On a Stationary Schrödinger Equation with Periodic Magnetic Potential

Pascal BÉgout*and Ian Schindler*, ${ }^{*}$

Abstract

We prove existence results for a stationary Schrödinger equation with periodic magnetic potential satisfying a local integrability condition on the whole space using a critical value function.

VERSION 7

1 Introduction and main result

We wish to investigate for which $\lambda>0$ there is a weak solution to the stationary Schrödinger equation with magnetic potential:

$$
\left\{\begin{array}{l}
(-\mathrm{i} \nabla+A)^{2} u+V(x) u=\lambda f(x,|u|) \frac{u}{|u|} \text { in } \mathbb{R}^{N}, \tag{1.1}\\
u \in H^{1}\left(\mathbb{R}^{N}\right)
\end{array}\right.
$$

where $A: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ is the magnetic potential, $B=\operatorname{curl} A$ is the magnetic field, $V: \mathbb{R}^{N} \longrightarrow \mathbb{C}$, and $f: \mathbb{R}^{N} \times[0, \infty) \longrightarrow \mathbb{R}$ satisfy some suitable assumptions. Here, $\mathrm{i}^{2}=-1$ and in what follows, unless specified, all functions are complex-valued $\left(H^{1}\left(\mathbb{R}^{N}\right)=H^{1}\left(\mathbb{R}^{N} ; \mathbb{C}\right), L^{p}\left(\mathbb{R}^{N}\right)=L^{p}\left(\mathbb{R}^{N} ; \mathbb{C}\right)\right.$, $\mathscr{D}\left(\mathbb{R}^{N}\right)=\mathscr{D}\left(\mathbb{R}^{N} ; \mathbb{C}\right)$, etc $)$.

We make assumptions that insure the functional associated with (1.1) is invariant with respect to the transformations $u \longmapsto e^{\mathrm{i} \varphi_{y}} u(.+y)$, where φ_{y} is defined in (3.4) and $y \in \mathbb{Z}^{N}$. In [7], the authors stated that this set of transformations was a group of dislocations as defined in [9] which is false. In Section 3 we prove that the set D of such transformations is a set of dislocations permitting us to use the profile decomposition theorem [9, Theorem 3.1, p.62-63].

[^0]Arioli and Szulkin [1] treated a similar problem with more general conditions on V (the spectrum of the operator $(-\mathrm{i} \nabla+A)^{2}+V(x)$ can be negative), but they assume the Rabinowitz condition on the right hand side. We make less restrictive assumptions on the right hand side and introduce a parameter λ and an interval $I_{\gamma}=(M, \infty) \subset[0, \infty)$ such that for almost every $\lambda \in I_{\gamma}$ there is a solution to (1.1).

In Section 2 we show that if the magnetic potential $A \in L_{\text {loc }}^{N}\left(\mathbb{R}^{N}\right)$ then $H_{A}^{1}\left(\mathbb{R}^{N}\right)=H^{1}\left(\mathbb{R}^{N}\right)$ where

$$
\begin{equation*}
H_{A}^{1}\left(\mathbb{R}^{N}\right) \stackrel{\text { def }}{=}\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) ; \nabla u+\mathrm{i} A u \in L^{2}\left(\mathbb{R}^{N}\right)\right\} \tag{1.2}
\end{equation*}
$$

In Section 3, we introduce the set of invariant dislocations acting on (1.1) and prove necessary results to the dislocation theorem in [9]. In Section 4 we prove a cocompactness result. In Section 5 we introduce a related critical value function the study of which allows us to obtain our main result. Throughout this paper, we use the following notation. We denote by \bar{z} the conjugate of the complex number z and by $\operatorname{Re}(z)$ its real part. By $\left\{Q_{j}\right\}_{j \geqslant 1}$ we will denote a countable covering of $\mathbb{R}^{N} \backslash \mathbb{Z}^{N}$ by open unit cubes, thus $\mathbb{R}^{N}=\bigcup_{j \geqslant 1} \overline{Q_{j}}$, and $Q=(0,1)^{N}$. For a Banach space X, we denote by X^{\star} its topological dual and by $\langle., .\rangle_{X^{\star}, X} \in \mathbb{R}$ the $X^{\star}-X$ duality product and for a Hilbert space H, its (real) scalar product will be denoted by $\langle., .\rangle_{H}$. We denote by C auxiliary positive constants, and sometimes, for positive parameters a_{1}, \ldots, a_{n}, write $C\left(a_{1}, \ldots, a_{n}\right)$ to indicate that the constant C continuously depends only on a_{1}, \ldots, a_{n} (this convention also holds for constants which are not denoted by " C "). Finally, we denote by $2^{\star}=\frac{2 N}{N-2}$ the critical exponent of the embedding $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow L^{2^{\star}}\left(\mathbb{R}^{N}\right)$, with the convention that $2^{\star}=\infty$, if $N \leqslant 2$.

We shall make the following assumptions on $A: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$.
assA Assumption 1.1. Let $\left(e_{1}, \ldots, e_{n}\right)$ be the canonical basis of \mathbb{R}^{N}.
assA2

1. The magnetic potential $A: \mathbb{R}^{N} \longrightarrow \mathbb{R}^{N}$ satisfies,

$$
\begin{cases}A \in L_{\mathrm{loc}}^{N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right) \text { and } \alpha_{A} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|A\|_{L^{N}\left(Q_{j}\right)}<\infty, \text { for some } \varepsilon>0, & \text { if } N \geqslant 3 \tag{1.3}\\ A \in L_{\mathrm{loc}}^{2+\varepsilon}\left(\mathbb{R}^{2} ; \mathbb{R}^{2}\right) \text { and } \alpha_{A} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|A\|_{L^{2+\varepsilon}\left(Q_{j}\right)}<\infty, \text { for some } \varepsilon>0, & \text { if } N=2 \\ A \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; \mathbb{R}) \text { and } \alpha_{A} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|A\|_{L^{2}\left(Q_{j}\right)}<\infty, & \text { if } N=1\end{cases}
$$

2. A is a \mathbb{Z}^{N}-periodic magnetic potential:

$$
\begin{equation*}
\forall j \in \llbracket 1, N \rrbracket, \operatorname{curl} A\left(x+e_{j}\right) \stackrel{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)}{=} \operatorname{curl} A(x), \tag{1.4}
\end{equation*}
$$

eq: defH1A
where curl $A \in \mathscr{M}_{N}\left(\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)\right)$ is the skew-symmetric, matrix-valued distribution with $A_{i j}=$ $\partial_{i} A_{j}-\partial_{j} A_{i}$. Note that for $N=1$, (1.4) is always satisfied.

Remark 1.2. It is easy to see that in Assumption 1.1, (1.4) is equivalent to the condition: for any $y \in \mathbb{Z}^{N}, \operatorname{curl} A(x+y) \stackrel{\mathscr{P}^{\prime}\left(\mathbb{R}^{N}\right)}{=} \operatorname{curl} A(x)$. By Lemma 1.1 in Leinfelder [4], (1.4) is also equivalent to: for any $y \in \mathbb{Z}^{N}$, there exists $\varphi_{y} \in W_{\mathrm{loc}}^{1, N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}\right)\left(\varphi_{y} \in H_{\mathrm{loc}}^{1}(\mathbb{R} ; \mathbb{R})\right.$, if $\left.N=1\right)$ such that for almost every $x \in \mathbb{R}^{N}, A(x+y)=A(x)+\nabla \varphi_{y}(x)$.

Assumption 1.3. We will use the following assumptions on V, f, and f. Let $f: \mathbb{R}^{N} \times[0, \infty) \longrightarrow \mathbb{R}$ be such that $f(x, s)$ is measurable in x and continuous in s and let $F(x, u) \xlongequal{=} \int_{0}^{u} f(x, s) \mathrm{d} s$, for almost every $x \in \mathbb{R}^{N}$ and any $u \geqslant 0$.

