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On a Stationary Schrodinger Equation with Periodic Magnetic
Potential

PASCAL BEGOUT*AND IAN SCHINDLER*!

Abstract

We prove existence results for a stationary Schrodinger equation with periodic magnetic po-
tential satisfying a local integrability condition on the whole space using a critical value function.

VERSION 7

1 Introduction and main result

We wish to investigate for which A > 0 there is a weak solution to the stationary Schrédinger equation
with magnetic potential:

(—iV + A)2%u+ V(z)u = \f(x, |u\)i in RY,
[ul (1.1)
u € HYRY),

where A : RV — R is the magnetic potential, B = curl A is the magnetic field, V : RY — C,

2 = —1 and in what follows,

and f : RY x [0,00) — R satisfy some suitable assumptions. Here, i
unless specified, all functions are complex-valued (H'(RY) = HY(RY;C), LP(RY) = LP(RY;C),

2(RN) = P2(RV;C), etc).

We make assumptions that insure the functional associated with (1.1) is invariant with respect to
the transformations u — €?vu(. +y), where ¢, is defined in (3.4) and y € Z". In [7], the authors
stated that this set of transformations was a group of dislocations as defined in [9] which is false. In
Section 3 we prove that the set D of such transformations is a set of dislocations permitting us to use

the profile decomposition theorem [9, Theorem 3.1, p.62-63].
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Arioli and Szulkin [1] treated a similar problem with more general conditions on V' (the spectrum
of the operator (—iV + A)% + V(z) can be negative), but they assume the Rabinowitz condition on
the right hand side. We make less restrictive assumptions on the right hand side and introduce a
parameter A and an interval I, = (M, 00) C [0,00) such that for almost every A\ € I, there is a

solution to (1.1).

In Section 2 we show that if the magnetic potential A € LY _(RY) then H}(RY) = H'(RY) where

loc

HY(RY) &f {u € L2(RN); Vu + idu € LQ(RN)}. (1.2)
In Section 3, we introduce the set of invariant dislocations acting on (1.1) and prove necessary results
to the dislocation theorem in [9]. In Section 4 we prove a cocompactness result. In Section 5 we
introduce a related critical value function the study of which allows us to obtain our main result.
Throughout this paper, we use the following notation. We denote by Z the conjugate of the complex
number z and by Re(z) its real part. By {Q,};>1 we will denote a countable covering of R \ Z¥ by
open unit cubes, thus RY = Uj>1 Qj, and Q = (0,1). For a Banach space X, we denote by X* its
topological dual and by (., .) x+~ x € R the X*—X duality product and for a Hilbert space H, its (real)
scalar product will be denoted by (., .) g. We denote by C' auxiliary positive constants, and sometimes,
for positive parameters ay, ..., a,, write C(aq,...,ay,) to indicate that the constant C' continuously
depends only on ay, ..., a, (this convention also holds for constants which are not denoted by “C”).
Finally, we denote by 2* = 1\2,—1_\’2 the critical exponent of the embedding H'(RN) — L2 (RYN), with

the convention that 2* = oo, if N < 2.
We shall make the following assumptions on A : RN — RV,
Assumption 1.1. Let (e1,...,e,) be the canonical basis of RY.
1. The magnetic potential A : RV — RY satisfies,
Aec LYFT(RN:RY) and ay Lf suIN) [AllL~ (q,) < oo, for some e >0, if N >3,
€

loc
J

A€ LZT5(R%R?) and ay 4f sup [ Al L2+ (q,) < o0, for some e >0, if N =2, (1.3)
JEN

loc

loc

AecL? (R;R) and ay Lef sug AllL2(q,) < o0, it N =1.
JjE

2. Ais a Z" —periodic magnetic potential:

/(N

Vj € [1,N], curl A(x + e;) 7E )curlA(m), (1.4)

eq:defH1A



assf

rmkdefsol

where curl A € Ay (2'(RY)) is the skew-symmetric, matrix-valued distribution with A;; =

0;A; — 0;A;. Note that for N =1, (1.4) is always satisfied.

