
 
 

1155 

 
 

 

“On the cost of Bayesian posterior mean strategy 
for log-concave models” 

 
Sébastien Gadat, Fabien Panloup and Clément Pellegrini 

 
 

February 2022 
 



ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY FOR
LOG-CONCAVE MODELS

BY SÉBASTIEN GADAT1, FABIEN PANLOUP2 AND CLÉMENT PELLEGRINI3

1Toulouse School of Economics, CNRS UMR 5314, Université Toulouse 1 Capitole, Esplanade de l’Université, Toulouse,
France. Institut Universitaire de France. sebastien.gadat@tse-fr.eu

2Université d’Angers, CNRS, LAREMA, SFR MATHSTIC, F-49000 Angers, France. fabien.panloup@univ-angers.fr

3Institut de Mathématiques de Toulouse; UMR5219, UPS IMT, F-31062 Toulouse Cedex 9, France
clement.pellegrini@math.univ-toulouse.fr

Acknowledgments. The authors gratefully acknowledge Patrick Cattiaux, Max Fathi,
Gersende Fort, Nathael Gozlan and Aldéric Joulin for stimulating discussions and valuable

insights during the development of this work and the anonymous referees for comments that
led to a significant improvement of the work.

Funding. S. Gadat acknowledges funding from the French National Research Agency
(ANR) under the Investments for the Future program (Investissements d’Avenir, grant

ANR-17-EURE-0010) and for the grant MaSDOL - 19-CE23-0017-01.

In this paper, we investigate the problem of computing Bayesian esti-
mators using Langevin Monte-Carlo type approximation. The novelty of this
paper is to consider together the statistical and numerical counterparts (in a
general log-concave setting). More precisely, we address the following ques-
tion: given n observations in Rq distributed under an unknown probability
Pθ‹ , θ‹ P Rd, what is the optimal numerical strategy and its cost for the ap-
proximation of θ‹ with the Bayesian posterior mean?
To answer this question, we establish some quantitative statistical bounds
related to the underlying Poincaré constant of the model and establish new
results about the numerical approximation of Gibbs measures by Cesaro av-
erages of Euler schemes of (over-damped) Langevin diffusions. These last
results are mainly based on some quantitative controls on the solution of the
related Poisson equation of the (over-damped) Langevin diffusion in strongly
and weakly convex settings.

1. Introduction.

1.1. Log-concave statistical models . In this paper, we consider a statistical model
pPθqθPRd parametrized by a parameter θ PRd. We assume that each distribution Pθ defines a
probability measure on pRq,BpRqqq and that all the distributions Pθ are absolutely continu-
ous with respect to the Lebesgue measure λq , we denote by πθ the corresponding density:

@ξ PRq πθpξq :“
dPθ
dλq

pξq.

We assume that we observe n i.i.d. realizations pξ1, . . . , ξnq, sampled according to Pθ‹ where
θ‹ is an unknown parameter. We are then interested in Bayesian statistical procedures de-
signed to recover θ‹. In all the paper, we restrict our study to the specific class of log-concave
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models where the distributions are described by:

(1) πθpξq :“ e´Upξ,θq,

where pξ, θq ÞÝÑ Upξ, θq “ ´ logpπθpξqq is assumed to be a convex function. Note that im-
plicitly, the normalizing constant Zθ :“

ş

Rq e
´Upξ,θqdξ is assumed to be equal to 1, which is

not restrictive up to a modification of U .
Besides the Gaussian toy model that trivially falls into our framework, log-concave statis-

tical models have a longstanding history in a wide range of applied mathematics and it seems
almost impossible to enumerate exhaustively the range of possible applications. For instance,
the log-concave setting appears with exponential families thanks to the Pitman-Koopman-
Darmois Theorem, in extreme value theory, tests (chi-square distributions), Bayesian statis-
tics among others. Log-concave distributions also play a central role in probability and func-
tional analysis ([BBCG08, Bob99]), or geometry (see e.g. [KLS95]). The log-concave prop-
erty is commonly used in economics (for example the density of customer’s utility parameters
is generally assumed to satisfy this property [BB05]), in game theory (see e.g. [CN91a] and
[LT88]), in political science and social choice (see e.g. [CN91b]) or in econometrics (for
example through the Roy model, see e.g. [HH90]).

An important example comes from all distributions that are built with a multivariate con-
vex function U : Rd ˆ Rq ÝÑ R and where the first d coordinates are considered as the
hidden parameter θ while the q other ones are the observations. Starting from a convex func-
tion U : Rq ÝÑ Rq , translation models pξ, θq ÞÝÑ e´Upξ´θq also generate typical examples
of log-concave models in pξ, θq. Many other distributions satisfy the log-concave property:
Gumbel and Weibull distributions with a shape parameter larger than 1. In particular, this
includes a large class of parametric probability distributions such as Gaussian or Laplace
models, logistic regression models, Subbotin distributions, Gamma or Wishart distributions,
Beta and uniform distributions on real intervals among others. We refer to [SW14] for a de-
tailed survey on properties of log-concave distributions, to [Wal09] for a list of modeling
and application issues and to [KS16] for non-parametric density estimation procedures of
log-concave distributions.

1.2. Bayesian estimation of θ‹. We briefly sketch Bayesian strategies for estimating θ‹.
Considering a prior distribution Π0 on θ, we assume that Π0 is absolutely continuous with
respect to the Lebesgue measure λd on Rd. Without any possible confusion with the familiy
of densities pπθqθPRd , the associated density of the prior is denoted by π0 and we further
assume that π0 is also log-concave: π0pθq :“ e´V0pθq where V0 encodes the prior knowledge
on θ. We emphasize that this last assumption is not restrictive since the prior distribution is
chosen by the user. We denote by πn the density of the posterior distribution (that depends
on the observations ξn :“ pξ1, . . . , ξnq) given by: πnpθq9π0pθq

śn
k“1 πθpξkq. The posterior

distribution is a data-driven probability distribution that may be written as:

(2) @θ PRd πnpθq “
e´Wnpξn,θq

Znpξnq
π0pθq where Wnpξ

n, θq “
n
ÿ

i“1

Upξi, θq.

The quantity Znpξnq corresponds to the normalizing constant and depends as well on ξn:

Znpξ
nq “

ż

Rd
π0pθqe

´Wnpξn,θqdθ.

It is well known that the posterior distribution enjoys consistency properties (see e.g. [Sch65,
IH81]): under mild assumptions on the prior distribution and on the statistical model, the
posterior distribution concentrates its mass around θ PRd whose distribution is close to Pθ‹ .
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With additional metric and identifiability assumptions, some stronger results may be ob-
tained in general parametric or non-parametric models. We refer to the seminal contribution
of [GGvdV00] and the references therein, to the work of [CvdV12] for an extension to less
standard situations of high-dimensional models and to [vdVvZ08] for infinite dimensional
models. The posterior distribution may be used to define Bayesian estimators, in particular,
we shall introduce the popular posterior mean estimator of θ‹ defined by:

(3) rθn “

ż

Rd
θπnpθqdθ.

This estimator is usually consistent and a popular issue is to establish rates of convergence
towards θ‹ through some Lp-criterion, i.e. find a sequence εn ÝÑ 0 such that:

(4) Eθ‹
´

|rθn ´ θ
‹|p

¯

ď εpn,

for a given pą 1. Nevertheless, when a such bound is obtained, the story is not over. Actually,
the theoretical posterior mean given by Equation (3) being generally not explicit, the practical
use of the above statistical bounds certainly requires to provide computable algorithms that
may approximate rθn. In particular, it is legitimate to look for a tractable estimator pθn that
approaches an εn-neighborhood of rθn with as less operations as possible.

1.3. Langevin Monte Carlo discretization and practical estimator. To approximate rθn, it
is commonly used to write πn as a Gibbs field:

(5) πnpθq9 expp´ĂWnpξ
n, θqq with ĂWnpθq “

n
ÿ

i“1

Upξi, θq ` log

ˆ

1

π0pθq

˙

.

Under some mild assumptions on ĂWn, it is well known that a such probability measure is the
unique invariant distribution of the (over-damped) Langevin diffusion defined by:

dX
pnq
t “´∇ĂWnpX

pnq
t qdt`

?
2dBt,(6)

where pBtq is a d-dimensional standard Brownian motion. Thus, the probability πn can be
approximated using the long-time ergodic convergence of pXpnqt qtě0 towards πn. One can
distinguish two types of convergences towards πn: the convergence of the distribution of
X
pnq
t as tÑ`8 or the a.s. convergence of the occupation measure of pXpnqt qtě0.
Here, we build our algorithm with the second type of convergence, which requires only

one path of the diffusion. We are thus led to consider the occupation measure applied to the
identity function denoted by Id. In this case, this is nothing but the Cesaro average:

(7) @n PN‹ @tą 0 pθn,t :“
1

t

ż t

0
Xpnqs ds.

In (7), Cesaro averages are based on the “true” diffusion but to obtain a tractable algorithm,
we need to introduce Cesaro averages of some discretization schemes of (7). For this purpose,
we consider a positive step size γ and introduce a constant step-size explicit Euler-Maruyama
scheme related to Xpnq (omitting the index n for simplicity):

(8) @k ě 0 X̄tk`1
:“ X̄tk ´ γ∇ĂWnpX̄tkq `

?
2ζk`1 with tk “ kγ,

where for all k ě 1, ζk “ Btk ´ Btk´1
and pBtqtě0 is a standard d-dimensional Brownian

motion. It is possible to define a continuous affine interpolation of (8) but from a practical
point of view, it will be more comfortable to consider some initialization and ending times in
the discrete grid ptkqkě0.



4

For any time horizon tN ą 0, the approximation of pθγn,tN with a step-size γ is given by:

(9) pθγn,tN :“
1

N

N´1
ÿ

j“0

X̄tj ,

which corresponds to the Cesaro average of the discretized trajectory (8).
This Cesaro construction first appeared in [Tal90] where some convergence properties of

the empirical measure of the Euler scheme with constant step size were investigated. In a
series of recent papers (among others, see [LP02, LP03, PP12] or [PP18] for a multilevel
extension), the decreasing-step setting has also been studied. Compared with these papers,
the novelty of our work is that, we propose some non-asymptotic quantitative bounds (see
Section 1.4 for details about the corresponding results). Note that for ease of presentation,
we prefered to mainly consider the (less technical) constant step setting.

1.4. Contributions and plan of the paper.. Our main results are stated in Section 2. We
address two main points:
C

• The Bayesian consistency: i.e. the distance between the posterior mean rθn and θ‹.

The Bayesian consistency is studied in Section 3. First, Theorem 3 derives an upper bound
of the Lp loss in terms of the Poincaré constant of the model (which is assumed to satisfy a
uniformity condition). Compared with the literature on this problem (see e.g. [MHW`19b]),
this result is written under general assumptions on the family of log-concave models and does
not require specific assumptions related to a dynamical system. Second, Theorem 4 proves
that our upper bound is minimax optimal for a large class of models.

• The numerical question related to the approximation of rθn by a computable algorithm.

Our main results about Cesaro-type LMC and optimal tuning of the parameters (in terms
of n and d) are Theorems 7 and 9 whose complete study is devoted to Section 4 and Section
5. Our approach based on the Poisson equation, i.e. on the inversion of the infinitesimal
generator of the diffusion with a quantitative point of view, will allow to obtain Theorem 6
(weakly convex case) and Theorem 8 (strongly convex case). On this numerical topic, our
main contribution is the (almost) quantitative study of the weakly convex case (with the help
of the Kurdyka-Łojasiewicz inequality introduced in pHq,r

KLq) based on quantitative controls
on the solution of the Poisson equation (and on its derivatives). Nevertheless, the Poisson
approach seems also of interest in the strongly convex case, the results being very close to
[DM19] but slightly improve the dependence in the parameters of the model. This is probably
due to the fact that Poisson approach does not require to couple the Euler scheme with the
continuous process (see Remark 10 for details). In the two cases, we obtain some explicit
bounds on the distance between the discretized Cesaro average and the posterior mean. These
bounds lead to an optimal tuning in terms of n and d in the weakly convex setting.

In short, for both weakly and strongly convex situations, for some given n and d, we first
exhibit an εn that upper-bounds the (Lp-type) error between rθn and θ‹. Then, for this εn,
we aim at tuning the procedure (9) in order to obtain an εn-approximation1 of rθn with a
minimal computational cost. This cost Nεn (number of iterations of the Euler scheme) will
be explicited as an amount of operations upper bounded by nadb, where a and b are some
positive numbers that will be explicited below. Our main contribution states that Bayesian

1By ε-approximation, we mean an approximation of the target with an Lp-error of the order Opεq.
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learning can be optimally performed in polynomial time less than nadb operations for typi-
cally weakly convex situations with explicit a and b, and in even nd operations in strongly
convex cases.
For an improved readability of the work, numerous proofs and technical results are deferred
to the supplementary file [GPP22].B

1.5. Notations . C
• The notation aÀuc b means that aď cb where c is a universal constant, i.e. independent

of any of the relevant parameters of the problems.
• The usual scalar product on Rd is denote by x , y and the induced Euclidean norm by | . |.

The set Md,d refers to the set of real d ˆ d matrices. The Frobenius norm on Md,d is
denoted by } . }F : for any A PMd,d, }A}2F “

ř

1ďi,jďdA
2
i,j . We also denote by }.}‹ the

spectral norm, defined for any matrix A by }A}‹ “ sup|x|“1 |Ax| “
a

λ̄AtA, where λ̄AtA
refers to the maximal eigenvalue of the symmetric matrix AtA.

• For a Lipschitz continuous function f : RdÑRd1 , we denote by rf s1 its related Lipschitz
constant. When f is C1, its Jacobian matrix denoted by Df maps from Rd to Md,d1 . When
Df is Lipschitz for the spectral norm }.}‹, we denote by rDf s1,‹ the related Lipschitz
constant. As usual the notations ∇ and ∆ will hold for the gradient and the Laplacian.

• In the sequel, we call upon to different distances on the space of probability measures: the
p-Wasserstein distance is denoted by Wp, p P r1,8r (mainly used with p“ 1 or p“ 2 in
this paper). We recall that

WppPθ1 ,Pθ2q “
ˆ

inf
πPΠpPθ1 ,Pθ1 q

ż

Rq
dpx, yqpπpx, yq

˙1{p

,

where ΠpPθ1 ,Pθ2q stands for the set of all coupling measures of Pθ1 and Pθ2 . The Kullback-
Leibler divergence is denoted by KLpPθ1 ,Pθ2q and is classically defined by

KLpPθ1 ,Pθ2q “
ż

Rq
log

ˆ

πθ1pξq

πθ2pξq

˙

πpθ1qpξqdξ.

B

2. Main results and discussion . In our work, two sources of randomness are consid-
ered. The first one is derived from the observations ξn “ pξ1, . . . , ξnq. The notations Pθ and
Eθ refer to the probability and expectation on the unknown distribution of the sampling pro-
cess. The second source of randomness is related to the posterior distribution πn over Rd:
for any Borelian B of Rd, πnpBq is the probability of B when θ is sampled according to πn,
conditionally to the observations. Hence, Eπn is the expectation when θ „ πn, conditionally
to ξn.

2.1. Functional inequality and Assumption pPIUq. For any measure µ and f P L1pµq,
µpfq refers to the mean value of f , and when f P L2pµq, V arµpfq is the variance of f :

µpfq :“

ż

Rq
fpξqdµpξq and V arµpfq :“

ż

Rq
rfpξq ´ µpfqs2dµpξq.

A crucial property of log-concave measures is that they satisfy a Poincaré inequality. This
will be used extensively in the rest of the paper. We refer to [Led01, BGL14] for a complete
presentation and some applications on concentration inequalities and Markov processes.
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DEFINITION 1 (Poincaré inequality). A measure µ satisfies a Poincaré inequality with
CP pµq if

@f P L2pµq V arµpfq ďCP pµqµp|∇f |2q.

We remind an important result obtained in [Bob99] (see also [BBCG08]) that establishes
the existence of a Poincaré inequality for every log-concave probability distribution.

THEOREM 2 ([Bob99, KLS95]). Every log-concave measure µ satisfies a Poincaré in-
equality: a universal constant K exists such that:

CP pµq ď 4K2V arµpIdq,

where Id refers to the identity map: Id : ξ ÞÝÑ ξ.

Since pξ, θq ÞÝÑ Upξ, θq is a convex function, Theorem 2 implies that for all θ P Rd, Pθ
satisfies a Poincaré inequality of constant CP pPθq. We introduce an assumption that stands
for a uniform bound of the collection of Poincaré constants CP pPθq.

ASSUMPTION 1 (Uniform Poincaré Inequality pPIUq). A constant CUP exists such that

@θ PRd CP pPθq ďCUP .

We emphasize that according to Theorem 2, a uniform bound on the variance of each dis-
tribution Pθ over θ P Rd entails pPIUq. Note that the uniform upper bound on the Poincaré
constant involved in the family of distributions pπθqθPθ is needed to obtain some concentra-
tion rates that are independent from the value of θ.

2.2. Bayesian consistency.

2.2.1. Assumptions pALq and pIW1
pcqq. We introduce some mild assumptions neces-

sary to obtain some consistency rates of rθn. First, we handle smooth functions pξ, θq ÞÝÑ
Upξ, θq and assume that:

ASSUMPTION 2 (Assumption pALq). U satisfies the C1
L hypothesis: i.e. the partial gra-

dient of U with respect to θ is a L-Lipschitz function of θ and of ξ:

@ξ PRq @θ1, θ2 PRd : |∇θUpξ, θ1q ´∇θUpξ, θ2q| ď L|θ1 ´ θ2|,

and

@pξ1, ξ2q PRq @θ PRd : |∇θUpξ1, θq ´∇θUpξ2, θq| ď L|ξ1 ´ ξ2|.

C

REMARK 1. Let us mention that Assumption pALq is standard in the optimization com-
munity (see [Nes04, Bub15]). Essentially, this allows to quantify the error made when using
a first order Taylor expansion. In optimization theory, L-smooth functions are then used to
produce descent lemmas. Here it will be used for lower-bounding the normalizing constants
of the Bayesian posterior distributions (see Equation (19)). This assumption also appears
in the recent contribution [MHW`19b] but the L-smooth property is only assumed for the
function θ ÞÝÑ Eθ‹rUpξ, θqs associated with either a strong or weak convex assumption on U
(Assumptions (S.1) or (W.1) of [MHW`19b]).
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B
To make the estimation problem tractable, we need to manipulate statistically identifiable

models. If statistical identifiability is a free result for any L1 location model when Upξ, θq “
Upξ ´ θq, this is no longer the case in general models, even log-concave ones. We therefore
introduce an identifiability assumption, which will useful for our theoretical results.

ASSUMPTION 3 (Assumption pIW1
pcqq - Wasserstein identifiability). A strictly increas-

ing map c : R` ÝÑR` and a 1-Lipschitz function Ψ exist such that cp0q “ 0 and :

@θ1, θ2 P Rd, |πθ1pΨq ´ πθ2pΨq| ě cp|θ1 ´ θ2|q.

Furthermore, we shall assume that a pair pb1, b2q P tR‹`u2 and αc>0 exists such that:

(10) @∆ě 0 cp∆q ě b1∆αc1∆ď1 ` b2rlogp∆q ` 1s1∆ě1.

REMARK 2. CAssumption pIW1
pcqq is a quantitative identifiability condition. It im-

plies in particular that

W1pPθ1 ,Pθ2q ě cp|θ1 ´ θ2|q,

where W1pPθ1 ,Pθ2q refers to the Wasserstein distance between Pθ1 and Pθ2 . The constants b1
and b2 are not fundamental in our forthcoming analysis but αc plays a central role: it asserts
how the distributions πθ1`δ moves from πθ1 for small values of δ (see Section 2.5). It is
straightforward to verify that pIW1

pcqq is satisfied in the location models with Ψ“ Id since
in that case |πθ1pIdq ´ πθ2pIdq| “ |θ1 ´ θ2|.

