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Abstract

In competing-mechanism games under exclusivity, principals simultaneously post
mechanisms, and agents then simultaneously participate and communicate with at
most one principal. In this setting, we develop two complete-information examples that
question the logic of the folk theorems for competing-mechanism games established in
the literature. In the first example, there exist pure-strategy equilibria in which some
principal obtains less than her min-max payoff, computed over all players’ actions.
Thus folk-theorem-like results must generally involve bounds on principals’ payoffs
that depend on the spaces of messages available to the agents, and not only on the
players’ actions. The second example shows that even this nonintrinsic approach is
misleading: there exist incentive-feasible allocations in which principals obtain more
than their min-max payoffs, computed over arbitrary spaces of mechanisms, but which
cannot be supported in equilibrium. Key to these results is the standard requirement
that agents’ participation and communication decisions are tied together.
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1 Introduction

Competition in financial, labor, and monetary markets is often modeled by assuming that

sellers noncooperatively design trade mechanisms. Final allocations are then determined

by buyers’ strategic participation and communication decisions in these mechanisms. In

competing auctions (McAfee (1993), Peters (1997), Peters and Severinov (1997), Virag

(2010)), privately informed buyers observe the posted mechanisms, choose the auction they

want to participate to, and then bid according to their valuations. In competitive search

(Moen (1997), Eeckhout and Kircher (2010), Wright, Kircher, Julien and Guerrieri (2019)),

buyers apply to their preferred trade mechanism, meet a seller according to some meeting

technology, and, once in a meeting, communicate with the seller they are matched with,

possibly revealing private information to her. These interactions are instances of competing-

mechanism games in which principals first simultaneously commit to mechanisms and agents

then simultaneously participate and communicate with principals. Mechanisms are public

and are not contingent on one another. That is, when designing a mechanism, a principal

cannot directly condition her actions on themarket information generated by her competitors’

mechanisms, and held by the agents.

However, a principal can, in principle, condition her actions on reports by the agents

about their market information. Since the seminal work of Epstein and Peters (1999),

the literature on competing mechanisms has emphasized that providing agents with the

opportunity to report both their exogenous private information and their endogenous market

information can spectacularly enlarge the set of equilibrium allocations. Following Yamashita

(2010), several contributions (Peters and Troncoso-Valverde (2013), Xiong (2013), Ghosh

and Han (2018)) have indeed offered different versions of a folk theorem: in a nutshell,

letting principals’ mechanisms be sufficiently reactive to agents’ reports about their market

information allows one to support in equilibrium any incentive-compatible allocation that

yields each principal a payoff above a well-specified min-max bound. These results are

established under fairly general conditions on the primitives of the game, which questions

the relevance of the equilibrium analyses provided in the applied literature.

The present paper further elaborates on this issue. We focus on situations in which

agents’ participation decisions are strategic, in line with the intended economic applications

of the competing-mechanism paradigm, and we provide two examples that fundamentally

challenge the logic of folk theorems in this context.

As a contrast to our results, it is useful to review the arguments leading to folk theorems

for competing-mechanism games, as first developed by Yamashita (2010). Let each principal
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commit to punishing a unilateral deviation by any of her competitors, when reported by a

majority of agents through appropriate messages, and assume that the agents’ message spaces

are rich enough to allow them to select a specific punishment for each of these deviations.

Then, if there are at least three agents, any such punishment can be selected by majority

voting in the message game played by the agents. When unilaterally deviating, each principal

hence anticipates that her competitors will react by min-maximizing her: as a result, any

incentive-compatible allocation yielding her a payoff above the corresponding bound can be

supported in equilibrium by such mechanisms. The lower bound of a principal’s equilibrium

payoffs turns out to coincide with her min-max payoff computed over all mechanisms available

to principals, which establishes the folk theorem. This equality, however, obtains by making

agents able to select the worst punishment against every principal in every subgame, which

effectively requires that each agent participates and communicates with each principal for

any profile of posted mechanisms. We find this assumption hard to justify in the light of

economic applications, in which agents’ communication decisions are closely tied to their

participation decisions. That is, an agent can communicate the information he possesses to

a given principal only if he chooses to participate with her.

We show that taking into account agents’ participation decisions in competing-mechanism

games has dramatic implications for the possibility of deriving folk-theorem results. We

focus on the situation in which agents participate and communicate with at most one

principal, as is assumed both in competitive-auction and in competitive-search models. In

this exclusive-competition scenario, we construct two examples for the complete-information

case in which agents’ types are degenerate, so that they can only take participation decisions

and can only report about their market information.

Our first example exhibits equilibria of competing-mechanism games in which some

principal obtains a payoff below her min-max payoff, computed over the set of principals’

actions. In this example, the explicit consideration of agents’ participation decisions leads to

discontinuities and nonconvexities that prevent from applying the standard min-max logic,

despite the fact that there are only two principals who are allowed to randomize over their

decisions. The min-max payoff of the principal in question is strictly higher than her max-min

payoff, and hence cannot be a relevant bound for equilibrium characterization. The result

suggests that to establish a folk theorem in complete-information games, one may need to

specify a nonintrinsic bound that depends on the agents’ message spaces, which in turn limits

the predictive power of the approach. This result is robust to several extensions. First, it

does not depend on the assumption that the agents’ communication decisions are tied to
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their participation decisions: as long as participation is strategic, the same characterization

obtains even if communication is unrestricted. Second, it extends to situations in which each

principal only partially delegates to agents the implementation of her final action, retaining

the option to select it from a menu in the last stage of the game.

Our second example establishes that even the nonintrinsic approach is unsatisfactory

when communication is tied to participation. In this example, inspired by the competing-

hierarchy model of Myerson (1982), each agent has a dominant participation strategy, and

principal-agents hierarchies are thus fixed in the game. In addition, the min-max payoff for

each principal can be straightforwardly computed over arbitrary mechanisms, and it coincides

with the corresponding max-min payoff. Yet, the fact that each agent can communicate with

at most one principal makes it impossible to construct sophisticated equilibrium threats. As

a consequence, although there exist many incentive-feasible allocations in which principals

obtain more than their min-max payoffs, none of them can be supported in equilibrium. Each

principal’s equilibrium payoff thus coincides with her min-max payoff, even if the analysis is

extended so as to allow for mixed-strategy equilibria.

Related Literature

This paper is closely related to the recent literature on folk theorems in competing-mechanism

games initiated by Yamashita (2010). The main contribution of Yamashita (2010) is to

highlight the role of recommendation mechanisms. By offering such a mechanism, a principal

commits to a direct mechanism if all but one agent recommend her to do so. Letting

principals post recommendation mechanisms makes it possible to reproduce the equilibrium

allocations associated to the universal space of mechanisms identified by Epstein and Peters

(1999). Yamashita (2010) further assumes that each agent participates and communicates

with all principals for any profile of mechanisms, which allows him to rely on recommendation

mechanisms to derive an equilibrium characterization in terms of principals’ min-max payoffs.

His analysis has been extended in two important directions.

First, the bound for principals’ equilibrium payoffs proposed by Yamashita (2010) is

sensitive to the mechanisms available in the game. This makes it difficult to evaluate

his contribution in the light of standard folk theorems. The recent work of Peters and

Troncoso-Valverde (2013) provides an abstract framework for incomplete-information games

and formulates the corresponding bounds through agents’ incentive constraints in the spirit

of Myerson (1979). The bounds are therefore defined in terms of the primitives of the

model and, in contrast to Yamashita (2010), do not depend on the set of available (indirect)
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mechanisms. Ghosh and Han (2018) extend Yamashita (2010) to repeated interactions and

reformulate the bounds on principals’ equilibrium payoffs in these settings.

Yet, neither Peters and Troncoso-Valverde (2013) nor Ghosh and Han (2018) allow players

to take any action after mechanisms are posted. Our first example shows that, under

complete information, the bounds identified by Peters and Troncoso-Valverde (2013) and

Ghosh and Han (2018) are no longer relevant for principals’ equilibrium payoffs if agents’

participation decisions are taken into account.

Second, Yamashita (2010) restricts principals to deterministic mechanisms and only

considers pure-strategy equilibria of the agents’ game. Szentes (2009) shows that this

restriction is critical by constructing a simple complete-information game in which the

equilibrium allocations supported by deterministic mechanisms yield a principal a payoff

below Yamashita’s (2010) min-max bound. Xiong (2013) provides a generalized version of

Yamashita (2010), in which mixed strategies are allowed and a folk theorem is established.

