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I calibrate a Multi-Risk SIR model on the covid pandemic to 
analyze the impact of the age-specific confinement and PCR testing 
policies on incomes and mortality. Two polar strategies emerge as 
potentially optimal. The suppression policy would crush the curve 
by confining 90% of the population for 4 months to eradicate the 
virus. The flatten-the-curve policy would reduce the confinement 
to 30% of the population for 5 months, followed by almost one year 
of free circulation of the virus to attain herd immunity without 
overwhelming hospitals. Both strategies yield a total cost of around 
15% of annual GDP when combining the economic cost of confinement 
with the value of lives lost. I show that hesitating between the 
two strategies can have a huge societal cost, in particular if the 
suppression policy is stopped too early. Because seniors are much 
more vulnerable, a simple recommendation emerges to shelter them 
as one deconfines young and middle-aged people in order to build our 
collective herd immunity. By doing so, one reduces the death toll of the 
pandemic together with the economic cost of the confinement, and the 
total cost is divided by a factor 2. I also show that expanding the mass 
testing capacity to screen people sent back to work has a large benefit 

1 I thank Nour Meddahi, Moritz Meyer-ter-Vehn, Laurent Miclo, Arnold Migus, Stefan Pollinger, the members of 
the French Academy of Medicine, and participants to the TSE webinar series on covid-19 for helpful comments. 
The research leading to these results has received the support from the ANR Grant Covid-Metrics.

2 Toulouse School of Economics, University of Toulouse-Capitole
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under various scenarios. This analysis is highly dependent upon 
deeply uncertain epidemiologic, sociological, economic and ethical 
parameters.
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1 Introduction
Because the covid-19 pandemic has huge economic consequences, it makes sense for economists
to explore the dynamics of this virus with the aim of searching for efficient public policies.
This reminds me what economists have been able to do in the field of climate economics over
the last four decades. I am neither an epidemiologist nor a climatologist, but I believe that
combining these fields with economics is important for the policy debate, given the key issue
of the economic cost of fighting the coronavirus or climate change.

In this paper, I explore a Multiple-Risk Susceptible-Infected-Recovered (MR-SIR) model
with heterogeneous citizens. People differ by their age, by the intensity of their social inter-
actions, by their ability to transmit the virus, and by their probability to be hospitalized or
to die. If infected, they can be symptomatic or not. Their reproduction rate is a function of
whether they are quarantined, confined or freed to live their life. PCR tests can be used to
detect infected people among the population of apparent susceptible people (asymptomatic
contagious people belong to this category). In my model, individual reproduction numbers,
and therefore the dynamics of the pandemic, depend upon the implemented public policy in
terms of the intensity of confinement and PCR testing, which can be age-specific. I compare
the merits of different intuitive public policies.

It is by now well recognized that the laissez-faire strategy is not an efficient solution, given
the high mortality rate of SARS-Cov-2 compared to the standard flu. With a herd immunity
attainable only with a rate of immunity around 80% and a mortality rate around 1%, this
strategy would kill 0.8% of the population, not taking account of the excess mortality due
to the overcrowding of hospitals under this scenario. In the absence of treatment or vaccine,
two families of health policies remain, the "suppression" (or "crush-the-curve") strategy and
the "flatten-the-curve" strategy. Suppression policies consist in imposing various rules such
as strict social distancing, mass testing, confinement of susceptible people and quarantine
of contagious people, with the aim to reduce the reproduction number as much as possible
below unity to crush the curve of infection. To illustrate, China has implemented such a
strategy around Wuhan, and Italy, Spain and France have used similar strategies until early
May 2020. Because the dynamics of the pandemic has an exponential nature, following such
a strategy until the full eradication of the virus in the population may takes time that most
pandemic models measure in months if not in years. The economic cost of the suppression
strategy could therefore be huge. The termination of the pandemic also requires a specific
method (testing-and-tracing) to eliminate the last clusters of infection.

The "flatten-the-curve" strategy consists in imposing much weaker restrictions in order to
reduce the speed of propagation of the virus so that the initial wave of infection is manageable
by the health care system. This is because the ICU capacity is limited, and its overcrowding
is known to dramatically increase the infected-fatality ratio of the pandemic. Stabilizing the
flow of hospitalizations requires a weaker confinement than in the suppression strategy, and
is therefore less economically costly. Under this family of policies, the population converges
towards herd immunity, whose level depends upon the intensity of the social restrictions. At
some date along this asymptotic herd immunity, the prevalence rate will become so small
that eradication can also be obtained with some form of testing-and-tracing method. In
spite of the preservation of the health-care system, flatten-the-curve strategies are expected
to impose a much larger death toll to the population since it requires that a large fraction of
the population to be infected sometimes during the pandemic.
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Age Class Prob[hospitalized if infected] Prob[deceased if infected]
0-18 0.10% 0.001%
19-64 2.00% 0.15%
65+ 12.27% 3.65%

Table 1: Estimation of the hospitalization rate and of the infection-fatality proportion by age
class in France. Source: Saltje et al. (2020) and INSEE.

To sum up, compared to crush-the-curve strategies, flattening the curve typically yields
more lives lost but a smaller GDP loss. Comparing the two families of policies from a welfare
point of view thus requires valuing lives. Within economics, this is a relatively consensual
issue. Outside economics, valuing lives is vastly rejected, in spite of the fact that public
institutions have been using a "value of statistical life" for at least four decades in the Western
world.1 In this paper, I follow the traditional approach used by health and environmental
economists in which health effects of the public policies under scrutiny are translated into
income equivalent. I discuss this specific issue in the context of the current pandemic in
Gollier (2020).

A striking feature of covid-19 is its huge differential health impact on human being across
different age classes, as shown in Table 1 for the case of France. If the objective is to minimize
the death toll or to make sure hospitals are not submerged, it is tempting to protect senior
people from the virus. The problem is that doing so marginally increases the mortality risk for
the younger generations, thereby raising the question of the relationship between the value of
life and age. In this paper, I value life to 60 years, 40 years and 20 years of annual GDP/cap
respectively for the young, middle-aged and senior people. I show that a strict lockdown of
the most vulnerable persons in our society during the most active phase of the pandemic
is an efficient policy to reduce both the death toll and the economic cost of the pandemic,
independent upon whether one pursue the suppression or the flatten-the-curve objective.

A few recent papers have supported similar age-targeted deconfinement strategies. Ace-
moglu, Chernozhukov, Werning and Whinston (2020) characterize two intertemporally opti-
mal exit strategies from lockdown, one in which the policy is constrained to be uniform across
age classes, and the other in which different age classes can be treated in a discriminated
way. They claim that 2.7 million lives could be saved in the United States by maintaining a
stricter confinement for the seniors.2 Favero, Ichino and Rustichini (2020) compare different
age-specific policies for Italy and come to the same conclusion of the overwhelming dominance
of confining elderly people longer. Fischer (2020) and Wilder et al. (2020) also support a
strong sheltering of the vulnerable persons. Brotherhood, Kircher, Santos and Tertilt (2020)
explore the impact of various confinement policies on the incentive of different age classes to
behave efficiently. All those models share the same fundamental structure of the MR-SIR
framework that I use in this paper.

1For more information, see for example Drèze (1962), Schelling (1968), Jones-Lee (1974), Shepard and
Zeckhauser (1984), Murphy and Topel (2006), Viscusi (2009), US-EPA (2010) and Quinet (2013).

