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June 10th, 2009

Abstract

We study the long-time asymptotics of the doubly nonlinear diffusion equation ρt =
div(|∇ρm|p−2∇ (ρm)) in R

n, in the range n−p

n(p−1) < m < n−p+1
n(p−1) and 1 < p < ∞ where

the mass of the solution is conserved, but the associated energy functional is not displace-
ment convex. Using a linearisation of the equation, we prove an L1-algebraic decay of the
non-negative solution to a Barenblatt-type solution, and we estimate its rate of convergence.
We then derive the nonlinear stability of the solution by means of some comparison method
between the nonlinear equation and its linearisation. Our results cover the exponent interval
2n

n+1 < p < 2n+1
n+1 where a rate of convergence towards self-similarity was still unknown for the

p-Laplacian equation.

1 Introduction

In this work, we consider the doubly nonlinear equation defined for any (t, x) ∈ (0,∞) × R
n by











∂ρ

∂t
= ∆p(ρ

m) := div
[

|∇ρm|p−2 ∇ (ρm)
]

, (x ∈ R
n, t > 0)

ρ(t = 0) = ρ0 ≥ 0 , (x ∈ R
n)

(1.1)

with 1 < p < ∞, 0 < m and n ≥ 3. This class of equations contains the linear diffusion
equation, (p = 2, m = 1), commonly known as the heat equation, ∂tρ = ∆ρ ; the nonlinear
diffusion equation ∂tρ = ∆ρm, known as the porous medium equation (p = 2, m > 1), or
the fast diffusion equation (p = 2, m < 1), and the gradient-dependent diffusion equation,
∂tρ = div(|∇ρ|p−2∇ρ) := ∆pρ, that is, the p-Laplacian equation, (p 6= 2, m = 1). When p 6= 2
and m 6= 1, Eq. (1.1) is called the doubly nonlinear diffusion equation, due to the fact that its
diffusion term depends non-linearly on both the unknown density ρ, and its gradient ∇ρ. Such
gradient-dependent diffusion equations appear in several models in non-Newtonian fluids [23], in
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glaciology [20, 8], and in turbulent flows in porous media [25]. For more details on these models,
we refer to the recent monograph of Vázquez [33], and the references therein.

Assuming that the initial data is integrable, ρ0 ∈ L1(Rn), it is known that (1.1) has a unique
solution ρ ∈ C

(

[0,∞), L1(Rn)
)

, with ρ(t) ∈ C1,α(Rn) for some α ∈ (0, 1), see for instance
[13, 14, 15, 26]. Moreover, starting with a non-negative initial data, ρ0 ≥ 0, it is known that the
solution ρ(t) remains non-negative at all times. Furthermore for n ≥ 3, there exists a critical
exponent,

mc(p) :=
n − p

n(p − 1)
,

such that if m > mc(p), then the mass of the solution is conserved,
∫

Rn ρ(t) dx =
∫

Rn ρ0 dx,
while if m < mc(p), the solution vanishes in finite time, see [13, 33] and the references therein.
In particular, for the p-Laplacian equation, this corresponds to the critical p-exponent,

pc :=
2n

n + 1
,

above which the mass of the solution is conserved, while the solution disappears in finite time if
p < pc. Therefore, up to renormalising the mass of ρ0 to unity, we can assume without loss of
generality that, under the condition m > mc(p), the solution ρ(t) of (1.1) is a density in R

n, for
all times t ≥ 0.

By similarity and scaling, it can be shown that, above the critical exponent mc(p), Eq.(1.1)
has a unique self-similar solution ρD∗ , whose initial value is the Dirac mass at the origin, that
is, the fundamental solution of Eq.(1.1). In fact, among all the radially symmetric solutions of
(1.1), this solution is the most concentrated whose initial data have the same mass as ρ0. It is
called the Barenblatt solution [4], and it is precisely:

ρD∗(t, x) =
1

(δpt)n/δp
uD∗

(

x

(δpt)1/δp

)

, (1.2)

where
δp := n(p − 1)(m − mc(p)) > 0,

and

uD∗(y) =



















1

σ
exp

(

−
|p − 1|2

p
|y|p/(p−1)

)

if m =
1

p − 1
(

D∗ −
m(p − 1) − 1

mp
|y|p/(p−1)

)
p−1

m(p−1)−1

+

if m 6=
1

p − 1
,

with σ and D∗ are uniquely determined by the mass conservation: ‖uD∗‖L1(Rn) = ‖ρD∗(t)‖L1(Rn) =
‖ρ0‖L1(Rn).

When p = 2 and m > 1 − 2/n, the existence and uniqueness of the Barenblatt solution
was proved by Friedmann and Kamin in [19]. Moreover, they showed that the solution ρ(t) of
the Cauchy problem converges to ρD∗(t) w.r.t. the L1(Rn)-norm, as t → ∞, with no rates.
Rates of convergence were computed by Carrillo and Toscani [9] if m > 1, independently by
Del Pino and Dolbeault [16], and Otto [31] if m ≥ 1 − 1/n. The rates found in this range were
generically optimal. In the range 1 − 2/n < m < 1 − 1/n, there were studies of the linearised
problem by Carrillo, Lederman, Markowich and Toscani [10], and Denzler and McCann [12].
These linearisations were useful to obtain rates of decay for the nonlinear fast diffusion equation
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by Carrillo and Vázquez [11] and later by McCann and Slepčev [29], and Kim and McCann [21].
The decay rates obtained by using the linearisations are in general non optimal and is optimal
in some sub-range, see [21].

When p 6= 2 and m = 1, Kamin and Vázquez [22] proved existence and uniqueness of the
Barenblatt solution ρD∗ for the p-Laplacian equation when p > pc, along with an L1-convergence
of the solution ρ(t) of the Cauchy problem to ρD∗(t), with no rates. Their proof extends to the
doubly nonlinear equation as long as m > mc(p), see [33]. Rates of convergence were computed
by Del Pino and Dolbeault [17] when pc + 1/(n + 1) ≤ p < n for the p-Laplacian equation,
but their rates are not optimal; see also a similar result for the doubly nonlinear equation in
[18]. In [1, 3], Agueh generalises previous results by deriving optimal rates for the convergence
of the solution of the Cauchy problem (1.1) to ρD∗(t), for all m ≥ mc(p) + 1/(n(p − 1)) =
(n − p + 1)/(n(p − 1)) and p > 1. For instance, when p = 2, this condition coincides with
the case m ≥ 1 − 1/n, while for the p-Laplacian equation (p 6= 2, m = 1), it corresponds to
p ≥ pc + 1/(n + 1) = (2n + 1)/(n + 1), and therefore covers the range p ≥ n left in [17], but not
the remaining exponent interval 2n/(n + 1) < p < (2n + 1)/(n + 1). Similarly, for the doubly
nonlinear diffusion equation, the rate of convergence remains unknown in the range

mc(p) < m < mc(p) +
1

n(p − 1)
=

n − p + 1

n(p − 1)
. (1.3)

Indeed, the proof of [3] is based on optimal transportation inequalities, which follows from the
displacement convexity [28] of the energy functional associated with (1.1), that is, HF (ρ) =
∫

Rn F [ρ] dx, where

F (x) =



















1

p − 1
x ln x if m =

1

p − 1

mxγ

γ(γ − 1)
if m 6=

1

p − 1
,

and

γ := m +
p − 2

p − 1
. (1.4)

This energy functional is displacement convex if and only if γ ≥ 1 − 1
n , or equivalently m ≥

(n − p + 1)/(n(p − 1)). This explains why the method of [3] does not extend to the interval (1.3).
The goal of this work is then precisely to derive a rate of convergence w.r.t the L1(Rn)-norm,

of the non-negative solution ρ of the Cauchy problem (1.1), to the Barenblatt solution ρD∗(t), as
t → ∞, provided that m belongs to the remaining exponent interval (1.3), that is,

n − p

n(p − 1)
< m <

n − p + 1

n(p − 1)
⇔ 1 −

q

n
< γ < 1 −

1

n
. (1.5)

For convenience we rewrite the Cauchy problem (1.1) as:















∂ρ

∂t
= div

{

ρ∇c∗
[

∇
(

F ′◦ρ
)]

}

, (x ∈ R
n, t > 0)

ρ(t = 0) = ρ0, (x ∈ R
n),

(1.6)

3



where c∗(x) = |x|p/p is the Legendre transform of the convex function

c(x) =
|x|q

q
,

1

p
+

1

q
= 1.

