96, -6.15] [-7.08, -5.93]
Marginal Cost 276.7 -11.54 -10.76

[-11.82, -11.29] [-11.19, -9.5]
Markup 129.54 +3.84 +2.53

[+3, +5.31] [+0.52, +3.71]

Others: Direct
Price 413.19 -1.63 -4.01 -2.85

[-4.18, +0.24] [-4.98, -0.77] [-3.9, -1.88]
Marginal Cost 291.6 -4.42 -6.38 -5.68

[-7.61, -1.14] [-7.95, -1.77] [-7.28, -4.37]
Markup 121.59 +3.85 +1.74 +3.73

[+3.23, +5.06] [+1.37, +2.69] [+3.42, +4.1]

AA: One-stop
Price 466.39 -6.37 -7.06

[-7.2, -5.4] [-7.58, -6.68]
Marginal Cost 351.28 -10.94 -11.4

[-12.15, -9.57] [-12.05, -10.42]
Markup 115.11 +8.1 +6.51

[+5.51, +9.36] [+3.28, +7.4]

Others: One-stop
Price 416.12 +2.41 +1.75 +1.47

[+1.32, +3.17] [+0.97, +2.6] [+1.13, +1.82]
Marginal Cost 301.18 +2.71 +2.53 +1.24

[+1.24, +3.81] [+1.35, +3.65] [+0.71, +1.66]
Markup 114.94 +1.1 -0.26 +2.18

[+0.7, +2.75] [-0.74, +0.82] [+1.91, +2.62]

markups for all firms and products. The reason may be increased competition, especially since

American faces pressure to raise markups as the remedies lead to a larger network with higher

fixed costs.

Discussion

Overall, our counterfactual exercise suggests that the merger had a small positive impact on

consumer surplus. However, the overall effect hides substantial heterogeneity across cities:

consumers in some hub markets saw a large decrease in consumer surplus that was mitigated,

but not reversed by the remedies imposed. Further, our results suggest that letting American

and US Airways merge was better than the bankruptcy and disappearance of American. Even

though the remaining firms enter substantially in response to American disappearing, they

cannot completely fill out the void left behind. We also find that the remedies that the merged

entity agreed to and put a floor on levels of operation at the majority of hubs helped in
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mitigating harm to consumers and pushed the overall change in consumer surplus from slightly

negative to slightly positive. The positive effect of these remedies shows an advantage of

mergers over the disappearance of firms in especially hub-and-spoke networks: competition

authorities can shape post-merger outcomes by imposing remedies.

2.6 Conclusions

We consider a two-stage model of airline competition where airlines design their route networks

in the first stage and compete in prices in the second stage. We show identification of the

second-stage parameters by following the standard approach for supply and demand models

with differentiated products. We show (set) identification of the first-stage parameters by

adopting a revealed preference perspective and exploiting inequalities derived from equilibrium

implications. We estimate our model using data on the US airline industry from the second

quarter of 2011. In the first stage, we find that fixed costs increase in the number of destinations

reachable from hub airports. On the supply side of the second stage, we find that marginal

costs decrease in the number of flights (direct or one-stop) offered out of the endpoints. On

the demand side of the second stage, we find that consumer utility increases in the number of

direct connections that can be reached from the endpoints. We then use the results to evaluate

the merger between American Airlines and US Airways which did occur at a later date. We

find that remedies imposed on the merging parties turned a slight decrease in consumer surplus

into a slight increase. At the most negatively affected hubs, the remedies helped to contain

consumer harm. We also compare the merger to a hypothetical bankruptcy and disappearance

of American Airlines. We find that the bankruptcy leads to more rival firm entry than the

merger. However, the loss of access to a large network leads to substantial loss in consumer

surplus at American’s hubs. Other firms are not able to fill this void completely. Overall,

consumer surplus is projected to decrease by more than in the merger case.

Our work leaves several avenues for future research. In our model, we abstract from capacity

and frequency choices which are an important point of concern both to consumers as well

as antitrust authorities. Extending our framework to include these kind of choices is possible,

albeit at the cost of increasing the computational burden. Similarly, endogenising hub decisions

would make it possible to analyse deeper changes in network structure, such as the choice

between a hub-and-spoke and a point-to-point network. Assuming exogenous hubs prevents

firms from creating new hubs, which may be especially interesting to consider in the case where

we let American Airlines disappear. However, we believe that the assumption of exogenous

hubs is reasonable in our setting for two reasons: First, the other airlines already have large

hub-and-spoke networks, making it very costly to create additional hubs. Second, the trend

in the US Airline industry has been to reduce the number of hubs, rather than increase them

(see also Berry and Jia, 2010). Finally, we do not consider all remedies that were imposed on

the new merged entity. For instance, the US Department of Justice ordered the merged entity
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to give up slots and gates at several airports in order to facilitate the entry of new airlines.

Adding capacity and frequency choices to our model would allow for a detailed evaluation of

these remedies.

We are currently working on inference for the first-stage parameters and on further robustness

checks for the counterfactual part.
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Appendix F

Existence of Nash equilibrium

networks

As discussed in Section 2.3.3, our methodology does not require the existence of Nash equilib-

rium networks for every possible parameterization and realization of the variables. Formally

proving the existence of Nash equilibrium networks is a difficult and open theoretical ques-

tion, due to the presence of spillover effects in entry decisions across markets on the demand,

marginal cost, and fixed cost sides.

Berry (1992) establishes equilibrium existence in one of the first empirical models of entry that

accounts for the strategic interactions among the airlines in the second-stage pricing game.

His proof relies on the assumption that the entry decisions are independent across markets

and, hence, it is not applicable to our case. Another approach that has been used in the

literature to show existence of Nash equilibrium networks consists of representing the model

as a potential game (Monderer and Shapley, 1996). This seems to be a feasible exercise only

when the payoff function is additive separable in the linking decisions and linear in the spillover

effects (for example, Mele, 2017), which is not the case here. Alternatively, it is possible to

show the existence of Nash equilibrium networks by assuming that the game is supermodular

(for example, Miyauchi, 2016; Sheng, 2020), in order to rely on the fixed-point theorem for

isotone mappings (Topkis, 1979). However, supermodularity does not hold in our setting due

to the second-stage competition among the airlines. Finally, one could attempt to decompose

the original game into “local” games such that the original game is in equilibrium if and only

if each local game is in equilibrium (Gualdani, 2021). In turn, the existence of an equilibrium

in each local game - which is typically easier to be established - is sufficient for the existence

of an equilibrium in the original game. However, the classes of spillover effects considered in
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our model do not allow us to implement such a decomposition.

It should also be noticed that the revealed-preference inequalities, which we use to bound the

first-stage parameters, resemble the notion of pairwise stability used in network theory, where

no players have profitable deviations by adding or removing a link (Jackson and Wolinsky,

1996). Therefore, we have explored the possibility of establishing an equilibrium in entry

decisions weaker than Nash equilibrium, along the lines of pairwise stability. In particular,

according to Jackson and Watts (2002), for any payoff function there is either a pairwise stable

network or a closed cycle.1 A typical way used in the literature to exclude the presence of

closed cycles consists of showing that the model can be represented as a potential game, as

discussed in Jackson and Watts (2001) and Hellmann (2013). As earlier, however, this requires

the payoff function to be additive separable in the linking decisions and linear in the spillover

effects (for example, Sheng, 2020), which is not our case.2

1A closed cycle represents a situation in which individuals never reach a stable state and constantly switch
between forming and severing links.

2One may wonder whether allowing for private fixed cost shocks could simplify the existence proof. Espín-
Sánchez, Parra, and Wang (2021) prove equilibrium existence in a class of entry model where the firms have
some private information at the entry stage. However, the class of entry models they consider do not allow for
multi-product firms and for spillover effects in entry decisions across markets. Further, in our setting, we view
more reasonable to assume that the fixed cost shocks are common knowledge among the airlines, as discussed
in Section 2.3.2.
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Appendix G

Inference

G.1 Inference on the second-stage parameters

We conduct inference on θ0 via GMM and under the assumption that the number of markets

goes to infinity. Formally, we consider the moment conditions of Section 2.4.1 and use their

sample analogues to construct a GMM objective function which should be minimised with

respect to θ ∈ Θ:

Q(θ) = M(θ)′AM(θ), (G.1.1)

where

M(θ) ≡




1
|J |

∑
t∈T

∑
j∈Jt

[τj,t(X
⊕
t ,W

⊕
t ,M, s⊕

t , P
⊕
t , G; θ0) × zj,t,1(X

⊕
t ,W

⊕
t )]

1
|J |

∑
t∈T

∑
j∈Jt

[τj,t(X
⊕
t ,W
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t , P
⊕
t , G; θ0) × zj,t,2(X

⊕
t ,W

⊕
t )]

...
1

|J |

∑
t∈T

∑
j∈Jt

[τj,t(X
⊕
t ,W

⊕
t ,M, s⊕

t , P
⊕
t , G; θ0) × zj,t,L(X⊕

t ,W
⊕
t )]



,

J ≡ ∪t∈T Jt is the set of all offered products, and A is an appropriate 2L × 2L weighting

matrix. In particular, A is computed via the usual two-step procedure: first, we estimate the

parameters using the optimal weighting matrix under conditional homoskedasticity; second,

we use the obtained estimates to construct the optimal weighting matrix under conditional

heteroskedasticity and re-estimate the parameters.

Note that we estimate the demand and supply sides jointly. We could also estimate the demand

and supply sides separately, by following a two-step procedure: first, the demand parameters are

estimated; then, these estimates are used to compute the markups; lastly, the resulting marginal

costs are regressed on the observed marginal cost shifters to obtain the supply parameters. We
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have decided to estimate the demand and supply sides jointly because it allows us to take

into account the potential correlation between the demand and supply moments and, hence,

obtain more precise estimates, as discussed in Berry et al. (1995). Further, given that we have

a computationally “light” demand specification, the additional cost of estimating the demand

and supply sides jointly is negligible.

Finally, we can account for the non i.i.d.ness of observations across markets by using HAC or

cluster-robust standard errors (Leung, 2021).

G.2 Inference on the first-stage parameters

Following Section 2.4.2, the vector of first-stage parameters, γ0, is set identified by N×(R++R−)

moment inequalities, where R+ is the number of instruments available for the class of deviations

“(+ab)” for each firm, R− is the number of instruments available for the class of deviations

“(−ab)” for each firm, and N is the number of firms. These moment inequalities are

E[Z
r+

(+ab),f × (∆Π(+ab),f − ∆FC
⊤

(+ab),f γ0)|Gab,f = 0] ≥ 0,

E[Z
r−

(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),f γ0)|Gab,f = 1] ≥ 0,

r+ = 1, . . . ,R+, r− = 1, . . . ,R−, f = 1, . . . ,N,

where Zr+

(+ab),f , Z
r−

(−ab),f are the instruments, ∆Π(+ab),f ,∆Π(−ab),f are the differences in the ex-

pected second-stage profits, and ∆FC
⊤

(+ab),f γ0,∆FC
⊤

(−ab),f γ0 are the differences in the system-

atic fixed costs. Further, it is useful to rewrite the above moment inequalities as unconditional

moment inequalities,

E[(1 −Gab,f ) × Z
r+

(+ab),f × (∆Π(+ab),f − ∆FC
⊤

(+ab),f γ0)] ≥ 0,

E[Gab,f × Z
r−

(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),f γ0)] ≥ 0,

r+ = 1, . . . ,R+, r− = 1, . . . ,R−, f = 1, . . . ,N.

(G.2.1)

The moment inequalities in (G.2.1) are linear in γ0. Therefore, the identified set for γ0, ΓI , is

a convex polytope. We assume that ΓI is nonempty and bounded. The non-emptiness of ΓI

means that our structural model is well-specified and the instruments are valid. Andrews and

Kwon (2019) propose a test for misspecification which could be used here. The boundedness of

ΓI means that, within the classes of deviations considered, the instruments capture sufficient

variations in profits relative to the support of the first-stage shocks.

Convexity has been proved to be a particularly attractive feature in the set identification

literature (Beresteanu and Molinari, 2008; Bontemps, Magnac, and Maurin, 2012; Kaido and
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Santos, 2014). In fact, it often reduces the computational burden of estimation because the

analysts can focus on estimating the support function of the identified set. The support function

of ΓI describes the distances of the supporting hyperplanes of ΓI in each direction from the

origin (Figure G.2.1). If the chosen direction, q, has its k-th component equal to 1 (resp.,

q1

δ∗(q1; ΓI)

ΓI

q2

δ∗(q2; ΓI)

A

B

Figure G.2.1: The support function. A is a vertex. [AB] is an exposed face.

−1) and the other components equal to 0, then the support function of ΓI in direction q is

equal to the maximum (resp., minus the minimum) value of the k-th component of γ ∈ ΓI .1

Therefore, constructing a confidence interval for any component (or, any linear combination of

components) of γ ∈ ΓI involves the estimation of the support function in two specific directions

only.

In the next paragraphs, we elaborate on the above discussion. Our exposition is articulated

in three steps. First, we argue that the support function of ΓI can be rewritten as a linear

program. Second, we derive the asymptotic distribution of the estimated support function of

ΓI . Third, we show how to use such asymptotic distribution to construct a confidence interval

for any component of γ ∈ ΓI .2

For easiness of exposition, in what follows we focus only on the moment inequalities of firm f

1In particular, one can easily contruct an outer rectangular set of ΓI by considering these two directions
for each k-th component of γ ∈ ΓI .

2Andrews, Roth, and Pakes (2019) develop an inference method for a class of linear conditional moment
inequalities. Our approach exploits the convexity of the identified set and allows us to easily incorporate the
sampling uncertainty induced by the estimation of θ0. Comparison with their approach is left to future research.
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and on the class of deviations “(−ab)”:

E[Gab,f × Z
r−

(−ab),f × (∆Π(−ab),f − ∆FC
⊤

(−ab),f γ0)] ≥ 0, r− = 1, . . . ,R−. (G.2.2)

We streamline the notation of (G.2.2) as

E(Zr,mAm) − E(Zr,mB
⊤
m)γ0 ≥ 0, r = 1, . . . ,R,

where the subscript f is omitted; m is the market index and replaces the subscripts ab and

(−ab); Zr,m is the instrument and replaces Zr−

(−ab,f); R is the number of instruments and replaces

R−; Am is the difference in the expected second-stage profits multiplied by Gm,f and replaces

Gab,f × ∆Π(−ab),f ; B⊤
mγ0 is the difference in the systematic fixed cost multiplied by Gm,f and

replaces Gab,f × ∆FC
⊤

(−ab),f γ0.