1. For every $\varepsilon>0$ and any $2<p<2^{\star}$, there is a $C_{\varepsilon, p}$ such that for almost every $x \in \mathbb{R}^{N}$ and any $s \geqslant 0$,

$$
\begin{equation*}
|f(x, s)| \leqslant \varepsilon\left(s+s^{2^{*}-1}\right)+C_{\varepsilon, p} s^{p-1}, \tag{1.5}
\end{equation*}
$$

if $N \geqslant 3$ and

$$
\begin{equation*}
|f(x, s)| \leqslant \varepsilon s+C_{\varepsilon, p} s^{p_{\varepsilon}-1}, \tag{1.6}
\end{equation*}
$$

if $N \leqslant 2$.
2. The function f and electric potential $V: \mathbb{R}^{N} \longrightarrow \mathbb{C}$ are measurable and \mathbb{Z}^{N}-periodic, that is for almost every $(x, y) \in \mathbb{R}^{N} \times \mathbb{Z}^{N}$ and any $s \geqslant 0, f(x+y, s)=f(x, s)$ and $V(x+y)=V(x)$. We assume that

$$
\begin{equation*}
\nu \stackrel{\text { def }}{=} \underset{x \in \mathbb{R}^{N}}{\operatorname{ess} \inf } \operatorname{Re} V(x)>0 . \tag{1.7}
\end{equation*}
$$

3. The electric potential $V: \mathbb{R}^{N} \longrightarrow \mathbb{C}$ satisfies,

$$
\begin{cases}V \in L_{\text {loc }}^{\frac{N}{N}}\left(\mathbb{R}^{N}\right) \text { and } \alpha_{V} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|V\|_{L^{\frac{N}{2}}}\left(Q_{j}\right) \tag{1.8}\\ V \in L_{\text {loc }}^{1+\varepsilon}\left(\mathbb{R}^{2}\right) \text { and } \alpha_{V} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|V\|_{L^{1+\varepsilon}\left(Q_{j}\right)}<\infty, \text { for some } \varepsilon>0, & \text { if } N=2, \\ V \in L_{\text {loc }}^{1}\left(\mathbb{R}^{)} \text {and } \alpha_{V} \stackrel{\text { def }}{=} \sup _{j \in \mathbb{N}}\|V\|_{L^{1}\left(Q_{j}\right)}<\infty,\right. & \text { if } N=1\end{cases}
$$

Definition 1.4. We shall write that u is a weak solution of (1.1) if $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and if u is satisfies (1.1) in $\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)$.

Remark 1.5. The above definition makes sense. Indeed, we have for any $u \in H^{1}\left(\mathbb{R}^{N}\right)$,

$$
(-\mathrm{i} \nabla+A)^{2} u=-\Delta u-\mathrm{i} u \nabla \cdot A-2 \mathrm{i} A \cdot \nabla u+|A|^{2} u .
$$

Then $\Delta u \in H^{-1}\left(\mathbb{R}^{N}\right)$ and, by Assumption 1.1 and Hölder's inequality, $A . \nabla u,|A|^{2} u \in L_{\text {loc }}^{1}\left(\mathbb{R}^{N}\right)$. In addition, for any $\varphi \in \mathscr{D}\left(\mathbb{R}^{N}\right), \nabla(u \bar{\varphi}) \in L^{2}\left(\mathbb{R}^{N}\right)$ with compact support, so that $u \nabla \cdot A \in \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)$, and,

$$
\begin{equation*}
\langle\mathrm{i} u \nabla \cdot A, \varphi\rangle_{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right), \mathscr{D}\left(\mathbb{R}^{N}\right)}=-\operatorname{Re} \int_{\mathbb{R}^{N}} \mathrm{i} A \cdot \nabla(u \bar{\varphi}) \mathrm{d} x \tag{1.9}
\end{equation*}
$$

una

Indeed, denoting by $\left(\rho_{n}\right)_{n \in \mathbb{N}}$ any standard sequence of mollifiers, one has

$$
\begin{aligned}
& \langle\mathrm{i} u \nabla \cdot A, \varphi\rangle_{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right), \mathscr{D}\left(\mathbb{R}^{N}\right)} \\
= & \lim _{n \rightarrow \infty}\left\langle\mathrm{i}\left(\rho_{n} \star u\right) \nabla \cdot A, \varphi\right\rangle_{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right), \mathscr{D}\left(\mathbb{R}^{N}\right)}=\lim _{n \rightarrow \infty}\left\langle\mathrm{i} \nabla \cdot A, \overline{\left(\rho_{n} \star u\right)} \varphi\right\rangle_{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right), \mathscr{D}\left(\mathbb{R}^{N}\right)} \\
= & -\lim _{n \rightarrow \infty}\left\langle\mathrm{i} A, \nabla\left(\overline{\left(\rho_{n} \star u\right)} \varphi\right)\right\rangle_{\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right), \mathscr{D}\left(\mathbb{R}^{N}\right)}=-\langle\mathrm{i} A, \nabla(\bar{u} \varphi)\rangle_{L^{2}\left(\mathbb{R}^{N}\right), L^{2}\left(\mathbb{R}^{N}\right)} .
\end{aligned}
$$

Hence (1.9). In summary, if $u \in H^{1}\left(\mathbb{R}^{N}\right)$ then $(-\mathrm{i} \nabla+A)^{2} u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)$.

Below, the main result of this paper.
thm-main secequnor
defH1A
Theorem 1.6. Let Assumptions 1.1 and 1.3 be satisfied. Then equation (1.1) admits, at least, a non zero weak solution for almost every $\lambda>0$ sufficiently large.

2 Another definition of $H^{1}\left(\mathbb{R}^{N}\right)$

Definition 2.1. Let A and V satisfy (1.3) and (1.7)-(1.8), respectively. We define $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ by,

$$
H_{A}^{1}\left(\mathbb{R}^{N}\right)=\left\{u \in L^{2}\left(\mathbb{R}^{N}\right) ; \nabla u+\mathrm{i} A u \in L^{2}\left(\mathbb{R}^{N}\right)\right\}
$$

We endow $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ with the following scalar product and its corresponding norm,

$$
\begin{aligned}
& \forall u, v \in H_{A}^{1}\left(\mathbb{R}^{N}\right),\langle u, v\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\operatorname{Re} \int_{\mathbb{R}^{N}} V u \bar{v} \mathrm{~d} x+\operatorname{Re} \int_{\mathbb{R}^{N}}(\nabla u+\mathrm{i} A u) \cdot(\overline{\nabla v+\mathrm{i} A v}) \mathrm{d} x \\
& \forall u \in H_{A}^{1}\left(\mathbb{R}^{N}\right),\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}=(u, u)_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\operatorname{Re} \int_{\mathbb{R}^{N}} V|u|^{2} \mathrm{~d} x+\|\nabla u+\mathrm{i} A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}
\end{aligned}
$$

making this space a real pre-Hilbert space, by (1.7) and Lemma 2.4 below.

Remark 2.2. Below are some comments on the definition of the space $H_{A}^{1}\left(\mathbb{R}^{N}\right)$.

1. If $u \in L^{2}\left(\mathbb{R}^{N}\right)$ then $\nabla u \in H^{-1}\left(\mathbb{R}^{N}\right)$ and $A u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ (by Cauchy-Schwarz' inequality). So, the definition of $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ makes sense and if $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ then $\nabla u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$.
2. In the literature (see for instance Sections 7.19-7.22, p.191-195, of Lieb and Loss [5]), the assumption on A is not $A \in L_{\mathrm{loc}}^{N}\left(\mathbb{R}^{N}\right)$ but merely $A \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{N}\right)$. In this case, it can be shown
that $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ is a Hilbert space having $\mathscr{D}\left(\mathbb{R}^{N}\right)$ as a dense subset. In addition, if $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ then $|u| \in H^{1}\left(\mathbb{R}^{N}\right)$ and the so-called diamagnetic inequality (2.1) below holds. Nevertheless, $H^{1}\left(\mathbb{R}^{N}\right) \not \subset H_{A}^{1}\left(\mathbb{R}^{N}\right)$ and $H_{A}^{1}\left(\mathbb{R}^{N}\right) \not \subset H^{1}\left(\mathbb{R}^{N}\right)$. However, when A has more local integrability then we have $H_{A}^{1}\left(\mathbb{R}^{N}\right)=H^{1}\left(\mathbb{R}^{N}\right)$ (see Theorem 2.3 below). Note that when $N=1$, then our assumption is $A \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{N}\right)$ which is the same hypothesis that we usually find in the literature, and it seems that the fact $H_{A}^{1}(\mathbb{R})=H^{1}(\mathbb{R})$ was never remarked.
3. If $N \geqslant 2$ and if $A \in L_{\mathrm{loc}}^{N}(\Omega)\left(A \in L_{\mathrm{loc}}^{2+\varepsilon}(\Omega)\right.$ if $\left.N=2\right)$ then it can be shown that $H_{A}^{1}(\Omega)=$ $H^{1}(\Omega)$ with equivalent norms for open bounded subsets Ω of \mathbb{R}^{N} with smooth boundaries (see Lemma 2.3 in Arioli and Szulkin [1]). Actually, it can be shown that the same result holds true for $\Omega=\mathbb{R}^{N}$ with any $N \geqslant 1$ (see Theorem 2.3 below).