By rescaling in time and space ρ as follows:

ρ(t, x) =
1

R(t)n
u (τ, y) , (1.7)

where

τ = ln R(t), y =
x

R(t)
, R(t) = (1 + δpt)

1/δp , δp = (p − 1)(nm + 1) + 1 − n, (1.8)

it is easy to show that ρ solves (1.6) if and only if u solves the rescaled convection-diffusion
equation











∂u

∂τ
= div

{

u∇c∗
[

∇
(

F ′◦u
)]

+ uy
}

(y ∈ R
n, τ > 0)

u(τ = 0) = ρ0 (y ∈ R
n).

(1.9)

Moreover, by conservation of mass there exists a unique D∗ such that the Barenblatt profile uD∗

is the equilibrium solution of (1.9). Remark that in the considered range of exponents (1.5),
m(p − 1) − 1 < 0, and then

F (x) =
mxγ

γ(γ − 1)
, γ := m +

p − 2

p − 1
. (1.10)

Therefore, the Barenblatt profile is simply given by

uD∗(y) =

(

D∗ +
1 − γ

m
c(y)

)
1

γ−1

. (1.11)

In fact, uD∗ is the unique density function of same mass as u0 which satisfies on its support,

∇
(

F ′◦uD∗

)

= −∇c. (1.12)

The main result of our paper is the following:

Theorem 1.1 (Rates of convergence) Let m, p be in the range (1.5), and let u0 be a density
such that there exist positive constants D0 > D1 for which

uD0(x) ≤ ρ0(x) = u0(x) ≤ uD1(x) ∀ x ∈ R
n . (H1)

Consider u a solution to (1.9) with initial data u0, there exists a unique D∗ such that u(τ)
converges to the Barenblatt profile uD∗ in L1(Rn). Moreover, there exist a time τ0 and two
positive constants λ and M = M(m,n, p, u0, τ0) such that, for any time τ > τ0

‖u(τ) − uD∗‖L1(Rn) ≤ M e−
λ
2
τ . (1.13)
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As a consequence, for a time large enough the corresponding solution ρ(t) of (1.1) converges to
the Barenblatt solution ρD∗(t), algebraically fast in the L1-norm, at the rate λ/(2δp): there exist
a time t0 and a constant C = C(m,n, p, ρ0, t0) such that, for any time t > t0

‖ρ(t) − ρD∗(t)‖L1(Rn) ≤ C t−λ/(2δp), (1.14)

where δp = (p − 1)(nm + 1) + 1 − n.
The main tool is the following relative free energy with respect to the Barenblatt solution

uD∗ defined by

E [u|uD∗ ] :=

∫

Rn

[

F ◦u(y) − F ◦uD∗(y) − F ′◦uD∗(y)(u(x) − uD∗(y))
]

dy (1.15)

for any given u ∈ L1
+(Rn). Its derivative along the flow of (1.6) is formally given by

−
d

dτ
E [u(τ)|uD∗ ] = I[u(τ)|uD∗ ]

where

I[u(τ)|uD∗ ] :=

∫

Rn

u(τ, y)∇
(

F ′◦u(τ, y) + c(y)
)

·
(

∇c∗◦∇F ′◦u(τ, y) + y
)

dy .

In this paper, we prove that the relative entropy decays exponentially fast in the form

E [u(τ)|uD∗ ] ≤ e−β τE [u0|uD∗ ], (1.16)

for some β > 0. This is obtained in two steps. First, we linearise (1.9) at the equilibrium solution
uD∗ by using the linear perturbation u(τ) = uD∗ + ǫv(τ), and we show that the linearised
version of the relative energy converges to 0 exponentially fast, as in [10]. For that, we use
the Hardy-Poincaré inequality recently established by Blanchet, Bonforte, Dolbeault, Grillo and
Vázquez in [5]. Next, following the strategy in [6], we try to compare the relative energy and
the dissipation of the relative energy –that is, the Fisher information– for both linearised and
nonlinear equations, to deduce the exponential decay (1.16) for the nonlinear equation. The
main differences with respect to [6] lie in the fact that a direct relation between the linearised
and the nonlinear Fisher information is not clear due to the singular characters at the origin of
the weights when 1 < p < 2. Therefore, we are forced to use a sort of regularised linearised Fisher
information instead. Moreover, the control of the additional terms appearing in the regularised
entropy dissipation of the linearised problem and in the relation between the entropy dissipations
is more involved in our case.

We note that, based on our computations (see Remark 3.4), the Bakry-Emery approach used
in [10], which consists of differentiation twice the relative energy E[v(τ)] to estimate the spectral
gap at the eigenvalue 0, does not yield a positive result for our equation when 1 < p < 2, and
thus, a similar procedure to [11] for the doubly nonlinear equations is not feasible. Moreover, the
Hardy-Poincaré inequality used here to establish the linear stability is actually valid on a larger
interval, m∗(p) < m < mc(p)+ 1

n(p−1) , which includes our interval mc(p) < m < mc(p)+ 1
n(p−1) , as

m∗(p) < mc(p), where m∗(p) := n−2q
n−q + 2−p

p−1 . Therefore, our linearisation result extends naturally
to the interval m∗ < m ≤ mc(p) where mass conservation for the nonlinear equation fails. In
this range, one needs to carefully define the right class of initial data and a substitute of the
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Barenblatt solution, as done in [6] when p = 2. Here, we will not follow this path and we will
restrict ourselves to the case mc(p) < m < mc(p)+ 1

n(p−1) where mass is conserved to concentrate
in the main new difficulties.

The paper is organised as follows. In Section 2, we review and introduce the main estimates
on the solutions needed in the rest of the work. In particular, we prove the convergence of the
solution u(τ) of (1.9) to the equilibrium solution uD∗ in C1(Rn), as τ → ∞, with no rate. Then
in Section 3, we analyse a suitable linearised problem for which we apply an entropy-entropy
dissipation argument based on Hardy-Poincaré inequalities. Finally, Section 4 is devoted to
establish the exponential decay of u(τ) to uD∗ by the comparison between linear and nonlinear
relative entropy dissipations.

2 Convergence without rate

Let us start by reviewing some well-known facts about the global unique weak solutions associated
to (1.1) in the range of exponents considered. They conserve mass for all times, i.e.,

∫

Rn

ρ(t, x) dx =

∫

Rn

ρ0(x) dx ∀ t ∈ (0,∞) . (2.1)

From now on, D∗ is the unique positive real such that
∫

Rn

ρ0(x) dx =

∫

Rn

uD∗(x) dx . (2.2)

Moreover, solutions of the Cauchy problem to (1.1) enjoy a comparison principle and the L1-
contraction property. Due to the change of variables (1.7)-(1.8), these properties hold for the
solution u of the nonlinear Fokker-Planck equation (1.9). Since in the rest of this paper we will
only work with the scaled solutions of the nonlinear Fokker-Planck equation (1.9), from now on
we will use t instead of τ and x instead of y for the time and position variables respectively. The
quotient function

w(t, x) :=
u(t, x)

uD∗(x)

is solution to

∂w(t, x)

∂t
=

1

uD∗(x)
div

{

w(t, x)uD∗(x)
(

∇c∗◦∇
[

F ′◦(w(t, .)uD∗)
]

(x) −∇c∗◦∇
[

F ′◦uD∗

]

(x)
)}

.