Step 1 Following Hiriart-Urruty and Lemaréchal (1996) (p.235), the support function of ΓI

in any direction q can be written as a linear program in the standard form by strong duality:

δ(q,ΓI) ≡ sup
γ∈ΓI

q⊤γ,

= inf
t≥0

R∑

r=1

trE(Zr,mAm),

s.t.
R∑

r=1

trE(Zr,mBm) = q.

(G.2.3)

The Lagrangian of (G.2.3) is equal to

L(t, µ, ν) ≡
R∑

r=1

trE(Zr,mAm) + µ⊤

(
R∑

r=1

trE(Zr,mBm) − q

)
− ν⊤t, (G.2.4)

where µ = (µ1, . . . , µN+1) is the vector of Lagrange multipliers for the equality constraints;

ν = (ν1, . . . , νR) is the vector of Lagrange multipliers for the inequality constraints. We denote

by T and M the sets of t and µ satisfying the KKT conditions, respectively.

Step 2 We make the simplifying assumption that θ0 is known by the researcher. In practice,

θ0 is estimated and we explain how to account for the resulting sampling uncertainty at the

end of the section. We further make the simplifying assumption that we have an i.i.d. random

sample of observations

{Z1,m, . . . , ZR,m, Am, Bm}M
m=1,

where M is the number of sampled markets, and that the Central Limit Theorem applies to

all the average of the quantities of interest. In practice, our observations are not i.i.d. across

markets and one can account for it, for example, by implementing the resampling approach by
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Leung (2020).3

We introduce some notation that is useful for the next arguments. For every r = 1, . . . ,R, let

Xr be the limit in distribution of
√

M( 1
M

∑M
m=1 Zr,mBm −E(Zr,mBm)), i.e., a (N+1)×1 random

normal vector centered with variance-covariance matrix V ar(Zr,mBm). Fix j = 1, . . .N + 1.

Select the j-th element from Xr. Repeat this operation for each r = 1, . . . ,R. Denote by Xj the

resulting R×1 vector. LetWr be the limit in distribution of
√

M( 1
M

∑M
m=1 Zr,mAm−E(Zr,mAm)),

i.e., a random normal variable centered with variance V ar(Zr,mAm). As earlier, note that the

random variables {Wr}R
r=1 are correlated. Let the estimated identified set be defined as

Γ̂I ≡
{
γ ∈ Γ :

1

M

M∑

m=1

Zr,mB
⊤
mγ ≤ 1

M

M∑

m=1

Zr,mAm for r = 1, . . . ,R
}
.

Let the estimated support function in direction q be defined as

δ̂(q; ΓI) ≡ δ(q; Γ̂I).

Theorem G.2.1 provides the asymptotic distribution of δ̂(q; ΓI) in any direction q.

Theorem G.2.1. Assume that the moments of order 2 + τ of the random variables exist for

some τ > 0. Then:

(i) The estimated support function, δ̂(q; ΓI), tends to the true support function, δ(q; ΓI),

uniformly in q in the unit ball.

(ii) It holds that, uniformly in q,

√
M
(
δ̂(q; ΓI) − δ(q; ΓI)

)
d−→

M→∞
inf
t∈T

sup
µ∈M




R∑

r=1

trWr +
N+1∑

j=1

µjt
⊤Xj


 .

If T and M are singleton, then the asymptotic distribution is normal. ⋄

Proof. (i) comes from the convergence of Γ̂I to ΓI with respect to the Hausdorff distance. (ii)

comes from Shapiro, Dentcheva, and Ruszczyński (2014), Theorem 5.11, p.173.
3Note that our methodology allows for the airlines’ networks to be partially observed, provided that we

fully observe the portions of the airlines’ networks whose nodes are the cities at the endpoints of the sampled
markets.
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Step 3 Theorem G.2.1 provides the asymptotic distribution of the estimated support function

in any direction. Hence, as discussed at the beginning of this section, it can be used to derive

confidence regions for any component (or, any linear combination of components) of γ ∈ ΓI .

However, note that such asymptotic distribution depends on T and M. If these sets are

singleton, then the estimated support function is asymptotically normal, with a variance that

can be estimated from the data. Unfortunately, these sets are not singleton in all directions q.

For instance, consider the directions which correspond to the outer normal of an exposed face

of ΓI (e.g., q1 in Figure G.2.1). This is a well-known problem in the set identification literature.

One solution consists of smoothing ΓI . Chandrasekhar, Chernozhukov, Molinari, and Schrimpf

(2019) transform the explanatory variables into continuous ones by adding εN(0, 1) to each

discrete explanatory variable. Bontemps et al. (2012) and Gafarov (2019) perturb the support

function by adding a penalty term.

Here, we follow Gafarov (2019)’s approach and add the penalty term ε||γ||2 to the support

function of ΓI in any direction q:

δε(q,ΓI) ≡ sup
γ∈ΓI

q⊤γ − ε||γ||2, (G.2.5)

with ǫ > 0 but small. Since ε||γ||2 is strictly convex, (G.2.5) has a unique solution with respect

to γ, for any direction q. In turn, by strong duality, it holds that

δε(q,ΓI) = inf
t≥0

R∑

r=1

trE(Zr,mAm),

s.t.

∥∥∥∥∥

R∑

r=1

trE(Zr,mBm) − q

∥∥∥∥∥
2

≤ ε.

(G.2.6)

The Lagrangian of (G.2.6) is equal to

L(t, µ, ν) ≡
R∑

r=1

trE(Zr,mAm) + µ⊤

(∥∥∥∥∥

R∑

r=1

trE(Zr,mBm) − q

∥∥∥∥∥
2

− ǫ

)
− ν⊤t. (G.2.7)

We denote by Tε and Mε the sets of t and µ satisfying the KKT conditions, respectively.

Note that Mε is a singleton. Further, we impose linear independence constraint qualification

on (G.2.5) so as to ensure that Tǫ is also a singleton. Note also that (G.2.5) allows us to

estimate an outer set of ΓI and, therefore, makes our confidence intervals slightly conservative.

Lastly, note that (G.2.6) is still relatively easy to calculate because it is a convex quadratic

program.

We denote the unique elements of Tε and Mε by tε and µε, respectively. If {ǫM}M∈N is a

sequence of penalty terms tending to zero at a speed lower than
√

M, then the limits of tεM
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and µεM
are also unique. We denote such unique limits by t∗ and µ∗, respectively.

Under the regularity assumptions above, it holds that

√
M
(
δ̂εM

(q; ΓI) − δ(q; ΓI)
)

d−→
M→∞

R∑

r=1

t∗rWr +
N+1∑

j=1

µ∗
j t

∗⊤Xj.

In particular, the limiting random variable is a normal random variable, whose variance can

estimated from the data.

Therefore, one can derive a 95% confidence interval for any k-th component, γk, of γ ∈ ΓI by

implementing the following procedure:

1. Take q = (0, . . . , 0, 1, 0, . . . , 0), where 1 is in correspondence of the k-th component of q.

2. Take εM ≡ log M. Compute δ̂εM
(q; ΓI).

3. Compute the standard deviation of
∑R

r=1 tr,ǫM
Wr +

∑N+1
j=1 µj,ǫM

t⊤ǫM
Xj. Denote such stan-

dard deviation by σu
k .

4. Repeat Steps 1-3 with −q. Denote the standard deviation from Step 3 by σu
k .

5. Let zα be the α-quantile of the standard normal distribution. Then,

[−δ̂εM
(−q; ΓI) − z1−α/2σ

l
k, δ̂εM

(q; ΓI) + z1−α/2σ
u
k ],

is a confidence interval for γk with limiting coverage probability 1 − α.

Note that, following Stoye (2009), we can adapt the above procedure to get uniformity with

respect to the diameter of the identified set. Lastly, observe that in the previous steps we

have assumed that θ0 is known by the researcher. In practice, θ0 is estimated and we should

account for the resulting sampling uncertainty. θ0 enters only Am. Therefore, under the usual

smoothness assumption on the behaviour of the function Am in the neighbourhood of θ0, we just

need to modify the asymptotic distribution of Wr. Specifically, a standard Taylor expansion

around θ0 allows us to incorporate the impact of the sampling uncertainty induced by the

estimation of θ0 in the variance of Wr.
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G.3 Computing the first-stage moment inequalities

We provide some directions on how to compute ∆Π(+ab),f and ∆FC(+ab),f entering the first-

stage moment inequalities in (2.16). First, we update the systematic fixed costs by adding

Gab,f = 1. Second, we update the list of products offered by firm f , by adding nonstop flights

between cities a and b. Further, if a is one of firm f ’s hubs, then we add one-stop flights via

a between b and all cities d such that Gda,f = 1. Similarly, if b is one of firm f ’s hubs, we

add one-stop flights via b between a and all cities d such that Gdb,f = 1.4 Third, we update

the matrices of product covariates by adding the demand and marginal cost shifters of the

new products. Fourth, for each updated market, we randomly draw 500 vectors from a normal

distribution with mean and variance equal to the empirical mean and variance of the vector

of second-stage shocks that have been computed via BLP inversion. For each of these draws,

we iterate on the F.O.C.s in (2.6) to find the new prices and market shares and we compute

the second-stage variable profits. We have decided to use the F.O.C.s in (2.6) as a contraction

mapping. While we do not formally prove that they are indeed a contraction mapping, we have

found that the resulting price vector does not change when using different starting values and

that the mapping converges in all the considered cases. We average across draws and get the

simulated expected second-stage variable profits. Lastly, we compute ∆Π(+ab),f and ∆FC(+ab),f

as the difference between the expected second-stage profits minus the systematic fixed costs

in the factual scenario and the expected second-stage variable profits minus the systematic

fixed costs in the counterfactual scenario. An analogous algorithm is developed to compute

∆Π(−ab),f and ∆FC(−ab),f .

G.4 First-stage instruments

Table G.4.1 reports the instruments used to construct the first-stage moment inequalities. The

first section of Table G.4.1 lists the instruments for the class of deviations “(−ab)”. The second

section of Table G.4.1 lists the instruments for the class of deviations “(+ab)”. For example,

with regards to American Airlines, we consider 3 instruments for the class of deviations “(−ab)”:

(1) Z(−ab),AA = 1 if cities a or b are hubs for American Airlines and market {a, b} has a size

greater than 6 millions.

(2) Z(−ab),AA = 1 if cities a or b are hubs for American Airlines and are not historically clas-

sified as having a poor on-time performance of flights, according to the U.S. Department

of Transportation.5

4We do not add a one-stop flights when the resulting itinerary is unrealistic, such as a flight from Seattle
to Denver via Miami. Apart from these extreme cases, we assume that the firm will offer all possible one-stop
flights.

5This can be found at https://www.transtats.bts.gov/DL_SelectFields.asp?gnoyr_VQ=FGJ&QO_
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(3) Z(−ab),AA = 1 if cities a and b are not hubs for any airlines.

American Airlines will tend to always offer direct flights in the above markets, plausibly unre-

lated to the fixed cost shocks, due to the expected very high profitability. Still with regards to

American Airlines, we consider 2 instruments for the class of deviations “(+ab)”:

(4) Z(+ab),AA = 1 if cities a and b are hubs for the competitors and not for American Airlines.6

(5) Z(+ab),AA = 1 cities a or b are hubs for American Airlines and market {a, b} has a size

smaller than 3 millions.

American Airlines will tend to never offer direct flights in the above markets, plausibly unrelated

to the fixed cost shocks, due to the expected very low profitability.

We construct similar instruments for the other airlines. Note that instruments (1) and (4) are

based on lower and upper bounds for the market size that are homogeneous across airlines.

The only exception is instrument (4) for AA, where we consider as upper bound 3 millions,

while for the other carriers we take 1.5 millions. We do so in order to take account of the

different observed segment choice patterns of AA.

Table G.4.1: First-stage instruments.

Markets that are served with direct flights

American: (1) hub, size > 6 million; (2) hub, no historical constraints; (3) non-hub, no other firm has hub
Delta: (1) hub, size > 6 million; (2) hub, no historical constraints; (3) non-hub, no other firm has hub
United: (1) hub, size > 6 million; (2) hub, no historical constraints; (3) non-hub, no other firm has hub
US Airways: (1) hub, size > 6 million; (2) hub, no historical constraints; (3) non-hub, no other firm has hub
Southwest: (1) hub, size > 6 million; (2) hub, no historical constraints; (3) non-hub, no other firm has hub

Markets that are not served with direct flights

American: (4) hub, size < 3 million; (5) non-hub, other firm has hub
Delta: (4) hub, size < 1.5 million; (5) non-hub, other firm has hub
United: (4) hub, size < 1.5 million; (5) non-hub, other firm has hub
US Airways: (4) hub, size < 1.5 million; (5) non-hub, other firm has hub
Southwest: (4) hub, size < 1.5 million; (5) non-hub, other firm has hub

fu146_anzr=b0-gvzr.
6One may wonder whether we should expect the fixed cost shocks of entering non-hub markets to be

generally higher because the hub airlines may inhibit potential competitors’ abilities to obtain gates, slots, and
other facilities necessary for entry or expansion. We do not view this as a systematic tendency taking place at
each hub airport. Further, the fact that we do not distinguish between airports in the same city lessens any
concern of this type.
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Appendix H

Other tables and figures

Table H.0.1: Mergers and bankruptcies.

Mergers

American Airlines + Trans World Airlines (2001)
US Airways + American West (2005)
Delta Airlines + Northwest Airlines (2008)
United Airlines + Continental Airlines (2010)
Southwest Airlines + AirTran (2010)
American Airlines + US Airways (2013)

Bankruptcies

US Airways (2002-2003)
United Airlines (2002-2006)
US Airways (2004-2005)
Northwest Airlines (2005-2007)
Delta Airlines (2005-2007)
American Airlines (2011-2013)

In the first section of Table H.0.1, we report the mergers between the major carriers after

2001. As a result of these mergers, the number of legacy carriers has dropped from 11 in 2001

to 4 nowadays. In the second section of Table H.0.1, we report the airlines which have been

under Chapter 11 bankruptcy after 2001. All such bankruptcy events were resolved with a

restructuring or a merger.

Figure H.0.1 represents the network of markets served by American Airlines, before the merger

with US Airways. The nodes of the networks are the cities. There is a link between two nodes

if American Airlines offers direct flights between those two cities. The red points represents

the hubs of American Airlines (Dallas, New York City, Los Angeles, Miami, and Chicago).
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Figure H.0.1: American Airlines’ network.

Table H.0.2: Hubs.

AA DL UA US WN

Dallas Atlanta Washington DC Charlotte Washington DC
New York Cincinnati Denver Washington DC Denver
Los Angeles Detroit Houston Philadelphia Houston
Miami New York New York Phoenix Las Vegas
Chicago Memphis Los Angeles Chicago

Minneapolis-Saint Paul Chicago Phoenix
Salt Lake City San Francisco
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Table H.0.2 lists the hubs of the legacy carriers and the focus cities of Southwest Airlines.
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Chapter 3

Barriers to adoption of real-time

electricity pricing: Evidence from New

Zealand

WITH CHARLES PÉBEREAU
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3.1 Introduction

Economic theory predicts that introducing real-time electricity pricing (RTP) in an economy

with rational and perfectly informed agents will lead the retail market to gradually unravel.

