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Abstract

This paper provides a specification test for semiparametric models with nonparametrically gen-

erated regressors. Such variables are not observed by the researcher but are nonparametrically

identified and estimable. Applications of the test include models with endogenous regressors identi-

fied by control functions, semiparametric sample selection models, or binary games with incomplete

information. The statistic is built from the residuals of the semiparametric model, and a novel wild

bootstrap procedure is shown to provide valid critical values. We consider nonparametric estimators

with an automatic bias correction that makes the test implementable without undersmoothing. In

simulations the test exhibits good small-sample performances, and an application to women’s labor

force participation decisions shows the implementation of the test in a real-data context.
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1 Introduction

A strong tradition on specification testing is present in econometrics. In this paper, we contribute to the

literature by providing a specification test for semiparametric models with nonparametrically gener-

ated variables. These variables are not observed by the researcher but are nonparametrically identified

and estimable. Examples of semiparametric models with nonparametrically generated variables are

common in empirical frameworks and include endogenous models with control functions (Blundell &

Powell, 2004; Newey et al., 1999), semiparametric sample-selection models (Escanciano et al., 2016), or

extensions of Tobit models (Escanciano et al., 2016).

Checking the correct specification of a model is empirically relevant, as a misspecified model yields

biased and inconsistent estimates and provides a misleading counterfactual analysis. If the models did

not contain nonparametrically generated regressors, specification testing could be based on procedures

already available in the econometric literature which assume that all the variables are observed (see

e.g. Delgado & Manteiga, 2001; Xia et al., 2004; Fan & Li, 1996). In principle, these tests could be naively

applied by replacing the nonparametrically generated regressors with their estimates. Such a procedure,

however, would deliver a wrong inference, as the nonparametrically generated variables must be

estimated in a preliminary step, and this introduces an estimation error that needs to be taken into

account.

The test we propose allows the researcher to check the validity of semiparametric moment condi-

tions involving nonparametrically generated regressors. The statistic is based on a weighted sum of the

residuals obtained from the estimation of the model and has a simple closed-form expression. We prove

that such a statistic converges to an non-pivotal distribution, i.e. a distribution that depends on un-

known features of the data generating process. Thus, to obtain the critical values necessary for testing,

we develop a novel Wild Bootstrap scheme and prove its validity under low-level assumptions.

The wide range of application of this test comes from the widespread presence of generated re-

gressors in empirical economic models. A first type of relevant setups includes semiparametric binary-

choice models with endogeneity and control functions (see e.g. Rivers & Vuong, 1988; Newey et al.,

1999; Blundell & Powell, 2004; Imbens & Newey, 2009; Blundell & Matzkin, 2014; Wooldridge, 2015). In

these setups, the parameters of interest are generally not identified by standard IV assumptions, and the

introduction of a control function allows to obtain identification (see Blundell & Powell, 2004). A

further application of the test is provided by nonlinear semiparametric regressions with endogeneity

that are separable with respect to an unobserved error term. Newey et al. (1999) highlights that the con-

trol function approach is convenient in such frameworks because it avoids an ill-posed inverse problem

and allows a simple estimation procedure. Other examples of applications are semiparametric binary

models with censoring and truncated models with selection, like double-hurdle models (Escanciano et

al., 2016). The test can also be applied to check the correct specification of semiparametric games with

incomplete information, where agents make binary decisions, see Aradillas-Lopez et al. (2007),

Aradillas-Lopez (2010), Aradillas-Lopez (2012), and Lewbel & Tang (2015).
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The main contributions of this paper are threefold. First, we develop a specification test for the

mentioned semiparametric models with nonparametrically generated variables. Second, we contribute

to the literature on bootstrap inference by extending the Wild Bootstrap procedure (Davidson & MacK-

innon, 2010; Delgado & Manteiga, 2001) to a semiparametric context with nonparametrically generated

regressors. Third, in the construction of the specification test, we adopt automatic bias corrections for

the nonparametric estimators involved.

To build a specification test for semiparametric models with generated regressors, we start from the

restriction they impose on the distribution of the data. In the benchmark example, such a restriction

writes as a moment condition of the type

E{Y |X, Z } = G0(XT β0, V ) , where

V  = X e  − m0(Z) ,

(Y, X e , X T , Z T ) are observed, β0 is an unknown vector, G0 is a nonparametric function, and m0(Z) =

E {X e|Z} . m0 is an unknown function. It is not restricted to have a specific functional form, so V is a

nonparamerically generated regressor. To construct a test, we use an approach based on Bierens &

Ploberger (1997) and Stinchcombe & White (1998). The test statistic proposed is a transformation of a

weighted sum of the estimated residuals and has a simple closed-form expression. To provide tractable

proofs, we obtain the residuals by kernel estimation.

For the nonparametric estimation of G0 and V , required to compute the residuals, we adopt an

automatic bias correction. To the best of our knowledge, this is a novel approach in semiparametric

models with generated regressors. This allows to widen the set of bandwidths admissible for the test

compared to the case where such a bias correction is not used. Furthermore, it allows to implement the

test by kernels of relatively low order. The bias correction employed is similar to the one used in Xia et

al. (2004)who proposes a specification test for a single-index model where all the variables are observed.

It can be considered a bootstrap estimate of the bias.

We show that asymptotically the statistic converges to a transformation of a Gaussian process. Since

the asymptotic distribution is not pivotal, asymptotic tests are di@cult to implement. Due to the pres-

ence of nonparametrically generated regressors, the asymptotic distribution involves nonparametric

derivatives, so to obtain the asymptotic critical values one should estimate these nonparametric deriva-

tives. This approach would suffer from two issues. First, the estimators of the nonparametric derivatives

have a slow convergence rates, and this would seriously compromise the capacity of the test to pro- vide

a reliable inference in finite samples. Second, to estimate such derivatives a bandwidth should be

selected, and this would introduce an adding parameter the researcher shouldset.

Instead, to compute the critical values we develop a novel two-step wild bootstrap procedure. In

particular, we contribute to the literature on bootstrap inference by extending to a semiparametric

context with nonparametrically generated variables the wild bootstrap scheme proposed in Davidson &

MacKinnon (2010)for the linear two-stages least squares regression. We show the validity ofthis
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wild bootstrap procedure under low-level conditions. The proofs for this result are challenging for two

reasons. First, we need to handle a nonparametric estimator nesting inside another nonparametric esti-

mator. Second, in the bootstrap context the estimators are computed with the “artificial data” resampled

from the wild bootstrap scheme that contains estimation noise. As we show in a Monte Carlo simu-

lation study, this test is able to provide a reliable inference in small samples, both in terms of size and

power.

Related literature. A large literature analyzing the problem of estimation with nonparametrically

generated regressors exists, beyond the studies already cited above. Early work includes Pagan (1984),

Ahn & Manski (1993), Ahn (1997). More recent results are presented by Li & Wooldridge (2002), Chen et

al. (2003), Rothe (2009), Mammen et al. (2012), Mammen et al. (2016), Bravo et al. (2018), Hahn et al.

(2018), Vanhems & Keilegom (2019). The impact of generated regressors on the asymptotic distribution

of a finite-dimensional estimator is analyzed in Newey (1994) and Hahn & Ridder (2013). Escanciano et

al. (2014)obtains an expansion of the residuals from a regression involving some variables estimated in a

preliminary step. These papers focus on estimation, and do not address specification testing in the

presence of generatedregressors.

From a methodological point of view, our work is closely related to Escanciano et al. (2014), with two

main differences. First, in this paper we consider a bootstrap environment, while Escanciano et al.

(2014) are not concerned with proving the validity of a bootstrap test. When proving the validity of the

wild-bootstrap method, we need to handle the (uniform) convergence of a kernel estimator, where the

projected variable is not observed but estimated. Thus, the results in Escanciano et al. (2014) are not

applicable to the context of the present paper. Second, the sum of the residuals at the basis of our statistic

contains bias-correction terms which are not present in their context. This allows to impose conditions

on the bandwidths different from those they require andto avoid undersmoothing.

This study is also related to work on specification testing for semiparametric and nonparametric

models, see Fan & Li (1996), Chen et al. (2003), Ai & Chen (2003), Delgado et al. (2006), Einmahl & Van

Keilegom (2008), Lavergne & Patilea (2008), Einmahl & Van Keilegom (2008), Delgado & Stute (2008),

Escanciano & Song (2010), Lavergne et al. (2015a), Neumeyer & Van Keilegom (2010). We use an

approach similar to Delgado & Manteiga (2001), Bierens & Ploberger (1997), Stinchcombe & White

(1998), only to cite a few. The difference with this literature comes from the presence of nonparametri-

cally generated regressors which introduce extra terms in the asymptotic expansion.

Organization of the paper. Section 2 starts from a benchmark framework and describes the test in an

intuitive way without delving into technical aspects. Section 3defines in detail the estimation procedure

employed to compute the residuals. Section 4 introduces the assumptions and obtains the asymptotic

behavior of the statistic, while Section 5 sets up the bootstrap test and shows its validity. Section 6

contains other applications of the test, beyond the benchmark framework. Section 7 provides the

simulation study assessing the small-sample behavior of the proposedtest. It also contains an



empirical application to women’s labor force participation. Finally, Section 8 concludes. The Appendix

contains the proofs for a general model encompassing all the examples considered.

2 The Test: Benchmark Example and Heuristics

We describe how to apply the test to a benchmark example. The presentation is kept at an intuitive level,

without focusing on technicalities.

1. Binary-choice models with control functions

Let Y ∈ {0, 1} denote the discrete choice of an agent, and assume that such a choice depends on both a

vector of covariates X ∈Rdim(X) and an unobserved error term u according to the model

Y =  1 {XT  β0 ≥ u } , (1)

where β0 ∈ Rdim(X) is an unknown vector and X = (Xe , Z1)T . X e denotes the endogenous regressor

correlated with u, while Z1 stands for the exogenous regressor. For simplicity, we assume that each of

them is a scalar random variable, as the generalization to any finite dimension is straightforward. To

control for such endogeneity, Blundell & Powell (2004) introduce a control function and assume that

u|X, Z  ∼ u|X, V ∼ u|V , where

V = X e − m0(Z) , Z = (Z1, Z2), and E{V |Z} = 0 . (2)

The symbol “∼” denotes “equality in distribution”1. The function m0 is nonparametric. The residual V is

called “control function”, as it is the variable allowing the researcher to control for the presence of

endogeneity. Denote with G0(u ,̃ v) the conditional distribution of u given V = v computed at the value

ũ .The exclusion restriction in Eq. (2)implies that

E{Y |X, Z } = G0(XT β0, V ) , (3)

where (X, Z)T denotes the column vector gathering all the components of X and Z without “repeating” 
the common ones. Since the cdf of u is not specified in a parametric way, G0 is an unknown function. 

The above display is the moment condition to be tested in this paper, i.e. the null hypothesis. The test

for such a condition is a specification test for the control function model described above. If the null 

hypothesis is not rejected, the specification of the model cannot be  rejected.  Conversely, if the null

is rejected, the correct specification of the model must be rejected as well2.

1The condition in Eq. (2) is a conditional independence restriction. It requires that when the residual V is kept fixed, the
error u is independent from the exogenous variables Z . This allows to exclude the regressors X from the conditional
distribution of u.

2The vector of parameters parameter β0 can be identified by exclusion restrictions and normalization conditions, as in
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Remark 2.1. Eq. (3) is implied by the linearity restriction in Eq. (1) and the exclusion restriction in Eq. (2).

When the condition in Eq. (3) is rejected, the test does not suggest whether such a rejection is due to the

failure of the linearity restriction or the exclusion restriction. Whether the researcher has to reject one

or the other depends on the specific application. The control function condition in Eq. (2) can be often

justified by economic arguments. Conversely, the linearity in Eq. (1) is often imposed for the aim of

simplicity but does not have a strong economic justification. In such cases, a rejection of the null

hypothesis would mean a rejection of the linearity restriction in Eq. (1).

2.2 Construction of the Test

The goal is to test the hypothesis

1
c
0H0 : E{Y |X, Z } = G0(XT β0, X e − m0(Z)) versus H : H ,

c
0 0where H denotes the logical complement of H . The test described here is an omnibusspecification

test. Denote with f  the density function of the vector (X T  β0, V ). For the ease of notation, we introduce  

the error term

(4)
ε := Y − G0(X β0, V ) .

T

The null hypothesis H0 is equivalent to

H0 : E{ε ·f (Xβ0 , V ) | X, Z } = 0 P -a.s. for some β0 ∈ Rdim(X) , (5)

where “a.s.” stands for “almost surely”. We introduce the density f  in the above expression for technical  

reasons, to avoid a random denominator and obtain clean proofs.

The  first  step  to  build  a  test  is  to  transform  the  above  conditional  moment  into  a  continuum of

unconditional moments.  Such a transformation enables to construct the test statistic without estimating

n

∫
E{Y |X, Z } .  To  this end, let us  define  the linear operators P  and  P  asPg = g(y, x, z) P (d y, x, z)

nand P g = (1/n)
Σ n

i=1 g(Yi, X i ,  Z i),  respectively3. By the results in Bierens (1982) and Stinchcombe &

White (1998), the hypotheses H0 and H1 are equivalent to

H0 : Pεfφ t  =  0 ∀t ∈T , H1 : Pεfφ t  ƒ= 0 for almost all t ∈ T ,

where  T  is  a  compact  subset  of Rdim(X,Z)  encompassing  the  origin,  φt(·)  := γ(t·),  and  γ  :  R ›→ C

is a univariate analytic non-polynomial function. This means that γ is infinitely times continuously

Blundell & Powell (2004) and Rothe (2009). This means that some of the exogenous variables, i.e. those in Z2 , must not appear
in the original equation and cannot be part of X . Conversely, Escanciano et al. (2016) show that in the presence of
nonlinearities in the function m0 , these exclusion restrictions are not necessary, and identify the components of the model
without using “instruments”.

3Notice that if g is a nonrandom and deterministic function, Pg = Eg(Y, X , Z) .
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Algorithm 1 Computation of Sn

Step 1.  Regress (nonparametrically) X e  onto Z to get an estimate m̂0  of m0 ,  and set V̂    =  X e  − m̂0(Z).

Step 2. Estimate β̂ by minimizing a Semiparametric Least Square criterion.

Step 3. Regress nonparametrically Y onto (X T  β ,̂ Vˆ) to get an estimate Ĝ of G0. Compute the residuals
i i

T
i

ˆ ˆ ˆ
iε̂  =  Y − G(X β, V ) for i =  1, .., n. Estimate f  by constructing the kernel density estimator of

(X T β ,̂Vˆ). Given εˆand fˆ, obtain the statistic Sn as in Eq. (6)

differentiable and does not have a polynomial form. exp(·), exp(·
√−1), sin(·), cos(·) are examples of

such a function. Let (m̂ 0, β )̂ be estimators of (m0, β0). V̂ = X e − m̂ 0(Z) is an estimator of V . Denote

with ε̂ := Y − Gˆ(XT β ,̂ Vˆ) and fˆthe estimators of ε and f , respectively. A feasible statistic for the test

will be

Sn  =  
∫

|
√

nPnεˆfˆφttˆn|2µ(dt) , (6)

where t̂ n denotes a trimming function and µ is a measure absolutely continuous with respect to the

Lebesgue measure4. If φt(·) = exp(it·) in Eq. (4), with i =
√−1, the integral in Sn has a simple closed-

form expression,

nS =
1
n

Σ

i , j

ˆ ˆ
i  i j j µ i j i jε̂  f  ε̂  f  ·ϕ  (X − X  , Z  − Z ) ,

where ϕµ  is the characteristic function of µ .

2.3 Estimation and Asymptotic Behavior

0To test the model, both the regression function G (·) = E { T
0Y |(β X,  V ) =  ·} and the density f need

Tto be estimated. Since the regressors (β X,  V ) are not observed, it is natural to proceed to a “three-0stage”  estimation.  First,  we  get the  estimates  m̂0  of m0 ,  and  hence  an  estimate  V̂    of V .  Second, we

compute β̂  by a Semiparametric Least Squares criterion, see Ichimura (1993), Ichimura & Lee (2010),  and 

Escanciano et al. (2016).  Third, we construct the estimators for (G0, f ) by replacing the unobserved
T
0

Tˆ ˆregressors (β X,  V ) with their estimates (β X,  V ). These steps are summarized in Algorithm1.

Notice that under the null hypothesis,
√

nPnεfφ t ; N (0, ·) for any fixed t, where N (0, ·) is a

normal distribution with a certain variance. Since one expects that ε f̂ˆφt ≈ εfφ t , it should also hold that
√

nPnεˆfˆφt ; N (0, ·). Hence,
√

nPnεˆfˆφt will be bounded in probability and so will Sn . Conversely,

under the alternative H1, for any fixed t,
√

nPnεfφ t → + / − ∞. So
√

nPnεˆfˆφt → + / − ∞, and the

statistic Sn will explode. Thus, for a suitably chosen critical value c1−α, a test at the α significance level

4The trimming t̂ nexcludes from the computation of the statistic those observations on the tails of the distribution. It will
be defined more precisely in Section 3.

7
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can be defined as follows:

Reject H0 if Sn  > c1−α .

Ideally, we would set the critical value c1−α to the 1 − α quantile of the null distribution of Sn ,  but  

since such a quantile is unknown it must be estimated.

2.4 The Bootstrap Test

To obtain the critical value cˆ1−α, we propose a Wild Bootstrap procedure. To this end, we start from the

wild bootstrap scheme proposed in Davidson & MacKinnon (2010)for the linear two-stages least squares

regression. We extend such a scheme to a semiparametric context with generated regressors. The

procedure proposed relies on the functional forms imposed under the null hypothesis. Intuitively, since

the null hypothesis is imposed in the bootstrap resampling, we should obtain a good approximation of

the critical values when the null hypothesis holds true, as the information in H0 is used. In this context,

to obtain a wild-bootstrap procedure leading to a consistent test, it is necessary to mimic that in the “realworld” the regressor V is not observed but has to be estimated in a preliminary step.

i
n
i=1Let  us  define{ξ } to be a sequence of iid weights independent from the sample data, randomly

drawn from a known distribution Pξ . For instance, Pξ can be set to the standard normal distribution or  to 

any other distribution with mean zero and variance one. Let

Yi
∗  := G (̂β̂ T X i ,  V î) + ξi ·ε̂ i (7)

e,∗
i

ˆ
0 i i iX := m̂ (Z ) +  ξ ·V .

If the regressors V were observed, only the first line of the above display would be su@cient to build a

valid bootstrap procedure. Because V must be estimated in a preliminary step, the introduction of the

second line is necessary for a correct bootstrap inference.

By resampling the observations from the above DGP, it is possible to compute the bootstrap version

Sn
∗of the statistic Sn . The steps needed in the bootstrap computations are detailed in Algorithm 2. Let us

notice two features. First, V̂∗is defined as the difference between X e and m̂ ∗
0, and not as the difference

between Xe,∗ and m̂ ∗
0(Z). This is because the generated regressor V has to be bootstrapped only to

replicate the estimation error from its unobservability. Such estimation error is generated only by m̂ 0, so

it is only m̂ 0 that must be bootstrapped. Second, the bootstrap statistic Sn
∗is not “recentered” because the

null hypothesis is already imposed in the bootstrap DGP of Eq. (7). More details will be provided in

Section 5.

To compute the critical value, one generates B samples from the bootstrap DGP and gets the collec-

tion Sn
∗

,1, .., Sn
∗

,B . The (1 − α) quantile of such a collection gives an approximation of the critical value

for running the test at the α significance level.



Algorithm 2 Computation of Sn
∗

Step 1. Regress nonparametrically Xe,∗ onto Z to get an estimator m̂ ∗0, and set V̂∗ =  X e  − m̂ ∗0(Z).  Step 2. 

Compute β̂∗ by minimizing a Semiparametric Least Square criterion based on the bootstrap data.  Step 3. 

Regress nonparametrically Y ∗ onto (βˆ∗T X,  Vˆ∗) to get Ĝ∗ (the bootstrap version of G )̂.Compute
∗ ∗ ∗ ∗T

i
∗

i i i
ˆ ˆ ˆ ˆthe  residuals  ε̂  = Y − G (β X  , V ) for i =  1, .., n. Compute the bootstrap version of f  by con-

structing the kernel density estimator of (βˆ∗TX, Vˆ∗), and denote it by fˆ∗. Given ε̂∗and fˆ∗, obtain the
statistic Sn

∗corresponding to a single bootstrap iteration.

3 The Estimators

This section introduces in detail the estimators used. From Algorithm 1, the first and third step for

constructing the test statistic involve nonparametric estimations. To provide tractable proofs, we use

kernel methods. Since nonparametric estimators are biased, several bias terms will appear in the ex-

pansion -i.e. the infiuence function representation- of the empirical process
√

nPnεˆfˆφt at the basis of

Sn . To make such bias terms negligible, the approach usually taken in specification testing and semi-

parametric estimation consists in undersmoothing and employing high-order kernels (see e.g. Delgado

& Manteiga, 2001). In this paper we take a different approach and introduce a bias correction for each

nonparametric estimator. The employment of bias corrections is first proposed in specification testing

by Xia et al. (2004) who provide a test for a single-index model where all the variables are observed. In

this paper, we extend their approach to a context with nonparametrically generated covariates. This

appears to be a novel contribution for conducting inference in semiparametric models with generated

regressors.

As we highlight in Section 4, the use of bias corrections will have three main advantages. First, the

test can be implemented without undersmoothing. Second, the set of bandwidths admissible for the test

is larger than the set admissible without the bias correction. Third, relatively low order kernel can be

used.

First-Step Estimation. m0 is estimated as

m̂ 0(z) =

Σ
en

i=1 iX K 0
iZ −z

h 0

. Σ

Σ n

i=1 K0
iZ −z

h 0

9

. Σ , (8)

where h0 denotes a bandwidth rate converging to zero and K0 is a kernel function. Let m̂ 0,i := m̂ 0(Zi).  

The bias term B0 of the nonparametric estimators m̂ 0 is defined as

B0 := E{mˆ 0(z)} − m0(z) .



Ê{m  ̂(z)} :=
Σ n   

i = 1
ˆm̂ t K0 , i  i 0

iZ −z

h0

We estimate such bias as

Bˆ0(z) := Ê {mˆ0(z)} − m̂0(z) ,

where

. Σ

Σ n   
i = 1 K 0

iZ −z

h0

. Σ ,

t̂  := 1 ˆ ˆ
i (X ,Z ) i i n (X ,Z ){ f (X , Z  ) ≥ τ } , f (x, z) := 1

nbq

Σ
K (X ,Z )

.
i(X,Z ) −(x,z)n

i=1 b

Σ
.

b is a sequence of bandwidths converging to zero, K X , Z is a kernel function, q = dim(X, Z) , τn is a

sequence of numbers converging to zero whose features are specified below, while t̂ denotes a trim-

ming whose role is to take care of the random denominators in m̂ 0. Essentially, t̂ excludes from the

computation of B 0̂those observations for which the denominator of m̂ 0(Z i) is asymptotically close to

zero. Such a trimming sequence is introduced for theoretical reasons, but it is not strictly relevant in

practice. The intuition about the construction of the estimator B 0̂ is provided at the end of this section.

The bias-corrected estimators of m0 writesas

m̃  0(z) := m̂  0(z)− Bˆ0(z) . (9)

The bias-corrected estimator of V is given by Ṽ := X e −m̃0(Z).

Second-Step Estimation. For a generic β ∈Rdim(X) , the function Gβ (·) := E{Y |(βT X, V ) = ·} is also

estimated by kernel methods, and each unobserved regressor is replaced by its bias-corrected estimate.

So

Ĝ(β,V˜ )(w) :=

Σ n   

i=1 iY K
T ˜

i i(β X  ,V )−w

h

. Σ
t̂

K
.

T ˜
i i(β X  ,V )−w

h
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Σ
t̂ i

i

, (10)

where h is a bandwidth parameter and K is a kernel function. Similarly to the first-step estimation, the

trimming tˆis introduced in G (̂β,Ṽ ) to take care of the random denominator in m̃ 0. To estimate the vector

β0, a Semiparametric Least-Square criterion is minimized (Ichimura, 1993; Ichimura & Lee, 2010;

Escanciano et al., 2016),

β̂  = argmin
1

β∈B n

nΣ
i[Y − G

(β,V˜) i i
T 2ˆ ˜ ˆ

i(β X  , V )] ·t , (11)
i=1

where B is a compact set containing the true parameter β0. Notice that G (̂β,Ṽ  ) does not contain a bias  

correction. The reason is technical and will be explained in Section3.



0
T
0Third-Step Estimation. An estimator of G (·) =  E{Y |(β X,  V ) =  ·} can be obtained byregressing

nonparametrically Y onto (βˆT X,  V )̃. It is computed by replacing β with βˆin Eq. (10). Denote G (̂β̂ ,Ṽ  ),i :=

(12)

G (̂β̂ ,Ṽ  )(βˆT X i ,  V ĩ). The bias of G (̂β,Ṽ  ) and the density f  are respectively estimated as

B̂ Ṽ (w) := E {̂G (̂β̂ ,Ṽ )(w)} − G (̂β̂ ,Ṽ  )(w)

with

ˆ ˆE{ G
(β̂ ,Ṽ )

(w)} :=
Σ ˆt t

n
i = 1  (β,V ) , i

ˆˆ  ˜ i·t

·K

ˆ ˜( β X ,V )−wi i
h

. Σ

Σ n   
i = 1

t̂ i·K

.
ˆ ˜

i i( β X  ,V )−w

h

Σ ,

and

f̂ (w) = 1
nhd

Σ n   

i=1 K
.

ˆ ˜
i i( β X  ,V )−w

h

Σ
ˆ

it .

The trimming tˆis introduced in E {̂G (̂β̂ ,Ṽ  )(w)} to control for the random denominators in G (̂β̂ ,Ṽ  ) and

V .̃ The bias-corrected estimator of G0 writesas

G (̃β̂ ,Ṽ )(w) := G (̂β̂ ,Ṽ  )(w) − B̂ Ṽ (w) .

At this stage, we have introduced all the elements required to compute Sn . So,

ε̃  := Y − G ˆ ˜(β,V )
˜ ˆ ˜

∫ √ ˆˆ

11

n n n
2(βX, V ) and S := | n ·P ε f̃ t | µ (dt) .

Remark 3.1. The method presented in this section for computing the residuals is different from the one

in Xia et al. (2004). They consider a semiparametric environment and do not have a problem of non-

observability of the regressors. Since they only need to perform a single nonparametric estimation, they

introduce a single bias correction. Conversely, in this context we have to deal with a semiparametric

model containing nonparametrically generated covariates. So we introduce two bias corrections: one for

the estimation of V and another for the estimation of G0.

Intuition and interpretation of the bias correction. Consider the bias correction applied to m̂0, the

nonparametric estimator of m0(·) = E{Xe|Z = ·}. The bias of m̂ 0 is formally defined as B0(·) = E{mˆ
0(·)} − m0 . Its estimate in Eq. (9) can be interpreted as a Wild Bootstrap estimate (Xia et al., 2004). To

explore this point, consider the bootstrap DGP

e,∗
i

ˆ
0 i i i

ˆ
i

e
i 0 iX =  m̂ (Z ) +  ξ ·V , with V =  X  − m̂(Z ) ,



i
n
i=1where {ξ } is a sequence of bootstrap weights independent from the sample data, with mean zero

e,∗
i

n
i i=1and  variance  one.  Given the sample { X , Z } , we can compute the bootstrap version of m̂ 0. Let

m̂∗
0denote the kernel estimator computed with the bootstrap data. In the bootstrap context the sam-

i
n
i=1 0ple  data  is fixed and  only the  bootstrap  weights {ξ } are random. So, the bias of m̂ ∗ is definedas

Bias{mˆ ∗0(z)} =  Eξ {m  ̂∗0(z)} − m̂ 0(z), where Eξ is the expectation that considers only the bootstrap

i
n
i=1weights {ξ } as random and the sample data as fixed. It is easy to show that

Bias{mˆ ∗(z)} = Eξ{mˆ∗
0(z)} − m̂0(z) = Ê {mˆ0(z)} − m̂0(z) = Biˆas{mˆ 0(z)} .

By the preceding display, the bias correction used in this paper can be interpreted as a bootstrap estimate

of the bias term. A similar reasoning can be applied to the bias correction of G (̂β,Ṽ )
5.

4 Asymptotic Analysis

In this section we provide the assumptions and present the asymptotic behavior of the statistic. Define

Gβ (·) := E{Y |(βT X, V ) = ·} and let f β be the density of (βT X, V ), where β ranges over a compact

set B encompassing β0. Notice that f β 0 = f and Gβ0 = G0. Recall that (X, Z ) stands for the vector

gathering the components of X and Z without repeating the common ones. Also, let f0 be the density

of Z . For any natural number c, we denote with c†the largest even number weakly smaller than c6. For a

vector A= (A1, .., AS) of natural numbers, A.= A1+ .. + ASand the differential operator ∂A is defined as

u 1 S∂A g(u , .., u ) = ∂Æ.

∂Æ1 u1..∂ÆS uS

12

1 Sg(u , .., u ) .

The following definitions are helpful for the presentation of the assumptions at the basis of our test.  We 

first introduce a class of kernel functions.

λ
S 1 SDeftnition 4.1. K is the class of mappings (u , .., u ) ›→ Q S

s=1 k(us), where k is a univariate kernel of

order r that has a bounded support and is λ  times continuously diflerentiable with bounded derivatives.

The next definition introduces two classes of smooth functions.

Deftnition 4.2. Gλ is the class of mappings (w, β) ›→ g(w, β) such that: (i) for all β ∈ B, w ›→ g(w, β)
A

β ,w w
is λ  times continuously diflerentiable with uniformly boundedderivatives, sup |∂ g(w, β)| < ∞ for all

A. ≤ λ; (ii) β ›→ g(w, β) is continuously diflerentiable.

5The bias correction adopted in this work would coincide with the twicing kernel method in the presence of a fixed  
design, see Newey et al. (2004)

6If c is even, c† = c, while if c is odd c† = c − 1.



λ
κE is the class of mappings (x, z, w, β) ›→ γ(x, z, w, β) such that: (i) γ  is λ times continuously difleren-

A
β ,(x,z ),w w

tiable in w with sup |∂ γ(x, z, w, β)| < ∞ for all A. ≤ λ; (ii) γ  is κ times continuouslydifleren-
A

β ,(x,z ),w (x,z )
tiable in (x, z) with sup |∂ γ(x, z, w, β)| < ∞ for all A. ≤ λ; (iii) γ  is diflerentiable in β with

uniformly bounded derivatives.

n   
i=1 is an IID sequence of bounded random variables defined over the proba-Assumption 1. {Yi, X i , Z i }

bility space (Ω, A, P ).

Assumption 2 (Smoothness). (i) The mappings (w, β) ›→ Gβ (w) and (w, β) ›→ f β  (w) belong to the  

class Gr; (ii) for all β ∈ B, (X, Z )  admits a density conditionally on (βT X,  V ), denoted as (x, z, w) ›→
(X ,Z )|(β X ,V ) 0 r0 0 0

T r r0f T (x, z|(β X , V ) = w) which belongs to the class E ; (iii) m , f ∈G .

r
d 0

r0
p0

Assumption 3 (Kernels) (i) K  ∈ K ; (ii) K  ∈ K ; (iii) K X ,Z ∈K r3

d im (X,Z )
.

Assumption 1 is common in the literature on nonparametric estimation and testing. Assumption 2

imposes a certain degree of smoothness on the functions involved, which is connected with the orders of

the kernels defined in Assumption 3. Such a smoothness condition is common in the literature on

semiparametric and nonparametric estimation, and can be considered as a mild one (see e.g. Delgado &

Manteiga, 2001; Escanciano et al., 2016; Neumeyer & Van Keilegom, 2010)7. The continuity of the vari-

ables (X, Z ) is only assumed for simplicity, to provide clean proofs. Our results can be easily extended

to the case where (X, Z ) involves some discrete components, assuming the existence of densities with

respect to the mixed Lebesgue-counting measure (see Huang et al., 2016).

Since the framework at hand is featured by nonparametrically generated regressors, we need some

conditions on the rates at which the densities of the observed variables go to zero on the tails. So, define

. Σ . Σ
p   := P  f (X β  , V )) < τ , p := P  f  (Z) < τ , pn 0 n n,0 0 n n,3 (X ,Z ):= P

.
f (X, Z ) <

3τn

2

Σ
.

Denote with q the dimension of (X, Z) .

logn

n ·h
. (i) p0 + 2 s

0
·τ0 02s + 2

n
0 2

p†
0→ 0 for s = 1+ , (logn)2

0n ·h ·τ2p 12
0 n

4r
0

0 −4
n

→ 0, n·h ·τ →Assumption 4 (Bandwidth Rates)

0;
7

13

The existence of the density f ( X , Z ) | ( X T  β,V ) is also assumed in Escanciano et al. (2014). Notice, however, that as long as

the variable (X, Z) admits a density -i.e. P (X ,Z ) is dominated by the Lebesgue measure-, by the Radon-Nikodyn Theorem
also (X, Z) conditionally on (βT X , V ) will admit a density, and the existence of f (X ,Z ) | (X T β,V ) will be ensured. In this
context, therefore, the existence of such a function is not a strong restriction.



(ii) (logn)2

n ·h τ2 d + 4 8
n

4r→ 0, n ·h · −4
n

τ → 0;

Assumption 5 (Trimming Sequences). (i) h 0 =  o(1), h =  o(1), pn =  o(ln−1), pn,0 =  o(ln−1), pn,3 =

n no(l−1), where l satisfies
nh d + 1 τ 2 ln

→ 0,n1/4 n1/4

nhp0 τ 2 ln

τn

→ 0, n 1/2

ln

τn

→ 0;

n(ii) b satisfies: n ·bq+5 ·τ → +∞, r 3logn b
n·bqτn τn

→ 0, → 0, τ ·ln n,3 ·bq → +∞;

(iii) there exists constants η > 0 small enough and N large enough such that for all n greater than N ,

1{ f (X,Z )(x, z) ≥ τ n } ≤ sup β∈B1{ f (X T β,V )(xT β, v) ≥ ητn} and 1{f(X,Z )(x, z) ≥ τ n } ≤ 1{f0(z) ≥
ητn}.

Assumption 4 is introduced for several reasons. First, it implies that the estimators of the generated

regressors V are n−1/4-consistent, similarly to Escanciano et al. (2016)or W. K. Andrews (1994). Sec- ond,

it ensures that the estimators of the generated regressors are asymptotically enclosed in a class of

functions that is su@ciently regular, similarly to Escanciano et al. (2016), Neumeyer & Van Keilegom

(2010), and Chen et al. (2003). Third, it allows G (̃β̂ ,Ṽ ) and ∂G (̃β̂ ,Ṽ ) to be n−1/4-consistent, similarly to

Rothe (2009). These n−1/4 convergence rates are required for the presence of the nonparametrically-

generated regressors. Intuitively, to handle the estimation error arising from the replacement of m0 with

m̃ 0, we use a procedure similar to Rothe (2009). We combine a 1st-order Taylor expansion with these

n−1/4-rates, to have an approximation of the type

√
nPnG (̃β̂ ,V˜)(βX, V )̃ ≈ √

nPnG (̃β̂ ,V˜) (Xβ, V ) +
√

nPn∂G0(Xβ, V ) · ( (Xβ, V )̃ − (Xβ, V ) ) .

logn

n ·h
Remark 4.1. The condition p

0
·τ0 + 2 s 2s0 0 + 2

n

→ 0 implies that the estimator of m0 belongs asymptotically

to a class of functions that is su@ciently regular. Conversely, the condition (logn)2

0n ·h ·τ2p 12
0 n

→ 0 ensures that

the estimator of m0 is n−1/4-consistent. These conditions are both used only in the derivation of the  

infiuence-function representation of 
√

n ·(β  ̂− β0). If one assumes that such an infiuence-function

representation holds, then it is possible to derive the asymptotic behavior of Sn  without using the

n ·h ·τ0 00 + 2 s 2s + 2
condition logn → 0, and only requiring that

p
(logn)2

2p0 12
n·h ·τ
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0 n 0 n

→ 0. The proof of the asymptotic

behavior of Sn in such a case would be based on U-Process Theory and not on Asymptotic Stochastic

Equicontinuity arguments as in this paper. For an employment of U-Process theory in specification

testing and semiparametric estimation, see Sherman (1994), Delgado & Manteiga (2001), Lavergne et al.

(2015b).

We also highlight that the n−1/4-consistency of the first derivative ∂G (̃β̂ ,Ṽ ) is employed only to obtain

shorter proofs. It can be avoided by dealing with U-Processes of order 7.



The part of Assumption 4 linking the bandwidth (h, h0) to the orders of the kernels (r, r0) allows to

control the bias terms appearing in the expansion of the empirical process
√

nPnε˜fˆφttˆn. A similar

condition is used in Xia et al. (2004)in a specification test for a single-index model where all the co-

15

n
4r0

0variates are  observed.  If we  ignore the trimming rates  τ , Assumption 4  requires  that n ·h → 0and

n ·h4r → 0 . This implies that the bandwidths for m̃ 0 and G (̃Xβ̂ ,Ṽ  ) can be set to the rate that minimizes  

the Mean-Squared error of the nonparametric estimators (see Li & Racine, 2006). These rates are allowed
4r0

0by the introduction of the bias  corrections.  Without these corrections, the conditions n ·h → 0and
4r 2r0

0n ·h → 0 must be  replaced by n ·h → 0 and n 2r·h → 0, respectively. After such a replacement

the rates minimizing the mean squared errors could not be implemented in the construction of the test

statistic. This feature is called undersmoothing and is commonly used in specification testing or in the

expansion of nonparametric estimators to deal with the bias terms (see e.g. Delgado & Manteiga, 2001;
4r0

0Escanciano  et al., 2014;  Escanciano  et al., 2016;  Huang et al., 2016).   Using  the  conditions  n ·h → 0

0
4r 2r0 2rand n ·h → 0 instead of n ·h → 0 and n ·h → 0 has several advantages. First, as already noticed,

they allow to set the bandwidths proportional to the optimal rates that minimize the mean-squared

error. Thus, they implicitly provide a selection rule for the smoothing parameters that can be used in the

test. A second advantage is that Assumption 4, from a practical standpoint, allows to implement the test

by cross-validated bandwidths. The Cross-Validation method, in fact, delivers bandwidth rates that are

asymptotically equivalent to the rates minimizing the mean squared error. Third, Assumption 4 widens

the spectrum of bandwidths and kernel orders admissible with respect to the case where the
0

0
2r 2rbias corrections are not used.  In this latter case, the rates n ·h → 0 and n·h → 0 are employed,and

the kernel orders that should be employed to deal with the bias terms must be relatively larger. Larger

kernel orders normally generate irregular behaviors of the statistic in finite samples, as they infiate the

variance of the estimates (see e.g. Rothe, 2009; Jones & Signorini, 1997). To contain such variances, it is

advised to employ low-order kernels which however make the bias impact more pronounced. In other

words, the presence of the bias corrections allows for an improvement of the bias-variance trade-off

compared to the case where the corrections are not present.

Remark 4.2. The bias correction for G (̂β,Ṽ ) is not included in the SLS criterion for the estimation of β0

(see  Eq.  11).  The infiuence function representation  of β̂   can still be  obtained  by imposing nh4r  = o(1)

0
and without employing a bias correction, thanks to the fact that E{∇β G(β,V ) (XT β, V )|β=β | (X T β0, V ) } =
0 (see Ichimura, 1993). This feature ensures that the bias terms appearing in the infiuence function rep-

resentation of β̂  are identicallyzero.

In Assumption 4 and 5, the rates of h and h0 are connected with the rate τn appearing in the trim-

ming. Similar conditions can be found in Escanciano et al. (2014) and Escanciano et al. (2016). These

conditions are required because the unobserved regressor V is replaced with its estimate Ṽ containing



a random denominator we need to control for.

The presence of the rate ln in Assumption 5 is due to the introduction of the trimming t̂ nin m̃ 0 and G β̃.

We need that such a sequence must converge to zero at a su@ciently fast rate, to avoid a bias coming

from the presence of the trimming sequences. However, for the practical implementation of the test, the

specification of the trimming rates τn and ln can be avoided.

Assumption 5 (iii) is similar to Assumption 7 in Escanciano et al. (2014). It has a technical nature and

essentially avoids the introduction of multiple trimmings. Specifically, to control for the random de-

nominators present in m̃ 0 and G (̃Xβ̂ ,Ṽ ), we should have introduced three different trimmings, one for

each random denominator appearing in the statistic Sn . By avoiding the introduction of three different

trimmings, Assumption 5(iii) dramatically simplifies the proofs8.

Assumption 6 (Pseudo-True Value). The mapping β ›→E{ ( Y − Gβ (X T β, V ) )2} admits a unique

minimum.

This last assumption imposes the existence of a unique pseudo-true value of the finite dimensional

parameter. Such a condition is common to any specification test for nonlinear models where estimation

is obtained by nonlinear criteria (see e.g. Bierens, 1982; Lavergne & Patilea, 2013; Escanciano et al.,

2018). Assumption 6 plays a double role: under the null hypothesis H0 it ensures the identification of β0,

while under the alternative H1 it ensures that the estimator β̂ has a well defined limit in probability.

4.1 The Asymptotic Behavior of Sn

We first define a collection of functions linked with the asymptotic behavior of the process
√

nPnε˜fˆφt.

Let

ϕ0 ,t(y, x, z) :=
Σ

y − G0(xβ0, v)
Σ

·ψ0,t(x, z )+

+E
,
ψ0 , t (X, Z ) ·∂2G0(Xβ0, V )T . Z = z

,
·(xe − m0(z)) , (13)

where {  ψ0,t : t ∈ T }  is a class of weights defined in Appendix A (see Remark 26).

Proposition 1. Let Assumptions 1-6 hold.

(i) Under H0, 
√

nPnε˜fˆφt =  
√

nPnϕ0 ,t  +  oP (1), uniformly in t ∈ T.

0 n

∫
2(ii) Under  H , S ; |G| µ(d t), where G is a Gaussian process defined by the collection of covariances

{Φ(t1, t2) =  Pϕ0 , t 1  ϕ0 ,t2 : t1, t2 ∈ T } .

8It is possible to remove Assumption 5(iii) at the cost of longer proofs. Z, X , and (Xβ, V ) are transformations of the
random variable (X, Z) . Assumption 5(iii) imposes that when the density of (X, Z) is larger than a certain small value,
asymptotically also the densities of these transformations must be larger than a small value. If all the components of (X, Z)
were discrete such an assumption would automatically hold.
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1 n
S n P(iii) Under H , → c with c > 0.

The process {
√

nPnϕ t : t ∈T } defines the infiuence function representation of {
√

nPnε˜fˆφt : t ∈ T

} , or in other words its Bahadur’s expansion. It hence determines the asymptotic behavior of the

statistic. A similar expansion is obtained in Escanciano et al. (2014), although under different conditions

on the bandwidths and without using a bias correction. This shows that the introduction of the bias

correction does not have any impact on the infiuence function representation of {
√

nPnε˜fˆφt : t ∈T } ,

and the same expansion could be obtained by undersmoothing, i.e. by imposing that nh2r =  o(1) and
2r0

0nh = o(1)
√ ˆ

n t. From Eq. (13) we notice that the expansion of the process {  nP ε f̃ φ : t ∈ T }  notonly

contains a weighted sum of the error ε, the population counterpart of the residuals ε̃ , but also a weighted

sum of the control function V . The appearance of the latter term can be considered as the “price to pay”
for not observing V and having to estimate it in a preliminary step, similarly to Hahn & Ridder (2013).

The weights attached to V depend on the sensitivity of G0 with respect to such unobserved regressor. If V

is not significant in G0, i.e. if ∂2G0 is identically zero, the infiuence function representation of

{
√

nPnε˜fˆφt : t ∈T} would be the same as if the errors ε were estimated observing V .

To compute the critical value, several methods proposed in the literature on specification testing

17

could be adapted to our case. Bierens & Ploberger (1997) obtain the critical values of a specification  test 

for a parametric regression by estimating an upper bound of the quantiles of the distribution
∫

2˜ ˜|G| µ (dt), where G is a Gaussian process. As a consequence, such a method will be conservative

and may have a low power. Horowitz (2006) approximates the asymptotic critical values by estimating

the eigenvalues of the covariance matrix operator which characterize the process G. Since the num- ber

of such eigenvalues is infinite (see Horowitz, 2006; Bierens & Ploberger, 1997), such a procedure requires

an arbitrary cut. Moreover, since in our context the covariance matrix operator of G contains

nonparameric derivatives (see the expression of Φ in Proposition 4.1 and Eq. 13), the estimation of these

eigenvalues requires the estimates of nonparametric derivatives which generally have low convergence

rates. Such low convergence rates might compromise the capacity of the test to provide a reliable infer-

ence in finite samples. Finally, Delgado & Manteiga (2001) and Xia et al. (2004) provide a specification

test where all the variables are observed, and propose to obtain the critical value by a wild-bootstrap

procedure. In the next section we use a similar approach.

5 The Bootstrap Test

To construct a Wild Bootstrap test, we start from the wild bootstrap procedure proposed in Davidson &

MacKinnon (2010) for the linear two-stages least-squares model. We extend such a method to a

semiparametric context with nonparametrically generated regressors, where the estimators of such

variables contain bias corrections. Our bootstrap test can also be seen as an extension to a context with

generated regressors of the wild bootstrap proposedin Delgado & Manteiga (2001)and Xia et al. (2004).



While in these papers all the regressors are observed, our method provides a novel way to conduct  

inference in semiparametric models with generatedregressors.

i
n
i=1Let us define {ξ } to be a sequence of weights independent from the sample data, with mean zero

and variance equal to one. Let

Yi
∗ := G (̂β̂ ,V̂  )(βˆXi, V î) + ξi ·ε î,  with ε̂ i= Yi − G (̂β̂ ,V̂ )(βˆXi, V î)

e,∗ e
i ii i i i 0 iX := m̂(Z ) + ξ ·û , with û = X − m̂ (Z )

for i =  1, , n. We notice three features of the above bootstrap DGP. First, the estimators displayed do  not 

involve bias corrections. Such corrections are not necessary in the bootstrap DGP for obtaining

i
n
i=1the  validity of the  bootstrap  inference.  Second,  the  bootstrap  weights {ξ } have to be the same in

the first and the second equation. This preserves the covariance structure of the error terms compared to

the original sample, ensuring the validity of the bootstrap inference. Third, the introduction of the

second line for Xe,∗ is due to the non-observability of the regressors V . This allows us to mimic the first-

step estimation that must be performed in the original sample.

n
∗ e,∗ n

i i i=1The bootstrap  counterpart of S .  Given n observations  {Y , X } generated from the bootstrap

DGP, the bootstrap counterpart Sn
∗of Sn can be computed according to the following steps.

First-Step Estimation for Bootstrap. Define

∗
m̂ 0(z) =

Σ n   

i=1
e,
iX K 0

i∗ Z −z

h 0

. Σ
t̂ i

Σ
in Z −z

i=1 K0 h 0
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. Σ . (14)

Given the bias estimate B 0̂(·) from Section 3, the bootstrap counterpart of m̃0 writes as

m̃  ∗0(z) := m̂  ∗0(z) − Bˆ0(z) .

Remark 5.1. The bias correction used for m̃ ∗
0is the same as the one for m̃ 0 and is not computed according

to the bootstrap data. A discussed in Section 3, such a bias correction corresponds to the true bias in the

bootstrap context.



Second-Step Estimation for Bootstrap. Set Ṽ∗ := X e  − m̃ ∗0(Z). The bootstrap counterpart of G (̂β,Ṽ  ) is

Ĝ∗
˜ ∗(β,V )

(w) :=

Σ ∗n

i=1 iY K
˜T ∗

i i
( β X  ,V )−w

h

. Σ
t̂

Σ n

i=1 K

.
T ˜∗
i i

( β X  ,V )−w

h
t̂ i

i .Σ

The bootstrap version of the estimator β̂  is given by

β̂∗ = argmin
1

β∈B n

nΣ ∗
i

ˆ[Y − G ∗
(β,V˜∗)

T
i

˜
i
∗2 ˆ(β X  , V )] ·t i .

i=1

Remark 5.2. First, we notice that Ṽ∗= X e − m̃ ∗
0(Z), so the bootstrapped control function is not given by

the difference Xe,∗ − m̃ ∗
0(Z). Second, the vector X includes X e and does not include Xe,∗. This is

because the non-observability of the regressor V at the sample level is only due to the non-observability

of m0 . Hence, to replicate the estimation error from the non-observability of V , we need to bootstrap

only m̃0.

Third-Step Estimation for Bootstrap. Let G (̂β̂ ,V̂  ),i := G (̂β̂ ,V̂  )(βˆXi, V î). Notice that G (̂β̂ ,V̂  ) does not involve  

bias corrections. Define

B̂ V̂ (w) := E {̂G (̂β̂ ,V̂ )(w)} − G (̂β̂ ,V̂ )(w) ,

with

Ê {Gˆ
(β̂ ,V̂ )

(w)} =
Σ n ˆt ti = 1  (β,V ) , i

ˆˆ  ˆ it K

.
ˆ ˆ( β X ,V )−wi i

h

Σ

Σ n   
i = 1 tˆiK

.
ˆ ˆ

i i( β X  ,V )−w

h

Σ .

The bootstrap counterpart of fˆwrites as

ˆ∗f  (w) := 1
n hd

Σ
K

.
i

ˆ∗ ˜∗
i

(β X  ,V )−wn

i=1 h
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Σ
ˆn,i·t .

The bias correction B̂ V̂ is computed with the sample data and not with the bootstrapped data. We also

notice that such a bias correction is based on the estimator V̂ and not on V .̃ The bootstrap counterpart of

G̃Ṽ (β̂ )writes as

(β ,V )(w) := G∗
(β ,V )(w) − B  ˆ (w) .

G̃∗̂
∗       ̃ ∗ ˆ ˆ∗  ˜∗ V̂

Remark 5.3. The bias correction B̂ V̂ used in the bootstrap context corresponds to the true bias of the



1−α
ξ ∗
n n

kernel smoothing of Y ∗onto (X T β ,̂ Vˆ). The reasoning is the same as in Section 3. The original bias

correction B̂ Ṽ used at the sample level is not implemented in the bootstrap estimators, as it does not

correspond to the true bias of the kernel estimator in the bootstrap context.

The Bootstrapped Statistic. Define the bootstrap version of the residuals ε˜as

ε̃∗      = Y ∗        − G̃∗
(β̂ ∗,Ṽ  ∗)(Xβˆ∗, V ∗̃) .

The bootstrap version of the statistic writes as

Sn
∗  :=

∫
| P∗

nε̃ ∗f̂ ∗t̂ n    |2µ(dt) .

Remark 5.4. The bootstrap statistic Sn
∗does not include a “recentering” term, as the null H0 is imposed in

the bootstrap DGP, so we are already bootstrapping under the null.

Consistency of the Bootstrap Test. The estimate of the (1 − α)-quantile of the null distribution of Sn

is defined as

, ,
ĉ := inf c : P (S ≤ c) ≥ 1− α ,

ξ n ξi
i

n
n i=1   n i=1where P = ⊗ P denotes the probability measure that considers as random the weights { ξ } and

as fixed the sample data. According to the decision rule described in Section 2, we reject the null H0

at the α significance level as long as Sn > cˆ1−α. Let us denote with P the joint probability measure

n
ξ ξ

n
resulting from the product between the two measures P and P , i.e. P =  P ⊗ P . The following

proposition shows the validity of the wild-bootstrap scheme.

Proposition 2. Let Assumptions 1-6 hold.