All along our work, we consider b1 and L involved in Assumption pIW1
pcqq and pALq

as fixed quantities, that describe the variations of U and therefore the variations of the dis-
tribution pPθqθPRd . Since b1 quantifies how πθ moves when θ moves, a link exists between
b1 and L since oppositely L quantifies in pALq an upper bound of variation of Upθ, .q itself,
and therefore an upper bound of variation of πθ . Even though an interesting question that is
related to contamination models (see e.g. [CW14, LMMR18]), we have chosen to leave open
the analysis between b1 and L, and simply assume in what follows that b1 ą 0 and Lą 0 are
fixed constants independent from n and d.

REMARK 3. Our identifiability condition with the Wasserstein distance is different from
what is usually studied with mixture models where label permutations need to be considered.
In mixture models, θ commonly refers to a collection of weights of components pωiq1ďiďK
+locations of components ppiq1ďiďK and identifiability is then related to a conditions that is
close to:

dpPθ1 ,Pθ2q ěW1pµθ1 , µθ2q with µθ “
K
ÿ

i“1

ωipθqδpipθq,

where W1pµθ1 , µθ2q is the Wasserstein distance between the mixing distributions µθ1 and
µθ2 . We refer to [HN16a, HN16b] and the references therein for some recent statistical work
on identifiability and consistency rates in finite mixture models. Another popular subject
of investigation is the effet of the size of the weights pωiq1ďiďK on the identifiability and
estimation, in particular in contamination models. We refer for example to [GKMM20] for
a detailed understanding of the effect of the contamination level on the identifiability of
Gaussian mixture models, and therefore on b1 involved in pIW1

pcqq. However, we emphasize
that the model we are considering are log-concave, which is far from being the case with
mixtures.
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REMARK 4. Besides our log-concave framework, we could imagine use pIW1
pcqq in

more general statistical models such as location-scale mixture models even though these
models are from being log-concave and much more challenging in terms of identifiability.
We refer to [GKMM20, HK18] and the references therein for some recent contributions in
this direction. As an example, using the dual formulation of theW1 distance, it may be shown
that for a location/scale Gaussian model Nµ,σ2 , αc “ 1 for the dependency on the means
|µ1 ´ µ2|. Regarding the dependency in terms of pσ1, σ2q, the same strategy with fpxq “ |x|
yields αc “ 1 for |σ1´ σ2|. In the multivariate setting, the situation is already more difficult,
and we refer to [DL82] for an exact value of the W2 distance that upper bounds the W1 one
and it seems reasonnable to think that αc “ 1 in this situation for location/scale Gaussian
models.B

REMARK 5. This natural separation assumption is related to the hypothesis testing in
the statistical model. Statistical test has a longstanding history in Bayesian literature (see e.g.
[LC86, Bir83, GGvdV00, CvdV12] among others). In general, the former papers build some
global statistical tests using metric considerations with covering arguments on the statistical
models. In particular this is done using Hellinger distance or the Kullback-Leibler divergence.
Here, our assumption is related to a separation with the help of the W1 distance over Pθ . The
function Ψ involved in pIW1

pcqq will be then used to build a global test.

In a sense, a link exists between the conjunction of pALq ` pIW1
pcqq and a metric com-

plexity (in terms of covering numbers) as used in the seminal contribution [GGvdV00][Equation
(2.2)]. In particular, it is straightforward to prove that if Npε, θ XK,dKLq is the covering
number of the statistical model with the KL divergence and if K is a compact subset of Rd,
then

logNpε,K,dKLq À d logp
?
Lε´1q.

Hence, pIW1
pcqq shall be thought of as a way to both “compactify” the space where θ is

living and make a local link between dpPθ,Pθ‹q and |θ ´ θ‹|. This is useful to avoid sieve
considerations (see i.e. [GGvdV00, vdVvZ08, SW01] for example) and this allows to quan-
tify the tail behaviour of the posterior distribution πn far away from θ‹ (see e.g. [CvdV12]).

Finally, pIW1
pcqq also has a tight link with Assumption pW.1q of [MHW`19b] that as-

sumes that if F pθq :“ Eθ‹rlogπθpξqs, then for h a non-decreasing convex function such that
hp0q “ 0:

x∇F pθq, θ‹ ´ θy ě hp|θ´ θ‹|q,

For any θ P Rd, we introduce θt “ θ‹ ` tpθ ´ θ‹q and fθptq “KLpPθt ,Pθ‹q. A straightfor-
ward computation shows that Assumption pW.1q implies that:

KLpPθ,Pθ‹q “ fθp1q “ fθp0q `
ż 1

0
f 1θpsqds

“

ż 1

0
x∇F pθsq, θ‹ ´ θyds“

ż 1

0

x∇F pθsq, θ‹ ´ θsy
s

dsě
ż 1

0

hps|θ´ θ‹|q

s
ds

ě

ż 1

0

hp0q ` h1p0qs|θ´ θ˚|

s
ds“ h1p0q|θ´ θ˚|,

where we used in the last line the convexity of h. The previous inequality is not trivial when
h1p0q ą 0. Oppositely, if h1p0q “ 0, it is reasonable to assume that h is β-Hölder around θ‹
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with β ą 1 and we obtain again a local inequality of the form KLpPθ,Pθ‹q Á |θ´ θ‹|β near
θ‹. In the meantime, since h is non-decreasing, it is also possible to use

ş1
0
hps|θ´θ‹|q

s ds ě
ş1
1{2

hps|θ´θ‹|q
s dsě h

´

|θ´θ‹|
2

¯

. Therefore, pW.1q implies that a β ě 1 exists such that:

KLpPθ,Pθ‹q Á |θ´ θ‹|β ^ h
ˆ

|θ´ θ‹|

2

˙

.

The link between pIW1
pcqq and pW.1q is then made with the help of functional inequalities:

if Pθ‹ is strongly log-concave, then Pθ‹ satisfies the T1 inequality (see e.g. [Led01]) and
W1pPθ,Pθ‹q À

a

KLpPθ,Pθ‹q. More generally, if Pθ‹ satisfies a sub-Gaussian concentration
inequality, [BG99] shows that this Talagrand inequality still holds. Hence, both pIW1

pcqq and
pW.1q of [MHW`19b] implies a lower bound on the KL-divergence in many log-concave
reasonable situations, and the existence of convenient statistical tests.

2.2.2. Bayesian consistency . Upper bound We obtain the next result which is still valid
besides the log-concave settings. We have chosen to keep this setting for the sake of read-
ability, even though pPIUq is sufficient here to guarantee the result.

The next result states an upper bound on the Lp loss between the posterior mean rθn and
θ‹. We define

(11) ε2
n :“

`

CUP L
2
˘1{αc

ˆ

d logn

n

˙1{αc

,

and consider situations where n is large enough (with respect to d) in order to guarantee that
b1ε

αc
n ď 1 where b1 is defined in pIW1

pcqq. We then have the following result.

THEOREM 3. If π0 “ e´V0 is a C1pRd,Rq log-concave prior with V0 P C1
1 , if pPIUq,

pALq and pIW1
pcqq hold, and if pd,nq are such that b1εαcn ď 1, then:

@pą 1
´

Eθ‹
”ˇ

ˇ

ˇ

rθn ´ θ
‹
ˇ

ˇ

ˇ

pı¯1{p
ÀucKpUq

ˆ

d logpnq

n

˙
1

2αc

,

with KpUq “
´
b

CUP L
¯

1

αc and CUP is the Poincaré constant given in pPIUq (Assumption 1).

REMARK 6. In particular, when p“ 2, we recover the standard mean square error rate.
We emphasize that our consistency result makes sense only when considering some situations
where the dimension d is smaller than n the number of observations, so that εn is asymptoti-
cally vanishing when nÑ`8. Therefore, our model is not concerned by high dimensional
situations where d may be larger than n.

If the separation provided by pIW1
pcqq is sharp, i.e. when αc “ 1, the L2 loss is propor-

tional to
b

d
n (up to a log-term), which is the optimal loss in many statistical models. Our

upper bound is deteriorated when αc increases, i.e. when the separation of the distributions
Pθ near Pθ‹ is “flat”, i.e. when the Wasserstein distance W1pPθ,Pθ‹q „ b1}θ ´ θ‹}1`ε for
ε ą 0 near θ‹. Below in Theorem 4, we extend this optimality result to a larger range of
values for αc.

CIt is worth mentionning the recent work of [MHW`19b] that provides a similar analysis
and derives a similar contraction rate: Using the notations of [MHW`19b], we observe that
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the value α of their Corollary 1 corresponds to αc ` 1, essentially because of the definition
of F that is the Kullback Leibler divergence between πθ and πθ‹ and remarking that

x∇F pθq, θ´ θ‹y “ Eθ‹rxθ´ θ‹,BθUpξ, θqs À |θ´ θ‹|1`αc .

Therefore, in the worst situation where β “ 0 in [MHW`19b], the associated rate of con-
vergence is pd{nq

1

2pα´1q “ pd{nq
1

2αc , which is exactly the result we obtain in Theorem 3. In
particular, in the situation of the Bayesian logistic regression, the noise inherited from this
model is bounded so that β “ 0, which leads to the same result both for Theorem 3 and
Corollary 1 of [MHW`19b].B

Lower boundCIn order to assess the accuracy of the Bayesian posterior mean estimator, we
study and derive a lower bound of estimation following the minimax paradigm. In this view,
we introduce FL

αc the set of models pPθqθPRd such that pIW1
pcqq, pPIUq and pALq hold.

We then define rn,dpαcq as the following minimax risk given by:

rn,dpαcq :“ inf
ϑ̂n

sup
FL
αc

E
”

}ϑ̂n ´ θ
‹}2

ı

,

where the above infimum is taken over the set of all possible estimators ϑ̂n constructed from
the observations ξn. Hence, rn,dpαcq is the best achievable L2 risk of estimation of θ‹ in the
worst situation under the assumptions of Theorem 3. We obtain the following result.

THEOREM 4. Over the class FL
αc , a constant κpLq exists such that:

rn,dpαcq ě κpLq

ˆ

d

n

˙
1

2αc

We shall conclude from Theorem 3 and Theorem 4 that the Bayesian posterior mean es-
timator achieves an optimal rate of estimation in terms of n and d up to a logpnq1{αc term.
B

2.2.3. Comments. We provide below several comments on Theorem 3. First, we empha-
size that our results apply in any log-concave situations included the weakly convex case.
Theorem 3 describes the behaviour of the posterior mean

ş

θdπnpθq and not of the entire
posterior distribution as classically studied in Bayesian statistics. In a sense, such a result
seems less informative than the knowledge of the behaviour of the entire distribution πn.
However, a good behaviour of the posterior mean requires a sharp control of the tails of the
posterior distributions whereas a “contraction rate” relative to the Hellinger distance (or with
other distances such as the Kullback-Leibler or total variation ones) sometimes blurs the tail
behaviour of the posterior. We refer to [CvdV12] for an illustration in high dimensional linear
models of the efforts needed to extend posterior concentration to posterior mean consistency.
If we now pay attention to the convergence rate obtained in Theorem 3, we emphasize that
when the separation is sharp, i.e. when αc “ 1 in pIW1

pcqq, we obtain the standard minimax
convergence rate d

n up to a logpnq term, and this result is in a sense non-asymptotic (a uni-
versal constant could be exhibited with a price of a huge technicalicity). In comparison with
[MHW`19b], we also obtained a slightly better convergence rate of pd{nq1{αc (see Corollary
1 of [MHW`19b]). But in general situations, their value of β is equal to 1 so that the rates
derived from Theorem 3 and Corollary 1 of [MHW`19b] are equivalent.
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2.3. Discretization in the weakly convex settings. CThe main contribution of our pa-
per is to carry out a precise study of the weakly convex situation (e.g. when the underlying
function is convex but not strongly convex). If we could derive the convergence rate of the
continuous Cesaro average with the help of simple functional inequalities and Poincare con-
stants, it is no longer the case when dealing with discretized Cesaro average. To bypass this
difficulty, we are then led to introduce some functional inequalities that are slightly more
parametric (see pHq,r

KLq below).

2.3.1. General result. In this section, we focus on the discretization procedure in the
general weakly convex situation. We still assume pALq and introduce for any convex func-
tion W a set of inequalities that are related to the Kurdyka-Łojasiewicz inequality (see e.g.
[Loj63, Kur98]). This type of inequality is widely used in optimization and geometry to ex-
tend results from the strongly convex case to the more difficult weakly convex settings (see
e.g. [BDLM10, GP22]). For this purpose, for any matrix B, we denote by SppBq the spec-
trum of B. We set:

(12) λ̄∇2W pxq :“ suptSpp∇2W pxqqu and λ∇2W pxq “ inftSpp∇2W pxqqu.

ASSUMPTION 4 (Assumption pHq,r
KLq). W is a positive C2-function with minW “uc 1

and there exist 0ď q ď r ă 1 and positive c1 and c2 such that,

@x PRd, c1W pxq
´r ď λ∇2W pxq ď λ̄∇2W pxq ď c2W pxq

´q.

Assumption pHq,r
KLq implies that (see Lemma 2.1 in [GPP22] for details)

lim sup
|x|Ñ`8

|∇W |2W q´1pxq ă `8 and lim inf
|x|Ñ`8

|∇W |2W r´1pxqą ´8.

In the case r “ q, it implies a global standard Kurdyka-Łojasiewicz assumption (see e.g.
[GP22] for a recent application for stochastic gradient descent, and the seminal contribu-
tions of [Loj63]). The case r “ 1 corresponds to the limiting Laplace case, whereas r “ 0
(and q “ 0) is associated to the strongly convex case. In particular, the complexity of the
procedure will of course increase with r. Finally, note that since ∇W is L-Lipschitz, the
eigenvalues of ∇2W pxq are uniformly bounded, which implies that q ě 0 in pHq,r

KLq is given
by pALq. Assumption 2.4 pHq,r

KLq relates the behaviour of the spectrum of the Hessian (which
translates some information on the curvature of the landscape) with the size of the potential
itself and r ą q ě 0 is associated to some lack of strong convexity in some directions of the
landscape function. Interestingly, thanks to pHq,r

KLq and the convexity assumption, some tights
relationship exist between W pxq, |∇W pxq| and the eigenvalues of ∇2W pxq.

REMARK 7. Let us consider pHq,r
KLq with W pxq “ p1 ` |x|2qp with p P p1{2,1s. We

verify that ∇W pxq “ 2pW pxqpp´1q{px and

p∇2W pxqqij “ 4ppp´ 1qxixjW pxq
pp´2q{p ` 2pδijW pxq

pp´1q{p.

Moreover, for any vector u with |u| “ 1,

x∇2W pxqu,uy “ 2pp1` |x|2qp´1

ˆ

1´ 2p1´ pq
xx,uy2

1` |x|2

˙

.

It implies that:

λ∇2W pxq ě 2pp1´ 2p1´ pqqp1` |x|2qp´1 “ 2pp1´ 2p1´ pqqW pxq´
1´p

p ,

and

λ∇2W pxq ď p1` |x|
2qp´1 “ 2pW pxq´

1´p

p .

This entails pHq,r
KLq with r “ q “ p1´ pq{p.
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Under pHq,r
KLq, we are able to obtain exponential bounds for the Euler scheme denoted by

X̄γ and for the diffusion X (see Lemma 2.3 and Proposition 2.4 of [GPP22, Section 2.3]),
which in turn involve the following quantitative controls of the moments.

PROPOSITION 5. Assume pHq,r
KLq. Assume that W px‹q ď 1. Suppose that γ ď γ0 :“

1
4dL`1 , then a locally finite positive function p ÞÑ cp on p0,`8q, independent of W , such
that for any pą 0,

sup
tě0

ExrW ppXtqs ` sup
tě0

ExrW ppX̄γ
t qs ď cp pW

ppxq `Υpq ,

where Υ is a positive number that satisfies:

1ďΥď crpc2 _Lq
1

1`q´r c
´ 1

1´r

1 logp1` dLqd
1

1`q´r ,

where cr is a constant depending only on r.

REMARK 8. Note that in the particular case q “ 0, we obtain Υď crpL{c1q
1

1´r logp1`

dLqd
1

1´r so that when r “ q “ 0 (that corresponds to the strongly convex setting) we obtain
Υ9 L

c1
d logp1 ` dLq. It is worth saying that the previous bound is universal, but may be

improved in some situations with specific statistical models.

We are now able to state our first bounds on the complexity of the discretization procedure.
This general and technical result is divided into two cases piq and piiq leading respectively to
a complexity of order ε´4 and ε´3 (the second case requires additional assumptions on W ).
Then, each case is divided into two parts paq and pbq. In Statement paq, the result gives the
dependency on the whole set of parameters whereas pbq only focuses on the dimension d (in
order to provide a bound which is less precise but more simple to read).

THEOREM 6. Assume pALq, pH
q,r
KLq and that γ ď γ0 :“ 1

8ppdpL_ c2qq
´1^ 1

8q. Let f be
a C2 function from Rd to Rd1 with d1 ď d, rf s1 ď 1 and rDf s1,‹ ď 1. Let εą 0 and eą 0.

• pi.aq If γε “
c
2p1`eq
1

dL2Υ2rp1`eq ε
2^ d

c2Υ1´q´2re ^
d

c2p1`qq
1´q
1`q c2

1´q
1`q Υ´2re|x0´x‹|

2
1´q
1`q

^ Υ2rp1`eq`q´1dL2

c2c
2p1`eq
1

and

Nε ěΥ
1`3r

2
p1`eqc

´ 3

2
p1`eq

1 γ´1
ε ε´1 _ d1Υ2rp1`eqc

´2p1`eq
1 γ´1

ε ε´2

then, a constant ce,r,q exists independent from c1, c2, L, d, ε such that:

(13) Eε :“ Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nε

Nε
ÿ

k“1

X̄γ
kγ ´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

flď ce,r,qε
2 with π9e´W .

• pi.bq If ε P p0,1 ^ pd1d´
1´r

2p1`q´rq qs, γε “ ε2d´p1`
2r

1`q´r
`eq and Nε “ ε´4d1d1` 4r

1`q´r
`e,

then Eε ď cε2 where c only depends on e, r, q, c1, c2 and L (but not on d and ε).

• pii.aq Assume furthermore that W is C3 with D2W L̃-Lipschitz for }.}‹ and that

}~∆p∇W q}22,8 :“ sup
xPRd

|~∆p∇W qpxq|2 ă`8,
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where ~∆p∇W q “ p∆B1W, . . . ,∆B1W q. Then, if γε “ c2,1ε with

c2,1 “ c1`e
1 min

˜

1

Lc2
1

2 Υ
1´q`2r

2
p1`eq

,
c1`e
1

LL̃dΥ2rp1`eq
,

1

}~∆p∇W q}2,8Υrp1`eq

¸

,

and

c1,2 “max

˜

d1Υ2rp1`eq

c
2p1`eq
1

, ε
Υ

1`3r

2
p1`eq

c
3

2
`e

1

¸

,

and Nε “
c1,2
c2,1

ε´3, then the conclusion of pi.aq holds true.

• pii.bq Under the assumptions of pii.aq, assume that a constant C independent on d

exists such that }~∆p∇W q}22,8 ď Cd2ρ with ρ ě 0. If ε P p0,1 ^ pd1d´
1´r

2p1`q´rq qs, γε “

εd´maxp1` 2r

1`q´r
,ρ` r

1`q´r
q´e and Nε “ ε

´3d1dmaxp1` 4r

1`q´r
,ρ` 3r

1`q´r
q`e, then the conclusion

of pi.bq holds true with a positive constant c which only depends on e, r, q, c1, c2, L and L̃
(but not on d and ε).

REMARK 9. Since }~∆p∇W q}22,8 “ supxPRd
řd
i“1p

řd
j“1 B

3
i,j,jW pxqq

2, the condition
}~∆p∇W q}22,8 ď Cd2ρ reasonably holds with ρď 3{2 (if each B3

i,j,jW is bounded by a uni-
versal constant) and may hold with lower ρ when the coordinates of the dynamical system
are not “fully connected” (for instance if Wi depends only on xi, we get ρ “ 3{2). When
ρď 1` r

1`q´r (which is always the case when r ě 1{2), we obtain the same dependency in
d in pii.bq as in pi.bq but with ε´3 instead of ε´4.

