1184
NO

January 2021

“A mathematical model for automatic differentiation
in machine learning”

Jérébme Bolte, Edouard Pauwels

HEE Toulouse
School of
Economics

A mathematical model for automatic differentiation
in machine learning

Jérome Bolte* Edouard Pauwels
Toulouse School of Economics IRIT, CNRS
Univ. Toulouse Univ. Toulouse
Toulouse, France Toulouse, France
Abstract

Automatic differentiation, as implemented today, does not have a simple mathe-
matical model adapted to the needs of modern machine learning. In this work we
articulate the relationships between differentiation of programs as implemented
in practice and differentiation of nonsmooth functions. To this end we provide
a simple class of functions, a nonsmooth calculus, and show how they apply to
stochastic approximation methods. We also evidence the issue of artificial critical
points created by algorithmic differentiation and show how usual methods avoid
these points with probability one.

1 Introduction

Optimization algorithms based on backpropagation oracles, and more generally on automatic or
algorithmic differentiation (AD) [41 39], are one of the most widely used training tools for modern
learning architectures [[14, 32} [15} 18} 120, 13, [16]. They often rely on popular numerical implementa-
tions as TensorFlow or PyTorch [1}136]. However, for nonsmooth, nonconvex losses, AD does not
have a stable theory [23} 125 26} 2} 130, 28| 29} [12]], matching the actual practice. We wish to present a
simple mathematical framework addressing this issue. Let us progressively explain our approach.

1.1 What is backpropagation?

Algorithmic differentiation acts on programs not on functions: To convey this fact we carry
out a small experiment in TensorFlow [1]] with the function relu: ¢ — max{0, t}, see Appendix
for implementation details. Algorithmic differentiation is displayed in Figure [T} in particular, we
have relu’(0) = 0. Consider the two functions

1
relug: t — relu(—t) + ¢, relug: t — §(relu(t) + reluy(t)).

As mathematical functions on R these are equal to relu. However TensorFlow returns relus(0) = 1
and reluj(0) = 1/2 (Figure . Indeed, AD does not act on functions, but on their representations,
i.e., on programs. Different programs implementing the same function may provide different results,
beyond numerical precision; we refer to this as the spurious behaviour of AD for nonsmooth
function Let us explore this phenomenon further. The function zero: ¢ — relus(t) — relu(t),
outputs constantly 0 but AD gives zero’(0) = 1. More generally, one can modify the value of the
derivative of a given function at prescribed arguments (Figure[I)). This may generate artificial critical
points; for instance x — = — zero is the identity but its derivative at 0 according to AD is 0.

* Authors in alphabetical order.
2The validity domain of AD is restricted in theory to smooth functions [23], yet it is common practice to use
it for nonsmooth functions.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

2.0 A 2.01 / 2.0 A
— relu’ — relu2' / — relu3'
154 — relu 154 — relu2 /" 154 — relu3
2 1.0 4 [oomom
0.5 /

1.0 A 0000500000 1.0 A
0.5 1 / 0.5 1 }
0.0 { escscoseo00d 0.0 1 essoos0008- / 0.0 1 essssscese
-2 -1 0 1 2 -2 -1 1 2 -2 -1 1 2
X X X
1.00 A [] zero'
0.75 ——— Zzero
0.50 4
0.25 4
0.00 1
-2 -1 0 1 2
X X X

Figure 1: Top: AD applied to relu and two different implementations of the same function. Bottom:
Algorithmic differentiation of a constant function, creation of artificial critical point or arbitrary
derivatives at prescribed arguments for the sine function.

This discussion was limited to univariate functions, but these pathologies grow in size and in
complexity when occurring in higher dimensions. Besides, as the “compositional depth” of functions
increases the phenomenon gets more complex, making the geometry of artificial point difficult to

grasp.

Canonical surjection between programs functions: Numerical programs combine basic mathe-
matical functions within an algorithm and return an output. This can be understood in two ways:

e Computer science: it is a sequence of instructions with numerical inputs-outputs,
e Mathematics: the program is a functiorﬂ of its arguments.

It is tempting to identify both, but functions can be represented by different programs. This defines a
surjection F mapping a program to a function (in the class of functions “accessible through coding”).

