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Abstract

We consider the long-term dynamics of the vanishing stepsize subgradient method in the case
when the objective function is neither smooth nor convex. We assume that this function is locally
Lipschitz and path differentiable, i.e., admits a chain rule. Our study departs from other works in
the sense that we focus on the behavior of the oscillations, and to do this we use closed measures.
We recover known convergence results, establish new ones, and show a local principle of oscillation
compensation for the velocities. Roughly speaking, the time average of gradients around one limit
point vanishes. This allows us to further analyze the structure of oscillations, and establish their
perpendicularity to the general drift.
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1 Introduction

The predominance of huge scale complex nonsmooth nonconvex problems in the development of certain
artificial intelligence methods, has brought back rudimentary, numerically cheap, robust methods, such
as subgradient algorithms, to the forefront of contemporary numerics, see e.g., [5, 12, 23, 33, 34]. We
investigate here some of the properties of the archetypical algorithm within this class, namely, the
vanishing stepsize subgradient method of Shor. Given f : Rn → R locally Lipschitz, it reads

xi+1 ∈ xi − εi∂cf(xi), x0 ∈ Rn,

where ∂cf is the Clarke subgradient, εi → 0, and
∑∞

i=0 εi =∞. This dynamics, illustrated in Figure
1, has its roots in Cauchy’s gradient method and seems to originate in Shor’s thesis [48]. The idea is
natural at first sight: one accumulates small subgradient steps to make good progress on average while
hoping that oscillations will be tempered by the vanishing steps. For the convex case, the theory was
developed by Ermol’ev [26], Poljak [43], Ermol’ev–Shor [25]. It is a quite mature theory, see e.g. [39,
40], which still has a considerable success through the famous mirror descent of Nemirovskii–Yudin
[7, 39] and its endless variants. In the nonconvex case, developments of more sophisticated methods
were made, see e.g. [32, 35, 41], yet little was known for the raw method until recently.

The work of Davis et al. [21], see also [11], revolving around the fundamental paper of Benäım–
Hofbauer–Sorin [8], brought the first breakthroughs. It relies on a classical idea of Euler: small-step
discrete dynamics resemble their continuous counterparts. As established by Ljung [36], this obser-
vation can be made rigorous for large times in the presence of good Lyapunov functions. Benäım–
Hofbauer–Sorin [8] showed further that the transfer of asymptotic properties from continuous differen-
tial inclusions to small-step discrete methods is valid under rather weak compactness and dissipativity
assumptions. This general result, combined with features specific to the subgradient case, allowed
to establish several optimization results such as the convergence to the set of critical points, the
convergence in value, convergence in the long run in the presence of noise [12, 13, 21, 46].

Usual properties expected from an algorithm are diverse: convergence of iterates, convergence in
values, rates, quality of optimality, complexity, or prevalence of minimizers. Although in our setting
some aspects seem hopeless without strong assumptions, most of them remain largely unexplored.
Numerical successes suggest however that the apparently erratic process of subgradient dynamics has
appealing stability properties beyond the already delicate subsequential convergence to critical points.

In order to address some of these issues, this paper avoids the use of the theory of [8] and focuses
on the delicate question of oscillations, which is illustrated on Figures 1 and 2.
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Figure 1: Contour plot of a Lipschitz function with a subgradient sequence. The color reflects the
iteration count. The sequence converges to the unique global minimum, but is constantly oscillating.
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Figure 2: On the left, the contour plot of a convex polyhedral function with three strata, where the
gradient is constant. A subgradient sequence starts at (0.3,−0.7) and converges to the origin with an
apparent erratic behavior. On the right, we discover that the behavior is not completely erratic. The
oscillation compensation phenomenon contributes some structure: the proportions λi of time spent in
each region where the function has constant gradient gi, i = 1, 2, 3, converge so that we have precisely
λ1g1 + λ2g2 + λ3g3 = 0.

In general, as long as the sequence {xi}i remains bounded, we always have

xN − x0∑N
i=0 εi

=

∑N
i=0 εivi∑N
i=0 εi

→ 0, where vi ∈ ∂cf(xi). (1)

This fact, that could be called “global oscillation compensation,” does not prevent the trajectory
to oscillate fast around a limit cycle, as illustrated in [20], and is therefore unsatisfying from the
stabilization perspective of minimization. The phenomenon (1) remains true even when {xi}i is not a
gradient sequence, as in the case of discrete game theoretical dynamical systems [8].

In this work, we adapt the theory of closed measures, which was originally developed in the calculus
of variations (see for example [4, 9]), to the study of discrete dynamics. Using it, we establish several
local oscillation compensation results for path differentiable functions. Morally, our results in this
direction say that for limit points x we have

“ lim
δ↘0

N→+∞

∑
06i6N
‖x−xi‖6δ

εivi

∑
06i6N
‖x−xi‖6δ

εi
= 0 ” (2)

See Theorems 6 and 7 for precise statements, and a discussion in Section 3.4.
While this does not imply the convergence of {xi}i, it does mean that the drift emanating from the

average velocity of the sequence vanishes as time elapses. This is made more explicit in the parts of
those theorems that show that, given two limit points x and y of the sequence {xi}i, the time it takes
for the sequence to flow from a small ball around x to a small ball around y must eventually grow
infinitely long, so that the overall speed of the sequence as it traverses the accumulation set becomes
extremely slow.

With these types of results, we evidence new phenomena:

— while the sequence may not converge, it will spend most of the time oscillating near the critical
set of the objective function, and it appears that there are persistent accumulation points whose
importance is predominant;
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— under weak Sard assumptions, we recover the convergence results of [21] and improve them by
oscillation compensations results,

— oscillation structures itself orthogonally to the limit set, so that the incremental drift along this
set is negligible with respect to the time increment εi.

These results are made possible by the use of closed measures. These measures capture the
accumulation behavior of the sequence {xi}i along with the “velocities” {vi}i. The simple idea of not
throwing away the information of the vectors vi allows one to recover a lot of structure in the limit,
that can be interpreted as a portrait of the long-term behavior of the sequence. The theory that we
develop in Section 4.1 should apply to the analysis of the more general case of small-step algorithms.
Along the way, for example, we are able to establish a new connection between the discrete and
continuous gradient flows (Corollary 22) that complements the point of view of [8].

Notations and organization of the paper. Let n be a positive integer, and Rn denote n-
dimensional Euclidean space. The space Rn×Rn of couples (x, v) is seen as the phase space consisting
of positions x ∈ Rn and velocities v ∈ Rn. For two vectors u = (u1, . . . , un) and v = (v1, . . . , vn), we
let u · v =

∑n
i=1 uivi. The norm ‖v‖ =

√
v · v induces the distance dist(x, y) = ‖x− y‖, and similarly

on Rn×Rn. The Euclidean gradient of f is denoted by ∇f(x). The set N contains all the nonnegative
integers.

In Section 2 we give the definitions necessary to state our results, which we do in Section 3. The
proofs of our results will be given in Section 5. Before we broach those arguments, we need to develop
some preliminaries regarding our main tool, the so-called closed measures; we do this in Section 4.

2 Algorithm and framework

2.1 The vanishing step subgradient method

Consider a locally Lipschitz functions f : Rn → R, denote by Reg f the set of its differentiability
points which is dense by Rademacher’s theorem (see for example [27, Theorem 3.2]). The Clarke
subdifferential of f is defined by

∂cf(x) = conv
{
v ∈ Rn : there is a sequence {yk}k ⊂ Reg f with yk → x and ∇f(yk)→ v

}
where convS denotes the closed convex envelope of a set S ⊂ Rn; see [18].

A point x such that 0 ∈ ∂cf(x), is called critical. The critical set is

crit f = {x ∈ Rn : 0 ∈ ∂cf(x)}.

It contains local minima and maxima.
The algorithm of interest in this work is:

Definition 1 (Small step subgradient method). Let f : Rn → R be locally Lipschitz and {εi}i∈N be
a sequence of positive step sizes such that

∞∑
i=0

εi = +∞ and εi ↘ 0. (3)

Given x0 ∈ Rn, consider the recursion, for i > 0,

xi+1 = xi − εivi, vi ∈ ∂cf(xi).

Here, vi is chosen freely among ∂cf(xi). The sequence {xi}i∈N is called a subgradient sequence.
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In what follows the sequence εi is interpreted as a sequence of time increments, and it naturally
defines a time counter through the formula:

ti =
i∑

j=0

εj

so that ti →∞ as i→∞. Given a sequence {xi}i and a subset U ⊆ Rn, we set

ti(U) =
∑

xj∈U, j6i
εj ,

which corresponds to the time spent by the sequence in U .
Recall that the accumulation set acc{xi}i of the sequence {xi}i is the set of points x ∈ Rn such

that, for every neighborhood U of x, the intersection U ∩ {xi}i is an infinite set. Its elements are
known as limit points.

If the sequence {xi}i is bounded and comes from the subgradient method as in Definition 1, then
‖xi − xi+1‖ → 0 because εi → 0 and ∂cf is locally bounded by local Lipschitz continuity of f , so
acc{xi}i is compact and connected, see e.g., [14].

