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Abstract

Spatial simultaneous autoregressive models have been adapted to model
data with both a geographic and a compositional nature. Interpre-
tation of parameters in such a model is intricate. Indeed, when the
model involves a spatial lag of the dependent variable, this interpre-
tation must focus on the so-called impacts rather than on parameters
and when moreover the dependent variable of this model is of a
compositional nature, this interpretation should be based on elastic-
ities or semi-elasticities. Combining the two difficulties, we provide
exact formulas for the evaluation of these elasticity-based impact
measures which have been only approximated so far in some appli-
cations. We also discuss their decomposition into direct and indirect
impacts taking into account the compositional nature of the depen-
dent variable. Finally, we also propose more local summary measures as
exploratory tools that we illustrate on a toy data set and a case study.
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1 Introduction

Data with share vectors exhibiting spatial dependence can be found in many
applications such as political science or land use studies, see for example Katz
and King (1999) and Yoshida and Tsutsumi (2018). Modelling these vectors
with covariates requires complex multivariate regression models that can acco-
modate their spatial and compositional dimensions. Focusing on the model
introduced in Nguyen, Thomas-Agnan, Laurent, and Ruiz-Gazen (2021), we
will show how to assess the impact of covariates.

Impact of covariates in a classical (non spatial and non compositional)
regression model is based on the parameters of the model as follows: if a given
covariate X increases by a given additive amount δ, all things equal, it results
in an additive increase of the expected dependent variable Y equal to the
product of δ by the corresponding parameter βX of that covariate. This results
from the fact that the expected value of the dependent variable, E(Y | X), is
the sum of the linear term βXX, and other terms independent of this particular
variable X.

If one now considers a spatial simultaneous autoregressive model, this sim-
ple interpretation gets more complex due to the fact that the link between the
expected value of the dependent variable and the covariate of interest then
involves a so-called filter matrix. For spatial autoregressive models with a lag
component, this type of interpretation has been introduced by LeSage and
Pace (2009).

In a compositional regression model, some variables (dependent and/or
independent) may be vectors of parts conveying relative information on some
parts of a total abundance characteristic. In such a model with composi-
tional variables possibly on both sides of the regression equation, Morais and
Thomas-Agnan (2021) show that an interpretation of variations in the simplex
is possible through the use of elasticities or semi-elasticities depending on the
particular type of model. However, their derivation is for the case of indepen-
dence between individuals and has to be extended now in the framework of
cross-correlations between statistical units (locations here).

Finally, in a model of the spatial autoregressive type for compositional
data, such as the one introduced in Nguyen et al. (2021), the two difficulties
are present and one needs to combine the two approaches. Another problem
arises in the compositional framework when trying to define the decomposition
of these impact measures because the traditional decomposition into direct
and indirect impacts is based on the classical addition in R.

In Section 2, we review the basic tools of compositional regression mod-
els. Section 3 recalls the impacts computations in the spatial autoregressive
models with a single dependent variable and in the compositional regression
models. In Section 4, we extend the exact evaluation of the impacts to the spa-
tial regression framework with a compositional dependent variable, which is
by nature a multivariate framework. Section 5 addresses the question of their
decomposition into direct and indirect impacts and illustrates their computa-
tions and interpretations on a toy example. Finally, Section 6 takes up again
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the political science case study presented in Nguyen et al. (2021), adding the
decomposition and interpretation of a particular covariate in terms of effects
on the vote shares vector.

2 Simplex operations reminder

Let us briefly recall some tools for working with compositional data. A D-
composition u is a vector of D parts which can be represented in the so-called
simplex space

SD =

{
u = (u1, . . . , uD)T : um > 0,m = 1, ..., D;

D∑
m=1

um = 1

}
,

where T is the transposition operator. For any vector w ∈ R+D, the closure

operation is defined by C(w) =
(
w1/

∑D
m=1 wm, · · · , wD/

∑D
m=1 wm

)
. The

perturbation and the powering operations are given, for a scalar λ and simplex
vectors u and v in SD, by

u⊕ v = C(u1v1, . . . , uDvD), and λ� u = C(uλ1 , . . . , uλD).

For a D × (D − 1) contrast matrix V (see e.g. Pawlowsky-Glahn, Egozcue,
& Tolosana-Delgado, 2015), one can define an isometric log-ratio transfor-
mation traditionally called ilr. As advocated by Mart́ın-Fernández (2019),
we will rather use the name olr (orthogonal log ratio) for this transforma-
tion, defined by: u∗ = olr(u) = VT ln(u), where the logarithm of u ∈ SD

is understood componentwise. The inverse transformation is given by: u =
olr−1(u∗) = C(exp(Vu∗)). A matrix-extension of the olr transformation is
given by olr(A) = ln(A)V, for a n×D matrix A.
The compositional product of a matrix by a vector, denoted by �, is given by

B� u = olr−1(VTB ln(x)), (1)

where u ∈ SD, B = (blm) with l = 1, . . . , L, m = 1, . . . , D is a L × D
matrix satisfying B1D = 000L and BT1L = 000D where 1D (resp. 000D) denotes
the D-dimensional column vector of ones (resp. zeros). It is independent of the
contrast matrix V.