Algorithmic differentiation: As presented above, AD is an operation on programs, A which takes
as argument a program and returns a program with the same input variables. This operation can
be “pushed” to the space of functions using the canonical surjection F. Remarkably, if we restrict
ourselves to programs P which only smoothly combine smooth functions, then we have the following
fundamental relation, depicted in Figure 2}

F(A(P)) = VF(P). (D

In other words, algorithmic differentiation of a program which smoothly combines smooth functions,
is equivalent, through the canonical surjection, to derivation.

F: surj i) F: surj
J (function) L P (program) J (function) P (program)
V. diff A: autodiff 9: sub-diff A: autodiff
F: surj 97 (set functi F: surj D
VJ (function) DcCP (set function) £ c

Figure 2: Left: Algorithmic differentiation applied to programs combining smooth functions in
a smooth way, the diagram commutes. Right: Algorithmic differentiation in nonsmooth settings,
connection with known notion of generalized derivative is much less clear.

3In the usual mathematical sense.

However practitioners use AD and backpropagation beyond smooth programs with nonsmooth ele-
mentary functions or program branching for instance. Can we find a proper operational interpretation
of this widespread practice?

Algorithmic differentiation cannot be represented through a variational operator At first, it
is tempting to simply use AD to induce a differential operator on functions generalizing classical
differentiation. This operator, say 0, should:

(a) encompass the outputs of algorithmic differentation for all functions

(b) be such that 0 is an element of 0 (relu) at 0.
Unfortunately such an operator does not exist:

Theorem 1 (Algorithmic differentiation does not induce an operator on functions) There is no
nontrivial operator on functions satisfying (a) and (b).

1.2 Contribution and related work

We address this impossibility result and provide a class of functions together with an operational
nonsmooth differential calculus which is able to cope with spurious behaviours.

Elementary selections and selection derivatives: We introduce a new class of nonsmooth non-
convex functions, encompassing most objective functions met in machine learning, having appealing
stability properties. This allows us to define simple differential objects called selection derivatives.
Selection derivatives turn out to have an operational calculus adapted to the analysis of many learning
methods, as backpropagation or stochastic first order methods. They thus provide an operational
model to capture nonsmooth AD as implemented in current numerical software.

Algorithmic differentiation, algorithms This framework allows to formalize properly the rela-
tionships between, functions, algorithmic differentiation and capture the corresponding notion of
critical points as met in practice. These characterize the set of attractors (limit points) for stochastic
approximation algorithms based on nonsmooth backpropagation [37} 4} 31} 5L [13]]. It is important to
stress that these attractors, which models sharply the whole scope of AD-induced stationnarity, are
different from the traditional notions as Clarke criticality [[17} 38 20]. This is described in TheoremsE]
and]

Avoidance of traps: As sketched above and in the introduction AD produces artificial critical
points, i.e. stationary points which are not Clarke critical. These points have a parasitic nature
which could be detrimental to training purposes, were they met in practice. We show that randomly
initialized mini-batch stochastic gradient method do not lead to artificial critical points (Theorem [)).
This result applies to modern machine learning software libraries based on AD [} [36]], seen as
performing operation over the reals, without any modification. Although AD may have unpredictable
behavior in nonsmooth contexts, both theoretically and numerically, this result justifies theoretically
that the practical impact is somewhat negligible in the context of common machine learning usage.

Related work: Spurious behaviour of AD in nonsmooth context has been investigated in [23} 25|
26, 127, 21 130, [12]. In particular, [27, 30] considers qualification conditions allowing to construct
AD algorithms which compute proper Clarke subgradients [17, 138, 20]. However qualification is
extremely hard to check and almost impossible to enforce in practice. Let us also mention [2] which
uses the notion of lexicographic derivatives, but, at this day, algorithmic computations are limited to
forward mode for the moment which is of little use in machine learning.

[23} 1251127, 26, 128} 29] use settings closer to ours. Piecewise smooth functions, selection derivatives
and their variational properties are extensively described in [40]]. Our approach differs because we
adopt more stringent definitions and rigidity assumptions, which allows in turn for much stronger
properties. For instance, we fully treat backward algorithmic differentiation which is the most useful
tool in machine learning.

Altogether, our contribution is an accessible and elementary framework for the conservative fields
recently introduced in [[12f], without explicitly requiring the introduction of semialgebraic geometry
and o-minimal structures [21} [19]].

