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Introduction

This thesis contains three chapters in Hypothesis Testing for semi and non parametric models. The
common features of these chapters are two. First. testing is based on the bootstrap. The test statistics
proposed are not asymptotically pivotal. Their null asymptotic distributions are difficult to compute, so
they cannol be used for the compulation of the critical values. The bootstrap, instead, allows obtaining
the critical values in a relatively simple way. All bootstrap tests constructed in this work exploit the
information under the null hypotheses.

The second common feature across the works in this thesis is the employment of bias corrections for
the computation of the statistics. The testing frameworks are non or semi parametric, so the estimators
employed are biased. In these contexts, the use of bias corrections allows improving the performance
of the tests. Intuitively, the need to control for estimation bias requires shrinking the set of tuning
parameters (bandwidths) admissible for inference. The introduction of bias corrections alleviates this
problem, enlarging the set of tuning parameters admissible for testing. This makes the tests more robust
to the choice of such parameters. It also allows inference using selection rules that are not admissible
without bias corrections, avoiding undersmoothing,

The First and the Third chapter develop new tests for models containing nonparametrically gener-
ated variables. Such variables are not observed by the researcher but are nonparametrically identified
and estimable. In the Second chaptler, testing is developed in a framework where all regressors are ob-
served, but inference employs an iterative bias correction method known as L, boosting. This method
extends the bias correction used in the first chapter, and its employment in testing is novel in the liter-
ature.

The contributions of this thesis are threefold. First, new tests are developed for models involving
generated variables. The econometric/statistical literature has mainly focused on estimation for these
models, but testing appears to be a relatively unexplored area. Second, the works provide new bootstrap
procedures for models involving generated regressors. These procedures are new in the literature, as
they need to mimic the estimation error coming from estimating the unobserved variables. Third, bias
corrections are implemented for inference in models with and without generated regressors. The use
of such bias corrections is novel for the testing problems considered.

The First chapter (A Bootstrap Specification Test for Semiparametric Models with Generated Regressors)
provides a specification test for semiparametric models with nonparametrically generated regressors.
Applications include models with endogenous regressors identified by control functions, semiparamet-
ric sample-selection models, or binary games with incomplete information. The statistic proposed is a
Cramer Von Mises statistic built from the residuals of the semiparametric model. Due to the presence of
generated regressors, the bootstrap tests available in the literature cannot be employed in this context.
In particular, the presence of the generated variables implies extra terms in the asymptotic expansion of
the statistic, as such variables need to be estimated. Since the bootstrap procedures available in the lit-

erature are developed for models where all variables are observed, they cannot mimic such extra terms.



The main contribution of this chapter is to develop a novel wild-bootstrap procedure and to show its
validity. The test involves bias corrections of the nonparametric estimators, thus undersmoothing is
avoided. To the best of my knowledge, the employment of bias corrections is novel for inference in
models involving generated variables.

The Second chapter (A Nonparametric Encompassing Test) is co-authored with Profl. Pascal Lavergne.
It develops a test based on the encompassing principle to choose between two alternative models. Ac-
cording to the encompassing principle, a model M, encompasses a model M, it M, can explain the
results of M. This is a natural principle used in science to choose between two alternative theories:
a new theory can replace an older one if it explains both new phenomena and the old phenomena ex-
plained by the older theory. The encompassing tests in the current literature either rely on parametric
functional forms or, when relying on nonparametric specications, they condition the analysis on fixed
values of the explanatory variables. This chapter provides a nonparametric encompassing test. The
procedure developed does not rely on neither functional forms nor on specilic values of the explana-
tory variables. The statistic is computed according to the L, boosting algorithm which allows to obtain
a good robustness of the test with respect to the choice of the smoothing parameter. The critical values
are simulated by a wild-bootstrap procedure which is proven to be valid in the presence of L, boosting
iterations.

Finally, the Third chapter (Testing Bayesian-Nash Behavior in Binary Games with Incomplete Infor-
mation and Correlated Types), also co-authored with Prof. Pascal Lavergne, develops a test for checking
if the distribution of the observed data can be characterized by a unique Bayesian-Nash equilibrium.
The framework is a binary game with incomplete information, where agents’ types are allowed to
be mutually correlated. The usefulness of this test is based on two points. First, the uniqueness of
the Bayesian-Nash equilibrium is key to identity the fundamentals of the game. Second, testing for a
Bayesian-Nash behavior is interesting per se, as it is an assumption often postulated in game-theoretical
models. The test proposed relies on rationalization results in Liu et al. (2017). From an econometric
point of view, the model involves generated regressors, the conditional probabilities concerning agents’
strategies. The test statistic is constructed by extending the L, boosting procedure used in the second
chapter to a context with generated variables. This boosting procedure is effective to control the estima-
tion bias arising in this context. Since the asymptotic distribution of the statistic depends on unknown
teatures of the data, a novel Multinomial Bootstrap procedure is constructed to obtain the critical value,
and its validity is proved. This procedure resamples the observations imposing that a unique Bayesian-
Nash equilibrium is played and preserves the binary nature of the agents” decisions in the “bootstrap
world”. The Multinomial Bootstrap procedure developed appears to be new in the literature for two
reasons. First, multinomial bootstrap schemes resampling the data under the null hypothesis have not
been explored in the statistical/econometric literature. Second, the validity of the multinomial bootstrap

is obtained in the presence of generaled variables.
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Résumé

Cette these se compose de trois chapitres portant sur les tests des hypotheéses pour des modéles semi- et
non-paramétriques. Ces chapitres ont deux caractéristiques en commun. Premierement, les tests sont
basés sur le bootstrap. Les statistiques présentées ne sont pas asymptotiquement pivotales et leurs dis-
tributions asymptotiques dépendent de parameétres inconnus. De surcroit, la computation des valeurs
critiques basée sur ces distributions est généralement difficile. Pour cela, I'approximation asympto-
liques ne conslitue pas une voie allractive. Le boolstrap, cependant, permet d obtenir les valeurs cri-
tiques de facon relativement simple. La deuxieme caractéristique liant les travaux de cette these réside
dans I'utilisation de corrections de biais pour la computation des statistiques. Etant donné que les con-
textes analysés sont non- ou semi- parameétriques, les estimateurs utilisés sont biaisés. Dans ces cas,
I'utilisation de telles corrections permet d’améliorer les performances des tests. Intuitivement, le be-
soin de contréler les biais d'estimation impose des restrictions relativement fortes sur les banwidths
qui peuvent étre employées pour la computation des estimateurs. L’introduction des corrections de
biais assouplit ces problémes, élargissant 'ensemble des banwidths pouvant étre utilisées pour le test.
Cette caractéristique renforce le test par rapport au choix de ces parametres et permet d’employer des
régles de sélection pour I'inférence qui n'étaient pas admissibles sans lesdites corrections, évitant le
phénomene de undersmoothing.

Le premier et le troisiéme chapitres développent de nouveaux tests pour des modéles contenant
variables non-paramétriquement générées. De telles variables ne sont pas observées par les chercheurs
mais sont cependant identifiées et peuvent etre estimées. Dans le deuxieme chapitre, nous développons
des tests dans un contexte ot toutes les variables sont observées mais I'inférence utilise une correction
de biais itérative connue comme Lo-boosting. Cette méthode étend la correction de biais employée dans
le premier chapitre et son utilisation dans un test d hypothése non-paramétrique est nouveau dans la
littérature.

Cette these apporte principalement trois contributions. Premierement, cette étude développe de
nouveaux tests pour des modeles comprenant variables générées. La littérature statistique/économétrique
s’est focalisée sur l'estimation de ces modeéles, mais le probleme des tests est relativement moins exploré.
Deuxiemement, elle propose de nouvelles procédures de bootstrap pour des modeles comprenant ré-
gresseurs générés. Ces procédures sont nouvelles dans la littérature car elles doivent répliquer I'erreur
d’estimation provenant des régresseurs générés. Enfin, des corrections de biais sont employées pour
I'inférence dans des modeles avec et sans régresseurs générés. L'utilisation de telles corrections de
biais constitue une nouveauté dans les problemes d’inference considérés.

Le premier chapitre (A Bootstrap Specification Test for Semiparametric Models with Generated Regres-
sors) fournit un test de spécification pour des modeéles semi-paramétriques contenant variables non-
paramétriquement générées. Les applications de ce test inclut des modéles avec régrésseurs endogenes
ol les composantes structurelles sont identifiées par des fonctions de controle, ainsi que des modeles

semi-paramétriques avec sélection dans 'échantillon et des modéles de jeux binaires avec information



incompléte. Les statistiques proposées sont du type Cramer-Von Mises. Celles-ci sont obtenues des
résidus du modeéle semi-paramétrique. A cause des régresseurs générés, les tests basés sur le boot-
strap disponibles dans la litllérature ne peuvenl pas élre employés dans ce conlexle. En particulier, la
présence des variables générées implique des termes additionnels dans I'expansion asymptotique de la
statistique, car de telles variables doivent étre estimées. Etant donné que les procédures de rééchan-
tillonnage disponibles dans la littérature sont développées pour modeles ot toutes les variables sont
observées, elles ne peuvent pas répliquer les fluctuations de tels termes additionnels. La contribution
principale de ce chapitre est de développer une nouvelle procédure de rééchantillonnage et prouver sa
validité. L'implémentation du test emploie des correction de biais et le phénomene de undersmoothng
est par conséquent évité.

Le deuxieme chapitre (A Nonparametric Encompassing Test) a été développé en collaboration avec
Prof. Pascal Lavergne. Ce chapitre propose un test basé sur le principe de I'Encompassing permet-
tant de choisir entre deux modeéles alternatifs. Suivant le principe de 'Encompassing, un modele M,
comprend un model M, si M, peut expliquer les résultats de M. Celui-ci est un principe naturel
utilisé en science pour choisir entre deux théories alternatives : une nouvelle théorie peut en rem-
placer une autre si la premiére explique les "nouveaux" aussi bien que les "vieux" phénomeénes déja
expliqués par la vieille théorie. En I'état actuel, les tests d'Encompassing présents dans la littérature
sont basés sur des formes fonctionnelles paramétriques ou, lorsqu’ils prennent en compte des mod-
eles non-paramétriques, considerent des valeurs fixes des variables explicatives. Ce deuxieme chapitre
développe un test d’Encompassing non-paramétrique dans lequel la procédure proposée n’est pas basée
sur des valeurs fixes des variables explicatives ou sur des formes fonctionnelles spécifiques. La statis-
tique est calculée en utilisant I'algorithme de 1.-boosting qui permet d’obtenir une robustesse satis-
taisante du test par rapport au choix de la bandwidth. Les valeurs critiques sont calculées avec une
procédure de Wild Bootstrap la validité de laquelle est démontrée avec un nombre arbitraire d'itérations
de Lo-boosting.

Pour conclure, le troisiéme chapitre (Testing Bayesian-Nash Behavior in Binary Games with Incom-
plete Information and Correlated Types), aussi développé avec Prof. Pascal Lavergne, propose un test
pour vérifier statistiquement si la distribution conditionnelle des données observées est caractérisée
par un unique équilibre Nash-Bayésien. Le contexte est un jeu binaire avec information incomplete
ou les typologies d’agents sont mutuellement corrélées. L'utilité de ce test est basée sur deux points.
Premiérement, ['unicité de I'équilibre Nash-Bayésien est crucial pour obtenir I'identification des fon-
damentaux du modele. Deuxiemement, la vérification du comportement Nash-Bayésien est intéressant
per se, car il s'agil d'une hypothese souvent postulée dans les modeles de jeux microéconomiques. Le
test proposé est basé sur des résultats de rationalisations fournis par Liu et al. (2017). D une perspective
purement ¢économétrique, le contexte comprend des variables non-paramétriquement générées corre-
spondanl aux probabilités conditionnelles des stratégies des agents. La slalistique est oblenue en ap-
pliquant le principe de Lo-boosting utilisé dans le deuxieme chapitre dans un contexte avec variables

générées. Cette procédure de boosting est efficace pour contréler le biais provenant de I'estimation des



probabilités conditionnelles. Puisque la distribution asymptotique dépend par des caractéristiques in-
connues des données, une nouvelle procédure de bootstrap multinomial est développée afin d’obtenir
les valeur critiques du lest el sa validilé est démonltrée. La procédure impose la présence dun unique
équilibre Nash-Bayésien dans le rééchantillonnage et permet de préserver la nature binaire des choix des
agents dans le "bootstrap world". Une telle procédure de rééchantillonnage représente une nouveauté
pour deux raisons. Premierement, les procédures de rééchantillonnage multinomial développées dans la
littérature n’imposent pas 'hypothése testée. Deuxiémement, la validité de cette procédure est obtenue

en présence de variable générées.
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Chapter 1: A Bootstrap Specification Test for

Semiparametric Models with Generated Regressors
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Abstract

This paper provides a specification test for semiparametric models with nonparametrically gen-
erated regressors. Such variables are not observed by the researcher but are nonparametrically
identified and estimable. Applications of the test include models with endogenous regressors identi-
fied by control functions, semiparametric sample selection models, or binary games with incomplete
information. The statistic is built from the residuals of the semiparametric model, and a novel wild
bootstrap procedure is shown to provide valid critical values. We consider nonparametric estimators
with an automatic bias correction that makes the test implementable without undersmoothing. In
simulations the test exhibits good small-sample performances, and an application to women'’s labor

force participation decisions shows the implementation of the test in a real-data context.
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1 Introduction

A strong tradition on specification testing is present in econometrics. In this paper, we contribute to the
literature by providing a specification test for semiparametric models with nonparametrically gener-
ated variables. These variables are not observed by the researcher but are nonparametrically identified
and estimable. Examples of semiparametric models with nonparametrically generated variables are
common in empirical frameworks and include endogenous models with control functions (Blundell &

Powell, 2004; Newey et al., 1999), semiparametric sample-selection models (Escanciano et al., 2016), or

extensions of Tobit models (Escanciano et al., 2016).

Checking the correct specification of a model is empirically relevant, as a misspecified model yields
biased and inconsistent estimates and provides a misleading counterfactual analysis. If the models did
not contain nonparametrically generated regressors, specification testing could be based on procedures
already available in the econometric literature which assume that all the variables are observed (see
e.g. Delgado & Manteiga, 2001; Xia et al., 2004; Fan & Li, 1996). In principle, these tests could be naively

applied by replacing the nonparametrically generated regressors with their estimates. Such a procedure,

however, would deliver a wrong inference, as the nonparametrically generated variables must be
estimated in a preliminary step, and this introduces an estimation error that needs to be taken into
account.

The test we propose allows the researcher to check the validity of semiparametric moment condi-
tions involving nonparametrically generated regressors. The statistic is based on a weighted sum of the
residuals obtained from the estimation of the model and has a simple closed-form expression. We prove
that such a statistic converges to an non-pivotal distribution, i.e. a distribution that depends on un-
known features of the data generating process. Thus, to obtain the critical values necessary for testing,
we develop a novel Wild Bootstrap scheme and prove its validity under low-level assumptions.

The wide range of application of this test comes from the widespread presence of generated re-
gressors in empirical economic models. A first type of relevant setups includes semiparametric binary-
choice models with endogeneity and control functions (see e.g. Rivers & Vuong, 1988; Newey et al.,
1999; Blundell & Powell, 2004; Imbens & Newey, 2009; Blundell & Matzkin, 2014; Wooldridge, 2015). In

these setups, the parameters of interest are generally not identified by standard [V assumptions, and the

introduction of a control function allows to obtain identification (see Blundell & Powell, 2004). A

further application of the test is provided by nonlinear semiparametric regressions with endogeneity

that are separable with respect to an unobserved error term. Newey et al. (1999) highlights that the con-
trol function approach is convenient in such frameworks because it avoids an ill-posed inverse problem
and allows a simple estimation procedure. Other examples of applications are semiparametric binary
models with censoring and truncated models with selection, like double-hurdle models (Escanciano et

al., 2016). The test can also be applied to check the correct specification of semiparametric games with

incomplete information, where agents make binary decisions, see Aradillas-Lopez et al. (2007),

Aradillas-Lopez (2010), Aradillas-Lopez (2012), and Lewbel & Tang (2015).




The main contributions of this paper are threefold. First, we develop a specification test for the
mentioned semiparametric models with nonparametrically generated variables. Second, we contribute
to the literature on bootstrap inference by extending the Wild Bootstrap procedure (Davidson & MacK-

innon, 2010; Delgado & Manteiga, 2001) to a semiparametric context with nonparametrically generated

regressors. Third, in the construction of the specification test, we adopt automatic bias corrections for
the nonparametric estimators involved.

To build a specification test for semiparametric models with generated regressors, we start from the
restriction they impose on the distribution of the data. In the benchmark example, such a restriction

writes as a moment condition of the type

E{Y |X,Z} = Go(XTBo, V), where
V=X —mo(Z),

(Y, X¢, XT | ZT) are observed, S is an unknown vector, Gy is a nonparametric function, and mo(Z) =
E{X¢|Z}. mo is an unknown function. It is not restricted to have a specific functional form, so Vis a
nonparamerically generated regressor. To construct a test, we use an approach based on Bierens &
Ploberger (1997) and Stinchcombe & White (1998). The test statistic proposed is a transformation of a

weighted sum of the estimated residuals and has a simple closed-form expression. To provide tractable

proofs, we obtain the residuals by kernel estimation.

For the nonparametric estimation of Go and V, required to compute the residuals, we adopt an
automatic bias correction. To the best of our knowledge, this is a novel approach in semiparametric
models with generated regressors. This allows to widen the set of bandwidths admissible for the test
compared to the case where such a bias correction is not used. Furthermore, it allows to implement the
test by kernels of relatively low order. The bias correction employed is similar to the one used in Xia et
al. (2004) who proposes a specification test for a single-index model where all the variables are observed.
[t can be considered a bootstrap estimate of the bias.

We show that asymptotically the statistic converges to a transformation of a Gaussian process. Since
the asymptotic distribution is not pivotal, asymptotic tests are di@cult to implement. Due to the pres-
ence of nonparametrically generated regressors, the asymptotic distribution involves nonparametric
derivatives, so to obtain the asymptotic critical values one should estimate these nonparametric deriva-
tives. This approach would suffer from two issues. First, the estimators of the nonparametric derivatives
have a slow convergence rates, and this would seriously compromise the capacity of the test to pro- vide
a reliable inference in finite samples. Second, to estimate such derivatives a bandwidth should be
selected, and this would introduce an adding parameter the researcher should set.

Instead, to compute the critical values we develop a novel two-step wild bootstrap procedure. In
particular; we contribute to the literature on bootstrap inference by extending to a semiparametric
context with nonparametrically generated variables the wild bootstrap scheme proposed in Davidson &
MacKinnon (2010)for the linear two-stages least squares regression. We show the validity of this



wild bootstrap procedure under low-level conditions. The proofs for this result are challenging for two
reasons. First, we need to handle a nonparametric estimator nesting inside another nonparametric esti-
mator. Second, in the bootstrap context the estimators are computed with the “artificial data” resampled
from the wild bootstrap scheme that contains estimation noise. As we show in a Monte Carlo simu-
lation study, this test is able to provide a reliable inference in small samples, both in terms of size and

power.

Related literature. A large literature analyzing the problem of estimation with nonparametrically
generated regressors exists, beyond the studies already cited above. Early work includes Pagan (1984),
Ahn & Manski (1993), Ahn (1997). More recent results are presented by Li & Wooldridge (2002), Chen et
al. (2003), Rothe (2009), Mammen et al. (2012), Mammen et al. (2016), Bravo et al. (2018), Hahn et al.
(2018), Vanhems & Keilegom (2019). The impact of generated regressors on the asymptotic distribution

of a finite-dimensional estimator is analyzed in Newey (1994) and Hahn & Ridder (2013). Escanciano et

al. (2014) obtains an expansion of the residuals from a regression involving some variables estimated in a
preliminary step. These papers focus on estimation, and do not address specification testing in the
presence of generated regressors.

From a methodological point of view, our work is closely related to Escanciano et al. (2014), with two

main differences. First, in this paper we consider a bootstrap environment, while Escanciano et al.

(2014) are not concerned with proving the validity of a bootstrap test. When proving the validity of the
wild-bootstrap method, we need to handle the (uniform) convergence of a kernel estimator, where the
projected variable is not observed but estimated. Thus, the results in Escanciano et al. (2014) are not

applicable to the context of the present paper. Second, the sum of the residuals at the basis of our statistic
contains bias-correction terms which are not present in their context. This allows to impose conditions
on the bandwidths different from those they require and to avoid undersmoothing.

This study is also related to work on specification testing for semiparametric and nonparametric
models, see Fan & Li (1996), Chen et al. (2003), Ai & Chen (2003), Delgado et al. (2006), Einmahl & Van
Keilegom (2008), Lavergne & Patilea (2008), Einmahl & Van Keilegom (2008), Delgado & Stute (2008),

Escanciano & Song (2010), Lavergne et al. (2015a), Neumeyer & Van Keilegom (2010). We use an
approach similar to Delgado & Manteiga (2001), Bierens & Ploberger (1997), Stinchcombe & White
(1998), only to cite a few. The difference with this literature comes from the presence of nonparametri-

cally generated regressors which introduce extra terms in the asymptotic expansion.

Organization of the paper. Section 2 starts from a benchmark framework and describes the test in an
intuitive way without delving into technical aspects. Section 3 defines in detail the estimation procedure
employed to compute the residuals. Section 4 introduces the assumptions and obtains the asymptotic
behavior of the statistic, while Section 5 sets up the bootstrap test and shows its validity. Section 6
contains other applications of the test, beyond the benchmark framework. Section 7 provides the

simulation study assessing the small-sample behavior of the proposed test. It also contains an



empirical application to women’s labor force participation. Finally, Section 8 concludes. The Appendix

contains the proofs for a general model encompassing all the examples considered.

2 The Test: Benchmark Example and Heuristics

We describe how to apply the test to a benchmark example. The presentation is kept at an intuitive level,
without focusing on technicalities.

1. Binary-choice models with control functions

Let Y €{0, 1} denote the discrete choice of an agent, and assume that such a choice depends on both a

vector of covariates X € R?"(X) and an unobserved error termu according to the model
Y= 1{XT" Bo=u}, (D

where Sy € R4m(X) js an unknown vector and X = (X¢, Z1)7. X¢ denotes the endogenous regressor
correlated with u, while Z; stands for the exogenous regressor. For simplicity, we assume that each of
them is a scalar random variable, as the generalization to any finite dimension is straightforward. To

control for such endogeneity, Blundell & Powell (2004) introduce a control function and assume that

ulX, Z ~ulX, V~ u|lV, where
V= X¢ —mo(Z), Z = (Z1, Z2), and E{V | Z} = 0. @)

The symbol “~” denotes “equality in distribution”. The function m is nonparametric. The residual V' is
called “control function”, as it is the variable allowing the researcher to control for the presence of
endogeneity. Denote with Go(u”, v) the conditional distribution of # given V= v computed at the value
u.The exclusion restriction in Eq. (2)implies that

E{Y X, Z} = Go(X" o, V), 3

where (X, Z)T denotes the column vector gathering all the components of X and Z without “repeating”
the common ones. Since the cdf of u is not specified in a parametric way, Gg is an unknown function.
The above display is the moment condition to be tested in this paper; i.e. the null hypothesis. The test
for such a condition is a specification test for the control function model described above. If the null

hypothesis is not rejected, the specification of the model cannot be rejected. Conversely, if the null

is rejected, the correct specification of the model must be rejected as well?.

IThe condition in Eq. (2) is a conditional independence restriction. It requires that when the residual V is kept fixed, the
error u is independent from the exogenous variables Z. This allows to exclude the regressors X from the conditional
distribution of u.

2The vector of parameters parameter Sy can be identified by exclusion restrictions and normalization conditions, as in
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Remark 2.1. Eq. (3) is implied by the linearity restriction in Eq. (1) and the exclusion restriction in Eq. (2).
When the condition in Eqg. (3) is rejected, the test does not suggest whether such a rejection is due to the
failure of the linearity restriction or the exclusion restriction. Whether the researcher has to reject one
or the other depends on the specific application. The control function condition in Eq. (2) can be often
justified by economic arguments. Conversely, the linearity in Eq. (1) is often imposed for the aim of
simplicity but does not have a strong economic justification. In such cases, a rejection of the null

hypothesis would mean a rejection of the linearity restriction in Eq. (1).

2.2 Construction of the Test

The goal is to test the hypothesis
Ho:E{Y |X Z} = Go(XTﬂo, X¢ —mo(Z)) versus H1:H 6

where H ¢denotes the logical complementof H . The test described here is an omnibusspecification
test. Denote with f the density function of the vector (X7 So, V). For the ease of notation, we introduce

the error term

e =Y — G()(X,,Bo, V). @

The null hypothesis Hy is equivalent to
Ho : E{e -f(XBo, V) |X, Z} = 0 P -as. for some Sy €R4im(X), 5)

where “a.s.” stands for “almost surely”. We introduce the density f in the above expression for technical
reasons, to avoid a random denominator and obtain clean proofs.
The first step to build a test is to transform the above conditional moment into a continuum of
unconditional moments. Such a transformation enables to construct the test stai'stic without estimating
E{Y |X, Z}. To this end, letus define the linear operators P and P, asPg = ~ g(y, x, z) P(d y, x, 2)
andP,g= (1/n)  '_, g(Y, X;, Z;), respectively’. By the results in Bierens (1982)and Stinchcombe &
White (1998), the hypotheses Hp and H are equivalent to

Ho:Pefp, = OVr €T, H;i:Pefp, f= Oforalmostallr €T,

where T is a compact subset of R47(X.Z) encompassing the origin, ¢(-) := y(t-), and y : R »—C

is a univariate analytic non-polynomial function. This means that y is infinitely times continuously

Blundell & Powell (2004) and Rothe (2009). This means that some of the exogenous variables, i.e. those in Z3, must not appear
in the original equation and cannot be part of X. Conversely, Escanciano ef al. (2016) show that in the presence of
nonlinearities in the function mg, these exclusion restrictions are not necessary, and identify the components of the model
without using “instruments”.

3Notice that if g is a nonrandom and deterministic function, Pg = Eg(Y, X, Z).
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Algorithm 1 Computation of S,

Step 1. Regress (nonparametrically) X¢ onto Z to getan estimatenio of mg, and set V=X— mo(Z).
Step 2. Estimate ﬂA by minimizing a Semiparametric Least Square criterion.

Step 3. Regress nonparametrically ¥ onto (X” ,BA, VA) to get an estimate G of Gq. Compute the residuals
&= Y+ G(X BI'V)fori = 1,., n. Estimatef by constructing the kernel density estimator of

(XT g, V). Given ¢"and f , obtain the statistic S, asin Eq. (6)

differentiable and does not have a polynomial form. exp(-), exp(- "~ —1), sin(-), cos(-) are examples of
such a function. Let (1" ¢, §) be estimators of (mo, fo). V= X¢ — nig(Z) is an estimator of V. Denote
withe 1= YV — GA(XT ﬂA, VA) and f the estimators of ¢ and f , respectively. A feasible statistic for the test

will be

Sn = J‘ |\/EPnEAfA(/)JAn|2#(df) ) (6)

where ¢, denotes a trimming function and y is a measur(v;lbsolutely continuous with respect to the
Lebesgue measure?. If p,(-) = exp(it-) in Eq. (4), withi= = —1, the integral in S, has a simple closed-

form expression,
S,= " SAfig;fj '¢,u(Xi_Xj’ Zi_Zj)'
i,j

where ¢, is the characteristic function of u.

2.3 Estimation and Asymptotic Behavior

To test the model, both the regression function G (-y= E{ Y| (61X, V) = -}andthe density f need
to be estimated. Since the regressors (8 X§ V) are not observed, it is natural to proceed to a “three-

stage” estimation. First, we get the estimates nig of mg, and hence an estimate V of V. Second, we
compute ,BA by a Semiparametric Least Squares criterion, see Ichimura (1993), Ichimura & Lee (2010), and

Escanciano ef al. (2016). Third, we construct the estimators for (Go, f) by replacing the unobserved

regressors (8 &, V) with their estimates (,BA)? , VS. These steps are summarized in Algorithm 1.
Notice that under the null hypothesis, " 7P,efp, . N (0, -)for any fixed ¢, where N (0, -)is a

normal distribution with a certai\r/l variance. Since one expects that 8“fgot ~ ¢fp,, itshould also hold that
aP.ef o, N (0, -). Hence, ¥ iiP,&f ¢, will be bounded in probability and so will S,. Conversely,
under the alternative Hy, for any fixed t, " 7nP,efp, — +/ — 0. So 71P,,s"]%,—» +/ — o0, and the

statistic §,, will explode. Thus, for a suitably chosen critical value c;—,, atestatthea significance level

4The trimming f nexcludes from the computation of the statistic those observations on the tails of the distribution. It will
be defined more precisely in Section 3.



can be defined as follows:
Reject Hp if S, > ¢1-4 .

Ideally, we would set the critical value ¢, to the 1 — a quantile of the null distribution of S,,, but

since such a quantile is unknown it must be estimated.

2.4 The Bootstrap Test

To obtain the critical value c¢"1_,, we propose a Wild Bootstrap procedure. To this end, we start from the
wild bootstrap scheme proposed in Davidson & MacKinnon (2010) for the linear two-stages least squares

regression. We extend such a scheme to a semiparametric context with generated regressors. The
procedure proposed relies on the functional forms imposed under the null hypothesis. Intuitively, since
the null hypothesis is imposed in the bootstrap resampling, we should obtain a good approximation of
the critical values when the null hypothesis holds true, as the information in Hg is used. In this context,
to obtain a wild-bootstrap procedure leading to a consistent test, it is necessary to mimic that in the “real

world” the regressor V is not observed but has to be estimated in a preliminary step.
Let us define{¢;}”_, to be a sequence of iid weights independent from the sample data, randomly
drawn from a known distribution P<. For instance, P¢ can be set to the standard normal distribution or to

any other distribution with mean zero and variance one. Let

Yi* = GA(,BATX,', VAI')+ é:,' 'SA,' (7)
X% = mipZ ) + &V,

If the regressors V were observed, only the first line of the above display would be su@cient to build a
valid bootstrap procedure. Because V must be estimated in a preliminary step, the introduction of the
second line is necessary for a correct bootstrap inference.

By resampling the observations from the above DGP, it is possible to compute the bootstrap version
S, ¥of the statistic S,,. The steps needed in the bootstrap computations are detailed in Algorithm 2. Let us
notice two features. First, V*is defined as the difference between X¢ and i *oand not as the difference
between X¢* and ni *o(Z). This is because the generated regressor V has to be bootstrapped only to
replicate the estimation error from its unobservability. Such estimation error is generated only by niy, so
it is only i that must be bootstrapped. Second, the bootstrap statistic S,*is not “recentered” because the
null hypothesis is already imposed in the bootstrap DGP of Eq. (7). More details will be provided in
Section 5.

To compute the critical value, one generates B samples from the bootstrap DGP and gets the collec-
tion S,*y, .., S,* 5. The (1 — a) quantile of such a collection gives an approximation of the critical value

for running the testat the a significance level.



Algorithm 2 Computation of S;*

Step 1. Regress nonparametrically X** onto Z to get an estimator ni*and set Vi= Xe — ni*o(Z). Step 2.
Compute [)’A *by minimizing a Semiparametric Least Square criterion based on the bootstrap data. Step 3.

Regress nonparametrically Y *onto (ﬁA*TX , VA*) to get GA*(the bootstrap version of GA). Compute

the residuals £ = Y. * — Gp¥X,;, A\l./*) fori = 1,.., n. Compute the bootstrap version of f by con-
structing the kernel density estimator of (ﬁA*TX , V%), and denote it by f*. Given &*and f*, obtain the
statistic S,*corresponding to a single bootstrap iteration.

3 The Estimators

This section introduces in detail the estimators used. From Algorithm 1, the first and third step for
constructing the test statistic involve nonparametric estimations. To provide tractable proofs, we use
kernel methods. Since nonparametric estimators are biased, several bias terrr&s will appear in the ex-
pansion -i.e. the infiuence function representation- of the empirical process " 7P,&’f ¢, at the basis of
S,. To make such bias terms negligible, the approach usually taken in specification testing and semi-
parametric estimation consists in undersmoothing and employing high-order kernels (see e.g. Delgado

& Manteiga, 2001). In this paper we take a different approach and introduce a bias correction for each

nonparametric estimator. The employment of bias corrections is first proposed in specification testing
by Xia et al. (2004) who provide a test for a single-index model where all the variables are observed. In
this paper, we extend their approach to a context with nonparametrically generated covariates. This
appears to be a novel contribution for conducting inference in semiparametric models with generated
regressors.

As we highlight in Section 4, the use of bias corrections will have three main advantages. First, the
test can be implemented without undersmoothing. Second, the set of bandwidths admissible for the test
is larger than the set admissible without the bias correction. Third, relatively low order kernel can be

used.

First-Step Estimation. mo is estimated as

. 2
n L
R i=1 X ieK 0 _]L,,O_;
mo(z) = —% —2, )
n Zi—Z
= 1 KO h()
where hg denotes a bandwidth rate converging to zero and K is a kernel function. Let nip ; 1= mip(Z;).

The bias term By of the nonparametric estimators i is defined as

Bo 1= Elm o(2)} — mo(2) .



We estimate such bias as

where

s
Eim (z)}:= b3

R R - z, . _
=1{fx (X, Z) 254 f i x 2) 1= ! i=1 K(x.2) (X’Z)lb (2

nb4

b is a sequence of bandwidths converging to zero, K x 7 is a kernel function, ¢ = dim(X, Z), 7, is a
sequence of numbers converging to zero whose features are specified below, while / denotes a trim-
ming whose role is to take care of the random denominators in »i . Essentially, ¢ excludes from the
computation of B pthose observations for which the denominator of i o(Z;) is asymptotically close to
zero. Such a trimming sequence is introduced for theoretical reasons, but it is not strictly relevant in
practice. The intuition about the construction of the estimator BAois provided at the end of this section.

The bias-corrected estimators of m writesas
nio(z) = nio(z) — Bo(z) . ©)
The bias-corrected estimator of Vis given by V:= X¢ —nip(Z).

Second-Step Estimation. For a generic f € R¥"(X), the function Gg(-) := E{Y [(8"X, V) = -}is also

estimated by kernel methods, and each unobserved regressor is replaced by its bias-corrected estimate.
So

s K VYo T

?:1 YlK B% t],‘l/L) w ti

é(ﬂy”)(W) = T = ZA , (10)
K (Bx i}‘l/i)_w 7

where & is a bandwidth parameter and K is a kernel function. Similarly to the first-step estimation, the
trimming ¢ is introduced in GAW;) to take care of the random denominator in »7. To estimate the vector
Lo, a Semiparametric Least-Square criterion is minimized (Ichimura, 1993; Ichimura & Lee, 2010;

Escanciano et al., 2016),

“ 1 N ~ -
B = argmin /feB,,: [Y,—G (ﬁ,VN)(ﬂTX s V)%t (11)
i=1

where B is a compact set containing the true parameter . Notice that GA(@V“) does not contain a bias

correction. The reason is technical and will be explained in Section 3.
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Third-Step Estimation. An estimatorof G (r)= E{Y [(6X, V) = -}can be obtained by regressing
nonparametrically ¥ onto (87X, V). Itis computed by replacing # with £'in Eq. (10). Denote GA(B“,\;)J- =
GA(B“,‘;)(,BATX i, V). The bias of GA@ "y and the density f are respectively estimated as

By (w) := E{G 5yy(w)} — Gigyry(w) (12)
with
—_— >
E{G } j Bl LMLL’%)';_W
. ‘= K
vy (W) T ,
i=1 h
and

N 3
f(W)= nhd ?=1K —(ﬂXi,Z)iw t.

The trimming ¢ is introduced in EA{GA(BA";) (w)} to control for the random denominators in GA(,;,‘;) and

V. The bias-corrected estimator of Go writesas

~

G gvy(w) 1= Ggyry(w) = By(w) .

At this stage, we have introduced all the elements required to compute S,. So,

N,
pX, V)andS, := | n -P,&f1,1a(dr).

£:=Y— G(/;)I;)(
Remark 3.1. The method presented in this section for computing the residuals is different from the one
in Xia et al. (2004). They consider a semiparametric environment and do not have a problem of non-
observability of the regressors. Since they only need to perform a single nonparametric estimation, they
introduce a single bias correction. Conversely, in this context we have to deal with a semiparametric
model containing nonparametrically generated covariates. So we introduce two bias corrections: one for

the estimation of V and another for the estimation of Gy.

Intuition and interpretation of the bias correction. Consider the bias correction applied to nig, the
nonparametric estimator of mg(-) = E{X¢|Z = -} The bias of ni¢is formally defined as Bo(-) = E{m"
o(*)} — mo. Its estimate in Eq. (9) can be interpreted as a Wild Bootstrap estimate (Xia et al., 2004). To

explore this point, consider the bootstrap DGP

X% = nifZ )+ &-V,withVs X £ni(Z) ,;
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where {&;}7_, is a sequence of bootstrap weights independent from the sample data, with mean zero
and variance one. Given the sample {X "% Z ;}»,
ni%denote the kernel estimator computed with the bootstrap data. In the bootstrap context the sam-

ple data is fixed and only the bootstrap weights {& } 7, are random. So, the bias of ni*is defined as

we can compute the bootstrap version of nip. Let

Bias{im™ *o(2)} = E<{m" *¢(z)} — nio(z), where E¢ is the expectation that considers only the bootstrap
weights {&;}7_, as random and the sample data as fixed. It is easy to show that

Bias{m" *(2)} = E<{m *o(2)} — nio(z) = Elm’o(2)} — nio(z) = Bi asimo(2)} .

By the preceding display, the bias correction used in this paper can be interpreted as a bootstrap estimate
of the bias term. A similar reasoning can be applied to the bias correction of GAW; >

4 Asymptotic Analysis

In this section we provide the assumptions and present the asymptotic behavior of the statistic. Define
Gp(+):= E{Y [(7X, V) = -}and letfs be the density of (87 X, V'), where 8 ranges over a compact
set B encompassing fo. Notice that f5, = f and Gg, = Go. Recall that (X, Z) stands for the vector
gathering the components of X and Z without repeating the common ones. Also, let fo be the density
of Z. For any natural number ¢, we denote with ¢ the largest even number weakly smaller than c®. For a

vector A= (Ajy, .., As) of natural numbers,A.= A;+ .. + Asand the differential operator 0*is defined as

e
&Zg(ub cey MS) = m g(l/l]_, eey MS) .

The following definitions are helpful for the presentation of the assumptions at the basis of our test. We

first introduce a class of kernel functions.

Deftnition 4.1. K s the class of mappings (u , 4., u )g >— S_y k(uy), where k is a univariate kernel of

order r that has a bounded support and is A times continuously diflerentiable with bounded derivatives.

The next definition introduces two classes of smooth functions.

Deftnition 4.2. G* is the class of mappings (w, ) > g(w, B) such that: (i) for all  €B, w>—g(w, )
is A times continuously diflerentiable with uniformly boundedderivatives, sup , |04g(w, B)| < oo forall

A < A; (ii) B >— g(w. B) is continuously diflerentiable.

5The bias correction adopted in this work would coincide with the twicing kernel method in the presence of a fixed
design, see Newey et al. (2004)
6[f ¢ is even, ¢f = ¢, whileifcisoddct = ¢ — 1.
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E’s the class of mappings (x, z, w, ) >»=y(x, z, w, B) such that: (i) y is A times continuously difleren-
tiable inw with sup , 04 (x, z, w, p)| < oo forall A < A; (ii) y is« times continuously difleren-
tiable in (x, z) with SUP 5 (o2 I% S W, B)| < oo forall A < ; (iii) y is diflerentiable in f with

uniformly bounded derivatives.

Assumption 1.{Y;, X;, Z;}"_, is an IID sequence of bounded random variables defined over the proba-
bility space (Q, A, P).

Assumption 2 (Smoothness). (i) The mappings (w, f) >—Gg (w) and (w, B) >—fz (w) belong to the
class G7; (ii) for all p €B, (X, Z) admits a density conditionally on (BT X, V), denoted as (x, z, w)>—
Fox.oiprx vy (X 2I(B§X, V) = w) which belongs to the class B/ @i))mg foeGro.

Assumption 3 (Kernels) (i) K €K, (ii) K oK ;giii)K X.Z EK(’;I,M(X’Z),

Assumption 1 is common in the literature on nonparametric estimation and testing. Assumption 2
imposes a certain degree of smoothness on the functions involved, which is connected with the orders of
the kernels defined in Assumption 3. Such a smoothness condition is common in the literature on
semiparametric and nonparametric estimation, and can be considered as a mild one (see e.g. Delgado &
Manteiga, 2001; Escanciano et al., 2016; Neumeyer & Van Keilegom, 2010)". The continuity of the vari-

ables (X, Z) is only assumed for simplicity, to provide clean proofs. Our results can be easily extended

to the case where (X, Z) involves some discrete components, assuming the existence of densities with

respect to the mixed Lebesgue-counting measure (see Huang et al., 2016).
Since the framework at hand is featured by nonparametrically generated regressors, we need some

conditions on the rates at which the densities of the observed variables go to zero on the tails. So, define

2 2 z

. . . 31'”
Pn = P f(XﬁO V)) < Ty y Pn,0 2= P fO(Z) <71y yPn,3 = P f(X,Z)(X) Z) < _2_
Denote with ¢ the dimension of (X, Z).
t
Assumption 4 (Bandwidth Rates). (i) —5—%"-— — 0 for s = 1420 _Qogn) 0 p hgro ot —

Poy2sy _2sg+2 2 2py 12
nh 0 7,50 2 nh 0o,

0;

"The existence of the density f( x, z)| (x7 g,v ) is also assumed in Escanciano et al. (2014).Notice, however, that aslong as
the variable (X, Z) admits a density -i.e. P (X.9) is dominated by the Lebesgue measure-, by the Radon-Nikodyn Theorem
also (X, Z) conditionally on (87 X, V) will admit a density, and the existence of f(x, z)|(x7 g,v) will be ensured. In this
context, therefore, the existence of such a function is not a strong restriction.
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11 (lO n)2 — . 4 . -4 — .
(”)ngw O n -h% -t 0;

Assumption 5 (Trimming Sequences). (i) o= o(1), 2= o(1), p.= o(l,™), pno= 0, ™), pn3=

_1 . nl/t A4 a2 Q)
o(l, 1), where I, satisfies sz — 0, g = 0,2 = 0

(i) bsatisfies:n -b9*> -7 — +o0, L& 03 . Q¢ l,3 b= +00;

n-biry Tn
(ii1) there exists constants n > 0 small enough and N large enough such that for all n greater than N,
Wixzo(x, 2) = 1.} < sup peg{fixrpr)(XT B, v) = nra} and H{fix 2)(x, 2) = 7.} < H{fo(z) =
NTn}.