Accumulation points are the manifestation of recurrent behaviors of the sequence but the frequency
of the recurrence is ignored. In the presence of a time counter, here {ti}i, this persistence phenomenon
may be measured through presence duration in the neighborhood of a recurrent point. This idea is
formalized in the following definition:

Definition 2 (Essential accumulation set). Given a step size sequence {εi}i ⊂ R>0 and a subgradient
sequence {xi}i ⊂ Rn as in Definition 1, the essential accumulation set ess acc{xi}i is the set of points
x ∈ Rn such that, for every neighborhood U ⊆ Rn of x,

lim sup
N→+∞

∑
16i6N
xi∈U

εi

∑
16i6N

εi
> 0, that is, lim sup

N→+∞

tN (U)

tN
> 0.

Analogously, considering the increments {vi}i ⊂ Rn, we say that the point (x,w) is in the essential
accumulation set ess acc{(xi, vi)}i if for every neighborhood U ⊂ Rn × Rn of (x,w) satisfies

lim sup
N→+∞

∑
16i6N

(xi,vi)∈U

εi

∑
16i6N

εi
> 0.

As explained previously, the set ess acc{xi}i encodes significantly recurrent behavior; it ignores
sporadic escapades of the sequence {xi}i. Essential accumulation points are accumulation points but
the converse is not true. If the sequence {xi}i is bounded, ess acc{xi}i is nonempty and compact, but
not necessarily connected.

2.2 Regularity assumptions on the objective function

Lipchitz continuity and pathologies. Recall that, given a locally Lipschitz function f : Rn → R,
a subgradient curve is an absolutely continuous curve satisfying,

γ′(t) ∈ −∂cf(γ(t)), a.e. on (0,+∞) and γ(0) = x0.
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By general results these curves exist, see e.g., [8] and references therein. In our context they embody
the ideal behavior we could hope from subgradient sequences.

First let us recall that pathological Lipschitz functions are generic in the Baire sense, as established
in [17, 52]. In particular, generic 1-Lipschitz functions f : R → R satisfy ∂f ≡ [−1, 1] everywhere on
R. This means that any absolutely curve γ : R → R with ‖γ′‖ 6 1 is a subgradient curve of these
functions, regardless of their specifics. Note that this implies that a curve may constantly remain
away from the critical set.

The examples by Danillidis–Drusvyatskiy [20] make this erratic behaviour even more concrete. For
instance, they provide a Lipschitz function f : R2 → R and a bounded subgradient curve γ having the
“absurd” roller coaster property

(f ◦ γ)(t) = sin t, t ∈ R.

Although not directly matching our framework, these examples show that we cannot hope for satisfying
convergence results under the spineless general assumption of Lipschitz continuity.

Path differentiability. We are thus led to consider functions avoiding pathologies. We choose to
pertain to the fonctions saines1 of Valadier [51] (1989), rediscovered in several works, see e.g. [13, 16,
21]. We use the terminology of [13].

Definition 3 (Path differentiable functions). A locally Lipschitz function f : Rn → R is path differ-
entiable if, for each Lipschitz curve γ : R → Rn, for almost every t ∈ R, the composition f ◦ γ is
differentiable at t and the derivative is given by

(f ◦ γ)′(t) = v · γ′(t)

for all v ∈ ∂cf(γ(t)).

In other words, all vectors in ∂cf(γ(t)) share the same projection onto the subspace generated
by γ′(t). Note that the definition proposed in [13] is not limited to chain rules involving the Clarke
subgradient, but it turns out to be equivalent to the a definition very much like the one we give here,
with Lipschitz curves replaced by absolutely-continuous curves, the equivalence being furnished by
[13, Corollary 2]. The current definition is slightly more general than the original one [13], that is, our
class of functions contains the one discussed in [13], because we require a condition only for Lipschitz
curves, which are all absolutely continuous.

The class of path differentiable functions is very large and includes many cases of interest, such as
functions that are semi-algebraic, tame (definable in an o-minimal structure), or Whitney stratifiable
[21] (in particular, models and loss functions used in machine learning, such as, for example, those
occurring in neural network training with all the activation functions that have been considered in the
literature), as well as functions that are convex, concave, see e.g., [13, 47].

Whitney stratifiable functions. Due to their ubiquity we detail here the properties of Whitney
stratifiability and illustrate their utility. They were first used in [15] in the variational analysis context
in order to establish Sard’s theorem and Kurdyka- Lojasiewicz inequality for definable functions, two
properties which appears to be essential in the study of many subgradient related problems, see e.g.,
[3, 14].

1Literally, “healthy functions” (as opposed to pathological) in French.
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Definition 4 (Whitney stratification). Let X be a nonempty subset of Rm and p > 0. A Cp stratifi-
cation X = {Xi}i∈I of X is a locally finite partition of X =

⊔
iXi into connected submanifolds Xi of

Rm of class Cp such that for each i 6= j

Xi ∩Xj 6= ∅ =⇒ Xj ⊂ Xi \Xi.

A Cp stratification X of X satisfies Whitney’s condition (a) if, for each x ∈ Xi ∩Xj , i 6= j, and for
each sequence {xk}k ⊂ Xi with xk → x as k → +∞, and such that the sequence of tangent spaces
{TxkXi}k converges (in the usual metric topology of the Grassmanian) to a subspace V ⊂ TxRm, we
have that TxXj ⊂ V . A Cp stratification is Whitney if it satisfies Whitney’s condition (a).

Definition 5 (Whitney stratifiable function). With the same notations as above, a function f : Rn →
Rk is Whitney Cp-stratifiable if there exists a Whitney Cp stratification of its graph as a subset of
Rn+k.

Examples of Whitney stratifiable functions are semialgebraic or tame functions, but much less
structured functions are covered. This class covers most known finite dimensional optimization prob-
lems as for instance those met in the training of neural networks. Let us mention here that the subclass
of tame functions have led to many results through the nonsmooth Kurdyka– Lojasiewicz inequality,
see e.g., [3], while mere Whitney stratifiability combined with the Ljung-like theory developed in [8]
has also provided several interesting openings [12, 13, 21].

3 Main results: accumulation, convergence, oscillation compensa-
tion

We now present our main, results which rely on three types of increasingly demanding assumptions:

— path differentiability (Section 3.1),

— path differentiable functions with a weak Sard property (Section 3.2),

— Whitney stratifiable functions (Section 3.3).

Section 3.3 also contains a general result pertaining the structure of the oscillations.
The significance of the results is discussed in Section 3.4. The proofs are presented in Section 5.

3.1 Asymptotic dynamics for path differentiable functions

Theorem 6 (Asymptotic dynamics for path differentiable functions). Assume that f : Rn → R is
locally Lipschitz path differentiable, and that {xi}i is a sequence generated by the subgradient method
(Definition 1) that remains bounded. Then we have:

i. (Lengthy separations) Let x and y be two distinct points in ess acc{xi}i such that f(x) 6 f(y).
Let {xik}k be a subsequence such that xik → x as k → +∞, and for each k choose i′k > ik such
that xi′k → y. Consider

T̄k =

i′k∑
p=ik

εp.

Then Tk → +∞.
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ii. (Oscillation compensation) Let ψ : Rn → [0, 1] be a continuous function. Then for every subse-
quence {Ni}i ⊂ N such that

lim inf
j→+∞

Nj∑
i=0

εiψ(xi)

Nj∑
i=0

εi

> 0,

we have

lim
j→+∞

Nj∑
i=0

εiviψ(xi)

Nj∑
i=0

εiψ(xi)

= 0.

iii. (Criticality) For all x ∈ ess acc{xi}i, 0 ∈ ∂cf(x). In other words, ess acc{xi}i∈N ⊆ crit f .

3.2 Asymptotic dynamics for path differentiable functions with a weak Sard pro-
perty

With slightly more stringent hypotheses, which are automatically valid for some important cases of
lower or upper-Ck functions [6] (for k sufficiently large), semialgebraic or tame functions [15], we have:

Theorem 7 (Asymptotic dynamics for path differentiable functions: weak Sard case). In the setting
of Theorem 6, and if additionally f is constant on the connected components of its critical set, then
we also have:

i. (Lengthy separations version 2) Let x and y be two distinct points in acc{xi}i, x 6= y, and take
δ > 0 small enough that the balls Bδ(x) and Bδ(y) are at a positive distance form each other,
that is, ‖x − y‖ > 2δ. Consider the successive amounts of time it takes for the sequence to go
from the ball Bδ(x) to the ball Bδ(y), namely,

Tj = inf{
∑`

p=i εp : j 6 i < `, xi ∈ Bδ(x), x` ∈ Bδ(y)}.