Stochastic approximation algorithms [37} 4} 31} (5} [13] are widely used in machine learning contexts
(1390 114} 35} 132} [15} |18, [16]. For example [20] describes asymptotics of stochastic subgradient
algorithms in nonsmooth, nonconvex settings. In contrast, we do not assume access to subgradients
and instead explicitly model the behaviour of AD in optimization contexts. Our convergence results
are based on [12], complemented by a new result on “the avoidance of critical traps” in the line of [7]
in the context of long run convergence.

Notations The ambient space is Euclidean RP. For each k, e, is the k-th vector of the canonical
basis. We use D: R™ =3 RY for set valued functions, i.e functions from R™ to the subsets of R?.
The convex hull of A = RP? is denoted by conv(A). All proofs are postponed to the Appendix.

2 Basic piecewise differentiable functions and selection gradient

We introduce a simple but vast class of functions that model rigorously the machine learning models
and losses for applications such as deep learning.

Definition 1 (Elementary (log-exp) functions) Elementary (log-exp) functions are functions on R?
described by a finite compositional expression involving basic operations, +, —, x, / as well as affine
mappings, exponential and logarithms, inside their domain of definition. We denote by £ the set of
elementary functions in any dimension p.

Examples include polynomials, logistic loss, boosting loss, Gaussian likelihood. Observe that the
corresponding functions are C® smooth on their open domains. Note also that if log and exp are not
present we obtain the field of rational functions. See Remark[T]in Appendix[A.3]

Definition 2 (Elementary index) s: RP? — {1,...,m} is an elementary (log-exp) index if the set
{x € RP, s(x) = i} is the solution set of a finite number of inequalities and equalities involving
elementary functions on RP. The set of such functions is denoted by I (for any input dimensions p).

Examples: The Heaviside function, the index of the largest or k-th largest element in a vector, the
sign pattern of a vector in R? which is indexed by integers from 1 to 27.

Definition 3 (Elementary selection) Let f: RP — R be continuous. We say that f has an elemen-
tary (log-exp) selection (s, f1,..., fm)if s: R? — (1,...,m) is an elementary index in Z and for
i=1...,m, f;: RP — R are elementary functions in £, such that for all z € R?,

f(x) = fs() (@). 2

The m + 1-uplet (s, f1,..., fm) is a representation of f, and f admits an elementary (log-exp)
selection. The class of such functions is denoted by Siogexp O simply here S. This extends to
functions from R? to R™ by applying a coordinatewise definition with a common elementary index.

Observe that the representation is never unique, both in s and in the sequence f1, ..., f;,. The ReLU,

hinge loss, maximal entry, k-th largest entry functions are elementary selections. Note also that
continuity is part of the definition.

Proposition 1 (Stability of S by o, +, x) The class S of elementary selections is stable by compo-
sition, sum and product.

The class S is close to the one of piecewise C* functions, see e.g [40], but it is also much more
disciplined since indices and functions are required to satisfy strong “log-exp” rigidity assumptions.

2.1 Selection derivative

Functions in S can be associated with a flexible notion of generalized derivative based on the selection
structure of the underlying function.

Definition 4 (Selection gradient) (i) Let f: R? — R, in S with selection (s, fi, ..., fm). We set
the selection derivative of f with respect to s to be

Vof:x e Vo (). 3)

This extends to multivariate outputs by applying the definition coordinatewise, which leads to a

notion of a selection Jacobian denoted by J°.
(i1) Given a function f € S, a selection derivative is a derivative of the form for a given

representation. In that case a selection derivative of f is merely denoted by \Y f.

Example: Set forall z € R, fi(z) = 0, fo(z) = x and s(x) = 1 forz < 0 and s(z) = 2 for x > 0.
This this defines the relu function and its selection derivative at 0 is 0. See more in Appendix

Remark: (a) v f is different from any known notion of subgradient. Set for all z € R, f;(x) = 0,
fo(z) = x and s(z) = 1 for z # 0 and s(0) = 2. This defines a elementary selection for the null

A~

function however, V* f(0) = 1. This is the zero function of the introduction.

(b) This formalizes what one would obtained by differentiating a code with all decision branches
frozen and hence represents the numerical output of AD (see[d). Note that one only needs one branch
and do not need to explore all possible outcomes, avoiding combinatorial explosion.

The properties of selection derivatives might seem too liberal at first sight and too disconnected from
the original function, but this is not the case as shown below.