3 Covariates impacts in spatial autoregressive
models and in simplicial regression models

Before combining these techniques in the next section, we first remind the
reader some results about covariate impact evaluation both in spatial autore-
gressive models and in simplicial regression models separately. Note that since
the impacts are relative to a single variable at a time, we do not index the
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explanatory variable of interest in order to simplify the notations. Moreover,
the impacts are defined as changes in the expected value of the dependent vari-
able which is to be understood as being conditional on the set of explanatory
variables but, for the same reason, this point is not reflected in the notation.

3.1 Univariate spatial autoregressive models

Let us consider here an ordinary spatial autoregressive regression model, often
referred to as the LAG model, of the following type

Y = ρWY + Xβββ + εεε, (2)

where Y = (Y1, · · · , Yn)T is the vector of observed values of the dependent
variable at n locations in space, X = (Xk

i )i=1,···n,k=1,···K is a n × K matrix
of K covariates values observed at the same locations, εεε is a vector of i.i.d.
disturbances with mean zero and variance σ2, and W is a n × n neighbor-
hood matrix. In spatial econometrics, the neighborhood matrix elements wij
are measures of proximity between locations i and j (see for instance, Bivand,
Gomez-Rubio, & Pebesma, 2008) and the lagged vector WY contains aver-
ages of the values of the variable Y in neighboring locations when W is row
normalized. In order to assess the covariate impacts, one has to first rewrite
the model equation in the so-called reduced form

Y = (In − ρW)−1(Xβββ + εεε), (3)

where In is the identity matrix of size n. Equations (2) and (3) are equivalent
provided the parameter ρ is such that the filter matrix A(W) = In − ρW is
invertible. LeSage and Pace (2009) show that due to the presence of the fil-
ter matrix, the parameters of each explanatory variable no longer measure the
marginal effect of a change in this explanatory variable on the dependent vari-
able. Since marginal effects are relative to one explanatory variable at a time,
we remove the index k indicating the variable of interest. For a given vari-
able X = (X1, · · · , Xn)T , these marginal effects are measured by the matrix
of partial derivatives with terms

meXij =
∂E(Yi)

∂Xj

when i and j range in the set of n locations. For a given variable X, these
can be easily expressed in terms of the parameters and the terms of the filter
matrix by meij = aij(W)βX where aij(W) denotes the general term of the
filter matrix and βX is the parameter corresponding to variable X. LeSage and
Pace (2009) propose to summarize these n2 impact measures separating the
direct effects corresponding to i = j from the indirect effects i 6= j. The average
total impact TE = 1

n

∑n
i=1

∑n
j=1meij then measures the average cumulative

effect of increasing X by one unit at all locations on a typical Y value. The
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average direct impact DE = 1
n

∑n
i=1meii (respectively the average indirect

impact, also called network effect IE = 1
n

∑n
i=1

∑n
j=1,j 6=imeij) measures the

average cumulative effect of increasing X by one unit at all locations on the
Y value at that same location (respectively the average cumulative effect of
increasing X by one unit at all locations on the Y value at a typical location
other than its own).

3.2 Simplicial regression models

Turning now attention to simplicial regression models, we focus on the case
where the dependent variable is of a compositional nature Y ∈ SD and we
first assume that the explanatory variable of interest X is not compositional.
For a given choice of contrast matrix VY , the olr transformed vectors and
parameters will be denoted by Y∗ and b∗. Then we have E⊕Y = X � b⊕E,
where E contains terms involving covariates other than X. In that case, Morais
and Thomas-Agnan (2021) show that the marginal effects should be measured
using semi-elasticities rather than marginal effects in order to be coherent with
the simplex structure of the space of the dependent variable. Let (Yi, Xi),
i = 1, . . . , n, be iid random vectors with the same distribution as (Y, X). The
semi-elasticities are then defined by the vectors

seXi =
∂ logE⊕Yi

∂Xi
, (4)

where E⊕Y is the expected value in the simplex of the simplex valued random
variable Y (see Pawlowsky-Glahn et al. (2015) for a definition). We will denote
by seXi:m, for m = 1 to D, the D components of the vector seXi . Morais and
Thomas-Agnan (2021) show that for each individual i, the vector of semi-
elasticities seXi can be expressed in terms of the model parameters as follows

