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Abstract
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nent feature of social networks. We propose communication network
formation game rationalizing clustering. In our game, communication
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1 Introduction.

Social networks contribute to di¤usion of information and in�uence human

behavior (Durlauf, 2004; Goyal 2007; Jackson, 2010; Topa and Zenou, 2015).1

One prominent feature of social networks is clustering, that is, a high pro-

portion of individuals with a common connection connected to each other

(Jackson, 2010; Goyal 2007).

We build communication network formation game rationalizing clustering

with a player�s signal-extraction bene�t. Initially, the players hold di¤erenti-

ated imperfectly correlated priors about the relevant state of the world. They

simultaneously and unilaterally2 build network links. Connection capacity by

each player is limited and this limit is the same for any player. When the

network is built, the players receive private signals on the state and sincerely

communicate with network neighbours in two successive rounds.3 A player�s

disutility or loss is measured by his remaining uncertainty about the state,

that is, the posterior variance of the state.

In order to achieve tractability, we focus on the correlation of the players�

priors being arbitrarily small (which is not equivalent to behavioral assump-

tion that the players neglect correlations).4 Furthermore, we assume that a

player ignores common friendships outside his neighbourhood while updating

1Examples in the literature include the adoption of new product or technology, vote,
school performance, delinquent behavior and health-related behaviors, such as smoking
and degree of obesity.

2Appendix G considers an alternative network formation protocol with investments in
links instead of unilateral link formation.

3A �nite number of communication rounds re�ects the players�impatience. For sim-
plicity, there are two rounds. This comports nicely with Mobius, Phan and Szeidl (2015)
who �nd that information travels no further than two steps in the conversation network.

4The matrix we are inverting when calculating a player�s payo¤ is not diagonal.
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his beliefs after the second round of communication (which comports nicely

with evidence cited in Li and Tan, 2020).

Proposition 1 shows that a player�s loss is a decreasing function of two

parameters of network architecture: (i) the number of players with whom

he is connected (either directly or indirectly) and (ii) the number of players

with whom he has only common connections. Such players are termed �closed

neighbours�. They are valuable for a player because he learns their priors, and

therefore extracts their signals without frictions. Signals by other connected

players are extracted with �transmission�noise added by uncertainly about

their priors.

Using the above insight, proposition 2 characterizes the e¢ cient network.

For tractability, we use egalitarian e¢ ciency criterion.5 For expositional pur-

pose, we assume in the main text that the number of players and their connec-

tion capacity do not limit the e¢ ciency of networks they can build.6 Under

this assumption, the e¢ cient network is a set of completely connected com-

ponents when transmission noise is su¢ ciently high (see �gure 1 in section

4). Otherwise, it is ��ower�network composed of the central hub connected

to all the other players who are divided into interconnected subgraphs (see

�gure 2 in section 4). Either network has a high degree of clustering.

Under the above assumption on the number of players and their connec-

tion capacity, the e¢ cient network constitutes a Nash equilibrium (propo-

sition 3). In general, there may be some tension between equilibrium and

e¢ ciency. However, �ower-like network remains the e¢ cient network consti-

5Egalitarian e¢ ciency criterion is relevant in that any player can �nd himself in the
role of the least happy one. Our numerical �ndings suggest that our insights hold with
more common utilitarian e¢ ciency criterion.

6Appendix F relaxes this assumption.
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tuting a Nash equilibrium when transmission noise is su¢ ciently low.

Our numerical �ndings suggest that this insight holds when the players

are fully Bayesian and correlation of their priors takes relatively high values.

Furthermore, it holds when egalitarian e¢ ciency criterion is replaced with

more common utilitarian e¢ ciency criterion.

Literature review. Our work is inspired by Sethi and Yilditz (2012)

who study public (dis)agreement. In their model, a �nite set of agents

with normally distributed di¤erentiated priors and independent private sig-

nals about the relevant state of the world sequentially communicate through

truthful public announcement of their beliefs until no further belief revision

occurs. Sethi and Yilditz study whether- or not all distributed information is

aggregated through communication, and compare the extent of disagreement

under observable- and unobservable priors (observable priors are interpreted

as understanding the thought processes and perspectives of others).

Our information structure and communication protocol follow Sethi and

Yilditz (2012). However, our agents communicate only with their neighbours

in the network which they initially build (public communication in Sethi

and Yilditz corresponds to communication through completely connected

network). This brings us to the literature on strategic network formation

(see surveys in Bloch and Dutta 2010, Goyal 2007, Jackson 2004, 2010),

more speci�cally, to the literature on strategic formation of communication

networks. Two papers in that literature are closely related.

Bala and Goyal (2000) introduce unilateral network formation protocol:

a player can link to any other player at a given cost. He receives a given
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(information) bene�t from direct- and indirect connections. The bene�t is

allowed to decay in network distance (because of frictions). Bala and Goyal

focus on strict Nash equilibria involving strict best responses (eliminating

thereby strategy pro�les in which the players are indi¤erent). When direct-

and indirect connections are equally valuable (no decay), strict Nash equilib-

rium is either �star-�or empty network. This result is preserved for a speci�c

payo¤ when the decay is su¢ ciently small.

Hojman and Szeidl (2008) consider unilateral network formation game

with bene�ts from connections exhibiting decreasing returns to scale and de-

caying with network distance. A microfoundation is signal transmission with

frictions. For this class of bene�ts, the problem of equilibrium multiplicity

does not arise: the unique Nash equilibrium is periphery-sponsored �star�.

This result is preserved (under certain condition) if links are formed through

bargaining with transfers.

As the above two papers, we consider unilateral network formation game

(with a di¤erence of opportunity- rather than direct cost of connections).

We relate to Hojman and Szeidl (2008) in studying information bene�t from

connections in more detail. We endogenize frictions in information transmis-

sion: in our model, they are created by a player�s uncertainly about the other

players�priors. Clustering helps the players to learn each others�priors and

eliminate these frictions. This gives a value to �closed�neighbours which is

not present in the payo¤ considered by Hojman and Szeidl (2008). There-

fore, while our ��owers�are built around the central hub, as their �stars�,

segregation and clustering by peripheral players is speci�c to our model.

The idea that clustering in social networks may create signal-extraction
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bene�t relates us to Li and Tan (2020). They consider agents communicating

through a given network in order to learn information about the relevant

state. The agents know only their local networks. Failure to account for

replicated signals leads to errors. Interconnections help avoiding such errors.

This reason for signal-extraction bene�t from clustering is di¤erent from ours.

Yet another di¤erence is that our communication network is endogenous.

Roadmap. The paper is organized as follows. Section 2 describes the

model. Section 3 relates a player�s payo¤ to network architecture. Section 4

describes the e¢ cient network and shows that it constitutes a Nash equilib-

rium. Section 5 conducts robustness checks. Section 6 concludes.

2 Basic model.

M players, indexed with i 2 f1; ...;Mg, build a network in order to commu-

nicate through its links.

Network formation. Each player can connect with at most n other

players (hence, the cost of connection is an opportunity- rather than a direct

cost).7 Network formation is simultaneous and unilateral:8 Player i chooses

a subset of players LM � M , jLM j 6 n with whom he connects. A pair of

players become connected i¤ at least one of them links to the other. Hence,

each pro�le of linking choices (L1; ...; LM) induces undirected network g.

We denote the set of all feasible networks with G. We use common nota-
7This is akin to the model by Bloch and Dutta (2009) in which the players allocate a

given endowment across links which results in links of di¤erent intensity.
8Appendix G shows that our insights are not due to unilateral network formation.
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tion gij 2 f0; 1g for an indicator of an edge eij 2 g between players i and j

in network g.

For expositional purpose, we assume in the main text that the number of

players M and a player�s connection capacity n do not limit the e¢ ciency of

network which they can build.9 It will become clear below that this assump-

tion is formally expressed by the following parameter restrictions:

there exists m 2 N such that M = 2n+ 1 + (2n� 1)m (1)

and there exists l 2 N such that M = (2n+ 1)l. (2)

Players�priors and signals. When the network is built, the players

receive independent private signals

si = x+ "i, where "i � N(0; 1) (3)

on the relevant state of Nature x � N(0; 1). (4)

Initially, the players have heterogenous imperfectly correlated priors about

state x. Di¤erentiated priors re�ect di¤erentiated manners in which the play-

ers process new information. Say, each player i considers a subset of available

historical facts to be relevant for understanding the state. His estimator of

the state conditional on this subset of facts is his prior pi (see discussion in

Sethi and Yilditz, 2012).

Player i�s prior pi is his private information and he cannot directly com-

municate this information to the other players (he cannot describe to the

others the way in which he thinks). However, it is commonly known that the

9Appendix F relaxes this assumption.

7



players�priors are distributed according to a joint normal distribution:

p = (p1; ...; pM)T � N(0; �2�), (5)

where � isM byM variance-covariance matrix with the following elements:10

�jl =

�
1 if j = l;
� if j 6= l.

For concreteness, we assume that correlation � is positive (following inter-

pretation of di¤erentiated priors by Sethi and Yilditz, 2012, each player i

assigns a positive probability to any other player j paying attention to some

historical facts which i considers relevant). For tractability, we let correlation

� be arbitrarily small.