Crucially, he also assumes that each agent always communicates with all principals. We

share with Szentes (2009) the focus on complete information, but we allow principals to post

random mechanisms, and we do not restrict agents to play pure strategies. In contrast with

these approaches, we explicitly model agents’ participation decisions. Our second example

then shows that recommendation mechanisms may not guarantee a system of punishments

allowing each principal to min-maximize her opponents.

An alternative route to folk theorems in competing mechanism games is based on the

notion of contractible contracts. Following Tennenholz (2004) and Kalai, Kalai, Lehrer, and

Samet (2010), Peters and Szentes (2012), Peters (2015) and Szentes (2015) let principals

design mechanisms that depend on the mechanisms of their opponents. This allows them

to directly punish a deviator in a way that depends on the specific deviation she chooses,

which can yield a folk theorem even in the absence of a strategic role for the agents. The

observability requirements underlying this approach, however, are too demanding in the light

of the economic applications we consider.

The paper is organized as follows. Section 2 introduces a general model of exclusive

competition under complete information. Sections 3 and 4 present our examples. Section 5

discusses the robustness of our results to unrestricted communication. Section 6 concludes.

2 The Model

We consider a setting in which several principals, indexed by j ∈ J ≡ {1, . . . , J}, contract
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with several agents, indexed by i ∈ I ≡ {1, . . . , I}. Agents have no private information, and

we denote each agent’s single type by t.

Actions and Payoffs Agents only take participation decisions, and we denote by aij ∈ Ai
j ≡

{Y,N} agent i’s decision to participate (Y ) or not (N) with principal j. Such decisions are

exclusive, in that each agent i can participate with at most one principal j. Hence, overall,

each agent i takes an action ai in the set Ai ≡ {(ai1, . . . , a
i
J) : aij = Y for at most one j}.

Each principal j in turn takes an action xj in a finite set Xj. We let vj : A ×X → R and

ui : A × X → R be the payoff functions of principal j and of agent i, respectively, where

A ≡ A1 × . . .× AI and X ≡ X1 × . . .×XJ .

Communication Communication takes place through the public mechanisms posted by

the principals and the messages sent by the agents in these mechanisms. Formally, agent i

sends a private message mi
j to principal j in some Polish space M i

j .
1 Each message space

M i
j includes the empty message ∅, which corresponds to agent i not communicating with

principal j, as well as the trivial message t. Communication is tied to participation, in the

sense that agent i sends a nonempty message to principal j if and only if he decides to

participate with her. Hence, overall, each agent i sends messages mi in the space M i ≡

{(mi
1, . . . ,m

i
J) : m

i
j 6= ∅ for at most one j}, and we say that a profile (mi, ai) ∈ M i × Ai is

consistent for agent i whenever mi
j 6= ∅ if and only if aij = Y for all j. We denote by C i the

space of such consistent communication and participation profiles for agent i.

Mechanisms Each principal j can take an action contingent on the messages mj ∈ Mj

she receives and the agents’ decisions aj ∈ Aj to participate with her, where by definition

Mj ≡ M1
j × . . . × M I

j and Aj ≡ A1
j × . . . × AI

j . We say that a profile (mj, aj) ∈ Mj × Aj

is consistent for principal j if mi
j 6= ∅ if and only if aij = Y for all i. We denote by

Cj the space of such consistent communication and participation profiles for principal j.

Notice that, because Mj is Polish and Aj is finite, Cj is Polish. A mechanism for principal

j is a Borel-measurable mapping γj : Cj → ∆(Xj) that associates to every consistent

communication and participation profile for principal j a lottery over her actions.

Admissibility Whereas most of our analysis focuses on situations in which principals play

pure strategies in equilibrium, a general requirement for defining expected payoffs in our and

related games is that the evaluation mapping (γj, cj) 7→ γj(cj) describing how the distribution

1Our first example only allows for minimal communication, and thus finite message spaces. Our second
example, by contrast, allows for rich communication, and thus uncountable message spaces. Requiring these
spaces to be Polish entails no loss of generality.
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of principal j’s action varies with her mechanism and the consistent communication and

participation profile she observes be measurable. Thus, at a minimum, we must define a

measurable structure on the set Γ
Mj

j of mechanisms for principal j. Two cases can arise.

If Mj and, hence, Cj, is countable, we can take Γ
Mj

j to be the set of all Borel-measurable

mappings γj : Cj → ∆(Xj); a natural measurable structure on Γ
Mj

j is then the product

Borel σ-field on the product of at most countably infinitely many copies of ∆(Xj). If Mj is

uncountable, however, there is no measurable structure on the set of all Borel-measurable

mappings γj : Cj → ∆(Xj) such that the evaluation mapping for principal j is measurable

(Aumann (1961)); in that case, there is no other choice than to restrict the set of admissible

mechanisms Γ
Mj

j . Admissibility can be shown to coincide with the requirement that Γ
Mj

j be of

bounded Borel class (Aumann (1961), Rao (1971)), allowing for a rich class of mechanisms

for our analysis. With this caveat in mind, we hereafter fix an admissible space Γ
Mj

j of

mechanisms for every principal j, with associated σ-field G
Mj

j .

Strategies and Timing The competing-mechanism game GM induced by M ≡ M1× . . .×

MJ unfolds in three stages:

1. The principals simultaneously post mechanisms.

2. The agents simultaneously take consistent communication and participation decisions.

3. The principals’ mechanisms are implemented, lotteries realize, and all payoffs accrue.

A strategy for principal j is a probability measure µj ∈ ∆(Γ
Mj

j ) over the σ-field G
Mj

j . A

strategy for agent i is a measurable mapping λi : ΓM → ∆(C i) that associates to every

profile of mechanisms a probability measure over consistent communication and participation

profiles for agent i, where ΓM ≡ ΓM1

1 × . . . × ΓMJ

J is endowed with the product σ-field

GM1

1 ⊗ . . . ⊗ GMJ

J and ∆(C i) with the Borel σ-field. The allocation z(γ, λ) induced by the

mechanisms γ ≡ (γ1, . . . , γJ) and the strategies λ ≡ (λ1, . . . , λI) is the probability measure

over outcomes in A × X uniquely defined by the marginal of λ1(γ) ⊗ . . . ⊗ λI(γ) over A

and the probability transitions γj from Cj to Xj. Notice that the mapping z(·, λ) : ΓM →

∆(A ×X) : γ 7→ z(γ, λ) is measurable. Hence we can define the allocation z(µ, λ) induced

by the strategies µ ≡ (µ1, . . . , µJ) and λ ≡ (λ1, . . . , λI) by

z(µ, λ)(a, x) ≡

∫
ΓM

z(γ, λ)(a, x)µ1(dγ1)⊗ . . .⊗ µJ(dγJ)

for all (a, x) ∈ A×X.

Equilibrium The strategy profile (µ, λ) is a subgame-perfect Nash equilibrium (SPNE) of
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GM whenever:

(i) For each γ ∈ ΓM , (λ1(γ), . . . , λI(γ)) is a Nash equilibrium in the subgame γ played by

the agents.

(ii) Given the continuation equilibrium λ, µ is a Nash equilibrium of the game played by

the principals.

We denote by Λ∗(γ) the set of Nash equilibria of the subgame γ. Following Epstein and Peters

(1999) and Han (2007), we will mostly focus on SPNEs of GM in which principals play pure

strategies (SPNE-PSP). That is, each principal deterministically posts a mechanism; notice,

however, that this mechanism may involve randomization over her final actions.

Direct Mechanisms In our complete-information setting, a direct mechanism for principal

j is a mechanism such that the message space Mj is restricted to the trivial message t and

the empty message ∅. Because in this case communication decisions are redundant relative

to participation decisions, such a mechanism can be identified to a mapping γ̃j : Aj → ∆(Xj)

that associates to every participation profile for principal j a lottery over her actions. We

denote by Γ̃j the set of direct mechanisms for principal j, and we let Γ̃ ≡ Γ̃1× . . .× Γ̃J and G̃

be the competing-mechanism game in which principals are restricted to direct mechanisms.

Notice that, because Aj and Xj are finite, Γ̃j is a compact and convex subset of a Euclidean

space. A strategy for agent i in G̃ can be identified to a Borel-measurable mapping λ̃i :

Γ̃ → ∆(Ai) that associates to every profile of direct mechanisms a lottery over participation

profiles for agent i. We say that the allocation z(γ̃, λ̃) is incentive-feasible if λ̃ ∈ Λ∗(γ̃).