2The paper of Acemoglu et al. (2020) has the great advantage to describe the Pareto frontier of efficient
policies. In this paper, I don’t search for an intertemporally optimal solution, but I compare different intuitive
strategies that have been used, or are expected to the used in the future.
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What did I learn from this analysis beyond the high social value of discriminating the
intensity of the confinement across different age classes? Several things in fact. First, I
learned that in the family of reasonable policies, there exists two polar solutions, one with
strong restrictions with the objective to crush the curve as soon as possible, and another
one with much milder restrictions just to flatten the curve. Under the calibration of my
MR-SIR model, the suppression strategy necessitates confining 90% of the entire population
for 125 days. The flatten-the-curve strategy imposes the confinement of 30% of the entire
population for six months, followed by almost a year of a low level of the virus prevalence
in the population. These two very different strategies yields a similar total cost around 15%
of annual GDP, which combines the economic cost of the confinement and the value of lives
lost.

Second, the planner should be strong in her policy choice. Hesitation and trembling hand
can have a high welfare cost. To illustrate this point, suppose that the country initially plan
to follow the suppression strategy of confining 90% of the population during 125 days. But
suppose that it changes her mind after t days of strong confinement to follow the flatten-the-
curve strategy in which only 30% of the population remains confined until herd immunity.
Figure ?? shows the relationship between the duration of the suppression strategy and the
total cost of the pandemic. For a zero duration, we have the best flatten-the-curve policy, and
for a 125-day duration, we have the best suppression strategy. But stopping short of the 125-
day duration of the suppression policy will generate a high-cost second wave of the pandemic.
I describe this dynamic in Figure 1 in the Appendix when abandoning the suppression policy
after 95 days, one month short of what is necessary to eradicate the virus. Switching to the
flatten-the-curve strategy a few days short of the 125 days dramatically increases the total
cost of the pandemic, which increases from 15% of annual GDP to around 24%, because of
the second wave of infection that this "trembling hand" policy generates.

Third, because of the coexistence of these two polar policies yielding similar total costs, an
important international coordination problem emerges. If all countries select the suppression
strategy except one which follows the flatten-the-curve strategy, this contrarian country will
impose a huge negative externality on the international community. Indeed, the suppression
strategy has this weakness to converge to a low rate of immunization, far away from the herd
immunity level in the absence of social distancing. Therefore, because flattening the curve
implies a much longer duration of the pandemic, the contrarian country imposes to other
countries the risk to export the virus, triggering a new worldwide wave of the pandemic.
The absence of coordination implies that countries implementing stronger confinement and
quarantine rules will have to limit their interactions (trade, human mobility) with other
countries, yielding potentially high additional costs that I do not count in this paper.

Fourth, I characterize the tradeoff between the strength and the duration of the confine-
ment. In the family of flatten-the-curve policies, stricter confinement rules delay the herd
immunization and increases the duration of the pandemic. In the family of suppression poli-
cies, stricter confinement rules speed up the eradictation of the virus and reduce the duration
of the pandemic. Thus, the relationship between the intensity of the confinement and the du-
ration of the pandemic is hump-shaped. This observation has important policy implications.
In particular, when implementing the suppression strategy, the stricter the confinement rules
the better.
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Figure 1: Dynamics of the pandemic when following the following strategy. After 21 days
of free circulation of the virus, 90% of the population is confined for 95 days. Rather than
maintaining this strong confinement until day 125 where the virus is fully eradicated, one
shifts to the best flatten-the curve strategy one month short of this duration. Under this new
flatten-the-curve strategy, a weak 30% confinement is established as soon as soon as the bed
occupancy in hospital attains 80% of capacity during the second wave. Full exit to lockdown
is decided when this occupancy rate goes below 20%.

Fifth, there is an obvious point to be made on the dominance of the mass testing strategy
over the mass confinement strategy, as claimed at the beginning of the pandemic by the World
Health Organization ("Test, test, test!").3 When the prevalence rate is 2%, it makes little
sense to confine everyone, just to make sure that these 2% will have a small reproduction
rate. If one could test all people exiting from lockdown, we could reduce the propagation
of the virus without imposing the huge cost of freezing the economy. I make this important
point in Section 7, since my model is able to simulate the impact of uniform or age-specific
testing strategies.

This pandemic simulation exercise heavily relies on the implicit assumptions of the MR-
SIR model and on the calibration of its parameters. Thus, my analysis is not more reliable
than the estimation of the epidemiologic, sociological, ethical and economic parameters that
feed it. As I write this paper, the uncertainty that surrounds many of these parameters
should impose circumspection. Who knows the rate of asymptomatic cases, the mortality
rate for the young, the immunization of the recovered, the impact of the weather, or the date
of arrival of a mass vaccine? This paper, as most others on the same subject, is based on the
absurd assumption of known parameters. My agenda in climate economics over the last two
decades has been to determine the impact of the uncertainty surrounding the parameters of
climate integrated-assessment models on the optimal climate policy. My agenda for the next
two months is to do the same thing for the covid policy, based on the uncertainty-free model
presented in this paper.

3https://www.reuters.com/article/us-healthcare-coronavirus-who/test-test-test-who-chiefs-coronavirus-
message-to-world-idUSKBN2132S4
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2 The MR-SIR model
In the spirit of Acemoglu et al. (2020) and Favero et al. (2020), I examine a simple SIR
model with multiple classes of individuals. The whole population is partitioned in J classes
j ∈ {1, ..., J}. The size of class j is denoted Nj . In this paper, I partition the population
by age classes, since age is an important characteristics that influence the covid mortality
risk and the intensity of social interactions. Each person is either Susceptible, Infected,
Recovered or Death, i.e., the health status of a person belongs to {S, I,R,D}. This implies
that Sj,t + Ij,t + Rj,t + Dj,t = Nj at all dates t ≥ 0, where Sj,t for example measures the
number of persons in class j that are susceptible at date t. The total number of infected
persons in the whole population at date t is denoted It =

∑
j Ij,t, and similarly for St, Rt and

Dt. Although, there is no certainty about this aspect of the covid pandemic at this stage, I
assume that recovered people are immunized. They are also all detected as such at no cost.

A susceptible person can be infected by meeting an infected person. Following the key
assumption of all SIR models, this number of new infections is assumed to be proportional to
the product of the densities of infected and susceptible persons in the population, weighted by
the intensity of their social interaction. Using the Multi-Risk (MR) version of SIR modeling,
and with no further justification, this is quantified as follows:

Si,t+1 − Si,t = −

 J∑
j=1

βijtIj,t

Si,t. (1)

I will soon describe how βijt, which measures the intensity of the risk of contagion of a
susceptible person in class i by an infected person in class j at date t, is related to the social
interactions between these two groups and by the confinement and testing policy. Once
infected, a person of class i quits this health state at rate γi, so that the dynamics of the
infection satisfies the following equation:

Ii,t+1 − Ii,t =

 J∑
j=1

βijtIj,t

Si,t − γiIi,t. (2)

There are two exit doors to the infected status: One can either recover or die. The mortality
rate among the infected persons of class i at date t is denoted πi. It may be a function of the
total number of infected people in the whole population. So, we have

Ri,t+1 −Ri,t = (1− πi(It))γiIi,t (3)

Di,t+1 −Di,t = πi(It)γiIi,t. (4)

The pandemic starts at date t = 0 with εj infected persons and Nj − εj susceptible persons
in class j, j ∈ {1, ..., J}.

Consider an infected person in class j. How many persons will he infect in period [t, t+1]?
The answer is

∑
i βijtSi,t. Because on average such a person remains infected during 1/γi

periods, we can conclude that the reproduction number in class j at date t equals

<jt =
∑J

i=1 βijtSi,t

γj
. (5)
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A fraction κj of the infected people in class j are asymptomatic. In the absence of PCR
test, they cannot be identified within the population Ŝj,t = Sj,t + κjIj,t of "apparently sus-
ceptible" persons in class j. All symptomatic persons are quarantined, whereas all recovered
persons are freed from any constraint. What about the apparently susceptible persons? I
examine two policy instruments. A fraction ajt of Ŝj,t is PCR tested. I assume no error
in the test. People tested positive are quarantined, whereas the others are freed from any
constraint for period [t, t + 1]. Another fraction bjt remains confined during that period.
The remaining fraction 1− ajt − bjt is freed from any lockdown constraint during the period
in spite of their uncertain health state. As in Acemoglu et al. (2020), I assume that the
confinement is imperfect in the sense that a fraction 1 − θj of the confined people in class
j ignores the constraints. As a consequence, among susceptible persons in class i, the true
number of susceptible persons in that class who behave as confined is θibit at date t. Among
the infected persons in class j at date t, a proportion

• κjajt + 1− κj is quarantined;

• κjθjbjt is effectively confined;

• κj(1− ajt − θjbjt) is freed from the lockdown, or behaves in that way.

