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Abstract

We prove the finite time extinction property (u(t) ≡ 0 on Ω for any t > T?, for some T? > 0) for
solutions of the nonlinear Schrödinger problem iut + ∆u + a|u|−(1−m)u = f(t, x), on a bounded
domain Ω of RN , N 6 3, a ∈ C with Im(a) > 0 (the damping case) and under the crucial
assumptions 0 < m < 1 and the dominating condition 2

√
m Im(a) > (1 −m)|Re(a)|. We use an

energy method as well as several a priori estimates to prove the main conclusion. The presence
of the non-Lipschitz nonlinear term in the equation introduces a lack of regularity of the solution
requiring a study of the existence and uniqueness of solutions satisfying the equation in some
different senses according to the regularity assumed on the data.
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1 Introduction

This paper deals with the finite time extinction property of solutions of the nonlinear Schrödinger

problem 
i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× Ω,

u(t)|Γ = 0, on (0,∞)× Γ,

u(0) = u0, in Ω,

(1.1)

when, roughly speaking, we assume that N 6 3,

a ∈ C with Im(a) > 0, (1.2)

and

0 < m < 1. (1.3)

We start by pointing out that this finite time extinction property (u(t) ≡ 0 on Ω for any t > T?, for

some T? > 0) represents, clearly, the most opposite property to the famous Max Born result on the

conservation of the mass

‖u(t)‖L2(Ω) = ‖u0‖L2(Ω), for any t > 0,

which arises (when f = 0) in the linear case (and more generally if Im(a) = 0 : see Proposition 2.3

below) and which allows the probabilistic understanding of the complex wave solution u(t, x) in the

context of the applications of the linear Schrödinger equation in Quantum Mechanics. It is well known

that the presence of a damping term (1.2) makes the equation irreversible with respect the time.

We also recall that the Schrödinger equation in presence of a nonlinear term in the equation

(as, e.g., problem (1.1) when a ∈ C and a 6= 0) arises in many other different contexts as, e.g.,

Nonlinear Optics, Hydrodynamics, etc., and that those other contexts, for instance in Nonlinear

Optics, the variable t does not represent time but the main scalar spacial variable which appears in

the propagation of the waveguide direction (see e.g. Agrawal and Kivshar [2], Sulem and Sulem [33],

Shi, Xu, Yang, Yang and Yin [30] and its many references).

As a matter of fact, the nonlinear Schrödinger equation under condition (1.2) is referred in the

literature as the damped case and it was intensively studied since the middle of the past century under

different additional conditions (but most of them for m > 1) (see, e.g., Nelson [27], Pozzi [29], Bardos

and Brezis [5], Lions [25], Kato [23], Brezis and Kato [14], Vladimirov [36], Tsutsumi [35], Temam and
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Miranville [34], Kita and Shimomura [24], Carles and Gallo [15], Carles and Ozawa [16] and Hayashi,

Li and Naumkin [22], among others).

In our above formulation we assume that a ∈ C and thus a possible, non-dominant non-dissipative

nonlinear term may coexists with the damping term (i.e., we allow Re(a) 6= 0). Nevertheless, our main

result on the finite time extinction for |Ω| <∞ requires the dominating condition

2
√
m Im(a) > (1−m)|Re(a)|,

as well as the assumption (1.3) on a strong damping.

We also recall that in most of the papers on the nonlinear equation (1.1) it is assumed that m = 3

(the so called cubic case). Nevertheless there are several applications in which the general case m > 0

is of interest. For instance, it is the case of the so called non-Kerr type equations arising in the study

of optical solitons (see, e.g., [2]). For some other physical details and many references, we refer the

reader to the general presentations made in the books [2] and [33]. Some other references concerning

the case m ∈ (0, 1) are quoted in our previous paper Bégout and Dı́az [7]. We also mention that

the spacial localization phenomenon (solutions with support u(t, . ) being a compact, when Ω is

unbounded) requires a different balance between the damping and non-damping components (mainly

with Im(a) > 0) of the nonlinear term a|u|m−1u (see [6, 7, 8]).

In spite of the large amount of papers devoted to the existence and uniqueness results of nonlinear

Schrödinger equations with a damping term only very few of them allowed the consideration of a

strong damping term (i.e. condition (1.3)). This is the reason why we presented here some new

results on the general theory of the existence, uniqueness and regularity of solutions of the strongly

damped Schrödinger equation improving several previous papers in the literature (see, e.g. Carles

and Gallo [15], Lions [25], Brezis and Cazenave [13] and Vrabie [37]) which are needed for the study

of the finite time extinction property.

Since the comparison principle does not apply to our problem, the main tool to prove the finite

time extinction property is a suitable energy method in the spirit of the collection of energy methods

quoted in the monograph Antontsev, Dı́az and Shmarev [4]. Nevertheless, the adaptation to the

nonlinear Schrödinger equation requires some new estimates and also a sharper study of the ordinary

differential inequality satisfied by the mass. We start by giving, in Section 2, a semi-abstract result

(which is proved in Section 5) in which the finite time extinction property is derived under a general

regularity condition on the solution. The presence of the non-Lipschitz nonlinear term in the equation

introduces a lack of regularity of the solution (in contrast to the case in which m > 1) and so we shall

devote Section 4 to present a separated study of the existence and uniqueness of solutions satisfying

the equation in some different sense according to the regularity assumed on the data. To this purpose,

we use mainly some monotonicity methods, jointly with suitable regularizations and passing to the
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limit, improving previous results in the literature. Section 3 concerns the finite time extinction and

the asymptotic behavior of the solution. The proofs of the results of Sections 3 and 4 are presented

in Sections 7 and 6, respectively. An Appendix, collecting some technical auxiliary results, is also

presented for the convenience of the reader.

We point out that in our formulation it may arise a non-homogeneous term (on which we assume

a finite time extinction T0) and that, surprisingly enough, under some critical decay to zero of f(t, . )

at t = T0, we can conclude that the corresponding solution u also vanishes after the same time t = T0

(see Theorem 2.1 part 2). Our energy method allows us also to get some large time decay estimates

in some cases, always under the presence of a damping term, in which the conditions on the finite

time extinction property fails (see Theorems 3.5 and 3.6 below). See Shimomura [31] for a related

result with m = 1 + 2
N .

We mention that it seems possible to apply the techniques of this paper to the consideration of

some other complex-valued nonlinear equations such as the Gross-Pitaevskii equations, the Hartree-

Fock equations, and the Ginzburg-Landau equations (see, e.g., Bégout and Dı́az [9], Antontsev, Dias

and Figueira [3], Okazawa and Yokota [28] and its many references).

Finally, we collect here some notations which will be used along with this paper. We let N0 =

N ∪ {0}. Let t ∈ R. Then t+ = max{t, 0} is the positive part of t. We denote by z the conjugate

of the complex number z, by Re(z) its real part and by Im(z) its imaginary part. For 1 6 p 6 ∞,
p′ is the conjugate of p defined by 1

p + 1
p′ = 1. We write Γ the boundary of a subset Ω ⊂ RN .

Unless if specified, all functions are complex-valued (H1(Ω) = H1(Ω;C), etc). The notations Lp(Ω)

(p ∈ (0,∞]), W k,p(Ω), W k,p
0 (Ω), Hk(Ω), Hk

0 (Ω) (p ∈ [1,∞], k ∈ N), W−k,p
′
(Ω) and H−k(Ω) (p ∈

[1,∞), k ∈ N) refer as the usual well known different Lebesgue, Sobolev and Hilbert spaces and their

topological dual. By convention of notation, W 0,p(Ω) = W 0,p
0 (Ω) = Lp(Ω). For a Banach space X, we

denote by X? its topological dual and by 〈 . , . 〉X?,X ∈ R the X? −X duality product. In particular,

for any T ∈ Lp
′
(Ω) and ϕ ∈ Lp(Ω) with 1 6 p < ∞, 〈T, ϕ〉Lp′ (Ω),Lp(Ω) = Re

∫
Ω
T (x)ϕ(x)dx. The

scalar product in L2(Ω) between two functions u, v is, (u, v)L2(Ω) = Re
∫

Ω
u(x)v(x)dx. For a Banach

space X and p ∈ [1,∞], u ∈ Lploc

(
[0,∞);X

)
means that u ∈ Lploc

(
(0,∞);X

)
and for any T > 0,

u|(0,T ) ∈ Lp
(
(0, T );X

)
. In the same way, u ∈ W 1,p

loc

(
[0,∞);X

)
means that u ∈ Lploc

(
[0,∞);X

)
, u is

absolutely continuous over [0,∞) (so it has a derivative u′ almost everywhere on (0,∞)) and u′ ∈
Lploc

(
[0,∞);X

)
. For a real x, [x] denotes its integer part. As usual, we denote by C auxiliary positive

constants, and sometimes, for positive parameters a1, . . . , an, write as C(a1, . . . , an) to indicate that

the constant C depends only on a1, . . . , an and that this dependence is continuous (we will use this

convention for constants which are not denoted merely by “C”).
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2 A semi-abstract result for finite time extinction

We consider the following nonlinear Schrödinger equation.


i
∂u

∂t
+ ∆u+ a|u|−(1−m)u = f(t, x), in (0,∞)× Ω,

u(t)|Γ = 0, on (0,∞)× Γ,

u(0) = u0, in Ω.

(2.1)

(2.2)

(2.3)

The next result proves the finite time extinction of solutions (in some cases even in the same time in

which the source f(t, x) vanishes) under suitable “regularity” conditions on the solution (this is the

reason why we denote as “semi-abstract” such a framework). In the following sections we shall obtain

sufficient conditions implying that such a framework holds.