Remark 1.2. It is easy to see that in Assumption 1.1, (1.4) is equivalent to the condition: for any
’ N
y € ZN, curl A(z +y) 7ED curl A(z). By Lemma 1.1 in Leinfelder [4], (1.4) is also equivalent to: for

any y € Z", there exists ¢, € WLNTE(RNR) (o, € HE

loc loc

T € RN, A(z +y) = A(z) + Vo, (z).

(R;R), if N = 1) such that for almost every

Assumption 1.3. We will use the following assumptions on V, f, and f. Let f : RY x [0,00) — R
be such that f(z,s) is measurable in 2 and continuous in s and let F(x, u) def / f(z, s)ds, for almost
0

every x € RV and any u > 0.

1. For every € > 0 and any 2 < p < 2%, there is a C; , such that for almost every = € RY and any

s >0,
|fz,s)] <e(s+s> ) 4+ C.psP 1, (1.5)
if N >3 and
|f(z,8)] <es+ Cepst ™!, (1.6)
if N <2.

2. The function f and electric potential V : RY — C are measurable and Z"-periodic, that is for
almost every (z,y) € RY x Z¥ and any s > 0, f(z +y,s) = f(z,s) and V(z +y) = V(z). We

assume that

v 2 ess inf ReV (z) > 0. (1.7)

z€RN

3. The electric potential V : RN — C satisfies,

N . .
VeLz®RY)and ay Esup V] y < oo, if N >3,
JEN L2(Qy)
Ve Lllots(R2) and ay df sup HVHLHE(QJ) < o0, for somee >0, if N=2, (1.8)
jEN
Ve Ll (R and ay L Sup IVz1(q,) < oo, if N =1.
JEN

Definition 1.4. We shall write that u is a weak solution of (1.1) if v € H*(RY) and if u is satis-
fies (1.1) in 2'(RV).

Remark 1.5. The above definition makes sense. Indeed, we have for any v € H'(RY),

(-iV+ A)*u=—Au —iuV.A - 2iA.Vu + | A u.

’eq-subcritical_bour

’eq—subcritica1_1_2




Then Au € H~1(R"Y) and, by Assumption 1.1 and Hélder’s inequality, A.Vu, |A|?u € L (RY). In

loc

addition, for any ¢ € 2(RY), V(up) € L*(RY) with compact support, so that uV.A € 2'(RY), and,

(iuV. A, 0) g ®mN),0@N) = —Re/iA.V(u@)dx. (1.9)
RN

Indeed, denoting by (pn)nen any standard sequence of mollifiers, one has

(iuV.4, 0) @), 2@N)
= 1im (i(pn * 1) V.A, @) g () 0wy = nli_)ngo(iV.A, m@@/(RN),@(RN)

n—oo

= — lim <iA7V((pn*u)go)>@,(RN)79(RN) = —<iA,V(ﬂg@)>L2(RN)7L2(RN).

n—oo
Hence (1.9). In summary, if u € HY(RY) then (-iV + A)?u € Z2'(RY).
Below, the main result of this paper.

thm-main| Theorem 1.6. Let Assumptions 1.1 and 1.3 be satisfied. Then equation (1.1) admits, at least, a non

zero weak solution for almost every A > 0 sufficiently large.

2 Another definition of H'(RY)

defH1A| Definition 2.1. Let A and V satisfy (1.3) and (1.7)—(1.8), respectively. We define H}(RY) by,

HY(RY) = {u € L2(RY); Vu + idu € LZ(RN)}.
We endow HY(RY) with the following scalar product and its corresponding norm,

Yu,v € Hy(RY), (u, V)i (rv) = Re / Vuvdz + Re /(Vu +iAu).(Vv +iAv)dz,
RN RN
€ HAEY), iy ey = () = Re [ ViuPde + [Vt iAulFagen,
RN

making this space a real pre-Hilbert space, by (1.7) and Lemma 2.4 below.
Remark 2.2. Below are some comments on the definition of the space H}(RY).