2.3.2. Application to Bayesian learning. A consequence of Theorem 6 is stated below
when we observe a n i.i.d. sample ξn and when εn refers to the statistical accuracy defined in
(11) given by εn “ pd{nq

1

2αc (we omit the logarithmic term) and when we implicitely assume
that d is smaller than n, i.e. that the sequence εnÑ 0 as nÑ`8 (see Remark 6).

THEOREM 7. Assume pIW1
pcqq, pALq and pPIUq. Suppose that for any ξ PRq , Upξ, .q

satisfies pHq,r
KLq with c1, c2, r and q independent of ξ. Assume furthermore that r “ q. For the

following tunings of γεn and Nεn given by:

piq If r ě 1, then γεn “ d
´p2r`1´α´1

c qn´2r´α´1
c , and Nεn “ n

2α´1
c `4rd1`4r´2α´1

c .

piiq If r “ q “ 0, then γεn “ n
´2 and Nεn “ n

1

2
p1`α´1

c qd
1

2
p1´α´1

c q.

piiiq For any r P p0,1q, we have γεn “ n
´p2r`α´1

c qd´1´2r`α´1
c ^ n´

2

1`r d
2r

1`r , and

Nεn “ γ
´1
εn

”

n
1

2
α´1
c ´

3

2
p1´rqd

1`3r

2
´ 1

2
α´1
c _ d2r´α´1

c nα
´1
c ´2p1´rq

ı

.

we can find a constant C that depends on q, r, c1, c2 but not on d and n such that:

Er}pθγn,tN ´ θ
‹}2s ďCε2

n

B

2.4. Discretization in the strongly convex setting. CThis paragraph concerns the L-
smooth and strongly convex case, which is defined as follows.
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ASSUMPTION 5 (Assumption pSCρq). We assume that for any ξ P Rq , Upξ, .q is ρ-
strongly convex: i.e., for any ξ PRq:

@z PRd @θ PRd : tz∇2
θUpξ, θqz ě ρ|z|

2.

THEOREM 8. Assume pALq with L ě 1 and pSCρq. Let X̄γ denote the Euler scheme
with constant step-size γ initialized at x0. Let f be a C2 function from Rd to Rd1 with d1 ď d,
rf s1 ď 1 and rDf s1,‹ ď 1 and consider εą 0

(i) If γε “
ρ2

L2dε
2 ^

ρ
L2 ^

d
L2|x0´x‹|2

and Nε ě d
1ρ´2γ´1

ε ε´2 _
?
dρ´3{2ε´1γ´1

ε , then:

Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nε

Nε
ÿ

k“1

X̄γ
kγ ´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

flÀuc ε
2.

(ii) Assume furthermore thatW is C3 withD2W L̃-Lipschitz for }.}‹ and that }~∆p∇W q}22,8 ă

`8. If γε “ b
´ 1

2

2 ε with:

b2 “ d
2 `

L4d

ρ3
`L2

˜

1

ρ2
`
L̃2

ρ4

¸

`
}~∆p∇W q}22,8

ρ2
` 2

L4

ρ2
|x0 ´ x

‹|2,

and Nε “ ε
´3
?
b2d1

ρ2 _ γ´1
ε _ dγ´1

ε ρ´1, then:

Ex0

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

Nε

Nε
ÿ

k“1

X̄γ
kγ ´ πpIdq

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

flÀuc ε
2.

REMARK 10. Note that in piq, when ε is small enough and x0 sufficiently close to x‹, we
have γε “ ρ2

L2dε
2 . In this case, for a C2 function, the computational cost induced by piq is of

the order O
´

dd1L2

ρ4 ε´4
¯

. This result slightly improves the bound derived in [DM19] with the
same dependency in d and ε and a better one in terms of ρ and L, with a completely different
method of proof. We also observe that we recover in this case the limiting case r “ q “ 0 of
Theorem 6 iq and iiq with a sharp dependency in terms of ρ and L.

If now the function f is more regular and three times differentiable and if }~∆p∇W q}22,8 Àuc
ρ´2pLL̃dq2 (see Remark 9 for a discussion on }~∆p∇W q}22,8), then the computational cost

becomes Oid

´

dL2

ρ4 ε
´3
¯

. Up to our knowledge, this result is new for deriving an ε approxi-
mation M.S.E. cost.

The next theorem gives a quantitative setup to attain an ε2
n accuracy for a discrete LMC

procedure with a constant step-size γ where ε2
n “ pd{nq

α´1
c is defined by (11) in the situation

where εnÑ 0 as nÑ`8.

THEOREM 9. Assume that pIW1
pcqq, pALq, pPIUq and pSCρq hold and that |θ0 ´

θ‹|2 Àuc d. For the following tunings of parameters:

• pi.aq if γεn “ n
´2 and Nεn “ n

1

2
p1`α´1

c qd
1

2
p1´αc´1q operations.

• pi.bq if |θ̂γn,0 ´ θ
‹|2 ď dn´2, γ “ n´1 and N “ n_ d operations.

then a constant C that depends on αc,L, ρ but not on d and n exists such that:

E

„

ˇ

ˇ

ˇ

pθγn,tN ´ θ
‹
ˇ

ˇ

ˇ

2


ďCε2
n.



ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY 15

This result deserves several comments.

• This theorem indicates that the step size should be chosen as γ9n´2 (first case) or γ9n´1

(second case), which becomes smaller when n increases. This is due to the sharper statis-
tical accuracy we can expect with the posterior mean when we have a large amount of
observations.

• A stricking point derived from the previous result is that the tuning pγ,Nq “ pn´2, nq is
“universal”, which means that regardless the value of αc, the computation of the posterior
mean with an explicit Euler scheme with step-size n´2 and nd iterates leads to an optimal
statistical result. If we now consider that each iteration of the LMC has a cost d, the global
cost of the procedure is then nd.

• We also observe that our results of Theorem 7 and of Theorem 9 match, i.e., the cost of
learning in strongly convex situation is identical to the one obtained under pHq,r

KLq when
r “ q “ 0.

• We observe that with Assumption pSCρq, besides the obvious curse of dimensionality for
large d concerning the statistical accuracy of pθn, there is no burst of the computational
cost, which remains polynomial in terms of n and d.

• Finally, it is worth saying that in the previous statement, we did not use the C3 assumption
to assess the cost of the Bayesian learning, essentially because the potential improvement is
strongly model dependent owing to the size of }~∆p∇W q}22,8. It could be certainly helpful
in some very specific situations.

B

2.5. Discussion on the discretization results . C
Polynomial cost. Overall, the leading take-home message when considering the discrete

approximation and the concrete estimator is that in both strongly and weakly convex case,
we obtain a complexity that evolves as a polynomial of n and d, the complexity being much
lower in the strongly convex case. The worst situation is attained when r is close to 1, and
αc “ 1, and we obtain in that case a computational cost of the order n4d3 (by applying
Theorem 7 piiq). All the more, we observe that in our results, the complexity of Bayesian
learning is seriously damaged with the loss of strong convexity, both in terms of n and d, and
this loss is parametrically described with the help of Assumption pHq,r

KLq.
Lack of log-concavity. Behind our polynomial cost result, the log-concave assumption

plays a central role: withouth a such assumption, sampling has to be considered with specific
models and specific algorithms. To bypass the absence of log-concavity, a popular strategy
relies on the existence of a functional inequality satisfied by the target measure. For example,
[MCJ`19] (see also [MFWB19]) assumes the existence of a log-Sobolev inequality (LSI)
and obtain a total variation mixing time of the order Kdε´2. A such LSI is then shown to
be verified with the help of a perturbation approach (see [HS87]) for strongly log-concave
distributions outside a ball of radius R, but the dependency of K may be exponentially large
with R, so that the overall cost depends on a balance between d and R. As a new exam-
ple of the role of functional inequalities, in [MHW`19a], the authors obtain a polynomial
computational cost with a reflected Metropolis-Hastings random walk, that is well suited
for symmetric mixture model (which is not log-concave) and is far different from a pure
Langevin strategy.
Interestingly, our approach relies on the Poisson equation (that could be studied in non-
convex situations) whereas [MHW`19a] relies on functional inequalities such as the Poincaré
one.

Existing results on MSE. As indicated above, we obtained the complexity to compute an
ε-approximation of the posterior mean with the M.S.E. loss, i.e. the complexity to guarantee
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that the M.S.E. becomes smaller than ε2. This is the purpose of Theorem 6 and Theorem 8
respectively in the weakly and strongly convex cases. The related orders of complexity are
given in Table 1, where we also draw some comparisons with some state of the art results
related to the complexity of Bayesian sampling. Up to our knowledge, the only paper that
derives an ad-hoc study of the M.S.E. criterion is [DM19], that obtains a computational cost
of the order dε´4 and dε´3 in the strongly convex case. If our results are rather similar to
those of [DM19] in the strongly convex case (same dependency in terms of d and ε), we
largely improve the state of the art in the weakly convex situation.

Existing results with other criteria. Other results are related to some different criteria
and for our purpose, these results are stated up to a normalization factor: actually, in the
recent papers [DMM19, DRDK20] (see also [MCC`21]) that we compare with, the com-
plexity is defined in a slightly different way, omitting the Monte-Carlo factor. More pre-
cisely, oppositely to our paper based on a Cesaro average (involving only one path), these
papers use a classical Monte-Carlo approach to approximate πpfq (for a given function f )
by N´1

MCpZ1 ` . . .` ZNMC q where pZjq1ďjďNMC denotes an i.i.d. sequence of NMC i.i.d.
random variables. Then, for a given ε, these papers define the complexity as the number
nε of iterations of the Euler-scheme to compute Z1. In order to draw some fair compar-
isons, we need to consider the “true” complexity, i.e. to multiply their complexity nε by
MCpεq “VarpZ1qε

´2, i.e. by the number of Monte-Carlo simulations that are necessary to
obtain a Monte-Carlo M.S.E lower than ε2. Furthermore, since the involved function is Id, it
is reasonable to assume that VarpZ1q9d, so that we assume that the true complexity of the
compared papers is nεdε´2.

Finally, former works state results with different distances: Total Variation, Kullback-
Leibler, W1 or W2. We only consider W1 or W2 results in Table 1, which seem to be the
only ones that can apply to the non-bounded (Lipschitz) function Id, the KL divergence and
TV distance being too weak to draw some conclusions on the posterior mean approximation.
In particular, we do not report in Table 1 the TV results presented in [DMM19] or KL results
in [Dal17]. First, we emphasize that we obtain in our work the best dependency (in terms of
ε) in the weakly-convex situation, thanks to our parametric pHq,r

KLq assumption. It would be
very tempting to understand the behaviour of KLMC and α-KLMC within this framework.
Second, we recover the good dependency on d and ε of the LMC in the strongly convex sit-
uation. At last, LMC is outperformed by KLMC in this same setting as reported in [DRD20]
when ε is small enough.B

3. Minimax Bayesian posterior mean consistency. This paragraph is dedicated to the
proof of Theorem 3 (Bayesian consistency rate) and of Theorem 4 (minimax rate).

3.1. Poincare inequality and consequences. We state a famous result for the family pPθqθPRd
of Bobkov and Ledoux (see e.g. [BL97]), borrowed in [Led01]2.

PROPOSITION 10. Assume pPIUq, then for any differentiable k-Lipschitz real function f :

@θ P θ @n PN˚ Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

fpξiq ´ πθpfq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2e
´n δ2

4k2CU
P

^ δ

2k
b

CU
P .

We will apply this result for f “Ψ involved in pIW1
pcqq and with f “∇Uθ . In particular, using

Proposition 10, we obtain the following result (see the proof in [GPP22]).

2In [BL97], the authors assume that the function f is bounded. However, when the concentration function
δ2

4Ck ^ δ
2
?
Ck

goes to 8 when δ Ñ 8, the boundedness assumption can be removed (see Proposition 1.7 in

[Led01] for details).
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C pSCρq and pALq pH
q,r
KLq (or weakly convex) and pALq

γ Npεq γ Npεq

This work - LMC - C2 Op
ρ2

L2d
ε2q OpdL

2

ρ4
ε´4

q Opd
´p1` 2r

1`q´r
q
ε2q Oidpd

1` 4r
1`q´r ε´4

q

This work - LMC - C3 Op
ρ
L2d

εq OpdL
2

ρ4
ε´3

q Opd
1` 2r

1`q´r εq Oidpd
1` 4r

1`q´r ε´3
q

[DM19] - LMC - C2 Op
ρ3

dL4 ε
2

q OpdL
4

ρ4
ε´4

q

[DM19] - LMC - C3 Op
ρ
dL2 εq OpdL

2

ρ4
ε´3

q

[DMM19] - LMC - C2 Op
ρ
dLε

2
q Opd

2L
ρ2

ε´4
q

[DRD20] - KLMC C2 Op
ρ

L
?
d
εq Oidpd

2L
ρ ε´3

q

[DRDK20] - α-KLMC - C2 Oidpd´1ε4q Oidpd3ε´7
q

[DRDK20] - α-KLMC - C3 Oidpd´1{2ε3q Oidpd3ε´6
q

TABLE 1
Complexity Npεq of an ε-approximation of the Mean-Squared Error with a constant step-size γ of several

methods. Left: strongly convex case (with dependency on d, ρ and L), Right: weakly convex case with
dependency on d. LMC: overdamped Langevin Monte Carlo, KLMC: Kinetic Langevin Monte Carlo, α-KLMC:

α penalized KLMC.B

COROLLARY 11. Let pIW1
pcqq holds and denote by Ψ the corresponding 1-Lipschitz function.

Then,

iq

@θ PRd Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Ψpξiq ´EθΨpξ1q

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2e
´n δ2

4CU
P

^ δ

2
b

CU
P .

iiq

@θ PRd Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

∇θUpξi, θq

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

¸

ď 2de
´n δ2

4L2CU
P
d
^ δ

2L
b

CU
P
d .

Corollary 11 will be an essential ingredient for the construction of some efficient statistical tests in
the family of probability distributions pPθqθPRd . This key corollary is used in Section 3.2.1.

3.2. Consistency rate of the posterior mean. To study the behavior of prθnqně0 introduced in
Equation (3), we adopt the presentation of [CvdV12] and in particular the link between the posterior
mean and the posterior distribution. As noticed in [CvdV12], there is an important need to upper bound
the tail of the posterior distribution (far from θ‹). To this end, for a non-negative sequence pεnqně1

fixed later on, we introduce the separation radius:

(14) rn “ εn ` r,

where r will vary from 0 to `8.

3.2.1. Statistical tests. Statistical tests have a long standing history in Bayesian literature (see
e.g. [LC86, GGvdV00]) to obtain consistency results as well as rates of convergence of Bayes proce-
dures. We introduce an appropriate family of tests pφrnqně1 parametrized by r ą 0 (see Equation (14))
and defined for n PN‹ by:

(15) φrn pξ
nq “ 1

| 1n
řn
i“1 Ψpξiq´πθ‹ pΨq|ě

cprnq
2

.

It is expected that φrn is equal to 0 with an overwhelming probability under the null hypothesis Pθ‹
whereas φrn it is equal to 1 w.o.p. under Pθ when |θ ´ θ‹| is large enough thanks to pIW1

pcqq. We
prove the following estimations in [GPP22] of the first and second type error of pφrnqně1.
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PROPOSITION 12. The sequence of tests pφrnqně1 satisfies

iq Pθ‹ pφrn pξnq “ 1q ď 2e
´n cprnq

2

16CU
P

^
cprnq

4
b

CU
P ,

iiq supθ : |θ´θ‹|ěrn Pθ pφ
r
n pξ

nq “ 0q ď 2e
´n cprnq

2

16CU
P

^
cprnq

4
b

CU
P .

The next result is a technical estimation related to the denominator (normalizing constant) involved
in the posterior distribution distribution. A simple application of Corollary 11 yields the next result.

LEMMA 13. For any tą 0, define the sets Atn “
 
ˇ

ˇ

1
n

řn
i“1 ∇θUpξi, θ

‹q
ˇ

ˇď t
(

, then:

@n PN‹ @tą 0 Pθ‹ptAtnucq ď 2de
´n

˜

t2

4L2CU
P
d
^ t

2L
b

CU
P
d

¸

.

3.2.2. Proof of the posterior mean consistency .

PROOF OF THEOREM 3. Our proof adopts the strategy of [CvdV12].
Step 1: Decomposition of the quadratic risk. We remark that for all n PN‹:

Eθ‹
”
ˇ

ˇ

ˇ

rθn ´ θ
‹
ˇ

ˇ

ˇ

pı

“ Eθ‹
„
ˇ

ˇ

ˇ

ˇ

ż

Rd
pθ´ θ‹qdπnpθq

ˇ

ˇ

ˇ

ˇ

p

ď Eθ‹
„
ż

Rd
|θ´ θ‹|p dπnpθq



“ pEθ‹
„
ż 8

0
tp´1πnp|θ´ θ

‹| ě tqdt


“ pEθ‹
„
ż εn

0
tp´1πnp|θ´ θ

‹| ě tqdt`
ż 8

εn

tp´1πnp|θ´ θ
‹| ě tqdt



ď εpn ` p

ż `8

0
rp´1
n Eθ‹ rπnp|θ´ θ‹| ě rnqsdr,(16)

where we used the Jensen inequality in the second line, an integration by part in the third line, a direct
integration

şεn
0 ptp´1dt“ εpn in the last line associated with the Fubini relationship.

Step 2: Use of the tests pφrnqně1. We now use the tests pφrnqně1 and the sets pAtnq, we can write:

Eθ‹ rπnp|θ´ θ‹| ě rnqs “Eθ‹ rφrnpξnqπnp|θ´ θ‹| ě rnqs

`Eθ‹
”

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1Atn

ı

`Eθ‹
”

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1tAtnuc
ı

.(17)

From this expression we can deduce the following inequality:

Eθ‹ rπnp|θ´ θ‹| ě rnqs ďEθ‹ rφrnpξnqs `Eθ‹
”

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1Atn

ı

` Pθ‹ptAtnucq.

‚ Study of Eθ‹
”

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1Atn

ı

. We write that:

πnp|θ´ θ
‹| ě rnq “

ż

θ : |θ´θ‹|ěrn

dπnpθq “

ż

θ : |θ´θ‹|ěrn

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

ż

Rd

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

.(18)
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At this stage, we control the denominator and the numerator separately. Let us denote by Zt “
π0pBpθ

‹, tqq the prior mass of the Euclidean ball centered at θ‹ and of radius t. We have

log

˜

ż

Rd

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

¸

ě log

˜

ż

Bpθ‹,tq

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

¸

ě log

˜

ż

Bpθ‹,tq

e´Wnpξn,θq

e´Wnpξn,θ‹q

dπ0pθq

Zt

¸

` logZt

ě

ż

Bpθ‹,tq

n
ÿ

i“1

rUpξi, θ
‹q ´Upξi, θqs

dπ0pθq

Zt
` logZt,

where we used the Jensen inequality in the last line with the concave function log and the normalized
measure dπ0Z

´1
t over Bpθ‹, tq. Using that ∇θUpξ, .q is L-Lipschitz we get

@x PRd Upξ, θ1q ´Upξ, θ2q ď xθ1 ´ θ2,∇θUpξ, θ2qy `
L

2
}θ1 ´ θ2}

2,

for all pθ1, θ2q PRd, which implies that:

@i P t1, . . . , nu @θ PRq |Upξi, θq ´Upξi, θ
‹q ´ xθ´ θ‹,∇Upξi, θ‹qy| ď

L

2
|θ´ θ‹|2.

Using a sum over i and the triangle inequality, we then deduce that:

@θ PRd
n
ÿ

i“1

Upξi, θ
‹q ´Upξi, θq ě ´

ˇ

ˇ

ˇ

ˇ

ˇ

xθ´ θ‹,
n
ÿ

i“1

∇θUpξi, θ
‹qy

ˇ

ˇ

ˇ

ˇ

ˇ

´ n
L

2
|θ´ θ‹|2.

