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Abstract

Using small deformations of the total energy, as introduced in [31], we establish that damped second order
gradient systems

u”(t) + ' (t) + VG (u(t)) = 0,

may be viewed as quasi-gradient systems. In order to study the asymptotic behavior of these systems, we prove that
any (nontrivial) desingularizing function appearing in KL inequality satisfies ¢(s) > c¢y/s whenever the original
function is definable and C?. Variants to this result are given. These facts are used in turn to prove that a
desingularizing function of the potential G also desingularizes the total energy and its deformed versions. Our
approach brings forward several results interesting for their own sake: we provide an asymptotic alternative for
quasi-gradient systems, either a trajectory converges, or its norm tends to infinity. The convergence rates are also
analyzed by an original method based on a one-dimensional worst-case gradient system.

We conclude by establishing the convergence of solutions of damped second order systems in various cases
including the definable case. The real-analytic case is recovered and some results concerning convex functions are
also derived.

Contents
1 Introduction 2
1.1 A global view on previous results . . . . . . .. L. L 2
1.2 Mainresults . . . . . o L 3
2 Structural results: lower bounds for desingularizing functions of C? functions 4
2.1  Lower bounds for desingularizing functions of potentials having a simple critical point structure . . . . 6
2.2 Lower bounds for desingularizing functions of definable C? functions . . . . . . . . .. .. ... .... 7
3 Damped second order gradient systems 10
3.1 Quasi-gradient structure and KL inequalities . . . . . . . . .. . ... o oo 10
3.2 Convergence rate of quasi-gradient systems and worst-case dynamics . . . . . .. .. ... ... 12
3.3 Damped second order systems are quasi-gradient systems . . . . .. ... .00 oo 14
4 Convergence results 16
5 Consequences 18
A Appendix: some elements on o-minimal structures 19
References 20

*TSE (Institut de Mathématiques de Toulouse, Université Toulouse I Capitole), Manufacture des Tabacs, 21 allée de Brienne, 31015
Toulouse, Cedex 06, France
TTSE (GREMAQ, Université Toulouse I Capitole), Manufacture des Tabacs, 21 allée de Brienne, 31015 Toulouse, Cedex 06, France.
Effort sponsored by the Air Force Office of Scientific Research, Air Force Material Command, USAF, under grant number FA9550-14-1-
0056. This research also benefited from the support of the “FMJH Program Gaspard Monge in optimization and operations research”
TUniversité de Carthage, Institut préparatoire aux études scientifiques et techniques, BP 51, 2080 La Marsa, Tunisia
E-mail: Pascal.Begout@tse-fr.eu(*), Jerome.Bolte@tse—fr.eu(), ma.jendoubi@fsb.rnu.tn(})
2010 Mathematics Subject Classification: 35B40, 34D05, 37N40
Key Words: dissipative dynamical systems, gradient systems, inertial systems, Kurdyka-Lojasiewicz inequality, global convergence



mailto:Pascal.Begout@math.cnrs.fr
mailto:Jerome.Bolte@tse-fr.eu
mailto:ma.jendoubi@fsb.rnu.tn

1 Introduction

1.1 A global view on previous results

In this paper, we develop some new tools for the asymptotic behavior as t goes to infinity of solutions u : R, — RY
of the following second order system

u(t) + /() + VG(u(t) =0, teR,. (1.1)

Here, v > 0 is a positive real number which can be seen as a damping coefficient, N > 1 is an integer and G € C?(RY)
is a real-valued function. In Mechanics, (1.1) models, among other problems, the motion of an object subject to a
force deriving from a potential G (e.g. gravity) and to a viscous friction force —yu'. In particular, the above may be
seen as a qualitative model for the motion of a material point subject to gravity, constrained to evolve on the graph

of G and subject to a damping force, further insights and results on this view may be found in [3, 14]. This type
of dynamical system has been the subject of several works in various fields and along different perspectives, one can
quote for instance [1] for Nonsmooth Mechanics, [12, 11] for recent advances in Optimization and [46] for pioneer

works on the topic, partial differential equations and related aspects [34, 41, 5].

The aim of this work is to provide a deeper understanding of the asymptotic behavior of such a system and of the
mechanisms behind the stabilization of trajectories at infinity (making each bounded orbit approach some specific
critical point). Such behaviors have been widely investigated for gradient systems,

o' (t) + VG(u(t)) = 0,

for a long time now. The first decisive steps were made by Lojasiewicz for analytic functions through the introduction
of the so-called gradient inequality [14, 13]. Many other works followed among which two important contributions: [13]
for convex functions and [12] for definable functions. Surprisingly the asymptotic behavior of the companion dynamics
(1.1) has only been “recently” analyzed. The motivation for studying (1.1) seems to come from three distinct fields
PDEs, Mechanics and Optimization. Out of the convex realm [45, 1], the seminal paper is probably [31]. Like
many of the works on gradient systems the main assumption, borrowed from Lojasiewicz original contributions, is
the analyticity of the function — or more precisely the fact that the function satisfies the Lojasiewicz inequality. This
work paved the way for many developments: convergence rates studies [33], extension to partial differential equations
[17, 39, 38, 32, 37, 34, 19, 27, 26, 35, 5], use of various kind of dampings [17, 18] (see also [16, 36, 29, 10]). Despite the
huge amount of subsequent works, some deep questions remained somehow unanswered; in particular it is not clear
to see:

— What are the exact connections between gradient systems and damped second-order gradient systems?
— Within these relationships, how central is the role of the properties/geometry of the potential function G?

Before trying to provide some answers, we recall some fundamental notions related to these questions; they will also
constitute the main ingredients in our analysis of (1.1).

Quasi-gradient fields. The notion is natural and simple: a vector field V is called quasi-gradient for a function L
if it has the same singular point (as VL) and if the angle a between the field V' and the gradient VL remains acute
and bounded away from 7 /2. Proper definitions are recalled in Section 3.1. Of course, such systems have a behavior
which is very similar to those of gradient systems (see Theorem 3.2). We refer to [6] and the references therein for
further geometrical insights on the topic.

Liapunov functions for damped second order gradient systems. The most striking common point between
(1.1) and gradient systems is that of a “natural” Liapunov function. In our case, it is given by the total energy, sum
of the potential energy and the kinetic energy,

1
Er(u,v) = G(u) + 5[lv]*.

The above is a Liapunov function in the phase space, more concretely

S B, o/(1) = (G 0P+ o)
= SOl



Contrary to what happens for classical gradient systems the vector field associated with (1.1) is not strictly Lyapunov
for Ep: it obviously degenerates on the subspace [v = 0] (or [u' = 0]). The use of Er is however at the heart of most
results attached to this dynamical system.

KL functions. A KL function is a function whose values can be reparametrized in the neighborhood of each of its
critical point so that the resulting functions become sharp(’). More formally, G is called KL on the slice of level lines
0<G<r & {u e RY;0 < G(u) < ro}, if there exists ¢ € C°([0,79)) N C*(0,70) concave such that ¢(0) = 0,
¢ >0 and

[V(eoG)(w)]| 21, Vue[0<G<r.

Proper definitions and local versions can be found in the next section. The above definition originates in [10] and is
based on the fundamental work of Kurdyka [12], where it was introduced in the framework of o-minimal structure(?)
as a generalization of the famous Lojasiewicz inequality.