Assumption 4 is introduced for several reasons. First, it implies that the estimators of the generated
regressors V are n~4-consistent, similarly to Escanciano et al. (2016) or W. K. Andrews (1994). Sec- ond,

it ensures that the estimators of the generated regressors are asymptotically enclosed in a class of
functions that is su@ciently regular, similarly to Escanciano et al. (2016), Neumeyer & Van Keilegom
(2010), and Chen et al. (2003). Third, it allows G~([f,v") and 6G~(ﬁj‘;) to be n~4-consistent, similarly to

Rothe (2009). These n~1# convergence rates are required for the presence of the nonparametrically-

generated regressors. Intuitively, to handle the estimation error arising from the replacement of mo with

n g, we use a procedure similar to Rothe (2009). We combine a 1st-order Taylor expansion with these

n~4-rates, to have an approximation of the type

\/;P,,G"(ﬁjf)(,BX, V) = \/;P,,Gﬁ(ﬁjf)(X,B, V) + ﬁpnac;o(m V) - ((XB, V)= (X8, V)).

Remark 4.1. The condition — Ofsgo”fzw — Oimplies that the estimator of m¢ belongs asymptotically
0 n
(logn)?

to a class of functions that is su@ciently regular. Conversely, the condition —57=— — 0 ensures that
0 n

the estimator of mq is n~1-consistent, These conditions are both used only in the derivation of the

infiuence-function representation of * n - (8 — fo). If one assumes that such an infiuence-function

representation holds, then it is possible to derive the asymptotic behavior of S, without using the
COHdlthH logn - 0, and Ol’lly I‘equH‘lng that (logn)z — O The proofof the asymptotlc

n hp()+250 T%So+2 n-h Ty
behavior of S, in such a case would be based on U-Process Theory and not on Asymptotic Stochastic

Equicontinuity arguments as in this paper. For an employment of U-Process theory in specification
testing and semiparametric estimation, see Sherman (1994), Delgado & Manteiga (2001), Lavergne et al.
(2015b).

We also highlight that the n~4-consistency of the first derivative 6G~([;,V~) is employed only to obtain

shorter proofs. It can be avoided by dealing with U-Processes of order 7.
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The part of Assumption 4 linking the bandwidth (%, ko) to the orders of the 5ernels (r, ro) allows to
control the bias terms appearing in the expansion of the empirical process " 7P, f ¢, .. A similar
condition is used in Xia et al. (2004)in a specification test for a single-index model where all the co-
variates are observed. If we ignore the trimming rates z,, Assumption 4 requires thatn -h 3’0 — Oand
n -h* — 0. This implies that the bandwidths for nip and GN(X[{V~ y can be set to the rate that minimizes

the Mean-Squared error of the nonparametric estimators (see Li & Racine, 2006). These rates are allowed
by the introduction of the bias corrections. Without these corrections, the conditionsn -h 3”0 — Oand
n -h* — Omustbe replaced by n -hg”) — Oandn -k — 0, respectively. After such areplacement

the rates minimizing the mean squared errors could not be implemented in the construction of the test
statistic. This feature is called undersmoothing and is commonly used in specification testing or in the

expansion of nonparametric estimators to deal with the bias terms (see e.g. Delgado & Manteiga, 2001;

Escanciano ef al., 2014; Escanciano et al., 2016; Huang et al., 2016). Using the conditions n -hg") -0

andn -h% — Oinstead ofn -h %’0 — Qandn -h?2" — 0 has several advantages. First, as already noticed,
they allow to set the bandwidths proportional to the optimal rates that minimize the mean-squared
error. Thus, they implicitly provide a selection rule for the smoothing parameters that can be used in the
test. A second advantage is that Assumption 4, from a practical standpoint, allows to implement the test
by cross-validated bandwidths. The Cross-Validation method, in fact, delivers bandwidth rates that are
asymptotically equivalent to the rates minimizing the mean squared error. Third, Assumption 4 widens
the spectrum of bandwidths and kernel orders admissible with respect to the case where the

bias corrections are not used. In this latter case, the ratesn -h %’0 — Oandn -h?" — Qare employed,and
the kernel orders that should be employed to deal with the bias terms must be relatively larger. Larger
kernel orders normally generate irregular behaviors of the statistic in finite samples, as they infiate the

variance of the estimates (see e.g. Rothe, 2009; Jones & Signorini, 1997). To contain such variances, it is

advised to employ low-order kernels which however make the bias impact more pronounced. In other
words, the presence of the bias corrections allows for an improvement of the bias-variance trade-off
compared to the case where the corrections are not present.

Remark 4.2. The bias correction for GAW;) is not included in the SLS criterion for the estimation of S

(see Eq. 11). The infiuence function representation of [)’A can still be obtained by imposing nh*" = o(1)
and without employing a bias correction, thanks to the fact that E{V s G(s,) (X" B, V)| p=p | (XT o, V) } =
0 (see Ichimura, 1993). This feature ensures that the bias terms appearing in the infiuence function rep-

resentation of ﬂA are identically zero.

In Assumption 4 and 5, the rates of 2 and hg are connected with the rate 7, appearing in the trim-

ming. Similar conditions can be found in Escanciano et al. (2014) and Escanciano ef al. (2016). These

conditions are required because the unobserved regressor V is replaced with its estimate V containing
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arandom denominator we need to control for:
The presence of the rate /, in Assumption 5 is due to the introduction of the trimming 7 ,in »igand G 4.

We need that such a sequence must converge to zero at a su@ciently fast rate, to avoid a bias coming
from the presence of the trimming sequences. However; for the practical implementation of the test, the
specification of the trimming rates z,, and /,, can be avoided.

Assumption 5 (iii) is similar to Assumption 7 in Escanciano ef al. (2014). It has a technical nature and

essentially avoids the introduction of multiple trimmings. Specifically, to control for the random de-
nominators present in m ¢ and GN(/W“’VW, we should have introduced three different trimmings, one for
each random denominator appearing in the statistic S, . By avoiding the introduction of three different

trimmings, Assumption 5 (iii) dramatically simplifies the proofs®.

Assumption 6 (Pseudo-True Value). The mapping = E{ (Y — G4 (X" B, V) )2} admits a unique

minimum.

This last assumption imposes the existence of a unique pseudo-true value of the finite dimensional
parameter. Such a condition is common to any specification test for nonlinear models where estimation

is obtained by nonlinear criteria (see e.g. Bierens, 1982; Lavergne & Patilea, 2013; Escanciano ef al.,

2018). Assumption 6 plays a double role: under the null hypothesis Hy it ensures the identification of fo,
while under the alternative H; it ensures that the estimator § has a well defined limit in probability.

4.1 The Asymptotic Behavior of S,

We first define a collection of functions linked with the asymptotic behavior of the process \/nT:’ng"]”Ago,.
Let

5 5
do.:(v, x, z) 1= y— Go(xBo, V) -wo.lx, z)+
+E wo.(X, Z) -02Go(XBo, V)T . Z = 7 ~(x* —mo(z)), 13)

where{ wo,:t €T} isaclass of weights defined in Appendix A_(see Remark 26).

Proposition 1. Let Assumptions 1-6 hold.

J

(i) UnderHo, ¥ nP,ef ¢, = ¢ﬁpn¢o,,+ op(1), uniformlyint €T,

(ii) Under Hy, S, . I |G|2u(d1), where G is a Gaussian process defined by the collection of covariances
{®(t1, 12) = Pho,s b0, 11,12 €T}

8]t is possible to remove Assumption 5(iii) at the cost of longer proofs. Z, X, and (Xf, V) are transformations of the
random variable (X, Z). Assumption 5(iii) imposes that when the density of (X, Z) is larger than a certain small value,
asymptotically also the densities of these transformations must be larger than a small value. If all the components of (X, Z)
were discrete such an assumption would automatically hold.
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(iti) Under Hq, 52 —P cwith ¢ > 0.

The process {\/rTP,,qﬁ ..t €T} defines the infiuence function representation of {\/nP;s"ngo, te T
}, or in other words its Bahadur’s expansion. It hence determines the asymptotic behavior of the

statistic. A similar expansion is obtained in Escanciano et al. (2014), although under different conditions
on the bandwidths and without using a bias correction. This shows that the introduction of the bias
correction does not have any impact on the infiuence function representation of { nP;g"ngo, it €T},
and the same expansion could be obtained by undersmoothing, i.e. by imposing that nh%" = o(1) and
ﬁ{n_e"f,go 't €T} notonly
contains a weighted sum of the error ¢, the population counterpart of the residuals ¢, but also a weighted

nhgro = o(1). From Eq. (13) we notice that the expansion of the process{ n

sum of the control function V. The appearance of the latter term can be considered as the “price to pay”

for not observing V and having to estimate it in a preliminary step, similarly to Hahn & Ridder (2013).

The weights attached to V depend on the sensitivity of Gy with respect to such unobserved regressor. If V
is not significant in Gy, i.e. if 02Gy is identically zero, the infiuence function representation of
{ViaP.&f o1t €T} would be the same as if the errors ¢ were estimated observing V .

To compute the critical value, several methods proposed in the literature on specification testing
could be adapted to our case. Bierens & Ploberger (1997) obtain the critical values of a specification test

for a parametric regression by estimating an upper bound of the quantiles of the distribution

|G|24(dr), where G is a Gaussian process. As a consequence, such a method will be conservative
and may have a low power. Horowitz (2006) approximates the asymptotic critical values by estimating
the eigenvalues of the covariance matrix operator which characterize the process G. Since the num- ber
of such eigenvalues is infinite (see Horowitz, 2006; Bierens & Ploberger; 1997), such a procedure requires

an arbitrary cut. Moreover, since in our context the covariance matrix operator of G contains
nonparameric derivatives (see the expression of ® in Proposition 4.1 and Eq. 13), the estimation of these
eigenvalues requires the estimates of nonparametric derivatives which generally have low convergence
rates. Such low convergence rates might compromise the capacity of the test to provide a reliable infer-
ence in finite samples. Finally, Delgado & Manteiga (2001) and Xia et al. (2004) provide a specification

test where all the variables are observed, and propose to obtain the critical value by a wild-bootstrap

procedure. In the next section we use a similar approach.

5 The Bootstrap Test

To construct a Wild Bootstrap test, we start from the wild bootstrap procedure proposed in Davidson &
MacKinnon (2010) for the linear two-stages least-squares model. We extend such a method to a
semiparametric context with nonparametrically generated regressors, where the estimators of such
variables contain bias corrections. Our bootstrap test can also be seen as an extension to a context with

generated regressors of the wild bootstrap proposed in Delgado & Manteiga (2001)and Xia et al. (2004).
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While in these papers all the regressors are observed, our method provides a novel way to conduct
inference in semiparametric models with generated regressors.
Letus define {£;}7_, to be a sequence of weights independent from the sample data, with mean zero

and variance equal to one. Let

Y= Gyny(B X Vi) + & -6 withéi= Y — G gy (X, V)
X% i=m(Z) + & withd' =X —ni(Z )
fori = 1,, n. Wenotice three features of the above bootstrap DGP. First, the estimators displayed do not
involve bias corrections. Such corrections are not necessary in the bootstrap DGP for obtaining
the validity of the bootstrap inference. Second, the bootstrap weights{¢ } 7_, have to be the same in
the first and the second equation. This preserves the covariance structure of the error terms compared to
the original sample, ensuring the validity of the bootstrap inference. Third, the introduction of the
second line for X« * is due to the non-observability of the regressors V. This allows us to mimic the first-
step estimation that must be performed in the original sample.

The bootstrap counterpartof S, Givenn observations {Y %X ° B "_, generated from the bootstrap

DGP, the bootstrap counterpart S,*of S, can be computed according to the following steps.

First-Step Estimation for Bootstrap. Define

igle) = g T (14

Given the bias estimate B o(-) from Section 3, the bootstrap counterpart of iy writes as
m*o(z) 1= ni*o(z) — B o(2) -

Remark 5.1. The bias correction used for i %jis the same as the one for nip and is not computed according
to the bootstrap data. A discussed in Section 3, such a bias correction corresponds to the true bias in the

bootstrap context.
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Second-Step Estimation for Bootstrap. Set V*:= X¢ — ni*y(Z). The bootstrap counterpart of GA(ﬂV“ yis

zn T (BXIV Yew Z“

C}Eﬂh (w) :=

Z C(BXIVY-w T
n i .
=1 K ——— t

The bootstrap version of the estimator f is given by

Zn

n _ 1 N ~ -
B*= argmin seB ; [Yi*_ G (;VN*)(ﬂTX 5 Vlﬂz ro.
i=1

Remark 5.2. First, we notice that V¥= X¢ — ni*,(Z), so the bootstrapped control function is nof given by
the difference X¢* — m *y(Z). Second, the vector X includes X¢ and does not include X**. This is
because the non-observability of the regressor V at the sample level is only due to the non-observability

of mg. Hence, to replicate the estimation error from the non-observability of V, we need to bootstrap

only nip.

Third-Step Estimation for Bootstrap. Let GA(B“’V“)’,- = GA(BA’VA)([%AXI», V). Notice that GA(ﬂjVA) does not involve
bias corrections. Define

~

By(w) = E{GA(ﬂA,VA)(W)} - GA(ﬁA,VA)(W) )

with
: ) >
- ~ (BXi,¥ )—w
PPN by K “h yw
BiG iy (W= — .
ok BXepw

The bootstrap counterpart of f writes as

R . 1 2 n L i’VNf*W 2 ~
f (W) = Lnd l'=]_K - n i

The bias correction BA‘;is computed with the sample data and not with the bootstrapped data. We also

notice that such a bias correction is based on the estimator V and not on V. The bootstrap counterpart of

v(gywrites as
G@%VN)*(W) = Gz‘k(ﬂ,g‘)gr’) — B “V(W)-

Remark 5.3. The bias correction BAV“ used in the bootstrap context corresponds to the true bias of the
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kernel smoothing of ¥ *onto (X7 ,BA, V). The reasoning is the same as in Section 3. The original bias
correction BA‘;used at the sample level is not implemented in the bootstrap estimators, as it does not

correspond to the true bias of the kernel estimator in the bootstrap context.

The Bootstrapped Statistic. Define the bootstrap version of the residuals ¢"as
8"* = Y *— G~*$A*’V~*)(Xﬁ"*, VN*) .

The bootstrap version of the statistic writes as

J .
S = | PXEF4E, |2u(de) .

Remark 5.4. The bootstrap statistic S,*does not include a “recentering” term, as the null Hy is imposed in

the bootstrap DGP, so we are already bootstrapping under the null.

Consistency of the Bootstrap Test. The estimate of the (1 — «a)-quantile of the null distribution of S,

is defined as
Cloq i=1inf c:PS(S¥<c)=21-0a’ ,

where P¢ = ®”_, P<i denotes the probability measure that considers as random the weights {&} "_, and

as fixed the sample data. According to the decision rule described in Section 2, we reject the null Hg

at the a significance level as long as S, > ¢"1-, Let us denote with P the joint probability measure
resulting from the product between the two measures P and P , i.esP = P ® P . The following

proposition shows the validity of the wild-bootstrap scheme.

Proposition 2. Let Assumptions 1-6 hold.

(i) Under Ho, \/ﬁPne”*fA*gaF \/ﬁpnf¢0,t+ op(1), uniformly int €T.
@ii) UnderHo, P (S, > c"1-2) — a.

(iii) Under the alternative Hy, P (S, > ¢'1-,) — 1.

The infiuence-function representation in the bootstrap context is a “re-weighted version” of the
infiuence-function representation obtained in Proposition 1. The new weights are represented by the
bootstrap variables{¢;}”_,. This ensures that, conditionally on the sample data, the distribution of §*

mimics the behavior of S, under Hp. Conversely, under H; the difference S,, — ¢"1—,diverges towards
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infinity, ensuring the consistency of the test. In practice, the computation of the critical value ¢"_,can

be performed according to the Monte Carlo procedure outlined at the end of Section 2.

6 Applications of the Test Beyond the Benchmark Framework

Separable single-index model with endogeneity. Consider the semiparametric model analyzed in
Newey et al. (1999). Let Y be a continuous variable and X = (X¢, Z1)” be a vector of regressors. The

structural model takes the form

Y= GdBX) +¢,with (15)
E{¢|X, Z} = E{e|V}.

¢ is an unobserved error term, Go( - ) is a nonparametric structural function, f is a parameter of interest
for the researcher; and the regressor X¢ is endogenous. The control function V is defined in the same
way as in Eq. (2). The second part of Eq. (15) represents a mean-independence condition®. Eq. (15) implies
a restriction on the distribution of the data that writes as in Eq. (3), and Remark 2.1 also applies to this
context.

Models with sample selection. Escanciano et al. (2016) extends the sample-selection model originally

proposed in Heckman (1979) to a semiparametric contextl2, Let Y be a scalar random variable denoting
an agent’s decision. Assume that such a decision depends on a vector of covariates X and an unobserved
error ¢. In the presence of sample selection, the agent’s decision ¥ will be observed only in the selected

sample. Let D denote the selection variable. The model writes as

Y = ¢o(XT o, &), D = 1{mo(Z) = u}. (16)

$o is a function known by the researcher, while m is an unknown function. u ~ U[0, 1], without loss of
generality, so mg is identified as mo(Z) = E{D|Z}. If D = 1 the individual is selected and his decision
Y is observed; if D = 0 the individual is not selected and his decision Y is not observed. Accordingly, the
researcher observes Y := ¥ -D.

As an example, it is possible to set ¢o (X7 Bo, €) = 1{XT o = &} or do(X” o, €) = max{0, X7 o+
¢}. In the former case, we would have Y € {0, 1}, and hence a binary-choice model with sample
selection. In the latter case, Y = max{0, XT fo+ ¢} and we would obtain a truncated regression model

where Y is observed only when taking positive values in the selected sample. This truncated regression

model with sample selection is also called “double hurdle-model” (Escanciano et al., 2016; Cragg, 1971).

In the sample-selection literature, the errors (e, u) are assumed to be jointly independent from the set

9The identification of both the parameter S and the function rz¢ is discussed in Newey et al. (1999).
10Beyond Escanciano et al. (2016), ideintification of these models can also be obtained by the results in Rothe (2009) and
Blundell & Powell (2004).
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of covariates (X, Z), i.e.
(e u) L(X,Z), (17)

but they are allowed to be mutually dependent from each other!".
The model so far described is a semiparametric version of Heckman’s sample-selection model where,

following Escanciano et al. (2016), the distribution of (¢, u) is left unspecified. Let us denote it with Go.
Eq. (16)and (17)imply the following restriction on the distribution of the data

E{Y[X,Z} = Go(XT -Bo, mo(Z)) . (18)

Testing the above equation is equivalent to checking the correct specification of the sample-selection

model, and the procedure described in Section 2 can be easily adapted to the present context. Remark

2.1 also applies to this model.

Binary-choice models with endogeneity and structure on the error term. A further application of
the test consists in the specification of a binary-choice model with two or more endogenous variables. In
this case, the test can be applied to check the validity of the restrictions imposed on the error term to
reduce the curse of dimensionality. Consider themodel

Y= 1{XBgu}l, X = (XX $Z})7 (19)

where X {and X afe two endogenous regressors correlated with the unobserved error term u. In

the presence of two endogenous regressors, the researcher needs two control functions to handle en-
dogeneity. So, similarly to Section 2, the control functions are defined as V; := X {—m (Z ) and
Vi=X $m (£ ) withE{V [£} = OandE{V |4} = 0.Z igjincludedinZ and Z . Define Z :=

(Zo, Z1, Z2)" and denote with (X, Z) the vector gathering the components of X and Z without repeat-
ing the common ones. By imposing u|X, Z ~ u|Vy, V5, we obtain E{Y |X, Z} = E{Y | X -6, V1, V2}.
Thus, the estimation of the vector §p and the Average Structural Function will require the nonparametric
estimation of a function with three arguments, E{Y | X3 -6y= - Vi= - Vo= -} This is a triple-index
model. To reduce the curse of dimensionality and increase the tractability of the framework, it would be
useful to impose some structure on the unobserved error term u. So, assume that

u=yVi+g(Va)+e,e L(X, 2Z2), (20)

where go is an unknown function. Eq. (20)and Eq. (19)imply

E{Y |X.Z} = Go(B5,X + pm (), X5—my(Z)), 2D

11 This implies “selection on unobservables,” in the sense that even by keeping fixing (X, Z) the “potential outcome” Y
will still be correlated with the selection variable D (Heckman, 1979; Escanciano et al., 2016).
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where B 1 1= (651 — o, 63,)",0 o1 is the first component of 6o, while the vector 6o gathers all the re-
maining components of 6p. Notice that Eq. (20)implies u| X, Z ~ u|V3, V2. When Eq. (21) holds, the esti-
mation of (4 ;, 7o) requires an estimate of the conditional expectation E{Y | X T -, 1+7om(Zy), X ¢
m3(Z>)}, which involves two indices. Accordingly, the constraint in Eq. (20) can attenuate the curse of
dimensionality and simplify the estimation of the structural elements. The method presented in Section

2can be easily adapted to the present context ',

Semiparametric games with incomplete information. Aradillas-Lopez (2012) and Lewbel & Tang

(2015) study identification and estimation of a binary-choice game with incomplete information. For
simplicity, we assume a context with only two players. Denote each player by the indexp €{1, 2}. Each
of them must take a binary decision a, €{0, 1}. Let X,, be the exogenous covariates entering agent p’s
payoff, and assume that these covariates can be observed by each player and the researcher.

For notational simplicity, we writeX = (X , X ) .Each player has private information denoted
by u,, that neither the other agent nor the researcher can observe. It is assumed that 1 L up and (u1, u2)

1 X. Each payer knows the distribution of the other player’s private information, while the researcher
doesn’t. The payoff function of player p takes the form

np(ap’i’ a-p,up) = G -[x;-y TO A —p ],

where yg ,, is a vector. Assuming that a unique Bayesian-Nash equilibrium is played, the model implies
the following semiparametric restriction on the distribution of the data ( Aradillas-Lopez, 2012; Lewbel
& Tang, 2015):

E{ap|)~(} = E{aplXpT 7, — & g ,(X)} withg_,(X) := E{a_,IX} forp= 1,2, (22)
which is a specific version of the moment condition in Eq. (21)'3. The procedure presented in Section 2

can be easily adapted to the present context.

7 Simulation Study and Empirical Example

In this section, we provide a Monte Carlo experiment to assess the small-sample performance of the test.

We focus on the binary-choice model with control functions of Section 2. We generate Y from a

12The validity of the bootstrap procedure is proved in the Appendix by a general model that encompasses all examples of
application analyzed in this paper.

13The identification of (yo,p, ¢0,p) is described in Aradillas-Lopez (2010)and Lewbel & Tang (2015).1It essentially requires
the presence of specific profit shifters and normalization conditions.

23



model involving two observables (X¢, Z;) and an unobserved component u,

) b

Y=1 X 0-Zi+a -(1-9)-(Z?-1)/2=u
We assume that the researcher specifies the model as
Y= 1{X°+ Lo Z1>u} (23)

and considers fg as an unknown parameter. So, when 6 = 1 the model postulated by the researcher is
correctly specified, while with 6 = 0 the model is misspecified. The coe@cient a measures the degree of

misspecification. The unobserved variable u is definedasu = u*+ V, with
Vi= X —mo(Z), mo(Z) = 01Z1 + azZ> ,

a1= o= 1/'2and Z := (Z1, Z7)T . The error u*is generated from different distributions specified
below and is independent from all the other variables. The functional form of mg is unknown to the
researcher, so V must be estimated nonparametrically. # is not fully independent from the covariates X
and is correlated to the regressor X¢ through V. This variable controls the correlation between the
endogenous regressor and the unobserved error; and plays the role of a control function.

We generate Z; and V from two standard normals independent from each other: Z; is resampled from an
exponential distribution truncated from above at 3 and standardized to have mean 0 and variance 1. To
check the robustness of the test with respect to different DGPs, we consider three specifications for the

distribution of u*:

DGPl)u*~ N (0, sd:\/7_);

DGPZ)M*N . ﬁ '.X(zs)_5 H

DGP3) u* ~ 0.8 -N (—2.5, sd=\/3.5) + 02 -N(25 sd=1).

The first DGP delivers a (rescaled) probit model with a distribution of #* that is unimodal and sym-
metric around zero. The second DGP delivers a unimodal distribution for »* with positive asymmetry
and left skeweness. Finally, the third DGP generates u* according to a mixture between two Gaussians
and delivers a distribution for «* that is bimodal and left-skewed. The three DGPs are built to share some
common features under both the null and the alternative hypothesis. Across the three DGPs it holds
that Var(u) = 8, Corr(u, V) = 0.35, Corr(u, X¢) = 0.25, Var(X¢ + Z;) = 45.

We assume the researcher wants to test the correct specification of the model he sets up in Eq. (23).
Since this equation implies that E{Y |X, Z} = Go(XT Bo, V), specification testing can be based on this

latter restriction. When 6 = 1 we are under the null hypothesis, while with 6 = 0 we are under Hj.
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7.1 Implementation of the Test

The test is implemented as described in Section 2 and Section 3. To get g, we need to set up a band-
width rate &g and a kernel function Ky. Since Z = (Z;, Z;) has two components, we introduce two
bandwidths for the estimation of mg: one bandwidth for Z; and another for Z,. We use a Rule-of-
Thumb that is consistent with the rates reported in Section 3, setting o = (s d(Z1), s d(Z)) -n~1/6. The
kernel Ky is chosen to be a second-order Gaussian kernel. For the estimator GA(ﬂVN y we set K as a
second-order Gaussian kernel. Following Rothe (2009), Delecroix et al. (2006), Escanciano ef al. (2016),
Maistre & Patilea (2014), we compute £ from the following program

~ ~ 1 zn A( l) ~
. — - T A~
B,h)= argmin, , [Y,— G (/;,V“),h(Xi'B’ V)l -7,
i=
where G i) Sienotes the leave-one-out estimator of G4 . We consider the first component of (ﬁ h ) as
an estlmator for fo. Such a procedure is common in the empirical implementations of semiparametric

index models, see Rothe (2009) and Escanciano et al. (2016). To control for the random denominator

e introduce the trimming 7" in the above objective function. Specifically, 7

drops those indices i for which |V exceeds its 95th quantile. For the numerical minimization, we use a

presentin nigand G ¢ ’2;

Newton-Ramphson method and select as a starting point for /4 the estimate from a probit model. This
model holds true for DGP1, but does not hold for DGP2 or DGP3. The starting point for /4 is instead set
by a rule of thumb to (s d(X” ,BApmb), sd(V)) -n~18 , Although this estimation procedure does not fully
respect the restrictions on the bandwidth rates described in Section 3, it is a standard practice in the

statistical and econometric literature (see e.g. Rothe, 2009; Delecroix et al., 2006; Escanciano et al., 2016;

Maistre & Patilea, 2014; Xia et al., 2004). Moreover, such an estimation method, when combined with the

test, shows a good small-sample performance.

To compute the estimators G(B V) and fA that will be used in the statistic S,,, we choose K as a
second-order Gaussian kernel. Since (87X, V) has two components, we introduce two bandwidth
rates: one bandwidth for 57X and another bandwidth for V. 1 is set according to a Rule-of-Thumb, so &
= (sd(f7X), sd(V)) -n~1/6. Once the estimates G(B vy and f are obtained, the computation of the test
statistic needs the selection of the weighting function ¢ and the measure y. To obtain a simple
expression for S,, we set ¢(-) = exp(i-) and u to the standard Gaussian. This delivers the following
expression for the test statistic:

12" 2"
Su= &1 39 (UX. 2) 7 (X, 2) ), 24)
i=1 j=1

where¢ := Y — GN([;A;)(,BATX V), é « 1s the characteristic function of the standard multivariate Gaussian
with dimension dim (X, Z). Since in the literature on specification testing it is common practice to

implement Stute’s types of tests (see e.g. Delgado & Manteiga, 2001; Xia ef al., 2004), we also evaluate
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the performance of a test statistic where ¢,(x, z) = 1{(x, z) <t} andthe measureu is setto the
empirical measure P,,. Such a statistic takes the form
12, .
S,(,St)= . €; 'fi'1{(X’ Z)iS(X’ Z)s} "€ 'fj'1{(X’Z)jS(X’ Z) } (25)

2
n
s=1i=1j=1

The proofs provided in the Appendix also hold for the test based on the above statistic.

For the bootstrap implementation, we follow the procedure outlined in Section 2and detailed in
Section 5. We set the bootstrap weights{¢ } »_, tobeiidN (0, 1) and compute the critical value ¢"1,

according to the Monte Carlo procedure described at the end of Section 2.

7.2 Simulation Results

To evaluate the small sample behavior of the test, we compare it to other procedures aiming at testing a
similar null hypothesis. Due to the novelty of the methodology in this paper, no procedure available in
the statistical literature can be employed as an alternative to this test in a real-data application.
Therefore, we choose to compare our methodology to several “Oracle” specification tests. We consider
the specification test by Delgado & Manteiga (2001) (DGM now henceforth). The DGM test is designed
to check the significance of covariates in a nonparametric regression, assuming the full observability of

the regressors. It essentially requires that the model specified under Hp must be nested into the class of
models considered under H;. Such a condition holds in our framework *°.

We here employ the DGM test assuming that the variables (X¢ + Zj, V') are observed, but the link
function Go -i.e. the conditional expectation E{Y | Z; + X¢ = -, V = -} is unknown. Such a link

function has to be estimated nonparametrically. For the implementation of the DGM test, we follow the

suggestions in Delgado & Manteiga (2001). We regress nonparametrically Y onto (Z; + X¢, V) by
kernel smoothing. A bias reducing kernel is employed, so the kernel is chosen to be a 4th order Gaussian
kernel. The bandwidth rate is defined as (sd(Z1 + X¢), sd(V)) -n~6. We consider two variants of the
DGM test. In a first version, we compute the DGM statistic using a Bierens’ characterization of the null
hypothesis. This gives rise to a statistic similar to Eq. (24). In a second version, we consider the Stutes’
version of the DGM test that delivers a statistic similar to Eq. (25). The difference between the test
presented in this paper and the DGM test is the presence of the nonparametrically generated regressors.
The comparison of these two methodologies is useful for understanding the impact of the estimated
covariates on the size and power of the test.

In the simulation study, the number of Monte-Carlo replications is set to 1000, the number of boot-
strap replications to 100, and for each test we consider the sample sizesn = 125, 250, 500. The results of
the simulations are reported in Tables 1, 2, and 3. They contain the rejection frequencies for each test.

14We have also run simulations for the case where the bootstrap weights are set according to the same distribution as in
Delgado & Manteiga (2001),but the results essentially do not change.

15More precisely, the sigma field generated by the significant covariates under Hg must be included into the sigma field
generated by the covariates under H1.
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The acronym NPGR-B (Nonparametrically Generated Regressors - Bierens) denotes the test proposed in
this paper when applied according to Eq. (24). The acronym NPGR-S (Nonparametrically Generated
Regressors - Stute) denotes the test statistic computed as in Eq. (25). DGM-S stands for DGM’s test when
applied according to the Stute’s function, similarly to Eq. (25). Finally, the acronym DGM-B stands for
DGM’s test when applied according to the Bierens’ function, similarly to Eq. (24).

On its own, the test presented in this paper performs reasonably well in terms of size and power;

across the DGPs considered. When the null hypothesis holds, the test shows a contained error in the
rejection probability that becomes smaller as the sample size increases. As regards the power; the test is
able to detect departures from the null hypothesis with good frequencies. When the sample size
increases, the probability of rejecting the null grows.
When compared to the Oracle DGM Test, the test performs well in terms of size but it is outperformed in
terms of power: Specifically, under the null, both the test we propose and the DGM test need an increase
in sample size to reduce the error in the rejection probability. The Oracle DGM test shows a better
capacity for detecting departures from the null hypothesis compared to the NPGR-B and NPGR-S tests for
any sample size. Also, as the sample size grows, the increase in the probability of rejecting the null
seems to be more pronounced for the Oracle DGM test than for the NPGR-B and NPGR-S tests.

Within this simulation experiment, the presence of nonparametrically generated regressors does not
seem to have a considerable impact on the empirical size of the test. Instead, it has an impact on its
power and reduces its capacity to detect departures from the null hypothesis, although the test still
shows a reasonable ability in detecting the alternative.

7.3 An Empirical Application

As an empirical application we test the specification of a model for married women’s labor force partic-
ipation, see Wooldridge (2015). Such a model relates the decision on labor force participation to “other
sources of income” of the household. The initial data set consists of 5634 observations coming from the
1991 Current Population Survey'®. We select the observation on the basis of the experience, in- cluding
only those women whose level of experience is lower than the 75th percent quantile and larger than the
25th percent quantile of the total distribution. After this change, the sample consists of 2762
observations.

The dependent variable Y is an indicator that equals one if the woman participates in the labor
force and zero if not. This decision depends on “other sources of income” of the household (X5, /.:.c)-
Other controlsin X are the woman’s level of experience (Z,,,..), its square (Z ezxpe,), education (Z,4..),
and a dummy variable that equals one if a child under the age of six is part of the household (Zy;4s::6)-
Following Wooldridge (2015), wetreat X, ;/.;,. asendogenous, since unobserved elements might di-

rectly affect labor force participation (Y) and be correlated with X¢ To handle the endogene-

nwifeinc*®

ity, Wooldridge (2015) makes use of the husband’s level of education (Z,,s¢quc)- This variable is as-

16] am very grateful to Jeffrey Wooldridge for having shared his data set.
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sumed to impact the women'’s labor force participation only indirectly, through the endogenous vari-

able X ;/.i,.- Thus, the exclusion restriction necessary for the identification is satisfied. A linear
regression of X Swifeinc ONtO the exogenous variablesZ = (Z.xper, Zeaues Zkiaites Zhuseane) Showsthat

the coe@cient attached to the exogenous instrument Zj, 5.4, is significant (see Table 5).

We normalize to unity the coe@cient attached to experience,

Y = 1{Zexper + ﬂO,lZezxper + ﬁO,ZZeduc + ﬁ0,4Zkid116 + ﬁ0,3X$zwifeinc = u}
xe = mo(2) + V,E{V |2} = 0.

nwifeinc

Following a semiparametric approach, we do not specify the distribution of (u, V). Also, mg is not
restricted to have a specific functional form and is nonparametrically specified. We adopt a normal-
ization on the continuous variable Z,,,., that we expect to positively impact the probability of labor

force participation. We also expect Z.4,. to have a positive impact on such probability. Conversely, we

expect both Z ;45,6 and X ¢ to have a negative impact on the labor force participation decision.

nwifeinc

To check the correct specification of the model, we test the null hypothesis introduced in Section 2.
The components of the test statistic are obtained as follows. First, we estimate the regression mg non-

parametrically. We make use of the np package by Hayfield & Racine (2008) in R. We select the band-

widths by cross-validation and employ a second-order Gaussian kernel. In the nonparametric first-step
estimation, only experience is treated as a continuous regressor;, while the remaining ones are treated as
discrete variables. Due to the introduction of the bias corrections for the nonparametric estimators, the
cross validation method for bandwidths selection is fully coherent with our testing procedure.

Once the residuals V are computed, we estimate o by minimizing a Semiparametric Least-Square crite-
rion as in Section 3. We carry on a numerical optimization using the BFGS method in R. The estimates
obtained are reported in the second part of Table 5. The sign of each estimated coe@cient is as we
expected!’.

In a third step, the function Go and the density f are constructed as presented in the previous sections.
According to the guidelines provided in the simulations, we set the bandwidths according to a rule of
thumb and employ second-order Gaussian Kernels. Similarly to Section 7, we implement two types of
tests: a Bierens’ test and a Stute’s test. The bootstrap procedure is carried over by resampling the boot-
strap weights {&;} 7, from a standard normal distribution. At each bootstrap iteration, we follow the
same steps as those performed at the sample level. However, as described in Section 5, in the bootstrap

context the bias corrections do not need to be estimated at each bootstrap iterations are computed with

17The benchmark initial values used to start the estimation are the coe@cients obtained from an endogenous parametric
probit, where the endogeneity is handled by a control function estimated in a first step by a linear regression. The initial
values for the bandwidths are set to the values obtained from the estimation of a single-index semiparametric model, where V
is considered as a regressor and both the coe@cients and the bandwidths are obtained by minimizing a SLS criterion. This is
carried out by the npindex function in the np package in R. Given the benchmark initial values, in order to avoid the
convergence to local minima, we run the minimization several times by considering as initial starting points half, twice,
three, and four times the benchmark initial values. We finally select the estimate of g delivering the minimum value for the
objective function.
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sample data. To compare our results, we also implement a specification test for the endogenous probit
model where the control function is estimated in a preliminary step by a linear regression. The bench-
mark results are reported in Table 6. As a robustness check, we report in Table 7 the results of a test
where the benchmark bandwidth is multiplied by a scaling factor C.

The correct specification of the fully parametric probit is rejected. Differently, with the procedure we
propose, the correct specification of the semiparametric model cannot be rejected at the 2, 3, or 4 percent
critical level. Considering the large size of the sample, such results are likely not affected by a small-
sample problem generating a lack of power of the test. The different results obtained by our test and the
parametric test are not surprising. The parametric probit model imposes stringent parametric
constraints that are not fully justified from a theoretical standpoint. The semiparametric framework
relaxes some of these constraints, although it imposes a linearity restriction on the index that is not

economically justified.

8 Conclusions

This paper presents a novel wild bootstrap specification test for semiparametric models with nonpara-
metrically generated regressors. The range of application of the test is wide and includes semiparamet-
ric models with endogenous regressors identified by control functions, semiparametric binary-choice
models with a nonparametric selection mechanism, truncated variable models with sample selection,
and semiparametric games with incomplete information.

We prove the validity of the test under low-level conditions. The statistic contains a bias correction
for the nonparametric estimators that allows to implement the test without undersmoothing. Such a
bias correction is novel for semiparametric models with generated variables and is attractive because it
widens the spectrum of kernel orders and bandwidth rates admissible for the test. We have proposed a
Silverman’s Rule of Thumb for the bandwidth selection, and a set of Monte-Carlo simulations has
shown that the test performs reasonably well in small samples both in terms of size and power.

One drawback of the bootstrap test of this paper is that it might be computationally demanding. The
finite-dimensional parameter must be estimated by a Semiparametric Least-Square method. This
implies that at every bootstrap iteration a nonlinear function must be minimized. Consequently the
application of the bootstrap test might involve a relevant amount of time. This drawback, however; is not
specific to the methodology of this paper; but concerns all those tests for nonlinear models where the
finite-dimensional parameter is estimated by a nonlinear optimization.

As a byproduct, we obtain that the Wild Bootstrap scheme proposed in this paper provides a valid
inference for the finite-dimensional parameter in a class of semiparametric models with generated re-
gressors. Bootstrap methods are relevant in these frameworks, as the asymptotic covariance matrix of
such models contains nonparametric derivatives. Estimating such asymptotic covariances might yield
poor confidence intervals because the nonparametric estimators of the derivatives generally have slow

rates of convergence. Instead, the Wild Bootstrap procedure proposed in this paper can be considered
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as a valuable alternative to this asymptotic approximation. It can also be considered as a valuable al-
ternative to the pairwise bootstrap which does not exploit the restriction the model imposes on the
distribution of the data. The wild-bootstrap scheme, instead, uses the information suggested by the

setup. Exploring the performance of this method is an interesting topic for future research.
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Table 1: Simulation results for DGP1

Notes: Simulations based on 1(
sd(Z2)) -n=1%, h = (sd(XT

Mo i

u 0.05 01 0.05 0.1

n=125 NPGR-B | 0076 0.115| 0.174 0.248
NPGR- | 0069 0098 | 0148 0.223
S 0073 0136 | 0178 0.295
DGM-B | 0069 0.127 | 0256 0370
DGM-S

n=250 NPGR-B | 0071 0104 | 0269 0361
NPGR- | 0062 0091 | 0223 0326
S 0059 0127 | 0320 0444
DGM-B | 0064 0.121 | 0469 0585
DGM-S

n=500 NPGR-B | 0054 0.094 | 0330 0433
NPGR- | 0041 0067 | 0273 0414
S 0061 0125 | 0570 0.693

00 Monte-CANo/VéiBicatid 6 The @ek26is| bAsA4Dn 0082560

£ sd(V" )DGMES. T

tstrap samples. ho = (sd(Z1),

he kernels are Ga

ussian Kernels of

order 2 for the NPGR test, and

Gaussian kernels of order 4for the DGM tests. For Hy, (6 = 1, a = 0);for Hy, (6 = 0, a =3/2).