The intrinsic degrees (βq, βc, βf ) of contagion of an infected person depends upon whether
she is quarantined (q), confined (c) or freed (f), with βq < βc < βf . Let αij denote the
relative intensity of social interactions between a susceptible person of class i and an infected
person of class j. Thus, the intensity of the contagion of a susceptible person in class i by an
infected person in class j at date t equals

βijt = αij

(
βq(κjajt + 1− κj) + βcκjθjbjt + βfκj(1− ajt − θjbjt)

)
(1− θibit) (6)

For example, in the laissez-faire policy (a = b = 0), all susceptible persons work, together with
all asymptomatic infected persons, whereas the symptomatic ones are quarantined. Thus,
equation (6) this simplifies to

βijt = αij(βq(1− κj) + βfκj). (7)

An important feature of equation (6) is that the intensity of the contagion between age classes
i and j is a quadratic form of the confinement intensities bi and bj . In the case of a uniform
confinement rule, the intensity of contagion is quadratic in the intensity b of confinement.
This is due to the fact that the lockdown reduces the interaction from both sides, infected
and susceptible.

How can we compare different policies in relation to their welfare impacts? Two dimen-
sions should be taken into account. First, life is valuable, so death has a welfare cost. Let me
associate a cost `j to the death of a person in age class j. The pandemic has also an economic
cost associated to the deaths, quarantines, confinements and testing during the pandemic. I
assume that quarantined people are unable to work. A fraction ξj of confined people in class
j can telework. The value loss of a person in class j that cannot work is denoted wj . For
workers, wj can be interpreted as their labour income. For young people, it’s the lost human
capital due to the reduced quality of their education during lockdown. For the retired people,
it’s the value of their contributions to the common good. We must also take account of the
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economic cost of mass testing. In total, assuming a unit cost of PCR test equaling p, the
economic loss of the pandemic in class j is measured as follow:

Wj = p

∫ T

0
ajtŜj,tdt+ wj

(
(1− ξj)

∫ T

0
bjtSj,tdt

+
∫ T

0
(κj(ajt + (1− ξj)bjt) + 1− κj)Ij,tdt+

∫ T

0
Dj,tdt

)
, (8)

where T is the time horizon of the social planner, for example the discovery of a vaccine or
a treatment. The total loss is thus equal to

L =
J∑

j=1

(
`jDj,T +Wj

)
. (9)

A key dimension of the health policy during a pandemic is the risk of overcrowding the
health care system facing limited capacities in beds, ICUs or respirators for example. I
summarize this capacity problem by a capacity limit on covid beds in hospitals. I assume
that a fraction hj < 1 − κj of infected people in class j faces an acute version of the virus
and requires a bed to receive an efficient health care. If the overall bed capacity h is not
overwhelmed, then the mortality rate among infected people in class j is limited to π0j . But
of hospitals are overcrowded, then this mortality rate jump up to π1j > π0j :

πj(I1t, ..., IJt) =
{
π0j if

∑
i hiIit ≤ h,

π1j if
∑

i hiIit > h.

Finally, I assume that the pandemic can be obliterated by an aggressive testing-and-tracing
strategy if the global infection rate in the whole population goes below some threshold Imin.

3 Calibration of the MR-SIR model
Many of the parameters of this model remain highly uncertain, so caution should remain a
cardinal virtue when interpreting its results. I consider a daily frequency for this analysis, and
I calibrate the model on French data. There are J = 3 age classes, young (0-18), middle-aged
(19-64), and senior (65+). I normalize the French population of 67 million people to unity.
The size of the population in the different age classes is N = (0.227, 0.568, 0.205). At date
t = 0, we assume that 1% of the population is infected, uniformly across all age classes. I also
assume the arrival of a vaccine 1.5 years after the beginning of the pandemic. The minimum
rate of infection below which the virus can be obliterated in the population is assumed to be
Imin = 0.05%.

To simplify the calibration and given the limited available data, I assume that recov-
ery rates, asymptomatic rates, contagion rates, and telework rates are assumed to be age-
independent. The daily recovery rate γi = γ = 1/18 is assumed to be the same across age
classes. This corresponds to the observation that infected people remain sick for 2 or 3 weeks
on average. I also assume that the daily contagion rate under business-as-usual is 0.6, and
that this rate goes to βq = 0 for quarantined people, which is compatible with a basic repro-
duction number R0 = 2.5 in the absence of policy. In the case of confinement, the contagion
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rate is equal to βc = 0.1. As I write this paper, the rate of asymptomatic cases is particularly
difficult to calibrate. The Center for Evidence-Based Medicine has estimated this rate some-
where between 5% and 80%.4 He, Lau, Wu et al. (2020) found a 95% confidence interval
of [25%, 69%] for the proportion of asymptomatic cases. More recently, the US Center for
Disease Control and Prevention (CDC) has edicted 5 scenarios of the pandemic with two
plausible levels of the rate of asymptomatic, 0.2 and 0.5, with a central assumption at 0.35.5
I assumed a κ = 35% rate of asymptomatic people. The social contact matrix across age
classes has been estimated in France by Béraud, Kazmercziak, Beutels, Levy-Bruhl, Lenne,
Mielcarek et al. (2015). We approximate their results by the following contact matrix:

α.. =

 2 0.5 0.25
0.5 1 0.25
0.25 0.25 0.5

 (10)

Social interactions go down with age, within and across age classes. From this set of infor-
mation, I can estimate the reproduction number at date 0 for the three age classes in the
absence of any public policy by using equations (5) and (7). It yields

<y0 = 2.99 <m0 = 2.77 <s0 = 1.14. (11)

Older people have a smaller reproduction number under the laissez-faire because of their
reduced social interactions. The population-weighted reproduction number in the laissez-
faire is thus <0 = 2.48, in line with the central scenario of the CDC. This is smaller than the
often stated number < = 3...5 that has been estimated at the beginning of the pandemic.
This reduction is made to account for the improved protective behavior coming from the
understanding of the basic prevention efforts (no hand-shaking, mask bearing, ...) that have
been observed more recently.

As in Acemoglu et al. (2020), I assume an efficiency rate of confinement of 75%, i.e.,
one confined person in four behaves without any lockdown constraint. I also assume that
a proportion of 50% of confined people are able to telework, whereas the others are totally
unable to generate any economic activity. This is in line with the estimation of a 5.8% of
GDP loss in France during the first quarter of 2020.6 I assume an economic loss of a full
confinement by a middle-aged person equaling 1/Nm. This means that a 100% confinement
of the middle-aged people without any telework capability during one year would generate a
100% GDP loss. In this calibration, telework halves this loss. I also assume that confining a
young or a senior person yields no economic loss. This is in line with the fact that GDP does
not take account of most contributions of these two age classes to the wealth of the nation.