Proposition 2 (Integration along segments) Let f: R? — R be in S, with elementary selection
(8y f1,- -+ fm)- Then f is locally Lipschitz and for all y, x in RP.:

fo) - 1@ = | 9ty)y

Proposition 3 (Gradient almost everywhere) Let f: RP — R be in S, with elementary selection
(8y f1,- -+ fm)- There exists sets Uy, ..., Uy with nonempty interior such that Ufil cl(U;) = RP

and for each i = 1, and for all x in the interior of U;, @Sf(ac) = V f(x). Furthermore, the U; are
solution sets of equations and inequalities involving functions in E.

Remark: Although less transparent, Proposition 2]is not a consequence of Proposition[3] Both results
crucially rely on the rigidity of elementary functions in £ (Definition[3)), not only on their piecewise
smoothness. This a central novelty of our approach.

2.2 A calculus for selection derivatives

One has an unusual differential calculus: although it does not involve the linearity of some
(sub)differential operator, the selection derivative of a sum gives a sum of selection derivatives
provided that the selection is refined.

Proposition 4 (Chain rule) Ler F': RP* — RP2 such that each of its coordinate f;, i = 1...po, is
inSand g: RP2 — R, g € §. Consider a selection Jacobian for F, Jg: RPt — RP2*P1

V fi(x)"
€T — : (4)

ﬁfq ()"
Then g o F € S and the function © — jp(x)T@g(F(x)) is a selection derivative for g o F.

Proposition @] extends readily to the case when the outer function g is multivariate. For example, we

have a sum rule @(f+g9) = v f+ @g for full-domain functions f, g in S. Indeed, if F} and F; are
elementary selections then F} o F; € S and

jFlon = (jF1 o Fy) x jFQ- 5

3 Programs and elementary selections

Numerical programs encode numerical functions by combining elementary functions using a prede-
cessor relation which models program execution. In what follows, m can be seen as an estimate of
the memory footprint of a progra while p and ¢ the number of inputs and outputs respectively.

Given positive integers m > p + g, a predecessor relation is a set valued map pr: {1,...,m} =3
{1,...,m} such that

e Forie{l,...,m}andj € pr(i),j <i. eForie {p+1,...,m}, pr(i) is nonempty.

A predecessor relation induces a partial order on the set
of integers from 1 to m and hence can be represented
by a directed acyclic graph [34, Theorem 9.4.9]. Given Program data: p,q > 1,

Algorithm 1: Program evaluation

(p,q, m) and a predecessor relation pr, a elementary m = p + g, pr a predecessor
function sequence g = (9:)fL,+1 is a set of functions relation, G = (9i)7%,+1 an adapted
such that g;: RP*® » R, and g; € S, for all i = function sequence.

p+1,...,m. A program P is then given by the data
P = (p,q,m,pr,G), while its evaluation is described
in Algorithm[I} We denote by P the set of programs,
and P, , when input-output dimensions have to be made

Imput: = = (21,...2,)
I: fork=p+1,p+2,...mdo
20 @) = gr(Tpr(r)) Where

explicit. Tor(k) = (Iz‘)iepr(k)-
By definition a program encodes a function, but the 3: end for
representation is not unique. We express this fact below Return: y := (xj)g.”:mf g+l

through the canonical surjection F of the introduction.
The following proposition illustrates the fact that practitioners implicitly implement selection
functions when writing programs.

Proposition 5 (Programs represents elementary selections) Through its input-output correspon-
dence each program P of the form (3) induces a function which is an elementary selection. In other

words F(P) € S.

4 Algorithmic differentiation and a variational model

Algorithmic differentiation is based on the idea of propagating infinitesimal variations in a program
P through the chain rule, either forward or backward.

Algorithm 2: Algorithmic differentiation computes selection gradients

Program data: p > 1, m > p + 1, pr a predecessor relation, G = (g;);Z,,, ; an adapted
function sequence.

Input: variables (z1, ... z,,) computed by Algorithm d; = (d;[j])P P! = ?gi(xpr(i)),

j=1
t=p+1...m
1: Forward Ig&de: 1: Backward mode:
2: Initialize: F = ey, 2: Initialize: v = e,
k=1,....p. 3: fort =m,...p+1do
3:fork=p+1,...mdo 4 for j e pr(t) do
4: P Z oz L 5 Update coordinate j of v:
—-— = ——di[J q .
or e 0T vlf] := vlj] + v[t]de[5]
where x = (z1,...,2p). 6: end for
5: end for 7: end for
Return: 2= Return: (v[1],v[2],...,v[p]).