Then Tj → +∞ as j → +∞.

ii. (Long intervals) Let U, V be neighborhoods of x̄ ∈ acc{xi}i such that U ⊂ V . Let A ⊂ N be the
union A =

⋃
i Ii of the maximal intervals Ii ⊂ N of the form Ii = [ai, bi] ∩ N for some ai < bi,

such that {xi}i∈Ij ⊂ U and {xi}i∈Ij ∩ V 6= ∅. Then either there is some Ij that is unbounded or

lim
j→+∞

|Ij | = lim
j→+∞

∑
i∈Ij

εi = +∞.

iii. (Oscillation compensation version 2) Let U ⊂ V be two open sets as in item (ii), and A =
⋃
i Ii

be the corresponding union of maximal intervals. Then

lim
N→+∞

∑
06i6N
i∈A

εivi

∑
06i6N
i∈A

εi
= 0.
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iv. (Criticality) For all x in the (traditional) accumulation set acc{xi}i, 0 ∈ ∂cf(x). That is to say,
acc{xi}i ⊆ crit f .

v. (Convergence of the values) The values f(xi) converge to a real number as i→ +∞.

Remark 8. Items (iv) and (v) of Theorem 7 can also be deduced from [8, Proposition 3.27] using a
different approach. Up to our knowledge, items (i)–(iii) of Theorem 7 as well as Theorem 6 do not
have counterparts in the optimization literature.

3.3 Oscillation structure and asymptotics for Whitney stratifiable functions

The two next corollaries express that oscillations happen perpendicularly to the singular set of f , when-
ever it makes sense. In particular, they are perpendicular to ess acc{xi}i and acc{xi}i, respectively,
wherever this is well defined.

Corollary 9 (Perpendicularity of the oscillations). In the setting of Theorem 7 (resp. Theorem 6),
let (x, v) ∈ Rn × Rn be in the accumulation set (resp. essential accumulation set) of {(xi, vi)}i, and
α : (−1, 1) → Rn be a Lipschitz curve with the property that α(0) = x, α′(0) = w, and t → (f ◦ α)(t)
is differentiable at t = 0 and (f ◦ α)′ = v · α′(0) for all v ∈ ∂cf(α(0)). Then

w · v = 0,

for all v ∈ ∂cf(x). In other words w ∈ [∂cf(x)]⊥.

Stratifiable functions (cf. Definition 5) allow to provide much more insight into the oscillation
compensation phenomenon: we have seen that substantial oscillations, i.e., those generated by non
vanishing subgradients, must be structured orthogonally to the limit point locus. Whitney rigidity
then forces the following intuitive phenomenon: substantial bouncing drives the sequence to have limit
points lying in the bed of V-shaped valleys formed by the graph of f .

Corollary 10 (Oscillations and V -shaped valleys). Let f : Rn → R is a Whitney Cn stratifiable
function, and let x be a point in the accumulation set of a sequence {xi}i generated by the subgradient
method as in Definition 1. Assume that there is a subsequence xij → x with

lim sup
j→+∞

‖vij‖ > 0,

then x is contained in a stratum S of dimension less than n, and if w is tangent to S at x then

lim
j→+∞

w · vij = 0.

This geometrical setting is reminiscent of the partial smoothness assumptions of Lewis: a smooth
path lies in between the slopes of a sharp valley. While proximal-like methods end up in a finite time
on the smooth locus [31, Theorem 4.1], our result suggests that the explicit subgradient method keeps
on bouncing, approaching the smooth part without actually attaining it. This confirms the intuition
that finite identification does not occur, although oscillations eventually provide some information on
active sets by their “orthogonality features.”

3.4 Further discussion

Theorems 6 and 7 describe the long-term dynamics of the algorithm. While Theorem 6 only talks
about what happens close to ess acc{xi}i and explains only what the most frequent persistent behavior
is, Theorem 7 covers all of acc{xi}i and hence all recurrent behaviors.
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Oscillation compensation. While the high-frequency oscillations (i.e., bouncing) will, in many
cases, be considerable, they almost cancel out. This is what we refer to as oscillation compensation.
The intuitive picture the reader should have in mind is a statement that the oscillations cancel out
locally, as in (2). Yet, because of small technical minutia, we do not have exactly (2) and obtain
instead very good approximations. Let us provide some explanations.

Letting, in item (ii) of Theorem 6, ψ = ψδ,η : Rn → [0, 1] be a continuous cutoff function equal to
1 on a ball Bη(x) of radius η > 0 around a point x ∈ ess acc{xi}i and vanishing outside the ball Bδ(x)
for δ > η, then we get, for appropriate subsequences {Nj}j ⊂ N,

lim
δ↘0

lim
η↗δ

lim
j→+∞

Nj∑
i=0

εiviψδ,η(xi)

Nj∑
i=0

εiψδ,η(xi)

= 0,

which is indeed a very good approximation of (2).
Similarly, setting, in item (iii) of Theorem 7, U = Bη(x) and V = Bδ(x) the balls centered at x

with radius 0 < η < δ, we obtain this local version of the oscillation cancelation phenomenon: in the
setting of Theorem 7 if x ∈ acc{xi}i and if Aη,δ ⊂ N is the union of maximal intervals I ⊂ N such
that {xi}i∈I ∈ Bδ(x) and {xi}i∈I ∩Bη(x) 6= ∅, then

lim
δ↘0

lim
η↗δ

lim
N→+∞

∑
06i6N
xi∈Aη,δ

εivi

∑
06i6N
xi∈Aη,δ

εi
= 0.

Note that as we take the limit η ↗ δ, we cover almost all xi in the ball Bδ(x), so we again get a
statement very close to (2).

Convergence. While Theorem 7 tells us that f(xi) converges, we conjecture that this is no longer
true in the context of Theorem 6, which is a matter for future research. Similarly, in the setting of path
differentiable functions, the question of determining whether all limit points of bounded sequences are
critical remains open.

In all cases, including the Whitney stratifiable case, the sequence {xi}i may not converge. A
well-known example of such a situation was provided for the case of smooth f by Palis–de Melo [42].

However, our results show that the drift that causes the divergence of {xi}i is very slow in com-
parison with the local oscillations. This slowness can be immediately appreciated in the statement of
item (i) of Theorem 6 and items (i) and (ii) of Theorem 7. In substance, these results express that
even if the sequence diverges, it takes longer and longer to connect disjoint neighborhoods of different
limit points.

4 A closed measure theoretical approach

Given an open subset of Rn, denote by C0(U) the set of continuous functions while Cp(U) is the set of
p ∈ [1,∞] continuously differentiable functions. The set Lip(U) denotes the space of Lipschitz curves
γ : R→ U . When U is bounded it is endowed with the supremum norm ‖γ‖∞ = supt∈R ‖γ(t)‖.

11



4.1 A compendium on closed measures

General results. Given a measure ξ on some set X 6= ∅ and a measurable map g : X → Y , where
Y 6= ∅ is another set, the pushfoward g∗ξ is defined to be the measure on Y such that, for A ⊂ Y
measurable, g∗ξ(A) = ξ(g−1(A)).

Recall that the support suppµ of a positive Radon measure µ on Rm, m > 0, is the set of points
x ∈ Rm such that µ(U) > 0 for every neighborhood U of x. It is a closed set.

The origin of the concept of closed measures (sometimes also called holonomic measures or Young
measures) can be traced back to the work of L.C. Young [53, 54] in the context of the calculus of
variations. It has developed in parallel to the closely related normal currents [28, 29] and varifolds [1,
2], and has found applications in several areas of mathematics, especially Lagrangian and Hamiltonian
dynamics [19, 37, 38, 50], and also optimal transport [9, 10].

The definition of closed measures is inspired from the following observations. Given a curve
γ : [a, b] → Rn, its position-velocity information can be encoded by a measure µγ on Rn × Rn that
is the pushforward of the Lebesgue measure on the interval [a, b] into Rn × Rn through the mapping
t 7→ (γ(t), γ′(t)), that is,

µγ = (γ, γ′)∗Leb[a,b].

In other words, if φ : Rn × Rn → R is a measurable function, then the integral with respect to µγ is
given by ∫

Rn×Rn
φ(x, v) dµγ(x, v) =

∫ b

a
φ(γ(t), γ′(t)) dt.

With this definition of µγ it follows that γ is closed, that is, γ(a) = γ(b) if, and only if, for all smooth
f : Rn → R, we have∫

Rn×Rn
∇f(x) · v dµγ(x, v) =

∫ b

a
∇f(γ(t)) · γ′(t) dt =

∫ b

a
(f ◦ γ)′(t)dt = f ◦ γ(b) − f ◦ γ(a) = 0.

In other words, the integral of ∇f(x) · v with respect to µγ is exactly the circulation of the gradient
vector field ∇f along the closed curve γ, and so it vanishes exactly when γ is closed. This generalizes
into:

Definition 11 (Closed measure). A compactly-supported, positive, Radon measure µ on Rn × Rn is
closed if, for all functions f ∈ C∞(Rn),∫

Rn×Rn
∇f(x) · v dµ(x, v) = 0.

Let π : Rn ×Rn → Rn be the projection π(x, v) = x. To a measure µ in Rn ×Rn we can associate
its projected measure π∗µ. As an immediate consequence we have that suppπ∗µ = π(suppµ) ⊆ Rn.