The health care capacity is France is 6 hospital beds per 1,000 inhabitants. I assume that
half of this capacity can be mobilized for the pandemic, so that h = 0.3. The hospitalization
rate among infected people is assumed to be 0.1%, 2% and 12%, respectively for the young,
middle-aged and senior class. This has been estimated for France in mid-April 2020 by Salje
et al. (2020). This study has also produced the following statistics about mortality rates:
π0j equals 0.001%, 0.15% and 3.65% respectively for j ∈ {y,m, s}. These mortality rates
of covid are multiplied by a factor 5 if the hospital capacity is overwhelmed. There is no

4https://www.cebm.net/covid-19/covid-19-what-proportion-are-asymptomatic/
5https://www.cdc.gov/coronavirus/2019-ncov/hcp/planning-scenarios.html
6https://www.insee.fr/fr/statistiques/4485632
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Value Description
γ 1/18 Daily recovery rate
βq 0 Daily contagion rate of quarantined persons
βc 0.1 Daily contagion rate of confined persons
βf 0.6 Daily contagion rate of working persons
κ 0.35 Proportion of asymptomatic positives
θ 0.75 Efficiency rate of confinement
ξ 0.5 Proportion of telework
Tvac 1.5× 365 Days before mass vaccination
Imin 0.05 Extinction threshold of the pandemic (in %)
h 0.3 Hospital capacity (in %)
N (22.7, 56.8, 20.5) Distribution of population (in %)
π0 (0.001, 0.15, 3.65) Normal mortality rate (in %)
π1 5π0 Crisis mortality rate (in %)
h (0.1, 2.0, 12.0) Hospitalization rate (in %)
ε (1, 1, 1) Initial fraction of infection (in %)
w (0, 176, 0) Economic loss of confinement (in % of GDP/cap)
` (60, 40, 20) Value of life lost (in years of GDP/cap)
α1. (2, 0.5, 0.25) Intensity of transmission from young
α2. (0.5, 1, 0.25) Intensity of transmission from adult
α3. (0.25, 0.25, 0.5) Intensity of transmission from senior
p 7 cost of mass PCR testing (in % of GDP/cap)

Table 2: Benchmark calibration of the MR-SIR model.

credible data to support this assumption, which is used to justify the classical "flattening the
curve" policy.

It remains to calibrate the value of lives. I discuss this critical issue in Gollier (2020),
remarking in particular that the absence of any democratic debate on this issue over the last
five decades during which Western governments used a "value of statistical life" for policy
evaluation is problematic. In this paper, I value a life lost at 60, 40 and 20 annual GDP/cap,
respectively for the young, middle-aged and senior classes.7 For example, if one percent of
the population dies, all aged 65 years or more, this has the same effect on welfare than a
20% reduction in annual GDP. This is equivalent to 60% if the 1% death toll is borne by
the young generation. Robinson, Raich, Hammitt and O’Keeffe (2019) have surveyed studies
using differentiated values of life for children compared to adult. They conclude that "the
ratio of values for children to values for adults ranges from 0.6 to 2.9; however, most estimates
are greater than 1.5." My benchmark calibration reflects this meta-observation. Balmford,
Bateman, Bolt, Day and Ferrini (2019) used a contingent valuation method to estimate the
value ratio of child to adult, with a value of 2.37 in the baseline case. This is also in line with
my calibration. This benchmark calibration is summarized in Table 2.

Finally, I assume that no policy is implemented during the first 3 weeks of the pandemic.
7Greenstone and Nigam (2020) have a similar age-dependent valuation system.
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4 Constant uniform confinement policies
In this section, I explore different no-test confinement policies in which the intensity of the
confinement is uniform in the population. The simplest version of this family of lockdown
strategies takes the form of imposing a uniform strength b of confinement until the threshold
prevalence rate Imin is attained to obliterate the virus in the population. The outcome of
such policies is described in Table 3 for different lockdown intensities b ∈ [0, 0.9].
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Figure 2: Dynamics of the pandemic in the laissez-faire strategy (b = 0).

Let me start with the laissez-faire policy (b = 0), whose outcome is described by the first
line in Table 3 and by Figure 2. Only the symptomatic persons are quarantined under this
policy. At the 22d day of the pandemic, the reproduction number is down to <22 = 2.05,
because the share of susceptible persons has already been reduced to 92%. After two months
of the pandemic, the wave of infection peaks, in which more than one-fourth of the young
and middle-aged people are simultaneously sick. Because seniors have intrinsically less social
contacts, they are much less infected. Because of this huge wave of infection, hospitals remain
overcrowded during almost three months, implying a catastrophic death toll in which 8.5%
and 0.6% of respectively the senior and the middle-aged people die. It takes 220 days for the
pandemic to die out thanks to the herd immunity. At that time, respectively 94%, 92% and
53% of the young, middle-aged and senior people are immunized, meaning herd immunity
is obtained with an immunization rate of 84%. The economic loss amounts to as little as
3.73% of annual GDP, due to the revenue loss of quarantined and deceased people during the
period. But when valuing the lives lost, the total loss equals a dismal 51% of annual GDP.

This laissez-faire policy illustrates the necessity of "flattening the curve" with the objective
to preserve some bed capacity in hospitals. This is done by imposing some lockdown in the
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b <22 t∗ Rt∗ Dy Dm Ds W L

0.0 2.05 220 84.0 0.001 0.32 1.74 3.73 51.42
0.1 1.78 237 79.5 0.001 0.28 1.43 4.33 44.26
0.2 1.53 260 73.3 0.001 0.22 1.02 5.37 34.67
0.3 1.29 291 64.9 0.000 0.06 0.27 7.13 15.05
0.4 1.08 328 52.7 0.000 0.05 0.20 10.87 16.91
0.5 0.88 349 37.9 0.000 0.04 0.13 16.13 20.25
0.6 0.71 304 24.8 0.000 0.02 0.08 18.82 21.44
0.7 0.55 228 17.1 0.000 0.02 0.06 17.29 19.08
0.8 0.41 176 13.2 0.000 0.01 0.05 15.35 16.75
0.9 0.29 146 11.1 0.000 0.01 0.04 14.20 15.39
1.0 0.19 127 9.9 0.000 0.01 0.03 13.53 14.61

Table 3: Outcome of the uniform confinement policy as a function of the strength b of the
confinement. <22 is the reproduction number at the beginning of the confinement period (22d

day of the pandemic). t∗ is the duration of the pandemic (in days), and Rt∗ is the overall
immunity rate (in %) at that date. Dj is the share of population who dies in age class j (in
% of whole population). W and L are respectively the economic loss and the total loss (in
% of annual GDP).
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Figure 3: "Flatten the curve" strategy: Dynamics of the pandemic with a b = 30% lockdown
after 3 weeks of laissez-faire.

13
C

ov
id

 E
co

no
m

ic
s 2

4,
 1

 Ju
ne

 2
02

0:
 1

-3
1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

0 20 40 60 80 100 120 140
days0.0

0.2

0.4

0.6

0.8

1.0
% confined young middle senior

50 100 150
days

1
2
3
4
5
6
7

% infected

50 100 150
days

0.05

0.10

0.15

0.20

0.25

0.30

% hospitalized

0 50 100 150
days

88
90
92
94
96
98

% susceptible

50 100 150
days

2
4
6
8
10
12
14

% recovered

50 100 150
days

0.05

0.10

0.15

% deceased

Figure 4: "Crush the curve" strategy: Dynamics of the pandemic with a b = 90% lockdown
after 3 weeks of laissez-faire.

economy. However, doing so implies additional costs due to the confinement itself, but also
to the increased time to eradicate the virus. Let me illustrate this in Figure 3 with the policy
in which a b = 30% confinement is imposed after 3 weeks of laissez-faire. It now takes 291
days to eradicate the virus. Because social interactions are reduced, herd immunity is now
obtained with a 65% immunization rate.8 Combining this with the fact that hospitals are
not overcrowded implies that the rates of mortality is reduced to 1.3% for senior people and
to 0.1% for the middle-aged people. The economic cost goes up to 7.13% of annual GDP due
to the lockdown, but the total cost of the pandemic is now limited to 15.0% of annual GDP.