The consumers with the consumption profiles least costly to serve self-select into RTP first,

increasing the average cost of serving the other consumers. As a result, retailers increase their

rates, and a new set of consumers finds it profitable to switch to RTP. This spiral of higher

rates more switching goes on and until a significant share of consumers are on an RTP plan 1.

This scenario did not occur in New Zealand. More than seven years after the introduction of

RTP, the share of residential consumers on this tariff remains below 1.25%.

In this paper, we document the introduction of RTP in New Zealand to bring new insights

about barriers to adoption. Specifically, we investigate consumer behavior to identify why the

New Zealand retail market did not unravel. Our findings suggest that inexperienced consumers

- new and prospective adopters - overreact to contemporaneous spot prices but that, over time,

consumers who have adopted RTP learn to consider long-term outcomes. In particular, we

find that a crisis on the spot market led many consumers who had recently adopted RTP to

switch to other tariffs. This phenomenon may have interfered with the unraveling process. The

significant effect of learning is a sign of imperfect information: consumers lack information, have

bounded rationality, or both. An essential remedy to this barrier is thus to provide consumers

with relevant information: ex-ante, to help them in their adoption decision, and ex-post, to

help them become familiar with varying spot prices and consider the long-run payoffs rather

than focus on the immediate effect of spot prices.

Consumers on RTP face the time-varying marginal cost of electricity, while those on standard

tariffs face a constant one.2 Because the demand of residential consumers has historically been

inelastic, the prospect of large efficiency gains stemming from increased demand response has

led many economists and policy-makers to advocate for RTP.3 In Europe, for instance, the

Electricity Directive4 aims at fostering the roll-out of smart meters and adoption of RTP for

residential consumers. The literature has identified several barriers to the widespread adoption

of RTP. Joskow and Wolfram (2012) review some of them and identify the fear of significant

redistribution as the biggest barrier. However, the case of New Zealand shows that take-up

can fail even before questions of redistribution arise. Our paper contributes to this literature

by identifying imperfect information as a barrier to adoption.

1See for instance Borenstein (2005b).
2For simplicity, we refer here to flat-rates plans, which are widely popular. There exist dynamic electricity

tariffs other than RTP, such as Time-of-Use or Critical Peak Pricing.
3See Borenstein (2005a) and Joskow and Wolfram (2012) among others.
4Directive (EU) 2019/944, June 2019
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We study consumer behavior regarding real-time pricing in New Zealand to explain why the

retail market did not unravel. In particular, we focus on the following questions: First, what

affects consumer decisions to switch to real-time pricing? Second, how do consumers react

to a crisis on the spot market? We answer these questions using a unique data set in which

we observe all electricity retailer switches by residential consumers in New Zealand from 2014

to 2018. We further observe monthly electricity consumption, half-hourly spot prices, and

detailed census data.

We find that contemporaneous electricity spot prices significantly affect consumer decisions to

adopt real-time pricing. We build several price definitions that consumers may consider and

show that contemporaneous spot prices explain their adoption decisions best. Furthermore,

we find that, during a crisis on the spot market, most consumers choose to forego adoption

rather than postponing it. While we do not observe how often consumers consider adopting

RTP, this suggests that they do at most once and, thus, that they do not strategically time

adoption decisions.

Following the adoption of RTP, nearly no consumers left RTP until a crisis on the electricity

spot market during the winter of 2017 (hereafter referred to as the crisis). We find that during

this crisis, the share of consumers switching to another tariff decreased with the time spent

on RTP before the crisis. Furthermore, among consumers who discarded RTP during the

crisis, the share of those switching back after the crisis increases with the time spent on RTP

before the crisis. Exploiting temporal variations in the roll-out of real-time pricing across

different cities, we rule out that this correlation is due to selection effects. While we document

selection dynamics at adoption, this finding suggests that post-adoption learning overshadowed

pre-adoption idiosyncrasies.

Finally, the demand response of consumers who stayed on RTP during the crisis decreased

with their experience with the tariff. In particular, consumers with the shortest experience

with RTP conserved electricity relative to consumers on other tariffs, while those with the

highest experience increased their electricity consumption. This finding is at odds with selection

dynamics because, intuitively, we would expect the most price-responsive consumers to adopt

RTP first. This qualitative argument suggests that the correlation between experience and

demand response is causal.

Together, these findings suggest that inexperienced consumers - new and prospective adopters

- overreact to contemporaneous spot prices. Over time, however, consumers who have adopted

RTP put less weight on immediate outcomes. This interpretation is coherent with the fact

consumers on RTP have access to their savings computed relatively to their previous tariff.

Thus, more experienced consumers have access to estimates of their payoffs under RTP over a
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longer horizon.

The perception of RTP of inexperienced consumers is paramount to the unraveling process.

If prospective adopters do not switch to RTP or if new adopters quickly discard RTP, then

retailers will not increase the rates on the other tariffs, which will block the unraveling process.

Relatedly, if there is social learning, the first impressions of a consumer on real-time pricing

can influence other consumers’ decision to adopt the tariff. Indeed, consumers who have not

yet adopted know consumers already having adopted are likely to benefit from RTP more than

they do. Therefore, consumers who discard RTP signal to those who have yet to adopt that

RTP is not for them either.

In the unraveling scenario, the first consumers who switch to RTP are those who benefit the

most from it, and the benefits that the marginal consumer derives from adopting to RTP

decreases in each new wave of switches. Subsequently, after each new wave, inexperienced

consumers may be more easily discouraged by the advent of high spot prices. This problem

may grow over time when considering that the few consumers who have adopted RTP are

among the most educated but also, presumably, the most motivated to experiment with this

new tariff.

Our results give rise to several policy implications. We find evidence that consumers rely on

inadequate information to make decisions about RTP, either because they lack a better one or

because they do not make use of it. This can interfere with the unraveling process if consumers

who would benefit from RTP forego adoption or if adopters get a bad first impression and

retract.

Estimating the benefits of switching is a complicated exercise and simplifying it could increase

adoption. For instance, easing the access to smart meters’ records of real-time electricity

consumption and its usage on tariff comparison websites could help consumers identify ex-ante

how valuable it is for them to switch to RTP. Furthermore, because inexperienced consumers

overreact to contemporaneous spot prices upon considering adoption, it is important to explain

how spot prices form and that long-run gains can compensate immediate losses. In particular,

spot prices are seasonal, which means that, relative to standard tariffs, consumers adopting

RTP should expect higher bills half of the year and lower bills the other half.

Policies helping consumers who have recently adopted RTP are crucial, too. We find that

consumers with bad first impressions are more likely to discard RTP. Therefore, it would be

useful to help them estimate long-term payoffs and compare them with ongoing losses, when

they happen. In complement, one can provide some insurance to consumers who have recently

adopted RTP. Alternatively, it may be necessary to avoid adoption during risky periods, such
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as during harsh winters or when the electric system is under stress. In particular, this calls for

the strategic timing of large marketing campaigns.

Related literature. Our paper contributes to several branches of the literature. First, our pa-

per relates to the large literature on consumer tariff choices in retail electricity markets (Cram-

pes and Waddams, 2017; Hortaçsu, Madanizadeh, and Puller, 2017; Dressler and Weiergraber,

2019; Fowlie, Wolfram, Spurlock, Todd, Baylis, and Cappers, 2020; Ito, Ida, and Tanaka, 2021).

The main focus of this literature is consumer inertia. Its goal is to identify why consumers do

not switch tariff or retailer more often. To the best of our knowledge, our paper is the first

to study specifically consumer decision to adopt real-time pricing and to keep or discard it.

We identify overreaction to contemporaneous spot prices as an important barrier to adoption

and follow-on retention of consumers on real-time pricing. This barrier is specific to real-time

pricing because it is the only tariff which rates vary in real-time with spot prices.

Second, our paper relates to the literature studying demand response with dynamic electricity

tariffs (Ito, 2014; Allcott, 2011; Fowlie et al., 2020; Fabra, Rapson, Reguant, and Wang, 2021;

Ito et al., 2021). We cannot study real-time electricity consumption but, instead, focus on

monthly electricity consumption during a crisis on the spot when spot prices were uniformly

high - and therefore intertemporal substitution pointless. We show that, among consumers who

remained on RTP during the crisis, demand response was a decreasing function of experience.

Third, our paper relates to the literature studying present biases and the role of first impressions

on the decisions of economic agents (Busse, Pope, Pope, and Silva-Risso, 2015; Lamp, 2018;

Hirshleifer, Lourie, Ruchti, and Truong, 2020). We show that contemporaneous spot prices

significantly affect adoption decisions and that bad first impressions are an important driver

of consumer attrition.

Finally, our paper relates to the literature studying consumer behavior and learning. One part

of this literature studies consumer reactions to unexpected events such as bill shocks (Grubb and

Osborne, 2015; Grubb, 2015) or unemployment (Malmendier and Shen, 2019). Another part

of this literature focuses on how consumers make forecasts about future outcomes (Anderson,

Kellogg, and Sallee, 2013; Malmendier and Nagel, 2016) and how they learn Miravete (2003). In

the case of real-time electricity pricing we show that while inexperienced consumers overreact

to contemporaneous spot prices, over time, consumers focus less on immediate outcomes.

The paper proceeds as follows. Section 3.2 describes our data and the electricity market in

New Zealand. Sections 3.3 and 3.4 present our main results. Section 3.5 discusses policy

implications and Section 3.6 concludes.
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3.2 Data and Industry Background

3.2.1 The electricity sector in New Zealand

Historically, the generation, transport and distribution of electricity in New Zealand was pub-

licly and centrally managed. Starting in 1987, the state-owned monopolies were split up and

sold and, in 1996, a decentralized wholesale spot electricity market was established. Com-

petition was established in generation and retailing, while transport and distribution were

regulated. In July 2017 there were 40 retail brands delivered by 29 parent companies5. Yet,

the market remains dominated by the "Big 5" (Genesis Energy, Contact Energy, Mercury NZ,

Meridian Energy, Trust Power) who are vertically integrated. In 2017, they have a collective

market share of around 89% in retail for residential consumers and collectively produced more

than 90% of electricity in New Zealand.

While electricity is a homogeneous product, retailers can different themselves in several ways,

such as bundling with other services like gas, customer service and the tariff structure. Tradi-

tionally, consumers could only have flat tariffs: two-part tariffs with known fixed and variable

components. Special electricity meters allowed time-of-use tariffs with different day and night

rates but flat tariffs are still dominant nowadays. New Zealand has been a world leader in

the deployment of smart electricity that allow consumption to be measured in real time6. The

roll-out of smart meters has allowed new electricity tariffs to emerge. For instance, Electric

Kiwi offers two-part tariffs with one hour of free consumption per day. Other retailers such

as Paua to the People and Flick Electric offer real-time pricing tariffs under which consumers

pay a price indexed on the electricity spot market which clears every half-hour. Table 3.2.1

provides an example of the tariff offered by Flick Electric in 2017 in Wellington and compares

it to a flat tariff offed by Contact Energy, one of the Big 5 retailers.

Table 3.2.1: Examples of electricity tariffs offered in Wellington in 2017. Note that the average
spot price in the past ten years was about 7 c$/kWh and therefore, under real-time pricing,
the average marginal cost of electricity is 16 c$/kWh.

Tariff Portion Flick Electric Contact Energy

Fix (c$/day) 177 211

Variable (c$/kWh) 9 + spot 17.6

3.2.2 Data

We make use of a unique dataset containing all occurrences of consumers switching retailers

between January 2013 and June 2018. These switches are recorded at the installation control
5See https://www.ea.govt.nz/about-us/media-and-publications/market-commentary/events/prerequisites-

for-a-competitive-retail-market/
6In 2017, 72% of electricity meters in New Zealand are smarty meters, the highest rate in the world.
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point (ICP)-level, which is a unique identifier of an electricity meter. We observe the previous

retailer, the new retailer the consumer is switching to, as well as the initiated date and the

date at which the switch happened. Furthermore, we observe whether the switch was related

to the household moving into the accommodation or if it occurred while he was already living

there7.

We also observe the census tract in which an ICP is located, which allows us to merge the

switching data to census data from 2013. We use information on income, education, and age

levels at the census-tract level (a census tract usually contains between 50 and 80 households).

We have yearly and monthly electricity consumption data at the consumer-level (ie. at the

ICP-level). Given that we do not observe daily variation patterns, we cannot make use of

our consumption data to study how consumers on real-time pricing contracts respond to price

signals.

Also, we collect publicly available wholesale price data for each network reporting region at

the half-hourly level8. We use these half-hourly price data to compute the price faced by Flick

customers. We also use the price data to compute average spot prices over different time

horizons.

Finally, we have information on the history of long-term tariffs offered by each retailer. In

the case of Flick, we observe the base fixed and variable fees, from which we can compute the

half-hourly consumer price with the help of our spot price data.

Table 3.2.2 shows consumer characteristics of consumers in Wellington, recorded on the census

tract-level. The first row shows electricity consumption in 2015, a proxy for how much the given

household consumes. The next rows show the median income (in NZ$ 1,000), median age, as

well as the share of households where the household head holds a higher education degree

and where the household head works in a white-collar job. We provide the information for all

households, those switching tariffs in the second half of 2014 and 2016, and those switching to

Flick in the second half of 2014 and 2016.

3.2.3 Real-time pricing in New Zealand

We provide a brief overview of real-time pricing tariffs in New Zealand, summarized in Table

3.2.3. While several retailers offer real-time pricing, most consumers adopting this tariff con-

7We only observe those switches occurring due to moving where the retailer chosen by the new occupant is
not the same as the retailer of the previous occupant.

8New Zealand is split into different network reporting regions (NRRs). Auckland, Wellington and
Christchurch largely coincide with different network reporting regions, allowing us to observe the level of spot
price faced by consumers on real-time pricing in those cities.
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Table 3.2.2: Comparison of the median household, the median household switching retailer
and the median household adopting real-time pricing - in Wellington.

All ICPs Switchers RTP adopters

2014 2016 2014 2016

Mean SD Mean SD Mean SD Mean SD Mean SD

Consumption (kWh/yr) 7.25 (3.8) 7 (3.8) 7.80 (4) 9.06 (4) 8.21 (3.8)

Income (NZ$/yr) 68.96 (29.6) 85 (31.6) 86.66 (31.7) 99.74 (29.2) 92.68 (30.7)

Age 39.55 (11.2) 36 (7.9) 36.76 (7.8) 37.15 (6.9) 36.47 (7.6)

Education (%) 18.62 (12.2) 28 (15.7) 28.98 (15.7) 36.66 (16.4) 32.15 (15.3)

Work (%) 54.32 (46.9) 50 (18.9) 48.90 (19.6) 55.32 (15.1) 52.20 (18.9)

tracted with Flick Electric9. Therefore, in the rest of the paper, we focus exclusively on Flick

Electric for real-time pricing tariffs.
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Figure 3.2.1: Evolution of the share of households on real-time electricity pricing.