Theorem 2.1. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Assume that u is any strong solution to (2.1)–(2.3) (see Definition 4.1 below) and that,

u ∈ L∞
(
(0,∞);H`

0(Ω)
)
, (2.4)

where ` =
[
N
2

]
+ 1 (or H`(Ω) instead of H`

0(Ω), if Ω is a half-space or if Ω has a bounded C0,1-

boundary). Then the following conclusions hold.

1) If there exists T0 > 0 such that,

for almost every t > T0, f(t) = 0, (2.5)

then there exists a finite time T? > T0 such that,

∀t > T?, ‖u(t)‖L2(Ω) = 0. (2.6)

Furthermore,

T? 6
2 `CGN ‖u‖

N(1−m)
2`

L∞((0,∞);H`(Ω))

Im(a)(1−m)(2`−N)
‖u(T0)‖

(1−m)(2`−N)
2`

L2(Ω) + T0, (2.7)

where CGN = CGN(N,m) is the constant in the inequality (5.6) below.

2) There exist ε? = ε?(Im(a), N,m) satisfying the following property. Let T0 > 0 and let CGN be the

constant in (5.6). If,

‖u‖1−m
L∞((0,∞);H`(Ω))

6 Im(a)C−1
GN δ (1− δ)T0, (2.8)

and if for almost every t > 0,

‖f(t)‖2L2(Ω) 6 ε?‖u‖
− 2N

2`−N
L∞((0,∞);H`(Ω))

(
T0 − t

) 2δ−1
1−δ

+
, (2.9)

where δ = (2`+N)+m(2`−N)
4` ∈

(
1
2 , 1
)
, then (2.6) holds true with T? = T0.
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Remark 2.2. Notice that δ (1− δ) = (2`−N)(1−m)((2`+N)+m(2`−N))
16`2 and 2δ−1

1−δ = 2N(1−m)+2`m
(2`−N)(1−m) .

The following result collects several very useful a priori estimates and some time differentiability

conditions.

Proposition 2.3. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Assume that u is any weak solution to (2.1)–(2.3) (see Definition 4.1 below). Then we

have the following results.

u ∈ Lm+1
loc

(
[0,∞);Lm+1(Ω)

)
, (2.10)

1

2
‖u(t)‖2L2(Ω) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(Ω)dσ >

1

2
‖u(s)‖2L2(Ω)

+ Im

t∫∫
sΩ

f(σ, x)u(σ, x) dxdσ, if Im(a) 6 0,

1

2
‖u(t)‖2L2(Ω) + Im(a)

t∫
s

‖u(σ)‖m+1
Lm+1(Ω)dσ 6

1

2
‖u(s)‖2L2(Ω)

+ Im

t∫∫
sΩ

f(σ, x)u(σ, x) dxdσ, if Im(a) > 0,

(2.11)

for any t > s > 0. Finally, if u satisfies one of the conditions below then the map t 7−→ ‖u(t)‖2L2(Ω)

belongs to W 1,1
loc

(
[0,∞);R

)
and we have equality in (2.11).

a) u is a strong solution (see Definition 4.1 below),

b) |Ω| <∞,

c) m = 1,

d) Im(a) = 0.

Remark 2.4. Here are some comments about Theorem 2.1.

1) Let f satisfies (2.5) and let u be a weak solution (see Definition 4.1 below). By (2.11) we obtain

that for any t > T0, ‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω), if Im(a) = 0,

‖u(t)‖L2(Ω) > ‖u(T0)‖L2(Ω), if Im(a) < 0.

It follows that in those cases the finite time extinction is not reachable. If m = 1 then we have,

thanks to Proposition 2.3,

∀t > T0, ‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω)e
−Im(a)(t−T0).

And again, there is no finite time extinction.
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2) Let u be a weak solution of (2.1) (see Definition 4.1). It is obvious from the equation and 1) of

this remark that if u vanishes at a finite time T? > 0 then necessarily f must satisfy (2.5) (but not

necessarily the decay condition (2.9)) and that necessarily Im(a) > 0 and m < 1. If, in addition,

|Ω| <∞ then we have,

T? >
‖u(T0‖1−mL2(Ω)

(1−m)Im(a)|Ω| 1−m2
+ T0. (2.12)

Indeed, it follows from (2.5), Proposition 2.3 and Hölder’s inequality that for almost every t > T0,

1

2

d

dt
‖u(t)‖2L2(Ω) = −Im(a)‖u(t)‖m+1

Lm+1(Ω) > −Im(a)|Ω|
1−m

2 ‖u(t)‖m+1
L2(Ω),

that is, y′ > −2Im(a)|Ω| 1−m2 y
m+1

2 , where y( . ) = ‖u( . )‖2L2(Ω). After integration we get,

y(t)
1−m

2 >
(
y(T0)

1−m
2 − (1−m)Im(a)|Ω|

1−m
2 (t− T0)

)
+
,

for any t > T0, since y > 0. Hence the result.

3) The proof of the finite time extinction of u strongly relies on Gagliardo-Nirenberg’s inequality

(Lemma 5.4 below), that is: for any v ∈ H`
0(Ω) ∩ Lm+1(Ω) (or H`(Ω) instead of H`

0(Ω), if Ω is a

half-space or if Ω has a bounded C0,1-boundary),

‖v‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 CGN‖v‖m+1
Lm+1(Ω)‖v‖

N(1−m)
2`

H`(Ω)
, (2.13)

to get the ordinary differential inequality (5.11) below:

y′(t) + 2 Im(a)C−1
GN ‖u‖

−N(1−m)
2`

L∞((0,∞);H`(Ω))
y(t)δ 6 0, t > T0, (2.14)

where δ = (2`+N)+m(2`−N)
4` , y = ‖u( . )‖2L2(Ω) and CGN = CGN(N,m, `). This holds thanks to

the non increasing property (2.11) of the mass (we recall that Im(a) > 0 is necessary to have

finite time extinction, by 1) of this remark). But this method fails if N > 2`. Indeed, first of

all, Gagliardo-Nirenberg’s inequality imposes that 0 6 m 6 1. And as seen in 1) of this remark,

finite time extinction is not reachable for m = 1. So, assume that 0 6 m < 1, (2.5) is fulfilled and

u satisfies (2.4), where the integer ` has to be chosen later. Then for any ` > 1, we may apply

Lemma 5.4 below, which is (2.13) with v = u(t), and we finally get (2.14). But if N is even and

` = N
2 then δ = 1 and Lemma 5.1 below yield,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−Im(a)C−1 (t−T0), (2.15)

for any t > T0, where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m). In the same way, if 1 6 ` < N
2 then δ > 1

and Lemma 5.1 below yield,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + Im(a)C−1(1−m)(N − 2`)‖u(T0)‖
(1−m)(N−2`)

2`

L2(Ω) (t− T0)

) 2`
(1−m)(N−2`)

, (2.16)
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for any t > T0, where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m), and again this estimate does not give

necessarily any finite time extinction result.

3 Finite time extinction and asymptotic behavior of solutions

Most of the results in this paper hold under the structural assumptions below.

Assumption 3.1. We assume that Ω ⊆ RN is a nonempty subset, 0 < m 6 1 and a ∈ C with

Im(a) > 0. If m < 1 then we assume further that,

2
√
m Im(a) > (1−m)|Re(a)|, (3.1)

|Ω| <∞. (3.2)

Theorem 3.2. Let Assumption 3.1 be fulfilled with N ∈ {1, 2, 3} and m < 1. Let f ∈W 1,1
loc

(
[0,∞);L2(Ω)

)
,

u0 ∈ H1
0 (Ω) and assume that one of the following hypotheses holds.

1) N = 1 and f ∈W 1,1
loc

(
[0,∞);H1

0 (Ω)
)
.

2) N ∈ {1, 2, 3}, Ω is bounded with a C1,1-boundary and u0 ∈ H2(Ω) ∩H1
0 (Ω).

Let u be the unique strong solution of (2.1)–(2.3) (see Definition 4.1, Theorems 4.4 and 4.5 and

Remark 4.6 below). Finally, assume that there exists T0 > 0 such that,

for almost every t > T0, f(t) = 0.

Then we have the following results.

a) There exists a finite time T? > T0 such that,

∀t > T?, ‖u(t)‖L2(Ω) = 0. (3.3)

Furthermore, T? satisfies the estimates (2.7) and (2.12).

b) There exists ε? = ε?(|a|, |Ω|, N,m) satisfying the following property. Let δ be given in Property 2)

of Theorem 2.1. If f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)
,

(
‖u0‖H1

0 (Ω) + ‖f‖L1((0,∞);H1
0 (Ω))

)1−m
6 ε? min

{
1, T0

}
, if N = 1,(

‖u0‖mH2(Ω) + ‖f‖m
W 1,1((0,∞);H1

0 (Ω))

)1−m
6 ε? min

{
1, T0

}
, if N ∈ {2, 3},

and if for almost every t > 0,

‖f(t)‖2L2(Ω) 6 ε?
(
T0 − t

) 2δ−1
1−δ

+
,

then (3.3) holds with T? = T0.
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Remark 3.3. Notice that 2δ−1
1−δ = 2 1+m

1−m , if N ∈ {1, 2} and 2δ−1
1−δ = 2 3+m

1−m , if N = 3.

Remark 3.4. Theorem 3.2 is an extension of the main result of Carles and Gallo [15] in the sense

that they obtain the same conclusion as in a) but under the additional conditions Re(a) = 0, f = 0

and without the lower bound for T?. As far as we know, the result in b) is new.

The following result gives some asymptotic decay estimates, for large time, for the case of higher

dimensions N > 4.