seXi = UE⊕Yi
clr(bX),

where Uz = ID − 1Dz
′ with ID the D × D identity matrix, 1D the D × 1

vector of ones and bX is the vector of parameters in the simplex for variable X.
Given a contrast matrix VY and the corresponding olr transformation, Morais
and Thomas-Agnan (2021) also give an expression of these semi-elasticities in
olr coordinate space which is independent of the particular contrast matrix:
seXi = U∗E⊕Yi

bX∗, where U∗z = UzV
Y , and bX∗ is the vector of parameters

in coordinate space for variable X.
Let us recall that the vector seXi = (seXi:1, · · · , seXi:D) of semi-elasticities

satisfies the following property:

D∑
m=1

seXi:mE⊕Yi:m = 0, (5)

where (Yi:1, · · · , Yi:D) are the D components of Yi (see Morais, Thomas-
Agnan, and Simioni (2018), Appendix A.4 adapted to semi-elasticities). We
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can associate to the vector of semi-elasticities a vector of derivatives in the
simplex by

sdXi =
∂⊕E⊕Yi

∂Xi
(6)

with components (sdXi:1, · · · , sdXi:D). sdXi belongs to SD and is related to the
vector of semi-elasticities by

sdXi = C(exp(seXi )). (7)

For a small δ, one may approximate the simplicial derivative by a finite
increment

sdXi =
∂⊕E⊕Yi

∂Xi
∼ 1

δ
� (E⊕Yi(xi + δ)	 E⊕Yi(xi)) (8)

which can be rewritten

E⊕Yi(xi + δ) = E⊕Yi(xi)⊕ C((sdXi )δ) = C(E⊕Yi(xj)(sd
X
i )δ),

where E⊕Yi(xi + δ) is the expected value of Y for statistical unit i when Xi

increases by δ units. For a small δ, given the relationship between sdi:m and
sei:m, the following approximation holds:

E⊕Yi:m(xi + δ)

E⊕Yi:m(xi)
∼ 1 + δseXi:m (9)

also equivalent to

E⊕Yi:m(xi + δ)− E⊕Yi:m(xi)

E⊕Yi:m(xi)
∼ δseXi:m.

Finally note that property (5) is important because it ensures that the vector
with components E⊕Yi:m(xi + δ) belongs to the simplex.

4 Elasticity-based impacts for the
spatial-compositional regression model

Nguyen et al. (2021) introduce a simultaneous spatial regression model of the
LAG type for compositional data. Note that this is a multivariate spatial model
since the dependent variable vector is in SD and they use Kelejian and Prucha
(2004) for defining and estimating a multivariate version of the univariate
spatial autoregressive LAG model. Thomas-Agnan et al. (2021) present an
application of this model to land use data. Although it is possible to use a
different set of explanatory variables for each olr coordinate, we will assume for
simplicity that the same set of K explanatory variables is used in all coordinate
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regression equations. We also assume first that the K explanatory variables
are not compositional. The model can be written in the simplex as follows

Y = (W ·4Y) �R⊕X � βββ ⊕ εεε, (10)

where Y is a n × D matrix of compositional vectors Y1, . . . ,Yn, W ·4Y :=
olr−1(Wolr(Y)), R is a D×D matrix of autocorrelation parameters such that
R1D = 000D and RT1D = 000D, X is a n×K matrix of explanatory variables, βββ is
a K×D matrix of parameters, and εεε is a n×D matrix of compositional errors
satisfying the following conditions. Denoting by εεε.l the columns of εεε and by εεεi.
its rows, we assume that E(εεε∗i.εεε

∗
j.
T ) = ΣΣΣ∗ if individuals i and j coincide and 000

if they are different, where ΣΣΣ∗ is a (D − 1)× (D − 1) covariance matrix. The
matrix product A�R, for a n×D matrix A, is an extension of the product
of a matrix by a vector given in (1) and is defined by olr(A�R) = ln(A)RV
where V denotes the contrast matrix of the olr transform.

For this framework, Thomas-Agnan et al. (2021) give the reduced form of
the model in coordinate space and in vectorized form

veccY∗ =
(
In(D−1) − (R∗)T ⊗W

)−1 [Xβββ∗1 . . . Xβββ∗D−1]T + veccεεε
∗,

where ⊗ denotes the Kronecker product of matrices and where veccA denotes
the column vectorization obtained by stacking the columns of a matrix A. For
i, j = 1, · · · , n and l,m = 1, · · · , D, let us denote by ail:jm(W) the general
term of the n(D−1)×n(D−1) filter matrix A(W) = (In(D−1)−(R∗)T⊗W)−1.