1. If u € L3(RY) then Vu € H-Y(RY) and Au € L (RY) (by Cauchy-Schwarz’ inequality). So,

loc

the definition of H}(RY) makes sense and if u € H}(RY) then Vu € L. (RY).

loc

2. In the literature (see for instance Sections 7.19-7.22, p.191-195, of Lieb and Loss [5]), the

assumption on A is not A € LYY (RY) but merely A € L2 (R”). In this case, it can be shown

loc loc



that H4(RY) is a Hilbert space having Z(RY) as a dense subset. In addition, if u € H}(RY)
then |u| € H*(RY) and the so-called diamagnetic inequality (2.1) below holds. Nevertheless,
HYRY) ¢ HY(RY) and HY(RY) ¢ HY(RY). However, when A has more local integrability

then we have H}(RY) = H'(RY) (see Theorem 2.3 below). Note that when N = 1, then our

2
loc

assumption is A € L2 (R™) which is the same hypothesis that we usually find in the literature,

and it seems that the fact H}(R) = H!(R) was never remarked.

3.If N >2andif A€ LY (Q) (A € L7 (Q) if N = 2) then it can be shown that H}(Q) =

loc loc

H'(Q) with equivalent norms for open bounded subsets 2 of RY with smooth boundaries (see
Lemma 2.3 in Arioli and Szulkin [1]). Actually, it can be shown that the same result holds true

for Q = RY with any N > 1 (see Theorem 2.3 below).
Theorem 2.3. Let A and V satisfy (1.3) and (1.7)—(1.8), respectively. Then,
HARY) = H'(BY),
with equivalent norms and each term in the integrals of { ., . >H/1§ (&N belongs to LY (RN),
Lemma 2.4. Let the assumptions of Theorem 2.3 be fulfilled. Then the following holds.

1. If u € HYRY)U HY(RY) then |u| € HY(RYN), (Vu +idu) € LL _(RY) and

loc

a.e

IV|ul| < |Vu+ iAul. (2.1)

Ifu e HY(RYN) then |V|u|| < |Vul.

2. For anyu € H'(RV)UHL(RY), Au € L*(RN), \/[V]u € L*(RY), [|Aul p2@yy < Caall |ul || g @y
and ||\/|V]ul|L2@yy < Cy/ay || |ul ||H1(]RN), where C = C(N) (C = C(N,e), if N =2).

3. For any u,v € H*(RY), (Au).Vv € LY(RY), |A2uv € LY(RY) and we have,
|, 14090l < Calullan s ol
|, APuvlds < G20 ulln s ol s
[ IV llnlde < Cay el gomy ol vy
where the constant C' is given by Property 2.

Proof. Let u € HY(RY) U H}(RY). The proof of 1 is well-known but for the sake of completeness,
we recall the main steps. By 1 of Remark 2.2, u € VVli’l(]RN) and Vu +idu € LL _(RY). Tt follows

c loc



that |u| € T/Vl1 1(IRN) and V|u| =" Re (%2Vu)' (Theorem 6.17, p.152, in Lieb and Loss [5]). In
particular, |V|u|| " |Vul, if w € HY(RYN). Since Re (%(Vu—i—iAu)) = Re (%Vu) 2 V|ul, one
obtains (2.1). Now, both inequalities in 1 imply that |u| € H*(RY). Let us prove 2. By the Sobolev
embedding H'(Q;) — L* (Q;) (N > 3), there exists C = C(N,|Q;|) such that for any j € N,
lulles @,y < Clllulllm(q,)- Actually, C' does not depend on Q; since for any j € N, |Q;| = 1. It
follows from Holder’s inequality that if N > 3

</RN Au|2dx> = Z/ |Au)?da

JEN
< Z||A||2LN(QJ)||U“%2*(Q)
JEN
< CPai Y Nl g,
JEN

= C%o | lul I3 av)-

If N = 2 then the second line is replaced with 3, ||A||%2+€(Qj) Hu||i@ @, and we use the embed-
ding H'(Q;) <= L

and we use the embedding H'(Q;) < L>(Q,). The estimate with V follows in the same way (for-
mally, replace A with \/m) Now, we turn to the proof of 3. Let v € H'(R"Y). By Cauchy-Schwarz’

2(2+ )

(@), while if N =1 then the second line is replaced with 3, ||A||L2 @) [|u)|? ~@)

inequality and 2 we have,
[ 16400.90lde < ldul e 190l z2ce) < Coralllln ey [0l
/ |A\ luv|dz < ||AU||L2(RN)||AU||L2(RN) Czai||U||H1(RN)HU||H1(RN)7
[ Wilhivide < 17Tl ool VT ol o)y < Coav ulln o ol ey

which completes the proof. U

Proof of Theorem 2.3. The last statement of the theorem is due to 3 of Lemma 2.4, once H*(RY) =
HL (RYN) is proved.