Conditionally on his prior pi, player i believes that the law of (x; (pj)j2gni; ("j)j2g)

denoted Pi is a multidimensional normal distribution given by

Pi = N (pi; 1)
N (�pi1; b�)
N (0; � 2I)
where 1 = (1; 1;...; 1)T , I denotes M by M identity matrix and b� is M by

M matrix with the following elements:

b�jl = ��2(1� �2) if j = l;
�2�(1� �) if j 6= l:

Hereafter, Li denotes the law (or conditional law) of some variable under Pi,

Ei denotes the expectation under Pi , Vi denotes the variance under Pi and

Ci denotes the covariance under Pi.
10We assume that all o¤-diagonal elements of the variance-covariance matrix � are the

same. The alternative assumption would complicate our expressions without altering our
results qualitatively.
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Communication. After receiving their signals on the state, the players

communicate through the network in two discrete time periods (t = 1; 2). A

�nite number of periods re�ects the players�impatience.

Communication is modeled as simultaneous truthful11 announcement of

beliefs summarized by estimator of the state (as in Sethi and Yilditz, 2012

and the literature they build on).12 The �rst announcement or messagemi(1)

by player i to his network neighbors is his estimator of the state conditional

on his private signal (3):

mi(1) = Ei (x j si) . (6)

After the �rst round of communication, each player i rationally updates

his beliefs upon messages received from distance-1 network neighbours, that

is, other players but himself in set

Ni = fj 2 g j gij = 1g . (7)

His second message mi(2) is his expectation of the state conditional on his

private signal and the �rst messages by his network neighbours:13

mi(2) = Ei (x j si, fmj(1) j j 2 Nig) . (8)

Posteriors. After the second round of communication with his neigh-

bours, player i updates, once again, his beliefs about the state (and the

11The focus on truthful communication is without loss of generality: if strategic com-
munication is allowed for, truthful communication is an equilibrium (see Remark 1).
12It is important for our insights that the players cannot transmit the set of �tagged�

messages received from their neighbours and they cannot announce their priors.
13Here and below, we do not re�ect network-dependence of network-dependent variables

for notational convenience.
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other players�priors). This updating is complicated by the fact that some

of his neighbours may have common connections outside his neighborhood.

For tractability, we assume that player i, otherwise Bayesian, ignores such

common connections, which leads to (possibly misspeci�ed) beliefs bg about
network g.

In order to express the above simplifying assumption formally, we intro-

duce the following notations. We divide the set (7) of i�s neighbours into two

subsets: set

N i = fj 2 Ni j Nj � Nig (9)

of closed neighbours having only common connections with player i and set
�
N i = NinN i. (10)

of open neighbours with at least one connection outside i�s neighbourhood.

We denote with

N 0
i = [

j2Ni
NjnNi (11)

the set of distance-2 neighbours of player i. Finally, we introduce notations

di = jNij , di =
��N i

�� , �di = ���� �N i

���� and d0i = jN 0
i j ,

where letter �d�stands for �degree�.

Using these notations, the above simplifying assumption can be formally

expressed as follows. If player i has two open neighbours j1 2
�
N i and j2 2

�
N i

both linked with player k 2 N 0
i , player i accounts for only one of these links,

either link ej1k between players j1 and k or link ej2k between players j2 and

k (it does not matter for the payo¤ which of the two links is accounted for).

More generally, let us index the set of i�s open neighbours as follows:
�
N i =

�
j1; j2; ...; jdi�di

	
. (12)

10



Player i�s beliefs bg about network g are as follows:
bg = gn di�di�1[

l=1

�
ejl+1k j k 2 N 0

i and gjlk = 1
	
, (13)

where ejl+1k denotes an edge between players jl+1 and k. While beliefs (13)

are speci�c to indexation (12), this speci�city is irrelevant for our results.

Payo¤s. Player i�s disutility or loss is his subjective posterior variance

of the state x after communication with his neighbours:

li(g) = Vi (x j si, fmj(t) j j 2 Ni; t = 1; 2g , bg) . (14)

For example, we could think of player i taking private action and inquiring a

loss which is equal to perceived squared distance between his action and the

optimal action given by state x.

3 Network architecture and a player�s payo¤.

Outline. This section relates a player�s loss (14) to network architec-

ture. It begins with describing a player�s learning from his closed- and open

neighbours: Lemma 1 shows that a player learns the priors by his closed neigh-

bours which allows him to deduce their private signals without any noise. At

the same time, he deduces private signals by his open neighbours with noise

added by his uncertainty about their priors. Therefore, closed neighbours

are more valuable than open neighbours, as speci�ed in proposition 1.

Below, we present some details for an interested reader. Further details

are moved to Appendices A and B.
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Learning from closed neighbours.

Lemma 1 Any player i learns private signal sj and prior pj by any closed

neighbour j 2 N i.

The proof follows directly from Sethi and Yilditz (2012). Consider some

player i with at least one closed neighbour and one of his closed neighbours

j. By standard formula for Gaussian updating, the �rst message by j is a

linear combination of j�s prior pj and j�s private signal sj. The higher the

variance � 2 of the signal, the higher weight is put on the prior:

mj(1) = Ej[xjsj] = �2

1+�2
pj +

1
1+�2

sj. (15)

Player i deduces j�s signal sj frommessage (15) with noise � 2 (pj � Ei(pj j pi))

associated with i�s uncertainty regarding j�s priors:

(1 + � 2)mj(1)� � 2Ei(pj j pi) = sj + � 2 (pj � Ei(pj j pi)) , where (16)

Ei(pj j pi) = �pi. (17)

After the �rst round of communication, the players update their beliefs

about the state. The second message by player j is a linear combination of

his own �rst message (16), the sum of his neighbours��rst messages and his

prior pj:

mj(2) = Ej
�
x j sj; fmk(1)gk2Njnfjg

�
= (1� �j(dj � 1))mj(1)+

�j (1 + �
2)

P
k2Njnfjg

mk(1)� �j� 2�(dj � 1)pj, where (18)

�j =
1

(1+�2)(1+�2�2(1��))+(dj�1)(1+(1+�2)�2�2(1��)�) .
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Because player j is a closed neighbour by player i, player i �hears�the

�rst messages fmk(1)gk2Nj by all j�s neighbours. Therefore, player i can �rst

deduce j�s prior pj from his second message (18). Put a bit informally, i learns

j�s prior by observing j�s reaction to the �rst messages of his neighbours

(which player i hears too). Once player i learns the prior by player j, he can

deduce j�s private signal sj from his �rst message (15).

By lemma 1, player i can use the priors and signals by his closed neighbors

to update as follows his beliefs about: (i) the state

Li(xj fsjgj2 �Ni) = N (x; v) , where (19)

xi = Ei
�
x j fsjgj2 �Ni

�
= �2

�2+di
pi +

1
�2+di

X
j2 �Ni

sj (20)

and v = Vi
�
x j fsjgj2 �Ni

�
= �2

�2+di
; (21)

and (ii) priors by the players outside his closed neighborhood

p = Ei
�
pk j fpjgj2 �Ni

�
= �

1+�(di�1)

X
j2 �Ni

pj, (22)

Vi
�
pk j fpjgj2 �Ni

�
= �2(1��)(�di+1)

1+�(di�1)
, (23)

Ci
�
pk; pl j fpjgj2 �Ni

�
= �2�(1��)

1+�(di�1)
, (24)

where k 2 gnN i and l 2 gnN i [ fkg.

Learning from open neighbours and a player�s payo¤. Now, con-

sider some player i with at least one open neighbour and some of his open

neighbours j 2 �Ni. By equation (16), in which i�s expectation of j�s priors

conditional on i�s own prior are replaced with i�s expectation of j�s priors

13



conditional on all the priors by all i�s closed neighbours, player i deduces a

noisy signal on j�s private signal:

esj(1) = (1 + � 2)mj(1)� � 2p = x+ "j + � 2(pj � p) (25)

from j�s �rst message (15). By equation (18), player i deduces signal

esj(2) = x+ 1
djni

0@ X
k2NjnNi

"k + �
2
X

k2NjnNi

(pk � p)� � 2�(dj � 1)(pj � p)

1A ,
(26)

where djni = jNj nNij from j�s second message.

Let us index i�s open neighbours with

j 2
�
di + 1; ...; di

	
. (27)

Let es(t) = (esdi+1(t);...; esdi(t)). Bayesian updating implies
Li(x; es(1); es(2)j fsj; pjgj2 �Ni) = N �xi1;� v v1T

v1 �

��
, (28)

where xi is given by equation (20), v is given by equation (21) and � is a

square symmetric matrix of size 2
�
di. Recall now that we focus on correlation

of priors � being arbitrarily small and we make player i assume that his

open neighbours (would he has more than one) have no common friendships

outside i�s neighborhood. Under these conditions14 the elements of matrix �

are given by the following set of equations:

�k;l =

8<:
v + z; if k = l 6 di;
v + z

dkni
if k = l > di;

v; if k 6= l,
(29)

14We describe the elements of matrix � without these conditions in Appendix B and
use them in our numerical robustness checks in Section 5.
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where according to indexation (27), indices k and l take values in set�
di + 1; ...; di; ...; di + 2

�
di

�
;

v is given by equation (21) and

z = � 2
�
1 + � 2�2

�
. (30)

Notably, matrix �k;l can be represented as a sum of two matrixes of dimension

2�di: matrix vI1T (with elements equal to v) of rank 1 and a diagonal matrix

zG. This decomposition allows us to invert matrix � (Miller, 1981). We then

�nd the sum of elements of the inverted matrix, hence, an explicit expression

for player i�s payo¤, using standard formula for Bayesian updating.