The disintegration theorem [22] implies that there are probability measures µx, x ∈ Rn, on Rn
such that

µ =

∫
Rn
µx d(π∗µ)(x). (4)

We shall refer to the couple (π∗µ, πx) as to the desintegration of µ. Thus if φ : Rn × Rn → R is
measurable, we have ∫

Rn×Rn
φdµ =

∫
Rn

[∫
Rn
φ(x, v) dµx(v)

]
d(π∗µ)(x).

12



Definition 12 (Centroid field). Let µ be a positive, compactly-supported, Radon measure on Rn×Rn.
The centroid field v̄x of µ is, for x ∈ Rn and with the decomposition (4),

v̄x =

∫
Rn
v dµx(v).

The centroid field gives the average velocity, that is, the average of the velocities encoded by the
measure at each point. As a consequence of the disintegration theorem [22], x 7→ v̄x is measurable,
and for every measurable φ : Rn × Rn 7→ R linear in the second variable, we have∫

Rn×Rn
φ(x, v) dµ(x, v) =

∫
Rn
φ(x, v̄x) d(π∗µ)(x). (5)

It plays a significant role in our work. For later use, we record the following facts that follow from the
definition of the centroid field, the convexity of ∂cf(x), and the fact that µx is a probability:

Lemma 13 (Quasi-stationary bundle measures). If a positive Radon measure µ has a centroid field
v̄x that vanishes π∗µ-almost everywhere, then µ is closed.

Proof. Indeed, if v̄x = 0 for π∗µ-almost every x, and if f ∈ C∞(Rn), we have∫
Rn×Rn

∇f(x) · v dµ(x, v) =

∫
Rn

∫
Rn
∇f(x) · v dµx(v) d(π∗µ)(x)

=

∫
Rn
∇f(x) ·

∫
Rn
v dµx(v) d(π∗µ)(x)

=

∫
Rn
∇f(x) · v̄x d(π∗µ)(x) = 0,

so µ is closed.

Recall that the weak* topology in the space of Radon measures on an open set U is the one induced
by the family of seminorms

|µ|f =

∣∣∣∣∫
U
f dµ

∣∣∣∣ , f ∈ C0(U).

Thus a sequence {µi}i of measure converges in this topology to a measure µ if, and only if, for all
f ∈ C0(U), ∫

U
f dµi →

∫
U
f dµ.

The following result can be regarded as a consequence of the forthcoming Theorem 15. It can also
be seen as a special case of the results of [29] that are very well described in [30, Theorem 1.3.4.6].
Specifically it is shown in [30, Theorem 1.3.4.6] that it is possible to approximate, in a weak* sense,
objects (namely, currents) intimately related to closed measures, by simpler objects (namely, closed
polyhedral chains), which in our case correspond to combinations of finitely-many piecewise-smooth,
closed curves.

Proposition 14 (Weak* density of closed curves). Consider the set of measures of the form βµγ for
some β > 0 and a measure µγ = (γ, γ′)∗Leb[a,b] induced by some closed, smooth curve γ : [a, b]→ Rn,
γ(a) = γ(b), defined on an interval [a, b] ⊂ R (which is not fixed). In the weak* topology, this set is
dense in the set of closed measures.
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Since the space of measures is sequential, this proposition means that for any closed measure µ,
we can find a sequence of closed curves γ1, γ2, . . . that approximate µ in the sense that µγi → µ in the
weak* topology.

The following result, known as the Young superposition principle [9, 53] or as the Smirnov
solenoidal representation [4, 49], is a strong refinement of the assertion of Proposition 14; see also
[45, Example 6]. What this result tells us is basically that, not only can closed measures be approxi-
mated by measures induced by curves, but actually the centroidal measure∫

δ(x,v̄x) d(π∗µ)(x),

which captures much of the properties of µ, can be decomposed into a combination of measures induced
by Lipschitz curves. This decomposition is very useful theoretically, as there are no limits involved.
For completeness, the following is proved in Section A.

Theorem 15 (Young superposition principle/Smirnov solenoidal representation). Let U be a nonemp-
ty bounded open subset of Rn and set Lip(U) = Lip. For t ∈ R, let τt : Lip→ Lip be the time-translation
τt(γ)(s) = γ(s+ t). For every closed probability measure µ supported in U with centroid field v̄x, there
is a Borel probability measure ν on the space Lip that is invariant under τt for all t ∈ R and such that∫

Rn
φ(x, v̄x) d(π∗µ)(x) =

∫
Lip
φ(γ(0), γ′(0)) dν(γ) (6)

for any measurable φ : Rn × Rn → R.

Curves lying in supp ν have an appealing property:

Corollary 16 (Centroid representation). With the notation of the previous theorem, we have for ν
almost all γ in Lip:

γ′(t) = v̄γ(t)

for almost all t.

Proof. Take indeed φ > 0 vanishing only on the measureable set consisting of points of the form
(x, v̄x), x ∈ Rn. Then both sides of (6) must vanish, which means that for ν-almost all γ, the point
(γ(0), γ′(0)) must be of the form (x, v̄x). The conclusion follows from the τt-invariance of the measure
ν.

As an example, take the case in which µ is the closed measure

µ =
1

2π
(β, β′)∗Leb[0,2π)

on R2 × R2 for
β(t) = (cos t, sin t).

In this simple example, the centroid coincides with the derivative, v̄β(t) = β′(t). Each time-translate
τt(β) is still a parameterization of the circle, and the probability measure ν we obtain in Theorem 15
is

ν =
1

2π

∫ 2π

0
δτt(β)dt,

where δγ is the Dirac delta function whose mass is concentrated at the curve γ in the space Lip.
The measure ν in Theorem 15 can be understood as a decomposition of the closed measure µ into

a convex superposition of measures induced by Lipschitz curves. Although at first sight each γ on the
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right-hand side of (6) only participates at t = 0, the τt-invariance of ν means that in fact the entire
curve γ is involved in the integral through its time translates τtγ. Observe that another consequence
of the τt-invariance is that the integral in the right-hand side of (6) satisfies, for all t ∈ R,∫

Lip
φ(γ(0), γ′(0)) dν(γ) =

∫
Lip
φ(γ(t), γ′(t)) dν(γ)

=
1

|I|

∫
I

∫
Lip
φ(γ(t), γ′(t)) dν(γ) dt (7)

=
1

|I|

∫
Lip

∫
I
φ(γ(t), γ′(t)) dt dν(γ).

where I is any nontrivial interval. Thus (6) has the more explicit lamination or superposition form:∫
Rn
φ(x, v̄x) d(π∗µ)(x) =

1

|I|

∫
Lip

∫
I
φ(γ(t), γ′(t)) dt dν(γ) (8)

for any interval I with nonempty interior.

Although the left-hand side of (6) does not involve the full measure µ, it will turn out to be similar
enough: if the integrand φ : Rn ×Rn → R is linear in the second variable v, we still have (5) and this
will be enough for the applications we have in mind.

We remark that the measure ν in Theorem 15 is not unique in general. For example, if γ is a
closed curve intersecting itself once so as to form the figure 8, then the measure ν decomposing µ = µγ
could be taken to be supported on all the τt-translates of γ itself, or it could be taken to be supported
on the curves traversing each of the loops of the 8.

Circulation for a subdifferential field. We provide here some results related to subdifferentials,
and that will be useful to the study of the vanishing step subgradient method.

Lemma 17. Let f be a locally Lipschitz continuous function and µ a closed measure with desintegration
(π∗µ, µx) and centroid field v̄x. If for some a ∈ R and some x ∈ Rn we have a suppµx ⊂ ∂cf(x), then
av̄x ∈ ∂cf(x).

Proof. Assume a suppµx ⊂ ∂cf(x). Let g(v) = dist(av, ∂cf(x)), so that g(v) = 0 for all v ∈ suppµx.
Since ∂cf(x) is a convex set, g is a convex function. Then by Jensen’s inequality we have

g(v̄x) = g

(∫
Rn
v dµx(v)

)
6
∫
Rn
g(v) dµx(v) = 0.

Proposition 18 (Circulation of subdifferential for path differentiable functions). If f : Rn → R is a
path differentiable function and µ is a closed probability measure, then for each open set U ⊂ Rn and
each measurable function σ : U → Rn with σ(x) ∈ ∂cf(x) for x ∈ U , the integral∫

U×Rn
σ(x) · v dµ(x, v)

is well defined, and its value is independent of the choice of σ. We define the symbol∫
U×Rn

∂cf(x) · v dµ(x, v)

to be equal to this value. If π(suppµ) ⊂ U ,∫
U×Rn

∂cf(x) · v dµ(x, v) = 0.
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Proof. Let σ1, σ2 : U ×Rn → R be two measurable functions such that σi(x) ∈ ∂cf(x) for each x ∈ U .
From Theorem 15 we get a τt-invariant, Borel probability measure ν on the space Lip of Lipschitz
curves. Then ∫

U×Rn
σ1(x) · v dµ(x, v)−

∫
U×Rn

σ2(x) · v dµ(x, v)

=

∫
Rn×Rn

χU (x)(σ1(x)− σ2(x)) · v dµ(x, v)

=

∫
Lip
χU (γ(0))(σ1(γ(0))− σ2(γ(0))) · γ′(0) dν(γ).

