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Acknowledgments

I am very grateful to Bruno Jullien and Yassine Lefouili who supervised my thesis. Their

numerous advice guided me through my PhD. Their unconditional support and trust allowed

me to overcome many of the difficulties a PhD student has. Their commitment and hard

work are out of the norm.

I would like to express my sincere gratitude to In-Uck Park, Roland Strausz, Özlem
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Introduction

1 Coordination in Collusion

The theory of repeated games captures the crucial trade-off that enables cooperation among

privately motivated agents, namely whether long-run cooperative gains offset short-run gains

from deviations. However, it fails to capture how agents coordinate to start cooperation.

Agents may not a priori agree on cooperation schemes to play, especially since repeated

games feature many equilibria; and agents may not know what cooperation schemes are

the best. Understanding the coordination problem is crucial for collusion, since how firms

coordinated is more important from a legal perspective than whether firms cooperated.

Two assumptions inhibit the coordination problem among firms: (i) the Nash equilibrium

assumption, i.e. players anticipate each others’ strategies, and (ii) common knowledge of the

game which implies that players have common knowledge of the best collusive equilibria.

Relaxing the first assumption and the problem of equilibrium selection has been studied in

Harrington (2019). Athey and Bagwell (2001) and Athey, Bagwell, and Sanchirico (2004)

relax the second assumption. In Athey and Bagwell (2001) for instance, firms have private

information with respect to their marginal costs. To achieve the highest profits, colluding

firms must allocate production to the lowest-cost firms of that period. However, all firms

are willing to pretend being a low-cost firm and claim profits during this period. Under

some conditions, firms are not be able to coordinate production efficiently, and all firms

produce each period regardless of costs. In the same vein, Chapter 1 of this dissertation

1



2. REGULATION OF DATA AND THE ALLOCATION OF INFORMATION 2

relaxes the second assumption and studies collusion when firms have private information on

their discount factors. Firms with low discount factors value less long run collusive payoffs

relative to undercutting profits and thus sustain lower prices in equilibrium. As a result, this

assumption creates a coordination problem for firms in that they do not know a priori (and

potentially disagree on) what is the best collusive scheme.

Relaxing either of the two assumptions creates a coordination problem that firms must

solve before cooperating. However, in practice, many unmodelled factors provide a basis for

firms to coordinate and agree on which collusive schemes to use. The history of detected

cartels has shown that social norms, common business practices, personal contacts and

connections and “focal points” are used by firms to start a collusive scheme.1 Famously, in the

1950s, General Electric and Westinghouse even used a phases-of-the-moon system to assign

low bids on electrical equipment. In some sense collusion does not take place in a vacuum,

and taking all these factors in consideration diminishes the coordination problem that stems

from relaxing the Nash equilibrium assumption. In contrast, these factors do not help firms

to disclose truthfully private information. Communicating truthfully private information is

costly, creates rents and distorts outcomes. Consequently, the coordination problem that

stems from relaxing common knowledge seems more severe and robust. Chapter 1 shows

that private information on the discount factor can explain a recurring pattern, observed in

many discovered cartels, that prices increase gradually at the start of collusion.

2 Regulation of Data and the Allocation of Informa-

tion

The regulation of data is vividly debated in the digital economy. Despite the rapidly growing

literature on the topic, there is no consensus on how to model data nor on how to capture

the extent of its effects on market outcomes and market structures. In Chapters 2 and 3,

1As defined in Schelling (1980).
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I capture data as information structures, that is, as distributions of signals that reduce the

uncertainty of the environment for the decision maker. Chapters 2 and 3 treat the question

of the socially desirable use and collection of data as an issue of efficient allocation of infor-

mation.

Many papers in the digital economy literature capture data as information. Yet, two

different definitions of information are used. Information is often considered as a non-rival

good that improves or expands agents’ choices or production possibilities. In this framework,

the efficient allocation of information is straightforward: “The cost of transporting a given

body of information is frequently very low. If it were zero, then optimal allocation would

obviously call for unlimited distribution of the information without cost.”2 In this view, data

sharing is welfare improving and prevents, for instance, data bottlenecks or dominant market

positions claimed by incumbents that have a larger access to data.

In contrast, Chapters 2 and 3 capture information as the decision maker’s information

structure or type in a Bayesian game. In this framework, information also expands the strat-

egy set of the decision maker,3 yet there are two crucial differences with the first definition.

First, information structures cannot be seen as non-rival commodities in a strategic setting.

Consider, for instance, the model of chapter 2 in which a platform, that has information

about buyers, interacts with sellers. Suppose that a social planner shares the platform’s

buyer information with sellers. Formally the social planner discloses the realizations of the

platform’s signal (which affect the platform’s beliefs about buyers) to sellers. Sellers observe

these signal realizations, update their beliefs about buyers, and can adapt their prices ac-

cordingly. However, the platform’s information structure has also changed in the process.

The signal realizations that affect the platform’s beliefs about buyers now also affect the

platform’s beliefs about sellers, and, in fact, these realizations also affect the sellers’ beliefs

about the platform. In a Bayesian game, changing the information structure (or the type)

of one player changes the information structure of all players. Consequently, information

2See Arrow (2015)
3This is a consequence of Blackwell theorem.
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cannot be transmitted in the same way non-rival commodities are traded. Second, more

information for players does not always lead to better outcomes. While it is the case for de-

cision problems under uncertainty, this is not true in a strategic setting. In Chapters 2 and 3

for instance, disclosing all buyer information to sellers is not welfare optimal. To achieve the

efficient allocation of information, the social planner partially informs sellers about buyers,

in a way that minimizes transaction inefficiencies.

In an environment where strategic interactions are prevalent, as it is the case between a

platform and its users, defining data as information structures better captures the potential

distortions regarding its use. This definition prompts two questions: (i) How to model in-

formation transmission (as it cannot be traded simply as a non-rival good), and (ii) How to

determine the efficient allocation of information. In chapter 2 and 3, I use the framework

of mechanism/information design to capture how a platform can transmit its information to

sellers. Further, to determine whether the platform’s use of data is efficient, I compare the

platform mechanism with the welfare maximizing mechanism.

To capture distortions in data collection, I compare the platform’s demand for data with

the social planner’s demand for data. In this environment, strategic interactions are less

prevalent, and, therefore, data is captured as a commodity. To compute the platform’s

demand for data, i.e the marginal value of information structures, I use duality analysis.

Duality analysis has often been used to study the allocation of goods in markets. In Chap-

ters 2 and 3, I compare the platform’s willingness to pay for data with to the social planner’s

one to determine distortions.

All in all, Chapters 2 and 3 use two frameworks to study the problem of allocation of

information. Regarding the use of data, which entails strategic interactions, I use a mecha-

nism design approach. Regarding the collection of data, in the context of a data market for

instance, I use a duality analysis to compute its marginal value.
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3 Summary of the Chapters

3.1 Summary of Chapter 1

Chapter 1 presents a new mechanism that explains the gradual increase in prices at the

start of collusion, based on firms having private information about their discount factors. To

elicit firms’ true discount factors and allow patient firms to collude at the highest sustainable

prices, optimal collusive strategies take advantage of the differences in time preferences across

types. Patient firms delay the period during which they set the highest collusive prices to

induce impatient firms to undercut early and reveal their types.

I consider an infinitely repeated Bertrand duopoly. In each period, firms set prices, and

the lowest price firm serves all of the demand, which is composed of a unit mass of consumers

with value v. In case of a tie, firms can choose to split the market nonstrategically. The

competitive equilibrium yields 0 profits and is used in the dynamic game to punish deviations.

Firm A’s discount factor is high, δH , and is known by both firms. In contrast, firm B’s

discount factor is private information and is either high, δH , or low, δL < δH . Think of A as

an incumbent firm with a known low cost of capital and B as an entrant for which access to

capital is not common knowledge. A is unsure about the interest rate that B is facing and

therefore does not know the highest collusive price that B can sustain in equilibrium.

I first characterize the Pareto frontier under complete information.4 I assume that δL +

δH < 1 so that no collusion is possible between BL and A; whereas, I assume that δH ≥ 1
2

so that, all prices are sustainable in equilibrium for BH and A. As a result, if B is of type

δH , all Pareto optimal equilibria involve the monopoly price v for every period.

Then, I assume that B’s discount factor is private information, and A believes that B is

of type δH with probability ρ0. First, I study pooling equilibria, in which BL and BH set

the same prices in each information set reached on the path, thus prices set on path must

be sustainable for all types in particular for the least patient firm. I show pooling equilibria

4I use results of Harrington (1989) and Obara and Zincenko (2017), who analyzed this game under
complete information.
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yield 0 profits for all firms. Then, I study separating equilibria in pure strategies, that is,

equilibria in which BH ’s and BL’s do not set the same price on some information sets on

path. The first time that this scenario occurs, A learns B’s type, which is the separation

period. After separation, A and BH play the collusive path, whereas A and BL cannot

sustain collusive prices and play the competitive price. I show that, from the separation

period, Pareto optimal profits for patient firms are constructed from collusive schemes that

feature a transition phase, where for a finite number of periods, prices played by A and BH

increase gradually before reaching the monopoly price v. I compute the Pareto frontier for

patient firms.

To do so, I first characterize all continuation profits achievable in a separating equilibrium

using promise keeping, sustainability and incentive compatibility conditions, and I introduce

a state variable to capture incentive compatibility in a recursive form. This step simplifies

the optimization problem since it reduces the search space from the space of strategy profiles

to the space of continuation profit sequences. Then, I characterize the Pareto frontier after

and from the separation period. I show that BL’s profit is positively related to BH ’s and

A’s profit; therefore, I only consider patient firms for the Pareto frontier. The main issue

for patient firms regarding the implementation of collusive schemes is to prevent BL from

mimicking BH . In the separation period, BL undercuts the market price to obtain a small

rent. During this period, the market price cannot be too high since A expects future collusive

profit only with probability ρ0. Therefore, prices cannot increase too rapidly on the patient

firms collusive path; otherwise, BL would mimic BH to undercut later at a higher price. I

show that prices cannot grow at a rate larger than 1
δL

.

This model captures the transition phase as a way for firms to elicit the true discount

factors of their rivals and to collude at the highest sustainable prices. It applies to both tacit

and explicit collusion in the sense that cheap talk or direct forms of communication do not

restore complete information since one type strictly benefits from mimicking the other.
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3.2 Summary of Chapter 2

Chapter 2 studies how a platform can affect its sellers’ pricing decisions by using price rec-

ommendations. I investigate whether platforms design price recommendations and collect

buyer information used for this purpose in a socially desirable way. Price recommendations

allow platforms to communicate strategically their buyer information to sellers so as to in-

fluence the outcome of the market. As the best transaction price for platforms may not be

the same as the preferred transaction price for sellers,5 the platform benefits from price rec-

ommendations. I identify potential distortions in the collection and use of personal data and

argue that the extent to which a platform’s incentives are (mis)aligned with social incentives

crucially depends on its business model.

I consider two business models: “paid” and “free” platforms. Paid platforms charge

participation fees on both the buyer and the seller side. Free platforms provide free access

to buyers and charge a participation fee on the seller side. Under both business models,

the platform draws informative signals about buyers’ valuations and correlates these signals

with price recommendations to influence sellers’ pricing decisions. Joining sellers receive a

price recommendation and set a price for their good while joining buyers observe their value

of the good and their matching seller’s price and then purchase the good or not.

I determine the most profitable way for a platform to influence seller prices through price

recommendations, and compare it to the socially optimal way of influencing seller prices. I

then use the results to discuss the value of data for the platform and resulting incentives to

collect data.

First, I show that paid platforms use data efficiently, whereas free platforms use data

inefficiently. As often in platform models, paid platforms extract the entire surplus of the

interaction via entry fees.6 This implies that paid platforms use data to maximize surplus

per trade. On the contrary, free platforms only make profits on the seller side. They use

5Sellers are typically too small in these markets to take into account network externalities.
6See e.g. Rochet and Tirole (2006).
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data to help sellers to extract buyer surplus, which may destroy surplus relative to a no-data

benchmark. These two different uses of information by paid platforms and free platforms

imply different incentives to collect information.

To capture the platform’s incentives to collect data, I compute the platform’s marginal

value of information; in other words, by how much the platform’s profit changes when their

information structures marginally change. In my model, information is an input of price rec-

ommendations. Using sensitivity analysis, I characterize paid and free platforms’ willingness

to pay for information by computing the shadow price of this input. The marginal value

of information provides rich comparative statics on information structures which copes with

the high dimensionality of this input.

Then, I compare the platform’s willingness to pay to collect information with the social

planner’s and identify several distortions. I show that paid platforms, despite using infor-

mation efficiently, under-value any additional information. Paid platforms set inefficiently

high entry fees, which implies that learning impacts less trades than under the social plan-

ner’s trade mechanism. Therefore, the paid platforms’ willingness to collect information is

proportionally lower than the social planner’s by a factor that only depends on the elasticity

of demand, which can be estimated empirically. By contrast, free platforms have a biased

demand for information. Free platforms value more learning about mark up opportunities

than learning about trade opportunities, although the latter is the efficient way to learn. The

bias holds regardless of the source of information and, therefore, free platforms’ incentives

to collect data are inefficiently oriented.

3.3 Summary of Chapter 2

The third chapter is an extension of Chapter 2 to the case of competition between platforms.

It shows that distortions in platforms’ incentives to collect data are mitigated as the degree

of competition between platforms increases.

In this chapter, I consider two competing platforms that intermediate trade between
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buyers and sellers. Platforms charge entry fees to users on both sides of the market (com-

pared to Chapter 2, I only study the “paid” platform business model). Each platform draws

informative signals about buyers’ valuations and correlates these signals with price recom-

mendations to influence sellers’ pricing decisions. Sellers, who can multi-home, receive a

price recommendation when joining a platform and set a price for their good. On the buyer

side, platforms are located at both ends of a Hotelling segment. Buyers, that are uniformly

distributed over the segment, choose which platform to join, if any, and incur a linear trans-

portation cost to join a platform. As in Bénabou and Tirole (2016), I assume that buyers

have two outside options located at both ends of the Hotelling segment. This assumption

allows the transportation cost to only determine the degree of competition between firms

(i.e. how many market shares a platform gains by reducing the buyer entry fee) and not

market participation (the trade-off between joining a platform or collecting the outside op-

tion payoff). As a result, the transportation cost is identified to the inverse of the degree

of competition between platforms as it impacts the demand elasticites within the market

but not outside the market. Furthermore, the “co-located” outside options version of the

Hotelling model is better suited for welfare analysis than the standard version.7

First, I study the competitive equilibrium in which platforms set user entry fees and

a price recommendation rule. In equilibrium, platforms design the price recommendation

rule that maximizes the surplus per transaction to attract as many users on both sides, and

set entry fees to generate profit and compete for market shares. Compared to the efficient

outcome, however, the equilibrium user fees are too high and, as a result, the mass of trans-

actions in equilibrium is inefficiently low. Increasing the degree of competition (i.e. reducing

the transportation cost) induces platforms to charge lower entry fees in equilibrium, which

increases market participation and welfare.

Second, I capture platforms’ incentives to collect data by computing their marginal value

7Assuming that the market is covered, the welfare analysis in a standard Hotelling model is limited to
minimizing the total transportation cost of the economy. See Bénabou and Tirole (2016) that discusses this
assumption.
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for buyer information. Platforms’ signals about buyers’ valuations are the inputs of the

price recommendations. I compute the change in platforms’ equilibrium profits when chang-

ing marginally their distributions of signals. Platforms value additional information as it

improves their price recommendations, the surplus per transaction and therefore the mass

of users platforms’ attract. However, since less users join platforms under a competitive

equilibrium than under the efficient outcome, additional information for platforms benefits

less transactions. As a result, platforms have a lower marginal value for information than

what is socially desirable. Furthermore, I consider a benevolent information provider that

maximizes welfare by choosing the platforms’ information structures but not their trade

mechanisms. I show that conditional on the mass of users joining platforms the benevolent

information provider’s marginal value for information is larger than the platforms’ one. The

benevolent information provider values the increase in welfare coming from the readjustment

of user entry fees by platforms when changing their information structures. Consequently,

platforms undervalue additional information compared to what is socially optimal which

suggests that platforms undercollect data. However, increasing the degree of competition

increases the marginal value of information for platforms. In a more competitive market,

each improvement of the price recommendations allows a platform to increase the surplus

per transaction from which the platform gains market shares at a higher rate. Therefore,

increasing the degree of competition reduces the distortions in platforms’ incentives to collect

data.
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Crémer, Jacques, Yves-Alexandre de Montjoye, and Heike Schweitzer (2019). “Competition

policy for the digital era”. In: Report for the European Commission.

De Corniere, Alexandre and Greg Taylor (2020). “Data and Competition: a General Frame-

work with Applications to Mergers, Market Structure, and Privacy Policy”. In:

Dimakopoulos, Philipp D and Slobodan Sudaric (2018). “Privacy and platform competition”.

In: International Journal of Industrial Organization 61, pp. 686–713.
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Chapter 1

Collusion Under Incomplete

Information on the Discount Factor

Abstract. The gradual increase in prices at the start of collusion is a recurrent pattern that

has been observed in many discovered cartels. When firms have private information regarding

their respective discount factors, I show that optimal collusive schemes feature a transition

phase during which prices increase gradually. Impatient firms, for which sustainable collusive

prices are low, are willing to mimic patient firms to undercut them at a high market price. To

elicit firms’ true discount factors, optimal collusive strategies take advantage of the differences

in time preferences across types. Patient firms delay the period during which the highest

collusive prices are set to force impatient firms to undercut early and reveal their type. In

addition, patient firms find it optimal to reach the highest collusive prices by employing a

gradual price path. I characterize the Pareto payoff frontier and compute the optimal speed

of price increases during the transition phase.

Keywords : Collusion, incomplete information, transition phase.

JEL classification : C73, D43, D82.
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1 Introduction

Identifying patterns in collusive agreements allows competition authorities to detect and

prosecute illegal practices. A well-recognized pattern is the gradual increase in prices during

a cartel’s formation.

Many discovered cartels have been explicit about gradually raising prices at the start of

their collusive agreements. At a meeting of the choline chloride cartel on November 16, 1992,

members agreed about sequences of gradual price increases for several of their products.1 In

the case of the carbonless paper cartel, at a general cartel meeting, “it was agreed that the

price would be increased in two stages on 1 July and on 1 September 1994, both times by

5%.”2 Similarly, the vitamin cartel raised the price of vitamins A and E in increments of

5%, and a gradual price increase also happened for vitamin B1: “ From 1991 until about

1993, the price of vitamin B1 was gradually increased by the cartel. In 1991, the produc-

ers raised the market price from below DEM 65 to DEM 68/kg.”3 This “transition phase”,

during which prices increase gradually, has also been observed in laboratory experiments

on collusion. In Kujal, Harrington and Hernan-Gonzalez (2013), for instance, in symmetric

duopoly groups in which participants set prices each period without communication, prices

increase gradually before reaching a high supra-competitive level.4 This widespread pattern

of collusive agreements echoes findings in the experimental literature on cooperation that

suggest that “start small” or “raising-the-stakes” strategies promote cooperation.5 In fact, it

is common wisdom that “if a number of preparatory bargains can be struck on a small scale,

each may be willing to risk small investment to create the tradition of trust.”6 However,

this pattern lacks game theoretic foundation, and in standard collusion models, the highest

collusive price is typically set from the start of the agreement.

1See table 1 in the appendix and Harrington (2006)
2EC report Carbonless paper cartel 211.
3EC report vitamins cartel, 182 and 255.
4See table 1 in the appendix.
5In these strategies, participants gradually increase their levels of investment in the partnership. See,

e.g., Roberts and Renwick (2003), Andreoni, Kuhn, and Samuelson (2019) or Ye et al. (2020).
6See Schelling (1980)

https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004D0337&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003D0002&from=EN
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My paper presents a new mechanism that explains the gradual increase in prices at the

start of collusion, based on firms having private information about their discount factors. To

elicit firms’ true discount factors and allow patient firms to collude at the highest sustainable

prices, optimal collusive strategies take advantage of the differences in time preferences across

types. Patient firms delay the period during which they set the highest collusive prices to

induce impatient firms to undercut early and reveal their types. Delay is necessary to enable

separation. Furthermore, it is optimal for patient firms to reach the highest collusive prices

by employing a gradually increasing price path. In other words, the “transition phase” is a

distortion of first-best collusive schemes that enables firms to screen each others’ discount

factors to collude at the highest sustainable prices.

To be sure, prices might be raised gradually for several reasons. Small price increases

can accommodate buyers and prevent buyer resistance or simply might be a response to

an increase in costs. In Chen and Harrington (2006), the transition phase allows firms to

reduce the probability of buyer detection and to avoid suspicion. This paper studies an

alternative and complementary rationale based on the discount factor – the parameter that

critically determines the prices that are sustainable in a collusive agreements. The discount

factor is a composite parameter that compounds many interpretations, and there are many

reasons why it can vary across firms and might not be common knowledge. First, firms’

access to and cost of capital can differ. For instance, a well-established firm could have low

financing costs, whereas an entrant firm might face higher interest rates, and such interest

rates are private information to the firm and the bank/shareholders. Second, the incentives

of the managers, which are in practice the instigators of collusive agreements, can vary dras-

tically across firms.7 The private contract binding shareholders to the manager is affected

by many factors: the level of bonuses, whether shareholders are short-sighted investors, in-

formation asymmetries, etc. Third, the discount factor also reflects the general belief in

the sustainability of the market. Consider a market in which new innovations often replace

7See Aghadadashli and Legros (2020).
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older generations of products (smartphones, computers, video game consoles, etc.). In these

markets, some firms might invest more in R&D or be more optimistic about the launch of a

new innovation in the next period, resulting in firms having private and asymmetric beliefs

about whether current products will continue to sell.

Direct forms of communication cannot always restore complete information. Indeed, the

collusive profits at the highest sustainable price for impatient firms is lower than the devi-

ation profit at the highest sustainable price for patient firms.8 Therefore, impatient firms

are typically willing to mimic patient firms to undercut at high prices. Furthermore, in

this model, I show that low type firms are better off under incomplete information. As a

result, firms are unable to truthfully communicate their discount factors at cartel meetings

or disclose them publicly via other means.9 All in all, at the start of collusive schemes, firms

are unsure about the highest sustainable price of the cartel. Facing this problem, this paper

shows that it is Pareto optimal for firms to start collusion with a gradual increase in prices

to elicit this information.

I consider an infinitely repeated Bertrand duopoly. In each period, firms set prices, and

the lowest price firm serves all of the demand, which is composed of a unit mass of consumers

with value v. In case of a tie, firms can choose to split the market nonstrategically.10 The

competitive equilibrium yields 0 profits and is used in the dynamic game to punish devia-

tions. Firm A’s discount factor is high, δH , and is known by both firms. In contrast, firm

B’s discount factor is private information and is either high, δH , or low, δL < δH . Think of A

as an incumbent firm with a known low cost of capital and B as an entrant for which access

to capital is not common knowledge. A is unsure about the interest rates that B is facing

and therefore does not know the highest collusive price that B can sustain in equilibrium.

8By construction, the highest price that impatient firms can sustain is such that the deviation profit
equals the continuation collusive profit. Hence, for any price greater than that level, the deviation profit
outweighs the continuation collusive profit.

9Firms cannot reliably cheap talk their private discount factors to others. However, if cartel meet-
ings are costly (for instance, if meetings increase the probability of detection), then they can be used as
signaling devices for firms to communicate private information; see Mouraviev (2013); Bos, Letterie, and
Vermeulen (2015).

10See Harrington Jr (1989) and Obara and Zincenko (2017).
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Throughout the paper, I focus on Bayesian perfect equilibria in pure strategies.

In the first part of the paper, I characterize the Pareto frontier under complete infor-

mation. I build on the results of Harrington (1989) and Obara and Zincenko (2017), who

analyzed this game under complete information. I assume that δL + δH < 1 so that, if B is

of type δL, no collusion is possible with A. In contrast, I assume that δH ≥ 1
2

so that, if B

is of type δH , all prices up to the monopoly price v are sustainable in equilibrium. If B is of

type δH , all Pareto optimal equilibria involve the monopoly price v for every period.

In the second part of the paper, I assume that B’s discount factor is private information,

and A believes that B is of type δH with probability ρ0. First, I show that pooling equilibria,

in which BL and BH set the same prices in each information set reached on the path, are

sub-optimal. Prices set on a pooling equilibrium path must be sustainable for all types and

so are restricted by the least patient firm. In this case, pooling equilibria yield 0 profits for

all firms since collusion is unsustainable for A and BL. Then, I study separating equilibria

in pure strategies, that is, equilibria in which BH ’s and BL’s do not set the same price on

some information sets on path. The first time that this scenario occurs, A learns B’s type,

which is the separation period. After separation, A and BH play the collusive path, whereas

A and BL cannot sustain collusive prices and play the competitive price. I show that, from

the separation period, Pareto optimal profits for patient firms are constructed from collusive

schemes that feature a transition phase, where for a finite number of periods, prices played

by A and BH increase gradually before reaching the monopoly price v. I characterize the

speed of price increases during the transition phase, and I compute the Pareto frontier for

patient firms.

To do so, I first characterize all continuation profits achievable in a separating equilibrium

using promise keeping, sustainability and incentive compatibility conditions, and I introduce

a state variable to capture incentive compatibility in a recursive form. This step simplifies

the optimization problem since it reduces the search space from the space of strategy profiles

to the space of continuation profit sequences. Then, I characterize the Pareto frontier after
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and from the separation period. I show that BL’s profit is positively related to BH ’s and

A’s profit; therefore, I only consider patient firms for the Pareto frontier. The main issue

for patient firms regarding the implementation of collusive schemes is to prevent BL from

mimicking BH . In the separation period, BL undercuts the market price to obtain a small

rent. During this period, the market price cannot be too high since A expects future collu-

sive profit only with probability ρ0. As a result, prices cannot increase too rapidly on the

patient firms collusive path; otherwise, BL would mimic BH to undercut later at a higher

price. The speed of the price increase is therefore limited by the impatient firms’ discount

factors. Specifically, proposition 4.2 bounds the geometric speed of the price increase to less

than 1
δL

.

My model captures the transition phase as a way for firms to elicit the true discount fac-

tors of their rivals and to collude at the highest sustainable prices. This mechanism applies

to both tacit and explicit collusion in the sense that cheap talk does not restore complete

information since one type strictly benefits from mimicking the other.

Related Literature

This paper relates to the literature on collusion. The complete information game has been

studied for stationary strategies in Harrington (1989) and for general strategies in Obara and

Zincenko (2017). Collusion under private information on the discount factor has been studied

in Harrington and Zhao (2012); Bos, Letterie, and Vermeulen (2015); and Aghadadashli and

Legros (2020). Harrington and Zhao (2012) and Bos, Letterie, and Vermeulen (2015) both

studied a repeated prisoners dilemma game. In Bos, Letterie, and Vermeulen (2015), firms

exploit the cost of explicit collusion, related to the existence of antitrust laws, as a means

to signal their discount factors. Harrington Jr and Zhao (2012) studied equilibria in which

firms gradually learn each other’s discount factors. In contrast, I only restrict the strategies

of firms by assuming pure strategies, and my paper focuses on the gradual increase in prices

and not on beliefs. Aghadadashli and Legros (2020) studied collusion among managers with
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private information about their discount factors. The authors analyzed how antitrust fines

affect the ability of managers to truthfully communicate their types.

In a different framework, Harrington and Chen (2006) and Harrington (2017) presented

mechanisms that capture the gradual increase in prices at the start of collusion. In Harring-

ton and Chen (2006), small price increases reduce buyers’ suspicion and the probability of

the cartel being detected. Harrington (2017) relaxed the Nash equilibrium assumption that

firms anticipate their rivals’ strategies. In each period, firms observe each other prices and

gradually learn each other strategies, generating a transition phase in the class of strategies

studied. In contrast, my paper uses standard Nash-related equilibrium concepts but relaxes

the common knowledge assumption about the discount factor.

My paper also relates to the broader literature on cooperation, particularly papers that

study gradualism as a means to promote cooperation; see, e.g., Watson (1999); Blonski and

Probst (2001); Watson (2002); Rauch and Watson (2003); and Hua and Watson (2021).

The closest paper to mine is Kartal (2018). The authors studied a repeated principal agent

relationship under limited commitments, in which the principal’s discount factor is private

information. The paper shows that a patient principal’s optimal contract features a gradual

increase in the agent’s effort levels and that this transition phase is finite. Similarly, my

paper captures the gradual increase in prices as a feature of optimal collusive schemes for

patient firms, and I also characterize the optimal speed of price increases.

The paper is organized as follows. Section 2 presents the model. Section 3 characterizes

the Pareto frontier of the game under complete information. Section 4 analyzes the game

under incomplete information, characterizes the Pareto frontier for patient firms from the

separation period and provides the properties of the transition phase. Section 5 concludes.
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2 The Model

Firms A and B meet in periods t = 0, 1, ...,∞. Firms A and B engage every period in

Bertrand competition in a homogeneous-good market with no costs. Demand is inelastic,

and there is a unit mass of identical consumers with value v, where v > 0. In a period t,

firms A and B simultaneously select prices pA,t and pB,t in [0, v]. The firm with the lower

price serves the market. In period t, if pA,t = pB,t, then firms can split the market nonstrate-

gically, where αt ∈ [0, 1] denotes A’s market share, and (1−αt) denotes B’s market share.11

I assume that, for all price pk ∈ (0, v] k ∈ A,B, there exists an optimal undercutting price

puk that yields profit pk for the undercutting firm.12

Information Structure. Firm B’s private discount factor is either low, δL, with prob-

ability 1 − ρ0, or high, δH , with probability ρ0, where δH > δL are both in (0, 1). Firm A’s

discount factor is δH ∈ (0, 1) and is publicly known. Firm A has a prior belief ρ0 ∈ (0, 1) on

firm B’s being of type δH . I assume that δL + δH < 1 and that δH ≥ 1
2
. Section 3 demon-

strates that these two assumptions imply that no collusion is possible if B is impatient13,

and if B is patient, collusion is possible at the monopoly price v.

Notations. Given a path of play {pA,t, pB,t, αt}t≥0, πA,t denotes the current profit of firm

A in period t, which is equal to pA,t1{pA,t<pB,t} + 1{pA,t=pB,t}αtpA,t, and ΠA,t denotes the

continuation profit of firm A from period t onward, which is equal to (1 − δH)
∑

s≥t δ
s
HπA,s.

Similarly, πB,t is the current profit of firm B in period t and is equal to πB,t1{pB,t<pA,t} + (1−

αt)pB,t1{pB,t=pA,t}, and ΠB,t is the continuation profit of firm B from period t onward and is

equal to (1 − δB)
∑

s≥t δ
s
BπB,s. The subscript L (resp. H) refers to firm B of type δL (resp.

δH).

11Harrington Jr (1989) and Obara and Zincenko (2017) used the same assumption. In an asymmetric
context, allowing firms to share the market unequally improves the tractability of the model.

12This assumption facilitates the analysis of separating equilibria of the incomplete information game and
has no impact on the complete information game analysis.

13There is a unique SPE, in which A and BL play the NE in all histories.
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Strategies and Equilibrium Concepts. In the complete information repeated game,

a firm’s strategy maps the set of histories to the set of prices. Payoffs are the discounted by

the sum of each period’s profit. In section 3, I focus on subgame perfect equilibria (SPE).

In the incomplete information dynamic game, a strategy for firm B maps the set of his-

tories and types to the set of prices. Firm B’s payoff is the discounted sum of profits given

B’s type. Firm A’s strategy maps the set of histories to the set of prices. Firm A’s payoff is

the expected sum of discounted profits given its prior belief ρ0 about firm B’s type.

I focus on perfect Bayesian equilibria (PBE) in pure strategies, consisting of a sequen-

tially rational profile of strategies for each firm, together with consistent beliefs for firm A.

Consistent beliefs about firm B’s type are updated according to Bayes’ rule in all information

sets reached with positive probability. A strategy is sequentially rational if it maximizes the

players payoff at each information set.

The stage game has a unique Nash equilibrium (NE) that yields (0, 0) for both firms. The

NE has two crucial properties: (i) it is an equilibrium regardless of firms’ types or beliefs;

and (ii) it yields the minmax payoff for each firm regardless of its type or belief. Therefore,

in the dynamic game, punishing any detectable deviation by playing the NE forever provides

the best incentives to both firms and types and is a continuation equilibrium itself, regardless

of firms’ beliefs and types.14 Consequently, there is no need to refine beliefs off path (for

information sets reached with 0 probability).

3 Collusion under complete information

This section characterizes the Pareto optimal equilibrium payoffs for the complete informa-

tion game. A version of this game was analyzed in Harrington (1989) for stationary strategies

and in Obara and Zincenko (2017) for general strategies. First, I characterize the sequences

14Not all deviations are observable by all firms; in particular, when one firm mimics another type’s
strategy, this deviation is not observed by rival firms.



3. COLLUSION UNDER COMPLETE INFORMATION 27

of continuation profits achievable in equilibrium. Then, I determine the Pareto optimal equi-

librium profits for firms A and B. Importantly, in all Pareto optimal equilibria, firms set the

monopoly price v for every period. That is, the gradual increase inf prices is specific to the

incomplete information game. For the next subsection, firm A’s (resp. B’s) discount factor

is δA ∈ (0, 1) (resp. δB).

Equilibrium Profits

This subsection characterizes all sequences of continuation profits {ΠA,t,ΠB,t}t≥0 achievable

in a subgame perfect equilibrium in pure strategies. This step simplifies the construction of

the Pareto frontier since it reduces the search space from the space of strategies to the space

of payoffs. Following Abreu, Pearce and Stacchetti (1990), equilibrium payoffs are charac-

terized by promise keeping, sustainability and transversality conditions. Promise keeping

and transversality conditions ensure that the sequence of continuation profits can be con-

structed recursively from stage game profits. Sustainability conditions ensure that one-shot

deviations are not profitable.

Lemma 3.1. A sequence of continuation profits {ΠA,t,ΠB,t}t≥0 is achievable in a subgame

perfect equilibrium if and only if, for all t ≥ 0, there are πA,t, πB,t ≥ 0 with πA,t + πB,t ≤ v

such that:

ΠA,t = (1 − δA)πA,t + δAΠA,t+1 PK(A, t)

ΠB,t = (1 − δB)πB,t + δBΠB,t+1 PK(B, t)

ΠA,t ≥ (1 − δA)(πA,t + πB,t) S(A, t)

ΠB,t ≥ (1 − δB)(πA,t + πB,t) S(B, t)

{ΠA,t,ΠB,t}t≥0 is bounded. (Transversality)

Proof. See appendices.
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The transversality condition excludes exponentially growing sequences of continuation

profits.15 The best one-shot deviation for a firm is to undercut slightly its rival to attract

all consumers and capture the entire industry profits. The best way to disincentivize a firm

from undercutting its rival is to punish it with the play of the worst SPE (in which firms

play the NE in all histories), yielding a continuation profit of 0. In other words, collusion

is sustainable if, during any period and for all firms, the collusive continuation profit is

larger than the current industry profits. Rewriting sustainability conditions in terms of

continuation profits yields:

ΠB,t ≤ δBΠB,t+1 +
1 − δA
1 − δB

δAΠA,t+1 S(A, t)

ΠA,t ≤ δAΠA,t+1 +
1 − δB
1 − δA

δBΠB,t+1 S(B, t).

For A’s sustainability condition to be satisfied, B’s continuation profit must not be too high

compared to a weighted sum of both firms’ future continuation profits. Equivalently, in

matrix form:16






ΠA,t

ΠB,t




 ≤






δA
1−δB
1−δA

δB

1−δA
1−δB

δA δB






︸ ︷︷ ︸

S






ΠA,t+1

ΠB,t+1






Sustainability conditions hold for all periods so the period 0 vector of equilibrium profit is

necessarily less than St multiplied by the period t vector of equilibrium profit. The matrix

S has two eigenvalues of 0 and δA + δB. If δA + δB < 1 only a continuation payoff of 0 can

be sustained in equilibrium.

Stated differently, a sequence of continuation profits {ΠA,t,ΠB,t}t≥0 is sustainable only

if it grows at a geometric rate of at least 1
δL+δH

. Thus, if δL + δH < 1 only exponentially

15In this game, boundedness is equivalent to the more standard transversality condition limt→∞ δtKΠK,t =
0 for K ∈ {A,B}.

16Where

(
x1

x2

)

≤

(
y1
y2

)

iff x1 ≤ y1 and x2 ≤ y2.
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increasing sequences are sustainable. However, these sequences are unfeasible since demand

is bounded by v.

Proposition 3.2. If δA + δB < 1, positive profits cannot be sustained in equilibrium. The

set of equilibrium payoffs is {(0, 0)}.

Proof. See Harrington (1989) or Obara and Zincenko (2017) (theorem 3.1) for proofs of this

result. Appendix A.2 presents an alternative proof.

Positive payoffs cannot be sustained in equilibrium if the mean of both firms’ discount

factors δA+δB
2

is less than 1
2
, echoing the standard condition under homogeneous discounting

of δ < 1
2
. In the remainder of this paper, I assume that firm A’s discount factor is δH and

that δH > 1
2
, whereas if firm B is of type δL, I assume that δL + δH < 1

2
so that collusion is

not sustainable.

The next subsection characterizes the Pareto frontier of equilibrium profits for δH firms.