Proposition 1 (network architecture and a player�s payo¤). Loss by

player i in network g is determined by- and decreasing in two parameters of

network architecture: (i) the joint number of his distance-1 and distance-2

neighbors di + d0i and (ii) the number of closed neighbours di:

li(g) =
z

z+ni+�2�2di
. (31)

Remark on communication protocol. Let us take a step away from

our analysis to make the following remark regarding communication protocol.

Remark 1 (truthful vs. strategic communication). If strategic

communication is allowed for, truthful communication is an equilibrium.

Indeed, consider the situation in which all players truthfully announce

their estimate of the state during either round of communication and believe

the others to do the same. If player i deviates by sending a message di¤erent

from his true estimate of the state during some round of communication,
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he learns the same information from his neighbours�messages as when he

does not deviate, as long as they believe him to tell the truth and react

accordingly. Hence, i�s payo¤ is given by equation (31).

4 E¢ cient and equilibrium network.

This section uses the loss function in proposition 1 to characterize the e¢ -

cient network and show that it constitutes a Nash equilibrium.

E¢ ciency criterion. For the sake of tractability, we take egalitarian e¢ -

ciency criterion. That is, a network is e¢ cient i¤ it minimizes the loss by

its least happy member. The set of the least happy players or �losers� of

network g is denoted with

L(g) = argmax
i2g

li (g) (32)

and the set of e¢ cient networks is denoted with

G� = argmin
g2G

�
max
i2g
li (g)

�
. (33)

Egalitarian e¢ ciency criterion may be justi�ed by the fact that any player can

�nd himself in the role of the least happy player in the network. Furthermore,

our numerical results presented in Section 5 suggest that our insights hold if

we use more common utilitarian e¢ ciency criterion.

Candidate e¢ cient networks. By Proposition 1, the e¢ cient net-

work maximizes a combination of the total number of neighbours by the

least happy player i and his number of closed neighbours, with the weight of

closed neighbour being increasing in �transmission noise��2� 2.
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When transmission noise �2� 2 approaches in�nity, it is most important

to maximize the number of closed neighbours by the least happy player,

suggesting that the e¢ cient network is network composed of l completely

connected components (see Figure 1).15 Hereafter it is called complete com-

ponent network and denoted with c.

Figure 1: complete component
network (M = 20, n = 2)

When transmission noise �2� 2 approaches zero, it is most important to

maximize the total number of neighbours by the least happy player, while

maximization of his closed neighbours is the secondary objective. The follow-

ing network commonly called the �ower and denoted with f seems a good

candidate for being e¢ cient. It is composed of the central �hub�h connected

to everyone (hence, the highest possible total number of neighbours M is

delivered to any player):

fih = 1 8 i 2 f ,
15Note that by equation (2), complete component network c is feasible. The players can

build it for example as follows: divide into groups of size 2n+1; each group forms a circle;
each player in a circle connects to n players on his right.
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and M � 1 peripheral players divided into interconnected �petals�:

Ni = Nj for any i 6= h and for any j 2 Nin fhg

of which one (termed the �large petal�) has size 2n and m others (termed

�small petals�) have size 2n� 1 (see Figure 2).16

Figure 2: �ower network
M = 20, n = 2.

The e¢ cient network.

Lemma 2 Suppose that some network is e¢ cient and one if its least happy

members has an open neighbour. Then, this network is the �ower. Formally,

if g 2 G� and 9 i 2 L (g) such that di > di then g = f .

Constructive proof in Appendix C relies on the observation that any

closed neighbour by any least happy i shall be at least as �happy� as i.
16By equation (1), it is feasible to build network f , for example as follows: 2n players

and the central hub forming a circle and each player connects to the next n players on his
right. The remaining (2n � 1)m players divide into m groups of size 2n � 1. Each group
forms a circle. Each player in a circle connects to the central hub and n� 1 players on his
right.
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Using this observation, the fact that a player can build at most n links and

g is e¢ cient, we prove that closed neighbourhood player i is completely con-

nected subgraph of size 2n � 1. Furthermore, i and his closed neighbours

share one open neighbour or �hub�who connects them to all other players.

Hence, they can be visualized as a small petal. We proceed with considering

another least happy player outside i�s neighbourhood, would such player ex-

ist, to frame another small petal connected to the same hub, and so on until

all the least happy players are organized in small petals connected to the

central hub. The remaining players, all connected to the central hub, have

closed degree at least 2n. It is feasible i¤ they form a petal of size 2n. By

this construction, g is the �ower.

Proposition 2. The e¢ cient network is either the �ower or complete com-

ponent network:

G� =

8<:
fcg if �2� 2 > M�(2n+1)

2
,

fc; fg if �2� 2 = M�(2n+1)
2

,
ffg otherwise.

The formal proof in Appendix D uses lemma 2 by which the most e¢ cient

network is either �ower f or some network g in which any looser i has no

open neighbours. Network c is such a network maximizing the number of

closed neighbours by its least happy member. By proposition 1, network c is

more e¢ cient than the �ower f i¤

�2� 2 > M�(2n+1)
2

. (34)

Proposition 3. The e¢ cient network constitutes a Nash equilibrium.

The formal proof in Appendix E starts with showing that �ower f is a

Nash equilibrium. Indeed, by proposition 1, a player�s deviation from strat-
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egy pro�le leading to formation of �ower f is pro�table only if it increases

either the number of his closed neighbours or the total number of his neigh-

bours (distance-1 and 2). In the �ower network, any unilateral deviation

(weakly) decreases either of these numbers.

Furthermore, if complete component network c is e¢ cient it is an equilib-

rium. The reason is that when transmission noise lies above threshold (34),

a player in one component of network c does not want to replace a link

with a player in his component, (loosing thereby 2n closed neighbours), by

a link with a player in a di¤erent component (gaining thereby 2n + 1 open

of neighbours).

Discussion. Note that �ower network f has a high degree of clustering,

which is relevant. Another relevant feature of the �ower network is its �core-

periphery� structure with the central hub, having many connections and

relatively low clustering coe¢ cient and the other individuals having consid-

erably fewer connections.

Corollary 1. Flower network f possessing prominent features of real net-

works is e¢ cient and it constitutes a Nash equilibrium in a wide range of

circumstances.

While the game may have other Nash equilibria than those in proposition

2, the e¢ ciency may be used as a re�nement.

5 Robustness.

This section checks robustness of Corollary 1. Most details are moved to

appendixes F and H.
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General number of playersM and connection capacity n. Propo-

sitions 2 and 3 were obtained under assumptions (1) and (2) on the number

of players M and their connection capacity n. Appendix F relaxes these as-

sumptions and shows that either the �ower- or �ower-like network(s) is/are

e¢ cient and constitute(s) a Nash equilibrium when transmission noise is suf-

�ciently low (see propositions F.1 to F.4). The following examples illustrate

this point. In all examples connection capacity is n = 2.

Examples 1 and 2 illustrate that when assumption (1) holds while assump-

tion (2) fails, �ower network f is the most e¢ cient network constituting a

Nash equilibrium (except if n = m = 1).

Example 1. Suppose that M = 11. Then, assumption (1) holds and it is

therefore feasible to build �ower network with 2 petals of size 2n�1 = 3 and

one petal of size 2n+1 = 5. At the same time, assumption (2) fails. The size

of the smallest component in any network composed of completely connected

components is at most 3. Therefore, any such network is less e¢ cient than

the �ower. Hence, the �ower is the unique equilibrium network.

Example 2. Suppose that M = 29. Then, assumption (1) holds and it is

therefore feasible to build �ower network with 6 petals of size 3 and one

petal of size 5. At the same time, assumptions (2) fails and it is therefore im-

possible to divide the players into completely connected components of size

5 each. There are at least two networks composed of completely connected

components of size 4: network c1 composed of 6 components of size 4 and

one of size 5 and network c2 composed of 5 components of size 5 and one of

size 4. Flower network f is e¢ cient, outperforming either network c1 or c2,

i¤ transmission noise is weakly below threshold M � 2n = 25 (note that this
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threshold lies above that in propositions 2 and 3). Furthermore, while �ower

network f constitutes a Nash equilibrium, this is not true for either network

c1 or c2, because any player with an excess connection capacity bene�ts from

deviation.

Examples 3 and 4 illustrate that �ower-like network(s) is/are e¢ cient and

constitute a Nash equilibrium transmission noise is su¢ ciently low.

Example 3. Suppose that M = 10. Assumption (2) holds and it is therefore

possible to build network c composed of two complete components of size

5. At the same time, assumption (1) fails and we cannot build network

f . However, we can build network ef termed �symmetric �ower� which is
depicted in �gure 3. Propositions 2 and 3 (hence, corollary 1) hold for �ower

network f being replaced for symmetric �ower network ef .

Figure 3: symmetric
�ower ef (M = 10, n = 2).

Example 4. Suppose that M = 9. Then, it is possible to build �ower-

like network termed �generalized �ower� depicted in �gure 4. Note that

alternatively we could build �ower-like network with one petal of size 4 and
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two petals of size 2. Either of these networks is e¢ cient17 and it constitutes

a Nash equilibrium when transmission noise lies below threshold 0:43.

Figure 4: generalized �owers of level 2
(M = 9, n = 2).