thmHH

Theorem 2.3. Let A and V satisfy (1.3) and (1.7)-(1.8), respectively. Then,

$$
H_{A}^{1}\left(\mathbb{R}^{N}\right)=H^{1}\left(\mathbb{R}^{N}\right)
$$

with equivalent norms and each term in the integrals of $\langle., .\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}$ belongs to $L^{1}\left(\mathbb{R}^{N}\right)$.
lemHH Lemma 2.4. Let the assumptions of Theorem 2.3 be fulfilled. Then the following holds.
lemHH1
lemHH2
lemHH3

1. If $u \in H^{1}\left(\mathbb{R}^{N}\right) \cup H_{A}^{1}\left(\mathbb{R}^{N}\right)$ then $|u| \in H^{1}\left(\mathbb{R}^{N}\right),(\nabla u+\mathrm{i} A u) \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|\nabla| u||\stackrel{a . e .}{\lessgtr}| \nabla u+\mathrm{i} A u| . \tag{2.1}
\end{equation*}
$$

If $u \in H^{1}\left(\mathbb{R}^{N}\right)$ then $|\nabla| u||\stackrel{\text { a.e. }}{\leqslant}| \nabla u|$.
2. For any $u \in H^{1}\left(\mathbb{R}^{N}\right) \cup H_{A}^{1}\left(\mathbb{R}^{N}\right), A u \in L^{2}\left(\mathbb{R}^{N}\right), \sqrt{|V|} u \in L^{2}\left(\mathbb{R}^{N}\right),\|A u\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant C \alpha_{A}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)}$ and $\|\sqrt{|V|} u\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant C \sqrt{\alpha_{V}}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)}$, where $C=C(N)(C=C(N, \varepsilon)$, if $N=2)$.
3. For any $u, v \in H^{1}\left(\mathbb{R}^{N}\right),(A u) . \nabla v \in L^{1}\left(\mathbb{R}^{N}\right),|A|^{2} u v \in L^{1}\left(\mathbb{R}^{N}\right)$ and we have,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|(A u) \cdot \nabla v| \mathrm{d} x \leqslant C \alpha_{A}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)}, \\
& \int_{\mathbb{R}^{N}}|A|^{2}|u v| \mathrm{d} x \leqslant C^{2} \alpha_{A}^{2}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)}, \\
& \int_{\mathbb{R}^{N}}|V||u v| \mathrm{d} x \leqslant C^{2} \alpha_{V}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)},
\end{aligned}
$$

where the constant C is given by Property 2.

Proof. Let $u \in H^{1}\left(\mathbb{R}^{N}\right) \cup H_{A}^{1}\left(\mathbb{R}^{N}\right)$. The proof of 1 is well-known but for the sake of completeness, we recall the main steps. By 1 of Remark 2.2, $u \in W_{\mathrm{loc}}^{1,1}\left(\mathbb{R}^{N}\right)$ and $\nabla u+\mathrm{i} A u \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N}\right)$. It follows
that $|u| \in W_{\text {loc }}^{1,1}\left(\mathbb{R}^{N}\right)$ and $\nabla|u| \stackrel{\text { a.e. }}{=} \operatorname{Re}\left(\frac{\bar{u}}{u} \nabla u\right)^{1}$ (Theorem 6.17, p.152, in Lieb and Loss [5]). In particular, $|\nabla| u||\stackrel{\text { a.e. }}{\leqslant}| \nabla u|$, if $u \in H^{1}\left(\mathbb{R}^{N}\right)$. Since $\operatorname{Re}\left(\frac{\bar{u}}{|u|}(\nabla u+\mathrm{i} A u)\right)=\operatorname{Re}\left(\frac{\bar{u}}{|u|} \nabla u\right) \stackrel{\text { a.e. }}{=} \nabla|u|$, one obtains (2.1). Now, both inequalities in 1 imply that $|u| \in H^{1}\left(\mathbb{R}^{N}\right)$. Let us prove 2. By the Sobolev embedding $H^{1}\left(Q_{j}\right) \hookrightarrow L^{2^{\star}}\left(Q_{j}\right)(N \geqslant 3)$, there exists $C=C\left(N,\left|Q_{j}\right|\right)$ such that for any $j \in \mathbb{N}$, $\|u\|_{L^{2^{\star}}\left(Q_{j}\right)} \leqslant C\||u|\|_{H^{1}\left(Q_{j}\right)}$. Actually, C does not depend on Q_{j} since for any $j \in \mathbb{N},\left|Q_{j}\right|=1$. It follows from Hölder's inequality that if $N \geqslant 3$,

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{N}}|A u|^{2} \mathrm{~d} x\right) & =\sum_{j \in \mathbb{N}} \int_{Q_{j}}|A u|^{2} \mathrm{~d} x \\
& \leqslant \sum_{j \in \mathbb{N}}\|A\|_{L^{N}\left(Q_{j}\right)}^{2}\|u\|_{L^{2^{\star}}\left(Q_{j}\right)}^{2} \\
& \leqslant C^{2} \alpha_{A}^{2} \sum_{j \in \mathbb{N}}\||u|\|_{H^{1}\left(Q_{j}\right)}^{2} \\
& =C^{2} \alpha_{A}^{2}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}
\end{aligned}
$$

If $N=2$ then the second line is replaced with $\sum_{j \in \mathbb{N}}\|A\|_{L^{2+\varepsilon}\left(Q_{j}\right)}^{2}\|u\|_{L^{\frac{2(2+\varepsilon)}{\varepsilon}\left(Q_{j}\right)}}^{2}$ and we use the embed$\operatorname{ding} H^{1}\left(Q_{j}\right) \hookrightarrow L^{\frac{2(2+\varepsilon)}{\varepsilon}}\left(Q_{j}\right)$, while if $N=1$ then the second line is replaced with $\sum_{j \in \mathbb{N}}\|A\|_{L^{2}\left(Q_{j}\right)}^{2}\|u\|_{L^{\infty}\left(Q_{j}\right)}^{2}$ and we use the embedding $H^{1}\left(Q_{j}\right) \hookrightarrow L^{\infty}\left(Q_{j}\right)$. The estimate with V follows in the same way (formally, replace A with $\sqrt{|V|})$. Now, we turn to the proof of 3 . Let $v \in H^{1}\left(\mathbb{R}^{N}\right)$. By Cauchy-Schwarz' inequality and 2 we have,

$$
\begin{aligned}
& \int_{\mathbb{R}^{N}}|(A u) . \nabla v| \mathrm{d} x \leqslant\|A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}\|\nabla v\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant C \alpha_{A}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)}, \\
& \int_{\mathbb{R}^{N}}|A|^{2}|u v| \mathrm{d} x \leqslant\|A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}\|A v\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant C^{2} \alpha_{A}^{2}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)}, \\
& \int_{\mathbb{R}^{N}}|V||u v| \mathrm{d} x \leqslant\|\sqrt{|V|} u\|_{L^{2}\left(\mathbb{R}^{N}\right)}\|\sqrt{|V|} v\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant C^{2} \alpha_{V}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}\|v\|_{H^{1}\left(\mathbb{R}^{N}\right)},
\end{aligned}
$$

which completes the proof.
Proof of Theorem 2.3. The last statement of the theorem is due to 3 of Lemma 2.4, once $H^{1}\left(\mathbb{R}^{N}\right)=$ $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ is proved.

- Let $u \in H^{1}\left(\mathbb{R}^{N}\right)$. By Lemma 2.4, $A u \in L^{2}\left(\mathbb{R}^{N}\right)$ so that $\nabla u+\mathrm{i} A u \in L^{2}\left(\mathbb{R}^{N}\right)$ and $\sqrt{|V|} u \in$ $L^{2}\left(\mathbb{R}^{N}\right)$. It follows that $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ and

$$
\|\nabla u+\mathrm{i} A u\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant\|\nabla u\|_{L^{2}\left(\mathbb{R}^{N}\right)}+C \alpha_{A}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leqslant\left(C \alpha_{A}+1\right)\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}
$$

Thus $H^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow H_{A}^{1}\left(\mathbb{R}^{N}\right)$, since by Lemma 2.4, Re $\int_{\mathbb{R}^{N}} V|u|^{2} \mathrm{~d} x \leqslant C^{2} \alpha_{V}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2}$.

- Let $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$. By Lemma 2.4, $A u \in L^{2}\left(\mathbb{R}^{N}\right)$ so that $\nabla u=((\nabla u+\mathrm{i} A u)-\mathrm{i} A u) \in L^{2}\left(\mathbb{R}^{N}\right)$.