A Team Interpretation Our complete-information setting with observable contracts is

reminiscent of the environment studied by Fehrstman, Judd, and Kalai (1991), with the

difference that we do not impose a priori restrictions on mechanisms and allow each principal

to delegate the choice of her actions to several agents. More concretely, our setting has a

natural interpretation as a team-formation model. In this interpretation, principals are

teams—such as, for instance, football teams or law firms—while agents are players—football

players or lawyers—who can each join at most a single team. Each team can commit to

possibly random actions contingent on the identities of the players who choose to join it;

by contrast, the composition of other teams is noncontractible, or simply not observable at

the time the team chooses its actions. The teams’ action sets may include, for instance,

task allocation and remuneration schemes. Teams’ and players’ payoffs can depend in

complex ways on the composition of each team and on actions taken within the teams. This
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team-formation model is in line with the competing-hierarchy model of Myerson (1982). The

difference is that the composition of teams is endogenous in our model, in that it depends

on the mechanisms offered by each team, whereas it is taken as exogenous in the standard

competing-hierarchy model.

3 The First Example

Our first example emphasizes the impact of agents’ strategic participation decisions on

equilibrium outcomes. Specifically, we show that, as long as these decisions are payoff-relevant,

payoffs for the principals below the min-max-min bounds identified by Peters and Troncoso-

Valverde (2013), Peters (2014), and Ghosh and Han (2018) can be supported in equilibrium.

3.1 The Physical Environment

Let I = J ≡ 2 and let X1 ≡ {x11, x12} and X2 ≡ {x21, x22} be the sets of actions of principal

1 (P1) and principal 2 (P2), respectively. Let A1 = A2 ≡ {Y N,NY,NN} be agent 1’s (A1)

and agent 2’s (A2) sets of actions, where Y N , for instance, refers to the agent participating

with P1 but not with P2. Payoffs are represented in the matrix in Table 1 below, in which

agents choose in the external box and principals choose in the internal 2 × 2 cells. Each

array represents the payoffs to P1, P2, A1, and A2, respectively.

Y N NY

x21 x22 x21 x22

Y N x11 (0, ζ, 5, 25
2
) (0, ζ, 5, 25

2
) x11 (0, 0, 5, 12) (0, 10, 5, 8)

x12 (0, ζ, 10, 9
2
) (0, ζ, 10, 9

2
) x12 (0, 0, 10, 12) (0, 10, 10, 8)

x21 x22 x21 x22

NY x11 (0, 10, 8, 12) (0, 8, 9, 12) x11 (0, ζ, 40, 7) (0, ζ, 4, 13)
x12 (0, 10, 8, 8) (0, 8, 9, 8) x12 (0, ζ, 40, 7) (0, ζ, 4, 13)

Table 1: The payoff matrix.

Observe that P1’s payoff is constantly equal to 0, and that, for any profile of participation

decisions by the agents, P1’s choice of action has no impact on P2’s payoff. Hence there are no

direct payoff externalities between the principals, and P1 can affect P2’s payoff only insofar as

she can influence the agents’ participation decisions through her choice of a mechanism. We

assume, in addition, that the no-participation decision NN is strictly dominated for every

agent, and we let ζ < 0 be an arbitrarily large loss for P2 if neither A1 nor A2 participate

with her, or if both A1 and A2 participate with her. Notice also that there exists at least one
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incentive-feasible allocation yielding P2 her maximal payoff of 10. To see this, consider the

simple direct mechanisms in which P1 chooses x11 and P2 chooses x21 for any participation

decisions of the agents. The resulting subgame played by the agents only admits the Nash

equilibrium (NY, Y N), which yields P2 a payoff of 10.

3.2 The Game G̃

We first consider the game G̃ in which each principal does not ask for private messages

and associates to every profile of agents’ decisions to participate with her a lottery over her

actions. Let us first observe that a direct mechanism for P1, say γ̃1, is represented by the

following list of participation-contingent probability distributions over X1:

γ̃1(Y, Y ) = (δY,Y , 1− δY,Y ), γ̃1(Y,N) = (δY,N , 1− δY,N),
γ̃1(N, Y ) = (δN,Y , 1− δN,Y ), γ̃1(N,N) = (δN,N , 1− δN,N),

where δa1
1
,a2

1

denotes the probability of P1 choosing action x11 given a participation profile

(a11, a
2
1) ∈ A1 for P1. Thus, for instance, δY,N is the probability that P1 chooses x11 if only A1

chooses to participate with her. Similarly, a direct mechanism for P2, say γ̃2, is represented

by participation-contingent probability distributions over X2, and we let σa1
2
,a2

2

denote the

probability that P2 chooses x21 given a participation profile (a12, a
2
2) ∈ A2 for P2. Our first

result is that the principals’ payoffs are uniquely pinned down in any SPNE-PSP of G̃.

Proposition 1 The principals obtain payoffs (0, 10) in any SPNE-PSP of G̃.

Proof. Recall that P1’s payoff is constantly equal to 0. We thus only need to show that

for every direct mechanism posted by P1, that is, for every family of transition probabilities

δa1
1
,a2

1

, there exists a direct mechanism for P2, that is, a family of transition probabilities

σa1
2
,a2

2

, inducing a unique Nash equilibrium in the subgame played by the agents, in which

P2 achieves her maximal payoff of 10.

Case 1 Suppose first that δY,Y > 2
5
. In this case, let P2 post a mechanism such that

σY,Y = σN,Y = σY,N = 1, which induces the subgame in Table 2.

Y N NY

Y N (10− 5δY,Y ,
9
2
+ 8δY,Y ) (10− 5δY,N , 12)

NY (8, 8 + 4δN,Y ) (40, 7)

Table 2: The subgame of G̃ induced by δY,Y > 2
5
and σY,Y = σY,N = σN,Y = 1.
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Because δY,Y > 2
5
, we have 10 − 5δY,Y < 8. Thus NY is a strictly dominant strategy

for A1 in this subgame, which guarantees that (NY, Y N) is the unique Nash equilibrium.

Because σY,N = 1, P2 obtains a payoff of 10.

Case 2 Suppose next that δY,Y ≤ 2
5
. In this case, let P2 post a mechanism such that

σY,Y = σN,Y = σY,N = 0, which induces the subgame in Table 3.

Y N NY

Y N (10− 5δY,Y ,
9
2
+ 8δY,Y ) (10− 5δY,N , 8)

NY (9, 8 + 4δN,Y ) (4, 13)

Table 3: The subgame of G̃ induced by δY,Y ≤ 2
5
and σY,Y = σY,N = σN,Y = 0.

Because δY,Y ≤ 2
5
, we have 9

2
+ 8δY,Y < 8. Thus NY is a strictly dominant strategy for

A2 in this subgame, which, as 10−5δY,N ≥ 4, guarantees that (Y N,NY ) is the unique Nash

equilibrium. Because σN,Y = 0, P2 obtains a payoff of 10. Hence the result. �

The proof of Proposition 1 actually shows the stronger result that, given any direct

mechanism γ̃1 posted by P1, P2 can defend her maximal payoff of 10 by posting a direct

mechanism γ̃2 that induces a unique Nash equilibrium in the subgame γ̃ ≡ (γ̃1, γ̃2). That is,

the following min-max-min payoff for P2:

V 2 ≡ min
γ̃1∈Γ̃1

max
γ̃2∈Γ̃2

min
λ̃∈Λ∗(γ̃)

Ez(γ̃,λ̃)[v2(a, x)], (1)

is equal to 10 in the game G̃. Notice that the definition of V 2 only allows principals to

offer direct mechanisms; as such, it is specified only in terms of the primitives of the model,

that is, the actions available to the players and the resulting payoffs. In this respect, it

is analogous to the min-max bounds introduced by Peters and Troncoso-Valverde (2013),

Peters (2014), and Ghosh and Han (2018) in competing-mechanism games with complete

information, the only difference being that agents can take real participation decisions. By

contrast, V 2 differs from the min-max-min bound introduced by Yamashita (2010), in which

the set of admissible mechanisms for each principal includes a recommendation mechanism,

that is, a specific indirect mechanism committing her to asking agents to recommend her a

direct mechanism and to following the majority recommendation.

3.3 Indirect Mechanisms with Minimal Private Communication

In the game G̃, private communication between the agents and the principals can only take

place through the trivial message t, which an agent sends to a principal if he decides to
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participate with her, and the empty message ∅, which he sends to her otherwise. Such

messages are redundant relative to participation decisions and, hence, essentially trivial. We

now consider a game GM in which a minimal degree of meaningful private communication

is allowed for. Specifically, we allow A1 to send one additional message m to P1. That is,

M1
1 ≡ {t,m, ∅}, while M2

1 = M1
2 = M2

2 ≡ {t, ∅} as in the game G̃.