Di¤erent network formation protocol. Unilateral link formation

may be viewed as an extremely asymmetric investments in links. Appendix G

shows that corollary 1 does not rely on such asymmetry. Following Hojman

and Szeidl (2008), it modi�es network formation protocol as follows: The

players simultaneously choose their investments in links. The link between

a pair of players is formed i¤ their joint investment lies above some given

threshold p. A player�s loss is equal to the sum of information loss (14) and

his investments in links. We focus on the situation in which is it feasible to

build symmetric �ower ef , and we show that it may be formed in equilibrium
via a pro�le of strategies involving strictly positive contributions by any

player in any link he holds (see proposition G.1).

17We could re�ne e¢ ciency criterion by requiring the number of losers to be minimal.
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For example, when � 2 = 1, �2 = 4, M = 10 and n = 2, symmetric

�ower depicted in the above �gure 3 can be built as follows: the central hub

invests up to 0:05 in each link, each peripheral player invests p� 0:05 in his

link with the hub and p
2
in his link with any peripheral player in his petal

(but himself). This pro�le of strategies is an equilibrium i¤ p lies in interval

[0:03; 0:21]. Furthermore, for any p in interval [0:03; 0:1], symmetric �ower

may be built via fully symmetric investments: any player invests p
2
in any of

his links.

Numerical �ndings. For tractability, we have focused on correlation

� being arbitrarily small. Furthermore, we have assumed that the players

ignore common friendships outside their neighbourhood while updating their

beliefs upon the second messages by their network neighbours. Finally, we

have used egalitarian e¢ ciency criterion. This section veri�es numerically

that propositions 2 and 3 hold when correlation � is relatively high and

the players are fully Bayesian. Furthermore, proposition 2 holds for either

egalitarian- and more common utilitarian e¢ ciency criterion.

For the sake of computational feasibility,18 we consider M = 8 players

with two �hands�each, that is, n = 2. Note that it is feasible to build the

�ower network depicted in �gure 5:

18The number of possible networks grows extremely fast in the number of players M .
For example when n = 2, the number of di¤erent networks (up to isomorphism) is: 153 if
M = 6, 955 if M = 7 and 9589 if M = 8.
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Figure 5: �ower network
(M = 8, n = 2).

Our model�s predictions are the following (see proposition F.1 in appendix

F):

(A) The e¢ cient network is: the �ower network depicted in Figure 5 if

�2� 2 < 4, network composed of two complete components of size 4 (hereafter,

�clustered network�) if �2� 2 > 4, both these networks when �2� 2 = 4.

(B) The most e¢ cient Nash equilibrium is the �ower in Figure 5.

We show numerically that both above predictions (A) and (B) hold when

the players are fully Bayesian and the correlation � of their priors takes

relatively high values. This is true for either e¢ ciency criterion: egalitarian

or utilitarian.

First, we consider prediction (A). We normalize signal�s variance � 2 = 1,

let � take values in set f0:1; 0:2; 0:35; 0:5; 0:7; 0:9g, vary �transmission noise�

�2 and compare across all possible 9589 networks of size 8:19 (i) loss by the

least happy player and (ii) the average loss. Figure 6, illustrates our �ndings

for � = 0:35 (the �gures for smaller values of � are similar).

19We count di¤erent networks up to isomorphism.
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Figure 6. loss in di¤erent networks of size 8: by the
least happy player (left); average normalized to

component�s size (right).

In the left of �gure 6 we see the loss by the least happy player in di¤er-

ent networks (which corresponds to egalitarian e¢ ciency criterion). The loss

by the least happy player in the �ower network is marked with red dotted

line. The loss by the least happy player (any player) in the clustered net-

work is marked with dashed horizontal line. We observe that according to

egalitarian e¢ ciency criterion, the most e¢ cient network is the �ower if �2

is su¢ ciently low and clustered network otherwise. Figure 6 right illustrates

that the same is true for utilitarian e¢ ciency criterion. Hence, insight (A)

holds qualitatively20 for either e¢ ciency criterion egalitarian or utilitarian.

Figure 7 shows that insight (A) fails for higher values of correlation �.

20Threshold of �transmission noise��2 below which the �ower network outperforms the
clustered network is di¤erent from 4.
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Figure 7: Performance of di¤erent networks for relatively high
values of correlation �.

A possible reason is that when the correlation � is arbitrarily small

distance-1 �open�neighbours and distance-2 neighbours are equally valuable

for the player (recall equation (31)), while when correlation � takes higher

values distance-1 �open�neighbours shall be more valuable than distance-2

neighbours. For su¢ ciently small transmission noise �2, it becomes most

important for a player to have as many distance-1 neighbours as possible.

Therefore, the e¢ cient network (according to either egalitarian- and utilitar-

ian e¢ ciency criteria) is such as depicted in Figure 8:
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Figure 8: the most e¢ cient (according to
either egalitarian- or utilitarian criterion)
network when � 2 f0:5; 0:7; 0:9g and �2 is

su¢ ciently low.

Given that insight (A) holds only for � in set f0:1; 0:2; 0:35g, we verify

insight (B) only for these values of �. We keep � 2 = 1, and vary �transmission

noise� �2. We consider a pro�le of strategies leading to formation of the

�ower f (proposed equilibrium) and show that no player can bene�t from

unilateral deviation. The central hub cannot deviate in a pro�table way,

as in the proposed equilibrium he learns the signals by all the players and

receives payo¤ 1
9
. Figure 9 depicts possible deviations by a peripheral player.

Deviations 1 and 2 refer to a peripheral player from the small petal (for

concreteness, player 8). Deviations 3 and 4 refer to a peripheral player from

the large petal (for concreteness, player 5).
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Figure 9: deviations by a peripheral
player from the proposed equilibrium.

Figure 10 depicts loss by peripheral players 5 and 8 in the proposed equi-

librium and under the above deviations, depending on �transmission noise�

�2(parameter � = 0:35, the �gures for smaller values � of are similar). We

observe that either player 5 and 8 has strong incentives to comply with the

proposed equilibrium strategy. Hence the �ower network is a Nash equilib-

rium.
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Figure 10: losses by player 5 (right) and player 8 (left) in
the proposed equilibrium (red solid curve) and following
possible deviations (blue dashed and green dotted curves).

Let us summarize our numerical �ndings.

Numerical �ndings: Let the players be fully Bayesian. Let � 2 = 1. Let �

take values in set f0:1; 0:2; 0:35g.

(i) The e¢ cient network is: �ower f if transmission noise �2 is su¢ ciently

small; clustered network otherwise. This holds for both egalitarian- and util-

itarian e¢ ciency criteria.

(ii) Flower f constitutes a Nash equilibrium.

Our numerical �ndings suggest that our analytical insights (A) and (B)

obtained for correlation of priors � being arbitrarily small and the players

being not fully Bayesian in the second round of updating hold (qualitatively)

when the players are fully Bayesian provided that correlation of priors � is suf-

�ciently small.21 Furthermore, these insights extend to utilitarian e¢ ciency

criterion.
21It seems that the threshold of correlation � below which our model performs well lies

somewhere inbetween 0:35 and 0:4.
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6 Conclusion.

We have proposed a communication network formation game rationalizing

clustering in social networks with signal-extraction bene�t by their mem-

bers. In our game �ower (like) network possessing a high degree of clustering

is the e¢ cient network constituting a Nash equilibrium in a wide range of

circumstances.

Naturally, clustering in real social networks may be due to other reasons

than the one we emphasize. For example, by the fact that people matched in

groups for some exogenous reasons (colleagues, parents of kids from the same

school etc.) easily form friendships, which may be modeled as relatively low

cost of connections within a group (Jackson and Rogers, 2005). While such

cost-symmetries and our �signal-extraction� bene�t create coherent e¤ects

on the architecture of communication networks, they probably have di¤erent

e¤ects on the quality of communication.

It may be curious to extend our game to a longer communication horizon

(which corresponds to more patient players). Appendix H makes preliminary

step in this direction by showing that when communication horizon is su¢ -

ciently long, the e¢ cient network is a �wheel�. This research direction may

be, however, purely theoretical, given that Mobius, Phan and Szeidl (2015)

�nd that information travels no further than two steps in the conversation

network.
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Appendix A: Technical review.

The notations in this section are independent from the rest of the paper.

Mean and Variance of a linear combination of Gaussian variables

Consider K random variables xk � N(�k; �
2
k), k = 1; :::; K and a set of

constants f�kgk=1:::K .

KX
k=1

�kxk � N(�; �2), where � =
KX
k=1

�k�k and �
2 =

KX
k=1

�2k�
2
k.