*We consider programs which do not overwrite values in memory

Consider Algorithm [T} and assume for simplicity that ¢ = 1. The program can be seen as the
implementation of m — p successive transformations on R™, of the form

Gki R™ — R™
xr— T+ ek;(gk(xpr(k,)) - .Tk),

for k = p+1,...,m which belong to S. Algorithm [2]combines gradients dynamically along two
modes: forward or backward. Let us describes these two forms.

Fix x € R™. After applying Algorithm |1} for each k, let d;, € R™ be the selection gradient

@g;@(xpr(k.)), appending 0 to non dependant coordinates. A selection Jacobian of Gy, (at x) is given
by

Ja, =T —epel + epdr

Denote by J, € R"*P, the matrix whose entries are 0, except for diagonal entries which are 1. In
Algorithm 2] the forward mode computes

elda, ... Ja, Iy =el (I —emel + emdz) (I — epﬂegﬂ + ep+1d;+1) JIp

which is a selection Jacobian thanks to the chain rule in (3. On the other hand the backward mode
computes

m p+1

J;;F (I + dp+1eg+1) .. (I + dmeﬁ) €m.-
This quantity turns out to be the same as the one computed by the forward mode thanks to:

Lemmal Letp,me N, 0 < p < m. Assume that fori =p+ 1,...,m we have d; € R™. Then we

have

P, (I—- ep+1eg+1 + dp+1eg+1) (I = emen + dme,Tn) =P, (I+ dp+1eg+1) I+ dmefn)
(6)

where I € R™*™ is the identity matrix and P, € R™*™ denotes the projection on the first p
coordinates.

Denote by A : P, 1 — P, the algorithmic-differentiation operator. This establishes the following
fundamental fact which is at the root of this work. This result asserts that practitioners implicitly
implement selection derivatives when writing numerical programs and calling forward or backward
AD on these programs.

Theorem 2 (Algorithmic differentiation outputs a selection gradient) Algorithmic differentia-
tion of a given program, i.e., A(P), outputs a selection derivative of the underlying numerical
Sunction. In other words there exists a representation of the numerical function JF (P) with elementary
index s such that:

F(A(P)) = V*F(P).

5 Algorithmic differentiation at work

5.1 Selection derivatives, conservative fields and Clarke subgradient

The asymptotic study of first-order optimization methods implies limiting processes and necessitates
thus the introduction of graph closed operators. Given a representation for f, we may construct such
a convex-valued mapping pointwise as follow

Definition 5 (Representation minimal operator) Let f € S with elementary selection
(s, f1,.-, fm). Forany x e RP,set I(x) = {i € {1,...,m}, f(x) = fi(z)}. The index closure of
V? f is given by the set valued map
Dj: RV 3 RP
x 3 conv ({Vfi(z), ie I(z)}).
where the double arrows express that the map has values in subsets of R?, much like subgradients,
and conv denotes the convex hull.

SMinimality relates to the representation of the function, not the function itself. This is the minimal
convex-valued operator, constructed pointwise and guaranteed to be graph-closed.

The role of D7 is to capture all possible outputs of AD including all possible program branches. Of
course, due to combinatorial explosion, this quantity is intractable in practice. Its introduction here
is only instrumental, we do not use it in algorithms, we just need to access one of its element, for
example using a selection derivatives, obtained from AD. A point x satisfying 0 € D7} (z) is called a
selection critical point. We will often drop the index s and write Dy = D5.

The two following results highlight crucial properties of D in terms of optimization, they again rely
on the rigidity constraint of elementary functions.

Theorem 3 Let f € S with elementary selection (s, f1, ..., fm) and Dy be as in Deﬁnition Then
Dy is conservative for f, that is for all absolutely continuous curves ~: [0, 1] — RP, for almost all
t €[0,1], f o~ is differentiable and

SIO0) = A0, Yoe Dy().

The previous result generalizes Proposition [2] by allowing to integrate arbitrary selections along
absolutely continuous curves. This connects our work to the general setting of [12], note that D¢ has
a closed graph thanks to Proposition [6]in Appendix [A.3]

In [40]], the author considers the essential index set, for each x € RP,

Sp(x) ={ie{l,....,m}, vecd(int({y, f(y) = fiw)})} < S(=).