Define

W0 := inf
x∈Rn

uD0(x)

uD∗(x)
≤ sup

x∈Rn

uD1(x)

uD∗(x)
:= W1 .

A straightforward calculation gives

W0 =

(

D∗

D0

)
1

1−γ

≤ 1 ≤

(

D∗

D1

)
1

1−γ

:= W1

with strict inequalities unless ρ0 = uD∗ . In terms of w0 = u0/uD∗ , the ”sandwich” assumption
on the initial data (H1) of Theorem 1.1 can be rewritten as follows: there exist positive constants
D0 > D1 such that

0 < W0 ≤
uD0(x)

uD∗(x)
≤ w0(x) ≤

uD1(x)

uD∗(x)
≤ W1 < ∞ ∀ x ∈ R

n . (H1’)
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Remark 2.1 Let us point out that the condition (H1) or (H1’) in the case of the fast diffusion
equation (p = 2) and in the corresponding range, 1 − 2/n < m < 1 − 1/n, is not restrictive.
In fact, as a consequence of the global Harnack principle proved in [7], the hypothesis (H1) is
satisfied by ρ(t) for any t > 0 with an initial data u0 ∈ L1

+(Rn). In the present case, a similar
Harnack principle, not available in the literature, would restrict the study of the asymptotic rates
to this particular set of initial data.

Let us first remind the standard regularity theory of degenerate parabolic equations [24, 27, 13,
14, 15, 26]:

Lemma 2.2 (Interior regularity estimates) Let Ω be a bounded set and {un}n be a sequence
of solutions to (1.9). If there exists t0 and 0 < C1 ≤ C2 such that for all t ≥ t0

C1 ≤ un(t) ≤ C2

then there exists C such that for all α ∈ (0, 1) and t ≥ t0, ‖un(t)‖C1,α ≤ C.

As a consequence we have

Lemma 2.3 (Uniform C1,α-estimates) Consider a solution u ∈ C([0,∞);L1(Rn)) of (1.9)
with initial data u0 satisfying (H1). If w = u/uD∗ then for any α ∈ (0, 1) and t0 ∈ (0,∞),

sup
t≥t0

‖w(t)‖C1,α(Rn) < ∞ .

Moreover, there exists C > 0 such that for any x ∈ R
n \ B1

|∇w(t, x)| ≤ C
w(t, x)

|x|
∀ t > 0. (2.3)

As a consequence,
|∇u| ∼|x|→∞ |x|q/(γ−1)+1 . (2.4)

Proof. Due to the comparison principle and the hypothesis (H1), the function u(t) is sandwiched
between the two Barenblatt profiles for all times, i.e.,

uD0 ≤ u(t) ≤ uD1 t ≥ 0,

and thus is uniformly bounded in B2, the Euclidean ball of radius 2, uniformly in t ≥ t0 > 0.
Due to Lemma 2.2, u(t) ∈ C1,α(B1), for any 0 ≤ α < 1 hold uniformly in t ≥ t0 > 0. Consider
w = u/uD∗ , then w is also bounded in C1,α(B1), for any 0 ≤ α < 1 uniformly in t ≥ t0 > 0. To
deal with large values of x we introduce, the rescaled function

uλ(t, x) := λp/(1−m)u(t, λx)

which is also solution to (1.9) but the annulus B2λ/Bλ gets mapped into the annulus Ω1 := B2/B1.
Note that all derivatives of the rescaled Barenblatt uD∗/λ are uniformly bounded from above and
below since

DβuD∗/λ → C Dβ

(

|x|
q(p−1)

m(p−1)−1

)

uniformly in Ω1 as λ → ∞
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for any multi-index β ∈ N
d. As a consequence, we get that uλ(t) is also uniformly bounded from

above and below in Ω1 uniformly in λ ≥ 1 and t ≥ t0 > 0. Again using the regularity theory of
the degenerate parabolic equation, we deduce that the C1,α-norm of uλ(t) and thus of wλ(t) in
Ω1 is also uniformly bounded for t ≥ t0 and λ ≥ 1 by a constant C1. Going back in the λ-scaling
we find a constant independent of λ > 1 such that

|∇w(t, λx)|

w(t, λx)
≤

C1

λ
in (t0,∞) (2.5)

in Ω1, and thus, the C1-norm of w(t) in R
n/B1 is uniformly bounded. Similar scaling argument

applies to the Hölder semi-norms. As a consequence of (2.5)

|∇w(t, λx)| ≤ C1
w(t, λx)

λ
≤ 2C1

w(t, λx)

λ|x|
.

We thus obtain (2.3) for any y = λx ∈ B2λ \ Bλ, and any λ > 0.
Note that ∇u = uD ∇w + w∇uD and thus we have (2.4). �

From this we can obtain the following result regarding the evolution of the relative entropy
to the stationary state.

Proposition 2.4 (Entropy/entropy production) Let u ∈ C([0,∞);L1(Rn)) be a solution
of (1.9) for an initial data satisfying (H1), and consider the free energy E defined by (1.15). Its
derivative along the flow of (1.9) is:

d

dt
E [u(t)|uD∗ ] = −I [u(t)|uD∗ ]

where

I [u(t)|uD∗ ] :=

∫

Rn

u(t)
[

∇
(

F ′◦u(t) − F ′◦uD∗

)]

·
[

∇c∗
(

∇
(

F ′◦u(t)
))

−∇c∗
(

∇
(

F ′◦uD∗

))]

dy

is the relative Fisher information of u(t) w.r.t. uD∗. Moreover, I [u(t)|uD∗ ] = 0 if and only if
u = uD∗.

Proof. By performing formally integration by parts, we get

d

dt
E [u(t)|uD∗ ] =

∫

Rn

[

F ′◦u(t) − F ′◦uD∗

]

div
{

u(t)∇c∗
[

∇
(

F ′◦u(t)
)]

+ u(t)y
}

dy

= −

∫

Rn

u(t)∇
[

F ′◦u(t) − F ′◦uD∗

]

·
{

∇c∗
[

∇
(

F ′◦u(t)
)]

+ y
}

dy.

The above energy dissipation follows using that uD∗ satisfies (1.12) and ∇c∗ ◦∇c = id. This
integration by parts can be justified using Lemma 2.3 by a standard argument introducing a
cut-off function like in [6, Proposition 2.6]. Since the arguments are exactly equal, we do not
perform any further details. By the convexity of c∗,

[∇c∗(a) −∇c∗(b)] · (a − b) ≥ 0 (2.6)

with equality if and only if a = b. So the Fisher information is non-negative and zero if and only
if u and uD∗ have the same mass and such that ∇ (F ′◦u(τ) − F ′◦uD∗) = 0, i.e. u = uD∗ . �

With these ingredients, we can obtain a first result of convergence toward stationary states.
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Lemma 2.5 (Uniform convergence) Let u ∈ C([0,∞);L1(Rn)) be a solution of (1.9) for an
initial data satisfying (H1), then limt→∞ w(t, x) = 1 uniformly in compact sets of R

n.