(i) Under H0, 
√

nPnε˜∗fˆ∗φt =  
√

nPnξϕ0 ,t  +  oP(1), uniformly in t ∈ T .

(ii) Under H0, P (Sn  > cˆ1−α) → α.

(iii) Under the alternative H1, P (Sn  > cˆ1−α) → 1.
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The infiuence-function representation in the bootstrap context is a “re-weighted version” of the  

infiuence-function representation obtained in Proposition 1. The new weights are represented by the

i
nbootstrap  variables {ξ } . This ensures that, conditionally on the sample data, the distribution of S∗
i=1 n

mimics the behavior of Sn  under H0. Conversely, under H1 the difference Sn  − cˆ1−α diverges towards



infinity, ensuring the consistency of the test. In practice, the computation of the critical value cˆ1−αcan

be performed according to the Monte Carlo procedure outlined at the end of Section 2.

6 Applications of the Test Beyond the Benchmark Framework

Separable single-index model with endogeneity. Consider the semiparametric model analyzed in

Newey et al. (1999). Let Y be a continuous variable and X = (Xe , Z1)T be a vector of regressors. The

structural model takes the form

0
T
0Y =  G (β X )  + ε , with (15)

E{ε|X, Z } = E{ε|V } .

ε is an unobserved error term, G0(·) is a nonparametric structural function, β0 is a parameter of interest

for the researcher, and the regressor X e is endogenous. The control function V is defined in the same

way as in Eq. (2). The second part of Eq. (15)represents a mean-independence condition9. Eq. (15) implies

a restriction on the distribution of the data that writes as in Eq. (3), and Remark 2.1 also applies to this

context.

Models with sample selection. Escanciano et al. (2016) extends the sample-selection model originally

proposed in Heckman (1979) to a semiparametric context10. Let Ỹ be a scalar random variable denoting

an agent’s decision. Assume that such a decision depends on a vector of covariates X and an unobserved

error ε. In the presence of sample selection, the agent’s decision Ỹ will be observed only in the selected

sample. Let D denote the selection variable. The model writes as

Ỹ = ϕ0 (XT β0, ε) , D = 1{m0(Z) ≥ u } . (16)

ϕ0 is a function known by the researcher, while m0 is an unknown function. u ∼ U [0, 1], without loss of

generality, so m0 is identified as m0(Z) = E{D|Z} . If D = 1 the individual is selected and his decision

Ỹ is observed; if D = 0 the individual is not selected and his decision Ỹ is not observed. Accordingly, the

researcher observes Y := Ỹ ·D.

As an example, it is possible to set ϕ0(XT β0, ε) = 1{XT β0 ≥ ε } or ϕ0(XT β0, ε) = max{0, X T β0 +

ε} . In the former case, we would have Ỹ ∈ {0, 1}, and hence a binary-choice model with sample

selection. In the latter case, Ỹ = max{0, X T β0 + ε } and we would obtain a truncated regression model

where Ỹ is observed only when taking positive values in the selected sample. This truncated regression

model with sample selection is also called “double hurdle-model” (Escanciano et al., 2016; Cragg, 1971).

In the sample-selection literature, the errors (ε, u) are assumed to be jointly independent from the set

9The identification of both the parameter β0 and the function t t0 is discussed in Newey et al. (1999).
10Beyond Escanciano et al. (2016), ideintification of these models can also be obtained by the results in Rothe (2009) and

Blundell & Powell (2004).
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of covariates (X, Z) , i.e.

(ε, u) ⊥ (X , Z ) , (17)

but they are allowed to be mutually dependent from each other11.

The model so far described is a semiparametric version of Heckman’s sample-selection model where,

following Escanciano et al. (2016), the distribution of (ε, u) is left unspecified. Let us denote it with G0.

Eq. (16)and (17)imply the following restriction on the distribution of the data

E{ Y |X , Z } = G0(X T ·β0, m 0(Z )) . (18)

Testing the above equation is equivalent to checking the correct specification of the sample-selection

model, and the procedure described in Section 2 can be easily adapted to the present context. Remark

2.1 also applies to this model.

Binary-choice models with endogeneity and structure on the error term. A further application of

the test consists in the specification of a binary-choice model with two or more endogenous variables. In

this case, the test can be applied to check the validity of the restrictions imposed on the error term to

reduce the curse of dimensionality. Consider themodel

0
T e

1 2 0
e TY =  1 {X θ ≥ u }  , X  := (X , X  , Z  ) , (19)

e e
1 2where X  and X  are two endogenous regressors correlated with the unobserved error term u. In

the presence of two endogenous regressors, the researcher needs two control functions to handle en-

1
e
1 1 1dogeneity.   So,  similarly to  Section 2,  the  control  functions are  defined as V := X  − m  (Z ) and

2
e
2 2 2 1 1 2 2 0 1 2V := X  − m  (Z ), with E{V |Z }  =  0 and E{V |Z }  =  0. Z is included in Z and Z . Define Z :=

(Z0, Z1, Z2)T and denote with (X, Z ) the vector gathering the components of X and Z without repeat-

ing the common ones. By imposing u|X, Z ∼ u|V1, V2, we obtain E{Y |X, Z } = E{Y | X ·θ0, V1, V2}.

Thus, the estimation of the vector θ0 and the Average Structural Function will require the nonparametric

estimation of a function with three arguments, E{Y | X1 ·θ0 = ·,V1 = ·,V2 = ·}. This is a triple-index

model. To reduce the curse of dimensionality and increase the tractability of the framework, it would be

useful to impose some structure on the unobserved error term u. So, assume that

u = γ0V1 + g0(V2) + ε , ε ⊥ (X, Z ) , (20)

where g0 is an unknown function. Eq. (20)and Eq. (19)imply

T
0 0 1 1

e
0,1 2 2 2E{Y |X, Z } = G (β X  +  γ  m  (Z ), X  − m  (Z )) , (21)

11This implies “selection on unobservables,” in the sense that even by keeping fixing (X, Z) the “potential outcome” Ỹ  
will still be correlated with the selection variable D (Heckman, 1979; Escanciano et al., 2016).



0,1 0,1 0 0,2
T Twhere β := (θ − γ , θ ) ,θ 0,1 is the first component of θ0, while the vector θ0,2 gathers all the re-

maining components of θ0. Notice that Eq. (20) implies u|X, Z  ∼ u|V1, V2. When Eq. (21) holds, the esti-

0 0,1 0 1 1
T T e
0,1 2mation of (β , γ  ) requires an estimate of the conditional expectation E{Y |X ·β + γ  m  (Z ), X −

m2(Z2)} , which involves two indices. Accordingly, the constraint in Eq. (20) can attenuate the curse of

dimensionality and simplify the estimation of the structural elements. The method presented in Section

2can be easily adaptedto the present context 12.

Semiparametric games with incomplete information. Aradillas-Lopez (2012) and Lewbel & Tang

(2015) study identification and estimation of a binary-choice game with incomplete information. For

simplicity, we assume a context with only two players. Denote each player by the index p ∈{1, 2}. Each

of them must take a binary decision ap ∈ {0, 1}. Let X p be the exogenous covariates entering agent p’s
payoff, and assume that these covariates can be observed by each player and the researcher.

1 2
T T TFor notational simplicity, we write X  =  (X , X  ) . Each player has private information denoted

by up that neither the other agent nor the researcher can observe. It is assumed that u1 ⊥ u2 and (u1, u2)

⊥ X . Each payer knows the distribution of the other player’s private information, while the researcherdoesn’t. The payoff function of player p takes theform

˜Π (a  , X , a , up p −p p p
T
p

) =  a ·[x ·γ  − α ·ap p −p p− u ] ,

where γ0,p is a vector. Assuming that a unique Bayesian-Nash equilibrium is played, the model implies

the following semiparametric restriction on the distribution of the data ( Aradillas-Lopez, 2012; Lewbel

& Tang, 2015):

E{a |X }  = E{ap p
T
p

˜ ˜|X ·γ   − α ·g (X ) } with gp p −p −p −p
˜ ˜(X ) := E{ a |X } for p = 1, 2 , (22)

which is a specific version of the moment condition in Eq. (21)13. The procedure presented in Section 2 

can be easily adapted to the present context.

7 Simulation Study and Empirical Example

In this section, we provide a Monte Carlo experiment to assess the small-sample performance of the  test. 

We focus on the binary-choice model with control functions of Section 2. We generate Y from a

12The validity of the bootstrap procedure is proved in the Appendix by a general model that encompasses all examples of  
application analyzed in this paper.

13The identification of (γ0,p, α0,p) is described in Aradillas-Lopez (2010) and Lewbel & Tang (2015). It essentially requires  
the presence of specific profit shifters and normalization conditions.
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e
1Y = 1 X  +  δ ·Z + a 2

1

model involving two observables (X e ,  Z1) and an unobserved component u,

, ,
·(1 − δ) ·(Z − 1)/ 2 ≥ u .

DGP2) u ∼

We assume that the researcher specifies the model as

Y =  1 {X e  +  β0 ·Z1 ≥ u } (23)

and considers β0 as an unknown parameter. So, when δ = 1 the model postulated by the researcher is

correctly specified, while with δ = 0 the model is misspecified. The coe@cient a measures the degree of

misspecification. The unobserved variable u is defined as u = u∗+ V , with

V := X e − m0(Z) , m0(Z) = α1Z1 + α2Z2 ,

α1 = α2 = 1/
√

2 and Z := (Z1, Z2)T . The error u∗ is generated from different distributions specified

below and is independent from all the other variables. The functional form of m0 is unknown to the

researcher, so V must be estimated nonparametrically. u is not fully independent from the covariates X

and is correlated to the regressor X e through V . This variable controls the correlation between the

endogenous regressor and the unobserved error, and plays the role of a control function.

We generate Z1 and V from two standard normals independent from each other. Z2 is resampled from an

exponential distribution truncated from above at 3 and standardized to have mean 0 and variance 1. To

check the robustness of the test with respect to different DGPs, we consider three specifications for the

distribution of u∗:

DGP1) u∗ ∼ N (0, sd=
√

7);
. .
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∗ 7 2
2·5 (5)· χ − 5

Σ
; 

DGP3) u∗∼ 0.8 ·N (−2.5, sd=
√

3.5) + 0.2 ·N (2.5, sd = 1) .

The first DGP delivers a (rescaled) probit model with a distribution of u∗that is unimodal and sym-

metric around zero. The second DGP delivers a unimodal distribution for u∗with positive asymmetry

and left skeweness. Finally, the third DGP generates u∗according to a mixture between two Gaussians

and delivers a distribution for u∗that is bimodal and left-skewed. The three DGPs are built to share some

common features under both the null and the alternative hypothesis. Across the three DGPs it holds

that V ar(u) ≈ 8, Corr(u, V ) ≈ 0.35, Corr(u, X e ) ≈ 0.25, V ar(Xe + Z1) ≈ 4.5.

We assume the researcher wants to test the correct specification of the model he sets up in Eq. (23).

Since this equation implies that E{Y |X, Z } = G0(XT β0, V ), specification testing can be based on this

latter restriction. When δ = 1 we are under the null hypothesis, while with δ = 0 we are under H1.
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7.1 Implementation of the Test

The test is implemented as described in Section 2 and Section 3. To get m̃ 0, we need to set up a band-

width rate h0 and a kernel function K0 . Since Z = (Z1, Z2) has two components, we introduce two

bandwidths for the estimation of m0: one bandwidth for Z1 and another for Z2. We use a Rule-of-

Thumb that is consistent with the rates reported in Section 3, setting h0 = (sˆd(Z1), sˆd(Z2)) ·n−1/6. The

kernel K0 is chosen to be a second-order Gaussian kernel. For the estimator G (̂β,Ṽ ), we set K as a

second-order Gaussian kernel. Following Rothe (2009), Delecroix et al. (2006), Escanciano et al. (2016),

Maistre & Patilea (2014), we compute β̂ from the following program

(β ,̂ ĥ ) = argmin
1

β,h n

nΣ

i=1

i[Y − G
(−i)

(β,V˜),h

T
i

ˆ ˜
i i(X β, V )] ·τ̂ ,

where Gˆ(−i) denotes the leave-one-out estimator of Gβ . We consider the first component of (β ,̂ ĥ ) as
(β,V˜)

an estimator for β0. Such a procedure is common in the empirical implementations of semiparametric

index models,  see  Rothe  (2009) and  Escanciano et al. (2016).   To  control for the  random  denominator

(β,V˜)
present in m̃ 0 and Gˆ(−i) , we introduce the trimming τ̂  in the above objective function. Specifically, τ̂
drops those indices i for which |V̂ i| exceeds its 95th quantile. For the numerical minimization, we use a

Newton-Ramphson method and select as a starting point for β̂ the estimate from a probit model. This

model holds true for DGP1, but does not hold for DGP2 or DGP3. The starting point for h is instead set

by a rule of thumb to (sˆd(XT βˆ
prob), sˆd(V )̃) ·n−1/8 . Although this estimation procedure does not fully

respect the restrictions on the bandwidth rates described in Section 3, it is a standard practice in the

statistical and econometric literature (see e.g. Rothe, 2009; Delecroix et al., 2006; Escanciano et al., 2016;

Maistre & Patilea, 2014; Xia et al., 2004). Moreover, such an estimation method, when combined with the

test, shows a good small-sample performance.

To compute the estimators G (̃β̂ ,Ṽ ) and fˆ that will be used in the statistic Sn , we choose K as a

second-order Gaussian kernel. Since (βˆT X, V )̃ has two components, we introduce two bandwidth

rates: one bandwidth for β T̂X and another bandwidth for V .̃ h is set according to a Rule-of-Thumb, so h

= (sˆd(β T̂X ) , sˆd(V )̃) ·n−1/6. Once the estimates G̃ (β̂ ,Ṽ ) and fˆ are obtained, the computation of the test

statistic needs the selection of the weighting function φ and the measure µ . To obtain a simple

expression for Sn , we set φ(·) = exp(i·) and µ to the standard Gaussian. This delivers the following

expression for the test statistic:

nS =
1
n

n nΣ Σ

i=1 j=1

i
ˆ ˆ
i j j µ i jε̃  ·f  ·ε̃  ·f  ·ϕ  ((X, Z )  − (X, Z )  ) , (24)

where ε̃ := Y − G (̃β̂ ,Ṽ )(βˆT X, V˜), ϕµ is the characteristic function of the standard multivariate Gaussian

with dimension dim(X, Z) . Since in the literature on specification testing it is common practice to

implement Stute’s types of tests (see e.g. Delgado & Manteiga, 2001;Xia et al., 2004), we also evaluate



the performance of a test statistic where φ t(x, z) =  1{(x, z) ≤ t }  and the measure µ is set to the  

empirical measure Pn. Such a statistic takes the form

(S t)
nS =

1
n2

n n nΣ Σ Σ

s=1 i=1 j=1

i îε̃  ·f ·1{ i s j j j s(X, Z ) ≤ (X, Z ) } ·ε̃ ·fˆ ·1{(X, Z ) ≤ (X, Z ) } . (25)

The proofs provided in the Appendix also hold for the test based on the above statistic.

For the bootstrap implementation, we follow the procedure outlined in Section 2 and detailed in

i
n
i=1Section 5.   We  set  the  bootstrap  weights {ξ } to be iidN (0, 1) and compute the critical value cˆ1−α

according to the Monte Carlo procedure described at the end of Section 214.

7.2 Simulation Results

To evaluate the small sample behavior of the test, we compare it to other procedures aiming at testing a

similar null hypothesis. Due to the novelty of the methodology in this paper, no procedure available in

the statistical literature can be employed as an alternative to this test in a real-data application.

Therefore, we choose to compare our methodology to several “Oracle” specification tests. We consider

the specification test by Delgado & Manteiga (2001) (DGM now henceforth). The DGM test is designed

to check the significance of covariates in a nonparametric regression, assuming the full observability of

the regressors. It essentially requires that the model specified under H0 must be nested into the class of

models considered under H1. Such a condition holds in our framework 15.

We here employ the DGM test assuming that the variables (X e + Z1, V ) are observed, but the link

function G0 -i.e. the conditional expectation E{Y | Z1 + X e = ·, V = ·}- is unknown. Such a link

function has to be estimated nonparametrically. For the implementation of the DGM test, we follow the

suggestions in Delgado & Manteiga (2001). We regress nonparametrically Y onto (Z1 + X e , V ) by

kernel smoothing. A bias reducing kernel is employed, so the kernel is chosen to be a 4th order Gaussian

kernel. The bandwidth rate is defined as (ŝ d( Z1 + Xe) , ŝ d(V )) ·n−1/6. We consider two variants of the

DGM test. In a first version, we compute the DGM statistic using a Bierens’ characterization of the null

hypothesis. This gives rise to a statistic similar to Eq. (24). In a second version, we consider the Stutes’
version of the DGM test that delivers a statistic similar to Eq. (25). The difference between the test

presented in this paper and the DGM test is the presence of the nonparametrically generated regressors.

The comparison of these two methodologies is useful for understanding the impact of the estimated

covariates on the size and powerof the test.

In the simulation study, the number of Monte-Carlo replications is set to 1000, the number of boot-

strap replications to 100, and for each test we consider the sample sizes n = 125, 250, 500. The results of

the simulations are reported in Tables 1, 2, and 3. They contain the rejection frequencies for each test.

14We have also run simulations for the case where the bootstrap weights are set according to the same distribution as in
Delgado & Manteiga (2001),but the results essentially do not change.

15More precisely, the sigma field generated by the significant covariates under H0 must be included into the sigma field
generated by the covariates under H1.
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The acronym NPGR-B (Nonparametrically Generated Regressors - Bierens) denotes the test proposed in

this paper when applied according to Eq. (24). The acronym NPGR-S (Nonparametrically Generated

Regressors - Stute) denotes the test statistic computed as in Eq. (25). DGM-S stands for DGM’s test when

applied according to the Stute’s function, similarly to Eq. (25). Finally, the acronym DGM-B stands forDGM’s test when applied according to the Bierens’ function, similarly to Eq. (24).

On its own, the test presented in this paper performs reasonably well in terms of size and power,

across the DGPs considered. When the null hypothesis holds, the test shows a contained error in the

rejection probability that becomes smaller as the sample size increases. As regards the power, the test is

able to detect departures from the null hypothesis with good frequencies. When the sample size

increases, the probability of rejecting the null grows.

When compared to the Oracle DGM Test, the test performs well in terms of size but it is outperformed in

terms of power. Specifically, under the null, both the test we propose and the DGM test need an increase

in sample size to reduce the error in the rejection probability. The Oracle DGM test shows a better

capacity for detecting departures from the null hypothesis compared to the NPGR-Band NPGR-S tests for

any sample size. Also, as the sample size grows, the increase in the probability of rejecting the null

seems to be more pronounced for the Oracle DGM test than for the NPGR-Band NPGR-S tests.

Within this simulation experiment, the presence of nonparametrically generated regressors does not

seem to have a considerable impact on the empirical size of the test. Instead, it has an impact on its

power and reduces its capacity to detect departures from the null hypothesis, although the test still

shows a reasonable ability in detecting the alternative.

7.3 An Empirical Application

As an empirical application we test the specification of a model for married women’s labor force partic-

ipation, see Wooldridge (2015). Such a model relates the decision on labor force participation to “other
sources of income” of the household. The initial data set consists of 5634 observations coming from the

1991 Current Population Survey16. We select the observation on the basis of the experience, in- cluding

only those women whose level of experience is lower than the 75th percent quantile and larger than the

25th percent quantile of the total distribution. After this change, the sample consists of 2762

observations.

The dependent variable Y is an indicator that equals one if the woman participates in the labor

nw i f eincforce and  zero  if not.  This decision depends  on “other sources  of income” of the household (Xe ).

experOther controls in X  are  the woman’s level of experience (Z ), its square ( 2
experZ ), education (Zeduc),

and a dummy variable that equals one if a child under the age of six is part of the household (Zkidslt6).

nw i f eincFollowing  Wooldridge  (2015), wetreat X e as endogenous, since unobserved elements might di-

nw i f eincrectly affect  labor  force  participation  (Y )  and  be  correlated with X e . To handle the endogene-

ity, Wooldridge (2015) makes use of the husband’s level of education (Zhuseduc). This variable is as-

16I am very grateful to Jeffrey Wooldridge for having shared his dataset.
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sumed to impact the women’s labor force participation only indirectly, through the endogenous vari-

nw i f eincable X e . Thus, the exclusion restriction necessary for the identification is satisfied. A linear

nw i f eincregression of X e onto the exogenous variables Z := (Zexper, Zeduc, Zkidlt6, Zhuseduc) showsthat

the coe@cient attached to the exogenous instrument Zhuseduc is significant (see Table 5).

We normalize to unity the coe@cient attached to experience,

exper 0,1Y = 1{ Z + β Z 2
exper + β0,2Zeduc + β0,4Zkidlt6 + β0 ,3Xe

nw i f einc
≥ u }

X e
nw i f einc

= m0(Z) + V , E{V |Z} = 0 .

Following a semiparametric approach, we do not specify the distribution of (u, V ). Also, m0 is not

restricted to have a specific functional form and is nonparametrically specified. We adopt a normal-

ization on the continuous variable Zexper that we expect to positively impact the probability of labor

force participation. We also expect Zeduc to have a positive impact on such probability. Conversely, we

k idslt6expect both Z and X e
nw i f einc to have a negative impact on the labor force participation decision.

To check the correct specification of the model, we test the null hypothesis introduced in Section 2.

The components of the test statistic are obtained as follows. First, we estimate the regression m0 non-

parametrically. We make use of the np package by Hayfield & Racine (2008) in R. We select the band-

widths by cross-validation and employ a second-order Gaussian kernel. In the nonparametric first-step

estimation, only experience is treated as a continuous regressor, while the remaining ones are treated as

discrete variables. Due to the introduction of the bias corrections for the nonparametric estimators, the

cross validation method for bandwidths selection is fully coherent with our testing procedure.

Once the residuals Ṽ are computed, we estimate β0 by minimizing a Semiparametric Least-Square crite-

rion as in Section 3. We carry on a numerical optimization using the BFGS method in R. The estimates

obtained are reported in the second part of Table 5. The sign of each estimated coe@cient is as we

expected17.

In a third step, the function G0 and the density f are constructed as presented in the previous sections.

According to the guidelines provided in the simulations, we set the bandwidths according to a rule of

thumb and employ second-order Gaussian kernels. Similarly to Section 7, we implement two types of

tests: a Bierens’ test and a Stute’s test. The bootstrap procedure is carried over by resampling the boot-

i
n
i=1strap  weights {ξ } from a standard normal distribution. At each bootstrap iteration, we follow the

same steps as those performed at the sample level. However, as described in Section 5, in the bootstrap  

context the bias corrections do not need to be estimated at each bootstrap iterations are computed with

17The benchmark initial values used to start the estimation are the coe@cients obtained from an endogenous parametric
probit, where the endogeneity is handled by a control function estimated in a first step by a linear regression. The initial
values for the bandwidths are set to the values obtained from the estimation of a single-index semiparametric model, where Ṽ

is considered as a regressor and both the coe@cients and the bandwidths are obtained by minimizing a SLS criterion. This is
carried out by the n p i n d e x function in the np package in R. Given the benchmark initial values, in order to avoid the
convergence to local minima, we run the minimization several times by considering as initial starting points half, twice,
three, and four times the benchmark initial values. We finally select the estimate of β0 delivering the minimum value for the
objective function.

28
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sample data. To compare our results, we also implement a specification test for the endogenous probit

model where the control function is estimated in a preliminary step by a linear regression. The bench-

mark results are reported in Table 6. As a robustness check, we report in Table 7 the results of a test

where the benchmark bandwidth is multiplied by a scaling factor C.

The correct specification of the fully parametric probit is rejected. Differently, with the procedure we

propose, the correct specification of the semiparametric model cannot be rejected at the 2, 3, or 4 percent

critical level. Considering the large size of the sample, such results are likely not affected by a small-

sample problem generating a lack of power of the test. The different results obtained by our test and the

parametric test are not surprising. The parametric probit model imposes stringent parametric

constraints that are not fully justified from a theoretical standpoint. The semiparametric framework

relaxes some of these constraints, although it imposes a linearity restriction on the index that is not

economically justified.

8 Conclusions

This paper presents a novel wild bootstrap specification test for semiparametric models with nonpara-

metrically generated regressors. The range of application of the test is wide and includes semiparamet-

ric models with endogenous regressors identified by control functions, semiparametric binary-choice

models with a nonparametric selection mechanism, truncated variable models with sample selection,

and semiparametric games with incomplete information.

We prove the validity of the test under low-level conditions. The statistic contains a bias correction

for the nonparametric estimators that allows to implement the test without undersmoothing. Such a

bias correction is novel for semiparametric models with generated variables and is attractive because it

widens the spectrum of kernel orders and bandwidth rates admissible for the test. We have proposed aSilverman’s Rule of Thumb for the bandwidth selection, and a set of Monte-Carlo simulations has

shown that the test performs reasonably well in small samples both in terms of size and power.

One drawback of the bootstrap test of this paper is that it might be computationally demanding. The

finite-dimensional parameter must be estimated by a Semiparametric Least-Square method. This

implies that at every bootstrap iteration a nonlinear function must be minimized. Consequently the

application of the bootstrap test might involve a relevant amount of time. This drawback, however, is not

specific to the methodology of this paper, but concerns all those tests for nonlinear models where the

finite-dimensional parameter is estimated by a nonlinear optimization.

As a byproduct, we obtain that the Wild Bootstrap scheme proposed in this paper provides a valid

inference for the finite-dimensional parameter in a class of semiparametric models with generated re-

gressors. Bootstrap methods are relevant in these frameworks, as the asymptotic covariance matrix of

such models contains nonparametric derivatives. Estimating such asymptotic covariances might yield

poor confidence intervals because the nonparametric estimators of the derivatives generally have slow

rates of convergence. Instead, the Wild Bootstrap procedure proposedin this paper can be considered



30

as a valuable alternative to this asymptotic approximation. It can also be considered as a valuable al-

ternative to the pairwise bootstrap which does not exploit the restriction the model imposes on the

distribution of the data. The wild-bootstrap scheme, instead, uses the information suggested by the

setup. Exploring the performance of this method is an interesting topic for future research.
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Table 1: Simulation results for DGP1

α 0.05
H0

0.1
0.05

H1

0.1
n=125 NPGR-B

NPGR-
S
DGM-B
DGM-S

0.076
0.069
0.073
0.069

0.115
0.098
0.136
0.127

0.174
0.148
0.178
0.256

0.248
0.223
0.295
0.370

n=250 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.071
0.062
0.059
0.064

0.104
0.091
0.127
0.121

0.269
0.223
0.320
0.469

0.361
0.326
0.444
0.585

n=500 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.054
0.041
0.061
0.061

0.094
0.067
0.125
0.126

0.330
0.273
0.570
0.749

0.433
0.414
0.693
0.827Notes: Simulations based on 1000 Monte-Carlo replications. The test is based on 100 bootstrap samples. h0 = (sd(Z1),

sd(Z2)) ·n−1 /6 , h = (sd(XT ·β̂ ), sd(Vˆ )) ·n−1 /6 . The kernels are Gaussian Kernels of order 2 for the NPGR test , and

Gaussian kernels of order 4for the DGM tests. For H0, (δ = 1, a = 0); for H1, (δ = 0, a = 3/2).

Table 2: Simulation results for DGP2

α 0.05
H0

0.1
0.05

H1

0.1
n=125 NPGR-B

NPGR-
S
DGM-B
DGM-S

0.078
0.075
0.076
0.066

0.116
0.104
0.153
0.153

0.195
0.185
0.213
0.307

0.283
0.281
0.316
0.427

n=250 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.069
0.062
0.05
0.062

0.117
0.097
0.119
0.112

0.304
0.277
0.370
0.549

0.395
0.379
0.513
0.668

n=500 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.061
0.047
0.057
0.061

0.108
0.083
0.119
0.111

0.354
0.316
0.632
0.789

0.486
0.448
0.745
0.862Notes: Simulations based on 1000 Monte-Carlo replications. The test is based on 100 bootstrap samples. h0 = (sd(Z1),

sd(Z2)) ·n−1 /6 , h = (sd(XT ·β̂ ), sd(Vˆ )) ·n−1 /6 . The kernels are Gaussian Kernels of order 2 for the NPGR test , and

Gaussian kernels of order 4for the DGM test. For H0, (δ = 1, a = 0); for H1, (δ = 0, a = 3/2).
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Table 3: Simulation results for DGP3

α 0.05
H0

0.1
0.05

H1

0.1
n=125 NPGR-B

NPGR-
S
DGM-B
DGM-S

0.078
0.078
0.068
0.062

0.113
0.106
0.132
0.130

0.197
0.188
0.193
0.283

0.287
0.264
0.307
0.384

n=250 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.063
0.051
0.064
0.059

0.10
0.085
0.119
0.126

0.297
0.269
0.348
0.519

0.392
0.372
0.475
0.640

n=500 NPGR-B
NPGR-
S
DGM-B
DGM-S

0.076
0.049
0.054
0.062

0.109
0.084
0.107
0.110

0.328
0.280
0.603
0.771

0.453
0.427
0.710
0.855Notes: Simulations based on 1000 Monte-Carlo replications. The test is based on 100 bootstrap samples. h0 = (sd(Z1),

sd(Z2)) ·n−1 /6 , h = (sd(XT ·β̂ ), sd(Vˆ )) ·n−1 /6 . The kernels are Gaussian Kernels of order 2 for the NPGR test , and

Gaussian kernels of order 4for the DGM test. For H0, (δ = 1, a = 0); for H1, (δ = 0, a = 3/2).



Table 4: Simulation results: comparison between the test with bias correction and without bias correc-
tion

C NPGR B NPGR-B wBC NPGR S NPGR-S wBC

0.05 0.1 0.05 0.1 0.05 0.1 0.05 0.1

n =125 0.5 0.035 0.066 0.045 0.75 0.027 0.049 0.033 0.055

0.75 0.043 0.074 0.053 0.082 0.04 0.058 0.049 0.065

1 0.061 0.094 0.073 0.105 0.053 0.074 0.068 0.096

1.25 0.073 0.11 0.098 0.15 0.072 0.098 0.097 0.138

n =250 0.5 0.043 0.081 0.03 0.071 0.032 0.064 0.022 0.038

0.75 0.047 0.081 0.033 0.061 0.037 0.057 0.025 0.034

1 0.052 0.09 0.044 0.064 0.046 0.064 0.033 0.045

1.25 0.068 0.113 0.062 0.093 0.062 0.089 0.046 0.069

Notes:    Simulations   based   on   1000 Monte-Carlo replications. The  test   is   based   on   100 bootstrap samples. h0 =  

(sd(Z1), sd(Z2)) ·n−1 /6 ,  h = (sd(XT ·β̂ ), sd(V  ̂)) ·n−1 /6 .  The kernels are Gaussian Kernels of order2.

Table 5: Descriptive statistics and estimationresults

inlf exper exper2 nwifeinc educ kidlt6 huseduc

Mean 0.612 19.82 412 32.38 13.2 0.24 13.44
Std. Dev.  
Min

28.23
0
112.5
-

Max 1
1st stage reg. -
SLS est. -

0.49 4.45 180
0 13 169

28 784
0.002 -
1 -0.93 -0.23

2.46 0.42 2.91
0 0 0
18 1 18
0.023 0.83 <<10−5

1.19 -1.74 -

Notes: The variable in l f denotes Y . The row 1st stage reg. contains the results obtaned from the linear regression of

nwifeinc onto Z =(exper, educ, kidlt6, huseduc). The row SLS est. contains the estimation results for the Semiparametric

Least Squaresmethod.
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Table 6: Main empiricalresults

Statistic Q 90 Q 95 P value

NPGR-B 0.4866 0.2499 0.469 0.05

NPGR-S 1.5275 1.1601 1.9647 0.06

Bierens-P 0.301 0.1935 0.2087 0

Stute-P 0.0235 0.0156 0.0186 0.021

Notes: Bierens-P deontes Bierens’ test for a parametric model with a linear control function, when applied according to the

complex exponential. Stute-P denotes Stute’s test for the parametric probit with a linear control function. Q 90 and Q 95

denote the 90th and the 95thquantile, respectively, of the boostrap distribution. Pvalue denotes the bootstrap p-value.

Table 7: Empirical results: robustness checks

C Test Statistic Q 90 Q 95 P-value

0.5 NPGR-B 13.2627 9.6898 14.6649 0.06

NPGR-S 41.6119 43.08432 74.9582 0.115

0.75 NPGR-B 1.9377 1.3402 1.7148 0.05

NPGR-S 6.029 4.7391 8.3056 0.085

1.25 NPGR-B 0.1643 0.0876 0.1214 0.03

NPGR-S 0.5344 0.3410 0.5073 0.05

38

Notes: Results from the application of the test with different values of the constant C multiplying the bandwidth h.
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Appendix

In this Appendix, we prove our main results. First, we consider a general moment condition that encompasses all

the examples of application of our test. The proofs for the asymptotic analysis are contained in Appendix A.

Appendix B contains the proofs for the bootstrap test, while Appendix C provides the power analysis. Appendix

D contains some auxiliary results that are used throughout the proofs. A Supplementary Material that can be

found on the author’s website contains those technical proofs that are omitted for reasons of space. Let us start by

rewriting the null hypothesisas

0
˜H : E{Y |X }  = E{ T

0,1 1
T
0,2Y |β X + β m (X2 2 0 0

1e p +1) , X − m (Z )} for some β ∈R ,

0 0,1 0,2
T T Twhere  β = (β , β ) , m  (Z) := E{D |Z} ,  m  (X ) := E{0 0 2 2 2 2

˜D |X } ,  and X  gathers all the components of

X1 , X2 , and Z without repeating the common ones. I assume for simplicity that m0(Z) and m2(X2) are scalar

random variables, as the extension to any finite dimension larger than one is straightforward. The variables (Y,

X ,̃ D0, D2) are observed, while the functions m0 , m2 , and the finite dimensional parameter β0 are unknown. I

here consideran omnibus test, so the alternative hypothesis H1 is definedas the logical complement ofH0.

Notation. Let X be the vector gathering X1 and X2 without repeating the common components. X e is a sub-

vector of X . Unless it is differently stated, the capital letters will denote random variables, while the lower cases

will denote realizations of random variables. For instance, given the random variable X , the low case x will

denote a specific realization of X . The dimension of each random variable is definedas follows: p1 :=

0,1 0,2dim(x1), p2 := dim(x2), p0 := dim(z), d := 1 + dim(v). Let β0 := (βT , βT )T denote the “true” value

1 2
1 1T T T p +1 p +1of the  parameters,  and  β := (β  , β )   denote  a  generic vector in R .  For  any  element  β ∈ R , define

T T e T T e
1 2 1 2 i1 2 2 0 i i,1 2 i,2 0 iw(β) := (β  x  + β m  (x ), x  − m  (z)) and W (β) := (β X + β m  (X ), X  − m  (Z )) , with i = 1, .., n,

and  n denoting the sample  size.  Also, let f W  (β) denote  the density function of the random  variable W (β), and

t t W  (β)(w) := E{Y |W (β) = w} .  In line with the usual notation of Empirical Process  Theory, I define the linear

operators  P  and  P  asPg = g(y, x̃ ) P(dn ny, x̃ ), and P g = (1/n)
∫ Σ n   

i=1 g(Yi, X ĩ), respectively. Notice that if

(y, x̃ ) ›→ g(y, x̃ ) is a nonrandom and deterministic function, Pg = Eg(Y, X )̃. For any object γ or γ0, either

functions or vectors, γ̂ will denote the estimate of either γ or γ0. For instance, β̂ denotes the estimate of β0. Also,

in line with the notation in Empirical Process Theory, for any set A containing a countably many elements I

denote with #A the cardinality of a countable set A .

Denote with ∂ttT = (∂ t t T
W (β) 1  W (β) 2 W (β) W (β), ∂ t t ) the  partial  derivative of t t with respect to all its d argu-

ments, so that ∂1ttW (β) will denote the partial derivative of t t W  (β) with respect to its first argument, while

∂ t tT T
2 W (β) 2  W (β) d  W (β) W (β)= (∂ t t , .., ∂ t t ) will denote the vector gathering the partial derivatives of t t with

respect to the other dV arguments. Notice that ∂t tW (β) is measurable with respect to (the sigma field generated

by)W (β).

The conditional expectation t t W (β)(w) := E{Y | W (β) = w } can be seen as a mapping (w, β) ›→ t tW (β)(w).

Notice that a change in β will change the shape of the function w ›→ t t W (β)(w). Denote the derivative of the

mapping (w, β) ›→t t W (β)(w) with respect to β as ∂β t tW (β)(·). Notice that this function is measurable with



respect to (the sigma field generated by) W (β). On the other hand, for the mapping (x̃ , β) ›→ t tW (β)(w(β)), a

change in β will impact on both the shape of the function t t W (β)(·) and the argument w(β) where such a

function is computed. The differentiation of the mapping (x̃ ,β) ›→t t W (β)(w(β)) with respect to both occur-

β  W (β) 1  W (β) 1 2 2
T T Trences  of  β will  deliver∂ t t (w(β)) + ∂ t t (w(β)) ·(x , m  (x ) ) . Let us denote such aderivative

with ∇βt tW (β)(w(β)). Observe that x̃  ›→ ∇βt tW (β)(w(β)) is not measurable with respect to the sigma field  

generated by W (β).

With this new notation, the estimators are now given by

0m̂ (z) := 0̂T (z)

f̂ 0( z ) 0̂, T (z) := 1
p0n h 0

Σ n   
i=1 D K0,i 0

iZ −z
h 0

. Σ
0̂, f  (z) := 1

p0n h 0

Σ n   
i=1 K 0

iZ −z
h 0

. Σ

2 2m̂ (x ) := 2̂T (z)

f̂ 2( z )
ˆ, T2 2(x ) := 1

p2n h 2

Σ n
i=1 D K2,i 2

.
2 , iX −x 2

h 2

Σ
2̂, f  (z) := 1

p2n h 2

Σ n   
i=1 K 2

.
X −x2 , i 2

h 2

Σ

ît  :=1 ˆ ˜
X̃ n{ f  (X) ≥ τ } ,

X̃f̂  (x̃ ) := 1
nbq

Σ n   
i=1 K 3

˜
iX −x̃
b

. Σ
.

Their biases are estimated by

ˆ
0B  (z) := m̂̂ 0

T (z )

f̂ 0( z ) 0− m̂ (z) , T̂m̂0
1(z) := p0n h 0

Σ n   
i=1

ˆm̂ (Z ) ·t ·K0 i i 0
iZ −z

h 0

. Σ

ˆ
2 2B  (x ) :=

ˆ
2m̂ 2T (x )

f̂ 2(x 2) 2 2− m̂ (x ) ,

where

where T̂m̂2 (z) := 1
p2n h 2

Σ n
i=1

ˆm̂ (X ) ·t ·K2 2,i i 2

.
X −x2 , i 2

h 2

Σ

So, the bias-corrected estimators of the first step are

m̃           0(z) := m̂           0(z) − Bˆ0(z) and m̃2(x2) := m̂2(x2) − Bˆ2(x2) .

Denote

˜
1
T e

1 2 2 2 0W (β) := (β X  + β m̃ (X ), X  − m̃ (Z)) , ˆ T
1

e
1 2 2 2 0W (β) := (β X  + β m̂ (X ), X  − m̂ (Z)) ,

1 1 2 2 2
T e

0w̃(β) := (β x + β m̃ (x ), x − m̃ (z)), and 1 1 2 2 2
T e

0w (̂β) := (β x  + β m̂ (x ), x  − m̂ (z)) .

For the estimators of t t W  (β) and f W (β),

tt̂
W̃(β) (w) :=

T̂
W̃ ( β )

fˆ
W̃ ( β ) (w )

V (w)
,

T̂
W̃(β) (w) := 1

nhd

Σ n   
i=1 iY K

. ˜
iW (β)−w

h

Σ
î·t , f̂

W̃(β) (w) := 1
nhd

Σ n   
i=1 K

. ˜
iW (β)−w

h

Σ
î·t .

For the bias of tt̂  ̃  ˆ and its bias-correcetd version,
W (β)

B̂
W̃(β̂ ) (w) :=

Tˆ
Ĝ

W˜ (βˆ)
(w )

fˆ˜ ˆ
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W ( β )

, with T̂
tt̂ W̃(βˆ)

(w) := 1
Σ

tt̂n

nhd i=1 W̃(β̂ ) i·t̂ ·K
.

i
˜ ˆW (β)−w

h

Σ
,

tt̃ W̃ (βˆ)(w) := tt̂ W̃ (βˆ)(w) − B̂ W̃(βˆ)(w)



n,2 2 2 n n,3 X̃
˜p := P   f  (X ) ≥ τ , p := P f  (X) ≥ 3τn

2

pn := P
.

f (W (β0)) ≥ τn

Σ
, pn,0 := P

.
f 0 (Z ) ≥ τn

Σ
,

. Σ . Σ

We now list the Assumptions we will be using throughout this Appendix.

i 1,i 2,i
e
i

Assumption A1 (IID). {Y , X  , X , X  , Z  , Di 1,i 2,i
n
i=1, D } is an IID sequence of bounded random variables de-

fined over the probability space (Ω, A, P ).

Assumption A2 (Smoothness). (i) The mappings (w, β) ›→ t t W  (β)(w) and (w, β) ›→ f W  (β)(w) belong to  the 

class Gr; (ii) for all β ∈ B, t admits a density conditionally on the multiple index W (β) which is denoted as

X̃ |W (β)
r
r0∨r2

(x̃ , w) ›→ f (x̃ |w) and belongs to the class E ; (iii) m0, f0  ∈ Gr0 ; m2, f2  ∈ Gr2 ; (iv) the density fX˜ of X̃

belongs to the class Gr3 .

Assumption A3 (Kernel) . (i) r
d 0K  ∈ K ; (ii) K  ∈K r0

p0 2
r2
p2 X̃

, K   ∈ K  ; (iii) K ∈K r3

dim(X˜)
.

Assumption A4 (Bandwidth rates). (i) for j  = 0, 2: logn
p

j
n ·h ·τj jj + 2 s 2s + 2

n

→ 0,
r j

h j

τn
j j→ 0, for s = 1 + Ev(p )/2;

2p

j
n ·h ·τj 12

n

(logn)2 4rj

j
−4
n→ 0, n ·h ·τ → 0;(ii) (logn)2

n ·h τ2 d + 4 8
n

→ 0, n ·h4r → 0;

n nAssumption A5 (Trimming). (i) p = o(l−1), p n,0 n= o(l−1), pn,2 n n= o(l−1), where l satisfies n1/4

nh d + 1 τ 2 ln

n 1/2  

ln

h j h
τ τn n

→ +∞; = o(1) for j = 0, 2, and = o(1).

n,3
−1
n,3(ii) p = o(l ) and the bandwidth b used for the estimation of  f

X̃
satisfies: n q+5

n·b ·τ  → +∞ , logn

n·b τq 2
n

→ 0,

→ 0,
br 3

τn
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n n,3→ 0, τ ·l ·bq → +∞;

(iii) there exists constants η > 0 small enough and N  large enough, such that for all n larger than N ,  1{fX˜ (x̃ ) ≥
n β∈B W (β) nτ  } ≤ sup 1 { f (w) ≥ ητ }, 1

X̃ n 0 n{ f  (x̃ ) ≥ τ }  ≤ 1 { f  (z) ≥ ητ }, and 1{
X̃ nf  (x̃ ) ≥ τ } ≤ 1{ 2 2f  (x ) ≥

n

,
ητ  }. For  a large enough n, the set w : f

0W  (β )
η
2

, ,
n 0

η
2

, ,
n 2 2 2

η
2 n

,
(w) ≥ τ , z : f (z) ≥ τ , and x : f (x ) ≥ τ are

convex.

Assumption A6 (Pseudo-true value). The mapping β ›→E{(Y − t tW (β)(W (β)))2} admits a unique minimum.

A Asymptotic Expansion

Having specified the notation, I start by presenting some important objects hat will be used throughout this

appendix. Let F  be a space of real-valued functions defined over X̃  and metricized by L2(P ). So, for any f , g ∈ F ,

2L  (P )

∫
the distance between  f  and g is measured  by the (pseudo)  norm ||f − g|| = {  |f − g| (x̃ )d2 1/ 2P (x˜)} . For

any two functions x̃  ›→ u(x̃ ) and x̃  ›→ l(x )̃, such that u ≥ l, define the bracket [u, l] := { f  ∈ F  : l ≤ f ≤ u} .



The bracket [u, l] has L2(P )- size s if ||u − l||L2(P ) ≤ s. Hence, define N[ ](s, F ,  L2(P )) to be the bracketing

number of the semi-metric space (F , L2(P )) , i.e. N[ ](s, F , L2(P )) represents the minimum number of brackets

2 [ ] 2of L (P ) size s that covers the space F  . Also, let J  (δ, F , L  (P )) :=
∫ δ

0

.
[ ] 2log N  (s, F ,  L  (P ))ds. For a deeper

treatment of these concepts, see Kosorok (2007), Pollard (1984), van der Vaart & Wellner (1996), and van der Vaart 

(1998). The lemma that follows is the main one used in the proofs.

Lemma A.1. (van der Vaart (1998)) Let F be a class of measurable functions f : χ ›→ R such that P f 2 < δ2 for all

f ∈F , let F be the envelope function for F , and let aF (δ) := δ /
.
1 ∨ log N[ ](δ, F , L2(P )). Then

E||Gn||F ≤ J[ ](δ, F , L2(P )) +
√

nPF {F >
√

naF (δ)}

up to a universal constant.

The following “lemmata” is necessary to prove the expansion of the empirical process at the basis of the  

statistic.

Lemma A.2. Let Assumption A5 hold. Let (y, x̃ ) ›→ gˆn,t(y, x̃ ) be a sequence of random functions with t  ∈ T , such  

that supt∈T ||ĝ n,tt̂ n||∞ = OP (1) and supt∈T ||gˆn,ttn||∞ = OP (1). The following resultshold:

(i) 
√

n ·Pn|tn − 1| = oP (1) ;

(ii) 
√

n ·Png n̂,tt̂ n = 
√

n ·Pngˆn,ttn + oP (1) uniformly in t  ∈ T ;

Let z ›→ ψt(z) be a function such that supt∈T ||ψt||∞ is finite. Then,

n   n, t n 0 t 0
(η/ 2)
n ,Z 0(iii) n ·P ĝ t · K (u)·ψ (Z + uh )·t (Z +uh ) d

√ ∫ √ ∫
u = n ·P ĝ t · K  (u)·ψn   n, t n 0 t (Z + uh0) du+ oP (1)

uniformly in t  ∈ T;

Let w ›→ ψ t̃(w) be a function such that supt∈T ||ψ t̃||∞ is finite. Then,

n  n,t n

√ ∫
t̃ 0(iv) n ·P ĝ t  · K(u) ·ψ (W (β ) + uh) ·t (η/2)

n ,W (β0)
(W (β0) + uh) du =

√ ∫
˜

n   n, t n t 0n ·P ĝ t  · K(u) ·ψ (W (β ) + uh) ·t (η/2)
n ,W (β0)

(W (β0) + uh) du uniformly in t ∈T .

2
x̃ n0 n P 0

ˆ ˜ ˆIf sup |(w (̃β) − w(β )) ·t  (x̃ )| = O (τ ), the above result also holds by replacing W (β ) with W (β).

Proof. (i)
√

n ·P |tn −1| =
√

n ·P { f (X )̃ < τ n } = o(1), by Assumption A5. So, conclude by Markov’s inequality.

n nˆ 2̂ 2
n n

ˆ ˆn n n n(ii) Notice first that t  − t  = t  − t  = (t − t  )(t  + t ), so

√
n ·Pn|gˆn,t ·(t̂ n− tn)| ≤ ||ĝ n,t·(t̂ n− tn)||∞

√
n ·Pn|t̂ n− tn| = OP (

√
n ·Pn|t̂ n− tn|) .

Define

(C )
n

,
B := || X̂̃ X̃      ∞ 3,nf − f || ≤ C ·d

,
with d3,n =

.
logn 

nbq
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+ br3

ˆBy Li & Racine (2006), ||f − f
X̃ X̃      ∞ P 3,n n|| = O (d ), so P (B(C)) can be made arbitrarily close to one, asymptotically,

by choosing C large enough. By Assumption A5, d 3 , n /τn  = o(1). Notice that if B (C )  holds, f  (x̃ ) ≥ τ ·3/2,
n X̃ n



.
X̃f (x̃ )
τn

− C d3 ,n

τn

Σ
·τn  > τn  . So, whenever B (C )  holds and

n
and Cd3 , n/τn < 1/2, then tn(x˜) = 1 and fX˜ (x̃ ) >  

Cd3 , n/τn < 1/2, it must bethat

n̂ n

,
|t  (x̃) − t (x̃)| ≤ f

X̃
3
2 n

,
(x̃) < τ .

√ ,
Since n ·P f ˜ 3

X 2˜ n

,
(X) < τ = o(1) , conclude by Markov’s inequality.

n n
(η)
n ,Z

(iii)  By Assumption A5, for n large enough t    = t ·t , and hence

√ ∫
n   n, t n 0 t 0

(η/ 2)
n ,Z 0n ·P ĝ t K  (u) ·ψ (Z + uh )·t (Z + uh ) du = (A.1)

√
n  n,t nn ·P ĝ t t (η)

n ,Z

∫
0 t 0

(η/ 2)
n ,Z 0K  (u) ·ψ (Z + uh )·t (Z + uh ) du .

By a first-order Taylor expansion, f Z (z+uh0) = f Z (z)+∂fZ (z)·(uh0), with z ∈ [z, z+uh0] and |∂fZ (z)·uh0| ≤
0 0

h 0

τn
Ch  for all u such that K  (u) ƒ= 0. Hence, since = o(1), for a large n,

(η/ 2) η
n 0 Z 2 n

, .
2
η Zt (z + uh ) = f  (z) ≥ τ · 1 − ∂ f (z) uh 0

τn

Σ ,
≥

,
Z

ητ n

2
f (z) ≥ · 1+ 1

3

. Σ ,
(η)
n ,Z

≥ t (z)

uniformly in z and for all u such that K0(u) ƒ= 0. The result then follows from the above display and Eq. (A.1).  

The proof of Point (iv) is very similar to the proof of Point (iii), so it is omitted.

Lemma A.3. Let Assumptions A1-A5hold. If
√

n·(βˆ−β0) = OP (1) and H0 holds, uniformly over {x̃ : f (x̃ ) ≥ τ n }

(i) T ˜ ˆW (β) ˜ ˆW (β) 0(w˜(β)) = T (w(β )) + ∂T
0W  (β )

ˆ ˆ ˆ ˆ
0 0 P

−1/ 2(w(β )) ·(w̃(β) − w(β )) + o (n )

ˆ(ii) f ˜ ˆW (β)
ˆ ˆ(w˜(β)) = f ˜ ˆW (β) 0(w(β )) + ∂ f

0W  (β ) 0
ˆ

0 P
−1/ 2(w(β )) ·(w̃(β) − w(β )) + o (n )

∫
t(iii) K(u) ·(ι f

0W  (β )
ˆ)(w˜(β) + uh) du =

∫
K(u) ·(ι f )(w(β ) + uh)du + ∂(ι f

0 0t   W (β ) 0 t  W  (β )
ˆ

0 0 P
−1/ 2)(w(β )) ·(w̃(β) − w(β )) + o (n )

The above results also hold with w̃ (β̂ ) replaced by ŵ (β̂ ) and W̃ (β̂ ) replaced by Ŵ (β̂ ).