Theorem 3.5. Let Assumption 3.1 be fulfilled with N > 4 and m < 1. Let f ∈ W 1,1
loc

(
[0,∞);L2(Ω)

)
and let u0 ∈ H1

0 (Ω). Assume further that f ∈ W 1,1
loc

(
[0,∞);H1

0 (Ω)
)

or u0 ∈ H2(Ω) and that Ω is

bounded with a C1,1-boundary. Let u be the unique strong solution of (2.1)–(2.3) (see Definition 4.1,

Theorems 4.4 and 4.5 and Remark 4.6 below). Finally, assume that there exists T0 > 0 such that

for almost every t > T0, f(t) = 0.

Then we have for any t > T0,

‖u(t)‖L2(Ω) 6 ‖u(T0)‖L2(Ω)e
−Im(a)C−1 (t−T0),

if N = 4 and u0 ∈ H2(Ω), and,

‖u(t)‖L2(Ω) 6
‖u(T0)‖L2(Ω)(

1 + Im(a)C−1(1−m)(N − 2`)‖u(T0)‖
(1−m)(N−2`)

2`

L2(Ω) (t− T0)

) 2`
(1−m)(N−2`)

,

if N > 5 or u0 ∈ H1
0 (Ω), where C = C(‖u‖L∞((0,∞);H`(Ω)), N,m).

Theorem 3.6. Let Assumption 3.1 be fulfilled, let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
, let u0 ∈ L2(Ω) and let u

be the unique weak solution of (2.1)–(2.3) (see Definition 4.1 and Theorem 4.3 below). If

f ∈ L1
(
(0,∞);L2(Ω)

)
,

then,

lim
t↗∞

‖u(t)‖Lp(Ω) = 0,

for any p ∈ (0, 2] (with p = 2, if m = 1 and |Ω| =∞).

Remark 3.7. Note that for m = 1 in Theorem 3.6, if the stronger assumption (2.5) holds then we

have,

∀t > T0, ‖u(t)‖L2(Ω) = ‖u(T0)‖L2(Ω)e
−Im(a)(t−T0).

See 1) of Remark 2.4.
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4 Existence and uniqueness of solutions

Here and after, we shall always identify L2(Ω) with its topological dual. Let Ω ⊆ RN be an open

subset, let 0 < m 6 1 and let X = H ∩ Lm+1(Ω), where H = L2(Ω) or H = H1
0 (Ω). It follows from

Lemma A.2 and 2) of Lemma A.4 below that,

X? = H? + L
m+1
m (Ω),

Lm+1
loc

(
[0,∞);X

)
∩W 1,m+1

m

loc

(
[0,∞);X?

)
↪→ C

(
[0,∞);L2(Ω)

)
.

This justifies the notion of solution below (and it explains the sense in which the initial condition is

satisfied).

Definition 4.1. Let Ω ⊆ RN be an open subset, 0 < m 6 1, a ∈ C, f ∈ L1
loc

(
[0,∞);L2(Ω)

)
and

u0 ∈ L2(Ω). Let us consider the following assertions.

1) u ∈ Lm+1
loc

(
[0,∞);H1

0 (Ω) ∩ Lm+1(Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);H? + L

m+1
m (Ω)

)
.

2) For almost every t > 0, ∆u(t) ∈ H?.

3) u satisfies (2.1) in D ′
(
(0,∞)× Ω

)
.

4) u(0) = u0.

We shall say that u is a strong solution if u is a H2-solution or a H1
0 -solution. We shall say that u is a

H2-solution of (2.1)–(2.3)
(
respectively, a H1

0 -solution of (2.1)–(2.3)
)
, if u satisfies the Assertions 1)–

4) with H = L2(Ω)
(
respectively, with H = H1

0 (Ω)
)
.

We shall say that u is a L2-solution or simply a weak solution of (2.1)–(2.3) is there exists a pair,

(fn, un)n∈N ⊂ L1
loc

(
[0,∞);L2(Ω)

)
× C

(
[0,∞);L2(Ω)

)
, (4.1)

such that for any n ∈ N, un is a H2-solution of (2.1)–(2.2) where the right-hand side member of (2.1)

is fn, and if

fn
L1((0,T );L2(Ω))−−−−−−−−−−→

n→∞
f and un

C([0,T ];L2(Ω))−−−−−−−−−→
n→∞

u, (4.2)

for any T > 0.

Remark 4.2. Before making some comments on the above definition, it is useful to analyze some

peculiar properties which arise when Ω is unbounded. Let 0 < m 6 1. Set for any z ∈ C, g(z) =

|z|−(1−m)z (g(0) = 0) and let us define the mapping for any measurable function u : Ω −→ C, which

we still denote by g, by g(u)(x) = g(u(x)). Let H = L2(Ω) or H = H1
0 (Ω). It follows from (6.4) below

that,

g ∈ C
(
Lm+1(Ω);L

m+1
m (Ω)

)
and g is bounded on bounded sets. (4.3)
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In particular, if |Ω| < ∞ or if m = 1 then H1
0 (Ω) ↪→ L2(Ω) ↪→ Lm+1(Ω) with dense embedding and

thus, L
m+1
m (Ω) ↪→ L2(Ω) ↪→ H−1(Ω). We then obtain,

g ∈ C
(
L2(Ω);L2(Ω)

)
∩ C

(
H1

0 (Ω);H−1(Ω)
)

and g is bounded on bounded sets, (4.4)

and Assertion 1) becomes,

u ∈ Lm+1
loc

(
[0,∞);H1

0 (Ω)
)
∩W 1,m+1

m

loc

(
[0,∞);H?

)
. (4.5)

But if |Ω| =∞ and m < 1 then the regularity (4.4) is not anymore valid. By Lemma A.2 below, we

have,

D(Ω) ↪→ X ↪→ Lm+1(Ω) with both dense embeddings, (4.6)

where X = H ∩ Lm+1(Ω). It follows that,

L
m+1
m (Ω) ↪→ X? ↪→ D ′(Ω). (4.7)

This gives with (4.3),

g ∈ C(X,X?) and g is bounded on bounded sets. (4.8)

It follows from (4.3) and (4.6)–(4.8) that,

〈g(u), v〉X?,X = 〈g(u), v〉
L
m+1
m (Ω),Lm+1(Ω)

= Re

∫
Ω

g(u)vdx, (4.9)

for any u, v ∈ X. Now, let us make some comments about Definition 4.1.

1) As seen at the beginning of this section, any strong or weak solution belongs to C
(
[0,∞);L2(Ω)

)
and Assertion 4) makes sense in L2(Ω).

2) It is obvious that a H2-solution is also a H1
0 -solution and a weak solution. But it is not clear that

a H1
0 -solution is a weak solution, without assuming a continuous dependence of the solution with

respect to the initial data. Such a result will be established with the additional assumption (3.1)

on a (see Lemma 6.5 below).

3) If |Ω| < ∞ or if m = 1 then it follows from (4.4), (4.5) and Assertion 2) that any H2-solution

(respectively, any H1
0 -solution) satisfies (2.1) in L2(Ω)

(
respectively, in H−1(Ω)

)
, for almost every

t > 0. Note also that Assertion 2) of Definition 4.1 is not an additional assumption for the H1
0 -

solutions.

4) If |Ω| =∞ and if m < 1 then it follows from (4.8) and Assertions 1) and 2) that any H2-solution

(respectively, any H1
0 -solution) satisfies (2.1) in L2(Ω) + L

m+1
m (Ω)

(
respectively, in H−1(Ω) +

L
m+1
m (Ω)

)
, for almost every t > 0.

11



5) Assume that u is a weak solution. By Definition 4.1, there exists (fn, un)n∈N satisfying (4.1)–(4.2)

such that for any n ∈ N, un is a H2-solution of (2.1)–(2.2) where the right-hand side of (2.1) is

fn. Applying (6.4)–(6.5) below, we deduce that for any T > 0,

∆un
C([0,T ];H−2(Ω))−−−−−−−−−−−→

n→∞
∆u,

g(un)
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
g(u), if |Ω| <∞,

g(un)
C([0,T ];L

2
m (Ω))−−−−−−−−−−→

n→∞
g(u).

Now, we set: Y = H2
0 (Ω) ∩ L

2
2−m (Ω). By Lemma A.2 below, we have,

Y ? = H−2(Ω) + L
2
m (Ω),

D(Ω) ↪→ Y ↪→ H2
0 (Ω), L2(Ω), L

2
2−m (Ω) with dense embedding,

H−2(Ω), L2(Ω), L
2
m (Ω) ↪→ Y ? ↪→ D ′(Ω).

Using the above uniform convergences and (4.2), we deduce that,

∞∫
0

〈
i
∂u

∂t
+ ∆u+ ag(u), ϕ

〉
Y ?,Y

ψ(t) dt =

∞∫
0

〈
f(t), ϕ

〉
Y ?,Y

ψ(t)dt.

for any ϕ ∈ Y and ψ ∈ D
(
(0,∞);R

)
.

As a conclusion, if u is a weak solution then u ∈ W 1,1
loc

(
[0,∞);Y ?

)
and it solves (2.1) in Y ?, for

almost every t > 0. In particular, u satisfies (2.1) in D ′
(
(0,∞) × Ω

)
. If, in addition, |Ω| < ∞ or

if m = 1 then we deduce from the above that u ∈ W 1,1
loc

(
[0,∞);H−2(Ω)

)
and u solves (2.1) in

H−2(Ω), for almost every t > 0.

6) When m < 1 then except for Theorem 2.1 and Proposition 2.3, all the results of the following

Sections 2–4 will be stated with |Ω| <∞.

7) Notice that the boundary condition u(t)|Γ = 0 is included in the assumption u(t) ∈ H1
0 (Ω).

Theorem 4.3 (Existence and uniqueness of L2-solutions). Let Assumption 3.1 be fulfilled and

let f ∈ L1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ L2(Ω), there exists a unique weak solution u to (2.1)–

(2.3). In addition, we have the following properties.

1) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to W 1,1
loc

(
[0,∞);R

)
and we have,

1

2

d

dt
‖u(t)‖2L2(Ω) + Im(a)‖u(t)‖m+1

Lm+1(Ω) = Im

∫
Ω

f(t, x)u(t, x) dx, (4.10)

for almost every t > 0.
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2) If v is another weak solution of (2.1)–(2.2) with v(0) = v0 ∈ L2(Ω) and h ∈ L1
loc([0,∞);L2(Ω)),

instead of f in (2.1) then,

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

t∫
s

‖f(σ)− h(σ)‖L2(Ω)dσ, (4.11)

for any t > s > 0.

Theorem 4.4 (Existence and uniqueness of H1
0 -solutions). Let Assumption 3.1 be fulfilled

and let f ∈ W 1,1
loc

(
[0,∞);H1

0 (Ω)
)
. Then for any u0 ∈ H1

0 (Ω), there exists a unique H1
0 -solution u to

(2.1)–(2.3). Furthermore, u is also a weak solution and satisfies the following properties.

1) u ∈ C
(
[0,∞);L2(Ω)

)
∩ C1

(
[0,∞);H−2(Ω)

)
and u satisfies (2.1) in H−2(Ω), for any t > 0.

2) u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);H−1(Ω)

)
and,


‖u(t)− u(s)‖L2(Ω) 6M |t− s| 12 ,

‖∇u(t)‖L2(Ω) 6 ‖∇u0‖L2(Ω) +

∫ t

0

‖∇f(s)‖L2(Ω)ds,

(4.12)

(4.13)

for any t > s > 0, where M2 = 2‖u‖L∞((s,t);H1
0 (Ω))‖ut‖L∞((s,t);H−1(Ω)).

3) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to C1
(
[0,∞);R

)
and (4.10) holds for any t > 0.

4) If f ∈W 1,1
(
(0,∞);H1

0 (Ω)
)

then we have,

u ∈ L∞
(
(0,∞);H1

0 (Ω)
)
∩W 1,∞((0,∞);H−1(Ω)

)
∩ C1

b

(
[0,∞);H−2(Ω)

)
.

Theorem 4.5 (Existence and uniqueness of H2-solutions). Let Assumption 3.1 be fulfilled and

let f ∈ W 1,1
loc

(
[0,∞);L2(Ω)

)
. Then for any u0 ∈ H1

0 (Ω) with ∆u0 ∈ L2(Ω), there exists a unique

H2-solution u to (2.1)–(2.3). Furthermore, u satisfies the following properties.

1) u ∈ C
(
[0,∞);H1

0 (Ω)
)
∩ C1

(
[0,∞);H−1(Ω)

)
, u satisfies (2.1) in H−1(Ω), for any t > 0.

2) u ∈W 1,∞
loc

(
[0,∞);L2(Ω)

)
, ∆u ∈ L∞loc

(
[0,∞);L2(Ω)

)
and,


‖u(t)− u(s)‖L2(Ω) 6 ‖ut‖L∞((s,t);L2(Ω))|t− s|,

‖∇u(t)−∇u(s)‖L2(Ω) 6M |t− s| 12 ,

‖ut‖L∞((0,t);L2(Ω)) 6 ‖∆u0 + a|u0|m−1u0 − f(0)‖L2(Ω) +

∫ t

0

‖f ′(σ)‖L2(Ω)dσ,

(4.14)

(4.15)

(4.16)

for any t > s > 0, where M2 = 2‖ut‖L∞((s,t);L2(Ω))‖∆u‖L∞((s,t);L2(Ω)).

3) The map t 7−→ ‖u(t)‖2L2(Ω) belongs to C1
(
[0,∞);R

)
and (4.10) holds for any t > 0.
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4) If f ∈W 1,1
(
(0,∞);L2(Ω)

)
then we have,

u ∈ Cb

(
[0,∞);H1

0 (Ω)
)
∩ C1

b

(
[0,∞);H−1(Ω)

)
∩W 1,∞((0,∞);L2(Ω)

)
,

∆u ∈ L∞
(
(0,∞);L2(Ω)

)
.

Remark 4.6. Let E =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}

with ‖u‖2E = ‖u‖2L2(Ω) +‖∆u‖2L2(Ω). We recall that

E ⊂ H2
loc(Ω) (Theorem 8.8, p.183-184, in Gilbarg and Trudinger [20]). If Ω = RN then E = H2(RN )

with equivalent norms (by the Fourier transform and Plancherel’s formula), while if Ω is bounded and

Γ is of class C1,1 then E = H2(Ω) ∩H1
0 (Ω) with equivalent norms (Theorem 8.12, p.186, in Gilbarg

and Trudinger [20] and Corollary 2.5.2.2, p.131, in Grisvard [21]). Note that for the equivalence of

the norms, we may use the inequalities,

‖∇u‖2L2(Ω) 6 ‖u‖L2(Ω)‖∆u‖L2(Ω) 6 ‖u‖2L2(Ω) + ‖∆u‖2L2(Ω), (4.17)

which hold for any subset Ω ⊆ RN and any u ∈ H2(Ω) ∩H1
0 (Ω).

Remark 4.7. Since f ∈ C
(
[0,∞);L2(Ω)

)
(by 1) of Lemma A.4), estimate (4.16) with f(0) makes

sense.

Remark 4.8. It follows from (4.11) and (4.13) that if N = 1 then the decay assumptions (2.8) and

(2.9) may be replaced with,(
‖u0‖H1

0 (Ω) + ‖f‖L1((0,∞);H1
0 (Ω))

)1−m
6 ε? min

{
1, T?

}
,

‖f(t)‖2L2(Ω) 6 ε?
(
T? − t

) 2δ−1
1−δ

+
, (4.18)

for almost every t > 0, where ε? = ε?(Im(a), N,m). In the same way, it follows from (4.11), (4.13),

(4.16), Remark 4.6 and (2.1) that if N 6 3 and Ω is bounded with a C1,1-boundary then (2.8) may

be replaced with, (
‖u0‖mH2(Ω) + ‖f‖mW 1,1((0,∞);H1

0 (Ω))

)1−m
6 ε? min

{
1, T?

}
,

and (2.9) with (4.18), where ε? = ε?(|a|, |Ω|, N,m).

5 Proof of the semi-abstract result on the finite time extinc-
tion

The proof of Theorem 2.1 relies on the three following lemmas.

Lemma 5.1. Let y ∈W 1,1
loc

(
[0,∞);R

)
with y > 0 over (0,∞), δ ∈ R, α > 0 and T0 > 0. If

y′ + 2αyδ 6 0,
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almost everywhere on (T0,∞), then we have,

y(t) 6



(
y(T0)1−δ + 2α(1− δ)(T0 − t)

) 1
1−δ

+
, if δ < 1,

y(T0)e−2α(t−T0), if δ = 1,

y(T0)(
1 + 2α(δ − 1)y(T0)δ−1(t− T0)

) 1
δ−1

if δ > 1,

for any t > T0. In particular, if δ < 1 then for any t > T?, y(t) = 0 where,

T? 6
1

2α(1− δ)
y(T0)1−δ + T0.

Proof. The result follows by integration of the ordinary differential inequality over (T0, t).

The following lemma improves a similar result contained in Antontsev, Dı́az and Shmarev [4] (Propo-

sition 1.1, p.77, and its proof, p.75–77).

Lemma 5.2. Let y ∈W 1,1
loc

(
[0,∞);R

)
with y > 0 over [0,∞), δ ∈ (0, 1), α, T0 > 0 and,

y? =
(
α δδ(1− δ)

) 1
1−δ , (5.1)

x? = (α δ (1− δ)T0)
1

1−δ . (5.2)

If,

y(0) 6 x?, (5.3)

and if for almost every t > 0,

y′(t) + αy(t)δ 6 y? (T0 − t)
δ

1−δ
+ , (5.4)

then for any t > T0, y(t) = 0.

Proof. Set for any t ∈ [0, T0], z(t) = x?T
− 1

1−δ
0 (T0 − t)

1
1−δ . We have for almost every t ∈ (0, T0),

z′(t) + αz(t)δ = y? (T0 − t)
δ

1−δ > y′(t) + αy(t)δ. (5.5)

We claim that for any t ∈ [0, T0], y(t) 6 z(t). If not, since by (5.3) z(0) > y(0) and y and z are

continuous over [0, T0] (by 1) of Lemma A.4), there exist t? ∈ [0, T0) and ε ∈ (0, T0 − t?) such that

y(t?) = z(t?) and y(t) > z(t), for any t ∈ (t?, t? + ε). This leads with (5.5) to, y′ 6 z′, almost

everywhere on (t?, t? + ε). Integrating over (t?, t) for t ∈ (t?, t? + ε), we obtain that y(t) 6 z(t), for

any t ∈ [t?, t? + ε]. A contradiction. Hence the claim. In particular, y(T0) 6 z(T0) = 0. But from

(5.4), y is non increasing over (T0,∞). Hence the result, since y > 0 everywhere.
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Remark 5.3. Let us explain how we found y? and x? in Lemma 5.2. We look for a solution of the

ordinary differential inequality (5.4). Set for any x > 0,

∀x > 0, f(x) = (1− δ)−1T
− 1

1−δ
0 xδ

(
α(1− δ)T0 − x1−δ) ,

∀t ∈ [0, T0], z(t) = xT
− 1

1−δ
0 (T0 − t)

1
1−δ
+ .

We want z(0) = x > y(0) to apply our proof. A straightforward calculation yields,

z′(t) + αz(t)δ = f(x) (T0 − t)
δ

1−δ .

We compute, argmax
x>0

f(x) = x?, where x? is given by (5.2), and f(x?) = y?, where y? is given by

(5.1). We then choose x = x? in the definition of z and we obtain the condition (5.3).