In the game GM , P2 can only offer direct mechanisms γ̃2 described as above by transition

probabilities σa1
2
,a2

2

. By contrast, P1 can also offer indirect mechanisms γ1 contingent on

the message m sent by A1, allowing her to generate additional threats. Extending our

previous notation, such a mechanism is represented by the following list of message- and

participation-contingent probability distributions over X1:
2

γ1((t, Y ), Y ) = (δ(t,Y ),Y , 1− δ(t,Y ),Y ), γ1((t, Y ), N) = (δ(t,Y ),N , 1− δ(t,Y ),N),
γ1((m,Y ), Y ) = (δ(m,Y ),Y , 1− δ(m,Y ),Y ), γ1((m,Y ), N) = (δ(m,Y ),N , 1− δ(m,Y ),N),

γ1(N, Y ) = (δN,Y , 1− δN,Y ), γ1(N,N) = (δN,N , 1− δN,N).

The subgame (γ1, γ̃2) is represented in Table 4 below.

Y N NY

(t, Y )N (10− 5δ(t,Y ),Y ,
9
2
+ 8δ(t,Y ),Y ) (10− 5δ(t,Y ),N , 8 + 4σN,Y )

(m,Y )N (10− 5δ(m,Y ),Y ,
9
2
+ 8δ(m,Y ),Y ) (10− 5δ(m,Y ),N , 8 + 4σN,Y )

NY (9− σY,N , 8 + 4δN,Y ) (4 + 36σY,Y , 13− 6σY,Y )

Table 4: The subgame (γ1, γ̃2) of G
M .

The following result shows that this minimal enlargement of a single agent’s message

space compared to the game G̃ has a dramatic impact on P2’s SPNE-PSP payoff set.

Proposition 2 If the loss ζ incurred by P1 when both A1 and A2 participate with her is large

enough, then the principals can obtain any payoffs in {(0, π) : π ∈ [0, 10]} in an SPNE-PSP

of GM .

Proof. For the sake of clarity, all equilibrium objects will be indexed by a ∗. We prove

that, for each σ∗ ∈ [0, 1], there exists an SPNE-PSP of GM in which P1 posts a mechanism

γ∗

1 and P2 posts a direct mechanism γ̃∗

2 such that σ∗

N,Y = σ∗ and, on the equilibrium path,

A1 participates with P1 and A2 participates with P2 with probability 1, which yields P2 a

payoff 10(1− σ∗).

2To alleviate the notation, and when no confusion can arise, we hereafter only indicate the nonempty
messages t and m sent by A1 to P1.
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Thus fix some σ∗ ∈ [0, 1]. To construct an SPNE-PSP in which P2 posts a direct

mechanism γ̃∗

2 such that σ∗

N,Y = σ∗, we proceed as follows. First, let P1 post a mechanism

γ∗

1 in which δ∗(t,Y ),Y is such that 9
2
+ 8δ∗(t,Y ),Y = 8 + 4σ∗, that is, δ∗(t,Y ),Y = 7+8σ∗

16
∈ (0, 1).

In addition, let δ∗(t,Y ),N = 0, δ∗(m,Y ),Y = 0, δ∗(m,Y ),N = 1, and δ∗N,Y = 1. Second, let P2

post a mechanism γ̃∗

2 in which σ∗

Y,Y = 1
6
and σ∗

N,Y = σ∗. One can check that the subgame

(γ∗

1 , γ̃
∗

2) has an equilibrium in which A1 and A2 play ((t, Y )N,NY ). This yields P2 a payoff

10(1− σ∗).

Suppose next that P2 deviates to some direct mechanism γ̃2. The agents play the game

in Table 5.

Y N NY

(t, Y )N (10− 5
16
(7 + 8σ∗), 8 + 4σ∗) (10, 8 + 4σN,Y )

(m,Y )N (10, 9
2
) (5, 8 + 4σN,Y )

NY (9− σY,N , 12) (4 + 36σY,Y , 13− 6σY,Y )

Table 5: The subgame (γ∗

1 , γ̃2) of G
M .

The analysis of such subgames consists of three steps.

Step 1 Consider first the subgames (γ∗

1 , γ̃2) for σY,Y ≤ 1
6
and σN,Y ≥ σ∗. Our candidate

for an SPNE-PSP of GM has A1 and A2 playing ((t, Y )N,NY ) in any such subgame, which is

indeed a Nash equilibrium if σY,Y ≤ 1
6
and σN,Y ≥ σ∗, because NY is then weakly dominant

for A2 and (t, Y )N is then a best response of A1 to A2 playing NY . The corresponding

payoff for P2 is 10(1− σN,Y ), which is strictly decreasing in σN,Y . By construction, P2 does

not want to deviate to a mechanism γ̃2 such that σY,Y ≤ 1
6
and σN,Y > σ∗, which would

make her strictly worse off, or to a mechanism γ̃2 such that σY,Y < 1
6
and σN,Y = σ∗, which

would leave her indifferent.

Step 2 We next show that P2 does not want to deviate to any γ̃2 such that σY,Y > 1
6
.

To see why, observe first that, if σY,Y > 1
6
, then (t, Y )N is strictly dominated in (γ∗

1 , γ̃2) for

A1 and (γ∗

1 , γ̃2) has no pure strategy Nash equilibrium. It is easy to check that (γ∗

1 , γ̃2) has a

unique mixed-strategy Nash equilibrium in which A1 plays (m,Y )N with probability p and

NY with probability 1− p, where

p ≡
6σY,Y − 1

6σY,Y + 4σN,Y + 5
2

,

and A2 plays Y N with probability q and NY with probability 1− q, where

q ≡
36σY,Y − 1

36σY,Y + σY,N

.
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Then P2’s payoff is

pqζ + p(1− q)10(1− σN,Y ) + (1− p)q(8 + 2σY,N) + (1− p)(1− q)ζ,

which is negative when the loss ζ is large enough as p is bounded away from 1 and q is

bounded away from 0 and 1 no matter the values of σY,Y > 1
6
and σY,N .

Step 3 We finally show that P2 does not want to deviate to a mechanism γ̃2 such that

σY,Y ≤ 1
6
and σN,Y < σ∗. Consider first the subgames such that σY,Y = 1

6
and σN,Y < σ∗. Our

candidate for an SPNE-PSP of GM has A1 and A2 playing (NY,NY ) in any such subgame,

which is indeed a Nash equilibrium. The corresponding payoff for P2 is ζ, so that she has no

incentive to deviate from her postulated mechanism. Consider next the subgames such that

σY,Y < 1
6
and σN,Y < σ∗. Observe that none of the resulting subgames (γ∗

1 , γ̃2) has a Nash

equilibrium in which A2 plays a pure strategy. Thus, A1 must play (t, Y )N with positive

probability, for, otherwise, the unique best response of A2 would be NY . Moreover, A1 must

play (m,Y )N or NY with positive probability, for, otherwise, the unique best response of

A2 would be Y N . We distinguish three cases.

Case 1 Suppose first that A1 randomizes over (t, Y )N and (m,Y )N . For A2 to be

indifferent between Y N and NY , it must be that A1 plays (t, Y )N with probability p′ and

(m,Y )N with probability 1− p′, where

p′ ≡
7
2
+ 4σN,Y

7
2
+ 4σ∗

.

Similarly, for A1 to be indifferent between (t, Y )N and (m,Y )N , it must be that A2 plays

Y N with probability q′ and NY with probability 1− q′, where

q′ ≡
1

1 + 1
16
(7 + 8σ∗)

.

These strategies form a Nash equilibrium if A1 is not tempted to deviate to NY , which is

the case if and only if q′ ≥ q, with q as defined in Step 2. Then P2’s payoff is

q′ζ + p′(1− q′)10(1− σN,Y ) + (1− p′)(1− q′)ζ,

which is negative when the loss ζ is large enough as q′ is bounded away from 0 no matter

the value of σ∗.

Case 2 Suppose next that A1 randomizes over (t, Y )N and NY . For A2 to be indifferent

between Y N and NY , it must be that A1 plays (t, Y )N with probability p′′ and NY with
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probability 1− p′′, where

p′′ ≡
1− 6σY,Y

1− 6σY,Y + 4(σ∗ − σN,Y )
.