The covariate impacts in Thomas-Agnan et al. (2021) are assessed using
approximations of semi-elasticities based on finite differences that generalize
equation (9) to the case where variable X is increased at location j and we
look at the relative impact on Y at location i. We are now going to develop a
formula for an exact evaluation of these quantities.

4.1 Approximate semi-elasticities

As in (4) and (6), let us introduce the semi-elasticities and semi-derivatives
with the following notations

seXij =
∂ logE⊕Yi

∂Xj

sdXij =
∂⊕E⊕Yi

∂Xj
.

Note that these semi-elasticities vectors are now doubly-indexed due to the
spatial dependence: the impact of changing an explanatory variable at a given
location j is affecting all locations i. The mth component of each of these
vectors will be denoted respectively by seXij:m and sdXij:m.

As in equation (8), for a small δ, one may approximate the simplicial
derivative by a finite increment
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sdXij =
∂⊕E⊕Yi

∂Xj
∼ 1

δ
� (E⊕Yi(xj + δ)	 E⊕Yi(xj))

which can be rewritten

E⊕Yi(xj + δ) = E⊕Yi(xj)⊕ C((sdXij )δ) = C(E⊕Yi(xj)(sd
X
ij )

δ)

yielding, for a small δ, and given the relationship between sdXij:m and seXij:m,
the following approximation

E⊕Yi:m(xj + δ)

E⊕Yi:m(xj)
∼ 1 + δseXij:m

also equivalent to

E⊕Yi:m(xj + δ)− E⊕Yi:m(xj)

E⊕Yi:m(xj)
∼ δseXij:m. (11)

Note that equation (11) was used to approximate the semi-elasticity by finite
differences in Thomas-Agnan et al. (2021). But this equation is also useful to
give an interpretation to the value of a semi-elasticity, computed by the exact
formula that we are going to derive in the next subsection: δseXij:m represents
the percent change of Yi:m(xj) when xj increases by δ.

4.2 Exact semi-elasticities

Combining tools of sections 3.1 and 3.2, we need to evaluate the semi-
elasticities seXij . Using the same approach as Morais and Thomas-Agnan
(2021), we first have that

∂ logE⊕Yi

∂Xj
=
∂ logE⊕Yi

∂EY∗i
∂EY∗i
∂Xj

. (12)

The first term on the right hand side is given by an application of Lemma
4.2 in Morais and Thomas-Agnan (2021). Since E⊕Yi = olr−1(Y∗i ), we get

∂ logE⊕Yi

∂EY∗i
= U∗E⊕Yi

. (13)

For computing the second term, using the reduced form of the model in coor-
dinate space, we can write that, for each individual i and each component
l,

EY∗i:l =

n∑
t=1

D−1∑
m=1

ail:tm(W)Xtβ
∗
m + Ei:l, (14)
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where Ei:l is a sum of terms involving the other explanatory variables at the
exception of X. We therefore get

∂EY∗i:l
∂Xj

=

D−1∑
m=1

ail:jm(W)β∗m.

If we denote by Aij(W) the (D − 1)× (D − 1) submatrix of the filter matrix
A(W) corresponding to all terms involving locations i and j, we can rewrite
the result for the full vector EY∗i. as

∂EY∗i
∂Xj

= Aij(W)(β∗1 , · · · , β∗D−1)T . (15)

Combining (13) and (15), we get the following theorem.

Theorem 1 In the spatial simultaneous autoregressive model (10), the vector of
semi-elasticities corresponding to classical covariates are given by

∂ logE⊕Yi

∂Xj
= U∗E⊕Yi

Aij(W)(β∗1 , · · · , β∗D−1)T , (16)

where U∗z = UzV
Y .

We can easily extend this result to the case of a compositional explanatory
variable with the same technique. In that case the model equation becomes

Y = X � βββ
Kc⊕
k=1

Xk �Bk ⊕ (W ·4Y) �R⊕ εεε, (17)

where Xk is the kth compositional explanatory variable, Bk the corresponding
matrix of parameters ( B∗k will denote its olr transform), and Kc is the number
of compositional explanatory variables. For such a compositional explanatory
variable, omitting as before its index k, we get the following expression of
the elasticities which are now replacing the semi-elasticities as in Morais and
Thomas-Agnan (2021):

Theorem 2 In the spatial simultaneous autoregressive model (17), the matrix of
elasticities corresponding to a compositional covariate with contrast matrix VX is
given by

∂ logE⊕Yi

∂ logXj
= U∗E⊕Yi

Aij(W)B∗VX ,

where U∗z = UzV
Y .
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5 Local impacts and impacts decomposition

In this section, coming back to the case of a classical explanatory variable, we
present several ways of exploring and summarizing the semi-elasticities. Recall
that we have for each component m, (m = 1, · · · , D), a n× n matrix of semi-
elasticities and we will say that it is the most disaggregated level. In order to
summarize these we want to aggregate them over the spatial locations. In the
classical point of view for spatial autoregressive models, the aggregation is done
over i and j simultaneously. We introduce intermediate steps by aggregating
on one of the two indices yielding what we will call local impacts.