Considering Definition 5| with Sp(x) instead of I(z) leads to the Clarke subgradient, which can also
be defined as
0°f(x) = conv{d e RP : Jx, € Ay, xp, — 2,V f(z) — d}

where A is the dense set of differentiability points of f. While I(z) can be computed pointwise
(check finitely many equalities), it might be very hard to check membership in Sg(z) without
restrictive qualification conditions on programs [30]].

Hlustration with ReLU and sorting: (a) Set for all x € R, fi(x) = 0, fa(x) = z, s(x) = 1 for
2 < 0and s(z) = 2 for v > 0. This is relu. In this case Dy = drelu, the convex subgradient.

(b) Let F': RP — RP to be the sorting function which associates to x a vector Pz where P is
any permutation such that Px belongs to the set of vectors which values are sorted in descending
order coordinatewise. F' obviously has an elementary selection and the construction which we have
proposed leads to

Dp:x—conv{PeA, Pz=F(x)},

where A denotes the set of permutation matrices of size p x p. Then D is a conservative mapping for
F and it actually corresponds to the Clarke Jacobian.

5.2 Convergence of gradient type algorithm and criticality of limit points

Optimization processes in learning are supposed to provide at least a critical point x of the loss, i.e. a
point satisfying 0 € 0° f (). When using AD one enlarges the definition of criticality into 0 € D(x)
and artificial critical points appear, they satisfy 0 ¢ 0°f(z) and 0 € Ds(x). Artificial critical points
could possibly trap the optimization process in strongly non-optimal situations, we thus have to
determine if they have an impact on learning phases.

We consider the problem

1 n
. _ 1 4 7
min J(z) = — ; filx) (7)
where f;: RP — R, f; € §,7 =1,...,n. We consider the following algorithm, given o € RP, a

sequence of positive step sizes (7%)xen and a sequence of iid indices (Ij)xen taken uniformly in the
nonempty subsets of {0,...,n},

~ 1
Tht1 = Tk — VeV S, (xk) where f; = mez, I c {1, - ,n}. (8)

el

Note that as discussed in Section[d]selection derivatives can be computed by AD if f; are given by the
data of numerical programs as in (3)), and could be far from usual notions of subgradients. Hence this
algorithm models explicitly the training of a nonsmooth deep network using existing backpropagation
implementations. Note that J € S and that 1/n 2?:1 v fi is a selection gradient for J as stated in

Proposition denote by VJ this quantity and D ; the corresponding set valued field (Definition .
The following result illustrates that selection critical points are the only attractors for the recursion
and that generically such attractors are actually Clarke critical. The first result stands on the theory
developed in [5]. The second parallels developments in [7] in the context of long run convergence.
The spurious behaviour illustrated in Figure[T]does not affect asymptotics, for typical initialization.

Theorem 4 (Convergence and insignificance of artefacts) Let for all k, v, = cay where ¢ €
(0,1] and ay, = o(1/log k) and K < R? be open. Assume that for all ¢ € (0,1] and all zy € K the
sequence in (8) is bounded almost surely.

e Forall xg € K, almost surely, J(xi) converges as k tends to infinity and all accumulation
points, T, of (xy,)ken are selection critical points: 0 € D ;(Z).

e For almost all ¢ € (0,1], almost all xg € K, and almost surely, any accumulation point, T,
of () ken is Clarke critical: 0 € 0°J(T).

6 Conclusion

The current work departs from existing approaches to nonsmooth algorithmic differentiation in a
fundamental way. We propose to study the backward mode of AD, as implemented in machine
learning, without any modification. Our theoretical results model thus AD “as is”, and our focus
is precisely on its unpredictable behavior in a nonsmooth context, addressing an issue which is
ubiquitous in machine learning. Our main contribution was to prove that, in a stochastic optimization
context, this spurious behavior is essentially harmless from a theoretical point of view, providing
justifications for the use of AD outside of its original domain of validity in machine learning.

We achieve our goal by modeling sharply common machine learning functions and their differentiation
using selection derivatives, a known concept, which models the way AD differentiates nonsmooth
programs. We restrict it to certain classes of elementary functions, opening the possibility to use
powerful geometric techniques.

Further questions include convergence rates and complexity issues, hardly tackled at this day, let us
mention the attempt of [43]]. Our theory is limited to continuous functions and an interesting venue
is to extend it to discontinuous functions, in view of treating ranking operations [10] ubiquitous in
recommendation systems, or more generally differentiating through an argmax [6].