Similarly, for A1 to be indifferent between (t, Y )N and NY , it must be that A2 plays Y N

with probability q′′ and NY with probability 1− q′′, where

q′′ ≡
6(1− 6σY,Y )

6(1− 6σY,Y ) +
1
16
(19 + 40σ∗)− σY,N

.

These strategies form a Nash equilibrium if A1 is not tempted to deviate to (m,N)Y , which

is the case if and only if q ≥ q′, with q as defined in Step 2. Then P2’s payoff is

p′′q′′ζ + p′′(1− q′′)10(1− σN,Y ) + (1− p′′)q′′(8 + 2σY,N) + (1− p′′)(1− q′′)ζ,

and we must show that, when the loss ζ is large enough, this does not exceed the candidate

equilibrium payoff 10(1 − σ∗) uniformly in σY,Y < 1
6
, σN,Y < σ∗, and σY,N , given the above

expressions for p′′ and q′′. For conciseness, let us write

ε ≡ 1− 6σY,Y ,

η ≡ σ∗ − σN,Y ,

ξ ≡
1

16
(19 + 40σ∗)− σY,N ,

and notice that ξ, unlike ε and η, is bounded away from 0. An upper bound for P2’s payoff

from deviating is

B ≡ [p′′q′′ + (1− p′′)(1− q′′)]ζ + p′′(1− q′′)10(1− σN,Y ) + 10(1− p′′)q′′,

and, with the above notation, we have

B − 10(1− σ∗) ≤ [p′′q′′ + (1− p′′)(1− q′′)]ζ + p′′(1− q′′)10(σ∗ − σN,Y ) + 10(1− p′′)q′′

∝ (6ε2 + 4ηξ)ζ + εξη + 240ηε

< η(4ξζ + εξ + 240ε),

which, as ξ is bounded away from 0 and ε ∈ [0, 1] as σY,Y < 1
6
, is negative when the loss ζ is

large enough, uniformly in η and ε.

Case 3 Finally, if q = q′ = q′′, A1 is ready to randomize over (t, Y )N , (m,Y )N , and NY .

Instead of considering a completely mixed Nash equilibrium of (γ∗

1 , γ̃2), we can however select

either of the equilibria constructed in Cases 1 and 2, which ensures that P2 has no incentive

to deviate. Hence the result. �
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The proof of Proposition 2 shows how P1 uses her communication with A1 to construct

additional threats. This flexibility is exploited to deter P2’s deviations and to support a large

number of equilibrium allocations. The example shares with Yamashita (2010) the idea that,

following any deviation of P2, P1 delegates to the agents the implementation of her actions.

In particular, it should be noted that selecting the appropriate punishments for P2 is part

of the agents’ equilibrium strategies. However, this effect does not transit in our example

through the selection of a particular action of P1, as there are no direct payoff externalities

between the principals for any given profile of participation decisions for the agents. Rather,

punishments take place through the agents’ participation decisions and, specifically, through

their willingness to take such decisions at random given the mechanism posted by P1. This,

from the perspective of P2, creates the possibility of a miscoordination whereby both A1

and A2, or neither of them, participate with her, two outcomes that are equally detrimental

to her. As a consequence, equilibrium multiplicity obtains without having to assume at least

three agents, which would be necessary to punish deviators via majority voting as in the

recommendation mechanisms of Yamashita (2010). It should also be noted that the example

could be made generic by allowing for direct externalities between principals, as long as the

game is perturbed so as to make punishments more severe; in fact, direct externalities make

it easier to engineer such punishments. Such a perturbation can be designed to preserve 10

as the min-max-min payoff for P2 and to make sure that all payoffs for P2 between 0 and

10 can be supported in equilibrium.

The key insight for equilibrium characterization is that, in competing-mechanism games

in which agents can take real participation decisions, instead of mere reporting decisions, the

min-max-min payoff (1) is not relevant for describing principals’ equilibrium payoffs. Indeed,

Proposition 2 shows that even minimal communication allows one to support equilibrium

payoffs for P2 below this value, which is equal to 10 in our example. We further discuss this

issue in the next section.

3.4 Discussion

We first relate our findings to the failure of the min-max theorem in our example. We next

argue that Proposition 2 is robust to an alternative extensive form due to Szentes (2009).

3.4.1 Min-Max > Max-Min

In analogy with (1), let us define the max-min-min payoff for P2 as follows:

V 2 ≡ sup
γ̃2∈Γ̃2

min
γ̃1∈Γ̃1

min
λ̃∈Λ∗(γ̃)

Ez(γ̃,λ̃)[v2(a, x)]. (2)
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It will become clear below why, in general, the max in (1) may have to be replaced by a sup

in (2). Our discussion revolves around the following lemma, for which we provide a proof in

the Appendix.

Lemma 1 V 2 > V 2.

To see why this holds, notice that, by Proposition 1, we have V 2 = 10, while, by

Proposition 2, we have

sup
γ̃2∈Γ̃2

min
γ1∈Γ

M1

1

min
λ∈Λ∗(γ1,γ̃2)

Ez(γ1,γ̃2,λ)[v2(a, x)] ≤ 0. (3)

Thus, to show that V 2 < V 2, we only need to establish that the payoffs in (2)–(3) coincide.

We provide a proof of this fact in the appendix. The wedge between the max-min-min and

min-max-min payoffs V 2 and V 2 reflects the fact that agents take strategic participation

decisions. This contrasts with the min-max theorem for one-shot complete-information

games established by Ghosh and Han (2018, Theorem 3) in line with the general discussions

of Peters and Troncoso-Valverde (2013) and Peters (2014).3

There are indeed two reasons why Sion’s (1958) min-max theorem does not apply in the

present context. The first is that the Nash correspondence Λ∗ : Γ̃1 × Γ̃2 ։ ∆(A1) ×∆(A2)

in our example is not single-valued and is only upper hemicontinuous. This implies that

the mapping (γ̃1, γ̃2) 7→ minλ̃∈Λ∗(γ̃) Ez(γ̃,λ̃)[v2(a, x)] is not upper semicontinuous in γ̃2;
4 for

instance, it is easy to check that it exhibits a downward discontinuity at σY,Y = 1
6
.5 The

second is that, whereas the expectation Ez(γ̃,λ̃)[v2(a, x)] is multilinear in (γ̃, λ̃), there is no

reason for its minimum with respect to λ̃ ∈ Λ∗(γ̃) to be quasiconvex in γ̃1 and quasiconcave in

γ̃2. Thus letting the agents take real participation decisions naturally leads to discontinuities

and nonconvexities that prevent the usual min-max logic from applying, even if we allow

principals to randomize over their actions. Given the importance of participation decisions

in the applied literature on competing mechanisms, this casts serious doubt on the general

relevance of this logic.

3In two-principal settings, Theorem 3 in Ghosh and Han (2018) follows directly from Sion’s (1958) min-
max theorem.

4By contrast, it follows from the second half of Berge’s maximum theorem that this mapping is lower
semicontinuous in γ̃1 (Aliprantis and Border (2006, Lemma 17.30)), and thus attains its minimum over the
compact set Γ̃1. This minimum, however, need not be upper semicontinuous in γ̃2, and thus may not attain
its maximum over the compact set Γ̃2. Hence the sup instead of the max in the definition of V 2.

5Indeed, if σY,Y = 1

6
, (NY,NY ) is a pure-strategy Nash equilibrium in the game played by the agents

that yields P2 a payoff of ζ. By contrast, if σY,Y < 1

6
and, for instance, δY,Y = 1 and δY,N = δN,Y = 0, then

the game between the agents admits only a completely mixed Nash equilibrium in which the probability p′′′

with which A1 plays Y N is bounded away from 0, and the probability q′′′ with which A2 plays Y N tends
to 0 as σY,Y tends to 1

6
. The limit payoff for P2 is then (1− p′′′)ζ + p′′′10(1− σN,Y ) > ζ.
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Admittedly, Proposition 2 does not provide a full characterization of equilibrium payoffs

for principals; specifically, we have not checked whether V 2 < 0 and whether equilibria with

payoff for P2 down to that level can be sustained. Our second example will show that there is

no hope for obtaining a general result along these lines: neither the min-max-max payoff (1)

nor the max-min-min payoff (2) are relevant bounds for the characterization of equilibrium

payoffs of competing-mechanism games with communication.