The Cauchy-Schwarz inequality yields:
ˇ

ˇ

ˇ

ˇ

ˇ

xθ´ θ‹,
n
ÿ

i“1

∇θUpξi, θ
‹qy

ˇ

ˇ

ˇ

ˇ

ˇ

ď |θ´ θ‹|

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

∇θUpξi, θ
‹q

ˇ

ˇ

ˇ

ˇ

ˇ

.

An integration over Bpθ‹, tq with the normalized measure π0Z
´1
t leads to:

log

˜

ż

Rd

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

¸

ě´n
L

2
t2
π0pBpθ

‹, tqq

Zt
´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ
‹q

›

›

›

›

›

` logpZtq

ě ´n
L

2
t2 ´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ
‹q

›

›

›

›

›

` logpZtq.

To lower bound the denominator, we use the set Atn and we have

log

˜

ż

Rd

e´Wnpξn,θq

e´Wnpξn,θ‹q
dπ0pθq

¸

1Atn ě

˜

´n
L

2
t2 ´ t

›

›

›

›

›

n
ÿ

i“1

∇θUpξi, θ
‹q

›

›

›

›

›

` logpZtq

¸

1Atn

ě

ˆ

´nt2
ˆ

L

2
` 1

˙

` logpZtq

˙

1Atn .(19)

Using (19) with (18) and the Jensen Inequality, we have

Eθ‹
´

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1Atn

¯

ď
Eθ‹

”

p1´ φrnpξ
nqq

ş

θ:|θ´θ‹|ěrn
e´Wnpξ

n,θq

e´Wnpξ
n,θ‹q dπ0pθq

ı

Zte
´npL2`1qt2

ď

ż

θ:|θ´θ‹|ěrn

Eθ‹

«

p1´ φrnpξ
nqq

e´Wnpξn,θq

e´Wnpξn,θ‹q

ff

dπ0pθqe
nt2pL2`1qpZtq

´1



20

ď pZtq
´1ent

2pL2`1q sup
tθ :|θ´θ‹|ěrnu

Eθ r1´ φrnpξnqs

ď 2ent
2pL2`1q´logπ0pBpθ‹,tqqe

´n cprnq
2

16CU
P

^
cprnq

4
b

CU
P ,

where in the penultimate line we used a change of measure from Pθ‹ to Pθ .
‚ Study of Eθ‹ rφrnpξnqs. Using the first type error given by iq of Proposition 12, we have:

Eθ‹rφrnpξnqs ď 2e
´n cprnq

2

16CU
P

^
cprnq

4
b

CU
P .

‚ Study of Eθ‹
”

p1´ φrnpξ
nqqπnp|θ´ θ

‹| ě rnq1tAtnuc
ı

. We introduce the dependency in r and n to

upper bound Pθ‹ptAtnucq with t and apply Lemma 13. We have:

Pθ‹ptAtnucq ď 2de
´n

˜

t2

4L2CU
P
d
^ t

2L
b

CU
P
d

¸

.

We then obtain that:

Eθ‹ rπnp|θ´ θ‹| ě rnqs

ď 4ent
2pL2`1q´logπ0pBpθ‹,tqqe

´n cprnq
2

16CU
P

^
cprnq

4
b

CU
P ` 2de

´n

˜

t2

4L2CU
P
d
^ t

2L
b

CU
P
d

¸

.(20)

Step 3: Small ball calibration and prior mass We now adjust the different parameters in order to obtain
the best rate for prθnqně0. We choose t that depends on r and n, i.e. t“ tr,n according to:

tr,n “
cprnq ^

a

cprnq

A
,

with A chosen sufficiently large such that A“

c

32pL` 1qCUP _
b

CUP , so that:

nt2r,n

ˆ

L

2
` 1

˙

´ n
cprnq

2

16CUP
^

cprnq

4
b

CUP

ď´n
cprnq

2

32CUP
^

cprnq

8
b

CUP

.

The previous inequality may be verified by considering the value of cprnq and its position in compar-

ison to 1 and to 2
b

CUP . In the meantime, we get that:

´ logπ0pBpθ
‹, tr,nqq ď ´ logπ0

´

Bpθ‹,A´1rcpεnq ^
a

cpεnqsq
¯

.

We introduce εn as:

εn “

ˆ

L2CUP d
logn

n

˙1{2αc

,

and consider n large enough such that εn ď 1 and b1ε
αc
n ă 1 (where b1 is given in Assumption

pIW1
pcqq), then:

´ logπ0pBpθ
‹, tr,nqq ď ´ logπ0

´

Bpθ‹,A´1cpεnqq
¯

.

Since π0 “ e
´V0 with V0 a C1

1 function, we then deduce that:

@δ ą 0, @θ PBpθ‹, δq : |V0pθq ´ V0pθ
‹q| ď δ}∇V pθ‹q} ` 1

2
δ2,

which implies:

´ logπ0pBpθ
‹, tr,nqq
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ď´ log

˜

ż

Bpθ‹,A´1cpεnqq
eV0pθ

‹q´A´1cpεnq}∇V pθ‹q}´A´2cpεnq2{2dλdpθq

¸

“´V0pθ
‹q `A´1cpεnq}∇V pθ‹q} `

A´2cpεnq
2

2
` d logpAcpεnq

´1q ´ logλdpBp0,1qq

ď ´V0pθ
‹q `A´1cpaε2q}∇V pθ‹q} `

A´2cpaε2q
2

2
` d logpcpεnq

´1q.

Using the behaviour of c near 0 (see pIW1
pcqq), a constant Cθ‹ exists such that:

´ logπ0pBpθ
‹, tr,nqq ď logpCθ‹q ` dαc logpε´1

n q.

We then obtain with K “ 32_ 4A2 that a universal q exists such that (20) may be upper bounded as:

Eθ‹ rπnp|θ´ θ‹| ě rnqs ď qde
´ n
K

«

cprnq
2

L2CU
P
d
^

cprnq

L
b

CU
P
d

ff

`dαc logpε´1
n q

.

Finally, Equation (10) yields:

Eθ‹ rπnp|θ´ θ‹| ě rnqs ď qde
´ n
K
b21
trnu

2αc

L2CU
P
d 1rnď1 ` qde

´ n
K
b2

logprnq`1

L
b

CU
P
d 1rně1.(21)

Step 4: Convergence rate We use (16) and (21) and obtain that:

Eθ‹r}rθn ´ θ‹}ps Àuc εpn ` d
ż `8

0
rp´1
n

¨

˝e
´ n
K
b21
trnu

2αc

L2CU
P
d 1rnď1 ` e

´ n
K
b2

logprnq`1

L
b

CU
P
d 1rně1

˛

‚dr

Àuc ε
p
n ` d

«

ż 1

εn

rp´1e
´ n
K
b21

r2αc

L2CU
P
d dr`

ż `8

1
rp´1e

´ n
K
b2

logprq`1

L
b

CU
P
d dr

ff

.

Using the value of εn we introduced in Step 2, we then observe that:

ż `8

εn

rp´1e
´ n
K
b21

r2αc

L2CU
P
d dr ď

˜

KL2CUP d

b21n

¸p{2αc

p2αcq
´1

ż `8

b21K logn
vp{2αc´1e´vdv “Oucpεpnq.

The second integral may be made exponentially small (in terms of n). We then observe that the leading
contribution of the Lp loss is then brought by εpn.

3.3. Minimax lower bound (proof of Theorem 4). CBelow, we establish a lower bound of
estimation that matches with the Bayesian consistency rate we derive in Theorem 3 in terms of n and
d.

PROOF OF THEOREM 4. For this purpose, we introduce ϕαc defined by:

ϕαcpxq “ sgnpxq|x|
αc1|x|ď1 ` x1|x|ą1,

and the family of multivariate Gaussian distributions Pθ “N pδµαcpθq, Idq with δ ą 0 defined later
on and

@i P t1, . . . , du µαcpθqi “ ϕαcpθiq.

Considering all positions of x and y, we observe that a constant c exists such that:

@px, yq PR2 |ϕαcpxq ´ϕαcpyq| ě c|x´ y|
αc

As a translation model, it is immediate to verify that:

W1pPθ1 ,Pθ2q
2 “ δ2|µαcpθ1q ´ µαcpθ2q|

2
2

“ δ2
d
ÿ

i“1

|ϕαcpθ
i
1q ´ϕαcpθ

i
2q|

2
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ě δ2c2d

˜

1

d

d
ÿ

i“1

|θi1 ´ θ
i
2|

2αc

¸

ě dδ2c2
ˆ

1

d
}θ1 ´ θ2}

2

˙αc

“ c2δ2d1´αc}θ1 ´ θ2}
2αc
2

where we applied the Jensen inequality in the previous line with the convex function r ÞÝÑ rαc with
αc ě 1. Therefore, we observe that when δ “ d´p1´αcq{2, the family Pθ satisfies pIW1

pcqq. In the
meantime, straightforward computations show that pPIUq and pALq also hold for this statistical
model so that this statistical model belongs to the FLαc class used in the statement of the result.

In this statistical model, we then derive a lower bound of estimation with the L2 risk applying the
Fano Lemma associated with the Varshamov-Gilbert Lemma. We introduce the Hamming distance
ρpω,ω1q defined by:

@pω,ω1q P t0,1ud ˆ t0,1ud ρpω,ω1q “
d
ÿ

j“1

1ωj‰ω1j .

The Varshamov-Gilbert yields the existence ofM “ ted{32u points in t0,1ud denoted by pω1, . . . , ωM q
such that

@j ‰ k ρpωj , ωkq ě
d

4
.

With this net over t0,1ud, we introduce the net θ1, . . . , θM defined by

θi “ βωi,

for some β ą 0 chosen later on. We then verify that:

@j ‰ k }θj ´ θk}2 ě β

?
d

2
.

In the meantime, the Kullback divergence for Gaussian distributions leads to:

KLpPθi ,Pθj q “
n

2
δ2|µαcpθiq ´ µαcpθjq|

2
2 ď

n

2
dαcβ2αc

where we used that the maximal value of the Hamming distance is d and dδ2 “ dαc . We then apply
the Fano Lemma and observe that:

inf
θ̂n

sup
θ

Pθ

˜

|θ̂n ´ θ|2 ě
β
?
d

8

¸

ě cą 0

as soon as:
n
2 d
αcβ2αc ` logp2q

d{32
ă 1.

We then choose β as large as possible, i.e. we choose β such that:

β “ b

ˆ

d1´αc

n

˙

1
2αc

“ b

ˆ

d

n

˙
1

2αc
d´1{2.

This entails a minimax lower bound for the L2 rate of the order:

rn,dpαcq Á
?
dβ »

ˆ

d

n

˙
1

2αc
.

B
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4. Discretization of the Langevin procedure - Weakly convex case . The weakly convex
(i.e. not uniformly strongly convex) case is tackled with a completely different approach with the help
of Assumption pHq,r

KLq. Actually, in the weakly convex case, a series of properties disappear. For
instance, one can not easily control the pathwise distance between the process and its discretization.
The problem is then significantly harder and we choose here to make use of the inversion of the Poisson
equation, which leads to a relatively tractable formulation of the error between the discretized Cesaro
average and the invariant distribution (applied to the identity function). In particular, this “Poisson
equation approach” is in the continuity of [LP02, HMP20]) and has a long-standing history in the
study of central limit theorem for Markov chains. We refer to [Mey71, Nev76, Rev84, GM96] for
seminal contributions on additive functionals of Markov chains. We first stay at an informal level in
this paragraph for the sake of readability. We sketch the general idea behind the use of this equation
with an Euler scheme.

Again, we first state some general results with a diffusion process pXtqtě0 solution of:

(22) dXt “´∇W pXtqdt`
?

2dBt.

4.1. How to use the Poisson equation f ´ πpfq “ Lg?. This approach is based on the in-
version of the operator L of the diffusion. For a given function f , we recall that the solution of the
Poisson equation is the function g such that πpgq “ 0 and that satisfies:

f ´ πpfq “ Lg,

where π denotes the invariant distribution of the diffusion (see below for background on existence and
uniqueness of the solution). We consider g the solution of the Poisson equation.
‚ For such a solution, a first important ingredient is based on the following remark: if pXtqtě0 is a

Markov process with generator L and g belongs to the (extended) domain, then the Ito formula yields:

gpXtq “ gpX0q `

ż t

0
LgpXsqds`Mg

t ,

so that

(23)
ż t

0
fpXsq ´ πpfqds“

ż t

0
LgpXsqds´ pgpXtq ´ gpX0qq

is a local martingale (and certainly a true martingale under appropriate conditions). Thus, the control
of the distance between p1

t

şt
0 fpξsqqtě0 and πpfq can be tackled from a martingale point of view.

‚ The second main interest of this approach is the possibility to specify that our estimator involves
f “ Id, which is an important ingredient of the approximation of πpfq. Such a precision is untractable
when we handle distances between probability distributions.

We first state that the Poisson equation is well-posed in our setting and recall a classical formulation
of this solution. The proof is postponed to the supplementary document [GPP22, Section 2.5]. Note
that this result is only stated under the assumptions of our main theorems but may be certainly extended
to a more general setting (see [CCG12, Corollary 3.2] for a more general result).

PROPOSITION 14 (Poisson equation). Assume pHq,r
KLq and suppose that W is C3 with bounded

third derivatives. Then, Equation (22) admits a unique invariant distribution and for any C2-function
f with bounded derivatives, the problem Lg “ f ´ πpfq is well-posed on the set of C2-functions such
that πpgq “ 0 and the unique solution is given by:

gpxq “

ż `8

0
rπpfq ´ Psfpxqsds.

Note that in what follows, we will solve this equation d times for a multivariate function f “
pf1, . . . , fd

1
q (and will mainly consider the case f “ Id for applications to Bayesian estimation).
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4.2. Poisson equation and discretization. In the discretized case, the aim is then to mimick
the martingale property of Equation (23) but some additional error terms appear with the discretization
approximation. Such ideas have been strongly studied in [LP02, HMP20] but since the solution to the
Poisson equation is not explicit (in general), the previous works have usually made ad hoc assumptions
on the function g and its derivatives. For our purpose, we identify the key properties satisfied by the
solution when f “ Id in terms of the dimensional dependence.

We observe that pX̄tkqkě1, computed through the recursion

X̄tk “´γ∇W pX̄tk´1q `
a

2γζk,

where pζkqkě0 is an i.i.d. sequence of standard d-dimensional Gaussian random variables, is a se-
quence of discrete time observations of the continuous time process pX̄tqtě0 defined by:

(24) @t P rtk, tk`1s dX̄t “´∇W pX̄tkqdt`
?

2dBt,

with
?
γζk “Btk ´Btk´1 .

Considering a multivariate function g “ pg1, . . . , gd
1
q : RdÑRd1 , we denote byDg “ r∇g1; . . . ;∇gd1s

its Jacobian matrix which maps from Rd to the space of d1 ˆ d-matrices. Similarly, ∆g refers to the
vector built with p∆g1, . . . ,∆gd

1
q. For są 0, we define s the largest grid point in ptkqkě0 below s:

(25) s :“ supttk : tk ď su.

We then observe that:

gpX̄tq “ gpxq `

ż t

0
L̄gpX̄s, X̄sqds`Mpgq

t ,

where s is defined in (25), L̄ is given by:

(26) L̄gpx,xq “ ´Dgpxq∇W pxq `∆gpxq,

and Mpgq is the Rd-valued local martingale defined by:

(27) Mpgq
t “

?
2

ż t

0
DgpX̄sqdBs.

Similarly, the definition of L shall be extended to multivariate functions by

(28) Lgpxq “ pLg1pxq, . . .Lgd
1

pxqq “ ´Dgpxq∇W pxq `∆gpxq.

We first state some useful technical results for the proof of Theorem 6 whose proofs ar postponed to
[GPP22, Section 2.3].
C

LEMMA 15. Assume pHq,r
KLq. Then, @x PRd,

c1
1´ r

´

W 1´rpxq ´W 1´rpx‹q
¯

ď |∇W pxq|2 ď c2
1´ r

´

W 1´qpxq ´W 1´qpx‹q
¯

.

Furthermore, @x PRd,
(29)

W 1`rpxq ´W 1`rpx‹q ě p1` rqc1|x´ x
‹|2 andW 1`qpxq ´W 1`qpx‹q ď

c2p1` qq

1´ q
|x´ x‹|2.

In this second technical result, we obtain some crucial bounds related to the solution of the Poisson
equation under Assumption pHq,r

KLq.

PROPOSITION 16. Assume pHq,r
KLq with c3 ą 0, c1 ą 0 and r P r0,1s. Let f : Rd Ñ Rd1 be a

Lispchitz C2-function with rf s1 ď 1 and rDf s1,‹ ď 1. Then, g: RdÑRd1 is a C2-function and for
every e P p0,1q, a constant ce exists (which only depends on e and not on the other parameters), such
that for any x:
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i´ aq }Dgpxq}‹ďcec
´1´e
1

´

W rp1`eqpxq `Υrp1`eq
¯

.

i´ bq If W px0q Àuc Υ, suptě0 Ex0r}DgpX̄tq}2‹sďcec
´2p1`eq
1 Υ2rp1`eq.

ii´ aq If W px‹q Àuc Υ, |gpxq ´ gpx‹q|2ďcec´3´2e
1

´

W p1`3rqp1`eqpxq `Υp1`3rqp1`eq
¯

.

ii´ bq If W px0q Àuc Υ, then suptě0 Ex0r|gpX̄tq ´ gpx0q|
2sďcec

´3´2e
1 Υp1`3rqp1`eq.

iii´ aq Assume that ∇2W is L̃-Lipschitz for the norm }.}‹. Then, for any x, y PRd with x‰ y,

}Dgpyq ´Dgpxq}‹
|y´ x|

ďcec
´2p1`eq
1 L̃

´

W 2rp1`eqpxq `W 2rp1`eqpyq `Υ2rp1`eq
¯

.

iii´ bq Set X̃t “ X̄t ´ pt´ tq∇W pX̄tq. If W px0q Àuc Υ,

Ex0
”

|pDgpX̄tq ´DgpX̃tqqp∇W pX̄t `∆ttq ´∇W pX̄tqq|2
ı

ďcepLL̃c
´2p1`eq
1 pt´tqq2d2Υ4rp1`eq.

PROOF OF THEOREM 6. The plan of the proof is the same for iq and iiq and is decomposed into
three steps. Steps 1 and 2 are common whereas the last one is treated separately.
Step 1: Decomposition of πN pfq ´ πpfq. We observe that:

πN pfq ´ πpfq :“
1

tN

N
ÿ

k“1

γkfpX̄tk´1q ´ πpfq “
1

tN

N
ÿ

k“1

ż tk

tk´1

fpX̄sqds´ πpfq

“
1

tN

ż tN

0
rfpX̄sq ´ πpfqsds

“
1

tN

ż tN

0
rfpX̄sq ´ πpfqsds`

1

tN

ż tN

0
rfpX̄sq ´ fpX̄sqsds

Now, we may use the Poisson equation f ´ πpfq “ Lg and deduce that:

πN pfq ´ πpfq “
1

tN

ż tN

0
LgpX̄sqds`

1

tN

ż tN

0
rfpX̄sq ´ fpX̄sqsds

“
1

tN

ż tN

0
L̄gpX̄s, X̄sqds`

1

tN

ż tN

0
rLgpX̄sq ´ L̄gpX̄s, X̄sqsds`

1

tN

ż tN

0
rfpX̄sq ´ fpX̄sqsds.

where L̄ has been defined in (26). To handle the first term of the right-hand side, we use the Ito formula
to obtain:

gpX̄tN q “ gpx0q `

ż tN

0
L̄gpX̄s, X̄sqds`Mpgq

tN
with Mpgq

tN
“ 2

ż tN

0
DgpX̄sqdBs.

By (26), we remark that

Lgpxq ´ L̄gpx,xq “Dgpxqr∇W pxq ´∇W pxqs.