Table 2: Simulation results for DGP2

Notes: Simulations based on 1(

sd(Z2)) -n=18, h = (sd(XT

Mo M1

u 0.05 01 0.05 01

n=125 NPGR-B | 0078 0.116 | 0.195 0.283
NPGR- | 0075 0.104 | 0185 0.281
S 0076 0.153 | 0213 0316
DGM-B | 0066 0153 | 0307 0427
DGM-S

n=250 NPGR-B | 0069 0117 | 0304 0.395
NPGR- | 0062 0.097 | 0277 0379
S 005 0119 | 0370 0513
DGM-B | 0062 0112 | 0549 0.668
DGM-S

n=500 NPGR-B | 0061 0.108 | 0354 0486
NPGR- | 0047 0083 | 0316 0448
S 0057 0.119 | 0632 0.745

00 Monte-CAMoMéBicatiofi6 The Akl 1is| FASE8Dn 01BGdJ

he kernels are Ga

B) sd(V" )DGNES. T

ussian Kernels of

tstrap samples. ho = (sd(Z1),

order 2 for the NPGR test, and

Gaussian kernels of order 4for the DGM test. ForHo, (6 = 1, a = 0);forHy, (6 = 0, a = 3/2).
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Table 3: Simulation results for DGP3

Mo M1

u 0.05 0.1 0.05 0.1

n=125 NPGR-B | 0078 0113 | 0197 0.287
NPGR- | 0078 0.106 | 0188 0.264

S 0068 0132 | 0193 0307
DGM-B | 0062 0.130 | 0283 0.384
DGM-S

n=250 NPGR-B | 0063 010 | 0297 0392
NPGR- | 0051 0085 | 0269 0372

S 0064 0119 | 0348 0475
DGM-B | 0059 0126 | 0519 0.640
DGM-S

n=500 NPGR-B | 0076 0.109 | 0.328 0453
NPGR- | 0049 0.084 | 0280 0427
S 0054 0.107 | 0.603 0.710
Notes: Simulations based on 1000 Monte-CANe/VéiBicatid 62 he ekl (is| bA$EAon (BFwotstrap samples. ho = (sd(Z1),
sd(Z2)) n=16, h = (sd(XT }f) sd(V" ))DGMES. The kernels are Gahssian Kernels of prder 2 for the NPGR test , and
Gaussian kernels of order 4for the DGM test. For Hp, (6 = 1, a = 0); for Hy, (6 = 0, a = 3/2).
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Table 4: Simulation results: comparison between the test with bias correction and without bias correc-
tion

C NPGR B NPGR-BwBC | NPGR S NPGR-S wBC

005 0.1 005 0.1 005 0.1 005 01

n=125 05 | 0035 0.066 0045 0.75 | 0027 0.049 0.033 0.055

0.75| 0043 0.074 0053 0082 | 004 0.058 0049 0.065

1 0061 0.094 0073 0105 | 0053 0.074 0.068 0.096

1251|0073 011 0098 015 | 0072 0.098 0097 0.138

n=250 05 | 0043 0.081 003 0071 | 0032 0.064 0022 0.038

0.75 | 0047 0.081 0033 0061 | 0037 0.057 0025 0.034

1 0052 009 0044 0064 | 0046 0.064 0.033 0.045

125 | 0068 0.113 0062 0093 | 0062 0.089 0046 0.069

Notes: Simulations based on 1000 Monte-Carlo replications. The test is based on 100 bootstrap samples. ho =
(sd(Z1), sd(Z2)) n=18, h = (sd(XT - ) sV )) -n=1/6. The kernels are Gaussian Kernels of order 2.

Table 5: Descriptive statistics and estimation results

inlf exper exper? nwifeinc educ kidlt6 huseduc

Mean 0.612 1982 412 32.38 132 024 1344
Std. Dev. 049 445 180 2823 246 042 291
Min 0 13 169 0 0 0 0

Max 1 28 784 112.5 18 1 18

Ist stage reg. - 0.002 - - 0.023 083 <<10-°
SLS est. - 1 -093  -0.23 119 -174 -

Notes: The variable inlf denotes Y . The row Ist stage reg. contains the results obtaned from the linear regression of
nwifeinc onto Z =(exper, educ, kidlt6, huseduc). The row SLS est. contains the estimation results for the Semiparametric
Least Squares method.
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Table 6: Main empirical results

Statistic Q 90 Q 95 Pvalue
NPGR-B 04866 0.2499 0469 0.05
NPGR-S 15275 11601 19647 0.06
Bierens-P 0.301 0.1935 0.2087 0
Stute-P 0.0235 0.0156 0.0186 0.021

Notes: Bierens-P deontes Bierens’ test for a parametric model with a linear control function, when applied according to the
complex exponential. Stute-P denotes Stute’s test for the parametric probit with a linear control function. Q 90 and Q 95
denote the 90th and the 95th quantile, respectively, of the boostrap distribution. Pvalue denotes the bootstrap p-value.

Table 7: Empirical results: robustness checks

c Test Statistic Q 9 Q 95 P-value
05 NPGR-B 132627 9.6898 14.6649 0.06
NPGR-S 416119 4308432 749582 0.115
0.75 NPGR-B 19377 1.3402 1.7148 0.05
NPGR-S 6.029 47391 83056 0.085
1.25 NPGR-B 0.1643 0.0876 01214 0.03
NPGR-S 0.5344 03410 05073 0.05

Notes: Results from the application of the test with different values of the constant C multiplying the bandwidth h.
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Appendix

In this Appendix, we prove our main results. First, we consider a general moment condition that encompasses all
the examples of application of our test. The proofs for the asymptotic analysis are contained in Appendix A.
Appendix B contains the proofs for the bootstrap test, while Appendix C provides the power analysis. Appendix
D contains some auxiliary results that are used throughout the proofs. A Supplementary Material that can be
found on the author’s website contains those technical proofs that are omitted for reasons of space. Let us start by

rewriting the null hypothesisas
HyE{Y |X} = E{Y |} X1+ B,mxX3), X ¢ —my(Z)} for some By €RPI*L,

where o = (B, B,)Tm §Z) :=E{D [Z}, m X hi=E{ D,lX3}, and X~ gathers all the components of

X1, X2, and Z without repeating the common ones. [ assume for simplicity that mo(Z) and m2(X2) are scalar
random variables, as the extension to any finite dimension larger than one is straightforward. The variables (Y,
XN, Do, D2) are observed, while the functions mo, m2, and the finite dimensional parameter fo are unknown. I

here consider an omnibus test, so the alternative hypothesis H1 is defined as the logical complement of Hp.

Notation. Let X be the vector gathering X1 and X> without repeating the common components. X¢ is a sub-
vector of X. Unless it is differently stated, the capital letters will denote random variables, while the lower cases
will denote realizations of random variables. For instance, given the random variable X, the low case x will
denote a specific realization of X. The dimension of each random variable is defined as follows: p1 :=

dim(x1), p2 := dim(x2), po := dim(z), d := 1 + dim(v). Letfo := (BT, p7 )';depate the “true” value

of the parameters, and f := (8], f1)7 denote a generic vector in R?! +1  For any element f € R71*1 | define
w(B) 1= (B x4 fm £x ) x = m §2)) and W (B) := (BTX 1+ BmAX X £m 62)) ,withi=1,..n,
and n denoting the sample size. Also, letfw (5) denote the density function of the random variable W (), and
ttw (py(w) 1= E{Y [W(B) = w}. Inline with the usual notation of Empirical Process Theory, I define the linear
operators P and P, asPg = g(y, X)P(dy, x")andP g = (1/n) > =1 8(Y i X ;) respectively. Notice that if

(v, X)>— g(y, x)is a nonrandom and deterministic function, Pg = Eg(Y, X ). For any object y or yo, either
functions or vectors, y° will denote the estimate of either y or yo. For instance, ﬁ" denotes the estimate of Sp. Also,
in line with the notation in Empirical Process Theory, for any set A containing a countably many elements I

denote with # A the cardinality of a countable setA.

Denote with o1t ¥ = (01t w(p) oFtty (5)) the partial derivative of #y 4 with respectto all its d argu-
ments, so that 011tw (5) will denote the partial derivative of 77y () with respectto its first argument, while

okt W) = (82ttw(/;), adttw(ﬁ))T will denote the vector gathering the partial derivatives of 77 y, (5 with
respect to the other dy arguments. Notice that 0z¢w () is measurable with respect to (the sigma field generated

by) W (5).

The conditional expectation 7w (gy(w) := E{Y | W (8) = w} can be seen as a mapping (w, ) > ttw (g)(w).
Notice that a change in # will change the shape of the function w >— ttw (5(w). Denote the derivative of the
mapping (w, B) »—ttw ()(w) withrespectto S asdpgttw (5)( - ). Notice that this function is measurable with
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respect to (the sigma field generated by) W (). On the other hand, for the mapping (x", ) »— ttw (5(w(B)), a
change in # will impact on both the shape of the function ¢z (5(-) and the argument w() where such a
function is computed. The differentiation of the mapping (x”, 8) >—ttw (5)(w(8)) with respectto both occur-
rences of  will deliverd ;¢t W(ﬁ)(w(ﬁ)) + 61ttW(ﬁ)(w(,B)) -(xL, m {x ) 3 TLetus denote such aderivative
with V gttw (5 (w(p)). Observe that x>— V grtw (5y(w(p)) is not measurable with respect to the sigma field
generated by W (B).

With this new notation, the estimators are now given by

£ 5 - 3 . - >
mA@Z) = }'(‘%; ((Z) n/po ?=1D0K0 7]%,72 zr fO(Z) nhPO i= lKO 724 Z
3 - 2 n T X, gx 2 n X,
mie 1= H8 L D) =k T L Daka THSD, fa():= g LK N
" A ER Ny~ z n i—X
tii=1{fgX) 22}, A= 1, " K3 th
Their biases are estimated by
) - z
Bo(z) = _fw(JT nz),  where T (z) := nhP Iz )t K g oG

Ba(x) i= mz(xz) mbx ), where (z) = hp2 ?zl mX Yt K 2' )L;%?x 2
So, the bias-corrected estimators of the first step are
mo(z) :=mo(z) — Bﬂo(z) and  m2(x2) :=ma(x2) — BAz(xz) )
Denote

W (B) := (fX 1+ BiX )X <mi(Z)), W (B) 1= (X 1+ B2RX )oX < nkZ)),
w(B) := (B]xq + o y(x;y), x¢ —mp(z)), and  w'(g):= Bk + p mlx) 5 —mlz))e

For the estimatorsof 1w (5) andfw (p),

. Tirgg V()
fin 0= T e i
4 z n CW(B)- 2 " 1 2 n CW(B)- 2
For the bias of tA~ ‘;/E(i/gl)d its bias-correcetd version,
. (w) Z . T >
B W) (W) _f’W , with TA (W) . t W) -t K —(‘@—h ,

) 1= ’W(ﬁ )(W) By >(W)



) )3 ) )3
pni=P f(W(B0)) =1 ,pno:=P fo(Z) =1,
>

. . 5
Pn2i=P f2(X3) 21, ,p,3:=Pf (X) = 3n

We now list the Assumptions we will be using throughout this Appendix.

Assumption A1(IID).{Y ; X 1,,X ,X ,Z,D 1, D;;}" isan lIDsequence of bounded random variables de-
fined over the probability space (Q, A, P).

Assumption A2 (Smoothness). (i) The mappings (w, B) >—ttw (g)(w) and (w, ) >—=fw (s)(w) belong to the
class G*; (ii) for all p €B, tadmits a density conditionally on the multiple index W () which is denoted as

@ w) —fy W) (" |w) and belongs to the class E . ; (iii) mo, fo €G"0;m2, f2 €Gr2; (iv) the density fy~ of X
belongs to the class G'3.

Assumption A3 (Kernel). (i)K €K7, (i) K (€K 1’,%, eKrz (zzz)K EK[’; X

rj

Assumption A4 (Bandwidth rates). (i) forj = 0, 2: —laen -0, ﬁfn = 0, fors = 1+ Ev(p )/2;

Pji2si 2si+2
hjj I g

1 2 4y _ e 1 2 r .
o) — 0, b 4 = Oyfi) Y980 — O k¥~ O,
J n

Assumption A5 (Trimming). ) p 5 o(I71), p .0 = o([;1), pp.2 = o(I;1), where | satisfies W% -0
) b= o(1) forj = 0,2 and 1 = o(1).

(i) pp.3 = 0(1;3) and the bandwidth busedfor the estimation of f ; satisfies:n -bA*> -7, — +00 , ﬁfﬁn -0,
l;_—3 — 0 T, n 3 M — +00;

(iii) there exists constantsn > 0 small enough and N large enough, such that for all n larger than N, 1{fy~ (") =
tw} < sup pep H{fwp(w) = m,} {6 =}, <Uf (g) =9z}, and 1{ fXxN)> 7}, < 1 fz(xz)
nt, }. For a large enough n, the set  w Sw W) =4, z:fo(z) = 4z, " and Xy fz(xz) t, are

convex.

Assumption A6 (Pseudo-true value). The mapping B >— E{(Y —ttw (5 (W (B)))?} admits a unique minimum.

A Asymptotic Expansion

Having specified the notation, I start by presenting some important objects hat will be used throughout this
appendix. Let F be a space of real-valued functions defined over X and metricized b}}Lz(P ). So, forany f, g €F,

the distance between f and g is measured by the (pseudo) norm [|f —gll; py = {" |f — gl &")d P (x" )}V 2. For
any two functions xX>— u(x") and x>— I(x"),such that u > [, define the bracket[u, []:={f €F :I <f < u}.
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The bracket[u, [] has L2(P )- sizes if [|u — I||r,(p) < s. Hence, define N[ 1(s, F, L2(P )) to be the bracketing
number of the semi-metric space (F, L2(P)) ,ie. N i(s, F, L2(P)) reﬁresents the minimum number of brackets
of Ly(P ) sizes that coversthe spaceF . Also,letJj{d, F, L {P)) := 9 _logN[gs, F, L,(P ))ds.Foradeeper

0
treatment of these concepts, see Kosorok (2007), Pollard (1984),van der Vaart & Wellner (1996),and van der Vaart

(1998). The lemma that follows is the main one used in the proofs.

Lemma A.1. (van der Vaart (1998)) Let F be a class of measurable functions f : y >— R such that Pf? < &2 for all
f €F, let F be the envelope function for F, and let ar (8) 1= 6/ 1 VIog Ni1(6, F, La(P)). Then

ENIGIF < J16 F, La(P)) + ViPF(F > Viiar (5))

up to a universal constant.

The following “lemmata” is necessary to prove the expansion of the empirical process at the basis of the

statistic.

Lemma A.2. Let Assumption A5 hold. Let (y, X )»— g  ndy, X )be a sequence of random functions witht €T, such
that sup,ct IIgAmtAnI lo= Op (1) and sup,c1 118" nitnllo = Op (1). The following resultshold:

(1) \/E 'Pn|tn - 1| =0P(1),'
RV . . ,
(i) “n Pug’nit n= "1 -Png nita+ op(1) uniformlyint €T,
Let z >»=y(z) be a function such that sup,ct ||yil| o is finite. Then,

\ Lo
(lll) \/ﬁ Pngn,zt n" KO(”) * V/t(Z + Ltho) t,(;?/ZZ)(Z + uhO) du = \/ﬁ Pngn,zt n' KO(”) * l//t(Z + uhO) du+ OP(]-)
uniformlyint €T;

Letw »— l//N;(W) be a function such that sup,ct ||1//~;| |oois finite. Then,

i) V7 Pg Kty 5w () + ) 42 (W (Bo) + uh) du =

n, W(B
moP gy tn K(u) -y (W(Bg)+ uh) -z%gﬁo)(wwo) + uh) du uniformlyint €T,
If supﬂ(w”(ﬁﬂ) —w(B9) -t )= O (g ),2he above result also holds by replacing W (f) gith W (B).

Proof. (i) \/n_ Plt,—1| = \/n_ -P{f (XN) < 7n} = 0(1), by Assumption A5. So, conclude by Markov’s inequality.

(ii) Notice firstthatt - ¢ 5 ¢ =2 = fr — £,)(t + t),s0 ,,
A N Voo PRIV
n Pn|g nt '(ln_ln)| S||g n,t'(ln_tn)Hoo n'Pn|t n_fn| —OP( n 'Pn|t n_Tn|)-

Define

~

B,(IC) = HfXN _fX"“oo <C 'd3,n Withd3,n = ];0% +b"

By Li & Racine (2006), | |f, v f yllo = 0p(d3 ), soP (B{€)) can be made arbitrarily close to one, asymptotically,
- . e n(C
by choosing C large enough. By Assumption A5, d3.n/%n = o(1). Notice that if B¢ ,,) holds, f g)p >t -3/2,
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: . >
and Cd3,,/t, < 1/2,thent,(x™) = 1andfy~ (") > x0) _cdin T4 > 74. S0, wheneverB(i) holds and
Cd3 . n/tn < 1/2, it mustbethat

5 &)~ @< fe@) < 3,

\/ ] ~ ]
Since 7 -Pf ;(X) < %rn = 0(1), conclude by Markov’s inequality.
(iii) By Assumption A5, forn large enought , = 1, t,(1’7 )Z, and hence

fﬁ -Png“n,;nj Ko(u) -y (Z + uky) -1 2(Z + uhy)du = (A1)

mPug ot 197 Ko(u) -y (Z + uly) ("2(Z + uhg)du.

By a first-order Taylor expansion, fz (z+uho) = fz (z)+0fz(2) - (uho), with z € [z, z+uho] and | 8fz(2) - uho| <
Chg forall u suchthat K {u) f= 0. Hence, sinceil—(l = 0(1), for alarge n,

, : z,
K0t o) = A 2k 1-0Fa), —
2

f2(2) = 1 C14 ! > 1) (2)

uniformly in z and for all u such that Ko(u) f= 0. The result then follows from the above display and Eq. (A1).

The proof of Point (iv) is very similar to the proof of Point (iii), so it is omitted. 0

Lemma A.3. Let Assumptions A1-Ab5 hold. If \/n_ . (ﬁA —po) = Op (1) and Ho holds, uniformly over{x” : f (") = 7}
) T 0 0B = Ty cpy (W(BQ)) + 0Ty 4y W(B0)) -(F(B) — w(Bo)) + 0p (n~V?)
@) 7.0y 0 B) = £y ¢y (W(BD) + 8w (y W(B0)) ~(#(B) — w(Bo)) + op (n=Y2)

(III)I K(u) (lsz (/j)) )(W‘v@) + uh) du =
K(u) ~(uf w (5,))(w(Bo) + uh)du + 0(1fyy (55 Jw(Bo)) W(B) — w(Bg)) + op (nV2)

The above results also hold with w”(ﬂ'\)replaced by w“(ﬁ'\)and W7(ﬂA) replaced by W@A).

Proof. The proof is provided in a supplementary material. (i) By a Mean-Value expansion,

i iy 0 B) = T 5y W(BQ) + &y cpy WEBD) -(F(B) — w(Bo)) , with w(B) €[5(A), w(Bo)l  (A2)

n

Define the event B, := {sup,~t(x") - W (B ) — w(Bo)| < C -dn/tn}. By Lemma D.1, P (B,) has a probability
arbitrarily close to one asymptotically by choosing C large enough. For a fixed C, over the set B,, whenever

t2(x”) = 1, by a Mean-Value expansion, ,

Fw )y (WBY) = fw sy (w(B0)) + fw sy (W(B)) -(w(B) — w(B)) ,
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withw(B) €[w(B), w(Bo)], and
3fw sy (W(B)) -(W(B) — wiBN)tulx™) < fwanl o -C -dn/tn ,

where % = 0(1). Hence, by choosinga 8 €( , 5 % overthesetB , foyeachn su@ciently large

Uzl f oy =y =_

Uz th - f o mBo) =5 [L—0-0fy (4 W) -(w(B) —W(g))/rn]’ >
fg@ =z} - fuwpWB)) 2% - 1+0:110fy glle -C -4 =
Ug)=h - f w0 =5 2 =
Ifx~ O = 2} Afwg)(w(ho)) = nta} =
{fx &) =14}

for all x”,where the last inequality follows from, Assumption A5. Accordingly, by Lemma D.3, whenever the event
B holds true

Sup ¢ |6Tﬂvfz(p) (W(B)) — 0Ty ¢4y (W(B))! 1x")<
sup, 107" e (W) = 0Ty sy O] -{f y (y(#) = 15,/3} = 0p (0~ )

Finally, notice that by a Mean-Value Theorem, uniformlyin x°,

10T (s (WEBY) — OTwsy(w(Bo))| &™) < C - b —w(Bo)| -t(x™) = op(n™ ), (A4)

where the last equality follows from the definition of w(#) , LemmaD.1, and ﬂA— Bo = Op (n—172). Notice now
that by Lemma Mandﬂl\— Bo = 0p(n=172),

sup; 1(7(8) — w(Bo))| “ta(X) = op (V%) (A5)

Conclude by Eq. (A.2), (A.3), (A4), and (A.5). The proof of point (ii) proceeds along the samelines.
(iii) The proof proceeds along the same lines as above, by using the fact that sup,e7 | 6(1,fw (5,)) (W1) — (1 ifw (8,)) (W2) | <
Clwy—wyl,n4h = o(1) by Assumption A4, andg((u) O0(uf,w 3y Yw(Bo)+uh) du= 0(1:fw (5))(w(Bo))+

O(h") uniformly over the set{x” :f (x")> z,} andT, by an usual Taylor expansion. ]

Lemma A4. Let @ :={x">—¢{x") :t €T} with ¢ fixed functions satisfying supyegyy” |90 &) — ¢, () < C
-|t1 — 2] forall 11, t2 €T . Let Cbe a class of functions such that log N (s, C || - |le) < C -s7°. Then log N {(s,
C-O®, || ll2p) < Cs™, withv €(0, 2).



Proof. Since Tis a compact set, N (s, T, ||-|[) < Cs~4im(T), where ||-|| denotes the euclidean norm over R#(T),
By definition of covering number and the Lipschitz property of the class ®, N (Cs, @, || *||e) <N (s, T, || -]]).
Consider now the d-covers Ac:={gr: 1 =1,.,N (6,C || ||o)}and Ao :={ps:J =1, ., N (5, D, || -||w)}
For the generic element of C -®, say g -¢, with g €Cand ¢ €D, ||g— g/ || < dand ||¢p — ¢ || < 6, for some g;
€Acandg; €Ao. Hence, ||g -0 — g1 07 |l < |I(g— g1) "¢lleo+ |lgr-(¢ — 91 )|l < C8. The collection
{gr "0s:81€AC, 97 EAo} formsa Cd cover for the class @ -C,and hence

N(Co, ®-Cl| -[l) < #Ac -#Ao <N (6, C | -lle) "N(3 P, | -[|e) .

Accordingly, log N (C6, ®-C || -||w) < C -07". By proceeding as in Corollary 2.7.1 in van der Vaart & Wellner
(1996),N[ 1(6, ®-CL2(P )) < N (6/2, ®-C]| || ). Conclude from this last inequality. O

We now introduce a class of Holder continuous functions that will be used throughout this Appendix. For any

function g : W »—R, andany vectors = (s1, .., 54), define the differential operator 6% as

olsl

osg(w) = mg(w) )

where |s| = 51+ .. + s54. Also,define the following set

Wn = w :fW (&)(W) > %‘ n
Ccw,) := ’ g:W =R st || 0%llw, o <M foralls with |s| < E—VZ@ +1 (A6)

where Ev(d) denotes the largest even integer weakly smaller than d and ||f |z, «~ = sup,ez, |f (z)| for any
function f . The class C(W,) defined in the above display is a subset of the Holder continuous class of functions
defined in van der Vaart & Wellner (1996), pages 154-155. Hence, from the compactness of the support of W (Bo),
the definition of W, and Theorem 2.7.1in van der Vaart & Wellner (1996)it holds that

logN (s, C(Wa), I -[lwp) < C -5~ witho €(0, 2), A7)

where the constant C does not depend on neither» nors.

Lemma A.5. Assume that Ho holds and that \/n =@ - po) = 0p (1). Under Assumption A1-A4, uniformly in
teT

(i) G, W) ”W(ﬂo)f‘,{/(ﬂ“))(”ttnz 0(;;-)/'

(i1) Guef Wi = op(1);

(iii) GT P T pyuti= o @)

The same result holds when replacing VI7(BA) with W\(ﬁ’\)

Proof. (i) Define @ := {x" »—¢(x"r) :# €T}, and for simplicity let C, denote the class C(W,) defined inEq.
(A.6). From Lemma D.4, the mapping x>— (I Avf/ W " Hwe fAu; ) Yw(Bo)) -o(x"1) -t.(x") belongs to the class
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tn Cp-® = x"—1,(x") -g”) -y(x"): g €Chandy €D forallr €T, with a probability approaching one. Fix
0 > 0 arbitrarily small, and consider a d-cover for C,, say A, :={gj:j = 1,., N (6, Cy, || -||w, ~)} For any
element of ¢,C,, say 7, -g, it must be that g¢ € C,, and hence, for some g; €A, |lg — gj | Iw,» < J. Hence from
Assumption A5, ||(g— gj) *fnlle < llg— gj [ IWnoo < J.Accordingly,

N (3, tnCo, | *ll0) < #An <N (3, Co || |l Wp o) -
From Lemma A.4 and Eq. (A.7),
log N[ (e, 10 -C -®, L2(P)) < Ce™> with » €(0, 2).
Furthermore, Lemma D.3 ensuresthat sup , 1 ||(TAW~/ G " Hw () fAW (1?)) ‘¢, 't |l 2 p = 0f1). Accordingly, for
anyd > 0 arbitrarily small, the event B (V) 1= { (TAW~(ﬂA) —tty ¢ ﬂ())fAu;(ﬂﬂ)) g, -t,£(t -C-®Yforallr €T}

has a probability approaching one, where (¢ ,, -C, -®)? :={f €1, -C, -®: [[fll;p < }. Over the set B
sup,er |G, oy — 11w (1)) 0 1A = 1IGU (rcoy o
Now, by Lemma A.1,
E11Gulliy. ooy < 116 (1n Ca @), La(P)) + ¥ nCLC > agycoop(®) - u)
Since (t, -C, -®)Y Cty, -C,-Dfors< 1,
log N[ 1(e, (20 -C @)%, L2(P )) < logN( (e, tn -Cp -®, L2(P)), withJ (1, 2, -C -®, L2(P )) < o0 .
Thus ford — 0,
I, (tn -Co - @), L2(P)) < J(6, ta -Co-®, L2(P)) — 0.
Forany fixed 0 > 0,

limsupnﬁoo\/;C{C > ag,.c,-0)5 (0) \/71}
lim Supnama(tn_cn_q))a(é)_lc'[C > a(,n_Q_Q) 6(5) - n} =0.

So, conclude by Markov’s inequality.

The proofs for point (ii) and (iii) follow from the same arguments. O

Lemma A.6. Under Assumptions A1-A5, uniformly over T,

(i) Gn8j K(u) -(iefw(po))(W(Bo) + uh) du = Gue -(1:fw (5)) (W (B0)) + or (1),
(ii) Gu(Do — mo)I K(u) “¢«(Z + uho)du = G,(Do — mo)é: + or(1);
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Proof. (i) Define g, ,(¢, X):= ej K(u) - (1f v (5,) ) (w(Bo) +uh) du—e-(ify (55 )N (w(Bo)). Since from Assumption
A2, sup,,|u;, (w) —1:,(w)| < Clt1 —121, by the boundedness of the functions involved, | gn 1, (¢, X)— gn,1,(&, X)| <
C|t1 — r2]. Accordingly, from Lemma A.4, the class G, :={gn:: ¢ € T} issuchthatlogN.1(6, Gu, I| -|lw) <
Co~7, withv €(0, 2). To show the L>-convergence, notice that by a Lebesgue Dominated Convergenceargument
(LDC, now henceforth), e~ K(u) - (1,fy (5 5 Jv(Bo)+ uh) du — e(1,f y (5 y(v(By) for any fixed (7, x,¢). Hence,
by applying again a LDC argument, ||gy||2p — O for any fixed + €T . To make such a convergence uniform over
T, fixd > 0 arbitrarily small, and choose a -cover for T, say A :={z; :j = 1,.., N (6, T, || -||)}, where

|| - || denotes the Euclidean norm. For n large enough, ||g, t HZP < dforallsj €A. So, foranyr €T,
180 1B = 1180 1B p = llgu W2 +lguy B2 < Cli— 1]+ < C6? + 32

Conclude that sup,ct | |gn:|| 0 = 0(1). From this point, proceed as in Lemma A.5 to conclude. The proof of point

(ii) proceeds along the samelines. O

Define the class

c(z,) := , z>=g(z) :1l0%¢gllz, 0 <M foralls such that [s| < @2@@ + 1, with

)

Z,:= z:fg(d) = Mn

where ||f |z, o := sup,ecz, |f (z)| for any function f . Similarly to C(W,), the class C(Z,) defined in the above
display is a subset of the Holder continuous class of functions defined in van der Vaart & Wellner (1996), pages
154-155. From the compactness of the support of Z, the definition of Z,, and Theorem 2.7.1 in van der Vaart &
Wellner (1996)it holds that

logN (s, C(Zy), || -l1zne) < C -5~ withv €(0, 2), (A8)

where the constant C does not depend on neither#n nors.

Lemma A.7. Let (x",1) >—¢{x") be a mapping such that sup~cg,(x™)¢n &) = 1, 6 < C -[11 — 12| forall 11,
12 €T, and sup,et el ¢hx")| < o0, Under Assumption A1-A5, uniformly over T ,

Gdm” 0 —mo) tn ¢+ = op(1), and G,,(TAmAO/on —mo) tn ¢ = op(1).

Proof. Define the classY := X ¢, (")t e T . For simplicity denote with Cthe class C(Z ).By the same

reasoning as in the proof of Lemma A.5,
N (57 tl’lcl’l: || -||°°) § #An §N (5’ Cn’ || ||Zm°°) .
Define

th (Ch—mo) :={g —tn -mo:g €ty -Cy,}.
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Since mot, is a fixed function, N (6, t, -(Co— mo), || *|lo) <N (5, t2Cp, || -||). From Lemma A.4, the feature
of (¢, X )>— ¢(x"), the entropy bound just derived, and Eq. (A.8),

log N[ 100, tn *(Co—mo) Y, || -ll2p) <C 07V

Now, from LemmaD.1, P ( (" 0— mo) - tn ¢+ € (Cu(Zn) — moty) - ®) — 1,and sup,ct (7" 0 — mo) - tn ~¢ell2p =
op (1). From this point onwards, proceed in the same way as in Lemma A.5 to obtain that G{m" 0 — mo) - t, -¢; =

op (1). The remaining resultis obtained by the same steps. 0

Lemma A.8. Let (x, t) »— ¢{x") be a mapping such that sup,-c g,y 60 (6) = ¢, 6N < C -[11 — 12| for all 11,
12 €T, and sup,ct ,x~€Supp(X~)|¢l(x~)| < 0. Under Assumption A1-A5, uniformly over T

\/71 -Pnd: -BAo-tn = —\/r_z -P.(Do — mo) -E{¢t(XN) |Z} +

\/ﬁ Pm” 0 —mo) “tx -E{¢;(X~) |Z} + opr(1).

The same type of result holds for B>

Proof. By definition of B oand nio,

\/_n Pn¢t 'BAO'ln = Gn(TAmA()/fAO_ mO) “In '¢t

_Gn(mAO_mO) *In '¢t + \/_n -P (fm'\o[fl\o_ I’I’i\O) “In '¢t .

By Lemma A.7, uniformly over T, Gn(TAm”o fo—mo) +tn -¢: = or(1) and G{m" 0 — mo) “tn -¢: = op(L).

From Lemma D.1, Assumption A5, and Lemma A.2, uniformlyins €T

Va P, /fo = o) 4 -4, =¢ﬁI<T“,ﬁO(z) —1(2)) 1" 2(2) -E{¢,(X) 1Z = 2} dz + ().

By the classical “change of variable” and Lemma A.2, uniformly over T,

v T 5, (2) = T(2) 1 2(2) “E{$(X) |Z = 2} dz =

_ —"7n -Pu(Do —mo) -~ Ko(u) -¢"{z + uho) du +
\/n Pm” o0 —mo) +tn ~ Ko(u) -¢"{Z + uho) du + op(1),

where ¢”(2) 1= E{¢(X ) |Z = z}. Since SUP,~esuppx )@ 1 () — ¢7n() < C -l — 12] forallzy, 12 €T, and

SUPeT v esuppe)lé £x )] < 00, Lemma A.6 ensuresthat
v ] ~ _ Vo ~
i -Pn(Do —mo) -~ Ko(u) -¢"dz+ uho) du = "7 -Pn(Do — mo) -E{¢«(X ) |Z} + or(1)
uniformly over T. Finally, by Lemma D.1 and Assumption A4,
VA J . IV .
n P{m o —mo) ‘tn =~ Ko(u) -¢"{Z+ uho)du = “n -Pfm o0 —mo) -tn ¢ {Z) + or(1),
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uniformly over T. Conclude by putting together the last three displays. O

Lemma A.9. Under Assumptions A1-A6, uniformly over T ,
n P{m™ 0 —mo) *tn “¢: = —\/ﬁ -Pn(Do — mo) 'E{¢t(X~) | Z} + or(1).

The same type of expansion also holds for m™2.

Proof. From Lemma A.7, Lemma A.2, and the Law of Iterated Expectations,

v

\/77[ -Pm” 0 —mo) tn ¢ = \/77[ P 0 —mo) *ta -E{¢t(X~) |Z} — "7 -Pndy -BAo-tn +op(1),
uniformlyin¢ €T. By this expansion and LemmaA.8,

\/; Pdm”™ 0 — mo) tn -¢: = \/Z -P.(Do — mo) -E{¢t(X~) | Z}

—\/Z (P, — PYXm" 0 — mo) -tn -E{¢;(X~) |Z} + or(1)

uniformly over T . Hence, conclude by Lemma A.7 [
The lemmas that follow are simple applications of the previous ones.

Lemma A.10. Let Ho hold and assume that \/; -(BA — po) = Op (1). Under Assumptions A1-A6, uniformly in
t €T,
DG f55WB) “a 4 =Guefw gy (W (&) -0+ o1);
(i) "n -Pnety” K(u) '(lth(ﬂO))(WN (ﬂA)+ uh) du = \/ﬁ Pue -(1ifw(5))(W(Po)) + or(1);
oV s P S N .
(1”) \/I’l Pnvi/(')f)(W(ﬂ)) fVT/(Aﬁ)(W (ﬂ)) 9t = \/” 'P(TI;W»(BA) — Ity (ﬁ))va/(Ié)) Lttt 0(}1);
(lU)\/ﬁ Pnvi/("ﬁ)(W(ﬂ)) f‘,f/(Aﬁ)(W(IB)) @ ity = n -P(T’;W{Bk) _ttW (ﬁ))TW(ﬁA)) "l 'tn+ O(Il);
@ 71 -P,(tty (5 (W (4)) _tﬁ(;;“)(w B 4 fw = —n-PC Wy T Hw %)J;;(ﬁ) )t cta —
n -Pndttwp)fw o)t tn -W (B )— W (o)) +or(1);

The same results hold by replacing W(B ) with WB").

Proof. (i) By Lemma A.3, uniformly overT,

Gng fA‘,"}("ﬁ)(W(IB)) @ 1=
G f 5y W () 01 Gadf w (ay(W () o (W (B) = W (8)) 4+ od1).

Conclude by applying Lemma A.5 to the firstleading term of the above display, and Lemma A.9 to the second one.
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(i) By Lemma A.3,

\/ﬁ -Pnez‘nI K(u) -(z,fw(ﬁo))(WN (ﬁ,\)+ uh) du =
—n -Pns it K(u) -(lfw(ﬁo))(W(ﬁo) + uh) du +

Viu Puz 01w )W (B0)) -tn W (8) = W (o)) + or(1)

uniformly over T . Conclude by applying Lemma A.6 to the first leading term of the previous expression, and
Lemma A.9 to the second one..
(iii) By Lemma (A.3),

\/n 'Pn(TA,;W. Iy () TA‘,f/("ﬂ))(W (K)) “ty-0 # 0 (1)

®)
uniformly over T. Conclude by Lemma A.5.

(iv) The proof is very similar to the one above.
(v)By LemmaD.2, uniformly over T

J \/ﬁ ‘Pu(ttw(p,) (W (Bo)) — tAWN([f)(WN (,[))A))) ‘o fwpe) I =
P (VO ~ 1ty gy (W () 5y (W (B)) 4 -, 0f0).

By Lemma A.3 and Lemma A.5 conclude for theresult. O

Lemma A.11. Let Ho hold and assume that \/n_ -6 — Bo) = 0r (1). Under Assumption A1-A6, uniformly over T
(i)
\/ n -P(Tjw"w} - TV;’(/;)) Lt =
—n_'P.g,f W(ﬁ))l[+ EIP(TVE}(ﬂA)_ttW (ﬁ))fv’{/(ﬂ")) 'l 'tn+
n -Pulttwp)fw(po)te -t "W (B )—W(po)) +or(1).

(i)
V_ oA .
\/ n -P(Tjw’w’) — va/(/};)) L=
—n_'P.g,f W(ﬁ))l[+ E'P(T‘)"‘/(ﬂ")_ttw (lb)fW(ﬁ)) .ll‘ 'tn+
n -Puottwp)fw (o)t -tn "W (B )—W(po)) +or(1).
Proof. By Assumption A5, LemmaA.2, Lemma D.3, Lemma D.2, using the definitions of T~ P and T'\v;,“(mand
W (8)
by the classical “change of variable”,
\/_ n n _ \/_ P n ~ A J‘ ~ A
n 'P(Tf;w"g;’) ~Typ) ot =—n PLY =1t g (WE)) -, - K(u) ~(afiy 5y JW(B) + uh) du.
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By adding and subtractingtw (s ) (W (Bo)), and then using Lemma A.3, Lemma A.6, LemmaA.9, and LemmaD.1

uniformly over T,

Vi P = Fg W 60 s DK o)W @)+ ) =

n -Pnetifw(p,) +
Jn Pn(ttw(5,)(W (bo)) —t 7 )(W (ﬁ’ M) tn = K(u) -(2efwse))(W(Bo) + uh) du + op(1).

J
Now, by the r-th orderof the kernel K, © K(u) (1 £y (5y Y(w(Bo) +uh) du = (1,fw (5))(w(Bo)) + O(I"), with
h'nl’% = o(1), by Assumption A3. Hence, by Lemma D.2, uniformly over T

Vi p (ttW(ﬁo)(W(ﬂO)) — Lyt fW ) b ] K(u) -(1ufw (50))(W(Bo) + uh) du =
Pu(ttw (s (W (B0)) = LW (B 0) “tu ~(refw (s) (W (Bo)) + op (1) .

Conclude by applying Lemma A.10 to the leading term of the previous expression. The proof of point (ii) proceeds

along the samelines. ]

vV n A
In the next lemmas we prove the asymptotic expansion of ~nPe’f ) (W (B)) @ 1, and obtain the asymptotic

behavior of the statistic.

Lemma A.12. Let Ho hold and assume that \/ 1 (B po) = Op (1). Under Assumption A1-A5, uniformly over T

N . A
ﬁpgf"(é)(w(ﬂ))%lh =
+ 1 Pugfviget
_\/” Pu(0ttv (po)fv (gypts) tn W (8)— W (B0)) + or(L) .

Proof. First, by Lemma A.2 and D.2, we can replace the trimming f awith7,. Then, by definition of ¢,

\/
(A9)

~

e 5 05y (W (B)) i =
Jg Pu B i3y i)W B -a

ViR gy (W (et

For the first term on the RHS, by adding and subtracting 7w (s %( W (Bo)) and using Lemma A.10, uniformly over
T

VR oy T Ot = Vit B = 0 (W) 5y (W 09)) 0 1=
nP.efwne: + 1 Ptty 5 (W (K)) fW(ﬂ)(W(ﬁ)) TW(ﬂ)(W(ﬂo))) ‘1 ~tn + op(1) . (A10)

Applying Lemma A.3 to the second term on the RHS of the above display yields that, uniformly over T ,

v o
n 'Pn(ttW(ﬂo) fVT/(Aﬂ) - ‘,f/("ﬂ)) Pty —on 'Pn(éttW (ﬁ))fW (D) '¢t) tn(W(ﬂ) -W(p a)+ o (1 ®.11)
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From Lemma A.5 the first term on the RHS of the above display can be approximated as

\/_ n n \/_ ~ n
h 'Pn(ﬁW ) flf{/(,é) - Tﬁ;(ﬁ")) ¢ t, = n-P (ttW %) fV'l}(ﬁ) - TW(/;;)) Py (A12)
uniformly over T. Now, from Lemma A.10 and A.11, the bias correction term on the RHS of Eq. (A.9) can be

approximated as

—n Paf it PG~ ity ) Tt (A13)
n -Padttw g fw st ta W (B )— W (Bo)) + or(1).