[^1]It follows that $u \in H^{1}\left(\mathbb{R}^{N}\right)$ and by (2.1),

$$
\begin{aligned}
& \|\nabla u\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant\|\nabla u+\mathrm{i} A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}+C \alpha_{A}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)} \\
\leqslant & \|\nabla u+\mathrm{i} A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}+C \alpha_{A} \sqrt{\|u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}+\|\nabla u+\mathrm{i} A u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}} \\
\leqslant & \left(C \alpha_{A}+1\right)\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} .
\end{aligned}
$$

Hence $H_{A}^{1}\left(\mathbb{R}^{N}\right) \hookrightarrow H^{1}\left(\mathbb{R}^{N}\right)$, since by $(1.7), \operatorname{Re} \int_{\mathbb{R}^{N}} V|u|^{2} \mathrm{~d} x \geqslant \nu\|u\|_{L^{2}\left(\mathbb{R}^{N}\right)}^{2}$.
rmkA Remark 2.5. Let $N \geqslant 3$. Note that in Theorem 2.3 the assumption $A \in L_{\text {loc }}^{N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$ is not needed but merely $A \in L_{\mathrm{loc}}^{N}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)$. It is needed in Lemmas 3.1-3.2 and so in Proposition 3.3 below.

3 The set of dislocations

lemAA Lemma 3.1. Let $\varepsilon>0$ and let $A \in L_{\mathrm{loc}}^{N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)\left(A \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; \mathbb{R})\right.$, if $\left.N=1\right)$ satisfying (1.4). Then for any $y \in \mathbb{Z}^{N}$, there exists a unique continuous function $\psi_{y} \in W_{\mathrm{loc}}^{1, N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}\right)\left(\psi_{y} \in H_{\mathrm{loc}}^{1}(\mathbb{R} ; \mathbb{R})\right.$, if $N=1)$ such that

$$
\begin{gather*}
\psi_{y}(0)=0 \tag{3.1}\\
\forall x \in \mathbb{R}^{N}, \psi_{y}(x-y)+\psi_{-y}(x)=\psi_{y}(-y)=\psi_{-y}(y) \tag{3.2}\\
A(x+y)=A(x)+\nabla \psi_{y}(x) \tag{3.3}
\end{gather*}
$$

lemAApsi0
psieven
lemAApsi
for almost every $x \in \mathbb{R}^{N}$. In particular, $\psi_{0}=0$ over \mathbb{R}^{N}.
Proof. Let $y \in \mathbb{Z}^{N}$. Uniqueness for ψ_{y} comes from (3.1) and (3.3), once continuity is proved. By Remark 1.2 and the Sobolev embedding, there exists $\widetilde{\psi_{y}} \in W_{\mathrm{loc}}^{1, N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}\right)\left(\widetilde{\psi_{y}} \in H_{\text {loc }}^{1}(\mathbb{R} ; \mathbb{R})\right.$, if $\left.N=1\right)$ satisfying (3.3) and continuous over \mathbb{R}^{N}. Setting $\psi_{y}=\widetilde{\psi_{y}}-\widetilde{\psi_{y}}(0)$, we see that ψ_{y} verifies all the desired properties, except (3.2). Notice that the function $x \longmapsto 0$ satisfies (3.3) for $y=0$, so that $\psi_{0}=0$, by uniqueness. It remains to establish (3.2). Applying (3.3) with y at the point $x-y$ and a second time with $-y$, we obtain for almost every $x \in \mathbb{R}^{N}$,

$$
A(x-y)=A(x)-\nabla \psi_{y}(x-y)=A(x)+\nabla \psi_{-y}(x)
$$

It follows that there exists $c \in \mathbb{R}$ such that,

$$
\forall x \in \mathbb{R}^{N}, \psi_{y}(x-y)+\psi_{-y}(x)=c
$$

Substituting first $x=0$, then $x=y$ and using (3.1) we obtain (3.2).
lemphi Lemma 3.2. Let $\varepsilon>0$ and let $A \in L_{\mathrm{loc}}^{N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}^{N}\right)\left(A \in L_{\mathrm{loc}}^{2}(\mathbb{R} ; \mathbb{R})\right.$, if $\left.N=1\right)$ satisfying (1.4). Let $\left(\psi_{y}\right)_{y \in \mathbb{Z}^{N}}$ be given by Lemma 3.1. For any $y \in \mathbb{Z}^{N}$, let $\varphi_{y} \in W_{\mathrm{loc}}^{1, N+\varepsilon}\left(\mathbb{R}^{N} ; \mathbb{R}\right)\left(\varphi_{y} \in H_{\mathrm{loc}}^{1}(\mathbb{R} ; \mathbb{R})\right.$, if $N=1$) be defined by,

$$
\begin{equation*}
\varphi_{y} \stackrel{\text { def }}{=} \psi_{y}-\frac{1}{2} \psi_{y}(-y) \tag{3.4}
\end{equation*}
$$

Then $\varphi_{y} \in C\left(\mathbb{R}^{N} ; \mathbb{R}\right)$ and verifies,

$$
\begin{gather*}
\forall x \in \mathbb{R}^{N}, \varphi_{y}(x-y)+\varphi_{-y}(x)=0 \tag{3.5}\\
A(x+y)=A(x)+\nabla \varphi_{y}(x) \tag{3.6}
\end{gather*}
$$

lemphiequ
lemAphi
for almost every $x \in \mathbb{R}^{N}$. Finally, $\varphi_{0}=0$ over \mathbb{R}^{N}.

Proof. By Lemma 3.1 and (3.4), we only have to check (3.5). The result then comes from (3.4) and (3.2).

Assume that A satisfies Assumption 1.1. For any $y \in \mathbb{Z}^{N}$, we define $g_{y} \in \mathscr{L}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ as follows.

$$
\begin{aligned}
g_{y}: H^{1}\left(\mathbb{R}^{N}\right) & \longrightarrow H^{1}\left(\mathbb{R}^{N}\right) \\
u & \longmapsto e^{\mathrm{i} \varphi_{y}} u(\cdot+y)
\end{aligned}
$$

where φ_{y} is given by (3.4). Indeed, it is clear that $g_{y}: H^{1}\left(\mathbb{R}^{N}\right) \longrightarrow L^{2}\left(\mathbb{R}^{N}\right)$ is linear and continuous. In addition, for any $y \in \mathbb{Z}^{N}$ and $u \in H^{1}\left(\mathbb{R}^{N}\right)$,

$$
\begin{aligned}
& \nabla\left(g_{y} u\right)=\left(\nabla u(.+y)+\mathrm{i} u(.+y) \nabla \varphi_{y}\right) e^{\mathrm{i} \varphi_{y}} \\
& \left|\nabla \varphi_{y}\right|^{2} \in L_{\mathrm{loc}}^{\frac{N}{2}}\left(\mathbb{R}^{N} ; \mathbb{R}\right) \text { and }|u(.+y)|^{2} \in L^{\frac{2^{\star}}{2}}\left(\mathbb{R}^{N} ; \mathbb{R}\right), \text { if } N \geqslant 3 \\
& \left|\nabla \varphi_{y}\right|^{2} \in L_{\mathrm{loc}}^{\frac{2+\varepsilon}{2}}\left(\mathbb{R}^{N} ; \mathbb{R}\right) \text { and }|u(.+y)|^{2} \in L^{\frac{2+\varepsilon}{\varepsilon}}\left(\mathbb{R}^{2} ; \mathbb{R}\right), \text { if } N=2, \\
& \left|\nabla \varphi_{y}\right|^{2} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{N} ; \mathbb{R}\right) \text { and }|u(.+y)|^{2} \in L^{\infty}(\mathbb{R} ; \mathbb{R}), \text { if } N=1
\end{aligned}
$$

from which we deduce, with help of Lemma 2.4, Hölder's inequality and the Sobolev embedding, that $g_{y}: H^{1}\left(\mathbb{R}^{N}\right) \longrightarrow H^{1}\left(\mathbb{R}^{N}\right)$ is well-defined, linear and

$$
\left\|\nabla\left(g_{y} u\right)\right\|_{L^{2}\left(\mathbb{R}^{N}\right)} \leqslant\|\nabla u\|_{L^{2}\left(\mathbb{R}^{N}\right)}+2 C \alpha_{A}\||u|\|_{H^{1}\left(\mathbb{R}^{N}\right)} \leqslant C^{\prime}\|u\|_{H^{1}\left(\mathbb{R}^{N}\right)}
$$