Pareto Frontier

To construct the Pareto Frontier, I optimize the weighted sum of A’s and B’s profits achiev-

able in equilibrium with parameter γ ∈ (0, 1). Using lemma 3.1, this problem is:

P1(γ) : max
{ΠA,t,ΠB,t}t≥0

γΠA,0 + (1 − γ)ΠB,0

subject to: ΠA,t ≥ δHΠA,t+1 ΠB,t ≥ δHΠB,t+1 C1(t), C2(t)

ΠA,t + ΠB,t ≤ (1 − δH)v + δH [ΠB,t+1 + ΠA,t+1] C3(t)

ΠB,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(A, t)

ΠA,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(B, t)

The Pareto frontier F1 is the set of solutions to P1(γ) for all γ ∈ (0, 1). These solutions

are the Pareto optimal collusive profits achievable in a repeated Bertrand duopoly game
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δH ≥ 1
2
. In this game, it is well known that firms can sustain the monopoly price v on the

collusive path. This subsection presents an alternative method for solving this problem that

extends to the analysis of an incomplete information game. It reestablishes that, to achieve

the greatest collusive profits, firms set the monopoly price v every period, and it presents the

divisions of the resulting industry profits that are part of the Pareto frontier. These results

and those in appendix A.2 are also used in section 4.

To construct the Pareto frontier, I first discuss the prices that are sustainable on the

collusive path for firms with discount factor δH ≥ 1
2
. The market price that correspond to

ΠA,t + ΠB,t − δH [ΠB,t+1 + ΠA,t+1] is either restricted by sustainability conditions, i.e., the

current price cannot be too high compared to future collusive profits, or by the demand,

i.e., when more expensive than v, no consumers buy the good. Consider a sequence of

continuation industry profits {Πt}t≥0. Industry profits are limited either by sustainability

concerns or v:

Πt ≤ 2δHΠt+1 S(A, t) + S(B, t)

Πt − δHΠt+1 ≤ (1 − δH)v C3(t)

Since δH ≥ 1
2
, all nondecreasing sequences of continuation industry profits {Πt}t≥0 satisfy sus-

tainability conditions. What restricts industry profits is the consumers’ willingness to pay v

captured by C3(t). Therefore, a candidate solution is to choose a strategy profile that pays the

monopoly price v in all periods on the collusive path and so yields a constant industry profit of

v during each period. The industry profit must be shared fairly to be sustainable, that is, with

αv ≤ δHv ( from S(A, t)) and with (1−α)v ≤ δHv ( from S(B, t)). This outcome constructs

a segment on the plane of firms profits: {(v − ΠB,0,ΠB,0) : (1 − δH)v ≤ ΠB,0 ≤ δHv}, which

is part of the Pareto frontier and maximizes the industry profit.

In fact, the Pareto frontier coincides with this segment. Indeed, firms’ current profits

are constrained by the future industry profits. Therefore, to maximize one firm’s profit, the
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industry profits must also be maximized.

Proposition 3.3. The Pareto frontier of equilibrium profits is:

F1 = {(v − ΠB,0,ΠB,0) : (1 − δH)v ≤ ΠB,0 ≤ δHv}

To achieve a Pareto optimal payoff, firms must set the monopoly price v in all periods.

Proof. A general version of this Pareto frontier (more players and discount factors) is char-

acterized in Obara and Zinceko (2017). Appendix A.2 characterizes the frontier for this

case.

ΠA

ΠB

δHv

δHv

(1 − δH)v

(1 − δH)v

If firms are more patient, then less equal divisions of the industry profits are sustainable.

The appendix presents various ways of dynamically sharing the market that construct a

single point of the Pareto frontier. However, all profits on the Pareto frontier are achieved by

setting the monopoly price v in each period. The next section shows that, under incomplete

information about B’s discount factor, Pareto optimal collusive paths start with a gradual

increase in prices.

4 Collusion under incomplete information

For this section, ΠL,t denotes BL’s continuation profit, and ΠH,t denotes BH ’s continuation

profit. I assume that δL < 1
2

and that δH ≥ 1
2
. That is, if B is of type δL, and firm A knows

B’s type, then no price greater than 0 can be sustained in equilibrium. In contrast, if B is

of type δH , and A knows B’s type, then all prices in [0, v] can be sustained in equilibrium.
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This section shows that, in a pure strategy separating BPE, profits on the Pareto frontier

from the separation period feature a gradual increase in prices on the patient firms’ path.

It proceeds in four steps. First, I show that pooling equilibria, in which BL and BH set the

same prices on the path, are suboptimal and yield 0 profits for all firms. Second, I study

an example of a separating equilibrium that yields positive profits to all firms and types.

This example shows that, to separate BL from BH in an incentive compatible manner, pa-

tient firms must delay the time at which they pay the highest sustainable price v . Third,

this section characterizes the payoffs achievable in a separating equilibrium using promise

keeping, sustainability conditions and incentive compatibility conditions. Incentive compat-

ibility conditions ensure that types are in best response by separating and not mimicking

each other. Finally, this section characterizes the Pareto frontier from the separation period.

I do not address the question of the optimal separation period; rather, I show that, from

the separation period, any Pareto optimal profits are constructed using a transition phase

during which prices increase gradually.

Pooling Equilibria

This subsection shows that pooling equilibria yield 0 profits for all firms and types. In a

pooling equilibrium, BL and BH pay the same price on path, and so A’s belief remains at ρ0

on the path. A pooling equilibrium path must be sustainable for all firms and types; that

is, the highest sustainable price in a pooling equilibrium is pinned down by the least patient

firms. In this case, A and BL cannot sustain supra-competitive prices. Therefore, a pooling

equilibrium yields 0 profits for all firms.

Proposition 4.1. Any pooling BPE yields 0 profits for all firms and types.

Proof. See appendices.

This result extends to mixed strategies. For profiles of mixed strategies in which, during

every period, there is a history reached with positive probability (even vanishingly small)
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during which BL and BH have set the same prices for all periods. For this particular path,

the proposition applies, and so it must yield 0 profits to all firms and types. Consequently,

since firms are in best response employing mixed strategies, any other path yields 0 profits.

To reach higher prices, patient firms must screen out impatient firms from collusive

schemes. In fact, as the next subsection shows, all types of firms can be made better by

separating.

Separating Equilibria: An Example

This subsection presents a separating equilibrium that yields positive payoffs for all firms

and types and so dominates any pooling equilibria. Importantly, it shows that, to separate

impatient firms from patient firms, A and BH must delay the period during which they set the

highest prices. This delay is necessary to prevent BL from mimicking BH and undercutting

at a high collusive price. Introducing this delay costs more to a mimicking BL than to a

patient firm since it discounts profits at rate δL rather than δH . That is, it increases the

difference in profits between types and enables separation.

Consider the following strategy profile with separation in period 0. During period 0,

firms A and BH set the same positive price p0 > 0, while firm BL undercuts and obtains

a profit of p0. At the end of period 0, firm A knows B’s type. If B is of type δL, then it

plays the NE for all future histories, which is the only equilibrium continuation. If B is of

type δH , then after a delay of τ periods, firms A and BH set v for all future periods. During

this delay, they set a price of 0. Any detected deviations are punished by playing the NE

forever.17 Firms A and BH split the market according to a fixed α ∈ [1 − δH , δH ]. This

strategy profile yields positive profits for all firms; moreover, there is a p0 > 0 and a τ ∈ N
∗

for which this strategy profile constitutes a BPE.

The strategy profile delays the best collusive price by τ to prevent BL from mimicking

firm BH in period 0 and undercutting at price v instead of p0. This first equilibrium condition

17An undetected deviation is, for instance, if BL mimics BH at t = 0.
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is:

p0 ≥ (1 − α)p0 + δτLv. (1.1)

BL’s undercutting profit p0 must be greater than the deviation profit from mimicking BH in

0 to undercut after a delay of τ periods at the monopoly price v. In this deviation, BL claims

BH ’s share of the industry profit (1−α)p0 in period 0 and obtains the entire industry profit

at the monopoly price in period τ . A higher p0 relaxes this condition, particularly if p0 = v

then (1) holds. However, since in period 0, firm A expects collusion only with probability

ρ0, then p0 cannot be too high; otherwise, firm A might find it profitable to undercut BL in

period 0. This second equilibrium condition is:

ρ0

(

αp0 +
δτH

1 − δH
αv

)

≥ p0. (1.2)

The expected continuation collusive profit for A in period 0 must be greater than the under-

cutting profit of p0.
18 Since collusion is uncertain for A, the price before separation cannot

be too high. For instance, if α = δH and ρ0 <
1−δH
δH

, then p0 = v violates (2). In that case, p0

is limited by A′s sustainability condition (2). In turn, the price in period 1 on the collusive

path for patient firms cannot be too high compared to p0; otherwise, BL might mimic BH

in period 0 to undercut at a higher price in period 1. Consequently, if ρ0 <
δL

δ2
H
+δL

,19 a delay

of at least two periods is necessary to separate BL from BH . Conditions (1) and (2) imply

that:

δτL
v

α
≤ p0 ≤ δτH

αvρ0
(1 − δH)(1 − αρ0)

For any parameter values, since limτ→∞

(
δL
δH

)τ

= 0, there are sufficiently large values of

τ and a p0 such that the strategy profile satisfies (1) and (2) and therefore constitutes a

18As mentioned in section 2, I assume that, for all prices p, there exists an undercutting price pu that
captures the entire market and yields a profit of p.

19This condition is obtained in appendix C and is discussed later in this section.
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BPE of the dynamic game. Using the mechanism design terminology, firms’ profits have the

“strict increasing difference” property in the delay’s length τ . Increasing τ is more costly to

BL, which discounts future undercutting profits at rate δL, than to a firm of type δH , which

enables separation.

Although delay is necessary for separation, setting prices of 0 during the delay is sub-

optimal. The next subsections show that the Pareto optimal way to implement this delay is

with a gradually increasing price path.

Separating Equilibrium Profits

This subsection characterizes all profits achievable in a pure strategy separating BPE. This

step simplifies the construction of the Pareto frontier since it reduces the search space from

the space of strategies to the space of continuation profits. A separating BPE is a strategy

profile such that the strategies of BL and BH differ on at least one information set reached

with positive probability. In pure strategies, separation occurs in only one period: on the

first information set, reached on a path, for which σL and σH differ. Let T denote the

separation period, in which A learns B’s type. Specifically, before period T , firm A believes

B is BH with probability ρ0. Between T and T + 1, A’s belief moves from ρ0 to 0 (if B is of

type δL) or to 1 (if B is of type δH) and remains at these levels afterward. Consequently, A’s

consistent beliefs are entirely pinned down by the separation period T and matter for the

following analysis only in computing A’s expected continuation profits. In the remainder of

this section, I discuss the conditions for which continuation profits are achievable in a BPE.

In contrast to the complete information case, sustainability and promise keeping conditions

are necessary but not sufficient; therefore, I introduce incentive compatibility conditions.

Consider a strategy profile that separates BH from BL in period T ∈ N. After separation,

there are two equilibrium paths: one designed for patient firms A and BH ; and the other

designed for A and BL. In A and BH ’s path, sustainability and promise keeping conditions

characterize the sequences of continuation profits {ΠA,t,ΠH,t}t>T achievable in equilibrium,



4. COLLUSION UNDER INCOMPLETE INFORMATION 36

as in lemma 3.1. In A and BL’s path, since δL + δH < 1, the only continuation equilibrium is

the repetition of the NE for all future histories. A and BL’s equilibrium profits on that path

are 0. As a result, BL must be in static best response in period T , which must undercut A’s

price. During the pooling period, sustainability and promise keeping conditions characterize

the sequence of continuation profits {ΠA,t,ΠH,t,ΠL,t}0≤t<T achievable in equilibrium, as in

lemma 3.1.

The patient firms’ sequence of continuation profits {ΠA,t,ΠH,t}t≥0 corresponds to A’s and

BH ’s profits during the pooling period and on the collusive path after separation, whereas

the sequence {ΠL,t}0≤t≤T corresponds to BL’s continuation profit during the pooling period

and at the separation periods (BL’s profit must be 0 after separation). Using these notations,

promise keeping and sustainability conditions outside the separation period entail that, for

all of period t 6= T , there are nonnegative current profits πA,t, πB,t with πA,t + πB,t ≤ v such

that:

ΠA,t = (1 − δH)πA,t + δHΠA,t+1 PK(A, t)

ΠH,t = (1 − δH)πB,t + δHΠH,t+1 PK(H, t)

ΠL,t = (1 − δL)πB,t + δLΠL,t+1 PK(L, t) for t < T

ΠA,t ≥ (1 − δH)(πA,t + πB,t) S(A, t)

ΠH,t ≥ (1 − δH)(πA,t + πB,t) S(H, t)

ΠL,t ≥ (1 − δL)(πA,t + πB,t) S(L, t) for t < T.

During the separation period, BH ’s promise keeping condition is unchanged, whereas A’s

promise keeping condition considers that future collusive profits occur with probability ρ0.

In the separation period, BL’s only action supported in equilibrium is to undercut the market
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price. Therefore, in this period, A and BL’s promise keeping conditions are:

ΠA,T = ρ0 [(1 − δH)πA,T + δHΠA,T+1] PK(A, T )

ΠL,T = (1 − δL)(πA,T + πB,T ) PK(L, T ).

Promise keeping conditions ensure that continuation profits can be constructed from

stage game profits. Sustainability conditions ensure that detectable one shot deviations are

not profitable. Any detected deviations are punished by playing the NE repeatedly, which

yields 0 payoffs.20 Undercutting the current market price is the best one shot deviation.

Therefore, sustainability conditions hold if, for all firms and types and during each period,

the expected continuation profit is weakly larger than the current industry profit. At T ,

there are no sustainability conditions for BL since its equilibrium strategy is to undercut the

current price.

These conditions are, however, insufficient to characterize equilibrium profits. In the

incomplete information game, not all deviations are observable. Indeed, when BH mimics

BL or vice-versa, A does not detect the deviation and believes the play continues on the

equilibrium path, yet A is wrong about B’s true type. To capture these deviations into equi-

librium conditions, I introduce incentive compatibility conditions (IC) and a law of motion

(LM) that ensure B is in best reply separating in period T . The incentive compatibility

conditions ensure that BL’s deviation profit when mimicking BH is not greater than its equi-

librium profit from separating at T . The law of motion allows for a recursive formulation

of the incentive compatibility conditions that will simplify the optimization process and the

construction of the Pareto frontier.

First, consider BH ’s undetected deviation to mimic BL at T . That means BH undercut

A’s price at T . In this case, A believes that B is of type δL and plays according to the equi-

librium strategy: play NE for all future periods. Therefore, if BH mimics BL, it captures

20This continuation is a BPE regardless of A’s belief or B’s type and yields the minmax payoff to all firms
and types.
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industry profit at T but has no profits in the future. This incentive compatibility condition

is:

ΠH,T ≥ (1 − δH)(πA,T + πB,T ).

By abuse of notation and because it is functionally equivalent to a sustainability condition,

I label this condition S(H,T ) in the analysis.

Second, consider BL’s undetected deviation to mimic BH from T to, say, t − 1 and

undercut the market price at t. In this case, BL plays according to BH ’s strategy; the play

continues on the patient firms’ path and BL claims BH ’s market shares from T to t − 1.

Formally, mimicking BH from T to t− 1 and undercutting at t do not result in a profitable

deviation for BL if:

πA,T + πB,T ≥
t∑

s=T

δs−T
L πB,s + δt−T

L (πA,t + πB,t) IC(t).

The separating profit for BL must be greater than the profit generated by BH ’s market shares

every for period plus the undercutting profit at t. BL’s best response is separating at T if

and only if, for all t > T , the incentive compatibility conditions IC(t), hold. Proposition

4.2 shows that sustainability and promise keeping conditions, together with the incentive

compatibility conditions, are necessary and sufficient for sequences of continuation profits to

be achievable in a BPE.

Before stating the result of proposition 4.2, I rewrite the incentive compatibility constraint

in a recursive form, which simplifies the construction of the Pareto frontier. I consider the

sequence of state variable {ΠL,t}t>T , where ΠL,t is the BL’s promised profit on the patient

collusive path at t, rendering BL indifferent between separating at T or mimicking BH in

periods T, T + 1, .., t− 1.

Definition 1. Consider sequences of continuation profits {ΠA,t,ΠH,t}t≥0 and {ΠL,t}0≤t≤T .

The sequence of state variables {ΠL,t}t≥T+1 is the sequence of BL’s promised continuation
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profits on the patient firms path, making BL’s indifferent between separating at T or mim-

icking BH . Formally, for t ≥ T + 1:

(1 − δL)
t−1∑

s=T

δs−T
L πB,s

︸ ︷︷ ︸

mimicking profit until t−1

+δtLΠL,t = (1 − δL)(πA,T + πB,T )
︸ ︷︷ ︸

separating profit at T

The right hand side of the equation captures BL’s separation profit at T , BL undercuts

at T and claims the entire industry profit. The left hand side represents BL’s mimicking

profit in which it claims BH ’s market shares from T to t− 1 plus the state variable ΠL,t that

ensures both sides are equal. To be sure ΠL,t does not correspond to a continuation profit

that is obtainable in the game. Rather, the state variable is the upper bound on deviation

profits above which BL is not in best response separation at T . For instance, consider a

deviation in which BL mimics BH from T to t− 1 and undercut the market price at t. This

deviation is not strictly profitable if IC(t) holds. Using the defining equation of ΠL,t, IC(t)

becomes:

ΠL,t ≥ (1 − δL)(πA,t + πB,t) IC(t).

In other words, if the promised profit at t, which renders BL indifferent from mimicking

BH until t − 1 and separating at T , is larger than the undercutting profit in period t, then

mimicking BH until t− 1 and undercutting at t is not a profitable deviation for BL.

In addition, the sequence of state variables {ΠL,t}t>T can be characterized recursively.

From the defining equation of ΠL,t and ΠL,t+1 one has:

(1 − δL)
t−1∑

s=T

δs−T
L πB,s + δtLΠL,t = (1 − δL)

t∑

s=T

δs−T
L πB,s + δt+1

L ΠL,t+1

⇐⇒

ΠL,t+1 =
ΠL,t − (1 − δL)πB,t

δL
LM(t).
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If ΠL,t is what must be promised for BL to be indifferent from mimicking BH up to t or

separating, then what must be promised in t + 1 is less by (1 − δL)πB,t (the benefit of

mimicking in t) or is greater by a factor of 1
δL

to compensate discounting. Remark that, in

period T :

ΠL,T+1 =
(1 − δL)πA,t

δL

PK
=

ΠL,T − (1 − δL)πB,T

δL
LM(T )

The law of motion LM(t) constructs {ΠL,t}t≥T+1 inductively from the starting value ΠL,T =

(1 − δL)(πA,T + πB,T ) defined by BL’s separation profit.

All in all, (IC) and (LM) ensure that undetected deviations, in which BL mimics BH , are

not profitable. The next proposition shows that adding these two conditions to the standard

sustainability and promise keeping conditions characterizes all of the continuation profits

achievable in equilibrium.

Proposition 4.2. Sequences of continuation profits {ΠA,t,ΠH,t}t≥0,{ΠL,t}0≤t≤T and the se-

quence of state variables {ΠL,t}t≥T+1 are achievable in a BPE with separation at T ≥ 0 if

and only if, for all t ≥ 0, there exists πA,t, πB,t ≥ 0 with πA,t + πB,t ≤ v such that:

ΠH,t = (1 − δH)πB,t + δHΠH,t+1 PK(H, t)

ΠA,t = (1 − δH)πA,t + δHΠA,t+1 PK(A, t) for t 6= T

ΠA,T = ρ0 [(1 − δH)πA,T + δHΠA,T+1] PK(A, T )

ΠL,t = (1 − δL)πB,t + δLΠL,t+1 PK(L, t) / LM(t)

ΠL,T = (1 − δL)(πA,T + πB,T ) PK(L, T )

ΠH,t ≥ (1 − δH)(πA,t + πB,t) S(H, t)

ΠA,t ≥ (1 − δH)(πA,t + πB,t) S(A, t)

ΠL,t ≥ (1 − δL)(πA,t + πB,t) S(L, t) / IC(t) for t 6= T.

{ΠA,t,ΠH,t}t≥0 is bounded. (Transversality)
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Proof. See appendices.

There are, after all, few differences between conditions that characterize continuation

profits achievable in a pooling equilibrium and conditions that characterize continuation

profits achievable in a separating equilibrium. For BH , nothing changes; for A the promise

keeping condition at T changes since A expects collusion with probability ρ0. For BL,

in all periods, {ΠL,t}t≥T+1 satisfies conditions functionally equivalent to sustainability and

promise keeping conditions. However, the interpretation of these conditions is different.

From proposition 3.2, there are no bounded {ΠL,t}t≥T+1 that can satisfy these conditions.

That is, {ΠL,t}t≥T+1 is typically unbounded, which is not an issue since {ΠL,t}t≥T+1 value

is anchored in period T : ΠL,T = (1 − δL)(πA,T + πB,T ), and after T , this value does not

capture profits achievable in the game. Consequently, after a finite number of periods, the

value of the state variable increases to greater than the monopoly price level. Since ΠL,t

restricts the current price (from (IC)), then subsequently, stage patient firms can collude at

the monopoly price level, whereas before that stage, prices are restricted to less than v, and

these periods correspond to the transition phase.

The next subsection computes and reports the main property of the Pareto frontier on the

patient firms collusive path (after T ) for a given starting state variable ΠL,T . It characterizes

the speed of the price increase during the transition phase.

Pareto Frontier After Separation

This subsection characterizes the Pareto frontier of profits achievable in a separating BPE

after a given separation period T for a given starting state variable. To simplify the notations,

I assume the separation period is 0 so that I optimize the weighted sum of firm A and BH ’s

profits from period 1 onward with a parameter γ ∈ (0, 1).21 Using proposition 4.2 this

21This assumption is inconsequential since profits from t onward are independent of past profits.
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problem is:

P2(γ,ΠL,1) :

max
{ΠA,t,ΠH,t}t≥1,{ΠL,t}t≥1

γΠA,1 + (1 − γ)ΠH,1

subject to: ΠA,t ≥ δHΠA,t+1 ΠH,t ≥ δHΠH,t+1 C1(t), C2(t)

ΠA,t + ΠH,t ≤ (1 − δH)v + δH [ΠH,t+1 + ΠA,t+1] C3(t)

ΠH,t ≤ δH [ΠH,t+1 + ΠA,t+1] S(A, t)

ΠA,t ≤ δH [ΠH,t+1 + ΠA,t+1] S(B, t)

δLΠL,t+1 = ΠL,t −
1 − δL
1 − δH

[ΠH,t − δHΠH,t+1] LM(t)

ΠL,t ≥
1 − δL
1 − δH

[ΠA,t + ΠH,t − δH(ΠA,t+1 + ΠH,t+1)] IC(t)

Solutions to P2(γ,ΠL,1) maximize firm A and BH ’s equilibrium profits after separation while

restricting BL’s mimicking profit to ΠL,1. This problem is similar to the complete information

problem with the additional conditions of LM(t) and IC(t). As in section 3, I neglect the

transversality condition and remove ex post unbounded solutions to the problem. To solve

P2, I proceed in two steps. First, I show that solutions to P2 must, for feasibility reasons,

feature a transition phase during which, for a finite number of periods, prices are less than

the monopoly level. Second, I show that, to obtain Pareto optimal payoffs, prices gradually

increase during the transition phase.

Definition 2. The transition phase of a solution to P2 corresponds to the periods in which

the prices played on the patient firm collusive path are less than the monopoly price v. Let τ

denote the length of the transition phase.

In each period, the market price is restricted by sustainability issues (S(A) and S(B)),

by the demand (C3) or by incentive compatibility concerns (IC). In section 3, I showed

that C3 is more stringent than sustainability issues for non decreasing paths of continuation

payoffs. Whether IC is more stringent than C3 depends on the value of the state variable
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ΠL,t:

ΠA,t + ΠH,t − δH(ΠA,t+1 + ΠH,t+1)
︸ ︷︷ ︸

period t market price

≤







(1 − δH)v C3(t)

1−δL
1−δH

ΠL,t IC(t)

If ΠL,t > (1 − δL)v, then the demand constrains the market price and not incentive com-

patibility. Indeed, in the ideal scenario, BL mimics BH to undercut at the monopoly price

if this ideal undercutting profit is less than the promised profit that renders BL indifferent

between separating or mimicking BH ; then, incentive compatibility is no longer an issue. In

this case, P2 can be shown to be equivalent to the complete information problem P1. In

contrast, if ΠL,t < (1 − δL)v, the price is restricted by the incentive compatibility condition.

If patient firms set a price higher than 1−δL
1−δH

ΠL,t, then BL has a strictly profitable deviation

to mimic BH and undercut at t when this price is played. For these periods, the price played

by patient firms must be less than the monopoly price.

From proposition 4.3, no bounded sequences {ΠL,t}t>0 satisfy LM(t) and IC(t).22 There-

fore, {ΠL,t}t>0 must be unbounded and so (1−δL)v after a finite number of periods. In other

words, after a finite number of periods, patient firms set the monopoly price v in all periods.

The transition phase, during which the price is restricted to less than the monopoly price,

lasts a finite number of periods. Next, I discuss why during the transition phase the price

gradually increases.

The law of motion LM(t) captures how BH ’s market shares determines the evolution of

the state variable ΠL,t over time. Reducing BH ’s current market share makes it less prof-

itable for BL to mimic BH , increasing the future state variable by a factor of 1
δL

. In turn,

the market price in the next period can be increased by a factor of 1
δL

. Since patient firms’

profits are discounted at a higher rate δH , the industry profits in the next period increase

by a factor of δH
δL

> 1. Therefore, reducing BH ’s market shares to 0 during the transition

22The law of motion and incentive compatibility conditions are functionally equivalent to the sustainability
and promise keeping conditions.
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phase increases the industry profits and causes the state variable, and therefore the market

price, to grow at a rate of 1
δL

during every period. However, this trade-off does not always

benefit BH . BH bears the entire costs of reducing BL’s mimicking profit but obtains only

a fraction of the gains since industry profits must be shared among patient firms to ensure

sustainability. For solutions to P2 that assign a high weight to BH ’s profit, BH has positive

market shares during the transition phase. As a result, prices grow at a slower rate of 1
δL+δH

.

The next proposition summarizes these results:

Proposition 4.3. If 0 < ΠL,1 < (1−δL)v, then all solutions to P2 feature a transition phase

of finite length τ ≥ 1 such that:

1. During the transition phase, for t ∈ {1, ..., τ}, the market price is restricted to less

than the monopoly price and equals
ΠL,t

1−δL
< v;

2. During the transition phase, the market price strictly increases at a geometric rate

between 1
δL+δH

and 1
δL
. For all t ∈ {1, ..., τ − 1}:

1

δL + δH
≤

ΠL,t+1

ΠL,t

≤
1

δL

; and

3. After the transition phase, from period τ + 1 onward, patient firms set the monopoly

price in all periods.

Proof. See the appendix.

If the starting value of the state variable is 0, then BL’s profit from mimicking BH cannot

be higher than 0; therefore, the only feasible price is 0. In other words, BL must obtain a

positive profit during the separation period, a rent, to separate types and enable patient firms

to play the highest sustainable prices. If the starting value of the state variable is greater

than (1− δL)v, then incentive compatibility is not an issue from the first period onward, and
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patient firms play the monopoly price in all periods. Next, I characterize Pareto optimal

payoffs after the separation period for a given starting state variable value ΠL,1.

Pareto Frontier. A transition phase yielding Pareto optimal payoff obeys the follow-

ing trade-off. Reducing current BH ’s profit accelerates the price increase (with the highest

geometric speed of 1
δL

) and increases all future prices during the transition phase. However,

BH bears entirely the cost of accelerating the price increase but captures only a share of the

gains due to sustainability issues. This trade-off is always profitable for firm A and profitable

for firm BH only if the remaining length of the transition phase is sufficiently long, that is,

only if the acceleration of the price increase affects sufficiently many prices. As a result, a

transition phase that yields Pareto optimal profits takes different forms: (i) if the weight

on A’s profit is large, then the price increase at the highest rate of 1
δL

and BH ’s market

shares are 0 during the transition phase; and (ii) if the weight on BH ’s is large, however,

then a transition phase of length τ has two parts. During the first part of length τf , in

which the remaining length of the transition phase is sufficiently great, the price increases

at the highest rate of 1
δL

. During the second part of length τs = τ − τf , in which there are a

few periods of the transition phase remaining, BH has positive market shares and the price

increase at the smallest rate of 1
δL+δH

.

The parameter γ determines the length τs of the “slow” part of the transition phase.

The higher that 1 − γ is, the more weight that is assigned on BH ’s profit in the objective,

and the longer that the slow part of the transition phase is during which BH has positive

market shares. The value of the starting state variable ΠL,1 determines the total length of

the transition phase. The smaller that ΠL,1is, that is, the smaller that the upper bound is

on BL’s mimicking profit on the patient firm collusive path, the longer that the transition

phase is; i.e., patient firms further delay playing the monopoly price.

Proposition 4.4. All solutions to P2 feature a transition phase that starts with a fast part

of length τf and ends with a slow part of length τs, with τf + τs = τ .
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1. During the fast part, BH ’s market shares are 0, and prices increase at a rate of 1
δL
.

2. During the slow part, BH ’s market shares equal δH
δL+δH

, and prices increase at a rate of

1
δH+δL

.

The length of the fast part τf and of the slow part τs are characterized by23:

(δL + δH)τs−1δ
τf
L >

ΠL,0

(1 − δL)v
≥ (δL + δH)τsδ

τf
L

1 −
τs−1∑

t=1

(
δH

δL + δH

)t

≥
γ

1 − γ
≥ 1 −

τs∑

t=1

(
δH

δL + δH

)t

Proof. See the appendix.

The transition phase can have only a slow part τs = τ or only a fast part τf = τ . For

instance, the latter case happens if γ

1−γ
≥ 1 ⇐⇒ γ ≥ 1

2
. In other words, if the objective

weakly favors firm A, the optimal transition phase only has a fast part, which also maximizes

the industry profits. The next proposition presents the Pareto optimal payoffs for patient

firms for a transition phase of length τf + τs and for a starting value of the state variable of

ΠL,1. The formulas differ for the industry efficient solution, for which τs = 0.

Proposition 4.5. Pareto optimal profits constructed from a transition phase of length τ =

τf + τs with τs > 0 equal:

ΠA,1 =
1 − δH
1 − δL

ΠL,1

τf∑

s=0

(
δH
δL

)s

ΠH,1 =
1 − δH
1 − δL

ΠL,1

(
δH
δL

)τf τs−1∑

s=1

(
δH

δL + δH

)s

+ δτ+1
H v

Pareto optimal profits constructed from the industry efficient transition phase of length τf = τ

23With the assumption that
∑τs−1

t=1

(
δH

δL+δH

)t

= 0 if τs = 0.
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equal:

ΠA,1 =
1 − δH
1 − δL

τ−1∑

s=0

(
δH
δL

)s

ΠL,1 + δτ+1
H v

ΠH,1 = δτH(1 − δH)v

Proof. See appendices.

In the solution that maximizes the industry profit, BH ’s has 0 market shares during

the transition phase and therefore only makes profit from period τ + 1 onward, when the

monopoly price is played.

In a separating equilibrium, the starting value of the state variable is determined endoge-

nously. It depends on A’s belief ρ0 about the probability of colluding with BH . Reducing ρ0

reduces the highest price sustainable by A during the separation period.

Pareto Frontier from the Separation Period

This subsection presents the Pareto frontier from the separation period given A’s belief ρ0. I

assume that separation occurs in period 0; although the period during which firms separate

has no impact on the Pareto frontier, I do not discuss the question of the optimal separation

period.

During the separation period, BL undercuts, claims the entire industry profit and obtains

0 profit afterward. Increasing the market price during the separation period benefits BL, and

also benefits patient firms by allowing them to set higher prices on the patient firm path.

Therefore, to construct the Pareto frontier, it is sufficient to maximize the weighted sum of

A and BH only since BL’s profit is positively related to the patient firms’ profits.

To construct the frontier from the separation period, future profits must be part of the

frontier after the separation period. Patient firms’ continuation profits from period 1 onward
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must be a solution to P2 for a starting value of the state variable endogenously determined

in period 0. From LM(0) and PK(0) the value of ΠL,1 is:

ΠL,1 =
ΠL,0 − (1 − δL)πB,0

δL

=
(1 − δL)πA,0

δL

Therefore, to construct the Pareto frontier from the separation period, I optimize the

weighted sum of A’s and BH ’s profits from period 0 with a parameter γ ∈ (0, 1). Using

proposition 4.2, this problem is:

P3(γ) :

max
πH,0,πA,0,ΠA,1,ΠH,1

γ ((1 − δH)πA,0 + δHΠA,1) + (1 − γ) ((1 − δH)πH,0 + δHΠH,1)

subject to : πH,0, πA,0 ≥ 0 , (ΠA,1,ΠH,1) ∈ F2

(
1 − δL
δL

πA,0

)

(1 − δH)(πH,0 + πA,0) ≤ (1 − δH)v C3(0)

ρ0 ((1 − δH)πA,0 + δHΠA,1) ≥ (1 − δH)(πH,0 + πA,0) S(A, 0)

δHΠH,1 ≥ (1 − δH)πA,0 S(H, 0)

Increasing the price during period 0 and A’s market shares increases the value of the state

variable and thus both firms’ continuation profits from period 1 onward. However, A’s

sustainability condition restricts the period 0 market price. Since A expects collusion to

happen only with probability ρ0, if the period 0 price is too high, then A might be better-off

undercutting this price. In fact if ρ0 is sufficiently high, i.e., greater than δL
δ2
H
+δL

, then the

highest price that A can sustain in period 0 allows patient firms to play the monopoly price

v from period 1 onward.24 In this subsection, I focus on the case ρ0 <
δL

δ2
H
+δL

, for which, from

24See appendices for these conditions and the computations.
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period 1, there is a transition phase.

Increasing A’s profit in period 0 increases the value of the state variable from period

1, which in turn benefits all players. Therefore, at the solution, BH ’s market shares are 0

in period 0, and the period 0 market price is set to the highest level that A can sustain.

Profits from period 1 on are taken from the Pareto frontier of P2; thus, solutions to P3 feature

similar transition phases of length τf +τf . However, increasing A’s future profits after period

1 relaxes A’s sustainability condition in period 0 and therefore allows patient firms to set a

higher price in period 0. That is, increasing A’s profits after separation increases the value

of the state variable from period 1, in turn increasing patient firms’ profits.

Proposition 4.6. Assume ρ0 <
δL

δ2
H
+δL

. All solutions to P3 feature, from period 1 onward, a

transition phase of length τf + τs. Where τs and τf are determined by A’s belief:

C(τf , τs) > ρ0 ≥
1

1 +
∑τf+1

s=1

(
δH
δL

)s

Where:

C(τf , τs) =

∑τf
s=0

(
δH
δL

)s
(

δH−δL
δHδL

−
(

δH
δL+δH

)τs−1
)

(
δH
δL

)τf
+
∑τf

s=0

(
δH
δL

)s
(

δH−δL
δHδL

−
(

δH
δL+δH

)τs−1
)

Proof. See appendices.

Reducing ρ0 reduces the period 0 price and the undercutting profit of BL and, in turn,

increases the length of the transition phase.

All in all, there are two mechanisms that produce gradualism in this model. First, patient

firms employ a gradually increasing path of prices to separate BL from BH . Delaying the

period during which the monopoly price is played on the patient firm collusive path reduces

the incentives more for BL to mimic BH than the profits earned by patient firms.
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5 Conclusion

This paper studies a mechanism that explains the gradual increase in prices at the start

of collusion. I analyze a repeated Bertrand pricing game, in which one firm is privately

informed about its own discount factor. I show that, in pure strategies, Pareto optimal equi-

libria feature a transition phase during which prices increase gradually after the separation

period. It is necessary for patient firms to delay the period during which they play the high-

est sustainable prices to separate themselves from impatient firms. In addition, I identify

two channels that affect the length of the transition phase. First, if A’s belief is that B is

patient is lower, that is, A expects collusion with a lower probability, then the separation

profit of the impatient firm is lower; thus, the transition phase’s length increases. Second,

the patient firm B (BH) could reduce its market shares during the transition phase to deter

the impatient firm (BL) from mimicking and accelerating the price increase. However, BH

cannot appropriate all the gains since they are shared with A to ensure sustainability. As a

result, BH might prefer to claim positive market shares during the transition phase, increas-

ing its length.

If B can signal its type, then the first channel that generates the transition phase can

be shut down. For instance, we assume that negative (or below cost) prices are feasible.

Then, BH can set a price that is sufficiently low during the first period such that BL cannot

profitably mimic; therefore, patient firms can set the monopoly price from the second period

onward. Alternatively, if we assume that B and A can meet and bargain at the beginning

of the game, then in this case, BH can burn an amount of money large enough to signal

its type. The resulting equilibrium does not depend on A’s beliefs, and there could be an

equilibrium path without a transition phase. However, it is still suboptimal for firm BH to

reduce the length of the transition phase beyond the length of the short part τs. For BH , the

same trade-off applies: it can either reduce its current market share to accelerate the price

increase or set a lower below-cost price to shorten the transition phase.
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Date planned of price increase 50% dry 60 % dry 75 % liquid

January 1993 1000 1200 1000
July 1993 1100 1320 1100
January 1994 1100 1320 1200

Table 1.1: Cartel Prices – Choline Chloride.

Figure 1.1: Price serie for a symetric duopoly, from Harrington, Gonzales and Kujal (2017)

6 Appendices

6.1 Collusion under Complete Information

Proof of Proposition 3.1

Sufficiency (⇐). Define the following Grim-Trigger strategy for k = A,B:

σk
GT : ht 7→







0 if ht 6= {pA,t, pB,t}t≥0

pk,t if ht = {pA,t, pB,t}t≥0
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Where for all t ≥ 0:

pA,t = pB,t = πA,t + πB,t

αt =
πA,t

πA,t + πB,t

Since 0 ≤ pk,t ≤ v, by following the Grim-Trigger strategy profile each firms obtains in each

period a flow profit of αtpA,t = πA,t and (1 − αt)pB,t = πB,t.