Plugging Eq. (A.13), (A.12), (A.11), and (A.10) into (A.9), and then rearrangig terms yields the desired result. [

The following lemma provides the infiuence function representation for \/n -(BA — po). Its proof is quite

similar to those provided above, and is contained in the Supplementary Material.
Lemma A.13. Under Assumptions A1-A6, and assuming that Ho holds,

0V - - po) = 0 (1)

(i1)

N v_
f m-(B—Po)= 7 -Pe Zgt Vg oy (W (f)
—n PD g m (X)WBT 02 Elois 5y (WA 5t Vit sy (W(B)) ly=p, | X2} +

7P (D —m (D E oty (W (B) Zgt Vit sy (WBDlgap, 12 +0p(1),

whereZg = E{VﬁttW(ﬁo)(W(ﬁo)) 'VﬁrttW(ﬂo)(W(ﬂo))}.
Proof. See Lemma ?? in the Supplementary Material. O

Remark A.1. In the following lines we will provide a more general version of Proposition 1. The expansion will

refer to the model considered in this appendix, and will be based on the following function

2 s
g0.:(y, X):= y—ttw py(w(Bo)) -wlx")+
—E y,(X) a5y (W(B0) |Xo= x5 BL, (d2 — ma(x2))+

FE y (XY -0atty (W) . Z =2 ~(x=m §2)),

wherey (X)) := fw (N/;))(W(ﬁo)) 3’ (XN)—a(f)Tz_é Vitiy () (W(ﬁ))|ﬁ=ﬁ0'¢f(X~)5= o) -1y ) (W(Bo)),
tw gy (w) 1= Blp(X 1) |W(Bo) = wh, Zo := E{V gty 5 (W(B))g=po -V prttw (s (w(B))lp=p,} , and finally
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f .
a(t) :=" o (5 W(BD) fw(py(W(B) ~(xFm »(x2)") Yo () dP (") The expansion in Proposition 1,
as reported in the main text, can be obtained by imposing 02 = 0 and recalling that x'= (x, z).

We are now able to provide a proof for Proposition 1.

Proof of Proposition 1.

(i) From Lemma A.12, it is su@cient to obtain an expansion for \/n_- Pu(Ottw (o) fw ()0t ) -t -(WN(ﬂA)—W(ﬂo)).
To this end, notice that

W)~ w(Bo) = (1 (1~ o) + nia(x2) (B2~ Po2) + fo2 b2 — m2)(x2) . (mo ~ni0)(2)) (A14)
For the ease of notation, define
(a1(r), a2(r)) := (Outtw(py) f wpn)@i Oattw(py) *f w(so)pi) (A.15)
The rates in Lemma D.1 and Lemma A.13 ensure that uniformlyins €T,
Va o = W ) =
n -Pnottw s fwpet: tn W (@B )=W(po)) =

_ E{(Cayr) XTI, ay(2) 'mz\/(Xz)T )} '\/n (B - )+
n foz -Play(r) -y —m)— n -Pa ) -@gm ph+ o(d).

By replacing the Infiuence Function Representations of Lemma A.13 and A.9 into the above display, and then

using the expansion in Lemma A.12, the result is readily obtained.

(ii) Define

gi(Y, Do, D2, X )= & -fv () (V (Bo)) -04X )
—(Dy —my (%)) -Boz "El01tty gy “(fw (gyoi + alt) gt -Vigtg gy 1X 23+
(Do —mo(Z)) -E{02ttw(py) -(fw@ye: + a(t) o Vttw(ps ) | Z}.
0
To simplify, define 7= (Y, Do, D2, X~) and its support Z := YxDoxDxX . Notice that under Ho, Pg:= 0 for
allt €T,so "n “P,g: = G,g.. By the compactness of T, the continuity of ¢, and the boundedness of the
random variables involved, sup ~<7"1g4 ") — g1, @)l < C -|r1 — 12| for all 11, r2 €T. By Lemma (A4) the class G
:={g:: 1 €T }satisfies an entropy bound of the type log N[ 1(6, G, || - ||«) < C67?, with v € (0, 2) and the
constants C and v which do not depend on ¢ . Therefore, it follows by Donsker’s Theorem (see Theorem 19.5 in

van der Vaart (1998)),G,. G over A®(G), where Gis the Gaussian process defined by the Covariance Matrices
collection W(ty, ) ={Pg, g :11, 72 €T}. Sincethe mappingf >—" |f o g/|?u(dr) is continuous over A~(G),
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by a Continuous Mapping Theorem (see Theorem 18.11 in van der Vaart (1998)),

[

IGr g [2u(dr) . / |Gg: [2u(dt) (A.16)

Similarly, since the operator || -||G, « is continuous over A®(G), by a Continuous Mapping Theorem, | |G| |G, -

||G||G,00, with ||Gl|G  tight process. Accordingly, ||G,||G e = Op (1). Define now

Vo n e o A
R,(1):= nPnst;,(“ﬁ)(W BNwt, — 1P,g,.
From pOint (i)r | |Rn| |T,oo = op (1): Ny

.Sh _j |Gngt|2,u(df) =<
/ [Ru(2)| -|Rn(2) + 2Gngilu(dr) = op(1).

So,

Sn =I |Gngil2u(dr) + op (1) (A17)
Conclude by Eq. (A.16), (A.17) and Slutzky’s Theorem.
(iii) By Lemma C.2 and a reasoning similar to the one for Eq. (A.17),

= POty Gy VO T w5 o kT ala O+ 4D

By definition of H1, theleading term on the RHS of the above display mustbe larger than zero.

[0.E.D.]

B Bootstrap Analysis

In the following lemmas, I consider an enlarged probability space which accounts for both the randomness of the
original sample data and the bootstrap weigths & For notational simplicity, let P< denote the product measure
", P<i, andlet P< ® P be the product measure between P¢ and the original measure P . Note the inconsistency
of notation: P< here stands for the product measure 1y P<i instead of the probability measure of the single

random element . We choose to accept such inconsistency as it enlightens the notational burdens.

Define

WXB) = (BK + (X)X — nD), WIB) =K + X)X —~ ),
wip) = (Bf 4 prdx3 2)x*—miz)), and w(B) :=(Bf 4 B rfxJ x— Al2)) ¢

The lemmas that follow provide auxiliary results forthe expansion of the empirical process at the basis of the
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bootstrap version of the statistic.

Lemma B.1. Let Ho hold, and assume that \/IT' (ﬁA —po) = Op(1) and \/I’F (ﬁn* —ﬂA) = Op(1). Under Assumptions
A1-A6, uniformly over {x” :f (")=17n}

~

) T 0N = T o 0(BO) + 0Ty 4y (w(BQ) @ (E) — wl(tp)) +0p(n~Y2);
@)f i gy OB =F gy V(B0 + 0f w iy (W(BD) 67 (F) = w(Bp)) +0p(n™V2);

(1”)‘[ K(u) (lhWJ-(lg() XWNj(ﬁAY+ Mh) du =
K(u) (1f w (3,))(w(Bo) + uh)du + 81, fyy (59 YW(BQ) -6 (B*) — w(Bp)) +op(n=V2).

Proof. The proof is very similar to the proof of Lemma (A.3) and is hence omitted. O

Lemma B.2. Let ¢F :={(¢ z)>— & +f (z) :f €F}, whereF isa class of functions. Then, Np 1(|1¢l12p -6, ¢F, || -
ll2p) < N[1(6, F, | -ll2p).

Proof. The proof proceeds along the same arguments as the proof of Lemma A.3 in Escanciano ef al. (2014). O

Lemma B.3. Let Ho hold, and assume that \/rT (8" —po) = Op (1) and \/zF B4 = 0p(1). Under Assumptions
AT-A6, uniformlyint €T,

DG 1w T i ~ 1w () 0= 0k1);

@) G e ta (g (W BN~ Fw () (W(BD) 01 1 = 0p(1);

()G 1, @ 8 o =ty (ol (pye ) 0= 0k1);

(iv)jﬁ Pug e - K(u) -(1fw(p))(W(Bo) + uh) du = %T ‘Pué - 11 +fw(py) +or(1);

(©)

—

nP,¢ (Do — mo) j Ko(u) -¢:(Z + uho)du = \/ﬁpnf (Do — mo) -¢: + op(1).

Proof. (i) Let C,denote the class C(W,). By Lemma D.3 and Tonelli-Fubini’s Theorem, || & -7 -(T" Avf/ ®»

tty (/5),{}:(1}) ) o ll2p= 1llyp g, @ Av{,(g) — Ity (/;))J,f:”(ﬁo) ) -o:ll2p < ||¢]2p -or(1). Hence, by Lemma
D.4, for any fixed 0 > 0, the event

By ={sUper 1€ 1, oy — 11w ()l i) e e < 0000 0 — 10w (i) fri ) €1arCha
has a probability convergingto oneasn — oo. Notice that whenever B, holds,
SUp et |Gr§ 'tn'(T’\Vf/('Z;) —Ity ([j))é(/}) ) '§0t|5 ||Gn||(g‘tnCn<D) 5,
with (¢ ¢, -C, -®)? defined similarly as in LemmaA.5. Since (¢ ¢, -C, -®)Y C & (¢, -Cy - D),

N[ ](51 (f ‘In Cn '(D)(S’ || '||2,P) = N[ ](5; f “In Cn '(D, || ||2P)
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By the proof of Lemma A.5, N (5, t4Cu, || *|l) < N (6, Cu || *||Wpo0). So, from Lemma B.2, Eq. (A.7), and
Lemma A.4, log N[ 1(J, & “tn -Gy @, || -|l2p) < C -5, with C and v being constants which do not depend on
0,andv €(0, 2). From this point proceed as in Lemma A.5 to obtain point (i). The proofs of Point (i) and (iii)
proceed in essentially the san]e way.

(iv) Define g, ,(x"¢) =& - K(u) -(ufy 5y Yw(Bo) + uh) du — & -(1f y (4 ) (W(Bo)). From the proof of
Lemma A.6, sup,ct |1gn:||2p = 0(1). Hence, by Tonelli-Fubini’s Theorem, sup ;<1 |1 - gn:ll2,p = [I&]12pP * sup ;1
|lgnill2.p = o(1). From the proof of Lemma (A.6), log N;.1(6, Gn, ||+ 1l2p) < C =074 with Gy:={gn:1 € T}, C
and v being constants which do not depend on neither n nor . Hence, from Lemma B.2, log N[ 1(6, & - Gy, Il -112p)

< C -0~ ? (by changing the constant C accordingly). From this point, conclude by proceedingin as in Lemma A.5.
(v) The proof is identical to the one of Point (iv), so it is omitted.
]
LemmaB.4. Let(x", 1) >— ¢x") be a fixed function with sup,et | veguppx)|¢x)| < 00, such that sup = cgypxy ()~
b1, ) < C -|lt1 — 12| forall 11, 12 €T . Under Assumptions A1-A6,
(i) Gm” %— mo) *tn ¢: = op(1);
(ii) Gn& @0 — mo) tn -¢: =op(1).
The same result holds for m*and ni2.

Proof. (i) The proofis identical to the proof of Lemma (A.7)
(i) Let C,denote C(Z,), andletY :={¢, :r €T}. By the samereasoningas in the proof of Lemma (A.7), log N[

16, tn *(Co—mo) Y , [l -ll2p) < C -67". So Lemma (B.2) ensuresthat
logN[1(6, ¢ - tn «(Co—mo) -Y , || -ll2p) < C -6-°witho €(0, 2).

From Lemma D.1, for all # €T the mapping (& x)>—¢ @ 0 — m0)(z) -t{x”) -¢{x") belongs to the class & -¢, -
( Co — mo) - Y with a probability converging to one. For the L-convergence, from Lemma D.1, the

boundedness of ¢; and Tonelli-Fubini’s Theorem,

sup,et 1€ @0 — mo) -é:ll2,p < ||&|2p -op(1).

So, by following the same steps as in the proof of Lemma A.5, the desired resultis obtained.

]
LemmaB.5. Let (x", 1) »— ¢dx") be a fixed function with supet | ¢ cgup)|¢x")| < 00, such thatsup e gupmyldn ()~
b1, ) < C -|lt1 — 12| forall 11, 12 €T . Under Assumptions A1-A6,

\/ﬁ 'Pn¢[ 'Qn’\ﬂb_ I’I’;O) 'tn=

\/n ~Pm” 0 — mo) -tn -E{¢,(X~) |Z} +
Vi Pat (Do — mo) El(X") 12}
Vo (Do — mo) -E{g(X7) |2} + op(1)
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uniformlyint €T.

Proof. By adding and subtracting mo, and then using Lemma B.4, Lemma A.7, uniformly over T

Vi B o i) = o () + P i — ) D) g,

For simplicity, denote ¢~ (Z) := E{¢(X ~) | Z}. From LemmaD.1, and Lemma A.2, uniformly over T,

\/ J' \/ﬁ -PQnA%— mAO) th P =
n - (I5 - Bp)(2) 1) -6(2)dz + (1), (B18)

By Lemma A.2, definition of TA(;’< and fo and the usual “change of variable”, uniformly over T,

Va L e A0) gz = Vi e (Do mo) D ko) 41z +ungd s

— V7 P& o —mo) +ta - Ko(u) -¢"{Z + uho)du +
n -Pfm” o —mo) -tn - Ko(u) -¢"{Z + uho)du
—\/ﬁPn(Do —mo)” Ko(u) -¢"AZ + uho)du.

Lemma D.1, the rp-th order of the kernel, and the usual ro—th order Taylor expansion yield

\/ﬁ Pné ("0 —mo) -ta -J Ko(u) -¢"(Z + uho)du =
Vi Poc o —mo) -tu -4742) + op(L),

uniformly over T. Similarly, uniformly over T

\/ﬁ -Pm” 0 —mo) “ta I K(u) -¢"{Z + uh)du =

7 -Pdm” 0 —mo) -tn -4+ op(1)
Finally, by Lemma B.3 and A.6, uniformly over T,

\/ﬁ -Pn& -(Do — mo) j Ko(u) -¢"{Z + uho)du =

\/n P& -(Do — mo) -¢"(Z) + op(1) .

Jﬁ -P.(Do — mo) I Ko(u) -¢"AZ + uho)du =
Jﬁ -P,(Do — mo) -¢"(Z) + op(1).

Conclude by the last fivedisplays. O
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LemmaB.6. Let (x", 1) »— ¢dx") be a fixed function with sup,et |~ cgupp)|¢x™)| < 00, such that sup e gy |¢n ()~
$1, ) < C -|lr1 — 12| forall 11, 12 €T . Under Assumptions A1-A6, uniformly over T

Va ‘Puds tn @1 %— mo) = Vx Pué -(Do — mo) -E{g«(X") 1 Z} + op(1).

The same result holds for m*

Proof. From the definition of m*,

J

n 'Pn¢t *In 'Qn~>li)_ n'i\O) = n 'Pn¢t ‘In 'QWA%_ n’z\O) - \/’TPn¢t *In 'BAO-

Conclude from Lemma (B.5) and Lemma (A.8). O

Lemma B.7. Let Ho hold, and assume that \/17 . (,BA —fo) = Op(1) and \/ﬁ (ﬂA* —ﬂA) = Op(1). Under Assumptions
AT-A6, uniformly over T,

(i) Va Puc e f g (WY 1, -0 Vi P& e fy gy o0+ or(L);
i)V B ity (W B)) =1 iy (W) ey (WM 1 0, = o),
60 20y T 1 OV o) gy 67 /D 0 7
nP e~ tw iy )0itn t POy gy w01 i (W(B) = W (B9) + ofl);
(1) V7 P e ot K(u) Caofw )W )+ uhddu = V7 P e 1y of gy + on(1)
0) V1 -Puc Citwany (W (Bo)) — LW (B) “tn I KC) GOV G+ uh) du = on(1).
w) 'y Pultty gy (W (B)) =1 % o (W) J-f“wk) (WD o =

L WABY .
'y )ty c@— POty asfiv gy @0 ta T (WBT — W (Bo)) + ap (D).

*
P (tty ()i p y ~ T
Proof. (i) From LemmaB.1,

/. ) . A

n -Pul -e 0fwp) @i tn -W B ) — W(B0)) + R,
N

withsup ,c1 |Rn¢| < op(n=12) -¥ i -P,|¢| = op(1). By applying Lemma B.6 and Lemma A.7, the second term

on the RHS of the above display is op(1). Conclude by applying Lemma to the first term on the RHS.

(ii) From Lemma D.2, uniformly over the set T

Vi B it gy )~y (VD)) £y (B () 4 0+ 00,
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By Lemma B.1,

Vi B (iny Jﬁ))(W(ﬂo)) "y W) o5 6y (W (B) 4 -0,

% e -litw ) fW(ﬁ) v“V(ﬂ“)) T Py
~Vn Pal -Bttw(pyy Fw (s 0r tn -W (B)— W (B0)) + op(1).

Conclude by applying Lemma B.3 and Lemma A.7 to the two leading terms of the latter expansion.
(iii) The proof follows the same steps as the proof of point (ii).
(iv) By Lemma B.1, uniformly over T

\/ﬁ Pué & tn .j K(u) '(lth(ﬁo))(WN *(ﬁA*)+ uh)du =

\/n P& e 1n j K(u) -(1efw))(W(Bo) + uh)du +
n -Pué & -0(tifw(p))(W(B0)) “ta W *B *)— W (Bo)) + op(1).

J

By applying Lemma B.6 and Lemma A.7, the second term on the RHS of the above display is op(1). Conclude by
applying Lemma B.3 to the first leading term of the latter expansion.

(v)By LemmaB.1 and D.2,
_\/n Pné: -(”W(ﬂo)(W (ﬂo)) — tAWA(ﬂA)(‘/VA (ﬁ’\)) -[n '[ K(I/t) (fW (ﬁ) XW *(B >I<)+ I/th) du=

Vi P Lot (W (B0)) = FuifW D+t K(w) (v (i) (W (50) + ) duc+ p(1) =
n P& (ttw (o) (W (B0)) = LW (B) “tu -(fw (i) (W (Bo) + uh) + op(1)

uniformlyin¢ €T, where the last equality follows from an r-th order Taylor expansion, the r-th order of the
kernel, Assumption A4, and Lemma D.2. By proceeding similarly to the proof of Point (ii), we conclude.

(vi) By Lemma B.1, uniformly over T,

V_ A n .
7By tt yOW ) 0% o T oy (VN 1 50 =
y n 'Pn(”w(ﬁ))ﬁ(ﬁﬁj* - W>(/})‘) Iy 0y
= Pulttw(p)fw(pn)Pr *tn (W *(ﬁ *)— W (Bo)) + or(1).

An application of Lemma B.3 to the firstleading term yields the desired result O

Lemma B.8. Under Assumption A1-A6, Ho, \/17 -(BA —pBo) = Op(1), and \/17 -(BA*— ﬂA) = 0p(1), uniformly over
T,
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(i)
Voo .
\/ n P(TV}tf’\f _ttW(ﬁ)%Zﬁk)A*) -tn-l ~
?/_-_Pntt W) In - K(u) -(tifw(p))(W(po) + uh)du —
n-Pn” K(u) -(ttw(py)idfw(pgy))(W(Bo) + uh)du +
—\/n ‘Pudttw(py) 11 fw(py) *tn W (B — W (Bo)) + \/n ‘Pulerifw(py) + or(1)

(i)
J

J f np (TAu“/(ﬁ) — ity el
n -PuY " K(u) -(1efwp))(W(Bo) + uh)du — “n -Pn™ K(u) -(ttwpo)fw gyt )(W (o) + uh)du
— 7 -Pulttwpy) fw sy it tn W (G )— W(po)) + op(1)

Proof. (i) By Lemma A.2, the definition of T
v_

\/ n .f)(T:V[i; )(2))*) - [tW (ﬁ))%"’zﬁk)’\* ) -l”i-l tA=
—wPer WE@)t - K(u)-(f XW *B *)+ uh)du +
\/ n W (é) o n £ W (fo) N R
n -P,¢& (Y —tWA(B“)(W BN tn - K(u) (1ifw)W B *)+ uh)du + (B19)

—\/ﬁ Putn = K(u) '(l‘tw(ﬁo)ltfw(ﬂo))(WN *(ﬁA*)+ uh)du =: A1 +An2 —An3.

s S . .
W) andf; y; y » and the classical change ofvariable,

By Lemma B.1, LemmaD.1, and Lemma D.2, uniformlyin¢ €T,

e
\/An,l = \/n P WA(BA)(W @) tn = K(u) -(1efw () (W(Bo0) + uh)du +
7 ~ttw (5o)(W (B0)) ~0(uefw (5)) (W (B0)) tn -W *(B %) — W (Bo)) + op(1). (B:20)
Similarly, by Lemma B.1, uniformly over T,
Vo
A\n/,3 = "n-Pu’ K(u) -(ttw(py)idfw(py))(W(Bo) + uh)du +
+V 7 Pud(ttw gy ifwipy) tn O 5B %) — W (Bo)) + op(L). (B21)
Finally, by LemmaB.7, uniformlyint €T,
An,2 = \/.n. -Pngz&'lsz(ﬁo) + OP(].) . (BZZJ

Conclude for Point (i) by plugging Eq. (B.22), (B.21), and (B.20) into (B.19).
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(ii) By definition of T ~ and fA“ ~, the classical change of variable and Lemma A.2,
W () W (B)
VAR - _
v nP(T”ﬁ‘(ﬁ) ~ Iy (g)wgn) Tt
n-PuY <ty - K(u) -(1:ifw)W )+ uh)du +

—\/TQPntn . (llw(ﬁo)fw(ﬁo)lz)(WA (BA)+ uh)du .

By applying Lemma B.1 to each of the two term on the RHS of the above expression, and then rearranging,

N

y P gy~ Mw (mffWA(ﬁ)) AT
nPyY " K(u) -(1:ifw(p,))(W(Bo) + uh)du +
Vi Pacd(uaf ) tn -0V () — W (o)) +
—%1 “Pu” (11w (go)fw (g0 ) (W (o) + uh)du
o Padttwny e Fw g tn O E) — W (Bo)) + (1)

uniformly over T. By using Ho, Lemma A.13, and Lemma A.7 it is immediate to show that the second term on the

RHS of the above display is op(1) uniformly over T. Hence, point (ii) follows. 0

J

Lemma B.9. Let Ho hold and assume that \/n' -(ﬁﬂ—ﬁo) =0p(D)and " m -(BA*— ﬁA) = Op(1). Under Assumptions

AI-A6, uniformly over T ,

V_ n . A .

ﬁ " Pné’8¢J't +

o Pttt w ot -t W HEH) = W) + op(1) .

Proof. By Lemma A.2 and D.2, we can replace the trimming ¢ awith .. So, we obtain the following decomposition

o \/ﬁ 'Png%k'f Avfm(%f (Wtﬂ’\» 2T

+ 1P B (W) f ey (W 0 i1,

By the rates in Lemma D.2 uniformlyin¢ €T,

Vo ooa “ A A
n BBy (W) f oy WIBD) 0 i1 & (B24)

P o (WB)) 0y (W (B)) g -t 0 f1).
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By Lemma A.10 and LemmaA.11, uniformly over T,

—n _'P % f w ([fj) 'lt + n P(Thw(ﬁ) _ttW (ﬁ))ﬁ(ﬂﬂ)ﬂ ) '[n'l t+ (BZS)
+Vn Padttwis) fw (g 1t ta W (B )= W(Bo)) + op(1).

Now, the first term on the RHS of Eq. (B.23) can be decomposed as

V n . n . .
7RO Gy (VU S gy (VU 150
By Lemma B.7, uniformlyins €T,
Vi R =15 W) 5y WBN) 0 i1 5 (B27)

n -Pulefw(p,)pr + or(1).

Also, Lemma B.7 implies that, uniformly over T,
Vi P o s (WP =% - (WD) f i (W 10 5
n¥ W (p) W ) W (5% ny
\/ E'P(Tv'{/(ﬂ”)_”W (/f))ﬁWA(ﬁ)) Y (B.28)
n -Pndttwpy) fwpy) "¢ tn W (B )= W(po)) +
— 1 Pudttwpy) fw(p) ‘@1 ta W B *)— W (Bo)) + op(1).

Now, the two bias integrals in the above display can be handled by using Lemma B.8. Thus, uniformlyins €T,

Vv

A . N ~
Py = e ) 0t T PO = e Ty ) 0=
nPu(Y =ty W (B ) tn = K(u) -(eefw(s))(W(Bo) + uh)du (B:29)

Y Paletfwipy + 0 Pudttwipy Fw ) e tn W HE¥)— W)+ op(1).

By adding and subtracting ¢ w (4 ) (W (Bo)), and then using Lemma B.3, Lemma D.2, the r-th order of the kernel
K, and Assumption A5,

Vi Puy - LW (B)) LK) G i)W (o) + u)a =

n

J N
n -Puefw gyt + " n -Pa(ttw(ps) (W (Bo)) — tyie\W (B ) -1t fw(po) ~tn + op(1).

By Lemma D.2, we can replace f y (z,)(W (/0)) with fAVf, ) (W (ﬂ)) in the second term on the RHS of the above
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display. Then, by using Lemma B.1 and Lemma B.3, uniformlyin¢ €T,

o . A

n -Pu(ttw(p)(W(B0)) =ty \W (B ) -1t fw(py) “tn =

\/ —P(TAW(B‘) - ”W(ﬁo)tﬁ(“ﬂ)ﬂ ) L, tt, (B30)
— " -Palttw(py) fw(py) 1t tn W (B)—W(Bo)) + op(1).

Putting together B.26, B.27, B.28, B.29, and B.30, uniformly over T,

\/_ * l\* ~ 5y n ~ A
\/ n 'Pn(Y_t V;/Ki’)*) (Wtﬁ ») f Vf/’(ﬁ'\j‘ (Wtﬁ T)N -t :z¢ 7 o
n Pulefwpyets — " Pulttwgy) fw(p) "0t “ta W HB*)— WE )+

—n -Pudttwpy) fw(py) it “ta W (@B )— W (o)) + or(1).

Plugging Eq. (B.31), (B.24), and (B25) into (B.23) yield the desiredresult. Ol
The following Lemma provides the Infiuence Function Representation for \/n_- (BA*— So). Its proofis similar

to the proofs of the lemmas provided above, so it is reported in a supplementary material.

Lemma B.10. Let Ho hold, and assume that \/n_-(BA — po) = Op (1). Under Assumptions A1-A6,

¢_ \/ﬁ (B*-p) = \/ﬁ P& e Et Vitg sy,

—n PE(Dm (X BT o2 Eoisg 5y (W) 25" -Vtg iy (WP p=p, [ X2} +
7P, & (D —m (2)) E oty (W () -Zg Vgt iy (W(B))lg=p, 12+ 0p(1).

Proof. See Lemma ?? in the Supplementary Material. O

Lemma B.11. Define g, and G as in the proof of Proposition 1. Let G:= {g; :t €T}. Under AssumptionAl,
G G uniformly over I (G) wrt the joint measure P & P .

Proof. The proof follows the same steps as the proof of Proposition 1 Point (ii). The only difference is that for the

derivation of the entropy condition both Lemma A.4and Lemma B.2 are used. n

Lemma B.12. Let Z and Z be two random variables with respect to P< ® P that take value in R. Let Q be a
probability measure defined over the Borel sigma field generated by R. Denote with Lg the cdf generated by the
measure Q. If

G)P5(1Z~ 2| > 8) =P Oforall 6> 0,
()P Z < 2) =P L) forall z,

(iii) Lo( - ) is a continuous function,

63



then
sup, epIPAZ <2) = Lo(2)] = of1).
Proof. Forafixed o > 0,

Pi(Z<2)<Pi({Z<z+Z-Z}yn{1Z2-2 <6})+
P{ 1Z—2| >0}) <B(Z <z+3d)+ ().

By a similar reasoning,
P(Z <z —0)+ o(l) <P{Z'<2).
Putting together the above inequalities, and noticing that by assumptionP (§Z <z) — L () forall z,
Lfz—0)+ofl) <PfzZ'<z) <L g+ 0)+ o(l),

for all fixed z and 6. By the continuity of Lo( - ), forany s > 0 itis possible to choose d > 0 small enough such
that for any arbitrarys > 0, [Lo(z — ) — Lo(z)| < sand|Lo(z + ) — Lo(z)| < s. So, for such a choice of 4,

—s+ of1) < P{Z'<z) — L §2) <5+ ofl).

By the arbitrariness of s, the above display implies that PS(Z <z) =P L Jz) forallfixed z. Since L (-9is
continuous cdf, such a pointwise convergence can be turned into a uniform convergence, so sup LeR |P$(ZA <
z) — Lo(z)| = op (1) (seepage van der Vaart (1998), page 339). m

Similarly as done for Proposition 1, we now prove a more general version of Proposition 2. See Remark A.1

Proof of Proposition 2.

(i) From Lemma B.9, it is su@cient to derive a Bahadur representation for \/;7 - Pulttw (po)fw (o)t ~tn W >’<([f"*)—
W(ﬂA)). To this end, notice that by Lemma B.10 and LemmaD.1,

Y Pttt gote -t 085 - W) =
—\/n ‘PuBo,2 ra1(t) @1 5—n2) -1, + \/n ~Puaa(t) -1 h— mo) tn —

Ef(aa(r) X1, ar(t) -ma(x2))} -V -G*— F)+ on(1)

uniformlyin¢ €T. Conclude by replacing in the above expression the infiuence-function representation of

Lemma B.10 and the expansion of Lemma B.6.

(ii) Define the collection G:={g; :# €T} and the variable Z~simi1arly to the proof of Proposition 1. Denote



with fo) the operator g »— fo)gt = \/ﬁPnf -g,(ZN). fo) is called bootstrap empirical process operator. For
any realization of {Z i and{ &}, , the operator G belongs to ACG). Denote with G the Gaussian process
defined in the proof of Proposition 1. Finally, denote with A the operator f >—" |f o g,|4(d r) defined overthe
space A% (G). A is well defined over the space A*(G). By these definitions, A o G =" |G)g, [2u(dy).

From Theorem 10.6 in Kosorok (2007)18 and the proof of Proposition 2, Gg,é) . G overthe space! {G), P -almost
surely (i.e. for P -almost every trajectory { 7 i}"_,)- So, by the Continuous Mapping Theorem (see Theorem 1811
in Vaart (1998)), A o Ggf) - A oG P-almost surely. Accordingly, since the process A o G $F) takesvalue in R,

Ps(A 0 G) <z) — L(A oG < z) for all z, P-almost surely, (B32)

where L is the cdf of the random variable A o G,i.e. L is the cdf generated by the measureA o G.
Now, by LemmaB.11, G) G over A(€) with respect to the joint probability space P ® P By arguing

similarly to the proof of Proposition 1, such a weak convergence implies that || G| lg..o = Op(1). Definenow
* v_ ~x e ” 7 KR 2 (¢)
Rn(t) = nPng f WN*(ﬂA*) (W *(ﬂ *)) K7 Gn 8-
From point (i), [|[R,*[IT, = op(1)so,

S*— A 0G| <

j IRX(0)] -|RF(1)+ 2G{ g, |u(dr) = a(1) .

So, since the above display implies a convergence over the joint space,
P<(IS ¥— A 0G| > 6) = g41) forall 5>0. (B33)
Since L(A o G < -)isacontinuous function, from Eq. (B.33), (B.32) and Lemma (B.12),
sup, g IP(S £ 2) — L(A oG = 2)| = ofd).

Since ¢1—q = inf{c :Pi(S X ¢) = 1 —a} , itfollows that (seee.g. Li & Racine (2006), page 213,eq. 640)

A P
Clg— Cl—o (B.34)

where c1— is defined as the (1 — a)—quantile of the distribution L(A o G < -)Now, from Proposition 1and the
definition of the functional A, S, . A o G. So, because S, takes values in R, P (S, <z) - L(A oG <7)
for all z. By the continuity of L(A oG < ),

sup,cr|P(Sn <z) —L(A oG < z2)| = 0(1) (B35)

18The same result can also be obtained from theorem 3.6.1 and Theorem 3.6.3 in van der Vaart & Wellner (1996),but the
formulation in Theorem 10.6in Kosorok (2007)is more direct for our purposes.
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By Eq. (B34) and (B35),

IP(Sh <c"1-g)— (1 —a)| <
sup,erlP(Sn <2) —L(A oG <)+ [L(A oG =c"10)—(1—-0a)| =
o)+ |L(AoG <c"1-) —L(A oG < c1-4)| = 0r(1),

wherelhaveused L(Ao G < c1-4) = (1 — a).

(iii) Define A% (T ) as the space of the functions mapping T onto R that are continuous. By the proof of Proposition
1, the mapping g >~ |g(r)|%u(dr) is continuous over the set A(T). So, from Lemma C.2 and Lemma C.4, by a
Continuous Mapping Theorem (see Theorem 18.11 Vaart (1998)),

] %
ini =P P (Y =1ty VN f vipfVBD ) | a(d 1) and% -P0
Notice thatunder H 4 ¢:= / | P (Y—ttv(ﬂ*)(v(,b‘ M) V(m(v(ﬁ N 9) A 1) > 0. From § *~ 6, italso

holds that
P<(S* n -b) = o), forany b>0.

From the above display, P (S » < ¢1-4) = P{S, < ¢1-o} N{Ps(S} > n -b) < 6}) +o(1) = P({S, <
1—a} N{P(S*<n +b)=1-6}) + o(1) foranyfixedd > Oandb> 0 . Setnowd = a/2 andb= c"/3.Since
P (Su/n < c/2)= o(1), italso holds that

P(Sy<c1-0)=P({Snh < 1-a} ﬂ{P;’; (Sft<n «B)=1-a/2}0{S /n =c"72}) +0(1)

Whenever the event{P {$ £ "B)=1- a/2} holds,sincec -, = inf{c: Pﬁ(Sn% c)>=1-a} ,itmust

bethatn -¢/B= ¢ 1-«Therefore, from this implication and the above display,
P(Sh <c1-) < P({Sh =c"1-3n{n -cB=c"1-3n{Sn/n =2+ o(1) = 0(1),

where the last inequality follows from noticing that{S, < c"1-} N{n B> c"1- N{Su/n =2} C{S, <
S.} =0
[0.E.D.]

C Power Analysis

In this Appendix, I analyze the behavior of the test under the alternative H3.

Lemma C.1. Under Assumptions A1-A6, if H1 holds, £ =P p*.
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Proof. Define

0 u(B) = Pu(Y — LyjigW (B2 o= Pu(Y — 11w (5 (W ()% + 0p(1),

By Lemma D.2 and Lemma A.2, an(ﬁ) = Pu(Y — ttw (5y(W (B)))? + op (1) uniformly in 8 € B. By Assump-
tion A1, ttw (5 (W (B)) satisfies a Glivenko-Cantelli property (see Theorem 194 in Vaart (1998)),so P.(Y — rtw
»(W (B))2 = P (Y — ttw (5(W (B)))2 + op (1) uniformly over B. Conclude by the definition of * and
Theorem 5.7 in Vaart (1998). n

Lemma C.2. Under Assumptions A1-A6, under H1, uniformly over T
PS5y (W B)) ~a 6= P (Y =11yl VIEM f sV (BY) -0(XD) + 0f1).

Proof. By areasoning similar to the previous lemma, together with ﬁ'\: p* +opr(1),

P(Y —ttw(p)(W(B*) fw ) (W(B*)) -0: + or(1)

uniformly over T. For the bias correction term, notice that by the uniform-in- # convergence results of Lemma
D.2,

P.B i iy (W) of 5.5y (W (D) 4, =
PuCttg 1w YW B ) = 11y WE D) “tu fyy i WE) 01 + 0p (1)
uniformly over T. Since by definition t74,|w (5,)(w) = E{ttw (5,)(W (81)) |W (82) = w}, italsoholds that

tA/;‘W(/;) = tty ) Accordingly, P,,BAvf,(ﬂﬁ)(VT/(,BA)) -fAu;([;)(VT/ (8)) -1, = 041) uniformly overT. m

Lemma C.3. Under Assumptions A1-A6, under H1, ﬂA*—’ P p*.

Proof. From LemmaD.2, Lemma C.1, and LemmaA.2,

Pt 5, 0 (W (B)) + ¢ (¥ — (W (8))) - (5 (W(/fz)))
P (”W(ﬁl)ew(ﬂl))"'f (Y _”W(/ﬁ)gw(ﬂl))) —tt,;*|W(/;2)(W(ﬂz))) +0p(1)

uniformly in (f1, f2) €BxB. By Assumption A2, ttw (5 (W (B)) satisfies a Glivenko Cantelli property (see
Theorem 19.4in van der Vaart (1998)), so

Pu(ttw () (W (B1)) + & (Y = 11w (p) (W (B1))) — tegs 1wip,)(W (B2))),=
P(ttw(p) (W (B1)) + & (Y = 11w (p) (W (B1))) — tig w(p) (W (B2))),+ op(1)
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uniformlyin (1, f2) €BxB. By Assumption A1 and Lemma(C.1,

P(ttyy 3y (WD) + & (¥ =t 2 (WD) = th w5 (W ()=
P(ttw sy (W) + & -V — ttw (g )W EN) — tte (W (B2))) 5+ 0p(1)

=: 0*(p2) +op(1)

uniformlyin 2 €B. By the previous three displays, QA*,,(ﬂ) = 0*(B) + op(1) uniformly over B.
Notice now that, since E€? = 1and E¢ = 0,0%(8) = P (ttw (p+)(W (B%)) — ttp 15 (W (B)))2 + P (Y —
ttw (p+)(W(B*)))? Hence,

arg min gcg Q*(B) = {f €B : ttw () (W(B*)) = ttg« w(p)(w(p)) P - almost surely }.

Differentiating both sides of 1ty (g+)(W(B*)) = ttg«|w (5)(w(B)) wrt to (x1, m2(x2)), yields f = p*. Hence,
arg min zcg O*() = {f#*}. Conclude by recalling that ﬁ'\*:= arg min zcp QA*,,(B) and using Theorem 5.7 in van
der Vaart (1998). 0

Lemma C.4. Under Assumption A1-A6,if H holds, P &,,-f* Av;/ Oy (WY -0 ;15 0(1) uniformly over T .
Proof. From LemmaD.2 and Lemma A.2,

P.B W“(B“A)(W(ﬂ)) fi ﬂ(&k)A(W’(,B N e ffAﬁ

Pultty 1w (WEB ) — 1ty 5y (WB ) fw 5y (WEB ) 01 + op(1)

uniformly over T. Since g \wE)= tw ) (seethe proof of Lemma (C.2)),

S A AW(R)) f ~ » 7P .t =

PuB i iy (W) Ly 05BN 0,45 0 ()

uniformly over T. Now, by Lemma D.2 and Lemma A.2,

x, "% VIEEN) f « ~ (WEEYP -0 1 =

Pu(tty i WEB N+ E (Y = 113 WE) = 157 i WE ) 5 (WE ) -1 + 0p(1)

uniformly over T. By Assumption A2, a mean-value expansion, Lemma C.3, and Lemma C.1 yield

Pultty (VBN +E (Y = 11, (V) = tt2 (VB D) oy 59V B ) 01 =
Pu(& (Y — 1ty (p)(V(B%)))) “fv (g)(V(B*)) -0 + 0op(1)

uniformly over T, where I have used g« |y (g+)ttv (5+). The compactness of T and the boundedness of X ensure
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a Glivennko-Cantelli property, thus

Pu(& (Y = 12y gy (V (BF)))) fv p)(V (B*)) -0 =
P& (Y =11y (p)(V(B*)))) fv ) (V (B*)) -0: + 0p(1)

uniformly over T. Conclude by recalling that E€ = 0.

D Auxiliary Results

The following lemmas are proved in the Supplementary Material of this paper.

Lemma D.1. Forj = 0,2 defined, ; := . L‘;%% + hr’ Under Assumptions A1-A5,

. 2
D05 =)ty ll = Op (4) and 67" = m;) -1, 1le = Op U5

(@) |(T5,/f; —m ) “talls = Op (%)

G TAj—TAfnjz o TAj—TlAfnJ-z = OP(n—1/2) and T];‘—T_Jz y fj*fT
.. I n 7 o .. 7 n 7
For Con:= C(Z,) and Czn:=C(X2, n)
3 i . 3
(w)ije(;,n ~1p _._eg - 1P m';.k ¢, —

Lemma D.2. Under Assumption AI-A6,

® S”PﬁeBSWxNVIAW" W (B)) — ttw (W) -n(x") = op(n*1/4)-

The same rate also holds for w " (8) f - V) w™(B)), an ( “(B)).

(i1) S”pﬁeBS”Px“Lﬁﬁ/ vy W) —fw (W) tlx") = op(n—1/4);

Define ttg,|w(p,)(w) := E{ttw s, (W (B1)) | W(B2) = w}; then,

(111) S”pﬂeBa‘l%cN"tA*W*(ﬂ)(WN*(ﬁ)) — 1ty B 1ax”) = op(1)
00 (8))

(iv) suppepsupy- -—% tt 2wy WBDL 1, (F) = op(n=Y4);

The above results also hold by replacing t, with fn

Lemma D.3. Under Assumptions A1-A6, if Ho holds and \/n_- (ﬂA — Bo) = 0p(1)

(n/3 -1/4 . _2s+4
N T2,

D) sup,JT"5 5y () = Ty gy ()]

(if)sup, Jor AW(ﬂA) (W)= 0Ty ()W)l 'lffﬁzﬁo)(w) = Op(n~ V4 g 2544,

Wiy (W) = op(n

The same rate also holds for fAV~V“( na AA{,V,@A)“ g WY(;S ity )’ and T;AW, -
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If moreover \/ﬁ -(BA*— ﬁA) = 0p(1),

(iit) sup,, ITA* (w)— Ty (ﬁ))(W)| . (173) )(W) = op(n—V4 25+

W8 *) n, W (Bo
(iv)sup, Jor >|;47*(ﬂﬂ*) (W)= 0Ty 5y (W) o254 = op(nV4 1),

The same result holds for fAW; 0 -

Lemma D.4. Under Assumption A1-A6, if Ho holds and \/n_- (BA — Bo) = 0p(1),

OP iy - Ti iy Fi ) - T iy Ty gy Ty ) SN = 1
If moreover \/ﬁ -(BA*— ,BA)= Op(1),

@) P gy y T2 7y ECWa) —1

A
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Chapter 2: A Nonparametric Encompassing Test

Elia Lapenta and Pascal Lavergne*

Abstract

According to the encompassing principle, a model M1 encompasses a model M, if M 1
can explain the results of M2. The encompassing tests in the current literature either rely on
parametric functional forms or, when relying on nonparametric specifications, they condition
the analysis on fixed values of the explanatory variables. In this paper, we provide a nonpara-
metric encompassing test. Our procedure does not rely on neither functional forms nor on
specific values of the explanatory variables. We propose a statistic computed according to an
L>-boosting algorithm. This procedure allows to obtain a good robustness with respect to the
choice of the tuning parameter. We propose to simulate the critical values by a wild-bootstrap
procedure and prove its validity. In a Monte-Carlo simulation study, we show the attractive
features of our test.
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1 Introduction

Encompassing is a well established principle in econometrics. It allows the researcher to choose
between two competing models explaining the behavior of the same response variable. Essen-
tially, a model M; encompasses a model M, if M can explain the results of M;. This is a
natural principle for choosing between two competing theories: a new theory can replace an older
one not only if it explains a new phenomenon, but also if it can explain the results of the older
theory.