Lemma 5.4 (Gagliardo-Nirenberg’s inequality). Let N ∈ N, let Ω ⊆ RN be an open subset, let

0 6 m 6 1 and let ` ∈ N. Then for any v ∈ H`
0(Ω) ∩ Lm+1(Ω),

‖v‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 C‖v‖m+1
Lm+1(Ω)‖v‖

N(1−m)
2`

H`(Ω)
, (5.6)

where C = C(m, `,N). If Ω is a half-space or if Ω has a bounded C0,1-boundary then (5.6) holds for

any v ∈ H`(Ω).

Proof. See, for instance, Friedman [19], Theorem 9.3, p.24, for v ∈ D(RN ) and so, by extension and

density, for v ∈ H`
0(Ω)∩Lm+1(Ω). If Ω is a half-space or if Ω has a bounded C0,1-boundary then there

exists a linear extension operator E such that for any k ∈ N0 and p ∈ [1,∞],

E ∈ L
(
W k,p(Ω);W k,p(RN )

)
,

and Eu = u, almost everywhere in Ω (Stein [32], Theorem 5 and §3.2, p.181 and §3.3, p.189; Adams [1],

Theorem 4.26, p.84; see also Grisvard [21], Theorem 1.4.3.1, p.25).

Proof of Proposition 2.3. Let the assumptions of the theorem be fulfilled. We first assume that

u is a strong solution. Let H be as in Definition 4.1 and let X = H ∩ Lm+1(Ω). By Definition 4.1,

we have (2.10) and by 3) and 4) of Remark 4.2, we can take the X? − X duality product with iu.

Estimate (2.11) with equality then follows from (4.9) and 1) of Lemma A.5. Now, assume that u is

a weak solution. Let (fn)n∈N and (un)n∈N be as in Definition 4.1. According to the above, it follows

from Hölder’s inequality that fu ∈ L1
loc

(
[0,∞);L1(Ω)

)
and,

fnun
L1

loc([0,∞);L1(Ω))−−−−−−−−−−−→
n→∞

fu, (5.7)

1

2
‖un(t)‖2L2(Ω) + Im(a)

t∫
s

‖un(σ)‖m+1
Lm+1(Ω)dσ

=
1

2
‖un(s)‖2L2(Ω) + Im

t∫∫
sΩ

fn(σ, x)un(σ, x) dxdσ,

(5.8)
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for any n ∈ N and t > s > 0. If |Ω| < ∞ or if m = 1 then for any T > 0, C([0, T ];L2(Ω)) ↪→
C([0, T ];Lm+1(Ω)) and then we are allowed to pass to the limit in (5.8) under the integral symbol.

We then get with (5.7) the desired result under the hypotheses b), c) or d). If |Ω| = ∞, m < 1 and

Im(a) > 0 then for any T > 0, C([0, T ];L2(Ω)) ↪→ C([0, T ];Lm+1
loc (Ω)). By (5.8),

1

2
‖un(t)‖2L2(Ω) + Im(a)

t∫
s

‖un(σ)‖m+1
Lm+1(Ω∩B(0,R))dσ

6
1

2
‖un(s)‖2L2(Ω) + Im

t∫∫
sΩ

fn(σ, x)un(σ, x) dx dσ,

for any t > s > 0, R > 0 and n ∈ N. Passing to the limit in n first and then in R then, we obtain

(2.10) and (2.11) with the help of the monotone convergence Theorem and (5.7). We proceed in the

same way if |Ω| =∞, m < 1 and Im(a) 6 0.

Proof of Theorem 2.1. By (5.6) and Proposition 2.3, we have for almost every t > 0,

‖u(t)‖
(2`+N)+m(2`−N)

2`

L2(Ω) 6 CGN‖u‖
N(1−m)

2`

L∞((0,∞);H`(Ω))
‖u(t)‖m+1

Lm+1(Ω),

d

dt
‖u(t)‖2L2(Ω) + 2Im(a)‖u(t)‖m+1

Lm+1(Ω) = 2Im

∫
Ω

f(t, x)u(t, x)dx.

It follows that,

d

dt
‖u(t)‖2L2(Ω) + 2α‖u(t)‖2δL2(Ω) 6 2

∫
Ω

|f(t, x)||u(t, x)|dx, (5.9)

for almost every t > 0, where α = Im(a)C−1
GN‖u‖

−N(1−m)
2`

L∞((0,∞);H`(Ω))
and δ = (2`+N)+m(2`−N)

4` . Since

0 < m < 1 and ` =
[
N
2

]
+ 1, we have 1

2 < δ < 1. Using the Young inequality,

xy 6
ε−p

′

p′
xp
′
+
εp

p
yp,

with x = ‖f(t)‖L2(Ω), y = ‖u(t)‖L2(Ω), p = 2δ and ε = (αδ)
1
2δ , one obtains with Cauchy-Schwarz’s

inequality,

2

∫
Ω

|f(t, x)||u(t, x)|dx 6
2δ − 1

δ
(αδ)−

1
2δ−1 ‖f(t)‖

2δ
2δ−1

L2(Ω) + α‖u(t)‖2δL2(Ω). (5.10)

Finally, set for any t > 0, y(t) = ‖u(t)‖2L2(Ω) and let us prove Property 1). If f satisfies (2.5) then

(5.9) may be rewritten as,

y′(t) + 2αy(t)δ 6 0, (5.11)
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for almost every t > T0. We then conclude with the help of Lemma 5.1. Now assume that (2.8)–(2.9)

hold where the constant ε? has to be determined later. We then have,

y(0)1−δ 6 α δ (1− δ)T0, (5.12)

‖f(t)‖2L2(Ω) 6 ε?‖u‖
−N(1−m)

2`
1

1−δ
L∞((0,∞);H`(Ω))

(
T0 − t

) 2δ−1
1−δ

+
, (5.13)

where (5.12) is a consequence of (2.8) and (5.13) is nothing else but (2.9). Gathering together (5.9),

(5.10) and (5.13), one gets

y′(t) + αy(t)δ 6
2δ − 1

δ
(Im(a)C−1

GNδ)
− 1

2δ−1 ε
δ

2δ−1
? ‖u‖−

N(1−m)
2`

1
1−δ

L∞((0,∞);H`(Ω))

(
T0 − t

) δ
1−δ
+

.

Choosing ε? = (2δ − 1)−
2δ−1
δ (Im(a)C−1

GNδ)
1

1−δ (1− δ)
2δ−1
δ(1−δ) , one obtains,

y′(t) + αy(t)δ 6 y?
(
T0 − t

) δ
1−δ
+

.

for almost every t > 0, where y? is given by (5.1). Notice that (5.12) is nothing else but (5.3). We

infer by Lemma 5.2 that y(t) = 0, for any t > T0.

6 Proofs of the existence and uniqueness theorems

Lemma 6.1. Let Assumption 3.1 be fulfilled. Let us define the following (nonlinear) operator on

L2(Ω). D(A) =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}
,

∀u ∈ D(A), Au = −i∆u− ia|u|−(1−m)u,
(6.1)

Then A is a maximal monotone operator on L2(Ω) (and so m-accretive) with dense domain.

The proof relies on the following lemmas.

Lemma 6.2 ([26]). Let 0 < m 6 1. Set for any z ∈ C, g(z) = |z|−(1−m)z (g(0) = 0). Then for any

(z1, z2) ∈ C× C,

2
√
m
∣∣∣Im((g(z1)− g(z2)

)(
z1 − z2

))∣∣∣ 6 (1−m)Re
((
g(z1)− g(z2)

)(
z1 − z2

))
, (6.2)

|g(z1)− g(z2)| 6 3|z1 − z2|m. (6.3)

Let Ω ⊆ RN be an open subset. We define the mapping for any measurable function u : Ω −→ C,

which we still denote by g, by g(u)(x) = g(u(x)). Then for any p ∈ [1,∞),

g ∈ C
(
Lp(Ω);L

p
m (Ω)

)
and g is bounded on bounded sets, (6.4)

g ∈ C
(
L2(Ω);L2(Ω)

)
and g is bounded on bounded sets, if |Ω| <∞. (6.5)
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Finally, let a ∈ C with Im(a) > 0 satisfying (3.1). If
(
g(u)− g(v)

)
(u− v) ∈ L1(Ω) then,

Re

−i a

∫
Ω

(g(u)− g(v))(u− v)dx

 > 0. (6.6)

We may choose, for instance, u, v ∈ L2(Ω), if |Ω| <∞, or u, v ∈ Lm+1(Ω), in the general case.

Proof. Estimate (6.2) is Lemma 2.2 of Liskevich and Perel′muter [26] while (6.3) comes from

Lemma A.1, implying (6.4) and (6.5). Finally, by (6.4), (6.5) and Hölder’s inequality, we have(
g(u)− g(v)

)
(u− v) ∈ L1(Ω), for any u, v as in the statement of the lemma and by (6.2),

Re

−i a

∫
Ω

(
g(u)− g(v)

)
(u− v)dx


= Im(a)Re

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx+ Re(a)Im

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx

>

(
Im(a)− |Re(a)|1−m

2
√
m

)
Re

∫
Ω

(
g(u)− g(v)

)(
u− v

)
dx

> 0.

This ends the proof.

Proof of Lemma 6.1. The density of the domain of the operator is obvious. Let g be as in

Lemma 6.2. It is well known that (−i∆, D(A)) is a maximal monotone operator on L2(Ω) (Proposi-

tion 2.6.12, p.31, in Cazenave and Haraux [18]). In addition, if we define B on L2(Ω) by Bu = −iag(u),

it follows from (6.4)–(6.6) that B ∈ C(L2(Ω);L2(Ω)) and

(Bu−Bv, u− v)L2(Ω) = Re

−i a

∫
Ω

(g(u)− g(v))(u− v)dx

 > 0,

for any u, v ∈ L2(Ω). We then infer that A = −i∆ +B is a maximal monotone operator (Brezis [11],

Corollary 2.5, p.33 and Corollary 2.7, p.36).