Conditional multivariate normal distribution Consider n-dimensional

colomn-vector of random variables x distributed normally with mean � and

n-by-n variance-covariance matrix �: x � N (�;�). Consider the following

partition of x, � and �:

x =

�
x1
x2

�
, � =

�
�1
�2

�
, � =

�
�11 �12
�21 �22

�
,

where x1 is k-dimensional colomn-vector, x2 is (n� k)-dimensional colomn-

vector, �1 is k-dimensional colomn-vector, �2 is (n� k)-dimensional colomn-

vector, �11 is k-by-k matrix, �12 is k-by-(n� k) matrix, �21 is (n� k)-by-

k matrix, and �22 is (n� k)-by-(n� k) matrix. Suppose that realization

of the latter (n� k) components of vector x is known: x2 = a. Then,
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(x1 j x2 = a) � N
�b�; b��, where

b� = �1 + �12��122 (a� �2) , (35)

b� = �11 � �12��122 �21. (36)

Matrix inversion Consider n-by-n matrix A. The inverse matrix is

A�1 =

�
(�1)i+j Ai;j

detA

�
, (37)

where Ai;j is the (i; j)-adjunct of matrix A, that is, the determinant of a

matrix received from A by removing row i and column j. In particular,0BB@
a b ::: b
b a :::
::: ::: b
b ::: b a

1CCA
�1

=

= 1
(a�b)(a+b(n�1))

0BB@
a+ (n� 2)b �b ::: �b

�b a+ (n� 2)b :::
::: ::: �b
�b ::: �b a+ (n� 2)b

1CCA :
(38)

We introduce the following notation for the sum of elements of matrix A:

Sum(A) = etAe:

Note that the sum of elements of matrix (38) is equal to:

Sum

0BB@
a b ::: b
b a :::
::: ::: b
b ::: b a

1CCA
�1

= n
a+b(n�1) : (39)
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Furthermore, by Miller (1981),

(H +G)�1 = G�1 � 1
1+tr(HG�1)G

�1HG�1; (40)

where matrices G and H have the same dimension, matrix G+H is nonsin-

gular and rk(H) = 1.

Appendix B: proof of proposition 1.

Proof of equation (15).

The vector (x; si) is distribued according to the following law

N
��
pi
pi

�
;

�
1 1
1 1 + � 2

��
;

By equations (35) and (36), conditional law of x given si under Pi is

Li(xjsi) = N
�

�2

1+�2
pi +

1
1+�2

si;
�2

1+�2

�
.

Proof of equation (18). Let us index player i�s neighbours but him-

self by j 2 f1; ...; di � 1g. Consider the second period of communication.

Recall equation (16). The state x and player i�s signals are distribued by the
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following law:

Li

0BBBBB@
x

x+ "i
x+ "1 + �

2 (p1 � �pi)
...

x+ "di�1 + �
2 (pdi�1 � �pi)

1CCCCCA = N

0BBBBBB@

0BBBBBB@
pi
...
...
...
pi

1CCCCCCA ,
0BBBBBB@
1 � � � � � � � � � 1
... 1 + � 2 1 � � � 1
... 1
...

... �(1)

1 1

1CCCCCCA

1CCCCCCA
(41)

where �(1) is di � 1 by di � 1 matrix with elements

(�(1))m;l =

�
1 + � 2 + � 4�2 (1� �2) if m = l;
1 + � 4�2� (1� �) if m 6= l; (42)

where m = 1;...; di � 1 and l = 1;...; di � 1.

By equations (35) and (36),

Li((x; x+ "1 + � 2 (p1 � �pi) ; ...; x+ "di�1 + � 2 (pdi�1 � �pi))tjsi) =

N
 
si+�

2pi
1+�2

1;

 
�2

1+�2
�2

1+�2
1T

�2

1+�2
1 e�(1)

!!
;

(43)

where e�(1) is di � 1 by di � 1 matrix with elements
�e�(1)�

m;l
=

(
�2

1+�2
+ � 2 + � 4�2 (1� �2) if m = l;

�2

1+�2
+ � 4�2� (1� �) if m 6= l; (44)

where m = 1;...; di � 1 and l = 1;...; di � 1. Equation (18) follows from

equations (15) and (35).

By equations (36), (43) and (44),

Vi
�
x j si; fx+ "j + pj � �pigj2Ninfig

�
= �2

1+�2
�
�

�2

1+�2

�2
Sum

�e�(1)��1 .
(45)
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By equations (38), (39), (40) and (44),

Sum
�e�(1)��1 = di�1

�2+�4�2(1��)+(di�1)
�

�2

1+�2
+�4�2(1��)�

� : (46)

By equations (14) and (46),

Vi
�
x j si; fmj(1)gj2Ninfig

�
=

�2(1+�2�2(1��)+(di�1)�2�2(1��)�)
(1+�2)(1+�2�2(1��)+(di�1)�2�2(1��)�)+di�1 . (47)

Proof of lemma 1. Lemma 1 follows from equations (15), (18) and

de�nition (9) of set N i.

Proof of equation (19).

Let us index i�s closed neighbours bur himself with j 2
�
1; ...; di � 1

	
.

Li

0BBBBB@
x

x+ "i
x+ "1
...

x+ "di�1

1CCCCCA = N

0BBBBBB@

0BBBBBB@
pi
...
...
...
pi

1CCCCCCA ,
0BBBBBB@
1 � � � � � � � � � 1
... 1 + � 2 1 � � � 1
... 1 1 + � 2 1
...

...
...

1 1 1 � � � 1 + � 2

1CCCCCCA

1CCCCCCA
(48)

By equation (38), 0BBB@
1 + � 2 1 � � � 1
1 1 + � 2 1
...

...
1 1 � � � 1 + � 2

1CCCA
�1

=

1

�2(�2+di)

0BBB@
� 2 + di � 1 �1 � � � �1

�1 � 2 + di � 1 �1
...

...
�1 �1 � � � � 2 + di � 1

1CCCA .
(49)
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By equations (48), (49) and (35),

Ei
�
x j fsjgk2N i

�
= �2

di+�2
pi +

1
di+�2

X
j2N i

sj, (50)

By equations (48), (49) and (36),

Vi
�
x j fsjgj2N i

�
= �2

di+�2
. (51)

Proof of equations (22)-(24). Recall that the vector of priors p is

distributed according to distribution (5). Let us order the players�priors so

that the subvector of priors

pjN i
= (pi; p1; ...; pdi�1)

comes the last. Let us denote the variance-covariance matrix of vector pjN i

by �jN i
(this is di by di matrix with elements 1 on the main diagonal and �

elsewhere). By equation (38),

�
�jN i

��1
= 1

(1��)(1+�(di�1))

0BBB@
1 + �

�
di � 2

�
�� � � � ��

�� 1 + �
�
di � 2

�
��

...
...

�� �� � � � 1 + �
�
di � 2

�
1CCCA :

(52)

Let pjgnN i
be the vector of priors by all players outside N i. Equation (22)

follows from equations (5), (52) and (35). Equations (23) and (24) follow

from equations (5), (52) and (36).
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The elements of variance-covariance matrix � in equation (28).

Recall indexation (27). It is convenient to introduce notation w for the

variance given by equation (23) and � for the covariance given by equation

(24). We furthermore denote conditional variance (51) by v and conditional

expectation (50) by �. Let us also introduce notations

dmni = j(Nm nNi)j and d(m\l)ni = j(Nm nNi) \ (Nl nNi)j, m 6= l. (53)

By equation (19),

Li

0BBBBBBBBBBBBBBB@

x
x+ "di+1+

�
pdi+1�p

�
� 2

...
x+ "di+(pdi�p) � 2

x+ 1
ddi+1ni

X
k2Ndi+1nNi

("k + (pk � p) � 2)�
�
�
ddi+1

�1
�

ddi+1ni
� 2
�
pdi+1 � p

�
...

x+ 1
ddini

X
k2NdinNi

("k + (pk � p) � 2)�
�(ddi�1)
ddini

� 2 (pdi � p)

1CCCCCCCCCCCCCCCA
=

N

0B@
0B@ �
...
�

1CA ,
0B@ v : : : v
... �1;1 �1;2
v (�1;2)

T �2;2

1CA
1CA ,

(54)

where: � is given by equation (20), v is given by equation (21),

(�11)m;l =

�
v + � 2 + � 4w if m = l;
v + � 4� if m 6= l;

40



(�12)m;l =

8<:
0@v + � 4 �� � �(dm�1)

dmni
w
�

if m = l;

v + � 4�
�
1� �(dl�1)

dlni

�
if m 6= l;

1A

(�22)m;m = v +
�2

dmni
+ �4

dmni

h
w
�
1 + �2(dm�1)2

dmni

�
+ �

�
dmni � 1� 2�(dm � 1)

�i
;

(�22)m;l = v + �
2 d(m\l)ni
dmnidlni

+ w� 4
d(m\l)ni
dmnidlni

+� �4

dmnidlni

�
dmnidlni � d(m\l)ni � �(dmni(dl � 1) + dlni(dm � 1)) + �2(dm � 1)(dl � 1)

�
;

m; l 2
�
di + 1; ...; di

	
, m 6= l. (55)

Proof of equations (28) and (29). Equation (28) and set of equations

(29) and follow from equation (54), when �! 0 (and therefore, w ! �2 and

� ! 0) and d(m\l)ni = 0.

Proof of equation (31). By set of equations (29),

� = H + zG; where

H = vI1T ,

Gm;l =

8<:
1 if m = l 6 di;
1

dmni
if m = l > di;

0; if m 6= l
and z is given by equation (30). Note that

rk(H) = 1.
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In order to use equation (40), we �nd:

�
H (zG)�1

�
m;l
=

�
v
z

if l 6 di;
v
z
dlni if l > di;

(56)

1 + tr(H (zG)�1) = 1 + 'v; (57)

where ' =
�
di+d

0
i

z
; d0i = jN 0

i j (58)

�
(zG)�1H (zG)�1

�
m;l
=

8>><>>:
v
z2

if both m and l 6 di;
v
z2
dlni if m 6 di and l > di;

v
z2
dmni if l 6 di and m > di;

v
z2
dmnidlni if both m and l > di.