The encompassing principle has been introduced in econometrics by the work of Mizon &
Richard (1986), Hendry & Richard (1987), Gourieroux et al. (1983), Florens et al. (1996). Gourier-

oux & Monfort (1995) have developed encompassing tests for parametric models, while Florens et

al. (1996) have extended the concept of encompassing to a Bayesian framework. An extensive
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survey of the encompassing principle is provided in Bontemps & Mizon (2008). Bontemps et al.

(2008) propose different encompassing tests, concerning both parametric and nonparametric se-
tups. Tests in the current literature either rely on parametric functional forms or; when relying on
nonparametric specifications, they condition the analysis on fixed values of the explanatory co-
variates. Accordingly, the results obtained can be considered as conditional on either the specific
parametric classes or on the values of the explanatory variables.

This paper contributes to the literature on the encompassing principle by providing a test that
is fully nonparametric and is not conditional on fixed values of explanatory covariates. The test
statistic we propose is based on a continuum of moments and is built according to an L, boosting
algorithm. Such an algorithm has been originally proposed in the machine learning literature to
debias the estimators of nonparametric objects. Since our test is fully nonparametric, we use the
L; boosting procedure to recursively correct the nonparametric estimators employed. This
algorithm turns out to be effective for two main reasons. First, it considerably enlarges the
spectrum of bandwidths and kernels admissible for the test. Second, it makes the procedure more
robust to the bandwidth choice. We show that, under the null, the statistic proposed converges to a
functional of a Gaussian process which depends on unknown features of the data. So, to obtain the
critical value we propose a wild-bootstrap procedure and prove its validity in the presence of
boosting iterations. In a Monte Carlo simulation study we explore the merits of our procedure and
show the robustness with respect to the choice of the smoothing parameter.

The reminder of the paper goes as follows. Section 2 formalizes the encompassing idea and
draws some links between the nonparametric context considered in this paper and the one ana-
lyzed in other works. It moreover provides some interesting features of the encompassing prin-
ciple. Section 3 constructs the test, Section 4 introduces the L; boosting estimators, while the
following Section 5 sets up the assumptions and obtains the asymptotic behavior of the statistic.
Since the asymptotic distribution under the null depends on unknown features of the DGP, in
Section 6 we propose a Wild-Bootstrap procedure and prove its validity. Section 7 provides evi-
dence about the small-sample behavior of our test. Finally, Section 8 concludes. Appendix A, B,
and C_contain all the technical proofs.

2 The Encompassing Principle

Let{Y;, W, X ;}"_, beaniid sample from a population, and imagine to have two competing models

seeking to explain the behavior of Y . For example, model M ; might explain the behavior of Y by
the covariates W and model M, by the regressors X. According to the encompassing principle,
one theory encompasses the other if the former can explain the results of the latter. In the present

context, a model seeking to explain Y with a specific vector of regressors can be formalized by the
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function of these regressors that is the best approximation of ¥ . We can consider the L, distance
to measure the quality of such approximation. Since M ; seeks to explain Y by the regressors W ,
it can be defined asM 1 := L2(W ), where L?(W ) is the space of the square integrable functions of
W . Similarly, define M, := L?(X), with L?(X) denoting the space of square integrable functions
of X. The best approximations of Y resulting from model M ; and M, respectively, are obtained
as

r1i= argmingcy, [|Y — g(W)Il, andr; :=arg min Y= g(X)I],,
geM, (1)

]

where || || denotes the L 2- norm of square-integrable random variables, i.e. || Z ||2:= = z2P (dz)
for any random element Z. By the previous definitions, r1 is the L2 projection of Y onto LZ(W ),
and r; is the L2 projection of Y onto L2(X). Hence,

ri(W) = E{Y |W} and r(X) = E{Y | X}.

According to the encompassing principle, model M ; encompasses model M, if M1 can explain
the results of M;. Since r; is the “explanation” of Y resulting from model M1, and r; is the
“explanation” of Y resulting from model M ;, we can say that model M ; encompasses model M ;

if r, can be “obtained” from r;. Formally,

rp=argmin .y, |[r(W) — g(X2)l1.,

Hence, using again the definition of the L? projection, M; encompasses M, if and only if

E{ri(W)|X} = ra2(X) . 2

2.1 Relations with the deftnition of Encompassing in Gourieroux and
Monfort (1995)

The above formulation of the encompassing principle can be considered as a nonparametric gen-

eralization of the definition provided in Gourieroux & Monfort (1995) (GM, now henceforth). In
particular, the authors start from two competing models aiming to explain the distribution of a
variable Y . Then, they define a pseudo-true value for a model as the element of the model that is
the closest to the true distribution of Y in terms of Kullback-Leibler distance. In particular, de- note
with fo the true distribution of Y . Each model in GM is respectively defined by the following
collections

M7= {gi(-, a1) ra1 €A1} andM 5 = {go(-, a2) 102 EAL} ,
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whereg; (-,a; ) forj = 1, 2denotes a specific distribution indexed by the parametera; , and A1,

A, are two generic sets. Notice that the parameters a1, a; are not restricted to be real vectors.

The pseudo true value of ¢; is therefore definedas

%'* = arg min ajEAdeL(fO’ gl(’a] )) )
where dg;( -, -)denotes the Kullback-Liebler distance between two densities. GM also define the
element of model M 2 that is the closest possible to an element of model M~1:

b(ai) := argmin ¢4, dgr(g1(+, a1) , g+, @2)),

for a; €A1. According to the definition of encompassing in GM, model M"; encompasses model

M, if and only if

%"= blog").

In other words, from the above definition M ; encompasses M, if the pseudo-true value of the
latter can be “obtained” from the pseudo-true value of the former:

The definition considered in this paper is very similar to the one in GM. We are just replacing
the KL distance with the L2 norm, and considering nonparametric regression functions instead of
densities. From the definitions in Eq. 1, 1 and r; can be viewed as the pseudo-true values obtained
from the models M1 and M, respectively. Also, the element of M, that is the closest to a

generic g1 €M 1 is defined as

b(g) = argmin ey g1(W) — g2(X)1,.
2 2
In the definition of GM, Model M"; encompasses model M ; if and only if b(r1) = r,. This exactly
coincides with the definition we have provided in Eq. 2.

2.2 Some features of the Encompassing Principle

The formulation provided in Eq. 2 allows us to obtain some intuitive features of the encompassing
principle.

First, if model M1 encompasses model M ;, the explanation of Y provided by M 1 will be
more “accurjate" than the explanation of Y provided by M,. To provide a formal proof, define
<f,g>=" f(z) -g(z) P(dz), wherez = (y,x 4 x 5. So, < -,-> denotes the scalar product in
the L2(Z) space.
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Proposition 2.1. If Model M 1 encompasses model M, then [|Y — ri(W)[| < |[|[Y —r2(X)]].

Proof. |IY = rnX)12=1lY = ri+ rn—nllP=lY = nll?+ 2< Y —r, 1 — 2 > +llrn — nll2
Since r; is the projection of Y onto L2(W ), < Y — r1, r1 >= 0. By definition, r; is the projection
of Y onto L2(X). Also, since M; encompasses M, r; is equal to the projection of r; onto L2(X).
Thus,< Y —r1, rn>=< Y, rn> — < ry, rn>=< ry, 2> — < ry, r >= 0.This implies that

<Y —ri,r1—r2 >=0,and hence ||Y—ro(X2) |12 = Y= ril P+ [In—nl? = [lY—rll2 O

Second, if the two models mutually encompass each other; they give rise to the same “theory”

or “explanation”, as the following Proposition shows.

Proposition 2.2. If M1 encompasses M, and also M, encompasses M1, then ri(W) = ra(X)

P - almost surely.

Proof. Since the two models are mutually encompassing, ||Y — r1(W )|| < [|[Y— r2(X)|| and
Y — r2(X) || < [|Y — ri(W)]], so that ||[Y — r1(W)|| = [|Y — r2(X)||. By proceeding as in the
proof of Proposition 2.1, | |Y — r2(X) |2 = ||Y— ri|12+ ||ri— r2l|% sothat ||r; — 12| = O. O]

2.3 The Encompassing Principle and nested models

The encompassing principle considered here is linked with the principles of nested models and
nonparametric significance of the regressors. Imagine that the regressors X are not significant for

Y once we control for W :
E{Y WX} = E{Y |W}.

By applying the conditional expectation E{ - | X} to both sides of the above display and then using

the Law of Iterated expectation, together with the definitions of r1 and r»,
r2(X) = E{ri(W)|X},

So, if the regressors X are not significant in the nonparametric regression of Y onto (W, X),
model M ; will encompass model M ;. The other direction of this implication, however, does not
hold, in the sense that if model M ; encompasses model M ;, then it is not necessarily true that
the covariates X are not significant in the nonparametric regression of Y onto (W, X). This is

highlighted by the following proposition.
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Proposition 2.3. Let ri(W) := E{Y |W} and ry(X) := E{Y | X}. Then, model M 1 encompasses
My ifandonlyif E{Y [W, X} = ri(W)+ g(W, X), withE{g(W, X)|W} = E{g(W, X)X} = 0.

Proof. Assume that M; encompasses M. Notice that we can always write Y = r1(W ) + &. So,
E{Y [W X} = ri(W) + E{e|W, X} =: r1(W) + g(W, X). Applying E{- |W} to both sides of
the previous equation, using the Law of Iterated expectation, and the definition of r1(W ), E{g(W,
X)|W } = 0. Similarly, by applying E{ - | X}, and then using the Law of iterated expecta- tion and
definition of r;, r2(X) = E{r1(W)|X} + E{g(W, X)|X}. Since M1 encompasses M, by Eq. 2
and the previous display we must have E{g(W, X)|X} = 0. The other direction of the
proposition is immediately proved by the Law of iterated expectations and the definitions of r;
and r;. [

The previous result highlights that if Model M ; encompasses model M,, we must not nec-
essarily have E{Y |W, X} = E{Y |W}. As long as g(W, X) is not a.s. equal to zero, M1 en-
compasses M, but X is a significant covariate in E{Y |W, X}. Thus, the use of a nonparametric
significance test checking the restriction E{Y |W, X} = E{Y |[W} is misleading for the encom-
passing assumption.

The following counterexample provides a concrete functional form for g in the last propo-
sition. It also shows a DGP where X is significant in the expectation E{Y |W, X}, model M
encompasses M, but the models do not mutually encompass each other.

Counterexample. Let Y= (1+ W) + g(W, X) + n, withn L (W, X) and g(W, X) = (W? —
1/12) -X. Define

fw.x(w,x) := 1{w €[-05,0]} -¢(x) + 1{w €]0,0.5]} -y (x),

where ¢ and y are two densities such thatj xp(x)dx = 0 andj xy(x)dx = 0.fw, x isa density
function with respect to the Lebesgue measure.Indeed, f , y = Oand ™ fy, x (w, x)dwdx = 1.
Assume that (W, X) ~ fw x. The marginal densities are given by

fw (w) = 1{w €[-0.5, 0.5]}, i.e. the uniform distribution,
fx(x) = 0.54(x) + 0.5p(w) .

The conditional densities write as

1{w €[-0.5,0]} -¢(x) + 1{w €[0,0.5]} -w(x)
fW|X(W|x) =2-
¢ (x) + w(x)

fxiw(xlw) = 1{w €[-0.5,0]} -4(x) + 1{w €[0,0.5]} -w(x) , forw €[-0.5,0.5].
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From the above conditional densities, it is easy to show that E{ W 2| X} = 1/12,and E{X|W } = 0.
Hence, E{g(W, X)|W } = E{g(W, X)|X} = 0. By the previous proposition, this implies that
M encompasses M;. Clearly, since g(W, X) is not a.s. equal to zero, X is significant in the
expectation E{Y |W, X}.

Finally, r1(W) = 1+ W, and by using the expression of /x| w obtained above, r»(X) =
E{Y |X} = E{(1 + W)|X} = —2X)__ Now,by Proposition 2.2,if M, encompasses M ;

y(X)+4(X)"
(i.e. the two models are mutually encompassing), then r1(W ) = r(X) a.s. Therefore, since ry is

one-to-one, W must be an exact function of X. But this is not satisfied by the density fw x .

3 Construction of a Nonparametric Encompassing Test

By the definition in Eqg. 1, the null hypothesis is set as
Ho : E{ri(W)|X} = r2(X),

where ri(W) := E{Y W}, r2(X) := E{Y | X}, with W € R4 X & R, For the ease of notation,
let us denote by r the regression ri. Using the linearity of the conditional expectation, Hp can be

equivalently written as

Ho: E{Y — r(W) |X} = 0. 3)

Wetest Ho against its logical complement, Hy : H . The above display contains a conditional
moment restriction. We will transform such a conditional moment into a continuum of uncondi-
tional moments. By the results in Bierens (1982), Bierens & Ploberger (1997), and Stinchcombe &
White (1998),

Ho :E{(Y — r(W)) -9,(X)} = Oforallz €T,

where T compact subset of R¢x containing the origin, while ¢,(-) = ¢(z-), with ¢ an analytic
non-polynomial function. To simplify notation, define

e=Y —r(W).

. . : : )2
¢ =Y — r(W) will denote an estimator of ¢. Also, letP = % " 0z, withZi= (Y 1, W, X)),
1

and ¢ denoting the Dirach measure. For any function g €L (2), P g(Z) := & ,8(Z). The

n
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statistic we propose is an Integrated Conditional Momenttest,

]
Sn = | |\/_’/angA¢t| |2,Ll(dt) )

where u is a measure absolutely continuous with respect to the Lebesgue measure and || - || is the
Euclidean norm on C. To obtain a simple expression for our statistic, we could set ¢(-) = exp(i
t-),wherei= = —1.In'sucha case, S, can be expressed as a weighted double sum of the estimated

residuals, as

12
Sn= € ipu(Xi —X;),

LJ
where ¢, is the characteristic function of the measure u. Setting ¢,(-) = exp(i ¢-) is not necessary
in our proofs which hold for a general weighing function, but such specific choice of ¢, has the
advantage of delivering a simple closed form expressionfor S,.
The statistic S, is very similar to the one proposed by Delgado & Manteiga (2001). There are

however some differences. First, the authors use locally constant kernel estimation in the con-
struction of their test. To simplify the proofs for the asymptotic behavior; Delgado & Manteiga

(2001) multiply “both sides” of their null hypothesis by a density allowing them to avoid a random
denominator. They therefore use a leave-one out estimator and obtain a U -process form for the
empirical process at the basis of their statistic. Differently, due to the formulation of Hp in Eq. 3,
we cannot multiply both sides of Hg by a density to avoid a random denominator. Second, to
compute the estimated residuals {¢";} 7_, we will modify the kernel estimators by implementing
an Lp-boosting procedure. This allows us to handle the bias in S, coming from the nonparametric
estimation of r;. To better explain this point, let us consider the estimation of the residual ¢ by
kernel methods, i.e. let us assume that the function r; is estimated by a locally constant kernel
regression. In specification testing it is generally assumed that the bandwidth ~ and the kernel
order 7 must satisfy n#*" = o(1), see e.g. Delgado & Manteiga (2001) or Escanciano et al. (2014).

This ?)ndltlon allows to handle the bias terms appearing in the expansion of the empirical pro-
cess " nP,&"¢,(X). It however restricts the set of bandwidths and kernels admissible for the test.
For example, the bandwidth coming from the minimization of the mean-square error cannot be
used for the implementation of the test. Moreover; to ensure the condition nh? — 0,a high- order
kernel must be selected when the dimension of X is larger than 1. Since high-order kernels are
relatively irregular functions, this will infiate the small-sample variance of the kernel estima- tors,
impacting negatively on the performance of the test. The boosting procedure we implement

allows us to alleviate these problems.
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Algorithm 1 L, Boosting
. Initialize with estimates /1! and /10

- Increase bby one, i.e.b— b+ 1,and compute the residuals s¥-1= y — 71-1]

+ From the sample {"~", X ;}»_, compute 7, = (defined in Eq. 4)and update the estimator
of r as

T .
o R o | B
£ 10

Repeat the above steps B times.

4 Test, boosting, and estimators

The boosting method has been originally proposed in the Machine Learning literature to handle
the estimation bias. The application of L; boosting algorithms to kernel estimation has been

analyzed in several statistical papers, see ?, Di Marzio & Taylor (2008), Park et al. (2009), Cornillon

et al. (2014). Essentially, the idea is to estimate an object of interest iteratively on different samples,
and then build the final estimator by aggregating the estimates obtained from these samples. It is
based on three main elements: (i) a starting value for the iteration; (ii) a base estimation procedure
allowing to update the estimator at each iteration; (iii) the number of iterations to perform. The
specific boosting algorithm we use in this paper is an L;-boosting procedure. In this case, the base
procedure for estimation consists in the minimization of a least squares criterion, see ? and Di
Marzio & Taylor (2008). It is described in detail in Algorithm 1. Let #I%be an initial estimator of r.
The boosting estimator after biterations can be written as
T . 2

[ . 2 -
— &p 1 ~b—1] W;—-
= Aty —;‘[(IJT &1 = nhd ?=1(? t”’iK (4)

=1

forb= 1,.., B, where K isakernel function, g“?’* U_ Y —/-(w,), £ is an initial estimator

of the density of W , and tnn,,- is a trimming factor used to handle a random denominator,

The initial estimator #1%is called weak learner. The boosting updates in Algorithm 1transform
such weak learner into the deep learner 8l after B iterations. When 1% and " arekernel
estimators built with the same kernels and bandwidthsas T’ ,Agbe boosting estimator of Eq. 4is

the same as in Di Marzio & Taylor (2008). Here, we are considering the initial estimators f [0l and

rDas generic, for the aim of generality of the theory and simplicity of proofs.
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The statistic we use is

=I \/H-P & t o 2u(dr) ,WheregAB= Y — 8,

nBnt .

S,

Our proofs also hold for a Kolgomorov-Smirnov transformation, and more in general for any

continuous functional defined on A®(T ) := ’ g :T>—»R st.super|g(f)] < oo ,

5 Technical deftnitions and assumptions

Let W be the supportof W . We assume that W is convex, d = dim(W), and define the set
W, := w:f(w) > =2 . ®)

For a vector of positive natural numbers k = (ky, .., k4), define the differential operator

ok.
oklxy..0kdxy ’

ok =
withk. = k1 + .. + kgL The class of smooth functions we consideris

C(W) :=  g:W »R cmax, g, 10 low < M ", ©)

with d' the largest even number weakly smaller than d. If d is eventhen df = d; if d is odd then
dt=d—1.

Observation: Notice that C(W) C C¢ (W) fora = % + 1, where G{W) is the class of functions

defined at page 154 in van der Vaart &Wellner (1996).

: Q a
Let K ’be the class of functions (v , 4 v ) p— J{l=1 k(v; ) with k univariate kernel of order r
thatis /4 times continuously differentiable. Denotep ;= P (f (W) < z%)nandC = C(W,).

Assumption 1.{Y,, W, X ;}"_, isa sequence of iid bounded random variables.
Assumption 2. r €C(W) and is r Btimes continuously diflerentiable with bounded derivatives.
Assumption 3. K €K7 for i = 4 + 1.

Assumption 4. p,nl? = o(1), %’% = o(1), 1 = o(1), and for each n large enoughW jsa

convex set.

IWe are using the same notation as in van der Vaart & Wellner, 1996
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Assumption 5-,!1—/123,%1?: o(1), nh*8 = o(1).

Assumption 6. (i) for b, €{t ", t,}, |FI= r)b,|lw = o(d, ||(f[°]— I ) |l = o(d,), with
dz = o(n=¥),; (ii) P( €C) — 1;(iii) for b=1,.., B — 1.P % eC, -1

Comments on the assumptions. Assumptions 1- 3are standard. Assumption 4is needed to take
care of a random denominator by the trimming #,. Assumption 5establishes that the order of the
kernel used in the boosting updates (i.e. for T j mustbe decided in connection with the number

of boosting iterations B. The appearance of 7, is due to the fact that at every boosting iteration we
have to project the estimator 7~ obtained in the previous iteration, so we have to take care of a
random denominator. Such a rate is introduced for theoretical reasons and is not relevant in the
practical implementation of the test. If we ignore the presence of 7,, for B > 1 Assumption 5is
avoiding undersmoothing, in the sense that the bandwidth minimizing the mean-squared error
can be used for implementing the test. Assumption 6 is a high-level condition. In particular
Assumption 6 (i) establishes the convergence rates of the weak learners. Such convergence rates
are relatively standard in the literature and similar to e.g. Escanciano ef al. (2014). Assumption 6

(i) imposes that that the weak learner #I%must belong to a class of functions su@ciently regular.
This is also an assumption often made in the literature, see e.g. Escanciano et al. (2014), Mammen

et al. (2012). Assumption 6 (iii) is similar in spirit to Assumption 6 (ii). It can be proved using the
same arguments as in Appendix C, and in particular by the same arguments of Lemma C.6.

The following Proposition establishes the asymptotic behavior of the test statistic.

Proposition 5.1. Under Assumptions 1-6, if Ho holds,
S . J .G. u{dr),

n

where G is a Gaussian stochastic process taking values in A*(G), G:= ’(y, x) »—(y — r(w))

p-(x) - t€ T ,and G is defined by the collection of covariances , P82¢t1¢t2 iy, 1 eT’

6 The Bootstrap Test

Since the statistic is not asymptotically pivotal, for the computation of the critical value we pro-
pose a Wild-Bootstrap procedure that imposes the null hypothesis Ho when resampling the ob-
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servations. The bootstrap DGP writes as
Yi* = rA[B](‘/Vi) + 5,'8’\3’1' Wlth EAB,i = Y, - rA[B](‘/Vi) ) (7)

where {&;}7_ is a sequence of bootstrap weights with E¢ = 0and E&2 = 1. The bootstrap version
of S, is

S*=J \/ﬁP Exopt 2u(dr),

npBtn

with
e )
and
T* R 5 . >
~ A Epe 1 n » Wi—-
bl = -1 7%’ ng‘zﬂ =— i=1651idi K -

To show the validity of the bootstrap, we need to extend the regularity conditions in Assumption
6. Denote with P *the probability measure that considers only {¢} 7_, asrandom andassumes
asfixed the sampledata{ Y;, W,, X }" .. Forarandom variable Z measurable with respect to
{¢,Y, W, X}, , thenotationZ = o p«(1) meansthatP {{Z |> o) —~"0for every 6 > 0.

Assumption 7. (i) Rates for the weak learners: for b, €{t ,, t,}, [[*O— rb,llw = op«(dy),
(7 = £)bulle = 0p(d,), with & = o(n~14).
(ii) Regularity of the weak learner: P (™% €C) =Py

* >

(ii1) Regularity of the boosting updates: for b= 1, .., B — 1:P < T; ec, 21;

]
Denote with F ¢he cdf of the real-valued random variable |G|%u(d¢) defined in Proposition
5.1,and let F,, denote the cdf of S,,. The validity of the bootstrap scheme with boosting iterations

is shown by the following

Proposition 6.1. Under Assumptions 1-7, if Ho holds, uniformly over T,
a5 \/— 1
P& gt npr= " NP, Cept, + op+(1) .

Accordingly, for every continuity point of Fo,

P:(S+<2) — F(z) —r0.

n
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Thanks to the previous proposition, the critical values can be simulated according to the DGP
in Eq. 7. Repeating the bootstrap resampling a su@ciently large amount of times, say N *, we ob-
tain a collection of statistics { S,*,: ¢ = 1, .., N *} whose distribution can be used to approximate
the null distribution of S,. The 1 — a quantile of such a distribution will approximate the true

quantile of §,, and can be used as a critical value for running the test at the a nominal level.

7 Simulations

In this section we provide evidence about the small-sample performance of our test. The DGP we

consider is similar to the one provided in the counterexample of Section 2. The model writes as
Y=1+Z1+Z3+yZr+u,

where

. >
u = g(Zl’ ZZ) +i7andg(Z1, Z2)= 212_le Zz.

Z1 and Z3 are resampled each from a uniform distribution with support [-0.5, +0.5] and are
mutually independent. The residual # is independent from (Z1, Z;, Z3). Z, is generated from a
mixture-type distribution. In particular, denote with N (u, o, @, b) a normal distribution that is

truncated from below by a , from above by b, and has mean ¢ and standard deviation ¢. Then,

Z> ~N (0,.65, — 0.5, 0.5)ifZ; <0
Z> ~N (0,.25, — 0.5, 0.5)ifZ; > 0.

Notice that the joint distribution of (Z1, Z,) provided here is equivalent to the one in Section 2, as
longas¢ and y aresettoN (0, .65, — 0.5, 0.5) andN (0, .25, — 0.5, 0.5), respectively.

In terms of the notation used in the previous pages, W := (Z1, Z3) and X := (Z3, Z3). Ac-
cording to the argumentation of Section 2, when y = 0 model M ; encompasses model M,, but
the other way around is not true. Moreover; if one wants to test the encompassing assump- tion, it
is not su@cient to check the significance of Z, in a nonparametric regression of Y onto (Zi, Z,
Z3): in this case Z; would be significant, but M 1 would encompass M ;.

For the implementation of the test, we employ Gaussian kernels of order 4, while the weighting
function ¢ is set to the complex exponential. We consider as a bandwidth rule # = Cn~'%, and
we change the constant C over the set {0.5, 1, 1.5, 2}. The test is implemented with several
iterations of the L, boosting algorithm, ranging from 0 up to 5. For y = 0 we are under the null

that model M ; encompasses model M ;, while fory = 1 we are under the alternative.

83



Table1: C = 0.5

n =100 n = 200
Hyp Hiy Hyp H1
B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 00z24 0056 013 032 0572 0686 | 0016 0058 0124 068 0862 0926
1 002 0062 0134 0324 0584 0688 | 0018 0064 0138 0682 086 0922
2 002 007 0142 0324 0576 068 | 002 0068 0152 0678 0858 0928
3 002 0074 0146 0334 0582 0682|002 007 015 0682 0862 0922
4 002 0074 0144 0336 0588 0688|002 0072 0158 0678 0862 092
5 0022 0076 015 034 059 0692|0022 0074 016 068 0862 0918

Simulations based on 1000 replications.

The results of the simulations are reported in Table 1-4. As long as the test is implemented by
undersmoothing, i.e. by choosing a small C, the test without boosting iterations behaves rel-
atively well. The test with L, boosting iterations appears to be competitive. Differently, as long as
the constant C is increased, the test without iterations shows a very poor performance, while the
test with L, boosting iterations displays a relevant robustness and is able to control the size in a
satisfactory way. These simulations show that the L; boosting iterations are quite useful for
controlling the empirical size of the test with respect to the choice of the bandwidth, especially
when undersmoothing is avoided. Such a feature is attractive, as it is a diffused practice to select
bandwidths by Cross-validation algorithms or other automatic procedures that do not guarantee
undersmoothing. Moreover, there is no standard practice for selecting the bandwidth that guar-
antees undersmoothing. We also highlight the following feature. Compared to the nonparametric

significance test in Delgado & Manteiga (2001), we cannot multiply the initial moment condition

by a density that avoids a random denominator. Such a multiplication allows to stabilize the be-
havior of the test statistic and to make it relatively more robust with respect to the bandwidth
choice. In our context, this is not possible, so the L, boosting iterations appear to be an important
tool to provide such robustness. The simulations also show a caveat: in the presence of a very low
level of undersmoothing a large number of boosting iterations might be less able to control the

size of the test, so it is advisable to avoid a very large number of B.

8 Conclusions

This paper provides a test to choose between two alternative models when each of them explains
the same response variable. The choice between the two competing models is based on the en-

compassing principle, according to which amodel M ; encompasses a model M ; if it can explain
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Table 2:C = 1

n =100 n = 200
Hy Hq Hy Hq
B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0022 0112 0196 0334 0594 0708 ] 003 0108 0.246 0.704 0906 0936
1 0016 0058 0116 0308 0548 0674 | 0014 0056 0116 0662 0864 0912
2 0016 0054 0106 0316 057 0668 | 0016 0052 0112 066 0868 0916
3 0018 0054 0.108 0314 0566 0668|0018 005 0114 0668 0868 0912
4 0018 0056 0112 0310 0566 0666 | 0018 0048 0.116 0666 0872 0914
5 0018 0054 011 0304 0568 0668 | 0018 0052 0116 067 087 0914
Simulations based on 1000 replications.
Table3:C = 1.5
n = 100 n = 200
Ho H,y Hy Hy
B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0102 0368 0.52 0456 0698 0812 0288 0628 0.77 0868 0964 0978
1 0032 0136 0256 035 0608 0734|004 0174 0338 0728 0914 0954
2 002 0082 0.16 031 0556 0684 | 0014 0074 015 0686 0884 0922
3 0016 0072 013 0302 0544 0664 | 0012 0064 012 067 087 0916
4 0012 0062 0118 0.3 0538 0668 | 0012 0054 0118 067 0868 0916
5 0012 0062 0112 0.3 0552 0668 | 0012 005 0116 0664 0872 0918
Simulations based on 1000 replications.
Table4:C = 2
n = 100 n = 200
Hy Hy Hy Hi
B 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1 0.01 0.05 0.1
0 0206 0486 0614 0512 0766 0854 | 0574 0804 0.89 0914 098 0986
1 0094 0338 0498 044 0684 0804 | 0238 0584 0.73 086 0962 0978
2 0044 0184 0.338 039 0642 075 | 0072 0304 0488 0768 093 0.966
3 0024 0132 0226 0338 0598 072 | 0032 014 0296 0.722 0904 095
4 0018 0098 017 0314 0556 069 | 0016 0086 0.182 0688 0.888 0924
5 002 0078 0.146 0296 0548 0678 | 0014 0068 0.138 0676 0878 0918

Simulations based on 1000 replications.
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the results of M. The test we propose is based on a continuum of moments and is fully non-
parametric. Hence, it does not rely on neither specific functional forms nor or fixed values of the
explanatory variables. We implement the test by an L; boosting algorithm which allows us to
avoid undersmoothing. We propose a wild-bootstrap procedure for the computation of the criti-
cal values and prove its validity with boosting iterations. A Monte Carlo simulation study shows
the attractiveness of boosting. Such an algorithm allows the test to be relatively robust to the
bandwidth choice, especially when undersmoothing does not hold. This is indeed an attractive
feature, as existing methods for bandwidth selection, like Cross-Validation methods, do not allow

to select a bandwidth respecting the undersmoothing conditions.
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A Asymptotic Expansion

Before proving the main results, we introduce a class of functions that will be often used in the

technical proofs.

Condition (CL).W:=  x »— wi(x) ot €T’ isa collection of uniformly bounded Lipschitz
functionsint, i.e. |y, —w, o < Cllti—t2l| forall t1, t; €T. Wedefine ¢,(W) 1= E{y(X)|W}.
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We start with a technical lemma that will be needed in the derivation of the Brahadur repre-

sentation of the empirical process at the basis of §,.

Lemma A.1. (Stochastic Equicontinuity Results) Let Assumption 6 hold, and let W and ¢, be
as in Condition CL. Then, for b= 0, .., B uniformlyint €T,
0 VHP, —P) sty s of)

Vi V J Y
(i) nP %rnw,= nP,ed, + nP,(r — )t ¢ + bt wP, (Y — AN, 60 + g(1), where
¢+ satisfies Condition CL;

(iii) \/ﬁ( P, — P)r = r)t,y, = op(1), and the same result holds by replacing t, with t .

Proof. For Point (i), by Lemma C.6, Assumption 4, 5, and 6, we obtain

..TAfgt e = 1 .
SUp,eT ..f_b nWL. OP( )

[e]

By the above display, Assumption 6(iii), and Lemma C.1, we can apply Lemma C.3 to obtain Point
().
For Point (ii), by the Law of Iterated Expectations, the definition of T ,Aapd Assumption 4,
T Ly I - j
Ll = Y= L K(v) 6d(Wi + vh) 1, (Wi + vh) dv =
n (Y- 8T qu)zqﬁ,(w,- + vh) dv =
(Y; _’;,{b])?n,iﬁ,i + hr*’ln =Y — ;;i[b]);n,i¢(1)

i i=1 n,t,i”’

nP

N

n

™M
= =~
™M

=1

where we have used the usual change of variable for the first equality and an r-th order Taylor
expansion of ¢, for the third one. We can add and subtract r in the first addendum of the above
display. Then, by using Lemma C.2 and C.6, we can replace the trimming ¢ ,with ¢, in t@e resulting
expression. The result of Point (ii) therefore follows by noticing that “#nP,ct,¢, = "7nP,e¢, +
op (1) uniformly over T, by Assumption 4.

For Point (iii), by using the recursive structure in Eq. 4,

Vv Vv

_ . _ . S,V ;-
n(P, —P)r¥l—r)t,y = “n(P, —P)r—rty+ ~ '} u(P, —P)]%wt-

Assumption 6(i)-(ii) and Lemma C.1 combined with Lemma C.3 ensure that the first term on the
RHS of the above display is op (1) uniformly over T . For a generic addendum of the second term
on the RHS,

Ve ~P) Lty = Vilp, )

~>

. \/_ ~ Zf_f"[()]z
sstnl//t-'- n(Pn_P)Tgtsn f-fa Wz‘-

n

~
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By Point 1, Lemma C.6, and Assumption 5-6, the above expression is op (1) uniformly in 7. By this

and the two previous display, we conclude for Point (iii).

Lemma A.2. (First expansion) Under Assumption 1-6, uniformly over T ,

J J J

1P st wor = HPuept, + b nR,(rB-1 — 1), 8. + op(1),
where B, , satisfies Condition CL.

Proof. Since 3= Y — %], using Lemma C.2 and C.6, together with Assumption 4,

7P Bt wpr = \/ﬁPnstAngo, + \/ﬁPn(r — B o, =

nP.ep, + " nP.(r — B0, + op(1)

uniformly over T . From the recursive structurein Eq. 4,

Vv v Voo T,

]

ﬁPn(?[B] —r)t,g = ﬁPn(?[B_l] —r)it,g + nP,ELlt o + ﬁpni“&lnt f—_{;% @, =

f f

v A 3
AP, (FE~1 — )i, + AP, B L1 4 0p (1),

where in the last equality we have used Lemma C.6 and Assumptions 4-6. By Lemma A.1 (i) and
(i),
V. Vv

_ V_ _ ) V_
nPnTg‘}’}—’ltnqu nPyet, + nP,(r — Bz 0 + b7 0P, (Y - r'[Bfl])fnl,(f,) + ¢(1).

Now, by Assumption 4and Lemma C.3, uniformly over T,

V_ ) ) Vo4 V_ .
h" nP, (Y — r[B’l])tnzgl’t) = h" nPnezfm) +h" nP,(r — r'[B’l])tnzfl,t) + o(1)=
P, (r =0 kg (1).
By putting together the previous four displays and simplifying,
J

\/ﬁPnSABtAngoF \/n—PnsgpL, — Y nP, (B — ), B, — \/npn(rA[Bfl] — Nt + op(1).

Finally, notice that P (+"[5~11 — 7)t,¢*, = O, so the result of the Lemma follows by applying Lemma
A.1 (iii) to the third term on the RHS of the above expression.
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Lemma A.3. (Negligibility of the boosting iterations) Under Assumptions 1-6, uniformly in
t €T,

VP, (B0~ g = op(1).

Proof. We first show the following recursive structure:

v 5 v 5
s P B = ) f, = D P (FB 6Dl By g () )

fors=1,..,B — 1

uniformly over T. To this end, from Eq. 4we obtain

A

v AN 3, e
he P, (FE1— ), B = hrs P (?[B‘(”l)]—r)tﬁ, + b nP, Bféos*”tnﬁnf

J Vv
hrs P (r"[B (s+1)] — I")tnﬂ, + h" l’lP Mtnﬁn r+ OP(1) (10)

uniformly over T, where the last equality follows by proceeding similarly as in Eq 8. By applying

Lemma A.1 to the second term on the RHS of the previous display,

J v J
h nP, s “”’ t ﬂn = h" nPnsﬁn,+ B nP,(r —FB -G+, ﬂ +
hr(s+1) nPn( —F [B—(s+1)]) ﬁ(l) ( )

V. - v i
By LemmaC.3, nP,eh’B ,,= o (1) uniformlyins €T.Similarly, 2"+ " 7P (Y —riB ’("J’l)])t,,ﬂ,(,,l,) =
R+ "7P, (r — FB=6+D]), B 4 (1) uniformly over T. By plugging these approximations
in the above display,

%
J s nP, —B by B = (11)
h's ﬁP,,(r—rTB—<s+1)l)t,,/f,,,t h’(”l) nPn(r—ﬂB—<s+1>1)tn/?,g}g+ a(1).

The recursive structure of Eq. 9follows from Eq. 10and 11.
Since Eq. 9holds forany s = 1,.., B — 1, if we proceed by a simple induction we obtain

VP i, = (A VR (O i+ on()

uniformly over T. By Assumption 6||(F1%— 7)t,| |« = op(n~ 1) and by Assumption 5nh*5 =

o(1). By these rates and the above display, we conclude. O

The above lemma shows that, under Assumptions 1-6, the boosting iterations do not have an
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impact on the Bahadur expansion of the empirical process " 71P,&"s f »¢; at the basis of the statistic

S,. This results and the asymptotic distribution of S, are reported in thefollowing:

Corollary A.4. (Proof of Proposition 5.1.) Under Assumption 1-6,
N
nP.&e st wpr = " nPugpt, + op(1)

uniformly over T. Accordingly,

¢ Vap 2t uldr) I' Ga,
n . n nt . ..
where G is a Gaussian stochastic process taking values in A®(G), with G := , (y, x) = (y —r(w)) -

p-(x) s tE€ T , and defined by the collection of covariances ’ Pszqﬁtl{p[z i1, 1 €T

Proof. The first result is an immediate consequence of Lemma A.2 and A.3. For the second result,
we can proceed as in Example 19.7 in van der Vaart (1998) by the compactness of T and the

bounj:ledness of the random variables involved, to obtain that N (6, G, || *|]«) < N(Co, T, || -||),
with 01 logN (o, T, [| -[[)dd < co. By Theorem 19.14 in van der Vaart (1998), 7P, cp. G.
Hence, conclude by Theorem 18.11(i) in van der Vaart (1998). ]

J

also holds for any weighting function y, such that ||y, — i, |le < Cllty — 1|| forall t1, 1 €T.

Remark A.5. The expansion \/n Poe'st wp; = * nPhep + op(1) proved in the above proposition

B Bootstrap Expansion

In this section we prove the validity of the bootstrap test with boosting. The general structure of

the proof is similar to the one of the previous section.

Lemma B.1. (Stochastic Equicontinuity for the Bootstrap) Let let ¥ and ¢, be as in Condition
CL. Then, for b= 0, .., B uniformlyint €T,

(Z) \/ﬁpnrA*[b](tAn_ tn)‘//t = OP*(1);

T*

i) V(P — ) oy = 0.(1)

v T v v v
(iii) ~nP—ty, = nP.elp, + nP, (FBY— PN, 4, + B nP,,s';ktnqﬁ,(f,)(W ) + op(1) , where
¢(nl? satisfies Condition CL
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Vo

(@) " n(Py — P )™= rhty,= op«(1).

Proof. For Point (i), notice thatsince £, — t, = (£, + £,)(t w — t4),

Vv

AP N — )y, = \/n—Pn(rA*[b] — N+ ), — )y + \/nPnrA[O](tAn — 1) Ws -

By Assumption 6 and Lemma C.2, the second term of the previous display is op (1) uniformly over
T, For the first term, from Lemma C.7 ||("*®) — FIO(, + #,)|1e = op+(1), and from Lemma C.2

nP,|t ,— t,| = op(1), sowe conclude for the resultin Point (i).
The proof of Point (ii) uses exactly the same arguments as the proof of Lemma A.1, Point (i),
together with Assumption 7, Lemma C.4, and Lemma C.7.
For Point (iii), by the law of iterated expectations, the definition of fj«z and the classicalchange
of variable,

*

>3 .~
nP 4y, = 4 ?16”Z,jtn,i K(u)t,(W; + uh)¢,(W; + uh)du =

n

A.L i= lgblt”l K(M)¢I(Wl + Mh)dlxt + 0p>|<(1) ,

n

where for the second equality we have used || — O, || = op+(1) which is implied by
Lemma C.7, ||("™— )¢ .|| = op(1) which is implied by Lemma C.6, #/z, = o(1), and Markov’s

inequality. By an rth order Taylor expansion,

Sy =161 MI K(u)¢:(Wi+ uh)du = J nP.E3iud (W) + hMﬁPne},?n@,, (W) =

nPE*,tn (W) + W Pt nd (W) + 0px(1),

with the second equality ensured by from Point (i) and Lemma C.6. From the definition of £%, the

expansion in Corollary A.4 (see also Remark A.5), and since E¢ = 0,

J%P,ﬁ“*btn%(W) = \/nP (Y —r'Bhe,ce, + \/ P (r'te] — ")), =

nP,eCh, + \AnP,,(r (B] — y~*[0])t, 6,4 0p(1) .