Flick Electric entered the retail electricity market for the first time at the end of 2013 in

Wellington and then gradually entered other cities. Figure 3.2.1 shows that its market share

initially grew quickly. For instance, during the first semester of 2017, 38.1 % of households

switching electricity retailers in Christchurch chose Flick Electric. At the end of May 2017,

Flick Electric’s market share in New Zealand was 1.28% - or 23,057 households - with large

heterogeneity across cities. While in Auckland less than 1% of households chose real-time

pricing, in Christchurch they were 4.46%. Flick Electric’s growth stalled in June 2017 - the

start of what we refer to as Winter 2017 crisis - and its market share has oscillated around 1%

until (at least) the end 2020.

The Winter 2017 crisis. The Winter 2017 crisis refers to the period of high spot prices that

occurred during several weeks in June, July and August 2017. This crisis was due to low

9In June 2017, Paua to the People had less then 1,000 customers, while Flick Electric had more than 23,000.
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Table 3.2.3: Overview real-time pricing tariffs in New Zealand.

Number of households Market Share in May 2017 Date of Entry

New Zealand 23057 1.28 Nov 2013

Wellington 5502 3.88 Nov 2013

Auckland 5214 0.90 Jun 2014

Christchurch 6981 4.46 Sep 2015

hydro inflows coupled with high electricity demand 10. Because in New Zealand about 60% of

electricity comes from hydro generation, shortage of water meant scarce electricity generation

which led to spot price increases. As illustrated on Figure 3.2.2 spot prices increased two-

to three-fold compared to the previous winters. What is notable is that previous winters saw

sot prices peak twice a day, once in the morning and once in the evening. To the contrary,

spot prices during the winter of 2017 stay very high throughout the day and only fall during

the night. However, the level of night-time spot prices in 2017 is almost as high as the peaks

during previous winters. We do not have data about consumer bills. However, Flick Electric

published information related to the Winter 2017 crisis on its website 11. In particular they

compare consumers savings, calculated as the difference between bills since adopting real-time

pricing to what consumer bills would have been under their previous tariff. Flick reports that

while consumers on real-time pricing saved, on average, about 479NZ$ in 2017 compared to

their previous tariff, they made a loss of 80NZ$ alone from mid-June to mid-July during the

crisis 12. Both the price patterns as well as Flick’s analysis of savings suggest that consumers

faced heavy losses during the crisis and scope to contain them was limited.
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Figure 3.2.2: Average half-hourly spot price in the winters of 2015, 2016 and 2017.

10See Electricity Authority (2018)
11Available at https://news.flickelectric.co.nz/2017/08/01/the-inside-info-how-we-calculate-your-savings/
12For comparison, the average yearly consumer bill is around 2,200 NZ$/year
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3.3 The role of spot prices in adoption decisions

In this section we study consumer adoption decisions. In particular, we investigate what prices

consumers consider when deciding whether or not to switch to a real-time pricing contract 13.
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Figure 3.3.1: History of monthly RTP adoption and average spot prices.

We first present some graphical evidence of the relationship between spot prices and RTP

adoption. Figure 3.3.1 plots the history of prices and share of switchers choosing RTP for

Wellington, the capital of New Zealand and the city where real-time pricing was available first.

We can see that drops in spot prices tend to be followed by an increase in the share of switchers

choosing RTP and that increasing spot prices tend to be followed by a decrease in the share

of switchers adopting RTP. For instance, in early 2015, a drop in spot prices is followed by a

surge in adoption. There are two other events in 2017 and 2018, where a surge in spot prices

is followed by a drop in RTP adoption rates. In each case there is a lag between the change

in prices and the change in adoption, which suggests that most households do not anticipate

these price surges.

At the individual level, Figure 3.3.2 plots the share of households switching retailers who choose

RTP as a function of past average spot prices in the four weeks preceding the switch. The plot

suggests that consumers are price-sensitive. Their probability to choose RTP upon switching

drops slightly above 10% when spot prices are in the range 30-40 $/MWh to less than 5% when

prices exceed 90 $/MWh.

13A switcher is defined as a electricity connection point ("household") that chooses to change electricity
retailers.
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Figure 3.3.2: Share of consumers switching retailers adopting RTP as a function of average
spot prices in the 4 weeks preceeding the switch - in Wellington.

3.3.1 Price definitions

In the next step, we investigate to what extend different prices are correlated with the decision

to adopt real-time pricing. To do so, we build several price definitions that consumers may

take into account in their decisions. We build these definitions over 1-week, 2-week, and 4-week

time periods.

1. Past Price

We define Past Price as the average spot price during the given time period before the

switch. For instance, when we look at the 1-week horizon, the time period is the week

before the week leading up to the switch.

2. Recent Price

We define Recent Price to be the average spot price during the given time period imme-

diately preceding the switch. When looking at the 1-week period, the time period is the

week leading up to the switching decision.

3. Future Price

We define Future Price to be the average price during the period following the switch.

When we look at the one-week period, the time period is the week immediately following

the switching decision.

4. Last Year Price

We compute Last Year Price as the average spot price during the given time period one

year before the adoption decision. Last Year Price is Recent Price from the year before.
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5. Future Predicted Price

We compute Future Predicted Price assuming that consumers predict prices using an

AR(1) model. To do so, we use all spot price information available to us, resulting in

AR(1) models with price data from July 2009 to the adoption decision. We assume

consumers predict out weekly average prices, so we aggregate the price data to the week

level.

3.3.2 Empirical strategy

Our goal is to see which price consumers consider when making the decision of whether or not

to adopt RTP. In the analysis, we only make use of consumers who switch retailers. Doing so

allows us to see how different prices affect the number of consumers choosing RTP, given the

number of consumers having decided to switch. The analysis stays silent about effects on the

overall number of switchers. Looking at this margin would require us to disentangle consumers

who do not switch because they prefer staying with their current retailer and consumers who

do not switch because they face early termination fees.14 We are unable to do so in our data,

so we focus on decisions to choose real-time pricing conditional on having decided to switch.

Aggregate switches

In the first part of the analysis, we regress the number of consumers adopting RTP on the first

three price definitions. Formally, we estimate the following specifications:

Ymt = α1Pmτ,past + α2Pmτ,recent + α3Pmτ,future + εmt (3.3.1)

Ymt = α1Pmτ,past + α2Pmτ,recent + α3Pmτ,future + γm + λt + εmt, (3.3.2)

where Ymt is the share of RTP adopters in a given week in market m, Pmτ,past, Pmτ,recent, and

Pmτ,future are the different prices, with τ the time period considered (1 week, 2 weeks, or 4

weeks), γm are market fixed effects and λt are month-of-year fixed effects.

The results are in Table 3.3.1. The first three columns hold the results for specification 3.3.1

and the last three columns hold the results for specification 3.3.2. We can see that when using

all three definitions, only Past and Recent Price, respectively, come up statistically significant.

When defining prices over a one-week period, Past Price is most strongly correlated with the

share of switchers choosing RTP. The coefficient on Future Price is significant as well in that

case, but only at the 5% level. When defining prices over a two- or four-week period, it is Past

14Consumers wishing to cancel their electricity contract before the contract ends typically face an early
termination fee, which can be up to around NZD200.
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Table 3.3.1: Aggregate RTP adoption from 2014-06-01 to 2018-06-01

Dependent variable:

Share of switchers adopting RTP (in pct)
1 Week 2 Weeks 4 Weeks 1 Week 2 Weeks 4 Weeks

(1) (2) (3) (4) (5) (6)

Past Price −0.692∗∗∗ −0.619∗∗ −0.558∗∗ −0.515∗∗ −0.649∗∗ −0.491∗

(0.192) (0.241) (0.230) (0.206) (0.264) (0.275)

Recent Price 0.029 −0.315 −0.542∗∗∗ −0.036 −0.524∗∗ −1.150∗∗∗

(0.243) (0.254) (0.196) (0.178) (0.213) (0.343)

Future Price −0.262 −0.099 −0.152 −0.335∗∗ −0.179 0.246
(0.209) (0.206) (0.218) (0.164) (0.188) (0.300)

NRR FE? No No No Yes Yes Yes
Year- Month FE? No No No Yes Yes Yes
Observations 617 617 617 617 617 617
R2 0.068 0.076 0.087 0.617 0.621 0.623
Adjusted R2 0.063 0.072 0.082 0.581 0.585 0.588
Residual Std. Error 8.548 8.509 8.462 5.715 5.686 5.671
F Statistic 14.877∗∗∗ 16.910∗∗∗ 19.380∗∗∗ 17.139∗∗∗ 17.416∗∗∗ 17.572∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Price (two weeks) and Recent Price (two and four weeks) that come up statistically significant.

To give an idea of the magnitudes, the coefficient on Recent Price in column 6 suggest that

when spot prices increase by 1 ct$/kWh, the RTP adoption rate drops by -1 percentage points.

In our sample, the average spot price is 7.13ct$/kWh and the average weekly RTP adoption

rate is 8.7%, meaning the result is economically significant.

Individual switches

We next move to the household level and analyze the link between individual decisions of

adopting RTP and our price definitions. We employ a logit model, where we regress the

individual decision to RTP pricing on the different price definitions, controls, and fixed effects.

We run two specifications: one with only one price definition at a time and one with all three

together. Using only one price definitions at a time allows us to circumvent potential issues

related to the high correlation between the different price definitions. Also, using one price at a

time allows us to formally test which model explains the data best. Formally, our specifications

can be written as

Yimt = αdPmτ,d +Ximtβ + γm + λt + εimt (3.3.3)

Yimt = α1Pmτ,past + α2Pmτ,recent + α3Pmτ,future +Ximtβ + γm + λt + εimt, (3.3.4)

where Yimt is now an indicator if consumer i in market m at date t decides to adopt RTP

(conditional on switching), Pmτ,d is the given price considered with d ∈ {past, recent, future},

Ximt holds control variables and εimt is assumed to follow a logistic distribution. In Ximt, we

control for total household consumption as well as consumption differences between winter and
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summer, the origin retailer, the Winter 2017 crisis, and census-level median household income,

age, and work- and education status. Implicitly, we assume that a consumer who has made

the decision to switch retailers adopts RTP if and only if her utility from adopting RTP is

larger than from not doing so (and choosing a conventional tariff). Consumer utility is a latent

variable. We only observe the switching decision that is an indicator of whether the consumer’s

utility from adopting RTP is larger than her utility of choosing a conventional tariff.

We focus on the results based on the two-week window here. The results are in Table H.3.5.

The results using the one- and four-week window are in Tables H.1.1 and H.1.2 in Appendix

H.1. The first three columns in each table hold the results for specification (3.3.3) and column

5 holds the results for specification (3.3.4). We first focus on the last column in the three

tables. We see that both Past Price and Recent Price are both economically and statistically

significant. Future Price, however, is not statistically, nor economically, significant. These

results lead us to conclude that it is predominantly Past Price and Recent Price that play

a role in consumer adoption of RTP, with this conclusion being robust across different time

periods. To get an idea of the magnitudes, the coefficient on Recent Price in column 5 of

Table H.3.5 means that at average value of the covariates, an increase in the spot price by

one standard deviation decreases the probability of adopting real-time pricing by around 0.58

percentage points. Note that at the average value of covariates, the probability of adoption is

around 8.09%.

We now turn to the results in columns 1-3. At first sight, the conclusions we can draw from

these regressions seem less clear, as all prices definitions are statistically significant. However,

Future Price is significant only at the 10%-level. Also, these regressions allow us to formally

test which price definition best fits the data, using the Vuong (1989) test. The test allows us

to compare models pair-wise. The results are in Table 3.3.3.

In the first row, we compare the specifications using Past Price and Recent Price, respectively.

We can see that except for the four week horizon where Recent Price is preferred, neither

definition clearly dominates. In second and third rows, we compare Past Price and Recent

Price with Future Price. We can see that in these cases, the test never prefers Future Price.

We view these results as a confirmation of the findings using the specifications in (3.3.3) and

(3.3.4).

As a further robustness check, we run similar regressions with the last two of our price speci-

fications. The results are in Table H.1.3 in Appendix H.1. These results confirm our findings

above. Contemporaneous spot prices significantly affect consumer decision to adopt real-time

electricity pricing.
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Table 3.3.2: RTP-adoption, two-week period, data from 2014-06-01 to 2018-06-01

Dependent variable:

Adopt RTP

(1) (2) (3) (4)

Past Price −0.084∗∗∗ −0.068∗∗∗

(0.011) (0.012)

Recent Price −0.089∗∗∗ −0.075∗∗∗

(0.011) (0.012)

Future Price −0.020∗ 0.009
(0.011) (0.012)

Electricity consumption 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.003) (0.003) (0.003) (0.003)

Seasonal consumption difference −0.005 −0.004 −0.005 −0.004
(0.033) (0.033) (0.033) (0.033)

Income 1.593∗∗∗ 1.606∗∗∗ 1.623∗∗∗ 1.586∗∗∗

(0.463) (0.463) (0.463) (0.463)

Age −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

Work 0.550∗∗∗ 0.552∗∗∗ 0.550∗∗∗ 0.552∗∗∗

(0.113) (0.114) (0.113) (0.114)

Education 1.258∗∗∗ 1.257∗∗∗ 1.256∗∗∗ 1.258∗∗∗

(0.122) (0.122) (0.122) (0.122)

NRR FE? Yes Yes Yes Yes
Year-Month FE? Yes Yes Yes Yes
Retailer Origin FE? Yes Yes Yes Yes
Observations 143,435 143,435 143,435 143,435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3.3.3: Outcomes of Vuong tests on different specifications

1 week 2 weeks 4 weeks

Value Preference Value Preference Value Preference

Past v. Recent 1.974 Past -0.371 Neither -3.395 Recent

Past v. Future 3.253 Past 3.517 Past 2.364 Past

Recent v. Future 2.170 Recent 3.420 Recent 4.596 Recent

Note:

Tests conducted at 5%-level.

3.3.3 Discussion

Do households forego or postpone adoption?

The results from the previous section suggest that households are price sensitive and, upon

considering adopting RTP, react to recent and past spot prices. A natural follow-up question,

then, is whether when spot prices are high, households forgo adopting RTP altogether or

postpone adoption. To answer this question, we focus on the Winter 2017 crisis when spot

prices surged and remained high for several weeks during June, July, and August. The crisis

was due to a combination of low hydro levels and large electricity demand for heating in winter.