Using the promise keeping conditions PK(k, t) and the fact that ΠA,t,ΠB,t are bounded

one has that for all t:

ΠA,t = (1 − δA)
∑

s≥t

πA,s

ΠB,t = (1 − δB)
∑

s≥t

πB,s

That is, the strategy profile defined above achieves the sequence of continuations profits for

each firm. It remains to be shown that the strategy profile constitute a SPE of the complete

information game. From the one-shot deviation principle, (σA
GT , σ

B
GT ) is an SPE if and only

if for all t

ΠA,t ≥ (1 − δA) sup
p′ 6=pA,t

p′1{p′<pk,t}

ΠB,t ≥ (1 − δB) sup
p′ 6=pB,t

p′1{p′<pk,t}

⇐⇒ S(A, t), S(B, t).

Therefore, the conditions of proposition 3.1 are sufficient for {ΠA,t,ΠB,t}t≥0 to be achievable

in equilibrium.
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Necessity (⇒) Let the sequence {ΠA,t,ΠB,t}t≥0 be achievable in equilibrium. That is, there

is a strategy profile:

k = A,B σk : ht 7→ pk(ht) ∈ [0, v]

and a map ht 7→ α(ht) such that for all ht on path (noted hp
t ):

ΠA,t = (1 − δA)
∑

s≥t

(
pA(hp

s)1{pA(hp
s)<pB(hp

s)} + α(hp
s)pA(hp

s)1{pA(hp
s)=pB(hp

s)}

)
(i)

ΠB,t = (1 − δB)
∑

s≥t

(
pB(hp

s)1{pB(hp
s)<pA(hp

s)} + (1 − α(hp
s))pB(hp

s)1{pB(hp
s)=pA(hp

s)}

)
(ii)

and for all ht the one shot deviation principle holds. Define for all t:

πA,t = pA(hp
s)1{pA(hp

s)<pB(hp
s)} + α(hp

s)pA(hp
s)1{pA(hp

s)=pB(hp
s)}

πB,t = pB(hp
s)1{pB(hp

s)<pA(hp
s)} + (1 − α(hp

s))pB(hp
s)1{pB(hp

s)=pA(hp
s)}

Notice, πk,t ∈ [0, v] and πA,t + πB,t ≤ v.

From (i) and (ii), {ΠA,t,ΠB,t}t≥0 is bounded. Further, with the previous definitions of

πA,t, πB,t, ΠA,t and ΠB,t satisfy PK(A, t) and PK(B, t) for all t.
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Last, the one shot deviation principle holds for all ht, in particular, for all hp
t :

ΠA,t ≥ (1 − δA) sup
p′ 6=pA(hp

t )

p′1{p′<pB(hp
t )}

ΠB,t ≥ (1 − δB) sup
p′ 6=pB(hp

t )

p′1{p′<pA(hp
t )}

=⇒

ΠA,t ≥ (1 − δA)(πA,t + πB,t)

ΠB,t ≥ (1 − δB)(πA,t + πB,t)

⇐⇒ S(A, t), S(B, t).

Proof of Proposition 3.2

Because S(t) is true for all t this implies that for any t:






ΠA,0

ΠB,0




 ≤






δA
1−δB
1−δA

δB

1−δA
1−δB

δA δB






t




ΠA,t

ΠB,t






⇐⇒






ΠA,0

ΠB,0




 ≤ P






0 0

0 (δA + δB)t




P−1






ΠA,t

ΠB,t






Where :

P =






δA(1 − δB) 1 − δB

−δB(1 − δA) 1 − δA






If δA + δB < 1, and because continuation profits are bounded, then the only payoff satisfying

sustainability conditions is the Nash equilibrium payoff
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Pareto Optimal Profits

P1(γ) : max
{ΠA,t,ΠB,t}t≥0

γΠA,0 + (1 − γ)ΠB,0

subject to: ΠA,t ≥ δHΠA,t+1 ΠB,t ≥ δHΠB,t+1 C1(t), C2(t)

ΠA,t + ΠB,t ≤ (1 − δH)v + δH [ΠB,t+1 + ΠA,t+1] C3(t)

ΠB,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(A, t)

ΠA,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(B, t)

I neglect the transversality condition, I rule out ex-post unbounded solutions to the problem.

The problem P1(γ) is linear and can be solved using a dual approach. The dual problem is:

D1(γ) : min
{λ(t)}t≥0

(1 − δH)v
∑

t≥0

δtHλ3(t)

subject to: γ + λ1(0) = λ3(0) + λB(0) C4(0)

1 − γ + λ2(0) = λ3(0) + λA(0) C5(0)

∀t ≥ 1 :

λ1(t) + λ3(t− 1) + λA(t− 1) + λB(t− 1) = λ1(t− 1) + λ3(t) + λB(t) C4(t)

λ2(t) + λ3(t− 1) + λA(t− 1) + λB(t− 1) = λ2(t− 1) + λ3(t) + λA(t) C5(t)

The next proposition gives the optimality conditions:

Proposition 6.1. If feasible sequences of primal and dual variables



6. APPENDICES 56

{ΠA,t,ΠB,t, λ1(t), λ2(t), λ3(t), λA(t), λB(t)}t≥0 are such that:

λ1(t)(ΠA,t − δHΠA,t+1) = 0 CS1(t)

λ2(t)(ΠB,t − δHΠB,t+1) = 0 CS2(t)

λ3(t)((1 − δH)v + δH [ΠB,t+1 + ΠA,t+1] − ΠA,t − ΠB,t) = 0 CS3(t)

λA(t)(δH [ΠB,t+1 + ΠA,t+1] − ΠB,t) = 0 CSA(t)

λB(t)(δH [ΠB,t+1 + ΠA,t+1] − ΠA,t) = 0 CSB(t)

Then {ΠA,t,ΠB,t, λ1(t), λ2(t), λ3(t), λA(t), λB(t)}t≥0 is a solution to the primal and dual prob-

lem.

First, the following lemma shows how constraints interact.

Lemma 6.2. 1. C1(t) and S(B, t) can’t be both binding.

2. C2(t) and S(A, t) can’t be both binding.

3. If ΠA,t+1 + ΠB,t+1 <
1−δH
δH

v then S(A, t) and S(B, t) implies C3(t).

4. If ΠA,t+1 + ΠB,t+1 ≥
1−δH
δH

v then S(A, t) and S(B, t) can’t be both binding.

5. If ΠA,t+1 ≥
1−δH
δH

v then C1(t) and C3(t) implies S(A, t). If ΠA,t+1 <
1−δH
δH

v then C1(t)

and C3(t) can’t be both binding.

6. If ΠB,t+1 ≥
1−δH
δH

v C2(t) and C3(t) implies S(B, t). If ΠB,t+1 <
1−δH
δH

v C2(t) and C3(t)

can’t be both binding.

Proof. 1. If it is the case, then ΠB,t+1 = 0 which implies that ΠA,t+1 = 0.

2. Same as 1.

3. Summing S(A, t) and S(B, t) yields:

ΠA,t + ΠB,t ≤ 2δH [ΠB,t+1 + ΠA,t+1] (S)
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(S) implies C3(t) if ΠA,t+1 + ΠB,t+1 < 1−δH
δH

v. 4. Consider (S) binding, C3(t) is violated if

ΠA,t+1 + ΠB,t+1 ≥
1−δH
δH

v.

5. Summing C1(t) and C3(t) yields:

ΠB,t ≤ (1 − δH)v + δHΠB,t+1 C12

If ΠA,t+1 ≥ 1−δH
δH

v then C12 implies S(A, t). If ΠA,t+1 < 1−δH
δH

v then C12 binding violates

S(A, t).

Consider the case where ΠA,t + ΠB,t ≥
1−δH
δ2
H

v, for all t, that is point 4. of lemma A.1

applies.

Assume γ > 1
2
.

For C4(0) and C5(0) to be satisfied λ3(0) must be positive, since from lemma A.1 4., λA(0)

and λB(0) can’t be both positive. From 6., either λB(0) > 0 if ΠB,t+1 < 1−δH
δH

v (case 1(0))

or λ2(0) > if ΠB,t+1 ≥
1−δH
δH

v (case 2(0)).

In case 1(0) one has: λ3(0) = γ and λ2(0) = 2γ − 1, and ΠA,0 = δH(ΠA,1 + ΠB,1) and

ΠB,0 = (1 − δH)v.

In case 2(0) one has: λ3(0) = 1− γ and λB(0) = 2γ − 1, and ΠA,0 = (1− δH)v + δHΠA,1 and

ΠB,0 = δHΠB,1 (≥ (1 − δH)v) by assumption.

In case 1(0), C4(1) and C5(1) becomes:

λ1(1) + γ = λ3(1) + λA(1)

λ2(t) + γ = λ3(1) + λB(1)
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From the same arguments of lemma A.1 1., 2. and 4. λ3(1) must be positive and equal to

γ. Iterating for all t C4(t) and C5(t) are the same as C4(1) and C5(1), therefore:

λB(0) = 2γ − 1

λ3(0) = 1 − γ

λ3(t) = γ ∀ t ≥ 0

All other dual variables equal 0

From CS3(t), C3(t) binds for all t:

∀t ≥ 0 ΠA,t + ΠB,t = (1 − δH)v + δH [ΠB,t+1 + ΠA,t+1]

Because the sequence is bounded, ΠA,t + ΠB,t = v for all t ≥ 0, and so not smaller than

1−δH
δH

v as assumed previously.

From CSB(0), S(B, 0) binds:

ΠA,0 = δH(ΠA,1 + ΠB,1)

= δHv

Hence, from C3(0): ΠB,0 = (1 − δH)v.

In case 2(0), C4(1) and C5(1) are thus the same as C4(0) and C5(0):

λ1(1) + γ = λ3(1) + λB(1)

λ2(1) + 1 − γ = λ3(1) + λA(1).
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Hence the same reasoning applies. Suppose the solution stays in case 1 for all t, then:

ΠA,t = (1 − δH)v + ΠA,t+1

ΠB,t = δHΠB,t+1

Since sequences are bounded that means:

ΠA,t = v

ΠB,t = 0

Which is unfeasible.

Instead, consider a solution of type in case 2 for τ periods then of type case 1.25 One

has:

For 0 ≤ t ≤ τ :

ΠA,t = δH [ΠA,t+1 + ΠB,t+1]

ΠB,t = δHΠB,t+1 ≥ (1 − δH)v

For t ≥ τ + 2 :

ΠA,t + ΠB,t = v

ΠA,τ+1 = δHv

ΠB,τ+1 = (1 − δH)v

To be in case 2 for τ implies ΠB,τ+1 ≥
1−δH
δτ+1

H

v. Feasible if 1 ≥ 1
δτ+1

H

, that is only if τ = 0.

25Once the solution reaches case 1 it stays in case 1 for subsequent periods.



6. APPENDICES 60

Therefore, if γ > 1
2

all feasible profit sequences such that:

ΠA,0 = δHv

ΠB,0 = (1 − δH)v

ΠA,t + ΠB,t = v ∀t ≥ 1

are solutions to P(γ).

For γ < 1
2

symmetric arguments holds. All feasible sequences such that:

ΠA,0 = (1 − δH)v

ΠB,0 = δHv

ΠA,t + ΠB,t = v ∀t ≥ 1

are solutions to P(γ).

If γ = 1
2
, then only λ3(t) is positive for all t ≥ 0. Therefore ΠA,t + ΠB,t = v for all t.

A feasible solution such that for all t ≥ 0: {(v−ΠB,t,ΠB,t) | ΠB,t ∈ [(1− δH)v, δHv]} satisfy

the complementary slackness condition and thus is solution to P(γ).

6.2 Collusion under Incomplete Information

Proof of proposition 4.1

In a pooling equilibrium, for all hp
t σL(hp

t ) = σH(hp
t ). Firm’s A profit on path does not

depend on B’s type, nor on its beliefs about B’s type.

Therefore, lemma 3.1 applies to pooling equilibria. A bounded sequence of continuation

profits {ΠA,t,ΠH,t,ΠL,t}t≥0 is a achievable in a pooling BPE if and only if for all t there are
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πA,t, πB,t ≥ 0 with πA,t + πB,t ≥ 0 such that:

ΠA,t = (1 − δA)πA,t + δAΠA,t+1 PK(A, t)

ΠH,t = (1 − δH)πB,t + δHΠH,t+1 PK(H, t)

ΠL,t = (1 − δL)πB,t + δLΠL,t+1 PK(L, t)

ΠA,t ≥ (1 − δA)(πA,t + πB,t) S(A, t)

ΠH,t ≥ (1 − δH)(πA,t + πB,t) S(H, t)

ΠL,t ≥ (1 − δL)(πA,t + πB,t) S(L, t)

Because δL + δA < 1
2
, the only sequence of continuation profits that satisfies all conditions is

0 for all t.

Therefore, equilibria that are pooling on path yield 0 profits for all firms.

Proof of proposition 4.2

Necessity (⇒) Let the sequences of continuation profits {ΠA,t,ΠH,t}t≥0, {ΠL,t}0≤t≤T be

achievable in equilibrium. That is, there is a strategy profile:

k = A,H,L σk : ht 7→ pk(ht) ∈ [0, v]
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and a map ht 7→ α(ht) such that for all ht on the collusive path (noted hp
t ):

ΠA,t =







(1 − δH)
∑

s≥t δ
s−t
H (1{s<T} + ρ01{s≥T})

(
pA(hp

s)1{pA(hp
s)<pB(hp

s)} + α(hp
s)pA(hp

s)1{pA(hp
s)=pB(hp

s)}

)
for

(1 − δH)
∑

s≥t δ
s−t
H

(
pA(hp

s)1{pA(hp
s)<pB(hp

s)} + α(hp
s)pA(hp

s)1{pA(hp
s)=pB(hp

s)}

)
for

ΠH,t =(1 − δH)
∑

s≥t

δs−t
H

(
pB(hp

s)1{pB(hp
s)<pA(hp

s)} + (1 − α(hp
s))pB(hp

s)1{pB(hp
s)=pA(hp

s)}

)

ΠL,t =(1 − δL)
∑

t≤s≤T−1

δs−t
L

(
pB(hp

s)1{pB(hp
s)<pA(hp

s)} + (1 − α(hp
s))pB(hp

s)1{pB(hp
s)=pA(hp

s)}

)

+ (1 − δL)δTL min{pA(hp
T ), pB(hp

T )}

For each t define:

πA,t + πB,t = ΠA,t + ΠB,t − δH [ΠA,t+1 + ΠB,t+1]

πA,t =
ΠA,t − δHΠA,t+1

ΠA,t + ΠB,t − δH [ΠA,t+1 + ΠB,t+1]
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Thus πA,t, πB,t ≥ 0 and πA,t + πB,t ≤ v. Moreover one has for all t:

ΠH,t = (1 − δH)
∑

s≥t

δs−t
H πB,s

= (1 − δH)πB,t + δHΠH,t+1

ΠA,t = (1 − δH)
∑

s≥t

δs−t
H πA,s

= (1 − δH)
∑

s≥t

δs−t
H πA,s

=







(1 − δH)πA,t + δHΠA,t+1 t 6= T

ρ0((1 − δH)πA,T + δHΠA,T+1)

ΠL,t = (1 − δL)
∑

0≤s≤T−1

δs−t
L πB,s + δTL(πA,t + πB,t)

=







(1 − δL)πB,t + δLΠL,t+1 for t ≤ T − 1

(1 − δL)(πA,T + πB,T )

Hence, promise keeping conditions hold.

For these sequences to be achievable in equilibrium, the one shot deviation principle must

hold, at best assuming min-max punishment payoff of 0. On the collusive path this implies:

ΠB,t ≥ (1 − δH)(πA,t + πB,t) ∀t

ΠA,t ≥ (1 − δH)(πA,t + πB,t) ∀t

ΠL,t ≥ (1 − δL)(πA,t + πB,t) for 0 ≤ t < T



6. APPENDICES 64

Consider the best-response condition at hp
T for BL. BL must find it profitable to undercut

at T rather than wait more periods and undercut later, that is for all t ≥ 0:

(1 − δL)(πA,T + πB,T ) ≥ (1 − δL)
∑

0≤s≤t

δsLπB,T+s + (1 − δL)δT+t
L (πA,T+t + πB,T+t)

⇐⇒

ΠL,t ≥ (1 − δL)
∑

0≤s≤t

δsLπB,T+s + (1 − δL)δT+t
L (πA,T+t + πB,T+t)

Define {ΠL,t}t≥T+1:

ΠL,t
def
=

1

δtL

(

ΠL,T + (1 − δL)
∑

T≤s≤t

δs−T
L πB,T+s

)

⇐⇒

ΠL,t = (1 − δL)πB,t + δLΠL,t+1

Rewritting best response conditions at hp
T , for all t ≥ T + 1:

ΠL,t ≤ (1 − δL)(πA,t + πB,t)
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Sufficiency (⇐) Consider the following strategy profile:

(i) σA : ht 7→







0 if ht 6= {pA,s, pB,s}0≤s≤t

pA,t if ht = {pA,s, pB,s}0≤s≤t

(ii) σH : ht 7→







0 if ht 6= {pA,s, pB,s}0≤s≤t

pB,t if ht = {pA,s, pB,s}0≤s≤t

(iii) σL : ht 7→







0 if ht 6= {pA,s, pB,s}0≤s≤t

pB,t if ht = {pA,s, pB,s}0≤s≤t t < T

puA,t or pB,t if ht = {pA,s, pB,s}0≤s≤t t ≥ T

Such that for all t ≥ 0:

pA,t = pB,t = πA,t + πB,t

αt =
πA,t

πA,t + πB,t

The strategy profile plays the NE repeatedly off-path which is BPE continuation. On-path,

following the strategy is better than one shot deviation if:

ΠA,t ≥ (1 − δH) sup
p′ 6=pA(hp

t )

p′1{p′<pB(hp
t )}

ΠH,t ≥ (1 − δH) sup
p′ 6=pB(hp

t )

p′1{p′<pA(hp
t )}

=⇒

ΠA,t ≥ (1 − δH)(πA,t + πB,t)

ΠH,t ≥ (1 − δH)(πA,t + πB,t)

⇐⇒ S(A, t), S(H, t).
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For BL for t < T :

ΠL,t ≥ (1 − δL) sup
p′ 6=pB(hp

t )

p′1{p′<pA(hp
t )}

=⇒

ΠL,t ≥ (1 − δL)(πA,t + πB,t)

⇐⇒ S(A, t), S(B, t).

On path after separation equilibrium, BL’s strategy isn’t specified. At hp
T , undercutting A’s

price must yields higher profits than playing as BH and then playing the best continuation.

That is, undercutting at hp
T must yield more profit than undercutting in hp

t for all t > T :

(1 − δL)(πA,t + πB,t) ≥ (1 − δL)
∑

T≤s<t

δs−T
l πB,s + δt−T

L (1 − δL)(πA,t + πB,t)

Defining state variables as:

ΠL,T+1 =
ΠL,T − (1 − δL)πB,T

δL

ΠL,t+1 =
ΠL,t − (1 − δL)πB,t

δL
for t > T

Previous conditions boils down to:

ΠL,t ≥ (1 − δL)(πA,t + πB,t) ∀t > T
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Pareto Frontier

P2(γ) : max
{ΠA,t,ΠB,t,ΠL,t}t≥0

γΠA,0 + (1 − γ)ΠB,0

subject to: ΠA,t ≥ δHΠA,t+1 ΠB,t ≥ δHΠB,t+1 C1(t), C2(t)

ΠA,t + ΠB,t ≤ (1 − δH)v + δH [ΠB,t+1 + ΠA,t+1] C3(t)

ΠB,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(A, t)

ΠA,t ≤ δH [ΠB,t+1 + ΠA,t+1] S(B, t)

δL
1 − δH
1 − δL

ΠL,t+1 =
1 − δH
1 − δL

ΠL,t − [ΠB,t − δHΠB,t+1] LM(t)

ΠA,t + ΠB,t ≤
1 − δH
1 − δL

ΠL,t + δH(ΠA,t+1 + ΠB,t+1) IC(t)

Lemma 6.3. 1. If ΠL,t ≥ (1 − δL)v then C3(t) implies IC(t). If ΠL,t < (1 − δL)v then

IC(t) implies C3(t).

2. If 1−δH
1−δL

ΠL,t ≥ δH(ΠA,t+1 + ΠB,t+1) then S(A, t) + S(B, t) implies IC(t). If 1−δH
1−δL

ΠL,t <

δH(ΠA,t+1 + ΠB,t+1) then IC(t) implies S(A, t) + S(B, t).

3. If δHΠA,t+1 ≥
1−δH
1−δL

ΠL,t then C1(t) and IC(t) implies S(A, t). If δHΠA,t+1 <
1−δH
1−δL

ΠL,t

then C1(t) and IC(t) can’t be both binding.

4. If δHΠB,t+1 ≥
1−δH
1−δL

ΠL,t C2(t) and IC(t) implies S(B, t). If δHΠB,t+1 <
1−δH
1−δL

ΠL,t C2(t)

and IC(t) can’t be both binding.

Proof. 1. IC(t) is more stringent than C3(t) iff 1−δH
δL

ΠL,t < (1 − δL)v.

2., 3., 4. and 5. are the same proof as lemma A.1 replacing (1 − δH)v by 1−δH
δL

ΠL,t.

Proposition 6.4. 1. If ΠL,0 ≥ (1− δL)v then the solution to P2(γ) is the same as P1(γ).

2. If ΠL,0 = 0 then the only solution is ΠA,t = ΠB,t = Π̂L,t = 0 for all t ≥ 0.
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Proof. 1. From lemma B.1 6. and 1., LM(t) and IC(t) are redundant and thus P2(γ)

coincides with P1(γ).

2. If ΠL,0 = 0, by IC(0), C1(0) and C2(0) then ΠL,1 = 0, ΠA,0 = δHΠA,1 and ΠB,0 = δHΠB,1.

Iterating for future periods and since profits are bounded implies that ΠA,t = ΠB,t = Π̂L,t = 0

for all t ≥ 0.

P2(γ) is a linear problem solved by duality:

D2(γ) : min
{λ(t)}t≥0

1 − δH
1 − δL

ΠL,0(ΛIC(0) + λLM(0)) + (1 − δH)v
∑

t≥0

δtHλ3(t)

subject to: γ + λ1(0) = λIC(0) + λ3(0) + λB(0) C4(0)

1 − γ + λ2(0) − λLM(0) = λIC(0) + λ3(0) + λA(0) C5(0)

∀t ≥ 1 :

λ1(t) + λIC(t− 1) + λ3(t− 1) + λA(t− 1) + λB(t− 1)

=λ1(t− 1) + λIC(t) + λ3(t) + λB(t) C4(t)

λ2(t) − λLM(t) + λIC(t− 1) + λ3(t− 1) + λA(t− 1) + λB(t− 1)

=λ2(t− 1) − λLM(t− 1) + λIC(t) + λ3(t) + λA(t) C5(t)

λIC(t) + λLM(t) =
δL
δH

λLM(t− 1) C6(t)

The next proposition gives the optimality conditions:

Proposition 6.5. If feasible sequences of primal and dual variables
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{ΠA,t,ΠB,t, λ1(t), λ2(t), λ3(t), λA(t), λB(t)}t≥0 are such that:

λ1(t)(ΠA,t − δHΠA,t+1) = 0 CS1(t)

λ2(t)(ΠB,t − δHΠB,t+1) = 0 CS2(t)

λ3(t)((1 − δH)v + δH [ΠB,t+1 + ΠA,t+1] − ΠA,t − ΠB,t) = 0 CS3(t)

λA(t)(δH [ΠB,t+1 + ΠA,t+1] − ΠB,t) = 0 CSA(t)

λB(t)(δH [ΠB,t+1 + ΠA,t+1] − ΠA,t) = 0 CSB(t)

λIC(t)

(
1 − δH
1 − δL

ΠL,t + δH(ΠA,t+1 + ΠB,t+1) − ΠA,t + ΠB,t

)

= 0 CSIC(t)

Then {ΠA,t,ΠB,t, λ1(t), λ2(t), λ3(t), λA(t), λB(t)}t≥0 is a solution to the primal and dual prob-

lem.

First, I express ΛLM as a function of λIC using C6. Define for all t ≥ 0 C ′
6(t):

C ′
6(t) ⇐⇒

∑

s≥t+1

(
δH
δL

)s−t

C6(s)

⇐⇒
∑

s≥t+1

(
δH
δL

)s−t

λIC(s) = λLM(t)

C ′
6(t) has the following interpretation: Increasing ΠL,t relaxes all future incentive compati-

bility conditions at rate 1
δL

with benefit discounted by δH .

Assume ΠL,0 < (1 − δL)v and 1−δH
1−δL

ΠL,0 < δH(ΠA,1 + ΠB,1). Consider C4(0) and C5(0).

By lemma B.1 λIC(0) must be positive. From C ′
6(t) λLM(0) ≥ 0. If 1 − γ − λLM(0) < γ

there are two cases:

1. λB(0) is positive and δHΠB,1 <
1−δH
1−δL

ΠL,0

2. λ2(0) is positive and δHΠB,1 ≥
1−δH
1−δL

ΠL,0
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If 1 − γ − λLM(0) > γ the only possibility is:

3. λA(0) > 0

Assuming case 1., one has:

λIC(0) + λB(0) = γ

λIC(0) + λLM(0) = 1 − γ

For primal variables IC(0) and S(B, 0) binds:

ΠA,0 = δH [ΠA,1 + ΠB,1]

ΠB,0 =
1 − δH
1 − δL

ΠL,0

ΠL,1 =
δH(1 − δL)

δL(1 − δH)
ΠB,1

C4(1) and C5(1) thus become:

λ1(1) + γ = λIC(1) + λB(1) + λ3(1)

λ2(1) +
δH − δL

δH
λLM(0) + γ = λA(1) + λ3(1)

Thus, λIC(1) must be 0, and so is λLM(0). From period 1 on the solution is as in complete

information:

ΠA,1 + ΠB,1 = v

(1 − δH)v ≤ ΠB,1 ≤ min

{

δHv,
1 − δH

δH(1 − δL)
ΠL,0

}

λ3(1) = γ
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From the assumption of case 1:

γ ≥
1

2

δH(1 − δL)v ≤ ΠL,0 < (1 − δL)v

Assuming case 2.

λIC(0) = γ

λ2(0) − λLM(0) = 2γ − 1

ΠA,0 =
1 − δH
1 − δL

ΠL,0 + δHΠA,1

ΠH,0 = δHΠB,1

ΠL,1 =
ΠL,0

δL

C4(1) and C5(1) becomes:

λ1(1) + γ = λIC(1) + λB(1) + λ3(1)

λ2(1) − λLM(1) + 1 − γ = λIC(1) + λ3(1) + λA(1)
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Thus are the same as in t = 0. If one stay in this case for τ one has for 0 ≤ t ≤ τ − 1

ΛIC(t) = γ

λLM(t) = γ
τ−2∑

s=t+1

(
δH
δL

)s−t

+

(
δH
δL

)τ−t−1

λLM(τ − 1)

λ2(t) = −1 + 2γ + γ
τ−2∑

s=t+1

(
δH
δL

)s−t

+

(
δH
δL

)τ−t−1

λLM(τ − 1)

ΠA,0 =
1 − δH
1 − δL

τ−1∑

s=0

(
δH
δL

)s

ΠL,0 + δτ+1
H v

ΠH,0 = δτH(1 − δH)v

ΠL,τ =
ΠL,0

δτL

1 − γ − λLM(t) < γ

From the assumptions of case 2 that means:

λ2(t) = −1 + 2γ + γ
τ−1∑

s=t+1

(
δH
δL

)s−t

+

(
δH
δL

)τ−t

λLM(τ) ≥ 0

δHΠH,t+1 ≥
1 − δH
1 − δL

ΠL,t

δH [ΠA,t+1 + ΠH,t+1] >
1 − δH
1 − δL

ΠL,t

1 − γ − λLM(t) < γ
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Suppose at τ
ΠL,0

δτ
L

= ΠL,τ ≥ (1 − δL)v that means:

λ2(0) = −1 + 2γ + γ
τ−1∑

s=0

(
δH
δL

)s

ΠA,0 =
1 − δH
1 − δL

τ−1∑

s=0

(
δH
δL

)s

ΠL,0 + δτ+1
H v

ΠH,0 = δτH(1 − δH)v

γ ≥
1

2

δτ−1
L δH(1 − δL)v ≥ ˆΠL,0 ≥ δτL(1 − δL)v

It could be that δτ−1
L δH(1 − δL)v ≤ ˆΠL,0 ≤ δτ−1

L (1 − δL)v instead in which case period τ − 1

is in case 1, one has:

ΠA,0 =
1 − δH
1 − δL

τ−2∑

s=0

(
δH
δL

)s

ΠL,0 + δτHv

ΠH,0 =

(
δH
δL

)τ−1
1 − δH
1 − δL

ΠL,0

γ ≥
1

2

Where ΠA,τ + ΠH,τ = v and ΠA,τ = δHv if γ > 1
2

and ΠA,τ = (1 − δH)v if γ < 1
2
. This case

holds if:

(1 − δL)δτLv ≤ ΠL,0 < (1 − δL)δτ−1
L v

1 − γ

γ
≤

τ−1∑

s=0

(
δH
δL

)s

Alternatively, at τ the solution might go in case 3. Assuming a case 3 that lasts τ ′ periods.
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One has:

ΠA,0 =
1 − δH
1 − δL

ΠL,0

τ∑

s=0

(
δH
δL

)s

ΠH,0 =
1 − δH
1 − δL

ΠL,0

(
δH
δL

)τ τ ′−1∑

s=1

(
δH

δL + δH

)s

+ δτ+τ ′

H v

Such that:

(1 − δL)v(δL + δH)τ
′−1δτL > ΠL,0 ≥ (1 − δL)v(δL + δH)τ

′−1δτL

1 − 2γ

1 − γ
>

τ ′−1∑

t=1

(
δH

δL + δH

)t

⇐⇒ 1 −

τ ′−1∑

t=1

(
δH

δL + δH

)t

>
γ

1 − γ

δL
δL + δH

−
τ ′∑

t=2

(
δH

δL + δH

)t

<
γ

1 − γ
⇐⇒ 1 −

τ ′∑

t=1

(
δH

δL + δH

)t

<
γ

1 − γ

Assuming case 3.

λIC(0) = γ

λA(0) + λLM(0) = 1 − 2γ

ΠB,0 = δH [ΠA,1 + ΠB,1]

ΠA,0 =
1 − δH
1 − δL

ΠL,0

ΠL,1 =
ΠL,0 − δH

1−δL
1−δH

ΠA,1

δL

C4(1) and C5(1) becomes:

λ1(1) + 1 − γ − λLM(0) = λIC(1) + λB(1) + λ3(1)

λ2(1) − λLM(1) + 1 − γ = λIC(1) + λ3(1) + λA(1)
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From C ′
6: 1 − γ − λLM(0) ≤ 1 − γ − λLM(1) thus we are again in case 3 with:

λIC(1) = 1 − γ − λLM(0)

λA(1) + ΛLM(1) = λLM(0)

ΠH,1 = δH [ΠA,2 + ΠH,2]

ΠA,1 =
1 − δH
1 − δL

ΠL,1

ΠL,2 =
ΠL,1 − δH

1−δL
1−δH

ΠA,2

δL

C4(2) and C5(2) becomes:

λ1(2) + 1 − γ − λLM(1) = λIC(2) + λB(2) + λ3(2)

λ2(2) − λLM(2) + 1 − γ = λIC(2) + λ3(2) + λA(2)

Which are the same as in t = 1. Staying in case 3 for τ periods implies that:

ΠA,τ−1 =
(1 − δH)ΠL,0

(1 − δL)(δL + δH)τ−1

ΠH,τ−1 =
(1 − δH)ΠL,0

1 − δL

τ−1∑

t=1

(
δH

δL + δH

)t

+ δτH(ΠA,τ + ΠB,τ )

ΠL,τ−1 =
ΠL,0

(δL + δH)τ−2

λLM(0) = (1 − γ)
τ−1∑

t=1

(
δH

δH + δL

)t

+

(
δH

δL + δH

)τ−1

λLM(τ − 1)

From the assumption of case 3:

(1 − γ)
τ−1∑

t=1

(
δH

δH + δL

)t

+

(
δH

δL + δH

)τ−1

λLM(τ − 1) < 1 − γ

δH [ΠA,t+1 + ΠH,t+1] >
1 − δH
1 − δL

ΠL,t

ΠL,t > (1 − δL)v
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Case 3 ends when ΠL,τ ≥ (1 − δL)v, in which case one ends up in a P1(γ) solution. In this

case:

ΠA,0 =
(1 − δH)ΠL,0

1 − δL

ΠH,0 =
(1 − δH)ΠL,0

1 − δL

τ−1∑

t=1

(
δH

δL + δH

)t

+ δτHv

ΠL,τ =
ΠL,0

δL(δL + δH)τ−1
−

δH(1 − δL)

δL
v

λLM(0) = (1 − γ)
τ−1∑

t=1

(
δH

δH + δL

)t

Holds if:

(1 − δL)(δL + δH)τ−1v > ΠL,0 ≥ (1 − δL)(δL + δH)τv

τ−1∑

t=1

(
δH

δH + δL

)t

<
1 − 2γ

1 − γ

Pareto frontier from separation

P3(γ) : max
πB ,ΠL,ΠA,ΠB

γ ((1 − δH)πA + δHΠA) + (1 − γ) ((1 − δH)πB + δHΠB)

subject to : πB, πA ≥ 0 , (ΠA,ΠB) ∈ F

(
1 − δL
δL

πA

)

(1 − δH)(πB + πA) ≤ (1 − δH)v C3

ρ0 ((1 − δH)πA + δHΠA) ≥ (1 − δH)(πB + πA) S(A)

δHΠB ≥ (1 − δH)πA S(B)

First if πA = 0, by proposition 4.2 ΠA = ΠB = 0 and thus the objective equals 0. At the

solution πA > 0. The objective is increasing in πB, hence at the solution either C3 or S(A)

binds. If C3 binds, then the first price is equal to v and there is no transition phase. This
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solution is feasible for ρ0 sufficiently large:

ρ0ΠA ≥ (1 − δH)v

v − ΠA ≥ (1 − δH)v

=⇒

ρ0 ≥
1 − δH
δH

Assume ρ0 <
1−δH
δH

so the first price is below v but further assume it is v after that period.

If both binds: (S(A) + ρ0S(B):

πA + πB = ρ0
δH

1 − δH
v

δHv ≤ πA ≤ min

{

ρ0
δH

1 − δH
v,

δ2H
1 − δH

v

}

Thus this is unfeasible SB can’t bind with SA. Thus it must be that SB is slack and SA

binds:

ρ0δHΠA = (1 − δH)πB + (1 − ρ0)(1 − δH)πA

ρ0
1 − ρ0

δ2Hv ≥
ρ0

1 − ρ0
δHΠA ≥ πA ≥ δLv

It is feasible to have a price of v in the next period iff ρ0 ≥
δL

δ2
H
+δL

If ρ0 < δL
δ2
H
+δL

, (ΠA,ΠB) are picked in the frontier of P2. Moreover, this implies that S(B)

and C3 are slack. Since the objective is increasing in πB, S(A) must bind, so P3(γ) becomes:
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P3(γ) : max
πA,ΠA,ΠB

γ ((1 − δH)πA + δHΠA) + (1 − γ) (ρ0δHΠA − (1 − ρ0)(1 − δH)πA + δHΠB)

subject to :(ΠA,ΠB) ∈ F

(
1 − δL
δL

πA

)

ρ0δHΠA − (1 − ρ0)(1 − δH)πA ≥ 0

From proposition 4.4, (ΠA,ΠB) ∈ F
(

1−δL
δL

πA

)

are functions of πA, τf , τs. For a given τf , τs

the objective is linear in πA. The derivative of the objective is:

(1 − δH)(γ − (1 − γ)(1 − ρ0)) + δH
∂ΠA

∂πA

(γ + (1 − γ)ρ0) + δH
∂ΠB

∂πA

(1 − γ)

If the objective is increasing in πA then (1 − δH)πA = ρ0δHΠA

(1−ρ0)
. In this case one needs to find

the feasible τs, τf that maximizes the objective. In the case of τs = 0 and staying in case 2

one has:

(1 − δH)πA =
ρ0δHΠA

(1 − ρ0)

=⇒ πA =
ρ0δ

τf+1
H v

1 − ρ0
∑τf

s=0

(
δH
δL

)s

δ
τf+1
L v < πA < δ

τf
L δHv

=⇒ δ
τf+1
L <

ρ0δ
τf+1
H

1 − ρ0
∑τf

s=0

(
δH
δL

)s < δ
τf
L δH

⇐⇒
1

∑τf+1
s=0

(
δH
δL

)s < ρ0 <
1

∑τf
s=0

(
δH
δL

)s

+
(

δH
δL

)τf
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For a (τf , τs) transition phase to be feasible, ρ0 must be such that:

πA ≤
ρ0δHπA

(1 − ρ0)δL

τf∑

s=0

(
δH
δL

)s

=⇒ ρ0 ≥
1

1 +
∑τf+1

s=1

(
δH
δL

)s

A point on the frontier in between (τf , τs) and (τf + 1, τs − 1). payoffs are:

ΠA =
1 − δH
δL

πA

τf−1
∑

s=0

(
δH
δL

)s

+ (1 − δH)δ
τf
H πA,τf

(
δL + δH

δL

)

ΠB = (1 − δH)δ
τf
H

(
πA

δ
τf
L

− πA,τf

)

+
δ
τf+1
H

δL
πA,τf

τs−2∑

s=1

(
δH

δL + δH

)s

+ δ
τf+τs
H v

Using assumptions of that case:

(δL + δH)τs−2δ
τf
L v > πA − δ

τf
L πA,τf ≥ (δL + δH)τs−1δ

τf
L v

πA

[

1 − ρ0

τf∑

s=0

(
δH
δL

)s
]

= ρ0δ
τf+1
H

δH + δL
δL

πA,τf

Replacing πA,τf one has:

δHΠA =
(1 − δH)(1 − ρ0)

ρ0
πA

ΠB = (1 − δH)πA





(
δH
δL

)τf

−
δL
δH

1 − ρ0
∑τf

s=0

(
δH
δL

)s

ρ0(δH + δL)





+
πA

ρ0(δL + δH)

[

1 − ρ0

τf∑

s=0

(
δH
δL

)s
]

τs−2∑

s=1

(
δH

δL + δH

)s

+ δ
τf+τs
H v

= (1 − δH)πA





(
δH
δL

)τf

−
1 − ρ0

∑τf
s=0

(
δH
δL

)s

ρ0(δH + δL)

(
τs−2∑

s=1

(
δH

δL + δH

)s

−
δL
δH

)

+ δ
τf+τs
H v



Chapter 2

Price Recommendation and the Value

of Data: A Mechanism Design

Approach.