Proof. The proof is provided in a supplementary material. (i) By a Mean-Value expansion,

T ˜ ˆW (β)
ˆ ˆ

Ŵ (β)˜  ˆ 0
ˆ(w˜(β)) = T (w(β )) + ∂T ˜ ˆW (β)

ˆ ˆ
0 0(w(β)) ·(w̃(β) − w(β )) , with w(β) ∈ [w̃(β), w(β )]. (A.2)

Define the event Bn := {supx˜ tn(x˜) ·|w̃ (β̂ ) − w(β0)| ≤ C ·d n / τn } . By Lemma D.1, P (Bn) has a probability

arbitrarily close to one asymptotically by choosing C large enough. For a fixed C, over the set Bn , whenever

tn(x˜) = 1, by a Mean-Value expansion, ,

f W (β0)(w(β)) = f W (β0)(w(β0)) + ∂ f W (β0)(w(β)) ·(w(β) − w(β)) ,
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with w(β) ∈ [w(β), w(β0)], and

|∂fW (β0)(w(β)) ·(w(β) − w(β))|tn(x˜) ≤ ||∂fW (β0)||∞ ·C ·d n / τ n  ,

dn

τn
where = o(1) 2 3

η η n. Hence, by choosing a θ ∈ ( , ) , over the set B  , for each n su@ciently large

X
{ f  (x̃ ) ≥ τ } · f

0˜ n W  (β )
τn

θ

, ,
(w(β)) ≥ =

X̃ n

,
{ f  (x̃ ) ≥ τ } · f

0W  (β ) 0
τn

θ(w(β )) ≥ ·[1 − θ·∂ f
0W  (β ) n

,
(w(β)) ·(w(β) − w(β))/ τ ] ≥

X̃ n

,
{ f (x̃) ≥ τ } · f

0W  (β ) 0
τn

θ

.
(w(β )) ≥ · 1 + θ ·||∂f

0W  (β ) ∞|| ·C ·dn

τn

Σ ,
≥

,
{ f  (x̃ ) ≥ τ } · f

0˜ n W  (β ) 0
τn

X θ

,
(w(β )) ≥ ·2 ≥

{fX˜ (x̃ ) ≥ τ n } ·{ f W (β0)(w(β0)) ≥ ητ n } ≥
{fX˜ (x̃ ) ≥ τ n }

for all x̃ ,where the last inequality follows from, Assumption A5. Accordingly, by Lemma D.3, whenever the event

B n  holds true

x̃
ˆsup |∂T ˜ ˆW (β)

(w(β))− ∂T
0W  (β ) (w(β)) n| ·t  (x̃ )≤

ˆsup |∂T ˜ ˆw W (β)
(w)− ∂T

0W  (β ) (w)| ·{ f
0W  (β ) n(w) ≥ τ / θ } ≤ (A.3)

w
ˆsup |∂T ˜ ˆW (β) 0W  (β )(w) − ∂T (w)| ·{ f

0W  (β ) n(w) ≥ ητ /3 P
−1/ 4} = o (n ).

Finally, notice that by a Mean-Value Theorem, uniformly in x̃ ,

|∂TW (β0)(w(β)) − ∂TW (β0)(w(β0))| ·tn(x˜) ≤ C ·|w(β) − w(β0)| ·tn(x˜) = oP (n− ) , (A.4)
1/ 4

where the last equality follows from the definition of w(β) , Lemma D.1, and β̂  − β0 = OP (n−1/2). Notice now  

that by Lemma D.1 and β̂  − β0 = OP (n−1/2),

supx̃ |(w̃(β̂) − w(β0))|·tn (x̃) = oP (n−1/ 4) . (A.5)  

Conclude by Eq. (A.2), (A.3), (A.4), and (A.5). The proof of point (ii) proceeds along the same lines.

(iii)The proof proceeds along the samelines as above, by using the fact that supt∈T|∂(ι tfW (β0))(w1)−∂(ιtfW (β0))(w2)| ≤
1/4 r

∫
C|w  −w |, n h = o(1) by Assumption A4, and K(u)·∂(ι f

01 2 t  W  (β ) 0W  (β ) 0)(w(β0)+uh) du = ∂( ι t f )(w(β ))+

O(hr) uniformly over the set {x̃ : f (x̃ )≥ τ n } andT , by an usual Taylorexpansion.

Lemma A.4. Let Φ := {x̃ ›→ϕt(x˜) : t ∈T } with ϕ fixed functions satisfying supx̃ ∈SuppX̃ |ϕt1 (x̃ )− ϕ t 2 (x̃ )| ≤ C

·|t1 − t2| for all t1, t2 ∈T . Let Cbe a class of functions such that log N (s, C, ||·||∞) ≤ C ·s−υ. Then log N[ ](s,

C·Φ, ||·||2,P) ≤ Cs−υ, with υ ∈(0, 2).
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Proof. Since T is a compact set, N (s, T , ||·||) ≤ Cs−dim(T ), where ||·||denotes the euclidean norm over Rdim(T ).

By definition of covering number and the Lipschitz property of the class Φ, N (Cs, Φ, ||·||∞) ≤ N (s, T , ||·||).

Consider now the δ-covers AC := {gI : I = 1, .., N (δ, C, ||·||∞)} and AΦ := {φJ : J = 1, .., N (δ, Φ, ||·||∞)}.

For the generic element of C·Φ, say g ·φ, with g ∈Cand φ ∈Φ, ||g− gI ||∞< δ and ||φ − φJ ||∞< δ, for some gI

∈AC and φJ ∈AΦ. Hence, ||g·φ − gI ·φJ ||∞ ≤ ||(g− gI ) ·φ||∞ + ||gI·(φ − φJ )||∞ < Cδ. The collection

{g I ·φJ : gI ∈AC, φJ ∈AΦ } forms a Cδ cover for the class Φ ·C,and hence

N (Cδ, Φ·C,||·||∞) ≤ #AC ·#AΦ ≤ N (δ, C,||·||∞) ·N (δ, Φ, ||·||∞) .

Accordingly, log N (Cδ, Φ·C, || ·||∞) ≤ C ·δ−v. By proceeding as in Corollary 2.7.1 in van der Vaart & Wellner

(1996),N[ ](δ, Φ·C,L2(P )) ≤ N (δ/2, Φ·C,||·||∞). Conclude from this last inequality.

We now introduce a class of Holder continuous functions that will be used throughout this Appendix. For  any 

function g : W ›→ R, and any vector s = (s1, .., sd), define the differential operator ∂s as

∂sg(w) = ∂|s|

∂s1 w1. .∂sd wd
g(w) ,

where |s| = s1 + .. + sd. Also,define the following set

n

,
W := w : f

0W  (β )
η
2(w) > τ n

,

,
n nC(W ) := g : W ›→ R s.t. || s∂ g||

nW ,∞ ≤ M  for all s with |s| ≤ E v(d) 
2

,
+ 1 (A.6)

where Ev(d) denotes the largest even integer weakly smaller than d and ||f ||Zn,∞ := supz∈Zn
|f (z)| for any

function f . The class C(Wn) defined in the above display is a subset of the Holder continuous class of functions

defined in van der Vaart & Wellner (1996), pages 154-155. Hence, from the compactness of the support of W (β0),

the definition of Wn , and Theorem 2.7.1in van der Vaart& Wellner(1996)it holds that

(A.7)
log N  (s, C(Wn), || ·||Wn,∞) ≤ C ·s− with υ ∈ (0, 2) ,υ

where the constant C does not depend on neither n nors.

Lemma A.5. Assume that H0 holds and that 
√

n ·(β̂  − β0) = OP (1). Under Assumption A1-A4, uniformly in

t  ∈T
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(i) G (Tn ˜ ˆ 0
ˆ ˆ− t t f

W (β) W (β)W (β ) ˜ ˆ t n p)φ t  = o(1);

W (β)
(ii) Gnεfˆ˜ ˆ φ t tn = op(1);

ttW˜ (βˆ)

ˆ(iii) Gn(Tˆˆ − T
W (β)˜  ˆ t n P)ι t  = o (1);

The same result holds when replacing W̃ (β̂ ) with Ŵ (β̂ ).

Proof. (i) Define Φ := {x̃  ›→ φ(x t̃) : t  ∈ T } ,  and for simplicity let Cn denote the class C(Wn) defined inEq.

(A.6). From Lemma D.4, the mapping x̃  ›→ (T
Ŵ (β)

ˆ ˆ
W (β ) Ŵ (β)

− t t ·f )(w(β0)) ·φ(x t̃) ·tn(x˜) belongs to the class



tn ·Cn·Φ =
,
x˜ ›→ tn(x˜) ·g(x̃ ) ·ψ(x̃ ) : g ∈Cn and ψ ∈Φ

,
for all t ∈T , with a probability approaching one. Fix

δ > 0 arbitrarily small, and consider a δ-cover for Cn, say An := {g j : j = 1, .., N (δ, Cn, || ·||Wn,∞)}. For any

element of tnCn, say tn ·g, it must be that g ∈Cn, and hence, for some gj ∈An , ||g − gj ||Wn,∞ < δ. Hence from

Assumption A5, ||(g− gj ) ·tn||∞ ≤ ||g− gj ||Wn,∞ < δ. Accordingly,

N  (δ, tnCn, || ·||∞) ≤ #An  ≤ N  (δ, Cn, || ·||Wn,∞) .

From Lemma A.4 and Eq. (A.7),

log N[ ](ε, tn  ·Cn  ·Φ,  L2(P )) ≤ Cε−υ with υ ∈ (0, 2) .

t∈TFurthermore,  Lemma  D.3 ensuresthat sup ||(T
W (β) 0˜ ˆ W  (β )

ˆ ˆ− t t f
W (β)

) ·φ ·t ||˜  ˆ t n 2,P P= o (1). Accordingly, for
(δ)
nany δ  > 0 arbitrarily  small, the event B := { ˆ(T

W̃(β̂ )
− t t f̂W  (β0) W̃ (β̂ ) t n n n) ·φ ·t  ∈ (t ·C ·Φ)δ for all t ∈ T }

n n n n 2,Phas a probability approaching one, where  (t   ·C     ·Φ)δ  := { f  ∈  t   ·C     ·Φ : ||f || < δ} (δ)
n. Over the set B ,

t∈Tsup |G (Tn ˜ ˆW (β) 0
ˆ ˆ− t t fW  (β ) ˜Ŵ (β) t n n) ·φ ·t  | ≤ ||G ||

n n(t ·C·Φ) δ .

Now, by Lemma A.1,

E||Gn||(tn·Cn·Φ)δ ≤ J[ ](δ, (tn ·Cn ·Φ) , L2(P )) + 
√

nC{C > a(tn·Cn·Φ)δ (δ) ·
√

n} .
δ

Since (tn ·Cn ·Φ)δ ⊂ tn  ·Cn ·Φ for δ < 1,

log N[ ](ε, (tn ·Cn ·Φ)δ, L2(P )) ≤ log N[ ](ε, tn  ·Cn ·Φ, L2(P )), with J[ ](1, tn  ·Cn ·Φ, L2(P )) < ∞ .

Thus for δ → 0,

J[](δ, (tn ·Cn ·Φ)δ, L2(P )) ≤ J[](δ, tn  ·Cn ·Φ, L2(P )) → 0 .

For any fixed δ > 0,

lim supn→∞
√

nC{C > a(tn·Cn·Φ)δ (δ) ·
√

n} ≤
−1lim sup a δ(δ) C {

n→∞ (tn·Cn·Φ) n n(t ·C·Φ)
√

C > a δ(δ) · n } = 0 .

So, conclude by Markov’s inequality.

The proofs for point (ii) and (iii) follow from the same arguments.

Lemma A.6. Under Assumptions A1-A5, uniformly over T ,

(i) Gnε
∫

K(u) ·( ι t fW (β0))(W (β0) + uh) du = Gnε ·( ι t fW (β0))(W (β0)) + oP (1);

(ii) Gn(D0 − m0)
∫

K(u) ·ϕ t(Z + uh0)du = Gn(D0 − m0)ϕ t + oP (1);
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∫
Proof.  (i) Define g (ε, x̃ ):= ε K(u)·(ι f )(w(β )+uh) du−ε·(ι f

0 0n,t t   V (β ) 0 t  V (β ) 0)(w(β )). Since from Assumption

A2, supw|ιt1 (w)−ι t 2 (w)| ≤ C|t1 −t2|, by the boundedness of the functions involved, |gn,t1(ε, x̃ )−gn,t2(ε, x̃ )|≤
C|t1 − t2|.  Accordingly, from  Lemma  A.4, the  class  Gn  := {gn,t  :  t  ∈  T }  is such that log N[·](δ, Gn, || ·||∞) ≤
Cδ−v, with v ∈ (0, 2). To show the L2-convergence, notice that by a Lebesgue Dominated Convergenceargument

∫
t  V (β )(LDC, now henceforth), ε K(u)·(ι f )(v(β )+ uh) d

0 00 t   V (β ) 0u → ε(ι f )(v(β )) for any fixed (t, x̃ , ε). Hence,

by applying again a LDC argument, ||gn,t||2,P → 0 for any fixed t  ∈ T . To make such a convergence uniform  over 

T , fix δ > 0 arbitrarily small, and choose a δ-cover for T , say A := { t j  : j  = 1, .., N  (δ, T , || ·||)}, where

n,t
2

j 2,P
|| ·|| denotes the Euclidean norm.  For  n large enough, ||g || < δ for all t j  ∈ A. So, for any t  ∈ T ,

n,t||g ||22,P n,t
2
2,P

≤ ||g || − ||gn,t
2

j 2,P
|| + ||gn,t

2
j 2,P
|| ≤ C|t − t j | + δ2 ≤ Cδ2 + δ2.

Conclude that supt∈T ||gn,t||∞ = o(1). From this point, proceed as in Lemma A.5 to conclude. The proof ofpoint

(ii) proceeds along the samelines.

Define the class
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n

,
C(Z ) := z ›→ g(z) : || s∂ g||

nZ ,∞ ≤ M  for all s such that |s| ≤ 0Ev(p )
2

,
+ 1 with

,
n 0Z := z : f  (z) ≥ η·τ n

2

,
,

where ||f ||Zn,∞ := supz∈Zn
|f (z)| for any function f . Similarly to C(Wn), the class C(Zn) defined in the above

display is a subset of the Holder continuous class of functions defined in van der Vaart & Wellner (1996), pages

154-155. From the compactness of the support of Z , the definition of Zn , and Theorem 2.7.1 in van der Vaart &

Wellner(1996)it holds that

(A.8)
log N  (s, C(Zn), || ·||Zn,∞) ≤ C ·s− with υ ∈ (0, 2) ,υ

where the constant C does not depend on neither n nors.

Lemma A.7. Let (x̃ , t) ›→ ϕt(x˜) be a mapping such that supx˜∈Supp(X˜)|ϕt1 (x̃ ) − ϕ t 2  (x̃ )| ≤ C ·|t1 − t2| for all t1,  

t2 ∈ T , and supt∈T ,x˜∈Supp(X )̃|ϕt(x˜)| < ∞. Under Assumption A1-A5, uniformly over T ,

Gn(mˆ0 − m0) ·tn ·ϕ t = oP (1), and Gn(T̂ m̂ 0 /fˆ0 − m0) ·tn ·ϕ t = oP (1).

, ,
t n nProof.   Define the  classΥ := x̃     ›→  ϕ  (x̃ ) :  t ∈ T . For simplicity denote with C the class C(Z ).By the same

reasoning as in the proof of Lemma A.5,

N  (δ, tnCn, || ·||∞) ≤ #An  ≤ N  (δ, Cn, || ·||Zn,∞) .

Define

tn  ·(Cn − m0) := {g − tn  ·m0 : g ∈ tn  ·Cn} .



Since m0 tn is a fixed function, N (δ, tn ·(Cn − m0), ||·||∞) ≤ N (δ, tnCn, ||·||∞). From Lemma A.4, the feature

of (t, x̃ )›→ϕt(x˜), the entropy bound just derived, and Eq. (A.8),

log N[ ](δ, tn  ·(Cn − m0) ·Υ ,  || ·||2,P ) ≤ C ·δ−υ .

Now, from Lemma D.1, P ( (m̂ 0− m0)· tn ·ϕ t ∈ (Cn(Zn) − m0tn)· Φ) → 1, and supt∈T ||(m̂ 0− m0)· tn ·ϕt||2,P =

oP (1). From this point onwards, proceed in the same way as in Lemma A.5 to obtain that Gn(mˆ0 − m0)· tn ·ϕ t =

oP (1). The remaining result is obtainedby the same steps.

Lemma A.8. Let (x̃ , t) ›→ϕt(x˜) be a mapping such that supx˜∈Supp(X˜)|ϕt1(x̃ )− ϕ t 2 (x̃ )|≤ C ·|t1 − t2| for all t1,

t2 ∈T , and supt∈T ,x˜∈Supp(X )̃|ϕt(x˜)| < ∞. Under Assumption A1-A5, uniformly over T

√
n ·Pnϕ t ·B̂ 0·tn = −√

n ·Pn(D0 − m0) ·E{ϕt(X˜) | Z } +
√

n ·Pn(mˆ0 − m0) ·tn ·E{ϕt(X˜) | Z } + oP (1) .

The same type of result holds for B̂ 2.  

Proof. By definition of B̂ 0 and m̂ 0,

√
n ·Pnϕ t  ·B̂ 0  ·tn  = Gn(T̂ m̂  0  /fˆ0 − m0) ·tn ·ϕ t

−Gn(m  ̂0 − m0) ·tn  ·ϕ t  + 
√

n ·P (T̂ m̂ 0  /fˆ0 − m̂ 0)·tn  ·ϕ t  .

By Lemma A.7, uniformly over T , Gn(T̂ m̂ 0 /fˆ0 − m0) ·tn ·ϕ t = oP (1) and Gn(mˆ 0 − m0) ·tn ·ϕ t = oP (1).

From Lemma D.1, Assumption A5, and Lemma A.2, uniformly in t ∈T

n ·P (T m̂ 0
ˆ

0̂ 0 n t

√ √ ∫ ˆ/ f   − m̂                                     ) ·t ·ϕ = n (T m̂ 0
ˆ (η/ 2)

n ,Z
(z) − T (z)) ·t (z) ·E{ t

˜ϕ (X) | Z = z } d Pz + o (1) .

By the classical “change of variable” and Lemma A.2, uniformly over T ,

√ ∫
n (T m̂ 0

ˆ ˆ (η/ 2)
n ,Z t

˜(z) − T (z)) ·t (z) ·E {ϕ (X) | Z = z } dz =

−√
n ·Pn(D0 − m0) ·

∫
K0(u) ·ϕ t̃(z + uh0) du +

√
n ·Pn(mˆ0 − m0) ·tn ·

∫
K0(u) ·ϕ t̃(Z + uh0) du + oP (1) ,

where ϕ t̃(z) := E{ϕt(X˜) | Z = z } .  Since supx̃ ∈Supp(X )̃|ϕ t̃1 (x̃ ) − ϕ t̃2 (x̃ )| ≤ C ·|t1 − t2| for all t1, t2 ∈ T , and  

supt∈T ,x̃ ∈Supp(X̃ )|ϕ t̃(x̃ )| < ∞, Lemma A.6 ensuresthat

√
n ·Pn(D0 − m0) ·

∫
K0(u) ·ϕ t̃(z + uh0) du =

√
n ·Pn(D0 − m0) ·E{ϕt(X˜) | Z } + oP (1)

uniformly over T . Finally, by Lemma D.1 and Assumption A4,

√
n ·Pn(mˆ0 − m0) ·tn ·

∫
K0(u) ·ϕ t̃(Z + uh0) du =

√
n ·Pn(mˆ0 − m0) ·tn ·ϕ˜t(Z) + oP (1) ,
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uniformly over T . Conclude by putting together the last three displays.

Lemma A.9. Under Assumptions A1-A6, uniformly over T ,

√
n ·Pn(m˜0 − m0) ·tn ·ϕ t = −√

n ·Pn(D0 − m0) ·E{ϕt(X˜) | Z } + oP (1).

The same type of expansion also holds for m̃ 2.

Proof. From Lemma A.7, Lemma A.2, and the Law of Iterated Expectations,

√
n ·Pn(m˜0 − m0) ·tn ·ϕ t =

√
n ·P (m̂ 0 − m0) ·tn ·E{ϕt(X˜) | Z } − √

n ·Pnϕ t ·B̂ 0·tn + oP (1) ,  

uniformly in t  ∈ T . By this expansion and LemmaA.8,

√
n ·Pn(m˜0 − m0) ·tn ·ϕ t =

√
n ·Pn(D0 − m0) ·E{ϕt(X˜) | Z }

−√
n ·(Pn − P )(m̂ 0 − m0) ·tn ·E{ϕt(X˜) | Z } + oP (1)

uniformly over T . Hence, conclude by Lemma A.7

The lemmas that follow are simple applications of the previous ones.

Lemma A.10. Let H0 hold and assume that 
√

n ·(β̂  − β0) = OP (1). Under Assumptions A1-A6, uniformly in

t  ∈ T ,

n(i) G ε ·f
W (β)
ˆ ˜ ˆ

0˜ ˆ t n n W  (β ) 0 t P(W (β)) ·φ  ·t   =G ε f (W (β )) ·φ + o (1);

(ii)
√

n ·Pnεtn
∫

K(u) ·( ι t fW (β0))(W˜ (β̂ )+ uh) du =
√

n ·Pnε ·( ι t fW (β0))(W (β0)) + oP (1) ;

(iii) n ·P Bn ˜ ˆW (β)
ˆ  ̃ ˆ ˆ˜ ˆW (β)

√ √ ̃ ˆ ˆ(W (β)) ·f (W (β)) ·φ ·t  = n ·P (Tt n t̂tW˜ (βˆ)
0W  (β )

ˆ− t t T
W (β)˜  ˆ t n P) ·ι ·t  + o (1) ;

√ ˆ(iv) n ·P Bn ˆ ˆW (β)
 ̂ ˆ ˆ(W (β)) ·f ˆ ˆW (β)

ˆ ˆ
t n

√ ˆ(W (β)) ·φ ·t  = n ·P (T
t̂tWˆ (βˆ)

0W  (β )
ˆ− t t T

W (β)ˆ  ˆ t n P) ·ι ·t  + o (1) ;

√
(v) n ·P (tt

0n W  (β ) 0
ˆ(W (β )) − tt

W̃(β̂ )
˜ ˆ(W (β))) ·ι ·f

0t W  (β ) n

√ ˆ·t  = − n ·P (T ˜ ˆW (β)
− t t ˆ

W  (β ) ˜ ˆ0  W (β)
f ) ·ι t  ·tn −

√
n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(W̃ (β̂ )− W (β0)) + oP (1) ;

The same results hold by replacing W̃ (β̂ ) with Ŵ (β̂ ).

Proof. (i) By Lemma A.3, uniformly overT ,
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G ε ·fn ˜ ˆW (β)
ˆ ˜ ˆ

t n(W (β)) ·φ ·t =

ˆG ε ·fn ˜ ˆW (β)
(W (β )) ·φ ·t  + G ε∂ f

00 t n n W  (β )
˜ ˆ

0 t 0 n P(W (β )) ·φ ·(W (β) − W (β )) ·t + o (1) .

Conclude by applying Lemma A.5 to the first leading term of the above display, and Lemma A.9 to the second  one.



(ii) By Lemma A.3,

√
n ·Pnεtn

∫
K(u) ·( ι t fW (β0))(W˜ (β̂ )+ uh) du =

√
n ·P ε ·t   ·

∫  
K(u) ·(ι f )(W (β ) + uh) du +

n n t  W (β0) 0

√
n ·Pnε ·∂( ι t fW (β0))(W (β0)) ·tn ·(W̃ (β̂ )− W (β0)) + oP (1)

uniformly over T . Conclude by applying Lemma A.6 to the first leading term of the previous expression, and

Lemma A.9 to the second one..

(iii) By Lemma (A.3),

√
n

ˆn ·P B ˜ ˆW (β)
 ̃ ˆ ˆ(W (β)) ·f ˜ ˆW (β)

˜ ˆ
n(W (β)) ·t =

√ ˆn ·P (Tn t̂tW˜ (βˆ)

− t t ˆ
W (β ) ˜ ˆ0 W (β) 0 n t P·T )(W (β )) ·t  ·φ + o (1)

uniformly over T . Conclude by Lemma A.5.

(iv)The proof is very similar to the one above.

(v)By Lemma D.2 , uniformly over T

√
n ·Pn( ttW (β0)(W (β0)) − tt̂ W̃(β̂ )(W̃ (β )̂)) ·ι t ·f W (β0) ·tn =

√
n

ˆ− n ·P (T
W (β)

(W (β)) − t t
0˜ ˆ W  (β )

 ̃ ˆ ˆ
0 ˜ ˆW (β)

˜ ˆ
t n P(W (β )) ·f (W (β))) ·ι ·t  + o (1) .

By Lemma A.3 and Lemma A.5 conclude for theresult.

Lemma A.11. Let H0 hold and assume that 
√

n ·(β̂  − β0) = OP (1). Under Assumption A1-A6, uniformly over T  

(i)

√
n ·P (T

t̂tW˜ (βˆ)

ˆ
Ŵ (β)˜  ˆ t n− T ) ·ι ·t =

√− n ·P ε f
0n W  (β ) t

√
ι + n ·P (T

0˜ ˆ W  (β )
ˆ ˆ− t t f

W (β) W (β)˜  ˆ t n) ·ι ·t +
√

n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(W̃ (β̂ )− W (β0)) + oP (1) .

(ii)

√ ˆn ·P (T
t̂tWˆ (βˆ)

ˆ− T
W (β)ˆ  ˆ t n) ·ι ·t =

√− n ·P ε f
0n W  (β ) t

√ ˆι + n ·P (T
0ˆ ˆ W  (β )

ˆ− t t f
W (β) W (β)ˆ  ˆ t n) ·ι ·t +

√
n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(Ŵ (β̂ )− W (β0)) + oP (1) .

Proof. By Assumption A5, Lemma A.2, Lemma D.3, Lemma D.2, using the definitions of T̂ ˆ ttW˜ (βˆ) W (β)and T̂  ̃̂  , and

by the classical “change of variable”,
√

n ·P (T
t̂tW˜ (βˆ)

ˆ
Ŵ (β)

− T ) ·ι ·t˜  ˆ t n

√
n
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ˆ= − n ·P (Y − tt ˜ ˆW (β)
˜ ˆ(W (β))) ·t n

∫
· K(u) ·(ι f

0t  W  (β )
˜ ˆ)(W (β) + uh) du .



By adding and subtracting t t W  (β )(W (β0)), and then using Lemma A.3, Lemma A.6, Lemma A.9, and LemmaD.1
0

uniformly over T ,

√
n ·Pn(Y − tt̂ W̃(β̂ )(W̃ (β )̂)) ·tn ·

∫
K(u) ·( ι t fW (β0))(W˜ (β̂ )+ uh) du =

√
n ·Pn ε ι t fW (β0) +

√
n ·Pn( ttW (β0)(W (β0)) − tt̂ W̃(β̂ )(W̃ (β )̂)) ·tn ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh) du + oP (1) .

∫
Now, by the r-th order of the kernel K , K(u) ·(ι f

0t  W  (β ) )(w(β0) + uh) du = ( ι t f 0W  (β ) 0
r)(w(β )) + O(h ), with

hrn1 /4 = o(1), by Assumption A3. Hence, by Lemma D.2, uniformly over T

√
n ·Pn( ttW (β0)(W (β0)) − tt̂ W̃(β̂ )(W̃ (β )̂)) ·tn ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh) du =

√
n ·Pn( ttW (β0)(W (β0)) − tt̂ W̃(β̂ )(W̃ (β )̂)) ·tn ·( ι t fW (β0))(W (β0)) + oP (1) .

Conclude by applying Lemma A.10 to the leading term of the previous expression. The proof of point (ii) proceeds  

along the samelines.

√
In the next lemmas we prove the asymptotic expansion of nPε̃ f ˜ ˆW (β)

ˆ ˜ ˆ ˆt n(W (β))φ t  and obtain theasymptotic

behavior of the statistic.

Lemma A.12. Let H0 hold and assume that 
√

n ·(β̂  − β0) = OP (1). Under Assumption A1-A5, uniformly over T

√
nPε̃ f

W (β)
ˆ ˜ ˆ ˆ˜ ˆ t n(W (β))φ t =

+
√

n ·PnεfV (β0)φ⊥
t

−√
n ·Pn(∂ttV (β0)fV (β0)φ⊥

t ) ·tn ·(W̃ (β̂ )− W (β0)) + oP (1) .

Proof. First, by Lemma A.2 and D.2, we can replace the trimming t̂ n with tn .  Then, by definition of ε̃ ,

√
nPε̃ f ˜ ˆW (β)

ˆ ˜ ˆ ˆt n(W (β))φ t = (A.9)
√ ˆnPε̂ f ˜ ˆW (β)

˜ ˆ
t n

√
(W (β))φ t  + n ·P ˆ(B ˆ

n ˜ ˆ ˜ ˆW (β) W (β)
˜ ˆ

t n·f )(W (β))) ·φ ·t .

For the first term on the RHS, by adding and subtracting t t W  (β )(W (β0)) and using Lemma A.10, uniformly over
0

T

nPε̂ f ˜ ˆW (β)
ˆ ˜ ˆ

t n

√ √
(W (β))φ t = n n

ˆ·P (Y − tt ˜ ˆW (β)
 ̃ ˆ ˆ(W (β))) ·f ˜ ˆW (β)

˜ ˆ
t n(W (β)) ·φ ·t =

√
0

√
n W (β ) t nnP ε f φ + n ·P (tt

0W  (β ) 0
ˆ(W (β )) ·f ˜ ˆW (β)

 ̃ ˆ ˆ(W (β)) − T ˜ ˆW (β)
˜(W (β0))) ·φt  ·tn  + oP (1) . (A.10)

Applying Lemma A.3 to the second term on the RHS of the above display yields that, uniformly over T ,

√
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n ·P (tt
0n W  (β ) (W (β )) ·f0 ˜ ˆW (β)

ˆ ˜ ˆ ˆ(W (β)) − T
W (β)

˜˜  ˆ 0 t n(W (β ))) ·φ ·t =

n 0
n ·P (tt ·fW (β ) ˜ ˆˆ ˆ− T ˜ ˆW (β) W (β) t n

√ √
n) ·φ ·t  − n ·P (∂tt f

0 0W  (β ) W  (β )
˜ ˆ

t n 0 P·φ ) ·t ·(W (β) − W (β )) + o (1 (A).11)



From Lemma A.5 the first term on the RHS of the above display can be approximated as

0n W  (β )n ·P (tt ·fˆ ˆ
W (β) W (β)

√ √
0˜ ˆ ˜ ˆ t n W  (β )

ˆ− T ) ·φ ·t  = n ·P (tt ·f ˆ
W (β) W (β)˜  ˆ ˜ ˆ t n− T ) ·φ ·t , (A.12)

uniformly over T . Now, from Lemma A.10 and A.11, the bias correction term on the RHS of Eq. (A.9) can be  

approximated as

√
n

ˆn ·P (B ˆ˜ ˆ ˜ ˆW (β) W (β)
˜ ˆ

t n·f )(W (β))) ·φ ·t =
√− n ·P ε f

0n W  (β ) t

√ ˆι + n ·P (T
0˜ ˆ W  (β )

ˆ− t t f
W (β) W (β)˜  ˆ t n) ·ι ·t + (A.13)

√
n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(W̃ (β̂ )− W (β0)) + oP (1) .

Plugging Eq. (A.13), (A.12), (A.11), and (A.10) into (A.9), and then rearrangig terms yields the desired result.

The following lemma provides the infiuence function representation for 
√

n ·(β̂  − β0). Its proof is quite  

similar to those provided above, and is contained in the Supplementary Material.

Lemma A.13. Under Assumptions A1-A6, and assuming that H0 holds,  

(i)
√

n ·(β̂ − β0) = OP (1);

(ii)

√ ˆ
0

√
n ·(β − β ) = n n

−1·P ε ·Σ ·∇ t t0 β W (β0) 0(W (β ))
√

T− n ·P (D − m  (X )) βn 2 2 2 0,2 ·E{∂ t t
01 W  (β ) 0

−1
0(W (β )) ·Σ ·∇ t tβ W (β) (W (β)) β =β0

| | X 2 } +
√

T
,

n 0 0 2n ·P  (D  − m  (Z)) ·E ∂ t t
0W  (β ) 0

−1
0(W (β )) ·Σ ·∇ t tβ W (β) β =β0

(W (β))| |Z
,

+ oP (1) ,

where Σ0 := E{∇βt tW (β0)(W (β0)) ·∇βT t t W (β0)(W (β0))}.

Proof. See Lemma ?? in the Supplementary Material.

Remark A.1. In the following lines we will provide a more general version of Proposition 1. The expansion will  

refer to the model considered in this appendix, and will be based on the following function
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ϕ0 ,t(y, x̃ ) :=
Σ

y − t t W  (β0)(w(β0))
Σ 

·ψt(x˜)+

,
−E ψ t

˜(X) ·∂ t t
01 W  (β ) 0 2 2

,
(W (β )) | X = x · T

0,2β ·(d2 − m2(x2))+

,
˜

t 2+E ψ (X) ·∂ t t
0W  (β ) 0 .

,
T e

0(W (β )) Z = z ·(x − m  (z)) ,

where ψ (x̃ ) := f
0t W  (β ) 0

⊥ T −1(w(β  )) ·φ  (x̃ ) −a(t) Σ ∇ t t
t 0 β W (β) β =β

⊥ T(w(β))| , φ (x̃ ) := φ(x̃  t) − ι
00 t W  (β ) 0(w(β )),

ιW (β0)(w) := E{φ(X˜t) | W (β0) = w} , Σ0 := E{∇βt tW (β)(w(β))|β=β0 ·∇βT t t W (β)(w(β))|β=β0 } , and finally



∫
a(t) := ∂ t t1 W  (β ) (w(β )) ·f T(w(β )) ·(x , m T T ⊥

0 0 W (β0) 0 1 2 2 t(x ) ) ·φ (x̃ ) dP (x̃ ). The expansion in Proposition 1,

as reported in the main text, can be obtained by imposing β0,2 = 0 and recalling that x̃  = (x, z).

We are now able to provide a proof for Proposition 1.

Proof of Proposition 1.

(i) From Lemma A.12, it is su@cient to obtain an expansion for 
√

n·Pn(∂ttW (β 0 ) fW (β0)φ⊥
t )·tn·(W̃ (βˆ)−W(β0)).

To this end, notice that

w̃ (β̂ )− w(β0) = (x1 ·(β̂ 1 − β0,1) + m̃          2(x2) ·(β̂ 2 − β0,2) + β0,2 ·(m̃ 2 − m2)(x2) , (m0 − m̃          0)(z)) (A.14)

For the ease of notation,define

(α1(t) , α2(t)) := (∂1t t W (β0 ) ·f W (β0 )φt
⊥, ∂2t t W (β0 ) ·f W (β0 )φt

⊥) (A.15)  

The rates in Lemma D.1 and Lemma A.13 ensure that uniformly in t  ∈ T,

√
n ·Pn∂t tW (β 0 ) fW (β0)φ⊥

t ·tn ·(W̃ (β̂ )− W (β0)) =

1 1 1 2 2
T T

√ ˆ
0E{ ( α (t) ·X ,  α (t) ·m  (X )   ) } · n ·(β − β )+

√
0,2

T
n

√
1 2 2 n    2 0 0 Pn ·β ·P  α (t) ·(m̃        − m ) − n ·P α (t) ·(m̃  − m  ) + o (1) .

By replacing the Infiuence Function Representations of Lemma A.13 and A.9 into the above display, and then  

using the expansion in Lemma A.12, the result is readily obtained.

(ii) Define

gt(Y, D0, D2, X )̃ := ε ·f V (β0)(V (β0)) ·φ⊥
t (X )̃

0 02 2 2 0,2 1    W (β ) W  (β )
⊥ −1−(D   − m  (X ))·β ·E{∂ t t ·( f φ   + a(t)·Σ ·∇ t tt 0 β W (β0) 2| X  } +

(D0 − m0(Z)) ·E{∂2 ttW (β0) ·( f W (β0)φ⊥
t + a(t) ·Σ−

0·∇βt tW (β ) | Z } .
1

0

To simplify, define Z̃ := (Y, D0, D2, X )̃ and its support Z̃ := YxD0xD2xX˜. Notice that under H0, Pgt = 0 for

all t ∈ T , so
√

n ·Pngt = Gngt. By the compactness of T , the continuity of φ, and the boundedness of the

random variables involved, sup z̃ ∈Z˜|gt1(z̃ )− gt2 (z̃ )|≤ C ·|t1 − t2| for all t1, t2 ∈T . By Lemma (A.4) the class G

:= {g t : t ∈ T }satisfies an entropy bound of the type log N[ ](δ, G, || ·||∞) ≤ Cδ−υ, with υ ∈ (0, 2) and the

constants C and υ which do not depend on δ . Therefore, it follows by Donsker’s Theorem (see Theorem 19.5 in

van der Vaart(1998)),Gn ; G over A∞(G), whereGis the Gaussian process definedby the Covariance Matrices
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1  2 t t1 2
collection Ψ(t  , t  ) = {Pg g : t1, t2 ∈ T } .  Since the mapping f  ›→ ∫  

|f ◦ gt|2µ(dt) is continuous over A∞(G),



by a Continuous Mapping Theorem (see Theorem 18.11 in van der Vaart (1998)),

∫
|Gn gt |2µ(dt) ;

∫
|Ggt |2µ(dt) (A.16)  

Similarly, since the operator || ·||G,∞ is continuous over A∞(G), by a Continuous Mapping Theorem, ||Gn||G,∞ ;

||G||G,∞, with ||G||G,∞ tight process. Accordingly, ||Gn||G,∞ = OP (1). Definenow

n nR (t) := nP ε̃ f ˜ ˆW (β)
ˆ  ̃ ˆ ˆ

√ √
t n n t
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(W (β))φ t  − nP g .

From point (i), ||Rn||T ,∞ = oP (1), so

. S n − ∫
|Gngt|2µ(dt) . ≤

∫
|Rn(t)| ·|Rn(t) + 2Gngt|µ(dt) = oP (1) .

So,

(A.17)S n =
∫

|Gngt|2µ(dt) + oP (1)

Conclude by Eq. (A.16), (A.17) and Slutzky’sTheorem.

(iii) By Lemma C.2 and a reasoning similar to the one for Eq. (A.17),

S n
∫ .

n  = P (Y − t t W  (β )
∗(W (β ))) ·f

. ∗ W  (β )
∗ T ˜ .2

∗ (W (β )) ·φ(t X ) µ(d P
t) + o (1)

.

By definition of H1, the leading term on the RHS of the above display must be larger than zero.

[Q.E .D.]

B Bootstrap Analysis

In the following lemmas, I consider an enlarged probability space which accounts for both the randomness of the  

original sample data and the bootstrap weigths ξ. For notational simplicity, let Pξ denote the product measure

n
i=1⊗ Pξi , and let Pξ ⊗ P be the product measure between Pξ and the original measure P . Note the inconsistency

ξ n
i=1of  notation:  P  here  stands  for  the  product measure ⊗ Pξi instead of the probability measure of the single

random element ξ. We choose to accept such inconsistency as it enlightens the notational burdens.

Define

1 21 2 2
∗ T ∗ eW (β) := (β X  + β m̃ (X ), X − ∗

0m̃ (Z)) ,˜ ˆ ∗ T ∗
1 21 2 2

eW (β) := (β X  + β m̂ (X ), X − ∗
0m̂ (Z)) ,

∗ T
1 1 2

∗
2w̃ (β) := (β x  + β m̃(x 2

e ∗
0), x − m̃ (z)), and ∗ T

1 1 2
∗
2 2

e ∗
0ŵ (β) := (β x  + β m̂ (x ), x  − m̂ (z)) .

The lemmas that follow provide auxiliary results forthe expansion of the empirical process at the basis of the



bootstrap version of the statistic.

Lemma B.1. Let H0 hold, and assume that
√

n·(βˆ−β0) = OP (1) and
√

n·(β̂ ∗−β̂ ) = OP(1). Under Assumptions  

A1-A6, uniformly over {x̃  : f  (x̃ ) ≥ τ n }

W̃       ∗(β̂ ∗) W̃∗(β̂ ∗) 0(i) T̂ ∗ (w̃ ∗(β̂ ∗)) = T̂ ∗ (w(β )) + ∂T
0W  (β )

ˆ∗ ∗
0 0 P

−1/ 2(w(β )) ·(w̃    (β  ) − w(β )) + o (n ) ;

ˆ˜ ∗ˆ∗W  (β )
ˆ∗ ∗ ˆ(w̃  (β )) = f

W  (β )˜ ∗ ˆ∗ 0(w(β )) + ∂ f
0W  (β )

ˆ∗ ∗
0 0 P

−1/ 2(w(β )) ·(w̃    (β  ) − w(β )) + o (n ) ;(ii) f

(iii)
∫

K(u) ·(ι f
0t  W  (β )

ˆ∗ ∗)(w̃  (β ) + uh) du =
∫

K(u) ·(ι f )(w(β ) + uh)du + ∂(ι f
0 0t   W (β ) 0 t  W  (β )

ˆ∗ ∗
0 0 P

−1/ 2)(w(β )) ·(w̃    (β  ) − w(β )) + o (n ) .

Proof. The proof is very similar to the proof of Lemma (A.3) and is hence omitted.

Lemma B.2. Let ξF := {(ξ, z) ›→ξ ·f (z) : f ∈F } , where F is a class of functions. Then, N[ ](||ξ||2,P ·δ, ξF , ||·

||2,P) ≤ N[ ](δ,F , ||·||2,P).

Proof. The proof proceeds along the same arguments as the proof of Lemma A.3 in Escanciano et al. (2014).

Lemma B.3. Let H0 hold, and assume that
√

n·(βˆ−β0) = OP (1) and
√

n·(β̂ ∗−β̂ ) = OP(1). Under Assumptions  

A1-A6, uniformly in t  ∈ T ,

(i) G ξ ·t ·(Tn n ˆ ˆW (β) 0
ˆ ˆ− t t f

W (β)W (β ) ˆ ˆ t P) ·φ = o (1) ;

n n
ˆ(ii) G ξ ·ε ·t ·(f ˜ ∗ˆ∗W  (β ) 0(W (β ))− f

0W  (β ) (W (β0))) ·φt ·tn = oP(1) ;

n n
ˆ(iii) G ξ ·t ·(T ∗

˜ ∗ˆ∗W  (β )
ˆ− t t fW  (β ) ˜0  W  (β )∗  ˆ∗ t P) ·φ = o (1) ;

(iv)
√

n ·Pnξ ·ε ·
∫

K(u) ·( ι t fW (β0))(W (β0) + uh) du =
√

n ·Pnξ ·ε ·ι t ·f W (β0) + oP(1) ;

(v)
√

nPnξ ·(D0 − m0) ·
∫

K0(u) ·ϕ t(Z + uh0)du =
√

nPnξ ·(D0 − m0) ·ϕ t + oP(1).
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ˆProof. (i) Let Cn denote the class C(Wn).  By Lemma D.3 and Tonelli-Fubini’s Theorem, || ξ ·t ·(T n ˆ ˆW (β)
−

t t fW  (β ) ˆ ˆ0  W (β) t     2,P 2,P n) ·φ || = ||ξ|| ·||t ·(T
W (β)

ˆ ˆ ˆ− t t fˆ ˆ W  (β ) ˆ0  W (β0)
) ·φt||2,P ≤ ||ξ||2,P ·oP(1). Hence, by Lemma

D.4, for any fixed δ > 0, the event

n t∈TB   := { sup || ˆξ ·t ·(Tn ˆ ˆW (β) 0W  (β )
ˆ− t t f
W (β)ˆ ˆ t 2,P n

ˆ) ·φ || < δ , t ·(T ˆ ˆW (β)
− t t

0W  (β ) f̂ ˆ ˆW (β) n n) ∈ t  ·C}

has a probability converging to one as n → ∞. Notice that whenever B n holds,

t∈Tsup |G ξ ·t ·(Tn n ˆ ˆW (β)
− t tˆ ˆ

W  (β ) ˆ ˆ0  W (β) t nf ) ·φ | ≤ ||G ||
n n(ξ·t ·C·Φ) δ ,

with (ξ ·tn  ·Cn ·Φ)δ defined similarly as in Lemma A.5. Since (ξ ·tn  ·Cn ·Φ)δ ⊂ ξ ·(tn ·Cn ·Φ),

N[ ](δ, (ξ ·tn  ·Cn ·Φ)δ, || ·||2,P) ≤ N[ ](δ, ξ ·tn  ·Cn ·Φ, ||·||2,P).



By the proof of Lemma A.5, N (δ, tnCn, || ·||∞) ≤ N (δ, Cn, || ·||Wn,∞). So, from Lemma B.2, Eq. (A.7), and

Lemma A.4, log N[ ](δ, ξ ·tn ·Cn·Φ, || ·||2,P) ≤ C ·δ−υ, with C and υ being constants which do not depend on

δ, and υ ∈(0, 2). From this point proceed as in Lemma A.5 to obtain point (i). The proofs of Point (ii)and (iii)

proceed in essentially the same way.
∫

(iv)  Define g (x̃ , ε)  := ε · K(u) ·(ι fn,t t  W  (β ) )(w(β ) + uh) du − ε ·(ι f
0 00 t   W (β ) 0)(w(β )). From the proof of

Lemma A.6, supt∈T ||gn,t||2,P = o(1). Hence, by Tonelli-Fubini’s Theorem, sup t∈T ||ξ ·gn,t||2,P = ||ξ||2,P · sup t∈T
||gn,t||2,P = o(1). From the proof of Lemma (A.6), log N[·](δ, Gn, ||·||2,P) ≤ C ·δ−υ, with Gn := {gn,t : t ∈ T } , C

and υ being constants which do not depend on neither n nor δ. Hence, from Lemma B.2, log N[ ](δ, ξ ·Gn, ||·||2,P)

≤ C ·δ−υ (by changing the constant C accordingly). From this point, conclude by proceeding in as in Lemma A.5.

(v) The proof is identical to the one of Point (iv), so it is omitted.

Lemma B.4. Let (x̃ , t) ›→ϕt(x˜)be a fixed function with supt∈T , x̃ ∈Supp(X )̃|ϕt(x˜)| < ∞, such that sup x˜∈Supp(X˜)|ϕt1(x̃ )−
ϕ t 2  (x̃ )| ≤ C ·|t1 − t2| for all t1, t2 ∈ T . Under AssumptionsA1-A6,

(i) Gn(m  ̂∗0− m0) ·tn  ·ϕ t  = oP(1);

(ii) Gnξ ·(m̂  0 − m0) ·tn  ·ϕ t  = oP(1).  

The same result holds for m̂ ∗2and m̂ 2.

Proof. (i) The proof is identical to the proof of Lemma (A.7)

(ii) Let Cn denote C(Zn), and let Υ  := {ϕ t  : t  ∈ T } .  By the same reasoning as in the proof of Lemma (A.7),  log N[ 

](δ, tn  ·(Cn − m0) ·Υ  , || ·||2,P ) ≤ C ·δ−υ. So Lemma (B.2) ensuresthat

log N[ ](δ, ξ · tn  ·(Cn − m0) ·Υ  , || ·||2,P) ≤ C ·δ−υ with υ ∈ (0, 2) .

From Lemma D.1, for all t ∈T the mapping (ξ, x̃ ) ›→ξ ·(m̂ 0 − m0)(z) ·tn(x˜) ·ϕt(x˜) belongs to the class ξ ·tn ·

( Cn − m0) · Υ with a probability converging to one. For the L2-convergence, from Lemma D.1, the

boundedness of ϕ t and Tonelli-Fubini’s Theorem,

supt∈T ||ξ ·(m̂  0 − m0) ·ϕt||2,P ≤ ||ξ||2,P ·oP(1).

So, by following the same steps as in the proof of Lemma A.5, the desired result is obtained.

Lemma B.5. Let (x̃ , t) ›→ϕt(x˜)be a fixed function with supt∈T , x̃ ∈Supp(X )̃|ϕt(x˜)| < ∞, such that sup x˜∈Supp(X˜)|ϕt1(x̃ )−
ϕ t 2  (x̃ )| ≤ C ·|t1 − t2| for all t1, t2 ∈ T . Under AssumptionsA1-A6,

√
n ·Pnϕ t  ·(m̂  ∗0− m̂ 0) ·tn =

√
n ·Pn(mˆ0 − m0) ·tn ·E{ϕt(X˜) | Z } +
√

n ·Pnξ ·(D0 − m0) ·E{ϕt(X˜) | Z }

−√
n ·Pn(D0 − m0) ·E{ϕt(X˜) |Z } + oP(1)
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uniformly in t  ∈ T.

Proof. By adding and subtracting m0 ,  and then using Lemma B.4, Lemma A.7, uniformly overT

n t
∗
0 0 n P

√ √ ∗
0

(η/ 2)
n ,Z0 tn ·P ϕ  ·(m̂        − m̂                                    ) ·t   = o (1) + n ·P (m̂        − m̂            ) ·t ·ϕ .

For simplicity, denote ϕ˜t(Z) := E{ϕt(X˜) | Z } . From Lemma D.1, and Lemma A.2, uniformly over T ,

√
n ·P (m̂ ∗

0− m̂0) ·tn ·ϕ t =
√ ∫ ∗

0̂ 0̂
(η/ 2)
n ,Z tn · (T   − T )(z) ·t (z) ·ϕ̃ (z)d Pz + o (1). (B.18)

ˆBy Lemma A.2, definition of T ∗
0 0̂and T , and the usual “change of variable”, uniformly over T ,

√ ∫ ∗
0̂ 0̂

(η/ 2)
n ,Z tn · (T   − T )(z) ·t (z) ·ϕ̃ (z)d

√ ∫
n 0 0 0 t 0z = n ·P ξ ·(D  − m ) · K  (u) ·ϕ̃  (Z + uh )d u +

−√
n ·Pnξ ·(m̂ 0 − m0) ·tn ·

∫
K0(u) ·ϕ t̃(Z + uh0)du +

√
n ·Pn(mˆ0 − m0) ·tn ·

∫
K0(u) ·ϕ t̃(Z + uh0)du

−√
nPn(D0 − m0)

∫
K0(u) ·ϕ t̃(Z + uh0)du .

Lemma D.1, the r0-th order of the kernel, and the usual r0−th order Taylor expansion yield

√
n ·Pnξ ·(m̂ 0 − m0) ·tn ·

∫
K0(u) ·ϕ t̃(Z + uh0)du =

√
n ·Pnξ ·(m̂ 0 − m0) ·tn ·ϕ˜t(Z) + oP(1),

uniformly over T . Similarly, uniformly over T

√
n ·Pn(mˆ0 − m0) ·tn ·

∫
K(u) ·ϕ t̃(Z + uh)du =

√
n ·Pn(mˆ0 − m0) ·tn ·ϕ̃ t+ oP(1)

Finally, by Lemma B.3 and A.6, uniformly over T ,

√
n ·Pnξ ·(D0 − m0) ·

∫
K0(u) ·ϕ t̃(Z + uh0)du =

√
n ·Pnξ ·(D0 − m0) ·ϕ˜t(Z) + oP(1) .

√
n ·Pn(D0 − m0) ·

∫
K0(u) ·ϕ t̃(Z + uh0)du =

√
n ·Pn(D0 − m0) ·ϕ˜t(Z) + oP(1) .