3.4.2 An Alternative Extensive Form

By showing the existence of equilibrium allocations yielding a principal a payoff below

her min-max-min payoff, Proposition 2 stands in contrast with the folk-theorem results

derived by Yamashita (2010) and Peters and Troncoso-Valverde (2013). Key to our results

is the existence of a wedge between principals’ min-max-min and max-min-min payoffs, as

emphasized above. In this context, one may, however, argue with Szentes (2009) that a

folk theorem relying on min-max-min bounds could still be established by considering more

general mechanisms, whereby principals do not fully delegate the implementation of their

final actions to the agents.

Szentes (2009) models partial delegation via a slightly different extensive form. First,

each principal posts a mechanism specifying a menu of final actions contingent on any profile

of messages she may receive. Second, each agent privately sends messages to each principal.

Third, each principal selects an action from the resulting menu. Theorem 1 in Szentes (2009)

states that, in this game, in which the agents’ participation decisions are not modeled, an

allocation can be supported in equilibrium if and only if it yields each principal a payoff

above her min-max payoff, computed over the principals’ final actions. It should be noted

that lotteries are not allowed in this construction.

We now show that, when agents’ participation decisions are explicitly taken into account,

Proposition 2 is robust to partial delegation. The extended competing-mechanism game

GM,S unfolds in four stages:

1. The principals simultaneously post extended mechanisms that specify menus of lotteries

over final actions contingent on any consistent communication and participation profile.

2. The agents simultaneously take consistent communication and participation decisions.

3. The principals simultaneously select lotteries from the menus determined by their

mechanisms and the agents’ decisions.

4. Lotteries realize, and all payoffs accrue.
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In this framework, an extended mechanism for principal j is a measurable correspondence

γS
j : Cj ։ ∆(Xj) that associates a menus of lotteries over final actions to any profile of

consistent communication and participation decisions by the agents, and an extended direct

mechanism is a correspondence γ̃S
j : Aj ։ ∆(Xj). To eschew trivial nonexistence problems,

we suppose that these correspondences are compact-valued.

We now argue that the allocations characterized in Proposition 2 can also be supported

in an equilibrium of this enlarged game. On the equilibrium path, P1 posts γ∗

1 for some

σ∗ ∈ [0, 1], while P2 posts γ̃∗

2 , as assumed in the proof of Proposition 2. Now, suppose

that P2 deviates and posts an extended direct mechanism γ̃S
2 ; that is, we assume, as in

Proposition 2, that agents cannot send messages to P2. Then the agents’ payoffs in the

subgame (γ∗

1 , γ̃
S
2 ) are as in Table 5, where σa1

2
,a2

2

now denotes the agents’ equilibrium belief

that P2 will choose x21 given a participation profile (a12, a
2
2) ∈ A2 for P2. In particular, these

beliefs are now constrained to be consistent with P2’s sequential rationality in the relevant

subgames; for instance, it is clear from Table 1 that we must have σY,N = 0 and σN,Y = 1

in the full-discretion case where γ̃S
2 does not constrain the set of lotteries available to P2.

As the analysis in Proposition 2 shows that P2 cannot profitably deviate when she can

commit to any profile (σY,Y , σY,N , σN,Y , σN,N), it a fortiori implies that P2 cannot profitably

deviate to an extended direct mechanism, which may not allow for such a commitment.

This shows that any payoff between 0 and 10 for P2 can be supported in equilibrium in

GM,S. In particular, equilibrium payoffs for P2 below her min-max payoff can be supported

under partial delegation. The logic of Szentes’ (2009) Theorem 1 breaks down because P2

is constrained by the equilibrium of the game played by A1 and A2.

4 The Second Example

We now argue that the combined role of agents’ participation and communication decisions

fundamentally challenges the logic of folk-theorem results. Specifically, we show that, when

communication is tied to participation, it may be impossible to construct equilibrium threats

based on the agents’ incentives to detect a deviation and report it to nondeviating principals.

As a consequence, a folk theorem may not obtain even if the min-max bounds are specified

in terms of arbitrary message spaces for the agents. Our second example is an instance of the

competing-hierarchy model introduced by Myerson (1982), and first developed by Martimort

(1996) and Gal-Or (1997).6

6In competing-hierarchy models, agents’ participation decisions are not explicitly modeled, and hierarchies
are taken as exogenous. This can be seen as a particular case of our competing-mechanism model, in which
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4.1 The Physical Environment

Let J ≡ 2 and I ≡ 3, and let X1 ≡ {x11, x12, x13} and X2 ≡ {x21, x22, x23} be the sets

of actions of principal 1 (P1) and principal 2 (P2), respectively. The agents’ payoffs are

as follows. Each agent’s payoff is independent of the other agents’ participation decisions.

Moreover, agent 1 (A1) strictly prefers to participate with P1, while agent 2 (A2) and agent

3 (A3) strictly prefer to participate with P2. Thus, this setting can be interpreted as a

competitive game played between the hierarchy formed by P1 and A1, and that formed

by P2, A2, and A3, in which principals’ payoffs are not affected by agents’ participation

decisions. The matrix in Table 6 below represents the payoffs to P1 and P2, respectively.

x21 x22 x23

x11 (1, 1) (−1, 2) (0, 0)
x12 (1,−1) (−1, 0) (0, 0)
x13 (0, 0) (0, 0) (0, 0)

Table 6: The payoff matrix for principals.

There is no need to fully specify the agents’ payoffs. Indeed, for the sake of our argument,

it is enough to require that A1 payoffs are such that

u1(x11, x22) > max{u1(x12, x22), u
1(x13, x22)}, (4)

so that, if P2 chooses x22, A1 would strictly prefer P1 to choose x11 rather than x12 or x13.

4.2 Min-Max = Max-Min

Unlike in our first example, we assume from the outset that the agents can communicate

with the principals through rich message spaces, as done by Yamashita (2010). The following

min-max theorem is an easy consequence of the fact that agents’ actions have no impact on

principals’s payoffs.

Lemma 2 For each j = 1, 2, and for arbitrary message spaces M i
j ,

Vj ≡ min
γ−j∈Γ

M
−j

−j

max
γj∈Γ

Mj
j

min
λ∈Λ∗(γ)

Ez(γ,λ)[vj(a, x)] = max
γj∈Γ

Mj
j

min
γ−j∈Γ

M
−j

−j

min
λ∈Λ∗(γ)

Ez(γ,λ)[vj(a, x)] = 0. (5)

Proof. Because principals’ payoffs do not depend on agents’ participation decisions, we can

disregard the minλ∈Λ∗(γ) operator in the min-max-min and max-min-min payoffs in (5). To

each agent has a dominant participation strategy.
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show that they are equal to 0, observe that, for any mechanism γ−j ∈ Γ
M−j

−j , principal j can

defend a 0 payoff by committing to choose xj3 with probability 1, regardless of the agents’

participation and communication decisions. Likewise, principal −j can bring down principal

j’s payoff to 0 by committing to choose x−j3 with probability 1, regardless of the agents’

participation and communication decisions. The result follows. �

An alternative, if less direct, proof of this result consists to notice that, because the sets

of direct mechanisms Γ̃1 and Γ̃2 are compact and convex subsets of a Euclidean space and the

payoff function Ez(γ̃,λ̃)[vj(a, x)] is linear in γ̃1 and γ̃2, it follows from Sion’s (1958) min-max

theorem that

min
γ̃−j∈Γ̃−j

max
γ̃j∈Γ̃j

min
λ̃∈Λ∗(γ̃)

Ez(γ̃,λ̃)[vj(a, x)] = max
γ̃j∈Γ̃j

min
γ̃−j∈Γ̃−j

min
λ̃∈Λ∗(γ̃)

Ez(γ̃,λ̃)[vj(a, x)],

and then to apply Ghosh and Han (2018, Lemma 1). This expresses the fact that, if the

payoffs (1)–(2)—which are specified only in terms of the primitives of the model—coincide,

no harsher punishment can be forced upon any principal by letting the other principal post

an indirect mechanism.

4.3 Failure of the Folk Theorem

In contrast with Lemma 1, Lemma 2 suggests that our second example should a priori be a

more promising setting for the min-max logic to apply and thus for deriving a folk theorem.

Indeed, a mechanical application of Yamashita’s (2010) and Peters and Troncoso-Valverde’s

(2013) results would yield that any incentive-feasible allocation in which each principal

obtains a payoff above 0 can be supported in an SPNE-PSP of a game GM with sufficiently

rich message spaces; for instance, the message spaces may be large enough as to incorporate

all direct mechanisms as in Yamashita (2010), allowing principals to use recommendation

mechanisms. Yet this approach would be mislead, as we shall now see.