Since f is path differentiable, for each γ ∈ Lip and for almost every t ∈ R with γ(t) ∈ U ,

σ1(γ(t)) · γ′(t) = σ2(γ(t)) · γ′(t).

From the τt-invariance of ν it follows then that the integrand above vanishes ν-almost everywhere.
Let us now analyze the case in which π(suppµ) ⊂ U . Let ψ : Rn → R be a mollifier, that is, a

compactly-supported, nonnegative, rotationally-invariant, C∞ function such that
∫
Rn ψ = 1, and let

ψr(x) = r−nψ(x/r) for r > 0, so that ψr tends to the Dirac delta at 0 as r → 0. Denote by ψr ∗ f the
convolution of ψr and f . Observe that if β ∈ Lip and a < b, then∫ b

a
(f ◦ β)′(t) dt = f ◦ β(b)− f ◦ β(a)

= lim
r↘0

[(ψr ∗ f) ◦ β(b)− (ψr ∗ f) ◦ β(a)] = lim
r↘0

∫ b

a
((ψr ∗ f) ◦ β)′(t) dt.

This justifies the following calculation:∫
TRn

∂cf dµ =

∫
Lip

(f ◦ β)′(0) dν(β) =

= lim
r↘0

∫
Lip

((ψr ∗ f) ◦ β)′(0) dν(β)

= lim
r↘0

∫
Lip
∇(ψr ∗ f)(β(0)) · β′(0) dν(β)

= lim
r↘0

∫
TRn
∇(ψr ∗ f)(x) · v dµ(x, v),

which vanishes because µ is closed and ψr ∗ f is C∞.

4.2 Interpolant curves of subgradient sequences and their limit measures

In this section we fix f : Rn → R to be a locally Lipschitz function, and let {xi}i be a bounded sequence
generated by the subgradient method.

Definition 19 (Subgradient sequence interpolants). Given a sequence {xi}i∈N generated by the sub-
gradient method, with the same notations as in Definition 1, its interpolating curve is the curve
γ : R>0 → Rn with γ(ti) = xi for ti =

∑i
j=0 εi and γ′(t) = vi for ti < t < ti+1. This curve corresponds

to a continuous-time piecewise-affine interpolation of the sequence.
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For a bounded set B ⊂ R>0, we define a measure on Rn × Rn by

µγ|B =
1

|B|
(γ, γ′)∗LebB,

where |B| =
∫
B 1 dt is the length of B, and LebB is the Lebesgue measure on B. If φ : Rn × Rn → R

is measurable, then ∫
Rn×Rn

φdµγ|B =
1

|B|

∫
B
φ(γ(t), γ′(t)) dt.

Lemma 20 (Limiting closed measures associated to subgradient sequences). Let γ be the interpolating
curve (as in Definition 19) and A = {Ii}i∈N be a collection of intervals Ii ⊂ R, with disjoint interior,
such that |Ii| → +∞ as i→ +∞. Set BN = ∪Ni=0Ii. Then the set of weak* limit points of the sequence
{µγ|BN }N is nonempty, and its elements are closed probability measures.

Proof. Let φ ∈ C0(Rn × Rn). For i ∈ N, write Ii = [ti1, t
i
2] and di = ‖γ(ti1) − γ(ti2)‖, and let

αi : [0, di]→ Rn be the segment joining γ(ti2) to γ(ti1) with unit speed. Also, let

νi = (αi, α
′
i)∗Leb[0,di]

be the measure on Rn × Rn encoding αi. Let K ⊂ Rn × Rn be a convex, compact set that contains
the image of (γ, γ′) and (αi, α

′
i) for all i, so that di 6 diamK. Estimate∣∣∣∣∣

∑N
i=0

∫
Rn×Rn φdνi

|BN |

∣∣∣∣∣ =

∣∣∣∣∣
∑N

i=0

∫ di
0 φ(αi(t), α

′
i(t)) dt∑N

i=0 |Ii|

∣∣∣∣∣
6
N(diamK) sup(x,v)∈K |φ(x, v)|∑N

i=0 |Ii|
→ 0

since |Ii| → +∞. Thus the measures in the accumulation sets of the sequences {µγ|BN }N and{
µγ|BN

+

∑N
i=0 νi
|BN |

}
N

(9)

coincide. The measures in the latter sequence are all closed since, for all ϕ ∈ C∞(Rn), we have, by
the fundamental theorem of calculus,∫ ti2

ti1

∇ϕ(γ(t))·γ′(t) dt+

∫ di

0
∇ϕ(α(t)) · α′(t) dt

=

∫ ti2

ti1

(ϕ ◦ γ)′(t) dt+

∫ di

0
(ϕ ◦ α)′(t) dt

= [ϕ(γ(ti2))− ϕ(γ(ti1))] + [ϕ(α(di))− ϕ(αi(0))]

= [ϕ(γ(ti2))− ϕ(γ(ti1))] + [ϕ(γ(ti1))− ϕ(γ(ti2))] = 0,

and the measures in the sequence (9) are sums of multiples of these.
By Prokhorov’s theorem [44], the set of probability measures on K is compact, so the set of limit

points is nonempty. The set of closed measures is itself closed, as it is defined by a weak* closed
condition. Thus the limit points must also be closed measures.
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Lemma 21 (Limit points and limiting measure supports). Let γ be the interpolating curve as in
Definition 19. Consider the set acc{µγ|[0,N ]

}N of limit points of the sequence {µγ|[0,N ]
}N in the weak*

topology. We have ⋃
µ∈acc{µγ|[0,N ]

}N

π(suppµ) = ess acc{xi}i.

Proof. Let B ⊂ Rn be a closed ball containing a neighborhood of the sequence {xi}i. Let ψ : Rn → R>0

be a continuous function with suppψ ⊆ B. Since ψ is uniformly continuous on B, given ε > 0, there
is n0 > 0 such that i > n0, x, y ∈ B, and ‖x− y‖ 6 εi Lip(f) imply |ψ(x)−ψ(y)| 6 ε. We hence have
|ψ(xi)− ψ(γ(t))| 6 ε for ti 6 t 6 ti+1 and i > n0. Thus, for S > n0,∣∣∣∣∣

S∑
i=n0

εiψ(xi)−
∫ tS

tn0

ψ(γ(t)) dt

∣∣∣∣∣ 6 ε(tS − tn0).

Assume x ∈ ess acc{xi}i ⊂ B. Take a nonnegative continuous function ψ, as above, so that for all
R > 0 there is S > R such that ∑

16i6S εiψ(xi)∑S
i=0 εi

> δ.

Then, for ε = δ/2, n0 as above, and S > R > n0,∫
Rn×Rn

ψ dµγ|[0,S](x, v) >
1

tS

∫ tS

tn0

ψ(γ(t)) dt

>

∑S
i=n0

εiψ(xi)∑S
i=0 εi

− εtS − tn0

tS

> δ − ε = δ/2 > 0.

It follows that there is some µ ∈ acc{µγ|[0,N ]
}N with π(suppµ) ∩ suppψ 6= ∅.

Observe that we can take the support of ψ to be contained inside any neighborhood of x, so the
argument above proves that there are measures in acc{µγ|[0,N ]

}N whose supports are arbitrarily close
to x. This proves the first inclusion.

Conversely, assume that x ∈
⋃
µ∈acc{µγ|[0,N ]

}N π(suppµ). For a positive, continuous function ψ

with x ∈ π(suppψ), there is µ ∈ acc{µγ|[0,N ]
}N with

∫
ψ dµ > 0. There is a subsequence of {µγ|[0,N ]

}N
converging to µ, hence such that

∑
16i6S εiψ(xi)/

∑S
i=0 εi converges to a positive quantity, so that

x ∈ ess acc{xi}i, and we obtain the opposite inclusion.

The following corollary gives some connection between the discrete and the continuous subgradient
systems.

Corollary 22 (Limiting dynamics). Let {Ii}i be a sequence of disjoint, bounded intervals in R with

lim
i→+∞

|Ii| = +∞.

Write Gk = I1 ∪ I2 ∪ · · · ∪ Ik. Suppose that for some sequence {ki}i ⊂ N, the limit

lim
i→+∞

µγ|Gki
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exists, so that, by Lemma 20, it is a closed probability measure µ. Let ν be a Borel probability measure
on the space Lip of Lipschitz curves that is invariant under the time-translation τt and satisfies (6).
Then ν-almost every curve β satisfies

−β′(t) ∈ ∂cf(β(t))

for almost every t ∈ R.

Proof. The existence of ν follows from Theorem 15. By Corollary 16, we know that ν-almost every
curve β ∈ Lip satisfies, β′(t) = v̄β(t) for almost every t. So we just need to prove that v̄x ∈ −∂cf(x)
for π∗µ-almost every x ∈ Rn.