It follows that for any $y \in \mathbb{Z}^{N}, g_{y} \in \mathscr{L}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)$ with $\left\|g_{y}\right\|_{\mathscr{L}\left(H^{1}\left(\mathbb{R}^{N}\right)\right)}$ independent of y. Let

$$
\begin{equation*}
D \stackrel{\text { def }}{=}\left\{g_{y} ; y \in \mathbb{Z}^{N}\right\} \tag{3.7}
\end{equation*}
$$

propDD1 Proposition 3.3. Let D be defined by (3.7). Then D is a set of unitary operators on $H^{1}\left(\mathbb{R}^{N}\right)$ with respect to the norm $\|\cdot\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}$ defined in Definition 2.1. In addition,

$$
\begin{gather*}
g_{0}=\mathrm{Id}, \tag{3.8}\\
g_{y}^{-1}=g_{-y}, \tag{3.9}\\
\left\langle g_{y} u, g_{y} v\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\langle u, v\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}, \tag{3.10}
\end{gather*}
$$

propDD1-0
propDD1-1
propDD1-2
for any $y \in \mathbb{Z}^{N}$ and $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$.
Proof. Recall that D is set of bounded linear operators on $H^{1}\left(\mathbb{R}^{N}\right)$. By Lemma 3.2, $\varphi_{0}=0$ so that $g_{0}=\operatorname{Id}$. Let $y \in \mathbb{Z}^{N}$ and let $u \in H^{1}\left(\mathbb{R}^{N}\right)$. For almost every $x \in \mathbb{R}^{N}$, one has,

$$
g_{y}\left(g_{-y} u\right)(x)=e^{\mathrm{i} \varphi_{y}(x)}\left(g_{-y} u\right)(x+y)=e^{\mathrm{i} \varphi_{y}(x)} e^{\mathrm{i} \varphi-y(x+y)} u(x)=u(x),
$$

where we have used (3.5) in the last equality. Still with (3.5), we show that $g_{-y}\left(g_{y} u\right)=u$. It follows that g_{y} is invertible and $g_{y}^{-1}=g_{-y}$. Now, let $v \in H^{1}\left(\mathbb{R}^{N}\right)$. By a straightforward calculation and with help of (3.5) again and (3.6), we obtain

$$
\left\langle u, g_{y}^{\star} v\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \stackrel{\text { def }}{=}\left\langle g_{y} u, v\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\left\langle u, g_{y}^{-1} v\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)},
$$

so that, $g_{y}^{\star}=g_{y}^{-1}$ which concludes the proof.
lemD Lemma 3.4. Let $\left(y_{k}\right)_{k} \subset \mathbb{Z}^{N}$. Then,

$$
g_{y_{k}} \longrightarrow 0 \Longleftrightarrow\left|y_{k}\right| \xrightarrow{k \rightarrow \infty} \infty
$$

Moreover if $g_{y_{k}} \nabla_{0}$ then $\left(g_{y_{k}}\right)_{k}$ admits a constant subsequence.
Proof. Let $\left(y_{k}\right)_{k} \subset \mathbb{Z}^{N}$.
Step 1: If $\liminf _{k \rightarrow \infty}\left|y_{k}\right|<\infty$ then $\left(y_{k}\right)_{k}$ admits a constant subsequence.
Indeed, if $\liminf _{k \rightarrow \infty}\left|y_{k}\right|<\infty$ then $\left(y_{k}\right)_{k}$ admits a bounded subsequence, from which we extract a convergent subsequence $\left(y_{k_{\ell}}\right)_{\ell}$. Since $\left(y_{k_{\ell}}\right)_{\ell}$ converges in \mathbb{Z}^{N}, Step 1 follows.
Step 2: Proof of \Longrightarrow.
We show the contraposition. Assume that $\liminf _{k \rightarrow \infty}\left|y_{k}\right|<\infty$. By Step 1, there exists $\left(y_{k_{\ell}}\right)_{\ell} \subset\left(y_{k}\right)_{k}$ such that for any $\ell \in \mathbb{N}, y_{k_{\ell}}=y_{k_{1}}$. Let $v \in H^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ and $u=g_{y_{k_{1}}}^{-1} v$. It follows that,

$$
\forall \ell \in \mathbb{N},\left\langle g_{y_{k_{\ell}}} u, v\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\|v\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}>0,
$$

and so, $g_{y_{k}}=0$.
Step 3: Proof of \Longleftarrow.

Assume $\left|y_{k}\right| \xrightarrow{k \rightarrow \infty} \infty$. Let $\varphi, \psi \in \mathscr{D}\left(\mathbb{R}^{N}\right)$. Then for any $k \in \mathbb{N}$ large enough, $\operatorname{supp}\left(g_{y_{k}} \varphi\right) \cap \operatorname{supp} \psi=\emptyset$, so that,

$$
\begin{equation*}
\left\langle g_{y_{k}} \varphi, \psi\right\rangle_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \xrightarrow{k \rightarrow \infty} 0 \tag{3.11}
\end{equation*}
$$

Let $u, v \in H^{1}\left(\mathbb{R}^{N}\right)$. Let $\varepsilon>0$. By density and Theorem 2.3 , there exists $\left(\varphi_{n}\right)_{n},\left(\psi_{n}\right)_{n} \subset \mathscr{D}\left(\mathbb{R}^{N}\right)$ such that, $\varphi_{n} \xrightarrow[n \rightarrow \infty]{H_{A}^{1}\left(\mathbb{R}^{N}\right)} u$ and $\psi_{n} \xrightarrow[n \rightarrow \infty]{H_{A}^{1}\left(\mathbb{R}^{N}\right)} v$. Let $n_{0} \in \mathbb{N}$ be such that,

$$
\|v\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}\left\|u-\varphi_{n_{0}}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}+\left\|\varphi_{n_{0}}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}\left\|v-\psi_{n_{0}}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \leqslant \varepsilon
$$

for any $n \geqslant n_{0}$. We then infer with help of (3.10), that for any $k \in \mathbb{N}$,

$$
\begin{aligned}
& \left|\left\langle g_{y_{k}} u, v\right\rangle_{H_{A}^{1}}\right| \leqslant\left|\left\langle g_{y_{k}}\left(u-\varphi_{n_{0}}\right), v\right\rangle_{H_{A}^{1}}\right|+\left|\left\langle g_{y_{k}} \varphi_{n_{0}}, v-\psi_{n_{0}}\right\rangle_{H_{A}^{1}}\right|+\left|\left\langle g_{y_{k}} \varphi_{n_{0}}, \psi_{n_{0}}\right\rangle_{H_{A}^{1}}\right| \\
\leqslant & \|v\|_{H_{A}^{1}}\left\|u-\varphi_{n_{0}}\right\|_{H_{A}^{1}}+\left\|\varphi_{n_{0}}\right\|_{H_{A}^{1}}\left\|v-\psi_{n_{0}}\right\|_{H_{A}^{1}}+\left|\left\langle g_{y_{k}} \varphi_{n_{0}}, \psi_{n_{0}}\right\rangle_{H_{A}^{1}}\right| \\
\leqslant & \varepsilon+\left|\left\langle g_{y_{k}} \varphi_{n_{0}}, \psi_{n_{0}}\right\rangle_{H_{A}^{1}}\right| .
\end{aligned}
$$

By (3.11), if follows that: $\limsup _{k \rightarrow \infty}\left|\left(g_{y_{k}} u, v\right)_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}\right| \leqslant \varepsilon$. Since $\varepsilon>0$ is arbitrary, we then get that for any $u, v \in H^{1}\left(\mathbb{R}^{N}\right),\left(g_{y_{k}} u, v\right)_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \xrightarrow{k \rightarrow \infty} 0$, which is the desired result.
Step 4: If $g_{y_{k}} \checkmark 0$ then $\left(g_{y_{k}}\right)_{k}$ admits a constant subsequence.
Now assume that $g_{y_{k}} 0$. By Steps $2-3$, this means $\liminf _{k \rightarrow \infty}\left|y_{k}\right|<\infty$, and we conclude with help of Step 1.
propDD2 Proposition 3.5. Let D be defined by (3.7). Then D is a set of dislocations on $\left(H^{1}\left(\mathbb{R}^{N}\right),\|\cdot\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}\right)$.
Proof. By Proposition 3.1 p. 61 in Fieseler and Tintarev [9], it is sufficient to show that if $\left(y_{k}\right)_{k} \subset \mathbb{Z}^{N}$ is such that $g_{y_{k}} \nabla_{0}$ then $g_{y_{k}}$ has a strongly convergence subsequence. This is a consequence of Lemma 3.4.