In order to introduce the concepts, we will use a toy data set built from
a real data set that will be presented in the next section. We consider the 13
departments of the French Occitanie region and we simulate dependent and
explanatory variables using a spatial-compositional regression model inspired
by Nguyen et al. (2021), but at the department level instead of the canton
level. We simulate for each department a single classical explanatory variable
(unemployment rate, denoted “unemp”) using a continuous uniform distribu-
tion on the interval [0, 0.3] and we compute the corresponding vote shares of
three parties: Left, Right and Extreme Right (XR) using parameter values
close to those obtained in Nguyen et al. (2021). The spatial weight matrix W is
based on the rook contiguity calculated on simplified department geometries,
i.e. two polygons are neighbors if they share a common side. The simulated
model in the olr space is then:

Y∗ = 1n × βββ0∗ + unemp× βββ1∗ + WY∗R∗ + εεε∗

where Y∗ is a n× 2 matrix, unemp is a n× 1 vector, and

βββ0∗ =
[
β∗01 β

∗
02

]
=
[
1 −1.1

]
; βββ1∗ =

[
β∗11 β

∗
12

]
=
[
−7.6 10.5

]
;

ΣΣΣ∗ =

[
σ2∗
11 σ∗12
σ∗21 σ

2∗
22

]
=

[
0.09 0.02
0.02 0.09

]
; R∗ =

[
R∗11 R

∗
12

R∗21 R
∗
22

]
=

[
0.65 0.18

0 0.63

]
.

The n × 3 matrix of vote shares Y is obtained after using the olr inverse
operation on Y∗ with a constrast matrix V for the olr transformation given by:

V =

 2/
√

6 0

−1/
√

6 1/
√

2

−1/
√

6 −1/
√

2

 .
Figure 1 shows maps of the simulated vote shares using two different repre-
sentations: on the left, we plot a waffle layer using package cartography (see
Giraud & Lambert, 2016). In the supplementary material, we present a vari-
ant of this map using a pie chart at each location. As our share data is three
dimensional, we can use a ternary diagram for representing the composition
in the central plot. We then associate to each point of the ternary diagram a
unique color such that the ratio of its primary colors are directly connected
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to the values of Y in the simplex as explained in Laurent, Ruiz-Gazen, and
Thomas-Agnan (2021): the closer the color to red, the stronger the Left share,
the closer the color to green, the stronger the Right share, the closer the color
to blue, the stronger the Extreme Right share. These colors are then plotted
on the map, and the combination of the ternary diagram in the center with the
right hand side map gives a visual point of view on the spatial distribution of
the shares with their corresponding position in the simplex. We compute the

Fig. 1 Maps of the vote shares using two representations: a waffle layer and a ternary
diagram with colors depending on the locations in the simplex
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semi-elasticities seXij with equation (16). In practice, one would first estimate
the parameters of the spatial-compositional regression model; however, since
we have simulated the data, we directly use the data generating process param-
eters. Finally, we obtain one matrix of semi-elasticities per component i.e. D
matrices of size n× n. At this very disaggregated level, for a given location s,
it is then possible to represent the semi-elasticities seXis:m, i = 1, . . . , n, on D
maps (one map for each component m). For example, Figure 2 represents the
impacts of changing the variable unemp in the Aveyron department, on the
vote share Y at all other locations. We can see that the impacts are stronger
in the neighborhood of Aveyron, the so-called spillovers in a spatial model.

Moreover, although the signs of the semi-elasticities are the same for the
Extreme right (all positive) and Left (all negative), we observe both positive
and negative impacts for the Right, depending on the location. The question
then arises as to which of the two signs will prevail over the other in the event
that the impacts were aggregated over locations. Besides, it does not seem
practical to make such a plot for each of the n observations, especially if the
sample size is huge. This is what motivates the following proposals, namely
how can we aggregate and summarize all these semi-elasticities.