Proof. Define uh(t, x) := u(h + t, x), for any given h > 0 and t ∈ [0, 1]. It is also well-known [13]
that equi-bounded set of solutions of (1.1) are equi-continuous in time. This property carries
over to u(t) by the change of variables in (1.7). This fact together with the uniform bounds in
C1,α obtained in Lemma 2.2 and the Ascoli-Arzelá theorem implies that for any sequence (hn)n∈N

there exists a sub-sequence (hn)n∈N, denoted with the same index, such that {uhn}n∈N converges
to a function u∞ uniformly in compact sets of [0, 1] × R

n, and moreover, u∞(t) ∈ C1,α(Rn) for
all t ∈ [0, 1]. Since E [u(t)|uD∗ ] is non-increasing and positive it has a limit as t → ∞ and

∫ 1

0
I[u(s + hn)|uD∗ ] ds =

∫ hn+1

hn

I[u(s)|uD∗ ] ds = E [u(hn)|uD∗ ] − E [u(hn + 1))|uD∗ ] →t→∞ 0 ,

the function t 7→ I[uhn(t)|uD∗ ] is integrable on [0, 1] and converges to zero as n → ∞. By (2.6),
I is non-negative. By Fatou’s lemma we have

∫

Rn

lim
n→∞

uhn(t, x)∇
(

F ′◦uhn(t, x) + c(x)
)

·
(

∇c∗
[

∇F ′◦uhn(t, x) + ∇c∗◦∇c(x)
])

dx = 0 .

As a consequence of (2.6), u∞ satisfies ∇[F ′◦u∞(x) + c(x)] = 0, from which u∞ = uD for some
D > 0. By conservation of mass D = D∗. Since the limit of all the convergent sub-sequences is
uniquely determined by uD∗ , the result is proved. �

Proposition 2.6 (Convergence in Lp-spaces) Let u ∈ C([0,∞);L1(Rn)) be a solution of the
scaled doubly-nonlinear equation (1.9) for an initial data satisfying (H1), then

lim
t→∞

‖u(t) − uD∗‖p = 0 for any p ∈ [1,∞] and lim
t→∞

E [u(t)|uD∗ ] = 0 .

Proof. By Lemma 2.5, limt→∞ |u(t, x) − uD∗(x)| = 0 for any x ∈ R
n. Moreover, by assump-

tions (H1), for |x| large enough

|u(t) − uD∗ | ≤ max
{

|uD0 − uD∗ | , |uD1 − uD∗ |
}

= O
(

|x|−q(2−γ)/(1−γ)
)

.

So the difference between |u(t) − uD∗ |
θ is in L1(Rn) if θ > Θ(p,m) with

Θ(p,m) :=
n(1 − γ)

q(2 − γ)
.

It is easy to check that Θ(p,m) is a decreasing function of γ and so of m. Since q > 1, in the
range of exponents (1.5), we have

Θ(p,m) ≤ Θ(p,mc(p)) =
n

n + q
< 1 .

By Lebesgue’s dominated convergence theorem, it implies that u(t) converges to uD∗ in Lθ(Rn),
for any θ ∈ [1,∞). Finally, we use the following interpolation lemma, due to Nirenberg, [30, p.
126]:

‖f‖∞ ≤ C ‖f‖
n

n+2

C1(Rn)
‖f‖

2
n+2

2 ∀ f ∈ C(Rn) ,
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for f = u(t) − uD∗ together with (2.4) to obtain the result in the uniform norm.
By Taylor’s formula on the integrand of the relative entropy we have

F ◦u(x) − F ◦uD∗(x) − F ′◦uD∗(x) (u(x) − uD∗(x)) =
1

2
F ′′◦ξ(x)(u(x) − uD∗(x))2

with
uD∗(x)W0 ≤ min(u(x), uD∗(x)) ≤ ξ(x) ≤ max(u(x), uD∗(x))) ≤ uD∗(x)W1,

due to (H1), see also (H1’). For x large enough

C uγ−2
D0

(UD1 − UD0)
2 ∼ |x|−q(2−γ)/(1−γ) .

Since Θ(p,m) < 1, the integrand of the relative entropy is bounded by an integrable function.
The convergence to 0 of the relative entropy thus holds by the Lebesgue dominated convergence
theorem. �

Remark 2.7 In contrast with [6], we do not generally have the convergence in C1,α(Rn).

3 Linear stability

To prove the decay (1.16) of u(t) to uD∗ in the energy form, it is sufficient to establish the
following nonlinear Hardy-Poincaré type inequality:

E [u|uD∗ ] ≤
1

β
I [u|uD∗ ] , (3.1)

for some β > 0 and u ∈ C1,α(Rn) verifying (H1). Indeed, (3.1) combined with Proposition 2.4
yield

d

dt
E [u(t)|uD∗ ] ≤ −βE [u(t)|uD∗ ] ,

and this leads to the energy decay (1.16) by a simple Gronwall argument. To prove (3.1), we
will first show a linearised version of this inequality – i.e., a weighted Poincaré inequality –, by
considering the perturbation u(t) = uD∗ + ǫv(t) of the solution u(t) to (1.9). This will lead to
the convergence of v(t) to 0 in relative entropy for the linearised equation of (1.9), as we will
show below. Next section will be devoted to compare the relative entropy and Fisher information
in (3.1) with their linearised analogues.

For clarity in our exposition, let us start by formally deriving the form of the weighted
Poincaré inequality that we will be dealing with below. Using the perturbation u = uD∗ + ǫv
and the second order Taylor expansion of F (uD∗ + ǫv) at ǫ = 0 on the expression of the relative
entropy (1.15), we have that

F ◦u − F ◦uD∗ = ǫvF ′(uD∗) +
ǫ2

2
v2F ′′◦uD∗ + O(ǫ3),

and then E [u|uD∗ ] linearises as:

E [u|uD∗ ] =
ǫ2

2

∫

Rn

v2F ′′◦uD∗ + O(ǫ3).
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Let us hence introduce the weighted L2-norm:

E [v] =
1

2

∫

Rn

v2(x)F ′′◦uD∗(x) dx, (3.2)

which will play the role of the linearised relative entropy.
Concerning the linearisation of the Fisher information, from the first order Taylor expansion

of F ′◦u = F ′ (uD∗ + ǫv) at ǫ = 0, we have

B := ∇
[

F ′◦u
]

= A + ǫW + O(ǫ2). (3.3)

with
A := ∇

[

F ′◦uD∗

]

= ∇c and W := ∇
[

vF ′′◦uD∗

]

. (3.4)

Then using that ∇c∗(z) = z|z|p−2, we obtain

∇c∗(B) = ∇c∗(A) + ǫ|A|p−2W + ǫ(p − 2)|A|p−4(A · W )A + O(ǫ2). (3.5)

Combining (3.3) and (3.5), we see that I [u|uD∗ ] formally linearises as:

I [u|uD∗ ] = ǫ2

∫

Rn

uD∗ |A|p−2|W |2 dx + ǫ2(p − 2)

∫

Rn

uD∗ |A|p−4(A · W )2 dx + O(ǫ3).

Hence, for ǫ small enough, the nonlinear Hardy-Poincaré inequality (3.1) linearises as

β

2

∫

Rn

v2F ′′◦uD∗ ≤

∫

Rn

uD∗ |∇c|p−2|∇
[

vF ′′◦uD∗

]

|2 dx (3.6)

+ (p − 2)

∫

Rn

uD∗ |∇c|p−4
[

∇c · ∇
(

vF ′′◦uD∗

)]2
dx.

It will be shown below that the l.h.s of (3.6) is a Lyapunov function – and the relative entropy
– for the linearised equation of (1.9), and the r.h.s of (3.6) corresponds to the dissipation of this
relative entropy, up to a constant.

Let u be the solution of (1.9), and consider the small perturbation

u(t) = uD∗ + ǫv(t) (3.7)

of uD∗ , where ǫ > 0 is small, and v(t) ∈ C1,α(Rn) for some α ∈ (0, 1). Because of the mass-
conservation (2.1)-(2.2), we have using the rescaling (1.7)-(1.8), that

∫

Rn

v(t, x) dx = 0, ∀t ≥ 0.