Should we go farther in the intensity of the lockdown once we have have flatten the
curve enough to escape hospital overcrowding? The public planner faces here a dilemma.
Strengthening the lockdown increases the economic cost due to the reduced labour and the
increased duration of the lockdown. But it reduces the death toll. However, this marginal
benefit is much reduced because the mortality rate is now much less sensitive to b due to the
fact that the bed capacity constrained is slack. As a consequence, for b ∈ [0.29, 0.57], the
marginal economic cost of increasing the intensity of confinement is larger than its marginal
benefit in terms of reduced lives lost.

There is a limit to this argument. A very strict confinement is able to suppress the virus
in a short period of time. When the confinement intensity is larger than 57%, the sensitivity
of the pandemic duration to the severity of the confinement is so large that any marginal
increase in confinement reduces the economic cost of the policy. This is probably due to the
fact that the reproduction number is a quadratic function of b, whereas the economic cost
is linear in b. Because increasing b also reduces the death toll, the total cost of the policy

8Observe that the timing of the termination strategy is crucial here. I assume that the testing-and-tracing
search for the 0.01% remaining contagious people in the population at day t∗ = 291 can be quarantined before
exiting from the lockdown.
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Figure 5: Total cost as a function of the uniform intensity of confinement. The dashed curves
correspond respectively to the economic cost (hump-shaped) and to the value of lives lost
(decreasing).

is decreasing in the strength of the confinement for large b. Consider for example the case
case of a confinement intensity of b = 90%, as illustrated in Figure 4. With such a strong
confinement, the reproduction number goes down to <22 = 0.29 on the day the confinement
is implemented. This implies a fast reduction in the prevalence rate. The pandemic is
terminated within 146 days, with a rate of immunity that is limited to 11.1% at that time.
The economic loss is relatively large, but the global mortality rate is reduced to 0.05% of the
whole population. This yields a total loss of 15.39%, similar to the total loss associated with
the much milder confinement rate b = 30%.

To sum up, one can consider two possible uniform confinement strategies, corresponding to
two local minima for total cost in Figure 4. One can go for a "flatten-the-curve" strategy, or for
a "suppression" strategy. The flatten-the-curve strategy is supported by a limited confinement
intensity that is just large enough to escape hospital overcrowding. But it requires a large
fraction of the population to be infected and to recover in order to build herd immunity. The
suppression strategy is implemented with a very high confinement intensity to obliterate the
virus in the population at the fastest possible speed. There is a set of bad policies between
these two strategies in which economic costs and the mortality rate are larger. Hesitating
between the flatten-the-curve strategy and the suppression strategy can be very costly. The
current relatively high tolerance to breaking the strong confinement rules in some countries
could bring us in this dismal outcome, with a longer duration of the pandemic, more lives
lost, and larger economic losses. This is the curse of the hesitant confinement. Another
illustration of the necessity of maintaining a time-consistent policy is documented in Figure 1

15
C

ov
id

 E
co

no
m

ic
s 2

4,
 1

 Ju
ne

 2
02

0:
 1

-3
1



COVID ECONOMICS 
VETTED AND REAL-TIME PAPERS

when the planner abandon the suppression strategy too early to switch to a flatten-the-curve
strategy.

In this section, I examined constant strategies. This may not be optimal. For example,
when crushing the curve of infection, actual policies around the world have tended to impose
a strict confinement strategy at the beginning of the policy period to relax it once the rate of
prevalence is considered to be low enough. Could this kind of time-varying strategy generates
a better outcome compared to constant strategies? To answer this question, let me start with
suppression strategies. Observe that under these strategies, the rate of change in the number
of susceptible persons in each age class is almost zero for most of the strict confinement policy,
as seen in Figure 4. In that case, the dynamic of the pandemic simplifies to

Ii,t+1 − Ii,t =

 J∑
j=1

β̂ijtIj,t

− γiIi,t, (12)

with β̂ijt = βijtSi. In that case, as observed by Pollinger (2020), the dynamic of infection
is purely exponential, with It+1 = A(xt)It where It is the vector of age-specific numbers of
infection, and A(xt) is a 3x3 matrix that is a time-independent function of the policy variables
xt = (a.t, b.t). In that case, we obtain the following result.

Proposition 1. Consider the set of suppression strategies in which the rate of change in
the number of susceptible persons is almost zero. In this set, the cost-minimizing strategy is
characterized by almost constant age-specific intensities of confinement and testing.

Proof: In this proof, I denotes a 3x1 vector of age-specific numbers of infection, and x is a
vector of policy variables that affect the 3x3 infection matrix A(x) together with the convex
per-period cost w(x) of the policy. Consider all policies which imply the same age-specific
rates of prevalence IT at some date T > 0. I look for the dynamic strategy (x1, ..., xT ) which
is feasible in the sense that the rate of infection at date T is IT and that minimizes the
cumulated economic cost:

min
x1,...,xT

T∑
t=1

w(xt) s.t.
(

T∏
t=1

A(xt)
)
I0 = IT . (13)

Let A be the solution of the equation AT I0 = Imin. Obviously, the solution of the following
static problem

x∗ = arg min
x

w(x) s.t. A(x) = A (14)

characterizes the optimal solution (x1, ..., xT ) = (x∗, ...., x∗) of the dynamic problem (14). �

This means that, at least for strategies aimed at crushing the curve of infection, limiting
the search of policies to constant confinement and testing policies, potentially age-specific, is
not restrictive. Of course, this result cannot be generalized to strategies aimed at flattening
the curve in which the susceptible numbers Sit vary widely over time, so that matrix A is not a
time-independent function of the policy. Also, when considering an objective that combines
the economic loss and the value of lives lost, it may be optimal to start with a stricter
confinement rule that can be relaxed over time. However, because under our calibration
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the total loss is mostly entirely concentrated in the economic cost of the confinement, this
effect of lives lost is expected to be marginal. The optimal crush-the-curve policy yields an
almost constant confinement effort all along the duration of the pandemic. Proposition 1
can be interpreted as a special case of the model by Pollinger (2020) extended to MR-SIR.
Pollinger characterizes the dynamic confinement strategy that minimizes total cost in the
standard SIR model when the rate of change of St is almost zero. In his model, the dynamics
of infection is such that ∂It/∂t = a(x)It − X(It), where X(I) is an exogenous extraction
technology from the pool of infected people. In my model, X equals zero everywhere except
at I = Imin where X(I) equals I. The more comprehensive objective function and the richer
set of extraction technologies considered by Pollinger yield much broader properties of the
optimal solution. Under a weak condition on the extraction function X, Pollinger shows that
the optimal intensity of confinement is decreasing with time.

5 Time-variable uniform confinement policies
I also examine non-discriminating confinement strategies that fluctuate over time. The lack
of understanding of the dynamics of the pandemic and the difficulty to behave responsibly
by a fraction of the population puts a strong pressure on the political system to exit from
lockdown, or at least to relax the constraints, when the hospitalization rate goes down. I
therefore explore the welfare impacts of "stop-and-go" strategies defined by four parameters:
b ≥ b and I ≥ I. After 3 weeks of an unconstrained circulation of the virus in the population,
one starts with implementing a high confinement b. As long as the prevalence rate It is
larger than a minimum threshold I, this strict rate of confinement is maintained. Once this
threshold is attained, the lockdown is exited and a lower rate of confinement b ≤ b is imposed.
It is maintained as long as the prevalence rate remains lower than I. Once this threshold
is attained, the larger confinement rate b is reimposed, and so on until the prevalence rate
attains Imin to obliterate the virus. Notice that uniform policies are special cases of stop-
and-go policies in which b and b are the same.

In this section, I fix the trigger points (I, I) at respectively 20% and 80% of the bed
capacity in the country. This guarantees that hospitals are never overcrowded. It also allows
for reducing the intensity of the lockdown when a strict lockdown is unnecessary to flatten
the curve.