Because spot prices more than doubled, consumers who were willing to adopt RTP and were

able to postpone adoption had an interest in doing so. Looking at Figure 3.3.1, we clearly see

that during the crisis, households stopped adopting RTP. However, when prices start declining

in August, there is a surge of RTP adoption. This surge may be due to households who waited

strategically or simply due to prices falling sharply. In order to get an idea whether and to

what extend consumers strategically waited, we use our results from aggregate switching to

predict the number of consumers who would have chosen RTP had prices between June 2017 up

to the end of September 2017 been at the average of 2014 to 2016. We make use of the 2-week

window (corresponding to column 5 in Table 3.3.1). The results are in 3.3.3. The observed

share of switchers choosing RTP are in purple, whereas the counterfactual share is in red. The

dotted red lines denote the 95% confidence interval.15

15We obtain the confidence interval through a bootstrapping procedure. We draw coefficients from a normal
distribution with mean equal to the vector of estimates and the variance-covariance matrix equal to the esti-
mated variance-covariance matrix coming from the regression model. We then take 100 draws, predict switching
shares, and take the 2.5th and 97.5th percentiles, respectively.
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Figure 3.3.3: Share of consumers switching electricity retailer choosing RTP for the first time
and electricity spot prices - biweekly in Wellington in 2017

We see that, had prices been at the average of the previous years both during as well as just

after the crisis, a much larger share of consumers would have adopted RTP. At the mid-point

of our prediction, 719 more consumers would have adopted (compared to 883 who did adopt

over this time period). These results suggest that the overwhelming majority of consumers

chose to forego adoption altogether. The fact that consumers seem to not time their adoption

strategically provides further evidence that the switching decision is indeed strongly influenced

by contemporaneous spot prices and not due to forward-looking behavior and strategic waiting.

Who adopts real-time pricing

The results of this section also shed light on who adopts real-time pricing. In Table H.3.5,

we see that the socio-economic variables that we use as controls are also strong predictors of

the decision to adopt RTP. These results confirm what we see in Table 3.2.2: On average,

the consumer adopting RTP consumes more electricity, has a higher income, more education,

and more likely to work in a white-collar job. These consumers are early adopters, who tend

to differ from the general population quite substantially. The fact that these consumers are

different from the general population has important implications for our results: It is likely

that these early adopters are more interested in RTP and more sophisticated compared to

the average consumer. Nevertheless, even these sophisticated early adopters draw on simple

heuristics in the form of contemporaneous spot prices to make their adoption decisions. Hence

it is likely that later adopters would do so as well, perhaps even more strongly so. Such a

behavior violates a key condition for unraveling to occur: Consumers need to be able to self-

identify as structural winners, which requires a computation of long-run savings under RTP.

The fact that contemporaneous spot prices play such a large role in the adoption decision

suggests consumers are not able or willing to do so.
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3.4 The role of experience in consumer attrition

In this section, we study the behavior of consumers on real-time pricing during the Winter 2017

crisis. Spot prices increased significantly and remained high for several weeks which directly

affected them. Because consumers could not hedge their risks on financial markets, they could

only protect themselves by adjusting their electricity consumption or by switching to another

tariff. We first investigate the consumer decision to discard RTP during the crisis, before

moving to consumption decisions.

3.4.1 Discarding real-time pricing

In this section we focus on how and to what extent consumers reacted on the extensive margin

by leaving real-time pricing during the crisis. We first present some graphical evidence. Figure

3.4.1 plots the share of consumers on real-time pricing at the start of the crisis who decide to

switch to another tariff during the crisis as a function of the number of days they have spent

on RTP prior to the crisis. 16 The curve is decreasing which means that consumers who have

spent the most time on RTP are less likely to switch. For instance, nearly 25% of consumers

who have spent less than 50 days on RTP prior to the crisis switch while only 10% of those

who had spent more than 600 days on RTP do.
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Figure 3.4.1: Share of household on RTP switching to another tariff during Winter 2017 as a
function of the time they have spent on RTP.

We assume that most consumers on real-time pricing were aware of the crisis and thus had to

make a conscious decision to stay with this tariff or to switch to another one. This assumption

seems reasonable because information about the crisis was widely available. The crisis occurred

in winter when electricity consumption usually high and consumers on real-time pricing were

billed weekly. Furthermore, they received information about the crisis by their retailer and the

16That is, we measure the number of days between the date of adoption of real-time pricing and the beginning
of the Winter 2017 crisis that we set on June 1st, 2017
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event was also covered in the media. As a result, there are two reasons why consumer decisions

during the crisis would be correlated with how long they have spent with real-time electric-

ity tariffs. First, there may have been selection bias; different types of consumers adopting

RTP over time. Second, after adopting real-time pricing, consumers may have changed with

experience.

The economic and marketing literature on the dynamics of technology adoption documents

that different categories of consumers adopt an innovation at different times. Typically, initial

adopters are more motivated to try the innovation than because they value it more. Electricity

is a homogeneous good, therefore the value of real-time pricing must come from the savings

that certain consumers can expect compared with other tariffs 17 or from the nature of the

tariff itself - such as the curiosity or the interest of facing varying and uncertain prices.

Table 3.4.1: Comparison of early and late adopters in Wellington and Christchurch

Wellington Christchurch

Early Late Early Late

Mean St. Dev Mean St. Dev Mean St. Dev Mean St. Dev

Consumption (kWh/yr) 9.11 (3.8) 8.35 (3.9) 10.31 (4.7) 10.00 (4.5)

Income (NZ$/yr) 98.74 (28.7) 93.71 (29.7) 75.00 (25.7) 70.84 (23.9)

Age 37.20 (7.1) 36.34 (7.3) 38.15 (8.1) 38.03 (7.8)

Education (%) 36.20 (16.7) 33.68 (15.3) 19.86 (9.7) 18.23 (9.2)

Work (%) 55.27 (15) 52.94 (17.1) 40.09 (17.5) 38.34 (19.1)

Either way, because the tariff is risky and complicated and because electricity - unlike, say,

cars - is not a good for which many consumers show interest, we can expect the first adopters

to be rather different than the consumers adopting later. In the last two columns of Table

3.4.1 we compare some observable characteristics of consumers adopting real-time pricing in

the first semester of 2014 and 2016 in Wellington. We see that the average consumer adopting

RTP in 2014 has a higher socio-economic status (higher income and work category and more

educated) and higher electricity consumption than the one adopting RTP two years later. In

the literature it is often argued that socio-economic status correlates with unobserved consumer

traits such as myopia or risk aversion. Rich and educated consumers are thought to be more

sophisticated, less risk averse, and can afford experimenting a risky contract. If this is the case,

then selection bias might explain the correlation between consumer decisions and time spent

on RTP.
17The literature on real-time electricity pricing typically distinguishes structural winners - who naturally

prefer to consume electricity off-peak when spot prices are low - from structural losers. Furthermore, consumers
have heterogeneous price elasticities and some can more easily adapt to varying spot prices than others See
Borenstein (2005b).
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Another possible explanation for the fact that consumers who spent less time on real-time

pricing were more likely to leave during the crisis can be that the experience with the tariff

plays a role, rather than any selection. While Table 3.4.1 presents some evidence of selection

effects at the time of adoption, it must not necessarily be the case that this selection effect

plays a role during the crisis.

In order to investigate the role of selection and experience in the decision to leave real-time

pricing during the Winter 2017 crisis, we first regress the decision to discard real-time pricing

during the crisis on observable consumer characteristics, controlling or not for their experience

with the tariff. Formally, the specifications write

Discard RTPim = X ′
imβ + εi (3.4.1)

Discard RTPim = αTime on RTPi +X ′
imβ + εi, (3.4.2)

where Discard RTPim ∈ {0, 1} is an indicator equal to 1 if and only if consumer i in market m

decides to discard RTP during the Winter 2017 crisis, Time on RTPi is the number of months

that consumer i spent on RTP prior to June 1st, 2017 - Xim contains control variables and εim

is assumed to follow a logistic distribution.
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Table 3.4.2: Discarding RTP during Winter 2017 crisis: selection vs experience

Dependent variable:

Discard RTP

(1) (2) (3) (4) (5) (6)

Time on RTP (months) −0.03∗∗∗ −0.03∗∗∗ −0.04∗∗∗

(0.004) (0.005) (0.005)

Income (k$/yr) 0.0005 0.0004 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Age −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Work (%) −0.01 −0.01∗ −0.01 −0.01∗ −0.005 −0.01

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Education (%) −0.003 −0.003 −0.003 −0.004 −0.003 −0.004

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Location FE? Yes Yes Yes Yes No No

Previous retailer FE? No No Yes Yes No No

Location-on-Previous

retailer FE? No No No No Yes Yes

Observations 8,617 8,617 8,617 8,617 8,617 8,617

Log Likelihood −4,085.61 −4,116.60 −4,039.31 −4,068.43 −4,022.86 −4,052.50

Akaike Inf. Crit. 8,191.21 8,251.20 8,132.62 8,188.86 8,143.72 8,201.00

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

In Xim, we control for household yearly electricity consumption as well as consumption differ-

ences between winter and summer, the previous retailer, and census-level median household

income, age, and work- and education indexes The results are in Table H.3.1. We find that the

coefficients for socio-economic factors are all economically insignificant. On the other hand,

the coefficient for time spent on the tariff is both statistically and economically significant.

At average value of the covariates, spending 4 more months on real-time pricing decreases the

probability to discard real-time pricing by 2.06 percentage points (the average probability to

opt-out of 19.03%). Furthermore, controlling or not for time spend on RTP does not affect the

other coefficients. These observations suggest that experience does indeed affect consumers’

perception of the tariff. These observations suggest that selection dynamics do not explain con-

sumers’ decisions to discard real-time pricing during the crisis and therefore that the variable

‘Time on RTP’ captures the effects of experience.

For robustness, we run the same regressions and also control for a "first experience" effect for

consumers who joined last with dummy, called ‘Joined Last’, equal to one if the consumer

adopted RTP with the last cohort. The goal is to ensure that the measured effect of experience
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is not solely driven by the last adopters, but that experience affects all adopters. In Table H.3.2

in Appendix H.1, we test five specifications when the last cohort consists of all consumers joining

during the m ∈ {1, 2, 3, 6, 9} months preceding the Winter 2017 crisis. The effect is positive,

statistically and economically significant, and strongest for the cohort that joined two months

before the crisis started. Furthermore, controlling for this bad first impressions doesn’t affect

the coefficient for experience. This suggests that both first impressions and experience matters.

3.4.2 Experience and the lagged roll-out of real-time pricing

In order to get a more causal interpretation of the effect of experience, we exploit time lags

in the roll-out of real-time pricing tariff across cities. The tariff was available in Christchurch

only around two years after it was first introduced in Wellington. Thus, if selection bias were

an important driver for switching decisions during the crisis then we would expect that two

households adopting real-time pricing at the same time in Wellington and Christchurch make

two different switching decisions. They have the same experience with the tariff but are two

very different type of consumers- the consumer in Christchurch is an early adopter whereas

the consumer in Wellington is a late mover closer to the average consumer. We rely on two

key assumptions here. First, we assume that over two years, the type of consumer adopting

real-time pricing changes significantly, such that the early adopter in Wellington is significantly

different from the consumer adopting two years later. Table 3.4.1 suggests this is indeed the

case. Second, we assume that the initial adopters in Christchurch are significantly different

from the consumers in Wellington adopting real-time pricing at the same time after controlling

for observable consumer characteristics. Figure 3.4.2 below shows that when RTP became

available in Christchurch, 39% of all consumers in Wellington who adopted RTP before the

crisis had already already adopted it.
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Figure 3.4.2: Number of consumers adopting real-time electricity pricing every week in Welling-
ton (top) and Christchurch (bottom) between November 2013 and June 2017.
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To see whether selection effects are present or whether it is experience that matters, we regress

consumer decisions to opt-out from RTP during the crisis (Discard RTPim ∈ {0, 1}) on experi-

ence (Time on RTPi), a location dummy for Christchurch, an interaction between the location

dummy and control variables:

Discard RTPim =αexpTime on RTPi + αlocChristchurch + γTime on RTPi × Christchurch

(3.4.3)

+X ′
imβ + εi, (3.4.4)

where εi is a logistic error term. Our sample is the set of households who adopted real-time

pricing in Wellington and Christchurch only after the tariff was available in Christchurch, in

September 2015. Therefore, the Wellington sample is truncated - we have removed the initial

adopters - while the Christchurch sample is not. If selection bias were an important driver,

the interaction variable γ between the location dummy and experience would be statistically

significant. However, Table H.3.3 shows that in all specifications, the interaction variable is

statistically - and economically - insignificant. The insignificance of γ suggests that experience,

rather than selection, explains the correlation between time spent on the tariff and decision

to stay or opt-out during winter 2017 crisis. Any selection effects explaining differences in the

types of consumers adopting at different moments do not play an effect in these consumers’

decision to leave during the Winter 2017 crisis. For robustness, we repeat the same exercise

between Auckland and Christchurch. The results are in Table H.1.5 in Appendix H.1. We again

find the interaction term to be insignificant as well. We conclude that consumers’ perception

of real-time electricity tariff is affected by their experience with the tariff. As a result, the

probability that a consumer on real-time pricing switches to another tariff during the Winter

2017 crisis decreases with her experience.

Table 3.4.3: Probability of discarding RTP: Wellington vs Christchurch, only observations after
RTP becomes available in Christchurch

Dependent variable:

Discard RTP

(1) (2) (3)

Time on RTP (month) −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01)

Christchurch 0.18 0.15 0.30
(0.14) (0.14) (0.34)

Time on RTP x Christchurch −0.004 0.003 0.01
(0.01) (0.02) (0.02)

Month FE? No Yes No
Month-on-NRR FE? No No Yes
Observations 6,142 6,142 6,142
Log Likelihood −3,109.52 −3,098.54 −3,094.68
Akaike Inf. Crit. 6,239.04 6,239.09 6,253.36

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Switching back to real-time pricing. Furthermore, we document that 26.55% of households

who discarded RTP during the Winter 2017 crisis switched back to RTP after prices have

fallen. We show here that the probability that a consumer returns to real-time pricing after

the crisis increases with their experience with the tariff. Given that only consumers with a

good perception of the tariff would come back, this observation reinforces Result 2: experience

affects perception. On Figure 3.4.3 we plot the share of such consumers as a function of their

experience with the tariff, in Wellington. Among the consumers who discarded real-time pricing

during the Winter 2017 crisis, those with less than 100 days of experience are about 15% to

switch back to RTP while more than 30% of those with more than 500 days of experience

do. We confirm this graphical evidence by regressing (logit) consumers decision de return to

real-time pricing on their experience and control variables, see Table H.1.6 in Appendix H.1.