To first illustrate this point in an intuitive manner, notice that the only way P1 and P2

can reach payoffs (1, 1) is by deterministically choosing the actions (x11, x21). Suppose then,

by way of contradiction, that there exists an SPNE-PSP (γ∗, λ∗) of some game GM in which

P1 and P2 choose these actions, and only these actions, on the equilibrium path. For this to

be the case, there must exist a message m1
1 ∈ M1

1 such that P1 chooses x11 upon receiving

it from A1—recall that, by assumption, A1 strictly prefers to participate with P1, while A2

and A3 strictly prefer to participate with P2. But P2 could then deviate to a mechanism

γ2 committing her to choose x22 regardless of the messages she receives from A2 and A3.

Because of (4), A1 would then strictly prefer that P1 chooses x11. In the subgame (γ∗

1 , γ2),
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he can ensure this by sending P1 the message m1
1. This yields P2 a payoff of 2 > 1, and hence

γ2 is a profitable deviation for P2. Intuitively, to prevent such a deviation one would need

to implement x12 or x13 in P1’s mechanism off the equilibrium path. This would indeed be

possible if P1 were able to communicate with all three agents, committing to choose any of

the above punishments when reported by a majority of them, as done by Yamashita (2010)

with recommendation mechanisms. However, as long as participation and communication

are tied, this possibility cannot be guaranteed. In the example, the implementation of the

punishment conflicts with the incentives of A1, who is the only one communicating with

P1. Thus there is no SPNE-PNP of GM supporting the payoffs (1, 1) for P1 and P2. The

following result, for which we provide a proof in the Appendix, generalizes this insight to all

payoffs above (0, 0) for P1 and P2, even if they play mixed strategies in equilibrium.

Proposition 3 The principals obtain payoffs (0, 0) in any SPNE of any game GM .

It should be noted that Proposition 3 does not depend on the size of the message spaces.

In particular, it holds true if these are large enough to incorporate the infinite-dimensional

space of direct mechanisms, allowing principals to use recommendation mechanisms. This

finding contrasts with the folk theorems of Yamashita (2010) and Peters and Troncoso-

Valverde (2013), in which each agent participates and communicates with all the principals.

Finally, it should be noted that our second example is generic in that payoffs in Table 6 can

be modified as long as no additional threats are generated, which guarantees equilibrium

uniqueness. Similarly, it is immediate to see that all preference orderings for A1 consistent

with (4) lead to the same result. In particular, we can freely disturb A1’s preference ordering

over P1’s actions when P2 plays x21 or x23.

5 Communication without Participation

Our examples have lead us to question the logic of folk theorems for competing-mechanism

games. We now revisit the reasons why this logic fails to hold, and identify an alternative

communication protocol under which a folk theorem can be established.

Consider first our second example, which illustrates a situation in which no payoff for the

principals above Yamashita’s (2010) min-max-min bound can be supported in equilibrium

even when agents can send messages from arbitrarily rich message spaces. As discussed

in Section 4, the assumption driving this result is that an agent can communicate with a

principal only if he chooses to participate with her. It is thus natural to ask under which

additional conditions a folk theorem would obtain in our general setting. In this respect,
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it should be noted that folk theorems in the spirit of Yamashita (2010) and Peters and

Troncoso-Valverde (2013) require that, following any deviation by a principal, at least three

agents communicate with each nondeviating principal, which guarantees that the deviator

can be punished by implementing actions in her competitors’ mechanisms that minimize her

payoff. This turns out to be very demanding when communication is tied to participation.

Indeed, it is problematic to identify non ad hoc conditions on primitives guaranteeing

that agents’ equilibrium strategies have this feature. Besides, under exclusive competition,

this requirement imposes that there be at least 3J agents interacting with J principals, a

condition that may fail to be satisfied in some applications.

A more direct way to retrieve a folk theorem in competing-mechanism games may hence

consist in suppressing any restriction on communication, as in Yamashita (2010) and Peters

and Troncoso-Valverde (2013). Even then, however, a distinguishing feature of our setting

remains that agents take payoff-relevant participation decisions. We now show, in the

context of our first example, that this enables us to sustain equilibria yielding a principal

a payoff below her min-max-min payoff despite communication being unrestricted. That is,

Proposition 2 is robust to the specific communication protocol considered. To see this, let

us now allow A1 to send the message m to P1 even when he does not participate with her.

This modifies the subgame played by the agents following P2’s deviation to γ̃2 only in that

an additional line must be included in Table 4:

Y N NY

(t, Y )N (10− 5δ(t,Y ),Y ,
9
2
+ 8δ(t,Y ),Y ) (10− 5δ(t,Y ),N , 8 + 4σN,Y )

(m,Y )N (10− 5δ(m,Y ),Y ,
9
2
+ 8δ(m,Y ),Y ) (10− 5δ(m,Y ),N , 8 + 4σN,Y )

(t, N)Y (9− σY,N , 8 + 4δ(t,N),Y ) (4 + 36σY,Y , 13− 6σY,Y )
(m,N)Y (9− σY,N , 8 + 4δ(m,N),Y ) (4 + 36σY,Y , 13− 6σY,Y )

Table 7: The subgame (γ∗

1 , γ̃2) of G
M under unrestricted communication.

Letting P1 post the mechanism γ∗

1 as in Proposition 2 with the additional feature

that δ∗(t,N),Y = δ∗(m,N),Y = 1, we can then mimic the proof of Proposition 2 to reach

the same conclusion. Thus, making agents’ communication opportunities independent of

their participation decisions is not sufficient to reformulate a folk theorem in terms of the

principals’ min-max-min payoffs.

6 Concluding Remarks

Our results question the logic of folk theorems for competing-mechanism games in two ways.

22



Our first example illustrates a situation in which principals’ payoffs below the min-max-min

bounds identified by Peters and Troncoso-Valverde (2013), Peters (2014), and Ghosh and

Han (2018) can be supported in equilibrium. Our second example illustrates a situation in

which no payoff for the principals above the min-max-min bound identified by Yamashita

(2010) can be supported in equilibrium even if agents can choose messages from arbitrarily

rich message spaces. These examples highlight the two key reasons why the folk-theorem logic

fails to hold. In the first example, agents’ participation decisions are payoff-relevant. In the

second example, an agent can communicate with a principal only if he chooses to participate

with her. Both features are prominent in economic applications of competing-mechanism

games.7 We have argued that these insights are robust to slight perturbations of players’

payoffs and to alternative extensive forms and communication protocols.

As pointed out in the Introduction, our model shares several building blocks with the

competing-auction and competitive-search literatures: namely, principals post mechanisms,

after which each agent can subsequently participate and communicate with at most one

principal. Admittedly, in competing auctions, sellers compete to trade with buyers who are

privately informed of their valuations. We do expect that our results, established under

complete information, would carry over to such incomplete-information settings. A key

step for such an extension would be to develop an adequate formulation for the bound

on principals’ payoffs, a task that may not be obvious under incomplete information (Peters

(2014)). By contrast, competitive-search models typically postulate complete information—as

in the standard case where workers apply for the vacancies and wages offered by competitive

firms (Wright, Kircher, Julien, and Guerrieri (2019))—and thus seem closer to a literal

interpretation of our model. The primary focus of this literature, however, is on symmetric

equilibria in which agents play a mixed strategy, an approach often motivated by referring

to the difficulty of coordinating agents in large anonymous markets. Whereas our general

model allows us to consider similar situations, the examples we have developed crucially

exploit heterogeneity among principals and/or agents. It thus remains an open question

whether similar examples could be designed under the stricter conditions on environments

and equilibria postulated in this literature.

A common feature of applied competing-auction and competitive-search models is the

restriction to direct mechanisms. That is, each seller only requires the buyers who participate

with her to submit their exogenous private information. Under complete information, this

7Clearly, our results do not contradict the possibility of multiple equilibrium allocations arising in a
specific class of applications. In this respect, Han (2016) shows how indirect mechanisms can be used to
sustain multiple symmetric equilibria in a simple competitive-search setting.

23



amounts to each seller posting take-it-or-leave-it offer for the buyers participating with

her. The difficulties in establishing a general folk theorem that we have highlighted may

lead one to ask whether, under exclusive competition, direct mechanisms achieve a full

characterization of equilibria. Our first example provides a clear negative answer. Indeed,

an immediate implication of Propositions 1–2 is the existence of many equilibrium outcomes

that cannot be supported by direct mechanisms. Thus our first example documents a failure

of the revelation principle in competing-mechanism games of exclusive competition: direct

mechanisms are not flexible enough to reproduce all the threats that P1 can implement using

the payoff-irrelevant message m.8 This failure is dramatic: while the game G̃ has a unique

equilibrium payoff vector, a continuum of Pareto-ranked equilibria can be sustained in the

game GM as soon as a single agent has the opportunity to send a single additional message

to a single principal.