For each component, the diagonal terms of the matrix of semi-elasticities
characterize direct impacts, and the extra-diagonal terms indirect impacts.
Without loss of information, a first proposal is to represent parallel boxplots or
density plots of the semi-elasticities, grouped by direct and indirect impacts,
with respect to the component as shown in Figure 3. Direct and indirect
impacts of the Extreme Right and Left components have the same sign (posi-
tive for Extreme Right and negative for Left) which leads us to the following
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Fig. 2 Local impacts due to a change of unemp at the Aveyron department (located at
4th column, 2nd row)
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interpretation: the unemployment rate has a positive impact on the Extreme
Right vote share whereas it has a negative impact on the Left vote share.
For the Right component, although the direct impact is positive, one cannot
make a clear interpretation of an overall impact as the indirect impact can be
negative (same remark has been done previously for the Aveyron department).

Fig. 3 Parallel boxplots (and density plots) of the semi-elasticities grouped by direct and
indirect effects for each component
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Let us now represent the changes in the simplex which can be computed
using the relationship between semi-elasticities and derivatives in the simplex
(7). The top part of Figure 4 presents the local impacts in the simplex for each
location s using two points of view for grouping the impacts, the bottom part
of Figure 4 is a zoom on the Aveyron department.

In any of the left hand side ternary diagrams, corresponding to a fixed
location s, the first arrow represents the change of Y at s due to changing
the explanatory variable at location 1, the next one is the further impact of
changing the explanatory at location 2 and so on: the red arrow is when the
change is at location s and the other arrows are green.

In any of the right hand side ternary diagrams, with the same convention
for the colors, for a fixed location of change s, each arrow starts at a different
point E(Yi) and represents the change of E(Yi) resulting from changing X at
location s.
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Fig. 4 Simplicial derivatives in a ternary diagram using two groupings: on the left by
rows of the semi-derivative matrices whereas on the right by columns of the semi-derivative
matrices. Bottom part: Zoom on the Aveyron departement.
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Focusing for example on the Aveyron case, in the second approach (bottom
right of Figure 4), with δ = 0.3, we can see the expected evolution of vote
shares when the unemployment rate increases by 30 points in Aveyron only.
It appears that the direct impacts are stronger than the indirect ones. On the
bottom left, we see the successive evolutions of the expected share of a typical
department with the same characteristics as Aveyron when the unemployment
rate increases by 30 points at all locations.

Going one step further in the direction of summarizing the impacts, we are
first going to aggregate these doubly-indexed quantities on a single index at a
time to define local effects. Then we will also bring them back to the simplex
for a direct interpretation in terms of shares. For the direct impact, we define
the direct effect at location s in the simplex to be

DEs = sdss = C(exp(sess)).
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Note that there is a single such local effect for each s. For the indirect effects,
there are two ways to associate n − 1 indirect impacts to a given location s:
adding the s-row elements or adding the s-column elements, of the matrices
of semi-derivatives or semi-elasticities (excluding the diagonal elements). In
both cases, adding simplex derivatives with the ⊕ operation in the simplex
corresponds to adding the corresponding semi-elasticities with the ordinary
addition in R thanks to sdij = C(exp(seij)) and to the fact that C(exp(a)) ⊕
C(exp(b)) = C(exp(a+ b)).

Adding the elements by columns corresponds to defining the local indi-
rect impact in the simplex IEs⊕ by aggregating the changes on Y at a given
location s due to changing X at all other locations.

IEs⊕ =
⊕
j:j 6=s

sdsj = C(exp(
∑
j:j 6=i

sesj)).

Therefore the sum of these semi-elasticities can be interpreted as a percent
increase of Y at s resulting from all these changes.

Adding the elements by rows corresponds to defining the local indirect
impact in the simplex IE⊕s by aggregating the impacts due to changing X at
a given location s on Y at all other locations

IE⊕s =
⊕
i:i 6=s

sdis = C(exp(
∑
i:i6=j

seis)).

However since we consider the effects on Y at different locations which
might have a different initial value of Y, the interpretation is more tricky.
Adding these impacts in the simplex represents the change of the total in
the simplex (for the ⊕ operator) of the share vectors. Indeed ⊕iC exp δseis =
C(exp δ

∑
i seis), therefore δ

∑
i seis:m can be interpreted as the percent

increase of component m of the total share vector, for the simplex ⊕ operator.
It is also the simplex-average share vector when multiplying (with �) by 1

n .
Therefore the vector (

∑
i seis)m=1,···m yields the vector of percent-changes of

all components of the simplex average share vector.
In both cases, we can define a local total effectDEs+IEs⊕ andDEs+IE⊕s.

Instead of having D matrices of size n×n, we now have D vectors of size n×1
for direct impacts, D vectors of size n× 1 for indirect impacts (for each point
of view) and D vectors of size n× 1 for total impacts (for each point of view).

Using the first aggregation scheme, the right hand side of Figure 5 repre-
sents the local direct, indirect (IEs⊕) and total impacts (DEs + IEs⊕). The
left hand side shows barplots of the corresponding semi-elasticities.