We then obtain that:

πN pfq ´ πpfq “ “

:“A
p0q
tN

hkkkkkkkkkikkkkkkkkkj

gpX̄tN q ´ gpx0q

tN
´

:“A
p1q
tN

hkkikkj

Mpgq
tN

tN
`

:“A
p2q
tN

hkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0
DgpX̄sqr∇W pX̄sq ´∇W pX̄sqsds

`
1

tN

ż tN

0
rfpX̄sq ´ fpX̄sqsds

loooooooooooooooomoooooooooooooooon

:“A
p3q
tN

.(30)

The rest of the proof consists in studying the mean-squared error related to each term of the above
righ-hand side and to deduce the result the upper-bound for E|πN pfq ´ πpfq|2.
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Step 2: Mean squared error related to Ap0qtN , Ap1qtN and Ap3qtN :

‚ By Proposition 16 iiq ´ bq, there exists a constant ce depending only on e (and which may change
from line to line) such that,

Ex0
ˇ

ˇ

ˇ
A
p0q
tN

ˇ

ˇ

ˇ

2
“ Ex0

ˇ

ˇ

ˇ

ˇ

gpX̄tN q ´ gpX̄0q

tN

ˇ

ˇ

ˇ

ˇ

2

ď cec
´3´2e
1

Υp1`3rqp1`eq

t2N
.

‚ Let us consider the martingale term A
p1q
tN

:

Ex0r|M
pgq
tN
|2s “ 2

ż tN

0
Ex0}DgpX̄sq}

2
F ds,

where }.}F refers to the Frobenius norm. Then, since for a d1 ˆ d-matrix A, }A}2F ď TrpAAT q ď

d1}A}2‹, Proposition 16 implies:

Ex0
ˇ

ˇ

ˇ
A
p1q
tN

ˇ

ˇ

ˇ

2
ď cec

´2p1`eq
1

d1Υ2rp1`eq

tN
.

‚ Let us now consider Ap3qtN . On rtk´1, tkq:

(31) X̄s ´ X̄s “´ps´ sq∇W pX̄sq `∆ss.

with ∆ss “
?

2pBs ´Btk´1q. Thus, by Taylor formula, there exists ξpsq P rX̄s, X̄s `∆sss such that

fpX̄sq ´ fpX̄sq “ fpX̄sq ´ fpX̄s ´ ps´ sq∇W pX̄sq `Dfpξ2psqq∆ss.

Thus,
ż tk

tk´1

fpX̄sq ´ fpX̄sqds“
ż tk

tk´1

DfpX̄sq∆ssds
looooooooooomooooooooooon

∆Nk

`Rpsq

where

|Rpsq| ď rf s1ps´ sq|∇W pX̄sq| ` rDf s1,‹|∆ss|
2.

On one hand, since p∆Nkqkě1 is a sequence of martingale increments (and rf s1 ď 1),

Ex0

»

–

˜

1

tN

N
ÿ

k“1

∆Nk

¸2
fi

fl“
1

t2N

N
ÿ

k“1

Ex0 |∆Nk|
2 ď

rf s21
t2N

N
ÿ

k“1

E

ˇ

ˇ

ˇ

ˇ

ˇ

ż tk

tk´1

pBs ´Btk´1qds

ˇ

ˇ

ˇ

ˇ

ˇ

2

ď
N

t2N
E
ˇ

ˇ

ˇ

ˇ

ż γ

0
Bsds

ˇ

ˇ

ˇ

ˇ

2

ď
1

Nγ2
E
ˇ

ˇ

ˇ

ˇ

ż γ

0
pγ ´ sqdBs

ˇ

ˇ

ˇ

ˇ

2

ď
dγ

3N
.

On the other hand, the Jensen inequality (combined with the fact rf s1 ď 1 and rDf s1,‹ ď 1) yields:

Ex0

«

ˆ

1

tN

ż tN

0
Rpsqds

˙2
ff

ď
2

tN

ż tN

0

´

ps´ sq2E
ˇ

ˇ∇W pX̄sq
ˇ

ˇ

2
` 2E|∆ss|

4
¯

ds

ď
2

3
γ2 sup

sě1
E
ˇ

ˇ∇W pX̄sq
ˇ

ˇ

2
`

10d2

tN

ż tN

0
ps´ sq2ds

Àuc
c2γ

2

1´ q
pW 1´qpx0q `Υ1´qq ` d2γ2,

where in the last inequality, we used Lemma 15 of [GPP22] and Proposition 5 iiq. We deduce from
what precedes that:

Ex0
ˇ

ˇ

ˇ
A
p3q
tN

ˇ

ˇ

ˇ

2
Àuc

dγ2

tN
`

c2γ
2

1´ q
pΥ1´q `W px0q

1´qq ` d2γ2.
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Step 3: Mean squared error related to Ap2qtN The study of this term is isolated not only because its study
is more involved, but also because this term differentiates the bound of iq and iiq.
We separate the drift and the diffusion components and recall that ∆ss “

?
2pBs ´Bsq. We have:

A
p2q
tN
“´

:“A
p2,1q
tN

hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0
DgpX̄sqr∇W pX̄sq ´∇W pX̄s `∆ssqsds

´
1

tN

ż tN

0
DgpX̄sqr∇W pX̄s `∆ssq ´∇W pX̄sqsds

looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

:“A
p2,2q
tN

.

Since ∇W is L-Lipschitz, Equation (31) yields |∇W pX̄sq´∇W pX̄s`∆ssq| ď L|s´s|.|∇W pX̄sq|.
Then, Jensen and Cauchy-Schwarz inequalities imply that:

Ex0r|A
p2,1q
tN

|2s ď
L2

tN

ż tN

0
ps´ sq2Ex0r}DgpX̄sq}

2
‹sEx0r|∇W pX̄sq|2sds.

Using pHq,r
KLq, Proposition 5 iiq, Proposition 16 i´ bq, we have:

sup
sě0

Ex0r}DgpX̄sq}
2
‹sEx0r|∇W pX̄sq|2s Àuc cec

´2p1`eq
1 Υ2rp1`eqc2pΥ

1´q `W px0q
1´qq,

so that:

Ex0r|A
p2,1q
tN

|2s Àuc L
2c
´2p1`eq
1 c2pΥ

p1´q`2rqp1`eq `Υ2rp1`eqW px0q
1´qqγ2.

We finally separate the study of Ap2,2qtN
into two cases, respectively for iq and iiq.

Step 4a: End of Proof of Theorem 6 pi.aq: The Cauchy-Schwarz inequality yields
(32)

Ex0r|A
p2,2q
tN

|2s ď
L2

tN

ż tN

0
Ex0r}DgpX̄sq}

2
‹sEx0r|∆ss|

2sdsď
2L2

tN

ż tN

0
Ex0r}DgpX̄sq}

2
‹sdps´ sqds.

Again Proposition 16 i´ aq implies that:

Ex0r|A
p2,2q
tN

|2s Àuc ce
L2

tN

ż tN

0
c
´2p1`eq
1 Υ2rp1`eqdps´ sqdsÀuc cec

´2p1`eq
1 L2Υ2rp1`eqdγ.

Collecting the bounds obtained for Ap0qtN , Ap1qtN , Ap2,1qtN
, Ap2,2qtN

and Ap3qtN , we get:

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkfpX̄tk´1q ´ πpfq
ˇ

ˇ

ˇ

2
Àuc max

˜

c´3´2e
1

Υp1`3rqp1`eq

t2N
, c
´2p1`eq
1

d1Υ2rp1`eq

tN
,
dγ2

tN

¸

(33)

`max
´

c2γ
2pΥ1´q `W 1´qpx0qq,L

2c
´2p1`eq
1 c2Υ2rp1`eqpΥ1´q `W px0q

1´qqγ2

(34)

, c
´2p1`eq
1 L2Υ2rp1`eqdγ

¯

.

In order to deduce Theorem 6 i.aq, we need to calibrate γ and N in order that whole these terms
be dominated by ε2 up to a constant depending only on r, e and q. The largest dependency in terms of
γ is induced by the last term in (34) and we choose:

(35) γ ď
c
2p1`eq
1

dL2Υ2rp1`eq
ε2.
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The other terms that involve γ are upper bounded as follows:

c2γ
2

1´ q
pΥ1´q `W px0q

1´qq ď ε2 c
2p1`eq
1

dL2Υ2rp1`eq

γc2pΥ
1´q `W px0q

1´qq

1´ q
,

so that γ must satisfy:

γ ď
Υ2rp1`eqdL2

c2c
2p1`eq
1

pΥq´1 ^W px0q
q´1q.

Using Lemma 2.1 of [GPP22], we have

W px0q
q´1 ě

1

p1` qq
1´q
1`q ‘c

1´q
1`q

1 |x0 ´ x‹|
2 1´q
1`q

.

In the same way, the middle term in (34) induces that:

γ ď
d

c2Υ1´q´2re
^

d

c2p1` qq
1´q
1`q ‘c

1´q
1`q

1 Υ´2re|x0 ´ x‹|
2 1´q
1`q

.

Let us now consider (33) to calibrate Nε. We identify again the largest element (in terms of tN )
and choose tN such that:

tN ě ε
´2 d

1Υ2rp1`eq

c
2p1`eq
1

,

so that the dependency on ε is translated by:

Nε ě ε
´4 d

1dL2Υ4rp1`eq

c
4p1`eq
1

_ ε´2 d
1Υp2rqp1`eqpΥ1´q `W px0q

1´qqc2

dc
2p1`eq
1

_ ε´2 Υ1´qc2
dL2

.

The two other terms of (33) must also be upper bounded by ε2. Using the constraint on γ induced by
(35) and tN “Nεγ, we verify that:

dγ2

tN
ď ε2 c

2p1`eq
1

L2Υ2rp1`eqNε
,

so that Nε must satisfy:

Nε ě
c
2p1`eq
1

L2Υ2rp1`eq
.

Finally, the last term involved in (33) is automatically upper bounded by ε2 since tN ě 1 induces the
constraint

tN ě ε
2 1

d1c1Υp1`rqp1`eq
.

For Theorem 6 pi.bq, we remark that Υď cplogdqd
1

1`q´r where c depends on e, r, q, c1, c2 and L
but not on ε and d. Plugging this estimate of Υ into (33) and (34) leads to

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkfpX̄tk´1q ´ πpfq
ˇ

ˇ

ˇ

2
ď cdẽ max

¨

˝

d
1`3r
1`q´r

t2N
,
d1d

2r
1`q´r

tN
, d

1´q`2r
1`q´r γ2, d

1` 2r
1`q´r γ

˛

‚,

where ẽ denotes an arbitrary small positive number. The result easily follows using that the first term

is smaller than the second one under the condition εď d1d´
1´r

2p1`q´rq .



ON THE COST OF BAYESIAN POSTERIOR MEAN STRATEGY 29

Step 4b: End of Proof of Theorem 6 pii.aq: The proof is given for any choice of q and r but the state-
ment is valid only when r “ q. It is possible to exploit the centering of ∆ss. We decompose into two

parts and we decompose Ap2,2qtN
as follows:

A
p2,2q
tN

“

:“ 1
hkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj

1

tN

ż tN

0
pDgpX̄sq ´DgpX̃sqqr∇W pX̄s `∆ssq ´∇W pX̄sqsds

`
1

tN

ż tN

0
DgpX̃sqr∇W pX̄s `∆ssq ´∇W pX̄sqsds,

loooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooon

:“ 2

(36)

where X̃s “ X̄s ´ ps´ sq∇W pX̄sq. For the first term, we use the Jensen inequality and Proposition
16 iii´ bq. We obtain that:
(37)

Ex0r| 1 |2s Àuc cepLL̃c
´2p1`eq
1 q2d2Υ4rp1`eq 1

tN

ż tN

0
ps´sq2ds“ cepLL̃c

´2p1`eq
1 q2d2Υ4rp1`eq γ

2

3

Let us finally consider 2 . We introduce the martingale pMtqtě0 defined as:

Mt “

ż t

0
∇2W pX̄u `∆uuqdBu.

Using the Itô formula, we obtain that:

∇W pX̄s `∆ssq ´∇W pX̄sq “
ż s

s
∇2W pX̄s `∆suqdBu `

ż s

s

~∆p∇W qpX̄s `∆suqdu

“Ms ´Ms `

ż s

s

~∆p∇W qpX̄s `∆suqdu.

where for a vector field φ : Rd ÞÑ Rd, ~∆φ “ p∆φ1, . . . ,∆φdq
T with ∆ standing for the Laplacian

operator. We use this decomposition into 2 and observe that:

2 “
1

tN

ż tN

0
DgpX̃sq

`

Ms ´Ms
˘

ds`
1

tN

ż tN

0
DgpX̃sq

ż s

s

~∆p∇W qpX̄s `∆suqduds.

The Young inequality yields:

Er| 2 |2s ď 2E

«

ˇ

ˇ

ˇ

ˇ

1

tN

ż tN

0
DgpX̃sq

`

Ms ´Ms
˘

ds
ˇ

ˇ

ˇ

ˇ

2
ff

loooooooooooooooooooooooomoooooooooooooooooooooooon

:“ 2a

(38)

` 2E

»

–

ˇ

ˇ

ˇ

ˇ

ˇ

1

tN

ż tN

0
DgpX̃sq

ż s

s

~∆p∇W qpX̄s `∆suqduds

ˇ

ˇ

ˇ

ˇ

ˇ

2
fi

fl

loooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooon

:“ 2b

We first deal with 2a and use the martingale decomposition, we obtain that:

(39) 2a “ E
”
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

ż tk

tk´1

DgpX̃tk´1qpMs ´Mtk´1qds
looooooooooooooooooooomooooooooooooooooooooon

:“∆Nk

ˇ

ˇ

ˇ

2ı

“
1

t2N

N
ÿ

k“1

ErEr|∆Nk|2 |Ftk´1ss,
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where we used that Er∆Nk |Ftk´1s “ 0. Standard computations show that:

Er|∆Nk|2 |Ftk´1s

“ E

«

ż tk

tk´1

ż tk

tk´1

tDgpX̃tk´1qpMv ´Mtk´1qu
TDgpX̃tk´1qpMu ´Mtk´1qdudv |Ftk´1

ff

“

ż tk

tk´1

ż tk

tk´1

Tr
´

E
”

DgpX̃tk´1q
TDgpX̃tk´1qpMu ´Mtk´1qpMv ´Mtk´1q

T |Ftk´1

ı¯

dudv

“ 2

ż tk

tk´1

ż u

tk´1

Tr
´

DgpX̃tk´1q
TDgpX̃tk´1qE

”

pMu ´Mtk´1qpMv ´Mtk´1q
T |Ftk´1

ı¯

dvdu.

The last conditional expectation deserves a specific study: for any pair pi, jq P t1, . . . , du2 and any
tk´1 ď v ď uď tk , we have:

E
`“`

pMu ´Mtk´1qpMv ´Mtk´1q
T
˘

i,j
|Ftk´1

‰˘

“ E
´”

pM
piq
u ´M

piq
tk´1

qpM
pjq
v ´M

pjq
tk´1

q |Ftk´1

ı¯

“

ż v

tk´1

d
ÿ

`“1

Er∇2W i,`pX̄tk´1 `∆tk´1,sq∇
2W j,`pX̄tk´1 `∆tk´1,sq |Ftk´1sds,

where the previous equality comes from the independent Brownian increments coordinates per coor-
dinates and from u^ v “ v. This induces the matricial equality:

E
”

pMu ´Mtk´1qpMv ´Mtk´1q
T |Ftk´1

ı

“

ż v

tk´1

Er∇2W pX̄tk´1 `∆tk´1,sq∇
2W pX̄tk´1 `∆tk´1,sq

T |Ftk´1sds.

Noting that

Tr
´

DgpX̃tk´1q
TDgpX̃tk´1q

¯

“ }DgpX̃tk´1q}
2
F ,

we then deduce that:

Er|∆Nk|2 |Ftk´1s “ 2E

«

ż tk

tk´1

ż u

tk´1

ż v

tk´1

}DgpX̃tk´1q∇
2W pX̄tk´1 `∆tk´1,sq}

2
F dsdvdu |Ftk´1

ff

.

Plugging Equation (40) into Equation (39), we deduce that:

(40) 2a “
2

t2N

N
ÿ

k“1

ż tk

tk´1

ż u

tk´1

ż v

tk´1

E
”

}DgpX̃tk´1q∇
2W pX̄tk´1 `∆tk´1,sq}

2
F

ı

dsdvdu.

We then use the relationship between the spectral and the Frobenius norm and the fact that the
spectral norm is an operator norm, we observe that for any k and s P rtk´1, tks:

}DgpX̃tk´1q∇
2W pX̄tk´1 `∆tk´1,sq}

2
F ď d

1}DgpX̃tk´1q∇
2W pX̄tk´1 `∆tk´1,sq}

2
‹

ď d1}∇2W pX̄tk´1 `∆tk´1,sq}
2
‹}DgpX̃tk´1q}

2
‹

ď d1L2 }DgpX̃tk´1q}
2
‹,(41)

where we use that ∇W is a L-Lipschitz function. We then use Proposition 16 i´bq, a slight adaptation
of Proposition 5 to get the same bounds for Er}DgpX̃tq}2‹s as for Er}DgpX̄tq}2‹s. We conclude that:

(42)

2a Àuc
ceL

2c
´2rp1`eq
1 dΥ2rp1`eq

t2N

N
ÿ

k“1

ż tk

tk´1

ż u

tk´1

ż v

tk´1

dsdvdu“ ceL2c
´2p1`eq
1 d1Υ2rp1`eq γ

N
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Let us finally consider 2b . By Jensen inequality,

2b ď E

»

–

1

tN

ż tN

0

ˇ

ˇ

ˇ

ˇ

ˇ

DgpX̃sq

ż s

s

~∆p∇W qpX̄s `∆suqdu

ˇ

ˇ

ˇ

ˇ

ˇ

2

ds

fi

fl

ď E
„

1

tN

ż tN

0
}DgpX̃sq}

2
‹}
~∆p∇W q}22,8ps´ sq2ds



ď
}~∆p∇W q}22,8

tN

ż tN

0
Er}DgpX̃sq}2‹sps´ sq2ds(43)

Àuc }~∆p∇W q}22,8γ2c
´2p1`eq
1 Υ2rp1`eq,(44)

where the last inequality follows from Proposition 16.

By (37), (42) and (44), we are now able to give a new bound for Ap2,2qtN
:

E
ˇ

ˇ

ˇ
A
p2,2q
tN

ˇ

ˇ

ˇ

2
Àuc cec

´2p1`eq
1 γ2 max

´

c
´2p1`eq
1 pLL̃q2d2Υ4rp1`eq, }~∆p∇W q}22,8Υ2rp1`eq

¯

` cec
´2p1`eq
1 d1Υ2rp1`eq pLγq

2

tN
.

Collecting the bounds obtained for Ap0qtN , Ap1qtN , Ap2,1qtN
, Ap2,2qtN

and Ap3qtN , we get (using that Lγ ď 1):

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkIdpX̄tk´1q ´ πpIdq
ˇ

ˇ

ˇ

2
Àuc ce max

˜

c´3´2e
1

Υp1`3rqp1`eq

t2N
, c
´2p1`eq
1

d1Υ2rp1`eq

tN

¸

(45)

` cec
´2p1`eq
1 γ2 max

´

L2c2Υp1´q`2rqp1`eq, pc
´p1`eq
1 LL̃dq2Υ4rp1`eq, }~∆p∇W q}22,8Υ2rp1`eq

¯

.

(46)

In order to ensure that (46)ď ce,r,qε2, we fix γε “ c2,1ε with

c2,1 “ c1`e
1 min

´

L´1c2
´ 1

2 Υ´
1´q`2r

2
p1`eq, c1`e

1 pLL̃q´1d´1Υ´2rp1`eq, }~∆p∇W q}´1
2,8Υ´rp1`eq

¯

.