Broader impact

One of the goals of the paper is to raise awareness about an important issue of in the training of ML
methods: the spuriousness of AD. To address adequately this issue, we think it is necessary to include
algorithmic differentiation explicitly in the study of optimization algorithms, a point of view which is
largely ignored by today’s machine learning community.

Acknowledgments and Disclosure of Funding

The authors acknowledge the support of ANR-3IA Artificial and Natural Intelligence Toulouse
Institute, Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant
numbers FA9550-19-1-7026, FA9550-18-1-0226, and ANR MasDol. J. Bolte acknowledges the
support of ANR Chess, grant ANR-17-EURE-0010 and ANR OMS. The authors would like to thank
anonymous referees for careful reading of this work and useful suggestions. The authors would like
to thank N. Asher and S. Gerchinovitz for useful discussions. We also warmly thank J. Malick who
triggered this research.

References

[1] Abadi M., Barham P., Chen J., Chen Z., Davis A., Dean J., Devin M., Ghemawat S.,
Irving G., Isard M., Kudlur M., Levenberg J., Monga R., Moore S., Murray D., Steiner B.,
Tucker P., Vasudevan V., Warden P., Wicke M., Yu Y. and Zheng X. (2016). Tensorflow: A
system for large-scale machine learning. In Symposium on Operating Systems Design and
Implementation.

[2] Barton, P. I., Khan, K. A., Stechlinski, P., Watson, H. A. (2018). Computationally relevant
generalized derivatives: theory, evaluation and applications. Optimization Methods and
Software, 33(4-6), 1030-1072.

[3] Baydin A., Pearlmutter B., Radul A. and Siskind J. (2018). Automatic differentiation in
machine learning: a survey. Journal of machine learning research, 18(153).

[4] Benaim, M. (1999). Dynamics of stochastic approximation algorithms. In Séminaire de
probabilités XXXIII (pp. 1-68). Springer, Berlin, Heidelberg.

[5] Benaim, M., Hofbauer, J., Sorin, S. (2005). Stochastic approximations and differential
inclusions. STAM Journal on Control and Optimization, 44(1), 328-348.

[6] Berthet, Q., Blondel, M., Teboul, O., Cuturi, M., Vert, J. P., Bach, F. (2020). Learning with
differentiable perturbed optimizers. arXiv preprint arXiv:2002.08676.

[7] Bianchi, P, Hachem, W., and Schechtman, S. (2020). Convergence of constant
step stochastic gradient descent for non-smooth non-convex functions. arXiv preprint
arXiv:2005.08513.

[8] Bischof, C., Carle, A., Corliss, G., Griewank, A., Hovland, P. (1992). ADIFOR-generating
derivative codes from Fortran programs. Scientific Programming, 1(1), 11-29.

[9] Bischof, C., Khademi, P., Mauer, A., Carle, A. (1996). ADIFOR 2.0: Automatic differ-
entiation of Fortran 77 programs. IEEE Computational Science and Engineering, 3(3),
18-32.

[10] Blondel, M., Teboul, O., Berthet, Q., Djolonga, J. (2020). Fast Differentiable Sorting and
Ranking. arXiv preprint arXiv:2002.08871.

[11] Bolte, J., Daniilidis, A., Lewis, A., Shiota, M. (2007). Clarke subgradients of stratifiable
functions. SIAM Journal on Optimization, 18(2), 556-572.

[12] Bolte, J. and Pauwels, E. (2020). Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning. Mathematical Programming.

[13] Borkar, V. (2009). Stochastic approximation: a dynamical systems viewpoint (Vol. 48).
Springer.

[14] Bottou L. and Bousquet O. (2008). The tradeoffs of large scale learning. In Advances in
neural information processing systems (pp. 161-168).

[15] Bottou L., Curtis F. E. and Nocedal J. (2018). Optimization methods for large-scale
machine learning. Siam Review, 60(2), 223-311.

[16] Castera C., Bolte J., Févotte C., Pauwels E. (2019). An Inertial Newton Algorithm for
Deep Learning. arXiv preprint arXiv:1905.12278.

[17] Clarke F. H. (1983). Optimization and nonsmooth analysis. Siam.

[18] Chizat, L., and Bach, F. (2018). On the global convergence of gradient descent for over-
parameterized models using optimal transport. In Advances in neural information process-
ing systems, 3036-3046.