Abstract. I study how a platform can affect its sellers’ pricing decisions by using price

recommendations. Sellers are too small to take account of network effects in their pricing

decisions. To alleviate this problem, the platform influences seller prices by strategically

disclosing demand information. I then study how the platform values additional information

to improve price recommendations. I identify distortions in the way the platform uses and

collects information and relate the nature and extent of these distortions with its business

model. A platform that makes profits on both sides of the market uses information efficiently,

but values information less to what is socially desirable. A platform that makes profits only

on the seller side uses information to help sellers extract buyers surplus, which is inefficient.

Further, such platforms value different types of information than the social planner.

Keywords: price recommendations, information design, two-sided markets.

JEL Codes: D82, D83, L21, L81.
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1 Introduction

Data is a key input of the digital economy, often referred to as the “new oil.”1 The rise of

large platforms and their rapidly expanding user bases has lead to an unprecedented accu-

mulation and exploitation of personal data. This paper identifies potential distortions in

the collection and use of personal data and argues that the extent to which a platform’s

incentives are (mis)aligned with social incentives crucially depends on its business model.

The competitive strength of platforms is increasingly determined by the amount of data

available to them. E-commerce platforms assist sellers with descriptive statistics about their

demand and help them set the best price or discount. Consumer relationship management

(CRM) providers or online platforms such as Google or Facebook display personalized ads

based on consumer characteristics. For e-commerce platforms in particular, empirical evi-

dence shows that recommender systems have a significant impact on sellers prices and sales

(Fleder and Hosanagar (2007), Pathak et al. (2010)). Whether this new form of influence is

used to improve welfare is widely debated by policy makers and scholars,2 and is a critical

issue in a growing market for data worth 216 billion dollars in the US and 72.3 billion euros

in the EU.3 For instance, Executive Vice President of the European Commission Margrethe

Vestager has stressed the need to “regulate the way that companies collect and use and share

data – so that it benefits all of society.”4

Against this background, my paper investigates whether platforms design price recom-

mendations and collect the information used for this purpose in a socially desirable way.

Although price recommendations do not constrain sellers in any way, they allow platforms

1See, for example, the speech of former Consumer Commissioner Kuneva at the Roundtable on Online
Data Collection, Targeting and Profiling, 31 March 2009, SPEECH/09/156.

2See Crémer et al. (2019).
3See the European Data Market Monitoring Tool report page 9.
4Quoted from the commitments made at the hearing of Margrethe Vestager before the European parlia-

ment, in October 2019.

https://datalandscape.eu/sites/default/files/report/D2.9_EDM_Final_study_report_16.06.2020_IDC_pdf.pdf
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to strategically disclose their information about buyers thereby affecting sellers’ beliefs and

prices.5 As the best transaction price for platforms may not be the same as the preferred

transaction price for sellers, platforms benefit from price recommendations, which is consis-

tent with the significant investments they make to launch a recommender system.6 I study

the link between the influence of the platform’s recommendations on seller prices and its

information about buyers to capture the platform’s incentives to collect data about demand.

In line with the recent calls for platform regulation,7 I investigate how a platform’s business

model determines the nature of the distortions in the platform’s use and collection of data.

I consider two business models: “paid” and “free” platforms. Paid platforms charge

participation fees on both the buyer and the seller side. Free platforms provide free access

to buyers and charge a participation fee on the seller side. Under both business models,

the platform draws informative signals about buyers’ valuations and correlates these signals

with price recommendations to influence sellers’ pricing decisions. Joining sellers receive a

price recommendation and set a price for their good while joining buyers observe their value

of the good and their matching seller’s price and then purchase the good or not.

The two business models are commonly encountered among e-commerce platforms.8

Moreover, they are motivated by a mechanism design approach. I show that they achieve the

same set of outcomes as optimal mechanisms in a bilateral trade framework where neither

the sellers’ prices nor the buyers’ decisions to purchase the good are contractible.9 A paid

5Price recommendations are the direct representation of any committed communication strategy, see
Myerson (1982). Other forms of information disclosure policy, such as displaying the predicted probability of
selling, descriptive statistics about the market, and color schemes, can be viewed as indirect implementations
of price recommendations.

6For instance, Ebay acquired Terapeak a data analytics firm in 2017 with estimated market value of $5
million. Mercari launched on kaggle in 2017 the ”Mercari price suggestion challenge”, rewarding the best
price suggestions algorithm’s programmers with $100,000 prize money.

7See Caffarra et al. (2020).
8Many e-commerce platforms, like Amazon Marketplace or eBay, provide free access to buyers. By

doing so buyers can browse all sellers’ products without providing payment-enabling information or creat-
ing accounts. However, platforms like Veepee and Showroomprive charge participation fees for premium
members (V’pass and Infinity). Paid platforms may also charge a negative participation fee to buyers. For
instance, some platforms offer discounts to new members or propose deals like “sponsor a friend” that can
be interpreted as a negative participation fee.

9For instance, I show that the platform does not gain from screening the buyers’ valuations to improve
its recommendations.
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platform implements transfers for buyers and sellers, whereas free platforms cannot imple-

ment transfers for buyers. This is the case for matching platforms that only interfere in the

transactions by disclosing information.10

I determine the most profitable way for a platform to influence seller prices through price

recommendations, and compare it to the socially optimal way of influencing seller prices. I

then use the results to discuss the value of data for the platform and resulting incentives to

collect data.

In the first part of the paper, I show that paid platforms use data efficiently, whereas

free platforms use data inefficiently. As often in platform models, paid platforms extract the

entire surplus of the interaction via entry fees.11 This implies that paid platforms use data

to maximize surplus per trade. On the contrary, free platforms only make profits on the

seller side. They use data to help sellers to extract buyer surplus, which may destroy surplus

relative to a no-data benchmark. These two different uses of information by paid platforms

and free platforms imply different incentives to collect information.

As an illustration, consider an e-commerce platform that offers sellers the possibility to

use a smart discount device. This device automatically shows a discounted price to some

specific buyers browsing the seller’s product, and shows the full price to other buyers.12

Consider the following two data collection strategies. Strategy (a) collects the type of data

that suggests that buyers have a high valuation for the good. Think of a browsing history

that shows the buyer has purchased this good at a high price on a regular basis, or social

media data that shows the buyer liked this good. Strategy (b) collects the type of data that

suggests buyers have a low valuation for the good. Think of the geographic location, whether

the buyer is a student (which would indicate that the buyer is financially constrained), or

simply a browsing history that shows the buyer only purchases this good when discounted.

Neither strategy is perfectly accurate: many buyers remain undetected and none of these

10This abstracts from the possibility to charge fees in the transaction.
11See e.g. Rochet and Tirole (2006).
12Cdiscount marketplace proposes Smart Discount Voucher to its sellers which is precisely what is pre-

sented in the example. Many other e-commerce platforms offer similar devices to their sellers.
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types of data reveals exactly buyers’ valuations. Strategy (a) is best at generating surplus

from trade: the platform can show the full price to detected buyers and the discounted price

to all others. Doing so minimizes the probability that buyers with low valuations face no

discounted price, which would lead to no trade. By contrast, strategy (b) is best at extract-

ing buyer surplus: the platform shows the discount to detected buyers and the full price to

all others. Doing so maximizes the probability that buyers with high valuations see the full

price and, therefore, increases the probability of correctly marking-up buyers. Paid platforms

prefer investing in strategy (a), which is efficient. However, the level of that investment is

inefficiently low. By contrast, free platforms’ demand for data is biased towards strategy

(b). Therefore, they collect/purchase inefficient types of data.

To capture the platform’s incentives to collect data, I compute the platform’s marginal

value of information; in other words, by how much the platform’s profit changes when their

information structures marginally change. In my model, information is an input of price rec-

ommendations. Using sensitivity analysis, I characterize paid and free platforms’ willingness

to pay for information by computing the shadow price of this input. The marginal value

of information provides rich comparative statics on information structures which copes with

the high dimensionality of this input.

Then, I compare the platform’s willingness to pay to collect information with the social

planner’s and identify several distortions. I show that paid platforms, despite using infor-

mation efficiently, under-value any additional information. Paid platforms set inefficiently

high entry fees, which implies that learning impacts less trades than under the social plan-

ner’s trade mechanism. Therefore, the paid platforms’ willingness to collect information is

proportionally lower than the social planner’s by a factor that only depends on the elasticity

of demand, which can be estimated empirically. By contrast, free platforms have a biased

demand for information. Free platforms value more learning about mark up opportunities

than learning about trade opportunities, although the latter is the efficient way to learn. The

bias holds regardless of the source of information and, therefore, free platforms’ incentives
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to collect data are inefficiently oriented.

Platforms either collect data through their websites (e.g. by requiring users to identify

with personal accounts or by tracking purchase histories or geographical locations) or pur-

chase data from data brokers. My model exhibits the distorted incentives of platforms to

collect information. The different nature of the distortions between paid and free platforms

argues in favor of a regulation based on the business model of platforms. Moreover, I de-

velop a rigorous framework, which may prove useful beyond the issues studied in this paper.

This framework is based on: (i) a mechanism design approach to capture how information

affects market outcomes, and (ii) a duality approach that treats information as an input and

computes its marginal value.

Related Literature

This paper relates to the recent strand of the literature on platforms that analyzes how in-

termediaries use their information to increase profits (see e.g. Hagiu and Ha laburda (2014),

Gomes and Pavan (2019), Bourreau and Gaudin (2018), Jullien and Pavan (2019), and

Carroni, Pignataro, and Tampieri (2020)).13 The closest papers to mine are Pavlov and

Berman (2019) and Bonatti and Cisternas (2020). In both papers the platform’s informa-

tion is used to affect seller prices. Pavlov and Berman (2019) compare multiple pricing

regimes by an e-commerce platform, including a price recommendation regime, in a cheap-

talk environment. Instead, I assume that the platform commits to the trade mechanism.

Bonatti and Cisternas (2020) study how platforms can affect seller prices and sales via con-

sumer scores. These authors show that a platform can smooth interactions in the market

by strategically designing scores transparency and updating rate. In contrast, I explore the

issue of data collection and study the platform’s incentives to collect data for general infor-

mation structures.

From a methodological perspective, my paper relates to the Bayesian persuasion, infor-

13For the literature on platforms see Caillaud and Jullien (2003), Armstrong (2006), Rochet and Ti-
role (2003) and Rochet and Tirole (2006))
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mation design literature (see Kamenica and Gentzkow (2011), Bergemann and Morris (2016)

and Taneva (2019)). In my paper the platform is a mechanism designer that commits to an

information disclosure policy to sellers. Several other papers use the Bayesian persuasion

framework to study data brokers, e.g. Calzolari and Pavan (2006), Bergemann and Bon-

atti (2015), Bergemann, Bonatti, and Smolin (2018) and Yang (2020). Contrary to a data

broker, in my model, the platform contracts with both sides, and uses information to balance

the allocation of transaction surplus across the two sides.

My paper also addresses the broader question of the efficient acquisition and alloca-

tion of information in markets. Many recent papers have studied this issue, including

Colombo, Femminis, and Pavan (2014), Pavan, Vives, et al. (2015), Montes, Sand-Zantman,

and Valletti (2019), Bergemann, Bonatti, and Gan (2020), Acemoglu et al. (2019), Hagiu

and Wright (2020), De Corniere and Taylor (2020), and Bergemann, Heumann, and Mor-

ris (2020). Most of them warn against potential distortions and compare welfare under

different informational regimes. My paper contributes to our understanding of this issue by

providing a comparative static analysis based on the marginal value of information, which

not only identifies the socially desirable information structures, but also the incentives to

collect information.

The duality analysis I provide relates to a recent strand of the information design lit-

erature, see e.g. Kolotilin (2018), Dworczak and Kolotilin (2019). The dual problem is

set up in an alternative way to perform a sensitivity analysis on the information structure.

I also provide a different proof of strong duality, than the one provided in Dworczak and

Martini (2019), Galperti and Perego (2018), and Dizdar and Kováč (2020). In addition, I

show that, in the context of my model, the dual variable associated to the informational

constraint can be interpreted as the marginal value of information for the platform.

The paper is organized as follows. Section 2 presents the model. Section 3 characterizes

the most profitable price recommendations for the platform and discusses the static wel-
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fare distortions under both business models. Section 4 characterizes the platform’s marginal

value of information. Section 5 discusses the resulting distortions in the platforms’ incentives

to collect data. Section 6 concludes.

2 Model

Environment. Consider a platform that intermediates trade between buyers and sellers.

The platform sets participation fees on both sides and recommends a price to each seller.

Sellers produce a good at marginal cost c which is valued at either vl or vh by their matching

buyer, with vl < vh. I normalize outside option to 0 and I assume that c < vl so that trade

is always efficient. For the buyers and sellers that decide to join the platform, transactions

unfold as follows: buyers inspect sellers’ goods to find their matching seller14 as well as

their valuation for its good (vl or vh). Following a successful match, sellers receive a price

recommendation and then set a price. Buyers observe their matching seller’s price and then

decide to purchase the good or not.

Information Structure. The buyers’ types (v, b) have two independent dimensions. The

value of the matching seller’s good is either high (vh), with probability ρ0, or low (vl), with

probability 1 − ρ0. The stand-alone valuation b is derived by the buyer if he visits the

platform. It compounds many interpretations: b includes benefits derived from additional

services provided on the platform but also costs due to search or lack of privacy and adver-

tising nuisances. The stand-alone valuation b can be positive or negative and is distributed

according to a continuously differentiable and log-concave distribution Q supported on an

interval in R. For instance, a buyer that joins the platform and purchases his matching

seller’s good gets a payoff of b+ v− p− tb, where p is the seller’s price and tb is the buyer en-

try fee. Buyers learn v only after joining the platform and inspecting their matching seller’s

good, whereas their stand-alone valuation b is known before.

14Matching is one to many: For each buyer there is only one valuable seller.
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For each joining buyer, the platform receives informative signals about his valuation, from

which it forms posterior beliefs about whether the buyer is of type vh or vl. Think of the

platform with access to consumer-level data such as histories of past transactions, location

or cookies and the related means of recording browsing data. This data may be collected

by the platform or obtained from a data broker (Nielsen, Acxiom or Epsilon for instance).

Once a buyer joins the platform, the platform may observe some of its characteristics and

updates its beliefs about whether the buyer is a low or high type.

Without loss of generality, the platform’s information structure is represented as the dis-

tribution of its posterior beliefs. For each buyer, the platform independently draws signals

ρs = P (v = vh|ρs) that are normalized to the platform’s posterior belief that the buyer is a

high type. These posterior beliefs ρs are drawn according to a distribution F with mean ρ0.
15

Timing and Decisions. First, the platform sets entry fees ts and tb and commits to a

price recommendation rule, which I describe later. Second, buyers observe their stand-alone

valuation b. Then, buyers and sellers decide whether to join the platform or not. Third,

the platform observes each match, each signal ρs and recommends a price to each matched

seller. Fourth, buyers observe v and their seller’s price and then decide whether or not to buy.

Solution Concept. The analysis focuses on perfect Bayesian equilibria, where players

hold rational expectations, are risk neutral and expected-payoff maximizers.

Price Recommendation Rules and Entry Fees. I analyze two platform business mod-

els: paid platforms and free platforms. Paid platforms set entry fees tb on the buyer side

and ts on the seller side, tb, ts ∈ R. Free platforms set entry fees only on the seller side

and provide free access to buyers (tb = 0).16 The seller entry fee is paid per buyer joining,

15F has mean ρ0 to be consistent with the prior distribution of buyers’ types, see for instance Kamenica
and Gentzkow (2011) proposition 1.

16Free platforms capture the case of CRM provides and many e-commerce platforms that do not charge
entry fees on the buyer side.
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in other words, sellers pay ts times the mass of buyers joining.17 Both types of platforms

commit to a price recommendation rule that maps signals ρs with a private price recommen-

dation to sellers. Instead of capturing the price recommendation rule as the probability of

recommending a price conditional on signals, it is more convenient to define it with µ(S) the

joint probability of recommending a low price vl and receiving signals in S:18

µ : B[0, 1] → [0, 1]

S 7→ µ(S) =

∫

S

P (recom vl | ρs)dF (ρs).

With complementary probability the platform recommends vh to sellers. Since buyers are

either of type vl or of type vh, there are only two potentially optimal pricing strategies. Sellers

either sell to both buyer types at price vl, leaving the low type without any surplus, or sell

only to the high types at price vh leaving them with no surplus. Therefore, considering price

recommendation rules that only recommend to sellers these two prices vl or vh is without

loss of generality.

A price recommendation rule is feasible for an information structure F if it satisfies the

informational constraint (In):

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) = F (S). (In)

(In) captures the ability of the platform to match price recommendations to the true buyers’

valuations. If µ(S) = F (S) the platform always recommends a low price when the signal

falls in the set S. However, if F (S) = 0 for some S the platform cannot make recommen-

dations as it does not receive signals in this range. Therefore, the informational constraint

captures the relationship between the quality of the platform information structure F and

the precision of the price recommendations.

17This entry fee corresponds to the per-interaction price introduced in Rochet and Tirole (2006) which
links the modelling approach of Armstrong (2006) and Rochet and Tirole (2003).

18S is a measurable set in B[0, 1], the Borel σ−algebra on [0, 1].
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This completes the description of the model. The next two paragraphs discuss two

properties that motivate the modelling choice of the trade mechanism and the price recom-

mendation rule.

Alternative Trade Mechanisms. Appendix D shows that by setting entry fees and de-

signing a price recommendation rule, a platform can achieve all possible outcomes among

all mechanisms in the context of bilateral trade under private transaction terms. I assume

that the platform can be viewed as a mechanism designer organizing multiple independent

bilateral trade interactions between a seller and a buyer except that the transaction price

and the allocation of the good are not contractible decisions.19 This assumption captures the

idea that platforms facilitate transactions without taking part in the transactions. The key

result of this section is to show that the platform cannot improve its recommendations to

sellers by screening buyers’ types. The information gain on the buyer side cannot be passed

on the seller side, and, therefore the quality of the platform’s recommendations solely relies

on its ex-ante private information. As the platform does not gain from screening buyers,

posting entry fees on both sides can achieve the largest profit. This result also holds when

considering the class of mechanisms that are free for buyers. Therefore, both mechanisms

studied are without loss of generality as they achieve the same set of outcomes as the direct

mechanism in the context of bilateral trade with private transaction terms.

Interpretation of the Price Recommendation Rule. Many e-commerce platforms such

as Amazon Marketplace, E-bay or Mercari use data about demand to suggest prices or dis-

counts to their sellers, akin to the price recommendation rule. Additionally, a free platform

in my model can be interpreted as a CRM provider offering devices to sellers that personalize

discounts, or target specific consumers. For instance, users of Facebook Ads, Google Ads, or

Voucherify can launch personalized coupon campaigns associated to specific queries, search

19If agents actions are non-contractible or private, meaning that these actions cannot be an output of the
mechanism, the principal may still send messages to agents to influence their actions. See Myerson (1982).
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histories, cookies related to buyer characteristics. In the context of this model, think of a

cookie as providing some information, say ρs, about the user of the e-commerce platform.

These companies have access (through their user base directly, or via third parties) to partial

information about consumers whereby ρs is distributed according to some cdf F . Given their

information, these platforms offer sellers personalized pricing/discount strategies tying prices

(here vl or vh) to queries ρs. Sellers may or may not follow the offered pricing or discounting

strategies, in which case absent of any information a uniform price is set to all consumers.

In the context of the price recommendation rule, if a seller disobey, say price at vl when

recommended vh, then she is effectively pricing uniformly at vh for all consumers.20 In this

framework, free platforms’ price recommendation rule can be interpreted as the discounting

strategies offered by online platforms or CRM providers.

3 Optimal price recommendation rules

This section first analyzes the optimal price recommendation rule for paid platforms and

then presents the case of free platforms.

The paid platform case

Buyers value trade only if the platform recommends a low price and if they are a high type.

Facing an entry fee of tb there is a marginal buyer b̃ such that all buyers with stand-alone

valuation higher than b̃ join the platform and all buyers with stand-alone valuation lower

than b̃ do not. The mass of buyers joining the platform is given by 1 − Q(b̃) and b̃ is

characterized by:

b̃ = tb −

∫ 1

0

ρsµ(dρs)(vh − vl). (2.1)

20See the description of the sellers’ incentive compatibility for more details about this claim.
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The price recommendation rule µ is the joint probability of recommending a low price vl and

receiving a signal in a measurable set S. As the signal ρs = P (v = vh | ρs) is normalized to the

posterior probability of a high type buyer, the probability
∫ 1

0
ρsdµ(ρs) = P (recom vl, v = vh)

is the joint probability of recommending a low price to a high type buyer.

If a seller joins the platform, she trades at price vl when she receives a low price recom-

mendation, and at price vh when she receives a high price recommendation and the buyer

has a high valuation. Sellers want to match their price with the buyer’s type. If she is

recommended a low price but the buyer is type vh she loses the mark-up vh − vl. If she is

recommended a high price but the buyer is type vl, then she misses a trade opportunity of

value vl − c. Upon entering, a seller pays a total entry fee of ts(1 −Q(b̃)). To maximize the

platform’s profit, ts is set to extract the entire seller’s profit:

ts =

∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c).

In each trade, sellers trade at a low price, which yields profit of (vl − c), when a low price is

recommended, with probability
∫ 1

0
µ(dρs). Sellers trade at a high price, which yields (vh−c),

when a high price is recommended and the buyer is a high type, that is with probability:

ρ0 −

∫ 1

0

ρsµ(dρs) = P (v = vh) − P (recom vl, v = vh) = P (recom vh, v = vh).

The platform benefits from the transaction only through the entry fees:

Π = (1 −Q(b̃))(ts + tb).

Using equation (1) and replacing the seller entry fee by their profit, the platform’s objective

becomes:

Π = (1 −Q(b̃))

[∫ 1

0

(1 − ρs)µ(dρs)(vl − c) + ρ0(vh − c) + b̃

]

.
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Via the entry fees, the platform captures the surplus from trade. With probability ρ0 the

buyer is of type vh, which yields a surplus of ρ0(vh − c) regardless of the price. If the buyer

is type vl, transaction happens only if the platform correctly recommends a low price, gener-

ating an expected surplus of
∫ 1

0
(1 − ρs)µ(dρs)(vl − c). When the platform designs the price

recommendation rule, the platforms avoiding recommending a high price to sellers matched

with low type buyers as much as possible.

Formulation of the problem. The platform chooses the profit maximizing price rec-

ommendation rule and the associated entry fees, subject to incentive compatibility and

feasibility conditions.

Incentive compatibility entails that sellers must find it optimal to follow the platform’s

price recommendations:

∫ 1

0

µ(dρs)(vl − c) ≥

∫ 1

0

ρsµ(dρs)(vh − c). (ICl)

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c) ≥

[

1 −

∫ 1

0

µ(dρs)

]

(vl − c). (ICh)

Sellers have four options: follow both price recommendations, disobey both price recom-

mendations, or disobey one recommendation and follow the other. If sellers disobey one

recommendation and follow the other, they effectively follow a uniform pricing strategy.

If disobeying both recommendations is optimal, then one of the uniform pricing strategies

is better than following both recommendations.21 Ensuring that obeying both recommen-

dations yields more profit than both uniform pricing strategies is equivalent to incentive

compatibility:

∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c) ≥ max{vl − c, ρ0(vh − c)}. (IC)

21See Kolotilin et al. (2017) for this result.
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Sellers either follow the platform recommended strategy, or reject it and set a uniform

price. This formalism of the incentive compatibility constraints corresponds to many CRM

providers and platforms practices. Sellers, via CRM providers or online platforms, can launch

ads which display discounts that are personalized to consumer characteristics. On Cdiscount,

for instance, sellers can use the “smart discount voucher” device that automatically displays

a discounted price to a selected group of buyers (based on the platform’s available data) and

display the full price to others.

Given the prior distribution of high type buyers in the population, one of the two uniform

pricing strategies is better than the other. If ρ0 > vl−c
vh−c

then setting a uniform price vh is

strictly more profitable than vl for sellers. In this case sellers are said to be optimistic.

If ρ0 ≤ vl−c
vh−c

, then pricing uniformly at vl is more profitable, and sellers are said to be

pessimistic.

The platform pins down the marginal buyer joining b̃ via the choice of the buyer entry

fee. Together with the choice of the price recommendation rule µ, the platform maximizes

its profit, under the (IC) and (In) conditions:

max
b̃, µ

(1 −Q(b̃))

[∫ 1

0

(1 − z)µ(dz)(vl − c) + ρ0(vh − c) + b̃

]

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

The optimal price recommendation rule can be deduced from interpreting the recommenda-

tions of the platform as the result of a hypothesis testing. Let “recommending vl” correspond

to accepting H0 and let “recommending vh” correspond to rejecting H0. The platform then

chooses as a function of its test statistic ρs whether to reject H0. In this formulation the

incentives are captured by type I and II errors. Sellers want to minimize both types of

errors: they want to match their price with their buyer’s type. The platform wants to avoid
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type I errors, that is, avoid recommending a high price if the buyer’s valuation is low as it

reduces trade efficiency.

The platform and sellers agree that the type I error must be as small as possible. There-

fore, the optimal price recommendation rule must have the following property: for any level

of the type II error chosen, the level of the type I error must be minimized.

This property is common in statistics and econometrics and shared by all standard hypoth-

esis test. In this case, the tests that satisfy this property follows a cutoff rule. The platform

chooses a cutoff ρt ∈ [0, 1] such that for all signals ρs above the cutoff the platform recom-

mends a high price and for all the signals below the cutoff the platform recommends a low

price.

ρs1

1

0

F

ρt

ρ0β

(1 − ρ0)α

recom vl recom vh

Figure 2.1: Cutoff rule.

Lemma 3.1. The optimal price recommendation rule takes the form of a cutoff rule. The
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platform chooses a cutoff ρt ∈ [0, 1] and then recommends prices as follows:

(i) For all ρs < ρt, the platform recommends a low price.

The platform sets for all measurable S ⊂ [0, ρt), µ(S) = F (S).

(ii) For all ρs > ρt, the platform recommends a high price.

The platform sets for all measurable S ⊂ (ρt, 1], µ(S) = 0.

(iii) If F has a mass point at ρt, the platform randomizes its recommendations at the cutoff.

The platform picks µ({ρt}) ∈ [0, dF (ρt)], with dF (ρt) = F (ρt) − lim
x↑ρt

F (x).

Proof. This is a standard result in the Bayesian Persuasion literature see e.g. Kamenica and

Gentzkow (2011) and Dworczak (2020). A new proof (using duality techniques) is given in

the appendix A.2 and B.2.

Figure 1 pictures a cutoff rule by the platform in the case where F has a mass point at

the cutoff. On the figure the platform mixes equally the recommendation at the cutoff ρt.

The shaded areas represent the associated type I and II errors. In the text, equations are

presented assuming no mass point at the cutoff, while the appendix presents the general case.

Optimal cutoffs. The optimal cutoff is set to maximize surplus from trade. The ideal

cutoff is ρt = 1 as in this case the platform always recommends a low price hence trade is

efficient. However, this price recommendation rule provides no information to sellers about

their matched buyer’s type.

When sellers are pessimistic the ideal cutoff ρt = 1 is incentive compatible: With their

prior belief, pessimistic sellers’ optimal price is vl. In this case, the platform always recom-

mends a low price which provides no additional information to sellers, and trade is efficient.
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However, when sellers are optimistic the ideal cutoff ρt = 1 is not incentive compat-

ible. The price recommendation rule must feature a cutoff low enough so that low price

recommendations are sufficiently informative about the buyer’s type and followed by sellers.

Coincidentally, to limit trade inefficiencies the platform aims to increase the cutoff. The

optimal price recommendation rule is therefore the highest cutoff up to which the sellers’

incentive compatibility constraint is binding.

Formally, the optimal cutoff ρ∗t is set to generate a posterior belief of vl−c
vh−c

for sellers such

that at the low price recommendation they are indifferent between setting a low price or a

high price:

∫ ρ∗t
0

ρsdF (ρs)

F (ρ∗t )
=

vl − c

vh − c
.

Given the optimal cutoff ρ∗t the platform optimally sets tb to balance out the revenue ex-

tracted on infra-marginal buyers versus the revenue made on both sides by attracting more

buyers. Formally, for pessimistic buyers, the optimal entry fee t∗b induces an optimal b̃∗ that

satisfies:

1 −Q(b̃∗) = Q′(b̃∗)
[

(1 − ρ0)(vl − c) + ρ0(vh − c) + b̃∗
]

. (2.2)

For optimistic buyers, the optimal entry fee t∗b induces an optimal b̃∗ that solves:22

1 −Q(b̃∗) = Q′(b̃∗)

[∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c) + b̃∗
]

. (2.3)

As in many platform models, t∗b may be negative, since the platform considers the revenue

an extra buyer generates on the seller side. Platforms may have the possibility to price

negatively via vouchers for new accounts or sponsor a friend deals.23

The next proposition summarizes the results on the optimal paid platforms entry fees

22In case of a mass point at the threshold see appendices.
23Deliveroo, Ubereats, Cdiscount and many other platforms offer these types of deals.
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and price recommendation rules:

Proposition 3.2. Optimal paid platform mechanism.

1. Consider the case of pessimistic sellers (ρ0 ≤ vl−c
vh−c

). The platform recommends a low

price for all signals, and sets entry fees ts = vl − c and tb according to the first order

condition (2).

2. Consider the case of optimistic sellers (ρ0 > vl−c
vh−c

). The platform recommends prices

according to a cutoff rule, where ρ∗t binds (IC). It sets the entry fee for sellers ts to

capture their entire profit and the entry fee for buyers tb according to the first order

condition (3).

Proof. See appendices.

The paid platform price recommendation rule is socially optimal: A social planner would

also pick the same cutoff rule as it minimizes trade inefficiencies.

In this paper, the social planner is a decision maker motivated by total surplus that

can use the same instruments as paid platforms (respectively as free platforms in the next

subsection). The social planner designs the trade mechanism to maximize total surplus:

max
b̃, µ

∫

b̃

(∫ 1

0

(1 − z)µ(dz)(vl − c) + ρ0(vh − c) + b

)

dQ(b)

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

Both paid platforms and the social planner value the total surplus from trade. Therefore,

the planner uses the same price recommendation rule as paid platforms.

However, the social planner also values the total buyer surplus that comes from the stand-

alone valuation, i.e.
∫

b̃
bdQ(b), while the platform captures this surplus only at the marginal
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stand-alone valuation, i.e. (1 − Q(b̃))b̃. Consequently, the social planner sets a lower buyer

entry fee than the platform. The social planner reduces the buyer entry fee to the point

where the cost of attracting an additional buyer compensates the surplus it generates on

both sides:

−b̃sp =

∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c). (3)′

Therefore, under the social planner’s trade mechanism, a larger mass of buyers joins gener-

ating more trades and so the total surplus is larger.

Proposition 3.3. Paid platforms’ price recommendation rule is socially optimal as it maxi-

mizes trade efficiency. However, it sets a buyer entry fee higher than what is socially optimal.

Proof. See appendices.

Although paid platforms disclose information efficiently, it does not imply that paid platforms

collect information efficiently. Section 4 demonstrates that paid platforms’ marginal value

of information is lower than that of the social planner, leading to sub-efficient incentives to

collect data.

Distortions in the incentives to collect data are worse if in addition the platform does not

disclose information efficiently. The case of free platforms introduces a new friction which

distorts the way free platforms use information.

The free platform case

The analysis follows the same steps as the case of paid platforms. As buyers face no entry

fees, the marginal buyer is:

b̃f = −

∫ 1

0

ρsµ(dρs)(vh − vl). (2.4)
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To increase the mass of buyers joining Q(b̃f ), free platforms can only increase the probability

of recommending a low price when buyers have a high valuation.

As in the previous case, free platforms set the seller entry fee to capture their profits:

ts,f =

∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c).

The incentive compatibility condition and the informational constraint remain unchanged.

Free platforms choose the price recommendation rule µ to maximize profits:

max
µ

(1 −Q(b̃f ))

[∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c)

]

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

When setting the price recommendation rule free platforms trade off sellers’ profits, which

directly increases their revenue through the entry fee, with buyer surplus, which affects the

mass of buyers joining and the total mass of trades.

Similar to the case of paid platforms, it is useful to interpret the design of the price

recommendation rule as the design of a hypothesis test. The type I error corresponds to

recommending a high price vh if the buyer’s valuation is low vl, and the type II error cor-

responds to recommending a low price vl if the buyer’s valuation is high vh. Sellers want

to avoid both types of errors and match their price with the buyer’s type. Free platforms

want to avoid type I errors as it leads to no trade. However, free platforms face a tradeoff

regarding the optimal level of type II errors. More type II errors reduces the sellers’ profit

and the platform’s revenue, but it also increases buyer surplus from trade, and therefore

attracts more buyers to the platform.

Overall, free platforms and sellers agree that the level of the type I error must be as low
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as possible. The optimal price recommendation rule follows the property shared by many

hypothesis tests: for any level of the type II error chosen, the level of the type I error must

be minimized.

The free platforms optimal price recommendation rule follows a cutoff rule. Free plat-

forms choose a cutoff ρt,f ∈ [0, 1] such that for all signals ρs below the cutoff, free platforms

recommend a low price and for all signals above the cutoff recommend a high price.24

Optimal cutoff. For now I ignore the sellers’ incentive compatibility condition. The ideal,

unconstrained, cutoff for the platform trades off the revenue made on the seller side by at-

tracting (vh − vl)ρtQ
′(b̃f ) more consumers (increasing the cutoff by 1 unit), and the loss of

revenue on the infra marginal trades from pricing at vl instead of vh at the cutoff. Formally,

the ideal cutoff solves:

ρt,f (vh − vl)Q
′(b̃f )

(

F (ρt,f )(vl − c) +

∫ 1

ρt,f

ρsdF (ρs)(vh − c)

)

=(1 −Q(b̃f )) (ρt,f (vh − c) − (vl − c)) . (5)

The incentive compatibility condition of pessimistic sellers holds at the ideal cutoff. To be

convinced to set a high price, the pessimistic seller’s posterior belief must be higher than

vl−c
vh−c

. However, the ideal cutoff cannot be lower than vl−c
vh−c

, even in the case of inelastic Q.

For pessimistic sellers, the ideal cutoff pinned down by (5) is optimal.

For optimistic sellers there are two cases. Either the ideal cutoff is low enough so the

sellers’ (IC) holds, in which case the ideal cutoff is optimal. Or the ideal cutoff violates the

sellers’ (IC), in which case the platform chooses the highest cutoff until the sellers’ incentive

compatibility condition is binding.

The next proposition summarizes the results on the optimal free platform entry fee and

price recommendation rule:

24This result is standard in the Bayesian Persuasion literature. For completeness, a formal new proof
(using duality) of this claim is presented in appendix B.2.
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Proposition 3.4. Optimal free platform mechanism.

Free platforms set the seller entry fee to capture their entire profits. Additionally, the optimal

price recommendation rule is as follows:

1. Consider the case of pessimistic sellers (ρ0 ≤
vl−c
vh−c

). The platform recommends prices

according to a cutoff rule. The optimal cutoff is the solution to equation (5).

2. Consider the case of optimistic sellers ( ρ0 ≤
vl−c
vh−c

). The platform recommends prices

according to a cutoff rule. There are two cases: either (a) ρ∗t binds the sellers’ (IC),

or (IC) is slack and the optimal cutoff is the solution to equation (5).

Proof. Appendix B.2 demonstrates the optimality of cutoff rules. Appendix B.3 completes

the characterization of the optimal price recommendation rule.

A social planner, constrained to set tb = 0, would set the same cutoff as paid platforms. That

is, set the highest cutoff feasible, and permitted by the sellers’ (IC). For the social planner

there is no trade-off: increasing the cutoff increases both trade efficiency and the total mass

of trades.

Free platforms’ price recommendation rule is efficient only if buyers are optimistic and

the optimal cutoff binds the sellers’ (IC), in which case it coincides with the socially optimal

cutoff. However, if the optimal cutoff is interior, free platforms recommend high prices too

often leading to a lower surplus generated in each trade and a lower total mass of buyers

joining. In the case of pessimistic sellers, the social planner always recommends a low price,

that is, it uses no data and achieves trade efficiency. However, in this case, the free platforms

use data to design a price recommendation rule with an interior cutoff. When sellers are

pessimistic, free platforms destroy surplus relative to no-data.

Proposition 3.5. 1. Consider the case of pessimistic sellers (ρ0 ≤
cl−c
vh−c

). The free plat-

form price recommendation rule is inefficient, and even reduces total surplus relative

to a no data benchmark.
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2. Consider the case of optimistic sellers (ρ0 >
cl−c
vh−c

). The free platform price recommen-

dation rule is inefficient if the cutoff is interior and is efficient if the cutoff binds the

sellers’ (IC).