Conclude by the last fivedisplays.
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Lemma B.6. Let (x̃ , t) ›→ϕt(x˜)be a fixed function with supt∈T , x̃ ∈Supp(X )̃|ϕt(x˜)| < ∞, such that sup x˜∈Supp(X˜)|ϕt1(x̃ )−
ϕ t 2  (x̃ )| ≤ C ·|t1 − t2| for all t1, t2 ∈ T . Under Assumptions A1-A6, uniformly over T

√
n ·Pnϕ t ·tn ·(m̃ ∗

0− m̂0) =
√

n ·Pnξ ·(D0 − m0) ·E{ϕt(X˜) | Z } + oP(1) .

The same result holds for m̃ ∗2.  

Proof. From the definition of m̃∗
2,

√
n ·Pnϕ t ·tn ·(m̃ ∗

0− m̂  0) =
√

n ·Pnϕ t  ·tn ·(m̂ ∗
0− m̂  0) − √

n ·Pnϕ t ·tn ·B 0̂.

Conclude from Lemma (B.5) and Lemma (A.8).

Lemma B.7. Let H0 hold, and assume that
√

n·(βˆ−β0) = OP (1) and
√

n·(β̂ ∗−β̂ ) = OP(1). Under Assumptions  

A1-A6, uniformly over T ,

n(i) n ·P ξ ·ε ·f ˜ ∗ˆ∗W  (β )
ˆ ˜ ˆ∗ ∗(W (β )) ·t

√ √
n t n·φ = n ·P ξ ·ε ·f

0W  (β ) ·φt  + oP(1);
√

n(ii) n ·P ξ ·(tt
0W  (β ) 0

ˆ(W (β )) −tt
Ŵ(β̂ )

ˆ ˆ ˆ(W (β)) ) ·f ˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗(W (β )) ·t ·φn t P= o (1) ;

√ ˆ(iii) n ·P (ttn ˆ ˆW (β)
ˆ ˆ(W (β)) − t t

0W  (β ) 0
ˆ(W (β ))) ·f ˜ ˆ∗ ∗W  (β ) (W̃ ˆ∗ ∗

n t(β )) ·t  ·φ =
√ ˆnP (T ˆ ˆW (β)

ˆ
W  (β ) ˆ ˆ0  W (β)

√− t t f )φ t  + nP ∂t t
0t n n W  (β )

ˆ ˆ
t n 0 P·φ ·t ·(W (β) − W (β )) + o (1) ;

(iv)
√

n ·Pnξ ·ε ·tn ·
∫

K(u) ·( ι t fW (β0))(W˜ ∗(β̂ ∗)+ uh)du =
√

n ·Pnξ ·ε ·ι t ·f W (β0) + oP(1) ;

(v)
√

n ·Pnξ ·( t tW (β0)(W (β0)) − tt̂ Ŵ(β̂ )(Ŵ (β̂ ))·tn ·
∫

K(u) ·( f W (β0)ιt)(W˜ ∗(β̂ ∗)+ uh) du = oP(1).

√
n(vi) n ·P (tt

0W  (β ) 0(W (β )) −tt ∗
˜ ∗ˆ ∗W  (β )

ˆ ˜ ˆ∗ ∗(W (β ))) ·f ˜ ∗ˆ∗W  (β )
ˆ ˜ ˆ∗ ∗

n t(W (β )) ·t  ·φ =
√

W  (β )n ·P (tt f ˜ ∗ˆ∗ˆ ˆ− T
0     W (β ) W  (β )˜ ∗ ˆ∗ n t

√
n) ·t ·φ − n ·P ∂t t f

0 0W  (β ) W  (β ) φ ·tt n
˜ ˆ∗ ∗

0 P·(W (β ) − W (β )) + o (1).

Proof. (i) From LemmaB.1,

√
n

ˆnP ξ ·ε ·f ∗ ∗˜ ˆ ˆ(W (β )) ·t  ·φ = G ξ ·ε ·f˜ ∗    ˆ n t n ˜ ∗ˆ∗ ∗W (β ) W  (β ) 0 n t(W (β )) ·t  ·φ +
√

n ·Pnξ ·ε ·∂ f W (β0) ·φt ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + Rn , t ,

with sup t∈T |Rn,t| ≤ oP(n−1/2) ·
√

n ·Pn|ξ| = oP(1). By applying Lemma B.6 and Lemma A.7, the second term  

on the RHS of the above display is oP(1). Conclude by applying Lemma to the first term on the RHS.

(ii) From Lemma D.2, uniformly over the set T

√
0n W (β ) 0n ·P ξ ·(tt (W (β )) −tt ˆ ˆW (β)

(W (β)) ) ·f ˜ ∗ˆ∗W  (β )
ˆ  ̂ ˆ ˆ ˜ ˆ∗ ∗

n t(W (β )) ·t  ·φ =
√

n
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n ·P ξ ·(tt
0W  (β ) 0

ˆ(W (β )) −tt ˆ ˆW (β) ˆ ˆW (β)
 ̂ ˆ ˆ ˆ ˆ

n t P(W (β)) ) ·f (W (β))) ·t  ·φ + o (1) .



By Lemma B.1,

√
nn ·P ξ ·(tt

0W  (β ) 0
ˆ(W (β )) −tt

Ŵ(β̂ )
ˆ ˆ ˆ(W (β)) ) ·f ˆ ˆW (β)

ˆ ˆ
n t(W (β))) ·t  ·φ =

√
0n W  (β )

ˆn ·P ξ ·(tt ·f ˆ
W (β) W (β)

− T ) ·t ·φˆ  ˆ ˆ ˆ n t

−√
n ·Pnξ ·∂t tW (β0) ·f W (β0) ·φt ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1).

Conclude by applying Lemma B.3 and Lemma A.7 to the two leading terms of the latterexpansion.

(iii) The proof follows the same steps as the proof of point (ii).

(iv)By Lemma B.1, uniformly over T

√
n ·Pnξ ·ε ·tn ·

∫
K(u) ·( ι t fW (β0))(W˜ ∗(β̂ ∗)+ uh)du =

√
n ·Pnξ ·ε ·tn ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du +

√
n ·Pnξ ·ε ·∂( ι t fW (β0))(W (β0)) ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + oP(1) .

By applying Lemma B.6 and Lemma A.7, the second term on the RHS of the above display is oP(1). Conclude by  

applying Lemma B.3 to the first leading term of the latter expansion.

(v)By Lemma B.1 and D.2,

√
n ·P ξ ·(tt (W (β )) − tt̂ (Ŵ    (β̂ )) ·t   ·

∫  
K(u) ·( f ι )(W̃  ∗(β̂ ∗) + uh) du =

n W (β0) 0 Ŵ       (β̂ ) n W  (β0) t

√
n ·Pnξ ·( t tW (β0)(W (β0)) − tt̂ Ŵ(β̂ )(Ŵ (β̂ ))·tn ·

∫
K(u) ·( f W (β0)ι t)(W (β0) + uh) du + oP(1) =

√
n ·Pnξ ·( t tW (β0)(W (β0)) − tt̂ Ŵ(β̂ )(Ŵ (β̂ ))·tn ·( f W (β0)ιt)(W (β0) + uh) + oP(1)

uniformly in t  ∈ T , where the last equality follows from an r-th order Taylor expansion, the r-th order of the  

kernel, Assumption A4, and Lemma D.2. By proceeding similarly to the proof of Point (ii), we conclude.

(vi)By Lemma B.1, uniformly over T ,

√
nn ·P (tt

0W  (β ) 0(W (β )) −tt ∗
˜ ∗ˆ∗W  (β )

ˆ ˜ ∗ ∗(W (β ))) ·f ˜ ∗ˆ∗W  (β )
ˆ ˆ ˜ ˆ∗ ∗

n t(W (β )) ·t  ·φ =
√

n ·P (tt f̂n W  (β ) ˜ ∗ˆ∗0  W  (β )
ˆ− T ∗

˜ ∗ˆ ∗W  (β )
) ·t ·φn t

−√
n ·Pn∂t tW (β 0 ) fW (β0)φt ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + oP(1).

An application of Lemma B.3 to the first leading term yields the desired result

Lemma B.8. Under Assumption A1-A6, H0,
√

n ·(β̂ − β0) = OP (1), and
√

n ·(β̂ ∗− β̂ )= OP(1), uniformly over

T ,
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(i)

√ ˆn ·P (T ∗
∗W  (β )

ˆ− t t f˜ ∗    ˆ 0  W  (β )W  (β )   ˜ ∗    ˆ∗ n t) ·t  ·ι =

√
n ·Pntt̂ Ŵ (β̂ ) ·tn ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du −

√
n ·Pn

∫
K(u) ·( t tW (β 0 ) ι t fW (β0))(W (β0) + uh)du +

−√
n ·Pn∂t tW (β0) ·ι t ·f W (β0) ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) +

√
n ·Pnξει t fW (β0) + oP(1)

(ii)

√ ˆnP (T
0ˆ ˆ W  (β )

ˆ− t t f
W (β) W (β)ˆ  ˆ t n)ι ·t =

√
n ·PnY

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du − √

n ·Pn
∫

K(u) ·( t tW (β 0 ) fW (β0)ι t)(W (β0) + uh)du

−√
n ·Pn∂t tW (β0) ·f W (β0) ·ι t ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1)

Proof. (i) By Lemma A.2, the definition ofT ∗
˜ ∗ˆ∗W  (β )

ˆ ˆ˜ ∗ˆ ∗W  (β )and f , and the classical change ofvariable,

√ ˆn ·P (T ∗
˜ ∗ˆ∗W  (β ) W  (β )

ˆ− t t f ∗0  W  (β )˜ ˆ∗ n t) ·t  ·ι =
√

n ·P tt (Ŵ    (β̂ )) ·t   ·
∫  

K(u) ·(ι f )(W̃  ∗(β̂ ∗) + uh)du +
n Ŵ̂  (β̂ ) n t  W (β0)

√
n ·Pnξ ·(Y − tt̂ Ŵ(β̂ )(Ŵ (β̂ ))) ·tn ·

∫
K(u) ·( ι t fW (β0))(W˜ ∗(β̂ ∗)+ uh)du + (B.19)

−√
n ·Pn tn ·

∫
K(u) ·( t tW (β 0 ) ι t fW (β0))(W˜ ∗(β̂ ∗)+ uh)du =: An,1 + An,2 − An,3 .

By Lemma B.1, Lemma D.1, and Lemma D.2, uniformly in t  ∈ T,

An,1 =
√

n ·Pntt̂ Ŵ   (β̂ )(Ŵ (β̂ )) ·tn ·
∫

K(u) ·( ι t fW (β0))(W (β0) + uh)du +

(B.20)
√

n ·t t W (β0)(W (β0)) ·∂( ι t fW (β0))(W (β0)) ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + oP(1) .

Similarly, by Lemma B.1, uniformly over T ,

An,3 =
√

n ·Pn
∫

K(u) ·( t tW (β 0 ) ι t fW (β0))(W (β0) + uh)du +

(B.21)

(B.22)
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+
√

n ·Pn∂( ttW (β 0 ) ι t fW (β0)) ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + oP(1) .

Finally, by Lemma B.7, uniformly in t  ∈ T ,

An,2 =
√

n ·Pnξει t fW (β0) + oP(1) .  

Conclude for Point (i) by plugging Eq. (B.22), (B.21), and (B.20) into (B.19).



(ii) By definition of T̂  ̂̂  and fˆ  ̂̂  , the classical change of variable and Lemma A.2,
W (β) W (β)

√
nP (T

0
ˆ ˆ− t t fˆ ˆ W  (β ) ˆ ˆW (β) W (β) n t) ·t  ·ι =

√
n ·PnY ·tn ·

∫
K(u) ·( ι t fW (β0))(Wˆ (β̂ )+ uh)du +

−√
nPntn ·

∫
( t tW (β 0 ) fW (β0)ιt)(Wˆ (β̂ )+ uh)du .

By applying Lemma B.1 to each of the two term on the RHS of the above expression, and then rearranging,

√
nP (T

0
ˆ ˆ− t t fˆ ˆ W  (β ) ˆ ˆW (β) W (β) n t) ·t  ·ι =

√
n ·PnY

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du +

√
n ·Pnε∂( ι t fW (β0)) ·tn ·(Ŵ  (β̂ )− W (β0)) +

−√
n ·Pn

∫
( t tW (β 0 ) fW (β0)ιt)(W (β0) + uh)du

−√
n ·Pn∂t tW (β0) ·ι t ·f W (β0) ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1)

uniformly over T . By using H0, Lemma A.13, and Lemma A.7 it is immediate to show that the second term on  the 

RHS of the above display is oP(1) uniformly over T . Hence, point (ii)follows.

Lemma B.9. Let H0 hold and assume that
√

n ·(β̂ −β0) = OP (1) and
√

n ·(β̂ ∗−β̂ )= OP(1). Under Assumptions  

A1-A6, uniformly over T ,

√
n

∗n ·P ε̃ ·f ˜ ∗ˆ∗W  (β )
ˆ ˜ ∗ ∗ˆ ˆt n(W (β )) ·φ ·t =
√

n ·Pnξεφ⊥
t +

−√
n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(W̃ ∗(β̂ ∗)− Ŵ  (β̂ ))+ oP(1) .

Proof. By Lemma A.2 and D.2, we can replace the trimming t̂ n with tn .  So, we obtain the followingdecomposition

√
n

∗n ·P ε̃ ·f ˜ ∗ˆ ∗W  (β )
ˆ ˜ ˆ∗ ∗

t n(W (β )) ·φ ·t =
√

n
ˆn ·P (Y − tt∗ ∗

˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗ ˆ(W (β ))) ·f ˜ ∗ˆ∗W  (β )

˜ ˆ∗ ∗
n t(W (β )) ·t  ·φ + (B.23)

√
n

ˆ+ n ·P B
Ŵ(β̂ )

 ̂ ˆ ˆ(W (β)) ·f ˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗(W (β )) ·φ ·tt n

By the rates in Lemma D.2 uniformly in t  ∈ T ,

√
n ·P Bn ˆ ˆW (β)

ˆ  ̂ ˆ ˆ(W (β)) ·f ˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗

t n(W (β )) ·φ ·t = (B.24)
√ ˆ
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n ·P Bn ˆ ˆW (β)
 ̂ ˆ ˆ(W (β)) ·f ˆ ˆW (β)

ˆ ˆ
t n P(W (β)) ·φ ·t  + o (1) .



By Lemma A.10 and Lemma A.11, uniformly over T ,

√
n ·P Bn ˆ ˆW (β)

ˆ  ̂ ˆ ˆ(W (β)) ·f ˆ ˆW (β)
ˆ ˆ

t n(W (β)) ·φ ·t =
√− n ·P ε ·f

0n W  (β ) t

√ ˆ·ι + n ·P (T ˆ ˆ W  (β )
ˆ− t t f

W (β) 0  W (β)ˆ  ˆ n t) ·t  ·ι + (B.25)

+
√

n ·Pn∂t tW (β0) ·f W (β0) ·ι t ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1) .

Now, the first term on the RHS of Eq. (B.23) can be decomposed as

√
nn ·P (Y − tt∗ ∗

˜ ∗ˆ∗W  (β )
ˆ ˜ ∗ ∗ˆ ˆ(W (β ))) ·f ˜ ∗ˆ∗W  (β )

˜ ˆ∗ ∗
n t(W (β )) ·t  ·φ =

√
n

ˆn ·P ξ ·(Y − tt ˆ ˆW (β)
 ̂ ˆ ˆ(W (β))) ·f ˜ ∗ˆ ∗W  (β )

˜ ˆ∗ ∗
t n(W (β )) ·φ ·t + (B.26)

√
n ·P (ttn ˆ ˆW (β)

ˆ  ̂ ˆ ˆ(W (β)) − tt ∗
˜ ∗ˆ∗W  (β )

∗ ∗˜ ˆ ˆ(W (β ))) ·f ˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗(W (β )) ·t ·φn t

By Lemma B.7, uniformly in t  ∈ T ,

√
n

ˆn ·P ξ ·(Y − tt  ̂ ˆ ˆ(W (β))) ·fˆ ˆ ˜ ∗ˆ ∗W (β) W  (β )
˜ ˆ∗ ∗

t n(W (β )) ·φ ·t = (B.27)
√

n ·PnξεfW (β0)φ t + oP(1) .

Also, Lemma B.7 implies that, uniformly over T ,

√
n ·P (ttn ˆ ˆW (β)

ˆ  ̂ ˆ ˆ(W (β)) − tt ∗
˜ ∗ˆ∗W  (β )

˜ ˆ∗ ∗ ˆ(W (β ))) ·f ˜ ∗ˆ∗W  (β )
˜ ˆ∗ ∗

n t(W (β )) ·t  ·φ =
√ ˆn ·P (T

0
ˆ− t t fˆ ˆ W  (β ) ˆ ˆW (β) W (β) t n) ·φ ·t + (B.28)

√
n ·Pn∂t tW (β0) ·f W (β0) ·φt ·tn ·(Ŵ (β̂ )− W (β0)) +

√− n ·P (T ∗
˜ ∗ˆ∗W  (β ) 0

ˆ ˆ− t t ·f
W  (β )

) ·φ ·tW (β ) ˜ ∗    ˆ∗ t n

−√
n ·Pn∂t tW (β0) ·f W (β0) ·φt ·tn ·(W̃ ∗(β̂ ∗)− W (β0)) + oP(1) .

Now, the two bias integrals in the above display can be handled by using Lemma B.8. Thus, uniformly in t  ∈ T,

n ·P (T
0

− t t fˆ ˆ W  (β ) ˆ ˆW (β) W (β) t n

√ √ˆ ˆ ˆ) ·φ ·t  − n ·P (T ∗
W  (β )∗    ∗ 0

ˆ− t t ·fW (β ) ˜ ∗ˆ∗˜ ˆ W  (β ) t n) ·φ ·t =

√
n ·Pn(Y − tt̂ Ŵ     (β̂ )(Ŵ (β̂ ))) ·tn  ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du (B.29)

−√
n ·Pnξει t fW (β0) +

√
n ·Pn∂t tW (β0) ·f W (β0) ·ι t ·tn ·(W̃ ∗(β̂ ∗)− Ŵ(β̂ ))+ oP(1) .

By adding and subtracting t t W  (β )(W (β0)), and then using Lemma B.3, Lemma D.2, the r-th order of thekernel
0

K ,  and Assumption A5,

√
n ·Pn(Y − tt̂ Ŵ(β̂ )(Ŵ (β )̂)) ·tn ·

∫
K(u) ·( ι t fW (β0))(W (β0) + uh)du =
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√
n ·Pn ε f W (β0)ι t +

√
n ·Pn( t tW (β0)(W (β0)) − tt̂ Ŵ(β̂ )(Ŵ (β )̂)) ·ι t ·f W (β0) ·tn + oP(1) .

0W (β ) 0By Lemma  D.2, we  can replace f (W (β )) with f ˆ ˆW (β)
ˆ ˆ ˆ(W (β)) in the second term on the RHS of the above



display. Then, by using Lemma B.1 and Lemma B.3, uniformly in t  ∈ T ,

√
n ·Pn( ttW (β0)(W (β0)) − tt̂ Ŵ(β̂ )(Ŵ (β )̂)) ·ι t ·f W (β0) ·tn =

−P (T̂ ˆ
W (β) 0  W (β)

− t t f ) ·ι ·tˆ  ˆ W (β ) ˆ ˆ t n (B.30)

−√
n ·Pn∂t tW (β0) ·f W (β0) ·ι t ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1) .

Putting together B.26, B.27, B.28, B.29, and B.30, uniformly over T ,

√
nn ·P (Y − tt∗ ∗

˜ ∗ˆ∗W  (β )
ˆ ˜ ∗ ∗(W (β ))) ·f

W  (β )
ˆ ˆ ˜ ˆ∗ ∗

˜ ∗ ˆ∗ n t(W (β )) ·t  ·φ =

√
n ·PnξεfW (β0)φ⊥

t − √
n ·Pn∂t tW (β0) ·f W (β0) ·φt

⊥ ·tn ·(W̃ ∗(β̂ ∗)− Ŵ(β̂ )) +

0n  t  W  (β )

√ √
n ·P ει f − n ·P (T

0
ˆ ˆˆ ˆ W  (β ) ˆ ˆW (β) W (β) t n− t t f ) ·ι ·t + (B.31)

−√
n ·Pn∂t tW (β0) ·f W (β0) ·ι t ·tn ·(Ŵ (β̂ )− W (β0)) + oP(1) .

Plugging Eq. (B.31), (B.24), and (B.25) into (B.23) yield the desiredresult.

The following Lemma provides the Infiuence Function Representation for 
√

n ·(β̂ ∗ − β0). Its proof is similar  

to the proofs of the lemmas provided above, so it is reported in a supplementary material.

ˆ ˆ

Lemma B.10. Let H0 hold, and assume that 
√

n ·(β̂  − β0) = OP (1). Under AssumptionsA1-A6,

√ √
n ·(β − β) = n∗ −1

0·P ξ ·ε ·Σ ·∇ t t
0n β V (β )

√
T− n ·P ξ ·(D − m  (X )) βn 2 2 2 0,2 ·E{∂ t t

01 W  (β ) 0
−1
0(W (β )) ·Σ ·∇ t tβ W (β) (W (β))|β =β0

| X 2 } +
√

T
,

n 0 0 2n ·P  ξ ·(D  − m  (Z)) ·E ∂ t t
0W  (β ) 0

−1
0(W (β )) ·Σ ·∇ t tβ W (β) (W (β)) β =β0

| |Z
,

+ oP(1) .

Proof. See Lemma ?? in the Supplementary Material.

Lemma B.11. Define gt and G as in the proof of Proposition 1. Let G := {g t  : t  ∈ T }. Under AssumptionA1,
(ξ)
n

∞ ξG ;  G uniformly over l (G) wrt the joint measure P ⊗ P .

Proof. The proof follows the same steps as the proof of Proposition 1 Point (ii). The only difference is that for the

derivation of the entropy condition both Lemma A.4and Lemma B.2 are used.

Lemma B.12. Let Ẑ and Z be two random variables with respect to Pξ ⊗ P that take value in R. Let Q be a

probability measure defined over the Borel sigma field generated by R. Denote with LQ the cdf generated by the

measure Q. If
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ξ
n(i) P ( ˆ P|Z − Z| > δ) → 0 for all δ > 0,

ξ P
n Q(ii) P ( Z ≤ z) → L (z) for all z,

(iii) LQ(·) is a continuous function,



then

z∈R
ξ
n

ˆsup |P (Z ≤ z) − L Q P(z)| = o (1) .

Proof. For a fixed δ > 0,

ξ
n

ˆ ξ
n

ˆ ˆP (Z ≤ z) ≤ P ( { Z ≤ z + Z − Z } ∩{ |Z − Z| ≤ δ } ) +

ξ
n

ˆ ξ
n PP ({ |Z − Z| > δ }) ≤ P ( Z ≤ z + δ ) + o (1) .

By a similar reasoning,

ξ
n P

ξ
n

ˆP (Z ≤ z − δ) + o (1) ≤ P (Z ≤ z).

ξ
n QPutting together the above inequalities, and noticing that by assumption P ( Z ≤ z) → L (z) for all z,

ξ ˆ
Q P n Q PL (z − δ) + o (1) ≤ P (Z ≤ z) ≤ L (z + δ) + o (1) ,

P

for all fixed z and δ. By the continuity of LQ(·), for any s > 0 it is possible to choose δ > 0 small enough such  

that for any arbitrary s > 0, |LQ(z − δ) − LQ(z)| < s and |LQ(z + δ) − LQ(z)| < s. So, for such a choice of δ,

ξ
n

ˆ
Q P−s + o (1) ≤ P (Z ≤ z) − L (z) ≤ s + o (1).

ξ ˆ P
n Q QBy the  arbitrariness  of s, the  above  display  implies  that  P (Z  ≤ z) → L (z) for all fixed z. Since L (·) is

continuous cdf, such a pointwise convergence can be turned into a uniform convergence, so sup z∈R
ξ
n

ˆ|P (Z ≤
z) − LQ(z)| = oP (1) (see page van der Vaart (1998), page339).

Similarly as done for Proposition 1, we now prove a more general version of Proposition 2. See Remark A.1

Proof of Proposition 2.

(i) From Lemma B.9, it is su@cient to derive a Bahadur representationfor 
√

n·Pn∂ttW (β 0 ) fW (β0)ι t ·tn·(W̃ ∗(β̂ ∗)−
Ŵ (β )̂). To this end, notice that by Lemma B.10 and LemmaD.1,
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√
n ·Pn∂t tW (β 0 ) fW (β0)ι t ·tn ·(W̃ ∗(β̂ ∗)− Ŵ(β̂ )) =

−√
n ·Pnβ0,2 ·α1(t) ·(m̃ 2

∗− m̂2) ·tn +
√

n ·Pnα2(t) ·(m̃ ∗
0− m̂0) ·tn −

E{(α1(t) ·X1 , α1(t) ·m2(X2))} ·
√

n ·(β̂ ∗− β̂ )+ oP(1)

uniformly in t  ∈ T . Conclude by replacing in the above expression the infiuence-function representation of  

Lemma B.10 and the expansion of Lemma B.6.

(ii) Define the collection G := {g t  : t  ∈ T }  and the variable Z̃  similarly to the proof of Proposition 1. Denote



(ξ)
n

(ξ) √ ˜ (ξ)
n t n t nwith G the  operator  g ›→ G g  = nP ξ ·g (Z). G is called bootstrap empirical process operator. For

˜any realization of { Z } and {n n
i i=1 i i=1

(ξ)
n

∞ξ } , the operator G belongs to A (G). Denote with G the Gaussianprocess
∫

t
2defined in the proof of Proposition 1.  Finally, denote with ∆  the operator  f ›→ |f ◦ g |µ(d t) defined overthe

∞ ∞ ∫(ξ) (ξ)space A (G). ∆ is well defined over the space A (G). By these definitions, ∆ ◦G = |G gn n t
2| µ(dt).

18 (ξ)
n

∞From Theorem 10.6  in Kosorok (2007) and the proof of Proposition 2, G ;  G over the space l (G), P -almost

surely (i.e. for P -almost every trajectory { ĩ
n
i=1Z } ). So, by the Continuous Mapping Theorem (see Theorem 18.11

(ξ)
n

(ξ)
nin Vaart  (1998)),  ∆ ◦G ; ∆ ◦G P -almost surely. Accordingly, since the process ∆ ◦G takes value in R,

ξ
n

(ξ)
nP (∆ ◦G ≤ z) → L(∆ ◦G ≤ z) for all z, P -almost surely, (B.32)

where L is the cdf of the random variable ∆  ◦ G,i.e. L is the cdf generated by the measure ∆  ◦ G.

n
∞(ξ) ξ

nNow,  by  Lemma B.11, G ;  G over A (G) with respect to the joint probability space P ⊗ P . By arguing

similarly to the proof of Proposition 1, such a weak convergence implies that || (ξ)
n G,∞ PG || = O (1). Definenow

∗
n

√
n

∗R (t) := nP ε̃  ·f
W̃ ∗(β̂ ∗)
ˆ ˆ (ξ)

t n n t(W̃    ∗(β̂ ∗)) ·φ  ·t  − G g .

From point (i), ||Rn
∗ ||T ,∞ = oP(1)so,

∗
n

(ξ)
n|S − ∆ ◦G |≤

∫ ∗
n

∗
n

(ξ)
n t|R  (t)| ·|R  (t)+ 2G g |µ(d Pt) = o (1) .

So, since the above display implies a convergence over the joint space,

ξ ∗
n n

(ξ)
n PP (|S   − ∆ ◦G | > δ) = o (1) for all δ>0. (B.33)

Since L(∆ ◦ G ≤ ·) is a continuous function, from Eq. (B.33), (B.32) and Lemma(B.12),

ξ ∗
z∈R nn Psup |P (S ≤ z) − L(∆ ◦ G ≤ z)| = o (1) .

Since ĉ1−α
ξ
n

∗
n:= inf{c : P (S ≤ c) ≥ 1 −α } , it follows that (see e.g. Li & Racine (2006), page 213, eq. 6.40)

P
ĉ 1−α  → c1−α, (B.34)

where c1−α is defined as the (1 − α)−quantile of the distribution L(∆ ◦G ≤ ·).Now, from Proposition 1and the

definition of the functional ∆ , Sn ; ∆ ◦ G. So, because Sn takes values in R, P (Sn ≤ z) → L(∆ ◦ G ≤ z)

for all z. By the continuity of L(∆ ◦ G ≤ ·),

supz∈R|P(Sn ≤ z) − L(∆ ◦G ≤ z)| = o(1) (B.35)

18The same result can also be obtained from theorem 3.6.1 and Theorem 3.6.3 in van der Vaart & Wellner (1996), but the  
formulation in Theorem 10.6 in Kosorok (2007) is more direct for ourpurposes.
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By Eq. (B.34) and(B.35),

|P(Sn ≤ c 1̂−α)− (1 − α)| ≤
supz∈R|P(Sn ≤ z) − L(∆ ◦G ≤ z)| + |L(∆ ◦G ≤ c 1̂−α)− (1 − α)| =

o(1) + |L(∆ ◦G ≤ c 1̂−α)− L(∆ ◦G ≤ c1−α)| = oP (1),

where I have used L(∆ ◦ G ≤ c1−α) = (1 − α).

(iii) Define A∞c (T ) as the spaceof the functions mappingT onto R that arecontinuous. By the proof of Proposition
∫

2 ∞
c1,  the mapping g ›→ |g(t)| µ(dt) is continuous over the set A (T ). So, from Lemma C.2 and Lemma C.4, by a

Continuous Mapping Theorem (see Theorem 18.11 Vaart (1998)),

Sn

n
→P

∫
V (β )

∗| P (Y − t t ∗ (V (β )))·f V (β ) t
∗ 2∗ (V (β )) ·φ ) | µ(d

S ∗

n
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n Pt) and → 0

1Notice that under H , c̃ :=
∫

| P (Y −t t V (β )
∗∗ (V (β )))·f V (β ) t

∗ 2∗ (V (β )) ·φ ) | µ(d n
∗ Pt) > 0. From S → 0, italso

holds that

ξ ∗
n n PP (S > n ·b) = o (1) , for any b>0.

From the above display, P (S
ξ

n 1−α n 1−α n
∗
n n≤ ĉ ) = P ({ S ≤ ĉ } ∩ {P (S > n ·b) ≤ δ} ) + o(1) = P ({ S ≤

ξ
1−α n

∗
nĉ }  ∩ {P (S ≤ n ·b) ≥ 1 − δ}) + o(1) for any fixed δ > 0 and b > 0 . Set now δ = α/2 and b = c̃ /3.Since

P (S n /n  < c̃ /2) = o(1) , it also holds that

ξ ∗
n n nP (Sn ≤ c 1̂−α) = P ({Sn  ≤ cˆ1−α} ∩ {P (S ≤ n ·c̃ /3) ≥ 1 − α/2 } ∩ { S  / n ≥ c /̃2}) + o(1)

ξ
n

∗
nWhenever the event {P (S ≤ n ·c̃ /3) ≥ 1 − α/2 }  holds, since ĉ 1−α

ξ
n

∗
n= inf{c : P (S ≤ c) ≥ 1 −α } , it must

be that n ·c̃ /3 ≥ c 1̂−α. Therefore, from this implication and the above display,

P (Sn ≤ c 1̂−α) ≤ P ({Sn ≤ cˆ1−α} ∩{n ·c̃ /3≥ cˆ1−α} ∩{ S n / n ≥ c /̃2}) + o(1) = o(1) ,

where the last inequality follows from noticing that {S n  ≤ cˆ1−α} ∩ {n  ·c̃ /3 ≥ cˆ1−α} ∩ { S n / n  ≥ c /̃2} ⊂ {S n <

S n }  =∅
[Q.E .D.]

C Power Analysis

In this Appendix, I analyze the behavior of the test under the alternative H1.

Lemma C.1. Under Assumptions A1-A6, if H1 holds, β̂  →P β∗.



Proof. Define

Qˆ
n(β) = Pn(Y − tt̂ W̃(β)(W˜ (β)))2 ·t̂ n= Pn(Y − t t W (β)(W (β)))2 + oP (1),

By Lemma D.2 and Lemma A.2, Qˆ
n(β) = Pn(Y − t tW (β)(W (β)))2 + oP (1) uniformly in β ∈B. By Assump-

tion A1, t t W (β)(W (β)) satisfies a Glivenko-Cantelli property (see Theorem 19.4 in Vaart (1998)), so Pn(Y − t tW

(β)(W (β)))2 = P (Y − t t W (β)(W (β)))2 + oP (1) uniformly over B. Conclude by the definition of β∗ and

Theorem5.7in Vaart (1998).

Lemma C.2. Under Assumptions A1-A6, under H1, uniformly over T

P ε̃· fn ˜ ˆW (β)
ˆ  ̃ ˆ ˆt n(W (β)) ·φ ·t  = P (Y − t t V (β )

∗∗ (V (β )))·f ∗ ˜
V (β ) P∗ (V (β )) ·φ(Xt) + o (1) .

Proof. By a reasoning similar to the previous lemma, together with β̂  = β∗ +oP (1),

n
ˆP (Y − tt  ̃ ˆ ˆ(W (β))) ·f

W̃       (β̂ ) W (β)
ˆ ˆ˜  ˆ t n(W (β)) ·φ ·t =

P (Y − t t W (β∗)(W (β∗))) ·f W (β∗)(W (β∗)) ·φt + oP (1)

uniformly over T . For the bias correction term, notice that by the uniform-in- β convergence results of Lemma  

D.2,

ˆP Bn ˜ ˆ  ̃ ˆ ˆ(W (β)) ·f
W (β) W (β)

˜ ˆ˜  ˆ n(W (β)) ·t =

Pn( ttβˆ|W(βˆ)(W (β̂ ))− t t W (βˆ)(W (β̂ )) ) ·tn ·f W (βˆ)(W (β̂ ))·φt + oP (1)

uniformly over T . Since by definition ttβ1|W (β2)(w) = E { t tW  (β1)(W (β1)) | W (β2) = w} ,  it also holds that

tt ˆ ˆ ˆβ|W (β) W (β)
ˆ ˆ= t t . Accordingly, P Bn ˜ ˆW (β) W (β)

 ̃ ˆ ˆ ˜ ˆ˜  ˆ n P(W (β)) ·f (W (β)) ·t  = o (1) uniformly over T .

Lemma C.3. Under Assumptions A1-A6, under H1, β̂∗ →P β∗.

Proof. From Lemma D.2, Lemma C.1, and Lemma A.2,
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Pn(tt̂ ˆ (W (β )) + ξ ·(Y − tt
W (β1) W (β1)1 ˆ 1

ˆ ˆ ˆ ˆ(W (β ))) −tt ∗
W̃∗(β2)

(W̃  (β2)))2 ·t̂ n=
Pn( ttW (β1)(W (β1)) + ξ ·(Y − t t W (β1)(W (β1))) − ttβ∗|W (β2)(W (β2))) + oP(1),

2

uniformly in (β1, β2) ∈ BxB. By Assumption A2, t t W  (β)(W (β)) satisfies a Glivenko Cantelli property (see  

Theorem 19.4 in van der Vaart (1998)),so

Pn( ttW (β1)(W (β1)) + ξ ·(Y − t t W (β1)(W (β1))) − ttβ∗|W (β2)(W (β2))) =
2

P(ttW (β1)(W (β1)) + ξ ·(Y − t t W (β1)(W (β1))) − ttβ∗|W (β2)(W (β2))) + oP(1)
2



uniformly in (β1, β2) ∈ BxB. By Assumption A1 and LemmaC.1,

ˆP(tt (W (β)) + ξ ·(Y − t t
W (β) W (β)

ˆ ˆ(W (β))) − t t ∗
2ˆ β |W (β ) 2

2(W (β ))) =
P(ttW (β∗)(W (β∗)) + ξ ·(Y − t t W (β∗)(W (β∗))) − ttβ∗|W (β2)(W (β2)))  + oP(1)

2

=: Q∗(β2) + oP(1)

uniformly in β2 ∈B. By the previousthree displays, Q̂ ∗
n(β)= Q∗(β) + oP(1) uniformly over B.

Notice now that, since Eξ2 = 1 andEξ = 0, Q∗(β) = P ( t tW (β∗)(W (β∗)) − ttβ∗|β (W (β)))2 + P (Y −
t t W (β∗)(W (β∗)))2. Hence,

arg min β∈B Q∗(β) = {β ∈B : t t W (β∗)(w(β∗)) = ttβ∗|W (β)(w(β)) P - almost surely } .

Differentiating both sides of t t W (β∗)(w(β∗)) = ttβ∗|W (β)(w(β)) wrt to (x1, m2(x2)), yields β = β∗. Hence,

arg min β∈B Q∗(β) = {β∗} . Conclude by recalling that β̂ ∗:= arg min β∈B Q̂ ∗
n(β)and using Theorem 5.7 in van

der Vaart (1998).

1 n
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∗ ˆLemma C.4. Under Assumption A1-A6, if H holds, P ε̃ ·f ˜ ∗ˆ ∗W  (β )
˜ ∗ ∗ˆ ˆ

t n P(W (β )) ·φ ·t  = o (1) uniformly over T .

Proof. From Lemma D.2 and Lemma A.2,

n
ˆP B  ̂ ˆ ˆ(W (β)) ·f ˜ ∗ˆ∗Ŵ       (β̂ ) W  (β )

∗ ∗˜ ˆ ˆt n(W (β )) ·φ ·t =

Pn(ttβˆ|W (βˆ)(W (β̂ ))− t t W (βˆ)(W (β )̂)) ·f W (βˆ)(W (β̂ ))·φt + oP(1)

uniformly over T . Since ttβˆ|W (β̂ ) = t t W  (β̂ ) (see the proof of Lemma (C.2)),

P Bn ˆ ˆW (β) ˜ ∗ˆ ∗W  (β )
(W (β)) ·f (W ∗ ∗ˆ  ̂ ˆ ˆ ˜ ˆ ˆ

t n P(β )) ·φ ·t  = o (1)

uniformly over T . Now, by Lemma D.2 and Lemma A.2,

nP (Y −tt∗ ∗
W  (β )

ˆ ˜ ˆ∗ ∗ ˆ(W (β ))) ·f ˜ ∗ˆ∗˜ ∗    ˆ∗ W  (β )
∗ ∗˜ ˆ ˆt n(W (β )) ·φ ·t =

Pn( ttW (βˆ)(W (β̂ ))+ ξ ·(Y − t t W (βˆ)(W (β )̂)) − ttβˆ|W(βˆ∗)(W(β̂ ∗))) ·f W (βˆ∗)(W(β̂ ∗))·φt + oP(1)

uniformly over T . By Assumption A2 , a mean-value expansion, Lemma C.3, and Lemma C.1 yield

Pn(ttV (βˆ)(V (β̂ )) + ξ ·(Y − ttV (βˆ)(V (β )̂)) − ttβˆ|V (βˆ∗)(V (β̂ ∗))) ·f V  (βˆ∗)(V (β̂ ∗)) ·φt  =

Pn(ξ ·(Y − ttV (β∗)(V (β∗)))) ·f V (β∗)(V (β∗)) ·φt + oP(1)

uniformly over T , where I have used ttβ∗|V (β∗)ttV (β∗). The compactness of T and the boundedness of X̃ ensure



n, jLemma D.1. For j = 0, 2, define d :=

a Glivennko-Cantelli property,thus

Pn(ξ ·(Y − ttV (β∗)(V (β∗)))) ·f V (β∗)(V (β∗)) ·φt =

P(ξ ·(Y − ttV (β∗)(V (β∗)))) ·f V (β∗)(V (β∗)) ·φt + oP(1)

uniformly over T . Conclude by recalling that Eξ = 0.

D Auxiliary Results

The following lemmas are proved in the Supplementary Material of this paper.
.

n ·h jp 

j

logn r j

j
+ h . Under Assumptions A1-A5,

j j n   ∞ P
dn , j

τn
(i) ||(m̂       − m  )·t || = O ( ) and|| ∗

j
(m̂        − m  ) ·t || = O

dn , j
j n  ∞ P τ 2

n

. Σ
;

ˆ
j

ˆ
m̂ j

dn , j
j n  ∞ P τ 2

n
(ii) ||(T / f   − m  ) ·t || = O ( ) ;

(iii)
..

ĵ
ˆT −T m̂ j

. Σ
·t  −

. ˆ ˆT −Tj m̂ j

f ĵ f j

Σ
n n ∞·t .. = oP

−1/ 2(n ) and
..

. ˆ∗
j

ˆT −T j

f ĵ

Σ
n·t  −

. ∗
ĵ

ˆT −T j

f j

Σ
n ∞ P·t .. = o (n−1/2)

For C0,n := C(Zn) and C2,n :=C(X2,n),

j j ,n(iv) P 
.
m  ̂ ∈C → 1,P

Σ .
T̂m̂ j

f ĵ
j ,n

Σ .
∗
j j ,n∈C → 1, P  m̂                                           ∈C

Σ 
→ 1.

Lemma D.2. Under Assumption A1-A6,

(i) supβ∈Bsupx̃ |tt̂ W̃ (β)(w˜(β)) − t t W (β)(w(β))| ·tn(x˜) = op(n−1/4);

The same rate also holds for tt̂ Ŵ      (β)(wˆ(β)) , fˆ˜ (w˜(β)), and fˆˆ (wˆ(β)).
W (β) W (β)

ˆ(ii) sup sup |f ˜ ∗β∈B x̃   W (β) (w˜∗(β)) − f W (β)(w(β))| ·tn(x˜) = oP(n−1/4);

Define ttβ1|W (β2)(w) := E { t tW (β1)(W (β1)) | W (β2) = w}; then,

(iii) supβ∈Bsupx̃|tt̂
∗

W̃ ∗(β)(w˜∗(β)) − ttβˆ|W(β)(w(β))| ·tn(x˜) = oP(1)

.
(iv) supβ∈Bsupx̃ .

T̂
Ĝ ˆ ˆW ( β )

(ŵ(β ))

W ( β )
fˆˆ ˆ (wˆ(β)) β̂ |W(β) n P

−1/ 4− t t (w(β))|·t (x̃) = o (n );

The above results also hold by replacing tn  with t̂ n.

Lemma D.3. Under Assumptions A1-A6, if H0 holds and 
√

n ·(β̂  − β0) = OP(1)
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ˆ(i) sup |T
w W (β) 0˜ ˆ W  (β )(w) − T (w)| ·t (η/3)

n ,W (β0) P(w) = o (n ·−1/ 4 2s+4
nτ ),

ˆ(ii)sup |∂T
w W (β)

(w)− ∂T
0˜ ˆ W  (β ) (w)| ·t (η/3)

n ,W (β0) P
−1/ 4(w) = O (n · 2s+4

nτ ).

W (β) W (β) W (β)
The same rate also holds for fˆ  ̃̂  , T̂  ̂̂  , fˆˆ ˆ , T̂ ˆ ttV˜ (βˆ) ttWˆ (βˆ)

, and T̂ ˆ .



If moreover 
√

n ·(β̂ ∗ − β̂ ) = OP(1),

w W̃ ∗(β̂ ∗)
(iii) sup |T̂ ∗ (w)− T

0W  (β ) (w)| ·t (η/3)
n ,W (β0) P

−1/ 4(w) = o (n · 2s+4
nτ ),

w
(iv)sup |∂T̂ ∗

W̃ ∗(β̂ ∗)
(w)− ∂T

0W  (β ) n
2s+4 −1/ 4

P n(w)| ·τ = o (n ·τ );

ˆThe same result holds for f ˜ ∗ˆ∗W  (β )
.

Lemma D.4. Under Assumption A1-A6, if H0 holds and 
√

n ·(β̂  − β0) = OP(1),

ttV˜ (βˆ) ttVˆ (βˆ)

(i)P (fˆ˜   ˆ   , T̂  ̃    ̂ , fˆ  ̂ ˆ   , T̂  ̂  ˆ , T̂ ˆ , T̂ ˆ ∈ C(Wn)) →1.
W (β) W (β) W (β) W (β)

If moreover 
√

n ·(β̂ ∗ − β̂ ) = OP(1),
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(ii) P(f ˜ ∗ˆ∗ˆ ˆ, T ∗
W (β ) ˜ ∗ ˆ∗W  (β )

∈ C(Wn)) →1.



Chapter 2: A Nonparametric Encompassing Test

Elia Lapenta and Pascal Lavergne∗

Abstract

According to the encompassing principle, a model M 1 encompasses a model M 2 if M 1

can explain the results of M2 . The encompassing tests in the current literature either rely on

parametric functional forms or, when relying on nonparametric specifications, they condition

the analysis on fixed values of the explanatory variables. In this paper, we provide a nonpara-

metric encompassing test. Our procedure does not rely on neither functional forms nor on

specific values of the explanatory variables. We propose a statistic computed according to an

L2-boosting algorithm. This procedure allows to obtain a good robustness with respect to the

choice of the tuning parameter. We propose to simulate the critical values by a wild-bootstrap

procedure and prove its validity. In a Monte-Carlo simulation study, we show the attractive

features of ourtest.

Keywords: Encompassing, Model Selection, Nonparametric Model, Bootstrap, L2 Boosting.

JEL Classiftcation: C01, C12, C14

1 Introduction

Encompassing is a well established principle in econometrics. It allows the researcher to choose

between two competing models explaining the behavior of the same response variable. Essen-

tially, a model M 1 encompasses a model M 2 if M 1 can explain the results of M 2 . This is a

natural principle for choosing between two competing theories: a new theory can replace an older

one not only if it explains a new phenomenon, but also if it can explain the results of the older

theory.

The encompassing principle has been introduced in econometrics by the work of Mizon &

Richard (1986), Hendry & Richard (1987), Gourieroux et al. (1983), Florens et al. (1996). Gourier-

oux & Monfort (1995) have developed encompassing tests for parametric models, while Florens et

al. (1996)have extended the concept of encompassing to a Bayesian framework. An extensive

∗Toulouse School of Economics.

71



72

survey of the encompassing principle is provided in Bontemps & Mizon (2008). Bontemps et al.

(2008) propose different encompassing tests, concerning both parametric and nonparametric se-

tups. Tests in the current literature either rely on parametric functional forms or, when relying on

nonparametric specifications, they condition the analysis on fixed values of the explanatory co-

variates. Accordingly, the results obtained can be considered as conditional on either the specific

parametric classes or on the values of the explanatory variables.

This paper contributes to the literature on the encompassing principle by providing a test that

is fully nonparametric and is not conditional on fixed values of explanatory covariates. The test

statistic we propose is based on a continuum of moments and is built according to an L2 boosting

algorithm. Such an algorithm has been originally proposed in the machine learning literature to

debias the estimators of nonparametric objects. Since our test is fully nonparametric, we use the

L2 boosting procedure to recursively correct the nonparametric estimators employed. This

algorithm turns out to be effective for two main reasons. First, it considerably enlarges the

spectrum of bandwidths and kernels admissible for the test. Second, it makes the procedure more

robust to the bandwidth choice. We show that, under the null, the statistic proposed converges to a

functional of a Gaussian process which depends on unknown features of the data. So, to obtain the

critical value we propose a wild-bootstrap procedure and prove its validity in the presence of

boosting iterations. In a Monte Carlo simulation study we explore the merits of our procedure and

show the robustness with respect to the choice of the smoothing parameter.

The reminder of the paper goes as follows. Section 2 formalizes the encompassing idea and

draws some links between the nonparametric context considered in this paper and the one ana-

lyzed in other works. It moreover provides some interesting features of the encompassing prin-

ciple. Section 3 constructs the test, Section 4 introduces the L2 boosting estimators, while the

following Section 5 sets up the assumptions and obtains the asymptotic behavior of the statistic.

Since the asymptotic distribution under the null depends on unknown features of the DGP, in

Section 6 we propose a Wild-Bootstrap procedure and prove its validity. Section 7 provides evi-

dence about the small-sample behavior of our test. Finally, Section 8 concludes. Appendix A, B,

and C contain all the technical proofs.

2 The Encompassing Principle

i i i
n
i=1Let {Y , W , X } be an iid sample from a population, and imagine to have two competing models

seeking to explain the behavior of Y . For example, model M 1 might explain the behavior of Y by

the covariates W and model M 2 by the regressors X . According to the encompassing principle,

one theory encompasses the other if the former can explain the results of the latter. In the present

context, a model seeking to explain Y with a specific vector of regressors can be formalized by the
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function of these regressors that is the best approximation of Y . We can consider the L2 distance

to measure the quality of such approximation. Since M 1 seeks to explain Y by the regressors W ,

it can be defined as M 1 := L2(W ), where L2(W ) is the space of the square integrable functions of

W . Similarly, define M 2 := L2(X) , with L2 (X ) denoting the space of square integrable functions

of X . The best approximations of Y resulting from model M 1 and M 2 , respectively, are obtained

as

r1 := arg ming∈M1 
||Y  − g(W )||   and r2 := arg min ||Y − g(X)|| ,2 2

g∈M 2
(1)

∫
2 2 2where || ·|| denotes the L  - norm of square-integrable random variables, i.e.  || Z ||  := z P (dz)

for any random element Z . By the previous definitions, r1 is the L2 projection of Y onto L2(W ),

and r2 is the L2 projection of Y onto L2(X) . Hence,

r1(W ) = E{Y |W } and r2(X) = E{Y |X } .

According to the encompassing principle, model M 1 encompasses model M 2 if M 1 can explain

the results of M 2 . Since r1 is the “explanation” of Y resulting from model M 1 , and r2 is the“explanation” of Y resulting from model M 2 , we can say that model M 1 encompasses model M 2

if r2 can be “obtained” from r1. Formally,

r2 = arg min g∈M 2  
||r1(W ) − g(X2)|| .2

Hence, using again the definition of the L2 projection, M 1  encompasses M 2  if and only if

E{r1(W )|X} = r2(X) . (2)

2.1 Relations with the deftnition of Encompassing in Gourieroux and  

Monfort (1995)

The above formulation of the encompassing principle can be considered as a nonparametric gen-

eralization of the definition provided in Gourieroux & Monfort (1995) (GM, now henceforth). In

particular, the authors start from two competing models aiming to explain the distribution of a

variable Y . Then, they define a pseudo-true value for a model as the element of the model that is

the closest to the true distribution of Y in terms of Kullback-Leibler distance. In particular, de- note

with f0 the true distribution of Y . Each model in GM is respectively defined by the following

collections

M˜1 := {g1(·, α1) : α1 ∈ A1 }  and M˜2 := {g2(·, α2) : α2 ∈ A2 } ,
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where gj (·, α j  ) for j  =  1, 2 denotes a specific distribution indexed by the parameter α j  , and A1,  

A2 are two generic sets. Notice that the parameters α1, α2 are not restricted to be real vectors.

The pseudo true value of α j  is therefore definedas

αj
∗= arg min α j ∈A j

dK L( fo , gj (·,α j )) ,

where dKL(·, ·) denotes the Kullback-Liebler distance between two densities. GM also define the  

element of model M  ̃2 that is the closest possible to an element of modelM˜1:

b(α1) := arg min α2∈A 2  
dKL(g1(·, α1) , g2(·, α2)) ,

for α1 ∈ A1. According to the definition of encompassing in GM, model M˜1 encompasses model

M˜2 if and only if

α2
∗     =  b(α1

∗).

In other words, from the above definition M˜1 encompasses M˜2 if the pseudo-true value of the

latter can be “obtained” from the pseudo-true value of the former.

The definition considered in this paper is very similar to the one in GM. We are just replacing

the KL distance with the L2 norm, and considering nonparametric regression functions instead of

densities. From the definitions in Eq. 1, r1 and r2 can be viewed as the pseudo-true values obtained

from the models M 1 and M 2 , respectively. Also, the element of M 2 that is the closest to a

generic g1 ∈M 1 is defined as

˜b(g1) =  arg min g ∈M ||g1(W ) − g2(X)|| .
2

2 2

In the definition of GM, Model M˜1 encompasses model M˜2 if and only if ˜b(r1) = r2. This exactly

coincides with the definition we have provided in Eq. 2.