[19] Coste M., An introduction to o-minimal geometry. RAAG notes, Institut de Recherche
Mathématique de Rennes, 81 pages, November 1999.

[20] Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J. D. (2018). Stochastic subgradient method
converges on tame functions. Foundations of Computational Mathematics.

[21] van den Dries L. and Miller C. (1996). Geometric categories and o-minimal structures.
Duke Math. J, 84(2), 497-540.

[22] Griewank, A., Juedes, D., Utke, J. (1996). Algorithm 755: ADOL-C: a package for
the automatic differentiation of algorithms written in C/C++. ACM Transactions on
Mathematical Software (TOMS), 22(2), 131-167.

10

[23] Griewank, A., Walther, A. (2008). Evaluating derivatives: principles and techniques of
algorithmic differentiation (Vol. 105). STAM.

[24] Griewank, A. (2012). Who invented the reverse mode of differentiation. Documenta
Mathematica, Extra Volume ISMP, 389-400.

[25] Griewank A. (2013). On stable piecewise linearization and generalized algorithmic differ-
entiation. Optimization Methods and Software, 28(6), 1139-1178.

[26] Griewank A., Walther A., Fiege S. and Bosse T. (2016). On Lipschitz optimization based
on gray-box piecewise linearization. Mathematical Programming, 158(1-2), 383-415.

[27] Griewank, A., Walther, A. (2016). First-and second-order optimality conditions for piece-
wise smooth objective functions. Optimization Methods and Software, 31(5), 904-930.

[28] Griewank, A., Rojas, A. (2019, September). Treating artificial neural net training as a
nonsmooth global optimization problem. In International Conference on Machine Learning,
Optimization, and Data Science (pp. 759-770). Springer, Cham.

[29] Griewank, A., Walther, A. (2020). Beyond the Oracle: Opportunities of Piecewise Differ-
entiation. In Numerical Nonsmooth Optimization (pp. 331-361). Springer, Cham.

[30] Kakade, S. M. and Lee, J. D. (2018). Provably correct automatic sub-differentiation for
qualified programs. In Advances in Neural Information Processing Systems (pp. 7125-
7135).

[31] Kushner H. and Yin, G. G. (2003). Stochastic approximation and recursive algorithms and
applications (Vol. 35). Springer Science & Business Media.

[32] LeCun Y., Bengio Y., Hinton, G. (2015). Deep learning. Nature, 521(7553).

[33] Lee, W., Yu, H., Rival, X., Yang, H. (2020). On Correctness of Automatic Differentiation
for Non-Differentiable Functions. arXiv preprint arXiv:2006.06903.

[34] Lehman, E., Leighton, T., and Meyer, A. R. (2010). Mathematics for computer science.
Technical report, 2006. Lecture notes.

[35] Moulines E. and Bach, F. (2011). Non-asymptotic analysis of stochastic approximation
algorithms for machine learning. In Advances in Neural Information Processing Systems
(pp. 451-459).

[36] Paszke A., Gross S., Chintala S., Chanan G., Yang E., DeVito Z., Lin Z., Desmaison A.,
Antiga L. and Lerer A. (2017). Automatic differentiation in pytorch. In NIPS workshops.

[37] Robbins H. and Monro, S. (1951). A stochastic approximation method. The annals of
mathematical statistics, 400-407.

[38] Rockafellar, R. T., Wets, R. J. B. (1998). Variational analysis. Springer.

[39] Rumelhart E., Hinton E., Williams J. (1986). Learning representations by back-propagating
errors. Nature 323:533-536.

[40] Scholtes, S. (2012). Introduction to piecewise differentiable equations. Springer Science &
Business Media.

[41] Speelpenning, B. (1980). Compiling fast partial derivatives of functions given by algo-
rithms (No. CO0O-2383-0063; UILU-ENG-80-1702; UTUCDCS-R-80-1002). Illinois Univ.,
Urbana (USA). Dept. of Computer Science.

[42] Wilkie, A.J. (1999). A theorem of the complement and some new o-minimal structures.
Selecta Mathematica, 5(4), 397-421.

[43] Zhang, J., Lin, H., Sra, S., Jadbabaie, A. (2020). On Complexity of Finding Stationary
Points of Nonsmooth Nonconvex Functions. arXiv preprint arXiv:2002.04130.

11