Recall that graph−∂cf = {(x, v) ∈ Rn × Rn : −v ∈ ∂cf(x)}. Let ti 6 t < ti+1, using the triangle
inequality, the fact that −γ′(t) is constant equal to vi in the interval t ∈ [ti, ti+1] and belongs to
∂cf(γ(ti)), we have

dist((γ(t), γ′(t)), graph−∂cf)

6 ‖(γ(t), γ′(t))− (γ(ti),−vi)‖+ dist((γ(ti),−vi), graph−∂cf)

= ‖(γ(t),−vi)− (γ(ti),−vi)‖+ 0

= ‖γ(t)− γ(ti)‖
6 Lip(γ)εi

6 Lip(f)εi.

Now ∫
Rn×Rn

dist((x, v), graph−∂cf) dµγ|Gki
(x, v)

=
1∑ki

j=1 |Ij |

ki∑
j=1

∫
Ij

dist
(
(γ(t), γ′(t)), graph−∂cf

)
dt

6
Lip(f)

∑ki
j=1 |Ij |maxt`∈Ij ε`∑ki
j=1 |Ij |

.

This implies that

lim
i→+∞

∫
Rn×Rn

dist((x, v), graph−∂cf) dµγ|Gki
(x, v) = 0

by the Stolz-Cesàro theorem using the fact that, for k large enough,
∑k

j=1 |Ij | > ck for a positive
constant c, and the fact that εi converges to 0 as i→ +∞. This, in turn, implies that∫

Rn×Rn
dist((x, v), graph−∂cf) dµ(x, v) = 0

because the convergence of measures occurs in the weak* topology and the integrand is continuous.
Since graph−∂cf is a closed set, the support of µ must be contained in it. From Lemma 17 with
a = −1, we know that −v̄x ∈ ∂cf(x), which is what we wanted to prove.

Theorem 23 (Subgradient-like closed measures are trivial). Assume that f : Rn → R is a path
differentiable function. Let µ be a closed measure on Rn × Rn, and assume that every (x, v) ∈ suppµ
satisfies −v ∈ ∂cf(x). Then the centroid field v̄x of µ vanishes for π∗µ-almost every x.
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Proof. The condition on µ implies, by Lemma 17 with a = −1, that −v̄x ∈ ∂cf(x). By Proposition
18 we may choose σ(x) = −v̄x to compute∫

∂cf dµ =

∫
σ(x) · v dµ(x, v) =

∫
σ(x) ·

[∫
v dµx

]
d(π∗µ)(x)

=

∫
σ(x) · v̄x d(π∗µ)(x) = −

∫
v̄x · v̄x d(π∗µ)(x).

Proposition 18 also implies that the left-hand side vanishes because µ is closed.

5 Proofs of main results

5.1 Lemmas on the convergence of curve segments

Lemma 24. For each i ∈ N, let Ti > 0 and assume that Ti → T for some T > 0. Let, for each i ∈ N,
γi : [0, Ti] → Rn be a Lipschitz curve. Assume that the sequence {γi}i converges to some bounded,
Lipschitz curve γ : [0, T ] → R, γi → γ, in the sense that supt∈[0,min(Ti,T )] ‖γ(t) − γi(t)‖ → 0, and
satisfies

lim
i→+∞

∫ Ti

0
dist((γi(t), γ

′
i(t)), graph−∂cf) dt = 0. (10)

Then −γ′(t) ∈ ∂cf(γ(t)) for almost all t ∈ [0, T ].

Proof. We follow classical arguments; see for example [8, Theorem 4.2]. Let 0 < T ′ < T . For i large
enough, Ti > T ′ because Ti → T . In particular, we eventually have uniform convergence of γi on [0, T ′]
to the restriction of γ to [0, T ′]. For each i, the derivative γ′i is an element of L∞ = L∞([0, T ′];Rd),
and being uniformly bounded with compact domain, belong to L2 = L2([0, T ′];Rd) as well. Recall
that, since L2 is reflexive, the weak and weak* topologies coincide in L2. So by the Banach–Alaoglu
compactness theorem, by passing to a subsequence we may assume that γ′j converge weakly in L2 and

weak* in L∞ to some u ∈ L2 ∩ L∞.
Since γj converges to γ uniformly, γj → γ also in L2. Hence γ′j tends to γ′ in the sense of

distributions on [0, T ′]; indeed, for all C∞ functions g : [0, T ′] → R with compact support in (0, T ′),
we have ∫ T ′

0
γ′j(t)g(t) dt = −

∫ T ′

0
γj(t)g

′(t) dt→ −
∫ T ′

0
γ(t)g′(t) dt =

∫ T ′

0
γ′(t)g(t) dt

since we have convergence in L2. By uniqueness of the limit, u = γ′ almost everywhere on [0, T ′].
It follows from Mazur’s lemma [24, p. 6] that there is a function N : N→ N and, for each p 6 k 6

N(p), a number a(p, k) > 0 such that
∑N(p)

k=p a(p, k) = 1, and such that the convex combinations

N(p)∑
k=p

a(p, k)γ′k → γ′ (11)

strongly in L2 as p→ +∞ (and also in the weak* sense in L∞).
Since the Clarke subdifferential ∂cf(x) is convex at each x, the function

g(x, v) = dist(−v, ∂cf(x))
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is convex in its second argument for fixed x ∈ Rn. Using the fact that the convergence (11) happens
pointwise almost everywhere, we have, by continuity of g and by the fact that countable union of zero
measure sets has zero measure, for almost all t ∈ [0, T ′]

g(γ(t), γ′(t)) = g(γ(t), lim
p→+∞

∑N(p)
k=p a(p, k)γ′k(t))

= lim
p→+∞

g(γ(t),
∑N(p)

k=p a(p, k)γ′k(t))

6 lim inf
p→+∞

N(p)∑
k=p

a(p, k)g(γ(t), γ′k(t)),

where the last step follows from Jensen’s inequality and convexity of g in its second argument. Since
g is non negative, integrating on [0, T ′], we have using Fatou’s Lemma,

0 6
∫ T ′

0
g(γ(t), γ′(t)) dt

6 lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)g(γ(t), γ′k(t)) dt

6 lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)[dist((γ(t), γ′k(t)), (γk(t), γ
′
k(t)))

+ g(γk(t), γ
′
k(t))] dt

= lim inf
p→+∞

∫ T ′

0

N(p)∑
k=p

a(p, k)[dist(γ(t), γk(t)) + g(γk(t), γ
′
k(t))] dt

where we have used the triangle inequality. Now, using a uniform bound on the integral, we have

0 6
∫ T ′

0
g(γ(t), γ′(t)) dt

6 lim inf
p→+∞

N(p)∑
k=p

a(p, k)

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)

6 lim inf
p→+∞

sup
p6k6N(p)

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)

6 lim sup
k→+∞

(
T ′ sup

t∈[0,T ′]
[dist(γ(t), γk(t))] +

∫ T ′

0
g(γk(t), γ

′
k(t))

)
= 0,

where we used the fact that
∑N(p)

k=p a(p, k) = 1, the fact that γk → γ uniformly and the hypothesis in
(10). Hence we have −γ′(t) ∈ ∂cf(γ(t)) for almost all t ∈ [0, T ′], and this proves the lemma since T ′

was taken arbitrary in (0, T ).

Lemma 25. Let γ be the interpolant curve of the bounded gradient sequence {xi}i, and let {Ij}j be a
collection of pairwise-disjoint intervals of R>0 of length 1/C 6 |Ij | 6 C for some C > 1. Then there
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is a subsequence {jk}k ⊂ N such that the restrictions γ|Ijk converge uniformly to a Lipschitz curve
γ̄ : [a, b]→ R that satisfies

−
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a).

Proof. By passing to a subsequence, we may assume that the lengths |Ij | converge to a positive
number. By the Lipschitz version of the Arzelà–Ascoli theorem, we may pass to a subsequence such
that γ|Ijk converges uniformly to a curve γ̄ on an interval [a, b] of length limj→+∞ |Ij | > 0. Condition

10 holds if we let γi be the appropriate translate of γ|Ii , so by Lemma 24, −γ̄′(t) ∈ ∂cf(γ̄(t)) for
almost every t ∈ [a, b]. By the path differentiability of f , we have

−
∫ b

a
‖γ̄′(t)‖2dt =

∫ b

a
∂cf(γ̄(t)) · γ̄′(t)dt

=

∫ b

a
(f ◦ γ̄)′(t) dt = f ◦ γ̄(b)− f ◦ γ̄(a).