e Let u € HYRY). By Lemma 2.4, Au € L*(RY) so that Vu + iAu € L2(RY) and /|V|u €
L*(RN). It follows that u € H}(RY) and

190+ 14ul vy < [Vall gz + Caal ful vy < (Cora+1)ul s o)

Thus HY(RY) — H(RY), since by Lemma 2.4, Re f Viul?dz < C?av ||ul|?, (RN)"

e Let u € HY(RY). By Lemma 2.4, Au € L2(RN) so that Vu = ((Vu + idu) — idu) € L*(RY).

1V|u| = 0, almost everywhere where u = 0.



It follows that u € H'(R™) and by (2.1),

[Vullr2@vy < [[Vu +iAulp2@vy + Caall |ul [z @)

< | Vu + 1Au| 2@y + oaA\/Huniz(RN) +11Vu + iAu|2 g,

< (Caa + Dull gy, @y

Hence HY(RY) — HY(RY), since by (1.7), Re [ V]u|*dz > u||u||%2(RN). O
RN

Remark 2.5. Let N > 3. Note that in Theorem 2.3 the assumption A € LY +¢(RV;R") is not needed

loc

but merely A € LY _(RY;RY). It is needed in Lemmas 3.1-3.2 and so in Proposition 3.3 below.

loc

3 The set of dislocations

lemAd| Lemma 3.1. Lete >0 and let A € LY T (RV;RN) (A € L} (R;R), if N = 1) satisfying (1.4). Then

for any y € ZN, there exists a unique continuous function v, € VVli’CNJFE(RN;R) (¢, € HL . (R;R), if
N =1) such that

¥y (0) =0, (3.1)
vz € RY, Yyl —y) +v_y(x) = Yy (—y) = v_y(y), (3.2) |psieven

Az +y) = A(z) + Vipy(z), (3.3) |lemAApsi

for almost every x € RN . In particular, 1y = 0 over RY.

Proof. Let y € Z". Uniqueness for ¢, comes from (3.1) and (3.3), once continuity is proved. By
Remark 1.2 and the Sobolev embedding, there exists ;ﬁ; € Wﬁ)’g\,“ (RM;R) (tf/)\; € HL (R;R),if N =1)
satisfying (3.3) and continuous over RY. Setting ¢, = {/;; —{lJVy(O), we see that 1, verifies all the desired
properties, except (3.2). Notice that the function z — 0 satisfies (3.3) for y = 0, so that 9 = 0, by
uniqueness. It remains to establish (3.2). Applying (3.3) with y at the point  — y and a second time

with —y, we obtain for almost every x € RY,
Az —y) = A(z) = Viby(z — y) = A(2) + Vib_y (2).
It follows that there exists ¢ € R such that,
Vo € RY, ¢, (x —y) +v_y(2) = c.

Substituting first = 0, then = y and using (3.1) we obtain (3.2). O



Lemma 3.2. Let ¢ >0 and let A € LYT(RV;RN) (A € L} (R;R), if N = 1) satisfying (1.4). Let
(wy)yeZN be given by Lemma 3.1. For any y € Z¥, let p, € I/Iflfj’CN+E(RN;R) (oy € HE(R;R), if
N = 1) be defined by,

def

1
Oy =y — §wy(—y), (3.4)

Then ¢, € C(RY;R) and verifies,

Ve € RY, py(z —y) + -y (z) =0, (3.5)
Az +y) = A(x) + Vy(z), (3.6)

for almost every x € RN. Finally, po = 0 over RV.

Proof. By Lemma 3.1 and (3.4), we only have to check (3.5). The result then comes from (3.4) and
(3.2). O

Assume that A satisfies Assumption 1.1. For any y € ZV, we define g, € Z(H'(RY)) as follows.

gy:Hl(RN) —  HYRN)

w s Aol ),

where ¢, is given by (3.4). Indeed, it is clear that g, : H'(RY) — L%(R") is linear and continuous.