Since op(1) = op+(1), we can conclude for Point (iii) by putting together the previous three
displays.

For Point (iv), notice first that by the rates in Assumption 6, Lemma C.6, and Lemma C.7,
7 V_ )

=P) 1,y = VAP, —P) ety + off) and

v T v T*

—P)ptyy,= 0P, —P) 2ty t 0p(1).
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The two leading terms on the RHS of the above expressions are respectively op (1) and op «(1),

from Point (ii) of the present Lemma and Lemma A.1. Hence, by the recursive structures of FHland
{b]
rts,

-

n(P, — P — p o))y, = \/ﬁ( P, — P)(r™* 9 — Oz, + 0p«(1) = 0p=(1),

where the second equality follows from Assumption 6 and Lemma C.4. So, Point (iv) is also

proved. [

Lemma B.2. (A First Bootstrap Expansion) Under Assumptions 1-6 uniformlyint €T,
L

nP,,e“*BtAn(pF \/ﬁPnfeqolt — h’\/n'PneA*B_ltn,Bn,, + opx(1) .

Proof. From the definitions of £*;and Y *,

N

nP,ﬁA*BtAn¢,= \/_nPn(Y — }”A[B])l‘nnf(pt+ \/FTPn(I’A[B] — FA*[B])tAn(Pz- (12)

Using the expansion in Corollary A.4 and Remark A.5, since E¢ = 0,

\/ﬁPn(Y — B Ep, = \/n-P,,sg*go, + op(1) uniformly over T . (13)

From Lemma C.6, C.2, and B.1, uniformly inz €T,

J

AP — A = VP — )4 0 (1) =

AB-1] _ B -1] v Tep % e,
nPn (}" -r )tnqot + nPn —f—]tnﬁﬂz - ﬁPn ? ] tnﬁ”t + OP*(1) .

From the convergence rates in Assumption 6and Lemma C.7, we can replace f with f in the last

term on the RHS of the previous display. Then, fromLemma B.1, uniformly over T,

\/ T;* \/ T;*
nPn%tngpﬁ nP, ’;"t,,(o,+ op(1) =

\/ﬁpnséz, + P ("Bl — BV Y APt B (W) + 0p(1) .

Putting together the previous two displays,

N

nPn(rA[B] —_ rA*[B])Z‘An(pt= _\/_npné:gll‘ + \/_nPn(rA[B—l] _ rA*[B_I])tn(oJ't'f'

nPy Lt gt =T P, (W) + 0pe(1). (14)
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From the rates in Assumption 6and Lemma C.7 we can replace waith f in the third term on the

RHS of the above expression. Then, by Lemma B.1, we obtain that uniformly over T ,

v ) -
nP, (1 — Pt gk = opu(T) and 1P, E 1) = ope(1).

From Eq. 12, 13,14, and 15we conclude.

Lemma B.3. (Negligibility of the Reminder Term in the Bootstrap Expansion) Under As-

sumption 1-6, uniformly over T,
hr\/ﬁpngA*B_ltn nt= 0P*(1)

Proof. We first obtain the following recursive structure:

Vv

h'S “nPue™ gt fp, = —hr(S+D) ﬁpn5§_(s+1)lnli,(tl) + op+(1) uniformly over T .

for S < B. So, considerS < B. By definition of ™5 g,

hrS \/ﬁpngA*B—Stn,Bn,t - hrS \/—

By the expansion in Corollary A.4, Remark A.5, and since E¢ = 0, uniformlyinz €T,

hrS\/ﬁPn(Y - rA[B])tnfﬂn,t = hrS\/ﬁPngérﬂn,t + OP(1) = OP(1) .

Using the recursive structure of 71,

va

hrS Y P, (r'[Bl — px1B=SIy, B, =
\/— AB] _ B —(S+1)] \/ L;— S+l
hrs I’an(I" -r ( ) )tnﬁ nt hrs nPn ~ Z‘nﬁ,t .

f

P, (Y — r"IBY)e, &, + 'S \/ﬁPn(rA[B:| — " *B=Shr B, ;.

(15)

]

(16)

17)

(18)

(19)

Consider now the second term on the RHS of the previous display. The rates in Assumption 6and

Lemma C.7 ensure that we can replacef with f . Then, Points (ii) and (iii) of Lemma B.1 deliver

T*
h™S  nP, 4(—1371;5” thfn: = h'S nP,Cef, +

hrS “aP, (B — A= g b hrSHD TP Syt + 0p(1)

uniformly over T. Putting together Eq. 17, 18,19, and 20yields Eq. 16.
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Since Eq. 16holds for S = 1,.., B — 1, we can proceed to a simple induction to obtain

h’\/ﬁPne“’g,ltnﬁl,t = (—1)8-1p5 \/r_zP nE g ﬁ(1)+ op+(1) uniformly over T .

Recall that o= &(Y — r18]) + 7181 — /0 The expansion in Corollary A.4 and Remark A.5 yield,

i V
J h'8  nP,& Otn,b’(l) B  nP Q‘sﬁ(l)

W8 VAP E(r — NS+ hoB Y AP (P — OB+ 0pe(1)

The first term on the RHS of the previous display is op «(1) uniformly over T. Using the rates in
Lemma C.6, and Assumption 7, we obtain || — r)t,||w = op«(n=14) and ||¢FIB1 - 1)1, || =
op (n~1/%). By these rates and Assumption 5, the second and the third term on the RHS of the
above display are op +(1) uniformly over T, so we obtain the result of the present Lemma. |

2
Let usrecall that F'g denotes the cdf generated by the random variable / .G. u(dr) definedin
Corollary A.4.

Corollary B.4. (Proof of Proposition 6.1) Under Assumption 1-6, uniformly over T ,
\/ﬁP,ﬁA*BtAn(0[= \/n—P,,fgqoit + opx(1) .
Accordingly, for every continuity point of Fo,

PE(S*< z) < Fyz) and .P<(S*<z) — F fz) ="0.

Proof. The first result of t?e present Corollary follows from Lemma B.2 and B.3. For the second

result, define § %= #P fg(pl (dt). From the expansion of the present Corollary and the
continuity of the functlonal | - |2 (dr),
ST =0, @

Theorem 3.6.13 in van der Vaart & Wellner (1996) ensures that

J

nP,Cep*,.  Gfor almostall trajectories.

Using again the continuity of the functional / |12:(d¢) and the weak convergence in the previous

~ 2
display, by an application of the Continuous Mapping Theorem we obtain S * G u(d £).
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Hence,
P<(8 < z) £ F §z) for all continuity points of F .,

Now, let z be a continuity point of Fp, and fix an arbitrary > Osuch thatalsoz — dandz + o
are continuity points of Fy. Then, by Eq. 21,

Pi(S*<z) = P(S*<z+ (§ -4 m$—§:.s5)+Pf(,Sj_Sj.>5)
<PSxz+ 0) + of1)

A similar reasoning yields,
Pf(S”,TSz —0) + of1) <P €S %z).

Putting together the previous three displays, since z, z — 6, andz + ¢ are all continuity points of
Fo,

Folz — 0) + op(1) < PE(S,* < 2) < Fo(z + 9) + op(1)

Since z is a continuity point of F, we can choose a § small enough such that | Fo(z—38)— Fo(z)| < s
and |Fo(z + J) — Fo(z)| < s. Hence, the above display and such definition of J,

—s+ op(1) < P<(S,*<z) — Fo(z) < s+ op(1).

The above s can be chosen to be arbitrarily small, so P (S’ < Z) L Fy(z) . From Proposition 5.1

F (2) L F dz) for every continuity point of F, hence we conclude. |

C Auxiliary Lemmas

Lemma C.1. (Entropy bounds) Let W := {x >»— w,(x) :t €T} be a class of functions with the
mapping (1, x) > y,(x) satisfying the Lipschitz condition ||y, — wy, ||l < Cllty — 2| for all 1,
t, €T. ForC,:= C(W,), withW, and C(W) defined in Eq. 5and 6, it holds that:

(ii) log N (6, Cutn, || *|le) < Co~? withv €(0,2).

Proof. By definition of X,, and C,, and since 7,(w) = 1{f (w) = 7,}, itis readily obtained
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that N (0, Cutn, |l *|le) < N (6, Cp || *1leo.x,)- Also, given two classes F and A of uniformly
bounded functions defined on an arbitrary set Y, it is immediate to see that N (J, FA, || *||wy) <
N (C5, F, || “llwy) N (C8, A, || -|]wy) for a finite constant C. Using the Lipschitz property
of the class W and by proceeding as in Example 19.7 of van der Vaart (1998),N (5, W, || -||«) < N
(Co, T, || -11). The previous three inequalities imply that N (6, WC,z,, || *||«) < N(C6, C,, || -

[low,) *N (6, T, || -1]). Point (ii) therefore follows from this last inequality, the compactness of
T and Theorem 2.7.1 in van der Vaart & Wellner (1996) (see also Observation in Section 5). ]

Lemma C.2. (Trimming) Under Assumption 4 and 6(i),
(i) V7P, 11"~ 1] = op(1)

(Zl) IfSUPteT ||ghtthn| |oo= OP (1) and SUPeT | |gAttn| |oo= OP (1 )/ then \/nP;ZgAt(tAn - tn) = OP(1)
uniformly over T .

Proof. Let B,, := {|[f1 — f |lo< Cd, s} and fix o > O arbitrarily small. Assumption 6(i) ensures
that, by choosing C large enough, P (B,) > 1 — ¢ for any large n. By definition of {, We can
write

Bw)=1 f(w) =1 21—f[0](w) ~/ () ® .

Tn

If the event B, holds and n is large enough sothat Cd,, /7, <1/2,

: “[0] _
1-cdnr o q_ 7 () =/ (w) s1+C@’fsg

n Tl’l T}’l

forallx €X . Forsuchn and when the event B,, holds, by the two previous displays
3
fw)z 55 = n(w) = 5,(w) =1.

Hence, when B, holds and Cd,, /7, < 1/2, wehave |f,— 1 J(w) <1 f (w) < %Tn’ . Using this,

Markov'’s inequality, and Assumption 4,

} >
P\/ ¢rTP,,|tA,,—t,,|>5mB,, +0<
>

7 +o0=o0(1)+0.

L > .
nPult ,—t,| >0 <P

J

oV P (W) <

N I

By the arbitrariness of 0 we conclude for point (i). Point (ii) follows immediately from point (i)
and after noticing thatt - 1 5 ¢t 27 =2(t + 4 )(t,— 7). O
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Lemma C.3. Assume that Z, Py, F,, and Y are as in Lemma C1. Let fo be a fixed function defined
over Z, and f be a random function over Z, where the randomness is considered wrt the probability
Pz. DefineG, := “ (P, — Pz).If

D) 1 = fol sy = 0r (1),

(@) P(f €F,) — 1, withlog N;.1(6, F,, L2(Pz)) < Co~* andv € (0, 2),

then

G.(f — fo)w: = op(1) uniformly over T .

Proof. Define F:= (F, — fo)¥. Since the entropy of F, — fo is equal to that of F,, Lemma C.1
implies that log N;.1(d, F . L2(Pz)) < Co~°. Fix 6 > 0. By Assumptions (i) and (ii) of the present
Lemma, for an arbitrary > 0,

: A 2 . 2
limsup ,_.o P sup,er.Gu(f — fo)wi. > n <limsup,_.. P supser 5)-Guf. > 1 ,

where F, (0) := "~ f €F Il f gy <0 " . The RHS of the previous display can be up-
perbounded according to the maximal inequality in Lemma 19.34 of van der Vaart (1998).Since log
N;1(6, Fu(d), La(P2)) <log Ni.y(d, F o La(P2)) < Co~* with v € (0, 2), we can choose a small

enough ¢ to make such upperbound arbitrarily small. By the arbitrariness of #, we con- clude.

]

Lemma C.4. Assume that Z, Pz, F,,Y, and fq are as in Lemma C.3. Let fAbe a random function over
Z where the randomness is considered wrt a probability P = Pz ® P with P*being a probability
measure. Define G, := * n(P, — P).If

@) | [f_fo||L2(p) = Qng(1),

(ii) P{]k(f cF ) £ 1, with log N 10, F,,, [,(Pz)) < Co > and v €(0, 2),

then

G, (f—f)y= op (1) uniformly over T.

Proof. By the same reasoning as in Lemma C.3, log N.1(d, F, Ly(Pz)) < Co7*. Fixo> 0.

Assumptions (i) and (ii) of the present Lemma ensure that for an arbitrary > 0,

. - b3
P sup e1.Gulf — fo)wi. > <
z )3

: 2 : . ‘o
Ps* supser” 9)-Gof. > n + P super (= fo)wil ey > 0 + P& f &Fu =
: 3
P:* supser (5).Gaf. > 1+ or(1).
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For the first term on the RHS of the above display, using Markov’s inequality

_ _ 3 )3 . z,
P; PYosupa ) Gif->n >n < 1E, B sUpyer ) Guf- > =

an> ;7 )

ip .
,1P SUPs €t (o).

where the last inequality follows from the product structure of P, i.e. P = P; ® P:*, and Tonelli-
Fubini’s Theorem. With the same arguments as in the proof of Lemma C.3, we can show that by

choosing ¢ small enough the RHS of the previous display can be made arbitrarily small. So, by the
arbitrariness of # and the previous two displays we conclude. |

Lemma C.5. Let{Z ; ,}"_, be a triangular array of real-valued random variables such that | Z,, ;| <

C for all n and i, and let L be a kernel function that is Lipschitz continuous. If'S% = o(1), then

o CW.— .2 : CW o L2, S >
. Z,;L W -hE Z,,L W= - =0P logn .
nhd - h ’ h oo nhd
Proof. The proof is the same as Theorem 1.4 in Li & Racine (2006) (pages 36-40). O

Lemma C.6. Under Assumption 5 and 6(i),

. >
. : ogn 1y o (5t |n
(l) ||T8Ab X = OP T_]r% L_;;:E + —ﬁ“( 2 );nnl X + ELJ;Z,;L_[EL
Ce . . >
(i) 11691 = )i, Nl = 05 4 logn. W}_ﬂ + E*Z'ffg‘ﬂ
The same rates hold for ||(FP1— r)t,| | .
Proof. By definition of Tgb and by using Lemma C.5,
>n . _ 2 on _ >
Fw) = .1 ~ W,—w A [0]y\3 W =—w*
: = it N r, —r)t, K L=<
I 0= Tphd 1_18 k h * nhd i=1( ) h
1 Wi—w> ¥ We=w? 4 0 i — 7 1
1 —_ _ BA R [0] =
nhd l=1 gltan h + nhd l=1 l(tl’ll ztl’l,l)Kv h . r)tnllo
> > . >
logn Pn|t ) L R "
P ahd T 0P T + 0, ||FO =9l (22)
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uniformly over W. By Eq. 22and using the recursive structure of #in Eq. 4,

~

. ; 0] — V3 ) a )3
||(r'\[1] _ r)‘in|Lo — (rA[O] _ r)’l‘_ + TS()-. = OP ||(r r)tn“XJ + _1 l—ogﬂ + Pnlt n ! 11
Tf e T, t, nhd hiz,

The above display and a reasoning similar to Eq. 22yields

5 T = il . 1 logn , Pligit) %
Tl o = n o+ = +nn T (24)
I Or Ty 7, nh hit,

We can now show the result of the present lemma by a simple induction. By proceeding as in Eq.
24and 23,if forb< B

NG = il = Op(IPand || Ty, lle = Op(1Y] (25)

16O — Al 17 Togn  Pultw—1t.

for (V)= + b —
b b b
T, T2 nhd hdtb

then the same property will also hold for 5+ 1. Since Eq. 23and 24 ensure that 25holds for b= 1,
we conclude. []
Lemma C.7. (Convergence Rates for the Bootstrap) Under Assumptions 5 and 6(i),

. >

) Fr L op o lm g 0y |60 — AO); " forp= 01, B — 1;

B gb“oo n

) . >
@) N = %Y o = 0p 7,7° %’% + Py o =2)|G™0) — p)i, forb=1, .., B;

where 1P = Eﬂlff%l_td oy Lﬁlrgtbm_m A T ;B P The same rates also hold for ||(r s —r ¥ Irl 3

Proof. The proofis similar to the proof of Lemma C.6. We start with b= 0. By using Lemma C.5,

s T S R
Felw) = 1 %0 ey, —#BY;, Kk Wiw 150 GBI pHO; g W o
3

- &y . *nhd i=1 n,i
1 n ) W;—w n Y _ ) W,—w
nh_d l:lflgl. tl,l_K Lh .+ s nhd i=1 é[gl(tn,l tn,i)K _h i

z, o o
T 'nilzd i=1§;_(,r‘ - r[B])tn,,‘K w; .

1A i h
Zn ~[0] _ ~#{0]\2 T Wi—w z, ZB—lTa 2 . '—wz
i i=1(ri[ = ri*{ N, K " + -nz;d =1 g=1 (W) 'Ztn,tK e =
Op Br L op BdEh 4 0p |I(r—FBDE,IL 4 26)
. z A z
0, |1F9 =7 L + 0, --_T;B 7 ,
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T=

uniformly over W . From the previous display and since 7 "1 = 70 4 759,

N — A% ) o <. T%5.  + |10 = O, || =

P

- - E— Z
Op 7t o8 T o S1|GO) - 007, I &7

n n

The above display and a reasoning similar to Eq. 26 yield

. . >
Tr = 0p oyt ey T (RO - PO 28)

. > n
€ o]

The result of the Lemma now follows from a simple induction. In particular, assume that for
b< B:

o 2 0p g W (0 - )7, and
) . o 2
170 POV, Il o= Op % 25 4+ T o (00— 1), 29)

Then, proceeding in the same way as in Eq. 26and 27 shows that the property will hold also for
b+ 1.By Eq. 27and 28the Induction Assumption in 29holds for b= 1, so we conclude. ]
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Chapter 3: Testing Bayesian-Nash Behavior in Binary

Games with Incomplete Information and Correlated Types

Elia Lapenta and Pascal Lavergne*

Abstract

We provide a test to check if the distribution of the observed data can be rationalized by a unique
Bayesian-Nash equilibrium of a binary game with incomplete information, where agents’ types can
be mutually correlated. Testing this assumption is useful for two reasons. First, the uniqueness of the
Bayesian-Nash equilibrium is key to identify the fundamentals of the game. Second, test- ing for a
Bayesian-Nash behavior is interesting per se, as it is an assumption often postulated in game-
theoretical models. The test we propose relies on rationalization results in Liu ef al. (2017). We
construct our test statistic by an L>-boosting procedure. This is effective to control the esti- mation
bias arising in our context. Since the asymptotic distribution of our statistic depends on unknown
features of the data, we propose a novel Multinomial Bootstrap procedure to obtain the critical value
and prove its validity. This procedure resamples the observations by imposing that a unique
Bayesian-Nash equilibrium is played. A Monte Carlo experiment shows the good small- sample
performance of the test.

Keywords: Hypothesis Testing, Empirical Games, Bayesian-Nash Equilibrium, Bootstrap, Boosting.

JEL Classiftcation: C01, C10, C12, C14, C57

1 Introduction

Game-theoretical models are often used in economics to describe strategic interactions between dif-
ferent agents. Games of complete information, for instance, have been employed to model labor force
participation ( Bjorn & Vuong, 1985; Kooreman, 1994; Soetevent & Kooreman, 2007), or firms’ entry

decisions in oligopolistic frameworks (Bresnahan & Reiss, 1991; Bresnahan & Reiss, 1990; Berry, 1992;

Ciliberto & Tamer, 2009; Jia, 2008). These setups assume that each player observes all the features of the

other players’ profit functions. Differently, games of incomplete information relax this hypothe- sis by
allowing each player to have a private information that the other agents cannot observe. Such

frameworks have been employed to describe firms’ radio commercial decisions (Sweeting, 2009), capital

*Toulouse School of Economics
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investment strategies (Bajari et al., 2010a; Aradillas-Lopez, 2010), the decision of opening grocery stores

(Seim, 2006), and social interactions (Brock & Durlauf, 2007). In the case of games with incomplete in-

formation, the efforts of the literature have mostly focused on identification and estimation (Brock &
Durlauf, 2007; Aguirregabiria & Mira, 2007; Sweeting, 2009; Tang, 2010; Lewbel & Tang, 2015a). In these
contexts it is key to impose that a unique Bayesian-Nash equilibrium is played (Brock & Durlauf, 2007;

Aradillas-Lopez, 2012; Bajari et al., 2010a; Lewbel & Tang, 2015b; Liu et al., 2017). However, little has

been done to check the validity of such an assumption. The only paper that attempts at testing whether
the distribution of the observed data is coherent with a unique Bayesian-Nash equilibrium is de Paula &
Tang (2010). Since the authors provide a test based on a fixed value of the explanatory variable, their
results are conditional on such values. Furthermore, they rely on theindependence of agents’ types.

This paper contributes to the literature on incomplete information games by proposing a novel test
to check if the distribution of the observed data can be rationalized (or characterized) by a unique
Bayesian-Nash equilibrium of a game with incomplete information. In this game agents play binary
strategies and their private types are allowed to be mutually correlated. Checking such hypothesis can
be interesting from different perspectives. First, it can serve as a test to check the validity of the
Bayesian-Nash assumption. Second, it can be employed to check if the uniqueness of the equilibrium is
coherent with the observed data. To build the test we rely on results in Liu et al. (2017). The authors

derive a characterization of the Bayesian-Nash hypothesis in terms of restrictions on the distribution of
the observed data. Such a result does not rely neither on the mutual independence of agents’ pri- vate
information nor on the functional forms of agents’ payoffs. Hence, the test we propose is fully
nonparametric. This feature is attractive, as in the presence of parametric restrictions on either agents’
payoff or their private information, the conclusions reached by any test would be conditional on the
functional forms imposed. Moreover, since the result by Liu et al. (2017) does not rely on the mutual

independence of agents’ private information, the test is also robust to the presence of correlated private
types. Allowing for such correlation might be relevant in empirical contexts. For instance, in oligopolis-
tic entry games agents’ private information might be mutually correlated because of unobserved firms’
profitability, see Berry (1992), or in network formation games the correlation among agents’ private
types might arise because of homophily, see Mcpherson ef al. (2001). Finally, we do not condition our test

on fixed values of the explanatory variables.

The characterization of Liu et al. (2017) we start from involves a nonparametric transformation of the
conditional probabilities concerning agents’ decisions. The conditioning variables can be interpreted as
the exogenous covariates of the game. We propose a test statistic based on a two-step procedure. In a
first step, we estimate the conditional probabilities concerning the decisions of each agent. In a second
step, we estimate the nonparametric transformation based on these conditional probabilities. To handle
the bias arising from this two-step nonparametric estimation, we use an L; boosting procedure. This can
be interpreted as an iterative bias-correction method. Such an algorithm has been originally proposed in
the machine-learning literature and has been shown to be quite effective in handling the bias arising

from the nonparametric estimation, see ?, Di Marzio & Taylor (2008), Park et al. (2009), Cornillon et al.
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(2014). To the best of our knowledge, the implementation of such an algorithm in a testing problem
involving multi-step estimation is novel in the literature. The statistic we construct is expressed as a
weighted sum of the residuals and has simple closed-form expression. We show that under the null
hypothesis (i.e. that the distribution of the data is rationalized by a unique Bayesian-Nash equilibrium)
it converges to a transformation of a Gaussian process.

Since the asymptotic distribution depends on unknown features of the data, we propose to compute
the critical values by a new Multinomial Bootstrap procedure. This incorporates all the restrictions the
null hypothesis imposes on the distribution of the data, assuming that a unique Bayesian-Nash
equilibrium is played. For the practical implementation of the test we use kernel methods, so that both
the first step and the second step estimations are carried on by locally-constant regressions. The
advantage of the L;-boosting procedure in this case is to allow the implementation of the test without
undersmoothing. Moreover; it considerably enlarges the set of bandwidths and kernels admissible for
the test.

To the best of our knowledge, this is the first paper aiming at testing the rationalization of the data

by a unique Bayesian-Nash equilibrium with possibly correlated agents.

Related literature. Beyond the literature on incomplete information games, this paper is also related to

the literature on estimation and testing in the presence of generated regressors. Pagan (1984) addresses

the problem of estimation in the presence of generated variables. Ahn & Powell (1993), Newey (1994),
Ahn (1997), and Newey et al. (1999), and are other early contributions to estimating semiparametric

models with generated covariates. Mammen et al. (2012), Mammen ef al. (2016), Blundell & Powell
(2004), Rothe (2009), Vanhems & Keilegom (2019), Escanciano et al. (2016), Escanciano et al. (2014), Hahn
et al. (2018), Hahn & Ridder (2013) are finally more recent works analyzing estimation in setups with

generated variables. However, the problem of testing a hypothesis like the one at the center of this paper
is not addressed.

Our paper is also related to the extensive literature on specification testing, see Fan & Li (1996),
Lavergne et al. (2015), Lavergne & Vuong (1996), Delgado & Manteiga (2001), Stinchcombe & White
(1998), among others. We contribute to this literature in three ways. First, these papers assume that all

the variables are observed, while we have generated variables. Second, we use an L, boosting procedure
that gives rise to a recursive structure in our statistic. Third, we propose a new Multinomial Bootstrap
scheme for the computation of the critical values.

Organization of the paper. The reminder of the paper goes as follows. In Section 2, we describe the
game-theoretical framework and the rationalization result of Liu ef al. (2017). Section 3 builds the test,
and the following Section 4 describes the application of the L; boosting algorithm to the case at hand.
The assumptions and the asymptotic behavior of the test statistic are reported in Section 5. Section 6
presents the Multinomial Bootstrap procedure, describes its implementation, and shows its validity.

Section 7assesses the small-sample properties of our testin a Monte Carlo simulation study. Finally,
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Section 8concludes. All technical proofs are reported in the Appendix.

2 Rationalization of Incomplete Information Games with Cor-

related Agents

Basic features of the model. We assume the presence of S players and denote by s the generic player,
so thats = 1, .., S. Each agent can take a binary action a;, €{0, 1}. Leta = (ay, .., as ) be an action
profile, A = {0, 1} be the space of action profiles, a_; = (a3, .., as—1, as+1, .., as ) be the vector
containing the actions of all the players buts, and A_; = {0, 1}~1be the set containing all the possible
values of a_;. We denote with x a specific value of the vector of the exogenous covariates observed by
each player and the econometrician. Each agent has a private information -or type- that is unknown to
both the other players and the researcher. Let 6, stand for the agent s’ type or private information. The
players other than s do not know 6;, but they know the distribution of 8 = (84, .., fs) conditional on
X, denoted by Fy|x. Agents’ payoff from taking action 1 is z;(a_;, X) — 6,, while we normalize to

zero the payoff from taking action 0. Hence, the pay-off function of agent s can be written as

Ny(as, a—s X, 0,) = ax{r(a_s;, X) — 0,}.

To fix the ideas at this stage, the game just described can be thought of as a free-entry game between
different firms. Each firm owns a private information unknown to the other competitors and must
decide whether to enter or not to enter a specific market. a; = 1 denotes the entry in a specific market by
firm s, while a; = 0 denotes that the firm s has decided not to enter the market. This is a basic example
and later on we will provide other applications.

We now impose the following assumptions:
Assumption E (Exogeneity). = (64, .., 0;) is independent from X.

Assumption D (Density). 6 = (64, .., §;) admits a density fy with respect to the Lebesgue measure
that is continuously differentiable.

The latter assumption is just a regularity condition. The first assumption is usually made in the
empirical literature on discrete games and has been often used for the identification of the structural part

of the profit functions, see Bajari et al. (2010b). Notice that it is not imposing the mutual independence

of agents’ types. This is an important feature of the framework. The presence of correlation between
players’ types can capture heterogeneous effects, the presence of homophily between several agents, or
the part of profitability not explained by the interaction between firms. As regards the first, consider the
free-entry game introduced above, where several firms must decide whether to enter or not to enter a

specific market. Assume that the econometrician has a data set consisting of a cross-section of
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markets/industries. The presence of correlation between agents’ types, i.e. between those components
of the model which are not observed by the econometrician, can handle a random effect due to the
unobserved heterogeneity between several markets/industries. As regards homophily, the presence of
correlated types seems to be a reasonable assumptions when we model peers’ decisions about friendship.
It is reasonable to think that each agent would be more likely to establish a friendship relationship with
those who are more similar to him, with these similarities being explained by those components of the

model unobserved to the econometrician.

Equilibrium. The equilibrium we consider in this paper is of the Bayesian-Nash type. The equilibrium
pure-strategy for agent s can be seen as a function of the covariates X and the type 6. So, for a certain

collection of mappings{d,, s = 1,.., S} the equilibrium action of each player will take the form

as; = 04(X, 6,).

The collection of functions 6 = (dy, .., ds ) stands for a profile of strategies. For any given profile J, let
0’ (a—;, X) be the probability that the players other than s take the actions a_; € A_,. Using
Assumptions E and D , we can write

[
o’(a—sX, 0,) = Uo,X, 6,) =a,forqf=s} fo(01,.., 0516;) A0, .., O5_1, Ogs1, .., Os .

Assuming that player s believes the other agents will play according to the strategies contained in 9,
player s will play action 1 if and only if her expected profit is larger than zero. So player s’ actions in

equilibrium can be described by the following equivalence:

a5 X) - X, 65) — 6, = 0.
as; = lifand onlyif y(a-s X) Ga(a | )

a-sEA-g
This implies that a profile of strategies ¢ will be a Bayesian-Nash equilibrium for the game justdescribed
if and only if it solves the system

5% 0)=1 2 aa-nX) o (aX.6)—60,20 Vs=1. SandforalX, 6,. (1)

a-s€EA-¢

The above fixed-point system describes the mutually-consistency condition characterizing the equilib-
rium. Notice that the solution is a collection of S mappings,{ J;, withs = 1,.., S}.
To clarify the framework, the next lines describe two specific examples of incomplete information

games .

Example 1 (Game with Independent types). S = 2, each player has linear payoffs and mutu- ally

independentinformation, i.e. 7s(a—g, x) = Bsx — asa—g, s~ Fy, 61 L 6>, and F is a spe-
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cific distribution function like, say, Normal, Logistic, Uniform, etc. Consider the fixed-point system
us(x) = Fy(Bsx—agu—s(x)) with s = 1, 2. It represents a system of two equations in the two unknowns
(u1(x), u2(x)). The candidate to be a pure-strategy Bayesian Nash equilibrium is the couple of functions
os(x, 05) = L{Bsx—au_s(x) = 6,}, withs = 1, 2. To verify this conjecture, we have to prove that these
functions satisfy the mutually-consistency condition in Eq. 1. Notice that under the profile ¢, the prob-
ability that player —s chooses action 1is ¢ ¢ (1lx, 61) =~ H{p_x —a_u (x) = 6_,} dF_((0_,) =
oA _Sﬂs(aﬁ,, X) -0’(a—s|X, 05) — 6,= 0} = L{Bx —au—_y(x) =6,} =
ds(x, 6y), where the first equality follows from the expressions of 7, and ¢ , while the last equality
follows from the definition of the strategy J,. From the latter equality, we deduce that the couple of

u_s(x). Hence, 1{

strategies d,(x, 0;) = 1{fx — au_s(x) = 6}, with s = 1, 2, satisfies the mutual-consistency condi-

tion. So, it represents a Bayesian-Nash equilibrium of the game.

Example 2 (Game with correlated agents and normal types). Similarly to the previousexample,
S = 2, players’ payoffs are linear, but in this case we allow players’ types to be mutually correlated.
So, ws(a—s, 0) = Bsx — asa_s — 6, (0{1 6;) ~N (0, %), 2 isa2x2matrix, Varf; = Var6, = 1, and
Cov(0y, 6 ) = p. Assume thatpe (-1, 2n/(27 + ||?) . Denote by ® the cdf of a standard normal,
and let (6, *(x), 65*(x)) be the solution of the following system of equations

. 3
Bix —a,® u\% = G{x) fors = 1,2

The candidate to be the pure-strategy Bayesian-Nash equilibrium is the profile d,(x, 6;) = 1{6,*(x) >
6,} for s = 1, 2. To verify the mutually consistency condition, notice first that under the profile ¢ the
probability of choosing action 1for player —s is

a’(1lx, 6,) 2! Ko, <0*(x)} £y (Q,10)do_, =
O((0*,(x) —pb,)/ 1-p2),

so that

14 za_ JEA_ m(a_s X) -0°(a—s|X, 6,) =6, >0} =
1{px — o, -OO* (x) —p0,)/ 1—-p2)=0}=
1{6, < 0.¥(x)} = o,(x, 0,),

where: the first equality follows from the expressions of ¢°(1|x, 6;) and z,; the second equality fol-

lows by n\?ticing that the mapping 6, >~ —a, -®((0* (x) — pb,)/ 1— p2) — Ojs decreasing(as
p €(-1, 2a/(2z + lay[?))), while the last equality follows from the definition of J . Therefore, the
mutually consistency condition is satisfied and (1, J;) forms a pure-strategy Bayesian-Nash equilib-

rium of the game.
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The general structure described above is too large. So, following Liu et al. (2017) we consider mono-
tone pure-strategy equilibria in those classes of models with expected payofls decreasing in the private
information.

Deftnition (Monotone pure strategy equilibrium). A profile of strategies 6 = (1, .., ds) isa monotone-
decreasing pure-strategy Bayesian-Nash (m.d.p.s. BN) equilibrium for the model described above, if it is an
equilibrium -i.e. it satisfies the mutually consistency condition-, and 05>— 64(x, 6;) is (weakly) decreasing
for all x.

Assumption M(Monotonically decreasing expected payoffs). For each profile J of monotone pure
strategies, the expected payoff
inf,foralls = 1, .., S.

A n(a-s, X) -0°(a—4|X, 0;) — 0y is continuous and decreasing

As long as we restrict ourselves to consider only monotone pure strategy equilibria, the profile
strategies can be written as:

0,5(x, 0;) = 1{0,*(x) = O} foralls = 1,.., S .

The monotonicity restriction introduces a separability between the part of the equilibrium strategy
depending on the exogenous variables, i.e. 6,*(x), and the part which depends on those components
unobserved by the econometrician, i.e. 6;. Thanks to this feature, it allows us to characterize the
equilibrium strategy using only the collection { 6,*(x) fors = 1, .., S }. To see this, notice that under
the profile 6" = (6% .., &%), as long as d*respects the monotonicity condition -i.e. &= (1{6;*(x) = 01},
.., {6*(x) = 6Os})- the choices of each agent can be characterized by the equivalence

0 < 67(0) = 2 m(a—s X) -05,(a,s|X, 6,) — 6, =0foralls =1,..,S .

a-s€EA-s
Therefore, using Assumption M, the collection {6,*(x) fors = 1,.., S } solvesthesystem

07() = 2 ma_y x) 0 (a_slx, 6*(x)) fors = 1,.., S . 2)

a-s€A-s
Example 1 (continued). Since the agents’ types are mutually independent, the structural part of agent
s’ expectedpayoff,  , <A n(a—s X) - 0(a-s|X, 6y), will not depend on 6, hence the monotonicity
of the expected payoff will trivially hold for any profile strategy J. Also, the equilibrium J,(x, 6;) =
1{Bx — agu_s(x) = 6} (withs =1, 2)is clearly a monotone-decreasing Bayesian-Nash equilibrium.

Example 2 (continued). It is evident that since the equilibrium strategies are described by J,(x, 6,) =
1{6,*(x) = 6,} for s = 1, 2, the equilibrium is monotone decreasing. For the monotonicity of the ex-
pected payoffs, notice that for any profile 6 = (1{61 < 01(x)}, 1{62 < 62(x)}) of monotone decreasing
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strategies, the expected payoff of agent s is given by

\
zafseAfs m(a-y X) -0°(a-s|X, 6,) = 0, = pix — a,@((0-(x) = pbs)/ 1 =p?) = b

fors = 1,2.Sincep € (-1, 2z/(2x + [4[?) , the function on the right-hand side will be decreasing

in 6, so the expected payoff will also be a decreasingfunction of 6.

Rationalization of the Bayesian-Nash Equilibrium. The fixed-point system in Eq. 2 might admit
multiple solutions for some (or all) values of x. In this section, we restrict our attention to those struc-

tures which select a unique equilibrium, while remaining agnostic about the selection mechanism. Such

a hypothesis has been used in the literature in empirical games, see e.g. Bajari ef al. (2010a), Brock &

Durlauf (2001), Brock & Durlauf (2007), and under some conditions will allow us to provide a diagnostic

test for the multiplicity of equilibria.

The class of models so far described can be compactly written as

M = (m, Foix, y) st.(z, Fgx) satisfy E,D, M,

and y selects a unique m.d.p.s. BN equilibrium , ,

where 7 = (xy, .., w5 ). Each triple of elements belonging to M, say (x, Fy|x, y), generates a certain
distribution (conditional on X) of the vector a := (ay, .., as ). Specifically, denote by P the set of all dis-
tributions of @ conditional on X. Each distribution in P is defined over the measurable space (A, ¢(A)),
where A is the space of profile strategies defined at the beginning of this sections, whiles(A) = 2A
denotes the collection of all the subsets of A, i.e. it is the sigma-field generated by A. By definition of

M, for each triple belonging to M, say (z, F yx, w), we will have a unique equilibrium (6fx), .., {x))
selected from the solutions of the fixed-point system in Eq. 2. The vector (0(x), .+ 6 (x)) defines a
unique set of equilibrium strategies a, = 1{6,*(x) > 6,}, for s = 1, .., S. Therefore, given the cdf of
agents’ private information, Fy|x, we will have a specific distribution of a = (ajy, .., as ) conditional on
the exogenous variables X. This highlights that the collection M generates a mapping P which
associates to each element of M an element of P. i.e. P : M »>— P. Notice that we are not requiring
such a mapping to be one-to-one: this would be required for the point identification of the models’
fundamentals, but not for our test.

Let us denote with P(M) the collection of distributions of @ = (ay, .., as ) conditional on X gener-
ated by model M. So, P(M) is the image of M through the mapping P. Assume that the econometri-
cian observes the variables (a, X), and let us denote by P, |x the true distribution of the agents’ actions
conditional on X. So, P,|x is the de facto distribution of agents’ actions, i.e. it is the actual distribution
generating the agents’ choices that the econometrician wishes to describe. The null hypothesis we want
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to testis whether the true distribution of agents’ choices, P,|x , can be generated by the mapping P, i.e.
Ho: P,x € P(M).

From an economic point of view, the above restriction is equivalent to saying that the true distribution
of agents’ choices can be rationalized, or characterized, by model M. In other words, when Hg holds,
there exists a structure in M generating the true probability distribution P, |x . To build a test for Hp, we
have to characterize the constraints the true distribution P,|x must satisfy for it to be rationalized by the
model M. Then, testing whether P, |x satisfies these constraints would be equivalent to testing whether
P,|x can be rationalized by M. We will therefore use a powerful result obtained by Liu et al. (2017). To
display their result, let us denote by Ep and Ep { - |g(X)} the unconditional and conditional expectation,
respectively, computed according to the frue probability measure P . Let W, (X) := Ep{a,| X}, so
W,(X) is the actual probability that agent s makes choice 1 conditional on the exogenous covariates X.
The result from Liu et al. (2017)we use is the following:

Theorem 1. P, x € P(M) if and only if for any Q = 2, .., S and forall 1 < 51 < .. <59 < S, the
following conditions hold:

M Ep{N% a|X} = EN 2 a, W, (X), .. W, (X)};

(ii) EP{I'I].QzlaSjIWSI(X) = ., W, (X) = -l}isstrictly increasing and continuouslydiflerentiable.

The second part of condition (ii) is only a regularity condition regarding the smoothness of a condi-
tional expectation, something normally assumed in the literature on nonparametric estimation. As Liu
et al. (2017) point out, it can be removed by relaxing Assumption M, and not requiring the density of 6to
be continuously differentiable. The first part of condition (ii) is a bit more stringent but still reasonable,
and it would be di@cult to provide a counterexample to it. To see this, consider the free-entry game
described at the beginning of this section, where each agent is a firm which must decide whether to
enter or not to enter a specific market. The monotonicity in condition (ii) requires that if the (condi-
tional) probability of entry of a single firm increases and all the others remain the same, then the joint
probability of entry of all the firms must increase as well. Finally, condition (i) requires the conditional
expectation E{ jQ=1 aJ-IWSl(X) = .., WSQ(X) = -}to be a su@cient statistic for E{ J~Q=1 aj | X =-}.
As highlighted by Liu ef al. (2017), this seems to be the most stringent one, so we will focus on it in the
reminder of the paper.

Before switching to the construction of the test and listing the assumptions needed, it is useful to
provide a counterexample to condition (i) of the previous theorem. The one we report here is a
refinement of a counterexample provided by Liu et al. (2017).

Example 3: Non-rationalizable distributions. Consider the two-players game introduced in Exam-
ple 1, where x is replaced by (x, n) withx = (x1, x), and the profit of each agent writes as

ns(x, n, a1, az, 0;) = as [w(x, n) —as ~a—s — 6], with w(x, n) = ¢(x1) + 5 -5(x2) .
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Assume that 6; ~ U[0,1],6, ~ U[0,1],01 L 05, (04, 65) L x, En=07,1x x1 1 x. Deﬁne,u*s(x, 71),

withs = 1, 2, as the solution of the following system of linear equations

,U:(x, n) = w(x, n) + o -,ufs(x, n)fors =12,

Ifa; a2 f= 1, the solution is simply represented by

l1+a,

ulx, n)= 1 — a1 09 ~y(x, ) withs = 1,2,

Assume that for all (x, #) in the supportit holds that w(x, )+a u* (x, 7) €[0,1] ie. IE—;‘)‘EM -w(x, )
[0, 1]. Hence, denoting with F, the cdf of @, the couple (u , ) satisfies €

ulx, n) = F(w(x, n) + o u*(x,n))fors=12.