(59)

By equations (40) and (56)-(59),

Sum (H + zG)�1 = '� '2v
1+'v

= '
1+'v

. (60)

By construction (standard properties of conditional independence) and equa-

tions (36) and (60),

Vi(x j si, fmj(t) j j 2 Ni; t = 1; 2g) =
Vi(x j fpj; sjgj2N i

, fesj(1); esj(2)g
j2

�
N i

) = v
�
1� v1T (�)�11

�
=

v
�
1� v '

1+'v

�
= v

1+'v
.

Appendix C: proof of lemma 2.

Step 1 notes that f 2 G and g 2 G� implies di > 2n � 1 for any i 2 g.

Indeed, suppose (by contradiction) that exist i 2 g with di < 2n � 1, then,

di < 2n�1. By true inequality ni 6M and proposition 1, li (g) < max
i2g
lj (f),
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hence g =2 G�.

Step 2 proves that closed neighbourhood by any least happy player i is com-

pletely connected subgraph of size 2n� 1, that is,

Nk = Ni for any i 2 L (g) any k 2 N i and any g 2 G. (61)

Consider i 2 L (g). By de�nition of N i, Ni � Nk, hence,

�
dk + d

0
k 6 di + d0i

dk 6 di.

However, Ni � Nk, means that there exist j 2 NinNk. If j 2 Ni, then dk < di.

Otherwise, dk + d0k < di + d
0
i. In either case, by proposition 1, lk (g) < li (g)

which contradicts to i 2 L (g).

Step 3 proves that for any g 2 G�, if there exist i 2 L (g) such that22 �di > 0

then di 6 2n� 1. Suppose, by contradiction, that there exist i 2 L (g) such

that �di > 0 and di > 2n. By statement (61), Nk = Ni for any k 2 N i. It takes

di(di�1)
2

> n
�
di � 1

�
links to interconnect all players in N i and another 2n�di

links to connect them to i�s open neighbour(s). At the same time, players in

Ni can build ndi links. Therefore,

n
�
di � 1

�
+ 2n�di 6 ndi which implies �di 6 1.

22Here and below we continue using notation (53).
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Suppose that �di = 1. Call h the unique open neighbour by i and his closed

neighbours. Consider gnNi. Let R = jgnNij. Players in gnNi can build nR

links of which at least one link goes to player h. Hence, their average degree

is 2nR�1
R

< 2n, which implies that there exist player j 2 gnNi such that

dj 6 2n� 1, and so either dj < 2n� 1 or dj + d0j 6 2n� 1. In either case, by

proposition 1, lj(g) > max
i2g
li (f) hence g =2 G� (a contradiction).

Step 4 proves that for any g 2 G�, and for all i 2 L (g) such that �di > 0,

di = 2n� 1 and

di + d
0
i =M: (62)

Consider i 2 L (g) such that �di > 0. By step 3, di 6 2n� 1. By proposition

1, di = 2n � 1 and di + d0i = M (if di < 2n � 1 or di + d0i < M , then

li(g) > max
i2g
lj (f) which contradicts g 2 G�).

Step 5 shows that if g 2 G� and there exist i 2 L (g) such that �di > 0 then

�di = 1. Indeed, by step 3 and statement (61), all 2n � 1 players in N i are

interconnected, which leaves at most 1 �free hand�per player and 2n � 1

�free hands� overall to connect with other players. At the same time, by

statement (61), all 2n� 1 players in N i are connected to each of the players
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in
�
Ni, which requires �di (2n� 1) links. Hence, players in

�
Ni build at least

�di (2n� 1)� (2n� 1) =
�
�di � 1

�
(2n� 1)

links to players in N i, which leaves them with a possibility to build at most

�din�
�
�di � 1

�
(2n� 1) 6 2n� 1� �di (n� 1) : (63)

link to M � 2n players in gnNi. Suppose that �di > 2. Then the right-hand

side of inequality (63) is weakly below 1. That is, players in
�
Ni build at most

one link to players in gnNi. At the same time, by equation (62), each player

in gnNi is connected to at least one player in
�
Ni, which requires M � 2n

links. By inequality (63), all but one player in gnNi use at least one of their

hands to connect to at least one of the players in Ni. Hence, their average

degree is at most

2(n(M�2n)�(M�2n�1))+M�2n
M�2n = 2n� 1 + 1

M�2n .

Therefore, there exist player j 2 gnNi such that dj 6 2n� 1 and �dj > 0, so

dj 6 2n� 2. By step 1, g =2 G� (a contradiction).

Step 6 shows (by construction) that if g 2 G� and there exist i 2 L (g) such

that �di > 0 then g = f . By statement (61), for any player i 2 L (g), we

can visualize i and his closed neighbours as a �petal�. By steps 4 and 5,
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player i and his closed neighbours have one common open neighbour, say,

h connected with all players in gnNi. Consider M � 2n players in gnNi. If

there exist player i1 2 (gnNi) \ L (g), then, di1 = 2n� 1 and by steps 3 and

4, di1 = 2n, di1 + d
0
i1
= M and Nj = Ni1 for all j 2 N i1. We can therefore

visualize i1 and his closed neighbours as the second petal connected to the

�rst petal through h. Applying this argument repetitively, we end up in the

situation where the players not organized in petals yet all have closed degree

at least 2n and they are all connected to h.

Let us denote the set of these remaining players by R. Note that by

construction, none of the players in set R receives links from the players

organized in the above petals. Therefore, relatively high degree by each of

them is achieved through their own linking capacity plus possibly that of the

central hub h. Players in setR and hub h together can build n (jRj+ 1) links,

increasing their own sum of degrees by 2n (jRj+ 1).23 The hub h receives jRj

links. The average degree by the players in set R is therefore equal to

P
di

i2R
jRj =

2n(jRj+1)
jRj + 1. (64)

23 jRj denotes the cardinality of- (the number of players in) set R.
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Recall that it shall lie above 2n+ 1, which implies

jRj 6 2n. (65)

However, by construction of small petals, true equation jgj =M and equation

(1), we �nd

jRj > 2n+ (2n� 1)k, (66)

where 0 6 k 6 m � 1. By equations (65) and (66), jRj = 2n. This means

that the hub h and 2n players in set R are interconnected, forming the large

petal.

Appendix D: proof of proposition 2.

Step 1 shows that g 2 G� and g 6= f implies that any player i 2 L (g) belongs

to a completely connected component of size at least 2n. By lemma 2, g 2 G�

and g 6= f implies �di = 0 for any i 2 L (g). Hence, N 0
i = ?, and

ni = di < M . (67)

Because g 2 G�,

li(g) 6 min
j2f
lj(f). (68)
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By equation (67), inequality (68), set of de�nitions 2 and proposition 1,

di > 2n. Hence,

g 2 G� and g 6= f implies �di = 0 and di > 2n for any i 2 L (g) . (69)

By step 2 in Appendix C, Nj = Ni for any j 2 N i.

Step 2 shows that for any i 2 g: �di = 0, Nj = Ni for any j 2 N i and di > 2n.

By step 1, the statement is true for any i 2 L (g). Consider gnL(g), that is g

without components containing the least happy players. If gnL(g) = ?, the

statement of step 2 holds. Suppose gnL(g) 6= ?. By step 1, jL(g)j > 2n.

Therefore, jgnL(g)j 6 M � 2n. Therefore, dk + d0k 6 M � 2n < M for any

k 2 gnL(g). Because g 2 G� and g 6= f , lk(g) 6 min
j2f
lj(f) for any k 2 gnL(g).

By proposition 1, dk > 2n for any k 2 gnL(g). At the same time, the average

degree by players in gnL(g) is 2n (each player can build n links, each link

increases sum of degrees by 2). Therefore,

dk = dk = 2n for any k 2 gnL(g). (70)

Suppose there exist k 2 gnL(g) and j 2 Nk such that Nj � Nk. Then, k is

an open neighbour by j, which contradicts to statement (70).

Step 3 proves that g 2 G� and g 6= f implies di 6 2n + 1 for any i 2 g.
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Consider g 2 G�, g 6= f and some i 2 g. By step 2, all players in i�s closed

neighbourhood are interconnected, which takes
di(di�1)

2
links. These players

can build only din links. Therefore,

di(di�1)
2

6 din,

which is equivalent to di 6 2n+ 1.

Step 4 shows that

G� =

8<:
fcg , if �2� 2 > M�(2n+1)

2

fc; fg , if �2� 2 = M�(2n+1)
2

ffg , otherwise.

Recall that it is feasible to build network c as follows: players divide into

groups of size 2n+1, 2n+1 players in a group form a circle and each player

connects to n next players on his right. By steps 2 to 4, network c is the

most e¢ cient network in set Gnf . By proposition 1, c is weakly more e¢ cient

than f i¤ inequality (34) is true.

Appendix E: proof of proposition 3.

Step 1. By equation (1) �ower network may be build as follows: The players

divide into groups of which one has size 2n+1 and other m have size 2n� 1.

Players in the group of size 2n + 1 interconnect, say, they form a circle and

each player connects to n players on his right). One player in this group is
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marked with index h. Players in each group of size 2n�1 form a circle. Each

player connects to n� 1 players on his right and to player h.