KL functions are central in the analysis of gradient systems, the readers are referred to [10] and the references therein.
Desingularizing functions. The function appearing above, namely ¢, is called a desingularizing function: the faster
¢’ tends to infinity at 0, the flatter is G around critical points. As opposed to the Lojasiewicz gradient inequality,
this behavior, in the o-minimal world, is not necessarily of a “power-type”. Highly degenerate functions can be met,
like for instance G(u) = exp ( —1/p? (u)) where p : RV — R is any real polynomial function. This class of functions
belongs to the log-exp structure, an o-minimal class that contains semi-algebraic sets and the graph of the exponential
function [48]. Finally, observe that if it is obvious that ¢ might have an arbitrarily brutal behavior at 0, it is also
pretty clear that the smoothness of G is related to a lower-control of the behavior of ¢, for instance we must have
¢’ (0) = oo — which is not the case in general in the nonsmooth world (see e.g. [9]).

1.2 Main results

Several auxiliary theorems were necessary to establish our main result, we believe they are interesting for their own
sake. Here they are:

— An asymptotic alternative for quasi-gradient systems: either a trajectory converges or it escapes to infinity,

— A general convergence rate result for the solutions of the gradient systems that brings forward a worst-case
gradient dynamical system in dimension one,

— Lower bounds for desingularizing functions of C? KL functions.

We are now in position to describe the strategy we followed in that paper for the asymptotic study of the damped
second order gradient system (1.1). Our method was naturally inspired by the Liapunov function provided in [31].

1. First we show that Er can be slightly and “semi-algebraically” (respectively, definably) deformed into a smooth
function E$°f, so that the gradient of the new energy VE$! makes an uniformly acute angle with the vector
field associated with (1.1) — this property only holds on bounded sets of the phase space. The system (1.1)
appears therefore as a quasi-gradient system for E%ef.

2. In a second step we establish/verify that the solutions of the quasi-gradient systems converge whenever they
originate from a KL function.

We also provide rates of convergence and we explain how they may be naturally and systematically derived from
a one-dimensional worst-case gradient dynamics.

At this stage it is possible to proceed abstractly to the proof of the convergence of solutions to (1.1) in several
cases. For instance the definable case: we simply have to use the fact that E$¢f is definable whenever G is, so
it is a KL function and the conclusion follows.

Although direct and fast, this approach has an important drawback from a conceptual viewpoint since it relies
on a desingularizing function attached to an auxiliary function E$*f whose meaning is unclear. Whatever
perspectives we may adopt (Mechanics, Optimization, PDEs), an important question is indeed to understand
what happens when G is KL and how the desingularizing function of G actually impacts the convergence of
solutions to (1.1).

1That is, the norms of its gradient remain bounded away from zero.
2A far reaching concept that generalizes semi-algebraic or (globally) subanalytic classes of sets and functions.



3. We answer to this question in the following way.

(a) We prove that desingularizing functions of C? definable functions have a lower bound. Roughly speaking,

we prove that for nontrivial critical points the desingularizing function has the property ¢(s) > cy/s (or

equivalently(®) ¢'(s) > 07;) .

(b) We establish that if ¢ is definable and desingularizing for G at @ then it is desingularizing for both Fr and
E$et at (w,0).

4. We conclude by combining previous results to obtain in particular the convergence of solutions to (1.1) under
definability assumptions. We also provide convergence rates that depend on the desingularizing function of G,
i.e. on the geometry of the potential.

We would like to point out and emphasize two facts that we think are of interest. First the property ¢(s) > ¢y/s
(see Lemma 2.9 below) is a new result and despite its “intuitive” aspect the proof is nontrivial. We believe it has an
interest in its own sake.

More related to our work is the fact that (in the definable case and in many other relevant cases) our results show
that the desingularizing function of G is conditioning the asymptotic behavior of solutions of the system. Within an
Optimization perspective this means that the “complexity”, or at least the convergence rate, of the dynamical system
is entirely embodied in G when G is smooth. From a mechanical viewpoint, stabilization at infinity is determined by
the conditioning of G provided the latter is smooth enough; in other words the intuition that for large time behaviors,
the potential has a predominant effect on the system is correct — a fact which is of course related to the dissipation
of the kinetic energy at a “constant rate”.

Notation. The finite-dimensional space RY (N > 1) is endowed with the canonical scalar product (., .) whose norm
is denoted by || . ||. The product space RY x RY is endowed with the natural product metric which we still denote by
(., .). We also define for any w € RY and r > 0, B(u,r) = {u € R¥;|lu — | < r}. When S is a subset of RY its
interior is denoted by int S and its closure by S. If F : RY — R is a differentiable function, its gradient is denoted
by VF. When F is a twice differentiable function, its Hessian is denoted by V2F. The set of critical points of F is
defined by

crit F' = {u eRY; VF(u) = 0}.

This paper is organized as follows. In Section 2, we provide a lower bound for desingularizing function of C? functions
under various assumptions, like definability (Proposition 2.8 and Lemma 2.9). In Section 3, we recall the behavior of
a first order system having a quasi-gradient structure for some KL function and we provide an asymptotic alternative
(Theorem 3.2). In Theorem 3.7, the convergence rate of any solution to a first order system having a quasi-gradient
structure is proved to be better than that of a one-dimensional worst-case gradient dynamics (various known results
are recovered in a transparent way). Finally, we establish that any function which desingularizes G in (1.1) also
desingularizes the total energy and various relevant deformation of the latter (Proposition 3.11). In Section 4, we
study the asymptotic behavior of solutions to (1.1) (Theorem 4.1) while in Section 5, we describe several consequences
of our main results. Appendix provides, for the comfort of the reader, some elementary facts on o-minimal structures.

2 Structural results: lower bounds for desingularizing functions of C?
functions

To keep the reading smooth and easy, we will not formally define here o-minimal structure. The definition is postponed

in Appendix. Let us however recall, at this stage, that the simplest o-minimal structure (containing the graph of the

real product) is given by the class of real semi-algebraic sets and functions. A semi-algebraic set is the finite union of
sets of the form

{u e RY; p(u) =0, pi(u) <0,Vi € I}, (2.1)

3Recall that ¢ is definable.



where I is a finite set and p, {p; };cs are real polynomial functions.

Let us recall a fundamental concept for dissipative dynamical systems of gradient type.

Definition 2.1 (Kurdyka-Lojasiewicz property and desingularizing function).
Let G : RV — R be a differentiable function.

(i) We shall say that G has the KL property at @ € R if there exist 7o > 0,7 > 0 and ¢ € C([0,70); R;) such that

1. ¢(0) =0, ¢ € C((0,79); R;) concave and ¢’ positive on (0, 7q),
2. u€ B(u,n) = |G(u) — G(u)| < ro; and for each u € B(%,n), such that G(u) # G(u),

[V(polG(.) - G@))(uw)] > 1. (2.2)
Such a function ¢ is called a desingularizing function of G at @ on B(u,n).

(ii) The function G is called a KL function if it has the KL property at each of its points.

The following result is due to Lojasiewicz in its real-analytic version (see e.g. [43, 44]), it was generalized to o-minimal
structures and considerably simplified by Kurdyka in [12] (see Appendix).

Theorem 2.2 (Kurdyka-Lojasiewicz inequality [42](")). Let O be an o-minimal structure and let G € C*(RV;R)
be a definable function. Then G is a KL function.

Remark 2.3. (a) Theorem 2.2 is of course trivial when u ¢ crit G — take indeed, ¢(s) = cs where ¢ = Mﬁ

and € > 0.

(b) Restrictions of real-analytic functions to compact sets included in their (open) domain belong to the o-minimal
structure of globally analytic sets [25]. They are therefore KL functions (see indeed Example A.2). In some o-
minimal structures there are nontrivial functions for which all derivatives vanish on some nonempty set, like G(u) =
exp(—1/f%(u)) where f # 0 is any smooth semi-algebraic function achieving the value 0(°) (see also Example A.2).
For these cases, ¢ is not of power-type — as it is the case when G is semi-algebraic or real-analytic. Other types of
functions satisfying the KL property in various contexts are provided in [2] (see also Corollary 5.5).