5.2 Proof of Theorem 6

5.2.1 Item (i)

Let γ be the interpolant curve of the sequence {xi}i, and consider the intervals Ik = [tik , ti′k ], so
that the endpoints of the restriction γ|Ik are precisely γ(tik) = xik and γ(ti′k) = xi′k . Aiming for a

contradiction, assume that the numbers T̄k = ti′k − tik remain bounded. Apply Lemma 25 to obtain
a curve γ̄ : [a, b] → Rn joining γ̄(a) = limk xik = x and γ̄(b) = limk xi′k = y. So we have that the arc
length of γ̄ must be positive because x 6= y, while γ̄ also satisfies, as part of the conclusion of Lemma
25,

0 > −
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a) = f(y)− f(x) > 0.

Whence we get the contradiction we were aiming for.

5.2.2 Item (ii)

Let B ⊂ Rn be a closed ball containing the sequence {xi}i. By convexity, B contains also the image
of the interpolating curve γ.

Fix ε > 0. By uniform continuity of ψ over B, there exists n0 > 0 such that i > n0, x, y ∈ B and
|x− y| 6 εi Lip(f) imply |ψ(x)−ψ(y)| 6 ε. We hence have |ψ(xi)−ψ(γ(t))| 6 ε for ti 6 t 6 ti+1 and
i > n0. Thus ∣∣∣∣∣∣

Nj∑
i=n0

εiviψ(xi)−
∫ tNj

tn0

γ′(t)ψ(γ(t))dt

∣∣∣∣∣∣ 6 εLip(f)(tNj − tn0)

and

1∑Nj
i=0 εi

∣∣∣∣∣∣
Nj∑
i=0

εiviψ(xi)−
∫ tNj

0
γ′(t)ψ(γ(t))dt

∣∣∣∣∣∣
6

1∑Nj
i=0 εi

[∣∣∣∣∣
n0−1∑
i=0

εiviψ(xi)−
∫ tn0

0
γ′(t)ψ(γ(t))dt

∣∣∣∣∣+ εLip(f)(tNj − tn0)

]
.
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Since
∑∞

i=0 εi = +∞ and ε > 0 was arbitrary, it follows that the latter becomes arbitrarily small as
Nj grows.

Whence the quotient in the limit in the statement of item (ii) is very close, for large j, to∑Nj
i=0 εi∑Nj

i=0 εiψ(xi)

∫
Rn×Rn

vψ(x)dµγ|[0,tNj+1]
(x, v).

We now prove that the above quantity converges to 0 as j → +∞. Taking a subsequence so that
µγ|[0,tNj+1]

converges to some probability measure µ, the quotient on the left converges to

1

/∫
ψ(x) dπ∗µ(x),

and our hypothesis on the subsequence {Nj}j thus guarantees that
∫
ψ(x) dπ∗µ(x) > 0.

Thus, it suffices to show that, for every limit point µ of the sequence {µγ|[0,tN+1]
}N satisfying∫

ψ(x) dπ∗µ(x) > 0,

we have ∫
Rn×Rn

vψ(x) dµ(x, v) =

∫
Rn
v̄xψ(x) d(π∗µ)(x) = 0, (12)

where v̄x is the centroid field of µ. By Lemma 20 we know that µ is closed so that Theorem 23 applies
which gives v̄x = 0 for π∗µ-almost every x. This immediately implies (12).

5.2.3 Item (iii)

To prove item (iii), consider the interpolation curve constructed in Section 4.2. Consider a limit point
µ of the sequence {µγ|[0,N ]

}N . By Lemma 20, µ is closed. By Theorem 23, the centroid field v̄x of

µ vanishes for π∗µ-almost every x, so from Lemma 17 we know that 0 = v̄x ∈ ∂cf(x), and hence
x ∈ crit f for a dense subset of π(suppµ). Since this is true for all limit points µ, by Lemma 21 we
know that it is true throughout ess acc{xi}i.

5.3 Proof of Theorem 7

5.3.1 The function is constant on the accumulation set

Lemma 26. Assume that the path differentiable function f : Rn → R is constant on each connected
component of its critical set, and let {xi}i be a bounded sequence produced by the subgradient method.
Then f is constant on the set acc{xi}i of limit points of {xi}i.

Proof. Assume instead that f takes two values J1 < J2 within acc{xi}i.
Let K be a compact set that contains the closure {xi}i in its interior. Since f is constant on

the connected components of crit f and since f is Lipschitz, the set f(K ∩ crit f) has measure zero
because, given ε > 0, the connected components Ci of K ∩ crit f of positive measure |Ci| > 0 —of
which there are only countably many— can be covered with open sets

f−1((f(Ci)− ε/2i+1, f(Ci) + ε/2i+1))

with image under f of length ε/2i; the rest of K ∩ crit J has measure zero, so it is mapped to another
set of measure zero. The set f(K ∩ crit f) is also compact, so we conclude that it is not dense on any
open interval of R.
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We may thus assume, without loss of generality, that the values J1 and J2 are such that there are
no critical values of f |K between them.

Pick c1, c2 ∈ R such that
J1 < c1 < c2 < J2.

Let
W1 = f−1(−∞, c1) and W2 = f−1(c2,+∞).

Clearly Wj ∩ acc{xi}i 6= ∅ because the value Jj is attained in acc{xi}i, j = 1, 2.
Consider the curve γ : R>0 → K ⊂ Rn interpolating the sequence {xi}i. Let A be the set of

intervals

A = {[t1, t2] ⊂ R : t1 < t2, γ(t1) ∈ ∂W1, γ(t2) ∈ ∂W2, γ(t) /∈W1 ∪W2 for t ∈ (t1, t2)}

Write A = {Ij}j∈N for maximal, disjoint intervals Ij . Observe that if Ij = [tj1, t
j
2], then we have, by

the path-differentiability of f , that∫ tj2

tj1

∂cf(γ(t)) · γ′(t) dt =

∫ tj2

tj1

(f ◦ γ)′(t) dt = f ◦ γ(tj2)− f ◦ γ(tj1) = c2 − c1. (13)

Let µ be a probability measure that is a limit point of the sequence {µγ|∪N
i=0

Ii

}N .

Now, since f is Lipschitz and W 1 and W 2 are compact, |Ii| is bounded from below, let us say

|Ii| > α.

It is also bounded from above, because if not then we there is a subset {Iij}j of A consisting of intervals
with length |Iij | → +∞, and we can apply Lemma 20 and Theorem 23 to get closed measures µ̃ with
suppπ∗µ̃ ⊂ crit f . Since the support of each such π∗µ̃ is contained in K \ (W1 ∪W2), this would mean
the existence of a critical value between c1 and c2, which contradicts our choice of J1 and J2. We
conclude that the size of the intervals in A is also bounded from above, say,

|Ii| < β.

By (13) we have ∫
∂cf dµγ|∪N

i=0
Ii

=
N(c2 − c1)∑N

i=0 |Ii|
and

0 <
c2 − c1

β
6
N(c2 − c1)∑N

i=0 |Ii|
6
c2 − c1

α
.

Whence we also have at the limit ∫
∂cf dµ >

c2 − c1

β
> 0. (14)

Let v̄x denote the centroid velocity vector field for µ. By the construction of {xi}i, the vector −v̄x
is contained in the Clarke subdifferential of each point of suppπ∗µ, and since the path-differentiability
of f allows us to choose any representative of this differential, we have, as in the proof of Theorem 23,∫

∂cf dµ = −
∫
v̄x · v̄x dπ∗µ 6 0,

which contradicts (14).
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5.3.2 Proof of item (i)

For j ∈ N, let Ij = [tij , tij+1 ] ⊂ R be the interval closest to 0 with tj 6 tij < tij+1 , γ(tij ) ∈ Bδ(x),
and γ(tij+1) ∈ Bδ(y), so that Tj = tij+1 − tij . Let γ|Ij be the restriction of the interpolant curve γ.
Since the two balls Bδ(x) and Bδ(y) are at positive distance from each other, and since the velocity is
bounded uniformly ‖γ′‖ 6 Lip(f), we know that the numbers Tj = |Ij | are uniformly bounded from
below by a positive number.

Assume, looking for a contradiction, that there is a subsequence of {Tj}j that remains bounded
from above. Apply Lemma 25 to obtain a curve γ̄ : [a, b]→ R such that γ̄(a) ∈ Bδ(x) ∩ acc{xi}i and
γ̄(b) ∈ Bδ(y) ∩ acc{xi}i, while also satisfying

−
∫ b

a
‖γ̄′(t)‖2dt = f ◦ γ̄(b)− f ◦ γ̄(a) = 0 (15)

by Lemma 26. This contradicts the fact that the distance between the balls Bδ(x) and Bδ(y) —and
hence also the arc length of γ̄— is positive.

5.3.3 Proof of item (ii)

Aiming at a contradiction, we assume instead that there is some x ∈ U∩acc{xi}i and some subsequence
{ij}j such that dist(x, γ(Iij ))→ 0 and |Iij | 6 C for some C > 0 and all j ∈ N.

We may thus apply Lemma 25 to get a curve γ̄ : [a, b] → Rn whose endpoints γ̄(a) and γ̄(b) are
contained in acc{xi}i \V , and γ̄ passes through x ∈ U , so it has positive arc length. However, it is also
a conclusion of Lemma 25, together with Lemma 26, that γ̄ satisfies (15), which makes it impossible
for its arc length to postive, so we have arrived at the contradiction we were looking for.