To obtain (4.13), we need to regularize the nonlinearity in order to apply the ∇ operator. We then

establish the next lemma.

Lemma 6.3. Let Ω ⊆ RN be an open subset, let 0 < m < 1, let a ∈ C with Im(a) > 0 satisfying (3.1)

and let ε ∈ (0, 1). Let for any u ∈ L2(Ω), gε(u) = (|u|2 + ε)−
1−m

2 u. Finally, let g be as in Lemma 6.2
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and let D(A) be defined by (6.1). Then,

gε ∈ C
(
L2(Ω);L2(Ω)

)
∩ C

(
H1

0 (Ω);H1
0 (Ω)

)
, (6.7)

∀u ∈ D(A), Re

ia

∫
Ω

gε(u)∆udx

 > 0, (6.8)

∀u ∈ D(A) such that um∆u ∈ L1(Ω), Re

ia

∫
Ω

g(u)∆udx

 > 0. (6.9)

Remark 6.4. If Ω ⊆ RN is arbitrary, m = 1 and Im(a) > 0 then for any u ∈ D(A),

Re

(
ia

∫
Ω

g(u)∆udx

)
= Im(a)‖∇u‖2L2(Ω) > 0.

In other words, one directly obtains (6.9).

Proof of Lemma 6.3. A straightforward calculation shows that for any ε ∈ (0, 1),

|gε(u)− gε(v)| 6 Cε−1|u− v|,

|∇gε(u)| 6 Cε−1|∇u|.

It follows that if u ∈ H1
0 (Ω) then gε(u) ∈ H1

0 (Ω) and (6.7) comes from the above estimates and the

partial converse of the dominated convergence Theorem (see, for instance, Brezis [12], Theorem 4.9,

p.94). Let us turn out to the proof of (6.8). Let u ∈ D(A). It follows from (6.7) that we can take the

scalar product in L2 between iagε(u) and ∆u. We then obtain,

Re

ia

∫
Ω

gε(u)∆udx

 = (iagε(u),∆u)L2(Ω) = −(ia∇gε(u),∇u)L2(Ω)

= Re

−ia

∫
Ω

|∇u|2(|u|2 + ε)− (1−m)Re(u∇u).u∇u
(|u|2 + ε)

3−m
2

dx


= Im(a)

∫
Ω

|∇u|2(|u|2 + ε)− (1−m)|Re(u∇u)|2

(|u|2 + ε)
3−m

2

dx− Re(a)

∫
Ω

(1−m)Re(u∇u).Im(u∇u)

(|u|2 + ε)
3−m

2

dx

= ε Im(a)

∫
Ω

|∇u|2

(|u|2 + ε)
3−m

2

dx

+ Im(a)

∫
Ω

m|Re(u∇u)|2 + |Im(u∇u)|2

(|u|2 + ε)
3−m

2

dx− Re(a)

∫
Ω

(1−m)Re(u∇u).Im(u∇u)

(|u|2 + ε)
3−m

2

dx,

where we used in the last equality the fact that, |∇u|2|u|2 = |Re(u∇u)|2 + |Im(u∇u)|2. To conclude,

it remains to show that,

(1−m)|Re(a)| |Re(u∇u)| |Im(u∇u)| 6 Im(a)
(
m|Re(u∇u)|2 + |Im(u∇u)|2

)
. (6.10)
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Using our assumption on a and the following Young inequality,

2|xy| 6 δx2 +
y2

δ
,

with x = |Re(u∇u)|, y = |Im(u∇u)| and δ =
√
m, we obtain,

(1−m)|Re(a)| |Re(u∇u)| |Im(u∇u)|

6 2
√
m Im(a)|Re(u∇u)| |Im(u∇u)|

6
√
m Im(a)

(√
m|Re(u∇u)|2 +

|Im(u∇u)|2√
m

)
6 Im(a)

(
m|Re(u∇u)|2 + |Im(u∇u)|2

)
,

which is (6.10). Finally, since we have gε(u)
a.e. on Ω−−−−−−→
ε↘0

g(u) and |gε(u)|
a.e.
6 |g(u)|, for any ε > 0, (6.9)

is a consequence of (6.8) and the dominated convergence Theorem.

Concerning the continuous dependence with respect to the data we have:

Lemma 6.5. Let Ω ⊆ RN be an open subset, 0 < m 6 1 and a ∈ C with Im(a) > 0 satisfying (3.1).

Let X = L2(Ω)∩Lm+1(Ω) or X = H1
0 (Ω)∩Lm+1(Ω). Finally, let f1, f2 ∈ L1

loc([0,∞);L2(Ω)) and let

u, v ∈ Lploc

(
[0,∞);X

)
∩W 1,p′

loc

(
[0,∞);X?

)
,

for some 1 < p <∞. If,

iut + ∆u+ a|u|−(1−m)u = f1,

ivt + ∆v + a|v|−(1−m)v = f2,

in D ′
(
(0,∞)× Ω

)
, then u, v ∈ C

(
[0,∞);L2(Ω)

)
and

‖u(t)− v(t)‖L2(Ω) 6 ‖u(s)− v(s)‖L2(Ω) +

t∫
s

‖f1(σ)− f2(σ)‖L2(Ω)dσ, (6.11)

for any t > s > 0.

Proof. By Lemma A.2 and the dense embedding X ↪→ L2(Ω), we have L2(Ω) ↪→ X? ↪→ D ′Ω) and

for any (x, y) ∈ L2(Ω)×X,

(x, y)L2(Ω) = 〈x, y〉L2(Ω),L2(Ω) = 〈x, y〉X?,X . (6.12)

It follows from above and (4.8) that the equations in the lemma make sense in X? and we then have,

i(u− v)t + ∆(u− v) +
(
ag(u)− ag(v)

)
= f1 − f2, in X?,
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almost everywhere on (0,∞), where g is as in Lemma 6.2. Taking the X? − X duality product of

the above equation with i(u− v), it follows from 2) of Lemma A.4, 1) of Lemma A.5 and (6.12) that

u, v ∈ C
(
[0,∞);L2(Ω)

)
, the mapping t 7−→ ‖u(t)− v(t)‖2L2(Ω) belongs to W 1,1

loc

(
[0,∞);R

)
and,

1

2

d

dt
‖u( . )− v( . )‖2L2(Ω) +

〈
ag(u)− ag(v), i(u− v)

〉
X?,X

=
(
f1 − f2, i(u− v)

)
L2(Ω)

,

almost everywhere on (0,∞). Applying (4.9), (6.6) and Cauchy-Schwarz’s inequality to the above,

one infers

1

2

d

dt
‖u( . )− v( . )‖2L2(Ω) 6 ‖f1 − f2‖L2(Ω)‖u− v‖L2(Ω),

almost everywhere on (0,∞). Integrating over (s, t), one obtains (6.11).

Proof of Theorem 4.5. By Lemma 6.1 and Vrabie [37] (Theorem 1.7.1, p.23), there exists a unique

u ∈ W 1,∞
loc

(
[0,∞);L2(Ω)

)
satisfying u(t) ∈ H1

0 (Ω), ∆u(t) ∈ L2(Ω) and (2.1) in L2(Ω), for almost

every t > 0, u(0) = u0 and (4.16). Then (4.14) comes from (4.16). It follows from 1) of Lemma A.4,

(6.4)–(6.5), (4.16), (4.17) and (2.1) that,

f ∈ C
(
[0,∞);L2(Ω)

)
, (6.13)

|u|−(1−m)u ∈ C
(
[0,∞);L2(Ω)

)
, (6.14)

∆u ∈ L∞loc

(
[0,∞);L2(Ω)

)
, (6.15)

u ∈ L∞loc

(
[0,∞);H1

0 (Ω)
)
,

so that u is a H2-solution and u ∈ C
(
[0,∞);H1

0 (Ω)
)

(by 3) of Lemma A.4). So,

∆u ∈ C
(
[0,∞);H−1(Ω)

)
. (6.16)

It then follows from (6.13), (6.14), (6.16) and (2.1) that,

ut ∈ C
(
[0,∞);H−1(Ω)

)
.

By (4.17), (4.14) and (6.15), one obtains (4.15) and Properties 1) and 2) are proved. Property 3)

follows easily from Property 1), (A.3) and Proposition 2.3. Finally, Property 4) comes from (6.11),

(4.16), (4.17), (6.4), (6.5), the embedding 1) of Lemma A.4 and (2.1). This concludes the proof of the

theorem.

Proof of Theorem 4.3. Existence comes from density of H2
0 (Ω)×W 1,1

loc ([0,∞);L2(Ω)) in L2(Ω)×
L1

loc([0,∞);L2(Ω)), Theorem 4.5, (6.11) and completeness of C
(
[0, T ];L2(Ω)

)
, for any T > 0. Prop-

erty 1) comes from Proposition 2.3. Estimate (4.11) being stable by passing to the limit in C
(
[0, T ];L2(Ω)

)
×

L1
(
(0, T );L2(Ω)

)
, for any T > 0, it is sufficient to establish it for the H2-solutions. This then comes
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from Lemma 6.5 and the uniqueness conclusion of the theorem follows. Finally, Property 1) comes

from Proposition 2.3.