(c) Desingularizing functions of definable functions can be chosen to be definable, strictly concave and C* (where k
is arbitrary).

The following trivial notion is quite convenient.

Definition 2.4 (Trivial critical points). A critical point u of a differentiable function G : RN — R is called

trivial if u € int crit G. It is nontrivial otherwise. Observe that v is nontrivial if, and only if, there exists u, 2% u

such that G(uy) # G(u), for any n € N.

When @ is a trivial critical point of G, any concave function ¢ € C°([0,r9)) NC*(0,7¢) such that ¢’ > 0 and ¢(0) = 0
is desingularizing at w.

An immediate consequence of the KL inequality is a local and strong version of Sard’s theorem.

Remark 2.5 (Local finiteness of critical values). Let G € C'(R";R) and u € R". Assume that G satisfies the
KL property at @ on B(%@,n). Then

u € B(w,n) and VG(u) =0 = G(u) = G(u).

The simplest functions we can think of with respect to the behavior of the solutions to (1.1) are given by functions
with linear gradients, that is quadratic forms

1
G(u) = §<Au,u>, u € RY, where A € #n(R), AT = A.

When A # 0, it is easy to establish directly that ¢(s) =, /ﬁs (where ) is a nonzero eigenvalue with smallest absolute

value) provides a desingularizing function. In the subsections to come, we show that the best we can hope in general
for a desingularizing function ¢ attached to a C? function G is precisely a quantitative behavior of square-root type.

4See comments in Appendix.
5This function is definable in the log-exp structure of Wilkie [48].



2.1 Lower bounds for desingularizing functions of potentials having a simple critical
point structure

Our first assumption, formally stated below, asserts that points having critical value must be critical points. The
assumption is rather strong in general but it will be complemented in the next section by a far more general result
for definable functions.

Let w € critG.
There exists n > 0 such that for any u € B(w,n), (2.3)
(Gu) =Gu) = u e critG).

Example 2.6. (a) When N =1 and G € C! is KL then assumption (2.3) holds.

[If the result does not hold then there exists a sequence (»)nen such that x, 1770 % and

G(zn) = G(n), (2.4)
G'(xn) # 0,

for any n € N. Without loss of generality, we may assume that (z,)nen is monotone, say decreasing. From (2.4)—(2.5) and
Rolle’s Theorem, there exists a sequence (u,)nen such that z,11 < un < Tn, G'(un) = 0, G(u,) # G(w), for any n € N. Thus
G(un) are critical values distinct from G(@) such that G(u,) — G(u); this contradicts the local finiteness of critical values —
see Remark 2.5.]

(b) Of course, the result in (a) cannot be extended to higher dimensions. Consider for instance

G:R2— R, G(ug,u) = u? —ul,

which is obviously KL. One has VG(u) = 0 if, and only if, w = 0, yet G(¢,—t) = 0 for any ¢ in R.
(c) If G is convex, (2.3) holds globally, i.e., with 7 = oo. [This follows directly from the well-known fact that G(u) = min G
if, and only if, VG (u) = 0.]

Lemma 2.7 (Comparing values growth with gradients growth).
Let G € CLYH(RN;R) and @ € crit G. Assume there exists € > 0 such that

loc
u € B(w,2¢) and G(u) = G(u) = u € crit G,
in other words (2.3) holds (with n = 2¢). Then there ezists ¢ > 0 such that
|G(u) = G(@)| > | VG (u)]?, (2.6)
for any u € B(u,¢).

Proof. Working if necessary with G(u) = G(u) — G(u), we may assume, without loss of generality, that G(u) = 0.
Let us proceed in two steps.

Step 1. Let H € C1! (B(ﬂ, 2¢); R) with @ € crit H and assume further that H > 0. We claim that there exists ¢ > 0
such that

Yu € B(u,e), H(u) > c||VH(u)|?. (2.7)

Denote by La the Lipschitz constant of VH on B(w,2¢), let L1 = max |[VH(u)|| and set L = L; + L. Since,
uw€ B(u,2¢)

(Ll =0 or LQZO) — VH\B(E,E) =0 = (2.7),

we may assume that Ly > 0 and L; > 0. Let u € B(@, e). We have for any v € B(0, 2¢),
1
H(v) — H(u) :/ (VH((1 = t)yu+tv),v — u)dt
0

= /1(VH((1 —t)u+tv) — VH(u),v — u)dt + (VH(u),v — u),



so that for any v € B(0, 2¢),
L
‘H(v) — H(u) = (VH(u),0 = )| < 2o —ul* (2.8)

Note that ||(u — £VH(u)) — u|| < [lu—ul+£||VH (u)| < e+eLl < 2¢. By convexity, we infer that [u,u — £VH(u)] C
B(w, 2¢). It follows that v = u — £V H (u) is an admissible choice in (2.8). Without loss of generality, we may assume
that € < 1. This leads to

0 < H(v) < H(u) = 5[ VH(@)%

Whence the claim.

Step 2. Define for any u € B(u,2¢), H(u) = |G(u)|. Since (G(u) = 0 = VG(u) = 0), we easily deduce that
H € C}(B(w,2¢);R) and for any u € B(u, 2¢), VH (u) = sign (G(v)) VG (u). Denote by Ly the Lipschitz constant of
VG on B(u,2¢). We claim that,

IVH (u) = VH ()| < Le|lu - vl|, (2.9)

for any (u,v) € B(w,2¢) x B(w,2¢). Let (u,v) € B(u,2¢e) x B(u,2¢). Estimate (2.9) being clear if G(u)G(v) > 0, we
may assume that G(u)G(v) < 0. By the Mean Value Theorem and the assumptions on G, it follows that there exists
t € (0,1) such that for w = (1 — t)u + tv, G(w) = 0 and VG(w) = 0. We then infer,

IVH(u) ~ VH@)| = [VG(u) + VGW)| < VG ()] + VG ()]
= |VG(u) - VG(w)| + [VG(w) - VG)|
< Loflu - wl + Loflw — vl| = Lolu— v].

Hence (2.9). It follows that H € CY*(B(u,2¢);R) and H satisfies the assumptions of Step 1. Applying (2.7) to H,
we get (2.6). This concludes the proof. O

Proposition 2.8 (Lower bound for desingularizing functions). Let G € Cllo’cl (RN;R) and let u be a nontrivial
critical point, i.e. u € crit G\ int crit G. Assume that G satisfies the KL property at @ and that assumption (2.3) holds
at u.

Then there exists > 0 such that for any desingularizing function ¢ of G at w,
(2.10)

for any small positive s.

Proof. We may assume G (@) = 0. Combining (2.2) and (2.6), we deduce that ¢'(|G(u)|) > HVG}(u)H > \/‘g( = for

any u € B(u,e) such that G(u) # G(u) (Remark 2.5). Changing G into —G if necessary, there is no loss of generality
to assume that there exists u, such that u, — @ with G(u,) > 0 (recall @ is a nontrivial critical point). Since G is
continuous, this implies by a connectedness argument that for some p there exists r > 0 such that ’G (B (u, p)) ’ D (0,r).

Using the parametrization s € (0,7) we conclude that ¢'(s) > %7 for any s sufficiently small. O

2.2 Lower bounds for desingularizing functions of definable C? functions
This part makes a strong use of definability arguments (these are recalled in the last section).

Lemma 2.9 (Lower bounds for desingularizing functions of C? definable functions). Let G : Q — R be
a C? definable function on an open subset Q > 0 of RN. We assume that 0 is a nontrivial critical point'®) and that

G(0) = 0.