2.2 Some features of the Encompassing Principle

The formulation provided in Eq. 2 allows us to obtain some intuitive features of the encompassing

principle.

First, if model M 1  encompasses model M 2 ,  the explanation of Y provided by M 1  will be
more “accurate” than the explanation of Y provided by M 2 . To provide a formal proof, define

∫
1 2< f , g >:= f (z) ·g(z) P (dz), where z = (y, x , x ). So, < ·,·> denotes the scalar product in

the L2(Z) space.



Proposition 2.1. If Model M 1 encompasses model M2 , then ||Y− r1(W )|| ≤ ||Y−r2(X)||.

Proof. ||Y − r2(X)||2 = ||Y − r1 + r1 − r2||2 = ||Y − r1||2 + 2 < Y − r1, r1 − r2 > +||r1 − r2||2.

Since r1 is the projection of Y onto L2(W ), < Y − r1, r1 >= 0. By definition, r2 is the projection

of Y onto L2(X) . Also, since M 1 encompasses M 2 , r2 is equal to the projection of r1 onto L2(X) .

Thus,< Y − r1, r2 >=< Y, r2 > − < r1, r2 >=< r2, r2 > − < r2, r2 >= 0. This implies that

< Y − r1, r1 − r2 >= 0, and hence ||Y − r2(X2)||2 = ||Y − r1||2 + ||r1 − r2||2 ≥ ||Y − r1||2.

Second, if the two models mutually encompass each other, they give rise to the same “theory”  
or “explanation”, as the following Proposition shows.

Proposition 2.2. If M 1 encompasses M 2 , and also M 2 encompasses M1 , then r1(W ) = r2(X)

P - almostsurely.

Proof. Since the two models are mutually encompassing, ||Y− r1(W )|| ≤ ||Y− r2(X)|| and

||Y − r2(X)|| ≤ ||Y − r1(W )||, so that ||Y − r1(W )|| = ||Y − r2(X)||. By proceeding as in the

proof of Proposition 2.1, ||Y− r2(X)||2 = ||Y− r1||2 + ||r1− r2||2, so that ||r1− r2|| = 0.

2.3 The Encompassing Principle and nested models

The encompassing principle considered here is linked with the principles of nested models and

nonparametric significance of the regressors. Imagine that the regressors X are not significant for

Y once we control for W :

E{Y |W, X } = E{Y |W } .

By applying the conditional expectation E{·|X} to both sides of the above display and then using

the Law of Iterated expectation, together with the definitions of r1 and r2,

r2(X) = E{r1(W )|X} ,

So, if the regressors X are not significant in the nonparametric regression of Y onto (W, X ) ,

model M 1 will encompass model M 2 . The other direction of this implication, however, does not

hold, in the sense that if model M 1 encompasses model M 2 , then it is not necessarily true that

the covariates X are not significant in the nonparametric regression of Y onto (W, X ) . This is

highlighted by the following proposition.
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Proposition 2.3. Let r1(W ) := E{Y |W } and r2(X) := E{Y |X} . Then, model M 1 encompasses

M 2 if and only if E{Y |W, X } = r1(W ) + g(W, X) , with E{g(W, X)|W } = E{g(W, X ) |X } = 0.

Proof. Assume that M 1 encompasses M 2 . Notice that we can always write Y = r1(W ) + ε. So,

E{Y |W, X } = r1(W ) + E{ε|W, X } =: r1(W ) + g(W, X) . Applying E{·|W } to both sides of

the previous equation, using the Law of Iterated expectation, and the definition of r1(W ), E{g(W,

X)|W } = 0. Similarly, by applying E{·|X}, and then using the Law of iterated expecta- tion and

definition of r2, r2(X) = E{r1(W )|X} + E{g(W, X )|X } . Since M 1 encompasses M 2 , by Eq. 2

and the previous display we must have E{g(W, X ) |X } = 0. The other direction of the

proposition is immediately proved by the Law of iterated expectations and the definitions of r1

and r2.

The previous result highlights that if Model M 1 encompasses model M 2 , we must not nec-

essarily have E{Y |W, X } = E{Y |W } . As long as g(W, X ) is not a.s. equal to zero, M 1 en-

compasses M 2 but X is a significant covariate in E{Y |W, X } . Thus, the use of a nonparametric

significance test checking the restriction E{Y |W, X } = E{Y |W } is misleading for the encom-

passing assumption.

The following counterexample provides a concrete functional form for g in the last propo-

sition. It also shows a DGP where X is significant in the expectation E{Y |W, X } , model M 1

encompasses M 2 , but the models do not mutually encompass each other.

Counterexample. Let Y = (1 + W ) + g(W, X ) + η, with η ⊥ (W, X ) and g(W, X ) = (W 2 −
1/12) ·X . Define

f W, X (w, x) := 1{w ∈ [−0.5, 0]} ·ϕ(x) + 1{w ∈ [0, 0.5]} ·ψ(x) ,
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where ϕ  and ψ are two densities such that 
∫  xϕ(x)dx =  0 and 

∫  xψ(x)dx =  0. f W, X  is a density
∫

W , X W , Xfunction with  respect  to  the  Lebesgue  measure. Indeed, f ≥ 0 and f (w, x)dwd x  = 1.

Assume that (W, X )  ∼ f W, X .  The marginal densities are given by

f W  (w) =  1{w ∈ [−0.5, 0.5]} , i.e. the uniform distribution,

f X (x) = 0.5ϕ(x) + 0.5ψ(w) .

The conditional densities write as

W |Xf (w|x) = 2 ·
1{w ∈ [−0.5, 0]} ·ϕ(x) + 1{w ∈ [0, 0.5]} ·ψ(x)

ϕ(x) + ψ(x)

f X | W (x|w) = 1{w ∈ [−0.5, 0]} ·ϕ(x) + 1{w ∈ [0, 0.5]} ·ψ(x) , for w ∈ [−0.5, 0.5] .
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From the above conditional densities, it is easy to show that E{W 2|X} = 1/12, and E{X|W } = 0.

Hence, E{g(W, X)|W } = E{g(W, X ) |X } = 0. By the previous proposition, this implies that

M 1 encompasses M 2 . Clearly, since g(W, X ) is not a.s. equal to zero, X is significant in the

expectation E{Y |W, X } .

Finally, r1(W ) = 1 + W , and by using the expression of f X | W obtained above, r2(X) =
E{Y |X }  =  E{(1 + W )|X} = ψ (X )

ψ(X )+ϕ (X )
. Now, by Proposition 2.2, if M 2  encompasses M 1

(i.e. the two models are mutually encompassing), then r1(W ) = r2(X) a.s. Therefore, since r1 is

one-to-one, W must be an exact function of X . But this is not satisfied by the density f W, X .

3 Construction of a Nonparametric Encompassing Test

By the definition in Eq. 1, the null hypothesis is set as

H0 : E{r1(W )|X} = r2(X) ,

where r1(W ) := E{Y |W } , r2(X) := E{Y |X} , with W ∈Rd, X ∈RdX . For the ease of notation,

let us denote by r the regression r1. Using the linearity of the conditional expectation, H0 can be

equivalently written as

H0 : E{Y − r(W ) | X } = 0 . (3)

c
0We test H0 against its logical complement, H1 : H . The above display contains a conditional

moment restriction. We will transform such a conditional moment into a continuum of uncondi-

tional moments. By the results in Bierens (1982), Bierens & Ploberger (1997), and Stinchcombe &

White (1998),

H0 : E{(Y − r(W )) ·φ t (X ) }  =  0 for all t ∈ T ,

where T compact subset of RdX containing the origin, while φt(·) = ϕ(t·), with ϕ an analytic

non-polynomial function. To simplify notation,define

ε = Y − r(W ) .

nε̂  =  Y − rˆ(W ) will denote an estimator of ε. Also, let P = 1
Σ n

n i=1 iZ iδ with Z = (Y i i i, W , X ),
2

nand δ denoting the Dirach measure. For any function g ∈ L  (Z) ,  P g(Z) := 1
n

Σ n   

i=1 g(Zi). The



statistic we propose is an Integrated Conditional Momenttest,

Sn  =  
∫  

||
√

nPnεˆφt||2µ(dt) ,

where µ is a measure absolutely continuous with respect to the Lebesgue measure and ||·|| is the

Euclidean norm on C. To obtain a simple expression for our statistic, we could set φt(·) = exp(i

t·), where i =
√−1. In such a case, Sn can be expressed as a weighted double sum of the estimated

residuals,as

nS =
1
n

Σ

i , j

ε̂ iε̂ jϕ µ (X i − X j ) ,

where ϕµ is the characteristic function of the measure µ . Setting φt(·) = exp(i t·) is not necessary

in our proofs which hold for a general weighing function, but such specific choice of φt has the

advantage of delivering a simple closed form expressionfor Sn .

The statistic Sn is very similar to the one proposed by Delgado & Manteiga (2001). There are

however some differences. First, the authors use locally constant kernel estimation in the con-

struction of their test. To simplify the proofs for the asymptotic behavior, Delgado & Manteiga

(2001) multiply “both sides” of their null hypothesis by a density allowing them to avoid a random

denominator. They therefore use a leave-one out estimator and obtain a U -process form for the

empirical process at the basis of their statistic. Differently, due to the formulation of H0 in Eq. 3,

we cannot multiply both sides of H0 by a density to avoid a random denominator. Second, to

i
n
i=1compute  the estimated residuals {εˆ } we will modify the kernel estimators byimplementing

an L2-boosting procedure. This allows us to handle the bias in Sn coming from the nonparametric

estimation of r1. To better explain this point, let us consider the estimation of the residual ε by

kernel methods, i.e. let us assume that the function r1 is estimated by a locally constant kernel

regression. In specification testing it is generally assumed that the bandwidth h and the kernel

order r̄ must satisfy nh2r¯ = o(1), see e.g. Delgado & Manteiga (2001) or Escanciano et al. (2014).

This condition allows to handle the bias terms appearing in the expansion of the empirical pro-

cess
√

nPnεˆφt(X). It however restricts the set of bandwidths and kernels admissible for the test.

For example, the bandwidth coming from the minimization of the mean-square error cannot be

used for the implementation of the test. Moreover, to ensure the condition nh2r¯ → 0, a high- order

kernel must be selected when the dimension of X is larger than 1. Since high-order kernels are

relatively irregular functions, this will infiate the small-sample variance of the kernel estima- tors,

impacting negatively on the performance of the test. The boosting procedure we implement

allows us to alleviate these problems.
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Algorithm 1 L2 Boosting

• Initialize with estimates fˆ[0] and r̂ [0]

• Increase b by one, i.e. b ← b +  1, and compute the residuals ε̂ [b−1] =  Y − r̂ [b−1]

[b−1]
i i

n
i=1• From  the sample {εˆ , X } compute T̂ ε̂ b− 1

(defined in Eq. 4) and update the estimator
of r as

T̂

r̂ [b]   =  r̂ [b−1]  + εˆb−1

fˆ[0]

Repeat the above steps B times.

4 Test, boosting, and estimators

The boosting method has been originally proposed in the Machine Learning literature to handle

the estimation bias. The application of L2 boosting algorithms to kernel estimation has been

analyzed in several statistical papers, see ?, Di Marzio & Taylor (2008), Park et al. (2009), Cornillon

et al. (2014). Essentially, the idea is to estimate an object of interest iteratively on different samples,

and then build the final estimator by aggregating the estimates obtained from these samples. It is

based on three main elements: (i) a starting value for the iteration; (ii) a base estimation procedure

allowing to update the estimator at each iteration; (iii) the number of iterations to perform. The

specific boosting algorithm we use in this paper is an L2-boosting procedure. In this case, the base

procedure for estimation consists in the minimization of a least squares criterion, see ? and Di

Marzio & Taylor (2008). It is described in detail in Algorithm 1. Let r̂ [0]be an initial estimator of r.

The boosting estimator after biterations can be written as

fˆ[0]
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T̂

r̂ [b] =  r̂ [b−1] +  εˆb−1 , T̂ε̂ b−1
= 1

nhd

Σ
i=1 i

n ε̂ [b−1]t̂ n,iK
iW −·
h

. Σ
(4)

[b−1]
i

[b−1]
i i

ˆ[0]for b =  1, .., B ,  where K  is a kernel function, ε̂ =  Y − r̂ (W ) , f is an initial estimator

of the density of W , and tˆn,i is a trimming factor used to handle a random denominator,

tˆn,i  := 1
,
fˆ[0](Wi) ≥ τ n

,
tn,i := 1

,
f (Wi) ≥ τ n

,
.

The initial estimator r̂ [0] is called weak learner. The boosting updates in Algorithm 1 transform  

such weak learner into the deep learner r [̂B] after B  iterations. When fˆ[0] and r̂ [0] arekernel
ˆ ε̂b

estimators built with the same kernels and bandwidths as T , the boosting estimator of Eq. 4 is

the same as in Di Marzio & Taylor (2008). Here, we are considering the initial estimators fˆ[0] and

r̂ [0]as generic, for the aim of generality of the theory and simplicity of proofs.



The statistic we use is

nS :=
∫ √ ˆ

n  B  n t

2nP ε̂ t φ µ(d
. B

t) , where ε̂  =  Y − r [̂B] .
.

Our proofs also hold for a Kolgomorov-Smirnov transformation, and more in general for any  

continuous functional defined on A∞(T ) := 
,
g  : T ›→ R s.t. supt∈T |g(t)| < ∞

,
.

5 Technical deftnitions and assumptions

Let W be the support of W . We assume that W is convex, d =  dim(W), and define the set

nW := w : f (w) >
τn

2

, ,
. (5)

For a vector of positive natural numbers k =  (k1, .., kd), define the differential operator

∂k := ∂k.

∂k1 x1. .∂kd xd
,

with k. =  k1 +  .. +  kd 
1. The class of smooth functions we consideris

k.≤ 2 +1
C(W) := 

,
g : W ›→ R : max d† ||∂k.g||∞,W ≤ M 

,
, (6)

with d† the largest even number weakly smaller than d. If d is even then d† =  d; if d is odd then

d† = d − 1.

α
M

d†

2
α
M

Observation: Notice that C(W) ⊂ C      (W) for α = +  1, where C  (W) is the class of functions

defined at page 154 in van der Vaart & Wellner (1996).

r
1 dLet K be the class of functions (v , ., v ) ›→ Q d

λ j =1 k(v j  ) with k univariate kernel of order r̄

n
3
2 n nthat is λ  times continuously differentiable. Denote p := P ( f  (W ) ≤ τ ) and C := nC(W ).

i i i
n
i=1Assumption 1. {Y , W , X } is a sequence of iid bounded random variables.

Assumption 2. r ∈ C(W) and is r̄ B times continuously diflerentiable with bounded derivatives.

λ
r̄ d†

2
Assumption 3. K  ∈ K  for λ = + 1.

np n = o(1), n1/2 p n 1/4

hdτ B
n

= o(1), h 

τn n=  o(1), and for each n large enough W is aAssumption 4.

convex set.
1We are using the same notation as in van der Vaart & Wellner, 1996
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n 1/ 2hdτ 2 B
n

Assumption 5. logn =  o(1), nh4rB = o(1).

Assumption 6. (i) for bn ∈ {tˆn, tn} ,  ||(r̂ [0] − r)bn||∞ =  o(dn), ||(f [̂0] − f  )bn||∞ =  o(dn),with

τ B
n

dn −1/4 [0]
n= o(n ); (ii) P (rˆ ∈ C ) → 1; (iii) for b = 1, .., B  − 1: P T̂ ε̂b

f

81

n

. Σ
∈C → 1.

Comments on the assumptions. Assumptions 1- 3 are standard. Assumption 4 is needed to take  

care of a random denominator by the trimming tn . Assumption 5 establishes that the order of the

ˆ ε̂b
kernel used in the boosting updates (i.e. for T ) must be decided in connection with the number

of boosting iterations B . The appearance of τn is due to the fact that at every boosting iteration we

have to project the estimator r̂ [b−1]obtained in the previous iteration, so we have to take care of a

random denominator. Such a rate is introduced for theoretical reasons and is not relevant in the

practical implementation of the test. If we ignore the presence of τn , for B ≥ 1 Assumption 5 is

avoiding undersmoothing, in the sense that the bandwidth minimizing the mean-squared error

can be used for implementing the test. Assumption 6 is a high-level condition. In particular,

Assumption 6 (i) establishes the convergence rates of the weak learners. Such convergence rates

are relatively standard in the literature and similar to e.g. Escanciano et al. (2014). Assumption 6

(ii) imposes that that the weak learner r̂ [0]must belong to a class of functions su@ciently regular.

This is also an assumption often made in the literature, see e.g. Escanciano et al. (2014), Mammen

et al. (2012). Assumption 6 (iii) is similar in spirit to Assumption 6 (ii). It can be proved using the

same arguments as in Appendix C, and in particular by the same arguments of Lemma C.6.

The following Proposition establishes the asymptotic behavior of the test statistic.

Proposition 5.1. Under Assumptions 1-6, if H0 holds,

n

S ;  

∫
.G. µ (dt) ,2

where G is a Gaussian stochastic process taking values in A∞(G), G := 
,
(y,  x) ›→ (y − r(w)) ·

⊥
t

, ,
2 ⊥ ⊥

t t1 2
φ  (x) :  t ∈T , and G is defined by the collection of covariances Pε φ φ : t1, t2 ∈ T 

,
.

6 The Bootstrap Test

Since the statistic is not asymptotically pivotal, for the computation of the critical value we pro-

pose a Wild-Bootstrap procedure that imposes the null hypothesis H0 when resampling the ob-



servations. The bootstrap DGP writes as

Yi
∗ = rˆ[B](Wi) + ξiεˆB,i with εˆB,i = Yi − rˆ[B](Wi) , (7)

i
n
i=1where {ξ } is a sequence of bootstrap weights with Eξ =  0 and Eξ2 = 1. The bootstrap version

of Sn is

∗
nS =

∫ √ ∗ ˆ
n  B  t n .

2nP ε̂   φ t µ (dt) ,
.

with

ε̂ ∗
i,B =  Yi

∗ −rˆ∗[B](Wi)

and

T̂ ∗
ε̂

r̂ ∗[b]   = r̂ ∗[b−1] + b−1

fˆ[0]
,

−ε̂∗
b 1

T̂∗ = 1 Σ
t̂

n
i=1 b−1,i n , i

Wi−·
nhd h

. Σ
ε̂∗ K .

To show the validity of the bootstrap, we need to extend the regularity conditions in Assumption

i
∗ n

i=16.   Denote with P   the probability  measure  that  considers only {ξ } as random andassumes

as fixed the sample data { i i i
n
i=1Y  ,  W , X } . For a random variable Z measurable with respect to

i i i
n

i i=1{ξ , Y , W , X } , the notation Z = on P
∗

n
P

∗ (1) means that P (|Z | > δ) → 0 for every δ > 0.

Assumption 7. (i) Rates for the weak learners: for bn ∈ {tˆn, tn} ,  ||(r̂ ∗[0] − r)bn||∞ = oP ∗ (dn),
ˆ||(f − f )b || = on  ∞ P n τ B

n

dn −1/4∗(d ), with = o(n ).

∗ ∗[0]
n

P(ii) Regularity of the weak learner: P (rˆ ∈ C ) → 1;

(iii) Regularity of the boosting updates: for b =  1, .., B − 1: P
T̂. ∗

ε̂∗b

f n

Σ
P∈C → 1;

0Denote with F the cdf of the real-valued random variable
∫

2|G| µ (dt) defined in Proposition

5.1, and let Fn denote the cdf of Sn .  The validity of the bootstrap scheme with boosting iterations  

is shown by the following

Proposition 6.1. Under Assumptions 1-7, if H0 holds, uniformly over T ,

√
nPnε̂ ∗

Btˆnφt =
√

nPnξεφ⊥
t + oP ∗(1) .

Accordingly, for every continuity point of F0,
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ξ ∗
n n .

PP (S ≤ z) − F (z) → 0 .
.
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1 2 1 2 1
2 1

12

Thanks to the previous proposition, the critical values can be simulated according to the DGP

in Eq. 7. Repeating the bootstrap resampling a su@ciently large amount of times, say N ∗, we ob-

tain a collection of statistics { Sn
∗

,q: q = 1, .., N ∗} whose distribution can be used to approximate

the null distribution of Sn . The 1 − α quantile of such a distribution will approximate the true

quantile of Sn and can be used as a critical value for running the test at the α nominal level.

7 Simulations

In this section we provide evidence about the small-sample performance of our test. The DGP we  

consider is similar to the one provided in the counterexample of Section 2. The model writes as

Y = 1 + Z1 + Z3 + γZ2 + u ,

where

. Σ
2u =  g(Z , Z  ) + η and g(Z , Z  ) = Z − Z .

Z1 and Z3 are resampled each from a uniform distribution with support [−0.5, +0.5] and are

mutually independent. The residual η is independent from (Z1, Z2, Z3). Z2 is generated from a

mixture-type distribution. In particular, denote with N (µ, σ, a, b) a normal distribution that is

truncated from below by a , from above by b, and has mean µ and standard deviation σ. Then,

Z2 ∼ N (0, .65,   − 0.5,  0.5) if Z1 < 0

Z2 ∼ N (0, .25,   − 0.5,  0.5) if Z1 ≥0 .

Notice that the joint distribution of (Z1, Z2) provided here is equivalent to the one in Section 2, as

long as ϕ and ψ are set to N (0, .65, − 0.5, 0.5) and N (0, .25, − 0.5, 0.5), respectively.

In terms of the notation used in the previous pages, W := (Z1, Z3) and X := (Z2, Z3). Ac-

cording to the argumentation of Section 2, when γ = 0 model M 1 encompasses model M 2 , but

the other way around is not true. Moreover, if one wants to test the encompassing assump- tion, it

is not su@cient to check the significance of Z2 in a nonparametric regression of Y onto (Z1, Z2,

Z3): in this case Z2 would be significant, but M 1 would encompassM 2 .

For the implementation of the test, we employ Gaussian kernels of order 4, while the weighting

function φ is set to the complex exponential. We consider as a bandwidth rule h = Cn−1/6, and

we change the constant C over the set {0.5, 1, 1.5, 2}. The test is implemented with several

iterations of the L2 boosting algorithm, ranging from 0 up to 5. For γ = 0 we are under the null

that model M 1 encompasses model M 2 , while for γ = 1 we are under thealternative.
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Table 1: C = 0.5

n = 100 n = 200
H0 H1 H0 H1

B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0.024 0.056 0.13 0.32 0.572 0.686 0.016 0.058 0.124 0.68 0.862 0.926
1 0.02 0.062 0.134 0.324 0.584 0.688 0.018 0.064 0.138 0.682 0.86 0.922
2 0.02 0.07 0.142 0.324 0.576 0.68 0.02 0.068 0.152 0.678 0.858 0.928
3 0.02 0.074 0.146 0.334 0.582 0.682 0.02 0.07 0.15 0.682 0.862 0.922
4 0.02 0.074 0.144 0.336 0.588 0.688 0.02 0.072 0.158 0.678 0.862 0.92
5 0.022 0.076 0.15 0.34 0.59 0.692 0.022 0.074 0.16 0.68 0.862 0.918

Simulations based on 1000 replications.

The results of the simulations are reported in Table 1-4. As long as the test is implemented by

undersmoothing, i.e. by choosing a small C, the test without boosting iterations behaves rel-

atively well. The test with L2 boosting iterations appears to be competitive. Differently, as long as

the constant C is increased, the test without iterations shows a very poor performance, while the

test with L2 boosting iterations displays a relevant robustness and is able to control the size in a

satisfactory way. These simulations show that the L2 boosting iterations are quite useful for

controlling the empirical size of the test with respect to the choice of the bandwidth, especially

when undersmoothing is avoided. Such a feature is attractive, as it is a diffused practice to select

bandwidths by Cross-validation algorithms or other automatic procedures that do not guarantee

undersmoothing. Moreover, there is no standard practice for selecting the bandwidth that guar-

antees undersmoothing. We also highlight the following feature. Compared to the nonparametric

significance test in Delgado & Manteiga (2001), we cannot multiply the initial moment condition

by a density that avoids a random denominator. Such a multiplication allows to stabilize the be-

havior of the test statistic and to make it relatively more robust with respect to the bandwidth

choice. In our context, this is not possible, so the L2 boosting iterations appear to be an important

tool to provide such robustness. The simulations also show a caveat: in the presence of a very low

level of undersmoothing a large number of boosting iterations might be less able to control the

size of the test, so it is advisable to avoid a very large number ofB .

8 Conclusions

This paper provides a test to choose between two alternative models when each of them explains

the same response variable. The choice between the two competing models is based on the en-

compassing principle, according to which a model M 1 encompasses a model M 2 if it can explain
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Table 2: C = 1

n = 100 n = 200
H0 H1 H0 H1

B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0.022 0.112 0.196 0.334 0.594 0.708 0.03 0.108 0.246 0.704 0.906 0.936
1 0.016 0.058 0.116 0.308 0.548 0.674 0.014 0.056 0.116 0.662 0.864 0.912
2 0.016 0.054 0.106 0.316 0.57 0.668 0.016 0.052 0.112 0.66 0.868 0.916
3 0.018 0.054 0.108 0.314 0.566 0.668 0.018 0.05 0.114 0.668 0.868 0.912
4 0.018 0.056 0.112 0.310 0.566 0.666 0.018 0.048 0.116 0.666 0.872 0.914
5 0.018 0.054 0.11 0.304 0.568 0.668 0.018 0.052 0.116 0.67 0.87 0.914

Simulations based on 1000 replications.

Table 3: C = 1.5

n = 100 n = 200
H0 H1 H0 H1

B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0.102 0.368 0.52 0.456 0.698 0.812 0.288 0.628 0.77 0.868 0.964 0.978
1 0.032 0.136 0.256 0.35 0.608 0.734 0.04 0.174 0.338 0.728 0.914 0.954
2 0.02 0.082 0.16 0.31 0.556 0.684 0.014 0.074 0.15 0.686 0.884 0.922
3 0.016 0.072 0.13 0.302 0.544 0.664 0.012 0.064 0.12 0.67 0.87 0.916
4 0.012 0.062 0.118 0.3 0.538 0.668 0.012 0.054 0.118 0.67 0.868 0.916
5 0.012 0.062 0.112 0.3 0.552 0.668 0.012 0.05 0.116 0.664 0.872 0.918

Simulations based on 1000 replications.

Table 4: C = 2

n = 100 n = 200
H0 H1 H0 H1

B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0.206 0.486 0.614 0.512 0.766 0.854 0.574 0.804 0.89 0.914 0.98 0.986
1 0.094 0.338 0.498 0.44 0.684 0.804 0.238 0.584 0.73 0.86 0.962 0.978
2 0.044 0.184 0.338 0.39 0.642 0.75 0.072 0.304 0.488 0.768 0.93 0.966
3 0.024 0.132 0.226 0.338 0.598 0.72 0.032 0.14 0.296 0.722 0.904 0.95
4 0.018 0.098 0.17 0.314 0.556 0.69 0.016 0.086 0.182 0.688 0.888 0.924
5 0.02 0.078 0.146 0.296 0.548 0.678 0.014 0.068 0.138 0.676 0.878 0.918

Simulations based on 1000 replications.
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the results of M 2 . The test we propose is based on a continuum of moments and is fully non-

parametric. Hence, it does not rely on neither specific functional forms nor or fixed values of the

explanatory variables. We implement the test by an L2 boosting algorithm which allows us to

avoid undersmoothing. We propose a wild-bootstrap procedure for the computation of the criti-

cal values and prove its validity with boosting iterations. A Monte Carlo simulation study shows

the attractiveness of boosting. Such an algorithm allows the test to be relatively robust to the

bandwidth choice, especially when undersmoothing does not hold. This is indeed an attractive

feature, as existing methods for bandwidth selection, like Cross-Validation methods, do not allow

to select a bandwidth respecting the undersmoothing conditions.
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A Asymptotic Expansion

Before proving the main results, we introduce a class of functions that will be often used in the  

technical proofs.

Condition (CL). Ψ := 
,  

x  ›→ ψ t(x) : t ∈ T 
,  

is a collection of uniformly bounded Lipschitz  

functions in t, i.e. ||ψt1 −ψt2 ||∞ ≤ C||t1−t2|| for all t1, t2 ∈T . We define ϕ t(W ) := E{ψ t(X)|W }.



We start with a technical lemma that will be needed in the derivation of the Brahadur repre-

sentation of the empirical process at the basis of Sn .

Lemma A.1. (Stochastic Equicontinuity Results) Let Assumption 6 hold, and let Ψ and ϕ t  be  

as in Condition CL. Then, for b =  0, .., B  uniformly in t ∈ T,
√

n

T̂ ε̂b

f n    t P(i) n(P  −P ) t ψ =  o (1) ;

T̂ ε̂b

f

√ √
n    t n t

√
(ii) nP t ψ = nP εϕ + nPn n t

[b] r
√

(r − r̂ )t ϕ + h nPn
[b] (1)

n  n,t P(Y  − r̂   )t ϕ +  o (1) , where

ϕn , t  satisfies Condition CL;

(iii) 
√

n(Pn − P )(r [̂b] − r)tnψ t  =  oP (1), and the same result holds byreplacing tn  with tˆn.  

Proof. For Point (i), by Lemma C.6, Assumption 4, 5, and 6, we obtain

sup
T̂ ε̂b

t∈T f

.. ..
∞n    t P

t ψ =  o (1) .
.. ..

By the above display, Assumption 6(iii), and Lemma C.1, we can apply Lemma C.3 to obtain Point  

(i).

ˆ ε̂b
For Point (ii), by the Law of Iterated Expectations, the definition of T , and Assumption 4,

T ε̂b

f n tnP t ψ = 1
n

√ ˆ Σ
n   

i=1 i
[b]
i

ˆ(Y − r̂ )t n,i

∫
K(v) ϕ t(Wi + vh) tn(Wi + vh) dv =√

1√
n i=1 i

n [b]
i

ˆ(Y − r̂ )t n,i

Σ ∫
K(v) ϕ t(Wi  + vh) dv =

1√
Σ n

i
[b]
i

ˆ
n,i t,i(Y  − r̂   )t ϕ + h r 1√

n i=1 n

Σ ˆ
i n , i

(1)n [b]
i=1 i n,t,i(Y  − r̂ )t ϕ ,

where we have used the usual change of variable for the first equality and an r-th order Taylor

expansion of ϕ t for the third one. We can add and subtract r in the first addendum of the above

display. Then, by using Lemma C.2 and C.6, we can replace the trimming t̂ nwith tn in the resulting

expression. The result of Point (ii) therefore follows by noticing that
√

nPnεtnϕ t =
√

nPnεϕ t +

oP (1) uniformly over T , by Assumption 4.

For Point (iii), by using the recursive structure in Eq. 4,

n n t

√ √
[b] [0]

n n tn(P  −P )(rˆ − r)t ψ = n(P  −P )(rˆ − r)t ψ +
Σ b−1

s=0

√
n

T̂ ε̂ s

fˆ[0] n tn(P  −P ) t ψ .

Assumption 6(i)-(ii) and Lemma C.1 combined with Lemma C.3 ensure that the first term on the

RHS of the above display is oP (1) uniformly over T . For a generic addendum of the second term

on the RHS,

√
n

T̂ ε̂ s

fˆ[0] n t n
T̂ ε̂ s

f

√ √
n    t n

ˆn(P  −P ) t ψ = n(P  −P ) t ψ + n(P − P )T tε̂ sn

Σ
f −fˆ[0]

f ·f̂ [0]
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Σ
tψ .



By Point 1, Lemma C.6, and Assumption 5-6, the above expression is oP (1) uniformly in t. By this  

and the two previous display, weconclude for Point (iii).

Lemma A.2. (First expansion) Under Assumption 1-6, uniformly over T ,

√
nPnεˆB tˆnφt  =

√
nPnεφ⊥

t + hr√nPn(rˆ[B−1] − r)tnβn, t + oP (1) ,  

where βn,t  satisfies Condition CL.

Proof. Since εˆB =  Y − rˆ[B], using Lemma C.2 and C.6, together with Assumption 4,

√
nPnεˆB tˆnφt  =

√
nPnεtˆnφt +

√
nPn(r − rˆ[B])tˆnφt =

√
nPnεφt +

√
nPn(r − rˆ[B])tnφt + oP (1)

uniformly over T . From the recursive structure in Eq. 4,

n n t
[B ] [B −1]

n n tnP (r̂ − r)t φ = nP (r̂ − r)t φ + nPn

ˆ√ √ √ Tε̂B − 1

f

√ ˆt φ + nP T tn  t n  εˆB−1 n

Σ
ˆf −f [0]

f ·f̂ [0]

Σ
tφ =

√
[B −1]

√
nP (r̂ − r)t φ + nPn n    t n

T̂ ε̂B − 1

f n    t Pt φ + o (1) , (8)

where in the last equality we have used Lemma C.6 and Assumptions 4-6. By Lemma A.1 (i) and  

(ii),

nPn

T̂ ε̂B − 1

f

√ √
n    t n tt φ = nP ει + nPn n t

[B −1] r
√ √

(r − r̂ )t ι + h nPn
[B −1] (1)

n n,t P(Y − r̂ )t ι +  o (1) .

Now, by Assumption 4 and Lemma C.3, uniformly over T,

r
n

[B −1]
n

(1)
n,t

√ √ (1)
n n,t

r r
√

h nP (Y − r̂ )t ι = h nP ει + h nPn
[B −1] (1)

n,tn P(r − r̂ )t ι +  o (1) =

r
√

h nP
[B −1] (1)

n,tn n P(r − r̂ )t ι +  o (1) .

By putting together the previous four displays and simplifying,

√
nPnεˆB tˆnφt =

√
nPnεφ⊥

t − hr√nPn(rˆ[B−1] − r)tnβn, t − √
nPn(rˆ[B−1] − r)tnφ⊥

t + oP (1) .

Finally, notice that P (rˆ[B−1] − r)tnφ⊥
t = 0, so the result of the Lemma follows by applying Lemma

A.1 (iii) to the third term on the RHS of the above expression.
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Lemma A.3. (Negligibility of the boosting iterations) Under Assumptions 1-6, uniformly in

t ∈ T,

hr√nPn(rˆ[B−1] − r)tnβn, t  =  oP (1) .

Proof. We first show the following recursive structure:

r sh nP
[B −s](rˆ − r)t βn n n,t

r (s+1)
√ √

n= −h nP (r [̂B −(s+1)]
n

˜ ˜ (1)
n,t P− r)t β +  o (1) (9)

for s = 1, .., B − 1

uniformly over T . To this end, from Eq. 4 we obtain

r sh nP
[B −s] ˜

n n n,t
r s

√ √
(r̂ − r)t β = h nPn (r̂ [B −(s+1)] − r)t ˜

n n,t
r s

√
β + h nPn

T̂ ε̂
B − ( s + 1 )

fˆ[0]
˜tnβn , t =

r s
√

h nPn
[B −(s+1)] ˜(rˆ − r)t βn n,t

r s
√

+ h nPn

T̂ ε̂
B − ( s + 1 )

f
˜tnβn , t  + oP (1) (10)

uniformly over T , where the last equality follows by proceeding similarly as in Eq 8. By applying  

Lemma A.1 to the second term on the RHS of the previous display,

r sh nPn

T̂ ε̂
B − ( s + 1 )

f
r s

√ √
tnβn , t = h nP˜ ˜

n n,t
rs

√
εβ + h nPn (r − r̂ [B −(s+1)] ˜)tnβn, t +

hr (s+1)
√

nnP (Y − r̂ [B −(s+1)] ˜ (1)
n  n,t P)t β +  o (1) .

√
n

rs ˜By Lemma C.3, nP εh β n,t P
r (s+1)

√
n=  o  (1) uniformly in t ∈ T . Similarly, h nP (Y −r̂ [B −(s+1)]

n
˜ (1)

n,t)t β =
r (s+1)

√
nh nP (r − r̂ [B −(s+1)]

n
˜ (1)

n,t P)t β +  o (1) uniformly over T . By plugging these approximations

in the above display,

r s
√

h nPn

T̂ ε̂
B − ( s + 1 )

f
˜tnβn , t = (11)

r s
√

h nP
[B −(s+1)] ˜ √

r(s+1) [B−(s+1)] ˜ (1)
n n  n,t n n  n,t P(r − r̂ )t β + h nP (r − r̂ )t β +  o (1) .

The recursive structure of Eq. 9 follows from Eq. 10 and 11.

Since Eq. 9 holds for any s =  1, .., B  − 1, if we proceed by a simple induction we obtain

r
n

[B −1]h nP (rˆ − r)t βn n,t

√ √
n

B −1 rB [0]˜ ˜= (−1) h nP (rˆ − r)t βn n,t + oP (1)

uniformly over T . By Assumption 6 ||(r̂ [0] − r)tn||∞ =  oP (n−1/4) and by Assumption 5 nh4rB =

o(1). By these rates and the above display, we conclude.

The above lemma shows that, under Assumptions 1-6, the boosting iterations do not have an
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impact on the Bahadur expansion of the empirical process 
√

nPnεˆB tˆnφt at the basis of thestatistic

Sn .  This results and the asymptotic distribution of Sn  are reported in thefollowing:

Corollary A.4. (Proof of Proposition 5.1.) Under Assumption 1-6,

√
nPnεˆB tˆnφt  =

√
nPnεφ⊥

t + oP (1)

uniformly over T . Accordingly,

nS =
√ ˆ

n  B  n t
nP ε̂ t φ µ(d

. .
∫ ∫2 2t) ; G µ (dt) ,

. .

where G is a Gaussian stochastic process taking values in A∞(G), with G :=
,
(y, x) ›→ (y − r(w)) ·

⊥
, ,

2 ⊥ ⊥
t t t1 2

φ  (x) :  t ∈T , and defined by the collection of covariances Pε φ φ : t1, t2 ∈ T
,

Proof. The first result is an immediate consequence of Lemma A.2 and A.3. For the second result,  

we can proceed as in Example 19.7 in van der Vaart (1998) by the compactness of T and the

boundedness of the random variables involved, to obtain that N (δ, G, ||·||∞) ≤ N (Cδ, T , ||·||),

with 1
0

∫ √ √
n

⊥
t

logN (δ, T , || ·||)dδ < ∞. By Theorem 19.14  in van der Vaart (1998), nP εφ ; G.

Hence, conclude by Theorem 18.11(i) in van der Vaart (1998).

Remark A.5. The expansion 
√

nPnεˆB tˆnφt  =  
√

nPnεφt
⊥ +  oP (1) proved in the above proposition  

also holds for any weighting function ψt such that ||ψt1 − ψt2 ||∞ ≤ C||t1 − t2|| for all t1, t2 ∈ T .

B Bootstrap Expansion

In this section we prove the validity of the bootstrap test with boosting. The general structure of  

the proof is similar to the one of the previous section.

Lemma B.1. (Stochastic Equicontinuity for the Bootstrap) Let let Ψ and ϕ t  be as in Condition  

CL. Then, for b =  0, .., B  uniformly in t ∈ T ,

(i) 
√

nPnrˆ∗[b](tˆn − tn)ψ t  = oP ∗ (1);

√ T̂ ∗
ε̂
b

f
(ii) n(Pn − P ) ψt = oP ∗ (1);

√ T̂ ∗
ε̂
b

√ √
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(iii) nP  f ψt = nPnεξϕ t + nPn
[B ] ∗[b] r

√
(rˆ − r̂ ) tnϕ t + h nP ∗

n n
(1)

b n,t Pε̂ t ϕ (W ) + o ∗ (1) , where

n,tϕ(1) satisfies Condition CL



(iv) 
√

n(Pn − P )(r̂ ∗[b] − rˆ[b])tnψt = oP ∗ (1).

Proof. For Point (i), notice that since t̂ n − tn  =  (tˆn +  tn)(tˆn − tn) ,

√
nPnrˆ∗[b](tˆn − tn)ψ t =

√
nPn(rˆ∗[b] − r [̂0])(t̂ n + tn)(tˆn − tn)ψ t +

√
nPnrˆ[0](tˆn − tn)ψ t .

By Assumption 6  and Lemma C.2, the second term of the previous display is oP (1) uniformly over

T . For  the first term, from Lemma C.7 ||(r̂ ∗[b]  − r [̂0])(t̂ n  +  tn)||∞  =  oP ∗ (1), and from Lemma C.2
√

nPn|tˆn − tn| =  oP (1), so we conclude for the result in Point (i).

The proof of Point (ii) uses exactly the same arguments as the proof of Lemma A.1, Point (i),

ε̂ b

together with Assumption 7, Lemma C.4, and Lemma C.7.

For Point (iii), by the law of iterated expectations, the definition of T̂∗∗ , and the classicalchange

of variable,

√ T̂ ∗
ε̂
b

f tnP ψ = 1√
n

Σ n ∗̂
i=1 εˆb,itn,i

∫
K(u)tn(Wi + uh)ϕ t(Wi + uh)du =

= 1√
Σ n

n i=1 ε̂∗
b,i t̂n,i

∫
K(u)ϕ t(Wi + uh)du + oP∗(1) ,

where for the second equality we have used ||(r̂ ∗[b]− r [̂0])t n̂||∞ = oP ∗(1) which is implied by

Lemma C.7, ||(r̂ [b]− r)tˆn||∞ = oP (1) which is implied by Lemma C.6, h/τ n = o(1), and Markov’s
inequality. By an rth order Taylor expansion,

1√
n

n ∗
i=1 b,i

ˆε̂ t n,i

Σ ∫ √ ∗
b
ˆ

t i n n    t i
r
√ ∗

b
ˆ

n n n,tK (u )ϕ (W + uh)du = nP ε̂   t ϕ  (W ) + h nP ε̂  t ϕ (W ) =
√

nPnε̂ ∗
b tn ϕ t (W ) + hr√nPnεˆ∗btnϕn , t(W ) + oP∗(1) ,

with the second equality ensured by from Point (i) and Lemma C.6. From the definition of ε̂∗b, the  

expansion in Corollary A.4 (see also Remark A.5), and since Eξ = 0,

√
nPnε̂ ∗

b tn ϕ t (W ) =
√

nPn(Y − rˆ[B])tnξϕt +
√

nPn(rˆ[B] − rˆ∗[b])tnϕt =
√

nPnεξϕ t  +  
√

nPn(rˆ[B] − rˆ∗[b])tnϕt + oP(1) .

Since oP(1) =  oP ∗ (1), we can conclude for Point (iii) by putting together the previous three  

displays.

For Point (iv), notice first that by the rates in Assumption 6, Lemma C.6, and Lemma C.7,

n

T ε̂b

fˆ

√ √
n    t n

ˆ T̂ ε̂b

f
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n    t Pn(P  −P ) t ψ = n(P  −P ) t ψ +  o (1) and

n

T̂ ∗
ε̂
b

fˆ

√ √
n    t n

T̂ ∗
ε̂
b

f n    t Pn(P  −P ) t ψ = n(P  −P ) t ψ +  o ∗ (1) .



The two leading terms on the RHS of the above expressions are respectively oP (1) and oP ∗(1),

from Point (ii) of the present Lemma and Lemma A.1. Hence, by the recursive structures of r̂∗[b]and

r̂ [b],

√
n(Pn − P )(r̂ ∗[b] − rˆ[b])tnψt =

√
n(Pn − P )(r̂ ∗[0] − rˆ[0])tnψt + oP ∗(1) = oP∗(1) ,

where the second equality follows from Assumption 6 and Lemma C.4. So, Point (iv) is also

proved.

(12)

(13)

Lemma B.2. (A First Bootstrap Expansion) Under Assumptions 1-6 uniformly in t ∈ T ,

√
nPnε̂ ∗

Btˆnφt =
√

nPnξεφ⊥
t − hr√nPnεˆ∗

B−1tnβn,t + oP∗(1) .

Proof. From the definitions of ε̂∗
B and Y ∗,

√
nPnε̂ ∗

B tˆnφt =  
√

nPn(Y − rˆ[B])tˆnξφt +
√

nPn(rˆ[B] − rˆ∗[B])tˆnφt .

Using the expansion in Corollary A.4 and Remark A.5, since Eξ = 0,

√
nPn(Y − rˆ[B])tˆnξφt =  

√
nPnεξφt  +  oP(1) uniformly over T .  

From Lemma C.6, C.2, and B.1, uniformly in t ∈ T ,

√
nPn(rˆ[B] − rˆ∗[B])tˆnφt =  

√
nPn(rˆ[B] − rˆ∗[B])tnφt + oP ∗ (1) =

√
nnP (rˆ − r̂[B −1] ∗[B −1]

√
)tnφ t + nPn

T̂εˆB−1
T̂ ∗√ ε̂

B − 1

fˆ fˆ
tnφ t − nPn tnφ t  + oP ∗ (1) .

From the convergence rates in Assumption 6 and Lemma C.7, we can replace fˆwith f  in the last  

term on the RHS of the previous display. Then, fromLemma B.1, uniformly over T ,

√
nPn

T̂ ∗
ε̂B − 1

√
t φ = nP

T̂ ∗
ε̂B − 1

fˆ fn    t n n t Pt φ +  o ∗ (1) =
√

nPnεξι t +
√

nPn(rˆ[B] − rˆ∗[B−1])tnιt + hr√nPnεˆ∗btnβn , t(W ) + oP∗(1) .

Putting together the previous two displays,

√
nPn(rˆ[B] − rˆ∗[B])tˆnφt =  −√

nPnξειt  +  
√

nPn(rˆ[B−1] − rˆ∗[B−1])tnφ⊥
t+

nPn fˆ
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n t

TˆεˆB−1 ⊥ r
√ √ ∗

bn n n,tt  φ − h nP ε̂  t β (W ) + oP ∗ (1) . (14)



From the rates in Assumption 6 and Lemma C.7 we can replace fˆwith f  in the third term on the  

RHS of the above expression. Then, by Lemma B.1, we obtain that uniformly over T ,

nnP (rˆ − r̂[B −1] ∗[B −1] ⊥√ √
)tnφ t   =  oP ∗ (1) and nPn

TˆεˆB−1

fˆ
⊥tnφ t   =  oP∗ (1) . (15)

From Eq. 12, 13, 14, and 15 we conclude.

Lemma B.3. (Negligibility of the Reminder Term in the Bootstrap Expansion) Under As-

sumption 1-6, uniformly over T ,

hr√nPnεˆ∗
B−1tnβn,t =  oP∗ (1)

Proof. We first obtain the following recursive structure:

B −S n n,th rS √
nPnεˆ∗ t β = −hr (S +1)

√
nnP ε̂ ∗

B −(S +1)
(1)

n n,tt β + oP ∗(1) uniformly over T . (16)

(17)

(18)

for S < B .  So, consider S < B .  By definition of ε̂ ∗
B−S,

h rS √
nPnεˆ∗B−Stnβn , t = h rS √

nPn(Y − rˆ[B])tnξβn,t + h rS √
nPn(rˆ[B] − rˆ∗[B−S])tnβn,t .

By the expansion in Corollary A.4, Remark A.5, and since Eξ =  0, uniformly in t ∈ T ,

h rS √
nPn(Y − rˆ[B])tnξβn,t = h rS √

nPnεξβn,t + oP(1) = oP(1) .

Using the recursive structure ofr̂ [b],

h rS  √nPn(rˆ[B] − rˆ∗[B−S])tnβn,t=

rS
√

h nP (rˆ − r̂[B ] ∗[B −(S +1)] rS
√

)t β − h nPn n    n, t n

T̂ ∗
ε̂
B − ( S + 1 )

fˆ n n,tt β . (19)

Consider now the second term on the RHS of the previous display. The rates in Assumption 6 and  

Lemma C.7 ensure that we can replace fˆwith f  . Then, Points (ii) and (iii) of Lemma B.1 deliver

rS
√

h nPn

T̂ ∗
ε̂
B − ( S + 1 )

fˆ tnβn , t
rS

√
= h nP ξεβn n,t +

rS
√

n
[B ]h nP (rˆ − r̂ [B −(S +1)] r (S +1)

√
n
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)tnβn, t + h nP ε̂∗
B −(S +1)

(1)
n n,tt β + oP ∗(1) (20)

uniformly over T . Putting together Eq. 17, 18, 19, and 20 yields Eq. 16.



Since Eq. 16 holds for S =  1, .., B  − 1, we can proceed to a simple induction to obtain

B −1hr√nPnεˆ∗ t βn n,t
B−1 r B

√ ∗
0n n

˜ (1)
n,t

= (−1) h nP ε̂  t β + oP ∗ (1) uniformly over T .

Recall that ε̂ 0 =  ξ(Y − rˆ[B]) +  r [̂B] − r̂ ∗[0]. The expansion in Corollary A.4 and Remark A.5 yield,

rB ∗
n n

rB
√ √˜ ˜(1) (1)

0 n,t n n,th nP ε̂ t β = h nP ξεβ +

h rB √
nPnξ(r − rˆ[B])tnβ˜

n,t + h rB √
nPn(rˆ[B] − rˆ∗[0])tnβ ñ,t + oP∗(1) .

The first term on the RHS of the previous display is oP ∗(1) uniformly over T . Using the rates in

Lemma C.6, and Assumption 7, we obtain ||(r̂ ∗[0]− r)tn||∞ = oP ∗(n−1/4) and ||(r̂ [B]− r)tn||∞ =

oP (n−1/4). By these rates and Assumption 5, the second and the third term on the RHS of the

above display are oP ∗(1) uniformly over T , so we obtain the result of the present Lemma.

0 denotes the cdf generated by the random variable 
∫  

.G.
2
µ (dt) defined inLet us recall that F

Corollary A.4.

Corollary B.4. (Proof of Proposition 6.1) Under Assumption 1-6, uniformly over T ,

√
nPnε̂ ∗

Btˆnφt =
√

nPnξεφ⊥
t + oP∗(1) .

Accordingly, for every continuity point of F0,

ξ ∗
n

P
P (S ≤ z) → 0

ξ ∗
n n .

P
F (z) and .P (S ≤ z) − F (z) → 0 .

Proof. The first result of the present Corollary follows from Lemma B.2 and B.3. For the second

˜ ∗
nresult, define S :=

∫ √
n

⊥
t

2nP ξεφ µ(d
. . t). From the expansion of the present Corollary and the

∫
2continuity of the functional | ·| µ(dt),

∗
n

˜ ∗
n .S − S = o

. P ∗ (1) . (21)

Theorem 3.6.13 in van der Vaart & Wellner (1996) ensures that

√
nPnξεφ⊥

t ;  G for almost all trajectories.
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∫
2Using again the continuity of the functional |·| µ (dt) and the weak convergence in the previous

˜ ∗
n

∫ 2
display,  by  an  application  of the  Continuous Mapping Theorem  we  obtain S ; G µ(d t).

. .



Hence,

˜ξ ∗
n

P
0 0P (S ≤ z) → F (z) for all continuity points of F .

Now, let z be a continuity point of F0, and fix an arbitrary δ > 0 such that also z − δ and z + δ
are continuity points of F0. Then, by Eq. 21,

ξ ∗
n

ξ ∗
n

˜ ˜ ∗
n n

˜∗ ∗
n n. . ξP (S  ≤ z) =  P (S  ≤ z +  (S  − S )  ∩   S − S ≤ δ) + P (

n
˜∗ ∗

n
S − S > δ)

. .
˜ξ ∗

n P≤ P (S ≤ z +  δ) +  o (1)

A similar reasoning yields,

˜ξ ∗
n P

ξ ∗
n

P (S ≤ z − δ) +  o (1) ≤ P (S ≤ z) .