In addition, for any y € Z" and v € H'(RY),

Vigyu) = (Vu(. +y) +iu(. +y)Ve,)er,

Vioyl? € LE(RV;R) and [u(. +)* € LT (RV;R), if N >3,

2«%2»5 2+4e

Ve, |* € L2 (RY;R) and [u(. +y)|* € L= (R%;R), if N =2,

IVo,|? € LL (RY;R) and |u(. +y)* € L(R;R), if N = 1.

from which we deduce, with help of Lemma 2.4, Holder’s inequality and the Sobolev embedding, that
gy : HY(RY) — HY(RY) is well-defined, linear and

IV(gyu)ll 2@~y < [ Vullpz@ny +2Caal ful | @yy < Cllull g @),
It follows that for any y € ZV, g, € X(HI(RN)) with gyl &z (ryy) independent of y. Let

DY {95y € ZN}. (3.7 [p]



Proposition 3.3. Let D be defined by (3.7). Then D is a set of unitary operators on H'(RN) with

respect to the norm || . || gy ) defined in Definition 2.1. In addition,
go = 1d, (3.8)
9y =9-y, (3.9)
(gyt, 9yv) 1 vy = (U, V) 1 (v, (3.10)

for any y € ZN and u,v € H'(RV).
Proof. Recall that D is set of bounded linear operators on H'(R”"). By Lemma 3.2, ¢o = 0 so that
go =1d. Let y € Z" and let u € H'(RY). For almost every z € RY, one has,

9y (g_yu) (z) = elvy (@) (g_yu) (x+y) = eiwy(m)eiwy(mw)u(x) = u(x),

where we have used (3.5) in the last equality. Still with (3.5), we show that g_, (gyu) = u. It follows
that g, is invertible and g, = g—y- Now, let v € H LRNY). By a straightforward calculation and with
help of (3.5) again and (3.6), we obtain

* def _
<uagyv>H}4(RN) = <9yu’ U>H};(RN) = <u’9y 1'U>H}4(]RN)7

so that, gy = g, I which concludes the proof. O

Lemma 3.4. Let (yx)x C Z". Then,
k—oo
Iy — 0 <= |yg| —— oc.

Moreover if gyk%() then (gyk)k admits a constant subsequence.

Proof. Let (yx)r C ZVN.

Step 1: If hkrg gf lyx] < oo then (yx)r admits a constant subsequence.

Indeed, if hkrg gf lyx] < oo then (yx)r admits a bounded subsequence, from which we extract a
convergent subsequence (y;w) ;- Since (ykz) , converges in ZN | Step 1 follows.

Step 2: Proof of = .

We show the contraposition. Assume that liknig.}f lyx| < oo. By Step 1, there exists (ykz)l C (yr)k
such that for any ¢ € N, yx, = yg,. Let v € HY(RN)\ {0} and u = g;}l v. It follows that,

VLEN, (gyu, u, 0) iy () = ||U||§J;(RN) >0,

and 50, g,, 0.

Step 3: Proof of «<—.

propDD1-0
propDD1-1

propDD1-2



Assume |yg| 5220 . Let ¢, € Z(RY). Then for any k € N large enough, supp(gy, ¢) Nsupp ¢ = 0,
so that,

k—o0
{9y V) 11, (mvy —— 0. (3.11)

Let u,v € H'(R"). Let ¢ > 0. By density and Theorem 2.3, there exists (¢, )n, (¥n)n C Z(RY) such

HY (RN HY (RN
that, ¢, M u and ¥y, M v. Let ng € N be such that,
n—oo n—oo

||'UHH}\(RN)HU - Sﬂno”H;(RN) + [|¢ng \\H;(RN)||U - ¢no||H;(RN) <éE,

for any n > ng. We then infer with help of (3.10), that for any k € N,

|<gyku7U>H}4| < gy, (u — @no)vv>H}4| + Gy, Pro» v — 1/’no>H}4| + |<gyk‘;0n071/)no>H}1|
< lla Nl = enollay, + leno Ly 1o = Yng Ly, + 1{9ysnos Yno) |

< €+ |<gyk¢noﬂwno>H}\‘

By (3.11), if follows that: limsup |(gy,u, v)Hi‘(RN)| < e. Since € > 0 is arbitrary, we then get that for

k—oco

any u,v € H'(RY), (gy,u,v)

k—o0

RN T 0, which is the desired result.
A
Step 4: If gy, =<0 then (gyk) , admits a constant subsequence.
Now assume that gyk740. By Steps 2-3, this means likm inf |yx| < oo, and we conclude with help of
—00