Then, the condition onNε comes from (45) with exactly the same form as in pi.bq (since the right-hand
side of (45) is the same as in (33)). This concludes the proof of pii.aq.

For pii.bq, we use that Υ ď cplogdqd
1

1`q´r where c does not depend on d so that the previous
bound leads to:

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkIdpX̄tk´1q ´ πpIdq
ˇ

ˇ

ˇ

2
ď cdẽ max

¨

˝

d
1`3r
1`q´r

t2N
,
d1d

2r
1`q´r

tN
, γ2d

2` 4r
1`q´r , γ2d

2ρ` 2r
1`q´r

˛

‚,

where ẽ denotes an arbitrary small positive number. Setting γε “ εd
´maxp1` 2r

1`q´r
,ρ` r

1`q´r
q´ẽ al-

lows to control the two last terms. Then, one setsNε “ d1d
2r

1`q´r γ´1
ε ε´2 in order to control the second

term and finally checks that the first one is also controlled by cε2 under this condition and the fact that

εď d1d
´ 1´r

2p1`q´rq (where c does not depend on d).

4.3. Bayesian learning with discrete LMC - weakly convex case - Theorem 7.
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PROOF OF THEOREM 7. We know that for any ξ, Upξ, .q satifies pALq. It implies that Wn is nL-
smooth. Since Upξ, .q satisfies pHq,r

KLq, a direct computation shows thatWn satisfies pHq,r
KLqwith q “ 0

and c2 “ nL. In the meantime, Assumption pHq,r
KLq on each Upξ, .q implies that:

λp∇2Wnq “ λ

˜

n
ÿ

i“1

∇2Upξi, .q

¸

ě

n
ÿ

i“1

λp∇2Upξi, .qq

ě

n
ÿ

i“1

c1Upξi, .q
´r “ n

˜

1

n

n
ÿ

i“1

c1Upξi, .q
´r

¸

ě tc1n
1´ruW´r

n pξn, xq,

where we applied the Jensen inequality to the convex function u ÞÑ u´r . Thus pHq,r
KLq holds with the

pair pc̃1 “ c1n
1´r, rq and pc̃2 “ nL,0q. By Proposition 5, we thus deduce that

sup
tě0

ExrW p
npXtqs ` sup

tě0
ExrW p

npX̄tqs ď cp pW
p
npxq `Υp

nq ,

with

Υn “ crpnLqpc1n
1´rq

´1
1´r d logp1` dnLq “ cr,L,c1,edn

e

where e is an arbitrary small number and cr,L,c1,e is a constant depending only on r, L, c1 and e. We
are now able to apply Theorem 6(i.a) with Υ“Υn. We observe that γεn must be chosen such that

γεn “
n2p1´rq

dn2d2rp1`eq
ε2
n ^

d

nd1´q´2re
^

d

nd´2repdnq
1´q
1`q

^
d2r`q´1dn2

nn2p1´rq

For n large enough, the minimum is then related to

γεn “ n
´p2r`α´1qdα

´1´1´2r ^
dq`2re

n
^
d

2q
1`q

`2re

n
2

1`q

^
d2r`q

n1´2r
.

We then verify that when ně d, we have:

@q P r0,1s
d

2q
1`q

`2re

n
2

1`q

ď
dq`2re

n
ď
d2r`q

n1´2r
,

so that

γεn “ n
´p2r`α´1qdα

´1´1´2r ^
d

2q
1`q

`2re

n
2

1`q

.

We observe that

Nεn “ γ
´1
εn

»

—

—

–

d
1`3r

2 n´
3
2
p1´rq

´n

d

¯
1

2αc

loooooooooooooomoooooooooooooon

:“A

_d2rn´2p1´rq
´n

d

¯
1
αc

looooooooooomooooooooooon

:“B

fi

ffi

ffi

fl

The study is then made explicit by considering some specific cases.

• If r ě 1, we observe that B ěA for all values of t P r0,1q. In that case we also verify that γ´1
εn “

n2r`α´1
d2r`1´α´1

. The overall cost of computation is then given by

Nεn “ n
2α´1
c `4rd1`4r´2α´1

c .
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• If r “ q “ 0, since dă n, we verify that:

γ´1
εn “ n

α´1
c d1´α´1

c _ n2 “ n2

and

Nεn “ n
1
2
p1`α´1

c qd
1
2
p1´α´1

c q

B

5. Discretization of the Langevin procedure - Strongly convex case. CWe adapt the
proof of Theorem 6 to the strongly convex case and to this end, start with an adaptation of Proposition
16:

PROPOSITION 17. Assume pSCρq. Let f : Rd Ñ Rd1 be a Lispchitz C2-function with rf s1 ď 1
and rDf s1,‹ ď 1. Then, g is a C2-function and for every e P p0,1q, a constant ce exists (which only
depends on e and not on d), such that for any x:

iq }Dgpxq}‹ ď
1
ρ .

iiq Let γ P p0, ρ{p2L2qs. Then,

sup
tě0

Ex0r|gpX̄tq ´ gpx0q|
2s ď

4

ρ2

ˆ

|x0 ´ x
‹|2 `

d

ρ

˙

.

iiiq Assume that ∇2W is L̃-Lipschitz for the norm }.}‹. Then, x ÞÑDgpxq is Lipschitz and its related
Lipschitz constant rDgs1,‹ satisfies:

rDgs1,‹ “ sup
x‰y

}Dgpyq ´Dgpxq}‹
|y´ x|

ď

˜

2L̃

ρ2
`

1

2ρ

¸

.

PROOF OF THEOREM 8. (i) We follow the proof of Theorem 6(i). Keeping the notations of the
proof of Theorem 6, we first deduce from piiq that

Ex0
ˇ

ˇ

ˇ
A
p0q
tN

ˇ

ˇ

ˇ

2
ď

4

ρ2t2N

ˆ

|x0 ´ x
‹|2 `

d

ρ

˙

ď
8d

ρ3t2N

since |x0 ´ x
‹|2 ď d{ρ.

Second, by the deterministic bound iq of Proposition 17: }Dgpxq}‹ ď ρ´1 and the arguments given
in the proof of Theorem 6, we have:

Ex0
ˇ

ˇ

ˇ
A
p1q
tN

ˇ

ˇ

ˇ

2
ď

d1

ρ2tN
.

For Ap3qtN , we remark that the only modification comes from the control of supE|∇W pX̄sq|2. Since
∇W is L-Lipschitz and ∇W px‹q “ 0,

E|∇W pX̄sq|2 ď L2Er|X̄s ´ x‹|2s.

By Lemma 5.1 of [EP21], we deduce that

E|∇W pX̄sq|2 ď L2

ˆ

|x0 ´ x
‹|2 `

2d

ρ

˙

ď
8L2d

ρ
,

since |x0 ´ x
‹|2 ď d{ρ.

Ex0
ˇ

ˇ

ˇ
A
p3q
tN

ˇ

ˇ

ˇ

2
ď
dγ2

3tN
`L2γ2

ˆ

|x0 ´ x
‹|2 `

d

ρ

˙

` 10d2γ2.
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For Ap2,1qtN
, the fact that }Dgpxq}‹ ď ρ´1 yields:

Ex0r|A
p2,1q
tN

|2s ď
L2

ρ2tN

ż tN

0
ps´ sq2Ex0r|∇W pX̄sq|2sds

ď
L2

ρ2tN
ˆL2

ˆ

|x0 ´ x
‹|2 `

2d

ρ

˙

ˆNγ3 “
L4

ρ2
ˆ

ˆ

|x0 ´ x
‹|2 `

2d

ρ

˙

ˆ γ2

Finally, for Ap2,2qtN
, we deduce from (32) that

Ex0r|A
p2,2q
tN

|2s ď
L2

ρ2tN

ż tN

0
Ex0r|∆ss|

2sdsď
2L2d

ρ2tN

ż tN

0
ps´ sqdsď

2L2d

ρ2
γ.

Thus, collecting the previous bounds and L2d{ρď L4d{ρ3:

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkfpX̄tk´1q ´ πpfq
ˇ

ˇ

ˇ

2
ď

d1

ρ2tN
`

8d

ρ3t2N
`
dγ2

3tN
` 10d2γ2 `

8L4d

ρ3
γ2 `

2L2d

ρ2
γ

` 2
L4

ρ2
γ2|x0 ´ x

‹|2.

The larger term above regarding the size of γ is L2ρ´2dγ and we are led to choose γ ď ρ2

2L2d
ε2. We

now verify the size of the other terms. Obviously we have:

d2γ2 ď d2 ρ4

L4d2
ε4 ď ε4

since ρď L. We observe that:

L4d

ρ3
γ2 ď

L4d

ρ3

ρ2

L2d
ε2γ “ ε2

ˆ

L2

ρ
γ

˙

At last, the terms involving the initial condition may be upper bounded in the same way:

2
L4

ρ2
γ2|x0 ´ x

‹|2 ď ε2 ˆ
ρ2

2L2d

ˆ

γ|x0 ´ x
‹|2 ˆ 2

L4

ρ2

˙

ď ε2 ˆ
γ|x0 ´ x

‹|2L2

d
.

Using again that ρď L, we then deduce that we have to choose γ such that:

γ ď
ρ2

L2d
ε2 ^

ρ

L2
^

d

L2|x0 ´ x‹|2
.

Now, fix N ě ε´4L2

ρ4
d1d in such a way that d1

ρ2tN
ď 2ε2. Then,

8d

ρ3t2N
“

d1

ρ2tN
ˆ

8d

ρd1tN
ď ε2 ˆ

16d

ρd1tN
ď 16ε2,

under the condition N ě d
d1ργ

´1. Finally, since γ ď ε2

d and N ě 1 it is obvious that dγ
2

3tN
ď ε2{2. The

result follows.

piiq As in piq, we follow the proof of Theorem 6(ii). With the notations of this proof, we check that the
only difference between piq and piiq comes from the control of Ap2,2qtN

. Actually, in this part, owing to

a further expansion, Ex0r|A
p2,2q
tN

|2s is controlled by Ex0r| 1 |2s ` Er| 2 |2s where 1 and 2 are
defined in (36). On the one hand, by Proposition 17(iii), the Jensen inequality and pa`bq2 ď 2a2`2b2:

Ex0r| 1 |2s ď L2

˜

1

2ρ2
`

8L̃2

ρ4

¸

1

tN

ż tN

0
Er|∆ss|

4sds

ď L2

˜

1

2ρ2
`

8L̃2

ρ4

¸

p4d2 ´ dq
1

tN

ż tN

0
ps´ sq2dsď

4γ2

3
L2

˜

1

2ρ2
`

8L̃2

ρ4

¸

.
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For Er| 2 |2s, we recall that this term is divided into two parts denoted by 2a and 2b (see (38). On
the one hand, by (40), (41) and Proposition 17(i),

2a ď
2d1L2

ρ2t2N

N
ÿ

k“1

ż tk

tk´1

ż u

tk´1

ż v

tk´1

dsdvduď
d1L2γ2

3ρ2tN
.

Finally, for 2b , we derive from (43) and Proposition 17(i) that,

2b ď
}~∆p∇W q}22,8

ρ2tN

ż tN

0
ps´ sq2dsď

}~∆p∇W q}22,8γ2

3ρ2
.

Finally, we get

Ex0r|A
p2,2q
tN

|2s ď γ2

˜

L2

˜

d1

2ρ2
`

8L̃2

ρ4

¸

`
}~∆p∇W q}22,8

3ρ2

¸

,

where we used that d1L2

3ρ2tN
ď L2

´

d1

2ρ2
` 8L̃2

ρ4

¯

since tN ě 1. Collecting the whole bounds and replac-
ing the one of iq by the one we just obtained, we deduce that:

E
ˇ

ˇ

ˇ

1

tN

N
ÿ

k“1

γkfpX̄tk´1q ´ πpfq
ˇ

ˇ

ˇ

2
ď

d1

ρ2
` 8d
ρ3tN

tN
` b2γ

2

where b2 Àuc d
2 `

L4d

ρ3
`L2

˜

d1

ρ2
`
L̃2

ρ4

¸

`
}~∆p∇W q}22,8

ρ2
`

ˆ

L2 `
L4

ρ2

˙

|x0 ´ x
‹|2,

where we used that dγ
2

3tN
ď γ2pL4dq{ρ3 since ρ ď L and that L ě 1. For a given ε, we thus fix γε “

b
´ 1

2
2 ε so that b2γ

2 ď ε2. Then, we fixNε “ ε´3
?
b2d1

ρ2
_γ´1

ε _dγ´1
ε ρ´1, that implies that d1

ρ2tN
ď ε2.

It remains to observe that 8d{pρtN q ď 8, the result then follows.

The purpose of this paragraph is finally to prove the complexity bound stated in the strongly convex
situation.

PROOF OF THEOREM 9. We first consider pi.aq. We shall apply the above results in our Bayesian
framework. Given the set of n observations pξ1, . . . , ξnq, we have:

Wnpξ
n, xq “

n
ÿ

i“1

Upξi, xq.

Assuming that Upξ, .q satisfies pALq, the triangle inequality shows that Wnpξ
n, .q satisfies pAnLq

regarless the value of ξn. In the meantime, assuming that Upξ, .q satisfies pSCρq yields Wnpξ
n, .q is

nρ-strongly convex i.e. satisfies pSCnρq. The result in then straightforward observing that the condi-
tion on γ is driven by γεn ď

d
n2L2|θ0´θ‹|2

“Oidpn´2q and pluging it in the value of Nεn .

Concerning pi.bq, we shall verify that the constraint on γ is brought by Ap2,1qtN
that should verify

ndγ2 ď ε2
n. Then the constraint on N is then deduced in the same way.

B
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This article is a companion paper of [GPP22] that contains a series of
(usually technical) proofs of the main document.

1. Concentration results for posterior consistency rate . In this paragraph, we pro-
vide the technical proofs related to the posterior mean concentration, stated in Section 3 of
[GPP22] that essentially relies on pPIUq.

Note that, among other settings, Assumption pPIUq holds true for any location model
since, in this case, the Poincaré constant of each distribution πθ is independent of θ, as indi-
cated by the next proposition:

PROPOSITION 1. If Upξ, θq “ Upξ ´ θq, for all ξ and θ, then CP pπθq “ CP pπq where
CP pπq stands for the Poincaré constant related to π9e´U .

We also point out that this assumption may be verified in a more general setting using the
upper bound of [KLS95] (see the statement in Theorem 2). Finally, the Poincaré inequality
is satisfied as soon as the log-concave distribution has a second order moment. We observe
here that CUP may include a dimensional effect even though it is clear that it is not the case
for strongly log-concave probability distributions with the help of the Bakry-Emery result
(see [BE83]). If we believe in the Kannan-Lovász-Simonovits conjecture [KLS95], then the
constant CUP may be considered in our model as independent from the dimension d, which
entails a correct minimax dependency of the Bayesian strategy with respect to d.

PROOF OF PROPOSITION 1. We consider θ P Rd and f PW 1,2pπθq where W 1,2 stands
for the usual Sobolev space (also denoted H1). For any εą 0, a density argument proves that
a fε P C8K pRd,Rq, e.g., a compactly supported and infinitely differentiable function, exists
such that πθppf ´ fεq2q ď ε2 and πθp|∇f ´∇fε|2q ď ε2 (see Theorem 9.2 of [Bre11]).

We shall remark that if f´θε : x ÞÝÑ fεpx` θq, then πθpfεq “ πpf´θε q. The function f´θε
is infinitely differentiable and compactly supported, we shall apply the Poincaré inequality
with the measure π:

(1) V arπpf
´θ
ε q ďCP pπqπp|∇f´θε |2q.

Now, a straigthforward change of variable yields:

V arπθpfεq “ V arπpf
´θ
ε q and πp|∇f´θε |2q “ πθp|∇fε|2q.

We then deduce from the previous equalities and from (1) that

(2) V arπθpfεq ďCP pπqπθp|∇fε|2q.
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Now, we end the proof with a density argument: the Cauchy-Schwarz inequality shows that

|πθpfq ´ πθpfεq| ď
a

πθppf ´ fεq2q ď ε, |πθpf
2q ´ πθpf

2
ε q| ď 2rπθpf

2q ` πθpf
2
ε qsε.

Finally, we can prove that |V arπθpfεq´V arπθpfq| ď 5εrπθpf
2q`πθpf

2
ε qs, and in the mean-

time |πθp|∇fε|2q ´ πθp|∇f |2q| ď ε
a

2πθp|∇f |2 ` |∇fε|2q. We use these last upper bounds
in (2), we obtain since ε may be chosen arbitrarily small, that:

V arπθpfq ďCP pπqπθp|∇f |2q,
which ends the proof of the proposition.

PROOF OF PROPOSITION 10 OF [GPP22]. The proof is straightforward as soon as we
remark that Assumption pPIUq implies that each πθ satisfies a Poincaré inequality with con-
stant CUP . Since f satisfies }∇f}8 ď k and for any θ, Uθ is a convex coercive function, then
Uθpxq has a linear growth for large values of x. Hence, f P L2pπθq and we then simply apply
the concentration inequality stated in Corollary 3.2 of [BL97]. This ends the proof of the
proposition.

PROOF OF COROLLARY 11 OF [GPP22]. The proof of iq is a straightforward applica-
tion of Proposition 10 of [GPP22] with f “Ψ, which is a 1-Lipschitz function. The proof of
iiq is similar. Since Zθ “ 1 for any θ, a direct integration yields:

Eθr∇θUpξ, θqs “

ż

Rd
∇θUpξ, θqe

´Upξ,θqdξ “∇θ

ż

Rd
e´Upξ,θqdξ “∇θZθ “ 0.

We then use a union bound deduced by the triangle inequality: if Zi “∇θUpξi, θq, then:
#ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Zi

ˇ

ˇ

ˇ

ˇ

ˇ

ě δ

+

Ă

d
ď

j“1

#

1

n

ˇ

ˇ

ˇ

ˇ

ˇ

n
ÿ

i“1

Zji

ˇ

ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

+

.(3)

We now apply Proposition 10 of [GPP22] to each term in the union bound and we get that:

Pθ

˜
ˇ

ˇ

ˇ

ˇ

ˇ

1

n

n
ÿ

i“1

Zji

ˇ

ˇ

ˇ

ˇ

ˇ

ě
δ
?
d

¸

ď 2e
´n δ2

4dL2CU
P

^ δ

2L

?
dCU
P .

The bound being independent of j, the result follows by summing over j in (3)

Finally, we derive the proof of the upper bounds related to the first and second type error
of the family of tests pφrnq.

PROOF OF PROPOSITION 12 OF [GPP22]. The first upper bound iq follows directly
from Lemma 3.2 applied with θ‹. For the second estimation, we consider θ such that
|θ´ θ‹| ě ra,n and we get:

"ˇ

ˇ

ˇ

ˇ

řn
i“1 Ψpξiq

n
´Eθ‹rΨpXqs

ˇ

ˇ

ˇ

ˇ
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"
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ˇ

ě cp|θ´ θ‹|q ´
cpra,nq
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´EθrXs
ˇ
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ě
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In the previous lines, we used the triangle inequality |a` b| ě |a| ´ |b| in the third line, the
identifiability property pIW1

pcqq and the fact that c is an increasing map. Applying again iq,
Corollary 3.2, we obtain an upper bound of the probability of deviations uniform regarding
the condition |θ´ θ‹| ě ra,n. Taking the supremum over θ, we then obtain iiq.

2. Discretization tools - Weakly convex case . In the first part of this section, we prove
some bounds on the moments of the Euler scheme. More precisely, in this weakly convex
setting, we first establish some bounds on the exponential moments and then derive some
bounds on the moments by Jensen-type arguments. Note that this part is unfortunately highly
technical (and much more involved than in the strongly convex case).

REMARK 1. In the weakly convex setting, it is usual to first consider exponential mo-
ments. In some sense, introducing exponential Lyapunov functions is a way to compensate
the lack of mean-reverting in this case.