By the above display and following the same steps as in Example 1, the Bayesian-Nash equilibrium of
the game is represented by

a={ y(x, n) +q -u*(xn)=06}fors=12.

From the equilibrium strategies and the definition of (u*;, u*,),

l+a
1—oy

E{a’lx n}= -Sa—z ~w(x, n) fors = 1, 2,and E{q" - a5|x, n} = E{a]lx, n} -E{ajlx, n}.

Now;, assume that the data (a*;, %) is generated by the above game, and that # is an unobserved hetero-
geneity term. In particular, both players observe (x, 7), while the researcher does not observe 7. Since
the researcher only observes (a*;, a*; x), her goal is to test whether the distribution of such variables can
be rationalized by a unique Bayesian-Nash equilibrium of a game that respects Assumptions E, D, M,
where x is the only exogenous covariate. This holds only if E{a*; - a*;|x} = Ea*; -a,*| Wo(x)}. However,

such an equality does not hold for the example considered here. In fact,

l1ta,

E{a’x} = 10 g
1°%)

#(x) fors = 1, 2,

soby using En = 0,x1 L x, andy L x, weget

1+061__ 1+(Z1_
— 09 "Gy 1_a1 A H

E{a] -ajlx} = E{ajlx} -E{ajlx} + 1 0(x5)%En ?

Define Wy ((x) := E{a*,|x} and Wo(x) = ( Wo 1(x), Wo.2(x) ) . Applying the conditional expectation
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operator E{ - | Wp(x)} to both sides of the above display,

1+0C1__ 1+0€1

X, % = .
E{a1 a2|W0(X)} Woy1(x) WO,Z(X) + 1—0,-ay, 1—a,-a,

-E{o(x)3 -E{#3%,

where we have used the Law of Iterated Expectations, W  (x) = E{a{x}= as .+ P(x1), 7 L x1,

Y]

andxj L x2. So, subtracting the latter display to the former delivers

Efa’-allx} —E{a® alWx)} = Mﬁ— %‘2} End - SoP ESG )T
which is different from zero as long as d(x;) is a non-degenerate function. Since E{a*; - a*,|X} E{a*, -
a*;| Wo(X)}, the observed data (a*, »* X ) generated by the above game-theoretical model has a
distribution that cannot be rationalized by a Bayesian-Nash equilibrium of a game respecting As-
sumptions E, D, M. In other words, since the researcher is omitting an unobserved variable 7, any game-
theoretical model assuming that the data (a*;, a*,x) is generated by a Bayesian-Nash equilibrium
respecting Assumptions E, D, M will be misspecified.

3 The Test

For simplicity of exposition, we focus on a 2-players game. At the end of this section, we will provide the
general form of the test with any finite number of players. Let us assume to observe a cross-section of
agents’ decisions, (a1, az), and the exogenous covariates, X € R?. We do not assume a priori that these
observations are generated by an incomplete-information game played multiple times, as this is exactly
the restriction we want to test. As an example, such a data set might consist of airline companies
decisions about offering a connection between two different airport hubs, as in Ciliberto & Tamer
(2009). Define Wy 1(X) := E{a1 | X}, Wo.2(X) := E{az | X}. Here we have dropped the index P to
the expectation E with respect to the previous section, for the ease of notation. Let Wo(X) :=
(Wo.1(X), Wp.2(X)), i.e. Wo(X) stands for the vector of the conditional probabilities that agents 1 and
2 take decision 1, respectively. For example, in the data set considered in Ciliberto & Tamer (2009),
Wo.1(X) denotes the probability, conditional on X, that firm 1 offers a connection between two different

cities (or airports). By the discussion provided in the previous section, to test whether the distribution of

the observed data P, |x can be rationalized by a single m.d.p.s. BN equilibrium, we must test condition

(ii) of Theorem 1. With the present notation it writes as
Ho :E{a1 a2 | X} = Ela1 -a2 | Wo(X)}.

Denote with fy,, the density of Wo(X) with respect to the Lebesgue measure. We introduce Y := aj - ay,
wo (W) 1= E{Y |[Wo(X) = w}, ande := Y — my, (Wo(X)). The null hypothesis written above is
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equivalent to
Ho : E{e -fw,(Wo(X)) | X} =0.

To build a test for Hg, we transform the above conditional moment restriction into a continuum of
unconditional moment restrictions. So, let T be a compact subset of R? encompassing the origin, with p
=dim(X). Forz €T, ¢(-) := ¢(¢7 -) with ¢ being an analytic non-polynomial function defined on R,
i.e. ¢ is a one-variable function infinitely times continuously differentiable which does not have a
polynomial form. Examples are exp(-), cos(-), sin(-), exp(i-) -where i = ~ —1. By the results in
Bierens & Ploberger (1997) and Stinchcombe & White (1998), the null hypothesis Hy is equivalent to

Ho :E{e fw, (Wo(X)) -0.(X)}= Oforalls €T.

We test H gversus its logical complementH ; H ¢To simplify the notational burden, define the empirical-

mean operator
. 1 z n H - —_
Pn = = i=152i Wlchl'-— (a’l,ﬂ) X,l) HR

. 3 ]
For any function g of Z, wehave P g = (1/n) - »18(Z;). We also definePg := " g(z)P (dz).
Notice that if g is a non-random function, Pg = E{g(Z)}. With this notation, the null hypothesis can

be re-formulated as

Ho : Pefw, o, = 0 Vr €T.

A feasible statistic for the above condition is

Py
j— _ AN 2
S5 L P ),
where || -|| stands foranormon C, (¢",f j\ujs an estimatorof (¢, f ), and u is a measure absolutely

continuous with respect to the Lebesgue measure. Intuitively, if the null hypothesis holds true, one

would expect that 7 - Png"fgg js bounded in probability and converges to a specific distribution,

so that also S, will converge to a tight distribution. Differently, under the alternative hypothesis Hj,
n P, eA]A“g will explode and also the statistic S would diverge.

Remark 2. The statistic we are proposing is an Integrated Conditional Moment (ICM) Test. Since our
proofs hold for any continuous functi??al defined on A*(T ), other tests would also be possible'. For
instance, we could consider sup, _;|nP g, fgo:,&,a Kolgomorov-Smirnov (KS) statistic. However,
under a suitable choice of ¢, the ICM statistic is much easier to compute than the KS test, as we will

show in the next section.

IA®(T) := " ¢: TR such thatsup,t [g(f)] < o ’
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Remark 3. The above statistic is used to test the null hypothesis within a two-players game. Differently,
in the presence of S different players there will be 25 — (S + 1) moment conditions to test. In this case,
we proceed in the same way as above, and compute for each moment equality ¢ the corresponding
statistic S, .. Ho can then be tested through

S, = 2 CSpeorS, = max,. S,

C

Since both the “sum” and the “max” operator are continuous transformations, our proofs also hold for

such functionals.

To compute the statistic S,, we need to provide a feasible estimator of (&, f ). Nootice thatwe
have a problem of non-observability of the regressors { WX )}7_,. Because of its non-observability,
Wo(X) is said to be a generated regressor. Due to this feature, it is natural to proceed to a two-step
estimation: in a first step, we estimate nonparametrically Wp; in a second step, we replace the generated
i=1
and f . Both these steps involve nonparametric estimators, and it is well known that nonparametric
methods provide biased estimates. In our case, the bias might have a relevant magnitude, as the second

regressors with their estimates, { W (X;)}"_,, and proceed to the nonparametric estimation of both m y .

step estimate will depend on the fits of the first step estimator. The bias will impact negatively on the
capacity of (WA , m ) to match their respective targets, so it will also impact negatively on the
performance of the ICM test. To shed more light on this aspect, imagine to use a kernel method for »1 ;
and W, so that such estimate will be based on a kernel function, say K, and a bandwidth sequence, say
h?. To deal with the bias showing up in S, -which arises from the nonparametric estimation of my, and
Wo- the approach usually taken in the literature on nonparametric testing is based on two features. First,
a high-order kernel is used, so the kernel K is set to be a relatively irregular function. Second, the
bandwidth rate is set according to a method that undersmooths, and hence restricts the set of
bandwidths admissible for the test. For example, the bandwidth that minimizes the Mean Squared Error
is not admissible in the presence of undersmoothing. Technically, the bandwidth /# and the kernel K
must be such that n -h%" = o(1), where r is the order of the kernel -i.e. the larger r the more K will be
an irregular function. Such a condition will have a negative impact on the bias-variance trade- off of the
nonparametric estimator. Assume that for a given bandwidth sequence 4, the order r is set to be larger
than 4 to respect the condition nh2” = 0(1). Accordingly, the kernel will be a relatively irregular function
and will infiate the variance. To limit such a variance infiation, the usual approach in the literature is to
ignore, to a certain extent, the condition nh?" = 0(1) and hence to choose a kernel of low order that,
however; will infiate the bias term. In other words, the bias arising from the nonparametric estimation
will impact negatively on the capacity of the estimators to fit well the original functions, and hence on

the capacity of the test to provide the good size and power.

%In this context, since we have two nonparametric functions to estimate, (m we» Wo), we should also introduce two
kernels (K1, K2) and two bandwidth rates (21, /). This aspect, however, is not essential for the present discussion.
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Algorithm 1 General Boosting method for regressions

1:Initialize with an estimate 7% of the regression m

2:Increase bby 1,i.e. b— b+ 1;compute the residuals e ¥= Y — n*~1land hence the sample
[ win,.

3: Fit the residuals {g“l[b]} n_, tothe explanatory variables{ W,}"_,, according to the base estimation
procedure, and hence obtain the fitted function ¥

4:Update the estimator as m’l= ml>-1+ 7

5:repeat Step 2to Step 4B times

4 Estimation by L2 Boosting

To deal with the bias arising from the nonparametric estimation, a method that has been proven to be

quite effective is Boosting. This is an algorithm originally conceived in the Machine Learning literature

which gained a strong success in the statistical literature on estimation, see ?, Di Marzio & Taylor (2008),

Park et al. (2009), Cornillon et al. (2014). The main idea is to estimate iteratively an object of interest on
different samples, and then aggregate these estimates in a unique estimator. Imagine to estimate a
regression function m, where the response variable is Y and the set of regressors is W . A common
Boosting algorithm for regressions is based on three elements: (i) an initial estimator; (i) a base
estimation procedure; (iii) the number of iterations to perform. It is described in Algorithm 1.

At each iteration, the procedure applies the base estimation method to the residuals obtained from
the previous iteration. Different base methods give rise to different boosting algorithms. The specific
boosting algorithm we use in the present work is the L-boosting. This uses a base procedure which

minimizes a least-squares criterion, see ? and Di Marzio & Taylor (2008). To apply the L;-boosting

procedure to the computation of S,,, recall that our estimation is based on two steps. In a first step, we

estimate the generated regressors -i.e. the function Wp-, while in a second step we proceed to the
estimation of my and fw by replacing the unobserved regressors {W (X )}"_; with their estimated
counterpart { W (X;)}",. So, let us assume to have an estimator Wof the generated regressor Wo.

Let m 5%] be an initial estimator, i.e. a weak learner,of m y, . The L ;boosting algorithm applied to the

estimation of m w is described in Algorithm 2. After B boosting iterations, the initial weak learner m'fO]WA

is transformed into the deep learner mﬂ;}l. The boosting estimator after b iterations can be written as

. . 2
] -1, T« R | 2, ~b-1.° Vi—
mo=mt S e Ty = e e d e K )
w
forb= 1, .., B, where K isakernel function, 8'?7_1] =Y, — mAgs;_l](W,-) .adeAg}] is an estimator of fy, .
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Algorithm 2 ; Boosting

- Initialize with estimates fA[OE and nt®
W W
- Increase b by one, i.e. b — b+ 1,and computethe residuals e~ = Y — m [be 1

- From the sample {¢; -] W, }n_, compute T:
my,as

(defined in Eq. 3)and update the estimator of

Ep- 1

_ T ¢
ni= nl bwl] + 2y S
w 0 f W,

Repeat the above steps B times.

tAn,,-is a trimming factor useful to handle a random denominator;
tn’,':=1f(Xl')Z‘[n , Lni =1 f(Xi)ZTn ,
with f density of X.

Remark 4. When f [0‘]4;1 ! are kernel estimators built with the same kernels and bandwidths as

T3, the boosting described in Algorithm 2is the same as in Di Marzio & Taylor (2008). Here, we are

not specifying the initial estimators f O and m, for the aim of generality of the theory and simplicity
W

of proofs. Notice that the density f [Ou}is not updated in the boosting algorithm of the regression, see
Di Marzio & Taylor (2008).

Remark 5. We have chosen to keep Wina general form and not to specify a particular method used in the
first-step. W will only have to respect some high-level conditions introduced in the next section. This
allows us to keep a good level of generality and to build clean proofs in an acceptable number of pages.

However, Wean be computed according to the same boosting procedure as in Algorithm 2.

The procedure just described delivers the estimators & gof the residual . From this, we construct the

test statistic S, based on B boosting iterations as

]
S = I\/nP ng“H(p,| u(d 7).

n

If we choose the weighting function ¢ to be the complex exponential exp(i- ), withi = \/—_1', thestatistic

S, will have the following simple form

2
Su= b G Dy D G- X ),
n

i,i
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where ¢, is the characteristic function of the measure i, and ]‘A[O:| = ]I?A[O](WA i)/“ For instance, if i is
chosen to be the multivariate standard normal distribution, then ¢ ,(x) boils down to —7_; exp(x;),

where x; is the j-th component of x.

5 The Assumptions and the Asymptotic Test

Let us recall that a := (a1, a2) and Wy := (Wo.1, Wo.2). In what follows, d denotes the number of
components of Wo(X) and W(X). In a two-players context, d = 2. Having a general d allows to
identify better the role of the dimension of Wy on the assumptions and the bandwidths. This in turn
clarifies the extension to a generic number of players. Define the sets

W, :=,w:fW0(w)> Izﬂ and X, := x:f(x) > % 4)
For a vector of positive natural numbers k = (kjy, .., k;), define the differential operator?
koo Ak.
ot = lewf..@kdwd !
withk. = k1 + .. + k,. Given a generic real set D, with D convex, the class of smooth functions we
consider is
C(D) := g:D>—>R:man.Si,z;+1 l|okgllop=M (5)

with d t the largest even number weakly smaller than d := dim(D). If d iseventhendt= difd isodd
thendt= d —1.

Observation. C(D) C Cy, (D) fora = 4"+ 1,where C{D) is the class of functions defined at page 154
in van der Vaart &Wellner (1996).

: Q
Let K ’be the class of functions (v, 4, v ) p— f=1 k(v; ) with k univariate kernel of order r thatis
/. times continuously differentiable. Denote p ;= P (f (X) < r%) andC:=  C(W,).

Assumption 1.{Y;, X;}"_, isa sequence of iid and bounded random variables.

Assumption 2. (i) my , fw €C(W ) and W EC(())( ); (it) X _admits a density conditionallyon
0 0 o8] (o]
Wo(X), denoted by fx w,(x); (iii) mw, ,fw, , and fxwyx)(- | =) are rB times continuously diflerentiable

with uniformly bounded derivatives.

Assumption 3. K € K/, and2 = 4"+ 1,

3We are using a similar notation as in van der Vaart & Wellner (1996).
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Assumption 4. (i) p,nV? = o(1), %’% = 0(1), and for each n large enough W ,, and X,, are convex; (ii)

there exists n small enough and N large enough such that forn = N iff (x) = t, thenfw,(Wo(x)) = n7,;
(ii)) - = o(1).

logn

Assumption S.ngr?= o(1),nh*% =o(1).

Assumption 6. () for by €1t w1}, W — Wodbulle = 0p(zan=14); (i) P ( WeC(X,) ) — 1; (iii)
For any class of functions W satisfying condition CL (see Appendix A) and for ¢ (x) := E{w,(Z) | X = x},

\/T’lpn(WA — Wo)twy, = \/ﬁPn(a — Wo)é, + op(1) uniformly over T.

Assumption 7. (i) Rates for the weak learners: for b, e{r’,t} |l QnAg}] —my bl = op(d),
@™ 33 = amy, Yo, lloo = 0p (), NG = wYoull o= 0hd ) 1| (3% = 0f w, Ioull = 0K ), with
dy = o(n14);

. . . ~[0] 1.
(ii) Regularity of the weak learner: P@n s €C) 1,z
(ii1) Regularity of the boosting updates: P fTWLS eC —1lforb=1.,B -1

Comments on the assumptions. Assumptions 1-3 are standard in the literature on nonparametric es-
timation and testing. Assumption 4 is needed because of the generated variables. It essentially imposes
that the tails of X do not have to be too thick. Several versions of it can be found in e.g. Escanciano et al.
(2014)and Escanciano et al. (2016). Assumption 5establishes that the kernel order and the bandwidth

used in the boosting updates (i.e. for T )ﬁ;yst be decided in connection with the number of boost-
ing iterations B. Assumption 6 is a high-level condition for the first-stage estimator of the conditional

probabilities. In particular, Assumption 6 (i) establishes the convergence rates of W. Such convergence

rates are relatively standard in the literature and similar to e.g. Escanciano ef al. (2014), Mammen ef al.

(2012), and Andrews (1995). Assumption 6 (ii) requires that the first-stage estimator must belong to a
“regular” class of functions wptl. This is also a general regularity condition often assumed in the
literature, see Escanciano et al. (2014), Mammen et al. (2012), and Andrews (1995). Assumption 6 (iii)

requires an expansion for the first-stage estimator; and it is similar in nature to Assumption 10 in Es-

canciano ef al. (2014). Both Assumptions 6 (i) and 6 (ii) can be proved using results contained in, e.g.

Escanciano et al. (2014), Li & Racine (2006), or Andrews (1995). The expansion in Assumption 6 (iii) can

be obtained by specifying the first-step estimator for the generated regressors. Then, we could proceed

similarly as in the proofs of Appendix A, or using the results in Escanciano et al. (2014). Assumption 7

has the same spirit as Assumption 6 and refers to the second-stage weak learners and deep learners. The

main difference is that Assumption 7 is imposing an~1/4 convergence rate on the first-order derivatives
an"® and & @ . Such rates are used to deal with the estimation error coming from the first-stage (i.e.
W

from W\) These rates will be used in connection with a first-order Taylor expansion. Similar rates are
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Algorithm 3 Multinomial Bootstrap DGP

1: Resample a* 3¢cording to a Bernoulli distribution with probability of success W i 1[’1?1], ie. aj, ~

Bernoulli(W >
Bl
2a:1f af ; = 1, a%, ~ Bernoulli T?//W
' Vf/z,i—mA[I;VB](V‘;i)

1w
3:Repeat Step 1- Step 2n times and save the sample {a , qk l_} ; C

2b:Ifa T 0,a* 3 Bernoulli

also assumed in Rothe (2009). The high-level conditions contained in Assumption 6 and 7 are useful for
providing a clean exposition. They dramatically simplify the proofs and allow us to contain such proofs

in an acceptable number of pages.

The asymptotic distribution of our statistic is obtained in the following

Proposition 6. Under Assumptions 1-7, if Ho holds

Vo A oa V_ V_
n Pn 83[ nfvi(W) @t = nPnngogeJ_ - nPn(a - WO)Tam WofW()%J_-'- o E’l)

uniformly over T, where o4 X) = ¢,(X) —1(Wo(X)) and 1,(Wo(X)) := E{p.(X) | Wo(X)}. Accord-

ingly,
s,=1 Ve b 0y, ) G R,

n

where G is a Gaussian stochastic process taking values in A(G) and defined by the collection of covariances
Pe?g, g 1yg €T, withG = (a,y,x) —(y = m (W) fur, (W) -0x) — (a—
Wo(x)) Omuw, (Wo(x)) Sy (Wo(x) ¢x) :1 €T .

6 Multinomial Bootstrap

Proposition 6 shows that the asymptotic null distribution of S, depends on unknown features of the
data. So, the asymptotic null distribution cannot be used to approximate the critical values of the test.
We therefore propose a novel Multinomial Bootstrap procedure to simulate the critical values. Such
procedure resamples the data using the information contained in Hg. In particular, it assumes that the
data is generated by a distribution that can be rationalized by a unique Bayesian-Nash equilibrium of a
binary game. Since the information under Hy is exploited in the bootstrap scheme, we should obtain

good properties in terms of size and power.
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Denote with Bernoulli(p) a Bernoulli distribution with probability of success equal to p. The Multi-
nomial Bootstrap resamples the observations on (a1, a2) according to the procedure summarized in
Algorithm 3. Such artificial DGP generates the sample {a a3 X i}"_;. By replacing this sample to

the original one, i.e. to {4 ;, @ ,,X ;}"_,, and then implementing the same procedure as in Section 3

i=1’
-including the L, boosting iterations-, we obtain the bootstrap versions (¢"z*, S,*) of (¢"5, S.) :
: A
— ~[B I -
en i=all —mE}VA*] w), Sr= |In

Peg A0, | u(do),

where Pi= 1 > dz+ and Z := (af;, a5;, X).

The Multinomial Bootstrap just described has two attractive features. First, it preserves the 0-1
nature of the variables a*and a*, Second, it implements all the constraints on the joint distribution of
(a1, az) which are suggested by the null hypothesis. Denote with P;* the bootstrap probability measure
of (a*y, @) conditional on X; defined in Step 1-2 of Algorithm 3. Notice that

PXaf=1d =1|X)=n% W), PlaE LaF 0IX) =W, —nill(W),

Plak0,a=21IX)=W 2,.—m“5;](ﬁ/i).

From the above display, the artificial DGP specified in Algorithm 3 generates a probability P* that
equals, up to an estimation error; the probability P, 4,)|x; When Hg holds true. To see this, denote

with P{l0 ¢ the probability distribution P(q,4)/x under H . Then,

Pl Sixla= Laz 1X) = E{ aw|W(X)} Pl .\ (a1 =1a =0|X)=Wi(X) - E{faia| W(X)}

P ix(ar=0a = 11X) = E{az -(1 — a1)IW(X)} = Wo2(X) — E{a1a2| X} .

The last two displays hihglight that P;* is the same, up to an estimation error; as the probability P "(' 9L an) X
In this sense, the Multinomial Bootstrap exploits all the constraints imposed by Hg on the distribution
of (a1, az).
To show the validity of the bootstrap scheme, we need some adding assumptions. Denote with P *
the probability measure that considers only the data{a ik ; as 3., asrandom and assumes as fixed the
sample data{ay; a,; X ;}_,. Forarandom variable Z measurable with respectto{a;, a, %, a;,; X 5, ; 7y,
the notation Z, = op (1) meansthatP (Z | > 6) - Oforeveryé > 0.Let Wbe the bootstrap

counterpart of W
Assumption 8. There exists an s € (0, 1) such that my,(Wo(X)), Wo,;(X) €(s, 1 —s)forj = 1,2
Assumption 9. (i) forb, €{, t }, W *— Wolb,lle = 0p=(z,n=V4); (i) PAW*€C(X,)) = 1;
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(iii) For any class of functions W satisfying condition CL (see Appendix A) and for ¢,(x) 1= E{w,(Z) | X =

x},

\"LnP,,(WA *— ﬂ;)t,,y/t = \/rTP,,(a — Wo)¢, + op+(1) uniformly over T .

Assumption 10. (i) Rates for the weak learners: for b, e{r’, .} |l (m";‘éo] —my )b,k = o0p(d)
@™ — om i oulle = 0p (d), 11 5 = Fwodbullee = 0p(d), 1| (8f s = 8fwo Youllew = 05 (d),
with 4mm = o(n=14).

B
Tn

(ii) Regularity of the weak learner: P ;{;0] eQ) -’ 1;

. TE 2
(ii1) Regularity of the boosting updates: forb=1,.., B —1: P * ng ec, 21,
Wo
- ; : Al AERCY) & o F
(iv) Regularity of the sample estimates: P m [W](W ), =~ wWedlX,) -1

wi(-)
log N;.1(6, T(X,,), L1(Px)) < Co~°, withv €(0, 1).

Assumption 8 has a technical nature and is needed to simplify the proofs. Assumptions 9 and 10 can
be considered the bootstrap equivalents of Assumptions 6 and 7. In particular; Assumption 9 establishes
the convergence rates and an expansion for the bootstrap counterpart of the first-step estimator W If
the first-step estimator is specified according to the L, boosting procedure, Assumption 9 can be proved
along the arguments of Appendix B and C. Assumption 10 essentially replicates Assumption 7 and refers
to the second-step estimation in the “bootstrap world”. The only part that is conceptually different is
Point (iv) which only imposes a regularity conditions of the sample estimators, so it can be considered as

amild requirement.

The expansion at the basis of our bootstrap testis contained in the following

Proposition 7. Under Assumptions 1-10, if Ho holds

Ve nna Voo Vo o.
nPng’;Ftnf'W*(W*)qﬂt = I’an(Yi m WO(WO))fWOCDIJ_ - I’an(Cl £ W )ﬁm WofWO(QJ_-l-O P*(l)

uniformly over T ,

where Y *= a¥% -aand for any set A C {0, 132, P((a*, ") €A |X ) = PMo((ay, a2) €A | X ).

The previous proposition provides the validity of the bootstrap test. In particular, consider an ar-
bigary finite collection (tz, .., tg) €T.Then, wptland conditionally on the sample data, the vector

nP,& tA,LfAW (W Vo1, will converge in distribution to ~ G(z,) , where G is the Gaus-
q=1..0 g=1,..0
sian process defined in Proposition 6. Hence, the critical value simulated by bootstrapping S,*can be
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considered as a reasonable approximation of the true critical value of S,,*. From a practical point of view,
the critical value can be obtained by a Monte-Carlo simulation: (i) simulate N *samples from Algorithm

3; (ii) for the c—th simulated sample, compute the statistic S,*,; (iii) use the 1 — a quantile of the

collection {S,* .: ¢ = 1, .., N *} as the critical value for running the test at the a critical level, so reject
Ho if S, is larger than such a quantile. The larger N *, the better will be the approximation of the

quantile of the bootstrap distribution.

7 Simulation and implementation

In this section, we show how to implement the test, and we provide the results of a Monte Carlo exper-

iment to assess its small-sample performances.

1.  Analysis of the size

We start by analyzing the capacity of the test to control the size under the null Hg. We assume the same
framework as the one presented in Example 2, and for the reader’s convenience we report here the main
parts of the game-theoretical model. We consider two agents, each denoted with s €{1, 2}, that must

take a binary decision a; €{0, 1}. The profit of agent s writes as

77,'3((17‘?, 0?) = dg '[ﬂs-x —od—y — 09] )

where x is a vector of exogenous covariates observed by both players and the researcher; 6; is the private

information of player s, and (a;, ) are fixed parameters unknown to the researcher. (61, 62) ~ N (0,
), where 2 is a 2x2 covariance matrix, Var6y = Varé, = 1, Cov(64, 6>) = p. We require p € (—1,
27n/(27 + |a1]2)). Define (6;*(x), 65*(x)) to be the solution of the system

v
Bx —a,®((0F (x)—p -01(x))/ 1—p2)=61x), fors =12,

where ® denotes the cdf of the standard normal. Along the lines of Example 2, the pure-strategy
Bayesian-Nash equilibrium is given by the the profile

Os(x, 05) = 1{O,*(x) = O} fors = 1,2.

We parameterize the model as follows: 1 = (—1,1),82= (1, —1),a1 = 1,02 = 1,x = (x1, x2), x1 ~

X2, X1 L xp, x1 ~U[=1.2 12]. The correlation coe@cient p is set to different values sothat

“To make this argument more rigorous, we should prove that the leading term in the expansion of Proposition 7 converges
to the Gaussian process G uniformly over T and for almost all trajectories{X1};> 1. This proofis still in progress. However,
since Sp c\?n be expressed as a Rigmann Integral, it can also be approximated by a functional of a the finite dimensional

process  nP, & in fw* (VAV Mo b .y o for large enough Q. So, the convergence of the “finite dimensional marginals”
q:

provides an argument to conclude that the bootstrap procedure gives a reasonable approximation of the distribution of S .
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p €{—0.5, 0, 0.5}. Thus, whenp = 0 there is no correlation among agents’ private information, while
wheneverp f= 0 agents’ types are correlated.

For the implementation of the test, in the first step estimation we use the same type of estimator as
the second step. So, also for the estimation of the conditional probabilities Wy we employ a boosting
algorithm. We use kernel estimators both for the initial weak learners -needed for the initialization of

the L; boosting procedure- and for the updating part of Algorithm 2. For the first-step estimation, we set

n T A 1 2 X, —xZ . 1 -X+.—xz
[01(y) = & = KT T = -
W) = 700, 1) SO= e K

n -hp h
i=1 i=1

for s = 1, 2. The kernel K is set to be a second-order Gaussian kernel. Similarly, the kernel used in the
Boosting Algorithm 2 is set to be a second-order Gaussian kernel. Both the bandwidth /2 above and the
bandwidths used in the L; boosting procedure of Algorithm 2 are specified according to a Silverman’s
Rule of Thumb, i.e. h = (6" (X1), 6" (X2)) -n~1/6. We use a similar logic for the specification of the

estimator ni’} ;i1 particular; the weak learner initializing Algorithm 2is specified as

[B]

- 2
~ [0 n WwiBl _,,
[] (W) 7 - [B ] (W) TW[BI] (W) —1 i=1 Yl K i )

fvf/[Bﬂ(W): n.hd ?=1K — ’

where Y; 1= a1; ay;, K is asecond-order Gaussian Kernel, and / is specified according to Silverman’s
Rule of Thumb, i.e.h = @(W ) I[B iy, JA(WZ[B 1)) -n~V6, For the updating part of Algorithm 2we use the
same specification for both the bandwidth and the kernel. The number of boosting iterations is set to the
same level for both the first and the second step estimation. The iterations employed are displayed in
Table 1-5.

For the computation of the ICM statistic S, the weighting function u is defined as a triangular
density, so that ¢, is a sinc kernel.

We compare the Multinomial Bootstrap presented in Section 6 to the Wild-Bootstrap procedure in ?

developed for semiparametric models with generated variables. For this latter bootstrap procedure, we
specify the weights{&} ", to be distributed as iid standard normals, independently from the sample

data.
The results of the simulations are reported in Table 1-3. With B = 1 both tests under-reject com-

pared to the nominal size. The test based on the Multinomial Bootstrap behave the best when the
number of boosting iterations is set to B = 2. In general, both the Wild-Bootstrap test and the Multi-
nomial test behave relatively well. In particular, the wild bootstrap has a tendency to under-reject and
needs a larger sample to adjust the empirical size to the nominal one. The Multinomial Bootstrap shows
a smaller error in the rejection probability for all sample sizes. Intuitively, since the Multinomial Boot-
strap is based on a resampling scheme that refiects the null DGP better than the Wild Bootstrap, it also
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Table 1: Simulation resultsfor B1 = B> = 1

n 0.02 0.05 0.0

200 Wild 00146 0.04 0.0962
Multinomial 00128 00328 00768

400 Wild 00122 0.0354 0.0896
Multinomial 00116 00318 0.0728
600 Wild 0.0058 0.0256 0.0732

Multinomial 00058 00226 0.0626

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-
ulations of the bootstrap. g = (sd(X1), sd(X2)) -n=16, h = (sd(W (X))) -n—1/6. The kernels are Gaussian Kernels of
order 2.

displays a better performance with respectto the Wild scheme.
Generally, when the number of boosting iterations (B1 and B;) are set to either O or 1, the perfor-

mance of the test is less good®. This therefore shows that the boosting is a valid tool to control the size of

the test, by controlling the bias of the empirical process at the basis of the statistic S,,.

7.2 Power Analysis

In this section we provide the power analysis of the test. To have a DGP displaying a clear departure
from the null hypothesis, we start from Example 3. For the reader’s convenience, we report below the

main parts of the model. We consider a two-players game and assume that the profit of each agent writes
as

rls(x’ n, ai, ap, 0?) = dag '[l//(X, 77) — 05 "d—g — 0?] )

with w(x, ) = ¢(x1) + n -0(x2), 61~ U[0, 1], 6>~ U[0, 1], 61 L 65, (61, 6) Lx, En =0, L x, x
= (x1, x2), x1 L x2. The Pure-Strategy Bayesian-Nash equilibrium of the game is represented by the
following functions

1+a
1_a1 0y

S

a,={y(x, n) + g -u* (x, n) = Q}fors = 1,2, whereu {x, ) = w(x, 7).
1 is interpreted as a heterogeneity parameter. Let (a1, a2) be generated by the above game, and assume
the researcher only observes (a1, a2, x) but not the heterogeneity parameter 5. She aims at testing

whether the distribution of the data, say Py, .4 ) can be rationalized by a unique Bayesian-Nash equi-

SResults are omitted for reason of space
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Table 2: Simulation resultsfor B; = B; = 2

n 0.02 0.05 0.10
200 Wild 0.0058 0.0206 0.0528
Multinomial 00184 00478 0.105
400 Wild 0.0046 00166 00464
Multinomial 00168 0.05 0.104
600 Wild 0.0022 00104 00328
Multinomial 00128 0043 00956

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-
ulations of the bootstrap. o = (sd(X1), sd(X2)) -n=16, h = (sd(W (X))) -n—1/6. The kernels are Gaussian Kernels of

order 2.

Table 3: Simulation results for By = B, = 2: Comparison accross different correlation coe@cients.

0.02 0.05 0.10
0.5 Wild 0003 00104 0.0366
Multinomial 00118 00366 0.0872
0 Wild 00046 00166 0.0464
Multinomial 00168 0.05 0.104
-0.5 Wild 0002 00144 00426
Multinomial 00186 00558 0.1102

Simulations based on 5000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-
ulations of the bootstrap. hg = (sd(X1), sd(X2)) n=1/6, h = (sd(W (X))) -n—1/6. The kernels are Gaussian Kernels of

order 2.
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Table 4: Simulation results for By = B, = 2, uniform private information, mutually independent types:

Empirical rejection probabilities

n 0.02 0.05 0.10
500 Wild 0.01 0033 0074
Multinomial 00265 00655 0.122
700 Wild 0.0075 00335 0.0695
Multinomial 00195 0049 01240
1000 Wild 0012 004 0.0775
Multinomial 0026 00555 0.1175

Simulations based on 1000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-

ulations of the bootstrap. ho = (sd(X1), sd(X2)) -n=18, h = (sdW (X))) -n

order 2.

—1/6_ The kernels are Gaussian Kernels of

Table 5: Simulation results for By = B, = 2, uniform private information, mutually independent types:

Power Analysis
n 0.02 0.05 0.10
500 Wild 02265 03755 05165
Multinomial 04145 0552 0.685
700 Wild 03595 0532 06705
Multinomial 0542 0702 08165
1000 Wild 0528 0699 0824
Multinomial 0763 0864 09195

Simulations based on 1000 Monte-Carlo replications. The test is based on a Warp-speed method for the Monte Carlo sim-
ulations of the bootstrap. o = (sd(X1), sd(X2)) -n=16, h = (sd(W (X))) -n—1/6. The kernels are Gaussian Kernels of

order 2.
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librium of a game which respects Assumptions E, D, and M. So, the goal is to test whether the condition
E{a1 -a21X} = E{aiaz| Wo(X)} holds in the data. By the discussion provided in Example 3, such an
equality does not hold for the DGP considered here, and the departure from the null hypothesis is
represented by the difference

oq) - o ’ >
(1%1—1);1%2) ‘E{n?} - 0(x;)? - E{o(x,)%} .

E{a1 -aalx} — E{a1 -a2| Wo(x)} =
Hence, as long as d(x;) is a non-degenerate function, we are under Hi. The magnitude of the departure
from the null hypothesis is here represented by the variance of the right hand side of the above display:
the larger such a variance the greater the departure from Hp.

We parameterize the model as follows: x ~ U[b,blpx ~ Ulb, byl ¢fx ) 5 c+x,d@x ) 5 dn-x, }
(b1, b2, b3, b4) = (0.1, 0, 0, 1),a1 = a2 = 0.1,¢= 05,y = 05P(3=04)= P (3= —04) =0.5.

The test is implemented similarly to the previous section. The results are reported in Table 4 and 5.
Under the null Hy, the Wild-Bootstrap scheme displays a tendency to under-reject, similarly to what was
happening in the previous experiment. The error in the rejection probability seems to be contained for
the Multinomial Bootstrap. Under H; both tests show a satisfying power, but the capacity of detecting
departures from the null hypothesis is more pronounced for the Multinomial Bootstrap than for the
Wild Bootstrap. This is an adding feature in support of the Multinomial scheme presented in this work.

8 Conclusions

In this paper we provide a test to check if the distribution of the observed data can be rationalized by a
unique Pure Strategy Bayesian-Nash Equilibrium of a game with incomplete information. Each player is
assumed to take a binary decision, and agents’ private types are possibly correlated. We start from a
characterization of the null hypothesis in terms of a conditional moment restriction. This involves
nonparametric conditional probabilities identified from the data. We propose an Integrated Conditional
Moment test. The statistic is based on a nonparametric function of the conditional probabilities that are
themselves nonparametrically defined. Hence, we proceed to a two-step estimation: in a first step we
estimate these conditional probabilities, while in a second step we estimate the function to be plugged
into the statistic. To handle the bias arising from this two steps nonparametric estimation, we use an L;
boosting algorithm. We show that under the null hypothesis the proposed statistic converges to a
functional of a Gaussian process. The asymptotic null distribution depends on unknown features of the
data, so it cannot be used to approximate the critical value of the test. We therefore propose a new
Multinomial Bootstrap scheme which incorporates all the restrictions Hy imposes on the distribution of
the data. In particular, such a scheme imposes that the data is generated by a distribution that can be
rationalized by a unique Bayesian-Nash equilibrium of an incomplete information game. Thanks to the
L; boosting algorithm, the test can be implemented without undersmoothing. In a Monte Carlo

experiment we show that the test has satisfying performances in small samples, both in terms of size
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and power.
Several extensions that could be done for this work. We have proposed a Bierens’ type of test which,

from a technical point of view, can detect a sequence of Pitman alternatives converging to the null at the
rate of n~172 ¢, It would also be interesting to analyze the properties of a double-smoothing test. This
would complement our approach and might be useful from a practical point of view, since it might serve
as a tool to give a stronger confirmation of findings when testing the validity of the Bayesian-Nash

assumption.
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A Asymptotic Expansion

Before proving the main results, we introduce a class of functions that will be often used in the technical

proofs.

Condition CL. W := x »— wi(x) :t €T isa collection of uniformly bounded Lipschitz functions in
t, e |y, — wi, Il < Cllts — Bl forall t1, 12 €T. Wedefine ¢,(W (X)) = E{y,(X)|W(X)}.

We start with a technical lemma that will be needed in the derivation of the Brahadur representation

of the empirical process at the basis of S ,.
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Lemma 8. (Stochastic Equicontinuity Results) Let Assumption 1-7 hold, and let Let W and ¢, be as
in Condition CL. Then, for b= 0, .., B uniformlyint €T

(1) Jﬁ(Pn —P) ffjg (Wo) 1,y = o(});

) VAP, ~ PY Fa(Wo) 1, vi = 0n(1);

(i) VP Lo (Wo) 0 7 Vupop Y

J Wy

. v_
nP Gy, (Wo) = nilJ(W ), ¢ 4 17 P&V, 0 ) + a(1);

SV . V_ V . Vo
(lv) nP TsAb(WO) tn Ve = I’anS¢ tho+ I’lP )(m W(J(WO)_m E)}:,’](W ))tnq} jl‘/' 0+hr npng[b]tﬂ¢£t],-2fwo+
0P(1);

(v) \/ﬁ(Pn— P) WA[V?(WO) —my, (W) tw 7 o 1) ,and the same result holds by replacingt,, with f,

where ¢(,112 is a function satisfying Condition CL.
Proof. For Point (i), by Lemma 24, Assumption 4, 5, 6, and 7, we obtain

sup 7z, (W) ty = op(l).

€T .. Fw, 0

"o

By the above display, Assumption 7(iii), and Lemma 17, we can apply Lemma 19 to obtain Point (i).
Point (ii) can be proved along the same lines as Point (i).

For Point (iii), by Assumption 4, Lemma 24, and the Law of Iterated Expectations, uniformly over

T,
\/_ Aé \/ Ag \/_ Aé
np fTW’g(Wo) ty 7 nb fTW*O’(Wo) Yoy, + 1P fTTS(WO) Vo(r,— 1)y =
A ?:18';,1?:;,1' K(VR W ; + vh) 1o (W;+vh)d v + of1) =
2 A oA n
3'% ?=1 et i KO) W ;i +vh)dv+op(l), 6)

where in the third equality we have used Assumptions 4and 6and Markov’s inequality to drop the

trimming t,‘f’ 0. Now, by the rates in Lemma 24, Lemma 21, and Assumption 6,

> A A b R n
L 1 Eilb i I K(v) ¢, (W, + vh)dv = "% Py Einlni j K(v) (W ; +vh)dv+op(1l) =

n
n

z n
— L 1€ it K(v) ¢:(Wo,; +vh) dv + Y]

n

> R ~
LT AW — W) K(v) 8g(Wo,i + vh) dv + op(1)

n

uniformly in¢ € T, where in the second equality we have used a Mean-Value expansion of ¢,(WA +

vh) around Wy + vh and the rates for W in Assumption 6. The convergence rates in Lemma 24 and
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Assumption 6imply that uniformly over T ,

S . ]
— L :l=18i,btn,i(Wi_W o) K(v)0p:(Wo,+ vh) dv=

n

3 .
Ao etadW o= Woi)T K(v) 0¢(Wo,i + vh) dv + 0p(1) = 0p(1), 8)

where the second equality follows from the expansion in Assumption 6and since E{¢|X} = 0. Finally,

by a usual r-th order Taylor expansion and Assumption 4, uniformly over T,

)2 .
L e i,bfn,iI K(v)¢(Wo; + vh) dv =

n

ﬁpneqx + ﬂpn((mWO(Wo) — i (W), ¢ + i7" nPEW 60+ o(1). 9

Putting together Eq. 9, 8, 7, and 6yields Point (ii).
Point (iv) can be proved along the same lines as Point (iii), so the proofis omitted.