6Equivalently, we assume that there exists un, ———» 0 such that G(uy,) # 0.



Since G is definable it has the KL property”) that is, there exist 7,79 > 0 and ¢ : [0,79) — R as in Definition 2.1
such that

IV(polGl) ()] =1, (2.11)
for any w in B(0,7n) such that G(u) # 0.
Then there exists ¢ > 0 such that
, c
> 2.12
©'(s) 7 (2.12)

so that @(s) = 2¢v/s, for any small s > 0.

Proof. Let us outline the ideas of the proof: after a simple reduction step, we show that the squared norm of a/the
smallest gradient on a level line increases at most linearly with the function values. In the second step, we show that
this estimate is naturally linked to the increasing rate of ¢ itself and to property (2.12). Let ¢ : [0,79) — R be any
desingularizing function of G at 0 on B(0,7), as in Definition 2.1.

Changing G in —G if necessary, we may assume by Definition 2.4, without loss of generality, that there exists a
sequence (u, )y such that wu, 27%% 0 and G(up) > 0, for any n € N. Let us proceed with the proof in three steps.

Step 1. We first modify the function G as follows. Let p € C2(R¥;[0,1]) be a semi-algebraic function such that

suppp C B(0,n) C €,
p(z) =1, ifz € B(0,2).

Let us define G on RY by
p(w)G(u) + dist (u, B (0, g))?’ , ifueq,
0, if u e RV \ Q.

It follows that G € C?(RY;R), leaves the set of desingularizing functions at 0 unchanged, has compact lower level
sets and is definable in the same structure (recall Definition A.1 (iii)). Finally, we obviously have,

Uy —2>25 0 with @(un) >0, Vne N. (2.13)
Without loss of generality, we may assume that n < 1 and ry < %. Let u € RY \ B(0,7). One has,

~ 3 3 3
G(u) = dist (u,B (o, g)) = (||uH - g) > % > 1.
It follows that,

inf VG (u)| = min ||Va(u)||, Vr € (0,79). (2.14)
u€B(0,n)N[G=r] ue[G=r]

Step 2. For r > 0, we introduce
; 1 ~ 2 N A
(Pr)  4(r) =minq S[IVG)[ v e RT, Glu) =7

Since the set of critical values of a definable function is finite and since the level sets are compact, we may choose, if
necessary, ro so that ¢ > 0 on (0,rg) (the fact that 0 is a nontrivial critical point excludes the case when v vanishes
around 0). If we denote by S(r) the nonempty compact set of solutions to (P,), one easily sees that

S:(0,79) = RN,

7See Theorem 2.2.



is a definable point-to-set mapping — this follows by a straightforward use of quantifier elimination (i.e., by the use of
Definition A.1). Using the Definable Selection Lemma (Lemma A.4), one obtains a definable curve u : (0,79) — RY
such that u(r) € S(r), for any r € (0,79). Finally, using the Monotonicity Lemma (Lemma A.3) repeatedly on the
coordinates u; of u, one can shrink 7y so that u is actually in C*((0,79); RY).

Fix now r in (0,r¢). Since r is noncritical the problem (P,) is qualified and we can apply Lagrange’s Theorem for
constrained problems. This yields the existence of a real multiplier A(r) such that

V2G(u(r)) VG (u(r)) — A(r)VG(u(r)) = 0, (2.15)
with of course G(u(r)) = r.

Note that for any r € (0, 7o), VG (u(r)) # 0 (as scen at the beginning of this step) so that A(r) is an actual eigenvalue

of V2G(u(r)). Since G is C2, the curve V2G(u(r)) is bounded in the space of matrices AN (R). Since eigenvalues
depend continuously on operators, one deduces from the previous remarks that there exists A > 0 such that

()| < A Vr e (0,79).
Multiplying (2.15) by u'(r) gives (V2G(u(r)) VG (u(r)), v (r)) =

1d,_~ )
5 3 IVG )2 = A()

Y(VG (u(r)),« (r)), which is nothing else than

(r
d ~
b))
Since G(u(r)) = r, one has

1d ~ 2
§@||VG(U(7°))H = (1),

/ A(r)dr

It follows that <||V@(u(r))||2> is a Cauchy’s family, so that the limit £ of [VG(u(s))||2 as s goes to zero exists in
5>0

[ . n—roo n— oo

00). We recall that by assumption (2.13), u,, —— 0, G(un) >0 and VG(un) 2% 0. Now, setting 7, = G(uy),
one has by definition of u(ry,), [|[VG(uy)|| = HVG( (rn))||. This implies that £ = 0 and as a consequence (2.16) yields

so after integration on [s,7] C (0,rg), one obtains

r,s—0

VG @) - 19G u(s)2| =2 <2 — 5] 225 0. (2.16)

1, _~ T _
SIVGIE = [ Aryar < (217)
0
in other words
P(r) < Ar, Vr e (0,79). (2.18)
Step 3. Let us now conclude. By KL inequality one has for any r € (0, 1),
1
/
o(r) 2 ———, YueB0,n)N[G=r]. (2.19)
IVG ()]’
As a consequence, we can use (2.14) in (2.19) and the linear estimate (2.18) above to conclude as follows:
1
¢'(r) > ~ ~
inf {IVG () u € BO.m) NG =r]f
. 1
min{uvé(u)u; uelG= r]}
1
2
2¢(r)
> &
= \/;,



for any r € (0,7¢), with ¢ = (\/ 2X) . Hence (2.12). O

Remark 2.10. (a) Note that if G ¢ C? then (2.12) does not hold. Indeed, take G(u) = u? and @(s) = s? as a
(semi-algebraic) counter-example.

(b) When we omit the assumption that 0 is a nontrivial critical point, i.e. 0 € intcritG, then G vanishes in a
neighborhood of 0. In that case, the result is not true in general since any concave increasing function adequately
regular is desingularizing for G. However a function ¢(s) = ¢y/s can still be chosen as a desingularizing function.
Hence, for an arbitrary C? definable function, we can always assume that for any critical point, the corresponding
desingularizing function satisfies ¢'(s) = cﬁ (locally for some positive constant c).

3 Damped second order gradient systems

3.1 Quasi-gradient structure and KL inequalities

Definition 3.1. Let I' be a nonempty closed subset of RY and let F': RY — R be a locally Lipschitz continuous
mapping.

(i) We say that the first order system

u'(t) + F(u(t)) =0, t € Ry, (3.1)

has a quasi-gradient structure for E on T, if there exist a differentiable function £ : RY — R and ar = a > 0
such that

(angle condition) (VE(u), F(u)) 2 «|[VE(u)| |[F(u)|, for any u €T, (3.2)

(rest-points equivalence) crit EN T =F *{0}) N T. (3.3)

(ii) Equivalently a vector field F' having the above properties is said to be quasi-gradient for E on T.

The following result involves classical material and ideas, yet, the fact that an asymptotic alternative can be derived
in this setting does not seem to be well-known (see however [2] in a discrete context).

Theorem 3.2 (Asymptotic alternative for quasi-gradient fields). Let F : RN — RY be a locally Lipschitz
mapping that defines a quasi-gradient vector field for E on RY | for some differentiable function E : RN — R. Assume
further that the function E is KL. Let u be any solution to (3.1). Then,

(i) either ||lu(t)]] == oo,

(it) or u converges to a singular point us, of F ast — co.

t—o0

When (i) holds then v’ € L*((0,00); RY) and u'(t) ——> 0. Moreover, we have the following estimate,

p(E(u(t) — E(us)), (3-4)

1
t) — [e’e] gf
Ju(t) = uoell < =

where ¢ is a desingularizing function of E at us and « is the constant in (3.2).