To interpret this failure of the revelation principle under exclusive competition, it is

helpful to contrast our first example with related results in the literature. First, the example

is cast in a complete-information framework; this contrasts with Martimort (1996), Peck

(1997), and Attar, Campioni, and Piaser (2018), who crucially exploit the agents’ private

information. Second, the example does not rely on direct externalities between principals,

but instead exploits the strategic role of agents’ participation and communication decisions;

hence it does not rely on the intuitions developed by Martimort (1996) in the context of

competing hierarchies. Third, principals in the example play pure strategies in equilibrium;

hence we do not rely on the limited power of direct mechanisms to extract the agents’

information on the realization of principals’ mixed strategies, in contrast with Peck (1997).

Thus, in a sense, we have put ourselves in the worst possible scenario for communication to

play a role: agents have no private information of their own and each principal chooses her

equilibrium mechanism deterministically, so that there is no need to use the agents to reveal

it to the other principal. Despite these drastic features, our example shows the potentially

destabilizing role of communication even in complete-information environments. This again

questions the prevalent use of direct mechanisms in the applied literature.

Taken together, our examples emphasize that disregarding agents’ participation decisions

in competing-mechanism games entails a severe loss of generality. Observe, in this respect,

that our results do not depend on the specific assumption of exclusive competition. In

8Thus Propositions 1–2 extend to exclusive-competition environments the insights developed by Peters
(2001) and Martimort and Stole (2002) in single-agent, nonexclusive-competition environments. The example
suggests that, to implement all relevant threats, there is no need for each agent to communicate with all
principals; this ex-post vindicates our assumption that communication is tied to participation.
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particular, the second example can be reformulated in a nonexclusive scenario where each

agent can participate with more than one principal at a time, provided that communication is

tied to participation. The explicit consideration of agents’ participation decisions introduces

a fundamental constraint on principals’ design of mechanisms. When designing a mechanism,

a principal anticipates that her payoff will be affected by agents’ participation decisions,

which in turn depend on the entire profile of posted mechanisms. Dealing with this additional

moral-hazard dimension may require a more sophisticated class of mechanisms, in which a

principal can send private signals to agents. In recent work, Attar, Campioni, and Piaser

(2019) provide an example of a complete-information competing-mechanism game in which

principals use such private communication to correlate their actions with the agents’ decisions

in equilibrium. The resulting set of equilibrium allocations and the set of equilibrium

allocations that can be supported with standard recommendation mechanisms turn out to

be disjoint. All these insights point towards the need to develop new ideas and devices to

approach equilibrium characterization in competing-mechanism games.
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Appendix

Proof of Lemma 1. This is in fact an instance of a general result in the spirit of Myerson’s

(1982) revelation principle. The intuition is that, for any direct mechanism γ̃2 of P2 and any

mechanism γ1 of P1, and for any Nash equilibrium λ of the subgame (γ1, γ̃2) of G
M , there

exist a direct mechanism γ̃1 of P1 and a Nash equilibrium λ̃ of the subgame γ̃ ≡ (γ̃1, γ̃2)

of G̃ such that the two resulting allocations coincide, z(γ̃, λ̃) = z(γ1, γ̃2, λ). Indeed, P1 can

reproduce the randomizations over messages performed by A1 in λ1(γ1, γ̃2) in case he decides

to participate with P1 by offering a direct mechanism γ̃1 such that

γ̃1(Y, a
2
1) ≡

λ1(γ1, γ̃2)((t, Y )N)γ1((t, Y ), a21) + λ1(γ1, γ̃2)((m,Y )N)γ1((m,Y ), a21)

λ1(γ1, γ̃2)((t, Y )N) + λ1(γ1, γ̃2)((m,Y )N)

for all a21 ∈ A2
1. That is, if A1 chooses to participate with P1, then P1 first draws a

lottery with outcomes (t, Y ) and (m,Y ), with probabilities λ1(γ1,γ̃2)((t,Y )N)
λ1(γ1,γ̃2)((t,Y )N)+λ1(γ1,γ̃2)((m,Y )N)

and λ1(γ̃1,γ̃2)((m,Y )N)
λ1(γ̃1,γ̃2)((t,Y )N)+λ1(γ̃1,γ̃2)((m,Y )N)

, respectively, and then, depending on the outcome of this

lottery, chooses x11 with probability γ1((t, Y ), a21) or γ1((m,Y ), a21). If A1 chooses not to

participate with P1, then we set

γ̃1(N, a21) ≡ γ1((∅, N), a21)

for all a21 ∈ A2
1. Turning to the agent’s strategies, we define

λ̃1(γ̃1, γ̃2)(Y N) ≡ λ1(γ1, γ̃2)((t, Y )N) + λ1(γ1, γ̃2)((m,Y )N),

λ̃1(γ̃1, γ̃2)(NY ) ≡ λ1(γ1, γ̃2)((∅, N)Y ),

λ̃2(γ̃1, γ̃2)(Y N) ≡ λ2(γ1, γ̃2)(Y N).

By construction, z(γ̃, λ̃) = z(γ1, γ̃2, λ). Moreover, because P1 reproduces the randomizations

of A1 in case he decides to participate with her, the incentives of the agents are unchanged.

Hence λ̃ is a Nash equilibrium of the subgame γ̃, as required. The result follows. �

Proof of Proposition 3. Suppose, by way of contradiction, that there exists an SPNE of

some game GM in which at least one of the principals obtains a positive payoff. The proof

consists of two steps.

Step 1 We first claim that, on the candidate SPNE equilibrium path, P1 chooses x11

with positive probability. Suppose, indeed, that P1 never chooses x11 in the SPNE under

consideration. Then P2 must obtain a 0 payoff, which she can guarantee by committing

to choose x23 with probability 1, regardless of the agents’ communication and participation
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decisions. By assumption, P1 must, therefore, obtain a positive payoff. If P1 never chooses

x11, this can occur if and only if P1 and P2 choose (x12, x21) with positive probability. But

P2 would then obtain a negative payoff, a contradiction. The claim follows.

Step 2 We next claim that P2’s unique best response in the candidate SPNE consists

in committing to play x22 with probability 1, regardless of the agents’ communication and

participation decisions. We distinguish two types of subgames, depending on the mechanism

posted by P1 according to her—possibly mixed—equilibrium strategy µ∗

1 ∈ ∆(ΓM1

1 ).

Case 1 Consider first the mechanisms γ1 in the support of µ∗

1 such that there is no message

m1
1 ∈ M1

1 such that P1 chooses x11 with positive probability following the consistent profile

(m1
1, ∅, ∅, Y,N,N); call Γ1 the corresponding set of mechanisms. Committing herself to

choose x22 with probability 1, regardless of the agents’ communication and participation

decisions, ensures P2 to obtain her maximal payoff of 0 in any subgame in which P1 posts

a mechanism in Γ1.

Case 2 Consider next the mechanisms γ1 in the support of µ∗

1 such that there is a message

m1
1 ∈ M1

1 such that P1 chooses x11 with positive probability following the consistent profile

(m1
1, ∅, ∅, Y,N,N); that is, γ1 ∈ suppµ∗

1 \ Γ1. It follows from (4) that A1 will, among

these messages, choose one that maximizes the probability γ1(m
1
1, ∅, ∅, Y,N,N)(x11) of P1

choosing x11. Committing herself to choose x22 with probability 1, regardless of the agents’

communication and participation decisions, ensures P2 to obtain her maximal payoff of

2maxm1

1
∈M1

1

{γ1(m
1
1, ∅, ∅, Y,N,N)(x11)} in any subgame in which P1 posts a mechanism γ1 ∈

suppµ∗

1 \ Γ1.

According to Step 1, µ∗

1(suppµ
∗

1 \Γ1) > 0, so that Case 2 arises with positive probability.

The claim follows.

Step 3 According to Steps 1 and 2, in the candidate SPNE, P1 chooses x11 with positive

probability while P2 chooses x22 with probability 1. Hence P1 must earn a negative payoff.

This, however, is a contradiction, as she can guarantee herself a 0 payoff by committing to

choose x13 with probability 1. Hence the result. �
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