For Point (v), by using the recursive structure in Eq. 3,

J \/ﬁ(Pn— P ) e Y (Wo) —m oy, (W) tay =

n 2, 1V ;.
A(P,= P ) @i Wo) —my (Wo)) 1 # (2 APy —P) 2a(Wo) 1,

w

Assumption 7(ii) and Lemma 17 combined with Lemma 19 ensure that the first term on the RHS of the
previous display is op (1) uniformly over T. For a generic addendum of the second term on the RHS, by

the rates in Lemma 24and Assumption 7,

Vite, ) L (Wo) 4 v, = Vi, —P) Je(Wo) ty # o (d)

uniformly over T. Using Point (i), Lemma 24, and Assumption 5-6, the leading term of the above
expression is op (1) uniformly in 7. By this and the two previous display, we conclude for Point (v). O]

Lemma 9. (First expansion) Under Assumption 1-7, uniformly over T ,

A A V_ V_
nP,g.t fW) go\t/= nP.efw, ot — nP,(a — Wo)omy fw g*

—h" P, Bt @51,(})%,0 +o0p(1).

Proof. By Lemma 24, Assumption 7, and Lemma 21 we can replace the trimming tA,,With t,, sothat
uniformly over T,

Vo Vo e
nP,ept ffW) o,= nPetagf (W)o+pA)p=
WP efy (W)io+ 1P, (mw,(Wo) —miBXW ) /YW ¢ # 0 (@). (10)
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For the first term on the RHS of the previous display, by Assumption 6and 7,and a Mean-Value expan-
sion of f {W ) around W

\/ﬁ Pn Sf,\‘,f/ (f)‘/)i(ﬂz = \/ﬁ PnSfA‘,ﬁW)ol %+t

nP, e dfw,(Wo) (WA— Wo) t, @; + op(1) uniformly over T.

Using Assumption 7together with Lemma 19 delivers

Vo . v_
n Pn 8fV’[\/ (% )I{ (pt = n Pngf W(j(WO) ¢t+ 01(1)

uniformly over T. By the expansion in Assumption 6and since E{¢| X} = 0under Ho,

\/ﬁ P.e dfw, (Wp) (WA— Wo) t, ¢ = op(1) uniformly over T.

We now turn to the second term on the RHS of Eq. 10. Using the recursive structure of m'[Bgvﬂ a Mean-
Value expansion of TgBi1 (W) around Wy, and the rates in Lemma 24 and Assumption 6,

s Vae, (myy, (Wo) = miBIW)) 1, £ (W) g =
n P, (my, (Wo) —ni =W )) 4, (W) o, — " P Tr,  (Wo) tn 9+ 0p(1) =

P, (my, (Wo) =ni "W ))) 1, f w(Wo) o, — 7 P, T, (Wo) 1 0, + 0p(1)

uniformly over T, where in the last equality we have used the convergence rate of n [WBA_I] in Lemma 24

and Assumption 7. Using Lemma 8 for the second term on the THS of the previous display,

o _ v_ AB-1], 8
Vi, Ty (Wo) ln€0r=\/"Pn81sz0+ P, (moy, (W) =i &~ D fiy , +

g1
h nPL e e Mry 4o (1),

uniformly over T. Replacing the previous displays into Eq. 10 delivers

NV
nP, &t f W) 0, = 1 Pief w,(Wo) o+

V_ wB 1], _
7P, (my, (Wo) —m e OW ) g, f w(Wo) g — " aP, &8 1, 6 DFy +0p(1)

(B

uniformly over T. By the recursive structure ofnm w B 1], the rates in Lemma 24and Assumption 7,

_ Vo ot
”PnQ"[WBA ](W)_mWO(WO to f w(Wo) ¢, =

v N ’ .
n\/Pn W) —my (W) 1. w(Wo) o+~ P20 nP TAW Y 0+ o(d) =
P, (B (W) —my, (Wo)) i foy,(Wo) o+~ 250 P T (Wodtl¥ o+

nP,omw.fw, q#;n(WA — Wo) + op(1) uniformly over T,
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where in the last equahtx}/ve have used a first order expansion of mﬂ%; ) around Wy, Assumption 5, 6
and 7. Now, notice that T (W )tWO (p Jis a centered process by the Law of Iterated Expectations,

so using Lemma 8§, the expansion in Assumptlon 6, and the two previous displays we conclude. [

Lemma 10. (Negligibility of the boosting iterations) Under Assumptions 1-7, uniformly int €T,
v__ .
P, &8, @F})fwo = op(1).
Proof. We first show the following recursive structure:

. .z vV« -
nPn(‘B—s}; ﬁ,t = _hr(s+1) nPnng(s+1) h ﬂ,slt) + QJ(]-) (11)
fors=1.,B —1

uniformly over T, for a weighting function S, ; satisfying the CL condition. To this end, by therecursive

structure of m’ﬂv?ﬂ the rates in Assumption 6 and 7, and Lemma 24,

Vo . ~ V_ V_ .
WU Pud sk By =R APt fi, + h AP, (my, (W) —min N W) 14, =
W APt fh B P, (my, (Wo) = mil W) 1,4,
—hrs " uP,0my f n,n(W W()+o,(1) (12)

uniformly over T. Since ﬂN,,,tsatisﬁes condition CL, by an application of Lemma 19,

h's \/H-Pné‘ln[)) Nn, = op(1) uniformly over T. (13)

Similarly, by the expansion in Assumption 6,

v v_
h"* l’_lpnam Wo n,t n (W WO) hrs nP om WO n,t ”(a o WO) + OP(l) (14)

uniformly over T .

For the second term on the RHS of Eq. 12, by the recursive structure of m'fbgvA the rates in Assumption 6
and 7, and Lemma 24,

N - NE "
hrs “aP, @ BT W) —moy (Wo)) 1,4, = k7 aP, @ BT We) —my (Wol) 1, +

Te ~
h"  nP, %(WO) t,f n.t 0{1) uniformly over T.
J W0
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Using Lemma 8, the second term on the RHS of the previous display can be approximated as

VT V V I
hrsnP, B(S*”(Wo) taPus = h" P&, + B P, (my,(Wo) — [B WY 1, ot

v_ .
J +h7 6D T HPLg(s+1) h /3 + o(1) =
s P (my, (W) =i W)y 1,87, 0+ hr 0D 0Pyt + op(1)

unif. over T,

where £ . (w) := E{8",(X)|W(X) = w}, and in the second equality we have used the same arguments
asin Eq. 12,13,and 14. Putting together the previous two displays yields

\/_ n —s 5
hrs " nP, Q”E:i“ (wo) —my, (W) tfh =

N - .
WP, o I W) —my (W) 1B, + B 0P LS ey 1SS + 0p(1)

uniformly over T, where £ (X) = £, (X) = f,,(Wo(X)) = f ,.(X) — E{f ,..(X)|W (X)}. By
the Assumption 5, we can replace the trimming 7 , with ¢)"0in the first term on the RHS of the above

expression, so that

VB (s "
_ h™ nP,(m Eﬁ“ G+ (W) —my (Wo)) . B, =

J
h"  nP, (nAfLEﬁf(Hl)](Wo) —my, (Wp)) tx"OﬁL = o0p(1) unif. over T,

n,t

where the second equality follows from noticing that the process on the RHS is centered (bydefinition
of ,b’}) and applying Lemma 8. By the previous two displays, Eq. 12, 13, and 14, we obtain that Eq. 11
holds. By the recursive structure in Eq. 11and a simple induction we obtain

vV ~ V_
W nP.&s_14 B =—hB nP,gt ,8(1) + 0,(1)

uniformly over T. Conclude by the above expression and the rates in Assumption 5and7. O

Observation: The above lemma shows that, under Assum;z/zons 1-6, the boostmg iterations do not have an
impact on the Bahadur expansion of the empirical process = nP,éxt f W Yo at the basis of the statistic
Sy. This results and the asymptotic distribution of S, are reported in the following Corollary.

Corollary 11. (Proof of Proposition 6) Under Assumption 1-7,

\/_ A NN n \/_ \/_
n Pn gBt nfvi(W) (‘7 = nPnSfWogﬂtl - nPn(a - WO)am WofquqL-i- o é]')
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uniformly over T. Accordingly,

R

S,=0 VP &y D (W) g, (@) / G ),

where G is a Gaussian stochastic process taking values in A~(G), with G := , (a, y, x) = (y—mw,(Wo(x))) -
Furn (W) -0(x) = (a = W) m oy, (Wol)) for, (W) 0-(x) 11 €T and defined by the col-

lection of covariances PezgoL,lgoL;ztl, ner .

Proof. The first result is an immediate consequence of Lemma 9 and 10. For the second result, we can
proceed as in Example 19.7 in van der Vaart (1998) by the compactness of T and the bound-
fdllfss of the random variables involved, to obtain that N (5, G, || - ||») < N (? T, || - |]), with

01 logN (6, T, || -[[)dd < oo. By Theorem 19.14 in van der Vaart (1998), nP,ep . G. Hence,
conclude by Theorem 18.11(i) in van der Vaart (1998). ]

B Bootstrap Expansion

We first reformulate the bootstrap DGP in a way that is relatively easy to handle from a mathematical

point of view. Define the following DGP:

av= 1TW (X)) = u*y,

’ ’ s A[Blrw ) ’ ’ W ~[Bl(W ’
— m (W (X7)) _ Wy (X)-m" 2 (W (X))
a=1af,=1 1 2o >uy, +1af,=0 -1 oy = Y2 . (19

Y= a*y-a*y andu* = (u'y, uy ) ~ 1id U0, 1].

The bootstrap DGP defined in Eq. 15generates the same probability measure for (%, ¢*;)as Algorithm
3. In this sense the two DGPs are equivalent. Working with the DGP in Eq. 15 is more convenient from a

mathematical viewpoint, so we choose to build our proofs on it. Define P *the probability measure that
considers only u* as random and the sample data as fixed. Recall that P denotes the probability measure
of the sample. Let P := P *® P be the probability measure that considers both »* and the sample data as
random.

Remark. Notice that given a real-valued random variable g(u*, X) and an arbitrary set A C R, the
probability P *(g(X, u*) €A)is random.

Lemma 12. Lety,, ¢, and ¢ ,(112 be as in Lemma 8, and let Assumptions 1-10 hold. Then for b= 1, .., B
and uniformly over T,

A

T»*
)

0P, ~P) W)tz 0 )
) VP, PY T2 (W) 1y, = 0p (1),
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(zl_L\/n P b(Wo) thyy = \/_P WY — A[B](W)) Lo (Woe+
nP @n[Bl(W) “[bl LWt g (Whd v+ b nPEf, i ¢ +o0p(1);

(iv) %P Tt (K) g, = Vi WY =B ) 1,6 (WS o+
+ ﬁpn@fg;](vi/) nil] L(Wep WX w, + 0" 0P, 6w, +ope(1)

(0) Jﬁ(P,,— P) @l :if’j(Wo) — i (W)tp = 0+41)

Proof. For Point (i), by Lemma 26

—b (WO) tn = OP*(].) .
f W, "%
By the previous display and Assumption 10, we can apply Lemma 20 to obtain the desired result.
The proof of Point (ii) proceeds in the same way as the proof of Point (i).
For Point (iii), from the rates in Lemma 26, Assumption 4, and the Law of Iterated Expectations,
TT* T
v Wo)g v = Vnp L (W) 1l + +Vup ! (W) (1~ Dy 7
Z
% i L6 IK(v) 0 (W= + vh) 7o (WA vh) dv+o0 p-(1) =
AT S K(v) ¢ (W vh) dv + s (1) unif. over T,

n

where in the second equality we have used Assumption 6and Markov’s inequality to drop the trimming
t,‘f’o . Using the rates in Lemma 26and Assumption 4-9,

2 n n
A 18] j K(v) ¢, (W+ vh) dv =

n

> n
;% tr'l=1 Ei:? n,i I K(V) ¢I(Wl*+ Vh) dv + 0 P*(]-) =
s *A_ﬁ i=1 ‘%,?? ni  K() ¢(Wo, +vh)dv+
A g, t"vi(Wi* —Wy,) " K(v) 0¢(Wy; + vh) dv+ ¢(1) (16)

n

uniformly over T, where in the second equality we have used a Mean-Value expansion of ¢,(WA X+ vh)
around ¢,(Wp ; + vh) and the rates in Assumption 9. For the second term on the RHS of the previous

display, Lemma 26, Lemma 24, and Assumption 9ensure that

2 A N
J *% =1 ‘%M: t (W= W ), / K(v) 04, (W'+ vh) dv =
P, (Y * = m B W) 1, (W W, K(v) 86(Wo,: + vh) dv = op+(1)

unif. over T,

where in the last equality we have used Assumption 9and Lemma 25. For the first term on the RHS of
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Eg. 16, by the usual r-th order Taylor expansion

Nl_ﬁz =1 ‘?:? n,i / K(v)¢:(Wo,; + vh) dv =
Vb % R ) 4 6, )+ P G — L (09) 16 (W o+

h" nP.EF; i ¢£,1Z + 0y (1) unif. over T .

Conclude for Point (iii) by the previous four displays.
The proof of Point (iv) proceeds along the same lines as the proof of Point (iii).

For Point (iv), by the recursive structure of nit?! and T e

Ve, P ) 6 iwo) - m[b](Wo o = aP,—P) M*ii”(wa — (W)t y, +

R RN AR R (A

The first term on the RHS of the previous display is op+ (1) uniformly over T, by Assumption 10and the
compactness of T . Proceeding as in the proof of Point (v) of Lemma 8 yields that the third term on the
RHS of the previous display is op+ (1) uniformly over T . By the rates in Lemma 24, Lemma 26, and
Assumption 7-10,

J

_ 5 Vv
AP, = P)E(Wo Yy, = n(P, w it os(l) =

op+ (1) uniformly overT,

where in the second equality we have used Point (i) of the present Lemma. Conclude by the previous two

displays. 0

Lemma 13. Let Assumptions 1-10 hold, and W be a class of functions that respects condition CL. Then,

uniformly over T,

Vb = i Ny = VEPPE m (Wt ond1).

where Y * 1= 1’W0,1(X) > ui", q m (W 2w 70 (X)) > u*, .

Proof. By proceeding as in Point (i) of Lemma 25,

supr (Y=Y g VP, = oD,
2

By the previous display, Assumption 10,and Lemma 18, an immediate application of Lemma 20yields
the desired result. []
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Lemma 14. (A First Bootstrap Expansion) Let Assumptions 1-10 hold. Then, uniformly over T

Vv A N Vo .
nPnSA;ftn “w (W*)(pt = nPn(Yi m W()(WO))fW(J(le_ - nP”(a =W )ﬁm W(*fw(’%l +
h" ﬁpng’\ *Bfltn¢n,t + OP*(l) s

where Y= 1 W o(X) = uf -1 "0M(xy > ux Gxi= (ahad ar=1 Wo(X) > ul,

1 Wo,1
~oem 1 = 1 mwg (We(X)) * x4 Woa(X)—my (Wo(X)) ok
az:=1 a=1 -1 W = U3 +1 cf— 0 1 W tx) > u;

Proof. Using the rates in Lemma 26, Lemma 21, and Assumption 9-10,

Vep mr s V_ A
P, &5t f . (WHg, = 1P, (Y * = miS W)t f . OV ¥

nP, (mA[Wq](W) - nf;{;‘f](W*))tnf;;* (WH¢ + 0+(1) unif. over T. 17)

Using a Mean-Value Expansion of fAW . (W“) around W g Assumption 9-10,and Lemma 25,

} VP (Y *— i f . 0 =

P, (Y * = m B W1, foy (W) +0fw, (W) “(WE W hp+o pu(l)=
nP, (Y * = mi W ))if y (Wodp + 0 (1) unif. over T. (18)

By Lemma 24, Lemma 26, and Assumption 9-10, uniformly over T ,

e,
AP B — i B )1, /o, ) =

T

&

S A v .
P W) =i G OW) 00 = TP B (W) 4 ot or (1),

Using Lemma 26, Assumption 9-10,and Lemma 12 on the second term RHS of the previous display

T} o Vv ,\
s OV Yaf = “nPTE 0N 0 s o (1) =

APT% (Wo) t, fwoo: + op+(1) unif. over T.
¢ Bl

J
nP,

The second term on the RHS of the previous display can be approximated according to Lemma 12. By
such approximation and the previous two displays, uniformly over T

ViR, G EI) — i (g, = — R, (7 W) 41 (WO, +

P, @' BYW) = nt W)t f v gt — b7 AP LEE 1 880w, + 0p+(1) (19)
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Using the rates in Lemma 24, Lemma 26, and Assumption 6-7-9-10,

_ P
nP, i BIOW) — i W ) f w0t =

Voo . f
nP, @ B W) — i T WSy gt — T pPLOm oy i, @t (W EW T+ 04(1)
P, @ B W) — i W Wofw, gt — " AP,Omy fu, gt AW W) + 0:4(1)

uniformly over T, where in the second equality we have replaced the trimming 7 , with ¢ Voby Assump-
tion 4, Lemma 24, and Lemma 26. Notice that the first term on the RHS of the previous display is a
centered process, by definition of ¢, Hence, using Lemma 12 such term will be op+ (1) uniformly over T

. Using this result and Assumption 9, from the previous display we obtain

VA

; AP, (" B W) = T W) f gt =
— " nP.Omw.fw,o"a*— Wo) + op+(1) uniformly over T . (20)

Plugging the above display, Eq. 19,and 18into Eq. 17 yields

Vo mr s - B
npng;trfwc*(W*)wt = I’an(Y*— E)B‘}‘](W))tnfwo tl+

—nP Qm W(JfWo(th(aNi w 0) —h’ ﬁpné\btn ¢;(1%z)fw() + OP*(]-)

uniformly over T .

Conclude by using Assumption 9-10 and Lemma 13 on the first term RHS of the previous display. O

Lemma 15. (Negligibility of the Reminder Term in Bootstrap Expansion) Under Assumptions1-10,
h’\/

#P.e" * g _1tupn: = op+ (1) uniformly over T .

Proof. We first obtain the following recursive structure:

J

. v_
Y nP,e T?—stnﬂ = —hr(s+1) nPnghg—(5+1)tnﬂ,(}) + OP*(]-)

uniformly over T , fors = 1,.., B —1, (21)

for a weight function S, , satisfying condition CL. Using Lemma 25, Assumption 10, and the recursive

structure of mﬁ%,
A e e
hrs\/n-Png Héf‘vtn[i,t = h’s EPH(Y *— [S‘](W ))tnﬁi,t +
B P, @ IOR) = ol W) 18+ 0m (1) =
rs\/— ~[B1( T, ~ x[B—(s+1)] /7 rs\/ T;;_ ¥
h"™ " nP, (W) = m . (WDt oy —h ”Pn—fM(Wﬁ tofin.s + op+(1)
W*
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uniformly over T. By the rates in Lemma 26 and Assumptions 9-10,

T J o™
nP, M(Wj tPn =h" ”Pnﬁjﬁl (Wo) t4fn,: + op+ (1)

uniformly over T .

Applying Lemma 12 to the leading term of the above display and using the two previous displays yields

A v \ .
hrs\/n-Png B N nﬁ,t - hrc nP Q/n [B](W) *[B (S+1)](W *))tnﬂyt[ +

—hr ) Y p etk 6 +1)tnﬁ(1) +h" nP, (Y *— A[Vlé](W ) 4, B+ op(1)

uniformly over T,

where 8 ,(+) = E{B,..(X) | Wo(X) = -}and B,* (X) := Bn.(X) — B ndWo(X)) . By Lemma 25 the
second term on the RHS of the previous expression is op+ (1) uniformly in ¢+ € T. Using a reasoning

similar to Eq. 20 delivers

rs\/np Q’I’l [B](W) "*[B (Y"'l)](v'[\/*))t
—h's nP amwfw()(PJ(G W)gto p- (1)—

op+ (1) uniformly over T .

The previous two displays prove the recursive structure in Eq. 21. By such recursive structure and a

simple induction,
h’\/n—P g% B, = —h’B\/nP g ﬂ(1)+ oy (1) uniforml T
ne p_1tnMh — )p+ unirormiy over 1 .
The first term on the RHS of the previous display can be decomposed as

hrB\/ got ﬂ(l) —
Y B i sl
W TP (Y % = iSO ), A0 4+ et TP o IO =t O ) 1 ).

By Lemma 25 the first term on the RHS of the previous display is op+ (1) uniformly over T. The rates in

Assumptions 6-10 and Lemma 24 ensure that the second term is also negligible. So, we conclude. O]

Corollary 16. (Proof of Proposition 7) Under Assumptions 1-10,

V_ Ao Vo - Vo -
nPn‘c"Btnf‘/f/*(W*)(Dt = nPn(Yi m WO(WO))fWO(DIJ_ - I’an(a £ w )ﬁm WofWo%l +

uniformly over T,

where Y= 1" W o,(X) = uf -1 %(x) >uX , @ i= @ d),d =1 Woy(X) = uf

142



b 3 bl )

G=1ap=1 1 MY 2y +1 A0S0 1 Ml = up
Proof. The result immediately follows from Lemma 14 and Lemma 15. O

C Auxiliary Lemmas

Lemma 17. (Entropy bounds) Denote with Z a random variable taking values in Z, with P its proba-
bility measure, and with W a class of functions satisfying condition CL. Let F,, be a sequence of classes of
uniformly bounded functions defined over Z. It holds that,

N (6, WF,, || [e) < N(C6, Fo, || +[le0) -N(Co, T, [ -I[);

(i) Iflog N (6, F, W, || *|le) < C107°, thenlog N (6, F,W, || -||x) < C267.

Proof. For Point (i), given two classes F and A of uniformly bounded functions defined on an arbitrary
set Y, it is immediate to see that N (6, FA, || -||wy) < N (CS, F, || |lwy) "N (C6, A, || *||wy) for
a finite constant C. Using the Lipschitz property of the class W and by proceeding as in Example 19.7 of
van der Vaart (1998),N (6, ¥, || -||x) < N (C6, T, || -||). The previous three inequalities imply that N

(0, WF,, || "llo) <N (C6, Fp, |l *1lw) N (5, T, || -]). Point (ii) follows from this last inequality, the
compactness of T and Theorem 2.7.1 in van der Vaart & Wellner (1996) (see also the Observation in
Section 5). [

Lemma 18. Let P, be the probability measure of a variable Z, P, be the probaility measure for U ~
U[0,1] and P := Pz ® Py. Define the class of functionsF = (u, z) —1{m(x) = u} :m €M ,
where M is a collection of functions with range in (n, 1 — n) with n €(0, 1). Then,

N[-](J_d F, La(P)) < Ni.i(0 M, L1(Pz)) .

Proof. Fixo > 0, and consider a collection of brackets covering M, say A := ’ [,s;]:j =1,.,N(0,M, Li(Pz))
with ||s;— ; |1,(p,) < J. Given the range of the elements in M, for each bracket [/, s; ]Jwe can take /;

and s; with range in (0, 1) without loss of generality. Define N;(u, z) = Hu <;(2)} s (u z) = Hu

< 5; (z)}, and the collection of brackets A= [N;-, sil:j =1 ., Ny M, Li(Pz)) ", Pick an
arbitrary elementf €F, sayf (u, z) = 1{u < m(z)} withm € M. By definition of A, m €[l s;]for

some bracket in A, so that /; (z) < m(z) <s;(z) and 1{u < [;(2)} < Hu <m(2)} < Hu <s; (2)}

for all (u, z) in the support of P = Py ® Pz . By the arbitrariness of f/ , the collection A covers the class

F. For the size of each bracketin AN,by definition of P, (Ng-, s~j), and Tonelli-Fubini’s Theorem,

N

||Sj_lj||L2(P) = 1{l;(z) <u <s;(2)} dPU, dp, =
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Conclude by the previous display. ]

Lemma 19. Assume that Z, Pz, F,, and WV are as in Lemma 17. Let fo be a fixed function defined over
Z, and f be a random function over Z, where the randomness is considered wrt the probability Pz. Define
G,:= "n(P,— Pz).If

) 1If = fol l ez = op (1),

@) P(f €F,) — 1, withlog N;.1(0,F ., L2(Pz)) < Co~? andv €(0, 2),

then

G,,(fA — fo)y: = op(1) uniformly over T.

Proof. Define F = (F. — fo)W. Since the entropy of F,, — fo is equal to that of F,, Lemma 17 implies
that log N;.1(4, F . Lo(P7)) < C5-*. Fix 6 > 0. By Assumptions (i) and (ii) of the present Lemma, for
an arbitrary > 0,

) R > : z
limsup , e P sup,et.Gu(f —fo)wi. > n <limsup,_. P supser5).Guf. > 1,

where F~n(5) = f e F ol f 1 Lypz) < o . The RHS of the previous display can be upperbounded ac-
cording to the maximal inequality in Lemma 19.34 of van der Vaart (1998). Since log N;.1(4, F~n(5), Ly(P2)) <
log N;.1(9, Fo Ly(Pz)) < Co~? witho €(0, 2), we can choose a small enough d to make such upper- bound

arbitrarily small. By the arbitrariness of 5, weconclude. u

Lemma 20. Assume that Z, Pz, F,,\V, and fo are as in Lemma 19. Let fA be a random function over Z
where the randomness is considered wrt a probability P = Pz ® P, with Pjtbeing a probability measure.
Define G, := n_(Pn - P).If

@) If = follL,py = op (1)

(i) PAf €F ) £ 1 withlog N ({0, F ., Ly(P;)) < Co~* and v €(0, 2)

then

G, (F R w= opl*j(l) uniformly over T.

Proof. By the same reasoning as in Lemma 19, log N;.1(J, F o La(Pz)) < Co—*. Fixd > 0. Assumptions
(i) and (ii) of the present Lemma ensure that for an arbitrary# > 0,

. A 5
P SuptET.Gn(f —fov,.>n <
. PN S : s .3
Py osup; iy, a?. o osupr = fodwlliey >0 +P; fEF, =

: z
PU supf e"i:n(())an >n + OP(].) .
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For the first term on the RHS of the above display, using Markov’s inequality

. : 2 2 ; : z,
P; Py osups Gry-Guf->n > < %EPZ Pz*] SUp; ct5).Guf. > =

1 . - an> ’
P sups k). T

where the last inequality follows from the product structure of P, i.e. P = P; ® P/, and Tonelli-Fubini’s
Theorem. With the same arguments as in the proof of Lemma 19, we can show that by choosing J small
enough the RHS of the previous display can be made arbitrarily small. So, by the arbitrariness of # and
the previous two displays we conclude. O

Lemma 21. (Trimming) Under Assumption 4 and 6(i),
(i)~ 1] = on(D)

(iD)If sup,t g™ o= Op (1) and sup,et g tall.o = Op (1), then \/nP;g'\,(tAn— t2) = op(1)uniformly
overT.

Proof. LetB, :={| VA[O] —f llo< Cd, s} andfixd > 0 arbitrarily small. Assumption 6(i) ensures that,
by choosing C large enough, P (B,) > 1 — ¢ for any large n. By definition of { ,,We can write

: ’ S AUw) — £ () s
L(w)=1 fw) =1, l_fo() f(w)

Tn

If the event B, holds and » is large enough sothat Cd,, /7, <1/2,

0] _
1—Cd7”fsl—f (w) f(w)_1+C ;
n 7’-l’l I’l

forallx €X . Forsuchn and when the event B,, holds, by the two previous displays
FO) = 2n, 5 400 = 4,00 = 1.
Hence, when B, holdsand Cd, ;/z, < 1/2, we have I —1)(w) <1 ,f (w) < , . Using this,

Markov’s inequality, and Assumption 4,

} . > /. 2

\/ﬁPnlt,,—tn|>5 <P\/nPn|t A=t >0NB, +6<
¢ z

ot Pf(W)—zn + 0= o0(1) +9.

N W

Ty

By the arbitrariness of ¢ we conclude for point (i). Point (ii) follows immediately from point (i) and after
noticing thats,— ¢ = t :’;l t =2t + e —1) O

145



Lemma 22. Let{Z, }"_, be a triangular array of real-valued random variables such that |Z, ;| < C for

all n and i, and let L be a kernel function that is Lipschitz continuous. If'%2% = o(1), then

Zn " W _— -z b] . W J— -z i) — . ) z
1 Z.L " —hiE Z L — - - =0 logn .
nhd - h ’ h " oo nhd
Proof. The proof is the same as Theorem 1.4 in Li & Racine (2006) (pages 36-40). O

Lemma 23. Under Assumption 1, 2, and 6,
>

\/ . .
(i) nP,et, 0K 2 h = O)1) uniformly inW;

(i) If gjs a sequence offunction defined on X such that P (§,€C(X)) — land || gf Ml = 0d1), then

nG,g" wt,0K =Y h = op(1) uniformlyover W.

h

(iii) If gjs a sequence of function gefined on W such that P ¢ €C(W)) 7~ land [l gt ll « = o1),
then * nG,g" (Wo)t,0K *="0 h = op (1) uniformlyover W.

Proof For Point (i) fixd > Oand consider the J covers Ay :={w;:j =1,.,N (5 W, || -[])}, and

={w :j =1.,N (6 CX), |l -|l)} Then, for arbitraryw € W and W € C(X,), wemust
have ||w —wil| < 5and ||W— W M][x < dfor somew; €Ay and Wi €A,. Since by Assumption 3
|0K(u1) — 0K(u2)| < Cllus — uz|| for any uy, ua,

K s i E
OK w=W 5y g WO < 0| v — oyl + Cl W — WOl < C9.

The prev10us dlspla%/ and the arbitrariness of J ensure that the class of functions U := (g x)—
et,(x)0K M@ h:weW and w eC(X, ) satisfies the following entropy bound N (Cé, U, || -
[leo) < #A4 #Az =N W, || -]]) -N (6, C(X,), || -|le) . By definition of C(X,), Theorem 2.7.1
in van der Vaart & Wellner (1996), and Example 19.7 in van der Vaart (1998), the previous inequality
implies that

log N0 U, Il “lle) < logN (672, U, || -l|e) < Co~° witho €(0, 2).

Assumption 6, the previous two displays, and Lemma 19 ensure that
> V/ . >

nPet, 0K "W h= aPedK Mo b+ g (1)

uniformly over W.

Since 0K is uniformly bounded and 2 = o(1), using again Lemma 19 ensures that the RHS of the

previous display is negligible uniformly in w.
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The proofs of Point (ii) and Point (iii) proceed in a similar way as above by using Assumption 7. []

Lemma 24. Under Assumption 5 and 6(i),uniformly over W,

. >
A "0 — nlloo
(i) T{w) = Op Z’Zﬁ + 44“—@ + - Wo)’”“"’ + r;gWO)l L
N AR Coaml2 | Palh—rldy OV - Waznuo 1™ ) = m 7 Yenlloo >
(ii) aTs“b(W) =O0p hd+2gh + b + - 7h
>
A llGn™ 12 ol loo
(i) ™2 =y, Yo b = 0 il 4 Pl 4 07 W0nl g BT
where point (iii) holds true also by replacing t nwzth t,.
Proof. By definition of T 2
.2 . >
T dw) = L Pet, 0K 2 + L1 P, (my, (W) —m”(W))tn@K U
P 1)K WhW : (22)
For the first term on the RHS of the above display, by Lemma 23,
.2 .
h_dl+2 P.ct, 0K W*ZV h=0p % uniformly over W . (23)

For the third term on the RHS of Eq. 22, since f—t,= (tA,,+ tn)(tAn — t,,), the rates in Assumption 7(i)
ensure that

z . z

VR L
,ﬁf—lpngo(fn—f)ﬁK % =0p Eﬂhffﬁtl uniformly in w . (24)

For the second term on the RHS of Eq. 22, by Assumption 6-7(i) and a first order Taylor expansion of
m‘%&WA ) around Wy,

.2 z
h_dlﬂ E Qn [OJ(W) -m W(J(WO))t oK % = hd+1 E Qn [O](WO) Zm W(J(WO))t 6K " hWO +
= P, omy, (W) (W — W yoK TW’ +0p ﬁg uniformly over W. (25)
Lemma 23and Assumption 6-7 imply that
- : 2
B e (W) —mWO(Wo))t azK = =
h—d+1 Qn[O]_mW())l aK TWO +0P %
uniformly over W , (26)
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By Assumption 2and Tonelli Fubini’s Theorem,

2
j et P(m[0] _mIWO)t 0K —hWo =
S (Wo(x)) —m gy, (W) -1,(x) - é fWO(W)fX o G ) dx =
OP. ||(m"E?;] —my, ), lb  uniformly over W, 27)

where in the second equality we have used an Integration by Parts and the usual change of variable.
Putting together Eq. 26and 27yields

.2
T;+1 E Qn E)(;A](WO) —-m W()(WO)%tnaK % =
Op e ”(mAE?/“] —mwy, )t 4 uniformly overW . (28)
By proceeding similarly as for Eq. 28,
>
—dl P,amy, (Wot (W — W J0K TWO = (29)
>

OP " 1+/22 + ||(W— Wo) I uniformly over W .

Plugging Eq. 29, 28, 25, 24, and 23into 22,

: . R z
Tfw) =0 p i+ Pk b || — o) J + 1167 =y, e 30)
uniformly over W .
By a reasoning similar to Eq. 30,
- 1/2 ok | o A0 2
TSA()(W)=0 W-'- __]d_ + ||(W_W0)JJ<J +||QnE)V’;I_mW())1t<JG| (31)
uniformly over W .
Using the above rate and the recursive structure of m'fl%;
||(n"\z[1J — my, Mal |l = ||(m'\[0;| —my, ) + ;ﬂrn o =
0p. h”d_:lf’ + 4&;‘;—’“1+ I — WD‘"“” 4+ o mTWO) e uniformly over W . (32)
We now obtain the convergence rate for 8TA51 and T::1 By definition of T ,Agl
.2 .2
aT (1W) - hd+1 gl(t t)rﬁK W_TWZ + hidlﬂ Elgnt oK W_;:V + 5
v P (my, (Wo) —m™ (W)oK w W — 1P —L(W) %) = (33)
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Using the rates in Eq. 30,31, Assumption 6-7, and Lemma 23,

. . 2 2
1 Tey (1, w=W 1 w=W, -2
h_duEfﬁ(W)lhaK h = pdil Z"fwO Z h T -
1 p %(Wo) t,0K hWL +0p ]_;.g uniformly over W . (34)
Similar arguments as in Eq. 27 ensure that
s : 2 - p >
pa P (W) 1,0K *5%0 = 0p Ll (35)
Using Eq. 35, 34, 33, 32, and 31, we obtain
a W =W )5, b 6™t = vy Ve lloo 2
o (w) =Op ;@;2% + 4;{;3—n1+ 9’*1 + vt uniformly overW . (36)
and by proceeding similarly as for the previous display,
- -1/2 - W =W )t Ik Gt —m 437 oo 2
To(w) = Op iz, + —'“JhL;;T—’“J + I (9‘” + w0 " uniformly over W . (37)

To show the result for a general number of boosting iterations, say b, we will proceed by a simple
induction. So, assume that for a generic b < B we have that uniformly over W,

A 2
. = W -w o™ ) =y Yo
0T w) =Op Z'szb + W + I (Dz”“” ol T :
2
- - llG™ )inlleo
Tefw) = Or RETE ey + Aﬁf—td"' - WM”” + — meW ,and
. 2
~[p _ -1 — ||W w s H(m 0T )thoo
o™ =y, e ke = 05 H+M+ Tt e

The, by proceeding as in Eq. 32, 36, and 37, we can show that the property will also hold for + 1.By Eq.
32,36,and 37 the Induction Assumption holds for b= 1, so we conclude. []

Lemma 25. Let Assumptions 1-10 hold. Then,

. 2
(i) \/r_z P, (Y- m'\gé](W )5, 0K =X = h = Op (1) uniformly over W;

(ii) If g'is a sequence of functions defined on X , F ,, is a sequence of classes of uniformly bounded functions
deﬁnej on X ,log Ni{6, F ., || *ll) < C5~* withv € (0, 2), P¥g €F,) Pl and €0t )l o = op (1),
then n P, (Y*—m [Ii](ﬁ/ ) t,8w = 0+ K1) uniformly over T, where y sqtisfies condition CL.

(iii) If g fis a sequence offunctzonfeﬁned on W such that P & ¢ C(W )),1—> Band gt Il « = 0r(1),
then nG,g{Wot0K Y= W " h = 0p(1) uniformly over W, where G, n(P,—P).
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1 L (W 2wt 70l (X) >u . By definition of Y }

Proof. For Point (i), define Yra= 1 W 01(X) = u;

(rE=Y)r . <
Lo(P) s
(W =W )t + . B me W)t = 0(1)
.. 1 01°n .. .. W Wo. 1 n.. P
Ly(P) ! ; Ly(P)

where the last inequality follows from the convergence rates in Lemma 24, Assumption 6, and Assump-

tion 8. Using the above display, the rates in Lemma 24, and Assumption 9, uniformly over W
(Vsm (W) £ 0K v =Sy (o CwwiZh = o0.(1).
. : —— h - (Y*—my, (W) t,0K — L P P

From this point onward, the proof proceeds along the same arguments as Lemma 23, with Assumption 6-

7 and Lemma 19replaced by Assumption 9-10, Lemma 18, and Lemma 20

For Point (ii), the assumption on the function gand Lemma 24 ensure that
(Ys—mpIW))t gy = op+ (1) uniformly over T.
- W

n ..
Ly(P)
By P &"¢C(W )),~ ¥, Assumption 10, Lemma 18, and the previous display we can apply Lemma

20to obtain the result of Point (ii).
The proof of Point (iii) proceeds along the same lines as the proof of Point (ii) in Lemma 19, using
O

Assumption 9and Lemma 20.

Lemma 26. Under Assumptions 1-10,
D)o % e Pzt nl -1/2 l6m™* 100 ™Y 1], oo W 7. -
0 - 72 o SO0 Barmnl o, + T;W + Wl 4 e,
(i) .. ar *. .. -0 " Palin—tnl 4o GA T2 =Y 1 oo + VW)t | w + L TgBl .
o £ oo, W - Ur hd+lth hd+2th h th Cfwy e
A1 e CPAs : [ AT Lz
(i) o 50 = Dy, k= 05 Pl ol g gy N Rl e e WOT W g g Tt
Proof. By definition of T qu%
5 : 7WA*Z . N .2
6T§w) nhd+1 :l 1801(%: -1, )aK A : _IEZ (Y*_mu;‘ (W ))énaK w—l];V +
~ 0 Ww— & ’ P -
AP eI - ﬂJ(W*))h@% Wi =0, Bl oy .
* ~ ~ ~Aq0]/ 2 ’ w—W" *
W LR @B W) — ey e px Y
(38)

LB (- eI Y0k
uniformly over W ,
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where in the second equality we have used the consistency in Assumption 9-10. By Lemma 25,

. 2 . 2
1P (Y*—m“[v’;](W))tn@K v W =0pe n unif overW . (39)

h

Using the rates in Assumption 6, 7,9, and 10, together with the Lipschitz continuity of 0K,

.2
A GACRUDITIE S
WE (W) — rrf*{°](W3)r,aK weWy g
5 2
f=01 nf (W)t,,aK %9 +0p W% unif. over W . (40)

Using the rates in Assumption 6, 7,9, 10, together with Lemma 25

2
AP OO —a D) e pr W =

>
R OO PO ok s s

h

; ) 2
- LP(W=W)om y (Wo) 1,0k "o +0P% =

e P ok

Yoo +0ps 225 unif over W . (41)

]dHP(W*—W)am WO(W())I 0K Wh

Proceeding in the same way as for Eq. 27 ensures thagthe two leading terms on the RHS of the previous
display are, respectively, O , | I(m A1 _n 5?,])1,1 ll, and O, | I(W * W)tn [l uniformly over W.

Proceeding along the same lines as in Eq. 34and 35yields

5 2 . oa 2
15:01 ”f (W) A oK =t = 0p jjfT% S+ 222 unif overW . (42)
0

Plugging Eq. 39,4041, and 42into 38yields

C b 2
n Pl /2 ~ {0 ~[0 1 1 Te
OT% (w) = Op Pt + 0 e +1I6R Y — ol + 1IOF* = W)e k42,
uniformly over W . (43)
By a similar reasoning,
T o 5 2
~ P |f— ~ {0 n - 0 . T: ..
T{w) =0 po P Db GR GY — el + IOV = W) W+ ey,
uniformly over W . (44)
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Using the recursive structure of m'*v[‘ﬂ and the above convergence rate,
A 1] _ 0] — - (0 _ A T T
||(mW;* mW‘)tnllo . (mwﬂ* mu;)ln"' fﬁn coo0 =
P st e woize N =Dl e Wy e Tep,
OP* hdz, + hd+lz, + 14 rnW + o + T];l. ]ﬁtﬂ“
unif. over W .
The convergence rates for oI 822 , ];ib, and m :g:] are obtained by proceeding along the same lines as in
the proof of Lemma 24and Eq. 39, 40,41, 42,and 38. ]
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