Proof of Theorem 4.4. The uniqueness of solutions comes from Lemma 6.5. Let f ∈W 1,1
loc ([0,∞);H1

0 (Ω))

and let u0 ∈ H1
0 (Ω). Let (ϕn)n∈N ⊂ H2

0 (Ω) be such that ϕn
H1

0 (Ω)−−−−→
n→∞

u0. Finally, let g be defined as in

Lemma 6.2 and for each n ∈ N, let un be the unique H2-solution of (2.1)–(2.2) such that un(0) = ϕn,

given by Theorem 4.5. By Lemma 6.5, we have for any T > 0 and n, p ∈ N,

‖un‖C([0,T ];L2(Ω)) 6 ‖ϕn‖L2(Ω) +

∫ T

0

‖f(t)‖L2(Ω)dt, (6.17)

‖un − up‖L∞((0,∞);L2(Ω)) 6 ‖ϕn − ϕp‖L2(Ω),

It follows that for any T > 0, (un)n∈N is a Cauchy sequence in C
(
[0, T ];L2(Ω)

)
. As a consequence,

and with (6.4)–(6.5), there exists u ∈ C
(
[0,∞);L2(Ω)

)
such that for any T > 0,

un
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
u, (6.18)

g(u) ∈ C
(
[0, T ];L2(Ω)

)
, (6.19)

g(un)
C([0,T ];L2(Ω))−−−−−−−−−→

n→∞
g(u). (6.20)

By definition, it follows from (6.18) that u is a weak solution of (2.1)–(2.3) (take fn = f, for any

n ∈ N). By 3) of Remark 4.2, we can take the L2-scalar product of (2.1) with −i∆un and it follows

from (A.4) that for any n ∈ N and almost every s > 0,

1

2

d

dt
‖∇un(s)‖2L2(Ω) + Re

ia

∫
Ω

g(un(s))∆un(s)dx

 =
(
∇f(s), i∇un(s)

)
L2(Ω)

,

which gives with (6.9), Remark 6.4 and Cauchy-Schwarz’s inequality,

1

2

d

dt
‖∇un(s)‖2L2(Ω) 6 ‖∇fn(s)‖L2(Ω)‖∇un(s)‖L2(Ω).

By integration, we obtain for any t > 0 and any n ∈ N,

‖∇un(t)‖L2(Ω) 6 ‖∇ϕn‖L2(Ω) +

∫ t

0

‖∇f(s)‖L2(Ω)ds. (6.21)

By the Sobolev embedding 1) of Lemma A.4,

W 1,1
loc

(
[0,∞);L2(Ω)

)
↪→ C

(
[0,∞);L2(Ω)

)
, (6.22)

(6.17), (6.20), (6.21) and (2.1), we infer that,

(un)n∈N is bounded in L∞
(
(0, T );H1

0 (Ω)
)
∩W 1,∞((0, T );H−1(Ω)

)
, (6.23)
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for any T > 0. Applying Proposition 1.3.14, p.12, and Proposition 1.1.2, p.2, in Cazenave [17], it

follows from (6.18) and (6.23) that,

u ∈ Cw

(
[0,∞);H1

0 (Ω)
)
∩W 1,∞

loc

(
[0,∞);H−1(Ω)

)
, (6.24)

∆u ∈ C
(
[0,∞);H−2(Ω)

)
, (6.25)

un(t) ⇀ u(t), in H1
w(Ω), as n→∞, (6.26)

for any t > 0. Since u is a weak solution, u solves (2.1) in H−2(Ω), for almost every t > 0 (Property 5)

of Remark 4.2). As a consequence, and with help of (6.19), (6.22) and (6.25), we have that ut ∈
C
(
[0,∞);H−2(Ω)

)
and u satisfies (2.1) in H−2(Ω), for any t > 0. We then infer with (6.24) that u is

a H1
0 -solution and Property 1) holds. Still by (6.24), we have for any t > s > 0,

‖u(t)− u(s)‖2L2(Ω) 6 2‖u‖L∞((s,t);H1
0 (Ω))‖u(t)− u(s)‖H−1(Ω)

6 2‖u‖L∞((s,t);H1
0 (Ω))‖ut‖L∞((s,t);H−1(Ω))|t− s|,

which is (4.12). By (6.26), the weak lower semicontinuity of the norm and (6.21), one obtains (4.13)

and Property 2) is proved. Property 3) follows easily from Proposition 2.3 and the fact that u, f ∈
C
(
[0,∞);L2(Ω)

)
and L2(Ω) ↪→ Lm+1(Ω). Finally, Property 4) comes from (4.11), (4.13), (6.4), (6.5),

1) of Lemma A.4 and (2.1). This concludes the proof of the theorem.

7 Proofs of the finite time extinction property and asymptotic
behavior theorems

Proof of Theorem 3.2. For the Property a), apply Theorems 4.4, 4.5, Remark 4.6 and Theorem 2.1

(with ` = 1, if u0 ∈ H1
0 (Ω) and ` = 2, if u0 ∈ H2(Ω) ∩ H1

0 (Ω)). We then obtain the finite time

extinction result and the upper bound on T?. The lower bound on T? comes from 2) of Remark 2.4.

Property b) comes from Remark 4.8.

Proof of Theorem 3.5. By Theorems 4.4, 4.5 and Remark 4.6, u ∈ L∞
(
(0,∞);H`(Ω)

)
, where

` = 1, if u0 ∈ H1
0 (Ω) and ` = 2, if u0 ∈ H2(Ω)∩H1

0 (Ω). The result then comes from 3) of Remark 2.4.

Proof of Theorem 3.6. Let the assumptions of the theorem be fulfilled. We proceed to the proof

in two steps.

Step 1. Assume further that f ∈ D
(
[0,∞);L2(Ω)

)
and u0 ∈ H2

0 (Ω). Then, lim
t↗∞

‖u(t)‖L2(Ω) = 0.

It follows from uniqueness and Theorem 4.5 that u is a H2-solution and u ∈ L∞
(
(0,∞);H1

0 (Ω)
)
. Let

[0, T0] ⊃ supp f. By (4.10), d
dt‖u(t)‖2L2(Ω) 6 0, for any t > T0. It follows that lim

t↗∞
‖u(t)‖L2(Ω) = `0,

for some `0 ∈ [0,∞). If m = 1 then we have, one more time by (4.10), d
dt‖u(t)‖2L2(Ω) 6 −2Im(a)`20,
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for any t > T0. It follows that `0 = 0. Now, assume that m < 1 and suppose, by contradiction,

that `0 6= 0. Let q ∈ (2,∞) with (N − 2)q < 2N. By Hölder’s inequality and Sobolev’s embedding

H1
0 (Ω) ↪→ Lq(Ω), there exists θ ∈ (0, 1) such that,

0 < `0 6 ‖u(t)‖L2(Ω) 6 ‖u(t)‖θLm+1(Ω)‖u(t)‖1−θLq(Ω) 6 C‖u(t)‖θLm+1(Ω)‖u‖
1−θ
L∞((0,∞);H1

0 (Ω))
,

for any t > T0. We infer that, inf
t>T0

‖u(t)‖Lm+1(Ω) > 0, which implies with (4.10),

d

dt
‖u(t)‖2L2(Ω) 6 −2Im(a) inf

t>T0

‖u(t)‖m+1
Lm+1(Ω) < 0,

for any t > T0. As a consequence, lim
t↗∞

‖u(t)‖L2(Ω) = −∞, a contradiction.

Step 2. Conclusion.

Let (ϕn)n∈N ⊂ H2
0 (Ω) and (fn)n∈N ⊂ D

(
[0,∞);L2(Ω)

)
be such that,

ϕn
L2(Ω)−−−−→
n→∞

u0 and fn
L1((0,∞);L2(Ω))−−−−−−−−−−−→

n→∞
f.

For each n ∈ N, let un the H2-solution to (2.1)–(2.2), with fn instead of f, be such that un(0) = ϕn,

given by Theorem 4.5. Let n ∈ N. It follows from (4.11) that,

‖u(t)‖L2(Ω) 6 ‖u− un‖L∞((0,∞);L2(Ω)) + ‖un(t)‖L2(Ω)

6 ‖u0 − ϕn‖L2(Ω) + ‖f − fn‖L1((0,∞);L2(Ω)) + ‖un(t)‖L2(Ω),

for any t > 0. We get from Step 1,

lim sup
t↗∞

‖u(t)‖L2(Ω) 6 ‖u0 − ϕn‖L2(Ω) + ‖f − fn‖L1((0,∞);L2(Ω)).

Letting n↗∞, we obtain lim
t↗∞

‖u(t)‖L2(Ω) = 0. Finally, the general case comes from the embedding

L2(Ω) ↪→ Lp(Ω), which holds for any p ∈ (0, 2], as soon as |Ω| <∞. This concludes the proof.

A Appendix

In this appendix, we recall some useful estimates and results about Sobolev spaces.

Lemma A.1. Let 0 < m 6 1. Then we have for any (z1, z2) ∈ C× C,∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ 6 3|z1 − z2|m, (A.1)

where |z|−(1−m)z = 0, if z = 0.

Proof. Let 0 < m < 1 (the case m = 1 being obvious). We proceed to the proof in four steps.

Step 1: ∀t, s > 0, |tm − sm| 6 |t− s|m.
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Let for x > 1, f(x) = (x − 1)m − (xm − 1). Then f ′ > 0 on (1,∞) and so f
(
t
s

)
> f(1) = 0, for any

t > s > 0. Hence Step 1.

Step 2: ∀a > 0, ∀θ ∈ R,
∣∣am − ameiθ

∣∣ 6 21−m
∣∣a− aeiθ

∣∣m .
We have for any θ ∈ R,

∣∣1− eiθ
∣∣1−m 6 21−m, implying

∣∣1− eiθ
∣∣ 6 21−m

∣∣1− eiθ
∣∣m , therefore Step 2.