On the barplots, we see that the direct impacts on the Left share seem
lower than on the Right share whereas it is the inverse for the indirect impacts.
On the ternary diagrams, the direct impact is almost parallel to the basis
of the ternary diagram which is opposed to the Left vertex, indicating that
when unemployment rate increases at location s, the Extreme Right vote share
increases at location smainly at the expense of the Right. The indirect impact’s
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Fig. 5 Barplots of semi-elasticities and ternary diagrams of the local direct and indirect
impact using the first agggregation scheme
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arrow is almost perpendicular to the basis opposed to the Extreme Right vertex
indicating that when the unemployment rate increases at all other locations,
the Extreme Right vote increases at location s mainly at the expense of the
Left.

Table 1 gives the final summary: the aggregation over both indices yield-
ing the classical direct, indirect and total impacts. When the unemployment
increases by δ points for a small δ, the Extreme right vote shares increase
by 4.1δ% of which 1.8δ% is due to the direct effect and 2.3δ% is due to the
indirect effect.

Table 1 Impacts summary for the unemployment variable.

Left Right Extreme Right
Direct -0.399 -1.465 1.756
Indirect -1.571 -0.483 2.309
Total -1.970 -1.948 4.065

6 Application on a case

We use a case presented in Nguyen et al. (2021) illustrating the simultane-
ous spatial regression model of the LAG type for compositional data with a
political dataset. They explain the vote shares of the Left, Right and Extreme
Right parties on n = 207 cantons, by socio-economic explanatory variables as
the diploma level, the age distribution or the proportion of people who pay
income tax. The spatial weight matrix they use is based on the first order
queen contiguity: i.e. two polygons are neighbors if they share a common side
or a common vertex. In their work, the semi-elasticities are approximate and
the interpretation is not done in the simplex. In this section, we are going to
present and interpret the exact semi-elasticities.
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Figure 6 shows the vote shares data in the simplex and on a map. As in
Nguyen et al. (2021), the cantons with at least one missing value have been
eliminated. We can identify some clusters that behave similarly: for instance,
the south west contains cantons with a important Left vote share, the north
tends to have cantons with a important Right vote share, and finally, the
east has cantons with strong Extreme Right vote share. To illustrate the local
impacts, we choose the following three cantons, namely “Saint-Gaudens” from
the south-east, “Lot et Palanges” from the north, and “Agde” from the east.

Fig. 6 Maps of the vote shares in the n = 207 cantons
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For the simultaneous spatial regression model of the LAG type for compo-
sitional data, we use the parameters estimates provided in Table 2 of Nguyen
et al. (2021). Note that the estimates of the spatial autocorrelation matrix
R∗ is the same as in the previous section simulation framework. We will now
focus on the interpretation of a classical variable: the proportion of people who
pay income tax. As in the previous section we move from the less to the more
aggregated points of view.

We first present in Figure 7 the local semi-elasticities for the three selected
cantons. Whichever site we considered, the proportion of people who pay
income tax has a negative direct and indirect impact on the Left vote share
whereas it has a positive direct and indirect impact on the Right vote share.
The direct and indirect impacts observed on the Extreme Right are positive
for “Saint-Gaudens” and “Agde”, but we can see that for “Lot et Palanges”,
impacts can be positive or negative. The closest neighbors seem to be affected
as strongly as the modified sites, which suggest that the indirect impact is
important.

Figure 8 shows the local impacts at each of the locations “Saint-Gaudens”,
“Lot et Palanges” and “Agde” due to a change of X everywhere. On the
left are the barplots of the semi-elasticities and on the right the cumulated
impacts in the simplex with the first aggregation scheme. We observe that
for the three cantons, the Right party is clearly the one that benefits from
an increase of the proportion of people who pay income tax, to the detriment
of the Left. However, if for “Lot et Palanges”, the Extreme Right vote is
weakly negatively impacted, it is the inverse for “Saint-Gaudens” and “Agde”.
Besides, the indirect effect is at least twice as large as the direct effect. Direct
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Fig. 7 Semi-elasticities observed due to a change of X at “Saint-Gaudens”, “Lot et
Palanges” and “Agde”
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and indirect effects influence the vote shares in the same way (barplots have
the same signs and arrows are oriented identically).

Fig. 8 Impacts at “Saint-Gaudens”, “Lot et Palanges” and “Agde” due do a change of X
everywhere
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To conclude, we can aggregate the local impacts to obtain the global sum-
maries in Table 2. If the proportion of people who pay income tax variable
increases by δ points for a small δ, the Right vote shares at all locations are
predicted to increase by a total 8.2δ% of which 2.9δ% is due to the direct
effect and 5.3δ% is due to the indirect effect. The Left vote share is predicted
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to decrease by a total of 6.9δ% of which 2.5δ% is due to the direct effect and
4.4δ% due to the indirect effect. The Extreme Right is predicted to increase
by a total of 2.8δ% of which 1.1δ% is due to the direct effect and 1.76δ% is
due to the indirect effect. This result underlines the importance of looking at
the local impacts as we can see that, at least for one location, the impact on
the Extreme Right can be locally negative.