4 Cocompactness

Let D be defined as in Section 3 .
thmcoc Theorem 4.1. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $H^{1}\left(\mathbb{R}^{N}\right)$. Let $p \in\left(2,2^{\star}\right)(p \in(2, \infty)$ if $N=2$, $p \in(2, \infty]$ if $N=1)$. Then we have the following result.

$$
u_{k} \xrightarrow{D} 0 \Longleftrightarrow u_{k} \xrightarrow[k \rightarrow \infty]{L^{p}\left(\mathbb{R}^{N}\right)} 0
$$

Proof. Let $\left(u_{k}\right)_{k \in \mathbb{N}}$ a bounded sequence in $H^{1}\left(\mathbb{R}^{N}\right)$ be such that $u_{k} \xrightarrow{D} 0$. Let p be as in the theorem with $p<\infty$. We claim that,

$$
\begin{equation*}
\forall k \in \mathbb{N}, \exists y_{k} \in \mathbb{Z}^{N} \text { such that } \sup _{y \in \mathbb{Z}^{N}} \int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x=\int_{Q}\left|g_{y_{k}} u_{k}\right|^{p} \mathrm{~d} x \tag{4.1}
\end{equation*}
$$

Indeed, if $\sup _{y \in \mathbb{Z}^{N}} \int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x=0$, there is nothing to prove. If $\sup _{y \in \mathbb{Z}^{N}} \int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x=\delta>0$ then if the supremum in y was not a maximum then there would be an infinite number of $y \in \mathbb{Z}^{N}$ such that $\int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x>\frac{\delta}{2}$, contradicting the fact that $\left(u_{k}\right)_{k}$ is bounded in $H^{1}\left(\mathbb{R}^{N}\right)$.
By the Sobolev embedding $H^{1}(Q) \hookrightarrow L^{p}(Q)$ and translation, there exists $C>0$ such that for any $k \in \mathbb{N}$ and $y \in \mathbb{Z}^{N},\left\|u_{k}\right\|_{L^{p}(Q-y)}^{2} \leqslant C\left\|u_{k}\right\|_{H^{1}(Q-y)}^{2}$. Multiplying the both sides by $\|u\|_{L^{p}(Q-y)}^{p-2}$, we get

$$
\int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x \leqslant C\left\|u_{k}\right\|_{H^{1}(Q-y)}^{2}\left(\int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x\right)^{\frac{p-2}{p}}
$$

Summing over $y \in \mathbb{Z}^{N}$, we obtain for any $k \in \mathbb{N}$,

$$
\left\|u_{k}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p} \leqslant C\left\|u_{k}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}^{2} \sup _{y \in \mathbb{Z}^{N}}\left(\int_{Q-y}\left|u_{k}\right|^{p} \mathrm{~d} x\right)^{\frac{p-2}{p}}
$$

For any $k \in \mathbb{N}$, let $y_{k} \in \mathbb{Z}^{N}$ be given by (4.1). Noticing that $\sup _{k \in \mathbb{N}}\left\|u_{k}\right\|_{H^{1}\left(\mathbb{R}^{N}\right)}<\infty$, we infer from the compactness of the Sobolev embedding $H^{1}(Q) \hookrightarrow L^{p}(Q)$ that

$$
\forall k \in \mathbb{N},\left\|u_{k}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}^{p} \leqslant C\left\|g_{y_{k}} u_{k}\right\|_{L^{p}(Q)}^{p-2} \xrightarrow{k \rightarrow \infty} 0
$$

since $g_{y_{k}} u_{k} \rightharpoonup 0$ in $H_{\mathrm{w}}^{1}\left(\mathbb{R}^{N}\right)$. When $N=1$ and $p=\infty$, we use the above result and GagliardoNirenberg's inequality to see that,

$$
\left\|u_{k}\right\|_{L^{\infty}(\mathbb{R})} \leqslant C\left\|u_{k}\right\|_{L^{4}(\mathbb{R})}^{\frac{2}{3}}\left\|u_{k}\right\|_{H^{1}(\mathbb{R})}^{\frac{1}{3}} \leqslant C\left\|u_{k}\right\|_{L^{4}(\mathbb{R})}^{\frac{2}{3}} \xrightarrow{k \rightarrow \infty} 0
$$

To prove the converse assume that for some $p \in\left(2,2^{\star}\right)(p \in(2, \infty)$ if $N=2, p \in(2, \infty]$ if $N=1)$, $u_{k} \xrightarrow[k \rightarrow \infty]{L^{p}\left(\mathbb{R}^{N}\right)} 0$. Note that if $N=1$ and $p=\infty$ then,

$$
\left\|u_{k}\right\|_{L^{4}(\mathbb{R})}^{2} \leqslant\left\|u_{k}\right\|_{L^{2}(\mathbb{R})}\left\|u_{k}\right\|_{L^{\infty}(\mathbb{R})} \leqslant C\left\|u_{k}\right\|_{L^{\infty}(\mathbb{R})} \xrightarrow{k \rightarrow \infty} 0
$$

So we may assume that $p<\infty$. Let $\left(g_{k}\right)_{k} \in D$. Since for any $k \in \mathbb{N},\left\|g_{k} u_{k}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}=\left\|u_{k}\right\|_{L^{p}\left(\mathbb{R}^{N}\right)}$ and $\left\|g_{k} u_{k}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}=\left\|u_{k}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}$ by (3.10), we obtain that for some $\left(g_{k_{\ell}}\right)_{\ell} \subset\left(g_{k}\right)_{k}$ and $u \in H^{1}\left(\mathbb{R}^{N}\right)$,

$$
\begin{aligned}
& g_{k} u_{k} \longrightarrow 0, \text { in } L^{p}\left(\mathbb{R}^{N}\right), \text { as } k \rightarrow \infty \\
& g_{k_{\ell}} u_{k_{\ell}} \longrightarrow u, \text { in } H_{w}^{1}\left(\mathbb{R}^{N}\right), \text { as } \ell \rightarrow \infty
\end{aligned}
$$

In particular, both convergences hold in $\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)$ so that $u=0$ and $g_{k} u_{k} \xrightarrow{H_{\mathrm{w}}^{1}} 0$, for the whole sequence $\left(g_{k} u_{k}\right)_{k}$. This concludes the proof.

5 An associated critical value function and proof of the main result

Let

$$
\begin{equation*}
\psi(u) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{N}} F(x,|u|) \mathrm{d} x . \tag{5.1}
\end{equation*}
$$

The functional ψ is of class $C^{1}\left(H^{1}\left(\mathbb{R}^{N}\right) ; \mathbb{R}\right), \psi^{\prime}(u)=f(.,|u|) \frac{u}{|u|}$ and ψ and ψ^{\prime} are bounded on bounded sets [2, Proposition 3.2.5, p.60]. We note also that by compact Sobolev embeddings, if $\left(u_{k}\right)_{k} \subset H^{1}\left(\mathbb{R}^{N}\right)$ and $u_{k} \stackrel{H_{\mathrm{w}}^{1}}{\longrightarrow} u$ then $\psi^{\prime}\left(u_{k}\right) \stackrel{H_{\mathrm{w}}^{-1}}{\longrightarrow} \psi^{\prime}(u)$ since $\mathscr{D}\left(\mathbb{R}^{N}\right)$ is dense in $H^{1}\left(\mathbb{R}^{N}\right)$. If $\left(u_{k}\right)_{k} \subset H^{1}(\Omega) \bigcap H^{1}\left(\mathbb{R}^{N}\right)$ where $\Omega \subset \mathbb{R}^{N}$ is bounded then $\psi\left(u_{k}\right) \rightarrow \psi(u)$.