We find that experience significantly affects the decision to return to real-time pricing, both

significantly and economically. At the average of the covariates, increasing experience by 4

months increase the probability to return to RTP after the crisis by 4.8 percentage points.

This result suggests that consumers who have little experience and leave may be scared by

their experience during the crisis and consequently don’t return. More experienced consumers

leaving, on the other hand, may merely "sit out" the crisis on a contract giving them price

certainty. They essentially game the system. However, the result we find, why statistically and

economically significant, is rather small. Also, the overall incidence of consumers leaving and

coming back is low- only around 5.52% of consumers did so during the crisis.
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Figure 3.4.3: Share of households switching back to RTP after opting-out during the Winter
2017 crisis within three months after the end of the crisis as a function of the number of days
spent on RTP prior to the crisis.

3.4.3 Adjusting electricity consumption

In this subsection we focus on consumers who remained on real-time pricing during the Win-

ter 2017 crisis and study whether they changed their electricity consumption. Consumers can

shift consumption from periods with high spot prices to periods with lower spot prices or they
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can reduce consumption altogether. Shifting consumption was hard to do during the crisis, as

suggested by Figure 3.2.2. The figure compares the average daily pattern of spot prices during

the winters of 2013 to 2017. During the winter 2017 crisis spot prices were 117 NZ$/MWh on

average, or about 2.2 times larger than in winter 2015. Furthermore, spot prices vary greatly

between peak and off-peak hours in winter 2016 but are rather uniform during the winter 2017

crisis. Overall, during the Winter 2017 crisis spot prices were uniformly high and therefore

there is little scope and incentive for consumers to adjust their consumption throughout the

day. As a result, the main strategy for consumers to lower their bills is to reduce their consump-

tion. Unfortunately, we do not have consumption data at the trading-period (i.e. half-hourly)

level to formally test this hypothesis. However, we do dispose of monthly consumption data,

allowing us to test the prediction that consumers would have mainly reacted by reducing con-

sumption overall.

Reducing consumption. In a first step, we investigate whether consumers on real-time pricing

reacted fundamentally different than consumers on fixed contracts. In order to do so, we rely

on a difference in differences approach: We use consumer consumption in 2014 (or 2015) and

2017. We regress individual consumption on a dummy equal to one if consumption occurs

during the crisis, a dummy equal one if the consumer is on real-time pricing, an interaction

between those dummies, and controls. Formally, the regression writes

Yit = αCrisist + γRTPi + δCrisist × RTPi +X ′
mi
β + εi (3.4.5)

Table H.1.8 in Appendix H.1 shows the results for regressions with and without controls, as

well as specifications where we use winter 2015 consumption instead of winter 2014 and the

mean of those two years. We see that the interaction term is negative and statistically sig-

nificant when comparing consumption in the winter of 2015 to the winter of 2017 as well as

in the case where we compare the mean across 2014 and 2015 with the winter of 2017. The

value of the coefficient on the interaction term in column 6 implies a reduction of consumption

equal to around 1.65% of the average consumption of consumers on RTP in 2017. This effect is

economically significant, albeit not very large. The rather small magnitude of this effect makes

sense, given that large reductions in electricity consumption across a period of three months is

hard to achieve, especially when a substantial portion of electricity is consumed for heating.

The role of experience. In a next step, we investigate the relationship of experience with

real-time pricing and reactions along the intensive margin. Figure 3.4.4 plots the change in

consumers monthly consumption between the winters of 2014 and 2017. The black plain line

corresponds to the consumption change of consumers on real-time pricing as a function of
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their experience with the tariff and the dashed red line shows the average change of consumers

not on RTP. These consumers serve as a benchmark because they do not have spot contracts

and therefore their electricity consumption is not directly affected by the crisis. We compare

differences between the winter of 2014 and the winter of 2017 for two reasons: The first is that

consumption patterns are seasonal, mainly because of electric heating, so two winter periods

are comparable. The second is that in the winter of 2014, no consumer was on real-time pricing,

so the comparison is not polluted by structural changes due to switching from a fixed to a real-

time pricing tariff in between. While there are large fluctuations across experience levels, we

can see a drop in consumption especially for consumers who spent less than 200 days on RTP

prior to the beginning of the crisis. This drop suggests that consumers with more experience

may be less responsiveness on the intensive margin than less experienced ones. This result also

seems to contradict selection effects under which savvy, price-responsive consumers adopt first,

as we would expect those consumers to adjust consumption more.
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Figure 3.4.4: Change in average winter electricity consumption between 2014 and 2017 as
a function of consumer experience on RTP. The red dashed line is the average change for
consumers who are not on RTP.

We now turn to a more thorough investigation of the link between experience with real-tie

pricing and consumption reduction during the crisis. We focus on consumers on real-time

pricing at the start of the Winter 2017 crisis and who remain with this tariff during the

tariff. We regress individual monthly consumption in winter 2017 on past monthly winter

consumption, experience with the tariff, and controls. The regression writes

Cons Winter 2017i = α Time on RTPi + γ Cons Winter 2014i +X ′
mi
β + εi (3.4.6)

We run six different specifications: linear-on-linear or log-on-log, and using consumption in

winter 2014, 2015 or both. The results are in Table H.3.4 in Appendix H.1. In each case the

coefficient α for experience is positive and statistically significant. Economically, one additional

year of experience leads to an average increase of monthly consumption of 0.7% compared with
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the average consumption during the winter 2017 crisis. This result suggests that consumers

who have less experience with real-time pricing react more strongly along the intensive margin

than more experienced consumers. There exist several potential explanations for this result.

One explanation can be that consumers that have been on real-time pricing longer react less

to high spot prices because they have already saved a lot by having been on real-time pricing

for a while. This is especially true for consumers who adopted RTP from a Big-5 retailer,

as those tend to have the highest prices. In order to see whether such an effect exists, we

re-use the specifications from (3.4.6) and complement it by a dummy indicating a consumer

was previously with a Big-5 retailer. Formally, we have

Cons Winter 2017i = α Time on RTPi + δ Big-5i + γ Cons Winter 2014i +X ′
mi
β + εi

(3.4.7)

The results are in Table H.1.10 in Appendix H.1. We do not find evidence that retailers from

Big-5 retailers reduced consumption by less.

Familiarity bias when leaving real-time pricing

In order to decide whether to remain on real-time pricing or to switch to another tariff, rational

consumers would compare their expected utility with each tariff and take into account switching

costs (psychological, contractual, opportunity cost) and uncertainty regarding future spot prices

and changes of tariffs. In practice, however, this is a complicated decision-making process and

there is a large and growing literature showing that economic agents often use simple heuristics

to make decisions. In our data, we indeed find evidence that consumers’ switching decisions

during the Winter 2017 crisis were not only affected by their experience with real-time pricing,

but also by their previous experiences.

Table 3.4.4: Test

Retailer Origin

Average Big 5 Non-Traditional Others

Origin of RTP-adopters (%) NA 73.6 17.5 8.8

Switch during Winter 2017 crisis (%) 19.1 17.4 23.9 23.2

Switch to Big 5 (%) 35.4 41.7 21.8 23.8

Switch to Non-Traditional (%) 52.0 47.8 66.2 48.7

Switch to Others (%) 12.7 10.5 11.9 27.5

We split retailers into three categories and we study whether consumers switching decisions

during the Winter 2017 crisis correlate with which category of retailers they were contracting

with prior to adopting real-time pricing. The first category, ’Big 5’, is composed of the five

largest retailers. Retailers of the second category, ’Non-Traditional’, offer non-traditional tar-
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iffs, such as one hour free per day, prepaid electricity, etc. Finally, we label as ’Others’ the rest

of the retailers - composed of both small players and subsidiaries of the Big 5. Table H.1.11

in Appendix H.1 summarizes the results. First, consumers who contracted with a Big 5 prior

to adopting real-time pricing are less likely than the others to switch to another tariff during

the Winter 2017 crisis. While a large majority (73.6%) of RTP-adopters were previously with

a Big 5 retailer, only 17.42% of them switch to another tariff during the crisis - or about 6

percentage points less than the other consumers. Second, consumers opting-out from real-time

pricing during the Winter 2017 crisis are disproportionately more likely (by about 20 percent-

age points) to switch to a retailer from their category of origin than other consumers. For

instance, 41.7% of consumers who were with a Big 5 retailer prior to adopting real-time pricing

return to a Big 5 retailer during the Winter 2017 crisis while only 21.8% and 23.8% of the

other consumers do. For robustness we draw the same table but focus instead on consumers

leaving real-time pricing and not returning after the crisis; that is, we do as if consumers who

leave and then return to RTP had never left - see Table H.1.11 in Appendix H.1. We find the

same results which confirms that, upon switching from real-time pricing, the choice of retailer

is unlikely to be motivated by the perspective to come back.

We argue that these results are explained by the fact that consumers put a large weight on

their personal experience when they make decisions, a phenomenon we label as familiarity

bias. First, if consumers rely primarily on their experience then they are only aware of few

alternatives and therefore, upon switching, they are more likely to return to a retailer they

know of. Second, the ’Big 5’ generally offer more expensive electricity tariffs than the other

retailers. Therefore, consumers who have experienced cheaper alternatives in the past are more

tempted to leave real-time pricing when there is a crisis because they are aware of them. While

electricity is a homogeneous product, familiarity bias suggests that retailers can differentiate

themselves. Regarding traditional tariffs, familiarity bias is consistent with the existence of

search costs; consumers who don’t search don’t know alternative tariffs.

3.4.4 Discussion

We find that consumers who have more experience with real-time pricing are less likely to switch

to another tariff during the crisis. The results suggest that real-time pricing is an experience

good in the sense that it’s a complex product consumers need to learn about to know whether

it is indeed right for them. It is important to distinguish these experience effects from inertia

effects were consumers "fall asleep" after switching. We do not think inertia effects play a

role here for several reasons: The first is that, while more experienced consumers are indeed

less likely to leave real-time pricing during the Winter 2017 crisis, more than 30% of those

who do leave came back right after the crisis ended. This phenomenon cannot be explained

by consumer inertia. Another reason why we do not think consumers become inattentive is
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that on RTP, they pay weekly bills and are regularly updated about any price spikes. This

constant influx of information about market movements makes it unlikely that consumers are

asleep. Finally, the Winter 2017 crisis was covered in the media quite extensively and therefore

it seems unlikely that consumers were unaware it was happening. In conclusion, we argue that

the decision to stay or switch was likely a conscious one.

The results also suggest that tariff complexity may be an issue: Consumers who had more

experience with the tariff were less likely to leave and more likely to "game the system" by

strategically leaving during the crisis before coming back afterwards. Another point supporting

the suggestion that tariff complexity is important is the fact that spot prices were low at an

unusually low volatility in the first 3 years after real-time pricing became available. Low and

un-volatile spot prices are an ideal setting for consumers to earn about and experiment with

real time pricing as potential losses are limited. Consumers joining right before Winter 2017

were not able to profit from this environment and may have been overwhelmed by the high spot

prices, hence choosing to cut consumption or leave real-time pricing altogether. This factor

suggests that the timing of real-time pricing roll-out may be important for consumers to stay

on. Ideally, a policy maker or firm planning to introduce real-time pricing would like to do

so in a period of low price- and volatility levels in order to make it possible for consumers to

"ease into" the tariff. Interestingly, the retailer offering RTP plans, Flick Electric, started to

guarantee new consumers that they would not pay more than what they would have paid under

their previous retailer during the first year on real-time pricing. In essence, this policy offers

consumers an insurance against large losses they may incur by experimenting with real-time

pricing.

One reason that may have made consumers stay on real-time pricing during the Winter 2017

crisis is related to the regular updates they received from Flick Electric. In particular, con-

sumers were able regularly updated on their cumulative savings since having joined Flick. These

savings were computed by comparing their bills with a hypothetical bill had they stayed with

their previous retailer18. Figure 3.4.5 provides two examples of how the information was dis-

played to consumers during Winter 2017 crisis. The consumer from the left panel had adopted

RTP several months before the crisis and by beginning of June 2017 had accumulated more

than $1500 in savings. The consumer from the right panel had adopted RTP just as the crisis

started and after three weeks her savings had always been negative.

Unfortunately, our monthly consumption data does not allow us to calculate electricity bills in

a reliable manner for consumers on real-time pricing. We have tried to build heuristic indicators

18For consumers who switched over from other providers offering non-standard contracts, the savings were
calculated by comparing their bills to a hypothetical bill they would have faced by being with the retailer with
the highest market share. For those consumers, the savings they were presented with in the app were probably
overstated.
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of savings by making ad-hoc assumptions on intra-day and intra-month consumption patterns

and included them as an additional variable. The results are in Appendix H.2. However, given

that we only have monthly consumption, we cannot account for intra-day and intra-month

heterogeneity in consumer consumption patterns. Instead of directly relying on consumption,

we have also regressed the probability to return to RTP on experience and a dummy equal

to one if the consumer was originally with one of the five biggest retailers. The tariffs offered

by those retailers tend to be more expensive, meaning in turn that consumers switching from

such a tariff to RTP are more likely to run up large savings. However, we find no evidence

that having been with a Big-5 retailer affects the decision to return to Flick after the crisis.

As a consequence, our results shed little light on whether larger accumulated savings can help

explain the decision to stay with real-time pricing during the Winter 2017 crisis.

Figure 3.4.5: Screenshots (obtained online) of the display of two customers’ cumulative savings
on their mobile application.

3.5 Policy implications

Our results have several implications for policymakers. First, they offer an explanation why

unraveling leading to large-scale adoption of real-time pricing did not occur in New Zealand.

Second, the results can inform the debate on which measures to take in order to increase

take-up of real-time pricing.

One key condition for unraveling to occur is that consumers need to self-identify as structural

winners. They need to exhibit some form of forward-looking behavior that leads them conclude

they will save by being on RTP without having to adjust their consumption profile. To the

contrary, we find that consumers do not time their switch strategically but rather take one-

shot decisions strongly influenced by contemporaneous spot prices. Simple heuristics such as

current spot prices are unlikely to help in self-identifying as a structural winner. The adopters

we observe are early adopters that differ strongly from the general population. Given that

it is reasonable to assume that these early adopters are more interested in RTP and more
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sophisticated, later adopters would be even less likely to have the ability of self-identifying as

structural winners.

Another condition for unraveling to occur is that once adopting, consumers stay on real-time

pricing, even in periods when spot prices are high and volatile. This was not the case in New

Zealand. While more experienced consumers were less likely to leave during the Winter 2017

crisis, less experienced consumers left in great numbers. What is more, those inexperienced

consumers who left mostly did not return once spot prices had fallen. These findings suggest

that inexperienced consumers who get a bad first impression upon adoption of RTP are likely

to get scared and forego adopting RTP altogether in the future. Large numbers of consumers

leaving RTP in periods of high spot prices make unraveling unlikely to occur.