Moreover (3.7) implies that
∂u

∂t
= ǫ

∂v

∂t
. (3.8)

On the other hand, using (1.12), we have that ∇c∗ (A) = ∇c∗[−∇c(x)] = −x, and then (3.5)
gives that

u [∇c∗ (B) + x] = ǫuD∗

[

|A|p−2W + (p − 2)|A|p−4(A · W )W
]

+ O(ǫ2). (3.9)
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Inserting (3.8)-(3.9) into (1.9), we formally obtain after simplifying by ǫ and then setting ǫ = 0,
that the linearised problem to (1.9) is:











∂v

∂t
= div

{

uD∗

(

|A|p−2W + (p − 2)|A|p−4(A · W )A
)

}

(x ∈ R
n, t > 0)

v(t = 0) = v0 (x ∈ R
n),

(3.10)

with v0 ∈ L1(Rn) of zero average. We can easily check that Eq. (3.10) has the linearised relative
entropy (3.2) as Lyapunov functional. Actually, differentiating E [v(t)] along a solution v of (3.10),
we formally have by a straightforward computation, that

d

dt
E [v(t)] = − (I [v(t)] + (p − 2)I0 [v(t)]) , (3.11)

where

I [v(t)] =

∫

Rn

|W (t)|2uD∗ |A|p−2 dx and I0 [v(t)] =

∫

Rn

(A · W (t))2 uD∗ |A|p−4 dx.

The Cauchy-Schwarz inequality implies that |A|p−4 (A · W (t)) ≤ |A|p−2|W (t)|2, and as a conse-
quence, I0 [v(t)] ≤ I [v(t)]. Using 1 < p < 2, we have

I [v(t)] + (p − 2)I0 [v(t)] ≥ (p − 1)I [v(t)] ≥ 0. (3.12)

In case p > 2, it is direct that I [v(t)] + (p − 2)I0 [v(t)] ≥ I [v(t)] ≥ 0. From these estimates, the
dissipation (3.11) and |A(x)| = |∇ [F ′◦uD∗ ] (x)| > 0 for all x ∈ R

n, we readily formally conclude
that the unique steady state is the zero solution.

The objective of the rest of this section is to show the following asymptotic exponential
relaxation of the linearised equation (3.10):

Theorem 3.1 Let m satisfying (1.5) and v0 ∈ L1(Rn) with zero average. Consider v(t) the
solution to (3.10) with initial data v0. There exists a constant β > 0 such that

E [v(t)] ≤ e−βt
E[v0]. (3.13)

Let us concentrate first in the case 1 < p < 2. To derive this exponential rate of convergence,
we establish the following functional inequality

E [v] ≤
1

β
(I [v] + (p − 2)I0 [v]) , β > 0,

for all v ∈ C1,α(Rn) with zero average. This inequality corresponds to the formal linearisa-
tion (3.6) of the nonlinear Hardy-Poincaré inequality (3.1). In fact, because of (3.12), it is
sufficient to prove the following weighted Poincaré type inequality:

E [v] ≤
p − 1

β
I [v] , β > 0 (3.14)

for all v ∈ C1,α(Rn) with zero average. This is equivalent to show the Hardy-Poincaré type
inequality:

∫

Rn

g2 dµ(x) ≤ β̃

∫

Rn

|∇g|2 dν(x), (3.15)
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for some β̃ > 0, where g is any function satisfying
∫

Rn g dµ(x) = 0, and

dµ(x) =
dx

F ′′◦uD∗(x)
, dν(x) = uD∗(x)|∇

(

F ′◦uD∗(x)
)

|p−2 dx. (3.16)

Note that the functions v and g in (3.14)-(3.15) are related by g = v F ′′◦uD∗ , and β̃ = 2(p−1)/β.
The inequality (3.15) is also enough to prove the needed inequality in the case p > 2 since (3.11)
implies that

d

dt
E [v(t)] ≤ −I [v(t)] .

Lemma 3.2 (Hardy-Poincaré type inequality) Let m,n, p be such that 1 < p < ∞ and
mc(p) < m < n−p+1

n(p−1) . Then, there exits a constant β̃ > 0 such that

∫

Rn

g2 dµ(x) ≤ β̃

∫

Rn

|∇g|2 dν(x),

for any function g ∈ C1,α̃(Rn) satisfying
∫

Rn g dµ(x) = 0 with 0 < α̃ < 1, where µ and ν are
defined by (3.16).

We keep calling this inequality, “Hardy-Poincaré inequality” to remind the link with the
inequality proved in [5, 6], but here we only use the Poincaré type part of the inequality. The
proof of the Hardy-Poincaré inequality was performed in [5, 6] and an estimate of the constant
β̃ is also established. This proof can be adapted to Lemma 3.2. For completeness, we give here
the proof of this variant of the Hardy-Poincaré inequality.

Proof. We first observe that we can reduce to show the inequality for the Schwartz class g ∈ D(Rn)
by simple approximation arguments. In L2(Rn, dµ) we consider the closable quadratic form
v 7→ Q(v) :=

∫

Rn |∇g|2 dν and −L the unique non-negative, self-adjoint operator in L2(Rn,dµ)
associated with the closure of Q. By Persson’s theorem [32]

inf σess(−L) = lim
R→∞

inf
v∈HR

Q(v)
∫

Rn |g|2 dµ

where HR := {v ∈ H1(Rd, dν) : supp(v) ⊂ R
n \ B(0, R)}. Roughly speaking it means that

the inequality is true for any weights with the same behaviour in a neighbourhood of +∞. By a
straightforward computation using (1.12) and (1.11), we have that

dµ(x) =
1

m

(

D∗ +
1 − γ

mq
|x|q

)
2−γ

γ−1

dx ∼|x|→∞
1

m

(

1 − γ

m q

)
2−γ

γ−1

|x|2α−2 dx

and

dν(x) = |x|2−q

(

D∗ +
1 − γ

mq
|x|q

)
1

γ−1

dx ∼|x|→∞

(

1 − γ

m q

)
1

γ−1

|x|2α dx

with α chosen in such a way that q(2− γ)/(γ − 1) = 2(α− 1) and 2− q + q/(γ − 1) = 2α, that is,

α = 1 +
q(2 − γ)

2(γ − 1)
or equivalently α =

2 − q

2
+

q

2(γ − 1)
.
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It is left to the reader to check that α < −(d − 2)/2 in the range of 1 < p < ∞ and mc(p) < m,
and thus, we can apply [5, Theorem 1] to obtain

inf σess(−L) ≥
1 − γ

q
κα

where κα is the constant of the following Hardy inequality with weight, see also [6]. We refer to
[5, Theorem 1] for estimates on the constant κα depending of −n < α or α ≤ −n, see also [6].
We remark that both cases happen depending on the precise values of mc(p) < m < n−p+1

n(p−1) and
1 < p < ∞.

The lowest eigenvalue of −L is λ1 = 0 with eigenfunctions given by the constants functions.
Zero mean-value solutions belong to the orthogonal set to the eigenspace associated to λ1. Since
λ1 is non-degenerate we obtain the desired result for some λ2 ∈ (0, κα]. �

Since the only behaviour of the weights that counts is their growth at infinity, we can avoid
the singularity of the weight at the origin for the singular case 1 < p < 2 directly to obtain the
following stronger inequality.

Corollary 3.3 For any ǫ > 0, there exists a constant β̃ǫ > 0 such that

∫

Rn

g2 dµ(x) ≤ β̃ǫ

∫

Rn

|∇g|2 dνǫ(x),

for any function g ∈ C1,α(Rn) satisfying
∫

Rn g dµ(x) = 0, where µ is defined by (3.16), and

dνǫ(x) = uD∗(x)
(

ǫ + |∇
(

F ′◦uD∗(x)
)

|
)p−2

dx.