Let $S_{t} \stackrel{\text { def }}{=}\left\{u \in H_{A}^{1}\left(\mathbb{R}^{N}\right) ;\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}=t\right\}, B_{t} \stackrel{\text { def }}{=}\left\{u \in H_{A}^{1}\left(\mathbb{R}^{N}\right) ;\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2} \leqslant t\right\}$,

$$
\begin{equation*}
\gamma(t) \stackrel{\text { def }}{=} \sup _{u \in S_{t}} \psi(u) \tag{5.2}
\end{equation*}
$$

and $\Sigma_{t} \stackrel{\text { def }}{=}\left\{u \in S_{t} ; \psi(u)=\gamma(t)\right.$. Furthermore let

$$
\begin{equation*}
I_{\gamma} \stackrel{\text { def }}{=}\left(2 \inf _{t \neq s} \frac{\gamma(t)-\gamma(s)}{t-s}, 2 \sup _{t \neq s} \frac{\gamma(t)-\gamma(s)}{t-s}\right) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\rho}(u) \stackrel{\text { def }}{=} \frac{\rho}{2}\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}-\psi(u) . \tag{5.4}
\end{equation*}
$$

Note that if we find a $w_{\rho} \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ such that $G_{\rho}^{\prime}\left(w_{\rho}\right)=0$ then w_{ρ} is a weak solution to (1.1) with $V \equiv 1$ and $\lambda=1 / \rho$.
lem51 Lemma 5.1. Assume 1 of Assumption 1.3. Then $\gamma(t)$ is locally Lipschitz continuous and nondecreasing in t. For every $\alpha \in[0, t]$

$$
\begin{equation*}
\gamma(\alpha)+\gamma(t-\alpha) \leqslant \gamma(t) \tag{5.5}
\end{equation*}
$$

Proof. Let $u \in H_{A}^{1}\left(\mathbb{R}^{N}\right)$ and $\theta>0$. Let $\left(v_{k}\right)_{k \in \mathbb{N}} \subset S_{1}$ be such that $v_{k} \xrightarrow{H_{\mathrm{w}}^{1}} 0$ and $\operatorname{supp} v_{k} \subset Q$. Then $\psi\left(u+\theta v_{k}\right) \longrightarrow \psi(u)$ and $\left\|u+\theta v_{k}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2} \longrightarrow\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}+\theta$.
Let $\left(u_{k}\right)_{k \in \mathbb{N}} \subset S_{t}$ be a maximizing sequence of $\gamma(t)$. Since $\mathscr{D}\left(\mathbb{R}^{N}\right)$ is dense in $H_{A}^{1}\left(\mathbb{R}^{N}\right)$ we may find $\left(y_{k}\right)_{k} \subset \mathbb{R}^{N}$, with $\lim _{k \rightarrow \infty}\left|y_{k}\right|=\infty$, such that $\psi\left(u+u_{k}\left(\cdot+y_{k}\right)\right) \longrightarrow \psi(u)+\gamma(t)$.

Since ψ^{\prime} is bounded on bounded sets, [2, Proposition 3.2.5, p.60] we conclude that for $u \in B_{t}$,

$$
\left\langle\psi^{\prime}(u), u\right\rangle_{H^{-1}, H^{1}} \leqslant C_{t}
$$

The result is now a consequence of [6, Theorem 2.1].

Lemma 5.2. Assume 1 of Assumption 1.3. Then for every $\rho \in I_{\gamma}$ either there is a $t_{0} \geqslant 0$ such that a maximizing sequence of $\psi(u)$ in $S_{t_{0}}$ is a minimizing sequence for $G_{\rho}(u)$ or $G_{\rho}(u)$ has mountain pass geometry and there is a critical sequence sequence $\left(u_{k}\right)_{k} \subset H_{A}^{1}\left(\mathbb{R}^{N}\right)$, satisfying

$$
\left\{\begin{array}{l}
G_{\rho}\left(u_{k}\right) \longrightarrow c>0 \tag{5.6}\\
G_{\rho}^{\prime}\left(u_{k}\right) \xrightarrow{H^{-1}\left(\mathbb{R}^{N}\right)} 0
\end{array}\right.
$$

eq-PS

Proof. The proof of [6, Theorem 2.15] can be adapted to prove Lemma 5.2.
Let

$$
\begin{equation*}
\rho \in I_{\gamma} \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{\rho}(t) \stackrel{\text { def }}{=} \frac{\rho}{2} t-\gamma(t) \tag{5.8}
\end{equation*}
$$

Then $\Gamma_{\rho}(t)$ is not monotone increasing. Indeed, if so then for $t_{1}<t_{2}$ we would have

$$
\frac{\rho}{2} t_{1}-\gamma\left(t_{1}\right) \leqslant \frac{\rho}{2} t_{2}-\gamma\left(t_{2}\right)
$$

which implies

$$
\left(\gamma\left(t_{2}\right)-\gamma\left(t_{1}\right)\right) /\left(t_{2}-t_{1}\right) \leqslant \rho / 2
$$

contradicting (5.7). Similarly $\Gamma_{\rho}(t)$ is not monotone decreasing. Therefore $\Gamma_{\rho}(t)$ admits either a local minimum or a global maximum. If t_{0} is a local minimum of $\Gamma(t)$, then since $G_{\rho}(u) \geqslant \Gamma_{\rho}\left(\|u\|^{2}\right)$, if $\left(u_{k}\right)_{k} \subset S_{t_{0}}$ is a maximizing sequence of $\psi(u) G_{\rho}\left(u_{k}\right)$ converges towards a local minimum of $G_{\rho}(u)$.

If $\Gamma(t)$ does not admit a local minimum, then it admits a positive global maximum at a point $t_{0}>0$ with $c \stackrel{\text { def }}{=} \Gamma_{\rho}\left(t_{0}\right)>0$. We have $G_{\rho}(0)<c$, and for all $u \in S_{t_{0}}, G_{\rho}(u) \geqslant \Gamma_{\rho}\left(t_{0}\right)=c$. However we can find a $t_{1}>t_{0}$ and a $\delta>0$ such that $\Gamma_{\rho}\left(t_{1}\right) \leqslant c-\delta$. It follows from the definition of $\gamma(t)$ that there is a $u_{1} \in S_{t_{1}}$ such that $G_{\rho}\left(u_{1}\right)<c-\delta / 2$. Thus G_{ρ} has mountain pass geometry.

Lemma 5.3. Assume 1 of Assumption 1.1. Suppose 1 of Assumption 1.3. Then the existence of a bounded sequence $\left(u_{k}\right)_{k \in \mathbb{N}} \subset H_{A}^{1}\left(\mathbb{R}^{N}\right)$ satisfying (5.6) with $\rho>0$ implies the existence of a $w_{\rho} \in$ $H_{A}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ such that $G_{\rho}^{\prime}\left(w_{\rho}\right)=0$.

Proof. Let $\rho>0$ and let $\left(u_{k}\right)_{k \in \mathbb{N}} \subset H_{A}^{1}\left(\mathbb{R}^{N}\right)$ be a bounded sequence satisfying (5.6). The sequence $u_{k} \xrightarrow[k \rightarrow \infty]{H_{A}^{1}\left(\mathbb{R}^{N}\right)} 0$ because $c>0$ and $G(0)=0$. Thus we may assume that, up to a subsequence that we still denote by $\left(u_{k}\right)_{k \in \mathbb{N}},\left\|u_{k}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2} \longrightarrow t>0$. It follows from (5.6) that $\left\langle G_{\rho}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{H^{-1}, H^{1}} \longrightarrow 0$. If $u_{k} \xrightarrow{D} 0$ then 1 of Assumption 1.3 and Theorem 4.1 imply $\left\langle\psi^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{H^{-1}, H^{1}} \longrightarrow 0$, which implies that $\left\langle G_{\rho}^{\prime}\left(u_{k}\right), u_{k}\right\rangle_{H^{-1}, H^{1}} \longrightarrow \rho t \neq 0$, a contradiction. Theorem 2.3 and Proposition 3.5 imply we can use [9, Theorem 3.1, p.62-63] to assert the existence of $\left(w^{(n)}\right)_{n} \subset H_{A}^{1}\left(\mathbb{R}^{N}\right),\left(g_{k}^{(n)}\right)_{k, n} \subset D$ and $\mathbb{D} \subset \mathbb{N}$ such that

$$
\begin{gather*}
g_{k}^{(n)^{-1}} u_{k} \rightharpoonup w^{(n)}, \tag{5.9}\\
g_{k}^{(n)^{-1}} g_{k}^{(m)} \rightharpoonup 0 \text { for } n \neq m, \tag{5.10}\\
\sum_{n \in \mathbb{D}}\left\|w^{(n)}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \leqslant t, \tag{5.11}\\
u_{k}-\sum_{n \in \mathbb{D}} g_{k}^{(n)} w^{(n)} \xrightarrow{D} 0 . \tag{5.12}
\end{gather*}
$$

Hypothesis 1 of Assumption 1.3 and equations (5.9), (5.10) and the fact that the functional $G_{\rho}(u)$ is invariant with respect to D implies that $\left\langle\psi\left(u_{k}\right), u_{k}\right\rangle_{H^{-1}, H^{1}}=\sum_{n \in \mathbb{D}}\left\langle\psi\left(w^{(n)}\right), w^{(n)}\right\rangle_{H^{-1}, H^{1}}+\mathrm{o}(1)$. If all the $w^{(n)}$ were zero, then $\left\langle\psi\left(u_{k}\right), u_{k}\right\rangle_{H^{-1}, H^{1}} \longrightarrow 0$ a contradiction (as above). Therefore there is at least one nonzero $w^{(n)}$ which we call w_{ρ}. From (5.9) and the invariance of G_{ρ} with respect to D, we may assume that $u_{k} \rightharpoonup w_{\rho}$, in $H_{w}^{1}\left(\mathbb{R}^{N}\right)$. We conclude from (5.6) that $G_{\rho}^{\prime}\left(u_{k}\right) \longrightarrow \rho w_{\rho}-\psi^{\prime}\left(w_{\rho}\right)=0$, in $\mathscr{D}^{\prime}\left(\mathbb{R}^{N}\right)$.