Table 2 Scalar measures summary for proportion of people who pay income tax variable.

Left Right Extreme Right
Direct -2.516 2.927 1.081
Indirect -4.429 5.300 1.759
Total -6.945 8.227 2.840

7 Conclusion

In the framework of simplicial regression models involving spatial depen-
dence in the compositional dependent variable (share vector), we have derived
exact formulas for computing semi-elasticities (or elasticities, depending on
the nature of the explanatory variable of interest). These are used to measure
the impact of changing the value of a given explanatory variable at a given
location on the expected value of the dependent variable at a potentially dif-
ferent location. We present exploratory tools to summarize this large amount
of information with different levels of aggregation and we explain their inter-
pretation directly in terms of the share vector. We propose several graphical
representations illustrating the direct, indirect and total effects at a local level.
Our future investigations will be focused on assessing the significance of these
indicators which are nonlinear functions of the parameters.

Supplementary information. Supplementary material including code and
additional figures can be found at http://www.anonymized.

Acknowledgments. We acknowledge funding from the French National
Research Agency (ANR) under the Investments for the Future (Investissements
d’Avenir) program, grant ANR-17-EURE-0010.

References

Bivand, R.S., Gomez-Rubio, V., Pebesma, E.J. (2008). Applied spatial data
analysis with R. Springer-Verlag.

Giraud, T., & Lambert, N. (2016). cartography: Create and integrate maps
in your R workflow. JOSS , 1 (4).

Katz, J.N., & King, G. (1999). A statistical model for multiparty electoral
data. American Political Science Review , 93 (1), 15–32.

http://www.anonymized


Covariates impacts in spatial autoregressive models for compositional data 19

Kelejian, H.H., & Prucha, I.R. (2004). Estimation of simultaneous systems of
spatially interrelated cross sectional equations. Journal of Econometrics,
118 (1-2), 27–50.

Laurent, T., Ruiz-Gazen, A., Thomas-Agnan, C. (2021). Selecting colors for
mapping compositional data. Preprint .

LeSage, J., & Pace, R.K. (2009). Introduction to spatial econometrics.
Chapman and Hall/CRC.

Mart́ın-Fernández, J. (2019). Comments on: Compositional data: the sample
space and its structure. TEST , 28 (3), 653–657.

Morais, J., & Thomas-Agnan, C. (2021). Impact of covariates in compositional
models and simplicial derivatives. Austrian Journal of Statistics, 50 (2),
1–15.

Morais, J., Thomas-Agnan, C., Simioni, M. (2018). Interpretation of explana-
tory variables impacts in compositional regression models. Austrian
Journal of Statistics, 47 (5), 1–25.

Nguyen, T.H.A., Thomas-Agnan, C., Laurent, T., Ruiz-Gazen, A. (2021). A
simultaneous spatial autoregressive model for compositional data. Spatial
Economic Analysis, 16 (2), 161-175.

Pawlowsky-Glahn, V., Egozcue, J.J., Tolosana-Delgado, R. (2015). Modeling
and analysis of compositional data. John Wiley & Sons.

Thomas-Agnan, C., Laurent, T., Ruiz-Gazen, A., Nguyen, T.H.A., Chakir, R.,
Lungarska, A. (2021). Spatial simultaneous autoregressive models for
compositional data: Application to land use. In P. Filzmoser, K. Hron,
J.A. Mart́ın-Fernández, & J. Palarea-Albaladejo (Eds.), Advances in
compositional data analysis: Festschrift in honour of vera pawlowsky-
glahn (pp. 225–249). Cham: Springer International Publishing.

Yoshida, T., & Tsutsumi, M. (2018). On the effects of spatial relationships
in spatial compositional multivariate models. Letters in Spatial and
Resource Sciences, 11 (1), 57–70.


	tse_modele_wp1162
	Elasticities_spatial_WP_18_10_21
	Introduction
	Simplex operations reminder
	Covariates impacts in spatial autoregressive models and in simplicial regression models
	Univariate spatial autoregressive models
	Simplicial regression models

	Elasticity-based impacts for the spatial-compositional regression model
	Approximate semi-elasticities
	Exact semi-elasticities

	Local impacts and impacts decomposition
	Application on a case
	Conclusion
	Supplementary information
	Acknowledgments