A difficulty specific to opt-in policies is to convince consumers to adopt the tariff. Ito, Ida, and

Tanaka (2017) show that providing information ex-ante to consumers significantly affects their

tariff choices by helping the structural winners to self-select to time-varying tariffs. They also

document self-selection on price-elasticity, suggesting that some consumers are aware of theirs

ex ante. A simple policy to implement is to make it possible for consumers with smart meters to

upload their real-time consumption in tariff comparison websites which exist in many countries

already. Our finding that consumers use simple heuristics in their adoption decision suggests

that such a provision of information may be helpful in increasing take-up of real-time pricing.

Also, if consumers considering adopting RTP are excessively sensitive to contemporaneous

events then one should design communication to steer them away. When spot prices are high,

insist on long term benefits of adopting RTP or remind consumers about price seasonality.

When spot prices are low, don’t insist too much about the fact that they will increase at some

point.

As discussed by Fowlie et al. (2020), if there is high inertia then policy-makers may consider

defaulting some consumers to real-time pricing. This "opt-out" policy was adopted in Spain in

2014 but some evidence suggests that many consumers are not even aware of it. Our results

show that bad first impressions can lead consumers who self-selected into the tariff to discard it

eventually. This suggests that a major risk with opt-out policies is that, if it is poorly timed, all

consumers get a bad first impression. This would surely make arguments in favor of real-time

pricing politically untenable - and for a long time.

3.6 Conclusion

In this paper we document the adoption of a new electricity tariff, real-time pricing, by residen-

tial consumers in New Zealand. Contrary to theoretical predictions unraveling did not occur

and, after more than seven years, less than 1.25% of consumers switched to this tariff. We find
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that prospective and recent adopters are highly sensitive to contemporaneous spot prices. The

fact that inexperienced consumers focus on immediate outcomes combined with the fact that

spot prices became volatile in winter 2017 and remained so afterwards could explain why few

consumers adopted or remained on real-time pricing plans. However, after adopting the tariff,

consumers become less responsive to ongoing events with experience. This finding calls for

policies targeted at facilitating the learning process, before and after adoption, with the aim to

steer attention away from immediate outcomes and towards long-term payoffs instead. First,

consumers must be familiar with the formation of spot prices; the determinants of demand

and supply, such as the weather, and in particular their seasonal patterns. Second, consumers

need to be aware of whether, in the long run, they would benefit or not from switching to real-

time pricing. Those who would benefit the most from it would switch first and the unraveling

process would then follow. For that purpose, a sound policy would be to facilitate the access

to records of household consumption profiles to use them on tariff comparison websites. This

would help the structural winners - consumers who benefit from switching even without adjust-

ing their consumption - to identify themselves. The other consumers would need to estimate

the costs and benefits from adjusting their consumption. While they may be aware, partially or

perfectly, of their price-elasticity they may need to learn about investments in energy efficient

appliances. Finally, the overreaction to ongoing spot prices may also be explained by liquidity

constraints because some consumers may not be able to pay large unexpected bills. While it

seems unlikely that this issue was a major driver during the winter 2017 crisis in New Zealand,

it may become one once the unraveling process progresses. This calls for insurance policies or

financial instruments to help consumers smooth payments.

This paper opens several promising alleys for future research. If there are agency costs such as

risk aversion (eg. liquidity constraints) or externalities (eg. social learning) then adoption rates

will be inefficiency low. Too few consumers will willingly switch to real-time pricing and it may

be necessary to encourage adoption and experimentation. Then, for instance, consumers could

receive a transfer after they remained on real-time pricing a certain amount of time; and the

transfer should not depend on the consumption while on the tariff, otherwise this would create

distortions.19 A retailer incurring the costs of experimentation may not be able to recover it ex

post if, once the consumer has learned her valuation, she can switch to a competitor offering a

low price. Thus, public subsidies may be required.

At least for as long as the unraveling process goes, and perhaps forever, some consumers will

prefer tariffs with flat and fixed rates over a long horizon. In order to enforce long-term

contracts, retailers usually set termination fees to discourage consumers from switching to

19In the case of New Zealand, the retailer Flick Electric guarantees its new customers that after 12-month
they will have positive savings. This creates perverse incentives to over-consume during a crisis on the spot
market.
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another retailer before the end of the contract term. While termination fees protect the retailer

from consumers arbitraging between their long-term tariffs when spot prices are high and

other tariffs - such as real-time pricing - when spot prices are low, they also render consumers

time-inelastic. Because inexperienced consumers overreact to contemporaneous spot prices,

leaving them only short time-windows for adopting real-time pricing may interfere with the

unraveling process. It may thus be necessary to reconsider how to enforce long-term contracts.

In particular, because termination fees are often fixed and independent of how much time

remains before the contract ends, which may not be efficient.
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H.1 Regression tables
Table H.1.1: RTP-adoption, one-week period, data from 2014-06-01 to 2018-06-01

Dependent variable:

Adopt RTP

(1) (2) (3) (4) (5)

Past Price −0.077∗∗∗ −0.112∗∗∗ −0.066∗∗∗

(0.010) (0.008) (0.010)

Recent Price −0.053∗∗∗ −0.047∗∗∗ −0.023∗∗

(0.009) (0.009) (0.011)

Future Price −0.029∗∗∗ −0.036∗∗∗ −0.014
(0.009) (0.007) (0.010)

Electricity consumption 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.003) (0.003) (0.003) (0.003)

Seasonal consumption difference −0.005 −0.005 −0.005 −0.005
(0.033) (0.033) (0.033) (0.033)

Income 1.601∗∗∗ 1.618∗∗∗ 1.619∗∗∗ 1.600∗∗∗

(0.463) (0.463) (0.463) (0.463)

Age −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

Work 0.551∗∗∗ 0.552∗∗∗ 0.550∗∗∗ 0.552∗∗∗

(0.114) (0.113) (0.113) (0.114)

Education 1.259∗∗∗ 1.255∗∗∗ 1.256∗∗∗ 1.258∗∗∗

(0.122) (0.122) (0.122) (0.122)

NRR FE? Yes Yes Yes No Yes
Year-Month FE? Yes Yes Yes No Yes
Retailer Origin FE? Yes Yes Yes No Yes
Observations 143,435 143,435 143,435 149,479 143,435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.2: RTP-adoption, four-week period, data from 2014-06-01 to 2018-06-01

Dependent variable:

Adopt RTP

(1) (2) (3) (4) (5)

Past Price −0.073∗∗∗ −0.059∗∗∗ −0.044∗∗∗

(0.015) (0.007) (0.015)

Recent Price −0.133∗∗∗ −0.187∗∗∗ −0.154∗∗∗

(0.015) (0.010) (0.016)

Future Price 0.012 0.004 0.069∗∗∗

(0.014) (0.006) (0.015)

Electricity consumption 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.003) (0.003) (0.003) (0.003)

Seasonal consumption difference −0.005 −0.004 −0.005 −0.004
(0.033) (0.033) (0.033) (0.033)

Income 1.607∗∗∗ 1.587∗∗∗ 1.625∗∗∗ 1.580∗∗∗

(0.463) (0.463) (0.463) (0.463)

Age −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗ −0.009∗∗∗

(0.001) (0.001) (0.001) (0.001)

Work 0.549∗∗∗ 0.552∗∗∗ 0.550∗∗∗ 0.553∗∗∗

(0.113) (0.114) (0.113) (0.114)

Education 1.258∗∗∗ 1.257∗∗∗ 1.256∗∗∗ 1.259∗∗∗

(0.122) (0.122) (0.122) (0.122)

NRR FE? Yes Yes Yes No Yes
Year-Month FE? Yes Yes Yes No Yes
Retailer Origin FE? Yes Yes Yes No Yes
Observations 143,435 143,435 143,435 149,479 143,435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.3: RTP-adoption - alternative price definitions - data from 2014-06-01 to 2018-06-01

Dependent variable:

Adopt RTP
1 Week 2 Weeks 4 Weeks 1 Week 2 Weeks 4 Weeks

(1) (2) (3) (4) (5) (6)

Recent Price −0.163∗∗∗ −0.191∗∗∗ −0.229∗∗∗ −0.063∗∗∗ −0.098∗∗∗ −0.145∗∗∗

(0.005) (0.005) (0.006) (0.009) (0.011) (0.014)

Last Year Price −0.0001 0.007 0.021∗∗∗ 0.014 0.024 0.002
(0.007) (0.007) (0.008) (0.015) (0.018) (0.024)

Future Predicted Price −0.004 −0.004 −0.0004 −0.028∗∗∗ −0.031∗∗∗ −0.040∗∗∗

(0.003) (0.003) (0.004) (0.005) (0.005) (0.006)

Electricity consumption 0.032∗∗∗ 0.032∗∗∗ 0.032∗∗∗

(0.003) (0.003) (0.003)

Seasonal consumption difference 0.130∗∗∗ 0.130∗∗∗ 0.131∗∗∗

(0.032) (0.032) (0.032)

Income 0.002∗∗∗ 0.002∗∗∗ 0.002∗∗∗

(0.0005) (0.0005) (0.0005)

Age −0.010∗∗∗ −0.010∗∗∗ −0.010∗∗∗

(0.001) (0.001) (0.001)

Work 0.480∗∗∗ 0.480∗∗∗ 0.480∗∗∗

(0.111) (0.112) (0.112)

Education 1.246∗∗∗ 1.249∗∗∗ 1.251∗∗∗

(0.119) (0.119) (0.119)

NRR FE? No No No Yes Yes Yes
Year-Month FE? No No No Yes Yes Yes
Retailer Origin FE? No No No Yes Yes Yes
Observations 149,479 149,479 149,479 149,479 149,479 149,479

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.4: Discarding RTP during Winter 2017 crisis: robustness check

Dependent variable:

Discard RTP

(1) (2) (3) (4) (5)

Time on RTP (month) −0.03∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.03∗∗∗

(0.005) (0.01) (0.01) (0.01) (0.01)

Joined Last 0.41∗∗∗ 0.46∗∗∗ 0.36∗∗∗ 0.23∗∗∗ 0.01

(0.10) (0.08) (0.08) (0.09) (0.10)

Annual elec cons (MWh) −0.02∗∗ −0.02∗∗ −0.02∗∗ −0.02∗∗ −0.02∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Win/Sum cons diff (MWh) 0.39∗∗∗ 0.39∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.39∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.08)

Income (k$/yr) 0.001 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001)

Age −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Work (%) −0.005 −0.01 −0.005 −0.005 −0.005

(0.003) (0.003) (0.003) (0.003) (0.003)

Education (%) −0.004 −0.004 −0.004 −0.003 −0.003

(0.004) (0.004) (0.004) (0.004) (0.004)

Last Cohort 1 month 2 months 3 months 6 months 9 months

Location-on-Previous

retailer FE? Yes Yes Yes Yes Yes

Observations 8,617 8,617 8,617 8,617 8,617

Log Likelihood −4,013.64 −4,007.64 −4,012.67 −4,019.36 −4,022.85

Akaike Inf. Crit. 8,127.28 8,115.29 8,125.34 8,138.71 8,145.70

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.5: Probability of discarding RTP

Dependent variable:

Discard RTP
Wel-Chr Wel-Chr Wel-Chr Auc-Chr Auc-Chr Auc-Chr

(1) (2) (3) (4) (5) (6)

Time on RTP (month) −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗ −0.05∗∗ −0.04∗ −0.02
(0.01) (0.01) (0.01) (0.02) (0.02) (0.02)

Christchurch 0.18 0.15 0.30 0.13 0.10 0.46
(0.14) (0.14) (0.34) (0.20) (0.20) (0.55)

Time on RTP x Christchurch −0.004 0.003 0.01 −0.001 0.005 −0.01
(0.01) (0.02) (0.02) (0.02) (0.02) (0.02)

Annual elec cons (MWh) −0.02∗∗ −0.02∗∗ −0.02∗∗ −0.02∗∗ −0.02∗∗ −0.02∗∗

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Win/Sum cons diff (MWh) 0.41∗∗∗ 0.40∗∗∗ 0.40∗∗∗ 0.46∗∗∗ 0.45∗∗∗ 0.45∗∗∗

(0.08) (0.08) (0.08) (0.08) (0.09) (0.09)

Income (k$/yr) 0.001 0.001 0.001 −0.001 −0.0004 −0.0004
(0.001) (0.001) (0.001) (0.002) (0.002) (0.002)

Age −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01 −0.01 −0.01
(0.005) (0.005) (0.005) (0.01) (0.01) (0.01)

Work (%) −0.01∗ −0.01∗ −0.01∗ −0.004 −0.004 −0.004
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Education (%) −0.002 −0.002 −0.002 −0.005 −0.01 −0.01
(0.004) (0.004) (0.004) (0.01) (0.01) (0.01)

Month FE? No Yes No No Yes No
Month-on-NRR FE? No No Yes No No Yes
Observations 6,142 6,142 6,142 4,923 4,923 4,923
Log Likelihood −3,109.52 −3,098.54 −3,094.68 −2,575.69 −2,563.30 −2,558.82
Akaike Inf. Crit. 6,239.04 6,239.09 6,253.36 5,171.37 5,168.60 5,181.64

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.6: Switching back to RTP after the Winter 2017 crisis as a function of experience

Dependent variable:

Return to RTP

(1) (2) (3)

Time on RTP (month) 0.07∗∗∗ 0.07∗∗∗ 0.08∗∗∗

(0.01) (0.01) (0.01)

Annual elec cons (MWh) −0.003 −0.002 −0.004

(0.01) (0.01) (0.01)

Win/Sum cons diff (MWh) 0.03 0.0003 −0.01

(0.13) (0.13) (0.13)

Income (k$/yr) 0.004∗ 0.004∗ 0.004

(0.002) (0.002) (0.002)

Age 0.002 0.003 0.004

(0.01) (0.01) (0.01)

Work (%) 0.002 0.002 0.002

(0.01) (0.01) (0.01)

Education (%) 0.001 0.0004 −0.00004

(0.01) (0.01) (0.01)

Location FE? Yes Yes No

Previous retailer FE? No Yes No

Location-on-Previous

retailer FE? No No Yes

Observations 2,339 2,339 2,339

Log Likelihood −1,288.16 −1,275.54 −1,262.47

Akaike Inf. Crit. 2,596.33 2,603.08 2,618.93

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.7: Switching back to RTP after the Winter 2017 crisis as a function of experience -
TEST

Dependent variable:

Return to RTP

Time on RTP (month) 0.07∗∗∗

(0.01)

Origin Big 5 −0.02

(0.11)

Annual elec cons (MWh) −0.003

(0.01)

Win/Sum cons diff (MWh) 0.03

(0.13)

Income (k$/yr) 0.004∗

(0.002)

Age 0.002

(0.01)