5.3.4 Proof of item (iii)

Let U , V , and A be as in the statement of item (iii). Let B = ∪i∈A[ti, ti+1). The statement of item
(iii) is equivalent to the statement that

lim
N→+∞

∫
v dµγ|B∩[0,N ]

= 0. (16)

It follows from item (ii) that the maximal intervals Ii ⊂ R comprising B =
⋃
i Ii satisfy |Ii| → +∞.

Hence, from Lemma 20 we know that any limit point µ of the sequence {µγ|B∩[0,N ]
}N is closed, and

from Theorem 23 we know that the centroid field of µ vanishes π∗µ-almost everywhere, which implies
(16).

5.3.5 Proof of item (iv)

Let x ∈ acc{xi}i. For any neighborhood U of x, we can take a slightly larger neighborhood V and
repeat the construction described in the proof of item (iii) (Section 5.3.4) of a closed measure µ whose
support intersects U , and whose centroid field vanishes π∗µ-almost everywhere. By Lemma 17 we
know that the centroid field is contained in the Clarke subdifferential. In sum, we have that in every
neighborhood U of x, there is a point y ∈ U with 0 ∈ ∂cf(y), which implies that 0 ∈ ∂cf(x) because
the graph of ∂cf is closed in Rn × Rn.

5.3.6 Proof of item (v)

Recall that acc{xi}i is connected. We know from item (iv) that acc{xi}i ⊆ crit f . So it is contained in
a single connected component of crit f . Hence f must be constant on acc{xi}i, and {f(xi)}i converges.
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5.4 Proof of Corollary 9

Let α be as in the statement of the corollary. By item (iii) of Theorem 6 or of Theorem 7, we know
that 0 ∈ ∂cf(α(0)). Since −vi ∈ ∂cf(xi) and because the graph of ∂cf is closed in Rn × Rn, we have
that −v ∈ ∂cf(α(0)). The path differentiability of f means that the choice of element of ∂cf(α(0)) is
immaterial when we compute (f ◦ α)′(0). So we have

w · α′(0) = (f ◦ α)′(0) = 0 · α′(0) = 0.

5.5 Proof of Corollary 10

Let K be a compact set that contains {xi}i in its interior. By the Morse–Sard theorem applied
independently on each stratum of the stratification of f , f(crit f) is a compact set of measure zero.
Thus, it must be a totally-separated subset of R. It follows that f is constant on each connected
component of crit f . In other words, we are in the setting of Theorem 7. From item (iv) of Theorem
7 we know that x ∈ acc{xi}i ⊂ crit f , and the additional condition we have on x tells us that
∂cf(x) 6= {0}, so x must be contained in a stratum of smaller dimension. The last statement of the
corollary follows from Corollary 9.

A Proof of Theorem 15

We follow the exposition of [4].
We remark at the outset that if ν is a probability measure on Lip that is τt-invariant for all t ∈ R,

then in view of (7), for ϕ ∈ C∞(Rn),∫
Lip
∇ϕ(γ(0)) · γ′(0) dν(γ) =

∫ 1

0

∫
Lip
∇ϕ(γ(t)) · γ′(t) dν(γ) dt

=

∫
Lip

∫ 1

0
(ϕ ◦ γ)′(t) dt dν(γ) =

∫
Lip

(ϕ ◦ γ(1)− ϕ ◦ γ(0)) dν(γ) = 0.

Thus the probability measure induced by ν on Rn × Rn by pushing forward through the map γ 7→
(γ(0), γ′(0)) (as in the right-hand side of (6)) is automatically closed.

Smooth case. Assume first that there is a C∞ compactly-supported vector field X : U → Rn such
that µ is given by δ(x,X(x)) ⊗ ρ(x)LebU (x), with some smooth probability density ρ : Rn → R>0,∫

Rn×Rn
φdµ =

∫
Rn
φ(x,X(x)) ρ(x) dx,

for measurable φ : Rn → R. For µ, the centroid field is v̄x = X(x). Without loss of generality we may
assume that X vanishes in a neighborhood of the boundary ∂U .

Denote by Φ: U × R→ U the flow of X, so that, for all t ∈ R and writing Φt(x) = Φ(x, t),

Φ0(x) = x and
d

dt
Φt(x) = X(Φt(x)).

Since suppX is compact, by the Picard–Lindelöf theorem we know that Φt(x) is defined for all t ∈ R
for all x ∈ U . The measure µ is Φt-invariant because, integrating by parts, we get that for all
ϕ ∈ C∞(Rn),

0 =

∫
Rn×Rn

∇ϕ(x) · v dµ(x, v) =

∫
Rn
∇ϕ(x) ·X(x) ρ(x) dx = −

∫
ϕ(x) div(ρX)(x) dx,
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so ρX is a divergence-free vector field; thus, the flow Φt of X preserves ρ.
For L > 0, let LipL ⊂ Lip be the set of Lipschitz curves γ with Lipschitz constant at most L. Then

Γ = {γ : R→ U | γ(t) = Φt(x) for some x ∈ U and all t ∈ R} ⊂ Lip‖X‖∞

and Γ is a Borel subset of Lip because it can be expressed as the countable intersection of unions of
the closed balls around a dense subset of Γ.

Let ev : Lip → Rn be the evaluation at 0, namely, ev(γ) = γ(0). Denote by ev|−1
Γ : U → Γ the

inverse of the one-to-one map that results from restricting ev to Γ. For x ∈ U , ev |−1
Γ (x) is exactly the

curve β ∈ Γ given by β(t) = Φt(x) that satisfies, in particular, ev(β) = β(0) = x and β′(0) = X(x).
Let ν be the pushforward

ν = (ev|−1
Γ )∗(ρ(x)LebRn(x))

so that, for measurable φ : Rn × Rn → R,∫
Lip
φ(γ(0), γ′(0)) dν =

∫
Rn×Rn

φ(x,X(x))ρ(x) dx.

The measure ν is supported in Γ and, being the pushforward of a probability, it is a probability as
well.

General case. Let µ be an arbitrary closed probability measure on Rn. Let L > 0 be such that
if (x, v) ∈ suppµ then ‖v‖ 6 L. Let U be a bounded, open subset of Rn that contains suppµ and
satisfies dist(suppµ, ∂U) > 1. Let ψ : R2n → R be a mollifier, that is, a C∞, compactly supported,
radially symmetric ψ(x) = ψ(‖x‖), nonnegative function with

∫
Rn ψ = 1 and suppψ ⊆ B1(0) ⊂ Rn,

and let ψr(x) = r−2nψ(x/r) for 0 < r < 1. The probability measure ψr ∗ µ is smooth and compactly
supported; in fact,

suppψr ∗ µ ⊂ U × {v ∈ Rn : ‖v‖ 6 L+ r}.

Denote v̄η the centroid field of the measure η. Then the centroid field and the projected densities of
the convolution, v̄ψr∗µ and π∗(ψr ∗µ), are smooth and converge to v̄µ and π∗µ, respectively, as r ↘ 0.

Analogously to the definition of Γ in the smooth case, let Γr be the subset of LipL+r that consists
of all flow lines of v̄ψr∗µ that are defined on all of R, and let

νr = (ev |−1
Γr

)∗(π∗(ψr ∗ µ)(x)LebRn(x))

so that, for measurable φ : Rn × Rn → R,∫
Lip

φ(γ(0), γ′(0)) dνr(γ) =

∫
Rn×Rn

φ(x, vψr∗µx ) d(π∗(ψr ∗ µ))(x).

The probability measure νr is supported in the set LipL+r.
The set LipL+1, which contains LipL+r for 0 6 r < 1, is sequentially compact. Indeed, if we have

a family {γi}i∈I ⊂ LipL+1, then it is equibounded (as the image of each curve is contained in the
bounded set U) and equicontinuous (because all its members have Lipschitz constant at most L+ 1),
so by the Arzelà–Ascoli theorem we can extract a subsequence {γ1

i }i∈N that converges in the interval
[−1, 1]. We then produce, by induction, a sequence of subsequences: assuming we already extracted a
subsequence {γji }i that converges in [−j, j], the Arzelà–Ascoli theorem tells us that there is a further

subsequence {γj+1
i }i ⊆ {γji }i of curves that converge in the interval [−j − 1, j + 1]. We then pick the

diagonal sequence {γii}i, which converges throughout R to a curve in LipL+1.
Since it is also metrizable with dist(γ1, γ2) = ‖γ1 − γ2‖∞, LipL+1 is also compact. Prokhorov’s

theorem [44] implies that there is a weakly convergent sequence {νri}i ⊂ LipL+1 with ri ↘ 0. It is
then a routine procedure to check that the limit probability measure ν = limi νri satisfies (6).
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[13] Jérôme Bolte and Edouard Pauwels. “Conservative set valued fields, automatic differentiation,
stochastic gradient methods and deep learning”. In: Mathematical Programming (2020).
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