Proof. We assume that (i) does not hold, so there exist 1., € RY and a sequence s,, * 0o such that u(s,) “—— ts.
n—rr00

Note that by continuity of E, one has E(u(s,)) ——— E(us). Observe also that from equation (3.1) and the angle
condition (3.2), one has for any ¢ > 0,

%(Eou)(t) = (VE(u(t)),'(t))
= —(VE(u(t)), F(u(t)))
< ol VE@®)| [F@@H), (35)
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and thus the mapping ¢t — E'(u(t)) is nonincreasing, which implies

lim E(u(t)) = E(tco)-

t—o0

Note that if E(u(f)) = E(uc) for some #, one would have & (E o u)(t) = 0 for any ¢ > #, which would in turn imply,
by (3.5), that ||VE(u(t))|| || F(u(t))] = 0, for any such ¢. In view of the rest point equivalence (3.3), this would mean
that F'(u(t)) = 0, hence by uniqueness of solution curves, that u(t) = us for any ¢ > 0. We can thus assume without
loss of generality that

BE(u(t)) > B(us), ¥t > 0. (3.6)

Let to > 0 be such that u(ty) € B (ueo, £) and ¢(E(u(to)) — E(usx)) € (0,%*), where e > 0 is the constant in (3.2)
[in view of our preliminary comments and of the continuity of E such a ¢y exists]. By continuity of w, there exists
7 > 0 such that for any t € [to,to + 7), u(t) € B(uc,n). So we may define T’ € (tg, 00| as

T =sup {t > to; Vs € [to,t), u(s) € B(uoo,n)}.

By (3.5), the Kurdyka-Lojasiewicz inequality (2.2) and equation (3.1), we have for any ¢ € (¢, 7)),

> allu'(t)] (3.7)
It follows from the above estimate that
t
Elu(ty)) — E(ueo
) ~ o)l < [ u'(o)as < ZECDNZ B (35)
to

for any t € (to,T"). We claim that T' = co. Indeed, otherwise T' < co and (3.8) applies with ¢ = 7. Hence,
[u(T) = ool < |u(T) — ulto)l| + llu(to) — sl <.

Then u(T') € B(ucs,n), which contradicts the definition of 7. As a consequence the curve v’ belongs to L ((to, 00); R™Y)
by (3.8) and the curve u converges to us, by Cauchy’s criterion. Finally since 0 must be a cluster point of u’ (recall

indeed [;° [|u/(t)||d¢t < oo and ' is uniformly continuous by (3.1)), one must have F(us) = 0. The announced
estimate follows readily from (3.8) and the fact that T' = co. O

Corollary 3.3. Let F : RN — RY be locally Lipschitz continuous and assume that for any R > 0 the mapping F
defines a quasi-gradient vector field for some differentiable function Er : RN — R on B(0, R). Assume further that
each of the functions Egr is KL.

Let u be any bounded solution to (3.1). Then u converges to a singular point us, of F, v’ is integrable and converges
to 0. In particular, if we take R > sup {|lu(t)|; t € [0,00)}, we have the following estimate,

[u(t) = uooll <

(Er(u(®)) - Erlux)). (3.9)

—
ag
where ¢ is a desingularizing function of Eg at us and ag is the constant in (3.2), for the ball B(0, R).

Proof. Take R > sup {|u(t)|; ¢t € [0,00)} and observe that the previous proof may be reproduced as it is: just
replace E' by ER. O

11



3.2 Convergence rate of quasi-gradient systems and worst-case dynamics
To simplify our presentation we consider first a proper gradient system:
u'(t) + VE(u(t)) = 0, (3.10)

where E : RV — R is a twice continuously differentiable KL function. We assume that u is bounded so, by virtue
of our previous considerations, the curve converges to some critical point us, of E. Observe that if u., is a trivial
critical point, one actually has u(0) = us and the asymptotic study is trivial.

We thus assume us, to be nontrivial, and we denote by ¢ a desingularizing function of E at u.,. We set
=",

whose domain is denoted by [0, @), (with a € (0, cc0]) and we consider the one-dimensional worst-case gradient dynamics

(see [8]):

V() + ¢ (v(t) =0, v(0)=1r € (0,a). (3.11)
We shall assume that
¢'(s) > % on (0,70), (3.12)

which implies that solutions v to (3.11) are globally defined on [0, c0) and satisfy tli/m v(t) = 0 with v(t) > vpe o,

for any ¢ > 0 (and for some ¢y > 0). Uniqueness holds by concavity of ¢. Finally, note that if E is a C? definable
function then ¢ can be chosen to be C?, strictly concave and satisfying (3.12) (Remark 2.3 (c) and Lemma 2.9).

Radial functions and worst-case dynamics. A full justification of the terminology “worst-case dynamics” is to
be given further, but at this stage one can observe that E could be taken of the form

Eraq(u) = ¢ (lu = ucoll), with u € B(uoo, ) (n > 0),

provided that ¢! is smooth enough. In that case ¢ is clearly desingularizing and the solutions of the gradient system

(3.10) are radial in the sense that they are of the form(®)
Uy — Uso

AR P |

(3.13)

where v is a solution to (3.11). In this case, the dynamics (3.11) exactly measures the convergence rates for (3.10),

since one has for any ¢t > 0 and any wug such that v(0) = ||ug — uso||,
Eraa(u(t)) = ¢ (), (3.14)
[u(t) = ool = v (1) (3.15)

We are about to see that this behavior in terms of convergence rate is actually the worst we can expect.

Remark 3.4. (a) As can be seen below, the worst-case gradient system is introduced to measure the rate of conver-
gence of solutions for large ¢. Since nontrivial solutions to (3.11) have the same asymptotic behavior (they are, indeed,
all of the form v4(t) = v(t +to) where #( is some real number), the choice of the initial condition »(0) in (0, a) can be
made arbitrarily.

(b) The above rewrites v/(t)¢’ (¢ ' (v(t))) = —1. Thus if 1 denotes an antiderivative of ¢’ o ¢~
u= (=t + ag) (where ag is a constant), for any ¢ > 0 large enough.

(c) In general, the explicit integration of such a system depends on the integrability properties of ¢ and on the fact

1 one has v(t) =

that ¢’ o ¢~ admits an antiderivative in a closed form.
For instance if ¢(s) = (£)?, with ¢ > 0 and 6 € (0, 3) , then ¢(s) = cs® and
C 1—6
V(t) + g vty ® =0, v(0)e€(0,a).

8 Just use the formula in (3.10).
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Thus by integration

with ¢; > 0. As a consequence,

_ e
v(t) = (c2 + crt) %,
with ¢z > 0. When 6 = 3 one easily sees that v(t) = v(0) exp (—2ct).

Theorem 3.5 (The worst-case rate and worst-case one-dimensional gradient dynamics).

Let E € C?(RY;R) be a KL function, let u be a bounded solution to (3.10) and let us, € crit E satisfying u(t) 2% e
(such a uy, exists by Theorem 3.2). Then for any t large enough,

E(u(t)) — E(use) < ¥(v(1)), (3.16)
and
[[u(t) — ool < v(t), (3.17)
where v is a solution to (3.11).

Proof. Without loss of generality, we may assume that F(us) = 0. From the previous results, we know that for any
t > to, we have u(t) € B(uso,n) and E(u(t)) € (0,79), so that the KL inequality gives (see Theorem 3.2 and (3.7)):

S (oo Bw) () > /(1))

Set z(t) = E(u(t)). Since %(E ou)(t) = —||u/()||?, one has —%((p 0 z)(t) = \/—7'(t), or equivalently

¢ (2(1)) 2 (t) < —1.