Proof. See appendix B.4

Paid platforms, free platforms and social planners all use cutoff rules. From Black-

well (1953), these cutoff rules could not be replicated with less informative signal structures.

Despite the distorted free platforms’ price recommendation rule that led to inefficient out-

comes, it nonetheless wastes no information in the sense of Blackwell. Section 4 however

shows that the platform does not value information in the same way the social planner

does. The next section presents the marginal value of information for the platform, and then

compares it with the social planner’s marginal value of information.

4 The Marginal Value of Information

The value of information for a decision maker is the best payoff achievable given his infor-

mation structure.

Definition 3. The platform’s value of information maps each information structure into the

optimal profit that can be achieved under it. Vp(F ) (resp. Vf (F )) denotes a paid platform’s

(resp. a free platform’s) value of information.

This section focuses on the platform’s marginal value of information: how V changes when

the information structure marginally changes. Formally, it is defined as the gradient of V at

F .

Definition 4. The platform’s marginal value of information is defined as the gradient of the

platform’s value of information: ∇FV .
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Studying the platform’s marginal value of information provides rich comparative statics on

the platform’s willingnesses to pay to acquire additional information. Changing the distribu-

tion of signals F for the platform has many economic interpretations. It can correspond to

modifying the platform’s contracts with data brokers. It can also correspond to a change in

how much data is collected on the platform’s website. For instance, many platforms require

users to be logged in with personal accounts to interact with sellers and choose how much

information is necessary to create such personal accounts. Identifying users with personal

account makes it easier for platforms to track their purchase histories or to merge this data

with external information sources. Many platforms’ practices result in the collection of user

information. For instance, addresses are necessary for deliveries, gift cards provide informa-

tion on the nature of the purchase.

This section computes the platform’s willingness to pay to acquire more information

which partly captures the platform choice of data acquisition strategy. The next section

compares these demands for information with the social planner’s to study distortions.

Sensitivity Analysis

The platform’s marginal value is constructed as the shadow price associated to the informa-

tional constraint (In): The impact on the platform’s profit when relaxing this constraint.

Formally the shadow price of (In) is the Lagrangian multiplier, i.e. the dual variable, as-

sociated to the constraint (In). Consider the platform’s optimal price recommendation rule

problem:

P : max
µ∈V+

(1 −Q(b̃))

(∫ 1

0

(1 − ρs)dµ(ρs)(vl − c) + ρ0(vh − c) + b̃

)

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤ F (S) (In)
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Paid platforms also choose b̃ via the buyer entry fee and free platforms b̃f is pinned down by

the price recommendation rule (see (4)). In both business models, (In) restricts the choice of

price recommendation rule. Both are solved using duality25 which computes the dual variable

associated to the constrained (In) noted Λ and Λf respectively. Since the dual space of the

space of regular measure is the space of continuous functions, the dual variables Λ and Λf are

continuous functions on [0, 1]. The sensitivity analysis proves that these dual variables can

be interpreted as the change in the optimal platform’s profit obtained by relaxing (In), that

is by changing F (see proposition 4.1 below). From this, the platform’s marginal value of

information is defined as the dual variable associated to (In), formally ∇FV = Λ computed

in appendix A.4 for paid platforms and appendix B.4 for free platforms.

In the reminder of this paper, I assume that F has full support. The full support

assumption is crucial to define derivatives of the value function at F and to guarantee

that dual solutions are unique.26 From a technical standpoint, the main difference compared

to standard sensitivity analysis is that V is defined on an infinitely dimensional space, the

space of regular measures. This paper shows that V is directionally differentiable at F .

In this space, directional derivatives can be interpreted as follows. Consider an alternative

information structure H with mean ρ0. Acquiring information in the direction of H, starting

from F , means that the new information structure of the platform is the mixture (1−ǫ)F+ǫH

with a small probability ǫ.27 Using arbitrary H and F captures all possible changes in

information structures, since any information structure can be represented by a distribution

of posterior beliefs.28

For instance, consider an e-commerce platform that decides to purchase social media

data. This type of data produces many useful signals for platforms (current occupation,

25see appendicesA and B respectively.
26Under this assumption Dworczak and Kolotilin (2019) theorem 3 together with proposition 4 applies.

See technical appendix for another proof.
27Note that because both F and H have mean ρ0, the mixture also has mean ρ0 and thus is a Bayes

plausible information structure.
28However notice that the notion of marginal variation may not be equivalent in the space of posterior

belief distributions and in the space of experiments. The first is endowed with the weak-* topology which
need not be equivalent to the topology chosen on the space of experiments.
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geographical location, liked pages, etc). Social media platforms like Facebook also define

categories reflecting user preferences based on profiles. Typically, this data is correlated

with what the platform already knows. Assume that for each buyer identified by a signal

ρs, observing the his social media data of that buyer generates new posteriors distributed

according to G(.|ρs) with mean ρs. By purchasing social media data for all its buyers, the

platform has access to a new information structure H equals to:29

H(S) =

∫ 1

0

G(S|ρs)dF (ρs).

In practice, it may be difficult or very costly for the platform to transform social media

data into predictions on buyers’ valuations. However, G need not correspond to the true

distribution of predictions, rather G(.|ρs) can be also interpreted as the platform’s imperfect

predictions (although belief consistent) of buyers’ valuations after observing social media

data.

The marginal change of F towards H can be interpreted as follows: The platform pur-

chases a social media data set from a broker, that contains a mass ǫ of the platform’s buyers.

Although, the platform cannot identify in advance which buyers are in the data set. In that

case, the new platform’s information structure is:

(1 − ǫ)F + ǫH = F + ǫ

∫ 1

0

(G(.|ρs) − F (.))dF (ρs).

For marginal variations only F is required to have full support, G may be diffuse or discrete

or both. In general, see proposition below, any marginal changes in the direction of H from

F can be computed from the platform’s marginal value of information as follows:

∫ 1

0

∇FV (ρs)d(H − F )(ρs).

29In this example, G is a dilation which implies that H is an MPS of F . The converse is also true, if H is
a MPS of F then such dilation exists. See Le Cam (1996) theorem 1. Therefore, this construction captures
without loss of generality any gain in informativeness.
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Using the example, the marginal gain in profit from purchasing social media data to one

extra buyer equals:

∫ 1

0

(∫ 1

0

∇FV (z)G(dz|ρs) −∇V (ρs)

)

dF (ρs).

Since all directional derivatives are computed from the marginal value of information (the

dual variable associated to (In)), the marginal value of information is the gradient of V at

F . All these results are sumarized in the proposition below:

Proposition 4.1. Assume that F has full support.

1. V is directionally differentiable at F in any directions. For a change towards H starting

from F , the derivative equals:

DH−FV (F ) =

∫ 1

0

∇FV (ρs)d(H − F )(ρs).

2. If H has full support, then:

V (H) − V (F ) =

∫ 1

0

∫ 1

0

∇V{(1−ǫ)F+ǫH}(ρs)d(H − F )(ρs)dǫ.

Proof. See technical appendix.

The last point of the proposition completes the construction: The difference in the plat-

form’s value of information between H and F can be obtained by integrating the platform’s

willingness to pay to learn in the direction H − F along the path (1 − ǫ)F + ǫH, ǫ ∈ [0, 1].

The marginal value of information is ∇FVp for paid platform at F and is ∇FVf for

free platforms at F . Based on the platform’s marginal value of information in each model,

the next subsections study the platform’s incentives to collect additional information and

compare these incentives with the social planner’s.
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The platform’s marginal value of information

Appendix A (resp. appendix B) presents the dual analysis of the paid platform problem

(resp. the free platform problem). Each business model’s marginal value of information is

computed with the dual variable associated to (In). The next proposition presents these

results:

Proposition 4.2. 1. The paid platform marginal value of information is:

∇FVp(ρs) = (1 −Q(b̃))

(

ρs(vh − c) +
(vh − vl)(vl − c)

(vh − c)ρt − (vl − c)
max{ρt − ρs, 0}

)

.

2. The free platform marginal value of information is:

∇FVf (ρs) = (1 −Q(b̃))

(

(1 + λf )
(vl − c)

ρt
max{ρt − ρs, 0} + ρs(vh − c)

)

.

Where λf is the gain in free platform profits when relaxing the sellers’ (IC) by 1.

Proof. See appendix A.4 for the paid platform case, and appendix B.4 for the free platform

case.

First, if the optimal cutoff is 1 then trade is efficient. In this case, additional information

has no value. The linearity of the platform’s marginal value of information captures this

fact: Consider marginally changing in the platform’s information structure from F in the

direction of H. The formula of proposition 4.1 point 2. computes the corresponding change

in profit and with the fact that H and F have the same mean ρ0 and total mass 1, this

change under both business models yields 0 profit.30

The construction of the marginal value of information also allows for variations of F

outside of the space probability measures.31 That is why the marginal value of informa-

tion does not equal the constant map 0 in this case. Variations outside of the probability

30Remark that λf = 0 in this case.
31This is useful for F to be considered as an interior point and thus define derivatives. Otherwise, no

point in the space of probability measures is interior.
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spaces may be interpreted economically in other models as follows: Consider launching an

ad campaign which changes the valuations for the good of some buyers, thus reaching a new

distribution H with mean ρh > ρ0 or which induces some buyers to purchase more than

one good, thus reaching a new distribution with a mass higher than 1. These variations are

also supported by the analysis, in the case where the proportion of high valuations buyers

in the population increases to ρh, the corresponding change to paid platforms’ profit equals

(1 − Q(b̃))(vh − vl)(ρh − ρ0) (still assuming the cutoff is at 1), as they capture the surplus

from trade. For free platforms’ the change in profit is the same. Locally, free platforms’

readjustment of the price recommendation rule is negligible. The extra mass on high poste-

riors is used to set a high price and the lost mass on low posteriors reduces the probability

of recommending a low price so the change in profit is the same.

In contrast, if the cutoff is interior, the platform’s marginal value of information, under

both business models, has two relevant properties. First, ∇FV is continuous and convex

which is a consequence of the Blackwell theorem: The platforms’ profit increases under more

informative signal structures and decreases under less informative signal structures. A dis-

tribution of posterior beliefs H is generated by a more informative signal structure than

another distribution F if and only if H is a mean preserving spread of F .32 Then, from the

definition mean preserving spreads, integrating any continuous and convex functions under

H yields larger value than under F . Therefore, by the formula of proposition 4.1 point 2. the

platform’s profit increases if the information structure F marginally changes in the direction

of H.

The converse is also true: If ∇FV is convex for any F , then for all MPS H1 of H2, by the

third point of proposition 4.1 V (H1) ≥ V (H2). Therefore, the convexity of the gradient at all

F is not only a consequence of the Blackwell theorem, it is also a first order characterization

of the Blackwell order.

Second, ∇FV is piece-wise linear around the cutoff value ρt. Any variations on the dis-

32See Kolotilin (2014) proposition 1 and Blackwell (1953).
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tribution of posterior beliefs F which affects only one side of the cutoff has no effect on the

platform’s profit. Learning buyers’ types is valuable only if it affects paid platforms’ price

recommendations.

The next paragraphs use this concept to capture a paid platform’s incentives to collect

data. The next results assume that the optimal cutoff is interior, which implies that sell-

ers are optimistic. Otherwise, as discussed above, the platform has no incentives to collect

additional information.

The platform’s incentives to collect data

By incentives to collect data, this paper refers to the platform’s willingness to pay to change

its information structure. The formula of proposition 4.1 point 2. computes a paid platform’s

willingness to pay in the direction of H by applying the marginal value of information ∇FV

to the direction (H − F ).

The platform’s marginal value of information captures incentives to collect data in any

direction starting from any information structure. It copes with the high dimensionality of

information, yet its structure solely relies on the platform’s profit. As shown in the next

propositions, it reflects the way the platform uses its information.

Paid Platforms. Paid platforms use information to maximize surplus from trade while

meeting the sellers’ obedience condition. The paid platforms’ willingness to pay to learn

in the direction of H reflects these two needs: (i) the gain in trade efficiency from learning

towards H, and (ii) the gain in relaxing the sellers’ obedience condition.

The next proposition formally computes this gain in profit using the formula of proposi-

tion 4.1 point 2.:

Proposition 4.3. Paid platforms’ willingness to pay to learn in direction of H is charac-

terized by:

(i) how much H increases trade efficiency compared to F ,
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(ii) how much H relaxes the sellers’ incentive compatibility constraint compared to F .

This willingness to pay equals:

(1 −Q(b̃)) (vl − c)

(∫ 1

ρt

(1 − ρs)dF (ρs) −

∫ 1

ρt

(1 − ρs)dH(ρs)

)

︸ ︷︷ ︸

Change in trade efficiency

+(1 −Q(b̃))λ

(

(vl − c)H(ρt) − (vh − c)

∫ ρt

0

ρsdH(ρs)

)

︸ ︷︷ ︸

Change in relaxing incentive compatibility

.

Where λ is the dual variable associated to the sellers’ (IC):

λ =
(1 − ρt)(vl − c)

ρt(vh − c) − (vl − c)
.

Proof. See appendix A.5.

The change in trade efficiency corresponds to the change in the probability of recom-

mending a high price when the buyer has a low value. That is, the reduction in the mass of

low type buyers above the cutoff when learning towards H:
∫ 1

ρt
ρsd(H − F )(ρs). Weighted

by (1 − Q(b̃))(vl − c) this variation gives the change in the total surplus from trade. In

this model, this change in surplus from trade is first captured by sellers, as they now cor-

rectly price down these low type buyers. Then, captured by the platform as it increases the

seller entry fee by the same amount their profits increase. Since the surplus from trade has

changed, the platform adjusts the buyer entry fee as well, but this has no effect on profit

due to standard envelop arguments.

Learning towards an information structure H also changes the platform’s profit via re-

laxing the sellers’ incentive compatibility constraint. The difference in the sellers’ profit

if they follow low price recommendations (vl − c)H(ρt) compared to if they do not (vh −

c)
∫ ρt

0
ρsdH(ρs) corresponds to the play in the sellers’ (IC) under H the platform can exploit

to increase the cutoff. By increasing the cutoff the platform now recommends a low price
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around ρt which increases the surplus by (1 − ρt)(vh − c) but decreases the sellers’ profit

(hence tightens the sellers’ (IC)) by ρt(vh−c)− (vl−c). The ratio of the two equals the dual

variable associated to the sellers’ (IC) that gives the increase in the paid platforms’ profit

when the sellers’ (IC) the relaxed by one unit.

A paid platform’s profit changes from learning toward H via only two channels (i) the

change in the surplus from trade and (ii) the change in the sellers’ (IC). Next, I describe a

free platform’s incentives to collect data.

Free Platforms. Let us focus on the case when sellers’ (IC) is slack. In this case, free

platforms’ use information to (i) assist sellers with capturing buyer surplus and (ii) provide

surplus to buyers to attract more of them. These two channels shape their willingness to

pay to learn in the direction of H.

Proposition 4.4. Assume the sellers’ (IC) is slack.

A free platform’s willingness to pay to learn in the direction of H is characterized by:

(i) how much H increases the sellers’ profit compared to F .

(ii) how much H increases the mass of buyers joining compared to F .

This willingness to pay equals:

(1 −Q(b̃))

(

(vl − c)(H(ρt) − F (ρt)) + (vh − c)

∫ 1

ρt

ρsd(H − F )(ρs)

)

︸ ︷︷ ︸

Profit gained on infra-marginal trades

+ (vh − vl)Q
′(b̃)

∫ ρt

0

ρsd(H − F )(ρs)

︸ ︷︷ ︸

Gain in the mass of buyers joining

(

(vl − c)

∫ ρt

0

dF (z) + (vh − c)

∫ 1

ρt

zdF (z)

)

︸ ︷︷ ︸

expected profit per trade

.

Proof. See appendix B.5

A free platform captures the change in the sellers’ profit from the entry fee. The sellers’
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probability to trade at a low price changes by (H(ρt) − F (ρt)). The change in the mass

of buyers below the cutoff and to trade at a high price changes by
∫ 1

ρt
ρsd(H − F )(ρs).

Combining both gives the total change in the sellers’ profit per buyer.

Learning in the direction of H also affects the mass of joining buyers. The probability

for high type buyers to face a low price and obtain a surplus of (vh − vl), changes by
∫ ρt

0
ρsd(H − F )(ρs). Each additional unit of buyer surplus lowers the marginal buyer type

joining b̃. This generates Q′(b̃) more trades, of which free platforms appropriate the sellers’

profit.

The next section studies the distortions in the platform’s incentives to collect data under

each business model. It exhibits the biases in the way platforms collect data compared to

what is socially optimal.

5 Distortions in Data Collection

This section compares the platform’s incentives to collect data with the social planner’s.

When collecting or purchasing data, the platform compares its incentives to collect data

with the marginal cost of collecting data. Assuming the social planner and the platform

face the same cost of collecting information, the differences in their incentives to collect data

captures the differences in their information acquisition decisions.

How the platform evaluates information structures locally determines their decision to

acquire information. A first approach to study distortions is to consider whether the platform

locally ranks information structures efficiently. This concept is formalized in the following

definition:

Definition 5. The platform’s ranking of information structures is locally efficient at the

distribution F if these two statements are equivalent:

1. Total surplus increases more in the direction of H1 rather than of H2.

2. The platform’s profit increases more in the direction of H1 rather than of H2.
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Equivalently, it means that for all information structures H1 and H2, there is a ǫ > 0 such

that:

V ((1 − ǫ)F + ǫH1) ≥ V ((1 − ǫ)F + ǫH2) ⇐⇒ V sp((1 − ǫ)F + ǫH1) ≥ V sp((1 − ǫ)F + ǫH2).

If the platform locally ranks information structure efficiently, then the only remaining

distortions are a matter of intensity. The platform and social planner agree on the direction

of the investment in information but may disagree on the size of that investment. Formally,

there is a positive scalar γF such that for all information structures H:33

∫ 1

0

∇FV
sp(ρs)d(H − F )(ρs) = γF

∫ 1

0

∇FV (ρs)d(H − F )(ρs).

The platform’s incentives to collect data only depends on the two average posterior beliefs

conditional on recommending a low price or a high price. Since all distributions have the

same mean, one of the average posterior determines the other. Therefore, comparing learning

directions is equivalent to compare the allocation of the mass on one side of the cutoff.

Consequently, if the platform uses the same cutoff as the social planner, then the platform’s

ranking of information structure is locally efficient.34 This leads to the next proposition:

Proposition 5.1. 1. Paid platforms’ ranking of information structures is locally efficient

at any distribution F .

2. Free platforms’ ranking of information structures is locally efficient for the distribution

F where (IC) binds and locally inefficient for the distribution F where (IC) is slack.

Proof. See appendix A.6

33Considering variations outside the space of probability distributions local efficiency implies that the
gradient of the platform is an affine transformation of the gradient of the social planner. The constant terms
is irrelevant when considering Bayes plausible probability distributions.

34This argument holds because the platform recommends only two prices. If more actions are recom-
mended it may not be true that a platform that uses information efficiently also locally ranks information
structures efficiently.
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The remainder of this section is split into two parts. First, the next subsection analyzes

the case when the platform’s ranking of information structures is locally efficient. In the case

when the sellers’ (IC) binds, the platform’s incentives to collect data is proportionally lower

than what is socially optimal. Second, the last subsection analyzes distortions in the case

of free platforms if (IC) is slack. Here, the distortions are also a matter of orientation and

the analysis shows that for any additional source of information free platforms are biased to

learn at the bottom: in the region where posteriors are low.

Distortions in investment intensity

This subsection considers the case of paid platforms and free platforms when the seller’s

(IC) binds. In this case, the platform’s ranking of information structure is locally efficient,

regardless of its business model. Yet, this section shows that in both business models the

platform under-values additional information.

Paid platforms set a higher buyer’s entry fee compared to what is efficient. Accordingly,

fewer buyers join which implies that any additional information is used on a lower mass of

trades as compared to under a social planner’s trade mechanism. Thus, Paid platforms value

additional information proportionally less than what is efficient by a factor of 1−Q(b̃)

1−Q(b̃sp)
.

Free platforms use the same price recommendation rule as the social planner. However,

free platforms do not take into account the buyer surplus when valuing additional infor-

mation. If learning relaxes the sellers’ (IC), then free platforms can increase the cutoff to

increase their profit. Free platforms under value this change as they dismiss the correspond-

ing gain in the buyer surplus. Increasing the buyer surplus also attracts more buyers and

generates more trades. Although, free platforms and the social planner value this gain in

the same way. The additional buyer joining does not increases buyer surplus since his stand-

alone valuation offsets his expected surplus from trade. Overall, free platforms undervalue

additional information by a factor of
1+λf

1+λ
sp
f

, where λf gives the gain in the platform’s profit

from relaxing the sellers’ (IC) by one unit. Similarly, λsp
f gives the gain in total surplus from
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relaxing the sellers’ (IC) by one unit. These results are summarized in the next proposition:

Proposition 5.2. 1. A paid platform’s willingness to pay is proportionally lower than

the socially optimal one by a factor of 1−Q(b̃)

1−Q(b̃sp)
.

2. Consider the case where the sellers’ (IC) binds. A free platform’s willingness to pay to

is proportionally lower than the social planner’s by a factor of
Q′(b̃f )ρ0(vh−c)

(1−Q(b̃f ))+Q′(b̃f )ρ0(vh−c)
.

Proof. See appendix A.5.

For a paid platform, the distortion between social versus private incentives to collect in-

formation is only a matter of the total mass of trades generated on the platform. However, it

does not imply that, conditional on the mass of buyers joining, a paid platform’s willingness

to pay to learn is efficient.

To demonstrate, consider a benevolent information provider who chooses the informa-

tion structure of the platform but not the trade mechanism. In this case, the benevolent

information provider values the gain in surplus coming from the platform’s readjustment of

the buyer’s entry fee when learning in the direction of H.35 If learning increases the surplus

from trade per buyer then a paid platform responds to it by lowering the buyers’ entry fee,

as each additional buyer is more valuable. Yet, a paid platform only captures this increase in

the buyers’ surplus at the marginal buyer, since it posts a fixed entry fee for all stand-alone

valuations. By contrast, the benevolent information provider values the total change in the

buyers’ surplus.

Example. Interpret the buyers’ stand-alone valuations as search costs and let b be uni-

formly distributed on (b, 0] where b is assumed to be low enough for each optimal b̃ to be

interior.

Paid platforms set the buyer entry fee to pin down the marginal buyer joining according

35These gains were previously negligible as paid platforms were choosing tb optimally.
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to (3):

−b̃∗ =
1

2

[∫ ρ∗t

0

(1 − z)dF (z)(vl − c) + ρ0(vh − c)

]

.

But, from (3)′ the total surplus maximizing marginal buyers’ type joining is:

−b̃sp =

∫ ρ∗t

0

(1 − z)dF (z)(vl − c) + ρ0(vh − c).

In this example, half the buyers join the platform as compared to the planner’s case. In

turn, the paid platforms’ willingness to pay to collect data is half the social planner’s.

Free platforms set the same cutoff rule that binds the sellers’ (IC). The marginal buyer

is:

−bf = (vh − vl)

∫ ρ∗t

0

ρsdF (ρs).

Accordingly, the free platforms’ willingness to pay is lower than the social planner’s by a

factor of ρ0(vh−c)

(1−Q(b̃sp))
.

Since distortions are just a matter of intensity in that case, they can be reduced by

a per unit subsidy. For instance, if C(F ) is the total cost (or market price) to collect the

information structure F and if the social planner takes a share 1 − γF of the total cost with

γF being the factor by which platform’s incentives differ from social incentives, then the plat-

form’s decision to collect or purchase information is locally efficient.36 This share depends on

the information structure F but it is observable. Indeed, for paid platforms’ it only depends

on the ratio between the mass of buyers joining the platform under the social planner or

under paid platforms. Thus, computing this share consists in estimating the elasticity of the

mass of buyers joining. Knowing this elasticity would be enough also to compute the share

36Remark that in this model, V is concave in F , thus under suitable conditions for the cost function C,
local optimality characterizes the optimum.
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for free platforms.

By contrast, the next subsection demonstrates that, for free platforms, these distortions

are also a matter of direction.

Distortions in investment orientation

Consider the case of free platforms if the sellers’ (IC) is slack. In this case, the free plat-

forms’ ranking of information structure is locally inefficient: distortions are both a matter

of intensity and direction. I study a specific class of directions to highlight distortions.

Consider again the example where the platform purchases its buyers’ social media data.

Assume that for a buyer ρs, this data purchase generates new posterior beliefs distributed

according to G(.|ρs) with mean ρs. The main question is: compared to the social planner,

does the platform prefer buying the social media data for low ρs or for high ρs?

First, notice that any additional source of information can be represented by a conditional

distribution G(.|ρs) that has mean ρs for all ρs.
37 Additional information simply allows the

platform to spreads again its beliefs. The following analysis holds for any source of additional

information.

Intuitively, free platforms value learning relatively more for low ρs as compared to a so-

cial planner. For ρs lower than their respective cutoff, trade is efficient since a low price is

recommended. Thus, for the social planner, the only gain in surplus comes from relaxing

the sellers’ (IC). However, by learning below the cutoff, free platforms can now correctly

mark-up high type buyers, which increases the sellers’ profit and their profit. By contrast,

learning for high ρs is more valuable for the social planner. Learning in the region where

a high price is recommended improves trade efficiency and relaxes the sellers’ (IC). Yet,

in the case the sellers’ (IC) is slack at optimal cutoff, free platforms do not value this last

channel.

37distribution H is a mean preserving spread of F if and only if there is such a conditional distribution

G such that: H =
∫ 1

0
G(.|ρs)dF (ρs). See Le Cam (1996) theorem 1.
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Consider the following change in the information structure: After receiving a signal in

(0, s), there is a probability ǫ that the platform observes buyers’ social media data. Let Tb(s)

denote the platform willingness to pay to learn the social media data for ρs ∈ (0, s), that is

at the bottom. Alternatively, consider another variation: After receiving a signal in (s, 1),

there is a probability ǫ that the platform observes its buyers’ social media data. Let Tt(s)

denote the free platforms’ willingness to pay to learn the social media data for ρs ∈ (s, 1),

that is at the top.

If s = 1 (resp s = 0) then Tb(1) (resp Tt(0)) corresponds to willingness to pay to observe

buyers’ social media data for all ρs ∈ (0, 1). Conversely, Tb(0) = Tt(1) = 0. The main

question is to determine if free platforms prefer learning at the bottom or at the top relative

to the social planner. To remove the distortions in intensity, I normalize with the price of

learning the social media data over the whole interval Tb(1) − Tt(1) and T sp
b (1) − T sp

t (1)

respectively.

Proposition 5.3. Assume F has a density. For any additional source of information G one

has:

∀ s ∈ (0, 1) :
Tb(s) − Tt(s)

Tb(1) − Tt(1)
≥

T sp
b (s) − T sp

t (s)

T sp
b (1) − T sp

t (1)
.

Proof. See appendix B.6.

A free platform values marking up buyers to increase the sellers’ profit. However, the so-

cial planner is only motivated by marking down low type buyers to avoid inefficiencies.

Consequently, a free platform collects data or purchases data to refine its predictions when

recommending a low price, whereas the social planner collects or purchases data to refine its

predictions when recommending a high price.

This bias in the incentives to collect data is robust to the source of the additional infor-

mation which leads to different information acquisition strategies by free platforms and the
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social planner. In turn, free platforms construct data bases which enriches their predictions

over buyers in the wrong region.

6 Conclusion

This paper studies how e-commerce platforms design price recommendations to influence

the market price and their incentives to collect information. It studies two business mod-

els: paid platforms and free platforms, and establishes a connection between a platform’s

business model and the way it values and uses information. To make this connection, this

paper builds the platform’s marginal value of information, i.e. how a platform’s profit varies

when its information structure varies. Using this concept, I show that a paid platform uses

information efficiently and locally ranks the different directions to learn efficiently. However,

a paid platform under-values additional information as compared to what is socially opti-

mal. By contrast, a free platform may rank inefficiently learning directions. A free platform

prefers learning when recommending a low price to avoid missing potential mark-ups. What

is efficient, however, is to learn when recommending a high price to avoid missing trade

opportunities on low type buyers.

This paper warns against potentially distorted incentives of platforms to collect informa-

tion. The platform’s marginal value of information exhibits these distortions and identifies

these with the platforms’ business model. Since the marginal value of information relates

how the platform uses information with how the platform collects information, it provides

two entry points to implement and study regulation. Consider implementing a regulation

on the downstream market (e.g. by promoting competition between platforms). The conse-

quences of this regulation on the platform’s demand for data and on upstream market (the

data market) can be analyzed through the platform’s marginal value of information. Alter-

natively, consider a regulation on the data market (e.g. making some data public, changing

the privacy regulation, taxing data, etc.). The consequence of this regulation on the down-
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stream market can be studied through the marginal value of information.

Finally, I derive the marginal value of information using duality and sensitivity analy-

sis. This approach may prove useful to shed light on related issues regarding the efficient

allocation of information.

7 Appendices

7.1 Paid Platforms Problem

Primal and Dual program

The paid platforms’ problem is:

max
b̃, µ

(1 −Q(b̃))

[∫ 1

0

(1 − z)µ(dz)(vl − c) + ρ0(vh − c) + b̃

]

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

The optimal price recommendation rule can be solved independently from the optimal buyer

entry fee.

Solving only for the price recommendation rule with optimistic sellers is a linear program:

P : max
µ∈V+

∫ 1

0

(1 − ρs)dµ(ρs)(vl − c)

subject to:
∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c) ≥ ρ0(vh − c) (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)
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Let C+ refers to the set of non-negative continuous functions defined on [0, 1], and V+ the

set of non-negative measures defined on [0, 1]. The dual writes:

D : min
Λ∈C+, λ∈R+

∫ 1

0

Λ(ρs)dF (ρs)

subject to:

∀ ρs ∈ [0, 1] (vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] ≤ Λ(ρs) (⋆)

Technical appendix 4.1 describes the construction of the dual as well as proof that strong

duality holds:

Proposition 7.1. Problems P and D are strong duals:

1. Both problems have a solution and val{P} = val{D}.

2. Let µ and Λ, λ be feasible then:

µ is and optimal solution of P and (Λ, λ) is an optimal solution of D if and only if






∫
Λd(F − µ) = 0 (C1)

λ
(∫ 1

0
dµ(ρs)(vl − c) −

∫ 1

0
ρsdµ(ρs)(vh − c)

)

= 0 (C2)

∫ 1

0
Λ(ρs) − (vl − c)(1 + λ) + ρs[(vl − c) + λ(vh − c)]dµ(ρs) = 0 (C3)

Proof. See technical appendix 4.1.
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Additionally, the planner’s program is:

max
b̃, µ

∫

b̃

(∫ 1

0

(1 − z)µ(dz)(vl − c) + ρ0(vh − c) + b

)

dQ(b)

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

The linear part of this problem boils down the problem P stated above. Therefore, the

analysis of the optimal paid platforms’ price recommendation rule µ applies also to the

planner.

Optimality of the cutoff rule

This subsection proves lemma 3.1 for the case of paid platforms.

Pessimistic Sellers

Pessimistic sellers prefer setting a low price at their prior belief. Thus, recommending a

low price for all values of the signal is (IC) is incentive compatible. This also coincide with

the platform’s objective. Therefore, in this case the platform uses a cutoff with cutoff ρt = 1.

That is µ = F for all measurable sets included in [0, 1]

Optimistic Sellers

On top of the complementary slackness conditions, the solution must satisfy primal fea-



7. APPENDICES 124

sibility:







µ ∈ V+

µ ≤ F (In)

∫ 1

0
µ(dρs)(vl − c) +

[

ρ0 −
∫ 1

0
ρsµ(dρs)

]

(vh − c) ≥ ρ0(vh − c) (IC)

As well as dual feasibility:







Λ0 ∈ C+

λ ∈ R+

∀ ρs ∈ [0, 1] (vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] ≤ Λ(ρs) (⋆)

The LHS of equation (⋆) is an affine function of z. Since λ ∈ R+ this affine function starts

positive at 0 and ends up non-positive at 1. It crosses the x axis at:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Because Λ is a non negative map, for all z ∈ (ρt, 1] (⋆) is slack:

(1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z) < 0

Thus, using (C3):

For all measurable B ⊂ (ρt, 1] µ(B) = 0

Hence, from (C1):

∀ z ∈ supp(F ) ∩ (ρt, 1], Λ(z) = 0
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Because Λ is continuous:

∀ z ∈ supp(F ) ∩ (ρt, 1], Λ(z) = 0

Second, the LHS of (⋆) is strictly positive for z ∈ [0, ρt). Thus (⋆) implies that for all

z ∈ [0, ρt), Λ(z) > 0.

So, using this in (C1):

∀ measurable B ⊂ supp(F ) ∩ [0, ρt), µ(B) = F (B)

But on B ⊂ supp(F )c ∩ [0, ρt), primal feasibility implies µ(B) = 0 = F (B). Therefore:

∀ measurable B ⊂ [0, ρt), µ(B) = F (B)

By the third complementary slackness condition one has again:

∀ measurable B ⊂ supp(F ) ∩ [0, ρt), Λ = (1 − z)(vl − c) + λ[vl − c− z(vh − c)]

To sum up we have so far:

∀ measurable B :

B ⊂ [0, ρt) µ(B) = F (B)

B ⊂ (ρt, 1] µ(B) = 0

Additionally, from the σ−additivity property of measures, µ is pinned down up to the choice

of mass at {ρt}.

That is, receiving a signal below ρt always riggers a low price recommendation, and above ρt
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always leads to a high price recommendation. The platform can also mix recommendation

at the cutoff. Which concludes the proof of for paid platforms of lemma 3.1.

The analysis has also established the relationship between the threshold and the value of

dual variables:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Equivalently:

λ =
(1 − ρt)(vl − c)

ρt(vh − c) − (vl − c)
∈ R+

In addition, it has determined the value of the dual variable Λ on the closure of the support

of F . To perform the sensitivity analysis, Λ is chosen outside the support to be continuous to

small perturbations of F , if a perturbed F had vanishingly small mass on the entire interval

then:

Λ(z) =







(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

Optimal price recommendation rule and Fees

The case of Paid Platforms.

Proof of proposition 3.2.
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The complementary slackness condition (C2) is associated to (IC):

λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

= 0

Case 1: Assume (IC) is slack at the solution, from (C2): λ = 0.

Using the formula for ρt that implies ρt = 1. (IC) is indeed slack with ρt = 1 if there is a

µ({1}) ∈ [0, dF (1)] such that:

∫ 1

0

dF (z)(vl − c) −

∫ 1

0

zdF (z)(vh − c) − (dF (1) − µ({1}))(vl − vh) > 0

⇐⇒
vl − c

vh − c
+

dF (1) − µ({1})

vh − c
(vh − vl) > ρ0

As vl−c
vh−c

< ρ0, if F doesn’t have a mass point at 1 the previous inequality cannot hold.

However, F may have a mass point at 1, for instance a fully informed platform has a distri-

bution of posterior F with a mass point at 1 of size ρ0.

If the platform has full information the inequality boils down to:

(1 − ρ0)(vl − c) − µ({1})(vh − vl) > 0

⇐⇒ µ({1}) < (1 − ρ0)
vl − c

vh − vl

Together with µ({1}) ≥ 0 that corresponds to an interval of solutions.

In a case of an arbitrary mass point such solutions are feasible if the mass point is large

enough formally:

dF (1) >
ρ0(vh − c) − (vl − c)

vh − vl

µ({1}) can be optimally picked in the interval
[

0, dF (1) − ρ0(vh−c)−(vl−c)
vh−vl

)

.
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All these solutions are optimal because they are all efficient: when the platform recom-

mends a high price the buyer has a high valuation with probability one. But we can also

consider only the one that binds (IC) by choosing:

ρt = 1

µ({1}) = dF (1) −
ρ0(vh − c) − (vl − c)

vh − vl

So that it also corresponds to the description of 2. of proposition 3.2.

Case 2: Assume (IC) binds at the solution.

In this case we can compute precisely λ from (IC) and the formula on ρt:

∫

[0,ρt)

vl − c− z(vh − c)dF (z) + µ({ρt})(vl − c− ρt(vh − c)) = 0

Because ρt ∈ ( vl−c
vh−c

, 1],
∫

[0,ρt)
vl − c − z(vh − c)dF (z) is strictly positive for ρt close to vl−c

vh−c

and strictly decreasing in ρt. In addition, because vl−c
vh−c

< ρ0 it is strictly negative at ρt = 1.

Therefore it changes sign only once, but it need not to be continuous as F may have mass

points.

However, by (In): µ({ρt}) ∈ [0, dF (ρt)]. If F has a mass point at ρt, there is a unique

µ({ρt}) that binds (IC), and if F doesn’t have mass point at ρt then µ({ρt}) = 0, and there

is a unique ρt which binds (IC).

In both scenarios there exist a unique pair (ρt,µ({ρt})) that satisfies IC with equality. In

turn, λ is determined by ρt.
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Once µ∗ is determined, the platform chooses tariffs optimally. ts =
∫ 1

0
dµ∗(z)(vl − c) +

∫ 1

0
zd(F − µ∗)(z)(vh − c) to capture all the seller’s profit.

tb is set to maximize the platform’s profit with respect to the consumer marginal type b̃.

Formally:

max
b̃

(1 −Q(b̃))

[∫ 1

0

(1 − z)dF (z)(vl − c) − (dF (ρt) − µ({ρt})(1 − ρt)(vl − c) + ρ0(vh − c) + b̃

]

Because Q is continuously differentiable and log concave the maximum is characterized by

the first order condition:

Q′(b̃)

[∫ 1

0

(1 − z)dF (z)(vl − c) − (dF (ρt) − µ({ρt})(1 − ρt)(vl − c) + ρ0(vh − c) + b̃

]

= 1 −Q(b̃)

Which completes the proof of proposition 3.2

The Planner’s problem.