Step 1. O

Proposition 3.5. Let D be defined by (3.7). Then D is a set of dislocations on (H'(RN), ||. | 1, ®vy)-

Proof. By Proposition 3.1 p.61 in Fieseler and Tintarev [J], it is sufficient to show that if (yx)r C ZV
is such that gyk%() then g,, has a strongly convergence subsequence. This is a consequence of

Lemma 3.4. O

4 Cocompactness

Let D be defined as in Section 3.
thmcoc | Theorem 4.1. Let (ug)ren be a bounded sequence in H'(RN). Let p € (2,2*) (p € (2,00) if N = 2,
p € (2,00] if N =1). Then we have the following result.

D LP(RN)
up — 0 < u, —= 0.

k— o0

10



D
Proof. Let (ux)ren a bounded sequence in H*(RY) be such that u;, — 0. Let p be as in the theorem
with p < co. We claim that,

Vk € N, 3y, € ZV such that sup / |uk|pdx:/|gykuk|pdaj. (4.1)

yezN

Indeed, if sup [ |ug|Pdz = 0, there is nothing to prove. If sup [ |ugx[Pdz = & > 0 then if the
yELN Q—y yEZN Q—y
supremum in y was not a maximum then there would be an infinite number of y € Z" such that

[ |ug|Pdz > &, contradicting the fact that (u)y is bounded in H'(RV).
Q-y
By the Sobolev embedding H'(Q) < LP(Q) and translation, there exists C' > 0 such that for any
keNandyezZV, ||uk\|%p(Q7y) < CHukHiIl(ny)‘ Multiplying the both sides by ||uH’£;(2Q7y), we get

p—2

/|uk|de CllulZrioy, /\uk|pdx
Q-y

Summing over y € Z~, we obtain for any k € N,

p—2

el vy < Ol oy s / juyda

For any k € N, let y, € Z" be given by (4.1). Noticing that sup [|ug|| g1 rx) < 00, we infer from the
keN
compactness of the Sobolev embedding H'(Q) < LP(Q) that

k—o0

Vk €N, HukH]Z,p(RN) < C”gykuk”i;(QQ) —0,

since g, ur — 0 in HL(RY). When N = 1 and p = oo, we use the above result and Gagliardo-

Nirenberg’s inequality to see that,

k—o0
k]| oo ) < CHukHL4(R||Uk||Hl(R) CH“’CHL‘l(R — 0.

To prove the converse assume that for some p € (2,2*) (p € (2,00) if N =2, p € (2,00] if N = 1),
b N
U L> 0. Note that if N =1 and p = oo then,

k—o0

k
lurlFamy < llukllp2@llusll Lo ®) < Cllullze @) =0

So we may assume that p < oo. Let (gx)r € D. Since for any k € N, ||grug|| Lo @yy = [|ugll Lo @~y and

lgrurll gy @y = [[ukll 2y @y by (3.10), we obtain that for some (9r:), C (gr)x and u € H'(RN),

grur — 0, in LP(RY), as k — oo,

gk, Uk, — u, in HL(RYN), as £ — oo.

11



lue_function

1
In particular, both convergences hold in 2'(RY) so that v = 0 and gpur —— 0, for the whole

sequence (gxug)g- This concludes the proof. O

5 An associated critical value function and proof of the main
result

Let

def

P(u) = F(z,|u|)dz. (5.1)

RN

The functional ¢ is of class C*(HY(RY);R), o'(u) = f(.,|ul)% and ¢ and 1’ are bounded on

Tul

bounded sets [2, Proposition 3.2.5, p.60]. We note also that by compact Sobolev embeddings, if
1

—1

H} Hy
(up)r, € HY(RM) and up, — u then v¢/(up) — '(u) since Z2(RY) is dense in H'(RY). If
(up)r € HY(Q) N HY(RY) where Q@ C R is bounded then 9 (uy) — 9(u).

def def
Let S; = {ue HyR"Y); ”U”?qi‘(]RN) =t}, By = {ue Hi(RY); ”uH}zq}‘(RN) <t
def
Y(t) = sup ¢(u), (5-2)
u€St

and 3, &' {u € St;9(u) = v(t). Furthermore let

e (2 g 2O =) 5 () = 7(8)) 53)
t#s t—s t#s t—s
and
Gp(u) = Ellul?y, vy — V(). (5.4)

Note that if we find a w, € H}(RY) such that G/,(w,) = 0 then w, is a weak solution to (1.1) with
V=1and A=1/p.