Consider now the worst-case gradient system with initial condition v(to) = ¢(E(u(tg))) and set z,(t) = ¥ (v(t)) =
0 Y(v(t)), for t > to. The system (3.11) becomes ¢'(z,(t))z0(t) + m =0, d.e., ¢ (24(t))%2L(t) = —1. If p is an

antiderivative of ¢'“ on (0,7¢), it is an increasing function and one has

w0 2)(0) = ¢! (=) () < ~1 = ¢ (20(6)) 24(0) = (o 20)(0),

and u(z(to)) = p(za(to)). As a consequence, p(z(t)) < p(zq(t)), hence z(t) < z,(t) for any t > to, which is exactly
(3.16). Using (3.4), we conclude by observing that

[u(t) — usoll < @(E(u(t))) < ¢(za(t)) = v(1).
The theorem is proved. O
Remark 3.6. Observe that in the case of a desingularizing function of power type (see Remark 3.4 (c)), we recover
well-known estimates [33].

Theorem 3.7 (The worst-case one-dimensional gradient dynamics for quasi-gradient systems).

Let F : RN — RY be a locally Lipschitz continuous mapping that defines a quasi-gradient vector field for some
function E € C?*(RY;R) on B(0,R), for any R > 0. Assume further that the function E is KL and that for any
R > 0, there exists a positive constant b > 0 such that

IVE(u)|| < blIF (u)l], (3.18)

for any u € B(0, R). Assume further that for a given initial data ug € RN the solution u to (3.1) converges to some
rest point us. Denote by ¢ some desingularizing function for E at .
Then there exist some constants c¢,d > 0,tg € R such that

[lu(t) — uoo|| < dv (ct +to), (3.19)

where v is a solution to (3.11).

13



Proof. Combining the techniques used in Theorems 3.2 and 3.5, the proof is almost identical to that of Theorem 3.5.
Without loss of generality, we may assume that F(us) = 0. We simply need to check the following inequality which
is itself a consequence of the assumption (3.18) applied with R = sup ||u(t)].

>0

d
—gBew) = (), VE(u(h))
< F@@)[IVE@)]
< b[F )]
< bl @)
From (3.7) one has —& (¢ o E)(u(t)) > allu'(t)]|, for any t sufficiently large. Setting z(t) = E(u(t)), one obtains
f%(ga oz)(t) > %\/fz’(t). The conclusion follows as before by using a reparametrization of (3.11). O

Remark 3.8. Assumption (3.18) is of course necessary and simply means that the vector field F' drives solutions to
their rest points at least “as fast as VE” (see also [20]).

3.3 Damped second order systems are quasi-gradient systems

As announced earlier our approach to the asymptotic behavior of damped second order gradient system is based on
the observation that (1.1) can be written as a system having a quasi-gradient structure. For G € C?(RY;R), let us
define F : RV — R by

F(u,v) = (—v, y+ VG(w)).
Then (1.1) is equivalent to
U't)+F(U(t) =0, teRy, withU = (u,v). (3.20)

As explained in the introduction the total energy function E7(u,v) = G(u) + 1 |v||? (sum of the potential energy and
the kinetic energy) is a Liapunov function for our dynamical system (1.1). Formally

(VET(u,v), F(u,v)) = 7lv]*.

From the above we see, that the damped system (1.1) is not quasi-gradient for Er since one obviously has a degeneracy
phenomenon

(VEr(u,v), F(u,v)) = 0 whenever v =0, (3.21)

where in general VEr(u,v) # 0 and F(u,v) # 0.
The idea that follows consists in continuously deforming the level sets of Ep, through a family of functions:

Ex:RY xRY — R with & = Er () denotes here a positive parameter),

so that the angle formed between each of the gradients of the resulting functions £y, A > 0 and the vector F remains
far away from /2. In other words we seek for functions making oF' a quasi-gradient vector field.

Proposition 3.9 (The second order gradient systems are quasi-gradient systems). Let G € C?(RY;R) and
let v > 0. For A > 0, define £, € CY(RY x RV;R) by

Ex(u,v) = <;||v2 + G(u)> + MVG(u), v).

For any R > 0, there exists A\g > 0 satisfying the following property. For any X € (0, o], there exists a > 0 such that

(Véx(u,v), F(u,0)) = a|[VEX(u, )| | F (u, )], (3.22)
for any (u,v) € B(0, R) x RN. Purthermore,
cit &y N (B(0, R) x RY) = F~'({0}) N (B(0, R) x RY) , (3.23)

for any X € [0, Aol
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Proof. For cach (u,v) € RN x RY, we have V&, (u,v) = (VG(u) + AV2G(u)v, v + AVG(u)) . Let R > 0 be given
and let M = max {|[V2G(u)||; v € B(0,R)}. Choose Ao > 0 small enough to have

2
<M + 7 ) Ao > 0.
Let A € (0, \o]. Then for any (u,v) € B(0, R) x RV, we obtain by Young’s inequality,
(VE(u,0), Fu,v)) = v[[ol]* = MV2G (u)v,0) + A (VG (u),y0) + A | VG (u)||?

>Q—M&—°f>nw 2 VG
> ao (o] + IVG@)P), (3.24)

where oy = min{ (M + 1 ) Ao, 2} > 0. Moreover,

1 1
V&, )IHIF (o)l < SIVEw, )II* + SI1IF (w,v)[* < Cllol* + VG (w)[*). (3.25)

Combining (3.25) with (3.24), we deduce that the angle condition (3.22) is satisfied with o = 2. Finally, the rest
point equivalence (3.23) follows from (3.24). O

Remark 3.10. Note that for A = 0, we recover the total energy Er(u,v) = & (u,v) = |jv[|* + G(u).

The following result is of primary importance: roughly speaking it shows that functions which desingularize the
potential G at some critical point u, also desingularize the energy function Ep and more generally the family of
deformed functions &, at the corresponding critical point (@, 0). This result implies in turn that the decay rate of
the energy is essentially conditioned by the geometry of G as one might expect from a mechanical or an intuitive
perspective.

In the proposition below one needs the kinetic energy to be desingularized by ¢. This explains our main assumption.

Proposition 3.11 (Desingularizing functions of the energy). Let G € C?(RV;R), u € critG and assume
that there ezists a desingularizing function ¢ € C*((0,79);R) of G at w on B(w,n) such that ¢'(s) > 5 for any
S € (O,To).

Then there exist Ay > 0, n1 > 0 and ¢ > 0 such that

Hv <apo;5)\(., .)—5A(u,0)|> () > ¢ (3.26)

for any X € [0, M] and any (u,v) € B(u,n1) x B(0,m1) such that Ex(u,v) # Ex(T,0).

Proof. By standard translation arguments, we may assume without loss of generality that G(u) = 0 and @ = 0. Then
£x(0,0) =0 and (3.26) consists in showing that for some constant ¢ > 0,

c

1
N > <
80 (2 |5)\(U,'U)> = va)\('u?'l})H,

for any A € [0, 1] and any (u,v) € B(0,71) x B(0,71) such that x(u,v) # 0. Recall that 0 € critG. Let M =
max{||V2G(u)||; u € E(O,n)} and define \; = min{4 7m . We have,
IVEX(u, )| = VG (u) + AV2G(u)v]| + o+ AVG(u)||?