Therefore, setting v = g/(F ′′◦uD∗), we have the stronger weighted Poincaré inequality

E [v] ≤
β̃ǫ

2
I
(ǫ) [v] (3.17)

for all v ∈ C1,α̃(Rn) with zero average and 0 < α̃ < 1, where

I
(ǫ)[v] =

∫

Rn

|∇
(

vF ′′◦uD∗

)

|2
(

ǫ + |∇
(

F ′◦uD∗

)

|
)p−2

uD∗ dx. (3.18)

Remark 3.4 The Bakry-Emery approach used in [10] to establish the weighted Poincaré inequal-
ity inequality (3.14) when p = 2, does not seem to apply here when 1 < p < 2. For illustration, let
us consider the particular case m = n = 1, that is the linearisation of the 1-dimensional rescaled
p-Laplacian equation, ∂tv = div {(p − 1)uD∗ |A|p−2W}, where A and W are defined by (3.4). In
this case, the relative entropy dissipation equation (3.11) simplifies as

dE [v(t)]

dt
= −(p − 1)I [v(t)] ,

and it is easy to show that its dissipation is

−
dI [v(t)]

dt
= 2(p − 1)2D [v(t)|vD∗ ] ,
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where

D [v(t)|vD∗ ] =

∫

Rn

F ′′◦uD∗

[

div
(

uD∗ |A|p−2W
)]2

dx.

Following [10], if one can establish the estimate D [v(t)|vD∗ ] ≥ λI [v(t)|vD∗ ] for some λ > 0,
then it will imply the weighted Poincaré inequality (3.14). But by a direct computation, we can
show that

D [v(t)|vD∗ ] =

(

1 +
(p − 2)2

p(p − 1)

)

I (v(t)|vD∗) +

∫

Rn

F ′′ ◦ uD∗

(

uD∗ |A|p−2divW
)2

dx

+ K
p − 2

(p − 1)2

∫

Rn

uD∗ |A|p−2W 2|y|−q dx. (3.19)

Note that the second term in the above expression is non-negative (because F is convex), while the
last term is non-positive in the range 1 < p < 2. If p ≥ 2, the last term is also non-negative and
we obtain D (v(t)|vD∗) ≥ I (v(t)|vD∗), that is λ = 1. This then yields the desired inequality (3.14)
when p ≥ 2. But if 1 < p < 2, one cannot derive this estimate from (3.19), at least at cursory
glance.

Proof of Theorem 3.1 We apply Lemma 3.2 to g(t) = v(t)F ′′◦uD∗ and β = 2(p−1)/β̃. By (3.11)
and (3.12) we have

dE [u(t)]

dt
≤ −βE [v(t)] .

This leads to (3.13) by a Gronwall estimate. �

4 Nonlinear stability

The first step to go from linear to nonlinear stability is to use that our solution is sandwiched
between two Barenblatt profiles to compare the nonlinear relative entropy and its dissipation
with their linearised counterparts.

Proposition 4.1 (Comparison linear/nonlinear relative entropy) Consider a function u
satisfying (H1). Then there exist positive constants C1 and C2 such that

C1 E[u − uD∗ ] ≤ E [u|uD∗ ] ≤ C2 E[u − uD∗ ] .

Proof. The asserted result follows from the end of the proof of Proposition 2.6 with C1 := mW γ−2
0

and C2 := mW γ−2
1 . �

The next objective is to compare the nonlinear Fisher information, I [u(t)|uD∗ ], with its linear
analogue, I [u(t) − uD∗ ] along solutions of (1.9). Let us point out that the weight

|∇
(

F ′◦uD∗

)

|p−2 = |x|2−q

in the linearised entropy dissipation diverges at the origin for 1 < p < 2. This singular behaviour
makes complicated any attempt to compare it with nonlinear Fisher analogues. Due to the
singularity of the weight |∇ (F ′◦uD∗) |p−2 at x = 0, we will replace I [u(t) − uD∗ ] by its regularised
analogue I(ǫ) [u(t) − uD∗ ] defined by (3.18), where ǫ > 0 is a fixed constant.
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Proposition 4.2 (Comparison linear/non-linear Fisher information) Assume that u is
the solution of (1.9), and set v = u − uD∗. Then:

1. Case 1 < p < 2: Given ǫ > 0, there exist t0 > 0 and positive constants κ1 and κ2 such that
for all t > t0,

I
(ǫ) [v(t)] ≤ κ1 I [u(t)|uD∗ ] + κ2E [v(t)] . (4.1)

2. Case p > 2: There exist t0 > 0 and positive constants κ1 and κ2 such that for all t > t0,

I [v(t)] ≤ κ1 I [u(t)|uD∗ ] + κ2E [v(t)] . (4.2)

Moreover κ2 can be chosen arbitrary small provided that t0 is large enough.

The proof of this proposition is organised as follows:
Claim 1: We first show that, for all ǫ ≥ 0 and 1 < p < 2 and for ǫ = 0 if p ≥ 2, there exists
κ0 > 0 such that

I (ǫ) [v(t)] ≤ κ0I
(ǫ)
γ [v(t)] + κ2E [v(t)] , (4.3)

where

I (ǫ)
γ [v] =

∫

Rn

∣

∣∇
[

F ′◦u − F ′◦uD∗

]∣

∣

2 (

ǫ + |∇
(

F ′◦uD∗(x)
)

|
)p−2

uD∗ dx. (4.4)

Claim 2: Next we show that if 1 < p < 2, then for all ǫ > 0 there exists δ > 0 such that

I (ǫ)
γ [v(t)] ≤ δI [u(t)|uD∗ ] , (4.5)

whereas if 2 < p < ∞, then there exists δ > 0 such that

Iγ [v(t)] ≤ δI [u(t)|uD∗ ] . (4.6)

Combining (4.3) and (4.5)-(4.6), we obtain the desired inequalities (4.1)-(4.2) with κ1 = δκ0;

here Iγ = I
(0)
γ and I = I(0).

Proof of Claim 1: Here we follow the arguments of the proof of Lemma 5.1 in [6]. Indeed, let
hk(w) = (wk−1 − 1)/(k − 1), where

w(t, x) =
u(t, x)

uD∗(x)
.

Because of assumption (H1), we have that W0 ≤ w(t, x) ≤ W1, where the constant W0 and W1

are such that 0 < W0 < 1 < W1. By studying the function h2/hγ on [W0,W1], we have

α0hγ(w)2 ≤ h2(w)2 ≤ α1hγ(w)2, (4.7)

and
h′

2(w)2 ≤ α2h
′
γ(w)2,

where

α0 := |γ − 1|2

∣

∣

∣

∣

∣

W0 − 1

W γ−1
0 − 1

∣

∣

∣

∣

∣

2

< 1, α1 := |γ − 1|2

∣

∣

∣

∣

∣

W1 − 1

W γ−1
1 − 1

∣

∣

∣

∣

∣

2

> 1
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and
α2 := W

2(2−γ)
1 > 1.

Now, define

I
(ǫ)
k [v] := m2

∫

Rn

∣

∣

∣
∇

(

uγ−1
D∗ hk(w)

)
∣

∣

∣

2
(ǫ + |x|q−1)p−2uD∗ dx.

We have that I (ǫ) = I
(ǫ)
2 and for k = γ, I

(ǫ)
γ is defined in (4.4). Next we compute I

(ǫ)
k [v]. By

expanding
∣

∣

∣
∇

(

uγ−1
D∗ hk(w)

)∣

∣

∣

2
, we have

I
(ǫ)
k [v] = m2

∫

Rn

u2γ−1
D∗ h′

k(w)2|∇w|2(ǫ + |x|q−1)p−2 dx

+(1 − γ)2
∫

Rn

hk(w)2|x|2(q−1)(ǫ + |x|q−1)p−2uD∗ dx

+2m(1 − γ)

∫

Rn

uγ
D∗h

′
k(w)hk(w)|x|q−2(ǫ + |x|q−1)p−2∇w · x dx.