Lemma 5.1. Assume 1 of Assumption 1.3. Then (t) is locally Lipschitz continuous and nondecreas-
ing in t. For every a € [0,1]
V(@) +(t —a) <) (5.5)

1

Proof. Let u € H(RY) and 6 > 0. Let (vg)ken C S1 be such that vy —~ 0 and suppvr C Q.
Then ¢ (u + Ov) — ¥(u) and |lu + 9vk||§{i‘(RN) — H“H%{;(RN) +6.
Let (uk)ken C S¢ be a maximizing sequence of y(t). Since Z(RY) is dense in H}(RY) we may find

(yr)x C RN, with limg_s oo |yx| = 0o, such that ¥(u + ug(- + yx)) — ¥(u) + y(t).
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eq-Grho

’ eq-lions_split_inec




PS_sequences

BPS_solution

Since ¢’ is bounded on bounded sets, [2, Proposition 3.2.5, p.60] we conclude that for u € By,

<¢,(U)7U>H*1,H1 < Gy

The result is now a consequence of [, Theorem 2.1]. O

Lemma 5.2. Assume 1 of Assumption 1.3. Then for every p € I, either there is a ty > 0 such that a
mazimizing sequence of ¥(u) in Sy, is a minimizing sequence for G,(u) or G,(u) has mountain pass

geometry and there is a critical sequence sequence (uy)r C HY(RY), satisfying

{Gp(uk) —c>0,

o (5.6)
() 5 0,

Proof. The proof of [6, Theorem 2.15] can be adapted to prove Lemma 5.2.

Let
pel, (5.7)
and
def P
Dp(t) & 20— (o) (5.8)

Then I',(t) is not monotone increasing. Indeed, if so then for ¢; < t2 we would have

14 4
—t1 —(t1) < =t — (¢
21 7(1) 22 ’Y(2)

which implies
(v(t2) = (t1))/(t2 — t1) < p/2

contradicting (5.7). Similarly I',(¢) is not monotone decreasing. Therefore I',(t) admits either a local
minimum or a global maximum. If ¢y is a local minimum of I'(¢), then since G,(u) > T',(||ull?), if
(ur)r C S, is a maximizing sequence of 1 (u) G,(uy) converges towards a local minimum of G,(u).

If T'(¢) does not admit a local minimum, then it admits a positive global maximum at a point
to > 0 with ¢ & Ty(to) > 0. We have G,(0) < ¢, and for all u € Sy, G,(u) > T',(to) = c. However
we can find a t1 > tp and a 6 > 0 such that I',(t1) < ¢ — 4. It follows from the definition of v(t) that

there is a u; € Sy, such that G,(u1) < ¢ —0/2. Thus G, has mountain pass geometry. O

Lemma 5.3. Assume 1 of Assumption 1.1. Suppose 1 of Assumption 1.3. Then the existence of a
bounded sequence (ux)ren C HA(RYN) satisfying (5.6) with p > 0 implies the existence of a w, €
HL(RN)\ {0} such that G/,(w,) = 0.
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’ eq-definition_Gamme




tions_Igamma

k-chaque_rho

Proof. Let p > 0 and let (ug)keny C H4(RY) be a bounded sequence satisfying (5.6). The sequence
HL (RY
uk%o because ¢ > 0 and G(0) = 0. Thus we may assume that, up to a subsequence that we
bde el
still denote by (uk)ken, ||u;€||§{z(RN) — t > 0. It follows from (5.6) that (G/,(uk), uk) -1, g — 0. If
D
up — 0 then 1 of Assumption 1.3 and Theorem 4.1 imply (¢’ (ug), up) -1 g2 — 0, which implies
that (G',(ur), uk) g1, 51 — pt # 0, a contradiction. Theorem 2.3 and Proposition 3.5 imply we can

use [0, Theorem 3.1, p.62-63] to assert the existence of (w(™),, c H}(RY), (g,(cn))k,n CDand DCN

such that
n -1 n
gl(c ) g — w™, (5.9)
(=t m) g+,
a9 9 or n # m, (5.10)
S ™ g vy < 1 (5.11)
neh
D
up = Y gy w™ —o. (5.12)
neD