Consider for example the stop-and-go policy with b = 0.2 and b = 0.8. Figure 6 describes
the dynamic of the pandemic under this policy. It entails 3 waves of infection. After the
first wave due to the laissez-faire of the first three weeks, a strict lockdown of 26 days is
imposed that reduces the prevalence rate. Then, for 44 days, the intensity of the lockdown
is weakened, which generates a second wave of the pandemic. This triggers a second strict
lockdown that lasts for 26 days. Finally, the lockdown is weakened once again, which triggers
a third wave. However, given the high rate of immunity prevailing in the population, no more
strict lockdown need to be imposed because the hospitalization rate remains manageable. The
pandemic lasts for 475 days. The economic loss is limited to 12.26%, and the mortality rate
equals 0.1% and 1.2% respectively for the middle-aged and senior classes. The total loss is
19.36%.
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Figure 6: "Stop-and-go" strategy: Dynamics of the pandemic with b = 20% and b = 80%. I
assume the trigger points I = 0.2h and I = 0.8h.

In Table 4, I describe other stop-and-go strategies. For the sake of completeness, I added
to this table the suppression policy b = b = 0.9 that I identified in the previous section as a
potentially good suppression solution, yielding a total loss of 15.39% of annual GDP after a
pandemic of 146 days. In terms of least-cost efficiency, it competes with the flatten-the-curve
strategy consisting in maintaining a weak confinement b = 30% for 270 days. In Table 4,
I examine another flatten-the-curve strategy in which that confinement intensity b = 0.3 is
maintained only during the period of time necessary to tip over the initial contagion wave.
When the hospitalization rate goes back to 20% of bed capacity, a full relaxation of lockdown
(b = 0) is decided. This happens on day 165 of the pandemic, which dies out on day 386
without a second wave. It yields a record low total loss of 14.28% of annual GDP. This total
cost is similar in level to the one described in the previous section, but it’s composition is
different, with a smaller economic cost and a larger mortality rate. This two-stage strategy
looks similar to the optimal uniform strategy described by Acemoglu et al. (2020). They
show that the optimal uniform strategy under their calibration imposes a confinement that
peaks at 50% of the population for a short period of time at the beginning of the pandemic,
then stabilizes at around 30% for several months, and finally goes to zero when the infection
rate vanishes. Notice however that the duration of their 30% confinement is close to one year,
whereas I predict that half a year would be enough.

Although the crush-the-curve and flatten-the-curve strategies documented by the last two
lines in Table 4 yield similar total costs, the suppression strategy suffers from an important
comparative weakness due to the low rate of immunity that prevails at the end of the pan-
demic. If only 11.1% of the population got immunity in a world where the virus continues to
circulate in other regions, implementing the suppression strategy is possible only if frontiers
remain sealed as long as the virus survives elsewhere. The associated cost of this closure of
the frontiers are not counted in my model.
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b b t∗ Rt∗ Dy Dm Ds W L

0.2 0.8 475 59.7 0.000 0.06 0.24 12.26 19.36
0.4 0.6 473 43.4 0.000 0.04 0.16 18.55 23.36
0.3 0.9 360 60.9 0.000 0.06 0.25 10.83 18.10
0.5 0.9 451 30.2 0.000 0.03 0.10 23.75 26.98
0.9 0.9 146 11.1 0.000 0.01 0.04 14.20 15.39
0.0 0.3 386 68.4 0.000 0.06 0.30 5.74 14.28

Table 4: Outcome of the stop-and-go confinement policy as a function of the strict and weak
strengths (b, b) of the confinement. Notation and units are as in Table 3.

Figure 7: Total loss in stop-and-go strategies as a function of (b, b). I assume in this section
the trigger points I = 0.2h and I = 0.8h.
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Figure 8: Optimal flatten-the-curve strategy: Dynamics of the pandemic under the Miclo-
Spiro-Weibull strategy of minimal daily confinement compatible with the health care capacity
constraint.

In Figure 7, I describe the total cost as a function of (b, b). The last two lines of Table
4 describe the two local minima of this bivariate function. This figure also illustrates the
curse of hesitation between these two polar strategies of suppression and flatten-the-curve.
A convex combination of these two policies if for example (b, b) = (0.5, 0.9), which implies a
total loss of 26.98% as described in Table 4.

Let me conclude this section on time-variable uniform confinement strategies with an
analysis of the optimal flatten-the-curve strategy examined by Miclo, Spiro and Weibull
(2020). These authors solve the problem of minimizing the economic cost of confinement
in the standard SIR pandemic under a capacity constraint of the health care system. They
show that it is optimal to impose no restriction as long as the capacity constraint is not
binding, and to impose the minimal degree of confinement compatible with the capacity
constraint when it is binding. I describe the outcome and the dynamics of the pandemic
under my benchmark calibration of the MR-SIR model in Table 5 and Figure 5. The virus
circulates freely in the population for the first 34 days of the pandemic before the health care
capacity constraint binds. Then, a 45% confinement is imposed, that goes down gradually
for 66 days until the population is fully deconfined. The virus is eradicated after 288 days.
The economic cost is minimal at 4.43% of annual GDP, but the total cost is evaluated at
14.90%. It is useful to compare this policy to the best constant flatten-the-curve strategy
with b = 30% for 291 days, as described in Table 3 and Figure 3. Because the confinement
is weaker and shorter in the Miclo-Spiro-Weibull strategy (they call it "filling-the-curve"),
the economic cost is much smaller. But the rate of immunization is larger, in particular
among the elderly whose immunity rate goes up to 49% (from 35%). Notice in particular
that during the partial confinement period, the prevalence rate continues to grow in the senior
class, which is compensated by a strong reduction of the prevalence rate in the other two age
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t∗ Rt∗ Dy Dm Ds W L

288 78.0 0.000 0.07 0.38 4.43 14.90

Table 5: Outcome of the Miclo-Spiro-Weibull confinement policy of minimal daily confinement
compatible with the health care capacity constraint, as described in Figure 5.

classes. This unfortunate dynamics implies an increase in the number of lives lost. In terms
of total cost, the two strategies yield a similar outcome.

6 Age-specific policies
Up to now in this paper, I only considered policies that are non-discriminated across age
classes. There are at least two reasons why one should consider confinement policies that
are age-sensitive. First, the case-fatality rate is extraordinarily different at different ages.
Therefore, it may be interesting to expose more less vulnerable people if, for example, herd
immunity is the final outcome of the pandemic. This suggests that the intensity of the
confinement should be made increasing with age. The second reason is that the economic
cost of confinement is also very different across age classes. This suggests that middle-aged
people should receive priority in the exit of the lockdown. Both reasons justifies a strong
sheltering of the seniors. But these two reasons offer contradictory arguments for which of the
young or middle-aged people should exit from the lockdown first. Adults are more valuable
to send back to work, but they are more vulnerable to the virus.

Table 6 explores different possible age-specific policies. As a follow-up of the stop-and-
go strategies considered in the previous section, I now assume two age-specific confinement
intensities, b = (0, 0, 1) and b = (by, bm, 1), that are triggered when the hospitalization rate
passes through one of the two thresholds (I, I) = (0.2h, 0.8h). Seniors remain 100% confined
until the end of the pandemic. After three weeks of the free circulation of the virus, the
young and the middle aged people are confined with an intensity by and bm, respectively.
Both young and middle-aged people are fully deconfined when the hospitalization rate reach
20% of the bed capacity. Consider first the case in which the middle-aged class is fully
deconfined, whereas 80% of the young class remain in lockdown for 115 days before exiting
it. The dynamic of covid-19 in this case is described in Figure 9. The pandemic is eradicated
after 368 days, so that the seniors remain under full confinement for one year under this
policy. The confinement of the junior and senior classes flattens the curve enough so that
hospitals are not overwhelmed. Because the working class is never confined, the economic
cost is limited to 3% of annual GDP. All in all, the total cost of the pandemic is contained
at 8.58% of annual GDP.