Putting together the previous three displays, since z,  z − δ, and z +  δ are all continuity points of

F0,

F0(z − δ) + oP (1) ≤ Pξ(Sn
∗≤ z) ≤ F0(z + δ) + oP (1)

Since z is a continuity point of F0, we can choose a δ small enough such that |F0(z−δ)−F0(z)| ≤ s

and |F0(z +  δ) − F0(z)| ≤ s. Hence, the above display and such definition of δ,

−s + oP (1) ≤ Pξ(Sn
∗≤ z) − F0(z) ≤ s + oP (1) .

The above s can be chosen to be arbitrarily small, so P (Sξ ∗
n

P
0≤ z) → F (z) . From Proposition 5.1

ˆ P
n 0 0F (z) → F (z) for every continuity point of F , hence we conclude.

C Auxiliary Lemmas

Lemma C.1. (Entropy bounds) Let Ψ := { x ›→ ψ t(x) : t ∈ T } be a class of functions with the

mapping (t, x) ›→ ψ t(x) satisfying the Lipschitz condition ||ψt1− ψt2 ||∞≤ C||t1 − t2|| for all t1,

t2 ∈T . For Cn := C(Wn), with W n and C(W) defined in Eq. 5 and 6, it holds that:

(i) N (δ, ΨCntn, ||·||∞) ≤ N (Cδ, Cn, ||·||∞,Wn) ·N (Cδ, T , ||·||)

(ii) log N (δ, Cntn, ||·||∞) ≤ Cδ−υ with υ ∈ (0, 2) .

Proof. By definition of Xn and Cn, and since tn(w) = 1 { f (w) ≥ τn } , it is readily obtained
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that N (δ, Cntn, || ·||∞) ≤ N (δ, Cn, || ·||∞,Xn ). Also, given two classes F and A of uniformly

bounded functions defined on an arbitrary set Y , it is immediate to see that N (δ, FA , ||·||∞,Y) ≤
N (Cδ, F , || ·||∞,Y ) ·N (Cδ, A, || ·||∞,Y ) for a finite constant C. Using the Lipschitz property

of the class Ψ and by proceeding as in Example 19.7 of van der Vaart (1998), N (δ, Ψ, ||·||∞) ≤ N

(Cδ, T , ||·||). The previous three inequalities imply that N (δ, ΨCntn, ||·||∞) ≤ N (Cδ, Cn, ||·

||∞,Wn ) ·N (δ, T , ||·||). Point (ii) therefore follows from this last inequality, the compactness of

T and Theorem 2.7.1 in van der Vaart & Wellner (1996) (see also Observation in Section 5).

Lemma C.2. (Trimming) Under Assumption 4 and 6(i),

(i)√nPn|tˆn − tn| = oP (1)

(ii) If supt∈T ||g t̂t̂ n||∞ =  OP (1) and supt∈T ||g t̂tn||∞ =  OP (1), then 
√

nPngˆt(tˆn − tn) =  oP(1)

uniformly over T .

Proof. Let Bn := {||fˆ[0] − f ||∞≤ Cdn, f } and fix δ > 0 arbitrarily small. Assumption 6(i) ensures

that, by choosing C large enough, P (Bn) > 1 − δ for any large n. By definition of tˆn, we can

write

ˆ
, Σ

tn(w) = 1 f (w) ≥ τn 1−
ˆ[0]f (w) − f (w)

τn

Σ,
.

If the event Bn  holds and n is large enough so that Cdn , f  / τ n  ≤1/2,

dn, f1 − C τ ≤ 1− fˆ[0](w) − f (w)
τ

dn, f

n n n

3≤ 1 + C τ ≤ 2

for all x  ∈ X . For such n and when the event Bn  holds, by the two previous displays

3
f (w) ≥ τ ˆ

2 n n n⇒ t (w) =  t (w) = 1 .

ˆ
n n , f n n n

3
2 n

, ,
Hence, when B  holds and Cd / τ   ≤ 1/2, we have |t  − t |(w) ≤ 1   f  (w) ≤ τ . Using this,Markov’s inequality, and Assumption 4,

P
.√

nPn|tˆn − tn| > δ
Σ

≤ P
.√

nPn|tˆn − tn| > δ ∩Bn

Σ
+ δ ≤

−1
√ 3

2 n

. Σ
δ n ·P f (W ) ≤ τ + δ = o(1) + δ .

By the arbitrariness of δ we conclude for point (i). Point (ii) follows immediately from point (i)

n n
ˆ ˆ

n
2 2

n
ˆ ˆ

n n n nand after noticing that t − t =  t − t =  (t +  t )(t − t ).
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˜ ˜where  F (δ) := f  ∈ F  :||
2 Zn n L  (P )

Lemma C.3. Assume that Z , PZ, Fn , and Ψ are as in Lemma C.1. Let f0 be a fixed function defined

over Z , and fˆbe a random function over Z , where the randomness is considered wrt the probability

PZ. Define Gn :=
√

n(Pn − PZ ). If

(i) ||fˆ− f0||L2(PZ ) = oP (1),
(ii) P (fˆ ∈F n ) → 1, with log N[·](δ, F n , L2(PZ )) ≤ Cδ−υ and υ ∈ (0, 2),  

then

Gn(fˆ− f0)ψ t  = oP (1) uniformly over T .

Proof. Define F˜
n := (F n − f0)Ψ. Since the entropy of F n − f0 is equal to that of F n , Lemma C.1

implies that log N[·](δ, F˜
n, L2(PZ )) ≤ Cδ−υ. Fix δ > 0. By Assumptions (i) and (ii) of the present

Lemma, for an arbitrary η > 0,

lim sup n→∞ P
.
supt∈T .Gn(fˆ− f0)ψ t . > η

Σ 
≤ lim sup n→∞ P

.
sup f ∈F˜n(δ).Gnf . > η

Σ
,

, ,
f || < δ . The RHS of the previous display can be up-

perbounded according to the maximal inequality in Lemma 19.34 of van der Vaart (1998). Since log

N[·](δ, F˜
n(δ), L2(PZ )) ≤ log N[·](δ, F˜

n, L2(PZ )) ≤ Cδ−υ with υ ∈ (0, 2), we can choose a small

enough δ to make such upperbound arbitrarily small. By the arbitrariness of η, we con- clude.

Lemma C.4. Assume that Z, PZ, Fn,Ψ, and f0 are as in Lemma C.3. Let fˆbe a random function over

Z where the randomness is considered wrt a probability P = PZ ⊗ Pξ
∗, with Pξ

∗being a probability

measure. Define Gn :=
√

n(Pn − P). If
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ˆ(i) ||f − f ||
20  L (P) Pξ

=  o ∗ (1),
∗
U

ˆ P
n [·] n 2 Z

−υ(ii) P  ( f  ∈ F  ) → 1, with log N  (δ, F  , L (P ))≤ Cδ and υ ∈ (0, 2),

then

ˆ
n 0 t P ∗

U
G  ( f  − f  )ψ = o (1) uniformly over T .

Proof. By the same reasoning as in Lemma C.3, log N[·](δ, F˜
n, L2(PZ )) ≤ Cδ−υ. Fix δ > 0.  

Assumptions (i) and (ii) of the present Lemma ensure that for an arbitrary η > 0 ,

Pξ
∗
.
sup t∈T .Gn(fˆ− f0)ψ t . > η

Σ 
≤

Pξ
∗
.
supf∈F˜n(δ).Gnf . > η

Σ
+ Pξ

∗
.
supt∈T ||(fˆ− f0)ψt||L2(P) > δ

Σ
+ Pξ

∗
.
fˆ ∈/ F n

Σ
=

Pξ
∗
.
supf∈F˜n(δ).Gnf . > η

Σ
+ oP (1) .



Z ξP P supf ∈F n(δ)
∗ 1

ηn PZ

∗
ξ

For the first term on the RHS of the above display, using Markov’s inequality

. . Σ Σ , .
˜ .G f . > η > η ≤ E P sup

f ∈F n(δ)˜ .G n f . > η
Σ ,

=

1
η

.
P sup

ñf  ∈F (δ)
G n f  > η

Σ
,

. .

where the last inequality follows from the product structure of P, i.e. P = PZ ⊗ Pξ
∗, and Tonelli-Fubini’s Theorem. With the same arguments as in the proof of Lemma C.3, we can show that by

choosing δ small enough the RHS of the previous display can be made arbitrarily small. So, by the

arbitrariness of η and the previous two displays we conclude.

Lemma C.5. Let { Z i ,n
n
i=1} be a triangular array of real-valued random variables such that |Zn,i| ≤

nhdC for all n and i, and let L be a kernel function that is Lipschitz continuous. If log n =  o(1), then

..

..
1

nhd

nΣ

i=1

n,iZ L
.

iW − ·
n,i− h−dE Z L

W −· .. = O
.. P

Σ , . Σ , . .
logn

h h ∞ nhd

Σ
.

Proof. The proof is the same as Theorem 1.4 in Li & Racine (2006) (pages 36-40).

Lemma C.6. Under Assumption 5 and 6(i),

ε̂ b∞ ,X(i) ||T̂   || = O
.

1
P τ B

n

.
logn 

n h d +
[0] ˆ||(r̂  −r)t ||n ∞ , X

τ b
n

+ ˆn n nP |t −t |

hdτ b
n

Σ

[b] ˆ(ii) ||(r̂ − r)t || = O
.

1
n  ∞ P τ B

n

.
logn 

n h d +
[0]

n̂||(r̂  −r)t || ∞ ,X

τ b
n

+ ˆn n nP |t −t |

hdτ b
n

Σ
.

The same rates hold for ||(r̂ [b] − r)tn||∞.

ˆ ε̂b
Proof.  By definition of T and by using Lemma C.5,

ˆ ε̂ 0

T (w) ≤
.
. . .

. .
1

nhd

nΣ

i=1

i n , iε t̂ K
.

iW − w

h

Σ
.. + ..

1
nhd

nΣ

i=1

i
[0]
i

ˆ
n,i(r  − r̂ )t K

.
iW − w

h

Σ.
. ≤

.

.
1

nhd

nΣ

i=1

i n , iε t K
.

iW − w

h

Σ
.. + ..

1
nhd

nΣ

i=1

i    n , i n, iε (tˆ − t ) K
.

iW − w

h

.
P

Σ .
[0]+ O ||(r̂ −

. ˆn ∞
Σ

r)t || =

OP

. .
logn 

nhd

Σ
+ OP

. ˆ
n    n nP |t − t |

hd
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Σ
P

.
+ O || [0](r̂ − ˆn ∞

Σ
r)t || (22)



uniformly over W .  By Eq. 22 and using the recursive structure of r̂ [d] in Eq. 4,

[1] ˆ||(r̂ − r)t ||n ∞
.. [0] ˆ

n= ..(rˆ − r)t +
T̂

0

f̂ [0]

ε̂ ..
∞

= O
.. P

. [0] ˆ||(r̂ − r)t ||n ∞
τn n

.
ˆ

n    n n1 logn P |t − t |+ +
τ nhd hdτn

Σ
(23)

The above display and a reasoning similar to Eq. 22 yields

ˆ
1

||T ||ε̂ ∞ = OP

. [0] ˆ||(r̂ − r)t ||n ∞
τ

.
1 log ˆ

n    n nn P |t − t |

n n n

Σ
+ + (24)

τ nhd hdτ

We can now show the result of the present lemma by a simple induction. By proceeding as in Eq.  

24 and 23, if for b < B

[b]||(r̂ − r)t ||n ∞ P
[b]
n

=  O (l ) and ||ˆ ˆ
bε̂ ∞ P

[b]
n

T || =  O (l ) (25)

[b]for ln = τb
+

b

.

τ nhd
+

||(r̂ [0] − r)tˆn||∞ 1 logn Pn|tˆn − tn|

hdτb
n n n

then the same property will also hold for b +  1. Since Eq. 23 and 24 ensure that 25 holds for b =  1,  

we conclude.

Lemma C.7. (Convergence Rates for the Bootstrap) Under Assumptions 5 and 6(i),

ε̂ b

(i) T ∗
.. ..

∞ P

.
= O τ∗ −b

n

.
log n

nhd
ˆ ˆ[b]

n
−b
n

+ l + τ || ∗[0] [0] ˆ
n

Σ
(rˆ − r̂   )t for b = 0, 1, .., B − 1;

∗[b] [0] ˆ(ii) ||(r̂ − r̂  )t ||n ∞ P

.
= O τ −b

n

.
logn  

nhd
ˆ[b]
n

−b
n

+ l + τ || ∗[0] ˆ
n

Σ
(rˆ − r)t for b = 1, .., B;

ˆ[b]where l = ˆn n nP |t −t |
n τ bhd +

[B ] ˆ||(r̂  −r)t ||

τ b
n n

+ τn   ∞ −b....
T̂ ε̂B

n f̂
t̂n

..
∞

∗[b] [0]
n ∞

. The same rates also hold for ||(r̂ −r̂  )t || .
..

Proof. The proof is similar to the proof of Lemma C.6. We start with b =  0. By using Lemma C.5,

T̂
.

∗
ε̂ 0

∗ (w) =
. . 1

nhd

Σ n   

i=1 i i
[B ]
i

ˆ
n,iξ (Y − r̂ )t K iW −w

h

. Σ
+ 1

nhd

Σ [B ]n

i=1 i

∗[0]
i

ˆ
n,i(r̂ − r̂ )t K iW −w

h

. Σ
. ≤

. 1
nhd

Σ n

i=1 i i n , iξ ε t K iW −w

h

. Σ
+. . 1

nhd

Σ n   

i=1
ˆ

i  i n , i n, iξ ε (t − t )K
.

iW −w

h

Σ
. +

1
nhd

Σ n

i=1 i i
[B ]
i

ˆ
n,iξ (r − r̂ )t K iW −w

h

. Σ
. . +

+ . 1
nhd

Σ n [0]
i=1 i

∗[0]
i

ˆ
n,i(r̂ − r̂ )t K

.
iW −w

h

Σ
+. . 1

nhd

n B −1Σ Σ T̂ ε̂ q

i=1 q=1 fˆ
ˆ

i n , i(W ) ·t K
.

iW −w

h

Σ
. =

OP

.
log n

nhd

. Σ
+ O

.
ˆn n nP |t −t |

P hd

Σ
P

.
+ O || [B ] ˆn ∞

Σ
(r − r̂ )t || + (26)

P

.
[0] ∗[0] ˆn ∞O ||(r̂ − r̂ )t || + OP

Σ .
..

ˆ..T ε̂B

ˆ
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t̂n

..

..
∞

Σ
,



∗[1] ∗[0]
T̂ ∗

εˆ0

fˆ
uniformly over W . From the previous display and since r̂ = r̂ + ,

∗[1] [0]||(r̂ − r̂  )t ||n ∞ˆ ˆ ∗
ε̂ 0

≤ ..T ∗..
∞

+  ||(r̂ ∗[0] −r [̂0])t̂ n||∞ =

P

.
O τ −1

n

.
log n  

nhd
ˆ[1]
n+ l + τ −1

n
[0] ∗[0] ˆn ∞

Σ
||(r̂ − r̂ )t || . (27)

The above display and a reasoning similar to Eq. 26 yield

∗
∗ε̂ 1

T
.. ..∞ P

.
= O τ −1

n

.
log n

nhd
ˆ ˆ[1]

n
−1
n

+ l + τ || [0] ∗[0] ˆn ∞
Σ

(r̂ − r̂ )t || . (28)

The result of the Lemma now follows from a simple induction. In particular, assume that for

b < B:

ε̂ b

T ∗
.. ..

∞ P

.
= O τ∗ −b

n

.
log n

nhd
ˆ ˆ[b]

n+ l + τ −b
n

∗[0] [0] ˆ
n

Σ
||(r̂ − r̂ )t and

∗[b] [0] ˆn    ∞ P

.
||(r̂ − r̂ )t || = O τ −b

n

.
log n  

nhd
ˆ[b]
n n

+ l + τ ||−b ∗[0] ˆ
n

Σ
(r̂ − r)t . (29)

Then, proceeding in the same way as in Eq. 26 and 27 shows that the property will hold also for

b +  1. By Eq. 27 and 28 the Induction Assumption in 29 holds for b =  1, so we conclude.
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Chapter 3: Testing Bayesian-Nash Behavior in Binary  

Games with Incomplete Information and Correlated Types

Elia Lapenta and Pascal Lavergne∗

Abstract

We provide a test to check if the distribution of the observed data can be rationalized by a unique

Bayesian-Nash equilibrium of a binary game with incomplete information, where agents’ types can

be mutually correlated. Testing this assumption is useful for two reasons. First, the uniqueness of the

Bayesian-Nash equilibrium is key to identify the fundamentals of the game. Second, test- ing for a

Bayesian-Nash behavior is interesting per se, as it is an assumption often postulated in game-

theoretical models. The test we propose relies on rationalization results in Liu et al. (2017). We

construct our test statistic by an L2-boosting procedure. This is effective to control the esti- mation

bias arising in our context. Since the asymptotic distribution of our statistic depends on unknown

features of the data, we propose a novel Multinomial Bootstrap procedure to obtain the critical value

and prove its validity. This procedure resamples the observations by imposing that a unique

Bayesian-Nash equilibrium is played. A Monte Carlo experiment shows the good small- sample

performanceof the test.

Keywords: Hypothesis Testing, Empirical Games, Bayesian-Nash Equilibrium, Bootstrap, Boosting.

JEL Classiftcation: C01, C10, C12, C14, C57

1 Introduction

Game-theoretical models are often used in economics to describe strategic interactions between dif-

ferent agents. Games of complete information, for instance, have been employed to model labor force

participation ( Bjorn & Vuong, 1985; Kooreman, 1994; Soetevent & Kooreman, 2007), or firms’ entry

decisions in oligopolistic frameworks (Bresnahan & Reiss, 1991; Bresnahan & Reiss, 1990; Berry, 1992;

Ciliberto & Tamer, 2009; Jia, 2008). These setups assume that each player observes all the features of the

other players’ profit functions. Differently, games of incomplete information relax this hypothe- sis by

allowing each player to have a private information that the other agents cannot observe. Such

frameworks have been employed to describe firms’ radio commercial decisions (Sweeting, 2009), capital
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investment strategies (Bajari et al., 2010a; Aradillas-Lopez, 2010), the decision of opening grocery stores

(Seim, 2006), and social interactions (Brock & Durlauf, 2007). In the case of games with incomplete in-

formation, the efforts of the literature have mostly focused on identification and estimation (Brock &

Durlauf, 2007; Aguirregabiria & Mira, 2007; Sweeting, 2009; Tang, 2010; Lewbel & Tang, 2015a). In these

contexts it is key to impose that a unique Bayesian-Nash equilibrium is played (Brock & Durlauf, 2007;

Aradillas-Lopez, 2012; Bajari et al., 2010a; Lewbel & Tang, 2015b; Liu et al., 2017). However, little has

been done to check the validity of such an assumption. The only paper that attempts at testing whether

the distribution of the observed data is coherent with a unique Bayesian-Nash equilibrium is de Paula &

Tang (2010). Since the authors provide a test based on a fixed value of the explanatory variable, their

results are conditional on such values. Furthermore, they rely on theindependence of agents’ types.

This paper contributes to the literature on incomplete information games by proposing a novel test

to check if the distribution of the observed data can be rationalized (or characterized) by a unique

Bayesian-Nash equilibrium of a game with incomplete information. In this game agents play binary

strategies and their private types are allowed to be mutually correlated. Checking such hypothesis can

be interesting from different perspectives. First, it can serve as a test to check the validity of the

Bayesian-Nash assumption. Second, it can be employed to check if the uniqueness of the equilibrium is

coherent with the observed data. To build the test we rely on results in Liu et al. (2017). The authors

derive a characterization of the Bayesian-Nash hypothesis in terms of restrictions on the distribution of

the observed data. Such a result does not rely neither on the mutual independence of agents’ pri- vate

information nor on the functional forms of agents’ payoffs. Hence, the test we propose is fully

nonparametric. This feature is attractive, as in the presence of parametric restrictions on either agents’
payoff or their private information, the conclusions reached by any test would be conditional on the

functional forms imposed. Moreover, since the result by Liu et al. (2017) does not rely on the mutual

independence of agents’ private information, the test is also robust to the presence of correlated private

types. Allowing for such correlation might be relevant in empirical contexts. For instance, in oligopolis-

tic entry games agents’ private information might be mutually correlated because of unobserved firms’
profitability, see Berry (1992), or in network formation games the correlation among agents’ private

types might arise because of homophily, see Mcpherson et al. (2001). Finally, we do not condition our test

on fixed values of the explanatory variables.

The characterization of Liu et al. (2017) we start from involves a nonparametric transformation of the

conditional probabilities concerning agents’ decisions. The conditioning variables can be interpreted as

the exogenous covariates of the game. We propose a test statistic based on a two-step procedure. In a

first step, we estimate the conditional probabilities concerning the decisions of each agent. In a second

step, we estimate the nonparametric transformation based on these conditional probabilities. To handle

the bias arising from this two-step nonparametric estimation, we use an L2 boosting procedure. This can

be interpreted as an iterative bias-correction method. Such an algorithm has been originally proposed in

the machine-learning literature and has been shown to be quite effective in handling the bias arising

from the nonparametric estimation, see ?, Di Marzio & Taylor (2008), Park et al. (2009), Cornillon et al.
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(2014). To the best of our knowledge, the implementation of such an algorithm in a testing problem

involving multi-step estimation is novel in the literature. The statistic we construct is expressed as a

weighted sum of the residuals and has simple closed-form expression. We show that under the null

hypothesis (i.e. that the distribution of the data is rationalized by a unique Bayesian-Nash equilibrium)

it converges to a transformation of a Gaussian process.

Since the asymptotic distribution depends on unknown features of the data, we propose to compute

the critical values by a new Multinomial Bootstrap procedure. This incorporates all the restrictions the

null hypothesis imposes on the distribution of the data, assuming that a unique Bayesian-Nash

equilibrium is played. For the practical implementation of the test we use kernel methods, so that both

the first step and the second step estimations are carried on by locally-constant regressions. The

advantage of the L2-boosting procedure in this case is to allow the implementation of the test without

undersmoothing. Moreover, it considerably enlarges the set of bandwidths and kernels admissible for

the test.

To the best of our knowledge, this is the first paper aiming at testing the rationalization of the data

by a unique Bayesian-Nash equilibrium with possibly correlated agents.

Related literature. Beyond the literature on incomplete information games, this paper is also related to

the literature on estimation and testing in the presence of generated regressors. Pagan (1984) addresses

the problem of estimation in the presence of generated variables. Ahn & Powell (1993), Newey (1994),

Ahn (1997), and Newey et al. (1999), and are other early contributions to estimating semiparametric

models with generated covariates. Mammen et al. (2012), Mammen et al. (2016), Blundell & Powell

(2004), Rothe (2009), Vanhems & Keilegom (2019), Escanciano et al. (2016), Escanciano et al. (2014), Hahn

et al. (2018), Hahn & Ridder (2013) are finally more recent works analyzing estimation in setups with

generated variables. However, the problem of testing a hypothesis like the one at the center of this paper

is not addressed.

Our paper is also related to the extensive literature on specification testing, see Fan & Li (1996),

Lavergne et al. (2015), Lavergne & Vuong (1996), Delgado & Manteiga (2001), Stinchcombe & White

(1998), among others. We contribute to this literature in three ways. First, these papers assume that all

the variables are observed, while we have generated variables. Second, we use an L2 boosting procedure

that gives rise to a recursive structure in our statistic. Third, we propose a new Multinomial Bootstrap

scheme for the computation of the critical values.

Organization of the paper. The reminder of the paper goes as follows. In Section 2, we describe the

game-theoretical framework and the rationalization result of Liu et al. (2017). Section 3 builds the test,

and the following Section 4 describes the application of the L2 boosting algorithm to the case at hand.

The assumptions and the asymptotic behavior of the test statistic are reported in Section 5. Section 6

presents the Multinomial Bootstrap procedure, describes its implementation, and shows its validity.

Section 7assessesthe small-sample properties of our test in a Monte Carlo simulation study. Finally,
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Section 8concludes. All technical proofs are reported in theAppendix.

2 Rationalization of Incomplete Information Games with Cor-

related Agents

Basic features of the model. We assume the presence of S players and denote by s the generic player,

so that s = 1, .., S . Each agent can take a binary action as ∈ {0, 1}. Let a = (a1, .., aS ) be an action

profile, A = {0, 1}S be the space of action profiles, a−s = (a1, .., as−1, as+1, .., aS ) be the vector

containing the actions of all the players but s, and A−s = {0, 1}S−1 be the set containing all the possible

values of a−s. We denote with x a specific value of the vector of the exogenous covariates observed by

each player and the econometrician. Each agent has a private information -or type- that is unknown to

both the other players and the researcher. Let θs stand for the agent s’ type or private information. The

players other than s do not know θs, but they know the distribution of θ = (θ1, .., θS ) conditional on

X , denoted by Fθ|X . Agents’ payoff from taking action 1 is πs(a−s, X ) − θs, while we normalize to

zero the payoff from taking action 0. Hence, the pay-off function of agent s can be written as

Πs(as, a−s, X , θs) = asx{πs(a−s, X ) − θs} .

To fix the ideas at this stage, the game just described can be thought of as a free-entry game between

different firms. Each firm owns a private information unknown to the other competitors and must

decide whether to enter or not to enter a specific market. as = 1 denotes the entry in a specific market by

firm s, while as = 0 denotes that the firm s has decided not to enter the market. This is a basic example

and later on we will provide other applications.

We now impose the following assumptions:

Assumption E (Exogeneity). θ = (θ1, .., θs) is independent from X .

Assumption D (Density). θ = (θ1, .., θs) admits a density f θ with respect to the Lebesgue measure

that is continuously differentiable.

The latter assumption is just a regularity condition. The first assumption is usually made in the

empirical literature on discrete games and has been often used for the identification of the structural part

of the profit functions, see Bajari et al. (2010b). Notice that it is not imposing the mutual independence

of agents’ types. This is an important feature of the framework. The presence of correlation betweenplayers’ types can capture heterogeneous effects, the presence of homophily between several agents, or

the part of profitability not explained by the interaction between firms. As regards the first, consider the

free-entry game introduced above, where several firms must decide whether to enter or not to enter a

specific market. Assume that the econometrician has a data set consisting of a cross-section of
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as = 1 if and only if

markets/industries. The presence of correlation between agents’ types, i.e. between those components

of the model which are not observed by the econometrician, can handle a random effect due to the

unobserved heterogeneity between several markets/industries. As regards homophily, the presence of

correlated types seems to be a reasonable assumptions when we model peers’ decisions about friendship.

It is reasonable to think that each agent would be more likely to establish a friendship relationship with

those who are more similar to him, with these similarities being explained by those components of the

model unobserved to the econometrician.

Equilibrium. The equilibrium we consider in this paper is of the Bayesian-Nash type. The equilibrium

pure-strategy for agent s can be seen as a function of the covariates X and the type θs. So, for a certain

collection of mappings {δs, s = 1, .., S } the equilibrium action of each player will take theform

as = δs(X, θs) .

The collection of functions δ = (δ1, .., δS ) stands for a profile of strategies. For any given profile δ, let

σδ (a−s, X ) be the probability that the players other than s take the actions a−s ∈ A−s. Using

Assumptions E and D , we canwrite

σδ(a−s|X, θs) =
∫

1{δq(X, θq) = aq for q ƒ= s } ·f θ (θ1, .., θS|θs) dθ1, .., θs−1, θs+1, .., θS .

Assuming that player s believes the other agents will play according to the strategies contained in δ,

player s will play action 1 if and only if her expected profit is larger than zero. So player s’ actions in

equilibrium can be described by the following equivalence:

Σ

a − s∈A − s

πs(a−s, X ) ·σ (a−s|X, θs) − θs ≥ 0 .δ

This implies that a profile of strategies δ will be a Bayesian-Nash equilibrium for the game justdescribed  

if and only if it solves thesystem

δs(X, θs) = 1
, Σ

a − s∈A − s

πs(a−s, X ) ·σ (a−s|X, θs) − θs ≥ 0 
,

∀s = 1, .., S and for all X, θs . (1)δ

The above fixed-point system describes the mutually-consistency condition characterizing the equilib-

rium. Notice that the solution is a collection of S mappings, {  δs , with s = 1, .., S } .

To clarify the framework, the next lines describe two specific examples of incomplete information  

games .

Example 1 (Game with Independent types). S = 2, each player has linear payoffs and mutu- ally 

independent information, i.e. πs(a−s, x) = β sx − αsa−s,  θs ∼ Fs, θ1 ⊥ θ2, and Fs is a spe-



cific distribution function like, say, Normal, Logistic, Uniform, etc. Consider the fixed-point system

µ s(x) = Fs(βsx−αsµ −s(x)) with s = 1, 2. It represents a system of two equations in the two unknowns

(µ1(x), µ2(x)). The candidate to be a pure-strategy Bayesian Nash equilibrium is the couple of functions

δs(x, θs) = 1{βsx−αsµ −s(x) ≥ θs} , with s = 1,2. To verify this conjecture, we have to prove that these

functions satisfy the mutually-consistency condition in Eq. 1. Notice that under the profile δ, the prob-
δ
−sability that player −s chooses action 1 is σ (1

∫
|x, θ ) = 1{1 −s −s    s −s −s −sβ x − α µ  (x) ≥ θ } dF (θ ) =

−sµ (x). Hence, 1{
Σ

a ∈A− s − s
πs(a−s, X )  ·σδ (a−s|X, θs) − θs ≥ 0} = 1{β sx − αsµ −s(x) ≥ θ s} =

−sδs(x, θs), where the first equality follows from the expressions of πs and σδ , while the last equality

follows from the definition of the strategy δs. From the latter equality, we deduce that the couple of

strategies δs(x, θs) = 1{β sx − αsµ −s(x) ≥ θs} , with s = 1, 2, satisfies the mutual-consistency condi-

tion. So, it represents a Bayesian-Nash equilibrium of thegame.

Example 2 (Game with correlated agents and normal types). Similarly to the previousexample,

S = 2, players’ payoffs are linear, but in this case we allow players’ types to be mutually correlated.

So, πs(a−s, θs) = β sx − αsa−s − θs, (θ1, θ2) ∼ N (0, Σ), Σ  is a 2x2 matrix, Varθ1 = Varθ2 = 1, and
√

1 2 1
2Cov(θ  , θ  ) = ρ. Assume that ρ∈ (−1, 2π/(2π + |α | )) . Denote by Φ the cdf of a standard normal,

and let (θ1
∗(x), θ2

∗(x)) be the solution of the following system of equations

β sx −αsΦ
θ− s
∗ ∗

s(x)−ρ·θ (x)√
1−ρ2

. Σ
∗
s= θ (x) for s = 1,2.

The candidate to be the pure-strategy Bayesian-Nash equilibrium is the profile δs(x, θs) = 1{θs
∗(x) ≥

θ s} for s = 1, 2. To verify the mutually consistency condition, notice first that under the profile δ the

probability of choosing action 1for player −s is

δ
s

∫
σ (1|x, θ ) = 1{ θ−s

∗
−s≤ θ (x)} · θ −s     s −sf (θ |θ ) dθ =

∗
−s s

√
2Φ((θ (x) −ρθ ) / 1 − ρ ) ,

so that

1 {
Σ

a ∈A− s − s
πs(a−s, X ) ·σδ(a−s|X, θs) − θs ≥ 0} =

s s
∗
−s

√
2

s s1{β x  − α ·Φ((θ (x) −ρθ ) / 1 − ρ ) ≥ θ } =

1{θs ≤ θs
∗(x)} = δs(x, θs) ,

where: the first equality follows from the expressions of σδ(1|x, θs) and πs; the second equality fol-

s s
∗
−s

√
2

s slows  by  noticing  that  the mapping θ ›→   −α ·Φ((θ (x) − ρθ ) / 1 − ρ ) − θ is decreasing(as
√

2
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1 sρ ∈ (−1, 2π/(2π + |α | ))), while the last equality follows from the definition of δ . Therefore, the

mutually consistency condition is satisfied and (δ1, δ2) forms a pure-strategy Bayesian-Nash equilib-

rium of the game.
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The general structure described above is too large. So, following Liu et al. (2017) we consider mono-

tone pure-strategy equilibria in those classes of models with expected payofls decreasing in the private

information.

Deftnition (Monotone pure strategy equilibrium). Aprofile of strategies δ = (δ1, .., δS ) is a monotone-

decreasing pure-strategy Bayesian-Nash (m.d.p.s. BN) equilibrium for the model described above, if it is an  

equilibrium -i.e. it satisfies the mutually consistency condition-, and θs ›→ δs(x, θs) is (weakly) decreasing  

for all x.

Assumption M (Monotonically decreasing expected payoffs). For each profile δ of monotone pure
Σ

a ∈A− s − s
πs(a−s, X ) ·σδ(a−s|X, θs) − θs is continuous and decreasingstrategies, the expected payoff  

in θs for all s = 1, .., S .

As long as we restrict ourselves to consider only monotone pure strategy equilibria, the profile  

strategies can be written as:

δs
∗(x, θs) = 1{θs

∗(x) ≥ θ s} for all s = 1, .., S .

The monotonicity restriction introduces a separability between the part of the equilibrium strategy

depending on the exogenous variables, i.e. θs
∗(x), and the part which depends on those components

unobserved by the econometrician, i.e. θs . Thanks to this feature, it allows us to characterize the

equilibrium strategy using only the collection { θs
∗(x) for s = 1, .., S } . To see this, notice that under

the profile δ∗ = (δ1
∗, .., δS

∗), as long as δ∗respects the monotonicity condition -i.e. δ∗= (1{θ1
∗(x) ≥ θ1},

.., 1{θS
∗(x) ≥ θS })- the choices of each agent can be characterized by theequivalence

θs ≤ θs
∗(x)⇔

Σ

a − s∈A − s

πs(a−s, X ) ·σ (a−s|X, θs) − θs ≥ 0 for all s = 1, .., S .
δ∗

Therefore, using Assumption M, the collection {θs
∗(x) for s = 1, .., S }  solves thesystem

θs
∗(x) =

Σ

a − s∈A − s

πs(a−s, x) ·σ (a−s|x, θs
∗(x)) for s = 1, .., S . (2)

δ∗

Example 1 (continued). Since the agents’ types are mutually independent, the structural part of agent

s’ expectedpayoff,
Σ

a ∈A− s − s
πs(a−s, X)·σδ(a−s|X, θs), will not depend on θs, hence the monotonicity

of the expected payoff will trivially hold for any profile strategy δ. Also, the equilibrium δs(x, θs) =

1{β sx − αsµ −s(x) ≥ θs} (with s = 1, 2)is clearly a monotone-decreasing Bayesian-Nash equilibrium.

Example 2 (continued). It is evident that since the equilibrium strategies are described by δs(x, θs) =

1{θs
∗(x) ≥ θ s} for s = 1, 2, the equilibrium is monotone decreasing. For the monotonicity of the ex-

pected payoffs, notice that for any profile δ = (1{θ1 ≤ θ1(x)}, 1{θ2 ≤ θ2(x)}) of monotone decreasing



strategies, the expected payoff of agent s is given by

Σ
a ∈A− s − s

πs(a−s, X ) ·σδ(a−s|X, θs) − θs = β sx − αsΦ((θ−s(x) − ρθ s) /
√

1 − ρ2) − θs

√
1
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2for s = 1, 2. Since ρ ∈ (−1, 2π/(2π + |α | )) , the function on the right-hand side will be decreasing

in θs, so the expected payoff will also be a decreasingfunction of θs.

Rationalization of the Bayesian-Nash Equilibrium. The fixed-point system in Eq. 2 might admit

multiple solutions for some (or all) values of x. In this section, we restrict our attention to those struc-

tures which select a unique equilibrium, while remaining agnostic about the selection mechanism. Such

a hypothesis has been used in the literature in empirical games, see e.g. Bajari et al. (2010a), Brock &

Durlauf (2001), Brock & Durlauf (2007), and under some conditions will allow us to provide a diagnostic

test for the multiplicity of equilibria.

The class of models so far described can be compactlywritten as

M  = 
,

(π, Fθ|X, ψ) s.t. (π, Fθ|X ) satisfy E, D, M ,  

and ψ selects a unique m.d.p.s. BN equilibrium 
,

,

where π = (π1, .., πS ). Each triple of elements belonging to M , say (π, Fθ|X, ψ), generates a certain

distribution (conditional on X) of the vector a := (a1, .., aS ). Specifically, denote by P the set of all dis-

tributions of a conditional on X . Each distribution in P is defined over the measurable space (A, σ(A)),

where A is the space of profile strategies defined at the beginning of this sections, whileσ(A) = 2A

denotes the collection of all the subsets of A, i.e. it is the sigma-field generated by A. By definition of

θ|X
∗ *
1 S

M ,  for each triple belonging to M , say (π, F , ψ), we will have a unique equilibrium (θ (x), .., θ (x))
∗ *
1 Sselected from the solutions of the fixed-point system in Eq. 2. The vector (θ (x), .., θ (x)) defines a

unique set of equilibrium strategies as = 1{θs
∗(x) ≥ θs} , for s = 1, .., S . Therefore, given the cdf ofagents’ private information, Fθ|X , we will have a specific distribution of a = (a1, .., aS ) conditional on

the exogenous variables X . This highlights that the collection M generates a mapping P which

associates to each element of M an element of P. i.e. P : M ›→P. Notice that we are not requiring

such a mapping to be one-to-one: this would be required for the point identification of the models’
fundamentals, but not for our test.

Let us denote with P (M ) the collection of distributions of a = (a1, .., aS ) conditional on X gener-

ated by model M . So, P (M ) is the image of M through the mapping P . Assume that the econometri-

cian observes the variables (a, X) , and let us denote by Pa|X the true distribution of the agents’ actions

conditional on X . So, Pa|X is the de facto distribution of agents’ actions, i.e. it is the actual distribution

generating the agents’ choices that the econometrician wishes to describe. The null hypothesis wewant
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to test is whether the true distribution of agents’ choices, Pa|X , can be generated by the mapping P , i.e.

H0 :  Pa|X  ∈  P (M ) .

From an economic point of view, the above restriction is equivalent to saying that the true distribution

of agents’ choices can be rationalized, or characterized, by model M . In other words, when H0 holds,

there exists a structure in M generating the true probability distribution Pa|X . To build a test for H0, we

have to characterize the constraints the true distribution Pa|X must satisfy for it to be rationalized by the

model M . Then, testing whether Pa|X satisfies these constraints would be equivalent to testing whether

Pa|X can be rationalized by M . We will therefore use a powerful result obtained by Liu et al. (2017). To

display their result, let us denote by EP and EP {·|g(X)} the unconditional and conditional expectation,

respectively, computed according to the true probability measure P . Let Ws(X) := EP {a s|X} , so

Ws(X) is the actual probability that agent s makes choice 1 conditional on the exogenous covariates X .

The result from Liu et al. (2017)we use is the following:

Theorem 1. Pa|X ∈ P (M ) if and only if for any Q = 2, .., S and for all 1 ≤ s1 ≤ .. ≤ sQ ≤ S, the

following conditions hold:

P(i) E {Π Q
j =1 js Pa |X }  = E {Π s s s

Q

j =1 j 1 Q
a  |W (X ), .., W (X )} ;

Q
P s sj =1 j 1 sQ

(ii) E {Π a  |W   (X) = ·,.., W (X) = ·} is strictly increasing and continuouslydiflerentiable.

The second part of condition (ii) is only a regularity condition regarding the smoothness of a condi-

tional expectation, something normally assumed in the literature on nonparametric estimation. As Liu

et al. (2017) point out, it can be removed by relaxing Assumption M, and not requiring the density of θ to

be continuously differentiable. The first part of condition (ii) is a bit more stringent but still reasonable,

and it would be di@cult to provide a counterexample to it. To see this, consider the free-entry game

described at the beginning of this section, where each agent is a firm which must decide whether to

enter or not to enter a specific market. The monotonicity in condition (ii) requires that if the (condi-

tional) probability of entry of a single firm increases and all the others remain the same, then the joint

probability of entry of all the firms must increase as well. Finally, condition (i)requires the conditional

expectation E { j s s

Q QQ Q

j =1 1 Q j =1
a |W   (X) = ·,.., W (X) = ·} to be  a su@cient statistic for E { aj  |X = ·} .

As highlighted by Liu et al. (2017), this seems to be the most stringent one, so we will focus on it in the

reminder of the paper.

Before switching to the construction of the test and listing the assumptions needed, it is useful to

provide a counterexample to condition (i) of the previous theorem. The one we report here is a

refinement of a counterexample provided by Liu et al. (2017).

Example 3: Non-rationalizable distributions. Consider the two-players game introduced in Exam-

ple 1, where x is replaced by (x, η) with x = (x1, x2), and the profit of each agent writes as

πs(x, η, a1, a2, θs) = as ·[ψ(x, η) − αs ·a−s − θs] , with ψ(x, η) = ϕ(x1) + η ·δ(x2) .
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Assume that θ1 ∼ U [0, 1], θ2 ∼ U [0, 1], θ1 ⊥ θ2, (θ1, θ2) ⊥ x,  Eη = 0, η ⊥ x,  x1 ⊥ x2. Define µ∗
s(x, η),  

with s = 1, 2, as the solution of the following system of linear equations

∗
s s

∗
−sµ (x, η) = ψ(x, η) + α ·µ (x, η) for s = 1,2 .

If α1 ·α2 ƒ= 1, the solution is simply represented by

∗
sµ (x, η) =

1 + α s

1 − α1 ·α2
·ψ(x, η) with s = 1,2 .

s
∗
−sAssume that for all (x, η) in the supportit holds that ψ(x, η)+α ·µ (x, η) ∈ [0,1], i.e. 1+α s

1−α1·α2
·ψ(x, η)
∈

s s
∗ ∗
1 2[0, 1]. Hence, denoting with Fθ the cdf of θ , the couple (µ , µ )satisfies

∗
s sθ s

∗
−sµ (x, η) = F  (ψ(x, η) + α ·µ (x, η) ) for s = 1,2 .

By the above display and following the same steps as in Example 1, the Bayesian-Nash equilibrium of  

the game is represented by

∗
s

a = { ∗
−ss sψ(x, η) + α ·µ (x, η) ≥ θ } for s = 1,2 .

From the equilibrium strategies and the definition of (µ∗
1, µ∗

2),

∗
s

E{a |x, η} =
1 + α s

1 − α1 ·α2
·ψ(x, η) for s = 1, 2, and E{a ·∗ ∗ ∗ ∗

1 2 1 2a |x, η} = E{a |x, η} ·E{a |x, η} .

Now, assume that the data (a∗
1, a∗

2) is generated by the above game, and that η is an unobserved hetero-

geneity term. In particular, both players observe (x, η), while the researcher does not observe η. Since

the researcher only observes (a∗
1, a∗

2,x), her goal is to test whether the distribution of such variables can

be rationalized by a unique Bayesian-Nash equilibrium of a game that respects Assumptions E, D, M,

where x is the only exogenous covariate. This holds only if E{a∗
1·a∗

2|x} = E{a∗
1·a2

∗|W0(x)}. However,

such an equality does not hold for the example considered here. In fact,

∗
s

E{a |x} =
1 + α s

1 − α ·α1 2
1·ϕ(x ) for s = 1, 2,

so by using Eη = 0, x1 ⊥ x2, and η ⊥ x, we get

1E{a ·∗ ∗
2a |x} = E { ∗

1
∗
2a |x} ·E{a |x} +

1 + α 1 1 + α 1

1 − α ·α 1 − α ·α1 2 1 2
2

2 2· ·δ(x ) ·Eη .

Define W0,s(x) := E{a∗
s|x} and W0(x) := ( W0,1(x), W0,2(x) ) . Applying the conditional expectation
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operator E{·|W0(x)} to both sides of the abovedisplay,

1 2 0 0,1 0,2E{a∗ ·a∗|W  (x)} = W (x) ·W (x) +
1 + α 1 ·

1 + α 1

1 − α ·α 1 − α ·α1 2 1 2
2

2·E{δ(x ) } ·E { 2η } ,

0,swhere  we  have used  the Law of Iterated Expectations, W (x) = E { ∗
s

a |x} = 1+α s

1−α1·α2
·ϕ(x1), η ⊥ x1,

and x1 ⊥ x2. So, subtracting the latter display to the former delivers

∗
1E{a · ∗

2a |x} −E { 1a ·∗ ∗
2 0a |W (x)} = 1(1 +α ) · 2(1 + α )

1 2(1 − α ·α ) 2

.
2 2

2 2
2·E{η }  · δ(x ) − E{δ(x ) }

Σ

which is different from zero as long as δ(x2) is a non-degenerate function. Since E{a∗
1 ·a∗

2|X} = E{a∗
1 ·

a∗
2|W0(X)}, the observed data (a∗

1, a2
∗, X )  generated by the above game-theoretical model has  a 

distribution that cannot be rationalized by a Bayesian-Nash equilibrium of a game respecting As-

sumptions E, D, M. In other words, since the researcher is omitting an unobserved variable η, any  game-

theoretical model assuming that the data (a∗
1, a

∗
2, x) is generated by a Bayesian-Nash equilibrium  

respecting Assumptions E, D, M will be misspecified.

3 The Test

For simplicity of exposition, we focus on a 2-players game. At the end of this section, we will provide the

general form of the test with any finite number of players. Let us assume to observe a cross-section ofagents’ decisions, (a1, a2), and the exogenous covariates, X ∈Rp. We do not assume a priori that these

observations are generated by an incomplete-information game played multiple times, as this is exactly

the restriction we want to test. As an example, such a data set might consist of airline companies

decisions about offering a connection between two different airport hubs, as in Ciliberto & Tamer

(2009). Define W0 ,1(X) := E{a1 | X } , W0 ,2(X) := E{a2 | X } . Here we have dropped the index P to

the expectation E with respect to the previous section, for the ease of notation. Let W0(X) :=

(W0 ,1(X), W0,2(X)), i.e. W0(X) stands for the vector of the conditional probabilities that agents 1 and

2 take decision 1, respectively. For example, in the data set considered in Ciliberto & Tamer (2009),

W0 ,1(X) denotes the probability, conditional on X , that firm 1 offers a connection between two different

cities (or airports). By the discussion provided in the previous section, to test whether the distribution of

the observed data Pa|X can be rationalized by a single m.d.p.s. BN equilibrium, we must test condition

(ii) of Theorem 1. With the present notation it writes as

H0 : E{a1 ·a2 | X }  = E{a1 ·a2 | W0(X)} .

Denote with f W 0  the density of W0(X) with respect to the Lebesgue measure. We introduce Y := a1 ·a2,  

mW 0  (w) := E{Y |W0(X) = w} ,  and ε := Y − mW 0  (W0(X)). The null hypothesis written above is



equivalent to

H0 : E{ε ·f W 0 (W0(X)) | X } = 0 .

To build a test for H0, we transform the above conditional moment restriction into a continuum of

unconditional moment restrictions. So, let T be a compact subset of Rp encompassing the origin, with p

=dim(X). For t ∈T , φt(·) := ϕ(tT ·), with ϕ being an analytic non-polynomial function defined on R,

i.e. ϕ is a one-variable function infinitely times continuously differentiable which does not have a

polynomial form. Examples are exp(·), cos(·), sin(·), exp(i·) -where i =
√−1. By the results in

Bierens & Ploberger (1997)and Stinchcombe & White (1998), the null hypothesis H0 is equivalent to

H0 : E{ε ·f W 0  (W0(X)) ·φ t(X)} = 0 for all t ∈ T .

0 1
c
0We test H versus its logical complement H : H . To simplify the notational burden, define the empirical-

mean operator

nP := 1
n

Σ n   

i=1 iZ i 1,i 2,i iδ with Z := (a , a , X  ) .

nFor any function g of Z ,  we have P g = (1/n) · n

i=1 i

Σ ∫
g(Z ). We  also  define Pg := g(z)P (dz).

Notice that if g is a non-random function, Pg = E{g(Z)} .  With this notation, the null hypothesis can  

be re-formulated as

H0 : Pεf W 0  φt  = 0 ∀t ∈ T .  

A feasible statistic for the above condition is

n

∫
S =

..
√

ˆ
n Ŵt ..

2
n ·P ε̂ f    φ µ(dt) ,

Ŵ
where || ·|| stands for a norm on C, (ε̂ , f ) is an estimator of (ε, fˆ W 0

), and µ is a measure absolutely

continuous with respect to the Lebesgue measure. Intuitively, if the null hypothesis holds true, one√
n Ŵ̂ twould expect that n ·P ε̂ f φ is bounded in probability and converges to a specific distribution,

so that also Sn will converge to a tight distribution. Differently, under the alternative hypothesis H1,√
Ŵn ˆ t nn ·P ε̂ f φ will explode and also the statistic S would diverge.

Remark 2. The statistic we are proposing is an Integrated Conditional Moment (ICM) Test. Since our

proofs hold for any continuous functional defined on A∞(T ), other tests would also be possible1. For√ ˆ
t∈T Wn ˆ tinstance,  we  could consider sup | n ·P ε̂ f φ |, a Kolgomorov-Smirnov (KS) statistic. However,

under a suitable choice of φ, the ICM statistic is much easier to compute than the KS test, as we will  

show in the next section.

1A∞(T ) := 
,

g : T ›→ R such that supt∈T |g(t)| < ∞ 
,
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Remark 3. The above statistic is used to test the null hypothesis within a two-players game. Differently,

in the presence of S different players there will be 2S − (S + 1) moment conditions to test. In this case,

we proceed in the same way as above, and compute for each moment equality c the corresponding

statistic Sn,c. H0 can then be tested through

Sn  = 
Σ

c  Sn,c or Sn  = max c  Sn,c .

Since both the “sum” and the “max” operator are continuous transformations, our proofs also hold for

such functionals.

To compute the statistic Sn  we need to provide a feasible estimator of (ε, f W  ). Notice thatwe
0

0 i
n
i=1have  a  problem  of non-observability of the  regressors  {W (X )} . Because of its non-observability,

W0(X) is said to be a generated regressor. Due to this feature, it is natural to proceed to a two-step  

estimation: in a first step, we estimate nonparametrically W0; in a second step, we replace the generated

ˆ
i

n
i=1regressors with their estimates, {W (X )} , and proceed to the nonparametric estimation of both m W 0

W 0
and f . Both these steps involve nonparametric estimators, and it is well known that nonparametric

methods provide biased estimates. In our case, the bias might have a relevant magnitude, as the second

step estimate will depend on the fits of the first step estimator. The bias will impact negatively on the

capacity of (Ŵ , m̂ Ŵ ) to match their respective targets, so it will also impact negatively on the

performance of the ICM test. To shed more light on this aspect, imagine to use a kernel method for m̂ Ŵ

and Ŵ , so that such estimate will be based on a kernel function, say K , and a bandwidth sequence, say

h2. To deal with the bias showing up in Sn -which arises from the nonparametric estimation of mW 0 and

W0- the approach usually taken in the literature on nonparametric testing is based on two features. First,

a high-order kernel is used, so the kernel K is set to be a relatively irregular function. Second, the

bandwidth rate is set according to a method that undersmooths, and hence restricts the set of

bandwidths admissible for the test. For example, the bandwidth that minimizes the Mean Squared Error

is not admissible in the presence of undersmoothing. Technically, the bandwidth h and the kernel K

must be such that n ·h2r = o(1), where r is the order of the kernel -i.e. the larger r the more K will be

an irregular function. Such a condition will have a negative impact on the bias-variance trade- off of the

nonparametric estimator. Assume that for a given bandwidth sequence h, the order r is set to be larger

than 4 to respect the condition nh2r = o(1). Accordingly, the kernel will be a relatively irregular function

and will infiate the variance. To limit such a variance infiation, the usual approach in the literature is to

ignore, to a certain extent, the condition nh2r = o(1) and hence to choose a kernel of low order that,

however, will infiate the bias term. In other words, the bias arising from the nonparametric estimation

will impact negatively on the capacity of the estimators to fit well the original functions, and hence on

the capacity of the test to provide the good size and power.