Corollary 5.4. For almost every $\rho \in I_{\gamma}$, either there is a $u_{\rho} \in H_{A}^{1}\left(\mathbb{R}^{N}\right) \backslash\{0\}$ such that $G_{\rho}^{\prime}\left(u_{\rho}\right)=0$, so that u_{ρ} is a weak solution to (1.1) or there is a $t_{0} \geqslant 0$ such that a maximizing sequence of $\psi \in \S_{t}$ is a minimizing sequence for $G_{\rho}(u)$.

Proof. Let $\rho>0$, let $\left(u_{k}\right)_{k}$ be a critical sequence of G_{ρ} and let $\rho_{k} \searrow \rho$. If $\left\|u_{k}\right\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)} \longrightarrow \infty$ then since $G_{\rho}\left(u_{k}\right) \longrightarrow c$, it follows that $\psi\left(u_{k}\right) \longrightarrow \infty$. On the other hand, if $\left(u_{k}\right)_{k \in \mathbb{N}}$ is bounded then it follows that there is an $M>0$ such that $\psi\left(u_{k}\right) \geqslant-M$. Dividing G_{ρ} by ρ, the functional is of the form: $\frac{1}{2}\|u\|_{H_{A}^{1}\left(\mathbb{R}^{N}\right)}^{2}-\lambda \psi(u)$, where $\lambda=\rho^{-1}$. Since the first term does not depend on λ we can apply [3, Theorem 2.1] (see also [8]) and conclude that the set of ρ for which the critical sequence (5.6) is unbounded has measure 0. The assertion now follows from Lemmas 5.2 and 5.3.

Remark 5.5. If $\gamma(t)$ is differentiable then there is a solution for every $\rho \in I_{\gamma}$ which can be obtained by a maximizing sequence of $\psi(u)$ in some S_{t} [6, Theorem 2.1].

Proof of Theorem 1.6. We prove the result in the case $N \geqslant 3$. The proof when $N \leqslant 2$ is similar. Let Assumptions 1.1 and 1.3 be verified. Let $\varepsilon>0$. We compute, with help of Lemma 5.1, Sobolev's embedding and Theorem 2.3,

$$
\begin{aligned}
0 & \leqslant \limsup _{t \searrow 0} \frac{\gamma(t)}{t}=\limsup _{t \searrow 0} \sup _{u \in S_{t}} \frac{1}{t} \int_{\mathbb{R}^{N}} F(x,|u|) \mathrm{d} x \\
& \leqslant \limsup _{t \searrow 0} \sup _{u \in S_{t}}\left[\frac{1}{t} \varepsilon \int_{\mathbb{R}^{N}}\left(|u|^{2}+|u|^{2^{\star}}\right) \mathrm{d} x+\frac{C_{\varepsilon}}{t} \int_{\mathbb{R}^{N}}|u|^{p_{\varepsilon}} \mathrm{d} x\right] \\
& \leqslant \limsup _{t \searrow 0}\left(\varepsilon \sup _{u \in S_{1}} \int_{\mathbb{R}^{N}}|u|^{2} \mathrm{~d} x+\varepsilon t^{\frac{2^{\star}}{2}-1} \sup _{u \in S_{1}} \int_{\mathbb{R}^{N}}|u|^{2^{\star}} \mathrm{d} x+C_{\varepsilon} t^{\frac{p_{\varepsilon}}{2}-1} \sup _{u \in S_{1}} \int_{\mathbb{R}^{N}}|u|^{p_{\varepsilon}} \mathrm{d} x\right) \\
& \leqslant \varepsilon .
\end{aligned}
$$

Since ε is arbitrary, we can conclude that

$$
\begin{equation*}
\gamma^{\prime}(0)=0 \tag{5.13}
\end{equation*}
$$

It follows from Lemma 5.1 that $I_{\gamma}=\left(0, \sup _{t \neq s} \frac{\gamma(t)-\gamma(s)}{t-s}\right)$. Let $\rho>0$ and suppose that $G_{\rho}(u)$ does not have mountain pass geometry. Then from the proof of Lemma 5.2 we see that $\Gamma_{\rho}(t)$ has a local minimum. Let $t_{0} \stackrel{\text { def }}{=} \inf \{t \mid \Gamma(t)$ is a local minimum $\}$. If $\gamma(t)$ is differentiable at t_{0}, then since $\gamma(t)$ is locally Lipschitz, t_{0} is a local minimum of $\Gamma_{\rho}(t)$ and $\rho / 2=\gamma^{\prime}\left(t_{0}\right)$. From (5.13), we see that $\Gamma_{\rho}^{\prime}(0)=\rho / 2 \neq 0$ so $t_{0}>0$. Let $\left(u_{k}\right)_{k} \subset S_{t_{0}}$ be a maximizing sequence of $\psi(u)$. From [9, Theorem 3.1, p.62-63] we again assert the existence of $\left(w^{(n)}\right)_{n} \subset H_{A}^{1}\left(\mathbb{R}^{N}\right),\left(g_{k}^{(n)}\right)_{k, n} \subset D$ and $\mathbb{D} \subset \mathbb{N}$ such that Equations (5.9) (5.11), (5.10), and (5.12) are verified. From (5.10), (5.11), and Theorem 4.1 we obtain that $\gamma\left(t_{0}\right)=\lim _{k} \psi\left(u_{k}\right)=\sum_{k} \psi\left(w^{(n)}\right)$.

Remark 5.6. We conclude with some remarks:

1. If there is an $M>0$ such that $F(x, s) \geqslant s^{2+\varepsilon}$ for $s>M$, then there is a solution to (1.1) for almost every $\lambda>0$ because one can prove that $\lim _{t \rightarrow \infty} \gamma(t) / t=\infty$.
2. From Remark 5.5 we see that if $F(x, s)$ is a finite sum of homogeneous terms, then $\gamma(t)$ is differentiable and there is a solution for every $\rho \in I_{\gamma}$.

References

[1] G. Arioli and A. Szulkin. A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal., 170(4):277-295, 2003.
[2] T. Cazenave. Semilinear Schrödinger equations, volume 10 of Courant Lecture Notes in Mathematics. New York University Courant Institute of Mathematical Sciences, New York, 2003.
[3] L. Jeanjean and J. F. Toland. Bounded Palais-Smale mountain-pass sequences. C. R. Acad. Sci. Paris Sér. I Math., 327(1):23-28, 1998.
[4] H. Leinfelder. Gauge invariance of Schrödinger operators and related spectral properties. J. Operator Theory, 9(1):163-179, 1983.
[5] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001.
[6] I. Schindler. A value function and applications to translation-invariant semilinear elliptic equations on unbounded domains. Differential Integral Equations, 8(4):813-828, 1995.
[7] I. Schindler and K. Tintarev. A nonlinear Schrödinger equation with external magnetic field. Rostock. Math. Kolloq., (56):49-54, 2002.
[8] K. Tintarev. Mountain pass and impasse for nonsmooth functionals with constraints. Nonlinear Anal., 27(9):1049-1054, 1996.
[9] K. Tintarev and K.-H. Fieseler. Concentration compactness. Imperial College Press, London, 2007. Functional-analytic grounds and applications.

[^0]: *Institut de Mathématiques de Toulouse \& TSE, Université Toulouse I Capitole, Manufacture des Tabacs, 21 allée de Brienne, 31015 Toulouse, Cedex 06, France
 *E-mail: Pascal.Begout@math.cnrs.fr
 ${ }^{\dagger}$ E-mail: Ian.Schindler@ut-capitole.fr
 2010 Mathematics Subject Classification: 35Q55 (35A01, 35D30)
 Key Words: stationary Schrödinger equation, periodic magnetic potential, weak solution, cocompactness

[^1]: ${ }^{1} \nabla|u|=0$, almost everywhere where $u=0$.