> [VG)| + [v]|® = A (M2 + D)|v]|? — 20| VG (w) 2

> (Il + IVGw)P), (3.27)
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and in particular,
IVG(u)]| < 2|VEx(u, )], (3.28)
for any A € [0, ;] and any (u,v) € RN x RY. Let now (\,u,v) € [0,\1] x B(0,1) x RN be such that & (u,v) # 0.
Since ¢’ is nonincreasing, we have
(1 (1 1
¢ (5185w 0l ) > ¢ (5 1870 v) — Ex(w 0) + 5 [Ex(w,0)]
> ¢’ (max {|Ex(u,v) — Ex(u,0)],|E(u, 0)]}) . (3.29)

Let us first find a lower bound on ¢’ (|€x (1, 0)]). Observe that necessarily £x(u,0) = G(u) # 0. In particular, VG(u) # 0
(Remark 2.5). We then have by (2.2) and (3.28), V&) (u,v) # 0 and

/ — u ! !
(183w 0)) = (1IGW) > 155001 Z e @ ol

(3.30)

for any A € [0, \;] and any (u,v) € B(0,1) x RY such that £, (u,0) # 0.
Let us now estimate ¢'(|Ex(u,v) — Ex(u,0)]) in (3.29) under the assumption Ey(u,v) # Ex(u,0). Cauchy-Schwarz’
inequality implies that for any A € [0, \1],

[Ex(u,v) = Ex(u, )] < 5 (I0]* + Aallv]]* + MIVG(w)]?). (3.31)

DN =

Combining (3.31) with (3.27), we deduce that for any A € [0, \;] and any (u,v) € RY x RY,
1Ex (1, v) — Ex(u, 0)] < (14 X1)||VEA(u,v)]?. (3.32)
By continuity of VG, there exists 11 € (0,7) such that
sup { (14 X)) [ V&, 0)[[%5 (A, 0) € [0, Ma] % B(0,m) x B(0,m) } < 7o.
Using successively the fact that ¢’ is nonincreasing and ¢'(s) > %, it follows from (3.32) that if (u,v) € B(0,71) X

B(0,n1) with Ex(u,v) # Ex(u,0) then VE)(u,v) # 0 and

&1

@' (1€x(w,0) = Ex(w, 0)1) > @ ((L+ M)IVEN(w 0)IP) > (gt

(3.33)

where ¢; > 0 is a constant. Finally, inequalities (3.30) and (3.33) together with (3.29) yield the existence of a constant
¢ > 0 such that for any A € [0, A1] and any (u,v) € B(0,71) x B(0, 1) such that Ex(u, v) # 0, there holds VEy (u,v) # 0
and ¢’ (3|Ex(u,v)]) [[VEA(u,v)|| = ¢, which is the desired result. O

4 Convergence results

Before providing our last results, we would like to recall to the reader that a bounded trajectory of (1.1) may not
converge to a single critical point; finite-dimensional counterexamples for N = 2 are provided in [4, 41], in each case
the trajectory of (1.1) ends up circling indefinitely around a disk.

We now proceed to establish a central result whose specialization to various settings will provide us with several
extensions of Haraux-Jendoubi’s initial work [31].

Theorem 4.1. Let G € C*(RY;R) and (up,uh) € RY x RN be a set of initial conditions for (1.1). Denote by
u € C?([0,00); RY) the unique regular solution to (1.1) with initial data (ug,uf). Assume that the following holds.

1. (The trajectory is bounded) sup ||u(t)| < co.
>0
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2. (Convergence to a critical point) G is a KL function. Each desingularizing function ¢ of G satisfies

¢'(s) > 55 (4.1)

for any s € (0,m0), where 8 and 1y are positive constants (see Definition 2.1).
Then,
(i) u' and u” belong to L'((0,00); RY) and in particular u converges to a single limit u, in crit G.
(1i) When u converges to u~, we denote by ¢ the desingularizing function of G at us,. One has the following estimate
[u(t) = uoo|| < cv(t),
where v is the solution of the worst-case gradient system

V() + (¢7) (v(1) = 0, v(0) > 0.

Proof of Theorem 4.1. Let G € C?*(RY;R), let (ug,ufy) € RY x RV, let u € C?([0,00);RY) and let w € RV,
Set U(t) = (u(t),u/(t)), Up = (ug,uf) and U = (u,0). Let F and let &, be defined as in Subsection 3.1 and
Proposition 3.9, respectively. Note that if w ¢ critG then U ¢ crit&, and ¢(t) = ct desingularizes &, at U,
for any A > 0 (Remark 2.3 (a) and (3.23)). Otherwise, u € crit G and we shall apply Proposition 3.11. Since
Supyso [Ju(t)]| < oo, u”(t) + yu'(t) = A(t) where A is bounded. Thus, u'(t) = u/(0)e” 7" + fot exp(—7y(t — s))A(s)ds,
and by a straightforward calculation, sup,- [|u/(t)|| < co. It follows that sup,~ [|U(t)|| < co. Let R = sup,~, ||U(¢)].
Let A\g > 0 and 0 < A1 < Ag be given by Propositions 3.9 and 3.11, respectively. Let us fix 0 < A\, < Ay and let o > 0
be given by Proposition 3.9 for such £\, and R. By Proposition 3.9, the first order system

U'®)+FU(@) =0, teRy, (4.2)

has a quasi-gradient structure for £x, on B(0, R) (Definition 3.1). Finally, since G has the KL property at @, £y, also
has the KL property at U (Proposition 3.11). It follows that Theorem 3.2 applies to U, from which () follows.

The estimate part of the proof of (ii) will follow from Theorem 3.7, if we establish that for any R > 0, there exists
b > 0 such that for any (u,v) € B(0, R) x B(0, R),

IVE, (u, v) || < bl F(u, v)].
First we observe that for each R > 0 and for any (u,v) € B(0, R) x B(0, R), there exists k; > 0 such that
IVEN, (u,0)* < k1 (IVG(@)|* + [|v]]?). (4.3)
This follows trivially by Cauchy-Schwarz’ inequality and the fact that VG is continuous hence bounded on bounded

sets. Fix ¢ > 0 and recall the inequality 2ab < o%a? + i—z for all real numbers a,b. By Cauchy-Schwarz’ inequality
and the previous inequality

1Fu)l? = [l + v + VG (u)]?
L+ ol” + VG @)* = 2|y [ VG(w)]|

1
L+l + IVG@)* = o®[lyl* = VG (w)|*

12) VG @)P.

g

WV

WV

(1= (0% = ol + (1 -
Choosing o > 1 so that 1— (0% —1)y? > 0 yields ko > 0 such that || F(u,v)||> > k2 (|| VG (uw)||*+||v||?), for any u,v in RV,
Combining this last inequality with (4.3), we obtain ||[VE&y, (u,v)|* < %H]:(u, v)||?, for any (u,v) € B(0, R) x B(0, R).
Hence the result. O

Remark 4.2. (a) As announced previously convergence rates depend directly on the geometry of G through ¢.
(b) The fact that the length of the velocity curve «' is finite suggests that highly oscillatory phenomena are unlikely.
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5 Consequences

In the following corollaries, the mapping Ry 3 ¢ — w(t) is a solution curve of (1.1).

Corollary 5.1 (Convergence theorem for real-analytic functions [31]). Assume that G : RY — R is real-
analytic and let u be a bounded solution to (1.1). Then we have the following result.

(1) (u,v') has a finite length. In particular u converges to a critical point ts.

(ii) When u converges to us, we denote by ¢(s) = cs’ (wz’th c>0and @ € (0, %]) the desingularizing function of
G at us — the quantity 6 is the Lojasiewicz exponent associated with us,. One has the following estimates.

2]
1—

(a) [Ju(t) — usll < ct~ 27, with ¢ > 0, when 6 € (0,3).
(b) [|u(t) — ol < " exp(—c't), with ¢/, " > 0, when 6 = 1.