2
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0W 0In  this  context,  since  we  have  two  nonparametric  functions to estimate, (m , W ), we should also introduce two
kernels (K1, K2) and two bandwidth rates (h1, h2). This aspect, however, is not essential for the present discussion.



Algorithm 1 General Boosting method for regressions  

1: Initialize with an estimate m̂ [0] of the regression m

2: Increase b by 1, i.e. b ← b + 1; compute the residuals ε̂ [b] = Y − m̂ [b−1] and hence the sample
[b]

i
n

i i=1{ ε̂ , W } .

[b] n
i i=13:   Fit  the  residuals {ε̂  } to the explanatory variables { i

n
i=1W } , according to the baseestimation

procedure, and hence obtain the fitted function r̂ [b]

4: Update the estimator as m̂ [b] = m̂ [b−1] + r̂ [b]

5: repeat Step 2 to Step 4 B times

4 Estimation by L2 Boosting

To deal with the bias arising from the nonparametric estimation, a method that has been proven to be

quite effective is Boosting. This is an algorithm originally conceived in the Machine Learning literature

which gained a strong success in the statistical literature on estimation, see ?, Di Marzio & Taylor (2008),

Park et al. (2009), Cornillon et al. (2014). The main idea is to estimate iteratively an object of interest on

different samples, and then aggregate these estimates in a unique estimator. Imagine to estimate a

regression function m , where the response variable is Y and the set of regressors is W . A common

Boosting algorithm for regressions is based on three elements: (i) an initial estimator; (ii) a base

estimation procedure; (iii) the number of iterations to perform. It is described in Algorithm 1.

At each iteration, the procedure applies the base estimation method to the residuals obtained from

the previous iteration. Different base methods give rise to different boosting algorithms. The specific

boosting algorithm we use in the present work is the L2-boosting. This uses a base procedure which

minimizes a least-squares criterion, see ? and Di Marzio & Taylor (2008). To apply the L2-boosting

procedure to the computation of Sn , recall that our estimation is based on two steps. In a first step, we

estimate the generated regressors -i.e. the function W0-, while in a second step we proceedto the

0 0 0 i
n
i=1estimation of m W   and  f W   by replacing the unobserved  regressors  {W (X )} with their estimated

ˆ
i

n
i=1counterpart  {W (X )} . So, let us assume to have an estimator Ŵ of the generated regressor W0.

[0]

Ŵ 0W 2Let m̂ be  an  initial estimator,  i.e.  a  weak learner, of m . The L -boosting algorithm applied to the

0
estimation of m W  is described in Algorithm 2. After B  boosting iterations, the initial weak learner m̂[0]

Ŵ

Ŵ
is transformed into the deep learner m̂  [B]. The boosting estimator after b iterations can be written as

Ŵ Ŵ fˆ[0]

Ŵ

m̂ [b] = m̂ [b−1] + 
Tˆεˆb−1 , T̂εˆb−1

= 1
nhd

Σ
i=1 i

n ε̂ [b−1]t̂ n,iK
Ŵ i −·

h
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. Σ
, (3)

[b−1]
ifor b = 1, .., B ,  where K  is a kernel function, ε̂ = Y i

[b−1]

Ŵ i
ˆ [̂0]

Ŵ
− m̂ (W ) , and f is an estimator of f W 0

.



Algorithm 2 L2 Boosting

• Initialize with estimates f̂ [0] and m̂ [0]

Ŵ Ŵ

[b−1]• Increase b  by one, i.e. b  ← b + 1, and compute the residuals ε̂ = Y − m̂
[b−1]

Ŵ

[b−1]
i

ˆ
i

n
i=1• From  the sample {ε̂ , W } compute T̂ ε̂b− 1

(defined in Eq. 3) and update the estimator of

0
m W as

Ŵ W 0
m̂ [b] = m̂ [b−1] +

Tˆεˆb−1

fˆ[0]
W 0

Repeat the above steps B times.

t̂ n,i is a trimming factor useful to handle a random denominator,

t̂ n,i   := 1
,
fˆ(Xi) ≥ τ n

,
, tn,i := 1

,
f (X i) ≥ τ n

,
,

with f  density of X .

Ŵ Ŵ
Remark 4. When f̂ [0] and m̂ [0] are kernel estimators built with the same kernels and bandwidths as

ε̂̂b
T , the boosting described in Algorithm 2 is the same as in Di Marzio & Taylor (2008). Here, we are
not specifying the initial estimators f̂ [0]and m̂  [0], for the aim of generality of the theory and simplicity

Ŵ Ŵ

Ŵ
of proofs. Notice that the density f̂ [0] is not updated in the boosting algorithm of the regression, see

Di Marzio & Taylor (2008).

Remark 5. We have chosen to keep Ŵ in a general form and not to specify a particular method used in the

first-step. Ŵ will only have to respect some high-level conditions introduced in the next section. This

allows us to keep a good level of generality and to build clean proofs in an acceptable number of pages.

However, Ŵcan be computed according to the same boosting procedure as in Algorithm 2.

The procedure just described delivers the estimators ε̂ B of the residual ε. From this, we construct  the 

test statistic Sn  based on B  boosting iterations as

∫ √
n n B

[̂0]

Ŵ t
2S := |    nP ε̂    f φ | µ(d t) .

If we choose the weighting function φ to be the complex exponential exp(i·), with i = 
√−1, thestatistic

Sn  will have the following simple form
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nS =
1
n

Σ

i,i

B ,i
[̂0]

Ŵ,i
ε̂ ·f ·ε̂ B ,j

[̂0]

Ŵ, j
µ i j·f ·ϕ  (X − X  ) ,



Ŵ,i Ŵ
where ϕµ  is the characteristic function of the measure µ , and f̂ [0] := f̂ [0](Ŵ  

i). For instance, if µ is

µchosen to be the multivariate standard normal distribution, then ϕ (x) boils down to
Q p  

j =1 exp(xj ),

where x j is the j-th component of x.

5 The Assumptions and the Asymptotic Test

Let us recall that a := (a1, a2) and W0 := (W0,1, W0,2). In what follows, d denotes the number of

components of W0(X) and Ŵ (X) . In a two-players context, d = 2. Having a general d allows to

identify better the role of the dimension of W0 on the assumptions and the bandwidths. This in turn

clarifies the extension to a generic number of players. Define the sets

W n  := 
,
w : f W 0  (w) >

τn
n

, ,
and X := x : f (x) >

τn

2 2

,
. (4)

For a vector of positive natural numbers k = (k1, .., kd), define the differential operator3

∂k := ∂k.

∂k1 w1. .∂kd wd
,

with k. = k1 + .. + kd. Given a generic real set D, with D convex, the class of smooth functions we  

consider is

k.≤ 2 +1
C(D) := 

,
g : D ›→  R : max d̃† ||∂k.g||∞,D ≤ M 

,
, (5)

with d̃†the largest even number weakly smaller than d̃ := dim(D). If d̃ is even then d̃†= d̃ ; if d̃ is odd  

then d̃†= d̃ −1.

α
M

d†

2
α
M

Observation. C(D) ⊂ C      (D) for α = + 1, where C  (D) is the class of functions defined at page 154

in van der Vaart & Wellner (1996).

r
1 dLet K be the class of functions (v , ., v ) ›→ Q d

λ j =1 k(vj  ) with k univariate kernel of order r that is

n
3
2 n nλ  times continuously differentiable. Denote p := P ( f  (X) ≤ τ ) and C:= nC(W ).

Assumption 1. {Yi, X i } n   
i=1 is a sequence of iid and bounded random variables.

Assumption 2. (i) m W  , f W  ∈ C(W ) and W ∈ C(X ); (ii) X  admits a density conditionallyon
0 0 ∞ 0 ∞

W0(X), denoted by fX |W 0 (X ) ;  (iii) mW 0  , f W 0  , and fX|W0(X)(·|·) are rB times continuously diflerentiable  

with uniformly bounded derivatives.

λ
r d†

2
Assumption 3. K  ∈  K , and λ = + 1.

3We are using a similar notation as in van der Vaart & Wellner (1996).
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Assumption 4. (i) p n 1/ 2 np n 1/4

n hdτ B
n

= o(1), = o(1), and for each n large enough W n and Xn are convex; (ii)

there exists η small enough and N large enough such that for n ≥ N if f (x) ≥ τn then f W 0 (W0(x)) ≥ ητn;

τn
(iii) h = o(1) .

n 1/2hdτ 2 B
n

Assumption 5. logn = o(1), nh4rB = o(1).

Assumption 6. (i) for bn ∈ {tˆn, tn} ,  ||(Ŵ  − W0)bn||∞ = oP (τnn−1/4); (ii) P ( Ŵ ∈ C(Xn) ) → 1; (iii)  

For any class of functions Ψ satisfying condition CL (see Appendix A) and for ϕ t(x) := E{ψ t(Z) | X = x} ,

√
nPn(Wˆ − W0)tnψt  = 

√
nPn(a − W0)ϕ t  + oP (1) uniformly over T .

Assumption 7. (i) Rates for the weak learners: for bn n̂ n∈ { t  , t }, || [0]

Ŵ
(m̂ − m W 0 n ∞)b || = oP (dn),

[0]

Ŵ
||(∂m̂ − ∂m

0W n)b ||∞ P n
[̂0]

Ŵ
= o   (d ), ||(f − f

0W n    ∞ P n)b || = o (d ), || [̂0]

Ŵ 0W n    ∞ P n(∂f − ∂ f )b || = o (d ), with

τ B
n

dn = o(n−1/4);

[0]

Ŵ n(ii) Regularity of the weak learner: P (m̂ ∈ C ) → 1;

(iii) Regularity of the boosting updates: P
T̂ ε̂b

f W 0
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n

. Σ
∈C → 1 for b = 1, .., B − 1.

Comments on the assumptions. Assumptions 1-3 are standard in the literature on nonparametric es-

timation and testing. Assumption 4 is needed because of the generated variables. It essentially imposes

that the tails of X do not have to be too thick. Several versions of it can be found in e.g. Escanciano et al.

(2014)and Escanciano et al. (2016). Assumption 5establishes that the kernel order and the bandwidth

ε̂̂b
used in the boosting updates (i.e. for T ) must be decided in connection with the number of boost-

ing iterations B . Assumption 6 is a high-level condition for the first-stage estimator of the conditional

probabilities. In particular, Assumption 6 (i) establishes the convergence rates of Ŵ . Such convergence

rates are relatively standard in the literature and similar to e.g. Escanciano et al. (2014), Mammen et al.

(2012), and Andrews (1995). Assumption 6 (ii) requires that the first-stage estimator must belong to a“regular” class of functions wpt1. This is also a general regularity condition often assumed in the

literature, see Escanciano et al. (2014), Mammen et al. (2012), and Andrews (1995). Assumption 6 (iii)

requires an expansion for the first-stage estimator, and it is similar in nature to Assumption 10 in Es-

canciano et al. (2014). Both Assumptions 6 (i) and 6 (ii) can be proved using results contained in, e.g.

Escanciano et al. (2014), Li & Racine (2006), or Andrews (1995). The expansion in Assumption 6 (iii) can

be obtained by specifying the first-step estimator for the generated regressors. Then, we could proceed

similarly as in the proofs of Appendix A, or using the results in Escanciano et al. (2014). Assumption 7

has the same spirit as Assumption 6 and refers to the second-stage weak learners and deep learners. The

main difference is that Assumption 7 is imposing a n−1/4 convergence rate on the first-order derivatives

∂m̂ [0] and ∂f̂ [0] . Such rates are used to deal with the estimation error coming from the first-stage (i.e.
Ŵ Ŵ

from Ŵ). These rates will be used in connection with a first-order Taylor expansion. Similar ratesare



Algorithm 3 Multinomial Bootstrap DGP

1,i
ˆ1: Resample a∗ according to a Bernoulli distribution with probability of successW 1[B ]

1,i , i.e. a∗
1,i

∼
ˆBernoulli(W 1[B ]

1,i )

2a: If a∗ = 1 a∗
1,i 2,i

, ∼ Bernoulli
[B ]

Ŵ
ˆ

im̂ (W )

Ŵ
[B1]
i

. Σ

1,i 2,i
2b: If a∗ = 0, a∗ ∼ Bernoulli

. ˆ
2 , i

[B ]

Ŵ
ˆW  −m̂ (W i )

1−Ŵ 1 , i

Σ

∗ ∗3: Repeat Step 1 - Step 2 n times and save the sample {a , a } n
1,i 2,i i=1

also assumed in Rothe (2009). The high-level conditions contained in Assumption 6 and 7 are useful for

providing a clean exposition. They dramatically simplify the proofs and allow us to contain such proofs

in an acceptable number ofpages.

The asymptotic distribution of our statistic is obtained in the following

Proposition 6. Under Assumptions 1-7, if H0 holds

n    B n Ŵ
 ̂ ˆ ˆ√ √

n P  ε̂     t f  (W ) φ = nP ε ft n W
⊥

0 t

√
φ  − nP T(a − W ) ∂mn 0 W 0 W

⊥
0 t Pf φ + o (1)

uniformly over T , where φ⊥
t(X) := φ t(X) − ι t(W0(X)) and ι t(W0(X)) := E{φ t(X) | W0(X)}. Accord-

ingly,

ˆ
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n n    B  n    Ŵ t

2
S  = 

∫  
.
√

n P  ε̂        t̂     f̂   (W ) φ µ(d
∫ 2t) ; G µ(dt) ,

. . .

∞where G is a Gaussian stochastic process taking values in A(G) and defined by the collection of covariances

t 1 t 2

2 ⊥ ⊥ : 1 2

, , ,
Pε φ φ t , t ∈ T ,  with G := (a, y, x) ›→ (y − m

0W 0 0W 0
⊥
t

(W (x))) ·f (W (x)) ·φ (x) − (a −
W0(x)) ∂mW 0 (W0(x)) f W 0 (W0(x)) φ⊥

t(x) : t ∈T
,
.

6 Multinomial Bootstrap

Proposition 6 shows that the asymptotic null distribution of Sn depends on unknown features of the

data. So, the asymptotic null distribution cannot be used to approximate the critical values of the test.

We therefore propose a novel Multinomial Bootstrap procedure to simulate the critical values. Such

procedure resamples the data using the information contained in H0. In particular, it assumes that the

data is generated by a distribution that can be rationalized by a unique Bayesian-Nash equilibrium of a

binary game. Since the information under H0 is exploited in the bootstrap scheme, we should obtain

good properties in terms of size and power.



Denote with Bernoulli(p) a Bernoulli distribution with probability of success equal to p. The Multi-

nomial Bootstrap resamples the observations on (a1, a2) according to the procedure summarized in

i
∗ ∗ n
1,i 2,i i=1Algorithm 3.  Such artificial  DGP generates  the  sample  {a  , a   , X } . By replacing this sample to

1,i 2,i i
n
i=1the  original  one,  i.e.  to  {a  , a   ,X } , and then implementing the same procedure as in Section 3

-including the L2 boosting iterations-, we obtain the bootstrap versions (ε̂ B 
∗, Sn

∗) of (ε̂ B, Sn) :

∗
B

∗∗
1 2

[B ]∗
Ŵ∗

ˆ ∗ε̂        := a  a − m̂ (W ) , ∗
n

∫ √
S = | n
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∗∗ [0]∗
n  B  Ŵ ∗̂ n̂·P ε̂    f t | µ(dt),

∗
nwhere P := 1

n

Σ
Z ∗

i

∗ ∗δ and  Z := (a , a∗
i 1,i 2,i i, X ).

The Multinomial Bootstrap just described has two attractive features. First, it preserves the 0-1

nature of the variables a∗1and a∗
2. Second, it implements all the constraints on the joint distribution of

(a1, a2) which are suggested by the null hypothesis. Denote with Pi
∗the bootstrap probability measure

of (a∗
1,a

∗
2)conditional on X i defined in Step 1-2of Algorithm 3. Notice that

∗ ∗
i 1

∗
2 i

[B ]

Ŵ i i 1
∗ ∗ ∗

2 i
ˆ ˆP  (a   = 1, a = 1|X ) = m̂ (W ) , P (a = 1, a = 0|X ) = W 1,i

[B ]

Ŵ
ˆ

i− m̂ (W ) ,

∗ ∗
i 1

∗
2 i

ˆP (a = 0, a = 1|X ) =W 2,i
[B ]

Ŵ
ˆ

i− m̂ (W ) .

From the above display, the artificial DGP specified in Algorithm 3 generates a probability Pi
∗ that  

equals, up to an estimation error, the probability P(a1,a2)|X i when H0 holds true. To see this, denote

(a1,a2)|Xwith P H 0 the probability distribution P
1 2(a ,a )|X 0under H . Then,

PH 0

(a1,a2)|X 1 2(a = 1, a = 1|X) = E { 1 2a a |W (X) }  , P H 0

(a1,a2)|X
(a1 = 1, a2 = 0|X) = W1(X) − E{a1a2|W (X) }

PH 0

(a1,a2)|X
(a1 = 0, a2 = 1|X) = E{a2 ·(1 − a1)|W (X) } = W0 ,2(X) − E{a1a2|X} .

(a1,a2)|X i
The last two displays hihglight that Pi

∗ is the same, up to an estimation error, as the probability P H 0 .

In this sense, the Multinomial Bootstrap exploits all the constraints imposed by H0 on the distribution  

of (a1, a2).

To show the validity of the bootstrap scheme, we need some adding assumptions. Denote with P ∗

∗ ∗ n
1,i 2,i i=1the probability measure  that considers only the data {a   , a  } as random and assumes as fixed the

1,i 2,i i
n ∗ ∗
i=1 1,i 2,i 1,i 2,i isample data {a  , a   , X } . For a random variable Z measurable with respect to {a , a , a , a , X  } n

i=1,

n P
∗

nthe notation Z = o ∗ (1) means that P (|Z | > δ) →P 0 for every δ > 0. Let Ŵ ∗ be the bootstrap

counterpart of Ŵ .

Assumption 8. There exists an s ∈ (0, 1) such that mW 0 (W0(X)), W0 ,j (X) ∈ (s, 1− s) for j = 1,2.

Assumption 9.   (i) for b     ∈ {t̂  , t } , ||(Ŵ   ∗         − W )b || = o ˆ−1/ 4 ∗ ∗
n n     n 0 n ∞ P n n

P
∗ (τ n ); (ii) P ( W ∈ C(X ) ) → 1;



(iii) For any class of functions Ψ satisfying condition CL (see Appendix A) and for ϕ t(x) := E{ψ t(Z) | X =

x} ,

√
nPn(Wˆ ∗− Ŵ )tnψt =

√
nPn(a − W0)ϕ t + oP ∗ (1) uniformly over T .

Assumption 10. ˆ
n n n(i)  Rates  for the weak learners: for b ∈ { t  , t }, || ∗[0]

Ŵ
(m̂ − m

0W n ∞ P n)b || = o ∗ (d ),
∗[0]

Ŵ
||(∂m̂ − ∂m W 0 n  ∞ P n

ˆ)b || = o ∗ (d ), ||(f
Ŵ∗ ∗W 0 n  ∞ P n− f )b || = o (d ), ||

Ŵˆ∗ W 0 n  ∞ P n(∂f − ∂ f )b || = o ∗ (d ),

τ B
n

with dn,m = o(n−1/4).

∗
Ŵ n
∗[0] P(ii) Regularity of the weak learner: P (m̂ ∈ C ) → 1;

(iii) Regularity of the boosting updates: for b = 1, .., B  −1: P
T̂. ∗

ε̂∗b

f W 0
n

Σ
P∈C → 1;

.
[B ]

Ŵ
(iv) Regularity of the sample estimates: P m̂ (Ŵ  (·)) ,

[B ]

Ŵ
ˆm̂ (W (·))

Ŵ1(·)
ˆ j

n

Σ
, W ∈  C (X ) → 1,

log N[·](δ,Cj(Xn), L1(PX )) ≤ Cδ−υ, with υ ∈ (0, 1).

Assumption 8 has a technical nature and is needed to simplify the proofs. Assumptions 9 and 10 can

be considered the bootstrap equivalents of Assumptions 6 and 7. In particular, Assumption 9 establishes

the convergence rates and an expansion for the bootstrap counterpart of the first-step estimator Ŵ ∗. If

the first-step estimator is specified according to the L2 boosting procedure, Assumption 9 can be proved

along the arguments of Appendix B and C. Assumption 10essentially replicates Assumption 7 and refers

to the second-step estimation in the “bootstrap world”. The only part that is conceptually different is

Point (iv) which only imposes a regularity conditions of the sample estimators, so it can be considered as

a mild requirement.

The expansion at the basis of our bootstrap test is contained in the following

Proposition 7. Under Assumptions 1-10, if H0 holds

∗
Bn n Ŵ ∗

 ̂ ˆ ˆ ∗√ √
t n

˜∗nP ε̂      t f (W )φ = nP (Y − m W 0 W
⊥

0 0 t

√ ∗(W ))f φ − nP (ã  − W )∂m
0n 0 W W

⊥
0 tf φ + o P ∗(1)

uniformly over T ,

where Ỹ ∗ = ã∗
1·ã∗

2and for any set A ⊂ {0, 1}2, P ( (a∗
1,a2

∗) ∈A | X ) = P H 0 ( (a1, a2) ∈ A | X ).

The previous proposition provides the validity of the bootstrap test. In particular, consider an ar-

bitrary finite collection (t1, .., tQ) ∈ T . Then, wpt1 and conditionally on the sample data, thevector. √ ∗
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Bn n Ŵ ∗
 ̂ ˆ ˆ ∗nP ε̂      t f (W )φ tq q

Σ . Σ

q=1,..,Q q=1,..,Q
will converge in distribution to G(t ) , where G is the Gaus-

sian process defined in Proposition 6. Hence, the critical value simulated by bootstrapping Sn
∗ can be



considered as a reasonable approximation of the true critical value of Sn
4. From a practical point of view,

the critical value can be obtained by a Monte-Carlo simulation: (i) simulate N ∗samples from Algorithm

3; (ii) for the c−th simulated sample, compute the statistic Sn
∗

,c ; (iii) use the 1 − α quantile of the

collection {Sn
∗

,c : c = 1, .., N ∗} as the critical value for running the test at the α critical level, so reject

H0 if Sn is larger than such a quantile. The larger N ∗, the better will be the approximation of the

quantile of the bootstrap distribution.

7 Simulation and implementation

In this section, we show how to implement the test, and we provide the results of a Monte Carlo exper-

iment to assess its small-sample performances.

1. Analysis of the size

We start by analyzing the capacity of the test to control the size under the null H0. We assume the same

framework as the one presented in Example 2, and for the reader’s convenience we report here the main

parts of the game-theoretical model. We consider two agents, each denoted with s ∈ {1, 2}, that must

take a binary decision as ∈{0, 1}. The profit of agent s writes as

πs(a−s, θs) = as ·[βsx − αsa−s − θs] ,

where x is a vector of exogenous covariates observed by both players and the researcher, θs is the private

information of player s, and (αs, βs) are fixed parameters unknown to the researcher. (θ1, θ2) ∼ N (0,

Σ), where Σ is a 2x2 covariance matrix, Varθ1 = Varθ2 = 1, Cov(θ1, θ2) = ρ. We require ρ ∈ (−1,
√

2π/(2π + |α1|2)). Define (θ1
∗(x), θ2

∗(x)) to be the solution of the system

s s
∗ ∗ √

2 ∗
−s s sβ x  −α Φ((θ (x)− ρ ·θ  (x))/ 1− ρ ) = θ (x) , for s = 1,2 ,

where Φ denotes the cdf of the standard normal. Along the lines of Example 2, the pure-strategy  

Bayesian-Nash equilibrium is given by the the profile

δs(x, θs) = 1{θs
∗(x) ≥ θ s} for s = 1,2 .

We parameterize the model as follows: β1 = (−1, 1), β2 = (1, −1), α1 = 1 , α2 = 1, x  = (x1, x2),  x1  ∼ 
x2, x1  ⊥ x2, x1  ∼ U [−1.2, 1.2].   The  correlation  coe@cient  ρ is  set  to  different  values  sothat

4To make this argument more rigorous, we should prove that the leading term in the expansion ofProposition 7 converges  
to the Gaussian process G uniformly over T  and for almost all trajectories {X1 } i≥1 .  This proof is still in progress. However,
since S n can be expressed as a Riemann Integral, it can also be approximated by a functional of a the finite dimensional√ ∗
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ˆ
B Wn n ˆ ∗ˆ ˆ ∗process nP  ε̂ t f (W )φ t q

. Σ

q=1,..,Q
for large enough Q. So, the convergence of the “finite dimensional marginals”

provides an argument to conclude that the bootstrap procedure gives a reasonable approximation of the distribution of Sn .



whenever ρ ƒ= 0 agents’ types are correlated.

ρ ∈ {−0.5, 0, 0.5}. Thus, when ρ = 0 there is no correlation among agents’ private information, while

For the implementation of the test, in the first step estimation we use the same type of estimator as

the second step. So, also for the estimation of the conditional probabilities W0 we employ a boosting

algorithm. We use kernel estimators both for the initial weak learners -needed for the initialization of

the L2 boosting procedure- and for the updating part of Algorithm 2. For the first-step estimation, we set

s

s

f̂
ŝŴ                                                                     [0](x) = (x) , T (x) =

1
n

T̂ Σ
s,ia ·K

X  i
. Σ− x 1 nΣ

i=1 i=1

, fˆ(x) = K
iX  − x

n ·hp h n ·hp h

. Σ

for s = 1, 2. The kernel K is set to be a second-order Gaussian kernel. Similarly, the kernel used in the

Boosting Algorithm 2 is set to be a second-order Gaussian kernel. Both the bandwidth h above and the

bandwidths used in the L2 boosting procedure of Algorithm 2 are specified according to a Silverman’s
Rule of Thumb, i.e. h = (σˆ(X1), σˆ(X2)) ·n−1/6. We use a similar logic for the specification of the

Ŵ[b]
estimator m̂ [b] . In particular, the weak learner initializing Algorithm 2 is specified as

m̂
[0]

Ŵ[B1]

T̂  ̂
 [B ]

W 1
fˆˆ [B ]

W 1

ˆ(w) := (w) , TŴ 1[B ] (w)= 1
n·hd

Σ n   

i=1 Yi ·K
ˆ 1[B ]

i
W −w

h

. Σ
,

f̂ Ŵ 1[B ] (w)= 1
n ·hd

Σ .
ˆ 1[B ]

i
W −wn

i=1 h
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Σ
K ,

where Yi := a1,i ·a2,i, K  is a second-order Gaussian Kernel, and h is specified according to Silverman’s
Rule of Thumb, i.e. h = (σ̂ (W 1ˆ ˆ 1[B ] [B ]

1 2
−1/ 6), σ̂ (W )) ·n . For the updating part of Algorithm 2 we use the

same specification for both the bandwidth and the kernel. The number of boosting iterations is set to the

same level for both the first and the second step estimation. The iterations employed are displayed in

Table 1-5.

For the computation of the ICM statistic Sn , the weighting function µ is defined as a triangular

density, so that ϕµ is a sinc kernel.

We  compare  the Multinomial Bootstrap presented  in Section 6  to the Wild-Bootstrap procedure  in ?

developed  for semiparametric models  with generated variables.  For  this latter bootstrapprocedure, we

i
n
i=1specify  the  weights {ξ } to be distributed as iid standard normals, independently from the sample

data.

The results of the simulations are reported in Table 1-3. With B = 1 both tests under-reject com-

pared to the nominal size. The test based on the Multinomial Bootstrap behave the best when the

number of boosting iterations is set to B = 2. In general, both the Wild-Bootstrap test and the Multi-

nomial test behave relatively well. In particular, the wild bootstrap has a tendency to under-reject and

needs a larger sample to adjust the empirical size to the nominal one. The Multinomial Bootstrap shows

a smaller error in the rejection probability for all sample sizes. Intuitively, since the Multinomial Boot-

strap is based on a resampling scheme that refiects the null DGP better than the Wild Bootstrap, it also



Table 1: Simulation results for B1 = B2 = 1

n

200 Wild

0.02 0.05 0.10

0.0146 0.04 0.0962

Multinomial 0.0128

400 Wild 0.0122

0.0328 0.0768

0.0354 0.0896

Multinomial 0.0116

600 Wild 0.0058

0.0318 0.0728

0.0256 0.0732

Multinomial 0.0058 0.0226 0.0626

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. h0 = (sd(X1), sd(X2)) ·n−1 /6 , h = (sd(Wˆ (X)) ) ·n−1/6. The kernels are Gaussian Kernels of

order 2.

displays a better performance with respectto the Wild scheme.

Generally, when the number of boosting iterations (B1 and B2) are set to either 0 or 1, the perfor-

mance of the test is less good5. This therefore shows that the boosting is a valid tool to control the size of

the test, by controlling the bias of the empirical process at the basis of the statistic Sn .

7.2 Power Analysis

In this section we provide the power analysis of the test. To have a DGP displaying a clear departure

from the null hypothesis, we start from Example 3. For the reader’s convenience, we report below the

main parts of the model. We consider a two-players game and assume that the profit of each agent writes

as

Πs(x, η, a1, a2, θs) = as ·[ψ(x, η) − αs ·a−s − θs] ,

with ψ(x, η) = ϕ(x1) + η ·δ(x2), θ1 ∼ U [0, 1], θ2 ∼ U [0, 1], θ1 ⊥ θ2, (θ1, θ2) ⊥ x, Eη = 0, η ⊥ x, x

= (x1, x2), x1 ⊥ x2. The Pure-Strategy Bayesian-Nash equilibrium of the game is represented by the

following functions

s s
∗

s
∗

−s sa  = {ψ(x, η) + α ·µ (x, η) ≥ θ } for s = 1, 2 , where µ (x, η) =
1 + α s

1 − α ·α1 2
·ψ(x, η) .

η is interpreted as a heterogeneity parameter. Let (a1, a2) be generated by the above game, and assume

the researcher only observes (a1, a2, x) but not the heterogeneity parameter η. She aims at testing

whether the distribution of the data, say P(a ,a )|x, can be rationalized by a unique Bayesian-Nash equi-
1   2

5Results are omitted for reason of space
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Table 2: Simulation results for B1 = B2 = 2

n

200 Wild

0.02 0.05 0.10

0.0058 0.0206 0.0528

Multinomial 0.0184

400 Wild 0.0046

0.0478 0.105

0.0166 0.0464

Multinomial 0.0168

600 Wild 0.0022

0.05 0.104

0.0104 0.0328

Multinomial 0.0128 0.043 0.0956

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. h0 = (sd(X1), sd(X2)) ·n−1 /6 , h = (sd(Wˆ (X)) ) ·n−1/6. The kernels are Gaussian Kernels of

order 2.

Table 3: Simulation results for B1 = B2 = 2: Comparison accross different correlation coe@cients.

ρ

0.5 Wild

0.02 0.05 0.10

0.003 0.0104 0.0366

Multinomial 0.0118

0 Wild 0.0046

0.0366 0.0872

0.0166 0.0464

-0.5

Multinomial 0.0168

Wild 0.002

0.05 0.104

0.0144 0.0426

Multinomial 0.0186 0.0558 0.1102

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. h0 = (sd(X1), sd(X2)) ·n−1 /6 , h = (sd(Wˆ (X)) ) ·n−1/6. The kernels are Gaussian Kernels of

order 2.
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Table 4: Simulation results for B1 = B2 = 2, uniform private information, mutually independent types:  
Empirical rejection probabilities

n

500 Wild

0.02 0.05 0.10

0.01 0.033 0.074

Multinomial 0.0265

700 Wild 0.0075

0.0655 0.122

0.0335 0.0695

Multinomial 0.0195

1000 Wild 0.012

0.049 0.1240

0.04 0.0775

Multinomial 0.026 0.0555 0.1175

Simulations based on 1000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. h0 = (sd(X1), sd(X2)) ·n−1 /6 , h = (sd(Wˆ (X)) ) ·n−1/6. The kernels are Gaussian Kernels of

order 2.

Table 5: Simulation results for B1 = B2 = 2, uniform private information, mutually independent types:  
Power Analysis

n

500 Wild

0.02 0.05 0.10

0.2265 0.3755 0.5165

Multinomial 0.4145

700 Wild 0.3595

0.552 0.685

0.532 0.6705

Multinomial 0.542

1000 Wild 0.528

0.702 0.8165

0.699 0.824

Multinomial 0.763 0.864 0.9195

Simulations based on 1000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. h0 = (sd(X1), sd(X2)) ·n−1 /6 , h = (sd(Wˆ (X)) ) ·n−1/6. The kernels are Gaussian Kernels of

order 2.
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librium of a game which respects Assumptions E, D, and M. So, the goal is to test whether the condition

E{a1 ·a2|X} = E{a1a2|W0(X)} holds in the data. By the discussion provided in Example 3, such an

equality does not hold for the DGP considered here, and the departure from the null hypothesis is

representedby the difference

E{a1 ·a2|x} − E{a1 ·a2|W0(x)} = 1(1 +α ) · 2(1 + α )

1 2(1 − α ·α ) 2
2 2

2 2
2

. Σ
·E{ η } · δ(x ) − E{ δ(x ) } .

Hence, as long as δ(x2) is a non-degenerate function, we are under H1. The magnitude of the departure

from the null hypothesis is here represented by the variance of the right hand side of the above display:

the larger such a variance the greater the departure from H0.

1 1 2 2 3 4 1 1 2
γ
2We parameterize the model as follows: x  ∼ U [b , b ], x  ∼ U [b , b ], ϕ(x ) = c+x , δ(x ) = δ·η·x ,

(b1, b2, b3, b4) = (−0.1, 0, 0, 1) ,α1 = α2 = 0.1, c = 0.5, γ = 0.5, P (η = 0.4) = P (η = −0.4) = 0.5.

The test is implemented similarly to the previous section. The results are reported in Table 4 and 5.

Under the null H0, the Wild-Bootstrap scheme displays a tendency to under-reject, similarly to what was

happening in the previous experiment. The error in the rejection probability seems to be contained for

the Multinomial Bootstrap. Under H1 both tests show a satisfying power, but the capacity of detecting

departures from the null hypothesis is more pronounced for the Multinomial Bootstrap than for the

Wild Bootstrap. This is an adding feature in support of the Multinomial scheme presented in this work.

8 Conclusions

In this paper we provide a test to check if the distribution of the observed data can be rationalized by a

unique Pure Strategy Bayesian-Nash Equilibrium of a game with incomplete information. Each player is

assumed to take a binary decision, and agents’ private types are possibly correlated. We start from a

characterization of the null hypothesis in terms of a conditional moment restriction. This involves

nonparametric conditional probabilities identified from the data. We propose an Integrated Conditional

Moment test. The statistic is based on a nonparametric function of the conditional probabilities that are

themselves nonparametrically defined. Hence, we proceed to a two-step estimation: in a first step we

estimate these conditional probabilities, while in a second step we estimate the function to be plugged

into the statistic. To handle the bias arising from this two steps nonparametric estimation, we use an L2

boosting algorithm. We show that under the null hypothesis the proposed statistic converges to a

functional of a Gaussian process. The asymptotic null distribution depends on unknown features of the

data, so it cannot be used to approximate the critical value of the test. We therefore propose a new

Multinomial Bootstrap scheme which incorporates all the restrictions H0 imposes on the distribution of

the data. In particular, such a scheme imposes that the data is generated by a distribution that can be

rationalized by a unique Bayesian-Nash equilibrium of an incomplete information game. Thanks to the

L2 boosting algorithm, the test can be implemented without undersmoothing. In a Monte Carlo

experiment we show that the test has satisfying performances in small samples, both in terms of size



and power.

Several extensions that could be done for this work. We have proposed a Bierens’ type of test which,

from a technical point of view, can detect a sequence of Pitman alternatives converging to the null at the

rate of n−1/2 6. It would also be interesting to analyze the properties of a double-smoothing test. This

would complement our approach and might be useful from a practical point of view, since it might serve

as a tool to give a stronger confirmation of findings when testing the validity of the Bayesian-Nash

assumption.
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A Asymptotic Expansion

Before proving the main results, we introduce a class of functions that will be often used in the technical  

proofs.

Condition CL. Ψ := 
,  

x  ›→ ψt(x) : t ∈ T 
,

is a collection of uniformly bounded Lipschitz functions in

t, i.e. ||ψt1 − ψt2 ||∞ ≤ C||t1 − t2|| for all t1, t2 ∈ T . We define ϕ t(W (X)) := E{ψ t(X)|W (X)} .

We start with a technical lemma that will be needed in the derivation of the Brahadur representation  

of the empirical process at the basis of Sn .



Lemma 8. (Stochastic Equicontinuity Results) Let Assumption 1-7 hold, and let Let Ψ and ϕ t  be as  

in Condition CL. Then, for b = 0, .., B  uniformly in t ∈T

√
n

T̂ ε̂b

f W 0
0 n t P(i) n(P  −P ) (W ) t ψ = o (1) ;

(ii)
√

n(Pn − P ) T̂ ε̂b(W0) tn ψt = oP (1) ;

T̂ ε̂b

f W 0

(iii)
√

nP (W ) t ψ = 
√

nP εϕ + 
√

nP (m0 n t n t n W 0 0(W ) − [b]

Ŵ
ˆ r

√
[b]

n    t n n
(1)
n,t Pm̂ (W ))t  ϕ + h nP ε̂       t ϕ + o (1) ;

ˆ
b

√ √
(iv) nP T   (W ) t ψ = nP εϕ fε̂ 0 n t n t W 0

√
+ nP (m

0n W 0
[b]

Ŵ
ˆ(W )−m̂ (W ))t ϕ fn  t W 0

r
√

[b]
n n

(1)
n,t+h nP ε̂ t ϕ f W 0 +

oP (1) ;
√ [b]

Ŵn 0(v) n(P − P ) (m̂ (W ) −m
0W 0 n    t P(W )) t ψ = o (1) , and the same result holds by replacing t n

ˆwith t n

,

n,twhere ϕ(1) is a function satisfying Condition CL.

Proof. For Point (i), by Lemma 24, Assumption 4, 5, 6, and 7, we obtain

sup
..

T̂ ε̂b
t∈T f W 0 ∞0 n t P

(W ) t ψ = o (1) .
..

By the above display, Assumption 7(iii), and Lemma 17, we can apply Lemma 19 to obtain Point (i).

Point (ii) can be proved along the same lines as Point (i).

For Point (iii), by Assumption 4, Lemma 24, and the Law of Iterated Expectations, uniformly over

T ,

√
nP

T̂ ε̂b
0 n t(W ) t ψ =√

nP
T̂ ε̂b

f W 0
0

W 0
n t

√ T̂ ε̂b

f W 0
0

W 0
n n t(W ) t ψ + nP (W ) t (t − 1) ψ =

f W 0

1√
n

n   

i=1
ˆε̂ ti,b n,i

Σ ∫ ˆK(v) ϕ (Wt i
W
n

0 ˆ
i+ vh) t (W +vh)d Pv + o (1) =

1√
Σ n

n i=1 ε̂ i,bt̂ n,i

∫
K(v) ϕt(Wˆ

i + vh) dv + oP (1) , (6)

where in the third equality we have used Assumptions 4 and 6 and Markov’s inequality to drop the
W 0
ntrimming t . Now, by the rates in Lemma 24, Lemma 21, and Assumption 6,

1√
n

n   

i=1 ε̂ ti,b n,i

Σ ∫ˆ ˆ
t iK(v) ϕ  (W + vh) dv = 1√

n

n   

i=1 i,b n,i

Σ ∫
ε̂     t K(v) ϕt(Wˆ

i + vh) dv + oP (1) =

1√
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Σ n

n i=1 εˆi,btn,i

∫
K(v) ϕt(W0 ,i + vh) dv + (7)

1√
n

Σ n   

i=1 ε̂ i,btn,i(W  ̂
i  − W0,i)

∫
K(v) ∂ϕt(W0 ,i + vh) dv + oP (1)

uniformly in t ∈  T , where  in the  second  equality  we  have  used  a  Mean-Value  expansion  of ϕt(Wˆ +

vh) around  W0 + vh and  the rates  for Ŵ                                                                                                                            in Assumption 6.  The convergence rates  in Lemma  24  and



Assumption 6 imply that uniformly over T ,

1√
Σ n

n i=1
ˆ

i,b n, i iε̂     t (W −W 0,i

∫
) K(v) ∂ϕt(W0 ,i  + vh) dv =

1√
n

Σ n   

i=1 εitn,i(Wˆ 
i  − W0,i)

∫
K(v) ∂ϕt(W0 ,i + vh) dv + oP (1) = oP (1) , (8)

where the second equality follows from the expansion in Assumption 6 and since E {ε|X }  = 0. Finally,  

by a usual r-th order Taylor expansion and Assumption 4, uniformly overT ,

1√
n

Σ n   

i=1 εˆi,btn,i

∫
K(v) ϕt(W0 ,i  + vh) dv =

√ √
nP εϕ + nP ((m

0n t n W 0
[b] ˆ √

r [b](W ) − m̂ (W ))t  ϕ + h nP ε̂ t (1)
Ŵ n  t n n  n,t Pϕ + o (1) . (9)

Putting together Eq. 9, 8, 7, and 6 yields Point (ii).

Point (iv) can be proved along the same lines as Point (iii), so the proof is omitted.  

For Point (v), by using the recursive structure in Eq. 3,

√ [b]

Ŵn 0n(P − P ) (m̂ (W ) − m
0W 0 n t(W )) t ψ =

√ [0]

Ŵn 0n(P − P ) (m̂ (W ) − m W 0 0 n t(W )) t ψ + b−1
s=0

Σ √
n

T̂ ε̂ s

Ŵ
fˆ[0] 0 n tn(P  −P ) (W ) t ψ .

Assumption 7(ii) and Lemma 17 combined with Lemma 19 ensure that the first term on the RHS of the

previous display is oP (1) uniformly over T . For a generic addendum of the second term on the RHS, by

the rates in Lemma 24and Assumption 7,

√
T̂ ε̂ s

Ŵ

√
n

fˆ[0] 0 n t n
T̂ ε̂ s

f W 0
0 n t Pn(P  −P ) (W  ) t ψ = n(P  −P ) (W ) t ψ + o (1)

uniformly over T . Using Point (i), Lemma 24, and Assumption 5-6, the leading term of the above  

expression is oP (1) uniformly in t. By this and the two previous display, we conclude for Point (v).

Lemma 9. (First expansion) Under Assumption 1-7, uniformly over T ,

n  B  n Ŵ
 ̂ ˆ ˆ

t

√ √
n P  ε̂     t f  (W ) φ = nP ε fn W

⊥
0 t

√
φ − nP (a − W )∂m

0n 0 W Wf φ⊥
0 t√

r [B −1] (1)
n n  n,t W 0

−h nP ε̂ t ϕ f +oP (1) .

Proof. By Lemma 24, Assumption 7, and Lemma 21 we can replace the trimming t̂ n with tn ,  so that  

uniformly over T ,

n    B n Ŵ t

√ √
W

 ̂ ˆ ˆ ˆ ˆ
n    B n ˆ t Pn P  ε̂     t f  (W ) φ = n P ε̂   t f  (W ) φ + o (1) =

√
n Ŵ̂

ˆ
n t

√
n P  ε f   (W ) t φ + n P (m
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0n W 0
[B ]

Ŵ W
ˆ ˆ ˆ

n ˆ t P(W ) − m̂ (W )) t f  (W ) φ + o (1) . (10)



For the first term on the RHS of the previous display, by Assumption 6 and 7, and a Mean-Value expan-

Ŵ
ˆˆ 0sion of f  (W ) around W ,

n ˆ̂ ˆ√ √ ˆ
W Wn t n ˆ 0 n tn P  ε f   (W ) t φ = n P ε f  (W ) t φ +

√
n Pn ε ∂f W 0 (W0) (Ŵ − W0) tn φt + oP (1) uniformly over T .

Using Assumption 7 together with Lemma 19delivers

n ˆ̂W 0 n t

√ √
n P  ε f   (W  ) t φ = n P ε f

0n W 0 t P(W ) φ + o (1)

uniformly over T . By the expansion in Assumption 6 and since E {ε|X }  = 0 under H0,

√
n Pn ε ∂ f W 0  (W0) (Ŵ  − W0) tn  φt  = oP (1) uniformly over T .

Ŵ
We now turn to the second term on the RHS of Eq. 10. Using the recursive structure of m̂[B], a Mean-
Value expansion of T̂ ε̂ (Ŵ  ) around W0, and the rates in Lemma 24 and Assumption 6,

B − 1

√
0n W 0

[B ]

Ŵ nn P (m (W ) − m̂ (W)) t
W

ˆ ˆ ˆˆ tf (W ) φ =
√

0n W 0n P (m (W ) − m̂
[B −1]

Ŵ
ˆ

n Ŵ̂
ˆ

t

√ ˆ(W )) t  f  (W ) φ − n P Tn ε̂B − 1
(W0) tn  φt  + oP (1) =

√
0n W 0n P (m (W ) − m̂

[B −1]

Ŵ
ˆ(W )) t f

0n     W 0 t

√ ˆ(W ) φ − n P Tn ε̂B − 1
(W0) tn  φt  + oP (1)

uniformly over T , where in the last equality we have used the convergence rate of m̂
[B −1]

Ŵ
in Lemma 24

and Assumption 7. Using Lemma 8 for the second term on the THS of the previous display,

B − 1 0

√√
n Pn T̂ ε̂ (W0) tn  φt  =

√
nPnει t fW + nP (m

0n W 0(W ) − m̂
[B −1]

Ŵ
ˆ(W ))t ι fn  t W 0 +

r
√

h nPn
[B −1] (1)

n Wn,t 0
ε̂ t ϕ f +oP (1) ,

uniformly over T . Replacing the previous displays into Eq. 10delivers

n    B n Ŵ
 ̂ ˆ ˆ

t

√ √
n P  ε̂     t f  (W ) φ = n P ε f

0n W 0
⊥
t(W ) φ +

√
0n W 0n P (m (W ) − m̂

[B −1]

Ŵ
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⊥ r

√
n

[B −1] (1)
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(W ) φ − h nP ε̂ t ϕ f W 0
+ oP (1)

uniformly over T . By the recursive structure ofm̂
[B −1]

Ŵ
, the rates in Lemma 24 and Assumption 7,

√
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Ŵ
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snP T (W )tn  ε̂ 0 n

⊥
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n 0n P (m̂ (W ) − m
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n(W )) t f W 0

⊥(W ) φ + B −1

Ŵ t s=0

Σ √ ˆ
n ε̂0 s 0

0W ⊥
n tnP T (W )t φ +

√
nPn∂mW 0 f W 0 φ⊥

ttn(Wˆ − W0) + oP (1) uniformly over T ,
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Ŵ
where in the last equality we have used a first order expansion of m̂ [0](Ŵ  ) around W0, Assumption 5, 6

ˆ
sn    ε̂ 0

0W ⊥
n t

and  7.  Now, notice that
√

T (W )t φ is a centered process by the Law of Iterated Expectations,
nP

so using Lemma 8, the expansion in Assumption 6, and the two previous displays we conclude.

Lemma 10. (Negligibility of the boosting iterations) Under Assumptions 1-7, uniformly in t ∈ T ,

√
r [B −1] (1)

n n n,th nP ε̂ t ϕ f W 0
= oP (1) .

Proof. We first show the following recursive structure:

r sh nP ε̂ ˜
n  B−s  n n,t

r (s+1)
√ √

t β = −h nP ε̂n  B−(s+1) n
(̃1)
n,t Pt β + o (1) (11)

for s = 1, .., B − 1

uniformly over T , for a weighting function βn,t  satisfying the CL condition. To this end, by therecursive

Ŵ
structure of m̂  [b], the rates in Assumption 6 and 7, and Lemma 24,

r sh nP ε̂ t βn  B−s  n n,t
r s

√ √˜ ˜= h nP εt βn n n,t
r s

√
+ h nP (m

0n W 0
[B −s]

Ŵ
ˆ ˜(W ) − m̂ (W )) t βn n,t =

r s
√ ˜h nP εt βn n n,t

r s
√

+ h nP (m
0n W 0

[B −s]

Ŵ
˜(W ) − m̂ (W )) t β0 n n,t

r s
√−h nP ∂m

0n W n,t n
˜ ˆ

0 Pβ t (W − W ) + o (1) (12)

(13)

uniformly over T . Since β ñ,t satisfies condition CL, by an application of Lemma 19,

hrs√nPnεtnβ˜
n,t = oP (1) uniformly over T .  

Similarly, by the expansion in Assumption 6,

r sh nP ∂m
0n W n,t n
˜ ˆ

0
r s

√ √
β t  (W − W )= h nP ∂m

0
˜

n W n,t n 0β t (a − W ) + oP (1) (14)

uniformly over T .

Ŵ
For the second term on the RHS of Eq. 12, by the recursive structure of m̂  [b], the rates in Assumption 6

and 7, and Lemma 24,

r s
√ [B −s]

Ŵn 0h nP (m̂ (W ) − m
0

˜(W )) t βW 0 n n,t
r s

√
n= h nP (m̂

[B −(s+1)]

Ŵ 0(W ) − m
0

˜
W 0 n n,t(W )) t β +

r s
√

h nPn

T̂ ε̂
B − ( s + 1 )

f W 0
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˜(W ) t β0 n    n, t P+ o (1) uniformly over T .



Using Lemma 8, the second term on the RHS of the previous display can be approximated as

r sh nPn

T̂ ε̂
B − ( s + 1 )

f W 0

r s
√ √

(W0) tnβn, t = h nP˜ ˜
n n,t

rs
√

εβ + h nP (m
0n W 0(W ) − m̂

[B −(s+1)]

Ŵ
(Ŵ  )) tn  β ñ,t+

+hr (s+1)
√

nP ε̂n  B−(s+1) n
(̃1)
n,t Pt β + o (1) =

r s
√

h nP (m
0n W 0(W ) − m̂

[B −(s+1)]

Ŵ
˜(W )) t β0 n n,t + h r (s+1)

√ (̃1)
n   B−(s+1) n  n,t PnP ε̂ t β + o (1)

unif.  over  T ,

where β˜
n,t(w) := E{β˜

n,t(X)|W (X) = w} , and in the second equality we have used the same arguments  

as in Eq. 12, 13, and 14. Putting together the previous two displays yields

r s
√ [B −s]

Ŵn 0h nP (m̂ (W ) − m
0

˜(W )) t βW 0 n n,t =

r s
√

nh nP (m̂
[B −(s+1)]

Ŵ 0(W ) − m
0W 0 n ñ , t(W )) t β + h⊥ r (s+1)

√
nP ε̂n B−(s+1)

(̃1)
n  n,t Pt β + o (1)

⊥̃
n,t

˜uniformly  over  T , where β (X) = β ˜
n,t n, t(X) − β (W0(X)) = β˜

n,t(X) − E{β˜
n,t(X)|W (X)} . By

n
W 0
nthe  Assumption 5,  we  can replace  the trimming t with t in the first term on the RHS of the above

expression, so that

r s
√

nh nP (m̂
[B −(s+1)]

Ŵ 0(W ) − m
0W 0 n

⊥̃
n,t(W )) t β =

r s
√

h nPn (m̂
[B −(s+1)]

Ŵ 00 W 0
0 ˜W ⊥

n n,t
(W ) − m (W )) t β = oP (1) unif. over T ,

where the second equality follows from noticing that the process on the RHS is centered (bydefinition

of β̃ ⊥ ) and applying Lemma 8. By the previous two displays, Eq. 12, 13, and 14, we obtain that Eq. 11n,t

holds. By the recursive structure in Eq. 11 and a simple induction we obtain

rh nP ε̂n  B−1 n n,t
rB

√ √
n  0 n

˜ (̃1)
n,t Pt β = −h nP ε̂   t β + o (1)

uniformly over T . Conclude by the above expression and the rates in Assumption 5 and7.