Integrating by parts, the last integral can be rewritten as

∫

Rn

uγ
D∗h

′
k(w)hk(w)|x|q−2(ǫ + |x|q−1)p−2∇w · x dx

=
1

2

∫

Rn

∇
(

hk(w)2
)

· |x|q−2x(ǫ + |x|q−1)p−2uγ
D∗ dx

= −
1

2

∫

Rn

hk(w)2div
(

|x|q−2x(ǫ + |x|q−1)p−2uγ
D∗

)

dx

= −
1

2

∫

Rn

hk(w)2div
(

|x|q−2x(ǫ + |x|q−1)p−2
)

uγ
D∗ dx

+
γ

2m

∫

Rn

hk(w)2|x|2(q−1)(ǫ + |x|q−1)p−2uD∗ dx.

Then, for ǫ ≥ 0 if 1 < p < 2 and ǫ = 0 if p > 2,

I
(ǫ)
k [v] = m2

∫

Rn

u2γ−1
D∗ h′

k(w)2|∇w|2(ǫ + |x|q−1)p−2 dx

+ (1 − γ)

∫

Rn

hk(w)2|x|2(q−1)(ǫ + |x|q−1)p−2uD∗ dx

− m(1 − γ)

∫

Rn

hk(w)2div
(

|x|q−2x(ǫ + |x|q−1)p−2
)

uγ
D∗ dx. (4.8)

Next we set κ0 := max(α1, α2). Moreover, since w uniformly converges to 1 as t goes to ∞, then
α0, α1, α2 and κ0 > 1 can be chosen arbitrary close to 1 provided that t > t0, for some t0 large
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enough. Combining (4.7)-(4.8), we have

I (ǫ)[v] = I
(ǫ)
2 [v] ≤m2α2

∫

Rn

u2γ−1
D∗ h′

γ(w)2|∇w|2(ǫ + |x|q−1)p−2 dx

+ α1(1 − γ)

∫

Rn

hγ(w)2|x|2(q−1)(ǫ + |x|q−1)p−2uD∗ dx

− m(1 − γ)

∫

Rn

h2(w)2div
(

|x|q−2x(ǫ + |x|q−1)p−2
)

uγ
D∗ dx

≤ κ0I
(ǫ)
γ [v] + m(1 − γ)

∫

Rn

uγ
D∗div

(

|x|q−2x(ǫ + |x|q−1)p−2
) (

κ0hγ(w)2 − h2(w)2
)

dx.

The integration by parts is valid as

hγ(w)2 |x|uγ
D∗ ∼ h2(w)2 |x|uγ

D∗ ∼ (UD0 − UD1)
2 |x|Uγ−2

D∗ ∼ |x|−q(2−γ)/(1−γ)+1−n

Finally, we observe that 0 ≤ κ0hγ(w)2−h2(w)2 ≤ (κ0/α0 − 1) h2(w)2 and by direct computation

∣

∣ div
(

|x|q−2x(ǫ + |x|q−1)p−2
)
∣

∣ ≤ n + 2(q − 2), (4.9)

which is valid for ǫ ≥ 0 if 1 < p < 2 and ǫ = 0 if p > 2. We then deduce that

I (ǫ)[v(t)] ≤ κ0I
(ǫ)
γ [v(t)] + κ2E [v(t)]

with κ2 := 2(κ0/α0 − 1)(1 − γ)(n + 2(q − 2)) > 0. Clearly κ2 is arbitrary small provided that t0
is large enough since κ0/α0 = max(α1/α0, α2/α0) > 1 gets arbitrarily close to 1. �

Proof of Claim 2 – (Case 1: 1 < p < 2): First we expand I
(ǫ)
γ [v(t)] and I [u(t)|uD∗ ], and we have

that

I (ǫ)
γ [v(t)] =

∫

Rn

|∇
[

F ′ ◦ u
]

|2(ǫ + |∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

+

∫

Rn

|∇
[

F ′ ◦ uD∗

]

|2(ǫ + |∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

− 2

∫

Rn

∇
[

F ′ ◦ u
]

· ∇
[

F ′ ◦ uD∗

]

(ǫ + |∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

and

I [u(t)|uD∗ ] =

∫

Rn

∣

∣∇
[

F ′ ◦ u
]
∣

∣

p
u dx +

∫

Rn

|∇
[

F ′ ◦ uD∗

]

|pu dx

−

∫

Rn

∇
[

F ′ ◦ u
]

· ∇c∗
(

∇
[

F ′ ◦ uD∗

])

u dx

−

∫

Rn

∇
[

F ′ ◦ uD∗

]

· ∇c∗
(

∇
[

F ′ ◦ u
])

u dx.

Next we use Young inequality a · b ≤ c(a) + c∗(b) with c(z) = |z|q/q, a = ∇c∗ (∇ [F ′ ◦ u]) and
b = ∇ [F ′ ◦ uD∗ ], to have that

∇
[

F ′ ◦ uD∗

]

· ∇c∗
(

∇F ′(u)
)

≤
1

q

∣

∣∇
[

F ′ ◦ u
]
∣

∣

p
+

1

p
|∇

[

F ′ ◦ uD∗

]

|p,
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Then I [u(t)|uD∗ ] can be estimated as

I [u(t)|uD∗ ] ≥
1

p

∫

Rn

∣

∣∇
[

F ′ ◦ u
]∣

∣

p
u dx +

1

q

∫

Rn

∣

∣

(

∇
[

F ′ ◦ uD∗

])∣

∣

p
u dx

−

∫

Rn

∇
[

F ′ ◦ u
]

· ∇c∗
(

∇
[

F ′ ◦ uD∗

])

u dx

=
1

p

∫

Rn

∣

∣∇
[

F ′ ◦ u
]
∣

∣

p
u dx +

1

q

∫

Rn

|
(

∇
[

F ′ ◦ uD∗

])

|pu dx

+
nm

γ

∫

Rn

uγ dx. (4.10)

Now, we compute the cross term of I
(ǫ)
γ [v(t)]. We have that

∫

Rn

∇
[

F ′ ◦ u
]

) · ∇
[

F ′ ◦ uD∗

]

(ǫ+|∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

=
m

1 − γ

∫

Rn

∇(uγ−1) · x|x|q−2(ǫ + |x|q−1)p−2uD∗ dx

= −
m

1 − γ

∫

Rn

uγ−1 div
(

x|x|q−2(ǫ + |x|q−1)p−2uD∗

)

dx

= −
m

1 − γ

∫

Rn

uγ

w
div

(

x|x|q−2(ǫ + |x|q−1)p−2
)

dx

+
1

1 − γ

∫

Rn

wγ−1uD∗ |x|2(q−1)(ǫ + |x|q−1)p−2 dx.

Since the last term in the above sum is non-negative, then using (4.9) and the fact that 1 < p < 2,

we can estimate I
(ǫ)
γ [v(t)] as

I (ǫ)
γ [v(t)] ≤

∫

Rn

∣

∣∇
[

F ′ ◦ u
]
∣

∣

2
(ǫ + |∇

[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

+

∫

Rn

|∇
[

F ′ ◦ uD∗

]

|2(ǫ + |∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

+
2m

1 − γ

∫

Rn

uγ

w
div

(

x|x|q−2(ǫ + |x|q−1)p−2
)

dx

≤

∫

Rn

∣

∣∇
[

F ′ ◦ u
]
∣

∣

2
(ǫ + |∇

[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

+

∫

Rn

|∇
[

F ′ ◦ uD∗

]

|2(ǫ + |∇
[

F ′ ◦ uD∗

]

|)p−2uD∗ dx

+
2m(n + 2(q − 2))

1 − γ

∫

Rn

uγ

w
dx

≤

∫

Rn

∣

∣∇
[

F ′ ◦ u
]∣

∣

p
Φǫ(u, uD∗)2−puD∗ dx +

∫

Rn

|∇
[

F ′ ◦ uD∗

]

|puD∗ dx

+
2m(n + 2(q − 2))

1 − γ

∫

Rn

uγ

w
dx,

where

Φǫ(u, uD∗) :=
|∇ [F ′ ◦ u]|

ǫ + |∇ [F ′ ◦ uD∗ ] |
.
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Let us check that Φǫ(u, uD∗) is uniformly bounded. Using Lemma 2.3 we are reduced to work at
|x| ∼ ∞. Actually, we need to show that |∇(uγ−1)|/|∇(Uγ−1

D∗ )| is uniformly bounded for |x| > R
and t > t0. Due to (H1) it is sufficient to prove that |∇u|/|∇UD∗ | is uniformly bounded for
|x| > R and t > t0. Since ∇u = w∇UD∗ + UD∗∇w, for |x| > R and t > t0 we have

|∇u|

|∇UD∗ |
≤ |w| +

|∇w|

|∇UD∗ |
∇UD∗ .