Proof. The proof follows directly from the original Lojasiewicz inequality [14, 13] and the fact that desingularizing
functions for real-analytic functions are indeed of the form ¢(s) = cs with 6 € (0, 5]. Hence (2.10) holds and Theorem
4.1 applies, see also Remark 3.4 (c). O

Corollary 5.2 (Convergence theorem for definable functions). Let O be an o-minimal structure that contains
the collection of semi-algebraic sets. Assume G : RN — R is C? and definable in O. Let u be a bounded solution to
(1.1). Then we have the following result.

(i) u' and u" belong to L ((O, 00); ]RN) and in particular u converges to a single limit us in crit G.
(i1) When u converges to us we denote by ¢ the desingularizing function of G at us. One has the following estimate
[u(t) = uoo|| < cv(t),
where v is a solution of the worst-case gradient system
V(1) + (67 (1) = 0, 1(0) > 0.

C

Proof. G is a KL function by Kurdyka’s version of the Lojasiewicz inequality. The fact that ¢'(s) > 7
Lemma 2.9. So, Theorem 4.1 applies. [

comes from

Corollary 5.3 (Convergence theorem for the one-dimensional case [30]). Let G € C?*(R;R) and let u be a
bounded solution to (1.1). Then u converges to a single point and we have the same type of rate of convergence as in
the previous corollary.

Proof. We proceed as in [19]. Argue by contradiction and assume that w(ug,ug), the w-limit set of (ug, ug), is not a
singleton. Since w(ug, ug) is connected in R, it is an interval and has a nonempty interior. Take % in the interior of
w(ug, uj) The Lojasiewicz inequality trivially holds at @ for G = 0 with ¢(s) = /s (recall @ is interior). Apply then
Theorem 4.1. O

Remark 5.4. In the one-dimensional case, convergence can be obtained with much more general forms of damping,
see [15].

Corollary 5.5 (Convergence theorem for convex functions satisfying growth conditions).
Let G € C?(RM;R) be a convex function such that

argmin G i {ueRY;G(u) =minG},

is nonempty (note that argmin G = crit G). Assume further that, for each minimizer x*, there exists n > 0, such that
G satisfies

Yu € B(z*,n), G(u) > min G + cdist(u, argmin G)", (5.1)
with v > 1 and ¢ > 0. Then the solution curve t — (u(t),u'(t)) has a finite length. In particular u converges to a

minimizer Us, of G as t goes to oc.
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Proof. A general result of Alvarez [I] ensures that « is bounded (and even converges). On the other hand it has

been shown in [10] that functions satisfying the growth assumption (5.1), also satisfy the Lojasiewicz inequality with
desingularizing functions of the form s — ¢/s'~%/" with ¢ > 0. Combining the previous arguments, the conclusion
follows readily. O

Remark 5.6. An alternative and more general approach to establish that trajectories have a finite length has been
developed for convex functions in [45, 22].

A Appendix: some elements on o-minimal structures

Some references for o-minimal structures are [21, 25, 12, 23]. We only collect in this appendix the elements that are
necessary to follow our main developments.

Definition A.1 (o-minimal structure [21, Definition 1.5]). An o-minimal structure on (R, +, .) is a sequence
of Boolean algebras(?) O = {0, },en of subsets of R” such that for each n € N,

(i) if A belongs to O,, then A x R and R x A belong to Oy,41;
(i) if IT: R»*! — R™ is the canonical projection onto R™ then for any A € O,,, 1, the set II(A) belongs to O,;

(iii) O, contains the family of real algebraic subsets of R™, that is, every set of the form
{x € R"; p(z) = 0},
where p : R" — R is a real polynomial function;

(iv) the elements of O, are exactly the finite unions of intervals and points.

Being given an o-minimal structure O, a set A C R™ is called definable (in O) if A € O,,. A mapping F : D C R* —
R™ is said to be definable in O if its graph is definable in €2 as a subset of R™ x R™. A point-to-set mapping

S:R" = R™,

maps each point z in R™ to a subset S(z) of R™. The domain of S, denoted by dom S, is given by the set of elements
2 in R™ such that S(x) is nonempty. The graph of S is defined by

graph S = {(m,y) eER" xRy € S(x)}

As previously a point-to-set mapping is called definable (in O) if its graph is definable in R™ x R™.

Example A.2. (a) Semi-algebraic sets. The first and simplest example of o-minimal structure is given by the
class of semi-algebraic objects (see (2.1)). Tarski-Seidenberg principle (see [7]) asserts that linear projections of semi-
algebraic sets are semi-algebraic sets, in other words item (ii) of Definition A.1 holds for the class of semi-algebraic
sets. The other items of the definition are easy to establish.

(b) Globally subanalytic sets. There exists an o-minimal structure that contains semi-algebraic sets and sets of
the form {(z,t) € [-1,1]" x R; f(z) = t}, where f : [-1,1]" — R (n € N) is a real analytic function that can
be extended analytically on a neighborhood of the square [—1,1]™ — these are sometimes called restricted analytic
functions. This result is essentially due to Gabrielov [28]; sets belonging to this structure are called globally subanalytic
sets (see [24] and the references therein).

(c) Log-exp structure. There exists an o-minimal structure containing the globally subanalytic sets and the graph
of exp: R — R, see [24].

9Recall that a Boolean algebra is stable by finite union, finite intersection and contains the empty set and the total space; here §) € O,
and R™ € Op.
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There are other results on o-minimal structures and the field is still very active, but the above examples give a good
idea of the power of the concept.

We now describe some stability /regularity results that we used in this paper.

Let O be an o-minimal structure on (R, +, .).

Lemma A.3 (Monotonicity Lemma [25, Theorem 4.1]). Let f : I C R — R be a definable function and k € N.
Then there exists a finite partition of I into p intervals Iy, ..., I, such that f restricted to each nontrivial interval I,
je{l,...,p}, is C* and either strictly monotone or constant. Observe that some I; can be reduced to a singleton.

Lemma A.4 (Definable Selection Lemma [21]). Let S : R™ — R™ be a definable point-to-set mapping. Then
there exists a definable mapping F : dom S — R™ such that

F(z) € S(x), Vz € dom S.

We recall the following theorem as stated in Kurdyka’s original work [42].

Theorem A.5. Let 2 be a nonempty open bounded subset of R™ and f : Q — R a differentiable definable function
with f > 0 on Q. Then there exist 1o > 0 and a continuous definable function ¢ : [0,79) — Ry such that ¢(0) = 0,
o € CY0,79) and ' > 0 such that

IV(pof) (@) =1, Ve e

Remark A.6. Let us show how to recover the form of KL inequality given in Theorem 2.2.

We adopt the notation of Theorem 2.2. Fix p > 0. Apply first, the above result to G—G(u) (respectively, to G(u) —G)
on y = B(u, u) N[G — G(u) > 0] (respectively, on o = B(w, u) N[G(w) — G > 0]). This gives ¢; : [0,71) — Ry and
2 : [0,72) — Ry, as in Kurdyka’s Theorem. Let us now build a “global” ¢ as in Theorem 2.2. First recall that the
derivative of a differentiable definable function is definable in the same structure, see [21]. Set p(s) = (¢} — ¢5)(s).
By definability, p is positive, negative or null on an interval of the form (0,e). This yields the existence of 7 in
(0, min{ry,r2}) such that, for instance, ¢} > ¢} on (0,7). Set then ¢ = ¢1 and observe that

IV (pelG(-) - G@)) ()] =1, vu € B(0,n) \ [G # G(u)],

when 7 is sufficiently small.

Acknowledgements. We are grateful to the referees for their very careful reading and their constructive input.
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