Consider a unilateral deviation by player i from the above strategy pro-

�le. By this deviation player i establishes a link with a player in a di¤erent

�petal�(as he is connected with all players in his petal and the central hub

h), scarifying a link with either one of the players in his petal or the central

hub. As a result, his total degree does not increases while his closed degree

decreases by 2n� 2 (he looses all closed neighbours but himself). By propo-

sition 1, his loss goes up. Hence, �ower network is an equilibrium.

Step 2. By equation (2), network c may be built as follows: The players

divide into groups of size 2n+ 1. Players in each group of size 2n+ 1 inter-

connect, say, they form a circle and each player connects to n players on his

right.

2.1. Consider a unilateral deviation by player i form the above strategy pro-

�le. By this deviation player i establishes a link with a player in a di¤erent

component sacri�cing a link with a player in his component. Thereby, he

increases his total degree by 2n+1 and he decreases his closed degree by 2n

(he looses all closed neighbours but himself). By proposition 1, the deviation
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is unpro�table i¤

�2� 2 > 1 + 1
2n
. (71)

Hence, network c is an equilibrium i¤ inequality (71) holds.

2.2. Let us show that equations (1) and (2) imply

1 + 1
2n
< M�(2n+1)

2
. (72)

By equation (1), inequality (72) is equivalent to

(2n� 1)m > 2 + 1
n
,

which holds for any m > 2. By equations (1) and (2)

(2n+ 1) (l � 1) = (2n� 1)m > 0,

which implies l > 2, hence, m > 2.

Appendix F: relaxing parameter restrictions.

F.1. Relaxing parameter restriction (2).

Let us keep assumption (1) and relax assumption (2). Without loss of gen-

erality there exist l 2 N [ f0g and q 2 N [ f0g, q 6 2n such that

M = l(2n+ 1) + q. (73)
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Note that by equation (1), l > 0. The main text focuses on q = 0. Suppose

that q > 0.

De�nition F.1. The set of networks composed of completely connected com-

ponents of which the smallest has size 2n is denoted

C = fg 2 C j for any i 2 g : di > 2n and Ni = Nj for any j 2 Nig . (74)

Proposition F.1. Suppose that M and n are such that equation (1) holds.

Suppose, furthermore that q de�ned by equation (73) is positive. Then,

G� =

8<:
C, if q + l > 2n and �2� 2 > M � 2n;
C [ ffg , if q + l > 2n and �2� 2 =M � 2n;
f otherwise.

Proof.

Step 1 shows that if q > 0 and

q + l > 2n, (75)

G� =

8<:
C, if �2� 2 > M � 2n
C [ ffg , if �2� 2 =M � 2n
ffg otherwise.

By step 2 in Appendix D, any e¢ cient network di¤erent from f lies in set C.

Let us build a network in C maximizing the size of its smallest cluster. To

this goal, let us divide the total number of players M into groups of sizes

as equal as possible in the following way: Start with l groups of size 2n + 1

and one �residual� group of size q and repetitively move one player from
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the largest existing group to the smallest one. After 2n � q 6 l steps, the

size of the residual group is 2n, hence, the di¤erence between the sizes of

any pair of groups becomes no higher than one. Once the procedure is over,

let the players in each group interconnect. Thereby, we form a network in

C. Potentially, we could build other networks in C by continuing the above

procedure as long as the distribution of the clusters�sizes remains constant.

The size of the smallest cluster is 2n. By proposition 1, this network is weakly

more e¢ cient than f i¤

�2� 2 >M � 2n. (76)

Step 2 shows that when q > 0 and q + l < 2n, G� = f . Consider the proce-

dure described in step 1. After l steps the size of the residual group is still

below 2n. If we continue the procedure until the distribution of groups�sizes

becomes constant, at least one group will have size 2n� 1.24 Hence, set C is

empty. By step 2 in Appendix D the unique e¢ cient network is f .

Proposition F.2. If n = m = 1, the most e¢ cient equilibrium network

is that in proposition F.1. Otherwise, the most e¢ cient Nash equilibrium is

network f .

Proof.
24Note that by equation (1) the size of the smallest cluster is weakly above 2n� 1.
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Step 1. Suppose n = m = 1, so that M = 4. By step 1 in Appendix E,

network f (a �star�with three peripheral players connected to the central

hub) is a Nash equilibrium. Set C is a singleton. Its unique element is com-

plete network connecting 4 players. Trivially, it is a Nash equilibrium. Hence,

proposition F.1 describes not only the most e¢ cient but also an equilibrium

network.

Step 2. Suppose from now on that n+m > 2. Suppose �rst that inequality

(75) holds. By proposition F.1, the e¢ cient network is either f or a network

is set C, depending on transmission noise. However, no network in set C

is a Nash equilibrium. Indeed, inequality (75) is equivalent to q > 2n � l.

Therefore,

M = l(2n+ 1) + q > 2n(l + 1), hence, M > 2n,

which implies that any network in set C has at least two components. Con-

sider the smallest component of network in set C. Its size is 2n. It takes

n(2n� 1) links to build it. At the same time, the players in this component

can build 2n2 links. Therefore, at least one of them has unused connection

capacity, which he can use to establish a link with a player in a di¤erent

component increasing thereby his total degree by at least 2n. By proposi-
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tion 1, this deviation is pro�table. By step 1 in Appendix E network f is a

Nash equilibrium. By step 2 in Appendix E, network f is the more e¢ cient

than any network in set GnC. Hence, network f is the most e¢ cient Nash

equilibrium.

Step 2. Suppose �nally that inequality (75) does not hold. Then, by propo-

sition F.1, the most e¢ cient network is f . By step 1 in Appendix E network

f is a Nash equilibrium. Hence, network f is the most e¢ cient Nash equilib-

rium.

F.2. Relaxing parameter restriction (1).

Let us now relax assumption (1). Without loss of generality,

M = 1 + (2n� 1)(m+ 1) + r, (77)

where r 2 N[f0g, r 6 2n � 2 and m 2 N[f0g. Equation (1) is equivalent

to r = 1. We will now consider other possibilities.

F.2.1. Case r = 0.

First, suppose that r = 0, that is,

M = 1 + (2n� 1)(m+ 1), where m 2 N[f0g . (78)
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If m = 0, then M = 2n. The most e¢ cient and equilibrium network is

complete network organizing all players. Suppose hereafter that m > 0.

De�nition F.2. Symmetric �ower ef organizes M players. The central hub

h is linked with all the peripheral players, that is, efih = 1 8 i 2 ef . The
peripheral players are divided into interconnected petals: Ni = Nj for any

i 6= h and for any j 2 Nin fhg. All petals have size 2n� 1.

Figure 3 in the main text illustrates symmetric �ower with 3 petals of size

2n� 1 = 3 each. Network ef may be built in di¤erent ways. For example, it
may be entirely built by peripheral players who organize in circles and then

each connects to the central hub and the next player on his right. It may also

be built with the hub�s participation.

Proposition F.3. Suppose that equation (78) holds. Propositions F.1 and

F.2. hold with �ower f being replaced for symmetric �ower ef .
Proof.

Step 1 shows that lemma 2 holds for f being replaced with ef . Steps 1 to 5
in Appendix C hold for f being replaced with ef . Step 6 holds for f being
replaced with ef and inequality (66) being replaced with

jRj > (2n� 1) (m+ 1� k) , (79)

56



where 0 6 k 6 m. By equations (65) and (66), jRj = 2n�1. This means that

the hub h and 2n � 1 players in set R are interconnected, forming another

petal.

Step 2 notes that all steps in Appendix D and in the proof of proposition

F.1. hold for f being replaced with ef and the reference to lemma 2 being
replaced with a reference to step 1 if this section.

Step 3 shows that network ef is a Nash equilibrium. The proof of proposition
3 in Appendix E goes through with f being replaced with ef : (i) the hub
receives the lowest possible loss; (ii) any possible deviation by a peripheral

player weakly decreases the number of closed neighbours without increasing

the total number of neighbours (which is maximal).

Step 4 notes that steps 2 and 3 in Appendix D hold. Step 4 in Appendix D

holds for f being replaced with ef .
F.2.2. Case r > 2.

Consider r > 2, where r is de�ned by equation (77). Suppose we want to

divide M � 1 players in petals of sizes as equal as possible. This can be

accomplished in the following way: start with one petal of size 2n, m petals

of size 2n � 1 and one petal of size r � 1 and repetitively move one player
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from the largest existing petal to the smallest petal until the distribution

of petals� sizes becomes constant (and di¤erence between the petal�s sizes

becomes no higher than one). As a result, the size of (one of) the smallest

petal(s), or, using common terminology,25 the level of the resulting network

is given by equation

s� =
�
M�1
m+2

�
. (80)

The resulting network belongs to the family of networks de�ned as follows.

De�nition F.3. A generalized �ower of level-s is a network organizing M

players. The unique central hub h is linked with all the peripheral players.

The peripheral players are divided into interconnected petals: Ni = Nj for

any i 6= h and for any j 2 Nin fhg. The smallest petal(s) has(have) size s.

The set of generalized �owers of level-s is denoted by �s.

Figure 4 in the main text depicts generalized �ower of level s� = 2 when

M = 9 and n = 2. A generalized �ower may be built via di¤erent pro�les of

strategies, including those in which all links are built by peripheral players

and others in which the central hub builds some links.