One may find sheltering the seniors for more than one year as socially, morally or psycho-
logically unacceptable. An alternative solution would be to exit seniors at the same time as
the young generation, after 115 days of lockdown. That would increase the mortality of the
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Figure 9: Age-specific policy with young confinement: Dynamics of the pandemic with by =
80% and bm = 0%. Seniors are 100% sheltered.
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Figure 10: Age-specific policy with middle-aged confinement: Dynamics of the pandemic
with by = 0% and bm = 0.18%. Seniors are 100% sheltered.
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by bm t∗ Rt∗ Dy Dm Ds W L

1.00 0.00 401 68.6 0.000 0.08 0.13 3.01 8.58
0.80 0.00 368 68.1 0.000 0.07 0.13 3.00 8.52
0.25 0.10 256 70.8 0.000 0.07 0.13 3.62 9.11
0.00 0.18 250 71.3 0.000 0.07 0.13 4.16 9.59

Table 6: Outcomes of the age-specific confinement policy as a function of the young and
middle-aged confinement strengths (by, bm) of the confinement, assuming a 100% confinement
of the seniors. Notation and units are as in Table 3.

seniors from 0.13% to 0.19% of the entire population (46,000 additional deaths in the case of
France), and it would increase the total cost from 8.52% to 9.91%.

If the objective is to flatten the hospitalization curve and at the same time to build herd
immunity, it would be intuitive to do it by exiting the young first from the lockdown, since
their hospitalization rate is 20 times smaller than the middle-aged, and their mortality rate
is 150 times smaller. The tradeoff comes from the fact that it is more expensive to confine
middle-aged people. Consider for example the bottom line of Table 6, which documents
the pandemic dynamics when young are not lockdown, and 18% of middle-aged people are
confined for 112 days. This is enough to protect hospitals from the covid wave, as shown
in Figure 10. Because the same fraction of adults have been infected at the end of the
pandemic, the two strategies yield the same global death toll. But because of the additional
cost of confining some workers, the total cost of the adult confinement is larger than when
the young generation is initially confined to flatten the curve.

In this study, I discriminate the deconfinement strategy only on the base of age. But we
know now that comorbidities have a large impact on the mortality rate too. For example, in
New York state, 86% of the 5,489 reported COVID-19 deaths before 6 April 2020 involved at
least one comorbidity, according to the state’s department of health.9 Adding some of these
comorbidities such as diabetes (37.3% of the New York deaths) and obesity in the individual
characteristics of the discriminated deconfinement strategy could considerably reduce the
death toll of age-specific strategies.

The main message of this section – together with all papers reviewed in the introduction
dealing with this issue – is that there is a large social benefit of using an age-specific con-
finement strategy to flatten the curve. Whether this should be organized through a large
confinement of the young or a weak confinement of the middle-age is not key. What is key is
the necessity to protect the seniors, in particular during the strong wave of contagion happen-
ing in the first semester of the pandemic. Building herd immunity by sending the young to
school and the middle-aged to work would be a demonstration of intergenerational solidarity
towards the elderly people (Gollier (2020)).

9https://www.the-hospitalist.org/hospitalist/article/220457/coronavirus-updates/comorbidities-rule-new-
yorks-covid-19-deaths
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7 The economic value of mass testing
What is the value of the PCR test information in this framework? Suppose that it would
require a person to be tested every week to detect his infection before becoming contagious.
Let me estimate the unit cost of the test at 50 euros. This is a conservative estimation.10

Thus, testing a person on a weekly frequency by using an efficient PCR test would yield an
annual cost of 2600 euros, or approximately 7% of annual GDP/cap for the calibration on
French data. Thus, I calibrate p = 0.07 to estimate the economic cost W of the policy, as
defined by equation (8).

Suppose that the current policy is a brutal suppression strategy with a 100% confinement
of the population until the virus is obliterated in the population. This will take 106 days for
the policy to attain this objective, with a total cost of 14.61% of annual GDP. Suppose that a
testing capacity is obtained that allows for testing a fraction a of the population every week.
Consider a policy in which a fraction a of the apparently susceptible population is tested every
week-end. Among these tested people, those who are tested negative go back to work for a
week, and those who are tested positive are quarantined. The fraction b = 1−a of Ŝt which is
not tested is confined for the week. Thus under this policy, only the tested negatives go back
to work. Suppose that this policy is implemented until the virus is obliterated. Consider for
example the case of a testing strategy a =50%. It will take 136 days to fight the pandemic
under this policy. The total testing cost will equal 1.02%of GDP, whereas the confinement
cost will amount to 7.56% of GDP, yielding a total cost of 9.70% when counting the value
of lives lost. This total cost is reduced by one-third compared to the 100% confinement of
the brutal confinement strategy. I describe the relationship between the testing intensity a
and the total cost of the pandemic in Figure 11. If one could test the whole population every
week, the pandemic could have been obliterated in 103 days, for a total cost of 2.80% of
annual GDP.11 This is the least-cost policy among the set of policies that I have examined
in this paper. The bottom line of this comparative statics exercise is that developing a mass
testing capacity could reduce the total cost of the suppression policy by a factor 5.

Developing a mass testing capacity is also useful to implement the flatten-the-curve strat-
egy. Remember that the best uniform strategy to flatten the curve is to impose a stop-and-go
confinement policy with b = 0% and b = 30%, implying a total cost of 14.28% of annual GDP
(see Table 4). This confinement intensity is just enough to suppress the risk of overwhelming
the bed capacity in hospital. We can reproduce a similar dynamics by replacing the 30%
uniform confinement by a 36% testing, with the same result to maintain the bed capacity
constraint slack. This test-only strategy reduces the total cost of the pandemic to 12.18% of
annual GDP.

A similar exercise can be made to examine the age-discriminated flatten-the-curve strategy
in which the confinement intensity equals 0%, 18% and 100% respectively for the young, the
middle-aged and the senior class. As documented in Table 6, this yields a total cost of 9.59%.

10This is the current price of covid PCR tests on the free market, which contains a mark-up. Increasing
return to scale should also affect the cost negatively in the future.

11A mass testing experiment has been put in place in the city of Vò in Lombardy. Although the city was
one of the most important covid cluster in March, the city is now considered free of the virus.
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Figure 11: Value of testing when the susceptible population is either tested or confined on a
weekly basis (b = 1 − a). The total cost and the costs of testing, confinement and lives lost
are measured in percents of annual GDP, as a function of the testing intensity a.

Consider an alternative strategy in which the young and the old generations continue to be
respectively fully unlocked and fully sheltered. For the middle-aged people, suppose that
23% are tested and 77% go to work without testing. The total cost is reduced to 8.64%.

8 Sensitivity analysis
Given the high uncertainty that surrounds several parameters of the model, it is crucial to
perform various robustness exercises. This work is summarized in Table 7. Different sets
of rows document the effect of changing one parameter on three strategies: the suppression
strategy b = 0.9; the strategy of uniform confinement that is just enough to flatten the curve
given the health care capacity; and the best age-specific strategy that flattens the curve with
a 100% confinement of the seniors and a partial confinement of the other two age classes. The
first row summarizes the best policies with the set of parameters described in Table 2. Under
this benchmark case, sheltering the seniors is the obvious winner, followed by the strategy
of uniformly flattening the curve. The next row report the impact of uniformly doubling the
value of life. This does not affect the structure of the policies under scrutiny, but it changes
the weights in the objective function. Increasing the value of life makes more attractive
policies that preserve more lives, i.e., suppression and sheltering the old. Suppression now
clearly dominates flattening the curve under this alternative calibration. I also report on the
impact of reducing the value of lives lost for the elderly, considering the fact that many covid
fatalities have other co-morbidity factors and a relatively limited remaining life expectancy.
Reducing the value of lives lost of people aged 65+ years to 10 GDP/cap has the effect to
make the fatten-the-curve policy much more favorable.