Work (%) 0.002

(0.01)

Education (%) 0.001

(0.01)

Location FE? Yes

Observations 2,339

Log Likelihood −1,288.14

Akaike Inf. Crit. 2,598.28

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Average Big 5 Non-Traditional Others

Origin of RTP-adopters (%) 73.6 17.5 8.8

Switch during Winter 2017 crisis (%) 13.6 12.5 17.6 15.6

Switch to Big 5 (%) 39.8 46.8 24.4 27.7

Switch to Non-Traditional (%) 47.4 42.6 63.9 42.3

Switch to Others (%) 12.8 10.5 11.7 30.0

Table H.1.11: Previous experience affects switching decisions - Retailer of origin
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Table H.1.8: Comparison of consumption reduction, consumers on RTP vs other consumers

Dependent variable:

Consumption
2014 2014 2015 2015 Mean 14 + 15 Mean 14 + 15

(1) (2) (3) (4) (5) (6)

Post 2.746∗∗∗ 2.746∗∗∗ −27.420∗∗∗ −27.420∗∗∗ −12.337∗∗∗ −12.337∗∗∗

(0.974) (0.927) (0.994) (0.947) (0.958) (0.910)

RTP 131.251∗∗∗ 71.421∗∗∗ 139.495∗∗∗ 78.701∗∗∗ 135.373∗∗∗ 75.061∗∗∗

(5.135) (4.857) (5.359) (5.054) (4.909) (4.595)

I(Post ∗RTP) −11.404 −11.404∗ −19.649∗∗∗ −19.649∗∗∗ −15.526∗∗ −15.526∗∗

(7.184) (6.812) (7.346) (6.955) (7.025) (6.629)

MedianRevenue 0.004∗∗∗ 0.004∗∗∗ 0.004∗∗∗

(0.00002) (0.00002) (0.00002)

MedianAge 0.875∗∗∗ 0.782∗∗∗ 0.828∗∗∗

(0.062) (0.063) (0.061)

WorkCategoryManPro −0.057 −0.049 −0.053
(0.039) (0.040) (0.038)

EducHigh −2.933∗∗∗ −2.991∗∗∗ −2.962∗∗∗

(0.051) (0.052) (0.050)

factor(NRR)23 58.292∗∗∗ 56.527∗∗∗ 57.409∗∗∗

(1.101) (1.123) (1.083)

factor(NRR)30 294.352∗∗∗ 302.348∗∗∗ 298.350∗∗∗

(1.257) (1.284) (1.228)

Observations 1,013,944 1,013,944 1,013,944 1,013,944 1,013,944 1,013,944
R2 0.001 0.094 0.002 0.094 0.002 0.099
Adjusted R2 0.001 0.094 0.002 0.094 0.002 0.099
Residual Std. Error 485.681 462.626 495.777 472.283 477.822 453.888
F Statistic 455.840∗∗∗ 11,676.770∗∗∗ 732.138∗∗∗ 11,757.250∗∗∗ 544.187∗∗∗ 12,396.550∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.9: Consumption reduction as a function of experience

Dependent variable:

ConsW17 log(ConsW17) ConsW17 log(ConsW17) ConsW17 log(ConsW17)

(1) (2) (3) (4) (5) (6)

I(Experience/30) 3.135∗∗∗ 0.004∗∗∗ 2.849∗∗∗ 0.004∗∗∗ 2.696∗∗∗ 0.003∗∗∗

(0.543) (0.001) (0.501) (0.001) (0.493) (0.001)

ConsW14 0.546∗∗∗ 0.241∗∗∗

(0.011) (0.015)

log(ConsW14) 0.443∗∗∗ 0.247∗∗∗

(0.013) (0.016)

ConsW15 0.575∗∗∗ 0.410∗∗∗

(0.011) (0.015)

log(ConsW15) 0.467∗∗∗ 0.328∗∗∗

(0.016) (0.018)

MedianRevenue 0.002∗∗∗ 0.00000∗∗∗ 0.002∗∗∗ 0.00000∗∗∗ 0.001∗∗∗ 0.00000∗∗∗

(0.0002) (0.00000) (0.0002) (0.00000) (0.0002) (0.00000)

MedianAge 1.078∗ 0.001 1.050∗ 0.001 0.842 0.001
(0.581) (0.001) (0.548) (0.001) (0.534) (0.001)

WorkCategoryManPro 1.368∗∗∗ 0.002∗∗∗ 1.108∗∗∗ 0.002∗∗∗ 1.125∗∗∗ 0.002∗∗∗

(0.438) (0.001) (0.383) (0.0005) (0.379) (0.0005)

EducHigh −2.610∗∗∗ −0.004∗∗∗ −2.315∗∗∗ −0.004∗∗∗ −2.114∗∗∗ −0.003∗∗∗

(0.456) (0.001) (0.419) (0.001) (0.412) (0.001)

factor(NRR)23 55.453∗∗∗ 0.084∗∗∗ 58.887∗∗∗ 0.088∗∗∗ 48.985∗∗∗ 0.069∗∗∗

(9.867) (0.013) (9.431) (0.013) (9.230) (0.012)

factor(NRR)30 133.283∗∗∗ 0.193∗∗∗ 105.899∗∗∗ 0.181∗∗∗ 81.024∗∗∗ 0.133∗∗∗

(12.228) (0.016) (11.746) (0.016) (11.501) (0.015)

Observations 10,373 10,373 10,373 10,373 10,373 10,373
R2 0.376 0.303 0.431 0.339 0.457 0.381
Adjusted R2 0.375 0.302 0.431 0.339 0.457 0.381
Residual Std. Error 400.712 0.481 382.442 0.468 373.591 0.453
F Statistic 778.969∗∗∗ 562.681∗∗∗ 981.898∗∗∗ 664.596∗∗∗ 969.971∗∗∗ 709.910∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.1.10: Consumption reduction as a function of experience and origin retailer

Dependent variable:

ConsW17 log(ConsW17) ConsW17 log(ConsW17) ConsW17 log(ConsW17)

(1) (2) (3) (4) (5) (6)

I(Experience/30) 3.107∗∗∗ 0.004∗∗∗ 2.827∗∗∗ 0.004∗∗∗ 2.674∗∗∗ 0.003∗∗∗

(0.543) (0.001) (0.501) (0.001) (0.494) (0.001)

Big5 −16.023∗ −0.018 −12.327 −0.013 −12.552 −0.014
(9.392) (0.011) (8.752) (0.011) (8.609) (0.010)

ConsW14 0.546∗∗∗ 0.241∗∗∗

(0.011) (0.015)

log(ConsW14) 0.443∗∗∗ 0.247∗∗∗

(0.013) (0.016)

ConsW15 0.575∗∗∗ 0.410∗∗∗

(0.011) (0.015)

log(ConsW15) 0.467∗∗∗ 0.328∗∗∗

(0.016) (0.018)

MedianRevenue 0.002∗∗∗ 0.00000∗∗∗ 0.002∗∗∗ 0.00000∗∗∗ 0.001∗∗∗ 0.00000∗∗∗

(0.0002) (0.00000) (0.0002) (0.00000) (0.0002) (0.00000)

MedianAge 1.098∗ 0.001 1.064∗ 0.001 0.857 0.001
(0.581) (0.001) (0.547) (0.001) (0.534) (0.001)

WorkCategoryManPro 1.372∗∗∗ 0.002∗∗∗ 1.111∗∗∗ 0.002∗∗∗ 1.128∗∗∗ 0.002∗∗∗

(0.438) (0.001) (0.383) (0.0005) (0.379) (0.0005)

EducHigh −2.606∗∗∗ −0.004∗∗∗ −2.312∗∗∗ −0.004∗∗∗ −2.111∗∗∗ −0.003∗∗∗

(0.456) (0.001) (0.419) (0.001) (0.412) (0.001)

factor(NRR)23 58.993∗∗∗ 0.088∗∗∗ 61.614∗∗∗ 0.091∗∗∗ 51.761∗∗∗ 0.073∗∗∗

(10.061) (0.013) (9.593) (0.013) (9.391) (0.012)

factor(NRR)30 137.393∗∗∗ 0.198∗∗∗ 109.081∗∗∗ 0.185∗∗∗ 84.261∗∗∗ 0.136∗∗∗

(12.566) (0.016) (12.012) (0.016) (11.785) (0.015)

Observations 10,373 10,373 10,373 10,373 10,373 10,373
R2 0.376 0.303 0.431 0.339 0.457 0.381
Adjusted R2 0.375 0.302 0.431 0.339 0.457 0.381
Residual Std. Error 400.677 0.480 382.428 0.468 373.574 0.453
F Statistic 692.844∗∗∗ 500.517∗∗∗ 873.066∗∗∗ 590.924∗∗∗ 873.251∗∗∗ 639.113∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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H.2 Discarding RTP and savings
Table H.2.1: Probability of discarding RTP: the role of cumulated savings

Dependent variable:

Discard RTP
Uniform Peak

(1) (2)

Past Savings −0.0001 0.008∗∗∗

(0.0002) (0.001)

Time on RTP (months) −0.001 −0.010∗∗∗

(0.001) (0.001)

Income −0.001∗∗∗ −0.003∗∗∗

(0.0004) (0.0003)

Age 0.001 −0.001
(0.002) (0.002)

Work −0.024∗∗∗ −0.023∗∗∗

(0.006) (0.007)

Education −0.004 −0.004
(0.003) (0.003)

Wellington −0.003 −0.004
(0.005) (0.005)

Christchurch 0.081 −0.696∗∗∗

(0.161) (0.172)

factor(NRR)30 0.316∗ −0.992∗∗∗

(0.178) (0.177)

Observations 3,111 3,111
Log Likelihood −1,481.141 −1,329.711
Akaike Inf. Crit. 2,982.282 2,679.423

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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H.3 Short regressions
Table H.3.1: Discarding RTP during Winter 2017 crisis: selection vs experience

Dependent variable:

Discard RTP

(1) (2) (3) (4) (5) (6)

Time on RTP (months) −0.03∗∗∗ −0.03∗∗∗ −0.04∗∗∗

(0.004) (0.005) (0.005)

Income 0.0005 0.0004 0.001 0.001 0.001 0.001

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Age −0.01∗∗∗ −0.01∗∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗ −0.01∗∗

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Work status −0.01 −0.01∗ −0.01 −0.01∗ −0.005 −0.01

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003)

Education −0.003 −0.003 −0.003 −0.004 −0.003 −0.004

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004)

Location FE? Yes Yes Yes Yes No No

Previous retailer FE? No No Yes Yes No No

Location-on-Previous

retailer FE? No No No Yes Yes

Observations 8,617 8,617 8,617 8,617 8,617 8,617

Log Likelihood −4,085.61 −4,116.60 −4,039.31 −4,068.43 −4,022.86 −4,052.50

Akaike Inf. Crit. 8,191.21 8,251.20 8,132.62 8,188.86 8,143.72 8,201.00

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table H.3.2: Discarding RTP during Winter 2017 crisis: robustness check

Dependent variable:

Discard RTP

(1) (2) (3) (4) (5)

Time on RTP (month) −0.03∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.02∗∗∗ −0.03∗∗∗

(0.005) (0.01) (0.01) (0.01) (0.01)

Joined Last 0.41∗∗∗ 0.46∗∗∗ 0.36∗∗∗ 0.23∗∗∗ 0.01

(0.10) (0.08) (0.08) (0.09) (0.10)

Last Cohort 1 month 2 months 3 months 6 months 9 months

Location-on-Previous

retailer FE? Yes Yes Yes Yes Yes

Observations 8,617 8,617 8,617 8,617 8,617

Log Likelihood −4,013.64 −4,007.64 −4,012.67 −4,019.36 −4,022.85

Akaike Inf. Crit. 8,127.28 8,115.29 8,125.34 8,138.71 8,145.70

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.3.3: Probability of discarding RTP: Wellington vs Christchurch, only observations
after RTP is available in Christchurch

Dependent variable:

Discard RTP

(1) (2) (3)

Time on RTP (months) −0.04∗∗∗ −0.04∗∗∗ −0.04∗∗∗

(0.01) (0.01) (0.01)

Christchurch 0.18 0.15 0.30
(0.14) (0.14) (0.34)

Time on RTP x Christchurch −0.004 0.003 0.01
(0.01) (0.02) (0.02)

Month FE? No Yes No
Month-on-NRR FE? No No Yes
Observations 6,142 6,142 6,142
Log Likelihood −3,109.52 −3,098.54 −3,094.68

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table H.3.4: Consumption reduction as a function of experience

Dependent variable:

ConsW17 log(ConsW17) ConsW17 log(ConsW17) ConsW17 log(ConsW17)

(1) (2) (3) (4) (5) (6)

Time on RTP (months) 3.135∗∗∗ 0.004∗∗∗ 2.849∗∗∗ 0.004∗∗∗ 2.696∗∗∗ 0.003∗∗∗

(0.543) (0.001) (0.501) (0.001) (0.493) (0.001)

Consumption 2014 0.546∗∗∗ 0.241∗∗∗

(0.011) (0.015)

log(Consumption 2014) 0.443∗∗∗ 0.247∗∗∗

(0.013) (0.016)

Consumption 2015 0.575∗∗∗ 0.410∗∗∗

(0.011) (0.015)

log(Consumption 2015) 0.467∗∗∗ 0.328∗∗∗

(0.016) (0.018)

Observations 10,373 10,373 10,373 10,373 10,373 10,373
R2 0.376 0.303 0.431 0.339 0.457 0.381
Adjusted R2 0.375 0.302 0.431 0.339 0.457 0.381
Residual Std. Error 400.712 0.481 382.442 0.468 373.591 0.453
F Statistic 778.969∗∗∗ 562.681∗∗∗ 981.898∗∗∗ 664.596∗∗∗ 969.971∗∗∗ 709.910∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table H.3.5: RTP-adoption, two-week period, data from 2014-06-01 to 2018-06-01

Dependent variable:

Adopt RTP

(1) (2) (3) (4) (5)

Past Price −0.084∗∗∗ −0.139∗∗∗ −0.068∗∗∗

(0.011) (0.008) (0.012)

Recent Price −0.089∗∗∗ −0.083∗∗∗ −0.075∗∗∗

(0.011) (0.009) (0.012)

Future Price −0.020∗ −0.006 0.009
(0.011) (0.007) (0.012)

I(Cons2014/1000) 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗ 0.037∗∗∗

(0.003) (0.003) (0.003) (0.003)

I(WSConsDiff14/1000) −0.005 −0.004 −0.005 −0.004
(0.033) (0.033) (0.033) (0.033)

NRR FE? Yes Yes Yes No Yes
Year-Month FE? Yes Yes Yes No Yes
Retailer Origin FE? Yes Yes Yes No Yes
Observations 143,435 143,435 143,435 149,479 143,435

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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