25Bala and Goyal (2000) introduced this terminology for directed networks.
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Proposition F.4. Suppose that r > 2, where r is de�ned by equation (77).

If �2� 2 < 1

2n+1�maxf[ 4n3 ], rg
, (81)

then G� = �s� and any network in set �s� is a Nash equilibrium.

Proof.

Step 1 proves inequality

s� > max
��

4n
3

�
, r
	
. (82)

By equations (77) and (80),

s� =
�
2n� 1� 2n�1�r

m+2

�
. (83)

We focus on r > 2 and m > 1. By these inequalities and inequality (83),

s� >
�
2n� 1� 2n�3

3

�
=
�
4n
3

�
.

Furthermore, by equations (77) and (80),

s� � r >
h
(2n�1)(m+1)+r

m+2
� r(m+2)

m+2

i
=
h
(2n�1�r)(m+1)

m+2

i
. (84)

By inequality (84) and r 6 2n� 2,

s� > r. (85)
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Step 2 shows that if inequality (81) holds, then any e¢ cient network is in set

�s�. Suppose that some network g 2 G�n�s� is more e¢ cient than a network

in set �s�. Let x = di + d
0
i and y = di where i 2 L(g). By proposition 1, our

supposition is equivalent to

M � x < �2� 2 (y � s�) . (86)

However, by de�nition F.3, M � x > 1. At the same time, given connection

capacity of n links per player, y 6 2n+1. Therefore, inequality (86) contra-

dicts to inequality (81).

Step 3 shows that any network in set �s� is a Nash equilibrium. Consider

network ' in set �s�. It can be built in di¤erent ways including the follow-

ing: peripheral players from the same petal locate in a circle, each of them

connects to the central hub and the least of: n�1 players on his right and all

remaining players in the petal. Note that some links are duplicated. How-

ever, no player has a pro�table deviation from the above strategy pro�le.

Indeed, by proposition 1, the only way to gain is to increase the number

of closed neighbours. However, this cannot be accomplished by a unilateral

deviation.
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Appendix G: di¤erent network formation pro-
tocol.

Consider an extension in which network is formed as a result of investments

in links.

This section brie�y discusses our modeling approach to network forma-

tion. We follow the literature in which links are formed unilaterally. This

may be viewed as an extremely asymmetric investments in links. We will

now modify network formation stage of our model, following Hojman and

Szeidl (2008), so as to show that the above �ower-like networks may be

formed as a result of more symmetric investments in links. Throughout this

section we focus, for simplicity, on the case r = 0, where r is de�ned by

equation (77).

Suppose that the network formation goes as follows. The players simul-

taneously choose their investments in links. Player i invests tji in link with

player j. The link between i and j is formed i¤ joint investment by players

i and j lies above a given threshold p:

tji + t
i
j > p.

The communication stage is unchanged. Disutility by player i is given by

61



information loss (14) and the sum of i�s investments in links:

eli(g) = li(g) +P
j2g
tji . (87)

We are not aiming at detailed analysis of the modi�ed game with trans-

fers. Rather, we will show that symmetric �ower ef may be formed in equilib-
rium via a pro�le of strategies involving strictly positive contributions from

the hub: The hub invests sum

tih =
z�2�2(2n�1)

(z+M+�2�2(M+1�2n))(z+M+(1+�2�2))
(88)

in linking with each peripheral player i. Player i makes the remaining in-

vestment required for linking to the hub:

thi = c�
z�2�2(2n�1)

(z+M+�2�2(M+1�2n))(z+M+(1+�2�2))
. (89)

Peripheral players divide into m + 1 petals of size 2n � 1, and each pair of

players i and j from the same petal sponsor half of the link between them:

tji =
p
2
. (90)

Proposition G.1. If the cost p of a link lies in intervalh
z�2�2

(z+M+2n�2�2)(z+M+�2�2(2n�1)) ,min
n

z�2�2(2n�1)
(z+M+�2�2(M+1�2n))(z+M(1+�2�2))

+

z(M�2n+�2�2(2n�2))
(z+2n+�2�2)(z+M+�2�2(2n�1)) ,

2z�2�2(2n�2)
(z+M+�2�2)(z+M+�2�2(2n�1))

��
,

(91)
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then symmetric �ower ef may be formed in equilibrium via pro�le of strategies
given by set of equations (88) to (90).

Proof. We show that no player has a pro�table deviation from the above

pro�le of strategies leading to formation of network ef .
Step 1 shows convexity of loss (31) in the number of closed neighbours. By

equation (31),

@li(g)

@di
< 0, @

2li(g)

@d
2
i

< 0, (92)

@li(g)
@ni

< 0, @
2li(g)

@(ni)
2 < 0. (93)

Step 2 shows that the central hub h has no pro�table deviation. Indeed,

he can deviate by sacri�cing any subset of links, saving thereby sum (88)

multiplied by the cardinality of this subset. However, by convexity of loss

(31) in the number of closed neighbours dh proved in step 1 it su¢ ces to check

that h is not willing to deviate at the margin. That is, by set of equations

(92), the hub has no pro�table deviation i¤ he does not want to save sum

(88) loosing a link with one of the peripheral players and thereby 2n � 1

closed neighbours:

tih 6 z
z+M+�2�2(M+1�2n) �

z
z+M(1+�2�2)

= z�2�2(2n�1)
(z+M(1+�2�2))(z+M+�2�2(M+1�2n)) .

(94)
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This condition is met as an equality: hub�s contribution (88) in linking with

a peripheral player i is equal to his marginal bene�t from this link.

Step 3 shows that peripheral player i has no pro�table deviation. By step

1, peripheral player i has no pro�table deviation if set of the following three

conditions is met:26

3.1. Peripheral player i does not want to save p
2
sacri�cing a link with one of

his closed neighbours and loosing thereby all closed neighbours but himself.

This is true i¤:

p
2
6 z

z+M+�2�2
� z

z+M+�2�2(2n�1) =
z�2�2(2n�2)

(z+M+�2�2)(z+M+�2�2(2n�1))

equivalently, p 6 2z�2�2(2n�2)
(z+M+�2�2)(z+M+�2�2(2n�1)) . (95)

3.2. Peripheral player i does not want to save p � tih sacri�cing the link

with the hub and losing thereby all closed neighbours but himself and all

distance-2 neighbours. This is true i¤:

p� z�2�2(2n�1)
(z+M(1+�2�2))(z+M+�2�2(M+1�2n)) 6

z
z+2n+�2�2

� z
z+M+�2�2(2n�1) =

z(M�2n+�2�2(2n�2))
(z+2n+�2�2)(z+M+�2�2(2n�1)) .

equivalently, p 6 z�2�2(2n�1)
(z+M(1+�2�2))(z+M+�2�2(M+1�2n)) +

z(M�2n+�2�2(2n�2))
(z+2n+�2�2)(z+M+�2�2(2n�1)) .

(96)

26Recall that i cannot increase its total number of neighbours.
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3.3. Player i does not want to link with a player on distance 2, so as to gain

one closed neighbour (recall that i perceives this player to be linked only

with the hub). This is true i¤

p > z
z+M+2n�2�2

� z
z+M+�2�2(2n�1) =

z�2�2

(z+M+2n�2�2)(z+M+�2�2(2n�1)) . (97)

3.4. The set of inequalities (94) to (97) is equivalent to p belonging to inter-

val (91). Note that the right-hand side of inequality (97) lies below that of

inequality (95). Indeed, inequality

z�2�2

(z+M+2n�2�2)(z+M+�2�2(2n�1)) <
2z�2�2(2n�2)

(z+M+�2�2)(z+M+�2�2(2n�1))

is equivalent to true inequality

1
z+M+2n�2�2

< 2(2n�2)
z+M+�2�2

.

Furthermore, the right-hand side of inequality (97) lies below that of inequal-

ity (96). Indeed, inequality

z�2�2

(z+M+2n�2�2)(z+M+�2�2(2n�1)) <
z�2�2(2n�1)

(z+M(1+�2�2))(z+M+�2�2(M+1�2n))

+
z(M�2n+�2�2(2n�2))

(z+2n+�2�2)(z+M+�2�2(2n�1))

follows from inequality

z�2�2

(z+M+2n�2�2)(z+M+�2�2(2n�1)) <
z(M�2n+�2�2(2n�2))

(z+2n+�2�2)(z+M+�2�2(2n�1)) ,
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implied by true inequality

1
z+M+2n�2�2

< 2n�2
z+2n+�2�2

.

Hence, interval (91) is full.

Appendix H: e¢ cient network with su¢ ciently
long communication.

Suppose that

M = n+ 1 = k, where k 2 N; k > n:

Consider network formed as follows. The players locate in a circle, each

player builds links with n players on his right. The resulting network is a

�wheel�. Figure A:1 illustrates the wheel network with M = 11 players each

disposing n = 2 �hands�.

Figure A.1: �wheel�
network (M = 11, n = 2).
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Suppose the players can talk for

T > M�1
n
periods

(at least �ve periods in our example in Figure A:1). Straightforward extension

of Lemma 1 shows that each player in a wheel network learns the signals and

priors by all players in his component. To illustrate the argument, each player

in the wheel in Figure A:1 receives 4 messages from his neighbours in each

communication period. This amounts to 20 messages in �ve communication

periods. From these messages, player i can deduce 20 �unknowns�: the priors

and the signals by other players in his component. Hence, the wheel network

is e¢ cient.
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