For the proofs, we introduce the following notations. For any positive c and any γ0 ą 0, let
CKc,γ0

be defined by:

CKc,γ0
:“ tx PRd, |∇W pxq|2 ´ cdλ̄locpγ0, x,Kq ď 1u with,

λ̄locpγ0, x,Kq :“ sup
|u´x|ăγ0|∇W pxq|`

?
K

λ̄∇2W puq.
(4)

We observe that pHq,r
KLq combined with Lemma 2 entails the compactness of CKc,γ0

for any
positive c and γ0. For every positive a, we set:

(5) βpa, c, γ0,Kq :“ sup
xPCKc,γ0

eaW pxqp1` cdLq.

In what follows, the size of βpa, c, γ0,Kq will be of first importance. This is why before
going further, we study these quantities under assumption pHq,r

KLq.

2.1. Preliminary bounds under pHq,r
KLq. C

LEMMA 2. Assume pHq,r
KLq. Then,

c1
1´ r

`

W 1´rpxq ´W 1´rpx‹q
˘

ď |∇W pxq|2 ď c2
1´ q

`

W 1´qpxq ´W 1´qpx‹q
˘

.

Furthermore,
(6)

W 1`rpxq´W 1`rpx‹q ě p1`rqc1|x´x
‹|2 andW 1`qpxq´W 1`qpx‹q ď

c2p1` qq

1´ q
|x´x‹|2.

PROOF. Since ∇W px‹q “ 0 and since W is convex, the differential equation 9xptq “
´∇W pxptqqwith xp0q “ x satisfies: limtÑ`8 xptq “ x

‹. Thus, setting Υ1ptq “ |∇W pxptqq|2,
we have

|∇W pxq|2 “´
ż `8

0
Υ11psqds“

ż `8

0
xD2W pxpsqq∇W pxpsqq,∇W pxpsqqyds.

Thus, using Assumption pHq,r
KLq,

c1

ż `8

0
W´rpxpsqq|∇W pxpsqq|2dsď |∇W pxq|2 ď c2

ż `8

0
W´qpxpsqq|∇W pxpsqq|2ds.
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Setting Υ2ptq “
1

1´ρW
1´ρpxptqqwith ρ P r0,1q, we remark that Υ12ptq “ ´W

´ρpxptqq|∇W pxptqq|2
so that (with ρ“ r and ρ“ q), we get

c1
1´ r

`

W 1´rpxq ´W 1´rpx‹q
˘

ď |∇W pxq|2 ď c2
1´ r

`

W 1´qpxq ´W 1´qpx‹q
˘

.

Finally, in order to prove (6), one checks that

λD2W 1`rpxq ě p1` rqW rpxqλD2W pxq ď p1` rqc1

and that

λ̄D2W 1`qpxq ď p1`qqW qpxqλ̄D2W pxq`qp1`qqW
q´1pxq|∇W pxq|2 ď c2p1`qq

ˆ

1`
q

1´ q

˙

,

which in turn easily implies (6).

LEMMA 3. Assume pHq,r
KLq. Assume that Lγ0 ď 1{4. For any cą 0 and K ą 0, CKc,γ0

is
a compact set. Furthermore, setting

Cparpc,Kq “ p4cc2c
´1
1 q

1

1`q´r ` d´
1

1`q´r

˜

ˆ

c2
1´ r

˙
1

1`q

_4L
?
K _

ˆ

2p1´ rq

c1

˙
1

1´r

_ p4
1

1´rW px‹qq

¸

,

we have

βpa, c, γ0,Kqďp1` cdLqe
aCparpc,Kqd

1
1`q´r

,

where βpa, c, γ0,Kq is defined by (5).

REMARK 2. Keeping all the constants is unfortunately necessary for the objectives of
this paper (but sometimes hard to read). But, if for a moment, we forget the constants L,

K , c, c1 and c2, the result reads βpa, c, γ0,Kq ď C1de
C2d

1
1`q´r where C1 and C2 are some

positive constants which do not depend on d.

PROOF. By Lemma 2 and pHq,r
KLq,

|∇W pxq|2 ´ cdλ̄locpγ0, xq ě c1

1´r

`

W 1´rpxq ´W 1´rpx‹q
˘

(7)

´cc2d sup
|u´x|ăγ0|∇W pxq|`

?
KW

´qpuq.

Since W is L-Lipschitz, for any u PBpx,γ0|∇W pxq| `
?
Kq,

(8) W puq ěW pxq ´Lpγ0|∇W pxq| `
?
Kq

so that when the right-hand member is positive,

W´qpuq ďW pxq´q

˜

1´
Lpγ0|∇W pxq| `

?
Kq

W pxq

¸´q

.

By Lemma 2, |∇W pxq|W´1pxq ď
b

c2

1´rW
´
q`1

2 pxq. Hence, if

(9) W pxq ě
´

4L
?
K
¯

_

˜

p4Lγ0q
2

1`q

ˆ

c2
1´ r

˙
1

1`q

¸

,
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then, Lpγ0|∇W pxq|`
?
Kq

W pxq ď 1{2 and thus, p1´ Lpγ0|∇W pxq|`
?
Kq

W pxq q´q ě 2q . Thus, under (9),

sup
|u´x|ăγ0|∇W pxq|`

?
K

W´qpuq ď 2qW pxq´q.

We deduce that under (9), Equation (7) yields:

|∇W pxq|2 ´ cdλ̄locpγ0, x,Kq ě
c1

1´ r

`

W 1´rpxq ´W 1´rpx‹q
˘

´ cd2qc2W
´qpxq

ě
c1

1´ r
W 1´rpxq

„

1´
W 1´rpx‹q

W 1´rpxq
´

2qcdc2
c1W 1`q´rpxq



.

We now fix some conditions on W pxq in order that 1 ´ W 1´rpx‹q
W 1´rpxq ´

2qcdc2

c1W 1`q´rpxq ě
1
2 and

c1

1´rW
1´rpxq ě 2. We thus assume that

(10) W pxq ě

ˆ

2p1´ rq

c1

˙
1

1´r

_ p4
1

1´rW px‹qq _ p2q`2cc2c
´1
1 dq

1

1`q´r q.

Finally, if (9) and (10) are satisfied, then

|∇W pxq|2 ´ cdλ̄locpγ0, x,Kq ě 1.

But the definition ofCpar, we remark that (9) and (10) are satisfied ifW pxq ěCparpc,Kqd
1

1`q´r

so that

CKc,γ0
Ă tx PRd,W pxq ďCparpc,Kqd

1

1`q´r u.

The bound on βpλ, c, γ0,Kq easily follows.

B

2.2. Exponential bounds for the continuous-time process.

LEMMA 4. Assume that C0
c,0 defined by (4) is a compact set.Then, for any a P p0,1q,

ExreaW pXtqs ď eaW pxqe´ãt ` βpa, p1´ aq´1,0,0q,

where ã“ ap1´ aq´1 and βpa, p1´ aq´1,0,0q is defined by (5). In particular, under pHq,r
KLq,

sup
tě0

ExreaW pXtqs ď eaW pxq ` p1` p1´ aq´1dLqeCparp1,0qd
1

1`q´r

.

PROOF. We apply the Ito formula to fa defined by fapxq “ eaW pxq (a has to be chosen):

fapXtq “ fapxq `

ż t

0
LfapXsqds` 2

ż t

0
x∇fapXsq, dBs

looooooooomooooooooon

Mt

y.

Then, one can check that

Lfapxq
fapxq

“ ´a|∇W pxq|2 ` a2|∇W pxq|2 ` a∆W pxq

ď ap1´ aq
`

´|∇W pxq|2 ` dp1´ aq´1λ̄∇2W pxq
˘

.
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Setting ã“ ap1´ aq´1 and c“ p1´ aq´1, we deduce from pHq,r
KLq and pALq that:

Lfapxq ď ´ãfapxq1txPtCKc,γ0
ucu ` ãfapxq

`

´|∇W pxq|2 ` dp1´ aqλ̄∇2W pxq
˘

1txPCKc,γ0
u

(11)

ď´ãfapxq ` ãfapxq
`

1` dp1´ aq´1λ̄∇2W pxq
˘

1txPCKc,γ0
u(12)

ď´ãfapxq ` ãβpa, p1´ aq´1,0,0q.

It follows that pMtqtě0 is a true martingale and the Gronwall lemma leads to:

ExrfapXtqs ď fapxqe
´ãt ` βpa, p1´ aq´1,0,0q

ż s

0
ãeãps´tqds

ď fapxqe
´ãt ` βpa, p1´ aq´1,0,0q.

2.3. Exponential bounds for the continuous-time Euler scheme (Proposition 5 of [GPP22]).
C

REMARK 3. The proof of this result is rather technical and the important thing is to pay
a specific attention to the dependency with respect to d and L. As indicated in our statement,
we are led to choose γ lower than pLdq´1.

PROPOSITION 5. Assume pHq,r
KLq. Assume that γ ď γ0 :“ 1

4dL`1 , then: For any aď 1{16,
a constant Ca (depending only on a) exists such that

sup
tě0

ExreaW pX̄tqs ď eaW pxq `Cap1` 5dLqeaCparp5,32a´1qd
1

1`q´r

.

PROOF. We assume that aď 1
16 and that γp4dL` 1q ď 1. The Taylor formula yields:

W pX̄tk`1
q ďW pX̄tkq ´ γ|∇W pX̄tkq|

2 ` x∇W pX̄tkq,∆k`1y

`

ˆ
ż 1

0
λ̄∇2W pX̄

pθq
tk qdθ

˙

pγ2|∇W pX̄tkq|
2 ` |∆k`1|

2q,

where ∆k`1 “
?

2pBtk`1
´ Btkq and X̄

pθq
tk “ X̄tk ` θp´γ∇W pX̄tkq ` ∆k`1q. Setting

fapxq “ e
aW pxq and using pALq, we deduce that:

(13) ErfapX̄tk`1
q|Ftks ď fapX̄tkqe

p´aγ`Laγ2q|∇W pX̄tk q|
2

ΨγpX̄tkq,

where

Ψγ : x ÞÝÑ E exp

ˆ

a
a

2γx∇W pxq,Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ,Zqqdθ

˙

|Z|2
˙

,

with Z „N p0, Idq and xpθ, γ, zq :“ x`θp´γ∇W pxq`
?

2γzq. We decompose Ψγ into two
parts:
Ψγpxq

“ E
„

exp

ˆ

a
a

2γx∇W pxq,Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ,Zqqdθ

˙

|Z|2
˙

1t|Z|2ďp2γq´1Ku



looooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooon

:“Ψ
p1q
γ pxq

`E
„

exp

ˆ

a
a

2γx∇W pxq,Zy ` 2aγ

ˆ
ż 1

0
λ̄∇2W pxpθ, γ,Zqqdθ

˙

|Z|2
˙

1t|Z|2ąp2γq´1Ku



looooooooooooooooooooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooooooooooooooooooon

:“Ψ
p2q
γ pxq

,
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where K ą 0 will be chosen later on.

‚ Upper bound of Ψ
p1q
γ pxq. If |Z|2 ď p2γq´1K , then |xpθ, γ,Zq´x| ď γ|∇W pxq|`

?
K , so

that:

Ψp1qγ pxq ď E
”

exp
´

a

2γax∇W pxq,Zy ` 2aγλ̄locpγ,xq|Z|
2
¯ı

ď

d
ź

i“1

EZ1„N p0,1qre
?

2γaBiW pxqZ1`2aγλ̄locpγ,xqZ2
1 s,

where we used λ̄locpγ,xq :“ supuPBpx,γ|∇W pxq|`
?
Kq λ̄∇2W puq. We choose to alleviate this

notation in the sequel of the proof by writing only λ̄loc (instead of λ̄locpγ,xq).
Below, we will use that:

(14) @α1 PR @α2 ă 1{2 EZ1„N p0,1qre
α1Z1`α2Z2

1 s “
1

?
1´ 2α2

e
α2

1
2p1´2α2q ,

with α1 “
?

2γaBiW pxq and α2 “ 2aγλ̄loc. Since λ̄loc ď L, our choice of γ and a leads to
α2 ă 1{2 and we deduce from Equation (14) that:

Ψp1qγ pxq “

ˆ

1

1´ 4aγλ̄loc

˙
d

2

e
γa2|∇W pxq|2

1´4aγλ̄loc “ exp

ˆ

´
d

2
logp1´ 4aγλ̄locq `

γa2|∇W pxq|2

1´ 4aγλ̄loc

˙

.

We observe that logp1´ uq ě ´5{4u when u P r0,1{2s and apply this inequality with u “
4aγλ̄loc ă 1{2. Using again that λ̄loc ď L in the second term, we obtain:

(15) Ψp1qγ pxq ď exp

ˆ

5

2
aγdλ̄loc `

γa2|∇W pxq|2

1´ 4aγL

˙

.

‚ Upper bound of Ψ
p2q
γ pxq. Using the Cauchy-Schwarz inequality and the exponential

Markov inequality,

Ψp2qγ pxq ď E
”

exp
´

2a
a

2γx∇W pxq,Zy ` 4aγL|Z|2
¯ı

1

2
“

P
`

|Z|2 ěKγ´1
˘‰

1

2

ď exp

ˆ

´
d

4
logp1´ 8aγLq `

2a2γ|∇W pxq|2

1´ 8aγL

˙

e´
K

8γ pEre
Z2

1
4 sq

d

2 .

By (14), we deduce that

Ψp2qγ pxq ď exp

ˆ

5d

2
aγL`

2a2γ|∇W pxq|2

1´ 8aγL

˙

e´
K

8γ
`d log 2

4

ď exp

ˆ

´
K

8γ

„

1´ 20a
γ2dL

K
´
γd log 2

2K



`
2a2γ|∇W pxq|2

1´ 8aγL

˙

.

Checking that 20aγ2dL` γd log 2{2ď 10 and choosing K larger then 20 yields:

(16) Ψp2qγ pxq ď exp

ˆ

´
K

16γ
`

2a2γ|∇W pxq|2

1´ 8aγL

˙

.

We then plug (15) and (16) into (13) and obtain that:

ErfapX̄tk`1
q|Ftks ď ErfapX̄tkqse

p´γa`Laγ2q|∇W pX̄tk q|
2

ˆ

„

exp

ˆ

5

2
aγdλ̄loc `

γa2|∇W pxq|2

1´ 4aγL

˙

` exp

ˆ

´
K

16γ
`

2a2γ|∇W pxq|2

1´ 8aγL

˙
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ď ErfapX̄tkqse
´aγ

´

1´Lγ´ 2a
1´8aγL

¯

|∇W pX̄tk q|
2

ˆ

exp

ˆ

5

2
aγdλ̄locpγ, X̄tk ,Kq

˙

` exp

ˆ

´
K

16γ

˙˙

ď ErfapX̄tkqs

„

exp

ˆ

´
K

16γ

˙

` exp
´

´
aγ

2

“

|∇W pX̄tkq|
2 ´ 5dλ̄locpγ, X̄tk ,Kq

‰

¯



,

since Lγ ` 2a
1´8aγL ď 1{2. Using our assumption pHq,r

KLq and the notations introduced in (4),
we know that:

´|∇W pxq|2 ` 5dλ̄locpγ,x,Kqq ď ´1 when x P tCK5,γ0
uc.

We introduce ρ“ ρpγ,Kq “ e´
aγ
2 `e´

K

16γ and we shall observe that a K large enough exists
such that for our choice of γ, ρă 1. Therefore, we have:

ErfapX̄tk`1
q|Ftks ď fapX̄tkq

´

e´
aγ

2 1tX̄tkPtC
K
5,γ0

ucu ` e
´ K

16γ`e
aγ
2
p´|∇W pX̄tk q|

2`5dLq1tX̄tkPC
K
5,γ0

u

¯

ď ρfapX̄tkq ` fapX̄tkq

”

e
5aγdL

2 ´ e´
aγ

2

ı

1tX̄tkPC
K
5,γ0

u

ď ρfapX̄tkq ` e
´
γa
2 fapX̄tkq

”

e
γa
2
p1`5dLq ´ 1

ı

1tX̄tkPC
K
5,γ0

u.

We observe that γa2 p1` 5dLq ď 1 and using ex ď 1` 2x when x P r0,1s, we obtain that:

ErfapX̄tk`1
q|Ftks ď ρfapX̄tkq ` γaβpa,5, γ0,Kq,

where βpa, c, γ0,Kq is defined by (5).
Thus, setting vk “ ErfapX̄tkqs, we obtain that:

@k ě 0 vk`1 ď ρvk ` γaβpa,5, γ0,Kq.

An induction leads to

@k ě 1 vk ď γβ̄d

k´1
ÿ

j“0

ρj ` ρkv0 “
γaβpa,5, γ0,Kq

1´ ρpγ,Kq
` v0.

We finally have to lower-bound 1 ´ ρpγ,Kq: using that expp´xq ď p2xq´1 for x ě 1 and
expp´xq ď 1´ x for xě 0, we have 1´ ρpγ,Kq ď γpa2 ´

8
K q ě γ

a
4 by taking K ě 32a´1.

We finally deduce that

sup
kě0

ExreaW pX̄tk qs ď eaW pxq`Caβpa,5, γ0,Kqď e
aW pxq `Cap1` 5dLqeaCparp5,32a´1qd

1
1`q´r

,

where Ca does not only depend on a and the last inequality follows from Lemma 3. To extend
to any time tě 0, it is enough to write for any t P rtk, tk`1s :

ErfapX̄tqs “ ErErfapX̄tq|Ftkss,

and then to adapt the beginning of the proof. The details are left to the reader.

B
We conclude this section by a useful technical result for our purpose, which is stated as iiq

of Proposition 5 in [GPP22].
In what follows, we assume that aď 1

16 and that γ satisfies γp4dL` 1q ď 1.

PROPOSITION 6. Under the Assumptions of Proposition 5 of [GPP22], assume that γ ď
γ0 :“ 1

4dL`1 . Let pą 0. Then,

sup
tě0

ExrW ppXtqs ` sup
tě0

ExrW ppX̄tqs ď cp pW
ppxq `Υpq ,
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where p ÞÑ cp is a locally finite positive function on r0,`8q and where,

Υ“ crpc2 _Lq
1

1`q´r c
´ 1

1´r

1 logp1` dLqd
1

1`q´r ,

with cr depending only on r. In particular, for any pď 9,

(17) sup
tě0

ExrW ppXtqs ` sup
tě0

ExrW ppX̄tqs ďCpW
ppxq `Υpq,

where C is a universal constant.

REMARK 4. Note that this property will play a fundamental in the proof of Proposition
16 of [GPP22]. The second part is only a way to recall to the reader that the dependence in p
can be omitted in the proofs since we use this property for some values of p which are always
bounded by 9 (More precisely, the “worst” value of p in the proof is p “ 8rp1` eq _ p1`
3rqp1` eq where e is an arbitrary small positive number).

PROOF OF PROPOSITION 6. Let us first consider the bound on the diffusion process. Ow-
ing to Jensen inequality and to the elementary inequality pa` bqp ď ap ` bp for p ď 1 and
positive a and b, we can only consider the case pě 1. Let a P p0,1q and write

ExrW ppXtqs “ a´pExrlogppeaW pXtqqs ď a´pExrlogppep´1`aW pXtqqs

Since x ÞÑ logp x is concave on rep´1,`8q and that by construction, ep´1`aW pXtq ě ep´1,
we deduce from Jensen inequality that

ExrW ppXtqs ď a´p
´

pp´ 1q ` logExreaW pXtqs
¯p

ď a´p
ˆ

pp´ 1q ` log

ˆ

eaW pxq ` p1` p1´ aq´1dLqeCparp1,0qd
1

1`q´r

˙˙p

,

where in the last line, we used Lemma 4. For aą 0, ρě 1 and bě 0, one easily checks that
logpea ` ρebq ď a` b` logp2ρq. Thus,

ExrW ppXtqs

ď a´p
´

p´ 1` aW pxq ` logp2p1` p1´ aq´1dLqq `Cparp1,0qd
1

1`q´r

¯p

ď p3a´1qp
´

pp´ 1qp ` apW ppxq ` logpp2p1` p1´ aq´1dLqq `Cparp1,0q
pd

p

1`q´r

¯

.