Observation: The above lemma shows that, under Assumptions 1-6, the boosting iterations do not have an√
n  B  n ˆW

 ̂ ˆ ˆ
timpact on the Bahadur expansion of the empirical process nP ε̂  t f  (W )φ at the basis of the statistic

Sn. This results and the asymptotic distribution of Sn  are reported in the following Corollary.

Corollary 11. (Proof of Proposition 6) Under Assumption 1-7,

n    B n Ŵ
 ̂ ˆ ˆ

t

√ √
n P  ε̂     t f  (W ) φ = nP ε fn W

⊥
0 t

√
φ − nP (a − W )∂m
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0n 0 W W
⊥

0 t Pf φ + o (1)



uniformly over T . Accordingly,

ˆ
n n    B  n    Ŵ t

2
S  = 

∫  
.
√

n P  ε̂        t̂     f̂   (W ) φ µ(d
∫ 2t) ; G µ(dt) ,

. . .

where G is a Gaussian stochastic process taking values in A∞(G), with G :=
,
(a, y, x) ›→ (y−mW0 (W0(x)))·

0W 0
⊥
t 0 00 W 0 W 0

⊥
t

,
f (W (x)) ·φ  (x) − (a − W (x)) ∂m (W (x)) f (W (x)) φ  (x) : t ∈T and defined by the col-

,

1 2
lection of covariances Pε2φ⊥

t φ⊥
t : t1, t2 ∈ T 

,
.

Proof. The first result is an immediate consequence of Lemma 9 and 10. For the second result, we  can 

proceed as in Example 19.7 in van der Vaart (1998) by the compactness of T and the bound-

edness of the random variables involved, to obtain that N (δ, G, || ·||∞) ≤ N (Cδ, T , || ·||), with
1
0

∫ √ √
n

⊥
t

logN (δ, T , || ·||)dδ  < ∞.  By Theorem  19.14  in van der Vaart (1998), nP εφ ;  G. Hence,

conclude by Theorem 18.11(i) in van der Vaart(1998).

B Bootstrap Expansion

We first reformulate the bootstrap DGP in a way that is relatively easy to handle from a mathematical  

point of view. Define the following DGP:

a∗1          = 1
,
W  ̂1(X i)≥ u∗

1,i

, 
,

2a∗ = 1
,

a∗
1,i

= 1 ·1
, , [B ]

Ŵ
ˆ

im̂ (W ( X )) ≥ u∗ + 1 a∗
2,i 1,i

= 0 ·1
, , , , ˆ

2 i
[B ]

Ŵ
ˆ

iW ( X )−m̂ (W ( X ))

Ŵ   1 (X i ) 1−Ŵ 1 (X i )
≥ u∗∗

2,i

,
, (15)

Yi
∗ = a∗

1,i ·a∗
2,i , and u∗ := (u∗

1, u
∗

2, u
∗
2
∗) ∼ iid U [0, 1] .

The bootstrap DGP defined in Eq. 15generates the same probability measure for (a∗
1, a∗

2)as Algorithm

3. In this sense the two DGPs are equivalent. Working with the DGP in Eq. 15 is more convenient from a

mathematical viewpoint, so we choose to build our proofs on it. Define P ∗the probability measure that

considers only u∗as random and the sample data as fixed. Recall that P denotes the probability measure

of the sample. Let P := P ∗⊗ P be the probability measure that considers both u∗and the sample data as

random.

Remark. Notice that given a real-valued random variable g(u∗, X ) and an arbitrary set A ⊂ R, the

probability P ∗(g(X, u∗) ∈A) is random.

(1)
t t n , tLemma 12.  Let ψ , ϕ  , and ϕ be as in Lemma 8, and let Assumptions 1-10 hold. Then for b = 1, .., B

and uniformly over T ,

√
n

T ∗̂
ε̂
b

f W 0
0 n t(i) n(P  −P ) (W ) t ψ = o P ∗(1);

√
n
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ˆ∗
ε̂ b

(ii) n(P − P ) T ∗ (W ) t ψ0 n t P= o ∗ (1) ;



(iii)
√ T ∗̂

ε̂

f W 0

√
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Ŵ
ˆ
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√

n
[B ] [b]

Ŵ Ŵ∗
ˆ ˆ ∗

n t 0nP (m̂ (W) − m̂ (W )) t ϕ  (W ) d r
√ ∗

b,iv + h nP ε̂ tn n,i
(1)
n,tϕ + oP ∗ (1) ;

∗
ε̂ b

0 n t

√ √
n

∗ [B ]

Ŵ
ˆ ˆ(iv) n P  T ∗ (W ) t ψ = nP (Y  − m̂ (W )) t ϕ (W ) fn t 0 W 0 +√

n
[B ] [b]

Ŵ Ŵ∗
ˆ ˆ+ nP (m̂ (W) − m̂ (W ))t ϕ  (W ) fn    t 0 W 0

∗ r
√ ∗

bn n
(1)
n,t+ h nP ε̂ t ϕ f W 0

+ oP ∗ (1)
√ ∗[b]

n 0
[b]

Ŵ       ∗ Ŵ 0 n    t P(v) n(P − P ) (m̂ (W ) − m̂ (W ))t ψ = o ∗ (1)

Proof. For Point (i), by Lemma26

.. T̂ ∗. . ε̂
b

f W 0

(W0) tn..
..
..

∞
= oP∗ (1) .

..

By the previous display and Assumption 10, we can apply Lemma 20 to obtain the desired result.

The proof of Point (ii) proceeds in the same way as the proof of Point (i).

For Point (iii), from the rates in Lemma 26, Assumption 4, and the Law of IteratedExpectations,

n P b

f W 0
0 n t

√ √T ∗̂ T ∗̂
ε̂ ε̂

0
W 0
n

√ T ∗̂
ε̂
bb

f W 0 f W 0
t 0

W 0
n n t(W  ) t ψ = n P (W ) t ψ + n P (W ) t (t − 1) ψ =

1√
n

Σ n ∗
i=1 b

ˆε̂ t n,i

∫
t

ˆ ∗
i

0 ˆW ∗
n iK(v) ϕ  (W  + vh) t (W + vh) dv + o P ∗ (1) =

1√
Σ n ∗

n i=1 b
ˆε̂ t n,i

∫
t

ˆ ∗
iK(v) ϕ  (W + vh) d Pv + o ∗ (1) unif. over T ,

where in the second equality we have used Assumption 6 and Markov’s inequality to drop the trimming
W 0
nt . Using the rates in Lemma 26 and Assumption 4-9,

1√
n

∗n

i=1 b,iε̂ t n,i

Σ ∫
t

ˆ ˆ ∗
iK(v) ϕ  (W + vh) dv = 1√ n ∗

n i=1 b,iε̂ t
Σ ∫

n,i t
ˆ ∗

iK(v) ϕ (W + vh) dv + o P ∗ (1) =

1√
n

Σ n ∗
i=1 b,iε̂ t n,i

∫
K(v) ϕt(W0 ,i + vh) dv +

1√
Σ n ∗

n i=1 b,i n, i
ˆ ∗

i

∫
ε̂     t (W   −W ) K(v) ∂ϕ (W0,i t 0,i

∗
P+ vh) dv + o (1) (16)

uniformly over T , where in the second equality we have used a Mean-Value expansion of ϕt(Wˆ
i
∗+ vh)

around ϕt(W0 ,i + vh) and the rates in Assumption 9. For the second term on the RHS of the previous

display, Lemma 26,Lemma 24,and Assumption 9ensure that

1√
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n

∗n

i=1 b,i n, i
∗
i 0,iε̂     t (W − W )

Σ ∫
t

ˆ ˆ ∗
iK(v) ∂ϕ (W + vh) dv =

√
n

∗ [B ]

Ŵ
ˆnP (Y  − m̂ (W )) t n,i

ˆ ∗
i 0,i(W − W )

∫
K(v) ∂ϕt(W0 ,i + vh) dv = oP∗ (1)

unif.  over  T ,

where in the last equality we have used Assumption 9 and Lemma 25. For the first term on the RHSof



Eq. 16, by the usual r-th order Taylor expansion

1√ n ∗
n i=1 b,iε̂ t n,i

Σ ∫
K(v) ϕt(W0 ,i  + vh) dv =

√
n

∗ [B ]

Ŵ
ˆ √

n t 0,i n
[B ] [b]

Ŵ Ŵ∗
ˆ ˆ ∗

n t 0,inP (Y  − m̂ (W )) t  ϕ  (W ) + nP (m̂ (W) − m̂ (W )) t ϕ  (W ) dv +

r
√ ∗h nP ε̂ tn n,i

(1)
b,i n, t Pϕ + o ∗ (1) unif. over T .

Conclude for Point (iii) by the previous four displays.

The proof of Point (iv) proceeds along the same lines as the proof of Point (iii).  

For Point (iv), by the recursive structure of m̂ [b] and m̂ ∗[b] ,
Ŵ Ŵ     ∗

n Ŵ∗

∗[b] [b]

Ŵ0 0 n t

√ √
n

∗[0]

Ŵ∗ 0
[0]

Ŵ 0 n tn(P − P ) (m̂ (W ) − m̂ (W  ))t ψ = n(P − P ) (m̂ (W ) − m̂ (W ))t ψ +

B −1
s=0

Σ √ T̂ ∗
ε̂ s

f ˆ ∗
n 0 n tn(P  −P ) (W )t ψ + B −1

ˆ s=0

Σ √
n

T̂ ε̂ s

fˆˆW W
0 n tn(P  −P ) (W )t ψ .

The first term on the RHS of the previous display is oP ∗ (1) uniformly over T , by Assumption 10and the

compactness of T . Proceeding as in the proof of Point (v) of Lemma 8 yields that the third term on the

RHS of the previous display is oP ∗ (1) uniformly over T . By the rates in Lemma 24, Lemma 26, and

Assumption 7-10,

n

T ∗̂
ε̂ s

f̂
Ŵ ∗

√ √
0   n t n

T ∗̂
ε̂ s

f W 0
0   n t Pn(P  −P ) (W  )t ψ = n(P  − P ) (W )t ψ + o ∗ (1) =

oP ∗ (1) uniformly over T ,

where in the second equality we have used Point (i) of the present Lemma. Conclude by the previous  two

displays.

Lemma 13. Let Assumptions 1-10 hold, and Ψ be a class of functions that respects condition CL. Then,  

uniformly over T ,

n
∗ [B ]

Ŵ n t

√ √
n

ˆ ˜∗nP (Y  − m̂ (W ))t ψ = nP (Y − m
0W 0 t P(W ))ψ + o ∗ (1) ,

0,1
∗
1where Ỹ  ∗         := 1

,
W (X) ≥ u ·1

, ,
0W 0m (W )

W 0 , 1

∗
2

,
(X ) ≥ u .

Proof. By proceeding as in Point (i) of Lemma 25,

∗ [B ]
t∈T Ŵ n t

ˆ ˜∗sup ..(Y  − m̂ (W )) t ψ − (Y − m
0W 0 n t

2L (P)

(W )) t ψ = oP∗ (1) .
..

By the previous display, Assumption 10, and Lemma 18, an immediate application of Lemma 20 yields  

the desired result.
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Lemma 14. (A First Bootstrap Expansion) Let Assumptions 1-10 hold. Then, uniformly over T

∗
B
ˆ

Wn n  ˆ ∗ t

√ √ˆ ˆ ˜∗ ∗nP ε̂      t f (W )φ = nP (Y − mn W 0 W
⊥

0 0 t

√ ∗
n 0(W ))f φ − nP (ã  − W )∂m

0W Wf φ⊥
0 t +

hr√nPnεˆ∗
B−1tnϕn,t + oP ∗ (1) ,

where Ỹ ∗ := 1
,
W 0,1

∗
1(X) ≥ u ·1 0W 0m (W )

W 0 ,1

, , ,
∗ ∗ ∗ ∗ ∗
2 1 2 1

,
0,1(X ) ≥ u , ã := (ã , ã ), ã := 1 W (X ) ∗

1

,
≥ u ,

∗ ∗
2 1ã                   := 1   ã              = 1 ·1

, , ,
0W 0m (W (X)) ∗ ∗

2 1≥ u + 1   ã           = 0 ·1 0 ,2 0W 0W (X )−m (W (X))

W 0 , 1(X ) 1−W0 ,1(X)
∗∗
2

, , , , ,
≥ u .

Proof. Using the rates in Lemma 26, Lemma 21, and Assumption 9-10,

ˆ ∗ √
n   B   n Ŵ       ∗ t n

∗ [B ]

Ŵ
ˆ ˆ

n  Ŵ       ∗ t

√
nP ε̂∗t̂  f̂ (W )φ = nP (Y  − m̂ (W ))t f (Ŵ  ∗)φ +

√
n

[B ]

Ŵ

∗[B ]

Ŵ∗
ˆ ˆ ∗

n  Ŵ ∗ˆ ˆ ∗
t PnP (m̂ (W) − m̂ (W ))t f (W )φ + o ∗ (1) unif. over T . (17)

Ŵ
ˆ ∗

ˆ ∗ 0Using a  Mean-Value Expansion of f (W ) around W , Assumption 9-10, and Lemma 25,

√
n

∗ [B ]

Ŵ
ˆ ˆ

n  Ŵ       ∗ tnP (Y  − m̂ (W ))t f (Ŵ  ∗)φ =
√

n
∗ [B ]

Ŵ
ˆ

,
n Ŵ       ∗ 0nP (Y  − m̂ (W ))t f (W ) + ∂ fˆ ˆ ∗

,
(W ) ·(W − W ) φ + oW 0 0 0 t P ∗ (1) =

√
n

∗ [B ]

Ŵ
ˆnP (Y  − m̂ (W ))t f

0n   W 0 t P(W )φ + o ∗ (1) unif. over T . (18)

By Lemma 24, Lemma 26, and Assumption 9-10, uniformly over T ,

√
n

[B ]

Ŵ

∗[B ]

Ŵ∗
ˆ ˆ ∗ ˆ

n  Ŵ       ∗ tnP (m̂ (W) − m̂ (W ))t f (Ŵ  ∗)φ =

√ [B ]

Ŵ
ˆnPn(mˆ (W ) − m̂

∗[B −1]

Ŵ∗
ˆ ∗(W ))t f

0n   W tφ − nPn

T ∗̂√ ε̂
B − 1

f̂
Ŵ ∗

ˆ(W ) t f
0n     W t Pφ + o ∗ (1) .

Using Lemma 26, Assumption 9-10, and Lemma 12 on the second term RHSof the previous display

√
nPn

T ∗̂
ε̂
B − 1

f̂
Ŵ ∗

ˆ(W ) t f
0n     W t

√
n

ˆφ = nP T ∗
ε̂B − 1

0∗ (W0) tn f W φt + oP ∗ (1) =

εˆB−1

√
nP T̂ ∗

∗ (W0) tn f W 0 φt + oP ∗ (1) unif. over T .

The second term on the RHS of the previous display can be approximated according to Lemma 12. By  

such approximation and the previous two displays, uniformly overT

n
[B ] ∗[B ]

Ŵ Ŵ∗
ˆ ˆ ∗

n  Ŵ ∗ˆ ˆ
t

√ √
n

∗ ∗ [B ]

Ŵ
ˆnP (m̂ (W) − m̂ (W ))t f (W  )φ  = −   nP (Y  − m̂ (W )) t ι (W ) fn  t 0 W 0 +

√
n

[B ]

Ŵ
ˆnP (m̂ (W ) − m̂

∗[B −1]

Ŵ∗
ˆ ∗(W ))t fn W 0 t

⊥ r
√

n
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φ − h nP ε̂ ∗ tn ϕ (1) fWB −1 n,t 0 + oP ∗ (1) (19)



Using the rates in Lemma 24, Lemma 26, and Assumption 6-7-9-10,

√
n

[B ]

Ŵ
nP (m̂ (W ) − m̂

∗[B −1]

Ŵ∗
ˆ ˆ ∗(W ))t fn W

⊥
0 tφ =

√ [B ]

Ŵn 0nP (m̂ (W ) − m̂
∗[B −1]

Ŵ∗ 0 n W
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0 t
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(W ))t f φ   − nP ∂m

0
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0 tn W W n
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Ŵ∗ 0
W 0
n(W ))t f W

⊥
0 t

√
φ − nP ∂m

0

⊥
0 tn W W n

∗ˆ ˆ
Pf φ t (W − W ) + o ∗ (1)

n
W 0
n

uniformly over T , where in the second equality we have replaced the trimming t with t by Assump-

tion 4, Lemma 24, and Lemma 26. Notice that the first term on the RHS of the previous display is a

centered process, by definition of φ⊥
t. Hence, using Lemma 12 such term will be oP ∗ (1) uniformly over T

. Using this result and Assumption 9, from the previous display we obtain

√
n

[B ] ˆnP (m̂ (W ) − m̂
∗[B −1]

Ŵ Ŵ∗
ˆ ∗(W ))t fn W

⊥
0 tφ =

(20)−√
nPn∂mW0 f W 0 φ⊥

t (ã ∗− W0) + oP ∗ (1) uniformly over T .

Plugging the above display, Eq. 19, and 18 into Eq. 17 yields

ˆ ∗ √
n   B   n Ŵ       ∗ t n

∗ [B ] ˆ
n W 0Ŵ t

√
nP ε̂∗t̂  f̂ (W )φ = nP (Y  − m̂ (W ))t f φ⊥ +

− nP ∂m
0n W W 0 t

⊥ ∗f φ (ã  − W 0
r

√ √
) − h nP ∗

n n
(1)

b n,tε̂ t ϕ f W 0
+ oP ∗ (1)

uniformly over  T .

Conclude by using Assumption 9-10 and Lemma 13 on the first term RHS of the previous display.

Lemma 15. (Negligibility of the Reminder Term in Bootstrap Expansion) Under Assumptions1-10,

hr√nPnεˆ∗
B−1tnϕn,t = oP ∗ (1) uniformly over T .  

Proof. We first obtain the following recursive structure:

hrs√nPnεˆ∗ t β = −hr (s+1)
√

n    n, t n
∗ (1)

B−s B−(s+1) n n,tnP ε̂ t β + oP ∗(1)

uniformly over T  , for s = 1, .., B  −1 , (21)

for a  weight function βn,t  satisfying condition CL. Using Lemma 25,  Assumption 10,  and  the recursive

Ŵ∗
structure of m̂ ∗[b] ,

hrs√nPnεˆ∗
B −s n n,t

r s
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n
∗ [B ]
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ˆt β = h nP (Y  − m̂ (W ))t βn n,t +

hrs
√

n
[B ]

Ŵ
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f
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ˆ ∗(W ) tnβn , t  + oP ∗(1)



uniformly over T . By the rates in Lemma 26 and Assumptions 9-10,

rs
√

h nPn

ε̂
B − ( s + 1 )

f̂
Ŵ ∗

(W ) t βn n,t
ˆ ∗ rs

√T ∗̂ T ∗̂
ε̂

f W 0
= h nPn

B − ( s + 1 ) (W0) tnβn , t  + oP ∗ (1)

uniformly over  T .

Applying Lemma 12 to the leading term of the above display and using the two previous displays yields
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r s
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Ŵ
ˆ ˜tnβ(1) + hr nP (Y  − m̂ (W )) t βn n,t P+ o ∗ (1)

uniformly over  T ,

where β̃ n,t(·) = E{βn , t(X) | W0(X) = ·} and βn
⊥

,t(X) := βn, t(X) − β˜
n,t(W0(X)) . By Lemma 25 the

second term on the RHS of the previous expression is oP ∗ (1) uniformly in t ∈ T . Using a reasoning

similar to Eq. 20 delivers

r s
√

n
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Ŵ
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∗[B−(s+1)]

Ŵ∗
ˆ

n
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r s
√−h nP ∂m

0n W W 0 t
⊥ ∗f φ (ã  − W ) +o0 P ∗ (1) =

oP ∗ (1) uniformly over T .

The previous two displays prove the recursive structure in Eq. 21. By such recursive structure and a  

simple induction,

B −1hr√nPnεˆ∗ t βn n,t
rB

√ ∗
n n

(1)
0 n,t P= −h nP ε̂   t β + o ∗ (1) uniformly over T .

The first term on the RHS of the previous display can be decomposed as

rB
√ ∗

0n n
(1)
n,th nP ε̂ t β =

rB
√

n
∗ [B ]

Ŵ
ˆ (1)

n n,t
rB

√
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Ŵ
ˆ ∗[0]

Ŵ∗
ˆ ∗

nh nP (Y  − m̂ (W )) t β + h nP (m̂ (W) − m̂ (W )) t β (1)
n,t .

By Lemma 25 the first term on the RHS of the previous display is oP ∗ (1) uniformly over T . The rates in  

Assumptions 6-10 and Lemma 24 ensure that the second term is also negligible. So, we conclude.

Corollary 16. (Proof of Proposition 7) Under Assumptions 1-10,

∗
B
ˆ

n n Ŵ ∗ t

√ √
n

ˆ ˆ ˜∗ ∗nP ε̂      t f (W )φ = nP (Y − m
0W 0 W

⊥
0 t

√ ∗
n 0(W ))f φ − nP (ã  − W )∂m

0W Wf φ⊥
0 t +

uniformly over T ,

where Ỹ ∗ := 1
,
W 0,1

∗
1(X ) ≥ u ·1
, ,

0W 0m (W )

W 0 ,1
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∗ ∗ ∗ ∗ ∗

1 2 1

, ,
0,1(X) ≥ u ,  ã                      :=  (ã    , ã           ), ã                      := 1 W (X) ≥ ∗

1

,
u ,



∗ ∗
2 1

, ,
ã := 1 ã = 1 ·1

,
0W 0m (W (X)) ∗ ∗

2 1≥ u + 1 ã = 0 ·1
, , , ,

0 ,2 0W 0W (X )−m (W (X))

W 0 , 1(X ) 1−W0 ,1(X)
∗∗
2

,
≥ u .

Proof. The result immediately follows from Lemma 14 and Lemma 15.

C Auxiliary Lemmas

Lemma 17. (Entropy bounds) Denote with Z a random variable taking values in Z, with PZ its proba-

bility measure, and with Ψ a class of functions satisfying condition CL. Let F n be a sequence of classes of

uniformly bounded functions defined over Z . It holds that,

(i) N (δ, ΨFn, ||·||∞) ≤ N (Cδ, F n , ||·||∞) ·N (Cδ, T , ||·||);

(ii) If log N (δ, FnΨ, ||·||∞) ≤ C1δ−υ, then log N (δ, FnΨ, ||·||∞) ≤ C2δ−υ.

Proof. For Point (i), given two classes F and A of uniformly bounded functions defined on an arbitrary

set Y , it is immediate to see that N (δ, FA , || ·||∞,Y) ≤ N (Cδ, F , || ·||∞,Y) ·N (Cδ, A, || ·||∞,Y) for

a finite constant C. Using the Lipschitz property of the class Ψ and by proceeding as in Example 19.7 of

van der Vaart (1998), N (δ, Ψ, ||·||∞) ≤ N (Cδ, T , ||·||). The previous three inequalities imply that N

(δ, ΨFn, || ·||∞) ≤ N (Cδ, F n , || ·||∞) ·N (δ, T , || ·||). Point (ii) follows from this last inequality, the

compactness of T and Theorem 2.7.1 in van der Vaart & Wellner (1996) (see also the Observation in

Section 5).

Z ULemma 18. Let P be the probability measure  of a variable Z , P be the probaility measure for U ∼, ,
U [0, 1],  and P :=  PZ  ⊗ PU .  Define the class of functionsF  := (u, z) ›→ 1{m(x) ≥ u }  : m  ∈ M ,  

where M is a collection of functions with range in (η, 1 − η) with η ∈ (0, 1). Then,

N[·](
√

δ,F , L2(P)) ≤ N[·](δ,M , L1(PZ )) .

Proof. Fix δ > 0, and consider a collection of brackets covering M , say A :=
,

[lj, s j ] : j = 1, .., N[·](δ,M , L1(PZ ))

with ||sj − lj ||L1(PZ ) < δ. Given the range of the elements in M , for each bracket [lj, s j ]we can take lj

and s j with range in (0, 1) without loss of generality. Define l̃j(u, z) := 1{u ≤ lj (z)}, s̃ j(u, z) := 1{u

≤ s j (z)}, and the collection of brackets Ã :=
,

[̃ lj, s̃ j] : j = 1, .., N[·](δ, M , L1(PZ ))
,

. Pick an

arbitrary element f ∈F , say f (u, z) = 1{u ≤ m(z)} with m ∈M . By definition of A, m ∈ [lj, s j ] for

some bracket in A, so that lj (z) ≤ m(z) ≤ s j (z) and 1{u ≤ lj (z)} ≤ 1{u ≤ m(z)} ≤ 1{u ≤ s j (z)}

for all (u, z) in the support of P = PU ⊗ PZ . By the arbitrariness of f , the collection Ã covers the class

F . For the size of each bracket in Ã ,by definition of P , (̃ lj, s̃ j), and Tonelli-Fubini’s Theorem,
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˜||s̃ − lj j ||
2
L2(P)

∫  , ∫
= 1{lj (z) ≤ u ≤ s j (z)} d PU

,
d PZ =

∫
| s j (z) − lj (z) | d PZ = ||sj − lj ||L1(PZ ) < δ .



Conclude by the previous display.

Lemma 19. Assume that Z, PZ, Fn , and Ψ are as in Lemma 17. Let f0 be a fixed function defined over

Z , and fˆbe a random function over Z , where the randomness is considered wrt the probability PZ. Define

Gn :=
√

n(Pn − PZ ). If

(i) ||f̂ − f0||L2(PZ ) = oP (1),
(ii) P (f̂ ∈F n) → 1, with log N[·](δ,F n , L2(PZ )) ≤ Cδ−υ and υ ∈ (0, 2),  

then

Gn(fˆ− f0)ψ t  = oP (1) uniformly over T.

Proof. Define F̃ n:= (Fn − f0)Ψ. Since the entropy of F n − f0 is equal to that of F n , Lemma 17 implies

that log N[·](δ, F ñ, L2(PZ )) ≤ Cδ−υ. Fix δ > 0. By Assumptions (i) and (ii) of the present Lemma, for

an arbitrary η > 0,

lim sup n→∞ P
.
supt∈T .Gn(fˆ− f0)ψ t. > η

Σ 
≤ lim sup n→∞ P

.
sup f ∈F˜n(δ).Gnf . > η

Σ
,

where F˜
n(δ) := 

,  
f  ∈ F̃ n : ||f ||L2(PZ ) < δ 

,
.  The RHS of the previous display can be upperbounded ac-

cording to the maximal inequality in Lemma 19.34of van der Vaart (1998). Since log N[·](δ,F˜
n(δ),L2(PZ )) ≤  

log N[·](δ, F˜
n, L2(PZ )) ≤ Cδ−υ with υ ∈ (0, 2), we can choose a small enough δ to make such upper- bound 

arbitrarily small. By the arbitrariness of η, weconclude.

Lemma 20. Assume that Z , PZ, Fn,Ψ, and f0 are as in Lemma 19. Let f̂ be a random function over Z

where the randomness is considered wrt a probability P = PZ ⊗ PU
∗, with PU

∗being a probability measure.

Define Gn :=
√

n(Pn − P). If
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ˆ(i) ||f − f ||
20  L (P) P ∗

U
= o (1)

∗
U

ˆ P
n [·] n 2 Z

−υ(ii) P  ( f  ∈ F  ) → 1, with log N  (δ, F  , L (P  )) ≤ Cδ and υ ∈ (0, 2)

then

ˆ
n 0 t P ∗

U
G  ( f  − f  )ψ = o (1) uniformly over T .

∗
UP sup t∈T n

ˆG (f
. 0 t .

Proof. By the same reasoning as in Lemma 19, log N[·](δ, F˜
n, L2(PZ )) ≤ Cδ−υ. Fix δ > 0. Assumptions

(i) and (ii) of the present Lemma ensure that for an arbitrary η > 0 ,

. Σ
− f )ψ > η ≤

*
U

.
P sup

ñf  ∈F (δ) n

Σ
G  f > η + P

. .
∗
U

.
t∈T ˆsup ||(f − f  )ψ ||

20 t L (P)
∗
U

Σ .
ˆ> δ + P f ∈ n

Σ
/ F =

*
U

.
P sup

nf  ∈F (δ)˜ .G n f . > η
Σ

+ oP (1) .



Z
*
UP P sup

nf  ∈F (δ) n η PZ

1 *
U

For the first term on the RHS of the above display, using Markov’s inequality

. . Σ Σ , .
˜ .G f . > η > η ≤ E P sup

nf  ∈F (δ)˜ .G n f . > η
Σ ,

=

1
η

.
P sup

ñf  ∈F (δ)
G n f  > η

Σ
,

. .

where the last inequality follows from the product structure of P, i.e. P = PZ ⊗ PU
∗, and Tonelli-Fubini’s

Theorem. With the same arguments as in the proof of Lemma 19, we can show that by choosing δ small

enough the RHS of the previous display can be made arbitrarily small. So, by the arbitrariness of η and

the previous two displays weconclude.

Lemma 21. (Trimming) Under Assumption 4 and 6(i),

(i)√nPn|tˆn − tn| = oP(1)

(ii)If supt∈T ||ĝ tt̂ n||∞ = OP (1) and supt∈T ||g t̂tn||∞ = OP (1), then 
√

nPng t̂(t̂ n − tn) = oP (1)uniformly  

over T .

Proof. Let Bn  := {||f̂ [0] − f  ||∞ ≤ Cdn , f  }  and fix δ > 0 arbitrarily small. Assumption 6(i) ensures that,  

by choosing C large enough, P (Bn) > 1 − δ for any large n. By definition of t̂ n, we can write

ˆ
, Σ

tn(w) = 1 f (w) ≥ τn 1−
[̂0]f (w) − f (w)

τn

Σ,
.

If the event Bn  holds and n is large enough so that Cdn , f  / τ n  ≤1/2,

dn, f1 − C τ ≤ 1− fˆ[0](w) − f (w)

τ
dn, f

n n n

3≤ 1 + C τ ≤
2

for all x  ∈ X . For such n and when the event Bn  holds, by the two previous displays

3
f (w) ≥ τ ˆ

2 n n n⇒ t (w) = t (w) = 1 .

ˆ
n n , f n n n

3
2 n

, ,
Hence,  when  B  holds and Cd / τ ≤ 1/2, we  have  |t   − t |(w) ≤ 1  f  (w) ≤ τ . Using this,Markov’s inequality, and Assumption 4,

P
.√

nPn|tˆn − tn| > δ
Σ

≤ P
.√

nPn|tˆn − tn| > δ ∩Bn

Σ
+ δ ≤

−1
√ 3

2 n

. Σ
δ n ·P  f (W ) ≤ τ + δ = o(1) +δ .

By the arbitrariness of δ we conclude for point (i). Point (ii) follows immediately from point (i) and after

n n
ˆ

n̂
2 2

n
ˆ ˆ

n n n nnoticing that t − t = t − t = (t + t )(t − t ).
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i ,n
n
i=1Lemma 22. Let { Z } be a triangular array of real-valued random variables such that |Zn,i| ≤ C for

nhdall n and i, and let L be a kernel function that is Lipschitz continuous. If log n = o(1), then

..

..
1

nhd

nΣ

i=1

n,iZ L
.

iW − ·Σ
n,i− h−dE Z L

, . W −·

h h

Σ , ..
∞

= O
.. P

. .
logn

nhd

Σ
.

Proof. The proof is the same as Theorem 1.4 in Li & Racine (2006) (pages 36-40).

Lemma 23. Under Assumption 1, 2, and 6,
√

n n(i) nP εt ∂K ˆw−W

h

. Σ
Ph = O (1) uniformly inW;

n n n(ii) If ĝ is a sequence of function defined on X such that P (ĝ ∈ C(X )) → 1 and || ĝ t ||n  n ∞ P= o (1) , then
√

nGngˆntn∂K w−W 0

h

. Σ
h = oP (1) uniformlyover W .

n n n(iii) If ĝ is a sequence of function defined on W such that P (ĝ  ∈ C(W )) → 1 and || ĝ t ||n  n ∞ P= o (1),

then
√

nGngˆn(W0)tn∂K w−W 0

h

. Σ
h = oP (1) uniformlyover W .

Proof.  For  Point  (i),  fix δ  > 0 and  consider  the  δ  covers  A1  := {w j  : j  = 1, .., N  (δ, W ,  || ·||)}, and

A2  := {W ( j) : j  = 1, .., N  (δ, C(Xn), || ·||∞)}.  Then, for arbitrary w ∈  W and  W ∈  C(Xn), wemust

n
have ||w − w1|| < δ and ||W − W (1)||X < δ for some w1 ∈ A1 and W1 ∈ A2. Since by Assumption 3

|∂K(u1) − ∂K(u2)|≤ C||u1 − u2|| for any u1, u2,

w−W (x)
h

h −∂K
. Σ .

1
( 1 )w −W (x )

h

Σ∂K
. .h ≤ C|| 1w − w || + C|| (1)

Xn
W − W || ≤ Cδ .

The previous display and the arbitrariness of δ ensure that the class of functions U := 
,
(ε ,  x) ›→

nεt (x)∂K w−W (x)
h n

. Σ ,
h :  w ∈  W and W  ∈C(X ) satisfies the following entropy bound N (Cδ, U , ||·

||∞) ≤ #A1 ·#A2 = N (δ, W , || ·||) ·N (δ, C(Xn), || ·||∞) . By definition of C(Xn), Theorem 2.7.1

in van der Vaart & Wellner (1996), and Example 19.7 in van der Vaart (1998), the previous inequality

implies that

log N[·](δ,U, ||·||∞) ≤ log N (δ/2, U, ||·||∞) ≤ Cδ−υ with υ ∈ (0, 2).

Assumption 6, the previous two displays, and Lemma 19 ensure that

√
n nnP εt ∂K ˆw−W

h

. Σ √
n
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h = nP ε∂K w−W 0

h

. Σ
Ph + o (1)

uniformly over W .

Since ∂K is uniformly bounded and h = o(1), using again Lemma 19 ensures that the RHS of the  

previous display is negligible uniformly in w.



The proofs of Point (ii) and Point (iii) proceed in a similar way as above by using Assumption 7.

Lemma 24. Under Assumption 5 and 6(i),uniformly over W ,

ˆ
b

(i) Tε̂  (w) = OP

.
n− 1 / 2

h d + 1 τ b
n

+
hdτ b

n

P  |t̂  −t | ||(Ŵ  −W )t ||

τ b
n

n  n n  + 0  n  ∞ +
[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

τ b
n

Σ
;

ˆ
b

(ii) ∂Tε̂  (w) = OP

.
n − 1 / 2

+h d + 2 τ b h d + 1 τ b
n n

n  n n +P  |t̂  −t | ||(Ŵ  −W )t ||

τ b
n

0  n  ∞ +
[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

τ b
n

Σ

[b]

Ŵ
(iii) ||(m̂ −m

0W n ∞)t || = O
.

n− 1 / 2

P h d + 1 τ b +
P |t̂  −t |

hdτ b
n n

n  n n + ||(Ŵ  −W )t ||

τ b
n

0  n  ∞ +
[0]

Ŵ
||(m̂ −m W 0

)t ||n ∞

τ b
n

Σ

where point (iii) holds true also by replacing t̂ n with tn.

ε̂̂b
Proof. By definition of T ,

ε̂ 0∂T̂  (w) = 1
h d + 1   n nP εt ∂K ˆw−W

h

. Σ
+ 1

h d + 1   n W 0 0
[0]

Ŵ
ˆ

nP (m (W ) − m̂ (W ))t ∂K ˆw−W

h

. Σ
+

1 ˆ
h d + 1     n 0  n nP ε̂ (t − t )∂K ˆw−W

h

. Σ
. (22)

For the first term on the RHS of the above display, by Lemma 23,

1
h d + 2   n nP εt ∂K ˆw−W

h

. Σ
h = O n − 1/2

P h d + 2

. Σ
uniformly over W . (23)

For the third term on the RHS of Eq. 22 , since t̂ n − tn  = (t̂ n + tn)(tˆn − tn), the rates in Assumption 7(i)  

ensure that

√
n ˆ

h d + 1     n 0  n nP ε̂ (t − t )∂K ˆw−W

h

. Σ
= O

.
ˆP |tn n n−t |

P h d + 1

Σ
uniformly in w . (24)

For the second term on the RHS of Eq. 22, by Assumption 6-7(i) and a first order Taylor expansion of

Ŵ
m̂ [0](Ŵ  ) around W0,

1
h d + 1 n

[0]

Ŵ
ˆP (m̂ (W ) − m W 0 0 n(W ))t ∂K ˆw−W

h

. Σ
1= Ph d + 1 n

[0]

Ŵ 0(m̂ (W ) − m W 0 0 n(W ))t ∂K
.

w−W 0

h

Σ
+

1
h d + 1   n W 0 0 n

ˆ
0P ∂m (W )t (W − W )∂K w−W 0

h

. Σ
+ O n − 1/2

P h d + 2

. Σ
uniformly over W . (25)

Lemma 23 and Assumption 6-7 imply that

1
h d + 1 n

[0]

Ŵ 0P (m̂ (W ) − m
0W 0 n(W ))t ∂K

.
w−W 0

h

Σ
=

1
h d + 1

[0]

Ŵ
·P (m̂ −m W 0 n)t ∂K w−W 0

h

. Σ
+ O n − 1/2

P h d + 2
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. Σ

uniformly over W , (26)



1
h d + 1

[0]

Ŵ
·P (m̂ −m

0W n)t ∂K w−W 0

h

By Assumption 2 and Tonelli Fubini’s Theorem,

. Σ
=

∫ [0]

Ŵ 0(m̂ (W (x)) −m
0W 0 n(W (x))) ·t (x) ·

, ∫
1

h d + 1 ∂K w−w̃

h

. Σ
W 0

f (w̃)f X |W 0

,
(x|w̃ )dw̃ dx =

.
[0]

Ŵ
O ||(m̂ −m

0P W n ∞
Σ

)t || uniformly over W , (27)

1
h d + 1 n

[0]

Ŵ 0P (m̂ (W ) − m W 0 0 n(W ))t ∂K ˆw−W

h

where in the second equality we have used an Integration by Parts and the usual change of variable.  

Putting together Eq. 26 and 27yields

. Σ
=

O
.

n − 1/2

P h d + 2

[0]

Ŵ
+ ||(m̂ −m W 0  n ∞

Σ
)t || uniformly over W . (28)

By proceeding similarly as for Eq. 28,

1
0h d + 1   n W 0 n

ˆ
0P ∂m (W )t (W − W )∂K

.
w−W 0

h

Σ
= (29)

O
.

n − 1/2

P h d + 2
ˆ 0 n ∞

Σ
+ ||(W − W )t || uniformly over W .

Plugging Eq. 29, 28, 25, 24, and 23 into22,

ε̂ 0∂T̂  (w) = O
.

n − 1/2

P h d + 2 +
ˆn n nP |t −t | ˆ

h d + 1 0 n ∞+ ||(W − W )t || + || [0]

Ŵ
(m̂ −m )t ||W 0  n ∞

Σ
(30)

uniformly over W .

By a reasoning similar to Eq. 30,

T̂ε̂ 0(w) = O
.

n − 1/2

P h d + 1 +
ˆn n nP |t −t |

hd
ˆ 0 n ∞+ ||(W − W )t || + || [0]

Ŵ
(m̂ −m )t ||W 0  n ∞

Σ
(31)

uniformly over W .

Ŵ
Using the above rate and the recursive structure of m̂  [1],

||(m̂ [1]

Ŵ

[0]

Ŵ
− mW 0  )tn||∞= ||(m̂ − m )tW 0 n fˆ

Ŵ

+ T̂ ε̂0t n ∞|| =

OP

.
n− 1 / 2

h d + 1 τ n
+

hdτn

n  n n +P  |t̂  −t | ||(Ŵ  −W )t ||

τn

0  n  ∞ +
[0]

Ŵ
||(m̂ −m W 0

)t ||n ∞

τn

Σ
uniformly over W . (32)

ε̂1
ˆ ε̂̂1 ε̂̂1

We  now obtain the convergence rate for ∂T and T . By definition of T ,

∂T̂  (w) = 1 ˆε̂ 1 h d + 1     n 1  n nP ε̂ (t − t )∂K ˆw−W

h

. Σ
+ 1

h d + 1  n  1 nP ε t ∂K ˆw−W

h

. Σ
+

1
h d + 1   n W 0 0

[0]

Ŵ
ˆ

nP (m (W ) − m̂ (W ))t ∂K ˆw−W

h

. Σ
1

h d + 1

T̂ ε̂0
n fˆ

Ŵ

ˆ
n− P (W ) t ∂K ˆw−W

h
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. Σ
. (33)



Using the rates in Eq. 30, 31, Assumption 6-7, and Lemma 23,

1 T̂ ε̂0

h d + 1  n fˆˆW

ˆ
nP (W ) t ∂K ˆw−W

h

. Σ
= 1 T̂ ε̂0

h d + 1   n f W 0
0 nP (W ) t ∂K

.
w−W 0

h

Σ
+ O n − 1/2

P h d + 2

. Σ
=

1
h d + 1

T̂ ε̂0

f W 0
0 nP (W ) t ∂K

.
w−W 0

h

Σ
+ O n − 1/2

P h d + 2

. Σ
uniformly over W . (34)

Similar arguments as in Eq. 27 ensure that

1
h d + 1

T̂ ε̂0

f W 0
0 nP (W ) t ∂K

.
w−W 0

h

Σ
= OP

.
.. ε̂̂0

f W 0
n

.. T ..
..

Σ
t . (35)

Using Eq. 35, 34, 33, 32, and 31, we obtain

ˆ
1

∂Tε̂  (w) = OP

.
n− 1 / 2

h d + 2 τ n
+

h d + 1 τ n

n  n n +P  |t̂  −t | ||(Ŵ  −W )t ||

τn

0  n  ∞ +
[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

τn

Σ
uniformly over W . (36)

and by proceeding similarly as for the previous display,

ˆ
1

Tε̂  (w) = OP

.
n − 1 / 2

h d + 1 τ n
+

P  |t̂  −t | ||(Ŵ  −W )t ||n  n n  + 0  n  ∞ +
[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

hdτn τn τn

Σ
uniformly over W . (37)

To show the result for a general number of boosting iterations, say b, we will proceed by a simple  

induction. So, assume that for a generic b < B  we have that uniformly overW ,

ˆ
b

∂Tε̂  (w) = OP
n− 1 / 2

h d + 2 τ b
n

+
h d + 1 τ b

n

P  |t̂  −t | ||(Ŵ  −W )t ||

τ b
n

n  n n  + 0  n  ∞ +
[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

τ b
n

. Σ
,

ˆ
b

Tε̂  (w) = OP

.
n − 1/2

h d + 1 τ b
n

+ hdτ b
n

n  n n +P  |t̂  −t | ||(Ŵ  −W )t ||

τ b
n

0  n  ∞ +
[0]

Ŵ
||(m̂ −m W 0

)t ||n ∞

τ b
n

Σ
, and

[b]

Ŵ
||(m̂ −m

0W n ∞)t || = O
.

n− 1 / 2

P h d + 1 τ b +
P |t̂  −t |n  n n + ||(Ŵ  −W )t ||0  n  ∞ +

[0]

Ŵ 0
||(m̂       −m )t ||W n ∞

hdτ b τ b τ b
n n n n

Σ
.

The, by proceeding as in Eq. 32, 36, and 37, we can show that the property will also hold for b + 1. By  Eq. 

32, 36, and 37 the Induction Assumption holds for b = 1, so we conclude.

Lemma 25. Let Assumptions 1-10 hold. Then,
√

n
∗ [B ] ˆ(i) n P  (Y − m̂ (W )) t ∂K w−Wˆ ∗

Ŵ h

. Σ
n Ph = O ∗ (1) uniformly over W ;

(ii) If ĝ nis a sequence of functions defined on X , F n is a sequence of classes of uniformly bounded functions
−υ ∗ P

[·] n ∞ n n  n ∞ Pdefined on X , log N (δ, F  , || ·||   ) ≤ Cδ with υ ∈  (0, 2), P  (ĝ   ∈  F  ) → 1, and ||ĝ t || = o ∗ (1),√
n

∗ [B ]

Ŵ
ˆ

n t P tthen n P  (Y − m̂ (W )) t ĝ ψ = o ∗ (1) uniformly over T , where ψ satisfies condition CL.

(iii) If ĝn
∗ ∗

n

P∗ is a sequence of function defined on W such that P (ĝ  ∈ C(W )) → 1 and ||ĝ  t ||n n  n ∞ P= o ∗ (1),√
n n 0 nthen nG ĝ∗(W )t ∂K

.
w−Wˆ ∗

h

Σ
P n

√
n
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h = o  (1) uniformly over W ,  where G := n(P −P).



Proof. For Point (i), define Ỹ ∗ := 1
,
W 0,1

∗
1(X ) ≥ u ·1
, ,

0W 0m (W )

W 0 ,1 2

,
∗ ∗(X) ≥ u . By definition of Y ,

.. ˜∗ ∗(Y − Y )t n ..
L2(P)

≤

.. ˆ
1

(W − W )t
.. 0,1 n

..
2L (P)

..+
.. ..

. [B ]

Ŵ
ˆm̂ (W )

Ŵ1

− W 0 0

W 0 , 1

Σ
m (W  ) ..

2L (P)
n P

t = o (1)
..

where the last inequality follows from the convergence rates in Lemma 24, Assumption 6, and Assump-

tion 8. Using the above display, the rates in Lemma 24, and Assumption 9, uniformly over W ,

∗ [B ] ˆ(Y  − m̂ (W )) t ∂K
..

ˆw−W ∗
. Σ

˜∗
n W 0 0 nh − (Y − m (W )) t ∂K

.
w−W ∗

0

Ŵ h h

Σ

2L (P)
P

h = o ∗ (1) .
..

From this point onward, the proof proceeds along the same arguments as Lemma 23, with Assumption  6-

7 and Lemma 19 replaced by Assumption 9-10, Lemma 18, and Lemma 20.

For Point (ii), the assumption on the function ĝ and Lemma 24 ensure that

∗ [B ]

Ŵ
ˆ(Y  − m̂ (W )) t ĝ ψ

.. n t
L2(P)

= oP ∗ (1) uniformly over T .
..

∗ ∗
n n

PBy P (ĝ  ∈ C(W )) → 1, Assumption 10, Lemma 18, and the previous display we can apply Lemma

20 to obtain the result of Point (ii).

The proof of Point (iii) proceeds along the same lines as the proof of Point (ii) in Lemma 19, using  

Assumption 9 and Lemma 20.

Lemma 26. Under Assumptions1-10,

T̂ ∗
ε̂

.. ..(i) ∗ ..

.. ∞ ,W
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Proof. By definition of T̂ ∗
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h
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= OP ∗
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Σ
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1
hd + 1 n

∗ [B ]

W
ˆ

nP  (Y − m̂ (W ))t ∂K ˆw−W
ˆ h

= OP ∗
n∗ − 1/2

h d + 2

where in the second equality we have used the consistency in Assumption 9-10. By Lemma 25,

. Σ . Σ
unif. over W . (39)
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Using the rates in Assumption 6, 7, 9, and 10, together with the Lipschitz continuity of∂K ,
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=
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Ŵ
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unif. over W . (40)

Using the rates in Assumption 6, 7, 9, 10, together with Lemma 25

1
h d + 1 n

[0]

Ŵ

∗[0]

Ŵ∗
ˆ ˆ ∗

nP (m̂ (W) − m̂ (W )) t ∂K
.

w−W 0

h

Σ
=

1
h d + 1 n

[0]

Ŵ

∗[0]

Ŵ∗0 0 nP (m̂ (W ) − m̂ (W )) t ∂K
.

w−W 0

h

Σ
+

1
hd + 1 n

ˆ ∗ ˆ− P (W − W ) ∂m
0W 0 n(W ) t ∂K w−W 0

h

. Σ
+OP ∗

n − 1/2

h d + 2

. Σ
=

1
h d + 1

[0]

Ŵ

∗[0]

Ŵ0 0 nP (m̂ (W ) − m̂ (W )) t ∂K
.

w−W 0

h

Σ
+

1
d+ 1

ˆ ∗ ˆ− P (W − W ) ∂m
0W 0 n

.
w−W 0

h h

Σ
(W ) t ∂K +OP ∗

n − 1/2

h d + 2

. Σ
unif. over W . (41)

Proceeding in the same way as for Eq. 27 ensures that the two leading terms on the RHS of the previous

P
∗[0]display are, respectively, O ||(m̂ − [0]

Ŵ       ∗ Ŵ
n ∞ P

. Σ .
m̂ )t || and O || ∗ˆ ˆ

n ∞
Σ

(W   − W )t || uniformly over W .

Proceeding along the same lines as in Eq. 34 and 35yields

Σ B −1
s=0

T̂

W

ε̂ s ˆ
n fˆˆ

nP (W ) t ∂K w−W 0

h
= OP

. Σ . ..
..

T̂ ε̂B

f W 0
n
..
..t + n − 1/2

h d + 2

Σ
unif. over W . (42)

Plugging Eq. 39, 4041, and 42 into 38yields

∂T̂∗
ε̂0
∗ (w) = O ∗

.
n n nP |t −t |

P h d + 1

ˆ n − 1 / 2

hd+ 2
+ + || ∗[0]

ˆ ∗
(m̂ − [0]

ˆW W
m̂ )t ||n ∞ ˆ ∗ ˆ

n ∞+ ||(W − W )t || + ..
ˆ.. T ε̂B

f W 0

tn ..
..Σ

uniformly over W . (43)

By a similar reasoning,

∗̂
ε̂∗0

T (w) =O P ∗

.
ˆP |t −tn n n |

hd + n − 1 / 2

hd+ 1

∗[0]+ ||(m̂ − [0]
ˆ ∗ ˆW W

n ∞m̂ )t || + || ˆ ∗ ˆ
n ∞(W   − W )t || + ..

..
T̂ ε̂B

f
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W 0

tn ..
..Σ

uniformly over W . (44)



Ŵ∗
Using the recursive structure of m̂  ∗[1]and the above convergence rate,

∗[1]

Ŵ∗
||(m̂ − [0]

Ŵ
m̂ )t ||n ∞

.. ∗[0]

Ŵ∗
= .. (m̂ − [0]

Ŵ nm̂ )t +
T ∗̂

f̂
Ŵ ∗

εˆ0 t
..
..n ∞ =

PO ∗

.
ˆn   n nP |t −t |

hdτn
+ n− 1 / 2

h d + 1 τ n
+

||(m̂ −m̂∗ [0] [0]

Ŵ     ∗ Ŵ
)t ||n ∞

τn
+

ˆ ∗ ˆ||(W −W )t ||

τn
+n   ∞ 1

τ
..
..

T̂

fn W 0
n ..εˆB t
..Σ

unif. over W .

The convergence rates for ∂T ˆ ˆ∗ ∗ ∗[b]
ε̂ b ε̂ b Ŵ∗∗ , T ∗ , and m̂ are obtained by proceeding along the same lines as in

the proof of Lemma 24 and Eq. 39, 40, 41, 42, and38.
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