This subsection proves proposition.

The linear part of the planner’s problem is identical to the linear part of the paid platform

problem. Hence, the social planner uses the same price recommendation rule as presented

in proposition 3.2.

However, the socially optimal buyer entry fee differs from the profit maximizing one. Indeed,

given the optimal price recommendation rule (ρt, µ({ρt}):

−b̃sp =

∫ ρt

0

(1 − ρs)dF (ρs)(vl − c) + µ({ρt})(vl − c) + ρ0(vh − c)



7. APPENDICES 130

Thus, compared to the profit maximizing t∗b inducing b̃∗:

−b̃sp =
1 −Q(b̃∗)

Q′(b̃∗)
− b̃∗

Thus:

−b̃sp ≥ −b̃∗ ⇐⇒ tspb ≤ t∗b

That is, the planner set a lower buyer entry fee and attract more buyers joining.

Which completes the proof of proposition 3.3.

Paid Platforms’ value for Data

The dual variable from the dual problem is:

Λ(z) =







(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

This problem was ignoring constant terms, in particular using strong duality the value of

the problem (with the constant terms) is:

V al(P) = (1 −Q(b̃))

(∫ 1

0

max{(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)], 0} +

∫ 1

0

ρsdF (ρs) + b̃

)

Thus the gradient is:

∇FV (ρs) = (1 −Q(b̃)) (ρs(vh − c) + max{(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)], 0})
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In the previous subsections, solving the paid platforms’ problem yields the following dual

variables:

(1 −Q(b̃))Λ(ρs) = ∇FVp(ρs) = (1 −Q(b̃))







(vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

And:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Equivalently:

λ =
(1 − ρt)(vl − c)

ρt(vh − c) − (vl − c)
∈ R+

Under pessimistic sellers, or when the optimal cutoff is at 1 (in both cases λ = 0 the

platform’s marginal value of information is:

∇FV (ρs) = (1 −Q(b̃)) (ρs(vh − c) + (1 − ρs)(vl − c))

When ρt is interior (λ > 0) and using the formula relating λ with ρt one has:

∇FVp(ρs) = (1 −Q(b̃))

(

ρs(vh − c) +
(vh − vl)(vl − c)

(vh − c)ρt − (vl − c)
max{ρt − ρs, 0}

)

Which completes the proof of proposition 4.2

Directional derivatives

This subsection proves .
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The change in the paid platform’s profit in a direction H − F is given by:

(1 −Q(b̃∗))

∫ 1

0

∇FV (ρs)d(H − F )(ρs)

For clarity lets compute it per buyer (dividing by 1 −Q(b̃∗)):

∫ ρt

0

(vl − c)(1 − ρs)d(H − F )(ρs) + λ

∫ ρt

0

((vl − c) − ρs(vh − c))d(H − F )(ρs)

Because H and F have a total mass of 1 and a mean of ρ0:

∫ ρt

0

(1 − ρs)d(H − F )(ρs) = −

∫ 1

ρt

(1 − ρs)d(H − F )(ρs)

Using this, and (C3):

∫ 1

ρt

((vl − c)(1 − ρs)d(F −H)(ρs) + λ

∫ ρt

0

((vl − c) − ρs(vh − c))dH(ρs) + (1 − ρt)(vl − c)[dF (ρt) − µ({ρt

=(vl − c)

((∫

[ρt,1]

(1 − ρs)dF (ρs) − µ({ρt})

)

−

∫ 1

ρt

(1 − ρs)dH(ρs)

)

+ λ

∫ ρt

0

((vl − c) − ρs(vh − c))dH(ρs)

Which is the formula of proposition 4.1 allowing for mass points at the threshold. Thus

concluding the proof of proposition 4.1

Moreover, since the formula was computed per buyer (dividing by the mass of buyer joining).

The same formula can be used to obtain proposition 4.2.

Ranking Directions

This section proves proposition 4.3

First, I prove the following lemma:
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Lemma 7.2. Consider a planner or a platform under any business model, let ρ∗t be their

respective optimal cutoff. Then, learning in direction H1 is more valuable than learning in

direction H2 if and only if:

∫ ρ∗t

0

H1(ρs)dρs ≥

∫ ρ∗t

0

H2(ρs)dρs

Proof. Under each business model the platform’s marginal value of information is continuous

and piece-wise linear around the cutoff, let L1(ρs) = a1ρs + b1 and L2(ρs) = a2ρs + b2.

Continuity implies a1ρt + b1 = a2ρt + b2 Now compare two directions H1 and H2:

∫ 1

0

∇FV (ρs)d(H1 − F )(ρs) −

∫ 1

0

∇FV (ρs)d(H2 − F )(ρs)

=

∫ ρt

0

(a1ρs + b1)d(H1 −H2)(ρs) +

∫ 1

ρt

(a2ρs + b2)d(H1 −H2)(ρs)

Using IBP together with the fact that H1 and H2 have the same mean and mass yields:

=(b1 − b2 − (a1 − a2)ρt)

∫ ρt

0

d(H1 −H2)(ρs) − (a1 − a2)

∫ ρt

0

(H1(ρs) −H2(ρs))dρs

The first term is 0 because the marginal value of information is continuous at ρt. Further, if

a1 < a2 (the marginal value is strictly convex) then:

∫ 1

0

∇V (ρs)d(H1 − F )(ρs) ≥

∫ 1

0

∇FV d(H2 − F )(ρs) ⇐⇒

∫ ρt

0

H1(ρs)dρs ≥

∫ ρt

0

H2(ρs)dρs

Which completes the proof of the lemma.

The lemma implies that, the platform ranks learning direction in the same way as the social

planner if and only if it uses the same cutoff rule as the social planner.

In particular, it shows that the marginal value of information for the social planner and
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the platform are proportional at F by a factor of
a
sp
2
−a

sp
1

a∗
2
−a∗

1

. Indeed, using the formula obtained

in each case these coefficients are:

For paid platforms :
1 −Q(b̃sp)

1 −Q(b̃∗)

For free platforms :
1 + λsp

f

1 + λf

It remains to show that this is equivalent to locally rank information structures the same

way a social planner would.

7.2 The Free Platforms’ Problem

Platforms’ and Planner’s programs and optimality conditions

The free platforms’ problem is:

max
µ

(1 −Q(b̃f ))

[∫ 1

0

µ(dz)(vl − c) +

[

ρ0 −

∫ 1

0

zµ(dz)

]

(vh − c)

]

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

where:

b̃f = −(vh − vl)

∫ 1

0

ρsdF (ρs)
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The Lagrangian is formally:

L = (1 −Q(b̃))(1 + λ)

[

(vl − c)

∫ 1

0

dµ(z) + (vh − c)

(

ρ0 −

∫ 1

0

zdµ(z)

)]

− (1 −Q(b̃))λmax{vl − c, ρ0(vh − c)} +

∫ 1

0

Λ(z)d(F − µ)(z) +

∫ 1

0

Λ0(z)dµ(z)

The KKT conditions are:







0 ≤ µ ≤ F (K1)

Λf ,Λ0 ∈ C+, λl ≥ 0 (K2)

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

)

≥ max{ρ0(vh − c), vl − c} (K3)

∫ 1

0
Λf (z)d(F − µ)(z) = 0,

∫ 1

0
Λ0(z)dµ(z) = 0 (K4)

λf

[

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

)

− max{ρ0(vh − c), vl − c}
]

= 0 (K5)

∀ρs ∈ [0, 1], ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+(1 −Q(b̃))(1 + λf ) ((vl − c) − ρs(vh − c)) = Λf (ρs) − Λ0(ρs) (K6)

These conditions are direct extensions of standard KKT conditions to Hilbert spaces.38

The fact that (K6) indeed corresponds to the gradient of Lagrangian by µ is proved in

the technical appendix.

The planner’s problem.

38See e.g. proposition 2.13. in Lecture Notes, 285J Martin Burger UCLA.
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The planner’s problem, when constrained to set tb = 0, is:

max
µ

∫

b̃

(∫ 1

0

(1 − z)µ(dz)(vl − c) + ρ0(vh − c) + b

)

dQ(b)

subject to:

Incentive Compatibility (IC)

∀S ∈ B[0, 1] : µ(S) ≤

∫

S

dF (ρs) (In)

The Lagrangian is formally:

L =

∫

b̃

((

(vl − c)

∫ 1

0

(1 − z)dµ(z) + ρ0(vh − c) + b

))

dQ(b) +

∫ 1

0

Λ(z)d(F − µ)(z) +

∫ 1

0

Λ0(z)dµ(z)

− (1 −Q(b̃))λ

(

(vl − c)

∫ 1

0

dµ(z) + (vh − c)

(

ρ0 −

∫ 1

0

zdµ(z)

)

− max{ρ0(vh − c), vl − c}}

)

Only the stationarity condition (K6) changes:

∀ρs ∈ [0, 1], ρs(vh − vl)Q
′(b̃)

(

(vl − c)

∫ 1

0

dµ(z) + (vh − c)

(

ρ0 −

∫ 1

0

zdµ(z)

))

+(1 −Q(b̃))((1 − ρs)(vl − c) + λf ((vl − c) − ρs(vh − c)) = Λf (ρs) − Λ0(ρs) (K6)sp

Optimality of the cutoff rule The proof procedes as in appendix A.2.

The LHS of (K6) is decreasing and affine in ρs and positive at ρs = 0. It may be neg-

ative at ρs = 1, in which case it crosses the x-axis at:

ρt,f
def
=

(1 −Q(b̃)(1 + λf )(vl − c)

(1 −Q(b̃)(1 + λf )(vh − c) − (vh − vl)Q′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))
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Below ρt,f the LHS is strictly negative and above strictly positive thus (K2) implies:

Λf (ρs) > 0 ∀ρs < ρt,f

Λ0(ρs) > 0 ∀ρs > ρt,f

Hence from (K4):

for all measurable S ⊂ (ρt,f , 1], µ(S) = 0

for all measurable S ⊂ [0, ρt,f ), µ(S) = F (S)

Therefore, by the σ−additivity of measures, only the mass at {ρt} remains to be determined.

Hence, the optimal price recommendation rule is a cutoff rule: above the cutoff the platform

recommends vh and below it recommends vl.

If the LHS never cross the x-axis, then from (K2), for all ρs :

Λf > 0

Λ0 = 0

Thus, by (K4) for all measurable subsets: µ(S) = F (S). That is the optimal rule is an

extreme price recommendation rule with cutoff at 1.
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The Social Planner

Compared to the Free platforms’ problem, the social planner’s problem has a different (K6)sp.

The LHS is a decreasing affine function that crosses 0 at a point:

ρspt,f
def
=

(1 −Q(b̃)(1 + λf )(vl − c)

(1 −Q(b̃)((vl − c) + λf (vh − c)) − (vh − vl)Q′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

The same arguments follow, the planner uses a cutoff rule around ρspt,f .

Which concludes the proof of lemma 3.1.

Value of the Dual Variables

The value of the cutoff pins down the value of the dual variable associated to (IC). For free

platforms that value is:

λf =
ρt,f (vh − vl)Q

′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

− (1 −Q(b̃))(ρt(vh − c) − (vl − c))

(1 −Q(b̃))(ρt(vh − c) − (vl − c))
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Additionally, choosing the maps Λf and Λ0 continuous to small perturbation of the support

of F (which also correspond to the smallest norm dual variables), yields:

Λf (ρs) =







ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+(1 −Q(b̃))(1 + λf ) ((vl − c) − ρs(vh − c)) for ρs ≤ ρt

0 otherwise

Λ0(ρs) =







0 for ρs ≤ ρt

−ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

−(1 −Q(b̃))(1 + λf ) ((vl − c) − ρs(vh − c)) otherwise

For the social planner this values are respectively:

λf =
ρt,f (vh − vl)Q

′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+ (1 −Q(b̃))(1 − ρt)(vl − c)

(1 −Q(b̃))(ρt(vh − c) − (vl − c))

And:

Λf (ρs) =







ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+(1 −Q(b̃))((1 − ρs)(vl − c) + λf ((vl − c) − ρs(vh − c))) for ρs ≤ ρt

0 otherwise

Λ0(ρs) =







0 for ρs ≤ ρt

−ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

−(1 −Q(b̃))((1 − ρs)(vl − c) + λf ((vl − c) − ρs(vh − c))) otherwise
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Optimal price recommendation rule and Sellers’ Fee.

The case of Free Platforms.

This subsection proves proposition 3.4. It makes use of the Complementary slackness con-

dition associated to the sellers’ (IC):

λf

[

(vl − c)

∫ 1

0

dµ(z) + (vh − c)

(

ρ0 −

∫ 1

0

zdµ(z)

)

− max{ρ0(vh − c), vl − c}

]

= 0 (K5)

Case 1: Assume (ICl) is slack at solution.

(K5) implies λf = 0. Therefore, (K6)sp implies ρspt,f > 1.

Therefore, µ = F so the planner, if (IC) is slack, always recommend a low price.

This is consistent with (IC) being slack only if sellers are pessimistic that is if ρ0 ≤ vl−c
vh−c

.

But if sellers are optimistic then a planner’s solution in which (IC) is slack is not feasible.

b̃ = −(vh − vl)

(∫

[0,ρt)

zdF (z) + ρtµ({ρt})

)

Case 2: Assume (IC) binds at the solution.

Because ρspt,f > vl−c
vh−c

then:

(vh − c)

∫

ρt,f

ρsdF (ρs) > (vl − c)

∫

ρt,f

dF (ρs)

Thus, (IC) is never binding for pessimistic sellers. So when sellers are pessimistic the only

solution is the one described in case 1.

Case 2 is feasible only for optimistic sellers, that is if ρ0 ≥
vl−c
vh−c

.
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The analysis is now the same as appendix A.3. There is a unique pair (ρt, µ({ρt}) that

binds (IC):

∫

[0,ρt)

vl − c− z(vh − c)dF (z) + µ({ρt})(vl − c− ρt(vh − c)) = 0

If F has a mass point of at least ρ0(vh−c)−(vl−c)
vh−vl

at 1, then ρt,f = 1.

The pair (ρt, µ({ρt}) that binds (IC) in turn characterize λf :

λf =
ρt,f (vh − vl)Q

′(b̃)
(

(vl − c)
∫

[0,ρt,f )
dF (z) + (vh − c)

∫

[ρt,f ,1]
zdF (z) + µ({ρt,f})((vl − c) − ρt,f (vh − c))

)

(1 −Q(b̃))(ρt,f (vh − c) − (vl − c))

λf is the ration of the platform’s profit variation over the sellers’ profit variation when in-

creasing the threshold (or marginally increasing the mass of low price recommendations at

the threshold if it is a mass point).

Whether the solution is slack or binding, one can consider the value that binds (IC) on

(5)′:

ρt
∗(vh − vl)Q

′(b̃)ρ0(vh − c) − (1 −Q(b̃)(ρt(vh − c) − (vl − c))

Rearranging, (IC) slack if and only if:

1 −Q

Q′
> 1 + λ

Which concludes the proof of proposition 3.4.

The planner’s problem.

This subsection presents the planner’s solution when constrained to set tb = 0, which is used
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in proposition 3.5. It makes use of the Complementary slackness condition associated to the

sellers’ (IC):

λf

[

(vl − c)

∫ 1

0

dµ(z) + (vh − c)

(

ρ0 −

∫ 1

0

zdµ(z)

)

− max{ρ0(vh − c), vl − c}

]

= 0 (K5)

Case 1: Assume (ICl) is slack at solution.

From (K5): λf = 0, one must find a pair (ρt, µ({ρt}) with µ({ρt}) ∈ [0, dF (ρt)] that satisfies:

ρt,f (vh − vl)Q
′(b̃)

(

(vl − c)

∫

[0,ρt)

dF (ρs) +

∫

[ρt,1]

ρsdF (ρs)(vh − c) + µ({ρt})((vl − c) − ρt(vh − c))

)

=(1 −Q(b̃))(ρt(vh − c) − (vl − c)) (K6)

Where:

b̃ = −(vh − vl)

(∫

[0,ρt)

zdF (z) + ρtµ({ρt})

)

Considering (K6) at ρt,f = 0, the LHS is larger than the RHS, and at ρt,f = 1, the LHS is

smaller than the RHS if:

1 −Q(−ρ0(vh − vl)) > Q′(−ρ0(vh − vl))(vl − c)

If this is the case, then from the log-concavity of Q ( Q′

1−Q
is decreasing in ρt,f ) there is a

unique pair (ρt,f , µ({ρt,f})) solving the (K6), which characterize the maximum in this case.

In addition if there is no mass point at the cutoff, (K6) becomes then (5) as displayed in

proposition 3.4.

If otherwise 1 − Q(−ρ0(vh − vl)) < Q′(−ρ0(vh − vl))(vl − c), then the solution is to al-

ways recommend a low price. This case only happen if sellers are pessimistic ρ0 ≤ vl−c
vh−c

otherwise (IC) would be violated.
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Case 2: Assume (IC) binds at the solution.

Because ρt,f > vl−c
vh−c

then:

(vh − c)

∫

ρt,f

ρsdF (ρs) > (vl − c)

∫

ρt,f

dF (ρs)

Thus, (IC) is never binding for pessimistic sellers.

This case is feasible only for optimistic sellers, that is ρ0 ≥
vl−c
vh−c

.

The analysis is now the same as appendix A.3. There is a unique pair (ρt, µ({ρt}) that

binds (IC):

∫

[0,ρt)

vl − c− z(vh − c)dF (z) + µ({ρt})(vl − c− ρt(vh − c)) = 0

If F has a mass point of at least ρ0(vh−c)−(vl−c)
vh−vl

at 1, then ρt,f = 1.

The pair (ρt, µ({ρt}) that binds (IC) in turn characterize λf :

λf =
ρt,f (vh − vl)Q

′(b̃)
(

(vl − c)
∫

[0,ρt,f )
dF (z) + (vh − c)

∫

[ρt,f ,1]
zdF (z) + µ({ρt,f})((vl − c) − ρt,f (vh − c))

)

(1 −Q(b̃))(ρt,f (vh − c) − (vl − c))

+
(1 − ρt,f )(vl − c)

(ρt,f (vh − c) − (vl − c))

λf is the ration of the total surplus variation over the sellers’ profit variation when increas-

ing the threshold (or marginally increasing the mass of low price recommendations at the

threshold if it is a mass point).
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This solution will be used for the proof of proposition 3.4.

Value of Information

Free platforms’ value of Information.

The value of the dual variable is:

Λf (ρs) =







ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+(1 −Q(b̃))(1 + λf ) ((vl − c) − ρs(vh − c)) for ρs ≤ ρt

0 otherwise

Using strong duality, the value of the dual is the value of the problem:

Vf (F ) =

∫ 1

0

Λf (ρs) + (1 −Q(b̃))(vh − c)

∫ 1

0

ρsdF (ρs)

Using (K6) the gradient is thus:

∇FVf (ρs) = (1 −Q(b̃))

(

(1 + λf )
(vl − c)

ρt
max{ρt − ρs, 0} + ρs(vh − c)

)

where:

λf =
ρt,f (vh − vl)Q

′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

− (1 −Q(b̃))(ρt(vh − c) − (vl − c))

(1 −Q(b̃))(ρt(vh − c) − (vl − c))
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Planners’ value of Information.

The value of the dual variable is:

Λf (ρs) =







ρs(vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+(1 −Q(b̃))((1 − ρs)(vl − c) + λf ((vl − c) − ρs(vh − c))) for ρs ≤ ρt

0 otherwise

Using (K6sp):

∇FV
sp
f (ρs) = (1 −Q(b̃))(1 + λsp

f )
(vl − c)

ρt
max{ρt − ρs, 0}

where:

λsp
f =

ρt,f (vh − vl)Q
′(b̃)
(

(vl − c)
∫ 1

0
dµ(z) + (vh − c)

(

ρ0 −
∫ 1

0
zdµ(z)

))

+ (1 −Q(b̃))(1 − ρt)(vl − c)

(1 −Q(b̃))(ρt(vh − c) − (vl − c))

Directional derivatives

For free platforms.

This subsection proves .

From the gradient of V , the change in the free platform’s profit in a direction H − F is

given by:

∫ 1

0

∇FVf (ρs)d(H − F )(ρs)
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In the case where the optimal cutoff is interior:

∫ ρt

0

ρs(vh − vl)Q
′(b̃)

(

(vl − c)

∫

[0,ρt)

dF (ρs) +

∫

[ρt,1]

ρsdF (ρs)(vh − c) + µ({ρt})((vl − c) − ρt(vh − c))

)

(1 −Q(b̃))((vl − c) − ρs(vh − c))d(H − F )(ρs)

=Q′(b̃)(vh − vl)

∫ ρt

0

ρsd(H − F )(ρs)

(

(vl − c)

∫

[0,ρt)

dF (ρs) +

∫

[ρt,1]

ρsdF (ρs)(vh − c) + µ({ρt})((vl − c) −

(1 −Q(b̃))

(

(vl − c)(H(ρt) − F (ρt)) + (vh − c)

∫ 1

ρt

d(H − F )(ρs)

)

Which is the equation presented in proposition 4. including mass points.

For the case where (IC) is binding:

∫ ρt

0

ρs(vh − vl)Q
′(b̃)ρ0(vh − c) + (1 −Q(b̃))(1 + λf )((vl − c) − ρs(vh − c))d(H − F )(ρs)

=

∫ ρt

0

ρsd(F −H)(ρs)(vh − vl)Q
′(b̃)ρ0(vh − c)

+ (1 −Q(b̃))

(

(vl − c)(H(ρt) − F (ρt)) + (vh − c)

∫ 1

ρt

ρsd(H − F )(ρs)

)

+ (1 −Q(b̃))λf

(

(vl − c)H(ρt) − (vh − c)

∫ ρs

0

ρsdH(ρs)

)

Using the fact that H and F have a total mass of 1 and a mean of ρ0:

∫ ρt

0

(1 − ρs)d(H − F )(ρs) = −

∫ 1

ρt

(1 − ρs)d(H − F )(ρs)

Thus concluding the proof of proposition 4..

For the social planner.
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When (IC) doesn’t bind the gradient is 0 and so are directional derivatives.

When (IC) binds at the planner’s solution:

∫ ρt

0

(ρs(vh − vl)Q
′(b̃)ρ0(vh − c) + (1 −Q(b̃))((1 − ρs)(vl − c) + λsp

f ((vl − c) − ρs(vh − c))))d(H − F )(ρs)

=

∫ ρt

0

ρsd(H − F )(ρs)(vh − vl)Q
′(b̃)ρ0(vh − c)

+ (1 −Q(b̃))(vl − c)

(∫ 1

ρt

(1 − ρs)dF (ρs) −

∫ 1

ρt

(1 − ρs)dH(ρs)

)

(1 −Q(b̃))λsp
f

(

(vl − c)H(ρt) − (vh − c)

∫ ρt

0

ρsdH(ρs)

)

Which is the equation presented in proposition 4..

The price of reducing uncertainty at the top and at the bottom

Consider the dilation G, that is G is a Markov kernel such that
∫ 1

0
zG(dz|ρs) = ρs) for all

ρs.

From Le Cam (1996) theorem 1, H is a MPS of F if and only if there is a dilation G

such that:
∫ 1

0
G(S|ρs)F (dρs) = H(S) for all measurable set S. Now, lets define the price of

learning at the bottom and at the top:

Definition 6. Let Tb(s) (resp. T sp
b (s)) be the platform’s (resp planner’s) incentives to learn

G at the bottom, i.e conditional on ρs ∈ (0, s].

Similarly, Let Tt(s) (resp. T sp
t (s))be the platform’s (resp planner’s) incentives to learn G
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at the top, i.e conditional on ρs ∈ (s, 1). Formally:

Tb(s) =

∫ s

0

(∫ 1

0

∇FV (z)G(dz|ρs) −

∫ 1

0

∇FV (z)

)

F (dρs)

Tt(s) =

∫ 1

s

(∫ 1

0

∇FV (z)G(dz|ρs) −

∫ 1

0

∇FV (z)

)

F (dρs)

That is, the platform learns G only for ρs ≤ s. Because F has full support, these variations

for all s ∈ (0, 1) are feasible.

In each case, the marginal value is proportional to max{ρt − ρs, 0}. In the ratio, these

factors vanishes. Thus one can focus one:

Tb(s) ∝

∫ s

0

∫ 1

0

1[0,ρt](z)(ρt − z)G(dz|ρs)F (dρs) −

∫ s

0

1[0,ρt](z)(ρt − z)F (dz)

=

∫ s

0

∫ 1

0

1(ρt,1](z)(z − ρt)G(dz|ρs)F (dρs) −

∫ s

0

1(ρt,1](z)(z − ρt)F (dz)

Because G is a dilation, similarly:

Tt(s) ∝

∫ 1

s

∫ 1

0

1(ρt,1](z)(z − ρt)G(dz|ρs)F (dρs) −

∫ 1

s

1(ρt,1](z)(z − ρt)F (dz)

Since F is absolutely continuous, the slope of Tb − Tt is s is:

2f(s)

[∫ 1

0

1(ρt,1](z)(z − ρt)G(dz|s) − 1(ρt,1](s)(s− ρt)

]

Which is positive by Jensen’s inequality since z 7→ 1(ρt,1](z)(z − ρt) is convex.

The cross derivative is (in ρt and ρs):

2f(s)
(
G(ρt|s) − 1(0,ρt](z)

)

That is the slope is decreasing before the cutoff ρt in ρt and increasing after the cutoff in



7. APPENDICES 149

ρt. Further, the cross derivatives increases in s. Together with the facts that ρt,f < ρspt,f and

that at s = 1 and s = 0 both ratios are equal. Thus:

1. For s ∈ (0, ρspt ) the platform’s ratio increases more than the planner’s one, starting at

the same point.

2. For s ∈ (ρspt , 1) the platform’s ratio increases less than the planner’s one, ending at the

same point.

That is the ratios never cross and the platform’s one is always higher than the planner’s

one.

7.3 Comparison of Business Models

Comparison of price recommendation rule

The optimal t∗b for paid platforms solves:

1 −Q(b̃)

Q′(b̃)
− tb − ρ0(vh − c) = 0

Since Q is log concave, hence the LHS is decreasing. Further, fixing the entry fee to 0 thus

having b̃f :

sign

{

1 −Q(b̃f )

Q′(b̃f )
− ρ0(vh − c)

}

= sign{t∗b}

For free platforms, consider the LHS of (K6) at the threshold value and for ρt binding (IC)

and λf = 0 one has:

ρt(vh − vl)Q
′(b̃f )ρ0(vh − c) − (1 −Q(b̃f ))(ρt(vh − c) − (vl − c))
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Rearranging:

ρt(vh − vl)

ρt(vh − c) − (vl − c)
ρ0(vh − c) −

1 −Q(b̃f )

Q′(b̃f )

Which is decreasing in ρt as Q is log concave. Thus, if this quantity is positive, then to

satisfy (K6) ρt must be reduced, thus (IC) slack at the solution.

If it is negative, then ρt should be increased, thus (IC) binds at the solution.

In addition ρt(vh−vl)
ρt(vh−c)−(vl−c)

≥ 1 and equal to 1 if and only if ρt = 1. Thus, there are ρt

such that:

ρt(vh − vl)

ρt(vh − c) − (vl − c)
ρ0(vh − c) −

1 −Q(b̃f )

Q′(b̃f )
> 0

1 −Q(b̃f )

Q′(b̃f )
− ρ0(vh − c) > 0

Thus there exists tb > 0 such that if t∗b > tb then (IC) slack at the free platforms’ solution.

If t∗b ≤ tb then (IC) binds at the free platforms’ solution.

7.4 Bilateral Trade under Private Terms of Transaction

This section gives a rational for the choice of the trade mechanism. While the platform only

sets entry fees, and does not screen buyers’ types, this section shows that, in the context

of private transaction terms, these restrictions are without loss. I focus on paid platform in

this section, but the proof of proposition D.1 also holds (in a more direct way) in the case

where the platform cannot set transfers on buyers.

In this model, since buyers’ types are drawn independently, and the match is one to

many with each buyer having a unique matching seller for which trade is valuable, then the

platform can be seen as a designer running many independent bilateral trade interactions.

Therefore, this subsection focuses on one arbitrary bilateral trade interaction with one buyer



7. APPENDICES 151

and one seller, to demonstrate the main result.

This section analyses a bilateral trade set up where nor the seller’s price and nor the

buyer’s decision to purchase are not contractible. That is, these decisions cannot be an

output of the trade mechanism. Following, Myerson (1982), in a direct mechanism, the

designer makes recommendations to players with non-contractible actions. These recom-

mendations are the direct representation of any possible communication strategies by the

designer. Therefore, platforms that display descriptive statistics about demand, display pre-

dicted probability of trading, or use color schemes to influence sellers’ pricing decision, can

be viewed as using indirect implementations of price recommendations.

Additionally, this assumption captures the idea that platforms facilitates transaction but

do not directly choose the terms of trade. As described in the European law, Online interme-

diation services “allow business users to offer goods or services to consumers, with a view to

facilitating the initiating of direct transactions between those business users and consumers,

irrespective of where those transactions are ultimately concluded.”39

This is arguably an extreme view: Most platform retain some control over the transaction

terms. However, in the standard bilateral trade set up the designer has full control over the

allocation and the price of the good, which is also excessive. This assumption undershoots

the influence of platforms on transactions; but more importantly it makes this influence on

the transaction purely a matter of information, which is the focus of this paper.

The analysis of this section also relies on a critical assumption that prevents the platform

from using the transfer schemes studied in Crémer and McLean (1988). In this model, the

buyer’s type and the platform’s type are correlated. Hence, the platform can design lotteries

of transfers which would induce the buyer to report its type without paying any information

rents.

Platforms do not use this type of transfers schemes in practice; however, this paper

39Article 2(b), Directive (EU) No 2015/1535
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doesn’t capture why this is the case. This fact is taken for granted in this analysis.40

In this context, the next paragraphs present formally the environment, describe direct

mechanisms, and study the properties of the trade mechanisms analyzed in this paper.

Underlying Interaction.

Information structure: As described previously the buyer has a type (v, b) and the platform

a type ρs.

Action sets : The seller posts a price As = {p ∈ R}.

The buyer chooses whether to buy or not after observing the seller’s price Ab = {σb : R×

{vl, vh} → {buy, not buy}}.

The platform is able to shutdown trade or not, and sets transfers to the buyer and seller

Ap = {q ∈ {0, 1}, tb, ts ∈ R}.

Mechanism: The platform is a designer in the sense that it controls the choice of a gen-

eral coordination mechanism. Following Myerson (1982), it is without loss of generality to

confine attention to incentive compatible direct mechanism in which the platform’s asks the

buyer to report his type truthfully and as a function of the reported type and ρs recommends

(possibly randomly) an action in Ab to the buyer and in As to the seller and picks (possibly

randomly) an action in Ap.

40There are many factors that could explain why platforms don’t rely on these schemes. First, as these
schemes relies on large payments and rewards risk aversion, commitment or limited liabilities issues may
diminish their impact and applicability. Second, the exact shape of the transfer schemes relies on the
common knowledge assumption of second order beliefs between the platform and the buyer. That is, there
must be an exact common understanding on how the correlation in types is for these transfers schemes to
work since small changes in terms of the correlation between the types may imply large changes in terms
of transfers. That is why, these types of transfers are implicitly ruled out when studying robust mechanism
design.
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Formally, a direct mechanism is a conditional distribution:

ν : Θb ×Θp ×Ab ×As ×Ap → [0, 1]

(v, b, ρs, Ab, As, Ap) 7→ ν(Ab, As, Ap|v, b, ρs)

Timing :

1. The platform commits to a mechanism ν.

2. Buyer observes b, and both the buyer and seller choose to participate to the mechanism

(i.e join the platform).

3. Buyer observes v and reports (v, b).

4. According to ν, actions are recommended to the buyer and the seller, transfers are set,

and trade is allowed or shutdown.

5. The seller observes her recommended action and picks a price.

6. The buyer observes his recommended action and the seller price, then decides whether

to purchase the good or not.

7. Payoffs are realized.

The main results relies on a critical assumption:

Assumption 1: The transfers described in the mechanism can’t depend on the platform

type. Formally, for all ρs, ρ
′
s, tb, ts, v, b: ν(dtb, dts|v, b, ρs) = ν(dtb, dts|v, b, ρ

′
s).

The role of this assumption is to prevent the platform from using type of transfer schemes

presented in Crémer and McLean (1988).Their result applies in this set up as the platform’s
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type and the buyer’s type v are correlated. As long as the platform’s type distribution F is

not δρ0 , then the platform can make the expected transfers of a buyer that have reported vl

conditional on vh arbitrarily high while keeping constant the expected transfers of a buyer

having reported vl conditional on vl. Hence, by deterring any buyer’s types to misreport,

the platform extracts the entire surplus at no cost in terms of surplus formation.

Under this set up and the assumption 1 discussed above I can state the main result of

this section:

Proposition 7.3. Consider the underlying interaction of bilateral trade with private terms

of transaction. Under assumption 1 price recommendation mechanisms achieve the same set

of outcomes as direct mechanisms.

Proof. The underlying game is played by two player a buyer and a seller, and a designer:

the platform.

The buyer has a two dimensional type v ∈ {vl, vh} where v = vh with probability ρ0, and b

independently distributed according to Q in R. The platform has a type corresponding to

its belief about the buyer’s type ρs = P (v = vh|ρs) ∈ [0, 1] distributed according to a cdf F

with mean ρ0.

The buyer’s type corresponds both to his valuation for the good and to his belief about the

platform’s type. Indeed, observing his type of say vh, the buyer updates his belief about the

platform’s type as follow:

P (ρs ∈ B | vh) =
1

ρ0
P (ρs ∈ B, v = vh)

=
1

ρ0

∫

B

ρsdF (ρs)

The seller posts a transaction price As = {p ∈ R}, and the buyer chooses whether to buy or

not given the transaction price Ab = {σb : R 7→ {buy, not buy}}. The platform’s is able to
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match or not the buyer and seller, and set transfers to both Ap = {q ∈ {0, 1}, ts, tb ∈ R}. As

a designer, the platform also picks a general coordination mechanism. From Myerson 1982,

we focus our attention to direct mechanism in which: (a) the buyer reports his type to the

platform (privately). (b) based on the report the platform recommends an action (privately)

to the seller and the buyer, as well as defining transfers. (c) both players take an action.

Prior to the game, both the buyer and the seller can choose to participate in the mech-

anism. If they don’t, they collect their outside option payoff of 0.

The buyer’s utility is quasilinear in money (for p and tb) and he obtains v ∈ {vl, vh} if

he purchases the good.

The seller’s profit (gross of transfers) when she sells the good is p− c.

The platform’s objective corresponds to the money it collects from the transfers.

A mechanism noted ν is therefore a map:

ν : {vl, vh} × R× [0, 1] → ∆{As ×Ab ×Ap}

(v, b, ρs) 7→ ν(., ., .|v, ρs)

Where ν(dq, dp, dσb, dts, dtb|v, b, ρs) is the probability of recommending action p to the seller,

action σb to the buyer and setting transfers ts, tb and the probiability of trade to q.

A mechanism is said to be incentive compatible (IC) if (a) the buyer finds it optimal to

report his true type, (b) the seller and the buyer find it optimal to follow the recommended

action by the platform. Before proving the proposition, I simplify the analysis with the

following observations:
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The buyer’s decision is made after observing his type and the seller’s price; thus the plat-

form have to recommend to the buyer to buy when v > p and not buy when v < p. In

the threshold case: p = v all recommendations are incentive compatible since the buyer is

indifferent, but only the buy recommendation will maximize the platform’s profit. I now

restrict attention (wlog) to both the platform’s recommendation and buyer’s actual strategy

to be buy when v ≥ p and don’t buy when v < p.

The seller’s thus has only two candidates best response as a function of his posterior belief:

p ∈ {vl, vh}. By the same token, for a price recommendation to be incentive compatible it

must be that the recommendation lies in {vl, vh}. I use the notation νl when the mechanism

recommends vl and νh when it recommends vh.

The platform cannot screen for the buyer’s stand-alone valuation since b appears additively

Single crossing does not hold (the cross derivative is 0). Thus b is dropped in the mechanism

thereafter. Buyer’s truthtelling condition are simply on v.

The truthtelling condition of the buyer are:

∫ 1

0

∫

−tbdν(q, p̂, tb|ρs, v̂l)dF (ρs|vl) ≥

∫ 1

0

∫

−tbdν(q, p̂, tb|ρs, v̂h)dF (ρs|vl)

∫ 1

0

∫

[q(vh − p)1{v≥p} − tb]dν(q, p̂, tb|ρs, v̂h)dF (ρs|vh) ≥

∫ 1

0

∫

[q(vh − p)1{v≥p} − tb]dν(q, p̂, tb|ρs, v̂l)dF (ρs|v

Recall dF (ρs|vh) = ρs
ρ0
dF (ρs) and that dF (ρs|vl) = 1−ρs

1−ρ0
dF (ρs). Using assumption 2 (ICl)

becomes:

∫

−tbdν(q, p̂, tb|v̂l) ≥

∫

−tbdν(q, p̂, tb|v̂h)

Since the buyer’s payoff is quasilinear randomizing transfers has no impact. The same is
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true for the platform’s profit. Thus, there is no loss to have transfers only function on the

reported type.