I could have reported other robustness checks in which the relative values of lives lost
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across ages are altered compared to the benchmark. For example, a standard practice is to
use a value of statistical life that is independent of age (US-EPA (2010), Greenstone and
Nigam (2020)). Reducing the value of life of the young relative to the senior reinforces the
recommendation to shelter the old generation under age-specific confinement strategies. In
fact, there is no reasonable valuation system that could reverse this result. Gollier (2020)
clarifies this point in a simple static analysis.

In the next row, I examine the impact of raising the rate of asymptomatic from 0.35
to 0.45. More asymptomatic cases implies more contagion since it reduces the number of
infected people that are quarantined in the absence of test. This raises the mortality rate. If
one follows the suppression policy, the economic cost also increases because of the increased
duration of the pandemic. Under the flatten-the-curve strategy, the rate of confinement must
be increased from b = 0.30 to 0.51 in order to preserve hospitals. This also increases the
economic cost. Under the old-sheltering strategy, the increased rate of asymptomatic cases
forces the planner to confine all young people and 30% of the working age class.

In the benchmark calibration, one in four confined persons behaves as if not confined. In
the next row, I increase this inefficiency of the lockdown to 2/4. Of course, this deteriorates
the attractiveness of the suppression strategy, in which all costs basically double. Because
the uniform flattening of the curve relies less on confinement, it is much less affected by the
increased lockdown inefficiency. In fact, the misbehavior observed in the population can be
compensated by an increased intensity of confinement from b = 0.3 to 0.43, thereby marginally
increasing the economic cost of the pandemic. Concerning the strategy of sheltering the
seniors, the reduced efficiency of the confinement also necessitates increasing the intensity
of the lockdown for the younger generations. To escape hospital overcrowding, one needs to
fully confine the young class, together with some people from the working age class. This
has a sizeable impact on the total cost.

In the benchmark calibration, the intensity of social interactions goes down with age, as
expressed by equation (10). Suppose alternatively that senior people behaves as the middle-
aged class:

α.. =

 2 0.5 0.5
0.5 1 0.5
0.5 0.5 1

 (15)

Obviously, this is no good news, as this raises the reproduction numbers. If applying the
suppression policy, the duration of the pandemic will be longer, and the mortality rate will
be larger, in particular in the senior class. However, because the virus is contained in the
early stage of the pandemic the global impact of these increased social interactions remains
marginal. We cannot say the same thing when flattening the curve. Because senior people
are more integrated in the population, they contribute much more to the building of herd
immunity. This massively increases their mortality rate, which goes up to 2.2% of their age
class. Notice that the increased contagion implies that the uniform confinement rate must
be increased to b = 0.41 to flatten the curve. This implies that flattening the curve is now
dominated by the strategy of suppression. Notice also that this increased integration of the
seniors makes it more difficult to shelter them under the third strategy.

Next, I examine the effect of a 50% increase in the mortality risk of the senior people.
Because the three policies that I examine in this table are rather protective of the old genera-
tion, the effect of this increased mortality risk is relatively limited in the number of lives lost
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Parametrization Policy Duration Mortality Econ cost Total cost
(days) (% of pop) (% of GDP) (% of GDP)

Baseline Crush curve 146 0.049 14.20 15.39
Flatten curve 386 0.363 5.74 14.28
Old sheltered 368 0.200 3.00 8.52

` = (120, 80, 40) Crush curve 146 0.049 14.20 16.59
(↑ value life) Flatten curve 386 0.363 5.74 22.82

Old sheltered 368 0.200 3.00 14.03
` = (60, 40, 10) Crush curve 146 0.049 14.20 15.01
(↓ value life) Flatten curve 386 0.363 5.74 11.29

Old sheltered 368 0.200 3.00 7.26
κ = 0.45 Crush curve 173 0.097 15.31 17.69
(↑ asympt.) Flatten curve 433 0.429 6.92 16.91

Old sheltered 366 0.236 4.54 10.76
θ = 0.5 Crush curve 304 0.107 27.76 30.38
(↓ lockdown eff.) Flatten curve 367 0.368 7.01 15.68

Old sheltered 398 0.272 4.52 11.37
α3. = (0.5, 0.5, 1) Crush curve 155 0.086 14.91 16.88
(s behaves as m) Flatten curve 498 0.512 7.44 18.99

Old sheltered 429 0.293 3.52 10.84
π03 = 5.47% Crush curve 146 0.068 14.20 15.78
(↑ s mortality) Flatten curve 386 0.512 5.74 17.26

Old sheltered 368 0.263 3.00 9.76
wy = ws = 0.4 Crush curve 146 0.049 16.72 17.92
(y, s create value) Flatten curve 386 0.363 6.87 15.41

Old sheltered 368 0.200 7.45 12.96

Table 7: Sensitivity analysis.
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and economic terms. Finally, similarly, increasing the economic cost of confinement of the
young and seniors generations from 0 to 0.4, i.e., approximately one-fourth of the economic
cost of the middle-age confinement, does not change much the results.

Clearly, this sensitivity analysis shows that the recommendation to shelter the seniors
during the peak of infection is robust to changes in the parameters of the MR-SIR model.
On the contrary, this also shows that there is no clear winner between the crush-the-curve
strategy and the flatten-the-curve strategy.

9 Concluding remarks
When only 1% of the population is infected, a strong confinement of the whole population
is a rather inefficient way to fight the virus. To reduce the contagion by one person, one
hundred persons are confined, yielding a large economic impact. Obviously, our ability to
test people in order to deconfine the negatives would be a much better strategy.12

In the absence of a testing capacity, one possible strategy is to suppress the virus by a
strong degree of confinement during a few months. In this context, increasing the strength of
the confinement has a large effect on reducing the duration of the lockdown. It happens that
the net effect of strengthening the confinement is to reduce the total cost of the pandemic.
Therefore, if the objective is to suppress the virus as soon as possible, it makes no sense to
reduce the confinement before the full eradication of the virus in the population. Because
this strategy implies a very low rate of immunization until the end of the pandemic, stopping
short of full eradication exposes the country to a restart almost from the beginning of the
pandemic. Following this strategy thus requires a lot of time-consistency and a strong political
resistance to the lobbies and to some increasingly impatient citizens.

Most SIR modelers explore an alternative strategy whose objective is to reach herd im-
munity in a relatively long horizon. Reaching herd immunity without controlling the speed
of the pandemic exposes hospitals to a tsunami of infections, implying a terrible death toll.
This is why reaching herd immunity may be an efficient strategy only if the infection curve
is flattened via a weak confinement at the beginning of the immunization process. The eco-
nomic impact of the policy is small, but the mortality is severe. Depending upon how Society
value lives lost, this strategy can dominate the suppression strategy.

When implementing a non-discriminatory confinement policy, the senior class bears most
of the burden of deaths, in spite of the lower intensity of their social interactions. This is
because of the extremely large case-fatality proportion faced by people aged 70 and older. An
efficient intergenerational solidarity would be to ask the younger generations to build Society’s
herd immunity by living their life, participate to the economy, get infected and recover from
covid-19. More vulnerable people should be sheltered during this high-contagion period of
the pandemic. This sheltering of the vulnerable increases the mortality of the young and of
the middle-aged. This is the price they could pay to express their solidarity to the elderly.
The mortality risk differential is so big that targeting herd immunity, flattening the curve and
sheltering the old generation is a no brainer, with a total cost far smaller than any uniform

12If our PCR test capacity is limited, Gollier and Gossner (2020) suggested to use a standard testing protocol
in which several individual samples are pooled and tested with a single test. If the objective is to maximize
the number of people to unlock, the optimal group size is approximately equal to the inverse of the rate of
prevalence.
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policy. Confine a fraction of the young to flatten the curve, get the working age class back
to work to reduce the economic cost, and shelter the senior class to reduce the death toll.
Acemoglu et al. (2020) make a very similar final recommendation.
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