Hypothesis 1 of Assumption 1.3 and equations (5.9), (5.10) and the fact that the functional G,(u) is
invariant with respect to D implies that (1)(ur), ux)g-1, 51 = Y, cn <@/J(w(”)),w(”)>H,17Hl +o(1). If
all the w™ were zero, then () (ug), uk)g-1 g1 — 0 a contradiction (as above). Therefore there is at
least one nonzero w™ which we call w,. From (5.9) and the invariance of G, with respect to D, we
may assume that up — w),, in HL(RY). We conclude from (5.6) that G/, (ux) — pw, —¢'(w,) = 0,

in 2'(RV). O

Corollary 5.4. For almost every p € I, either there is a u, € Hy(RY)\ {0} such that G/,(u,) =0,
s0 that u, is a weak solution to (1.1) or there is a ty > 0 such that a mazimizing sequence of ¥ € §

is a minimizing sequence for G,(u).

Proof. Let p > 0, let (ug)r be a critical sequence of G, and let py, “\ p. If |lug| g1 vy — oo then
since G,(ux) — ¢, it follows that ¢(uy) — co. On the other hand, if (uy)ren is bounded then it

follows that there is an M > 0 such that ¢(u;) > —M. Dividing G, by p, the functional is of the

form: %HUH%I}\(RN) — \)(u), where A = p~t. Since the first term does not depend on A we can apply
[3, Theorem 2.1] (see also [8]) and conclude that the set of p for which the critical sequence (5.6) is

unbounded has measure 0. The assertion now follows from Lemmas 5.2 and 5.3. O

Remark 5.5. If y(t) is differentiable then there is a solution for every p € I, which can be obtained

by a maximizing sequence of ¥(u) in some S; [6, Theorem 2.1].
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Proof of Theorem 1.6. We prove the result in the case N > 3. The proof when N < 2 is similar.
Let Assumptions 1.1 and 1.3 be verified. Let € > 0. We compute, with help of Lemma 5.1, Sobolev’s
embedding and Theorem 2.3,

7(t)

1
0 < limsup —= = limsup sup f/ F(z,|u|)dz
ot N0 ueS, tJRN

1 . C
< lim sup sup [5/ (Jul® + |u|* )dz + i/ |u|”5dx}
N0 ues, LT Jry t Jrw~

< lim sup <5 sup/ |u\2dx+6t27*1 sup/ lu|? dz 4 C.t'F 1 sup/ u|p5dx)
t\0 ueSy JRN ueSy JRN u€eST JRN

<L e.

Since € is arbitrary, we can conclude that

Y=o 619

() =y(s)

It follows from Lemma 5.1 that I, = (0,sup, ., ==}

). Let p > 0 and suppose that G,(u) does
not have mountain pass geometry. Then from the proof of Lemma 5.2 we see that I',(¢) has a local
minimum. Let ¢y % inf{¢|T'(¢t)is a local minimum}. If ~(¢) is differentiable at tq, then since v(t)
is locally Lipschitz, ¢y is a local minimum of T',(t) and p/2 = 4/(tp). From (5.13), we see that
I,(0) = p/2 # 0 so to > 0. Let (ux)r C Sy, be a maximizing sequence of ¥(u). From [9, Theorem
3.1, p.62-63] we again assert the existence of (w(™), c HY(RYN), (g,(cn))km C D and D C N such that
Equations (5.9) (5.11), (5.10), and (5.12) are verified. From (5.10), (5.11), and Theorem 4.1 we obtain

that y(to) = limy, ¢(ug) = >, Y(w™). 0

Remark 5.6. We conclude with some remarks:

1. If there is an M > 0 such that F(z,s) > s> for s > M, then there is a solution to (1.1) for

almost every A > 0 because one can prove that lim;_, . y(t)/t = oo.

2. From Remark 5.5 we see that if F(x,s) is a finite sum of homogeneous terms, then 7(t) is

differentiable and there is a solution for every p € I,.
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