Summing both constraints:

∫ 1

0

ρs
ρ0

(vh − vl)νl({q = 1}|ρs, v̂h)dF (ρs) ≥

∫ 1

0

ρs
ρ0

(vh − vl)νl({q = 1}|ρs, v̂l)dF (ρs)

∫ 1

0

ρs
ρ0

νl({q = 1}|ρs, v̂h)dF (ρs) ≥

∫ 1

0

ρs
ρ0

νl({q = 1}|ρs, v̂l)dF (ρs)

Randomizing the probability of trade may not be effective, however linking it to the buyer’s

report is useful for incentive compatibility. To further simplify, I assume (wlog) that when

the platform block trade it always recommends a high price to the seller. That is:

νl({q = 1}|ρs, v̂) = νl(ρs, v̂)

The condition becomes:

∫ 1

0

ρs
ρ0

νl(ρs, v̂h)dF (ρs) ≥

∫ 1

0

ρs
ρ0

νl(ρs, v̂l)dF (ρs) (nc)

Condition (nc) puts a restriction on the informativeness of the recommendations. In

order to show it, view the platform’s recommendation as a statistical test with null ”the

buyer’s type is low”. The type one error is the probability to recommend a high price when

the buyer’s type is low, and the type two error the probability of recommending a low price

but the buyer’s type is high. Errors can be expressed using our notations:

α = P (p̂ = vh|vl) =
1

1 − ρ0

∫

νh(ρs, v̂l)(1 − ρs)dF (ρs)

β = P (p̂ = vl|vh) =
1

ρ0

∫ 1

0

νl(ρs, v̂h)ρsdF (ρs)
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Thus:

α + β =

∫ 1

0

[
1 − ρs
1 − ρ0

+
ρs
ρ0

νl(ρs, v̂h) −
1 − ρs
1 − ρ0

νl(ρs, v̂l)

]

dF (ρs)

(nc)

≥

∫ 1

0

[
1 − ρs
1 − ρ0

+

(
ρs
ρ0

−
1 − ρs
1 − ρ0

)

νl(ρs, v̂l)

]

dF (ρs)

Remark that the quantity in the RHS of the inequality is the sum of the type one and type two

errors achieved by a mechanism that do not screen the buyer’s type and set ν ′
l(ρs) = νl(ρs, v̂l).

More formally a non screening mechanism defined by: ν ′(|ρs) = ν(|ρs, v̂l) achieves lower type

1 and 2 errors when it recommends prices to the seller. Hence, for any given level of one

type of error it can achieve a lower level of error of the other type compared to the screening

mechanism. Thus, by Blackwell (1953) the non screening mechanism is more informative

for the seller. Therefore by Blackwell (1953) the non screening mechanism can achieve more

outcomes than the screening mechanism.

If the platform does not screen the buyer’s type, then transfers don’t depend on reported

type and thus can be front loaded as entry fees. However, it is not trivial that the platform

should not screen the buyer’s type, as it would allow the platform to design more precise price

recommendation. The key insight of the previous proposition is that the buyer’s truthtelling

condition restricts the informativeness of the price recommendations so the platform cannot

pass information gained on the buyer’s side to the seller’s side. Therefore, without ex ante

private information the platform cannot affect the terms of transaction. Further, screening

could allow the platform to increase its profit by price discriminating buyers of different

types. However, this is unnecessary since the buyer’s participation is ex-ante.
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Technical Appendix

Strong Duality

Although, proposition 4.1 is an application of linear programming results, for completeness,

I provide a proof in three steps. In the first step, I construct the dual D. In the second step, I

recall the weak duality principle, that the complementary slackness conditions are sufficient

to characterize the optima. The third step shows that strong duality holds, that is both

problems have solutions and have the same values (1.) and that the slackness conditions are

necessary conditions for optimality.

Preliminary Facts.

1. The integral is a duality between C and V : (f, ν) 7→
∫
fdν is bilinear and non degen-

erate on (C × V ).

2. The spaces of σ−additive measures V and continuous functions C on [0, 1] are dual

spaces.41

3. If B is a cone in C, B∗ = {µ ∈ V ;
∫
fdµ ≥ 0 ∀f ∈ B} is the dual cone of B. For

instance, V+ is the dual cone of C+.

4. The uniform norm in C, noted ‖.‖∞ can be used to define a norm in the dual space

V :42

‖ν‖ := sup
f∈C

{∣
∣
∣
∣

∫

fdν

∣
∣
∣
∣

; ‖f‖∞ ≤ 1

}

Step 1 : Construction of the dual.

41Riezs-Markov-Kakutani representation Theorem.
42Which correspond to the weak∗ topology on V .
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To construct the dual problem, I use the Lagrangian a function from V × C+ × R+ to

R defined by:

L =

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F − µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

Lemma 7.4.

(i) µ ≤ F ⇐⇒ min
Λ∈C+

∫ 1

0

Λ(z)d(F − µ)(z) = 0

(ii) (ICl) holds ⇐⇒ min
λ∈R+

λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

= 0

Proof. (i) Necessity.

µ ≤ F ⇐⇒ F − µ ∈ V+ ⇐⇒ ∀f ∈ C+,

∫

fd(F − µ) ≥ 0

Since C+ is a cone 0 ∈ C+ for which
∫

0d(F − µ) = 0. Therefore:

min
Λ∈C+

∫ 1

0

Λ(z)d(F − µ)(z) = 0

(i) Sufficiency.

min
Λ∈C+

∫ 1

0

Λ(z)d(F − µ(z)) = 0 =⇒ ∀Λ ∈ C+,

∫ 1

0

Λ(z)d(F − µ)(z) ≥ 0 ⇐⇒ F − µ ∈ V+

(iii) Necessity.

If (ICl) holds, then the map λ 7→ λ
(∫ 1

0
µ(dz)(vl − c) −

∫ 1

0
zµ(dz)(vh − c)

)

is linear and has

a weakly positive slope. Thus, the minimum on R+ is 0 at 0.
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(iii) Sufficiency.

min
λ∈R+

λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

= 0

=⇒ ∀λ ∈ R+, λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

≥ 0

⇐⇒

∫ 1

0

µ(dz)(vl − c) ≥

∫ 1

0

zµ(dz)(vh − c)

Thus (ICl) holds, which ends the proof of lemma .4.

Using lemma .4:

val{P} = max
µ∈V

min
Λ∈C+,λ∈R+

L

Let the dual problem D be defined as:

D : min
Λ∈C+,λ∈R+

max
µ∈V

L

The following lemma completes the construction of the dual problem.

Lemma 7.5. The dual problem D boils down to:

min
Λ,λ

∫ 1

0

Λ(z)dF (z)

subject to:

∀ z ∈ [0, 1] (vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] ≤ Λ(z) (⋆)

Λ ∈ C+, λ ∈ R+
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Proof.

L =

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F − µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

=

∫ 1

0

Λ(z)dF (z)

+

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz)

The Lagrangian can be written as a Linear function of the control µ. In the dual problem,

the Lagrangian is first unconstrained maximized by µ ∈ V+, hence if the slope is positive

the objective can be increased arbitrarily high. Since then the objective is minimized by the

dual variables, it is optimal to set λ,Λ0 and Λ such that the slope is non positive.

Indeed, assume there is a z ∈ [0, 1] where (1 − z)(vl − c) − Λ(z) + λ[vl − c− z(vh − c)] > 0.

By choosing:

µn(B) = nδz(B) =







0 if z /∈ B

n if z ∈ B

the objective can be made arbitrarily large: limn→∞ L(µn) = ∞.

However, if dual variables λ and Λ are set such that the slope is non positive for all z ∈ [0, 1],

then the objective is finite. Therefore, the solution of the dual problem must feature dual

variables that makes the slope non positive for all z.
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Since the slope is non positive, for all µ ∈ V+:

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz) ≤ 0

Hence when maximizing by µ, one should pick a µ such that:

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz) = 0

Therefore, the dual problem becomes:

min
Λ,λ

∫ 1

0

Λ(z)dF (z)

subject to:

∀ z ∈ [0, 1] (vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] ≤ Λ (⋆)

Λ ∈ C+, λ ∈ R+

Which completes the proof of lemma .5.

Step 2 : Weak Duality.

To make the proof self-contained I provide a proof the weak duality principle in this ap-

pendix adapted to this problem.

Lemma 7.6. Weak Duality

1. val{D} ≥ val{P}.

2. Take feasible primal and dual variable. If
∫ 1

0
Λ(z)dF (z) =

∫ 1

0
(1− z)µ(dz)(vl − c), then
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the primal and dual variables are optimal in both problems.

3. Take feasible primal and dual variable such that:







∫
Λd(F − µ) = 0

λ
(∫ 1

0
µ(dz)(vl − c) −

∫ 1

0
zµ(dz)(vh − c)

)

= 0

∫ 1

0
((vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] − Λ(z))µ(dz) = 0

Then the primal and dual variable are optimal in both problems.

Proof. Point 1.

∀µ,Λ ∈ C+, λ ∈ R+ : L ≥ min
Λ∈C+,λ∈R+

L

=⇒ ∀Λ ∈ C+, λ ∈ R+ : max
µ∈V

L ≥ max
µ∈V

min
Λ∈C+,λ∈R+

L

=⇒ val{D} ≥ val{P}

Point 2.

If
∫ 1

0
Λ(z)dF (z) =

∫ 1

0
(1 − z)µ(dz)(vl − c), the dual variables Λ, λ are such that (using

inequality 2 from point 1.):

∀Λ ∈ C+, λ ∈ R+ : max
µ∈V

L ≥ max
µ∈V

min
Λ∈C+,λ∈R+

L =

∫ 1

0

Λ(z)dF (z)

therefore, the dual variables are optimal.

Similarly, one can show that (same argument as point 1.):

∀ µ ∈ V min
Λ∈C+,λ∈R+

L ≤ min
Λ∈C+,λ∈R+

max
µ∈V

L =

∫ 1

0

(1 − z)µ(dz)(vl − c)
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Thus µ is optimal.

Point 3.

Note that there are two ways of writing the Lagrangian, and using the assumptions one

has:

L =

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F − µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

=

∫ 1

0

(1 − z)µ(dz)(vl − c)

L =

∫ 1

0

Λ(z)dF (z)

+

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz) =

∫ 1

0

Λ(z)dF (z)

That is in this case:
∫ 1

0
Λ(z)dF (z) =

∫ 1

0
(1 − z)µ(dz)(vl − c).

Therefore from point 2. both the primal and dual variables are optimal.

Step 3 : Strong Duality.

Lemma 7.7. 1. Both problems have a solution.

2. val{D} = val{P}

Proof. Dworczak and Martini (2019) discuss the possibility of adapting optimal transport re-

sults on strong duality to the persuasion literature, which is done in Dizdar and Kováč (2020).
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I provide a proof based on the proof sketched p.202 Barvinok (2002) used in optimal trans-

port problems. The main benefit of this type of proof is that it does not rely on a generalize

slater condition, and thus it holds for any F . On the contrary, generalized slater condition

would imply that F must have full support on [0, 1], which is unrealistic in this model.

Strong duality ensures not only that both problems have the same values, but also that

optimal solutions are necessarily found using the complementary slackness conditions.

The first step is to write the linear program in its canonical form.

For this proof only lets denote by µl, µh the joint measure of recommending a low (resp

high) prices over signals [0, 1]. The following linear program:

max
µl,µh,β

∫ 1

0

(1 − z)dµl(z)(vl − c)

subject to

A(µl, µh) = b

(µl, µh, β) ∈ V 2
+ × R+

with , b = (F, 0) ∈ V × R and

A :

(

(µl, µh) 7→ µl + µh, (µl, µh, β) 7→

∫ 1

0

dµl(z)(vl − c) −

∫ 1

0

zdµl(z)(vh − c) − β

)

is the problem P in canonical form.

The second step consists in applying lemma 7.3 p.171 in Barvinok (2002), in order to show

that the conditions to apply theorem 7.2 p.168 in Barvinok (2002) ”strong duality theorem”

are met.
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Define the linear map Â(µl, µh, β) = (A(µl, µh, β),
∫ 1

0
(1 − z)dµl(z)(vl − c)).

Â is a continuous linear function because i) the sum is continuous in V and ii) the in-

tegral (as a bilinear form) is continuous in its second argument.

The cone V 2
+ as a compact base that is formally:

B =

{

ν ∈ V 2 ; ν ≥ 0,

∫

[0,1]2
dν = 1

}

Thus the cone V 2
+ × R+ has a compact base.

Moreover:

ker(Â) =

{

(µl, µh, β); µl = −µh ,

∫ 1

0

dµl(z)(vl − c) −

∫ 1

0

zdµl(z)(vh − c) − β = 0,

∫ 1

0

(1 − z)dµl(z)(vl −

Therefore:

ker(Â) ∩ V 2
+ × R+ = {0}

Because µl = −µh and µl, µh ≥ 0 implies µl = µh = 0, and in turn β = 0.

Thus by lemma 7.3 p.171 in Barvinok (2002), Â(V 2
+ × R+) is a closed convex cone.

Therefore, the conditions for theorem 7.2 p.168 in Barvinok (2002) are met and so there

is no duality gap.

Which concludes the proof of

It remains to show that all solutions of the primal and the dual problems must satisfy
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the complementary slackness conditions.

Assume µ and Λ, λ are solutions (thus are feasible):

∫ 1

0

Λ(z)dF (z) ≥

∫ 1

0

Λ(z)dF (z) +

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz)

=

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F − µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

Because both plans are feasible one has:
∫

Λ0dµ ≥ 0,
∫

Λdµ ≥ 0, and λ
(∫ 1

0
µ(dz)(vl − c) −

∫ 1

0
zµ(dz)(vh − c

Therefore the last equation:

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F − µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

≥

∫ 1

0

(1 − z)µ(dz)(vl − c)

But because both problems have the same value, inequalities above where equalities and in

particular:

∫ 1

0

((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz) = 0

∫ 1

0

Λ0(z)µ(dz) +

∫ 1

0

Λ(z)d(F − µ)(z) + λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

= 0



7. APPENDICES 169

Therefore, as all quantities are non-negative:







∫
Λd(F − µ) = 0

λ
(∫ 1

0
µ(dz)(vl − c) −

∫ 1

0
zµ(dz)(vh − c)

)

= 0

∫ 1

0
((1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z))µ(dz) = 0

Which completes the proof of step 3 and of proposition 4.1.

Sensitivity Analysis

Consider the perturbed problem, for a t ∈ R and h ∈ V :

P(t) : max
µ∈V+

∫ 1

0

(1 − ρs)dµ(ρs)(vl − c)

subject to:
∫ 1

0

µ(dρs)(vl − c) ≥

∫ 1

0

ρsµ(dρs)(vh − c) (IC)

∀S ∈ B[0, 1] : µ(S) ≤ (F + th)(S) (In)

Because F has full support, for there is an open interval u of t around 0 such that: {µ : 0 ≤

µ ≤ F + th} is non empty. Notice that F and F + th need not to be probability measures

for strong duality to holds.

Because for all F ρt >
vl−c
vh−c

λ is finite and thus there is an upper bound on λ noted λ. So

0 ≤ Λ ≤ (vl − c)(1 + λ) the dual variables are restricted to a compact set.

Moreover, µ is restricted to a compact set (the space of probability measures), and Λ∗ is

unique when F has full support.
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Additionally:

L(t) =

∫ 1

0

(1 − z)µ(dz)(vl − c) +

∫ 1

0

Λ(z)d(F + th− µ)(z)

+ λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

And

Lt(t) =

∫ 1

0

Λ(z)dh(z)

Are continuous, as linear functions with bounded slopes.

Theorem 5 of Milgrom and Segal (2002) applies and V(t) is differentiable for t ∈ u:

V ′(t) =

∫ 1

0

Λ(z)dh(z)

Therefore, for any h = H − F , V (F ) is Gateaux differentiable at t = 0 and:

DhV (F ) =

∫ 1

0

ΛF (z)dh(z)

As ΛF uniquely characterize all directional derivative for an interior F then ΛF is the gradi-

ent of V (F ) and noted ∇FV .

For any h = H − F , the directional derivative of V is:

DH−FV (F ) =

∫ 1

0

∇FV (ρs)d(H − F )(ρs)
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If H also has full support, then Theorem 5 of Milgrom and Segal (2002) applies and one has:

V (H) − V (F ) =

∫ 1

0

∫ 1

0

∇((1 − t)F + tH)(ρs)d(H − F )(ρs)dt

Which completes the proof of proposition 4.1.
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Price Recommendation and the Value

of Data: Competition.

Abstract. I study whether competition between e-commerce platforms reduces the distor-

tion in their incentives to collect data. In a Hotelling model with co-located outside option,

I study competitive equilibria between two platforms charging participation fees and using

price recommendations. Both platforms disclose strategically their information about buy-

ers’ valuations to sellers thereby influencing their sellers’ pricing decisions. Platforms gain

market shares by lowering the average seller prices, hence increasing buyer expected surplus

from trade. Results show that increasing the degree of competition decreases the distortions

in the platform’s entry fees and incentives to collect data.

Keywords: price recommendations, information design, two-sided markets.
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1 Introduction

The unprecedented collection of data by large platforms has led to vivid debates about com-

petition and regulation in the digital economy.1 The debate focuses on two related platforms’

practices: the usage of data that enables, for instance, price discrimination, ad-targeting or

product personalization; and the collection of data, a critical issue in a growing market for

data worth 216 billion dollars in the US and 72.3 billion euros in the EU.2 This paper ex-

amines how competition between e-commerce platforms reduces the distortion in platforms’

incentives to collect data, where platforms use data to help sellers price discriminate buyers.

Many e-commerce platforms such as Amazon Marketplace, E-bay or Mercari use data

about demand to suggest prices or discounts to their sellers. Consumer Relationship Man-

agement firms (CRM) offer devices to sellers that personalize discounts, or target specific

consumers. For instance, users of Facebook Ads, Google Ads, or Voucherify can launch

personalized coupon campaigns associated to specific queries, search histories, cookies re-

lated to buyer characteristics. Empirical evidences shows that recommender systems have a

significant impact on sellers prices and sales.3 The influence of price recommendations on

market outcomes generates a demand for data for platforms and there is a question of which

market structures foster efficient data collection by platforms.

This paper shows that distortions in platforms’ incentives to collect data are mitigated

as the degree of competition between platforms increases. Price recommendations are a

communication device and do not constrain sellers. They allow platforms to strategically

disclose their user data to sellers and influence sellers’ pricing decisions.4 Since the pre-

ferred sellers’ price may not be the preferred platforms’ price5 platforms benefit from price

1See, for instance, recent policy reports by Crémer, Montjoye, and Schweitzer (2019), Scott Morton
et al. (2019), Furman et al. (2019).

2See the European Data Market Monitoring Tool report page 9.
3See e.g. Fleder and Hosanagar (2007) and Pathak et al. (2010).
4Price recommendations are the direct representation of any committed communication strategy, see

Myerson (1982).
5Platforms and sellers benefit differently from each transactions. Furthermore, cross network externalities

are not taken into account by small sellers.

https://datalandscape.eu/sites/default/files/report/D2.9_EDM_Final_study_report_16.06.2020_IDC_pdf.pdf
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recommendations. Consequently, platforms value additional buyer data to improve their

recommendations, enhance transactions and, in turn, attract more users. I study how com-

petition between platforms foster a welfare enhancing platform demand for data.

I consider two competing platforms that intermediate trade between buyers and sellers.

Platforms charge entry fees to users on both sides of the market. Each platform draws

informative signals about buyers’ valuations and correlates these signals with price recom-

mendations to influence sellers’ pricing decisions. Sellers, that can multi-home, receive a

price recommendation when joining a platform and set a price for their good. On the buyer

side, platforms are located at both ends of a Hotelling segment. Buyers, that are uniformly

distributed over the segment, choose which platform to join, if any, and incur a linear trans-

portation cost to join a platform. As in Bénabou and Tirole (2016), I assume that buyers

have two outside options located at both ends of the Hotelling segment. This assumption

allows the transportation cost to only determine the degree of competition between firms

(i.e. how many market shares a platform gains by reducing the buyer entry fee) and not

market participation (the trade off between joining a platform or collecting the outside op-

tion payoff). As a result, the transportation cost is identified to the inverse of the degree

of competition between platforms as it impacts the demand elasticites within the market

but not outside the market. Furthermore, the “co-located” outside options version of the

Hotelling model is better suited for welfare analysis than the standard version.6

In the first part of the paper, I study the competitive equilibrium in which platforms

set user entry fees and a price recommendation rule. In equilibrium, platforms design the

price recommendation rule that maximizes the surplus per transaction to attract as many

users on both sides, and set entry fees to generate profit and compete for market shares.

Compared to the efficient outcome, however, the equilibrium user fees are too high and, as

a result, the mass of transactions in equilibrium is inefficiently low. Increasing the degree

6Assuming that the market is covered, the welfare analysis in a standard Hotelling model is limited to
minimizing the total transportation cost of the economy. See Bénabou and Tirole (2016) that discusses this
assumption.
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of competition (i.e. reducing the transportation cost) induces platforms charge lower entry

fees in equilibrium which increases market participation and welfare.

In the second part of the paper, I capture platforms’ incentives to collect data by com-

puting their marginal value for buyer information. Platforms’ signals about buyers valuation

are the inputs of the price recommendations. I compute the change in platforms’ equilibrium

profits when changing marginally their distributions of signals. Platforms value additional

information as it improves their price recommendations, the surplus per transaction and

therefore the mass of users platforms’ attract. However, since less users join platforms un-

der a competitive equilibrium than under the efficient outcome, additional information for

platforms benefits less transactions. As a result, platforms have a lower marginal value for

information than what is socially desirable. Furthermore, I consider a benevolent infor-

mation provider that maximizes welfare by choosing the platforms’ information structures

but not their trade mechanisms. I show that conditional on the mass of users joining plat-

forms the benevolent information provider’s marginal value for information is larger than

the platforms one. The benevolent information provider values the increase in welfare com-

ing from the readjustment of user entry fees by platforms when changing their information

structures.7 Consequently, platforms undervalue additional information compared to what

is socially optimal which suggests that platforms under-collect data. However, increasing the

degree of competition increases the marginal value of information for platforms. In a more

competitive market, each improvement of the price recommendations allows a platform to

increase the surplus per transaction from which the platform gains market shares at a higher

rate. Therefore, increasing the degree of competition reduces the distortions in platforms’

incentives to collect data.

My paper examines how the market structure affects platforms’ incentives to collect data.

I develop a framework based on: (i) information design which captures how information af-

fect seller prices and market outcomes, and (ii) duality analysis that treats information as

7Readjusting entry fees is worth 0 by platforms due to envelop arguments.
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an input and computes its marginal value.

Related Literature

This paper relates to the literature on digital economics that studies data and competi-

tion, see e.g. De Corniere and Taylor (2020) for a recent presentation of the literature

on this topic. Many papers analyze how intermediaries use their information to increase

profits (see e.g. Hagiu and Ha laburda (2014), Gomes and Pavan (2019), Bourreau and

Gaudin (2018), Jullien and Pavan (2019), Bonatti and Cisternas (2020), and Carroni, Pig-

nataro, and Tampieri (2020)).8 Bourreau, Caillaud, and De Nijs (2018) and Dimakopoulos

and Sudaric (2018) studies competition and data collection for platforms that use data to

improve ad-targeting on their users. Pavlov and Berman (2019) compare multiple pricing

regimes by an e-commerce platform, including a price recommendation regime, in a cheap-

talk environment. In contrast, I use a Bayesian persuasion set up to capture the usage of

data by platforms.

From a methodological perspective, my paper relates to the Bayesian persuasion, infor-

mation design literature (see Kamenica and Gentzkow (2011), Bergemann and Morris (2016)

and Taneva (2019)). In my paper price recommendations correspond to the direct implemen-

tation of any committed information disclosure policy to sellers. Several other papers use

the Bayesian persuasion framework to study data brokers, e.g. Calzolari and Pavan (2006),

Bergemann and Bonatti (2015), Bergemann, Bonatti, and Smolin (2018) and Yang (2020).

Contrary to a data broker, in my model, platforms engage with both sides, and uses infor-

mation to balance the allocation of transaction surplus across the two sides.

The duality analysis I provide relates to a recent strand of the information design litera-

ture, see e.g. Kolotilin (2018), Galperti and Perego (2018), Dworczak and Kolotilin (2019),

Dworczak and Martini (2019), and Dizdar and Kováč (2020). The dual problem is set up

in an alternative way to perform a sensitivity analysis on the information structure. I show

8For the literature on platforms see Caillaud and Jullien (2003), Armstrong (2006), Rochet and Ti-
role (2003) and Rochet and Tirole (2006))
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that, in the context of my model, the dual variable associated to the informational constraint

can be interpreted as the marginal value of information for platforms.

The paper is organized as follows. Section 2 presents the model. Section 3 charac-

terizes the competitive equilibrium and discusses how the degree of competition impacts

welfare. Section 4 characterizes platforms’ marginal value of information and compares this

value with the benevolent information provider’s marginal value of information. Section 5

concludes.

2 Model

Environment. Consider two platforms A and B that intermediate trade between buyers

and sellers. Platforms set participation fees on both sides of the market and recommend a

price to each seller. On the buyer side, platforms are located at both ends of a Hotelling

line [0, 1] (A at 0 and B at 1). Buyers are uniformly distributed over this line and face

linear transportation cost τ . Buyers choose to join one of the two platforms (single-homing),

or collect one of the two outside option payoffs located at both ends of the line, at 0 and

at 1.9 Sellers view platforms A and B as identical ex-ante and can join either platform or

both (multi-homing), or collect their outside option payoff normalized to 0. Sellers produce

a good at marginal cost c which is valued at either vl or vh by their matching buyer, with

vl < vh, and I assume that c < vl so that trade is always efficient. For the buyers and sellers

that decide to join a platform, transactions unfold as follows: buyers inspect sellers’ goods

displayed on that platform to find their matching seller10 as well as their valuation for its

good (vl or vh). Following a successful match, sellers receive a price recommendation and

then set a price. Buyers observe their matching seller’s price and then decide to purchase

the good or not.

9The buyer side is represented with a Hotelling model with co-located outside option, see e.g. Bénabou
and Tirole (2016).

10Matching is one to many: For each buyer there is only one valuable seller.
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Information Structure. The buyers’ types (v, b, x) have three independent dimensions.

The value of the matching seller’s good is either high (vh), with probability ρ0, or low

(vl), with probability 1 − ρ0. The stand-alone valuation b and the buyer location x on the

Hotelling segment together capture the utility the buyer derives from joining a platform. The

stand-alone valuation b, common to both platforms, captures benefits of additional services

provided on both platforms or costs (e.g. advertising nuisance, privacy costs or opportu-

nity costs). Hence, b can be either positive or negative and is distributed according to a

continuously differentiable and log-concave distribution Qb supported on an interval in R.

The buyer’s location x ∈ [0, 1] captures his relative preference from joining one platform

instead of the other. Assuming trade happens, the utility of a buyer joining platform A is

v − p + b− τx− tb,A and of a buyer joining platform B is v − p + b− τ(1 − x) − tb,B, where

p is the seller’s price and tb,A (resp. tb,B) is the buyer entry fee set by platform A (resp.

B). Buyers learn v after joining the platform, but learn their stand-alone valuation b and

location x before joining.

For each joining buyer, each platform receives informative signals about his valuation,

from which it forms posterior beliefs about whether the buyer is of type vh or vl. Think

for instance of both platforms having access to consumer-level data such as histories of past

transactions, location or cookies and the related means of recording browsing data. Platforms

may observe some of the buyers’ characteristics and updates their beliefs about whether he

is a low or high type.

Without loss of generality, each platform’s information structure is represented as the

distribution of its posterior beliefs. For each buyer joining, platforms draw signals ρs =

P (v = vh|ρs) that are normalized to the posterior belief that the buyer is a high type. I

assume that each platform draws posterior beliefs ρs according to the same distribution F

with mean ρ0.
11

11Whether draws are correlated across platforms has no impact in the game. F has mean ρ0 to be
consistent with the prior distribution of buyers’ types, see for instance Kamenica and Gentzkow (2011)
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Sellers can multi-home and view A or B as ex-ante identical. All sellers produce a ho-

mogeneous good at a constant marginal cost c. To join a platform sellers incur a fixed

cost κ (think of a listing cost for instance) distributed according to a continuously differen-

tiable log-concave distribution Qs supported in an interval of R. A seller that joins platform

i ∈ {A,B} and trades one good at price p obtains profit: p− c− κ− ts,i.

Timing and Decisions. First, each platform i ∈ {A,B} sets entry fees ts,i and tb,i and

commits to a price recommendation rule, which I describe later. Second, buyers observe

their stand-alone valuation b and location x. Then, sellers decide whether to join or not each

platform. Buyers decide which platform to join if any, and find their matching seller. Third,

each platform draws a signal ρs for each buyer and recommends a price to each matched

seller. Fourth, buyers observe v, their seller price and decide whether to buy.

Solution Concept. The analysis focuses on perfect Bayesian equilibria, where players

hold rational expectations, are risk neutral and expected-payoff maximizers.

Price Recommendation Rules and Entry Fees. Platform A (resp. B) sets entry

fees tb,A (resp. tb,B) on the buyer side and ts,A (resp. ts,B) on the seller side, tb,A, ts,A ∈ R.

Platform i ∈ {A,B} commits to a price recommendation rule that maps signals ρs with

a private price recommendation to sellers. Instead of capturing the price recommendation

rule as the probability of recommending a price conditional on signals, it is more convenient

to define it with µi(S) the joint probability of recommending a low price vl and receiving

proposition 1.
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signals in S:12

µi : B[0, 1] → [0, 1]

S 7→ µi(S) =

∫

S

P (recom vl | ρs)dF (ρs).

With complementary probability platform i recommends vh to sellers. Since buyers are either

of type vl or of type vh, there are only two potentially optimal pricing strategies. Sellers

either sell to both buyer types at price vl, leaving the low type without any surplus, or sell

only to the high types at price vh leaving them with no surplus. Therefore, considering price

recommendation rules that only recommend to sellers these two prices vl or vh is without

loss of generality.

A price recommendation rule µi for k ∈ {A,B} is feasible for an information structure

F if it satisfies the informational constraint (In):

∀S ∈ B[0, 1] : µi(S) ≤

∫

S

dF (ρs) = F (S). (In)

(In) captures the ability of the platform to match price recommendations to the true buyers’

valuations. If µi(S) = F (S) platform i always recommends a low price when the signal falls

in the set S. However, if F (S) = 0 for some S the platform cannot make recommendations as

it does not receive signals in this range. Therefore, the informational constraint captures the

relationship between the quality of the platform information structure F and the precision

of the price recommendations.

3 Platform Competition

This section presents the demand of each platform on both side of the market and charac-

terizes the competitive equilibrium. Then, this section discusses the interaction between the

12S is a measurable set in B[0, 1], the Borel σ−algebra on [0, 1].
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degree of competition 1
τ

and welfare.

Demand on the Seller Side

A seller can multi-home and her decision to join platform A can be treated independently

from her decision to join platform B.

Consider a seller that has already joined platform i ∈ {A,B}. If a transaction occurs,

she trades at a low price yielding (vl − c) profit, if a low price is recommended, that is, with

probability
∫ 1

0
µi(dρs); and she trades at a high price yielding (vh − c) profit, if a high price

is recommended and the buyer is a high type, that is with probability:

P (recom vh, v = vh) = ρ0 −

∫ 1

0

ρsµi(dρs).

A seller’s expected profit per transaction on platform i equals:

∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c).

Let Di be the mass of buyers joining platform i. Consequently, a seller trades on platform i

with probability Di. There is a marginal seller κ̃i that is indifferent between joining platform

i or not, such that all sellers with listing cost κ lower than κ̃i join the platform and all sellers

with listing cost higher than κ̃i do not. The mass of sellers joining platform i is given by

Qs(κ̃) and κ̃i is characterized by:

κ̃i = Di

(∫ 1

0

µ(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµ(dρs)

]

(vh − c) − c

)

− ts,i. (3.1)

To increase its demand on the seller side, platform i can use multiple instruments. It can

reduce the seller entry fee, increase the mass of buyers joining, or recommending prices in a

way that benefits sellers.
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Demand on the Buyer Side

A buyer that joins a platform values trade only if the platform recommends a low price

and he is of a high type. Let Vi denotes the buyer’s expected value from trade on platform

k ∈ {A,B}:

Vi = Qs(κ̃i)(vh − vl)

∫ 1

0

ρsµi(dρs).

The price recommendation rule µ is the joint probability of recommending a low price vl and

receiving a signal in a measurable set S. Integrating the signal ρs, the probability that the

buyer is of type vh, over its support [0, 1] gives the joint probability of recommending a low

price to a high type buyer:
∫ 1

0
ρsdµ(ρs). In this case, the buyer obtains a transaction surplus

of vh − vl. Finally, a buyer finds its matching seller with probability Qs(κ̃i).

There is a buyer located at x̃ ∈ [0, 1] that is indifferent between joining platform A or

platform B:

x̃ =
1

2
+

VA − tb,A − (VB − tb,B)

2τ
.

If the value of joining platform i, Vi − tb,i increases, then the indifferent consumer is located

further away from i, that is, platform i gains market shares. The demand of firm i corre-

sponds to buyers located closer to i than x̃ with a stand alone valuation b high enough such

that joining i generates more value than both outside options.

Outside options are located at 0 and 1 on the Hotelling segment. A buyer located at

x < x̃ joins firm A if neither of the outside options yields more value than A:

b ≥ max{tb,A − VA, τ(2x− 1) + tb,A − VA}.
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Symmetrically, a buyer located x < x̃ joins firm A if neither of the outside options yields

more value than A:

b ≥ max{tb,B − VB, τ(1 − 2x) + tb,B − VB}.

There is a consumer indifferent between joining i and collecting the outside option payoff at

i’s location denoted b̃i such that:

b̃i = tb,i − Vi. (3.2)

Using this notation, the masses of buyers joining platforms A and B are respectively given

by:

DA(b̃A, b̃B) =







(

1 −Qb(b̃A)
)(

1
2

+ b̃B−b̃A
2τ

)

if x̃ ≤ 1
2

1
2

(

1 −Qb(b̃A)
)

+
∫ x̃

1

2

(1 −Qb(τ(2x− 1) + b̃A))dx if x̃ ≥ 1
2
.

DB(b̃B, b̃A) =







(

1 −Qb(b̃B)
)(

1
2

+ b̃A−b̃B
2τ

)

if x̃ ≥ 1
2

1
2

(

1 −Qb(b̃B)
)

+
∫ 1

2

x̃
(1 −Qb(τ(1 − 2x) + b̃B))dx if x̃ ≤ 1

2
.

If the indifferent consumer x̃ is further away from platform A’s location than from B’s

location, then consumers located between 1
2

and x̃ arbitrage between joining A or collecting

the outside option payoff at B’s location. These consumers join platform A if x ≤ x̃ and

b ≥ τ(2x−1)+ b̃A. Consumers located at x ∈ [0, 1
2
] arbitrage between joining A or collecting

the outside option payoff at A’s location, and, therefore join A if b ≥ b̃A.

Platform’s Best Response Problem

Platform i generates profit from entry fees. The buyer entry fee affects directly the mass

of buyers joining by changing their net utility from joining and affects indirectly the mass
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of sellers joining by changing the seller’s probability of trading. In addition platform i’s

price recommendations affect the mass of users joining on each side. Platform i may design

price recommendations to help sellers price discriminate buyers, increase their profit, and,

therefore, increase the mass of sellers joining. Alternatively, platform i may design price rec-

ommendations to sway sellers to price lower on average, which increases the buyer expected

surplus from transactions, and, therefore, increases the mass of buyer joining.

Platform i designs an incentive compatible price recommendation rule. That is, sellers

must find it optimal to follow platform i’s price recommendations:

∫ 1

0

µi(dρs)(vl − c) ≥

∫ 1

0

ρsµi(dρs)(vh − c). (ICl)

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥

[

1 −

∫ 1

0

µi(dρs)

]

(vl − c). (ICh)

Sellers have four options: follow both price recommendations, disobey both price recom-

mendations, or disobey one recommendation and follow the other. If sellers disobey one

recommendation and follow the other, they effectively follow a uniform pricing strategy.

If disobeying both recommendations is optimal, then one of the uniform pricing strategies

is better than following both recommendations.13 Ensuring that obeying both recommen-

dations yields more profit than both uniform pricing strategies is equivalent to incentive

compatibility:

∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥ max{vl − c, ρ0(vh − c)}.

Throughout the paper, I assume than ρ0 > vl−c
vh−c

, which implies that at their prior belief

sellers prefer setting a high price.14 Consequently incentive compatibility is reduced to a

13See Kolotilin et al. (2017).
14This assumption focuses on the case where platform’s preferred price and the seller’s preferred price

differ. If instead ρ0 ≤ vl−c
vh−c

always recommending a low price ( regardless of the signal) is incentive compatible
and maximizes the transaction surplus. In this case there is no value for a platform to collect additional
information.
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single condition:

∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥ ρ0(vh − c). (IC)

Given platform j’s strategy, platform i chooses the buyer entry fee, seller entry fee and

an incentive compatible price recommendation rule that maximizes its profit. Platform i’s

profit is generated entirely from the entry fees, Ditb,i on the buyer side and Qsts,i. I assume

that, for each pair of entry fees (tb,i, ts,i) there is a unique pair of marginal users (b̃i, κ̃i) that

satisfy equations (1) and (2). As a result, I express the platform’s best response problem in

terms of the marginal buyer b̃i and and marginal seller κ̃i which are determined the entry

fees.

max
b̃i,κ̃i,µi

Πi =Di(b̃i, b̃j)b̃i −Qs(κ̃i)κ̃i + Di(b̃i, b̃j)Qs(κ̃i)

[∫ 1

0

(1 − ρs)µi(dρs)(vl − c) + ρ0(vh − c)

]

︸ ︷︷ ︸

Expected Transaction Surplus

subject to:
∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥ ρ0(vh − c) (IC)

∀S ∈ B[0, 1] : µi(S) ≤

∫

S

dF (ρs) (In)

From posted entry fees, platform i captures each side’s non-trade related benefit from

joining at its marginal users’ levels and the entire surplus from trade. The platform is able to

extract the buyer and seller surplus from each transaction because buyers and sellers decide to

join the platform based on the ex-ante value of trade. Sellers do not know the recommended

price before joining and buyers learn their valuation after joining. With probability ρ0 the

seller is of a high type and trade occurs regardless of the recommended price generating a

surplus of vh − c. Trade happens with a low type buyer, generating a surplus of vl − c, only

if a low price has been recommended, that is with joint probability
∫ 1

0
(1 − z)µi(dz). The

mass of transactions on platform i under one-to-many matching is Di(b̃i, b̃j)Qs(κ̃i).
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Platform i’s choice of buyer and seller entry fee interacts with platform j’s choice of

buyer entry fee. However, platform i’s optimal choice of the price recommendation rule is

independent from j’s decisions. Regardless of the mass of users joining platform i, it chooses

the price recommendation rule that maximizes the surplus from each transaction. The next

subsection characterize the dominant choice of price recommendation rule. The one following

it characterizes the competitive equilibrium between platform A and B.