Using (2.3), we have |∇w| ∼ O(|x|−d) and thus |∇w|/|∇UD∗ |∇UD∗ is bounded for |x| > R and
t > t0. Therefore Φǫ(u, uD∗) is uniformly bounded and thus Φǫ(u, uD∗) ≤ η for some η depending
on ǫ and t0. We obtain the estimate

I (ǫ)
γ [v(t)] ≤

η2−p

W0

∫

Rn

∣

∣∇
[

F ′ ◦ u
]
∣

∣

p
u dx +

1

W0

∫

Rn

∣

∣∇
[

F ′ ◦ uD∗

]
∣

∣

p
u dx

+
2m(n + 2(q − 2))

(1 − γ)W0

∫

Rn

uγ dx. (4.11)

Combining (4.10) and (4.11), and setting

δ :=
1

W0
max

(

pη2−p, q,
2γ(n + 2(q − 2))

n(1 − γ)

)

,

we deduce (4.5). �

Proof of Case 2: 2 < p < ∞ (of Claim 2): As above, we have the expression

Iγ [v(t)] =

∫

Rn

∣

∣∇
[

F ′◦u − F ′◦uD∗

]∣

∣

2
|∇

(

F ′◦uD∗(x)
)

|p−2uD∗ dx.

For convenience, we can also rewrite I (u(t)|uD∗) as

I [u(t)|uD∗ ] =

∫

K
H[u|uD∗ ]

∣

∣∇
[

F ′◦u − F ′◦uD∗

]
∣

∣

2
u dy,

where

H[u(t)|uD∗ ] =
∇ (F ′◦u − F ′◦uD∗) · [∇c∗ [∇ (F ′◦u)] −∇c∗ [∇ (F ′◦uD∗)]]

|∇ (F ′◦u − F ′◦uD∗) |2

and K := {x ∈ R
n such that |∇ [F ′◦u − F ′◦uD∗ ] | 6= 0}. Let us show that there exist a constant

δ > 0, such that for all t > t0,

H[u(t)|uD∗ ] ≥ δ |∇
(

F ′◦uD∗

)

|p−2. (4.12)

Let us remark, if p = 2, then δ = 1, and equality holds in (4.12).
For simplicity, set a(t) = ∇ (F ′◦u(t)) and aD∗ = ∇ (F ′◦uD∗). It is clear that (4.12) holds

in the set where aD∗ = 0. Therefore, let us restrict to the set where aD∗ 6= 0 without loss of
generality. Let us denote b(t) = a(t)/|aD∗ | and bD∗ = aD∗/|aD∗ |. It is straightforward to check
that

H[u(t)|uD∗ ]

|∇ (F ′◦uD∗) |p−2
=

(b(t) − bD∗) ·
(

|b(t)|p−2b(t) − bD∗

)

|b(t) − bD∗ |2
. (4.13)
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Let θ denote the angle between b(t) and bD∗ . We have that

|b − bD∗ |2 = |b|2 + |bD∗ |2 − 2b cos θ = 1 + |b|2 − 2b cos θ,

and

(b − bD∗) ·
(

|b|p−2b − bD∗)
)

= |b|p − |b| cos θ − |b|p−1 cos θ + |bD∗ |2 = 1 + |b|p − (|b| + |b|p−1) cos θ

so that (4.13) reads as:

H[u(t)|uD∗ ]

|∇ (F ′◦uD∗) |p−2
=

1 + r(t)p −
(

r(t) + r(t)p−1
)

x(t)

1 + r(t)2 − 2r(t)x(t)

where r(t) = |b(t)| ≥ 0 and x(t) = cos θ ∈ [−1, 1], with r(t) → 1 as t → ∞. Estimate (4.12) is
reduced to show that

fp(r, x) :=
1 + rp − (r + rp−1)x

1 + r2 − 2rx
≥ δ, (4.14)

for all x ∈ [−1, 1] and for all r ≥ 0. For that, let us define the function

Fp(r, x) := 1 + rp − (r + rp−1)x − δ(1 + r2 − 2rx),

which is easily checked to be decreasing in x for r > 0, whenever δ ≤ 1
2 . Therefore, we have

Fp(r, x) > Fp(r, 1) and thus, to show (4.14) for r > 0 and −1 ≤ x < 1 is reduced to show that
Fp(r, 1) ≥ 0, whenever δ ≤ 1

2 . Since Fp(1, 1) = 0, this is equivalent to show that fp(r, 1) ≥ δ for
0 < r < 1 and r > 1. The last assertion comes from the fact that when p > 2,

fp(r, 1) =
(rp − r) − (rp−1 − 1)

(r − 1)2
=

(r − 1)(rp−1 − 1)

(r − 1)2
=

rp−1 − 1

r − 1

is bounded below by 1, since in 0 < r < 1, we have rp−1 − 1 < r − 1 < 0; in r > 1, we have
rp−1 − 1 > r − 1 > 0; and limr→1 fp(r, 1) = p − 1 > 1. Therefore,

fp(r, 1) ≥ 1 >
1

2
≥ δ.

�

Proof of the main theorem, Theorem 1.1: Given 1 < p < 2 and ǫ > 0, set v = u − uD∗ . From
Proposition 4.2 and the strong weighted Poincaré inequality (3.17), we have that

E [v(t)] ≤
κ1β̃ǫ

2 − κ2β̃ǫ

I [u(t)|uD∗ ] ,

where κ2 can be chosen arbitrary small provided that t > t0 is large enough. This together with
proposition 4.1 yields the Hardy-Poincaré type inequality:

E [u(t)|uD∗ ] ≤
1

λ
I [u(t)|uD∗ ] , (4.15)

where λ :=
(

2 − κ2β̃ǫ

)

/C2κ1β̃ǫ > 0. We combine (4.15), limt→∞ E [u(t))|uD∗ ] = 0 (see Proposi-

tion 2.6) and the entropy dissipation equation

d

dt
E [u(t)|uD∗ ] = −I[u(t)|uD∗ ]
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to obtain the exponential decay of the relative entropy, E [u(t)|uD∗ ] ≤ e−λtE [u0|uD∗ ]. The L1-
decay (1.13) follows from the Csiszàr-Kullback type inequality (see for e.g., [3]),

‖u(t) − uD∗‖2
L1(Rn) ≤ M(n, n, p)E [u(t)|uD∗ ] , M(m,n, p) > 0,

and (1.14) is a direct consequence of the rescaling (1.7)-(1.8). The case p > 2 follows analogously
without need of using the regularised entropy dissipation. �

Remark 4.3 The rate of convergence λ in Theorem 1.1 can be explicitly reconstructed in the
above computation for a given choice of ǫ for p < 2, but t0 will depend on the choice of ǫ. For
p > 2, we can even give an explicit range for the constant λ.
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