Step 3: ∀(z1, z2) ∈ C \ {0} × C,
∣∣∣|z2| − z1

|z1|z2

∣∣∣m 6 2m|z1 − z2|m.
We have, ∣∣∣∣|z2| −

z1

|z1|
z2

∣∣∣∣ =

∣∣∣∣(|z2| −
z1

|z1|
z1

)
+

(
z1

|z1|
z1 −

z1

|z1|
z2

)∣∣∣∣
=

∣∣∣∣(|z2| − |z1|
)

+

(
z1

|z1|
z1 −

z1

|z1|
z2

)∣∣∣∣ 6 ∣∣|z2| − |z1|
∣∣+ |z1 − z2| 6 2|z1 − z2|.

Hence Step 3.

Step 4: Conclusion.

Let (z1, z2) ∈ C× C with z1z2 6= 0, otherwise there is nothing to prove.∣∣∣|z1|−(1−m)z1 − |z2|−(1−m)z2

∣∣∣ =

∣∣∣∣|z1|−(1−m)z1
z1

|z1|
− |z2|−(1−m)z2

z1

|z1|

∣∣∣∣
=

∣∣∣∣(|z1|m − |z2|m
)

+

(
|z2|m − |z2|m

z1

|z1|
z2

|z2|

)∣∣∣∣ Steps 1 and 2

6 |z1 − z2|m + 21−m
∣∣∣∣|z2| − |z2|

z1

|z1|
z2

|z2|

∣∣∣∣m
= |z1 − z2|m + 21−m

∣∣∣∣|z2| −
z1

|z1|
z2

∣∣∣∣m Steps 3

6 3|z1 − z2|m.

The lemma is proved.

The four next lemmas are, more or less, a repetition of some similar results contained in the unpub-

lished book by Brezis and Cazenave [13].

Lemma A.2. Let Ω ⊆ RN be a nonempty open subset, let k,m ∈ N0 and let 1 6 p, q < ∞. Then

D(Ω) ↪→ W k,p
0 (Ω) ∩Wm,q

0 (Ω) with dense embedding. In addition, W k,p
0 (Ω) ∩Wm,q

0 (Ω) is separable

and, (
W k,p

0 (Ω) ∩Wm,q
0 (Ω)

)?
= W−k,p

′
(Ω) +W−m,q

′
(Ω) ↪→ D ′(Ω). (A.2)

Finally, if p, q > 1 then W k,p
0 (Ω)∩Wm,q

0 (Ω) and W−k,p
′
(Ω) +W−m,q

′
(Ω) are reflexive and separable.

Proof. Set X = W k,p
0 (Ω) ∩Wm,q

0 (Ω). Without loss of generality, we may assume that p 6 q. It is

clear that D(Ω) ↪→ X. The equality in (A.2) comes from the density of D(Ω) in the spaces W j,r
0 (Ω)

and Bergh and Löfström [10] (Lemma 2.3.1, p.24-25, and Theorem 2.7.1, p.32). Since for any j ∈ N0

and r ∈ [1,∞), W−j,r
′
(Ω) ↪→ D ′(Ω), we have by the equality in (A.2),

X? =
{
T ∈ D ′(Ω);T = T1 + T2, (T1, T2) ∈W−k,p

′
(Ω)×W−m,q

′
(Ω)
}
.

Let T ∈ X? be such that 〈T, ϕ〉X?,X = 0, for any ϕ ∈ D(Ω). It follows from above that for any

ϕ ∈ D(Ω), 〈T, ϕ〉D′(Ω),D(Ω) = 〈T, ϕ〉X?,X = 0. Then T = 0 in D ′(Ω), hence in X?. We deduce that

26



D(Ω) ↪→ X is dense (Brezis [12], Corollary 1.8, p.8) and so X? ↪→ D ′(Ω). Now, let n > k+m be large

enough to have Wn,p
0 (Ω) ↪→ X. Since this embedding is dense and Wn,p

0 (Ω) is separable, we infer that

X is separable. Finally, separability and reflexivity of the last part of the lemma present no difficulty

and follow easily from reflexivity and separability of the spaces W j,r
0 (Ω), (A.2) and Eberlein–Šmulian’s

Theorem (Brezis [12], Theorem 3.19, p.70, and Corollary 3.27, p.73).

Lemma A.3 ([13]). Let I ⊆ R be an open interval, let 1 6 p, q <∞ and let X ↪→ Y be two Banach

spaces. Then D(I;X) is dense in Lp(I;X) ∩W 1,q(I;Y ). Moreover, if Z is a Banach space such that

Z ↪→ X with dense embedding then D(I;Z) is dense in Lp(I;X) ∩W 1,q(I;Y ).

Proof. We first construct a linear extension operator to bring back to the case I = R. The first

statement then follows from the standard procedure of truncation and regularization, while the second

statement comes from the density of D(R;Z) in C1
c (R;X), for the norm of C1

b(R;X).

Lemma A.4. Let Ω ⊆ RN be an open subset. Consider the Hilbert space given by D(A) with,

D(A) =
{
u ∈ H1

0 (Ω); ∆u ∈ L2(Ω)
}
,

‖u‖2D(A) = ‖u‖2H1
0 (Ω) + ‖∆u‖2L2(Ω),

for any u ∈ D(A). Moreover, let X be a Banach space, let I be an open interval and let 1 < p < ∞.
We have the following results.

1) W 1,1
(
I;X

)
↪→ Cb,u

(
I;X

)
.

2) Lp(I;X) ∩W 1,p′(I;X?) ↪→ Cb

(
I;L2(Ω)

)
, if X ↪→ L2(Ω) with dense embedding.

3) Lp
(
I;D(A)

)
∩W 1,p′

(
I;L2(Ω)

)
↪→ Cb

(
I;H1

0 (Ω)
)
.

Lemma A.5. Let Ω ⊆ RN be an open subset, let I be an open interval and let 1 < p <∞. For t ∈ I
and u = u(t, x) ∈ C, let us define (formally),

M(t) =
1

2
‖u(t)‖2L2(Ω) and E(t) =

1

2
‖∇u(t)‖2L2(Ω).

Let D(A) the Hilbert space be defined in Lemma A.4 and let X ↪→ L2(Ω) be a Banach space with

dense embedding. We then have the following results.

1) If u ∈ Lp(I;X) ∩W 1,p′(I;X?) or if u ∈W 1,1(I;L2(Ω)) then M ∈W 1,1(I;R) and,

M ′(t) =


〈
u(t), u′(t)

〉
X,X?

, if u ∈ Lp(I;X) ∩W 1,p′(I;X?),(
u(t), u′(t)

)
L2(Ω)

, if u ∈W 1,1(I;L2(Ω)),
(A.3)

for almost every t ∈ I.
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2) If u ∈ Lp(I;D(A)) ∩W 1,p′(I;L2(Ω)) then E ∈W 1,1(I;R) and,

E′(t) =
(
−∆u(t), u′(t)

)
L2(Ω)

, (A.4)

for almost every t ∈ I.

Proof of Lemmas A.4 and A.5. The proof of the embedding W 1,1
(
I;X

)
↪→ Cb,u

(
I;X

)
is very

standard and we omit its proof. Now, assume that X ↪→ L2(Ω) with dense embedding. We infer that

L2(Ω) ↪→ X?. It follows that for any v ∈ X,

‖v‖2L2(Ω) = (v, v)L2(Ω) = 〈v, v〉L2(Ω),L2(Ω) = 〈v, v〉X?,X .

We then note that M ∈ C1(I;R), E ∈ C1(I;R) and,

M(t) = M(s) +

∫ t

s

〈
u(σ), u′(σ)

〉
X,X?

dσ, (A.5)

E(t) = E(s) +

∫ t

s

(
−∆u(σ), u′(σ)

)
L2(Ω)

dσ, (A.6)

for any t, s ∈ I, as soon as u ∈ D(I;X), for (A.5) and u ∈ D(I;D(A)), for (A.6). Applying Hölder’s

inequality in time and Young’s inequality, one obtains,

‖u(t)‖2L2(Ω) 6 ‖u(s)‖X‖u(s)‖X? + ‖u‖2Lp(I;X) + ‖u′‖2
Lp′ (I;X?)

,

‖∇u(t)‖2L2(Ω) 6 ‖u(s)‖L2(Ω)‖∆u(s)‖L2(Ω) + ‖∆u‖2Lp(I;L2) + ‖u′‖2
Lp′ (I;L2)

, (A.7)

for any t, s ∈ I. Let (In)n∈N ⊂ I be a increasing sequence (in the sense of the inclusion) of open

bounded intervals such that
⋃
n∈N In = I. Integrating in s and applying, one more time, Hölder’s and

Young’s inequalities, we have,

|In| ‖u‖2Cb(In;L2)
6 (1 + |In|)

(
‖u‖Lp(I;X) + ‖u‖W 1,p′ (I;X?)

)2

,

for any n ∈ N. Dividing by |In|, letting n ↗ ∞ and proceeding in the same way in (A.7), we arrive

at,

‖u‖Cb(I;L2) 6 (1 + |I|− 1
2 )
(
‖u‖Lp(I;X) + ‖u‖W 1,p′ (I;X?)

)
, (A.8)

‖∇u‖Cb(I;L2) 6 (1 + |I|− 1
2 )
(
‖u‖Lp(I;D(A)) + ‖u‖W 1,p′ (I;L2)

)
, (A.9)

with the convention |I|− 1
2 = 0, if |I| =∞. Since X ↪→ X? and D(A) ↪→ L2(Ω), we prove Lemma A.4

by density with (A.8)–(A.9) (Lemma A.3). Finally, Lemma A.5 is a consequence of (A.5)–(A.6) and

Lemmas A.3–A.4.
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Equations, 6:345–394, 1969.

[6] P. Bégout and J. I. Dı́az. Localizing estimates of the support of solutions of some nonlin-
ear Schrödinger equations – The stationary case. Ann. Inst. H. Poincaré Anal. Non Linéaire,
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