Optimal Price Recommendation Rules

The price recommendation rule that maximizes the surplus per transaction is a dominant

strategy for both platforms. If the buyer is of a high type, transaction occurs regardless of

the price recommendation, which generates a surplus of vh − c. If the buyer is of a low type,

trade occurs only if a low price is recommended, which generates a surplus of vl− c. In other

words, platform i maximizes the probability of correctly recommending a low price to low

type buyers subject to the incentive compatibility and informational conditions:

max
µi

∫ 1

0

(1 − z)µi(dz)(vl − c) + ρ0(vh − c)

subject to:
∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥ ρ0(vh − c). (IC)

∀S ∈ B[0, 1] : µi(S) ≤

∫

S

dF (ρs) (In)

The optimal price recommendation rule can be deduced from interpreting recommendations

as the result of a hypothesis testing. Let “recommending vl” correspond to accepting H0

and let “recommending vh” correspond to rejecting H0. The platform then chooses as a

function of its test statistic ρs whether to reject H0. In this formulation the incentives are

captured by type I and II errors. Sellers want to minimize both types of errors: they want

to match their price with their buyer’s type. Platform i wants to avoid type I errors, that is,
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avoid recommending a high price if the buyer’s valuation is low because this reduces trade

efficiency.

Platform i and sellers agree that the type I error must be as small as possible. Therefore,

the optimal price recommendation rule must have the following property: for any level of

the type II error chosen, the level of the type I error must be minimized.

This property is common in statistics and econometrics and shared by all standard hypothesis

tests. In this case, tests that satisfy this property follow cutoff rules. Platform i chooses a

cutoff ρt ∈ [0, 1] such that for all signals ρs above the cutoff it recommends a high price and

for all the signals below the cutoff it recommends a low price.

ρs1

1

0

F

ρt

ρ0β

(1 − ρ0)α

recom vl recom vh

Figure 3.1: Cutoff rule.

The optimal cutoff maximizes surplus from trade. The ideal cutoff is ρt = 1 as in this

case platform i always recommends a low price hence trade is efficient. However, this price

recommendation rule provides no information to sellers about their matched buyer’s type.

As a result, the ideal cutoff ρt = 1 is not incentive compatible. The optimal cutoff must

be low enough so that low price recommendations are sufficiently informative about the

buyer’s type and followed by sellers. However, to reduce trade inefficiencies platform i aims

to increase the cutoff. Therefore, the optimal price recommendation rule uses the highest

cutoff such that the incentive compatibility condition binds.

Proposition 3.1. The dominant price recommendation rule takes the form of a cutoff
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rule. Each platform chooses the cutoff ρ∗t ∈ [0, 1] and then recommends prices as follows:

(i) For all ρs < ρt, the platform recommends a low price.

The platform sets for all measurable S ⊂ [0, ρt), µ(S) = F (S).

(ii) For all ρs > ρt, The platform recommends a high price.

The platform sets for all measurable S ⊂ (ρt, 1], µ(S) = 0.

(iii) If F has a mass point at ρt, the platform randomizes recommendations at the cutoff.

The platform picks µ({ρt}) ∈ [0, dF (ρt)], with dF (ρt) = F (ρt) − lim
x↑ρt

F (x).

The optimal cutoff ρ∗t ∈ [0, 1] is the highest that binds the incentive compatibility condition:

F (ρ∗t )(vl − c) =

∫ ρ∗t

0

ρsdF (ρs)(vh − c)

Proof. This is a standard result in the Bayesian Persuasion literature; see e.g. Kamenica

and Gentzkow (2011) and Dworczak (2020). This specific lemma is proved in Lefez (2021).

For completeness, a proof is given in appendix A.2.

Figure 1 pictures a cutoff rule by a platform in the case where F has a mass point at

the cutoff. On the figure it mixes equally the recommendation at the cutoff ρt. The shaded

areas represent the associated type I and II errors. In the main text, equations are presented

assuming no mass point at the cutoff, while the appendix presents the general case.

Competitive Equilibrium

Both platforms choose the dominant price recommendation rule with cutoff ρ∗t and simulta-

neously choose their marginal sellers and marginal buyers joining via the entry fees. Given



3. PLATFORM COMPETITION 189

platform j’s choice of entry fees, platform i ’s optimal choice of entry fees trades off the

extra profit generated on both sides by attracting one more users with the loss of profit

on infra-marginal users. I impose a lower bound on τ for the existence of the symmetric

equilibrium.15 If the transportation cost is too small, only one platform serves the market

in equilibrium.

Proposition 3.2. The unique equilibrium (b̃∗, κ̃∗, ρ∗t ) is symmetric. Each platform sets the

dominant cutoff rule ρ∗t and sets entry fees to pin down marginal users (b̃∗, κ̃∗) such that:

∂Qs

∂κ̃i

[
1

2
(1 −Qb(b̃

∗))

(∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c)

)

− κ̃∗

]

= Qs(κ̃
∗) (3.3)

(

1 −Qb(b̃
∗)

τ
+

∂Qb

∂b̃i

)[

Qs

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃∗
]

= 1 −Qb(b̃
∗)

(3.4)

If τ increases the entry fees for both platform on both sides decreases. Formally b̃∗ decrease

with τ and κ̃∗ increases with τ .

Proof. See appendices.

To set the buyer entry fee, platform i equates the gain of attracting additional buyers

on both sides with the loss of profit on the infra-marginal buyers. Reducing the entry fee

by 1 attracts 1
2
∂Qb

∂b̃i
additional buyers that were opting for the outside option, and 1−Qb(b̃

∗)
2τ

additional buyers that were choosing to join platform j. Reducing the transportation cost τ ,

increases the market shares gained from reducing the buyer entry fee and therefore reduces

the buyer entry fee in equilibrium. This assertion is the focus of the next subsection.

To build some intuition, consider the two extreme cases, τ = +∞ and τ = 0 (although

in the last case the equilibrium does not exist). If τ = +∞, (3) and (4) characterizes the

15See appendices.
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optimal entry fees for a monopoly platform. On the other hand, if τ = 0, (4) boils down to:

Qs

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃∗ = 0

That is, the platform reduces the buyer entry fee until the benefit generated on both sides

from attracting an additional buyer goes to 0.

Competition and Welfare

In this paper, I restrict attention to symmetric outcomes. From a welfare perspective, there

is a trade-off between serving the market with a monopoly platform which minimizes sellers’

fixed cost κ, or serving the market with a duopoly which minimizes buyers’ transportation

costs. Given a symmetric allocation of the market, total welfare equals:

W (τ) =

∫

b̃

bdQb(b) − 2

∫ κ̃

κdQs(κ) −
τ

4

+ (1 −Qb(b̃))Qs(κ̃)

[∫ 1

0

(1 − ρs)µ(dρs)(vl − c) + ρ0(vh − c)

]

The symmetric allocation minimizes the transportation costs in the economy that are equal

to τ
4

but doubles the listing costs for all sellers that are multi-homing, i.e. 2
∫ κ̃

κdQs(κ). In

terms of welfare, users are valued at their average type level, and not at the marginal type

level, which corresponds to the typical distortion of a posted price mechanism. Equilibrium

entry fees are higher than the efficient entry fees. To maximize welfare entry fees are reduced

until the benefit on both sides of attracting an additional user equals the cost of attracting

this user.

As the degree of competition increases, the amount market shares gained by reducing the

buyer entry fee increases, whereas the loss of profit on infra marginal consumers (1 −Q(b̃))

stays constant. As a result, the equilibrium buyer entry fee decreases. Additionally, the

benefit of attracting an additional seller for platforms increases (as more buyers join), and
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therefore the seller entry fee decreases as well. All in all, as the degree of competition in-

creases, the user entry fees gets closer to their efficient level and welfare increases.

Platforms value transaction the same way a social planner values transactions, as plat-

forms extract the entire surplus of transactions. Consequently, platforms’ optimal price

recommendation rule is efficient.

Proposition 3.3. 1. The platform price recommendation rule maximizes welfare for all

degree of competition 1
τ
.

2. Welfare increases in the degree of competition.

Proof. See appendices.

Although platforms’ use of data (the price recommendation rule) is efficient, platforms’

incentives to collect data is not. The next section shows that a platform’s marginal value of

information is lower than the social marginal value of information, and that increasing the

degree of competition reduces this distortion.

4 Competition and the Value of Information

This section characterizes a platform’s marginal value of information and the interaction

between this value and the degree of competition τ . A platform’s marginal value of infor-

mation captures the change in the platform’s equilibrium profit for a marginal change in its

information structure.

Definition 7. The platform’s value of information V (F ) maps each information structure

into the equilibrium profit.

Definition 8. The platform’s marginal value of information is defined as the gradient of the

platform’s value of information: ∇FV .
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Studying the platform’s marginal value of information provides rich comparative statics on

the platform’s willingnesses to pay to acquire additional information. This section shows the

willingness to pay for information increases with the degree of competition. First, I provide

an economic interpretation of a marginal change in F .

A Marginal Change in the Information Structure

Consider platform i purchasing a new data set G of “size” q. The size q captures the

probability that a buyer is in the data set G. In other words, with probability 1 − q, the

buyer is not in the data set G, and the platform draws a posterior belief according to F .

With probability q the buyer is in the data set, and the platform draws a posterior belief ρs

according to F and re-update this beliefs according to the data set G(.|ρs) to ρus .16

ρ0

ρs dist. F with mean ρ0.

ρs dist. F ρus dist. G(.|ρs) with mean ρs.

1 − q

q

The re-updating process G(.|ρs) depends on the first signal ρs which captures the fact that

the new information contained in G may be correlated with the information the platform

already has. The value of a data set G of size q is noted φG(q). Formally:

φG(q) = V

(

(1 − q)F + q

∫ 1

0

G(.|ρs)dF (ρs)

)

Consider the platform increasing the size q of the data set G by ǫ, that is the platform

considers purchasing a slightly larger data set from the data broker. This corresponds to a

marginal change in the platform’s information structure of:

ǫ

(∫ 1

0

G(.|ρs)dF (ρs) − F (.)

)

16For all ρs
∫ 1

0
G(dz|ρs) = ρs for the re-updating to be consistent with Bayes rule.
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The platform observes one extra buyer in the data set, updates its belief about this buyer’s

valuation and potentially recommends different prices. The platform’s value of information

varies by:

φ′
G(q) = lim

ǫ→0

φG(q + ǫ)

|ǫ|

Relation with Blackwell informativeness. This example of a platform purchasing a

new data set G captures all variations that increase the platform’s information in the sense

of Blackwell. A platform information structure is more informative if F varies in directions

of H such that H is a mean preserving spread of F . For marginal variation that means for

a small ǫ > 0 the platform new information structure is F + ǫ(H − F ). In fact, any mean

preserving spread H or F can be constructed from a re-updating process G:

Lemma 4.1. H is a mean preserving spread of F if and only if there is a G with
∫ 1

0
zG(dz|ρs) =

ρs for all ρs such that H(S) =
∫ 1

0
G(S|ρs)dF (ρs).

Proof. See Le Cam (1996).

In other words, any marginal variation that increases the platform’s information is cap-

tured by φ′
G for some data set G. The remainder of this section characterizes φ′

G, shows it

increases in the degree of competition but is lower than the efficient level.

Platform’s Value for a Data Set

The platform’s marginal value is constructed as the shadow price associated to the informa-

tional constraint (In): The impact on the platform’s profit when relaxing this constraint.

Formally the shadow price of (In) is the Lagrangian multiplier, and corresponds to the gra-

dient of V the marginal value of information. I show that V is directionally differentiable at

F , and that directional derivatives are computed from the gradient ∇FV .

I focus on marginal variations in directions in which a platform gains information in the
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sense of Blackwell. All these variations are interpreted as the platform marginally increasing

the size a data set G.

Proposition 4.2. Assume that F has full support.

1. V is directionally differentiable at F in any directions.

2. The marginal value of increase the size of a data set G equals:

φ′
G(q) =

∫ 1

0

∫ 1

0

∇F+qGV (ρus )dG(ρus |ρs)dF (ρs) −

∫ 1

0

∇F+qGV (ρs)dF (ρs).

3. The value of acquiring a data set G of size q equals:

φG(q) − φG(0) =

∫ q

0

(∫ 1

0

∫ 1

0

∇F+ǫGV (ρus )dG(ρus |ρs)dF (ρs) −

∫ 1

0

∇F+ǫGV (ρs)dF (ρs)

)

dǫ.

Proof. See technical appendix.

Proposition 4.2 shows that the increase in the platform’s profit from increasing the size of

the data set G is constructed from the gradient. In addition, the difference in profit between

having a data set G of size q or not equals all the marginal gain in profit from increasing the

size of G from 0 to q.

Appendix C computes the gradient of the platform’s profit by computing the dual variable

associated to the informational (In) condition. Using this value the platform’s willingness to

pay to increase the size of a data set G can be computed from the parameters of the model:

Proposition 4.3. Platform i’s willingness to pay to increase the size of the data set G, φ′
G
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equals:

[

(vl − c)

(
∫ 1

ρ∗t

(1 − ρs)dF (ρs) −

∫ 1

0

∫ 1

ρ∗t

(1 − ρus )dG(ρus |ρs)dF (ρs)

)

︸ ︷︷ ︸

Gain in trade efficiency

+ λ∗

(∫ 1

0

(

(vl − c)G(ρt|ρs) − (vh − c)

∫ ρ∗t

0

ρusdG(ρus |ρs)

)

dF (ρs)

)

︸ ︷︷ ︸

Gain in relaxing incentive compatibility

]

×Qs(κ̃
∗)

1 −Qb(b̃
∗)

2

Where λ is the dual variable associated to the sellers’ (IC):

λ =
(1 − ρ∗t )(vl − c)

ρ∗t (vh − c) − (vl − c)
.

Proof. See appendices.

Trade efficiency increases as the probability of recommending a high price when the buyer

has a low value decreases, which is the probability that the low type buyers’ signal falls above

the cutoff after re-updating the platform’s belief with G. The gain in transaction surplus

is first captured by sellers, then captured by the platform via increasing the seller entry fee

by the same amount their profits increase. Since the surplus from trade has changed, the

platform adjusts the buyer entry fee as well, but this has no effect on profit due to standard

envelop arguments.

Increasing the size of G also relaxes the sellers’ incentive compatibility condition (IC),

which allows the platform to increase the cutoff ρt. By increasing the cutoff the platform

now recommends a low price around ρt which increases the surplus by (1 − ρt)(vh − c) but

decreases the sellers’ profit (hence tightens the sellers’ (IC)) by ρt(vh − c) − (vl − c). The

ratio of the two is equal to the dual variable associated to the sellers’ (IC) that gives the

increase in the platforms’ profit when the sellers’ (IC) the relaxed by one unit.

All in all, a platform’s profit increases from increasing the size of G via two channels: (i)
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the change in the surplus from trade and (ii) the change in the sellers’ (IC). Next, I com-

pare a platform’s marginal value of information with the benevolent information provider’s

marginal value of information. Then, I show that increasing the degree of competition be-

tween platforms reduces the distortions in their marginal value of information.

Benevolent Information Provider

The difference between the value of increasing the size of the data set G for platforms or for

a social planner is a matter of the total mass of trades on each platform. A social planner

would attract more users, generate more trade, and, therefore, benefit more from additional

information. However, this subsection shows that conditional on the mass of users joining,

a platform’s willingness to pay to increase the size of the data set is inefficient.

Consider a “benevolent information provider” that chooses the information structure for

both platforms but does not choose their trade mechanisms. Compared to platforms, the

benevolent information provider values increasing the size of the data set from a third extra

channel: it values the gain in surplus coming from the platform’s readjustment of the users’

entry fee when increasing the size of G (these gains are negligible for platforms as entry fees

are profit maximizing).

Proposition 4.4. The benevolent information provider’s willingness to pay to increase the

size of the data set G is higher than a platform’s willingness to pay by a multiplicative factor

equal to:

1 −
∂b̃∗

∂q

(
1

Qs

−
1

τ

(∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c)

))

+ 2
∂κ̃∗

∂q

1

1 −Qb

where λ is the dual variable associated to the sellers’ (IC):

λ =
(1 − ρ∗t )(vl − c)

ρ∗t (vh − c) − (vl − c)
.
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Proof. See appendices.

Compared to platforms, the benevolent information provider values the readjustment of

user entry fees. Each seller gains 1
1−Qb

(per transaction) from the reduction in both platforms’

entry fee, and each buyer gains 1
Qs

(per transaction) from the reduction in the buyer entry

fee, minus a term proportional to 1
τ
. Indeed, platform’s buyer entry fee is closer to the

social optimum as the degree of competition increases. In turn, the difference between the

benevolent information provider’s and the platform’s willingness pays decreases as the degree

of competition increases.

The benevolent information provider’s willingness to pay for information is proportional

to the platform one. Consequently, they rank data sets in the same way. Precisely, consider

two data sets G1 and G2. Then platforms value more increasing the size of G1 compared to

G2 if and only if the benevolent information provider values more increasing the size of G1

compared to G2.

Proposition 4.5. 1. A platform’s willingness to pay to increase the size of a data set

is closer to the benevolent information provider’s one as the degree of competition 1
τ

increases.

2. The benevolent information provider and platforms’ ranking of data sets coincide.

Proof. See appendices.

Although platform data usage is efficient, platforms’ incentives to collect data are not.

However, increasing the degree of competition reduces the distortions in platform marginal

value of information. Under a more competitive regime, platforms gain more market shares

from reducing user entry fees. As a result, the equilibrium entry fees are lower and a larger

mass of users join platforms. Therefore, additional information affects a larger mass of

transactions which increases its value.
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5 Conclusion

There is a vivid debate about the regulation of data the digital economy. There are two

potential issues: whether data is misused by platforms or whether it is miss-collected. This

paper examines the impact of the degree of competition on platforms’ marginal value of

information. Platforms use information to recommend prices to sellers and value additional

information to improve their recommendations and attract more users. I use a Bayesian

persuasion framework to capture how user information influence seller prices and a duality

analysis to capture information as an input and compute its marginal value. In the context

of my model, I show that platforms under value additional information compared to what

is socially desirable. However, I show that increasing the degree of competition between

platforms decreases this distortion.

This paper warns against potentially distorted platforms’ incentives to collect data. Since

my analysis relates how platforms use data with platforms’ incentives to collect data, it

provides multiple entry points for regulation. Regulation can be implemented on the market

for data (facilitate access to data, making some data public, etc...) but it can also be

implemented on the downstream market. For instance, promoting competition between

platforms reduces the distortions in their incentives to collect data. Alternatively, in this

model a social planner can subsidize user participation to increase the mass of users on

platforms and, in turn, increase platforms marginal value for information.
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6 Appendices

6.1 Platform Competition

Existence and Uniqueness of Competitive Equilibrium

Let ((b̃∗A, κ̃
∗
A), (b̃∗B, κ̃

∗
B)) constitute a NE. Both firms are in best response and thus for A and

B:

∂Qs

∂κ̃i

[

Di

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

− κ̃i

]

= Qs(κ̃
∗
i )

−
∂Di

∂b̃i

[

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

= Di(b̃
∗
i , b̃

∗
j)

Note that the profit function is sub-modular:

∂2Πi

∂b̃i∂κ̃i

=
∂Di

∂b̃i

∂Qs

∂κ̃i

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

< 0

In other words, the larger the mass of sellers joining, the higher the gain by attracting new

buyers. That is, users are complementary inputs for platform i. Therefore, from standard

comparative static results, the optimal κ̃i decreases with respect to b̃i.

I show that (b̃∗i , κ̃
∗
i ) = (b̃∗j , κ̃

∗
j). Fix j’s strategy.

Assume that b̃∗i > b̃∗j . This implies that Di < Dj. Consider i’s profit’s variation in the

marginal seller:

∂Qs

∂κ̃i

[

Di

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

− κ̃i

]

−Qs(κ̃
∗
i )
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From log concavity this expression is decreasing17 in κ̃i. Since, Di < Dj the derivative hits

0 before j’s derivative, therefore κ̃∗
i < κ̃∗

j and so Qs(κ̃
∗
i ) < Qs(κ̃

∗
j).

In this case, |xi − x̃| ≤ 1
2
, where xi is the location of firm i, that is the indifferent con-

sumer is closer to i than to j. The derivative on i’s profit with respect to b̃i is:

∂Di

∂b̃i

[

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

+ Di(b̃i, b̃j)

= −

(

1

2τ
(1 −Qb(b̃i)) +

∂Qb

∂b̃i

[

1

2
+

b̃j − b̃i
2τ

])[

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

+ (1 −Qb(b̃i))

(

1

2
+

b̃j − b̃i
2τ

)

The derivative equals:

(1 −Qb)

[

1

2
+

b̃j − b̃i
2τ

] [

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]



−

∂Qb

∂b̃i

1 −Qb

−
1

τ + b̃j − b̃i
+

1

Qs(κ̃i)
(∫ ρ∗t

0
(1 − ρs)dFρs(vl − c) + ρ0(vh − c)

)

+ b̃i





Assumption: Qs, Qb and τ are such that:

Q′′
s

(∫ ρ∗t

0

(1 − ρs)dFρs(vl − c) + ρ0(vh − c)

)

<

[

2Q′
s −

Q′
b

1 −Qb

−
1

τ

]

This implies that Qs(κ̃i)
(∫ ρ∗t

0
(1 − ρs)dFρs(vl − c) + ρ0(vh − c)

)

+ b̃i is increasing in bi along

the path κ∗(bi) defined by (3). If τ is too small, only one platform serves both sides in

equilibrium. Given this assumption, the RHS of the derivative is decreasing in b̃i (by log-

concavity) along the path κ̃∗(b̃i). Consider plugging b̃i = b̃∗j , the derivative is 0, and negative

for all b̃i > b̃∗j . Therefore, there cannot be an equilibrium with b̃∗i > b̃∗j .

17See an1997log
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Consequently, the equilibrium must be symmetric. To show it exists, I check that for b̃i < b̃∗j

i’s profit increases by increasing bi.

Consider now candidates equilibrium where b̃∗A < b̃∗B. Using the same argument κ̃∗
A > κ̃∗

B

and so Qs(κ̃
∗
A) > Qs(κ̃

∗
B). In that case, x̃ > 1

2
. Recall in this case:

DA(b̃A, b̃B) =
1

2
(1 −Qb(b̃A)) +

∫ x̃

1

2

(1 −Qb(τ(2x− 1) + b̃A))dx

∂DA

∂b̃A
= −

1

2

∂Qb

∂b̃A
(b̃A) −

1

2τ
(1 −Qb(τ(2x̃− 1) + b̃A)) −

∫ x̃

1

2

∂Qb

∂b̃A
(τ(2x− 1) + b̃A)dx

= −
1

2

∂Qb

∂b̃A
(b̃A) −

1

2τ
(1 −Qb(b̃B)) −

1

2τ
(Qb(b̃B) −Qb(b̃A))

= −
1

2

∂Qb

∂b̃A
(b̃A) −

1

2τ
(1 −Qb(b̃A))

The derivative on A’s profit with respect to b̃A is:

(

−
1

2

∂Qb

∂b̃A
(b̃A) −

1

2τ
(1 −Qb(b̃A))

)[

Qs(κ̃A)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

+
1

2
(1 −Qb(b̃

+

∫ x̃

1

2

(1 −Qb(τ(2x− 1) + b̃A))dx

=

(

−
1

2

∂Qb

∂b̃A
(b̃A) −

1

2τ
(1 −Qb(b̃A))

)[

Qs(κ̃A)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

+ Di(b̃i, b̃j)

=
1

2
(1 −Qb(b̃A)

[

Qs(κ̃A)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

×



−
Q′

b

1 −Qb

−
1

τ
+

1 + 2
∫ x̃

1

2

(1−Qb(τ(2x−1)+b̃A))

(1−Qb(b̃A))
dx

Qs(κ̃A)
(∫ ρ∗t

0
(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i





Note that
∫ x̃

1

2

(1−Qb(τ(2x−1)+b̃A))

(1−Qb(b̃A))
dx is decreasing in b̃A as log concavity of Q implies that the

primitive of Q is log concave18, together with the assumption the right part of the derivative

is decreasing in b̃A. Since the expression in 0 for b̃A = b̃∗B, this implies the FOC is positive

18See an1997log
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for all b̃A < b̃∗B and thus A must set b̃A = b̃∗B.

Symmetric Equilibrium

Consider the system of equations that characterizes best responses:

∂Qs

∂κ̃i

[

Di

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

− κ̃i

]

= Qs(κ̃
∗
i )

−
∂Di

∂b̃i

[

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

= Di(b̃
∗
i , b̃

∗
j)

In a symmetric equilibrium one has:

∂Qs

∂κ̃i

[
1

2
(1 −Qb(b̃i))

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

− κ̃i

]

= Qs(κ̃
∗
i )

(
1

τ
(1 −Qb(b̃i)) +

∂Qb

∂b̃i

)[

Qs(κ̃i)

(∫ ρ∗t

0

(1 − ρs)dFρs)(vl − c) + ρ0(vh − c)

)

+ b̃i

]

= (1 −Qb(b̃i))

Price Recommendation Rule

Optimal Price Recommendation Rule

The optimal price recommendation rule problem is a linear program:

P : max
µi∈V+

∫ 1

0

(1 − ρs)dµi(ρs)(vl − c)

subject to:
∫ 1

0

µi(dρs)(vl − c) +

[

ρ0 −

∫ 1

0

ρsµi(dρs)

]

(vh − c) ≥ ρ0(vh − c) (IC)

∀S ∈ B[0, 1] : µi(S) ≤

∫

S

dF (ρs) (In)
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Let C+ refers to the set of non-negative continuous functions defined on [0, 1], and V+ the

set of non-negative measures defined on [0, 1]. The dual writes:

D : min
Λ∈C+, λ∈R+

∫ 1

0

Λ(ρs)dF (ρs)

subject to:

∀ ρs ∈ [0, 1] (vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] ≤ Λ(ρs) (⋆)

Technical appendix 4.1 describes the construction of the dual as well as proof that strong

duality holds:

Proposition 6.1. Problems P and D are strong duals:

1. Both problems have a solution and val{P} = val{D}.

2. Let µ and Λ, λ be feasible then:

µ is and optimal solution of P and (Λ, λ) is an optimal solution of D if and only if






∫
Λd(F − µ) = 0 (C1)

λ
(∫ 1

0
dµ(ρs)(vl − c) −

∫ 1

0
ρsdµ(ρs)(vh − c)

)

= 0 (C2)

∫ 1

0
Λ(ρs) − (vl − c)(1 + λ) + ρs[(vl − c) + λ(vh − c)]dµ(ρs) = 0 (C3)

Proof. See technical appendix 4.1.
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Optimality of the cutoff rule

This subsection proves proposition 3.1. On top of the complementary slackness conditions,

the solution must satisfy primal feasibility:







µ ∈ V+

µ ≤ F (In)

∫ 1

0
µ(dρs)(vl − c) +

[

ρ0 −
∫ 1

0
ρsµ(dρs)

]

(vh − c) ≥ ρ0(vh − c) (IC)

As well as dual feasibility:







Λ0 ∈ C+

λ ∈ R+

∀ ρs ∈ [0, 1] (vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] ≤ Λ(ρs) (⋆)

The LHS of equation (⋆) is an affine function of z. Since λ ∈ R+ this affine function starts

positive at 0 and ends up non-positive at 1. It crosses the x axis at:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Because Λ is a non negative map, for all z ∈ (ρt, 1] (⋆) is slack:

(1 − z)(vl − c) + λ[vl − c− z(vh − c)] − Λ(z) < 0

Thus, using (C3):

For all measurable B ⊂ (ρt, 1] µ(B) = 0



6. APPENDICES 205

Hence, from (C1):

∀ z ∈ supp(F ) ∩ (ρt, 1], Λ(z) = 0

Because Λ is continuous:

∀ z ∈ supp(F ) ∩ (ρt, 1], Λ(z) = 0

Second, the LHS of (⋆) is strictly positive for z ∈ [0, ρt). Thus (⋆) implies that for all

z ∈ [0, ρt), Λ(z) > 0.

So, using this in (C1):

∀ measurable B ⊂ supp(F ) ∩ [0, ρt), µ(B) = F (B)

But on B ⊂ supp(F )c ∩ [0, ρt), primal feasibility implies µ(B) = 0 = F (B). Therefore:

∀ measurable B ⊂ [0, ρt), µ(B) = F (B)

By the third complementary slackness condition one has again:

∀ measurable B ⊂ supp(F ) ∩ [0, ρt), Λ = (1 − z)(vl − c) + λ[vl − c− z(vh − c)]

To sum up we have so far:

∀ measurable B :

B ⊂ [0, ρt) µ(B) = F (B)

B ⊂ (ρt, 1] µ(B) = 0
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Additionally, from the σ−additivity property of measures, µ is pinned down up to the choice

of mass at {ρt}.

That is, receiving a signal below ρt always riggers a low price recommendation, and above ρt

always leads to a high price recommendation. The platform can also mix recommendation

at the cutoff.

The analysis has also established the relationship between the threshold and the value of

dual variables:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Equivalently:

λ =
(1 − ρt)(vl − c)

ρt(vh − c) − (vl − c)
∈ R+

In addition, it has determined the value of the dual variable Λ on the closure of the support

of F . To perform the sensitivity analysis, Λ is chosen outside the support to be continuous to

small perturbations of F , if a perturbed F had vanishingly small mass on the entire interval

then:

Λ(z) =







(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

The complementary slackness condition (C2) is associated to (IC):

λ

(∫ 1

0

µ(dz)(vl − c) −

∫ 1

0

zµ(dz)(vh − c)

)

= 0
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Case 1: Assume (IC) is slack at the solution, from (C2): λ = 0.

Using the formula for ρt that implies ρt = 1. (IC) is indeed slack with ρt = 1 if there is a

µ({1}) ∈ [0, dF (1)] such that:

∫ 1

0

dF (z)(vl − c) −

∫ 1

0

zdF (z)(vh − c) − (dF (1) − µ({1}))(vl − vh) > 0

⇐⇒
vl − c

vh − c
+

dF (1) − µ({1})

vh − c
(vh − vl) > ρ0

As vl−c
vh−c

< ρ0, if F doesn’t have a mass point at 1 the previous inequality cannot hold.

However, F may have a mass point at 1, for instance a fully informed platform has a distri-

bution of posterior F with a mass point at 1 of size ρ0.

If the platform has full information the inequality boils down to:

(1 − ρ0)(vl − c) − µ({1})(vh − vl) > 0

⇐⇒ µ({1}) < (1 − ρ0)
vl − c

vh − vl

Together with µ({1}) ≥ 0 that corresponds to an interval of solutions.

In a case of an arbitrary mass point such solutions are feasible if the mass point is large

enough formally:

dF (1) >
ρ0(vh − c) − (vl − c)

vh − vl

µ({1}) can be optimally picked in the interval
[

0, dF (1) − ρ0(vh−c)−(vl−c)
vh−vl

)

.

All these solutions are optimal because they are all efficient: when the platform recom-

mends a high price the buyer has a high valuation with probability one. But we can also
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consider only the one that binds (IC) by choosing:

ρt = 1

µ({1}) = dF (1) −
ρ0(vh − c) − (vl − c)

vh − vl

Case 2: Assume (IC) binds at the solution.

In this case we can compute precisely λ from (IC) and the formula on ρt:

∫

[0,ρt)

vl − c− z(vh − c)dF (z) + µ({ρt})(vl − c− ρt(vh − c)) = 0

Because ρt ∈ ( vl−c
vh−c

, 1],
∫

[0,ρt)
vl − c − z(vh − c)dF (z) is strictly positive for ρt close to vl−c

vh−c

and strictly decreasing in ρt. In addition, because vl−c
vh−c

< ρ0 it is strictly negative at ρt = 1.

Therefore it changes sign only once, but it need not to be continuous as F may have mass

points.

However, by (In): µ({ρt}) ∈ [0, dF (ρt)]. If F has a mass point at ρt, there is a unique

µ({ρt}) that binds (IC), and if F doesn’t have mass point at ρt then µ({ρt}) = 0, and there

is a unique ρt which binds (IC).

In both scenarios there exist a unique pair (ρt,µ({ρt})) that satisfies IC with equality. In

turn, λ is determined by ρt.

Which completes the proof of proposition 3.1
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Platform’s value for Data

The dual variable from the dual problem is:

Λ(z) =







(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

This problem was ignoring constant terms, in particular using strong duality the value of

the problem (with the constant terms) is:

V al(P) = (1 −Q(b̃))

(∫ 1

0

max{(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)], 0} +

∫ 1

0

ρsdF (ρs) + b̃

)

Thus the gradient is:

∇FV (ρs) = Qs(κ̃
∗)

(1 −Q(b̃∗))

2
(ρs(vh − c) + max{(vl − c)(1 + λ) − z[(vl − c) + λ(vh − c)], 0})

In the previous subsections, solving the platforms’ problem yields the following dual variables:

(1 −Q(b̃))Λ(ρs) = ∇FVp(ρs) = Qs(κ̃
∗)

(1 −Q(b̃∗))

2







(vl − c)(1 + λ) − ρs[(vl − c) + λ(vh − c)] if ρs ≤ ρt

0 if ρs ≥ ρt

And:

ρt
def
=

(vl − c)(1 + λ)

vl − c + (vh − c)λ
∈

(
vl − c

vh − c
, 1

]

Equivalently:

λ =
(1 − ρt)(vl − c)

ρt(vh − c) − (vl − c)
∈ R+
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When ρt is interior (λ > 0) and using the formula relating λ with ρt one has:

∇FVp(ρs) = Qs(κ̃
∗)

(1 −Q(b̃∗))

2

(

ρs(vh − c) +
(vh − vl)(vl − c)

(vh − c)ρt − (vl − c)
max{ρt − ρs, 0}

)

6.2 Value of Data

Proof of Proposition 4.3

The change in the platform’s profit in a direction H − F is given by:

Qs(κ̃
∗)

(1 −Q(b̃∗))

2

∫ 1

0

∇FV (ρs)d(H − F )(ρs)

For clarity lets compute it per buyer (dividing by Qs(κ̃
∗) (1−Q(b̃∗))

2
:

∫ ρt

0

(vl − c)(1 − ρs)d(H − F )(ρs) + λ

∫ ρt

0

((vl − c) − ρs(vh − c))d(H − F )(ρs)

Because H and F have a total mass of 1 and a mean of ρ0:

∫ ρt

0

(1 − ρs)d(H − F )(ρs) = −

∫ 1

ρt

(1 − ρs)d(H − F )(ρs)

Using this, and (C3):

∫ 1

ρt

((vl − c)(1 − ρs)d(F −H)(ρs) + λ

∫ ρt

0

((vl − c) − ρs(vh − c))dH(ρs) + (1 − ρt)(vl − c)[dF (ρt) − µ({ρt

=(vl − c)

((∫

[ρt,1]

(1 − ρs)dF (ρs) − µ({ρt})

)

−

∫ 1

ρt

(1 − ρs)dH(ρs)

)

+ λ

∫ ρt

0

((vl − c) − ρs(vh − c))dH(ρs)

Replacing H with
∫ 1

0
G(.|ρs)dF (ρs) provides the formula of proposition 4.3
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Benevolent Information provider value for data set G.

The benevolent information provider maximizes welfare given the competitive equilibrium:

∫

b̃

bdQb(b) − 2

∫ κ̃

κdQs(κ) −
τ

4

+ (1 −Qb(b̃))Qs(κ̃)

[∫ 1

0

(1 − ρs)µ(dρs)(vl − c) + ρ0(vh − c)

]

The competitive equilibrium is given by

∂Qs

∂κ̃i

[
1

2
(1 −Qb(b̃

∗))

(∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c)

)

− κ̃∗

]

= Qs(κ̃
∗)

(

1 −Qb(b̃
∗)

τ
+

∂Qb

∂b̃i

)[

Qs

(∫ ρ∗t

0

(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c)

)

+ b̃∗
]

= 1 −Qb(b̃
∗)

Denote by h =
(∫ ρ∗t

0
(1 − ρs)dF (ρs)(vl − c) + ρ0(vh − c)

)

the transaction surplus, and by dh

the change in the transaction surplus that comes from a change in the information structure.

The equilibrium marginal users vary by:

dκ̃∗

dh

[

Q′′
s

(
1 −Qb

2
h− κ̃∗

)

− 2Q′
s

]
2

Q′
s(1 −Qb)

=
db̃∗

dh

Q′
b

1 −Qb

db̃∗

dh

(

−
Q′

b

τ
+ Q′′

b

) [

Qsh + b̃∗
]

+ 1−Qb

τ
+ 2Q′

b
(
1−Qb

τ
+ Q′

b

)
Qs

= −
dκ̃∗

dh

Q′
s

Qs
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