Taking a“ 1{2 (for instance), we get

ExrW ppXtqs ď cp

´

W ppxq ` plogp1` dLqCparp1,0qq
pd

p

1`q´r

¯

.

To deduce the result, one finally checks that plogp1` dLqCparp1,0q Àuc Υ.

A similar strategy based on Proposition 5 leads to

ExrW ppXtqs ď cp,a

´

W ppxq ` plogp1` 5dLqCparp5,32a´1qqpd
p

1`q´r

¯

.

for any a P p0,1{16q. Taking a“ 1{16 and checking that logp1` 5dLqCparp5,32a´1q Àuc Υ
leads to the result.
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2.4. Analysis of the first and second variation processes. We introduce the first variation
process Y x “ pY x,ijq1ďi,jďd defined for all pi, jq P t1, . . . , du2 by Y x,ij

s “ BxjtX
x
s u
i where

tXx
s u
i denotes the ith component of Xx

s . The process Y x is thus a matrix-valued process
solution of the ordinary differential equation:

(18) Y x
0 “ Id and

dY x
s

ds
“´∇2W pXx

t qY
x
t .

LEMMA 7. (i) @x PRd,

}Y x
t }

2
‹ ď e

´2
şt

0
λ∇2W pX

x
s qds.

(ii) Assume that ∇2W is L̃-Lipschitz for the norm }.}‹. Then, for any x, y PRd,

}Y y
t ´ Y

x
t }

2
‹ ď L̃

2|x´ y|2
ż t

0

1

λ∇2W pX
y
s q
e´

şt

s
λ∇2W pX

y
uqdue´2

şs

0
λ∇2W pX

x
uqduds.

PROOF. piq By (18),

Y x
t z “ z ´

ż t

0
∇2W pXsqY

x
s zds.

Thus,

|Y x
t z|

2 ď |z|2 ´ 2

ż t

0
λ∇2W pX

x
s q|Y

x
s z|

2ds.

By a Gronwall-type argument, we deduce that

|Y x
t z|

2 ď |z|2e´2
şt

0
λ∇2W pX

x
s qds

and the result follows.
(ii) For any x, y PRd,

Y y
t ´ Y

x
t “

ż t

0
´∇2W pXy

s qY
y
s `∇2W pXx

s qY
x
s ds

“

ż t

0
´∇2W pXy

s qpY
y
s ´ Y

x
s q ` p∇2W pXx

s q ´∇2W pXy
s qqY

x
s ds.

Setting Vt “ Y
y
t ´ Y

x
t , we have for any z PRd such that |z| “ 1,

d

dt
|Vtz|

2 “´2xVtz,∇2W pXy
t qVtzy ` 2xVtz, p∇2W pXx

t q ´∇2W pXy
t qqY

x
t zy

ď ´2λ∇2W pX
y
t q|Vtz|

2 ` 2|Vtz| ˆ L̃|X
x
t ´X

y
t |e

´
şt

0
λ∇2W pX

x
s qds,

where L̃ denotes the Lipschitz constant of ∇2W for the norm }.}‹. The inequality 2|ab| ď
λ|a|2 ` λ´1|b|2 (for λą 0) then yields:

d

dt
|Vtz|

2 ď´λ∇2W pX
y
t q|Vtz|

2 `
1

λ∇2W pX
y
t q
L̃2|z|2|Xx

t ´X
y
t |

2e´2
şt

0
λ∇2W pX

x
s qds.

Thus, by a Gronwall-type argument, we deduce that

|Vtz|
2 ď L̃2|z|2

ż t

0

|Xx
s ´X

y
s |

2

λ∇2W pX
y
s q
e´

şt

s
λ∇2W pX

y
uqdue´2

şs

0
λ∇2W pX

x
uqduds.

The result follows by using that |Xx
s ´X

y
s | ď supuPRd }Y

u
s }‹|y´ x| ď |y´ x| by piq.
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2.5. Solution of Poisson equation. Bounds on the solution of the Poisson equation and its
derivatives . We remind that g is solution of the Poisson equation f ´ πpfq “ Lg where f
is an at least C2-function from Rd to Rd1 and that, x‹ is the unique minimizer of W .

PROOF OF PROPOSITION 14 OF [GPP22]. Uniqueness: Consider two C2 solutions g1

and g2. Then, Lpg1 ´ g2q “ 0 and:
ż

pg1 ´ g2qLpg1 ´ g2qdπ “´
ż

|∇pg1 ´ g2q|
2dπ.

Since the operator L is elliptic, we know that the density of π is a.s. positive so that g1 ´ g2

is constant. The constraint πpg1q “ πpg2q “ 0 implies that g1 “ g2.
Existence: Let gtpxq “

şt
0 νpfq ´ Psfpxqds. Following the arguments of Proposition 16 of

[GPP22] and its proof below (mainly the fact that the first and second variation processes go
to 0 in L1, sufficiently fast and locally uniformly in x), g is well-defined, of class C2 and,
pgtq, Dgt and D2gt converge locally uniformly to g, Dg and D2g respectively. In particular,
Lg “ limtÑ`8Lgt. Now, using that L is a linear operator (null on constant functions) and
the Dynkin formula, we get:

Lgtpxq “
ż t

0
Lpνpfq´Psfqpxqds“ P0fpxq´Ptfpxq “ fpxq´Ptpfqpxq

tÑ`8
ÝÝÝÝÑ fpxq´πpfq.

Then, Lgpxq “ limtÑ`8Lgtpxq “ fpxq ´ πpfq for every x P Rd (see Proposition A.8 of
[PP14] for a similar but more detailed proof).

C
PROOF OF PROPOSITION 16 OF [GPP22]. The fact that g is C2 is proved along the

proof. Proof of iq. If the conditions of the Lebesgue differentiability are met (checked later
on), then:

Dgpxq “

ż `8

0
ExrDfpXtqYtsdt.

Thus, since }.}‹ is a norm and since supxPRd }Dfpxq}‹ “ rf s1,

(19) }Dgpxq}‹ ď rf s1

ż `8

0
Exr}Yt}‹sdt.

By Lemma 7, for all z PRd,

Exr|Ytz|2s ď |z|2Exre´2
şt

0
λ∇2W pXsqdss.

Thus, for any tě 1, for every positive δ1, we have

Ex|Ytz|2s ď |z|2e´2tδ1 ` |z|2P
ˆ
ż t

0
λ∇2W pXuqduď tδ1

˙

.(20)

Then, using pHq,r
KLq and the Markov inequality, we get for every positive e, for every z ‰ 0,

1

|z|2
Exr|Ytz|2s ď e´2tδ1 ` Px

ˆ
ż t

0
W´rpXuqduď c´1

1 tδ1
˙

ď e´2tδ1 ` Px

˜

ˆ
ż t

0
W´rpXuqdu

˙´2p1`eq

ě pc´1
1 tδ1q´2p1`eq

¸

ď e´2tδ1 ` pc´1
1 tδ1q2p1`eqEx

«

ˆ
ż t

0
W´rpXuqdu

˙´2p1`eq
ff

.
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Since x ÞÑ x´2p1`eq is convex on p0,`8q, it follows from the Jensen inequality that:
1

|z|2
Exr|Ytz|2s ď e´2tδ1 ` pc´1

1 tδ1q2p1`eqt´2p1`eq sup
uě0

ExrW 2rp1`eqpXuqs.(21)

Setting δ1 “ e{p2p1 ` eqq, using the Jensen inequality and the elementary inequality pa `
bq

1

2 ď a
1

2 ` b
1

2 for non negative a and b, we obtain:

Exr|Ytz|s ď |z|e´t
e

2p1`eq
` |z|c´1´e

1 t´1´ e
2 sup
uě0

ExrW rp1`eqpXuqs.

By Proposition 6, Inequality (17), we get

Exr}Yt}‹s “ sup
z‰0

Exr|Ytz|s
|z|

Àuc e
´2t

e
2p1`eq

` c´1´e
1 p1` tq´1´ e

2

´

W rp1`eqpxq `Υrp1`eq
¯

.

The above property has several consequences. First, it implies that g is well-defined. Actually,

|Ptfpxq ´ πpfq| ď

ż

|Ptfpxq ´ Ptfpyq|πpdyq ď rf s1

ż

sup
uPrx,ys

Eur}Yt}‹s|y´ x|πpdyq

ďC

ˆ

e´2t
e

2p1`eq

ż

|y´ x|πpdyq ` p1` tq´1´ e
2

ż

pW rp1`eqpxq `W rp1`eqpyqq|y´ x|πpdyq

˙

ďCxmaxpe´2t
e

2p1`eq
, p1` tq´1´ e

2 q.

In the above inequalities, we used the convexity of W and the fact that π integrates functions
with polynomial growth (simple consequence of Lemma 4). Thus t ÞÑ |Ptfpxq ´ πpfq| is
integrable on r0,`8q and g is thus well defined.

Then, the Lebesgue differentiability theorem applies. This implies thatDgpxq is well-defined
on Rd and that (by (19) ),

(22) }Dgpxq}‹ ď c´1´e
1 cerf s1

´

W rp1`eqpxq `Υrp1`eq
¯

.

where ce denotes a positive constant depending only e (ce may change from line to line but
always depends only the parameter e).

For the second inequality of this assertion, we again use Inequality (17) of Proposition 6.
More precisely:

Ex0
r}DgpX̄tq}

2
‹s ď cec

´2´2e
1 rf s21

´

Ex0
rW 2rp1`eqpX̄tqs `Υ2rp1`eq

¯

ď cec
´2´2e
1 rf s21

´

W 2rp1`eqpx0q ` 2Υ2rp1`eq
¯

.(23)

The result follows.
Proof of ii´ aq. By the first order Taylor formula and (22),

|gpxq ´ gpx‹q|2 ď sup
uPr0,1s

}Dgpx‹ ` upx´ x‹q}2‹|x´ x
‹|2

ď cec
´2´2e
1 rf s21

´

W 2rp1`eqpx‹ ` upx´ x‹qq `Υ2rp1`eq
¯

|x´ x‹|2.

Since W is a convex function, W px‹ ` upx´ x‹qq ďW pxq. Thus, using (6), we get
1

rf s21
|gpxq ´ gpx‹q|2 ď cec

´3´2e
1

´

W 2rp1`eqpxq `Υ2rp1`eq
¯

W 1`rpxq

ď cec
´3´2e
1

´

W p1`3rqp1`eqpxq `Υp1`3rqp1`eq
¯

,
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where in the second line, we used the Young inequality with p “ p1 ` 3rq{p2rq and q “
p1` 3rq{p1` rq.
Proof of ii´ bq. We apply the result of ii´ aq and obtain that:

Ex0
r|gpX̄tq ´ gpx

‹q|2s ď cec
´3´2e
1 rf s21

´

Ex0
rW p1`3rqp1`eqpX̄tqs `Υp1`3rqp1`eq

¯

.

By Proposition 6 (Inequality (17)), this yields

Ex0
r|gpX̄tq ´ gpx

‹q|2s ď cec
´3´2e
1 rf s21

´

W p1`3rqp1`eqpx0q ` 2Υp1`3rqp1`eq
¯

.

The result follows under the assumption W px0q Àuc Υ.

Again, by ii´ aq

|gpx0q ´ gpx
‹q|2 ď cec

´3´2e
1 rf s21

´

W p1`3rqp1`eqpx0q `Υp1`3rqp1`eq
¯

,

and the fact that W px0q Àuc Υ implies that |gpx0q ´ gpx‹q|2 ď cec
´3´2e
1 rf s21Υp1`3rqp1`eq.

The result follows.

Proof of iiiq. First, since DfpXy
t qY

y
t ´DfpXx

t qY
x
t “DfpXy

t qpY
y
t ´ Y x

t q ` pDfpX
y
t q ´

DfpXx
t qqY

x
t ,

(24) }Dgpyq ´Dgpxq}‹ ď

ż `8

0
rf s1Er}Y y

t ´ Y
x
t }‹s ` rDf s1,‹Er|X

y
t ´X

x
t |}Y

x
t }‹sdt.

First, since supuPRd,tě0 }Y
u
t }‹ ď 1, |Xy

t ´X
x
t | ď |y ´ x| and with the same argument as in

(22),

(25)
ż `8

0
Er|Xy

t ´X
x
t |}Y

x
t }‹s ď |y´ x|c

´1´e
1 cerf s1

´

W rp1`eqpxq `Υrp1`eq
¯

.

Second, set Υx,ypsq “min pλ∇2W pX
x
uq, λ∇2W pX

y
uqq. By Lemma 7,

Er}Y y
t ´ Y

x
t }

2
‹s ď L̃

2|y´ x|2E
„

e´
şt

0
Υx,ypsqds

ż t

0
λ´1
∇2W pX

y
uqds



.

By pHq,r
KLq, Cauchy-Schwarz and Jensen inequalities, this yields:

Er}Y y
t ´ Y

x
t }

2
‹s ď L̃

2|y´ x|2E
”

e´2
şt

0
Υx,ypsqds

ı
1

2 E

«

ˆ
ż t

0

W rpXy
s q

c1
ds

˙2
ff

1

2

ď
L̃2

c1
|y´ x|2E

”

e´2
şt

0
Υx,ypsqds

ı
1

2

t sup
tě0

ErW 2rpXy
t qs

1

2

Àuc
L̃2

c1
|y´ x|2E

”

e´2
şt

0
Υx,ypsqds

ı
1

2

t pW rpyq `Υrq ,(26)

where in the last line, we used Proposition 6 (Inequality (17)).
For the first right-hand term, we use a similar strategy as for (20) and get for every tě 1,

for any positive δ1 and δ2,

E
”

e´2
şt

0
Υx,ypsqdu

ı

ď e´2tδ1 ` tδ2pδ1´1q sup
tě0

ErΥx,yptq
´δ2s.

By pHq,r
KLq, it follows that

E
”

e´2
şt

0
Υx,ypsqdu

ı

ď e´2tδ1 ` c´δ21 tδ2pδ1´1q sup
tě0

ErW rδ2pXx
t q `W

rδ2pXy
t qs.
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By (26), we deduce that

Er}Y y
t ´ Y

x
t }

2
‹s

|y´ x|2
Àuc

L̃2

c1
pW rpyq `Υrq

ˆ

„

te´2tδ1 ` c´δ21 tδ2pδ1´1q`1 sup
tě0

ErW rδ2pXx
t q `W

rδ2pXy
t qs



.

For a positive e, we fix δ2 “ 3p1`eq and δ1 “ e{p3p1`eqq so that δ2pδ1´1q`1“´2p1`eq.
By Proposition 6 (Inequality (17)), we deduce that:

Er}Y y
t ´ Y

x
t }

2
‹s

|y´ x|2
Àuc

L̃2

c1
pW rpyq `Υrq

ˆ

„

te´2t
e

3p1`eq
` c

´3p1`eq
1 t´2p1`eq

´

W 3rp1`eqpxq `W 3rp1`eqpyq `Υ3rp1`eq
¯



.

By (24), Jensen Inequality and the elementary inequality pa` bqp ď cppap ` bpq, we finally
obtain

ş`8

0 Er}Y y
t ´ Y

x
t }‹sdt

|y´ x|
ď ce

L̃
?
c1

`

W
r

2 pyq `Υ
r

2

˘

ˆ

”

1` c
´ 3

2
p1`eq

1

´

W
3r

2
p1`eqpxq `W

3r

2
p1`eqpyq `Υ

3r

2
p1`eq

¯ı

ď cec
´2p1`eq
1 L̃

´

W 2rp1`eqpxq `W 2rp1`eqpyq `Υ2rp1`eq
¯

,

where in the last line, we used Young inequality with p“ 4{3 and q “ 4. Thus, by (24), (25)
and the previous equation, we deduce the announced result.
Proof of iiiq ´ bq. Set X̃t “ X̄t ´ pt´ tq∇W pX̄tq. We have

|pDgpX̄tq´DgpX̃tqqp∇W pX̄t `∆ttq ´∇W pX̄tqq| ď }DgpX̄tq ´DgpX̃tq}‹L|∆tt|

Àuc cec
´2p1`eq
1 L̃

´

W 2rp1`eqpX̄tq `W
2rp1`eqpX̃tq `Υ2rp1`eq

¯

L|∆tt|
2pt´ tq

where in the second line, we used piiiq´ aq. By Cauchy-Schwarz inequality and the elemen-
tary inequality |a` b` c|2 ď 3p|a|2 ` |b|2 ` |c|2, we deduce that

Ex0

”

|pDgpX̄tq ´DgpX̃tqqp∇W pX̄t `∆ttq ´∇W pX̄tqq|
2
ı

Àuc ce
pLL̃q2

c
2p1`eq
1

Er|∆tt|
8s

1

2Ex0
rΞ2
t s

1

2 ,

with

Ξt “W
4rp1`eqpX̄tq `W

4rp1`eqpX̃tq `Υ4rp1`eq.

By Cauchy-Schwarz inequality and Proposition 6 (Inequality (17)) and a slight adaptation
for W ppX̃tq),

Ex0
rΞ2
t s

1

2 ÀucW
4rp1`eqpx0q `Υ4rp1`eq.

Note that we again used elementary inequalities (including Young inequality) which involved
constants which can be bounded by universal constants (and are thus “hidden” in the notation
“Àuc”). The result follows by using that

Er|∆tt|
8s

1

2 “ 4pt´ tq2Erpχ2pdqq
4s

1

2 “ 4pt´ tq2pdpd` 2qpd` 4qpd` 6qq
1

2 Àuc pt´ tq
2d2.

B
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3. Discretization tools - Strongly convex case. C

PROOF OF PROPOSITION 17 OF [GPP22]. piq By Lemma 7, the strong convexity yields

@x PRd }Y x
t }‹ ď e

´ρt.

Thus, by Equation (19),

}Dgpxq}‹ ď rf s1

ż `8

0
e´ρtdtď

rf s1
ρ

. The first assertion follows since rf s1 ď 1.
piiq By piq,

Ex0
r|gpX̄tq ´ gpx0q|

2s ď
1

ρ2
Ex0
r|X̄t ´ x0|

2s.

By Lemma 5.1(i) of [EP21], if ∇W px‹q “ 0,

Er|X̄x0

t ´ x‹|2s ď |x0 ´ x
‹|2e´

ρ

2
t `

2d

ρ
.

The result follows by using the elementary inequality |X̄x0

t ´ x0|
2 ď 2p|X̄x0

t ´ x‹|2 ` |x0 ´

x‹|2q.
piiiq By Equation (24) and the Cauchy-Schwarz inequality,
(27)

}Dgpyq ´Dgpxq}‹ ď

ż `8

0
rf s1Er}Y y

t ´ Y
x
t }‹s ` rDf s1,‹Er|X

y
t ´X

x
t |

2s
1

2Er}Y x
t }

2
‹s

1

2dt.

On the one hand, by Lemma 7piiq and the fact ∇2W is L̃-Lipschitz for the norm }.}‹,

}Y y
t ´ Y

x
t }

2
‹ ď L̃

2|x´ y|2e´ρt
ż t

0

1

ρ
e´ρsdsď

e´ρt

ρ2
L̃2|x´ y|2 @tě 0.

On the other hand, by Lemma 7piq and the Jensen inequality,

Er|Xy
t ´X

x
t |

2s “ E

«

ˇ

ˇ

ˇ

ˇ

ż 1

0
Y
x`θpy´xq
t py´ xqdθ

ˇ

ˇ

ˇ

ˇ

2
ff

ď sup
θPr0,1s

E}Y x`θpy´xq
t }2‹|y´x|

2 ď |x´y|2e´2ρt.

The Cauchy-Schwarz inequality, rf s1 ď 1 and rDf s1,‹ ď 1 yield:

}Dgpyq ´Dgpxq}‹ ď |y´x|

ż `8

0

˜

rf s1L̃

ρ
e´

ρ

2
t ` rDf s1,‹e

´2ρt

¸

dtď |x´y|

˜

2L̃

ρ2
`

1

2ρ

¸

.

B
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